

UNIVERSITÉ DE MONTRÉAL

COMPRESSIVE SENSING AND MULTICHANNEL SPIKE DETECTION FOR NEURO-

RECORDING SYSTEMS

NAN LI

DÉPARTEMENT DE GÉNIE ÉLECTRIQUE

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

THÈSE PRÉSENTÉE EN VUE DE L’OBTENTION

DU DIPLÔME DE PHILOSOPHIAE DOCTOR

(GÉNIE ÉLECTRIQUE)

AVRIL 2016

© Nan Li, 2016.

UNIVERSITÉ DE MONTRÉAL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

Cette thèse intitulée :

COMPRESSIVE SENSING AND MULTICHANNEL SPIKE DETECTION FOR NEURO-

RECORDING SYSTEMS

présentée par : LI Nan

en vue de l’obtention du diplôme de : Philosophiae Doctor

a été dûment acceptée par le jury d’examen constitué de :

M. DAVID Jean-Pierre, Ph.D., président

M. SAWAN Mohamad, Ph.D., membre et directeur de recherche

M. ZHU Guchuan, Doctorat, membre

M. BOUKADOUM Mounir, Ph.D., membre externe

iii

DEDICATION

To My Beloved Family and Friends

iv

ACKNOWLEDGEMENTS

First, I would like to thank my supervisor, Professor Mohamad Sawan for all his support,

encouragement and guidance during my Ph.D. research life in Polystim Neurotechnologies

Laboratory at Polytechnique Montreal.

I would also like to thank Hicham Semmaoui and Yushan Zheng for their suggestions at the early

stage of my Ph.D. research. Their resourceful experience helped me get rid of some unnecessary

detours in research.

Thanks are due to four intern students I guided, Rebai Hassen, Fatma Hawary, Ousamah Younoss

Soliman and Morgan Osborn, for their hard work to contribute to my research project.

I thank all staff members and colleagues of Polystim Neurotech Lab who helped me during

my stay in Polytechnique Montreal. Special thanks are due to the following people for their helps

and collaborations: Marie-Yannick Laplante, Rejean Lapage, Jean Bouchard, Arash Moradi, Sami

Hached, Zied Koubaa, Md Hasanuzzaman, Bahareh Ghane-Motlagh, Mohamed Zgaren, and

Ghazal Nabovati.

I am also grateful for the support from the Canada Research Chair in Smart Medical Devices, the

Natural Sciences and Engineering Research Council of Canada, CMC Microsystems and the

scholarship from China Scholarship Council.

Finally, I want to express the deepest gratitude to my family for their love and encouragements

during my study.

v

RÉSUMÉ

Les interfaces cerveau-machines (ICM) sont de plus en plus importantes dans la recherche

biomédicale et ses applications, tels que les tests et analyses médicaux en laboratoire, la

cérébrologie et le traitement des dysfonctions neuromusculaires. Les ICM en général et les

dispositifs d'enregistrement neuronaux, en particulier, dépendent fortement des méthodes de

traitement de signaux utilisées pour fournir aux utilisateurs des renseignements sur l’état de

diverses fonctions du cerveau. Les dispositifs d'enregistrement neuronaux courants intègrent de

nombreux canaux parallèles produisant ainsi une énorme quantité de données. Celles-ci sont

difficiles à transmettre, peuvent manquer une information précieuse des signaux enregistrés et

limitent la capacité de traitement sur puce. Une amélioration de fonctions de traitement du signal

est nécessaire pour s’assurer que les dispositifs d'enregistrements neuronaux peuvent faire face à

l'augmentation rapide des exigences de taille de données et de précision requise de traitement.

Cette thèse regroupe deux approches principales de traitement du signal - la compression et la

réduction de données - pour les dispositifs d'enregistrement neuronaux. Tout d'abord,

l’échantillonnage comprimé (AC) pour la compression du signal neuronal a été utilisé. Ceci

implique l’usage d’une matrice de mesure déterministe basée sur un partitionnement selon le

minimum de la distance Euclidienne ou celle de la distance de Manhattan (MDC). Nous avons

comprimé les signaux neuronaux clairsemmés (Sparse) et non-clairsemmés et les avons

reconstruit avec une marge d'erreur minimale en utilisant la matrice MDC construite plutôt.

La réduction de données provenant de signaux neuronaux requiert la détection et le classement de

potentiels d’actions (PA, ou spikes) lesquelles étaient réalisées en se servant de la méthode

d’appariement de formes (templates) avec l'inférence bayésienne (Bayesian inference based

template matching - BBTM). Par comparaison avec les méthodes fondées sur l'amplitude, sur le

niveau d’énergie ou sur l’appariement de formes, la BBTM a une haute précision de détection, en

particulier pour les signaux à faible rapport signal-bruit et peut séparer les potentiels d’actions

reçus à partir des différents neurones et qui chevauchent. Ainsi, la BBTM peut automatiquement

produire les appariements de formes nécessaires avec une complexité de calculs relativement

faible.

Enfin, nous avons complété la mise en œuvre d’un système numérique adaptatif de signaux

neuronaux en temps réel, regroupant un détecteur de PA et un compresseur de données basé sur

vi

la technique d’échantiollannage compressé. Nous avons validé les conceptions d’un seul canal et

des multicanaux. Comparé aux systèmes actuels d’enregistrement de signaux neuronaux, le

système proposé peut efficacement comprimer un grand nombre d’échantillons acquis et

reconstruire les signaux originaux avec une petite erreur; en outre, il présente une faible

consommation de puissance et possède une petite surface de silicium. Le prototype du système

est prometteur pour l'application dans une large gamme d'interfaces d'enregistrement neuronales.

vii

ABSTRACT

Brain-Machine Interfaces (BMIs) are increasingly important in biomedical research and health

care applications, such as medical laboratory tests and analyses, cerebrology, and complementary

treatment of neuromuscular disorders. BMIs, and neural recording devices in particular, rely

heavily on signal processing methods to provide users with information. Current neural recording

devices integrate many parallel channels, which produce a huge amount of data that is difficult to

transmit, cannot guarantee the quality of the recorded signals and may limit on-chip signal

processing capabilities. An improved signal processing system is needed to ensure that neural

recording devices can cope with rapidly increasing data size and accuracy requirements.

This thesis focused on two signal processing approaches – signal compression and reduction – for

neural recording devices. First, compressed sensing (CS) was employed for neural signal

compression, using a minimum Euclidean or Manhattan distance cluster-based (MDC)

deterministic sensing matrix. Sparse and non-sparse neural signals were substantially compressed

and later reconstructed with minimal error using the built MDC matrix. Neural signal reduction

required spike detection and sorting, which was conducted using a Bayesian inference-based

template matching (BBTM) method. Compared with amplitude-based, energy-based, and some

other template matching methods, BBTM has high detection accuracy, especially for low signal-

to-noise ratio signals, and can separate overlapping spikes acquired from different neurons. In

addition, BBTM can automatically generate the needed templates with relatively low system

complexity. Finally, a digital online adaptive neural signal processing system, including spike

detector and CS-based compressor, was designed. Both single and multi-channel solutions were

implemented and evaluated. Compared with the signal processing systems in current use, the

proposed signal processing system can efficiently compress a large number of sampled data and

recover original signals with a small reconstruction error; also it has low power consumption and

a small silicon area. The completed prototype shows considerable promise for application in a

wide range of neural recording interfaces.

