
UNIVERSITÉ DE MONTRÉAL

A PROBABILISTICALLY ANALYZABLE CACHE TO ESTIMATE TIMING BOUNDS

HASSAN ANWAR
DÉPARTEMENT DE GÉNIE INFORMATIQUE ET GÉNIE LOGICIEL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

MÉMOIRE PRÉSENTÉ EN VUE DE L’OBTENTION
DU DIPLÔME DE MAÎTRISE ÈS SCIENCES APPLIQUÉES

(GÉNIE INFORMATIQUE)
JUIN 2016

c© Hassan Anwar, 2016.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PolyPublie

https://core.ac.uk/display/213620202?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNIVERSITÉ DE MONTRÉAL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

Ce mémoire intitulé :

A PROBABILISTICALLY ANALYZABLE CACHE TO ESTIMATE TIMING BOUNDS

présenté par : ANWAR Hassan
en vue de l’obtention du diplôme de : Maîtrise ès sciences appliquées
a été dûment accepté par le jury d’examen constitué de :

M. GUÉHÉNEUC Yann-Gaël, Doctorat, président
M. BELTRAME Giovanni, Ph. D., membre et directeur de recherche
Mme NICOLESCU Gabriela, Doctorat, membre

iii

DEDICATION

This work is dedicated to my beloved Wife and Son

Praise worthy Mother and Father, My Brother and Sister and

Dr. Giovanni Beltrame for guiding me with love and patience. . .

iv

ACKNOWLEDGEMENT

I humbly praise ALLAH ALMIGHTY and am grateful to Him, Who helped me live and
accomplish the tasks including the research work presents in this thesis ; Dr. Giovanni Bel-
trame my supervisor at École Polytechnique de Montréal, who is always there to help me
during my entire thesis. I would have been nowhere without him and am very proud to
have worked under his supervision. I offer my sincerest thanks to him for his patience, gui-
dance, illustrious advice, useful suggestions, kind and dynamic supervision throughout the
research work. His personal interest, valuable suggestions, most co-operative, constructive
and thoughtful behavior, resulted in the completion of this thesis.

I must also thank the administration of École Polytechnique de Montréal for providing me
an excellent environment, perfect for conducting research and provide scholarship for Mas-
ter Thesis. I would like to pay my heartiest gratitude to my fellows in MistLab for their
cooperation, help, and valuable suggestions.

I also wish to express my feelings of gratitude to my wife, son, father, mother, brothers, sister
and other relatives, who prayed for my health and brilliant future. I would not have achieved
my goals without their sincere co-operation and love. I am also using this opportunity to
thank all my friends who prayed for me and encouraged me through their love and sincerity.

May God bless all these wonderful people.

Hassan Anwar

June, 2016.

v

RÉSUMÉ

Les architectures informatiques modernes cherchent à accélérer la performance moyenne des
logiciels en cours d’exécution. Les caractéristiques architecturales comme : deep pipelines,
prédiction de branchement, exécution hors ordre, et hiérarchie des mémoire à multiple ni-
veaux ont un impact négatif sur le logiciel de prédiction temporelle. En particulier, il est
difficile, voire impossible, de faire une estimation précise du pire cas de temps d’exécution
(WCET) d’un programme ou d’un logiciel en cours d’exécution sur une plateforme infor-
matique particulière. Les systèmes embarqués critiques temps réel (CRTESs), par exemple
les systèmes informatiques dans le domaine aérospatiale, exigent des contraintes de temps
strictes pour garantir leur fonctionnement opérationnel. L’analyse du WCET est l’idée cen-
trale du développement des systèmes temps réel puisque les systèmes temps réel ont toujours
besoin de respecter leurs échéances. Afin de répondre aux exigences du délai, le WCET des
tâches des systèmes temps réel doivent être déterminées, et cela est seulement possible si l’ar-
chitecture informatique est temporellement prévisible. En raison de la nature imprévisible
des systems informatiques modernes, il est peu pratique d’utiliser des systèmes informatiques
avancés dans les CRTESs. En temps réel, les systèmes ne doivent pas répondre aux exigences
de haute performance. Les processeurs conçus pour améliorer la performance des systèmes
informatiques en général peuvent ne pas être compatibles avec les exigences pour les systèmes
temps réel en raison de problèmes de prédictabilité. Les techniques d’analyse temporelle ac-
tuelles sont bien établies, mais nécessitent une connaissance détaillée des opérations internes
et de l’état du système pour le matériel et le logiciel. Le manque de connaissances approfondies
des opérations architecturales devient un obstacle à l’adoption de techniques déterministes
de l’analyse temporelle (DTA) pour mesurer le WCET. Les techniques probabilistes de l’ana-
lyse temporelle (PTA) ont, quant à elles, émergé comme les techniques d’analyse temporelle
pour la prochaine génération de systèmes temps réel. Les techniques PTA réduisent l’étendue
des connaissances nécessaires pour l’exécution d’un logiciel informatique afin d’effectuer des
estimations précises du WCET. Dans cette thèse, nous proposons le développement d’une
nouvelle technique pour un cache probabilistiquement analysable, tout en appliquant les tech-
niques PTA pour prédire le temps d’exécution d’un logiciel. Dans ce travail, nous avons mis
en place une cache aléatoire pour les processeurs MIPS-32 et Leon-3. Nous avons conçu et mis
en œuvre les politiques de placement et remplacement aléatoire et appliquer des techniques
temporelles probabilistiques pour mesurer le WCET probabiliste (pWCET). Nous avons éga-
lement mesuré le niveau de pessimisme encouru par les techniques probabilistes et comparé
cela avec la configuration du cache déterministe. La prédiction du WCET fournie par les

vi

techniques PTA est plus proche de la durée d’exécution réelle du programme. Nous avons
comparé les estimations avec les mesures effectuées sur le processeur pour aider le concepteur
à évaluer le niveau de pessimisme introduit par l’architecture du cache pour chaque technique
d’analyse temporelle probabiliste. Ce travail fait une première tentative de comparaison des
analyses temporelles déterministes, statiques et de l’analyse temporelle probabiliste basée sur
des mesures pour l’estimation du temps d’execution sous différentes configurations de cache.
Nous avons identifié les points forts et les limites de chaque technique pour la prévision du
temps d’execution, puis nous avons fourni des directives pour la conception du processeur
qui minimisent le pessimisme associé au WCET. Nos expériences montrent que le cache ré-
pond à toutes les conditions pour PTA et la prévision du programme peut être déterminée
avec une précision arbitraire. Une telle architecture probabiliste offre un potentiel inégalé et
prometteur pour les prochaines générations du CRTESs.

vii

ABSTRACT

Modern computer architectures are targeted towards speeding up the average performance
of software running on it. Architectural features like: deep pipelines, branch prediction, out-
of-order execution, and multi-level memory hierarchies have an adverse impact on software
timing prediction. Particularly, it is hard or even impossible to make an accurate estimation
of the worst case execution-time (WCET) of a program or software running on a particular
hardware platform.

Critical real-time embedded systems (CRTESs), e.g. computing systems in aerospace require
strict timing constraints to guarantee their proper operational behavior. WCET analysis is
the central idea of the real-time systems development because real-time systems always need
to meet their deadlines. In order to meet the deadline requirements, WCET of the real-time
systems tasks must be determined, and this is only possible if the hardware architecture is
time-predictable. Due to the unpredictable nature of the modern computing hardware, it
is not practical to use advanced computing systems in CRTESs. The real-time systems do
not need to meet high-performance requirements. The processor designed to improve average
cases performance may not fit the requirements for the real-time systems due to predictability
issues.

Current timing analysis techniques are well established, but require detailed knowledge of
the internal operations and the state of the system for both hardware and software. Lack of
in-depth knowledge of the architectural operations become an obstacle for adopting the de-
terministic timing analysis (DTA) techniques for WCET measurement. Probabilistic timing
analysis (PTA) is a technique that emerged for the timing analysis of the next-generation
real-time systems. The PTA techniques reduce the extent of knowledge of a software exe-
cution platform that is needed to perform the accurate WCET estimations. In this thesis,
we propose the development of a new probabilistically analyzable cache and applied PTA
techniques for time-prediction. In this work, we implemented a randomized cache for MIPS-
32 and Leon-3 processors. We designed and implemented random placement and replace-
ment policies, and applied probabilistic timing techniques to measure probabilistic WCET
(pWCET). We also measured the level of pessimism incurred by the probabilistic techniques
and compared it with the deterministic cache configuration. The WCET prediction provided
by the PTA techniques is closer to the real execution-time of the program. We compared the
estimates with the measurements done on the processor to help the designer to evaluate the
level of pessimism introduced by the cache architecture for each probabilistic timing analysis

viii

technique. This work makes a first attempt towards the comparison of deterministic, static,
and measurement-based probabilistic timing analysis for time-prediction under varying cache
configurations. We identify strengths and limitations of each technique for time- prediction,
and provide guidelines for the design of the processor that minimize the pessimism associated
with WCET. Our experiments show that the cache fulfills all the requirements for PTA and
program prediction can be determined with arbitrary accuracy. Such probabilistic computer
architecture carries unmatched potential and great promise for next generation CRTESs.

ix

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENT . iv

RÉSUMÉ . v

ABSTRACT . vii

TABLE OF CONTENTS . ix

LIST OF TABLES . xii

LIST OF FIGURES . xiii

LIST OF ABBREVIATIONS . xiv

LIST OF APPENDIX . xv

CHAPTER 1 INTRODUCTION . 1
1.1 Context and Motivation . 2
1.2 Objectives/Purpose of Study . 3
1.3 Problem Statement . 4
1.4 Novelty and Impact . 5
1.5 Research Contributions . 5
1.6 Thesis Layout . 6

CHAPTER 2 TIMING ANALYSIS . 7
2.1 Deterministic Timing Analysis Techniques 7

2.1.1 Static Techniques . 8
2.1.2 Measurement Techniques . 8
2.1.3 Comparison Between Static and Measurement Techniques 9

2.2 Probabilistic Timing Analysis Techniques . 10
2.2.1 Measurement-Based Probabilistic Timing Analysis 11
2.2.2 Extreme Value Theory for MBPTA 12
2.2.3 Achieving Time Randomization . 14
2.2.4 Static Probabilistic Timing Analysis Technique 15

x

2.2.5 Comparison Between Measurement and Static Probabilistic Timing
Techniques . 16

CHAPTER 3 TIME-PREDICTABLE ARCHITECTURES 18
3.1 Time-Predictable Architecture . 18

3.1.1 Architectural Modifications . 21
3.2 Probabilistically Analyzable Single-core Architecture 22
3.3 Probabilistic Multi-core Architecture . 23
3.4 Probabilistically Analyzable Real-time Systems 24

3.4.1 Probabilistically Analyzable Cache 24
3.4.2 Probabilistic Analyzable Bus . 25

3.5 Time-Predictable Real-time systems . 26

CHAPTER 4 PROBABILISTICALLY ANALYZABLE CACHE ON FPGA 28
4.1 Introduction . 28
4.2 Inspiration . 28

4.2.1 Cache Organization . 29
4.2.2 Cache Mapping Scheme . 30
4.2.3 Direct Mapped Cache . 30
4.2.4 Fully Associative Cache . 31
4.2.5 Set Associative Cache . 31
4.2.6 Comparison . 31

4.3 Randomized Cache . 31
4.4 Cache Model . 32

4.4.1 Instruction Cache Model . 32
4.4.2 Data Cache Model . 33

4.5 Hardware Implementation . 35
4.5.1 Cache RTL Model . 35
4.5.2 Random Number Generation . 36
4.5.3 Parametric Hash Function . 36

4.6 Experimental Results . 37
4.6.1 Achieving i.i.d Property . 38

CHAPTER 5 CACHE DESIGN CONSIDERATIONS TO IMPROVE TIMING ANAL-
YSIS BOUNDS . 43
5.1 Introduction . 43
5.2 WCET Estimation Techniques . 44

xi

5.2.1 Cache Overview . 44
5.3 Timing Techniques . 44

5.3.1 Deterministic Timing Analysis . 44
5.3.2 Measurement-Based Probabilistic Timing Analysis 45
5.3.3 Modelling EVT for WCET . 45
5.3.4 Steps in MBPTA . 46
5.3.5 Static Probabilistic Timing Analysis 46

5.4 Prediction Evaluation Under Timing Techniques 48
5.4.1 Cache Hardware Configuration . 48

5.5 Experimental Setup . 49
5.5.1 Cache Setup . 49

5.6 Experimental Evaluation . 50
5.6.1 Prediction Analysis under Associativity 50
5.6.2 Prediction Analysis under Cache Size 52
5.6.3 Prediction Analysis under Line Size 53

CHAPTER 6 DISCUSSION . 58

CHAPTER 7 CONCLUSION . 61

REFERENCES . 63

APPENDIX . 69

xii

LIST OF TABLES

Table 4.1 VHDL Basic Signals Descriptions. 34
Table 4.2 Resource Utilization and Overhead (Virtex-5). 39
Table 4.3 Independence Tests. 39
Table 4.4 Identical Distribution Tests. 40
Table 4.5 Predicted pWCET (Tp) at 10−3 Exceedance Probability versus Mea-

sured WCET (Tm) for the RND Cache. Times are shown in milliseconds. 40
Table 4.6 Deterministic/Probabilistic WCETs and respective Bounds. 41
Table 4.7 Pessimism between Predicted pWCETs at 10−3 Exceedance Probability

versus Deterministic Cache. 42
Table 5.1 Independence and Identical Distribution Tests. 46
Table 5.2 Level of Pessimism Introduced by varying Cache Parameters. 55
Table 5.3 Deterministic/Probabilistic WCETs and respective Execution Bounds. 56
Table 5.4 Pessimism between Predicted pWCETs at 10−3 Exceedance Probability

versus Deterministic Cache. 56

xiii

LIST OF FIGURES

Figure 2.1 Exceedance Probability. 12
Figure 2.2 Gumbel Distribution. 13
Figure 2.3 EVT-Computing System. 14
Figure 3.1 Timing Distribution of different Architectures. 19
Figure 3.2 Probability Density Probabilistic Architectures: avoiding corner cases

will improve WCET Estimation and Bound the Execution-Time t with
Probability P (t > tx). 20

Figure 3.3 Probability Density for Deterministic Architectures. 21
Figure 4.1 Address Bit Partitioning - Direct Mapped Cache. 30
Figure 4.2 Address Bit Partitioning - Set-Associative Cache. 30
Figure 4.3 Instruction Cache State Machine. 33
Figure 4.4 Data Cache State Machine. 34
Figure 4.5 Structure of the Proposed Cache. 35
Figure 4.6 The Hash Function uses a Random Number, the Address Bits, and

Four XOR Stages to Produce a Random Placement. 37
Figure 4.7 Execution-Time Measurement. 38
Figure 4.8 Pessimism between Predicted pWCETs at 10−3 Exceedance Probability

versus Deterministic Cache. 42
Figure 5.1 Impact on Time-Prediction by varying Associativity-MBPTA. 50
Figure 5.2 Impact on Time-Prediction by varying Associativity-SPTA. 51
Figure 5.3 Impact on Time-Prediction by varying Cache Size-MBPTA. 52
Figure 5.4 Impact on Time-Prediction by varying Cache Size-SPTA. 53
Figure 5.5 Impact on Time-Prediction by varying Cacheline-MBPTA. 54
Figure 5.6 Impact on Time-Prediction by varying Cacheline-MBPTA. 54
Figure 5.7 Comparison between Time-Prediction via Timing Techniques and Max-

imum Execution-Time. 55
Figure 5.8 Pessimism between Predicted pWCETs at 10−3 Exceedance Probability

versus Deterministic Cache. 56

xiv

LIST OF ABBREVIATIONS

AHB Advanced Hierarchical Bus
AMBA Advanced Microprocessor Bus Architecture
CRTESs Critical Real-Time Embedded Systems
COTS Commercial Off-The-shelf
DTA Deterministic Timing Analysis
DWC Duplication with Compare
EVT Extreme Value Theory
FPGA Field-Programmable Gate Array
GPD Generalized Pareto Distribution
I.I.D Independent and Identical Distributed
LLC Last Level Cache
LRU Least Recently Used
MBDTA Measurement Based Deterministic Timing Analysis
MBPTA Measurement Based Probabilistic Timing Analysis
PHF Parametric Hash Function
PTA Probabilistic Timing Analysis
RT Real-Time System
SDTA Static Deterministic Timing Analysis
SPTA Static Probabilistic Timing Analysis
TA Timing Analysis
TDM Time Division Multiplexing
TPA Time-Predictable Architecture
TR Time Randomized
WCET Worst-Case Execution Time

xv

LIST OF APPENDIX

APPENDIX A MARKOV MODEL FOR SPTA . 69

1

CHAPTER 1 INTRODUCTION

Time-prediction is the key requirement of a critical real-time embedded system (CRTESs) [21].
The next generation of real-time systems will heavily depend on the accurate prediction of
worst-case execution-time (WCET) of software running on a particular processor. Current
processor architectures are based on the following paradigm: Make the common case fast and
the uncommon case correct [58]. This design approach leads towards architectures in which
the average-case execution-time is optimized at the cost of worst-case execution-time. Mod-
elling the performance enhancement features of current processors, e.g. pipelining, multi-level
cache, dynamic branch prediction, out-of-order execution, chip-multi-threading, and specu-
lative execution for WCET analysis often results in computationally infeasible problems.
Real-time systems need an architecture in which the most primary design parameters are a
fast and predictable worst case. The work accomplished in this project is focused on the de-
sign and usage of probabilistically analyzable cache for time-prediction. The measurements
of probabilistic worst-case execution-time bounds (pWCET) under varying randomized cache
configurations are the central idea. The time-prediction analysis is performed by using prob-
abilistic timing analysis (PTA) techniques. Drawing our inspiration from [21], we implement
the probabilistically analyzable time-predictable cache which can be used to apply PTA tech-
niques. The idea stems from the research on real-time systems and the fact that these systems
have to be used in a real-time environment, e.g. air-bag system in a car, auto-braking system
on a plane, etc. All these systems should be timeliness; this means missing a deadline could
have serious repercussions. Knowing the upper bound of the system execution-time allows
the experts to design their systems in a way that keeps the worst execution-time in content.

WCET estimation of a probabilistically analyzable system can be determined through static
probabilistic timing analysis (SPTA) [33] and measurement-based timing analysis (MBPTA) [24]
techniques. Both techniques provide cumulative distribution function or pWCET function
that upper bounds the execution-time of a program. The analysis guarantees that the
execution-time of a program only exceeds the corresponding execution-time bound with the
probability lower than a targeted probability. In this project, we will explore both static and
measurement-based probabilistic timing techniques.

Static probabilistic timing analysis is based on an extension of a real-time calculus [57] while
measurement-based probabilistic timing analysis is based on measurements of the execution-
time at a higher level of abstraction. The methodology uses in this work will leverage the
probabilistic approach to solve the dependability problem of the program on the execution

2

history. The dependability problem can be solved by introducing the randomization in the
hardware components, e.g. randomized placement and replacement cache policies. Due to
randomization, we implement a probabilistic system which follows a particular mathematical
property that is essential to be able to apply PTA techniques — the execution-time behavior of
the system is independent and identically distributed [34]. The SPTA and MBPTA have been
commonly used for pWCET estimations for real-time systems. These timing techniques are
used for real-time systems since probabilistic techniques do not dependent on any history [45].

Probabilistic analysis of a cache has been an active research field in the last couple of year [45,
41]. Most of the work presented so far is based on simulation or development of the timing
techniques. The application of PTA techniques on timing measurements extracted from the
probabilistically analyzable hardware has not been extensively explored. Furthermore, the
probabilistic analysis of the hardware processor such as processors implemented on FPGA [56,
2] is not studied so far. Therefore, the probabilistic analysis of the computing system is of
great interest for the real-time systems community. In this work, we used open source VHDL
cores of MIPS-32 and Leon-3 and integrated randomized cache in it.