viii

TABLE OF CONTENTS

DEDICATION .. III

ACKNOWLEDGEMENTS .. IV

RÉSUMÉ .. V

ABSTRACT ... VII

TABLE OF CONTENTS ... VIII

LIST OF TABLES ... XII

LIST OF FIGURES .. XIII

LIST OF ABBREVIATIONS ... XVIII

LIST OF APPENDICES .. XXI

CHAPTER 1 INTRODUCTION ... 1

1.1 Research Motivation ... 1

1.2 Objectives ... 2

1.3 Contributions .. 3

1.4 Thesis Organization .. 5

CHAPTER 2 STATE OF THE ART OF NEURAL RECORDING INTERFACES AND

NEURAL SIGNAL PROCESSING TECHNIQUES ... 6

2.1 Brain-Machine Interfaces.. 6

2.2 Neural Recording Devices .. 8

2.3 Neural Signal Processing .. 19

2.3.1 Spike Detection and Sorting .. 20

2.3.2 Signal Compression with CS Technique ... 30

2.4 General Discussion of the Literature Review ... 38

2.4.1 Neural Signal Processing Strategies .. 38

ix

2.4.2 Discussion of Sensing Matrices ... 39

2.4.3 Discussion of Neural Signal Processing Systems .. 42

2.4.4 Discussion of Spike Detection Methods .. 43

CHAPTER 3 ARTICLE 1 : NEURAL SIGNAL COMPRESSION USING A MINIMUM

EUCLIDEAN OR MANHATTAN DISTANCE CLUSTER-BASED DETERMINISTIC

COMPRESSED SENSING MATRIX .. 47

3.1 Introduction ... 49

3.1.1 Sparse Signal .. 50

3.1.2 Signal Reconstruction .. 50

3.1.3 Sensing Matrix ... 50

3.2 Minimum Euclidean or Manhattan Distance Cluster-Based Deterministic Sensing Matrix

 .. 52

3.3 Actual Data and Methods.. 62

3.4 Results and Discussion ... 63

3.4.1 Compression Rate of the Neural Signal ... 63

3.4.2 RIP of the UMDC Matrix .. 65

3.4.3 Research on the Signal Reconstruction .. 68

3.4.4 Other Comparisons .. 75

3.5 Conclusions ... 75

CHAPTER 4 ARTICLE 2 : AN EFFICIENT REAL-TIME NEURAL SPIKE DETECTION

METHOD BASED ON BAYESIAN INFERENCE WITH AUTOMATIC TEMPLATES

GENERATION ... 78

4.1 Introduction ... 79

4.2 Methods .. 82

4.2.1 Models for Spike Generation ... 82

x

4.2.2 Bayesian Inference Analysis .. 83

4.2.3 Spike Detection Based on Template Matching .. 84

4.2.4 Bayesian Inference-based Template Matching (BBTM) Method 85

4.3 Test Dataset ... 87

4.4 Results and Discussion ... 89

4.4.1 Spike Detection with Known Templates ... 89

4.4.2 Spike Detection with Unknown Templates ... 91

4.4.3 Spike Clustering and Threshold Control Parameter .. 94

4.4.4 Other Important Results and Discussions .. 96

4.5 Conclusions ... 100

CHAPTER 5 ARTICLE 3 : A DIGITAL MULTICHANNEL NEURAL SIGNAL

PROCESSING SYSTEM USING COMPRESSED SENSING ... 102

5.1 Introduction ... 103

5.1.1 Introduction of the CS Technique .. 104

5.1.2 Contribution of This Article... 107

5.1.3 Structure of the Article... 108

5.2 The Construction of the MDC Matrix .. 108

5.3 Materials and Methods .. 111

5.4 Circuit Design and Implementation .. 113

5.4.1 Single-channel Digital Data Compression System .. 113

5.4.2 Spike Detection Block ... 113

5.4.3 Data Compression Block ... 114

5.4.4 Multichannel Signal Processing ... 117

5.5 Results and Discussion ... 119

5.5.1 Single-channel Data Compression System .. 119

xi

5.5.2 Multichannel Signal Compression System .. 120

5.5.3 The Reconstruction under Multichannel Operation ... 124

5.5.4 Other Important Results ... 128

5.6 Conclusions ... 131

CHAPTER 6 GENERAL DISCUSSION ... 132

CHAPTER 7 CONCLUSION AND RECOMMENDATIONS .. 137

7.1 Conclusion .. 137

7.2 Recommendation for Future Work ... 138

REFERENCES .. 140

APPENDIX ... 156

xii

LIST OF TABLES

Table 2.1: Performance comparison of five typical state-of-the art neural recording systems 12

Table 2.2: Comparison among different neural recording systems ... 14

Table 2.3: Comparison between random and deterministic sensing matrices 40

Table 2.4: The signal compression performance of some compressed sensing matrices 41

Table 2.5: Comparison of several signal processing systems for neural recording devices 43

Table 2.6: Comparison among amplitude-based, energy-based and template matching-based spike

detection ... 44

Table 2.7: Comparison of several template matching-based spike detection systems 45

Table 3.1: Symbols and variables .. 53

Table 3.2: Core data clustering algorithm .. 66

Table 3.3: Comparison between the MDC matrix and the other matrices 76

Table 4.1: Comparison between the proposed BBTM method and other similar works 100

Table 5.1: Detection code of the spike detector ... 115

Table 5.2: Comparison of proposed MDC-based digital neural signal processing system with

similar existing systems ... 129

Table 6.1: Discussion of contribution of our work comparing with the state-of-the-arts works

 .. 133

xiii

LIST OF FIGURES

Figure 2-1: A multichannel neural recording system (Polystim) [34] ... 8

Figure 2-2: A typical neural recording BMI [35] ... 9

Figure 2-3: The chopped logarithmic programmable gain amplifier [36] 9

Figure 2-4: OTA-C continuous-time delay-filters, (a) the IFLF filter, (b) the cascaded filter [37]

 .. 10

Figure 2-5: (a) Chip photograph of the proposed nonlinear ADC, (b) power consumption of the

chip versus sampling rate (bottom) and spike rate at 200 kS/s (top) [42] 10

Figure 2-6: Block diagram of the proposed combined transceivers [45] 11

Figure 2-7: Diagram of physiological measurement .. 19

Figure 2-8: Recorded signals from an adult male rhesus macaque monkey 21

Figure 2-9: Comparison of four digital estimators, (a) RMS estimator, (b) MAD estimator, (c)

Cap fitting estimator, (d) MMS estimator [96] .. 23

Figure 2-10: An analog self-timing static detector [101] ... 23

Figure 2-11: Digital mMMS estimator [102] ... 24

Figure 2-12: Block diagram of STEO-based spike detection with adaptive threshold [90] 25

Figure 2-13: Diagram of neural spikes sorting system using TEO spikes detection method [105]

 .. 25

Figure 2-14: Building blocks synthesizing the TEO-based preprocessor, (a) subthreshold OTA

with source degeneration and bump linearization devices, (b) top-level diagram of the TEO

preprocessor, (c) the differentiator circuit, (d) four-quadrant analog multiplier [106] 26

Figure 2-15: An automatic template matching spike detection method, (a) the proposed template

matching spike detection method [112], (b) the Osort algorithm [116] 28

Figure 2-16: The spike sorting used to obtain single-unit activity [88] ... 29

Figure 2-17: Block diagram of an integrated neural recording system with spike sorting [59] 30

Figure 2-18: Diagram of CS sampling framework [134] ... 31

xiv

Figure 2-19: Block diagram of (a) the analog single-channel CS, (b) the digital single-channel

CS [138] ... 31

Figure 2-20: Block diagram of the random modulator [149] ... 34

Figure 2-21: Block diagram of random demodulator pre-integrator (RMPI) [148] 35

Figure 2-22: Block diagram of SRMPI [148] .. 35

Figure 2-23: Block diagram of CS encoder [134] .. 36

Figure 2-24: Block diagram of the measurement matrix generation block [134] 36

Figure 2-25: Proposed data dictionary based CS system [156] ... 37

Figure 2-26: Proposed CS digital circuit [64] .. 37

Figure 3-1: Comparison between sparsity and similarity. In the simulation, for the core data

clustering method, the inner MD is the maximum Manhattan distance between each point to

the core data. For the hierarchical clustering, the inner MD is the inconsistency of each

cluster (point) under the Euclidean distance. For a signal, 0-MD is the Manhattan distance

between a point and the zero. ... 65

Figure 3-2: Relationship between CEER and R(K, M, N). The length of the data is 1000; they are

randomly picked from five groups of data, and the process is repeated 100 times. CEER is

the compression error of expected measurement. .. 67

Figure 3-3: Relationship between the CER and δ(S) , R(S). Here, N = 1800 and M = 180. δ(S) is

the Standard deviation of the size of all of the clusters in a cluster set, and R(K, M, N) = (k -

M) / N ... 67

Figure 3-4: Signal reconstruction comparison with the BSBL algorithm: (a) D(K) = 0, (b) D(K) =

0.5 ... 69

Figure 3-5: Signal reconstruction comparison with the BP algorithm: (a) D(K) = 0, (b) D(K) = 0.5

 .. 70

Figure 3-6: Signal reconstruction comparison with the OMP algorithm: (a) D(K) = 0, (b) D(K) =

0.5 ... 71

xv

Figure 3-7: Reconstruction comparison between core data clustering and agglomerative

hierarchical clustering with different reconstruction algorithms: (a) block bayesian learning

algorithm, (b) basis pursuit algorithm, (c) iterative reweighted least square algorithm, (d)

matching pursuit algorithm, (e) iterative threshold-selective projection algorithm, (f)

orthogonal matching pursuit algorithm, (g) least absolute shrinkage and selection operator

algorithm .. 72

Figure 3-8: Comparison among the data with different length, N = 50 ... 73

Figure 3-9: Comparison between normalized MDC and unit MDC matrices 73

Figure 3-10: Comparison of the reconstruction results among sampling rate, compression rate and

reconstruction error under three reconstruction algorithms: (a) BSBL algorithm, (b) BP

algorithm, (c) OMP algorithm .. 74

Figure 3-11: Comparison of the reconstruction results of a 600-point non-sparse neural signal

using the UMDC matrix under different CRs, and the reconstruction algorithm is the basis

pursuit algorithm: (a) original signal, (b)-(e) are reconstruction results with different CR and

(b) CR = 90%, (c) CR = 96%, (d) CR = 98%, (e) CR = 99% .. 77

Figure 4-1: Block diagram of proposed methods (a) BBTM method (b) Osort algorithm 86

Figure 4-2: Comparison between BBTM and MAD, MMS, RMS, S_STEO and STEO methods

with firing rate equaling 10, (a) SNR = 3, (b) SNR = 4, (c) SNR = 5, and (d) SNR = 6 90

Figure 4-3: Comparison between BBTM and MAD, MMS, RMS S_STEO and STEO methods

with firing rate equaling 100, (a) SNR = 3, (b) SNR = 4, (c) SNR = 5, and (d) SNR = 6 91

Figure 4-4: BBTM spike detection using MMS to generate spike templates with firing rate

equaling 10, (a) SNR = 3, (b) SNR = 4, (c) SNR = 5, (d) SNR = 6 92

Figure 4-5: BBTM spike detection using MMS to generate spike templates when firing rate

equals 100, (a) SNR = 3, (b) SNR = 4, (c) SNR = 5, and (d) SNR = 6 93

Figure 4-6: BBTM spike detection using STEO to generate spike templates with firing rate

equaling 10, (a) SNR = 3, (b) SNR = 4, (c) SNR = 5, and (d) SNR = 6 94

Figure 4-7: BBTM spike detection using STEO to generate spike templates with firing rate

equaling 100, (a) SNR = 3, (b) SNR = 4, (c) SNR = 5, (d) SNR = 6 95

xvi

Figure 4-8: BBTM spike clustering with MMS-based and STEO-based spike generation methods,

(a) SNR = 3, (b) SNR = 4, (c) SNR = 5, (d) SNR = 6 ... 95

Figure 4-9: Research of the threshold control parameters, (a) firing rate is 10 with known

templates, (b) firing rate is 100 with known templates, (c) firing rate is 10 with MMS

template generation method when P equals 4, (d) firing rate is 100 with MMS template

generation method when P equals 4, (e) firing rate is 10 with MMS template generation

method when P equals 5, (f) firing rate is 100 with MMS template generation method when

P equals 5 ... 97

Figure 4-10: The results of the generation of the spike templates, (a)-(c) comparison between

original and generated templates with signals SNR equaling 3, (d)-(f) comparison between

original and generated templates with signals SNR equaling 6. The red color line is the

generated spike templates and the green line is the original spike templates. 98

Figure 4-11: The detection results for the signal with SNR equaling 3, (a) original signals, (b) the

spikes in the signal, (c) the detected spikes .. 99

Figure 4-12: The comparison between the classified spikes and the original signals for the signal

with the SNR equaling 3 for three neurons .. 99

Figure 5-1: Simplified diagram of a typical wireless neural monitoring system 105

Figure 5-2: Framework of the compressed sensing technique .. 107

Figure 5-3: Diagram of the circuit design using the CS technique: (a) analog design, (b) digital

design, (c) proposed digital circuit design using the MDC matrix 110

Figure 5-4: Diagram of the design of digital single-channel circuit .. 114

Figure 5-5: Diagram of the spike detection block .. 115

Figure 5-6: Design of the data compression block: (a) core data clustering algorithm [224], (b)

behavior diagram of the core data clustering algorithm, (c) diagram of the digital circuit of

the core data clustering algorithm .. 116

Figure 5-7: Diagram of the multichannel system .. 118

xvii

Figure 5-8: Relation between the distance and reconstruction error, compression rate: (a) relation

between the distance and the reconstruction error using BP and Lasso algorithms, (b)

relation between the distance and the compression rate .. 120

Figure 5-9: Relationship between the compression rate and the reconstruction error for the

multichannel using: (a) BP algorithm, (b) Lasso algorithm ... 122

Figure 5-10: Relation among channel-to-scan, SNR and reconstruction error rate for the

multichannel processing using: (a) compression rate = 0.5, (b) compression rate = 0.9 123

Figure 5-11: Relation between the scan rate and the power consumption 123

Figure 5-12: The comparison between original signals and their reconstructed signals under

different ChS: (a) ChS = 1, (b) ChS = 2, (c) ChS = 4, (d) ChS = 8 125

Figure 5-13: An example of the original signals and their reconstructed signals from 16 channels:

(a) channels 1-4, (b) channels 5-8, (c) channels 9-12, (d) channels 13-16 127

Figure 5-14: The output of the digital circuit: (a) format of the outputs, (b) timing diagram of the

FO and SO, (c) timing diagram of the CO ... 128

Figure 5-15: Post-layout of the proposed 256-channel digital neural signal processing system . 129

Figure 5-16: The FPGA-based simulation: (a) the picture of the FPGA-based test system, (b) FO

from the FPGA board, (c) SO from the FPGA board, (d) CO from the FPGA board 130

xviii

LIST OF ABBREVIATIONS

ADC Analog-to-Digital convertor

AFPR Average false positive rate

AP Action potential

ASP Analog signal processing

ATPR Average true positive rate

BBTM Bayesian inference based template matching

BCH Bose-Chaudhuri-Hocquenghem

BMI Brain machines interface

BP Basis pursuit

BSBL Block sparse Bayesian learning algorithm

CEER Compression error of the expected measurement

CER Compression error

ChS Channel-to-scan parameter

CMOS Complementary metal-oxide semiconductor

CS Compressed sensing

CR Compression rate

CRIP Cluster restricted isometry property

DD Discrete derivatives

DFT Discrete Fourier transmission

DSP Digital signal processing

EC-PC Exponential component–polynomial component

ECG Electrocardiography

ECoG Electrocorticography

EEG Electroencephalography

FM Frequency modulating

fMRI Functional magnetic resonance imaging

FPGA Field programmable gate array

xix

FPR False positive rate

FSDE First and second derivative extrema

FSK Frequency shift keying

GLRTs Generalized likelihood ratio test detection

IRLS Iterative reweighted least square algorithm

Lasso Least absolute shrinkage and selection operator

LDPC Low-density parity-check

LRT Likelihood ratio test detection

MAD Median absolute deviation

MD Maximum distance

MDC Minimum Euclidean or Manhattan distance cluster-based deterministic

MEG Magnetoencephalography

MMS Maximum minimum spread sorting

mMMS Modified maximum and minimum spread estimation method

MP Matching pursuit

NEO Nonlinear energy operator

NIRS Near infrared spectroscopy

NMDC Normalized MDC

OMP Orthogonal matching pursuit algorithm

OTA Operational transconductance amplifier

PRBS Pseudo-random bit sequence

RER Reconstruction error

RF Radio frequency

RIP Restricted isometry property

RMS Root mean square method

SAR Successive approximation register

SD Standard deviation

SNR Signal-to-noise ratio

xx

SPI Standard series peripheral interface

SR Scan rate

STEO Modified smooth teager energy operator

StOMP Stagewise orthogonal matching pursuit algorithm

SWT Stationary wavelet transform

S_STEO Standard smooth teager energy operator

TCP Threshold control parameter

TEO Teager energy operator

TDM-FM Time-division-multiplexing, frequency-modulating

TPR True positive rate

UMDC Unit MDC

USB Universal serial bus

UWB Ultra-wideband

VCD Value change dump

VHDL VHSIC (very-high-speed integrated circuits) hardware description language

xxi

LIST OF APPENDICES

Appendix A – Complementary background on compressed sensing theory…………………156

Appendix B – Implementation of the front-end circuit……………………………………….159

Appendix C – Implementation of the digital signal processing system………………………164

1

CHAPTER 1 INTRODUCTION

1.1 Research Motivation

Brain-machine interfaces (BMIs) have been the subject of a large amount of neuroscientific

research since the 1970s [1]. According to the ways of the recording or manipulation, BMIs can

be divided into Electroencephalography (EEG), Magnetoencephalography (MEG),

Electrocorticography (ECoG), neural recording, Functional magnetic resonance imaging (fMRI),

Near infrared spectroscopy (NIRS), etc. Implantable neural recording devices are an important

category of the BMIs, which allow researchers to directly acquire signals from single and

multiple neuron(s).

Due to the growing sophistication and data collection capacity of neuroscientific research and

applications, BMIs need to integrate many functions and process increasingly large amounts of

data, which causes that the signal processing becomes an indispensable part. For example, the

analysis of EEG signals and fMRI requires feature extraction and classification methods [1] [2];

independent component analysis is used for analysis of MEG signals [3]; Kernel-based learning

methods are used to analyse ECoG signals [4]. Designing a real-time adaptive BMI has become a

hot topic [5] [6] [7].

Implantable neural recording devices are an important category of BMIs: they allow researchers

to directly acquire signals from single and multiple neuron(s). However, an implantable real-time

adaptive neural recording device faces many challenges. First of all, it must integrate an ever-

increasing number of channels to improve recording performance. The multichannel neural

recording system must provide information about neurons at multiple sites and also about the

relationship between these neuronal sites. More channels means a huge amount of data must be

collected, which presents difficulties in storing, processing and transmitting data to a base station.

Also, an implantable device has some challenging design limitations: its surface area should be

tiny; it should maintain low temperature in order to protect tissue from heat injury; and it should

have low power consumption to permit a long lifetime.

Achieving the fast and accurate neural signal processing needed by an implantable real-time

adaptive neural recording device is a similarly challenging goal. Current neural signal processing

methods can be divided into two principal strategies: signal reduction and compression. Spike

2

detection and sorting are popular signal reduction methods, but despite considerable research,

several difficulties remain to be overcome. The first major problem is detection accuracy. The

spike detection block should correctly detect all of the spikes while removing the noise, and the

detection system should have low complexity to ease its implementation. Furthermore, the spike

processing system should separate the overlapping spikes that originate from different neurons.

Signal compression can keep the original signal to the maximum possible extent while reducing

the burden of the transmission, and therefore it has aroused much interest among designers of

neural recording devices [8] [9] [10]. A new signal compression technique called compressed

sensing (CS) for use in processing recorded signals has been discussed [11] [12]; however, the

neural signal is usually not sparse in the time domain, so the application of the CS technique for

neural signals needs further research. Moreover, compressing neural signals requires

development of a dedicated sensing matrix with a high compression rate and a low

reconstruction error.