1.1 Context and Motivation

In general, determining the WCET bound on a hardware platform is a challenging task due
to the complexity of the processor architectural design. The unavailability of the proprietary
processor designs makes it more complicated. Accurate modelling of the design for a worst-
case execution-time calculation is a tedious job. Moreover, as discussed earlier, features that
enhance average performance heavily depend on the execution history, e.g. memory traces of
the instructions. The history is hard to model for WCET analysis since a long history leads
towards the state explosion problem for the final WCET. The probabilistic timing analysis is
an emerging technique which helps eliminate the need for the detailed design knowledge and
execution history required to model the timing behavior of all the architectural components.

To enable the probabilistic timing analysis of the applications running on a processor, we
need to introduce randomization in the timing behavior. The randomization in timing is
achieved by employing randomized placement and replacement policies for L1-cache. The
randomization helps to make the system more predictable, i.e. if the probabilistic response of
the system is known, meaningful predictions can be made using the arbitrarily specified con-
fidence interval. The prediction comes with pessimism due to the overestimation generated
by the timing analysis techniques [21]. Therefore, we need a new constructive approach for
designing processor architectures to minimize this pessimism. For this purpose, processors
need to consider time predictability as a major and important factor in their design. In other

3

words, an architecture design with a new paradigm based on Make the worst case fast and
the whole system easy to analyze [58]. General-purpose processors are designed to maximize
throughput [21]. Real-time systems require a processor in which WCET is reasonable and
known at design time. Classical performance enhancement techniques in computer architec-
tures are extremely hard to model for the WCET analysis. For example, execution history
is considered as key for performance improvements, but also the main issue for WCET anal-
ysis. Therefore, we need different techniques to manage execution history. The processors
designed for low WCET will never be as fast as the processors designed for performance
improvement. There are two different design methodologies; either to design for an accurate
WCET analysis or for fast computations. Therefore, deterministic computer architecture
provides WCET bound that is higher than the real WCET in which the level of pessimism
is very high. The difference between the real WCET and the bound is caused by the pes-
simism of the analysis due to certain factors such as infeasible execution path, lack of certain
information, complex architectural design, lack of information provided by the vendors, and
state explosion problem due to long execution history. Here, we would like to present our
idea of the probabilistically analyzable cache.

Timing analysis for probabilistic architecture can be performed by using probabilistic tim-
ing analysis techniques which provide probabilistic WCET bounds (pWCET) [21]. WCET
bounds derived from probabilistically analyzable computer architecture is almost equal to the real
WCET. To design a probabilistic analyzable system, we used randomized cache [9]. We will use
two variants of PTA, i.e. SPTA [3] and MBPTA [24]. In this context, we design and implement the
probabilistically analyzable time predictable cache to improve timing analysis bounds.

1.2 Objectives/Purpose of Study

The objective of this research is the definition and implementation of a fully probabilistically analyz-
able cache for time-prediction. In this research project, we design and implement the probabilistic
cache to perform probabilistic timing analysis on the timing values derived by running the bench-
mark (C-codes) on the processor. The PTA techniques are developed as a solution to reduce the
amount of information needed to determine tight WCET estimates. Probabilistic analysis esti-
mates the chance of forthcoming actions based on an a priori model of the probability. It is a
novel approach to timing analysis of next-generation real-time embedded systems. The observed
execution-times of programs having the distinct probability of occurrence can be modelled with
independent and identically distributed random variables. Current processors do not fulfil these
properties due to their deterministic nature. To guarantee a particular probabilistic timing behav-
ior of a system, we have to remove determinism from computer architecture because determinism
introduces dependencies between instructions and it is not possible to make any assumptions of a

4

normal distribution of events. Our approach is to guarantee the randomness and normal distribution
of events inside all hardware components using a real random number generator [49]. The purpose
of this project is to make possible the probabilistic timing behavior at the hardware level. The
project includes the development of a hardware infrastructure aimed at design space exploration for
future power-efficient and high-performance computer architectures for real-time embedded systems
which include randomized caches. The hardware implementation of the probabilistic cache will be
the main goal. We used benchmarks with high industrial relevance. The pessimism observed under
different cache configurations with PTA techniques on the probabilistic architecture is also studied.

1.3 Problem Statement

This thesis aims at defining a novel approach for probabilistically analyzable cache for the real-time
systems. In particular, our work intends to provide solutions able to mitigate multiple problems,
including, but not limited to:

— Randomization in the timing behavior of the hardware components (e.g. randomized cache)
to make the system more predictable. If the probabilistic response of the system is known,
meaningful predictions can be made using arbitrarily specified confidence intervals.

— Cache plays an important role for performance enhancement. Therefore, we design a random-
ized cache that is organized to speed-up execution-time and provide tight WCET bounds.

— Utilization of both variants of PTA techniques to understand and study how PTA techniques
affect the prediction bound.

— To implement the effective probabilistic analyzable cache, one has to consider (a) time-
prediction as the first order design parameter (b) the design should be probabilistically an-
alyzable and can be used to define the bound for pWCET, and (c) feasible for real-time
systems. The purpose is the definition of a probabilistically analyzable system that can work
under real-time constraints and it is sufficiently fast to meet performance requirements.

The main challenges we foresee are:

— Finding the architectural issues and their solutions.

— Designing novel timing analysis techniques and their validation and evaluation.

— Implementing a randomized cache and integration with the processors.

These challenges are addressed by using probabilistic techniques, such as SPTA and MBPTA,
and by improving existing timing analysis techniques (e.g. the work done in [3] used random
replacement cache for timing improvement) or by introducing a novel technique. We implement the
architecture, i.e. processor with probabilistic cache as a prototype system is implemented on an
field-programmable gate array (FPGA). Its effectiveness is evaluated by making use of benchmark
suites such as the Mälardalen benchmark [35]. For the system implementation, we use existing

5

tools, i.e. Gaisler LEON3 [2] processor, and [56] and modify it accordingly to meet our needs.
We studied pessimism and time- prediction under varying cache parameters, such as cache-line,
cache-size, and associativity.

1.4 Novelty and Impact

The main contributions of this research project can be summarized as follows:

— Development of the probabilistic component — randomized cache. The randomization is
based on a parametric hash function and can be extended to implement other probabilistic
components, e.g. probabilistic bus.

— Development of a methodology of timing analysis for the probabilistic systems. The proba-
bilistic properties can be realized by using caches with random placement and replacement
policies.

— Investigation of prediction effects for probabilistic systems under varying cache configurations.
The techniques to predict timing analysis bound for estimation ensure the reliability of real-
time systems. Moreover, with successful probabilistic cache implementation and its analysis,
it can bring enormous benefits for software production, verification, and certification cost.
The aerospace industry of Quebec and Canada, as well as other technology areas, will benefit
from knowledge transfer and commercialization of probabilistic real-time system software
development.

1.5 Research Contributions

The results presented in this thesis were summarized in two papers:

— H. Anwar, C. Chen, and G. Beltrame (2015). A Probabilistically Analyzable Cache Imple-
mentation on FPGA, 13th IEEE International New Circuits And Systems Conference (NEW-
CAS), Grenoble. [10].

— H. Anwar, C. Chen, and G. Beltrame (2016). Cache Design Considerations to Improve
Timing Analysis Bounds, (to be submitted).

The first paper presents the implementation of a probabilistically analyzable randomized cache for
the MIPS-32 processor on FPGA. The details are presented in Chapter 4. The second paper presents
the comparison of deterministic and probabilistic timing analysis techniques for time-prediction
under varying cache configurations. The paper presents the strengths and limitations of timing
techniques on time-prediction to help architects design processors for real-time systems to minimize
the pessimism associated with the WCET bounds. The details are mentioned in Chapter 5.

For the sake of completeness, we would like to mention that during the course of this work two
additional unrelated papers were published:

6

— H. Anwar, S. Jafri, S. Dytckov, M. Daneshtalab, M. Ebrahimi, A. Hemani, J. Posila, G.
Beltrame, and H. Tenhunen (2014). Exploring spiking neural network on coarse-grain re-
configurable architectures. Proceedings of International Workshop on Manycore Embedded
Systems. ACM, New York, NY, USA, MES ’14, 64–67 [12].

— H. Anwar, M. Daneshtalab, M. Ebrahimi, J. Plosila, H. Tenhunen, S. Dytckov, and G.
Beltrame (2014). Parameterized AES-based crypto processor for FPGAs. Digital System
Design (DSD), 2014 17th Euromicro Conference, 465–472 [11].

These papers are not considered part of this thesis.

1.6 Thesis Layout

The rest of the thesis is organized as follows:

• Chapter 2 reviews the basic concepts in the field of timing analysis, as well as relevant work in
the context of probabilistic timing analysis.

• Chapter 3 presents the time predictable architectures and the difference between the general
purpose processors and time predictable processors.

• Chapter 4 presents our idea and approach to design probabilistically analyzable cache.

• Chapter 5 discusses the different cache design approaches under deterministic and probabilistic
timing techniques. This Chapter also discusses the prediction analysis under different cache
design parameters.

• Chapter 6 lists our findings, how valuable they are and why.

• Chapter 7 summarizes the contributions of this dissertation and suggests some potential ideas
that warrant further investigation.

7

CHAPTER 2 TIMING ANALYSIS

This chapter discusses the related work in Timing Analysis (TA) techniques, which have two variants
— deterministic and probabilistic. We discuss how these two techniques have been used in the past
to estimate WCET bound. TA techniques have significant value in real-time systems to determine
the WCET bound and henceforth ensure the accurate behavior of the system. The good knowledge
of a timing analysis is the key to designing CRTESs.

The family of timing analysis techniques can be classified into two sub-categories: deterministic
timing analysis (DTA), and probabilistic timing analysis (PTA) [51]. Furthermore, the TA tech-
niques can be classified into four distinct approaches: static and measurement-based deterministic
timing analysis (SDTA and MBDTA) and static and measurement-based probabilistic timing anal-
ysis (SPTA and MBPTA) [51]. The main purpose of timing analysis is to calculate the tight bounds
of WCET.

2.1 Deterministic Timing Analysis Techniques

Finding the WCET of a program consists of three possibilities (a) computing the execution-times of
all possible execution paths (b) computing the execution-times of a set of possible paths that can be
guaranteed to include the longest path and (c) computing the execution-time of the longest possible
path. To perform any of these three methods, two approaches can be considered (a) deterministic
timing analysis based on the model of the hardware and software code representation (b) execution
of the program code on the real hardware (measurement-based approach).

Firstly, deterministic timing analysis techniques are discussed. These are considered as the classical
techniques used to find WCET bound [68]. These techniques consider time taken by the task or
program depending on the time spent in instructions, a particular path, and specific hardware [69].
This technique requires modelling of the architecture and building a representation of the program,
e.g. syntax tree that represents the structure of the code. Control flow graph is also used to
express the structure of the executable code. To calculate the execution-time bounds for timing
analysis problems, this technique splits the task into a sequence of sub-tasks. These sub-tasks deal
with the properties of the control flow and others with the execution-time of instructions/series
of instructions on a particular hardware. The timing methods provide the execution-time bound
with the guarantee that the execution-time of the program will not exceed the derived bounds.
The attempts to find the execution-time bounds analyze the possible control-flow paths and the
execution-times for this set of paths. There are two approaches for deterministic timing analysis
techniques named static techniques and measurement-based techniques.

8

2.1.1 Static Techniques

Static techniques are used to estimate WCET by examining the source code without executing it
on the hardware. Researchers started developing static techniques for industry in the late 1980s.
However, the most popular industrial standards are end-to-end timing measurements techniques.
A lot of work has been done for static timing techniques. Static techniques work at a higher-level
of abstraction to determine the structure of a program’s task and subtask. It works on either a
piece of the source code or disassembled binary executable. This technique also works at a low-
level using timing information about the real hardware on which the code will eventually run,
considering this information as a representation of the hardware. The model needs to consider
all aspects of the hardware such as pipeline, branch prediction, and cache. However, obtaining
execution-times from a model instead of measuring it on a hardware platform is only possible if a
realistic model of the architecture is available. After combining high and low level techniques, the
tool attempts to give an upper bound on the execution-time required to execute a particular code
on a hardware platform [69]. At the low-level, static techniques use the behavior of architectural
features that improve the average-case performance of the processor, e.g. instruction/data caches,
branch prediction and instruction pipelines. It is likely, but increasingly complex, to determine
tight WCET bounds if the advanced architectural features are taken into account in the timing
model. For example, cache locking techniques can be used for analyzing WCET estimation but
provide predictability far away from the actual execution [17]. This is one of the reasons the
research community is shifting towards probabilistic techniques which we discuss in section 2.2.
Static techniques give good results for simple hardware. Hence, a possible limitation of the static
technique is the hardware (the processor architecture itself) because the processor hardware has
reached a level complexity that it is very hard to model. The modelling process can introduce
errors from several sources like chip design errors, lack of documentation (companies do not provide
the detail of the architecture), errors in model creation, etc. As a result, the developed model
predicts a different behavior to that observed on real hardware with more pessimistic bounds than
the actual ones. Typically, when it is impossible to have accurate predictions, a pessimistic result
is used. Modelling a multi-core processor for WCET estimations is even harder than single-core
processor. There are many popular and academic tools that implement various forms of static
techniques such as aiT, Rapitime, and Bount-T [69].

2.1.2 Measurement Techniques

The measurements techniques get the timing information by executing the task on the hardware
with a given set of inputs. No modelling and assumptions are required for this technique [69]. This
technique measures the maximum/minimum observed execution-time, or execution-time distribu-
tion. Measurement-based timing techniques usually measure the execution-times of the tasks on
the real hardware to produce an estimate of the WCET bound. This technique is used to find the

9

execution-times either on all execution paths, or on a subset of execution paths. Finding execution-
times of all possible paths does not guarantee the WCET since the longest path may be missed.
One approach is to divide the task into sub-tasks and find the WCET for each sub-tasks. Then, it is
easy to combine it with the high-level analysis to get the WCET estimates. The small sub-tasks of
the primary task can be measured automatically using techniques such as instrumentation (adding
markers to the sub-tasks) or with hardware support such as debuggers and processor hardware trac-
ing modules. These markers help to find the traces of the execution-times which involve both the
path taken by the task and the time at which different points are executed. The trace is then ana-
lyzed to find the maximum time that each part of the sub-tasks used. Measurement-based timing
analysis provides less pessimistic results for complex hardware [44]. This technique is different from
the static analysis which suffers from extreme pessimism. Therefore, measurement-based techniques
are the industrial standard with some limitations, i.e. it relies on observing the worst-case measured
execution-time during the testing, and it is hard to execute it for all the test cases that might affect
the worst-case. There are few tools available in the market to measure the execution-time bound
by using measurement timing techniques. Among those, the most famous are Chalmers, SWEET
and Heptane [69].

2.1.3 Comparison Between Static and Measurement Techniques

In this section, we compare the static and measurement-based techniques to highlight the differences
and similarities in their execution-time methodologies, abilities, and technical problems. Static
methods are based on control-flow analysis and bound calculation to cover all possible execution
paths and estimate the WCET. The overestimation is due to the processor-specific modelling. The
main advantage of static methods is the fact that the analysis can be done without running the
program on an actual hardware. This analysis method often needs high-tech equipment to simulate
the hardware and peripherals of the targeted system.

Measurement-based methods use real measurements (execution runs). Except for the case in which
all potential execution paths are measured or the processor is simple enough to let each measurement
be started in a worst-case initial state, there is still a chance that some context-dependent execution-
times may be missed. For this reason, this method is unsafe to some extent. To calculate estimations,
the measurement methods may use control-flow analysis to include all possible execution paths or
they may only use the observed execution paths. The benefit of using measurement-based technique
is that it is simpler to apply because it requires no need to model processor behavior and it produces
WCET and best case execution-time estimates. The results are more precise, closer to the exact
WCET bounds and also incurs less pessimism as compared to the static techniques especially for
complex processors. Both techniques share some technical problems and solutions. The front-ends
are similar as both use: a) executable code as input b) control-flow analysis c) bound/estimate
prediction can be similar. For example, the implicit path enumeration technique (IPET) [1] used

10

for prediction is employed by some static tools and by some measurement-based tools [43]. The
main technical problem for static techniques is the modelling of processor behavior which is not an
issue for most measurement-based technique, for which the main issue is to measure the execution-
times accurately with fine granularity. The handling of the timing anomalies gives an interesting
comparison of both the techniques. Timing anomalies are hard to access for the measurement-based
technique that makes it very hard to find a worst-case initial state. To remain on the safe side,
the measurement should be done for all possible initial states, which is unrealistic. Measurement-
based techniques use only a subset of initial states. Static techniques are based on an abstract
interpretation. Therefore, static techniques have ways to express the absence of information and
analyze large state sets including all possible states for a safe analysis.

2.2 Probabilistic Timing Analysis Techniques

As discussed in section 1, advancement in the architectural features, adoption of more complex
systems lead towards the timing analysis wall [58], that limits the usage of static timing analysis
techniques [48]. In this context, probabilistic timing analysis approach is proposed by [21]. Authors
showed in their work how probabilistic timing approach attacks the timing analysis wall. They
also provide an experimental evidence of the ways probabilistic timing analysis approach reduces
the execution platform knowledge that is required to produce a probabilistically accurate WCET
estimation.

WCET estimation is a complex process for real-time systems [17]. Cache memories are employed to
meet the performance requirements which makes it harder to accurately predict WCET. Different
timing methods are used for the WCET estimations including deterministic timing techniques, e.g.
SDTA [71] and probabilistic technique, e.g. MBPTA [44]. The deterministic approaches require
a detailed platform knowledge which are not addressed in this research project. For example,
deterministic timing analysis techniques [70] operate on a deterministic processor architecture which
requires a detail knowledge of all the factors that influence execution history, that affects the timing
behavior. For example, STA can be applied at cache level, enabled with least recently used (LRU)
replacement policy. For timing analysis, this technique needs knowledge of all previous memory
accesses made by the program. This requires an accurate abstract cache model. Any flaw in that
model (i.e. the address of some memory accesses is unknown) leads towards degradation of the
WCET estimation [1]. However, if hardware and software detailed knowledge is available, STA
provides the tightest WCET estimation as compared to PTA techniques [44]. PTA techniques on
the other hand are useful for industrial users because they require less information for computing
tight-enough WCET estimates. The processor architectures used in the industry encounter ever
increasing complexity. The task of acquiring and modelling detailed knowledge about the hardware
and software is a tedious job and sometimes not even possible [51]. For such, we will mainly
focus on probabilistic timing analysis approaches. The main objective of PTA is to provide a

11

probability distribution that bounds the probability of the execution-time of a program exceeding
a given value, i.e. the mechanical parts in the aircraft are designed to keep a probability of failure
in mind (e.g. 10−09 per hour of operation in aircraft applications [38]). This bound is called a
probabilistic worst-case execution-time (pWCET) as shown in Figure 2.1. Probabilistic techniques
reduce the cost of acquiring the required knowledge to perform trustworthy and less pessimistic
WCET analysis [24] which makes them attractive for WCET estimation. However, a lot of work is
being done on the deterministic version of timing analysis. The static timing analysis techniques
rely on the exhaustive knowledge of both the hardware and software. Static techniques require
a mathematical representation of the code and a cycle accurate model of the platform. Linear
programming techniques are employed with a mathematical representation of the code to determine
the timing behavior of the model. This timing behavior of the model is used to determine the
upper bound on the WCET. The bounds provided by the static techniques are stronger than the
measurement-based techniques. But the cost of acquiring the detailed knowledge of hardware and
software make this technique less useful. This is due to the fact that the hardware platform,
i.e. processor’s internal architecture, is not well documented or some parts are hidden. This will
cause the under estimation or over estimation of the WCET. There are some other possibilities
like intellectual property restrictions. Measurement-based timing analysis techniques rely on the
thorough testing of the system with the variety of input data, observing the longest execution-time
and adding engineering margins to find upper bound for the WCET.

2.2.1 Measurement-Based Probabilistic Timing Analysis

Measurement-based probabilistic timing analysis is a technique used to reduce the cost of acquir-
ing the knowledge needed to compute trustworthy WCET bounds [36, 24, 43]. MBPTA approach
determines the WCET estimates for an arbitrarily low probability of exceedance — named prob-
abilistic WCET or pWCET. This technique is based on the Extreme Value Theory (EVT) and
provides an estimation of the WCET of a task or application running on a hardware platform. In
order to defeat the dependence on the execution history, this technique employs randomization in
hardware structure. For this, MBPTA technique uses the theory of rare events [21]. There are two
rare event theories which fits the WCET estimation: theory of extreme values [34] and theory of
large deviations [34]. To the best of our knowledge, EVT is the only theory implemented so far for
WCET estimation. The EVT provides an estimation for the maximum of a sequence that consists
of independent and identically distributed random variables [39]. The EVT can be used to pro-
vide the average execution-time and worst case execution-time of the program or software [20, 9].
The EVT is mainly used for the statistical purpose [34] along with Block Maxima [34] which is
used to select highest execution-time and peak over threshold [34] which is also used to measure
highest execution-time. Mainly, the EVT is used on time deterministic architectures for WCET
computations. In this work, we used EVT on time randomized hardware for WCET bound.

12

32000 34000 36000 38000 40000 42000 44000 46000
Number of cycles

10-15
10-14
10-13
10-12
10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

Ex
ce

ed
an

ce
 P

ro
ba

bi
lit

y
pWCET

Figure 2.1 Exceedance Probability.

2.2.2 Extreme Value Theory for MBPTA

Extreme value theory is used to find the probability of rare events. The EVT has been used in the
past to find the average and the worst case execution-time of software programs [4]. The EVT has
used to find the pWCET that upper bounds the execution-time of the program. It also computes
cumulative distribution function with the guarantee that the execution-time of the program only
exceeds the given bound with a probability lower than a threshold, e.g. 10−15.

In order to use EVT for MBPTA, we need to give special treatment to the timing values that
would be observed by running the application/software program on a processor. The timing values
should be regarded as random variables that must have i.i.d property. We used EVT to predict the
maximum execution-time in a set of observations. There are two ways to perform EVT on timing
values. The first approach is Peak over Threshold method [20] which models the distribution
of timing values over a certain threshold. In this case, limiting the distribution of exceedance
probability can be shown by using generalized pareto distribution (GPD). The second approach for
EVT considers the largest (maximum) observation among the successive periods. The maximum
distribution is modelled to follow one of the Gumbel, Frechet or Weibull distributions [34]. We used

13

Gumbel distribution to model our timing values as shown in Figure 2.2.

Usage of EVT for WCET estimation

The EVT is used to predict the worst case execution-time of the applications running on the
processor. The inputs of EVT are the numbers of observations which are derived from the real
execution of the code. Then EVT gives us the probabilistic prediction of the worst execution-time
as shown in Figure2.3. However, there is a requirement associated with the observed values that
the observed timing values should have, i.i.d property. The i.i.d property is associated with random
variables. The independent property states "Two random variables are said to be independent if
they describe two events such that the occurrence of one event does not have any impact on the
occurrence of the other". In addition, identical property states two random variables are said to
be identically distributed if they have the same probability distribution function. In our case, the
timing values are considered as random variables which the occurrence runs (execution-times) are
independent of each other. EVT does not depend on how timing values are derived as it considers
it as a black box as shown in Figure2.3. Timing values should follow i.i.d property to apply EVT to
get pWCET. But the requirement for i.i.d puts some requirements and restrictions on the hardware

Figure 2.2 Gumbel Distribution.

14

platform, i.e. the hardware components are randomized which would facilitate the i.i.d property to
timing values. We discuss this issue in detail in the next section.

2.2.3 Achieving Time Randomization

MBPTA considers events resulting from the observation of end-to-end measurements of the program.
As discussed above, MBPTA uses a statistical method EVT to compute a probabilistic WCET
estimate. Therefore, it requires that the observed execution-times are probabilistically independent
events. The requirement for EVT is that: the execution-times of a program run (on the same path)
have a distinct probability of occurrence and can be modelled with an independent random variable.
This technique is being used for the analysis of cache and processor architectures [44, 51]. We also
use this technique for the WCET prediction which we discuss in Chapter 4. One way to achieve
the time randomization is to vary memory layout of the program and data that affects the program
execution-time. This is a software-level technique to create randomization. But this approach
is not very common in practice to achieve randomization since it puts extra burden on the user.
The MBPTA technique can facilitate randomization by randomizing the placement and replacement
policies which helps to make the overall system probabilistically analyzable. This approach achieves
randomization at hardware level by changing the design of the cache. The random placement and
replacement policies breaks the dependencies in which the index-set of the data is changed at every
run. In this manner, designers do not need to control the location of the data in memory. The
observed execution-times can be regarded as i.i.d random variables so that EVT can be applied.

Observed Timing
Values

EVT

pWCET

Figure 2.3 EVT-Computing System.

15

2.2.4 Static Probabilistic Timing Analysis Technique

The static version of PTA is SPTA that uses a model of a processor to derive a priori probabilities
for the latency of the program instructions running on a processor [17]. This technique has been the
recent subject of many studies [21, 27, 5, 17]. In SPTA, the execution-time of a probability distribu-
tion for an individual instruction is determined statically from a processor model [45]. It means that
the probabilities for the execution-time of each instruction are independent. Whether an executed
instruction is a cache hit, or a cache miss, it does not affect the probabilities of later instructions on
a queue. Each instruction derives its own probabilistic timing behavior represented with the help
of an execution-time profile (ETP). The ETP of an instruction is expressed as ETP (Ii) =< ~ti, ~pi >

where ~ti = (t1i , t2i , ..., tni) and ~pi = (p1
i , p

2
i , ..., p

N
i), with

∑N i
j=1 pi

Nj = 1. The convolution function is
used to combine all the ETPs of the instructions to obtain the new ETP, which is used to repre-
sent the time distribution of all convolved instructions. The probabilistic cache with evict-on-miss
random replacement policy is introduced to reduced WCET of the system and it works in this
way: when a cache miss happens, a cache block is selected randomly for the new entry from the
main memory. Different from Least Recently Used (LRU) replacement policy, this random behavior
avoids cases with low pathological occurrence probabilities which are hard to test and predict such
as [21]. Therefore the WCET can be improved. Several formulae have been proposed for SPTA
analysis of probabilistic caches. [72] uses reuse window to calculate a probability of each memory
address access but this has been proved unsound by [21]. This is because, during the probability
calculation, memory accesses are not independent of one another. Due to lack of this independence,
the result of his formula cannot be used in some cases. [21] proposed another formula for SPTA, as
shown in equation (2.1). In this formula, N is cache associativity and K are reused distance. Reuse
distance represents the number of memory addresses between two continuous accesses to the same
memory address.

P (hit) =

 (N−(K−1)−1
N−(K−1))K ifK < N

0 ifK ≥ N
(2.1)

Equation (2.1) represents the hit probability of each memory address in the cache. This equation
takes the number of cache entries into account and when reuse distance is beyond its scope, the hit
probability is 0. By using equation (2.1), the pessimistic probabilities of all memory addresses are
obtained and are independent of each other. Therefore, the overall probability distribution can be
calculated by convolution of all probabilities. Execution Time Profile (ETP), as shown is equation
(2.2), is used to represent timing information (numbers of cycles) and its associated probability.

ETP = {(c1, c2, ...), (p1, p2, ...)} (2.2)

Where ci is the numbers of cycles, and pi is its corresponding occurrence probability.

16

Consider an example; suppose there are two ETPs:

ETP1 = {(1, 2, 3), (0.1, 0.3, 0.6)}
ETP2 = {(1, 3), (0.2, 0.8)}

From SPTA, we can compute their convolution:

ETP1 ⊗ ETP2 = {(1, 2, 3), (0.1, 0.3, 0.6)} ⊗ {(1, 3), (0.2, 0.8)}
ETP = {(2, 3, 4, 5, 6), (0.02, 0.06, 0.2, 0.24, 0.48)}

Drawbacks

— To determine the execution history, SPTA requires a detailed knowledge of hardware and
software. This knowledge is hard to model due to intellectual property restrictions or hindered
documentation. Any reduction in available knowledge leads to a rapid degradation of the
tightness of the WCET estimation.

— MBPTA works for complex processor architecture. Whereas, SPTA works only for simple
processor architectures [1].

The relevance of a PTA to our research is represented by the proposition of a taxonomy and
a general framework for accurate WCET prediction for the aerospace computing systems. The
primary motivation of this technique is to cope with the history dependency which is highly desired
due to the steadily growing complexity of modern computers.

2.2.5 Comparison Between Measurement and Static Probabilistic Timing Tech-
niques

Probabilistic timing analysis pursues the goal of achieving pWCET estimation through static and
measurement-based techniques:

— The execution-time of the application can be accurately modelled at some level of execution
granularity by a probability distribution.

— Probabilistic timing analysis attacks the timing wall.

— Probabilistic timing analysis reduces the extent of knowledge about the execution platform
required to produce probabilistically accurate WCET estimations.

— Probabilistic timing analysis aims to obtain pWCET estimates for an arbitrarily low probabil-
ity so that even if pWCET estimates are exceeded, it would be exceeded with low probabilities.

Starting with the efforts on timing analysis using the probabilistic cache, several different cache
models are proposed. [53] proposed a randomized replacement policy for standard and skewed asso-
ciative caches which improves WCET at the cost of degrading performance for the best cases. For
a different approach, [44] proposed a software method for conventional caches. It modifies memory

17

objects offline using compilers and linkers or online using program loader and runtime libraries.
There are two techniques for probabilistic cache timing analysis. The first technique is SPTA.
Reuse distance, cache associativity, and entry cache numbers are usually used for calculation. [72]
proposed a cache hit formula using reuse distance which simplifies computational complexity. The
probabilities for each cache access are made independent and the final result is the convolution of
all cache accesses.

However, his methodology has been found faulty [21, 4] Another formula is given by [45], which
may overestimate the cache hit ratio [28]. Thus, the result of probabilities for timing may be
too optimistic and incorrect. [27] developed a formula to estimate WCET, assuming the reuse
distance is known, which is proved to be optimal by [4] with limited information. Besides, an
exhaustive analysis approach as opposed to a simplified formula is proposed in [4]. To reduce the
computational complexity, the comprehensive approach can be combined with simplified equations.
As computational complexity increases, the result is more accurate, but its calculation time grows
as well. Apart from SPTA, the MBPTA methodology based on EVT assuming independent and
identically distributed random property is tested and Gumbel distribution function is proved to
fit the distribution. With these assumptions, result from EVT shows that this technique is close
to SPTA. Besides, with mathematical techniques, only a few hundred simulations are required for
calculation.

18

CHAPTER 3 TIME-PREDICTABLE ARCHITECTURES

This chapter discusses a design methodology for time-predictable architectures. In this chapter,
we discuss how time-predictable designs are different from general purpose processor architectures.
We also discuss different probabilistic systems such as a probabilistically analyzable cache and bus.
We propose the method of achieving the objectives of our research, i.e. the implementation of
probabilistically analyzable, time-predictable computing systems.

3.1 Time-Predictable Architecture

As we know, computing systems that are subject to respond to strict operational deadlines from
events, (i.e. alarms, commands, etc.) are called real-time systems. These are employed in many
applications where the response time of a control system can have a critical impact on the safety
of people or infrastructure, (e.g. airplanes, automobiles, and satellites). As critical applications
become more and more complex, the performance of real-time systems has to increase to guarantee
appropriate safety standards. The main obstacle to high-performance real-time systems is the un-
predictable timing behaviour of the modern computer architectures. Currently, software designed
for real-time systems needs to be guaranteed to be executed within the required time frame. De-
pending on the complexity of the underlying hardware architecture, this level of certainty might
be difficult or impossible to reach. Within this context, this project will introduce a probabilistic
approach: by enabling true randomized behaviour in processors and memory architectures, one can
define probabilistic metrics for the timing behaviour of a system. This would bring real-time soft-
ware engineering in line with other engineering domains that perform risk analysis using component
failure probabilities.

However, there are few time-predictable architecture available based on the deterministic timing
analysis, e.g. the multithreaded processor Komodo [46]. The Komodo processor core is used to exe-
cute Java applications natively. This processor assesses the memory at higher clock frequency than
for the pipeline. This technique facilitates the pipeline to access the memory in a single pipeline cy-
cle leading to a precisely predictable access time. There is one more processor for Java applications
named Java optimized processor [58]. This processor takes advantages regarding predictability over
the conventional processors. This processor introduced stack cache and method cache that pre-
vents additional runtime stack, save/store procedures of the register file, prevents memory conflicts.
These two above mentioned processors are based on single core architecture. There is a multicore
processor architecture named MERASA [66] used to parallel execution of multithreaded with hard
real-time requirements. Static and measurement-based WCET analysis techniques are supported
by MERASA. The MERASA is based on a central cache configuration that can be used to assign
with required number of cores used to execute a multithreaded application. These processors used

19

deterministic timing techniques for WCET estimation, and their architectures are also deterministic.

Realization of a time-predictable computer architecture — it’s definition, modification of a current
processor architecture, and implementation is a domain of real-time systems research. Real-time
processor architecture needs a reasonable and known WCET that makes it different from the general
purpose processors. Classical enhancement are harder to model a system which gives an accurate
prediction for WCET measurement. The key factors for performance enhancements such that
knowledge of an execution history, mainly an issue for the WCET analysis. Therefore, we need to
develop new techniques to design a processor for WCET estimation. We do not want to restrict the
features but also want to actively add features that enhance performance and time predictability.
PTA techniques are newly invented methods which are less dependent on having an execution
history. In this work, our main focus will be on circulating around the improvement and inventing
of new architectural features, i.e a randomized cache for better WCET estimations.

Figure 3.1 shows the purpose of a time-predictable architecture. Figure 3.1 shows the best case
execution-time (BCET), average case execution-time (ACET), and WCET bounds for tasks exe-
cuting on different architectures [59]. The difference between the actual WCET and the bound is
caused by the pessimism of the timing analysis already discussed in section 1. In figure 3.1 the first
time line shows the execution-times for a commercial off-the-shelf (COTS) processor. The other
two time lines show the timing for two different time-predictable processors. The Time-predictable
processor has a higher BCET, ACET, and WCET than a COTS processor. However, the WCET
is higher than the WCET of the COTS processor, the pessimism of the analysis is lower and the
resulting WCET bound is lower as well. Even this type of processor is a better fit for critical
real-time systems than today’s standard processors. The Time-predictable processor shows an ar-
chitecture where the BCET and ACET are worst than the COTS processor, but the WCET and the
WCET bound are decreased with the probability of exceedance that is defined as: the probability

BCET ACET
 Time-Predictable Probabilistic

 Processor

WCET
Bound

10-06 10-09 10-12

BCET ACET
COTS Processor

WCET Bound

Pessimism

Figure 3.1 Timing Distribution of different Architectures.

20

of exceeding a given pWCET. Our goal is to design an architecture with a low WCET bound whose
predictability is closer to the real execution-time. For critical real-time systems, the likely increase
in the ACET and BCET is acceptable, because the complete system needs to be designed to reduce
the WCET bound and improve predictability. It should be noted that a processor designed for low
WCET will never be as fast as a processor designed for performance improvement of ACET [59].
In this research project, the randomized cache component is designed to facilitate the standard
processor for WCET analysis. However, there are some other architectural modifications, e.g. ran-
domized branch prediction also helps prediction. We did not implement them but provide this as a
suggestion to help future researcher to take this project to the next level.

Figure 3.2 shows how the idea of the probabilistic system that might affects the verification of real-
time systems. Consider a satellite on-board computer: the Y-axis shows the probability density
(P (t)) of a given execution-time t on the X-axis for a particular task (e.g. sending telemetry
data) running on the on-board computer. Normally the execution-time of an application on a
deterministic architecture follows a distribution that might have some corner cases as shown in
Figure 3.3. A conservative estimation will place the WCET far away from the actual maximum
time used by the application, especially when considering possible interactions with other tasks.
This would lead to a large overestimation of the computing resources needed for the task. Instead,
a fully probabilistic architecture will have a lower performance on average since current computer
architectures are optimized for the average case, but a much smoother distribution, with a single

 Deterministic
 Max Time

 Time-randomized
 Max Time

 pWCET 10-12

Deterministic
 WCET

Deterministic Architecture
 Execution Time

Time-Randomized Architecture
Execution Time

Pessimism
 TR

 Pessimism
Deterministic Architecture

 P(t)

Figure 3.2 Probability Density Probabilistic Architectures: avoiding corner cases will improve
WCET Estimation and Bound the Execution-Time t with Probability P (t > tx).

21

 P(t)

 WCET

Pessimistic
Estimation

P(t) on a deterministic
architecture

 Pessimism
Deterministic Architecture

 t

Time-prediction on deterministic architecture

corner cases

Figure 3.3 Probability Density for Deterministic Architectures.

bell curve. Using our methodology, the maximum execution-time t can be smoothly estimated as
a probability function, e.g. P (t > t max) = 10−12. The overestimation of the needed computing
resources will be greatly reduced, as well as the cost of determining the WCET for every task.
In addition, the combined effect of multiple tasks (e.g. housekeeping, attitude control, etc.) will
be predictable without re-analyzing the complete system. In practice, this can reduce cost for
the timing analysis of a critical system by several orders of magnitude. Bringing real-time systems
development at the same level as any other domain of engineering will have a tremendous impact on
the cost of production, verification and certification. As a whole, this research program will enhance
the competitiveness of the Canadian aerospace industry: companies like MDA and Bombardier
Aerospace could take advantage of the new probabilistic real-time systems for the development and
reduced certification cost of spacecraft, high-altitude planes, and unmanned air vehicles.

3.1.1 Architectural Modifications

In order to develop a time-predictable computer architecture, we will need to modify the following
architectural components/features of a current processor architecture. For the purpose of this work,
few key arguments for a time-predictable computer architecture development are presented below.

— Pipelines will be simple, with minimum dependencies between instructions.

— Avoid processor’s out-of-order execution and speculation as it increases WCET complexity.

— In-order to avoid an unbounded timing effect, time-predictable processors use prefetch queue

22

and double buffer.

— Use static branch prediction instead of dynamic predictors.

— To avoid inter-thread interference, need to develop a policy by using one thread per processor.
This philosophy will remove the classic schedulability analysis and we need to do scheduling
of a memory access.

— Inter-core interference via shared memory is also a problem for WCET analysis. To avoid
this, develop a policy, e.g. randomized Time Division Multiplexing Access (TDMA) scheduled
memory access.

3.2 Probabilistically Analyzable Single-core Architecture

Time-predictable computing systems fulfills the requirement of a real-time computing systems. We
will need to perform a probabilistic analysis on each of the architectural components (processor,
memory, and NoC) for accurate prediction of WCET. In this project we implemented the definition
of a novel probabilistic architectures on an FPGA that will prove the applicability of the approach
to space applications. One of the main obstacles to high-performance real-time systems is the un-
predictable timing behaviour of the modern computer architectures; with multi-stage pipelines and
three-level memory hierarchies, it is extremely difficult to accurately predict the execution-time of
a given program. This is almost impossible with parallel (such as multi-core) architectures, due
to the presence of the shared resources. Being conservative and over-estimating does not solve the
problem because of the extremely large difference between the worst and the average cases. The
design of powerful real-time systems needs a new approach for the architecture of instruction pro-
cessors. In this context, we propose a probabilistic analysis approach: by enabling true randomized
behaviour in all the components of a computer, one can define probabilistic metrics to the timing
behaviour of a system. Successful implementation of such systems will have tremendous impact on
the way critical systems are designed, and the potential benefits are enormous in terms of cost of
integration, verification, and certification of real-time software. Probabilistic analysis of a computer
architecture is introduced by the PROARTIS European Project [21]. PROARTIS focuses on worst
case execution-time (WCET) and proposes targeted modifications to hardware modules to improve
timing analysis.