Finally, signal processing algorithms should be applied carefully for the circuit design. To date,

designers have focused on the design of the front-end circuit and transmitter, but the need to

design and develop a high-efficiency, low-cost signal processing system is becoming more and

more pressing. The two principal difficulties hindering the development of such a system are the

lack of a suitably high-performance and low-complexity signal processing technique, and the

non-existence of a circuit design with sufficiently low power consumption.

1.2 Objectives

The main objective of this research was to study new approaches, both in theory and

implementation, for spike detection (sorting) and signal compression in a neural recording device.

The specific objectives were as follows:

 to develop a sensing matrix for the compression of neural signals using the CS technique;

 to understand the process of reconstruction of the original neural signals and determine the

influence of parameters such as the sampling rate and length of the signal;

 to evaluate the high-efficiency spike detection method, including high-accuracy detection

and classification of the spikes;

3

 to design a digital neural signal processing system that includes spike detection and signal

compression, and to test and verify the proposed system.

1.3 Contributions

The contributions of this thesis and our research are summarized as follows:

 New methods about the compression of sparse and non-sparse neural signals with CS

technique. A minimum Euclidean or Manhattan distance cluster-based deterministic

compressed (MDC) sensing matrix was proposed to compress the neural signal. The MDC

can compress sparse and non-sparse signals using the similarity, which is appropriate for the

compression of neural signals in the time domain. We also give the mathematic proof of the

MDC matrix for compression. Furthermore, the results of our research into other

compression methods based on CS technique are outlined.

 New knowledge about the reconstruction of original neural signals with different

reconstruction methods. We found that the unit MDC matrix that is composed of zero and

one can be used for the compression of neural signals, which has low complexity suitable for

the design of the compression system in neural recording devices. The factors that influence

the MDC matrix, such as the length of signals, sampling rate, are identified and discussed.

The above contributions are detailed in the following published articles:

N. Li and M. Sawan, "Neural signal compression using a minimum Euclidean or Manhattan

distance cluster-based deterministic compressed sensing matrix," Biomedical Signal Processing

and Control, vol. 19, pp. 44-55, 2015.

H. Semmaoui, N. Li, S. Khayat-Hosseini, J. Martinez-Trujillo, and M. Sawan, "An adaptive

recovery method in compressed sensing of extracellular neural recording," Journal of Neurology

and Neuroscience, vol. 6(19), pp.1-11, 2015.

 A spike detection and sorting method with a high detection and classification accuracy was

proposed; it is based on Bayesian inference-based template matching. Using this system,

spikes can be detected with high accuracy, especially for a low signal-to-noise ratio (SNR).

Also, the overlapping spikes can be separated and classified. Furthermore, the system can

4

automatically generate the templates. Finally, the proposed system has a simple structure

which can be used for circuit implementation.

 An amplitude-based thresholding method of spike detection, called modified Maximum and

Minimum Spread (mMMS) Estimation Method, was tested. Compared with the original

MMS method, mMMS has low power consumption and good detection accuracy for high

SNR.

The above contributions are reported in the following articles:

N. Li, H. Semmaoui, and M. Sawan, "Modified Maximum and Minimum Spread estimation

method for detection of neural spikes," Proceedings, 2013 IEEE International Conference on

Electronics, Circuits, and Systems, pp. 530-533.

N. Li, L. Fang and M. Sawan, "An efficient real-time neural spike detection method based on

Bayesian inference with automatic template generation" (under review).

 The design of a neural signal processing system, including spike detection and signal

compression, is presented. The design is divided into single-channel and multichannel

systems. Based on the single-channel system, the signal processing for a 256-channel

multichannel system is discussed. The implemented digital circuit is tested and verified by

simulation software and the field-programmable gate array (FPGA) testing board. The

proposed system has good processing performance and relatively low power consumption

and a small silicon area, which can be used in the neural recording interfaces.

The details of this contribution can be found in the following articles:

N. Li, M. Osborn, G. Wang and M. Sawan, "A Digital multichannel neural signal processing

system using compressed sensing technique" Accepted for publication by Elsevier Digital Signal

Processing.

N. Li and M. Sawan, "High compression rate and efficient spikes detection system using

compressed sensing technique for neural signal processing," Proceedings, 7th International

IEEE/EMBS Conference on Neural Engineering, 2015, pp. 597-600.

N. Li, M. Osborn, L. Fang and M. Sawan, "Using Template Matching and Compressed Sensing

Techniques to Enhance Performance of Spike Detection and Data Compression Systems"

Accepted by 2016 IEEE International Symposium on Circuits and Systems.

5

1.4 Thesis Organization

This thesis is written in a paper-based format.

Chapter 2 contains a review of BMIs, neural recording systems and neural signal processing.

First, it describes BMIs and their uses, and introduces several signal acquisition techniques of

BMIs. Neural recording systems are specifically highlighted, and several systems and processing

techniques are compared. All the significant related work in neural recording and signal

processing techniques is reviewed. This chapter is one part of a review paper being prepared for

submission to a high-ranking circuits and systems journal.

A neural signal compression system based on the CS technique is discussed in chapter 3, where a

sensing matrix, called a minimum Euclidean or MDC sensing matrix, is introduced. This chapter

explores several key points relating to this sensing matrix and proves that the proposed sensing

matrix can be used for neural signal compression. This chapter is published in Biomedical Signal

Processing and Control (vol. 19, pp. 44-55, 2015).

In Chapter 4, we propose an automatic template generation system using a Bayesian inference-

based template matching method for spike detection and classification. This system accurately

detects spikes and classifies spikes. The chapter describes the system and its detection and

classification accuracy.

A digital online adaptive neural signal processing system, including spike detection and

compression, is implemented in chapter 5. The single-channel processing system includes a spike

detection block using the RMS method and a compression block using the MDC matrix. Based

on the single-channel design, we investigate the signal processing of a multichannel system and

present our results. Finally, the system is verified with an FPGA testing board. This chapter will

be published in Elsevier Digital Signal Processing.

Chapter 6 contains the general discussion for the thesis, and our conclusions, along with

recommendations for future work, are presented in chapter 7.

6

CHAPTER 2 STATE OF THE ART OF NEURAL RECORDING

INTERFACES AND NEURAL SIGNAL PROCESSING TECHNIQUES

In this chapter, we begin with a discussion on BMIs, then review neural recording devices.

Finally, we review neural signal processing methods, including spike detection and the CS

technique for signal compression.

2.1 Brain-Machine Interfaces

Biomedical signals are important information in research on the human physiological processes.

Human bodies are made up of many systems, and each system is comprised of several

subsystems that carry on numerous physiological processes. These processes are complex

phenomena, and their nature and activities can be reflected by various biomedical signals. These

signals can be biochemical (in the form of hormones and neurotransmitters), bioelectrical (in the

form of action potentials), or physical (in the form of pressure or temperature) [13].

A BMI is a system which enables the acquisition of information about cerebral activity and also

permits the brain to control computers or other devices. The human body can interact with the

control signals that are generated by such a system. BMIs can improve the quality of life and

reduce the cost of daily care for people with restricted mobility and physical disabilities, through

linking to external devices such as computers and assistive appliances which respond to patients’

requirements.

The function of a typical BMI contains five consecutive stages: signal capture, preprocessing of

the signal, signal processing, transmission or stimulation, and results analysis or evaluation. The

signal capture stage collects biomedical signals. The preprocessing stage prepares signals to be

more recognizable in order to deal with them most effectively in the following step. The signal

processing stage satisfies the BMI user’s specific requirements with respect to the calculation of

the acquired signals, such as feature extraction or spike classification. The transmission or

stimulation stage either transmits the acquired signals or stimulates organs or tissues. The final

step is the analysis of the acquired signals or the evaluation of the stimulation performance.

Two main categories of the neural signals in the brain can be monitored. One is

electrophysiological activity, and the other is hemodynamic activity [14]. Currently, most BMI

7

devices use electrophysiological activity to acquire information from the brain. This can be done

through two approaches: noninvasive methods and invasive methods. The noninvasive method

does not involve surgery being performed on a patient to acquire the signals, so it has minimum

risk, considerable convenience for research, and makes recruiting participants much easier [15].

The invasive approach requires implantation of the device into a living body, so most invasive

BMIs have been tested only in experimental animals [16]. Five approaches to communicating

with the human brain – some invasive, some non-invasive –are introduced below.

Magnetoencephalography (MEG) is a noninvasive method that records the brain’s magnetic

activity by means of magnetic induction. MEG has the advantage that magnetic fields are rarely

distorted by the skull and scalp, unlike electric fields [17]. A disadvantage of this method is the

size and the high price of the acquisition [14]. In addition, the accuracy and flexibility of the

MEG still needs to be improved [18] [19].

Electroencephalography (EEG) is a noninvasive method which measures the voltage fluctuations

in brain activity caused by the flow of electric current due to the synaptic excitations of the

dendrites of the neurons. EEG data collection occurs through electrodes placed on the scalp.

Because of its simplicity, it is the most widespread neuronal recording method and has many

applications; for example, it can be used to monitor epilepsy [20] [21].

Electrocorticography (ECoG) is an invasive method in which electrodes are placed directly on

the surface of the brain to record the electrical activity in the region of the cerebral cortex.

Compared with EEG, ECoG has good recording resolution, because it bypasses the signal-

distorting skull and intermediate tissue; thus it is suitable for the study of activity such as blinks

and eye movement [22] [23].

Functional Magnetic Resonance Imaging (fMRI) is a noninvasive method; it uses the

electromagnetic fields to detect changes in cerebral blood flow and oxygenation levels during

neural activity. fMRI is often used for blood-oxygen-level dependent contrast imaging [24], but

is also used in research and treatment monitoring applications for conditions such as epilepsy and

language processing deficiencies [25] [26] [27] [28].

Compared with the four signal recording methods described above, a neural recording system

has great promise for advancing the understanding of brain function by allowing scientists to

directly observe and analyze neural activity during normal animal behavior [29]. A neural

8

recording techniques can be divided into single-electrode and multi-electrode recording methods.

Single-electrode neural recording was popular until the 1960s [30] [31]. A recording from a

single electrode can reveal the characteristics of one or a few cell(s), but it cannot give

information about how neurons networks work together to process information, which requires

the use of arrays of microelectrodes to study temporal and spatial relationships between groups

of neurons [32]. Therefore, single-electrode recording was eventually replaced by multi-

electrode recording.

The first multi-electrode system was proposed by Marg and Adams in 1967 [33]. Since then,

multi-electrode or multichannel systems have become mainstream in the neural recording field.

Multichannel neural recording reveals the importance of observing the activity and interaction of

many neurons simultaneously [32]. Figure 2.1 shows a typical system used to monitor and record

neural signals [34]. This system includes the recording electrodes (or probes), the inner and

external signal processing circuits and systems, and the wireless transceiver.

Figure 2.1 A multichannel neural recording system (Polystim) [34]

2.2 Neural Recording Devices

A typical implantable multichannel neural recording BMI contains three key parts: the front end,

the signal processor and the signal transmission circuits. Figure 2.2 shows a typical neural

recording BMI [35]. In this system, it can be seen clearly that this BMI contains a mixed-signal

data acquisition part (front-end part), a spike detector (signal processing part) and the serial bus

interface (signal transmission part). Signals are amplified and sampled in the mixed-signal data

acquisition part. Then the system detects the neural spikes in the digital part. Finally, the

9

digitized data points are transmitted through the serial bus interface.

Figure 2.2 A typical neural recording BMI [35]

Generally speaking, the front-end circuit contains two parts: a signal preprocessor and an analog-

to-digital converter (ADC). The signal preprocessor includes a signal amplifier and a filter. For

example, Figure 2.3 shows a high-pass amplifier that provides a fixed gain of 50 dB and cut-off

for all EEG signals with frequencies lower than 0.1 Hz, and power consumption of 99 μW [36].

Figure 2.4 shows a continuous-time OTA-capacitor (OTA-C) filter featuring 9th-order equiripple

transfer functions with a constant group delay; the power consumption of this filter is only 360

nW [37]. Recent research, [38] introduced an 800 nW 43 nV/pHz neural recording amplifier

using 0.18 μm CMOS technology with an area of 0.05 mm2. Many recent articles concern the

design of low-power high-performance amplifiers and filters [39] [40] [41].

Figure 2.3 The chopped logarithmic programmable gain amplifier [36]

An ADC is needed for digitalized calculation and transmission. Figure 2.5 shows a nonlinear

signal-specific ADC. Its sampling rate is 25 kS/s and its power consumption is only 87.2 μW

10

[42]. Other recent research outputs, [43] [44] contain details of the design of a high-performance

ADC.

Figure 2.4 OTA-C continuous-time delay-filters, (a) the IFLF filter, (b) the cascaded filter [37]

Figure 2.5 (a) Chip photograph of the proposed nonlinear ADC, (b) power consumption of the

chip versus sampling rate (bottom) and spike rate at 200 kS/s (top) [42]

The second necessary component of an implantable neural recording BMI is the transceiver, and

example of which is shown in Figure 2.6 [45]. This transmitter has a 1 GHz frequency band and

a 20 Mb/s transmission rate. The power consumption of this transmitter is only 4.8 μW with a

11

0.9 V power supply. More information about the design of transceivers can be found from

references [46] [47] [48].

Figure 2.6 Block diagram of the proposed combined transceivers [45]

Thirdly, in a neural recording BMI, the signal processor is a very important part. It enables spike

detection [29], feature extraction [49], and data compression [10] [50]. Spikes in brain activity

can be used to study epilepsy [21] [51] ; in a typical epilepsy system, spikes detection is the first

step in feature extraction [52]. In addition, spike detection can be used to study the activity of the

neurons of the prefrontal cortex [53] [54] [55] [56]. Currently, most existing neural recording or

stimulation systems integrate a spike detection function [57].

Although the literature on this topic is large, we focused on a comparison of the most recently

published neural recording systems, which are not merely front-end but include detection,

compression and transceiver circuits, or all of these. We describe five typical state-of-the-art

neural recording systems in Table 2.1, and compare other systems outlined in articles published

from 2007 to 2015 in Table 2.2. One system introduced in reference [58] is based on the analog-

spike detector, and reference [59] introduces a system that uses only digital methods for signal

processing. Two neural recording systems in references [54] and [60] use analog and digital

methods to reduce or compress signals. The system described in [47] does not include signal

processing.

12

Table 2.1 Performance comparison of five typical state-of-the art neural recording systems

Reference [47] [54] [58] [59] [60]

Electrodes 10 1 100 128 64

Amplifier
Folded
cascode

OTA

Low-noise
programmable

gain OTA

Two-stage
OTAs OTAs

Two-stage
operational
amplifier

Gain
(dB) 40

Adjustable
between 47.5

and 65.5
60 60 60

Low and high
cut-off

frequency
(Hz)

300,
 8.13k 167, 6.9k 300, 5k

0.1-200
(low-

frequency
roll-off), 2k-
20k (high-
frequency
roll-off)

<10–100,
9.1k

ADC None 8-bit SAR
ADC

10-bit SAR
ADC

Adjustable
6-bit or 9-bit
SAR ADC

8-bit ADC

Sampling rate
(ksample/s) None 90 15 40 7.8

Signal
reduction None

Analog
detector and

feature
extraction

Analog
programmable

threshold

Nonlinear
energy

operator and
feature

extraction

Analog
spike

detector

Signal
compression None None None None Digital data

compressor

Transmission TDM-FM
433M Hz None

FSK
transmitter
433M Hz

Ultra
wideband
transmitter

FSK
transmitter
4M/8M Hz

Size (mm) 22 × 11 ×
5 0.4 ×0.4 4.7 × 5.9 8.8 × 7.2 14 × 15.5

Power
consumption of

the system
(mW)

5 3.1×10-3 13.5 6 14.4

Process
Technology

(μm)
0.5 0.18 0.5 0.35 0.5

13

Through comparing these neural recording systems, some conclusions can be drawn. First, signal

processing systems are important. In the past, most implemented neural recording systems

focused on the pre-processing, including the amplifier, filter and analog-to-digital data

conversion. Some systems do not include any signal reduction and compression components or

may integrate a simple spike detection system. Recently, lots of systems have begun to integrate

more complicated signal processing systems, such as spike-sorting systems and CS-based signal

compression systems; as noted previously, signal processing systems for neural recording

devices have become a hot research topic.

Table 2.1 and Table 2.2 also show that designers are using more electrodes or channels for

neural recording systems. Currently, to the best of our knowledge, the maximum number of

electrodes used in a neural recording system without wireless telemetry and signals compression

is 11,011 [61], which shows that huge numbers of electrodes can be used for a neural recording

system, but with the limitations of power and size, the recorded data cannot be transmitted

through wirelessly. Therefore, advances in neural signal processing are necessary.

Both analog and digital methods are used for signal processing. The digital method offers higher

accuracy than the analog one. For example, for spike detection, the digital method can optimally

implement the corresponding detection methods from the mathematical formulas to calculate

thresholds, which means that the digital method is “smarter”, more flexible and has higher

estimation accuracy [62].

Finally, as previously noted, a neural recording device must have low power consumption and

small silicon area. The transmitter of a wireless multichannel implantable neural recording

device consumes more energy than a wired device. There are two reasons for this problem.

Firstly, huge amounts of data means that the system must use a high carrier frequency for

transmission. Secondly, free carrier frequencies, known as ISM bands, are used to transmit the

data, which increases the complexity of the transmission system. Conflicts between transmission

and circuit performance can only be resolved by designing a low power and small area signal

processing system.