This research project focused on the definition and implementation of a randomized computing
system, e.g. randomized caches. We implemented the randomized cache and integrated it with
MIPS-32 and Leon-3 processor as there source code are freely available [2, 56] and then implemented
as a prototype on FPGA. A true random number generator will be implemented as well, based on
an existing literature [52]. This generator will be used to guarantee a sufficient entropy pool for
the complete randomization of the hardware architecture. The final result of this research will be a
fully-functional prototype of a time-predictable probabilistic LEON3 on FPGA. We considered the
timing estimation of a program running on the proposed architecture.

23

3.3 Probabilistic Multi-core Architecture

This work is focused on the single-core architecture. Designing multi-core processor for WCET
bound is an interesting idea. Here, we present a general approach and challenges associated to
design a probabilistic multi-core architecture. Determination of WCET of applications executing
on shared memory multi-core processors is hard to estimate. This hinders the adoption of multi-
core processors in CRTES [41]. We need to develop new timing analysis technique which empowers
WCET measurements on multi-core architectures. Most existing multi-core processors contain
one shared, usually last-level cache (LLC). This holds for processors used in critical and real-
time systems, like the ARM Cortex A9 and A15, the Freescale P4080, and the Aeroex Gaisler
NGMP. While, an LLC offers a high potential for average performance improvement, it increases
the complexity of a worst-case execution-time estimation, which has made LLC to be studied in the
last years by the real-time community. This is due to the difficulty of determining which memory
accesses will hit the cache and which will cause cache misses. This information is necessary to
drive tight WCET estimates. Classifying cache accesses as a hit or a miss in non-shared caches
has been already deemed as a complex process, subject to some degree of pessimism, therefore
reducing the tightness of the estimated WCET bounds. This is even more complex with LLC, in
which the main challenge for WCET estimation is an inter-task interference. The solution based on
extending the WCET estimation process to the coordinated analysis of several tasks simultaneously
sharing a LLC is a complex task. Alternatively, preventing inter-task interference by deploying
cache partitioning techniques is the preferred solutions in real time systems to deploy LLC. This
solution, however, introduces fragmentation in the use of the memory and may require significant
changes in the memory management. Moreover, partitioning increases the complexity of the data
sharing across tasks and task scheduling. These challenges highlight a need to explore a new type
of cache, and how it can be used as LLC, in particular, need to consider time-randomised caches,
which allow controlling inter-task interference without cache partitioning. This is the principle
behind TR-LLC. A TR-LLC cache removes any dependency on the particular addresses accessed
and its assigned cache set. Therefore, the LLC interference only depends on how often (frequency)
its co-runner tasks cause a cache miss, and not the particular address generating the miss. As a
result, controlling eviction frequency in a TR-LLC by delaying the time at which misses are served
for each task is enough to dependably upper-bound the maximum effect in the LLC that a task may
have on all other co-runners. Hence existing multi-core processor with an LLC can be use and need
to design a hardware mechanism that limits the miss frequency of tasks in each core at analysis
and deployment time. This will be done in such a way that the probabilistic upper-bounds can be
obtained for inter-task effects in the LLC.

24

3.4 Probabilistically Analyzable Real-time Systems

Aiming at the development of a full probabilistic analyzable time-predictable computing system is a
main focus for a research community. We cannot neglect the fact that such computing systems have
stringent real-time requirements. Enforcing real-time requirements in a multi-processor system-
on-chip (MPSoC) is a particularly challenging task. The probabilistically real-time systems are
those system, where meeting the deadline is the first order priority [61]. Chances for missing
the deadline is probabilistically arguable with target probabilities of 10−6, 10−12, etc. Real-time
systems are becoming vital in applications such as flight control system, and modern cars where
wires harnesses are replaced by bus, switches are replaced by smart switches engine and other
functionalities of the car are controlled by the processors. Since, these system are designed to
work in an extreme conditions, meeting the deadline for a particular operation, (e.g. opening of
an air bag in the case of an accident should follow strict time deadlines that is very important
for such life saving applications). The timing analysis poses the fundamental importance in real-
time systems to accurately measure the WCET of a software/program running on it. The usage
of a probabilistically analyzable real time system and especially worst case execution-time analysis
allows to strongly reduce the over estimation produced by traditional timing analysis method. So
far, the researchers have been focused on a probabilistically analyzable processor, cache, bus, and
memory. But the whole system didn’t probabilistically analysed. In the following sub-sections, a
general overview of all each sub-system is presented.

3.4.1 Probabilistically Analyzable Cache

Previous works deal with the probabilistically analyzable cache, processor, and communication in-
frastructure [51, 24, 41]. In these papers, authors used the concept of time randomization to achieve
the requirements for a probabilistically analyzable real-time systems. Because deterministic nature
of placement and replacement policies makes it impossible to drive true probabilities for different
execution-times. However, the usage of probabilistic cache increased complexity, energy, and per-
formance of the system. But the benefit achieved regarding prediction by employing probabilistic
cache is unparalleled. Authors enabled the usage of set-associative and direct mapped cache in the
context of probabilistic timing analysis. They proved in their work how their design and methodol-
ogy drastically reduce the information required by the analysis to drive WCET estimations. Authors
encountered both approaches for measuring the WCET analysis: end-to-end measurements of in-
struction counts, or static techniques based on a source code analysis [70]. Both techniques are lim-
ited: static techniques work only on a simple hardware architectures and end-to-end measurements
technique quickly loses its accuracy as software becomes more complex. In particular, the behaviour
of a cache memory is a serious obstacle for the implementation of these techniques. Deterministic
caches are hard to predict because they are geared towards improving the average cases [45, 64]
used a random placement based on a parametric hash function to avoid conflict misses to improve

25

the average cases. And, without considerin the real-time systems. [55] shows the impact of different
cache policies on a WCET estimation, but without considering random replacement policies. [13]
used randomized cache to make processing system more predictable. [26] introduces Static Prob-
abilistic Timing Analysis (SPTA) for WCET estimation, but without any hardware support. [24]
presents Measurement-Based Probabilistic Timing Analysis (MBTPA) assuming the existence of
probabilistic hardware but without any actual implementation. [21] introduces the concept of prob-
abilistically analyzable caches, but does not provide a cache implementation. These caches are
based on random placement and replacement. Kosmidis presents a simulation of a probabilistic
cache, and shows that it can be used for SPTA and MBPTA [45].

In [53], the usage of randomized cache over the deterministic one is demonstrated. They first used
the standard cache replacement policy and observed a point comes in a simulation where cache miss
rate is high enough that it effectively disable the cache usage. On the other side randomized cache
successfully removed the pathological behaviors and achieved reasonable performance. This paper
is first of its kind to use randomized cache which helps predictability for real-time systems.

[44] this paper extend the concept of applying MBPTA technique to the processor by applying it
on cache and bus. In this paper, authors showed how to drive the probabilities and drive ETP for
every program instruction.

Although there is argument provided in [54] that randomized cache are harmful in hard real-time
systems, author claimed that traditional cache analysis method outperforms the SPTA analysis
applied on cache with random replacement, but this argument is answered by the [51] that ap-
plicability of PTA depends on the particular hardware and software conditions, i.e. randomized
cache with MBPTA technique provides tight and trustworthy WCET estimates and DTA performs
better on deterministic architecture. In short, deterministic analysis on the top of conventional
cache or probabilistic analysis on the top of randomized cache is highly dependent on the particular
characteristics of the hardware.

3.4.2 Probabilistic Analyzable Bus

Most of the work done so far for a probabilistic analyzable bus for multi-core systems are focused
on the bus arbitration policies [47, 65]. But these bus policies are based on the fixed latency
or bounded transactions which are not the case for real-time systems. Advance hierarchy bus
(AHB) bus [13] based system focused on the efficient implementations of the RTL models. For
example, [23] discussed several arbitration policies regarding latency and power dissipation. In
recent years, we have seen very less amount of research focused on a probabilistically analyzable
bus. The work accomplished in [41] is based on a probabilistically analyzable bus design for the
multi-core processors. In [40], authors have achieved the analytical models of the probabilistic timing
behavior for different bus designs. They showed PTA suitability. They proved that the bus design
for a probabilistically analyzable system fulfilled all the requirements for the probabilistic systems.

26

The bus drives WCET estimates with the same cost and complexity as in single-core processor. The
achieved performance enhancement is 3.4 times for 8-cores and 6.6 times for 16-cores in comparison
to single core performance. This paper, that was published in 2014 means a lot of potential left in
this research topic, i.e. comparison of many different bus arbitration policies, (e.g. lotter, random-
permutations, and multi-bandwidth bus arbitration). Javier Jalle et al. [41] analysed and extended
the Advanced Microcontroller Bus Architecture (AMBA) [40] to enable time-composable WCET
estimates by design. In this work, they modified the AMBA Advanced High-performance Bus
(AHB) named Advanced High performance Real-time Bus which allows getting time composable
and tight WCET estimates.

3.5 Time-Predictable Real-time systems

Despite the fact that the COTS processors are better than customized processors, the real-time sys-
tems community prefers to use a processor with a lower WCET bound [15]. Few research projects
exist in the field of optimizing the hardware for WCET analysis [63]. A new research discipline
is needed for time-predictable real-time systems which facilitate the concepts with techniques to
improve analyzability to drive safe bounds on WCETs. All architectural components (processor,
caches, memory, and bus) of a system need to be time-predictable. Critical real-time systems need
to be time-predictable to prove the timeliness of all their time critical response [42]. There is no gen-
eral definition for the term time predictability. However, there are few time-predictable processors
that exist in the literature. Among them, the most recent is a java optimized processor proposed
by Martin Schoeberl [59]. They have identified the problematic micro-architectural features of the
standard processors and provide some alternative solutions. But their architectural enhancements
are not yet implemented and tested on RISC based architectues. The use of java optimized proces-
sors for space applications is not feasible because of less data available in the market for verification
and testing.

Similarly, Edwards et al. [30] argue that :"It is a time for the new era of processors whose temporal
behavior is as easily controlled as their logical function". Berg et al. [16] define the time-predictable
processor as: "recoverability from information loss in the analysis, minimal variations of the in-
struction timing, non interference between processor components, deterministic processor behavior,
and comprehensive documentation". The author has proposed a five stage pipeline RISC processor,
but this processor was not discussed in the context of WCET framework.

[37] provides the basic design strategy for a time-predictable processor: (1) separate data and
instruction caches; (2) local update strategy for caches; (3) static branch prediction; and (4) limited
out of order execution. But the author did not provide suggestions for additional or alternative
features for a time-predictable processor. Although there are more few processors in this domain like
VISA [7], SPEAR [29], and [67] these processors have different architectural features to support
time predictability but none of them is analysed probabilistically.

27

Finally, a recent published paper [60] paper presents a solution for the time-predictable memory
arbitration for a chip-multiprocessors. The memory of network-on-chip (NoC) is organized as a
tree with time-division multiplexing (TDM) of accesses to the shared memory. The TDM based
arbitration completely decouples processor cores and allows WCET analysis of the memory accesses
on the individual cores without considering the tasks on the other cores. Furthermore, performed
local, distributed arbitration according to the global TDM schedule. This solution avoids a central
arbiter and scales to a large number of processors. A time-division multiplexing (TDM) arbiter
is time-predictable. It allows for calculation of the WCET of a task executing on one processor
core independently from tasks executing on other cores. However, this paper did not discuss the
feasibility of calculating WCET on their design platform.

The work presented in [1] is based on the qualitative comparison of different timing techniques with
different software and hardware configurations, and provides data to the user to choose particular
hardware configuration with suitable timing techniques according to the desired level of pessimism.
However, the safeness of WCET bound is not guaranteed due to the presence of discontinuous
pathological cache patterns and variation of input test cases may affect the safe bound.

Similarly, the work presented in [25] is based on the timing analysis for the multipath program with
the MBPTA analysis technique in which authors pay special attention to the number of observations
required by the user to obtain the high-quality pWCET estimations. Their results proved that
MBPTA based on EVT provides 15% less pessimism than SPTA techniques.

28

CHAPTER 4 PROBABILISTICALLY ANALYZABLE CACHE ON FPGA

This chapter discusses the implementation of probabilistically analyzable instruction and data cache
for the ION-MIPS32 processor on FPGA. In order to make a probabilistic analyzable system, we
develop the cache with random placement and replacement policies. This chapter discusses how
random cache placement and replacement policies fulfills all the necessary requirements for the
PTA techniques. We propose set-associative and direct-mapped cache to be analyzed with PTA
techniques. We measured the pWCET bound for the probabilistic cache.

4.1 Introduction

As we discussed in Chapter 2 software timing predictability is the key requirement for the real-time
systems. Traditional methods require in-depth knowledge that is not always available, and estima-
tion can be extremely pessimistic when using cache memories [70]. To overcome these difficulties,
Probabilistic Timing Analysis (PTA) is recently being introduced [21]. The difference between
conventional and probabilistic timing analysis is that PTA uses event probabilities to compute a
probabilistic WCET with a given confidence (pWCET). This means that the pWCET comes with
a certain probability that it is underestimating the actual WCET. PTA can be applied statically
(SPTA) or using measurements (MBPTA) [21]. SPTA is a mathematical model of the execution
profile of an application, while MBPTA is the end-to-end measurement of an application running
on a specific hardware system. For accuracy, the execution-time of a program must consist of inde-
pendent and identically distributed events. This work contributes the measurements of the pWCET
for a real-time programs without knowing the detailed knowledge of hardware model. We have
promoted the actually execution on FPGA in terms on latency (cycle-count) and simulated it on
Modelsim [50].

4.2 Inspiration

The work presented in this chapter is focused on applying the MBPTA technique to the timing
values derived from the probabilistic system that is composed of the randomized cache. The FPGA
implementation of a probabilistically analyzable cache is inspired by the simulation work presented
in [45]. However, that work was done using a simulator and they did not discuss the effect of PTA
techniques on timing bounds. The authors did not compare the level of pessimism incurred by the
randomized cache analyzed by PTA techniques with those of a deterministic cache.

29

4.2.1 Cache Organization

A cache is a memory device that stores a subset of the data located in the main memory. Instructions
executing on the processor that require data from memory initially search the cache. If the required
data is found in the cache, a hit has occurred, if not, then it is a miss. There are three parameters
which define the size of the cache: a) Number of Blocks in a cache b)Cache Size c)Tag-Width. We
can determine the number of blocks and the tag-width in the cache with the following formulas.

Number of blocks in a cache = Cache size/Block size

Cache Size = The total size of the cache in Bytes

Block Size = Main Memory consists of blocks. Each block consists of 1 or more bytes. The number
of bytes in each block determines the number of offset bits

Number of bits in Tag = Total bits - Index bits - Offset bits
In-order to understand the cache configuration and structure, we need to understand the following
parameters.

— Memory Size: Determines the size of memory in Bytes, e.g. 256KB. The main memory size
is used to determine the total number of bits in the physical memory.

— Cache Size: Determines the size of the cache in Bytes, e.g. 64KB.

— Block Size: Main Memory consists of blocks. Each block consists of 1 or more bytes. The
number of bytes in each block determines the number of offset bits.

— Cache Scheme: There are different cache mapping schemes, e.g.Direct-mapped, Set-Associative,
and Fully-Associative.

Example: - Direct-Mapped cache Consider the example of a direct-mapped cache shown in Figure
4.1 with the following parameters.

Memory size = 256KB = 218 : Block size = 2Bytes = 21

Number of blocks in cache = Cache size/Block size
64KB/2B = 216/21 = 215

Number of bits in Tag = Total bits - Index bits - Offset bits = 18− 15− 1 = 2

Example: - 4-way Set-Associative Consider the following example of a 4-way associatively mapped
cache as shown in Figure 4.2 with the following parameters.

Memory size = 256KB = 218 : Block size = 2Bytes = 21

Number of sets in cache = Cache size/(Set size * Block size)
64KB/(4blocks ∗ 2B) = 216/(22 ∗ 21) = 213

Number of bits in Tag = Total bits - Index bits - Offset bits = 18− 13− 1 = 4

30

Figure 4.1 Address Bit Partitioning - Direct Mapped Cache.

Figure 4.2 Address Bit Partitioning - Set-Associative Cache.

4.2.2 Cache Mapping Scheme

There are three popular methods for mapping data in a cache memory.

— Direct-Mapped Cache: Data at a given address must be placed at a single specific location in
the cache

— Set-Associative Cache: Data at a given address can be placed at any of a small set of cache
locations

— Fully-Associative Cache: Data at a given address can be placed anywhere in the cache

4.2.3 Direct Mapped Cache

The direct-mapped cache is the simplest form of cache to implement. There is only one possible
position for any memory location can be cached. There is no need to search the entire cache either
the particular line contains the data or not. Unfortunately, the direct -mapped cache also has the
worst performance, because again there is only one place that any address can be stored which
causes contention problem frequently.

31

4.2.4 Fully Associative Cache

The fully-associative cache has the best cache hit ratio among all types of caches, because in
a fully-associative cache, one cache line can hold any address. This means that the contention
problem seen in the direct-mapped cache disappears as there is no dedicated single cache line that
an address must use. However, the fully-associative cache suffers from problems involving searching
the cache line. For example, if a cache consists of 16,384 lines, finding a particular address line is a
computationally expensive task. Even with specialized hardware to do the searching, a performance
penalty is incurred. And, this penalty occurs for all accesses to memory, whether a cache hit occurs
or not. It needs more logic to determine which cache line to use when a new entry must be added
(usually some form of a replacement algorithm is employed to decide which cache line to use next).
As cache address line number increases, it incurrs overhead drastically in terms of cost, complexity,
and execution-time.

4.2.5 Set Associative Cache

The set-associative cache is a good compromise between the direct-mapped and fully- associative
caches. Consider the example of a 4-way set-associative cache. Each address can be cached in any
of four sets, and each particular set acts as a direct-mapped cache and, and within the set find the
appropriate cache-line (which is like the fully associative scheme).

4.2.6 Comparison

— The fully-associative cache mapping works the best, but it is complex to implement. Each
tag line needs to be compared with the desired address tag field by the circuitry, which makes
it very complex and expensive.

— The direct-mapped cache has the lowest performance, but it is the easiest to implement. It
is often used for an instruction cache.

— The set-associative cache is a compromise between direct-mapped and fully-associative caches.
The bigger the "sets" the better the performance, but the more complex and expensive.

4.3 Randomized Cache

Random caches are often used to make processing systems more predictable, such as the ARM
Cortex series [13]. In this work, we used a random cache model that makes programs analyzable
with MBPTA. The cache is developed in VHDL. The source code is available at [8] and it is
configurable through generics: such as data and address bus widths, line size, cache line count,
associativity, placement/replacement, and write policy.

The random replacement policy randomly selects the cache line to evict and make a room for the

32

new memory address. This technique does not require to keep any information about the access
history. Due to its simplicity, it has been used to analyse the system with PTA techniques. This
technique also ensures that a) evictions across cache lines are independent b) the probabilities of
evictions across cache lines are the same. For example, we have a W-way set-associative cache, the
probability of any specific cache line to be evicted is 1

W . Similarly, for the random placement policy,
we have to ensure that the cache set in which a cache line is mapped is randomly selected. For
example, assume that we have a cache with S sets. Then the probability of a particular cache set
to be selected is 1

S .