14

 Table 2.2 Comparison among different neural recording systems

Reference [63] [64] [65] [66] [67]

Year 2015 2015 2015 2014 2014
Electrode 12 4 4 32 8

Amplifier OTA Two-stage
amplifier

Two-stage
amplifier

Intan
Technologies

RHA2132
amplifier chip

Operational
amplifier

Gain
(dB)

40,
configurable

Configurable
230 − 6 k 72 200

55.7 /
50.3(AP),

50.3 /
45.1(LFP)

Low and high
cut-off

frequency
(Hz)

Configurable None 30k (H) 0.17, 4.5k 0.12 – 3k,
20 – 2k

ADC SAR ADC
(12 bits)

SAR ADC
(10 bits)

SAR ADC
(8 bits) AD7980 None

Sampling
rate(ksample/s) 103 20 100 31.25 None

Signal
reduction None None Energy-

based

MAD,
template
matching

Analog
spike

detector

Signal
compression CS CS None None None

Transmission None None FM/FSK None None

Power
consumption

(μW)

4.6g lithium
battery,70

hours

16 per
electrode 8000 None 4.8 per

channel

Size
(mm) 4.5×1.5 0.11 mm2 per

electrode 1.5×0.75 29.5 × 43.3 1.5 × 1.5

Process
technology

 (μm)
0.18 0.18 0.5 None 0.18

15

Table 2.2 Comparison among different neural recording systems (cont’d)

Reference [68] [41] [69] [70] [71] [72]
Year 2014 2013 2013 2013 2012

Electrode 4 100 64 1 10 × 10

Amplifier
Fully-

differential
amplifiers

OTA OTA OTA

Capacitive-
feedback,

folded cascode
OTA

Gain
(dB) 43 – 80 34 – 40 54 – 60 39.6 46

Low and high
cut-off frequency

 (Hz)
0.1, 2000 432, 5.1k None 0.8, 5.2k 0.1, 7.8k

ADC SAR ADC
(8 bits)

SAR ADC
(9 bits)

SAR ADC
(8 bits)

Sigma-
delta ADC
(13 bits)

SAR ADCs
(12 bits)

Sampling rate
(ksample/s) 10 – 100 24.5 – 245 20 2000 20

Signal
reduction None

Analog
spike

detection

Feature
extraction None None

Signal
compression None None None None None

Transmission

MICS/ISM-
compliant
transmitter
digital FSK

Burst-mode
wideband

FSK

All-digital
pulsed ultra
wideband

Standard
series

peripheral
interface

FSK with
3.2/3.8GHz

wireless
transmitter

Power
consumption

(μW)
1100 1160 16 per

electrode 2760 90.6

Size
(mm) 8.6 × 9.7 4.5×1.5 4 × 3 11.25 mm2

5.2 × 4.9
(preamplifier)

 2 × 2
(controller)

Process
technology

(μm)
0.13 0.18 0.13 0.6 0.5

16

Table 2.2 Comparison among different neural recording systems (cont’d)

Reference [73] [74] [75] [76] [77]
Year 2012 2012 2011 2011 2011

Electrode 32 14 1 1 16

Amplifier

Two-stage,
band-pass,
low-noise
amplifier

Low-noise,
low-power
amplifiers

OTA Instrumentation
amplifier

Commercial
acquisition

system

Gain
(dB) 66.5 500 V/V 100 300,500,

900,1300 76

Low and high
cut-off

frequency
(Hz)

Adjustable,
9.6k (H) 250, 10k 300, 5.2K None 300 (L)

ADC

ADS7953
from Texas
Instrument
(12 bits)

SAR ADCs
(11 bits)

SAR ADC
 (9 bits)

SAR ADC
(11 bits)

SAR ADC
(8 bits)

Sampling rate
(ksample/s)

Maximum
62.5 26.1 11.52 64 or 1024 None

Signal
reduction

Nonlinear
energy

operator
None None Feature

extraction
Setting

threshold

Signal
compression None None None Adaptive

sampling None

Transmission None

RF
transmitter

with 902-928
MHz carrier
frequency

905 MHz
FSK

transmitter
None

Manchester
coded

frequency
shit keying

400M
carrier

frequency

Power
consumption

(μW)
None 1230

1.5v
silver-
oxide

batteries,
runs 5
hours

30 for ASP 17200

Size
(mm) None 2.36 × 1.88 ×

0.25 6 × 5 4.6 × 4.5 None

Process
technology

(μm)
None 0.35 0.6 and

0.35 0.5 0.5

17

Table 2.2 Comparison among different neural recording systems (cont’d)

Reference [78] [79] [80] [57] [81]
Year 2010 2010 2010 2009 2009

Electrode 64 1 18 10 × 10 16 × 16

Amplifier

Low-noise,
band-pass

pre-
amplifier

Two-stage low
noise OTA

Three-stage
instrumentati
on amplifier

User-
selectable
amplifier

OTA

Gain
(dB) 65 – 83 50 – 80 72 60 48 – 68

Low and high
cut-off

frequency
(Hz)

10, 10k 0.1 – 1k, 8k,
adjustable < 1, 200 250, 5k 0.01 – 70,

500 - 5K

ADC SAR ADC
(8 bits)

Commercial
component
TI MSP430

SAR ADC
(12 bits) with
power-gating

SAR ADC
(10 bits)

Sample-and-
hold circuit

(8 bits)

Sampling rate
(ksample/s) 20 20

0.6,
maximum is

100
15.7 < 10k

Signal
reduction

Adaptive
threshold

Adaptive
absolute
threshold

Spectral
energy

distribution
extraction

Adaptive
threshold None

Signal
compression None None None None

Delta
compression

lower the
resolution

Transmission

Narrowband
400-MHz

binary
Manchester-
coded FSK

Power carrier
frequency is
13.56MHz.
data carrier
frequency is
433/915MHz

None

FSK
modulation
with carrier
frequency

902-928 Hz

None

Power
consumption

(μW)
16600 < 4850

9 uJ/ per
feature-
vector

8000 5040

Size
(mm) 3.1 × 2.7 4.9 × 3.3 2.5 x 2.5 5.4 × 4.7 3.5 × 4.5

Process
technology

(μm)
0.35 0.5 0.18 0.6 0.35

18

Table 2.2 Comparison among different neural recording systems (cont’d)

Reference [82] [83] [84] [85] [86]
Year 2009 2008 2008 2007 2007

Electrode 16 32 16 64 16 × 16

Amplifier OTA Low noise OTA
Two-stage

voltage
amplifier

Low noise
multiplexed

amplifier
array

OTA

Gain
(dB)

45.7, 49.3,
53.7 or

60.5
48 39.6 64 48 – 68

Low and high
cut-off
(Hz)

1, 12K 1, 7k 0.2 – 94,
140 – 8.2k

6 – 1k,
3 – 15k

0.01 – 70,
500 – 5k

ADC SAR ADC
(10 bits)

Normal ADC
(5 bits, 10 bits)

Gm-C
incremental

∆Σ ADC
(8-12 bits)

AD7277
(10 bits)

Off-chip
ADC

Sampling rate
(ksample/s) 256 22 < 16 40 10

Signal
reduction None Analog spikes

detection
Analog
filtering

Digital
filters based

detection

Wavelet
decompos-

ition
Signal

compression None None None None None

Transmission None Bluetooth

Wireless
power

harvesting and
telemetry
system

USB 2.0 None

Power
consumption

(μW)
60.3 109.58 1800 33 000

5.04
(with-out
wavelet

processor)

Size
(mm) 2.5 × 3.3 3 × 3 3 × 3

2.8 × 3.2
(amplifier

array)
40 × 60
(FPGA)

4.5 × 3.5
(only

interface)

Process
technology

(μm)
0.35 0.6 0.5 0.35 0.35

19

2.3 Neural Signal Processing

Signal processing techniques are used for analysis or perception of physiological measurements.

The purpose of acquiring physiological signals is to gain insight into the system that produces

these signals. As noted above, these signals may be acquired in electrical form. A typical

schematic block diagram of physiological measurement is shown in Figure 2.7. Most of the in

situ signal processing follows the process in this diagram. First of all, the designer needs to know

the physiological process and design the corresponding signal collector. This collector can be the

electrodes, the sensor or the chemical indicator. After collection of the signals, these signals need

to be translated into electrical signals. Then, an analog preprocessing can amplify the signal or

remove noise. After the analog preprocessing, a digitized conversion prepares for the following

calculation, transmission or analysis. If a designer uses analog signal processing in the system,

then an analog processor will be added before the converter; if the digital signal processing is

applied for the system, then a digital processor is integrated after the converter. Finally, the

digitized signals are analyzed in a computer.

Figure 2.7 Diagram of physiological measurement

For a multichannel neural recording device, handling the quantity of the recorded data is one of

the most difficult problems that must be solved. Designers need to considerably reduce large

amounts of data, without degrading the data quality, for easy transfer through wireless

transmission. To solve this problem, two strategies can be applied: signal reduction and

compression. Signal reduction methods retain most of the information of the signal but remove

useless signals; for example, spike detection is a signal reduction method. Signal (or Data)

compression methods use one of many possible approaches to acquire a subset of signals, then

based on this subset, apply an algorithm to recover the original signals. In the following two

20

sections, two processing strategies, spike detection (and sorting) and signal compression, are

reviewed.

2.3.1 Spike Detection and Sorting

Neural signals, produced by the neurons in the brain, can be recorded as bioelectrical signals.

Bioelectrical signals are one kind of important biomedical signals that reveal the behavior of

relevant organs. The basic component of all bioelectrical signals is action potential (AP) [87].

AP is caused by the flow of sodium (Na+), potassium (K+), chloride (Cl-) and other ions moving

across every cell membrane [13]. The AP provides information on the nature of physiological

activity at the cell level. When a single neuron is stimulated by a neural or external electrical

current, it produces APs. Recording an AP requires the isolation of a single neuron, then

microelectrodes with tiny tips are used to stimulate the neuron or record the response [87].

Extracellularly recorded neural signals have some important characteristics. Firstly,

extracellularly recorded APs are called spikes [88]. Neurons communicate with each other using

spikes. Each spike has an amplitude of about 70 mV (relative to the extracellular fluid) and a

duration of around 1 – 2 ms [89] [90]. When an extracellular microelectrode is held tens of

microns away from the neurons, a value of 50 – 500 μV can be detected. A typical neuron

generates 10 – 100 spikes per second [29] [58]. (Figure 2.8 shows APs collected from multiple

neurons of an adult male rhesus macaque monkey). In addition, once a neuron generates an AP,

there is a period during which a cell cannot respond to any new stimulation, known as the

absolute refractory period (about 1 ms). This is followed by a relative refractory period (several

microseconds), and in this period, another AP may be triggered by a stronger stimulation [13].

Spike detection is an important step in many processes and analyses involved in investigating the

activity of the nervous system. First, the spike detection process detects APs (spikes) that are

immersed in background noise during extracellular recordings of neural signal. This process

enables interpretation of neuronal activity and decoding of the included information. Furthermore,

spike detection is a very useful reduction process for transmission in a wireless multichannel

implantable neural recording system.

Spike detection processing involves two important concepts. The first one is concept of online

and offline detection. Online detection means that the neural spikes are detected at the same time

21

as the signals are recorded. Offline detection means that detection occurs after recording [88].

This method usually has a long delay, and it is obviously not suitable for a multichannel

implantable neural recording system. The second important concept is adaptive detection and the

detection of manual setting. The detection of manual setting means that the threshold or template

is not calculated from the previously recorded data but is directly set by the designer. In the early

days of spike sorting, spike detection was done purely in analog hardware. It was typically

performed using a simple voltage trigger, with a voltage threshold set manually by the user [88].

If the voltage of the signal crossed that threshold, a pulse would be generated to indicate the

presence of a spike [91]. This method is appealing because of its simplicity, and, as a result, is

still used today by many research groups, especially with analog designs [88]. The largest

disadvantage of the manual setting method is its requirement for thresholds or templates in

advance. In contrast, adaptive detection means that the threshold or template that is used for the

detection is determined from the previously recorded data. Comparing with the manual setting

method, this method not only runs automatically to detect the spikes but allows estimation of the

threshold, which is definitely much more advanced [92]. Currently, neural recording systems

usually integrate an online adaptive spike detection component [93] [94] [95]. Furthermore, if the

threshold can be acquired in a short time, this method can be called real-time detection [90].

Automatic calculations of the threshold usually involve a training period, and they still can be

considered to be real-time processing.

Figure 2.8 Recorded signals from an adult male rhesus macaque monkey

Spike detection techniques can be divided into amplitude-based, energy-based and template

matching methods. These methods are described in the following sections.

22

2.3.1.1 Amplitude-based Spike Detection

Detecting neural spikes from background noise is commonly done by comparing signals’

amplitudes with thresholds. This method was initially used to analyze offline neural signals [91].

now, amplitude-threshold-based detection is a commonly used online adaptive detection method.

The idea of this method is that a spike is a sudden pulse and its amplitude is obviously larger than

the ambient signals. The noise of the signal is usually regarded as the Gaussian white noise, and

the threshold is the standard deviation multiplied by a coefficient [96]. Based on this idea, several

real-time, adaptive spike detection methods are emerging, such as RMS methods [97], median

absolute deviation (MAD) [98], EC-PC [99], cap fitting [100], and maximum and minimum

spread (MMS) estimation [96] methods. The RMS estimator is traditionally used to estimate the

standard deviation of the background noise, which is shown in Figure 2.9(a) [97]. The threshold

is calculated using (2.1).

 𝑇𝑇 = 𝑃𝑃 × �1
𝑁𝑁

� (𝑥𝑥𝑛𝑛 − �̅�𝑥)𝑁𝑁
1

2
  𝑛𝑛 = 1. 𝑁𝑁 (2.1)

where x is the mean value.

The second method is called MAD estimator, which is shown in Figure 2.9(b) [98]. The threshold

is calculated in (2.2).

 𝑇𝑇 = 𝑃𝑃 × 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛(|𝑥𝑥𝑛𝑛−�̅�𝑥|)
0.6745

  𝑛𝑛 = 1. 𝑁𝑁 (2.2)

All the samples in a given time frame are subtracted by their mean value. Then the absolute

values of the subtracted samples are sorted. The MAD is defined as the median value of |𝑥𝑥𝑛𝑛 − �̅�𝑥|.

The standard deviation of background noises is equivalent to the MAD divided by 0.6745.

The next estimator, shown in Figure 2.9(c), is the cap fitting estimator [77]. The threshold T is set

as 𝑃𝑃   ×   𝜎𝜎, where 𝜎𝜎 is the standard deviation. If T exceeds X0.9987, the distribution of data below T

is considered to be Gaussian noise. Otherwise, the samples that exceed T are regarded as neural

spikes and are removed from the signal.

The final estimator, shown in Figure 2.9(d), is the MMS sorting estimator. This estimator has

been proven to have better performance than the other three estimators [96]. This method firstly

finds the maximum and minimum value of the data during a given time frame (called a window).

Then the difference between maximum and minimum value is calculated and stored in a buffer.

23

When the buffer is full, all of the data are sorted, and a subset of the sorted data is averaged.

Finally, the averaged value is multiplied by an amplification coefficient.

The threshold estimator can be designed as an analog or a digital circuit. An analog self-time

static spike detector is shown in Figure 2.10 [101], and a digital spike detector, called an mMMS

sorting estimator, is shown in Figure 2.11 [102].

Figure 2.9 Comparison of four digital estimators, (a) RMS estimator, (b) MAD estimator, (c) Cap

fitting estimator, (d) MMS estimator [96]

Figure 2.10 An analog self-timing static detector [101]

24

Figure 2.11 Digital mMMS estimator [102]

2.3.1.2 Energy-based Spike Detection

The energy-threshold-based spike detection method is based on the idea that when a spike

happens, the energy of the signal has a sudden change, so the system can calculate the threshold

of the change in its energy. An important form of the energy-threshold-based spike detection

method is called teager energy operator (TEO) or nonlinear energy operator (NEO) [103]. When

the signal is processed in a time-domain or frequency-domain window based on the TEO, this

method is called the smooth TEO (STEO), which has better estimation accuracy than the TEO

[103]. Equations for the TEO and STEO are established by (2.3) and (2.4).

𝜓𝜓[𝑥𝑥(𝑛𝑛)] = 𝑥𝑥2(𝑛𝑛) − 𝑥𝑥(𝑛𝑛 + 1)𝑥𝑥(𝑛𝑛 − 1) (2.3)

 𝜓𝜓𝑠𝑠[𝑥𝑥(𝑛𝑛)] = 𝜓𝜓[𝑥𝑥(𝑛𝑛)] ⊗ 𝑤𝑤(𝑛𝑛) (2.4)

where ⊗ represents the convolution operator and ()w n represents the window.

The threshold, given in reference [103], is shown in (2.5).

 𝑇𝑇 = 𝐶𝐶 1
𝑁𝑁

∑ 𝜓𝜓𝑠𝑠
𝑁𝑁
𝑛𝑛=1 [𝑥𝑥(𝑛𝑛)] (2.5)

where N is the number of samples and C is the scaling factor.

The authors in [90] describe another method to calculate the threshold, which is shown in (2.6) –

(2.8). In this article, they chose the Hamming window ()Hw n , having the following value

() [0.08,0.54,1,0.54,0.08].Hw n =

25

 𝑇𝑇𝜓𝜓𝑠𝑠 = 𝜇𝜇𝜓𝜓𝑠𝑠 + 𝑝𝑝𝜎𝜎𝜓𝜓𝑠𝑠 (2.6)

 𝜇𝜇𝜓𝜓𝑠𝑠 = 2.24(𝑟𝑟𝑥𝑥𝑥𝑥(0) − 𝑟𝑟𝑥𝑥𝑥𝑥(2)) (2.7)

 2 2 2 2 24.8 (0) 0.7 (1) 4.4 r (2) 0.6 r (3) 9.3r (0) r (2) 1.2 r (1)4.8r (3)
s xx xx xx xx xx xx xx xxr r≈ + + + − −ψs (2.8)

where ()xxr m is the autocorrelation of ()x n at lag m.

Some system or circuit designs are based on the TEO or STEO method. For example, the authors

in reference [90] propose a spike detection system based on the STEO method, which is shown in

Figure 2.12. In reference [104], the authors give the implementation of the STEO method without

threshold estimation. The power consumption of the relevant spike detection module in this

article is reported as around 1 μW. Also, some designers use the TEO method to design digital

(Figure 2.13) [105] or analog spike detector devices (Figure 2.14) [106].

Figure 2.12 Block diagram of STEO-based spike detection with adaptive threshold [90]

Figure 2.13 Diagram of neural spikes sorting system using TEO spikes detection method [105]

26

Figure 2.14 Building blocks synthesizing the TEO-based preprocessor, (a) subthreshold OTA

with source degeneration and bump linearization devices, (b) top-level diagram of the TEO

preprocessor, (c) the differentiator circuit, (d) four-quadrant analog multiplier [106]

2.3.1.3 Spikes Detection with Template Matching

Template matching finds segments of the signals that are similar to the given spike templates.