4.4 Cache Model

We developed our cache model in VHDL. The cache VHDL model is configurable. The cache model
can be used with different data, address, and bus widths. The cache model can also be designed
to integrate with different memory widths. There are configurable parameters which are used to
make caches with different configurations. These configurable parameters are cache line size, cache
size, associativity, replacement policy, and write policy. All parameters can be set through VHDL
generics. The placement policy we used is random placement policy. We used two replacement
policies: LRU and random replacement policies. The model supports write-through and write-back
policies for data write. For cache misses, the cache model supports write-allocate and no write-
allocate. In these order: we have write-back with write-allocate, write-through with write-allocate
and write through with no write-allocate. The maximum associativity the design can adopt is eight
way. It can be modified for more associativity, but increasing associativity increases the power
and energy consumption of the system. Therefore it is highly recommended to use an associativity
between four and eight. In this work, we have used the following approach for the cache behavior

1. The cache uses a random replacement policy.

2. The cache uses a parametric random placement policy based on a hash function. The detailed
design of the hash function given in Section 4.5.3.

3. The cache placement is deterministic for each benchmark execution, but randomized across
executions.

4. We measure end-to-end execution-times for a series of benchmarks.

4.4.1 Instruction Cache Model

In this section, instruction cache, data cache, and basic state transitions are presented. The cache
model is developed in Mealy state machine. To avoid fake bits, all the bits are set to zero when the
cache powers up. The controller needs to clear all valid bits of indexes during the flush time and
the processor is in Flush state, as shown in Figure 4.3.

After initializing the initial states, the controller is set to the Compare Tag state. In this state, the

33

Flush
Memory

reset = 0

Compare
Tag

Inst cache
 rqst

hit = 1 Processor

hit = 0

write_inst

Figure 4.3 Instruction Cache State Machine.

controller needs to verify the tag of the instruction. The requested instruction from the processor
either resides in the cache or not. If the requested instruction resides in the cache, a cache hit
occurs and the instruction is delivered to the processor. If the requested instruction is unavailable,
a miss occurs and the controller state changes to the Memory state. In this state, the cache needs
to load a whole memory block into the cache line which contains the requested instruction. Then
the state machine goes back to Compare Tag state. At this stage, the cache replacement policy
works to replace cache lines.

4.4.2 Data Cache Model

Our data cache controller used the write-back policy. The flushing operation remains the same as
for the instruction cache. Data cache remains in the Idle state and works only when it receives
the request from the processor. Because data access requests from the processor are less than the
instruction requests, it is better to keep data cache in Idle state and wait for the processor request.
When the processor requests for reading or writing the data, the controller changes its state. For
both requests, the controller checks if the data is in the cache or not. Suppose that the requested
data is not available and the victim cache line is dirty. This means that the data cache line selected
by the replacement policy is not in the memory (no copy in the memory). In this case, data is
written back to the main memory. Then the requested data is copied from the main memory, put in
the victim cache line (update cache) and processor reads the newly updated cache line. Figure 4.4
shows the data cache state machine.

34

Flush

Write
Back

reset = 0

Compare
Tag

Inst cache
 rqst

dc (rd & wr)=0 Processor

dc (rd | wr) = 1

hit = 0
& dirty = 0

Idle
State

dc (rd) = 1 & hit = 1

Memory

dc (rd) = 1 & hit = 0
& dirty = 1

Update
DC

hit = 1
& wr = 1

rd = 0 & wr = 0

rd = 1
& wr = 1

Figure 4.4 Data Cache State Machine.

Table 4.1 VHDL Basic Signals Descriptions.

Record Signal Description
ic_in.addr instruction cache address
ic_in.stall stall the instruction cache
in_out.data instruction from cache
dc_in.addr request data address
dc_in.data write data on write request
dc_in.mask mask write
dc_in.rd request for read
dc_in.wr request for write

dc_out.data return data from cache
dc_out.stall stall data cache
mem_in.data data from main memory
mem_in.stall stall main memory
mem_out.addr address to requested data
mem_out.data on write request write data
mem_out.mask mask write
mem_out.rd request for read
mem_out.wr request for write

35

4.5 Hardware Implementation

4.5.1 Cache RTL Model

We implemented instruction and data caches for the Ion MIPS32 processor [56]. A completely novel,
configurable cache design was implemented in VHDL and integrated with the Ion core. The cache
is completely configurable (bus width, size, block size, policies, etc.) with VHDL generics and could
be easily ported to other processor designs. Figure 4.5 shows the main components of our design:

1. The cache block contains the memory elements, as well as the logic to manage the placement
policy (modulo) and replacement policies (random and least-recently-used).

2. A hash function block that operates on the index signal to the cache, randomizing the mapping
between memory blocks and cache blocks.

3. A pseudo-random number generator (MT19937).

4. The Ion core, which provides a MIPS32 ISA and controls the whole system.

Our cache has three fundamentally novel features that enable probabilistic timing analysis:

1. A random placement policy which uses a parametric hash function to shuffle the initial
placement of blocks in the cache memory.

2. A random replacement policy that uses high-quality random numbers to provide statistically-
verifiable guarantees that replacement events are uniformly distributed among the available
cache blocks.

Hash Function

MT19937

index_sig

outaddress_bits

replacement_sig

placement_sig

Hash Function

index_sig

mem_out

ic_out dc_out

mem_in

ic_in

ION

Cache

Memory

dc_in

Figure 4.5 Structure of the Proposed Cache.

36

3. A high-quality pseudo-random number generation, with an extremely long period, to generate
random bits for the implementation of the cache random policies.

4.5.2 Random Number Generation

In our cache design, we used the Mersenne Twister algorithm to generate random numbers. In
particular, we used the MT19937 algorithm, which is considered as a good hardware solution for a
random number generation [49]. MT19937 provides a uniform pseudo number pattern with a period
of 219937-1, and a width of 32 or 54 bits. We used the OpenCores implementation of MT19937 [52].
The synthesis report shows that the maximum clock frequency the design can achieved is 147.016
MHz, with a throughput of 30 Megasamples per second.

4.5.3 Parametric Hash Function

The idea of using a parametric hash function (PHF) is proposed by [45]. The purpose of using a
parametric hash function is to get the index bits for random placement in a cache. The implemen-
tation for a parametric hash function is shown in Figure 4.6. This design is remodelled for this
work, replacing their Multiply With Carry (MWC) random number generator with the MT19937,
which increases the quality of the random numbers as well as the period. The redesign was driven
by the fact that MWC does not pass some statistical normality tests [14], and its period might be
insufficient for long running applications [32].

Standard placement assigns cache sets to memory addresses based on the index bits. If the placement
policy assigns two memory addresses to the same cache set, they will systematically be in conflict.
To deal with this deterministic nature, we randomized the timing behavior of the placement policy.
To achieve this, we used a parametric hash function with a random number as an input. A random
number provides a unique and constant cache set mapping for each address.

If the random number changes, the cache set to which the address is mapped changes. By changing
random number only at a new execution, programs can be analyzed with end-to-end runs assuming
that the cache is initially empty. The hash function is used to get the index_bits. Then these
index_bits are used for cache placement. The hash function has two inputs 1) the address_bits 2)
the output from random number generator signal out, as shown in Figure 4.6.

The hash function uses the barrel shifter which rotates the address bits based on the randomly
generated bits from MT19937 block (random number generator block). Assumed 32-bit addresses
the address_bits signal in Figure 4.6 needs 27 bits as 5 offsets bits were discarded. Similarly,
the other block of barrel shifter uses some of its own bits to shift the original address bits. By
doing this, we want to ensure that for different random numbers the mapping of that address
changes (data mapped from memory to cache on different locations). This operation is done by
the rightmost barrel shifter. Finally, all the original address bits, rotated address bits and bits

37

Concatenation

Index_bits

outaddress_bits

MT19937

address9-0

B
a
r
re

lS
h

if
te

rout9-0

address_bits

B
a
r
re

lS
h

ifter

address_bits

XOR

.
 .

.

XOR

Figure 4.6 The Hash Function uses a Random Number, the Address Bits, and Four XOR
Stages to Produce a Random Placement.

rotated by random number generator out signal are concatenated and XORed successively till we
get desired index_bits.

4.6 Experimental Results

We present the RTL model of randomized L1 data and instruction caches. The caches use a high-
quality random number generator for random placement and replacement. Random placement is
obtained with a parametric hash function that shuffles the association between memory addresses
and cache blocks. The cache is integrated with the Ion MIPS32 processor, and verified to generate
independent and identically distributed timing events, to apply MBPTA technique. We test our
cache and MBPTA approach on a variety of benchmarks from the Mälardalen benchmark suite
and show a noticeable improvement (5-15%) in terms of measured Worst Case Execution Time as
well as enabling the identification of safe probabilistic WCET bounds. Table 4.6 and Table 4.7
show the prediction bounds obtained by applying MBPTA on the probabilistic cache, and also
show the estimates obtained for the deterministic cache (modulo placement and LRU replacement)
under the deterministic timing technique named reuse-distance [18]. For example in Figure 4.8
shows the pessimism between the probabilistic architecture and deterministic architecture for the
application crc. Here, we observe that the probabilistic architecture provides less pessimism than
the deterministic one as probabilistic architecture has less dependency on the execution history and
required no knowledge of the hardware architecture.

38

cn
t-
R
N
D cn

t

bs
-R
N
D bs

fa
c-
R
N
D fa

c

cr
c-
R
N
D cr

c

qs
or
t-
ex
am
-R
N
D

qs
or
t-
ex
am

se
le
ct
-R
N
D
se
le
ct

0

2

4

6

8

10

12
E
x
ec
u
ti
on

T
im

e
(m

s)

(a) Direct Mapped

cn
t-
R
N
D

cn
t-
lru

bs
-R
N
D
bs
-lr
u

fa
c-
R
N
D

fa
c-
lru

cr
c-
R
N
D

cr
c-
lru

qs
or
t-
ex
am
-R
N
D

qs
or
t-
ex
am
-lr
u

se
le
ct
-R
N
D

se
le
ct
-lr
u

0

2

4

6

8

E
x
ec
u
ti
on

T
im

e
(m

s)

(b) Two-way Associative

cn
t-
R
N
D

cn
t-
lru

bs
-R
N
D
bs
-lr
u

fa
c-
R
N
D

fa
c-
lru

cr
c-
R
N
D

cr
c-
lru

qs
or
t-
ex
am
-R
N
D

qs
or
t-
ex
am
-lr
u

se
le
ct
-R
N
D

se
le
ct
-lr
u

0

2

4

6

8

E
x
ec
u
ti
on

T
im

e
(m

s)

(c) Four-way Associative

cn
t-
R
N
D

cn
t-
lru

bs
-R
N
D
bs
-lr
u

fa
c-
R
N
D

fa
c-
lru

cr
c-
R
N
D

cr
c-
lru

qs
or
t-
ex
am
-R
N
D

qs
or
t-
ex
am
-lr
u

se
le
ct
-R
N
D

se
le
ct
-lr
u

0

2

4

6

E
x
ec
u
ti
on

T
im

e
(m

s)

(d) Eight-way Associative

Figure 4.7 Execution-Time Measurement.

4.6.1 Achieving i.i.d Property

We used random placement and random replacement policies with the guarantee that observed
execution-times fulfill the property of MBPTA that is essential to apply probabilistic technique.
In order to test independence we used Wald-Wolfowitz independence test [34]. We used a 5%

39

Table 4.2 Resource Utilization and Overhead (Virtex-5).

Available Deterministic Probabilistic Hash Random Overhead (%)
resources cache cache function generator

LUT Flip Flop 17708 1904 1792 656 117 4.36%
Slice LUTs 69120 6026 5637 660 419 1.56 %

significance level, a typical value for these types of tests [45]. The independence test gets successful
if the obtained absolute values are lower than 1.96, and higher otherwise [45]. Table 4.3 shows the
independent tests results.

We used Kolmogorov-Smirnov [34] test to verify the observed execution-times are identically dis-
tributed. The significance threshold set for this test is 0.05. If the test values are above the
significance level, the result is considered pass, and fail otherwise. Table 4.4 shows the independent
distribution tests results.

The architecture used in our experiments is the OpenCores Ion MIPS32 processor. We integrated
instruction and data caches, and we implemented the whole system on the Xilinx ML505 FPGA
evaluation board, using the XC5VLX110T chip, Xilinx ISE-14.4 and ModelSim 10.1.a. We used two
separate 4-KB cache memories for data and instructions, both with a 32-byte line size. To evaluate
our design, we used Mälardalen real-time benchmark [35] suite. We selected six benchmarks: cnt,
bs, fac, crc, qsort-exam and select. These benchmarks use arrays and matrices, and have nested
loops structures which are ideal to test our design [6]. We omitted those benchmarks using external
libraries and unstructured code to simplify the software implementation and data collection.

Each benchmark is run on multiple cache configurations profiles, and derived its execution-time
profile using MBPTA, with 1000 runs per profile to approximate a normal distribution. We com-
pared our results (RND) with a standard Least-Recently-Used (LRU) cache policy implementation.
Table 4.2 shows the resource utilization and overhead of the probabilistic cache, the main source
of overhead are due the extra logic consumed by the hash function and random number genera-
tor, but the overhead we observed is negligible as compared with the resources available on the

Table 4.3 Independence Tests.

Benchmark DM 2-way SA 4-way SA 8-way SA
cnt 0.82 0.87 0.63 0.07
bs 0.51 0.75 0.11 0.23
fac 0.33 0.76 0.44 0.53
crc 0.17 0.27 0.37 0.51

qsort-exam 1.26 0.41 0.33 0.03
select 0.39 1.24 0.63 1.12

40

Table 4.4 Identical Distribution Tests.

Benchmark DM 2-way SA 4-way SA 8-way SA
cnt 0.43 0.65 0.28 0.54
bs 0.97 0.70 0.34 0.36
fac 0.81 0.39 0.74 0.28
crc 0.48 0.40 0.12 0.96

qsort-exam 0.39 0.93 0.73 0.54
select 0.35 0.93 0.41 0.28

Virtex-5. This design gives freedom that we can integrate different IP-cores and other functional-
ities in our design. Starting from the direct-mapped cache with random placement, we observed
the execution-time taken by the benchmarks is more than that by the set-associative cache. This
is due to the fact that if we increase the associativity, the number of cache misses are reduced
and it helps to increase the execution-time. Increasing the associativity also helps to improve the
prediction as the execution-time getting decrease also helps to smoothing the uniform distribution
of the execution-times as a result obtained trustworthy and tight estimates. Figures 4.7 shows
the timing distributions for all benchmarks on our cache from direct-mapped to 8-way associative,
respectively. As an added advantage, our random cache shows a 19% improvement in worst case
execution-time w.r.t to a direct-mapped cache, 11% for 2-way cache, 8% for a 4-way cache, and 6%
for an 8-way cache. As expected, LRU gets closer to RND as the number of ways increases: the
number of conflict misses is greatly reduced by additional ways.

Moreover, we have observed the pWCET estimates obtained with the MBPTA technique as ex-
plained in Section2.1.2. The MBPTA method based on the EVT on the execution runs and ob-
served the pWCET estimates. Table 4.5 shows the pWCET obtained with MBPTA for the multiple
random placement/replacement cache configurations. We consider the pWCET estimates at the
exceedance probability (the probability that the execution-time will exceed the predicted value) of

Table 4.5 Predicted pWCET (Tp) at 10−3 Exceedance Probability versus Measured WCET
(Tm) for the RND Cache. Times are shown in milliseconds.

Benchmark Direct 2-way 4-way 8-way
Tm Tp Tm Tp Tm Tp Tm Tp

cnt 11.58 15.35 8.30 9.76 7.11 8.75 6.52 7.90
bs 3.77 6.10 3.42 5.06 3.17 4.22 2.75 3.77
fac 6.67 9.31 5.44 7.42 4.62 6.36 3.33 3.95
crc 4.49 7.23 2.50 5.06 2.77 4.90 2.82 4.29
qsort-exam 9.98 12.08 9.10 11.18 7.83 10.26 6.43 8.34
select 3.80 5.43 2.98 4.55 2.59 3.44 2.22 3.02

41

10−3, as this is compatible with our number of simulations (1000 runs). The data show that the
pWCET is a very tight bound for the measured WCET.

We observed a set-associative cache with random placement and replacement provide the tight
pWCET estimates as comparing it with the LRU policy. Similarly, we observed that the estimates
provided by random policies provided much tight estimates as cache associativity increases. On
average, we observed that the estimation is improved from 2-way set-associative to 8-way set-
associative, e.g. the prediction time observed for the cnt the difference between measured time
and predicted time is 3.77 ms which is reduced for the 8-way set-associative to 1.38 ms. Table 4.5
summarizes all the pWCET. Random replacement policy has a lower probability of cache conflicts
which helps to improve the execution-time and provide less pessimism in prediction under the
MBPTA technique. Indeed, random placement and replacement policies provide the best hardware
platform to PTA techniques to the estimates of pWCET with less pessimism.

In summary, our tests show that our random cache implementation can successfully provide a
probabilistically analyzable cache on FPGA: MBPTA can be applied to provide safe bounds with
arbitrary accuracy. In short, compared to deterministic cache the observed execution-time is 19%
improved for direct-mapped cache, 11% improved for 2-way, 8% and 6% improvement observed
for 4-way and 8-way respectively. Consider a benchmark qsort-exam in Table 4.6 the prediction
bound obtained under the probabilistic cache is 8.34 ms and the prediction bound obtained under
the deterministic cache is 11.09 ms which is about 28.30 % more than the probabilistic cache.

The improvement factor for higher associativity is not much higher because for the deterministic
cache (modulo placement and LRU replacement) policies also works quite good as associativity
increases, which decreases the room for further improvement. Table 4.6 and Table 4.7 shows the
pWCET estimates obtained with MBPTA for the probabilistic cache that reduces the pWCET
estimates over deterministic cache (modulo placement and LRU replacement) analyzed with DTA
technique [18]. These measurements give us confidence for WCET bounds. The WCET analysis

Table 4.6 Deterministic/Probabilistic WCETs and respective Bounds.

Benchmark Execution-Time (ms)
Deterministic Prediction Probabilistic Prediction
Cache (WCET) bound Cache (WCET) bound

cnt 5.04 10.33 6.52 7.90
bs 2.57 6.77 2.75 3.77
fac 2.93 5.45 3.33 3.95
crc 2.50 6.13 2.82 4.29
qsort-exam 5.43 11.09 6.43 8.34
select 3.91 5.34 4.12 5.18

42

Table 4.7 Pessimism between Predicted pWCETs at 10−3 Exceedance Probability versus
Deterministic Cache.

Pessimism Difference(%)
cnt bs fac crc qsort select

Deterministic cache 68.83 89.93 60.14 84.12 68.52 30.91
Probabilistic cache 19.14 31.28 17.033 41.35 25.86 22.79

gives a safe and trustworthy bound, and this bound may be less conservative as compared it with
the bounds obtained for the deterministic cache with deterministic timing technique. Furthermore,
the WCET gives no general guarantee that we have knowledge about the worse-case path. The
measured WCET gives an upper bound of the pessimism of the WCET analysis. In this work we
provide a real execution-time profile on probabilistic cache which is generally not as much over
estimated as we seen in Table 4.6. The difference between the deterministic cache execution-time
and its associated prediction bounds is more pessimistic than the difference between the probabilistic
cache execution-time and its associated prediction bounds.

In this work, we make it possible to use a probabilistic approach in an FPGA’s. This work also
helps to make it possible to use probabilistic timing technique in real-time systems.

2.82

Bound

Application : crc

Deterministic cache
(WCET)

t (ms)

6.13

Probabilistic cache (WCET) pWCET Bound
(10-03)

4.29

Pessimism Deterministic
Architecture (84.12%)

Pessimism Probabilistic
Architecture (41.35%)

2.50

Figure 4.8 Pessimism between Predicted pWCETs at 10−3 Exceedance Probability versus
Deterministic Cache.

43

CHAPTER 5 CACHE DESIGN CONSIDERATIONS TO IMPROVE
TIMING ANALYSIS BOUNDS

In this chapter, we discuss the comparison between probabilistic timing analysis techniques —
SPTA and MBPTA — for time- prediction estimates. We also discuss how we modified the LEON-
3 processor’s caches to make it applicable for the probabilistic timing techniques. We use random
placement and replacement policies for caches and applied probabilistic timing analysis techniques
under varying cache configurations to measure the pessimism associated with each cache configu-
ration. The purpose of this work is to find the time- prediction estimates with measurements done
on the processor to help real-time system designer to evaluate the level of pessimism for different
cache architectures using probabilistic timing analysis techniques. We also identified the strengths
and limitations of each technique for time- prediction that helps designers to design the processor’s
architecture to observe the level of pessimism that is associated with the timing analysis techniques.

5.1 Introduction

As discussed in Chapter4, we used the same strategy — hash function and random number generator
— for cache randomization. We used randomization for cache placement and replacement policies.
The PTA techniques are used to provide probabilistic WCET estimates for arbitrarily low probabil-
ities. The estimates and level of pessimism offered by the PTA techniques are less pessimistic than
those by the deterministic timing techniques [1]. We measured pWCET estimates with both variants
of PTA — SPTA and MBPTA. This work is mainly focused on the study of pessimism under differ-
ent cache configurations while applying PTA techniques. We studied and discussed which technique
offered less pessimism, how these techniques are useful for the time-prediction under varying cache
configuration and how pessimism varies under different cache configurations. We also compared
the PTA techniques with the timing values obtained from the deterministic architecture in which a
randomized cache is replaced with a Least-recently used (LRU) cache. However, both approaches
need specific hardware and software conditions [1]. For instance, DTA techniques perform better
on a deterministic architecture with time-deterministic caches (Least Recently Used replacement
policy), whereas, PTA techniques performed better on a time-randomized architecture [1, 9].
The contributions of this work are:

— In this work, we focused on the time predictability under different cache choices. We have
applied PTA techniques (MBPTA and SPTA) on the Mälardalen benchmark [35]. We identi-
fied the limits and strengths of both methods that show pessimism varies under varying cache
parameters on the randomized hardware equiped with the time-randomized cache [9].

44

— We studied the prediction on a randomized hardware. We also discussed the predictability
with cache enabled with a deterministic approach, i.e. a time-deterministic cache, e.g. LRU .

— The hardware and software environment remain the same for both timing techniques. We
also compared the estimated WCET with the that from a deterministic approach.

— We varied the sensitivity of the cache parameters, e.g. associativity, cache line size, and cache
size.

— Our work allows the cache designer to appropriately select the cache parameters to obtain
the predictability goals by probabilistic timing analysis techniques.

5.2 WCET Estimation Techniques

5.2.1 Cache Overview

The cache contents can be organized in different ways. Each design is part of processor’s architec-
ture and have different power, timing, and functionality characteristics. The most common cache
configurations are a) direct-mapped cache, b) fully-associative cache, and c) set-associative cache.
The direct-mapped cache has a unique address for each stored data. Usually, modulo function is
used as a placement function. On the other hand, the fully-associative cache does not use any
placement function. Data from main memory can be stored in any physical cache line. Therefore, a
fully-associative cache requires only replacement function to decide which cache line to evict. The
LRU and random policies are usually used as a replacement function for a fully-associative cache.
The last one is the set-associative cache which is a combination of direct and fully-associative caches.
The number of sets in a cache is decided by the direct-mapped scheme and in each set the cache
lines is determined by fully-associative scheme. Therefore, a set- associative cache has to implement
both random placement and replacement policies. In this work, we have used set-associative caches.

5.3 Timing Techniques

5.3.1 Deterministic Timing Analysis

DTA techniques need a cycle-accurate model of the system and mathematical representation of the
code to obtain the safe upper bound for the worst execution-time [69]. As discussed in Chapter 1,
advancements in the architectural features and adoption of more complex systems lead to the timing
analysis wall that limits the usage of deterministic timing techniques [72]. The DTA techniques
are divided into two sub-categories named as low-level analysis and high-level analysis techniques.
The low-level analysis techniques use the model of a processor architecture and high-level analysis
techniques identify the longest execution path among all possible flows of the program for multi-path
program analysis. The DTA techniques are applied at cache level, enabled with LRU replacement
policy. For timing analysis, this technique needs a knowledge of all previous memory accesses made

45

by the program. This requires an accurate abstract cache model. Any flaw in that model, (e.g.
addresses of some memory accesses are unknown) provides degradation of the WCET estimation.
But in some cases, where required hardware and software detailed knowledge are available, DTA
techniques provide the tightest WCET estimations. In this work, we did not use any specific
DTA technique as this approach is out of the context of this work rather we used deterministic
architecture (LRU-cache) to obtained the execution bound. The execution bound obtained from
the deterministic architecture is enough to show that the level of pessimism is significantly high.

This section provides the overview of the timing analysis techniques that we used for the time-
prediction analysis.

5.3.2 Measurement-Based Probabilistic Timing Analysis

MBPTA is a technique used to reduce the cost of acquiring the knowledge needed for computing
trustworthy WCET bounds [24, 43]. MBPTA seeks to determine the WCET estimates for arbitrarily
low probabilities of exceedance, namely probabilistic WCET (pWCET). This technique is based on
the Extreme Value Theory (EVT) and provides an estimation of the WCET of a task or application
running on a hardware platform. In order to defeat the dependence on the execution history, this
technique employs randomization. Therefore, MBPTA technique uses the theory of rare events [21].
There are two rare event theories that fit the WCET estimation: theory of extreme values [34] and
theory of large deviations [34]. To the best of our knowledge, EVT is the only implemented theory
for WCET estimation so far. EVT provides an estimation for the maximum of a sequence of i.i.d
random variables [39]. In this work, we have used the MBPTA technique that allows us to find the
predicted time of the programs. We have obtained the pWCET estimations that can be applied with
high confidence as an upper bound on the execution-time. The execution-times of the programs
are observed for 1,000 times (runs). If those execution-times can be modeled with i.i.d random
variables, then the pWCET of a program can be obtained by constructing an Empirical Cumulative
Distribution Function (ECDF). As we are interested in the EVT and this theory is used to estimate
the probability of occurrence of extremely large values that are rare events. EVT estimates the
distribution function for either the maximal or the minimal values from n set of observations which
are formed with the random variables. In short, EVT is used to estimate the extremes.

5.3.3 Modelling EVT for WCET

In order to model EVT for WCET estimates, consider an example of i.i.d random variables
{X1, X2, ..., Xn}. Let Mn be the maximum value defined as Mn = max {X1, X2, ..., Xn}. Con-
sider F as distribution function and there exits real number sequence (an, bn) such that an > 0 and
limn→∞ P (Mn−bn

an
≤ x) = F (x). Then F belongs to either the Gumbel, the Frechet, or the Weibull

family [31]. The function F denotes the distribution function of random variables. In our case, the
random variables are used to construct the execution-times of the programs. We observed that the

46

execution-times of the programs follow this property by applying the Kolmogorov-Smirnov test [19]
for identical distribution test and Wald-Wolfowitz [34] for independence test. Table 5.1 shows the
values obtained by applying these two tests. We used the distribution to model the Cumulative
Distribution Function (CDF) which has the following form:

Fξ(x) =

e
−(1+ξ x−µ

σ

1
ξ) ξ 6= 0

e−e
−x−µ

σ
ξ = 0

This equation is called Generalized Extreme Value distribution and is defined by three parameters:
a) shape (ξ), b) scale (σ), and c) location (µ). We need to estimate these three paramters in order
to find the sequence of real number (an, bn). For Gumbel distribution, we used shape parameter
(ξ = 0).

5.3.4 Steps in MBPTA

There are three main steps for MBPTA to povide pWCET estimates.

— The first step is to collect time measurements (execution-times) of the program. We observed
them for 1,000 execution runs.

— In the second step, we modeled the original data with the Gumbel distribution. The original
timing values are grouped into blocks of equal length, and then the block maxima method is
applied. The maximum value observed in each block makes a new sample that is the block
maximum series. The block maximum series is basically the worst-case distribution.

— Now we need to compute two remaining parameters, µ and σ that can be achieved by applying
linear regression to the QQ-plot of our data.

5.3.5 Static Probabilistic Timing Analysis

The static version of the PTA technique named SPTA uses a model of a processor to derive a priori
probabilities for the latency of the program instructions running on a processor [24]. This technique
has recently been the subject of extensive studies [21]. In SPTA, the execution-time of a probability

Table 5.1 Independence and Identical Distribution Tests.

ud cover expint fdct jfdctint qsort select cnt
Independence Test

0.81 0.92 0.84 0.67 0.77 0.69 0.85 0.93
Identical distribution Test

0.24 0.38 0.91 0.69 0.92 0.87 0.56 0.40

47

distribution for the individual instructions is determined statically from a processor model [24].
It means that the probabilities for the execution-time of each instruction are independent. Any
executed instruction is either a cache hit, or a miss. This does not impact the probabilities of
later instructions in a queue. Each instruction derives its probabilistic timing behavior that is
represented with the help of an execution-time profile (ETP). The ETP of an instruction is expressed
as ETP(Ii)=< ~ti, ~pi > where ~ti = (t1i , t2i , ..., tni) and ~pi= (p1

i , p
2
i , ..., p

N
i), with

∑N i
j=1 pi

Nj = 1. The
convolution function is used to combine all the ETPs of the instructions to obtain the new ETP,
which is used to represent the time distribution of all the convolved instructions. A probabilistic
cache with evict-on-miss random replacement policy is introduced to reduced the WCET of the
system, and it works as follows: when a cache miss happens, a cache block is selected randomly for
the new entry from the main memory. Unlike the Least Recently Used (LRU) replacement policy,
this random behavior avoids cases with low pathological occurrence probabilities, which are hard
to test and predict, such as [21]. Therefore the WCET can be improved. Several formulas have
been proposed for the SPTA analysis of probabilistic caches. [72] uses reuse window to calculate
a probability of each memory address access, but this has been proved unsound by [21]. This is
because, during the probability calculation, memory accesses are not independent from one another.
Due to this lack of independence, the result of his formula is wrong in some cases. [21] proposed
another formula for SPTA, as shown below. In this formula, N is the cache associativity and K is
the reused distance. The reused distance represents the number of memory addresses between two
continuous accesses to the same memory address.

Equation 2.1 represents the hit probability of each memory address in the cache. This equation
takes the number of cache entries into account and when reuse distance is beyond its scope, the hit
probability is 0. By using Equation 2.1, the pessimistic probabilities of all memory addresses are
obtained, and they are independent of each other. Therefore, the overall probability distribution can
be calculated by convolution of all probabilities. The Execution Time Profile is used to represent
the timing information and its associated probability. In our work, the number of cycles is applied
as timing information and thus we have:

ETP = {(c1, c2, ...), (p1, p2, ...)}

where ci is the number of cycles, and pi is its corresponding occurrence probability.

We propose an SPTA methodology for randomized caches, which computes the pWCET on single-
path program memory traces, i.e. the exceedance probabilities for the execution-time (the number
of processor cycles). The estimation is performed by using state space techniques, and it is based on
a non-homogeneous Markov chain model [62]. This method is developed by MIST lab. The details
of this work are available [22], and in Appendix-A. We used this method for static probabilistic
timing estimations. In this method, at every step, the current status of the system can be realized
as a vector containing the probability of each state. The status of next step is computed using a

48

transition matrix. To perform timing analysis, timing distribution vectors, which are used for the
timing description and analysis, are assigned to each state. This approach can obtain tight pWCET
estimates.

5.4 Prediction Evaluation Under Timing Techniques

It is hard to compare different timing analysis on the same hardware configuration. Each technique
gives its best results on a particular hardware with specific conditions. The deterministic timing
analysis techniques provide tightly bound WCET estimates on time-deterministic architectures.
Whereas PTA techniques provide tightly bound probabilistic WCET estimates on time-randomized
architectures. In this section, we study the prediction under different cache parameters, e.g. asso-
ciativity, size, line size. We vary each of these three parameters and observe the impact of these
parameters on pessimism under timing techniques. For SPTA and MBPTA, we set the exceedance
threshold to 10−3 per run.

5.4.1 Cache Hardware Configuration

As discussed earlier, each time technique is suitable under a particular hardware configuration.
We have two placement and replacement policies, namely deterministic/random placement and
replacement policies. Each timing technique can be analyzed under different cache configurations.
For example, a SDTA technique provides tight estimations if the cache replacement is LRU and the
placement is modulo, but SPTA and MBPTA cannot be used with LRU and modulo policies as
probabilistic techniques require randomization. Consider a case where the placement policy is time
deterministic and the replacement policy is time randomized, in this case SDTA can be applied but
the results are too pessimistic. MBPTA and SPTA can be applied with this configuration because
each access has a probability of hit/miss. Consider a scenario in which we have randomized policies
for both placement and replacement, in this case, SDTA gives very pessimistic results [1]. But we
can apply SPTA and MBPTA techniques on a randomized hardware. However, MBPTA techniques
were applied in the past with randomized placement and replacement policies. But SPTA cannot
be applied with randomized placement. In this work, we apply both SPTA and MBPTA timing
analysis techniques on a hardware platform enabled with randomized placement and replacement.
In order to conclude this, we have two remarks:

— Deterministic timing techniques performed well on deterministic hardware.

— Probabilistic techniques required the hardware to be time-randomized. There has been a lot
of work in the context of time deterministic architectures with deterministic techniques. We
mainly focused on the time randomized hardware with PTA techniques in this work.

49

5.5 Experimental Setup

We chose eight benchmarks from the Mälardalen WCET suite [35] for the analysis of a level of
pessimism under different timing techniques. All experiments are conducted on a Leon-3 proces-
sor, C-codes compiled with gcc 4.8.4 with no optimization of the binary code. As discussed in
section 5.1, the timing analysis techniques are used in terms of pessimism under varying cache ar-
chitecture. In this section, we described each timing technique for probabilistic and deterministic
cache configurations according to its experimental setup.

1. The SPTA method is applied on the address traces, which are obtained by running the
benchmark on the Leon-3 processor. The results for the SPTA method are obtained by
applying the formulas presented in section 5.3.1. The SPTA method is applied on the 1000
execution runs in ETP.

2. Our MBPTA method is based on the EVT as discussed in section 5.3.2. The MBPTA results
are based on the 1000 runs of each benchmark running on the Leon-3 processor, which showed
to be sufficient for MBPTA measurements [20]. As MBPTA is based on the property that
each run ensures the i.i.d property [24]. The Kolmogorov-Smirnov test is performed on the
execution-time measurements with a significance level of α = 0.05 to prove all the timing
measurements are identical. Table 5.1 shows that all benchmarks runs fulfill the i.i.d property.

3. We also obtained the WCET estimates for the deterministic cache enabled with the modulo
placement and LRU replacement policies.

5.5.1 Cache Setup

It is not an easy task to compare SPTA and MBPTA techniques for the time-prediction on the
same platform as each technique can be more suited to a specific software and hardware platform.
A fair comparison between them can be made by choosing a suitable cache setup. Starting from
a cache placement and replacement policy, we select time-randomized placement and replacement
for SPTA and MBPTA. As discussed in [1], the combination of time randomized placement and
time deterministic replacement provides no advantage over the other combinations (e.g. time-
deterministic placement/replacement). Similarly, the results for the time randomized placement and
time randomized replacement for SDTA is very pessimistic. The best suitable cache configuration
for PTA has time-randomized placement and time-randomized replacement [1]. In short, to produce
an accurate prediction of WCET estimates, the time-deterministic hardware is suitable for the DTA
and time-randomized hardware is suitable for PTA.

50

5.6 Experimental Evaluation

We study the influence of associativity, cache size, and line size on the WCET estimates for the
time-prediction.

5.6.1 Prediction Analysis under Associativity

The impact and behavior of the time-prediction associated with MBPTA and SPTA under varying
associativity is discussed in this section. We also study how cache associativity can counter pes-
simism. Figure 5.1 shows how pessimism varies by changing the cache associativity by applying
MBPTA technique. We used three set-associative(SA) cache structures. The cache configuration
we used are: SA-2, SA-4, and SA-8 with 2 kB size and 32 bytes line size. We conclude with the
following observations (O) under this cache configuration.

MBPTA:
O-1.1: The associativity helps to minimize the pessimism because with higher associativity the
cache hit ratio improves. The execution-time is also decreased at higher associativity. The higher
the associativity, the lower is the execution-time. Increasing the associativity also improves the
prediction estimation because at higher associativity the execution-time distribution getting smooth
provide tighter estimates.

ud
co

ve
r

ex
pin

t
fdc

t

jfd
cti

nt
qs

ort
se

lec
t

cn
t0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Pr
ed

ic
te

d/
M

ea
su

re
d

Ex
ec

ut
io

n
tim

e
(c

yc
le

s)

1e5 Associativity

MBPTA-SA-2
MBPTA-SA-4
MBPTA-SA-8
Execution Runs

Figure 5.1 Impact on Time-Prediction by varying Associativity-MBPTA.

51

O-1.2: The predicted time (pWCET) is getting closer to the maximum execution-time of a C-code
running on a processor by varying the associativity. The higher the associativity, the smaller is
the overestimation. For example, for the cache with the associativity-2 (SA-2), the time-prediction
is varied between 5.09% to 3.11%. This pessimism is decreased from 4.26% to 1.33% as shown in
Figure 5.1 and summarizes in Table 5.2.

SPTA:
O-1.3: The SPTA technique is applied on the address traces of the code. The first observation is
about performance: the SPTA performance is not as predictable as we observed for MBPTA. The
pessimism is always higher for SPTA as compared with MBPTA as shown in Table 5.2.
O-1.4: The computed pWCETs does not depend on the associativity. Because of the overestima-
tions added by the equation described in section 5.3.5, the pessimism does not decrease at higher
cache associativity analysed through SPTA. This is due to the fact that the randomized cache needs
to ensure the number of misses to ensure independence tests.
O-1.5: However, we have observed that the pessimism is improved within SPTA at higher associativ-
ity. Particularly, for the jfdctint, cnt the pessimism is decreased by 7.76% and 10.46% respectively.
But pessimism is still higher than we found for the MBPTA.
O-1.6: The average difference between the predicted time and the maximum execution-time for the
SPTA is 3.07% and 1.77% for the MBPTA.

ud
co

ve
r

ex
pin

t
fdc

t

jfd
cti

nt
qs

ort
se

lec
t

cn
t0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Pr
ed

ic
te

d/
M

ea
su

re
d

Ex
ec

ut
io

n
tim

e
(c

yc
le

s)

1e5 Associativity

SPTA-SA-2
SPTA-SA-4
SPTA-SA-8
Execution Runs

Figure 5.2 Impact on Time-Prediction by varying Associativity-SPTA.

52

5.6.2 Prediction Analysis under Cache Size

We study the effects of the cache size on time-prediction. The level of pessimism achieved varying
the cache size is discussed in this section. We performed our test on three different sizes (2 kB, 4
kB, and 8 kB) with 2-way associative cache (SA-2), and the line size is 32-bytes.

MBPTA:
The impact of changing the cache size on the time-prediction by employing MBPTA is being stud-
ied. Figure 5.3 shows how much pessimism is varied by varying the cache size. We conclude with
the following observations under this cache configuration.
O-2.1: The prediction difference between the predicted time and the maximum execution-time is
decreased by increasing the cache size. The level of pessimism is decreased from 5.01% to 0.43%
by increasing the size from 2-kB to 8-kB as summarized in Table 5.4. Increasing in the cache size
helps to fit the binary code size into the cache and this ultimately improves the cache hit ratio.
O-2.2: Increasing the cache size helps to decrease the pWCET estimate. It results in a less pes-
simistic prediction time. Figure 5.3 shows the effects on the time-prediction under different cache
sizes.

SPTA:
O-2.3: The behavior obtained by varying the cache size is almost the same the one observed when
varying the associativity. The pessimistic value is quite higher, that is in between 1.25% and 3.53%
as shown in the Table 5.4.
O-2.4: The average pessimistic difference between the predicted time and the actual execution-time

ud
co

ve
r

ex
pin

t
fdc

t

jfd
cti

nt
qs

ort
se

lec
t

cn
t0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Pr
ed

ic
te

d/
M

ea
su

re
d

Ex
ec

ut
io

n
tim

e
(c

yc
le

s)

1e5 Size

MBPTA-2KB
MBPTA-4KB
MBPTA-8KB
Execution Runs

Figure 5.3 Impact on Time-Prediction by varying Cache Size-MBPTA.

53

from 2-kB to 8-kB is 2.38%. Whereas, for MBPTA, this difference factor is reduced to 1.93%. SPTA
pessimistic nature does not help to minimize the level of pessimism as much MBPTA does.

5.6.3 Prediction Analysis under Line Size

The impact of the line size on the prediction is shown in Figure 5.5 when applying MBPTA and
Figure 5.6 when applying SPTA. We have used two cachelines, i.e. 16-bytes line size and 32-bytes
line size with the 4-way associativity, and the capacity is 4-kB. Data and instruction caches are
used with the same parameters.
MBPTA:
O-3.1: We have observed that an increase in the line size decreases the pWCET estimate. Because
larger cache lines minimize the number of loads from the memory that helps to reduce pessimism.
As we observe from Figure 5.5, the average reduction in predicted time is 1.87%.

SPTA:
O-3.2: We observed the same behavior by varying the line size with SPTA as with MBPTA. The
improvement factor is shown in Table 5.4. The difference between the predicted time and the
maximum execution-time for SPTA by varying the line size is remarkably improved compared to
varying the associativity and sizes. This is due to the fact that by increasing the line-size helps to
minimize the number of loads from the memory as a result improve execution-time and prediction.
For example, consider the test case Ud with associativity-4 (SA-4), the level of pessimism goes from
16.39% to 6.14% considering the same configuration by varying only the line size.

ud
co

ve
r

ex
pin

t
fdc

t

jfd
cti

nt
qs

ort
se

lec
t

cn
t0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Pr
ed

ic
te

d/
M

ea
su

re
d

Ex
ec

ut
io

n
tim

e
(c

yc
le

s)

1e5 Size

SPTA-2KB
SPTA-4KB
SPTA-8KB
Execution Runs

Figure 5.4 Impact on Time-Prediction by varying Cache Size-SPTA.

54

ud
co

ve
r

ex
pin

t
fdc

t

jfd
cti

nt
qs

ort
se

lec
t

cn
t0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Pr
ed

ic
te

d/
M

ea
su

re
d

Ex
ec

ut
io

n
tim

e
(c

yc
le

s)

1e5 Line Size
16-B-MBPTA
32-B-MBPTA
Execution Runs

Figure 5.5 Impact on Time-Prediction by varying Cacheline-MBPTA.

ud
co

ve
r

ex
pin

t
fdc

t

jfd
cti

nt
qs

ort
se

lec
t

cn
t0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Pr
ed

ic
te

d/
M

ea
su

re
d

Ex
ec

ut
io

n
tim

e
(c

yc
le

s)

1e5 Line Size
16-B-SPTA
32-B-SPTA
Execution Runs

Figure 5.6 Impact on Time-Prediction by varying Cacheline-MBPTA.

Summary: Figure 5.7 shows a comparison between the deterministic cache enabled with mod-
ulo placement and LRU replacement for probabilistic cache used MBPTA and SPTA it also shows
the comparison with the maximum measured execution-time. The result presented in Figure 5.7
is derived from the cache configuration SA-4, size-2 kB, and line-size-32 byte. We observed that

55

Table 5.2 Level of Pessimism Introduced by varying Cache Parameters.

Benchmark Level of Pessimism(%)
Associativity Associativity Size Size Line size Line size
SA-2 to SA-8 SA-2 to SA-8 SA 2-8 kB SA 2-8 kB SA 16-32 B SA 16-32 B

MBPTA SPTA MBPTA SPTA MBPTA SPTA
ud 4.26 3.96 2.27 2.26 2.43 2.37
cover 1.24 1.23 1.13 1.41 0.45 0.52
expint 0.95 0.43 0.43 2.21 4.12 3.27
fdct 1.70 4.18 1.99 2.06 1.58 1.81
jfdctint 2.74 7.76 1.57 3.13 4.49 3.23
qsort-exam 2.21 3.82 2.70 3.53 0.15 0.70
select 4.80 7.93 5.01 3.21 0.88 0.62
cnt 1.33 10.46 0.35 1.25 1.11 0.82

ud
co

ve
r

ex
pin

t
fdc

t

jfd
cti

nt
qs

ort
se

lec
t

cn
t0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Pr
ed

ic
te

d/
M

ea
su

re
d

Ex
ec

ut
io

n
tim

e
(c

yc
le

s)

1e5
MBPTA
Execution Runs
SPTA
LRU

Figure 5.7 Comparison between Time-Prediction via Timing Techniques and Maximum
Execution-Time.

the level of pessimism associated with a deterministic cache (analyzed with DTA) is higher than
MBPTA and SPTA (probabilistic cache) as compared to the maximum execution-time. Perfor-
mance in terms of prediction is lower for the deterministic cache. We observed that the prediction
obtained with MBPTA and SPTA is closer to the actual execution-time. The results obtained for
the deterministic cache are underestimated and they are quite far from the real execution-time as
shown in Figure 5.7 and summarized in Table 5.3. This also proves the point we made in section 5.1,
that probabilistic techniques performed well with randomized architecture. This result also shows
a comprehensive qualitative analysis that each technique is particularly suitable for specific set of

56

Table 5.3 Deterministic/Probabilistic WCETs and respective Execution Bounds.

Benchmark Execution-Time (clock cycles)
Deterministic Prediction Probabilistic Prediction Prediction
Cache (WCET) bound Cache (WCET) bound (MBPTA) bound (SPTA)

ud 235050 386920 324950 376500 376880
cover 107894 159792 138798 154526 158978
expint 152020 234689 189380 225458 224776
fdct 217066 291194 218092 234587 284119
jfdctint 150850 270891 209487 266357 270446
qsort 212880 294480 242609 280291 292840
select 157060 224975 190812 217977 219754
cnt 190980 289654 258480 285921 286535

Table 5.4 Pessimism between Predicted pWCETs at 10−3 Exceedance Probability versus
Deterministic Cache.

Pessimism Difference(%)
ud cover expint fdct jfdctint qsort select cnt

Deterministic cache 49.67 39.55 43.80 29.13 57.55 33.09 36.22 41.38
Probabilistic cache (MBPTA) 14.70 10.72 17.39 7.07 23.90 14.41 13.29 10.08
Probabilistic cache (SPTA) 14.80 13.55 17.09 26.29 25.40 18.70 14.10 10.30

software and hardware. SPTA shows more pessimism than MBPTA because SPTA is more sensitive
to the knowledge of referenced addresses. It means EVT based MBPTA provides tightest pWCET
estimations compared to SPTA.

Similarly, Table 5.3 shows the deterministic and probabilistic WCETs and respective bounds. These

0.218

Bound (deterministic)

Application : fdct

Deterministic cache
(WCET)

t (μs)

0.291

Probabilistic cache (WCET)

Bound (MBPTA)

0.234

Pessimism Deterministic
Architecture (29.13%)

Pessimism Probabilistic
 MBPTA (7.07 %)

0.217

Pessimism Probabilistic
SPTA (26.29 %)

 0.284

Bound (SPTA)

Figure 5.8 Pessimism between Predicted pWCETs at 10−3 Exceedance Probability versus
Deterministic Cache.

57

results can be summarized in Table 5.4 which shows the pessimism difference between the MBPTA,
SPTA, and deterministic cache. We used application fdct to elaborate the pessimism obtained by
MBPTA is minimum as compared it with the SPTA and deterministic architecture shown in Fig-
ure 5.8. In summary, our tests show that the randomized cache can be used to apply MBPTA and
SPTA techniques to find the time-predictions and associated pessimism. In short, compared to de-
terministic cache the observed execution-time and associated pessimism is improved for probabilistic
cache. The difference between the deterministic cache execution-time and its associated prediction
bounds is more pessimistic than the difference between the probabilistic cache execution-time and
its associated prediction bounds.

58

CHAPTER 6 DISCUSSION

The main ideas of the work presented in this thesis are the design of a probabilistic system and
analysis of this system with probabilistic timing analysis techniques to measure the time- prediction
in terms of pWCET.

To get promising results and make the system probabilistically analyzable, a randomized cache is
used. The randomized cache fulfills the requirements that are necessary for the probabilistic timing
techniques, e.g., the i.i.d property. Probabilistic timing techniques in both variants—static and
measurement-based techniques—are used. The MBPTA used the execution-time of the program.
The execution-time is obtained by running the benchmark which comprises of C-code on the ran-
domized hardware. The timing information is given to the MBPTA method and produced a tight
pWCET estimation bound. Second, we used an SPTA method which used memory traces to find
an upper bound for the WCET.

The PTA techniques produced probabilistically accurate WCET estimations that helped to find
the execution bounds. The WCET estimation observed under probabilistic methods provided less
pessimism when compared to the execution bound found on a deterministic architecture, e.g., a lru
cache.

In accordance with the literature, to achieve the necessary requirements for the probabilistic tech-
niques [21], a randomized cache is used under PTA techniques. The randomized cache is used to
generate randomization of the timing behavior. Randomized placement and replacement policies is
adopted in this work. A parametric hash function is used for the random placement policy, and a
random number generator is used for the random replacement policy. Then, the randomized cache
is integrated with the processors. We used two processors: MIPS-32 and Leon-3. The Mälardalen
real-time benchmark is used for in our tests. The C-code is compiled with gcc and machine code
is fed to the processors. We executed the same C-code/application several thousand times to ob-
tain the execution-time measurements profile. The measurements we got consist of different timing
values which correspond to the execution-times of the benchmark. To verify whether these timing
values fulfill the requirements for PTA techniques, independence and identical distribution tests
are applied on the timing values. After the successful verification of independence and identical
distribution, measurement and static probabilistic techniques are used to establish the probabilistic
WCET bound.

The PTA approach incurred the timing analysis wall. The static timing analysis methods failed to
find solutions for the WCET estimation for complex hardware systems. This is because—as the
complexity of the system is increased—driving the accurate, detailed knowledge of the hardware
model is a cumbersome job. Furthermore, obtaining the detailed knowledge of the timing behavior
of the program in the presence of varying hardware condition (e.g., knowledge of all previously

59

executed instructions) is also a difficult job. Due to these limitations, PTA techniques emerged that
are capable of removing the requirements for the detailed knowledge of the hardware and producing
tightly bound WCET estimations. The obtained tight WCET estimations had less dependence
on the execution history and required less platform knowledge. The lack of platform knowledge
had an influence on the WCET estimations and provided execution bounds that are independent
of the platform knowledge. We believe that the required knowledge needed to achieve reliable
pWCET bounds can be accomplished by using the hardware platform whose execution-time does
not depend on the execution history. The results obtained by applying PTA techniques on the
randomized hardware are less pessimistic WCET estimations as compared with the deterministic
timing analysis approach.

We discovered that the pessimism associated with PTA techniques is closed enough to the actual
measurement as compared to the static approach. The primary objective of the PTA techniques
is to provide a tight WCET estimation that is safe enough for the software program and to keep
the overall system failure rate lower than the derived bound. The measurement-based probabilistic
technique provides a pWCET estimation. The estimation achieved under MBPTA technique is end-
to-end runs of a program. The pWCET observed under MBPTA is less pessimistic as compared to
the static probabilistic method. In fact, MBPTA derived tight bounds are based on the actual ob-
servations rather than the convolution operation which are used by SPTA. To give evidence for our
argument—that the pWCET estimations observed under the probabilistic techniques had less pes-
simistic and tightly bound to the actual measurements rather than the deterministic approach—we
used a deterministic architecture, i.e. a LRU replacement and modulo placement. The deterministic
approach had a better average performance but provides a high level of pessimism that sets the
actual bound away from the real measurements. Setting the pWCET bound away from the actual
measurements did not help real-time system designers to design a system with better schedulability
analysis and best resource consumption.

The work accomplished so far in real-time systems timing analysis is mainly based on simulators
rather than real hardware. The results and mathematical foundations presented in [44], [1], [45]
support our findings. We can relate our findings to the work presented in the literature to support
our work. As suggested by the work presented in [53], we found that the pWCET of a program
under varying memory layout is suitable to apply PTA techniques. The authors used different
memory layouts to get different timing values. The performance degrades with random policies as
compared to other deterministic policies but it had an acceptable average case performance. Based
on this observation, the authors developed their PTA techniques by using associative caches with
random replacement policies [45]. We used the same strategy using randomized cache placement
and replacement policies and analyzed the whole system with PTA techniques. We observed that
it coincided with the theory and the general perception about the PTA techniques. The PTA
techniques provide tightly bound pessimism associated with pWCET rather than improving the
best execution-time.

60

It is arguable that PTA techniques on randomized architectures are not suitable to improve the
average case performance. Why should it be used in real-time systems? In real-time systems,
the main focus is on the accurate prediction rather than average case performance improvement.
Probabilistic techniques allow reducing the overestimation produced by traditional timing analysis
approaches. This work is focused on single core architectures to develop a methodology to apply
PTA techniques. The probabilistic approach on a multi-core architecture will be a best possible
extension of this work. The problem associated with the use of multi-core architecture in real-time
systems is task allocation. It is a challenging task to predict how the task will interact with each
other in shared hardware resources. We believed that probabilistic techniques will be a promising
solution to find pWCET bound for a multi-core architecture. Moreover, by employing an L2 cache,
it will be interesting to see that how it influences the time predictability. Finally, an extension of
this work could be the creation of a whole hardware architecture randomized with a randomized bus,
TLBs, in order to measure the effects that randomization may introduce on the other components
for pWCET estimation.

61

CHAPTER 7 CONCLUSION

The implementation of a time-predictable architecture, analyzed by probabilistic timing analysis
(PTA) techniques is presented. As our target domain is a real-time industry, we stressed the
importance of the worst-case execution-time (WCET) estimation. We redefined the concept of
execution-time profiles to describe the probabilistic timing behaviour of our sources. The motivation
of this work is based on the following observation:

The static WCET analysis is a complex technique mainly due to the necessity of building an as-
precise-as-possible view of the impact of the execution history on the hardware state at each execution
of the program. The over-approximation of this impact may degrade the accuracy of the WCET
estimation. To overcome the modeling of the execution history, a probabilistic approach can be
used to randomize the timing behaviour of a hardware component, e.g., a randomized cache. The
randomization results in a smooth distribution of the execution-time probabilities. Then, a WCET
probability distribution is computed using a technique named MBPTA based on EVT. To measure the
execution-time probability distribution for individual operations, e.g., memory accesses, a technique
is developed, named SPTA.

In the presence of a cache, accurate WCET estimation is a complex process. In this work, we
analyzed randomized architecture with probabilistic timing analysis techniques. We verified that
the probabilistic timing techniques, both static and measurement-based guaranteed the tightly
bound WCET estimation if applied to the randomized architecture. Both probabilistic techniques
MBPTA and SPTA offered various trade-offs regarding the performance, suitability, and pessimism.

The investigation of new timing analysis techniques is an unavoidable need because of the growing
complexity of a modern computing system. The probabilistic timing techniques help to analyze
complex computing systems to find the execution bound where meeting the deadline is the primary
concern such as aerospace computing systems. This research has a potential to make computing
systems smarter, more reliable, and easier to design and program. As PTA techniques have less
dependency on the execution history, they give to the designer the ability to design a system with
more freedom and suitability according to the requirements.

The work presented here is centered around a probabilistically analyzable randomized cache. Our
randomized cache can be integrated with any processor to make the foundation for a probabilistically
analyzable computing system. We implemented the RTL model of a randomized L1 data and
instruction cache. This cache used a high-quality random number generator for random placement
and replacement. Random placement is obtained with a parametric hash function that shuffles
the association between memory addresses and cache blocks. The cache is integrated with the Ion
MIPS32 processor, and verified to generate independent and identically distributed timing events
so that MBPTA can be applied. We test our cache and PTA approach on a variety of C-code

62

sources from the Mälardalen benchmark suite and show a noticeable improvement (5-15%) in terms
of measured Worst Case Execution Time (WCET) as well as enabling the identification of safe
probabilistic WCET (pWCET) bounds.

We used PTA techniques for time-prediction and to find the level of pessimism by varying cache
parameters. Levels of pessimism are evaluated under measurement and static probabilistic timing
techniques. Our results are supported by the quantitative data and they can help user to choose
better timing analysis techniques. The cache parameters are also adjustable with reference of an
affordable pessimism. By varying cache parameters, we analyzed pWCET bound with both SPTA
and MBPTA techniques. We observed that SPTA is more pessimistic than MBPTA. Extending
this work to a multi-processor with a randomized bus will be a good idea for future work.

The research that we conducted proved the effectiveness of probabilistic timing analysis. Fur-
thermore, our most recent results demonstrated that probabilistic timing technique is a promising
approach for the future timing analysis techniques for a real-time system.

Through this research, we hope to be able to have an impact on how computer engineers and system
designers will think of the probabilistic computing in near future, and contribute to creating the
next generation of a real-time embedded systems for aerospace industry. At the same time, we think
that our results will make decisive steps ahead in a relatively unexplored research area: integration
of fault-tolerance techniques in time-predictable computer architecture.

63

REFERENCES

[1] Abella, Jaume and Hardy, Damien and Puaut, Isabelle and Quinones, Eduardo and Cazorla,
Francisco J (2014). On the comparison of deterministic and probabilistic wcet estimation
techniques. Real-Time Systems (ECRTS), 2014 26th Euromicro Conference on. IEEE, 266–
275.

[2] Aeroflex-Gaisler (2016). The leon3 processor. http://www.gaisler.com.

[3] Altmeyer, Sebastian and Cucu-Grosjean, Liliana and Davis, Robert I. (2015). Static prob-
abilistic timing analysis for real-time systems using random replacement caches. Real-Time
Syst., 51 (1), 77–123.

[4] Altmeyer, S. and Davis, R.I (2014). On the correctness, optimality and precision of static prob-
abilistic timing analysis. Design, Automation and Test in Europe Conference and Exhibition
(DATE), 2014. 1–6.

[5] Altmeyer, Sebastian and Davis, Robert and others (2014). On the correctness, optimality
and precision of static probabilistic timing analysis. Design, Automation and Test in Europe
Conference and Exhibition (DATE), 2014. IEEE, 1–6.

[6] F. Amoset and others (1991). Worst-case execution time analysis for a java processor. Journal
of Algorithms, 12 (4), 685–6–99.

[7] Anantaraman, Aravindh and Seth, Kiran and Patil, Kaustubh and Rotenberg, Eric and
Mueller, Frank (2003). Virtual simple architecture (visa): exceeding the complexity limit in
safe real-time systems. ACM SIGARCH Computer Architecture News. ACM, vol. 31, 350–361.

[8] Anwar, Hassan (2016). Probabilistically analysable cache. http://git.mistlab.ca/hanwar.

[9] Anwar, Hassan and Chen, Chao and Beltrame, Giovanni (2015). A probabilistically analysable
cache implementation on fpga. New Circuits and Systems Conference (NEWCAS), 2015 IEEE
13th International. IEEE, 1–4.

[10] Anwar, hassan and Chen, Chao and Beltrame, Giovanni (2015). A probabilistically analysable
cache implementation on fpga. New Circuit and System (NEWCAS), 2015 15th International
Conference on. IEEE, 1–4.

[11] H. Anwar and M. Daneshtalab and M. Ebrahimi and J. Plosila and H. Tenhunen and S.
Dytckov and G. Beltrame (2014). Parameterized AES-based crypto processor for FPGAs.
Digital System Design (DSD), 2014 17th Euromicro Conference on. 465–472.

[12] Anwar, Hassan and Jafri, Syed and Dytckov, Sergei and Daneshtalab, Masoud and Ebrahimi,
Masoumeh and Hemani, Ahmed and Posila, J. and Beltrame, G. and Tehunen, H. (2014).
Exploring spiking neural network on coarse-grain reconfigurable architectures. Proceedings of
International Workshop on Manycore Embedded Systems. ACM, New York, NY, USA, MES
’14, 64–67.

http://www.gaisler.com
http://git.mistlab.ca/hanwar

64

[13] ARM (2015). Cortex-M Core. http://www.arm.com/products/processors/cortex-m.

[14] Bandyopadhyay, S. and Bhattacharya, R. (2015). Discrete and Continuous Simulation: Theory
and Practice. CRC Press.

[15] Bate, Iain and Conmy, Philippa and Kelly, Tim and McDermid, John (2001). Use of modern
processors in safety-critical applications. The Computer Journal, 44 (6), 531–543.

[16] Christoph Berg and Jakob Engblom and Reinhard Wilhelm (2004). Requirements for and
design of a processor with predictable timing. L. Thiele et R. Wilhelm, éditeurs, Perspectives
Workshop: Design of Systems with Predictable Behaviour. Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany, Dagstuhl, Germany,
no. 03471 Dagstuhl Seminar Proceedings, 1–20.

[17] Bernat, Guillem and Colin, Anotione and Petters, Stefan M (2002). Wcet analysis of proba-
bilistic hard real-time systems. Real-Time Systems Symposium, 2002. RTSS 2002. 23rd IEEE.
IEEE, 279–288.

[18] Beyls, Kristof and Hollander, Erik (2001). Reuse distance as a metric for cache behavior.
Proceedings of the IASTED Conference on Parallel and Distributed Computing and systems.
vol. 14, 350–360.

[19] Boslaugh, Sarah and Watters, Paul Andrew (2008). Statistics in a nutshell - a desktop quick
reference. O’Reilly.

[20] Cazorla, Francisco J and Vardanega, Tullio and Quiñones, Eduardo and Abella, Jaume (2013).
Upper-bounding program execution time with extreme value theory. WCET. 64–76.

[21] F. J. Cazorla and others (2013). Proartis: Probabilistically analyzable real-time systems. ACM
Trans. Embed. Comput. Syst., 12 (2s), 94:1–94:26.

[22] Chaen, Chao and Santinelli, Luca Hugues and Beltrame, Giovanni (2016). Static probabilistic
timing analysis in presence of faults. Proceedings of the 11th IEEE International Symposium
on Industrial Embedded Systems. 1–10.

[23] Conti, Massimo and Caldari, Marco and Vece, Giovanni B and Orcioni, Simone and Turchetti,
Claudio (2004). Performance analysis of different arbitration algorithms of the amba ahb bus.
Proceedings of the 41st annual Design Automation Conference. ACM, 618–621.

[24] G. Cucu and others (2012). Measurement-based probabilistic timing analysis for multi-path
programs. Real-Time Systems (ECRTS), 2012 24th Euromicro Conference on. 91–101.

[25] Cucu-Grosjean, L. and Santinelli, L. and Houston, M. and Lo, C. and Vardanega, T. and
Kosmidis, L. and Abella, J. and Mezzetti, E. and Quinones, E. and Cazorla, F.J. (2012).
Measurement-based probabilistic timing analysis for multi-path programs. Real-Time Systems
(ECRTS), 2012 24th Euromicro Conference on. 91–101.

[26] David, Laurent and Puaut, Isabelle (2004). Static determination of probabilistic execution
times. Proceedings of the 16th Euromicro Conference on Real-Time Systems. ECRTS ’04,
223–230.

http://www.arm.com/products/processors/cortex-m

65

[27] Davis, Robert and Santinelli, Luca and Altmeyer, Sebastian and Maiza, Claire and Cucu-
Grosjean, Liliana and others (2013). Analysis of probabilistic cache related pre-emption delays.
Real-Time Systems (ECRTS), 2013 25th Euromicro Conference on. IEEE, 168–179.

[28] Davis, Robert I (2013). Improvements to static probabilistic timing analysis for systems with
random cache replacement policies. 2013 4th Real-Time Scheduling Open Problems Seminar,
RTSOPS’13. 1–3.

[29] Delvai, Martin and Huber, Wolfgang and Puschner, Peter and Steininger, Andreas (2003).
Processor support for temporal predictability-the spear design example. Real-Time Systems,
2003. Proceedings. 15th Euromicro Conference on. IEEE, 169–176.

[30] Edwards, Stephen A and Lee, Edward A (2007). The case for the precision timed (pret)
machine. Proceedings of the 44th annual Design Automation Conference. ACM, 264–265.

[31] Gnedenko, Boris (1943). Sur la distribution limite du terme maximum d’une serie aleatoire.
Annals of mathematics, 423–453.

[32] Goresky, Mark and Klapper, Andrew (2003). Efficient multiply-with-carry random number
generators with maximal period. ACM Trans. Model. Comput. Simul., 13 (4), 310–321.

[33] Griffin, David and Lesage, Benjamin and Burns, Alan and Davis, Robert I. (2014). Static
probabilistic timing analysis of random replacement caches using lossy compression. Proceedings
of the 22Nd International Conference on Real-Time Networks and Systems. ACM, New York,
NY, USA, RTNS ’14, 289:289–289:298.

[34] Gumbel, Emil Julius and Lieblein, Julius (1954). Statistical theory of extreme values and some
practical applications: a series of lectures, vol. 33. US Government Printing Office Washington.

[35] Jan Gustafsson and Adam Betts and Andreas Ermedahl and Björn Lisper (2010). The
Mälardalen WCET benchmarks – past, present and future. B. Lisper, éditeur, WCET2010.
OCG, Brussels, Belgium, 137–147.

[36] Hansen, Jeffery and Hissam, Scott A and Moreno, Gabriel A (2009). Statistical-based wcet
estimation and validation. Proceedings of the 9th Intl. Workshop on Worst-Case Execution
Time (WCET) Analysis. 1–10.

[37] Heckmann, Reinhold and Langenbach, Marc and Thesing, Stephan and Wilhelm, Reinhard
(2003). The influence of processor architecture on the design and the results of wcet tools.
Proceedings of the IEEE, 91 (7), 1038–1054.

[38] Heimdahl, Mats PE (2007). Safety and software intensive systems: Challenges old and new.
2007 Future of Software Engineering. IEEE Computer Society, 137–152.

[39] Hoeffding, Wassily (1963). Probability inequalities for sums of bounded random variables.
Journal of the American statistical association, 58 (301), 13–30.

[40] Jalle, Javier and Abella, Jaume and Quinones, Eduardo and Fossati, Luca and Zulianello,
Marco and Cazorla, Francisco J (2014). Ahrb: A high-performance time-composable amba

66

ahb bus. Real-Time and Embedded Technology and Applications Symposium (RTAS), 2014
IEEE 20th. IEEE, 225–236.

[41] Jalle, Javier and Kosmidis, Leonidas and Abella, Jaume and Quiñones, Eduardo and Cazorla,
Francisco J. (2014). Bus designs for time-probabilistic multicore processors. Proceedings of
the Conference on Design, Automation & Test in Europe. European Design and Automation
Association, 3001 Leuven, Belgium, Belgium, DATE ’14, 50:1–50:6.

[42] Kirner, Raimund and Puschner, Peter (2010). Time-predictable computing. Software Tech-
nologies for Embedded and Ubiquitous Systems, Springer. 23–34.

[43] Kosmidis, Leonidas and Abella, Jaume and Wartel, Franck and Quinones, Eduardo and Colin,
Antoine and Cazorla, Francisco J (2014). Pub: path upper-bounding for measurement-based
probabilistic timing analysis. Real-Time Systems (ECRTS), 2014 26th Euromicro Conference
on. IEEE, 276–287.

[44] Kosmidis, Leonidas and Quinones, Eduardo and Abella, Jaume and Vardanega, Tullio and
Broster, Ian and Cazorla, Francisco J (2014). Measurement-based probabilistic timing analysis
and its impact on processor architecture. Digital System Design (DSD), 2014 17th Euromicro
Conference on. IEEE, 401–410.

[45] Kosmidis, Leonidas and others (2013). A cache design for probabilistically analysable real-time
systems. Proceedings of the Conference on Design, Automation and Test in Europe. DATE ’13,
513–518.

[46] Kreuzinger, Jochen and Marston, R and Ungerer, Th and Brinkschulte, Uwe and Krakowski, C
(1999). The komodo project: Thread-based event handling supported by a multithreaded java
microcontroller. EUROMICRO Conference, 1999. Proceedings. 25th. IEEE, vol. 2, 122–128.

[47] Lahiri, Kanishka and Raghunathan, Anand and Lakshminarayana, Ganesh (2001). Lotterybus:
A new high-performance communication architecture for system-on-chip designs. Proceedings
of the 38th annual Design Automation Conference. ACM, 15–20.

[48] Malik, Sharad and Martonosi, Margaret and Li, Yau-Tsun Steven (1997). Static timing analysis
of embedded software. Proceedings of the 34th Annual Design Automation Conference. ACM,
New York, NY, USA, DAC ’97, 147–152.

[49] Matsumoto, Makoto and others (1998). Mersenne twister: A 623-dimensionally equidistributed
uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul., 8 (1), 3–30.

[50] MENTOR GRAPHICS (accessed 2016). Modelsim. http://www.modelsim.com.

[51] Mezzetti, Enrico and Ziccardi, Marco and Vardanega, Tullio and Abella, Jaume and Quiñones,
Eduardo and Cazorla, Francisco J (2015). Randomized caches can be pretty useful to hard
real-time systems. Leibniz Transactions on Embedded Systems, 2 (1), 01–1.

[52] Opencores (2016). Complex gaussian pseudo random number generator. http://opencores.

org/project/complex-gaussian-pseudo-random-number-generator.

http://www.modelsim.com
http://opencores.org/project/complex-gaussian-pseudo-random-number-generator
http://opencores.org/project/complex-gaussian-pseudo-random-number-generator

67

[53] Quinones, Eduardo and Berger, Emery D and Bernat, Guillem and Cazorla, Francisco J
(2009). Using randomized caches in probabilistic real-time systems. Real-Time Systems, 2009.
ECRTS’09. 21st Euromicro Conference on. IEEE, 129–138.

[54] Reineke, Jan (2014). Randomized caches considered harmful in hard real-time systems. Leibniz
Transactions on Embedded Systems, 1 (1), 03–1.

[55] Reineke, Jan and Grund, Daniel and Berg, Christoph and Wilhelm, Reinhard (2007). Timing
predictability of cache replacement policies. Real-Time Syst., 37 (2), 99–122.

[56] Ruiz, José Antonio (2016). The ION processor. https://github.com/jaruiz/ION.

[57] Santinelli, Luca and Cucu-Grosjean, Liliana (2011). Toward probabilistic real-time calculus.
SIGBED Rev., 8 (1), 54–61.

[58] Schoeberl, Martin (2009). Time-predictable computer architecture. EURASIP J. Embedded
Syst., 2009, 2:1–2:17.

[59] Schoeberl, Martin (2009). Time-predictable computer architecture. EURASIP Journal on
Embedded Systems, 2009, 2.

[60] Schoeberl, Martin and Chong, David Vh and Puffitsch, Wolfgang and Sparsø, Jens (2014).
A time-predictable memory network-on-chip. 14th International Workshop on Worst-Case
Execution Time Analysis. 53.

[61] Schoeberl, Martin and Schleuniger, Pascal and Puffitsch, Wolfgang and Brandner, Florian
and Probst, Christian W and Karlsson, Sven and Thorn, Tommy (2011). Towards a time-
predictable dual-issue microprocessor: The patmos approach. Bringing Theory to Practice:
Predictability and Performance in Embedded Systems. vol. 18, 11–21.

[62] Serfozo, Richard (2009). Basics of applied stochastic processes. Springer.

[63] Thiele, Lothar and Wilhelm, Reinhard (2004). Design for timing predictability. Real-Time
Systems, 28 (2-3), 157–177.

[64] Topham, Nigel and González, Antonio (1999). Randomized cache placement for eliminating
conflicts. IEEE Trans. Comput., 48 (2), 185–192.

[65] Udipi, Aniruddha N and Muralimanohar, Naveen and Balasubramonian, Rajeev (2010). To-
wards scalable, energy-efficient, bus-based on-chip networks. High Performance Computer
Architecture (HPCA), 2010 IEEE 16th International Symposium on. IEEE, 1–12.

[66] Ungerer, Theo and Cazorla, Francisco and Casse, Hugues and Uhrig, Sascha and Guliashvili,
Irakli and Houston, Michael and Kluge, Floria and Metzlaff, Stefan and Mische, Jorg and
Sainrat, Pascal and others (2010). Merasa: Multicore execution of hard real-time applications
supporting analyzability. IEEE Micro, (5), 66–75.

[67] Whitham, Jack (2008). Real-time processor architectures for worst case execution time reduc-
tion. Thèse de doctorat, University of York.

[68] Wilhelm, R (2005). Determining bounds on execution times. handbook on embedded systems.

https://github.com/jaruiz/ION

68

[69] Wilhelm, Reinhard and Engblom, Jakob and Ermedahl, Andreas and Holsti, Niklas and
Thesing, Stephan and Whalley, David and Bernat, Guillem and Ferdinand, Christian and
Heckmann, Reinhold and Mitra, Tulika and others (2008). The worst-case execution-time
problem—overview of methods and survey of tools. ACM Transactions on Embedded Comput-
ing Systems (TECS), 7 (3), 36.

[70] R. Wilhelm and others (2008). The worst-case execution-time problem - overview of methods
and survey of tools. ACM Trans. Embed. Comput. Syst., 7 (3), 36:1–36:53.

[71] Wolf, Fabian and Kruse, Judita and Ernst, Rolf (2002). Timing and power measurement in
static software analysis. Microelectronics journal, 33 (1), 91–100.

[72] Zhou, Shuchang (2010). An efficient simulation algorithm for cache of random replacement
policy. C. Ding, Z. Shao et R. Zheng, éditeurs, Network and Parallel Computing. Springer
Berlin Heidelberg, vol. 6289 de Lecture Notes in Computer Science, 144–154.

69

APPENDIX A MARKOV MODEL FOR SPTA

The SPTA method used in this work is based on the Markov chains. This method is applied to
a set associative cache in which the analysis of each cache set can be performed separately as a
fully associative cache. The method uses a memory trace as the input, and computes a pWCET as
the output. This method is based on the system states, which are similar to other accurate SPTA
approaches [4, 33] for random caches.

A Markov chain is a random process that describes how a system undergoes transitions from one
state to another state. It poses a property that the probability distribution of the future state of a
system depends only on the current state, such a system forms a Markov chain. The current state
explains the status of the system, and the transition matrix describes how the system transits into
the future state. For a cache with evict-on-miss random replacement policy, every time a cache miss
occurs, a cache block is randomly selected and replaced with the new content of a memory. As a
result, there may be different data in the cache at different times, i.e. the memory contents of the
cache changes with time. To illustrate the status of the system, si is defined as the memory layout
of the cache and |si| is the number of elements in this state. In-order to show how to construct
states from a trace of memory access by a task. Consider an example with a task τ and a 2-way
cache. The memory accesses from τ are a, d, c, a, d. Then we can define the state space as s0 = ∅,
s1 = {a}, s2 = {d}, s3 = {c}, s4 = {a, d}, s5 = {a, c}, s6 = {d, c}. We can see that all memory
contents are included in the states, and |s0| = 0, |si| = 1 : i = 1, 2, 3, |si| = 2 : i = 4, 5, 6.

Each program step means as an access to a new memory address. Every time a memory address is
accessed, the system takes 1 time step and the system state may change. Each possible state of the
system, i.e. memory content, at a given step is associated with a probability.

The S is used to represent state occurrence probability vector:

S = [Pr(s0), P r(s1), · · ·], (A.1)

where Pr(si) is the probability of the state si. With m being the number of different memory
addresses in the program, and l being minimal value between cache associativity and m, the number
of states can be calculated as:

l∑
k=0

 m

k

 . (A.2)

The transition matrix P needs to define which describes how one state varies move from present

70

state to the next state. It is represented as:

P =


p0→0, p0→1, · · ·
p1→0, p1→1, · · ·

...
... . . .

 , (A.3)

where pi→j is the probability for the system to go from state si to state sj . In this method, pi→j
varies constantly, because it depends on the present system state and the memory accesses. At each
step, the system may access different memory addresses and its state may change. Consequently,
the transition probability pi→j may change and this is known as a non-homogeneous Markov chain
model.

Consider Sk and P k are the state probability vector and the transition matrix at step k, respectively,
then we have

Sk+1 = SkP k. (A.4)

We can see that the state of the system for next step only depends on current state and the transition
matrix.

	DEDICATION
	ACKNOWLEDGEMENT
	RÉSUMÉ
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	LIST OF APPENDIX
	1 INTRODUCTION
	1.1 Context and Motivation
	1.2 Objectives/Purpose of Study
	1.3 Problem Statement
	1.4 Novelty and Impact
	1.5 Research Contributions
	1.6 Thesis Layout

	2 TIMING ANALYSIS
	2.1 Deterministic Timing Analysis Techniques
	2.1.1 Static Techniques
	2.1.2 Measurement Techniques
	2.1.3 Comparison Between Static and Measurement Techniques

	2.2 Probabilistic Timing Analysis Techniques
	2.2.1 Measurement-Based Probabilistic Timing Analysis
	2.2.2 Extreme Value Theory for MBPTA
	2.2.3 Achieving Time Randomization
	2.2.4 Static Probabilistic Timing Analysis Technique
	2.2.5 Comparison Between Measurement and Static Probabilistic Timing Techniques

	3 TIME-PREDICTABLE ARCHITECTURES
	3.1 Time-Predictable Architecture
	3.1.1 Architectural Modifications

	3.2 Probabilistically Analyzable Single-core Architecture
	3.3 Probabilistic Multi-core Architecture
	3.4 Probabilistically Analyzable Real-time Systems
	3.4.1 Probabilistically Analyzable Cache
	3.4.2 Probabilistic Analyzable Bus

	3.5 Time-Predictable Real-time systems

	4 PROBABILISTICALLY ANALYZABLE CACHE ON FPGA
	4.1 Introduction
	4.2 Inspiration
	4.2.1 Cache Organization
	4.2.2 Cache Mapping Scheme
	4.2.3 Direct Mapped Cache
	4.2.4 Fully Associative Cache
	4.2.5 Set Associative Cache
	4.2.6 Comparison

	4.3 Randomized Cache
	4.4 Cache Model
	4.4.1 Instruction Cache Model
	4.4.2 Data Cache Model

	4.5 Hardware Implementation
	4.5.1 Cache RTL Model
	4.5.2 Random Number Generation
	4.5.3 Parametric Hash Function

	4.6 Experimental Results
	4.6.1 Achieving i.i.d Property

	5 CACHE DESIGN CONSIDERATIONS TO IMPROVE TIMING ANALYSIS BOUNDS
	5.1 Introduction
	5.2 WCET Estimation Techniques
	5.2.1 Cache Overview

	5.3 Timing Techniques
	5.3.1 Deterministic Timing Analysis
	5.3.2 Measurement-Based Probabilistic Timing Analysis
	5.3.3 Modelling EVT for WCET
	5.3.4 Steps in MBPTA
	5.3.5 Static Probabilistic Timing Analysis

	5.4 Prediction Evaluation Under Timing Techniques
	5.4.1 Cache Hardware Configuration

	5.5 Experimental Setup
	5.5.1 Cache Setup

	5.6 Experimental Evaluation
	5.6.1 Prediction Analysis under Associativity
	5.6.2 Prediction Analysis under Cache Size
	5.6.3 Prediction Analysis under Line Size

	6 DISCUSSION
	7 CONCLUSION
	REFERENCES
	APPENDIX