The template matching method is usually complicated, as it contains a convolution and Fourier

transformations. This method needs a priori knowledge of spike templates and requires the user

to specify a threshold for similarity. In earlier times, some researchers used Euclidean distance

[107] and cross-correlation [108] to detect spikes with known templates. A typical template

matching technique is matching filter [109] [110]. The discriminant of the matching filter is

shown in (2.9):

 𝐷𝐷1 = 𝑥𝑥𝑛𝑛
𝑇𝑇𝑇𝑇     ≥     λ (2.9)

where 𝑥𝑥𝑛𝑛
𝑇𝑇 is one segment of the signal, 𝑇𝑇 is the template and λ is the threshold. Reference [111]

uses likelihood ratio detection (LRT) to make the template matching-based detection. The

discriminant is shown in (2.10) and (2.11)

𝐷𝐷2 = 𝑥𝑥𝑛𝑛
𝑇𝑇𝛴𝛴−1𝑇𝑇

H1
>
<
H0

     𝑙𝑙𝑙𝑙𝑙𝑙 𝑃𝑃(𝐻𝐻0)(𝑐𝑐10−𝑐𝑐00)
𝑃𝑃(𝐻𝐻1)(𝑐𝑐01−𝑐𝑐11)

≡ 𝜆𝜆 (2.10)

27

 H0:                             𝑥𝑥𝑚𝑚 = 𝑛𝑛
H1:                            𝑥𝑥𝑚𝑚 = 𝑇𝑇 + 𝑛𝑛 (2.11)

where n is the white Gaussian noise, T is the template, cij is the cost of deciding hypothesis. In

reference [112], the authors introduce a normalized correlator to make the detection, which is

shown in (2.12) — (2.14).

𝐷𝐷3 = �̅�𝑥𝑛𝑛
𝑇𝑇𝑇𝑇�     >    𝜆𝜆 (2.12)

 �̅�𝑥𝑛𝑛 =       𝑥𝑥𝑛𝑛 ‖𝑥𝑥𝑛𝑛‖⁄ (2.13)

 𝑇𝑇�      =       𝑇𝑇 ‖𝑇𝑇‖⁄   (2.14)

where 𝜆𝜆 can be chosen as 0.5.

For all of these template matching methods, choosing the threshold is important. Reference [112]

reports that the threshold can be chosen as 𝜎𝜎2 × 𝑃𝑃, where 𝜎𝜎 is the standard deviation and 𝑃𝑃 is a

coefficient. Several recent articles discuss using Bayesian inference to determine the threshold

[113] [114].

As the templates are rarely known in advance, the template matching spike detection system must

automatically generate templates. In reference [115], the authors present a semiautomatic

template matching spike detection system, in which the designer must manually determine the

final number of spike templates. Reference [112] introduces another spike detection method with

automatic template matching; the final clustering step is implemented by a method called the

Osort algorithm [116]. Figure 2.15(a) and Figure 2.15(b) show this spike detection method and

the Osort algorithm. In reference [117], the authors put forward an template matching algorithm

that is composed of four main components.

In conclusion, spike detection is a crucial component of a BMI; it not only provides the

prerequisites for analysis of recorded signals, but reduces the quantity of recorded data. In

reference [88], the authors compare all three methods of spike detection, maintaining that the

detection accuracy of adaptive amplitude-based and energy-based spike detection methods are

almost identical, but noting that the amplitude-based method has a simple structure. In reference

[90] [104], the authors assert that the energy-based spike detection method is better than the

absolute amplitude spike detection method. Our own research and some other work [116] [118]

28

have shown that template matching methods have better detection accuracy than amplitude-based

or energy-based methods.

Figure 2.15 An automatic template matching spike detection method, (a) the proposed template

matching spike detection method [112], (b) the Osort algorithm [116]

2.3.1.4 Spike Sorting

To study the activity of neurons, the researcher usually needs to understand single-unit activity to

learn how a type of neuron responds to a specific stimulus. Some neural signal processing

algorithms operate on signals from individual neurons [119] [120]. But because of the size of the

recording electrodes, the recorded spikes are usually from several neurons; therefore, a spike-

sorting method is needed. Figure 2.16 shows a diagram of the spike-sorting process [88]. This

process has three main steps: feature extraction, dimensionality reduction and clustering.

29

Figure 2.16 The spike sorting used to obtain single-unit activity [88]

Feature extraction is used to analyze the information within spikes, and it also acts as a signal

reduction method in a neural recording device. There are many methods of feature extraction,

such as the extraction of the maximum amplitude or width of the spike [91], principal

components analysis (PCA) methods [121], first and second derivative extrema [122], and the

discrete wavelet transform method [123].

Dimensionality reduction reduces the complexity of the clustering, leaving only the necessary

features and increasing the accuracy of clustering. Several methods of dimensionality reduction

exist, such as the Lilliefors test [124], and Hartigan’s dip test [49].

The final step of the spike-sorting process is spike clustering. The clustering method puts spikes

with similar features together. However, it is very difficult to judge similarity in online adaptive

spike processing, so the unsupervised spike clustering method is very complicated. Various spike

clustering methods exist, such as the K-means method [91] and valley seeking [125].

Finally, numerous different implementations of spike-sorting systems exist. Figure 2.17 shows a

spike-sorting BMI; the authors used TEO-based spike detector and derivative-based feature

extraction methods [59]. Figure 2.13 shows a 64-channel spike-sorting device; its power

consumption is 2.03 μW/channel and its area is 0.06 mm2/channel [105]. In [126], the authors

present the hardware architecture of a spike-sorting device which uses PCA for feature extraction

and the K-means method for spike clustering.

30

Figure 2.17 Block diagram of an integrated neural recording system with spike sorting [59]

2.3.2 Signal Compression with CS Technique

In the last section, we reviewed spike detection and sorting methods. Signal compression

methods can recover original signals, so can keep more information about the recorded signals,

and are obviously better in some situations which require original signals. For these reasons,

signal compression has attracted considerable attention in the BMI design field [127] [128] [129].

Compressed sensing (CS) is a new signal compression technique which shows great potential for

compressing neural signals. In recent years, CS has been a very hot topic in the areas of applied

mathematics, computer science and electrical engineering [130] [131]. The CS concept was

hintingly discussed more than one hundred years ago, but it has only recently gained scientific

interest due to some theoretical breakthroughs [130]. In the 1900s, Carathéodory proposed a

theory that includes the concept of reducing the amount of the sampled data [132]. More recently,

Candès and Donoho have shown that a signal with a sparse representation can be recovered with

fidelity [133].

When a signal is a sparse signal, there is no need to use the traditional Nyquist rate to sample the

data; the CS technique can be used instead. CS includes sparse signals, sensing matrices and

reconstruction methods. Figure 2.18 shows the CS technique [134]. The process of CS can be

described as follows: signals are processed to find its sparse presentation (approximation or

31

coordinate conversion); then they are compressed by a random or deterministic sensing matrix

[130] [135]; finally, the compressed signals are recovered through a reconstruction algorithm

[136] [137]. CS is known to be effective for neural signal compression; previous authors have

used CS to build BMIs. In [138], the authors show how to apply CS to design an analog or digital

circuit, and use a digital circuit to fulfill the CS, which is shown in Figure 2.19. In [8] [11] [134],

the authors put forward analog or digital circuits that apply the CS technique. Finally, some

recent articles show how to use CS to compress non-sparse signals [139]. CS is discussed further

in the following sections.

Figure 2.18 Diagram of CS sampling framework [134]

Figure 2.19 Block diagram of (a) the analog single-channel CS, (b) the digital single-channel CS

[138]

32

2.3.2.1 Introduction to Compressed Sensing Theory

In this section, we will introduce the three most important concepts in CS: sparse signals, sensing

matrix and signal recovery algorithms.

1. Sparsity and compressible signal

Mathematically, a signal x being k-sparse denotes that it has at most k non-zeros, which is

expressed in (2.15) [140].

{ }0
: supp()k x x x kΣ = = ≤ (2.15)

where { }supp() = : 0ix i x ≠ denotes the support of x and supp()x denotes the cardinality of

supp()x . The CS technique does not deal directly with signals that are not obviously sparse, but

admits a sparse representation in some basis 𝛷𝛷 . Therefore, referring to x as being k-sparse

denotes that ‖𝑐𝑐‖0 ≤ 𝑘𝑘, when 𝑥𝑥 = 𝛷𝛷𝑐𝑐, and c is the coefficient.

An important point in practice is that not all real-world signals are truly sparse; therefore, being

compressible means that they can be approximately sparse or relatively sparse in various contexts.

A way to measure a signal and their “compressible signal” 𝑥𝑥′(' kx ∈Σ) is expressed as (2.16)

[130].

'

() min '
k

k p px
x x x

∈Σ
= −s , if kx∈Σ , then ()k pxs = 0. (2.16)

Another way to think about the compressible signals is to consider the rate of the decay of their

coefficients. Specially, if 𝑥𝑥 = 𝛷𝛷𝑐𝑐 and we sort coefficients ci such that |𝑐𝑐1| ≥ |𝑐𝑐2| ≥⋅⋅⋅≥ |𝑐𝑐𝑛𝑛|,

then we can say that the coefficients obey a power law decay if there exists constant 1C , q > 0,

such that |𝑐𝑐𝑚𝑚| ≤ 𝐶𝐶1𝑖𝑖−𝑞𝑞 . The larger q is, the faster the magnitudes decay, and the more

compressible the signal [130].

2. Sensing matrix

A signal cannot be recovered from the compressed data if an incorrect sensing matrix is used. To

guarantee the reconstruction of original signals, a sensing matrix must obey the Restricted

Isometry Property (RIP). The definition of RIP is shown as below.

Matrix A satisfies the restricted isometry property of order k if there exists a (0,1)k ∈δ such that

33

2 2 2

2 2 2
(1) (1)k kx Ax xδ δ− ≤ ≤ + (2.17)

holds for all kx∈∑ [136]. RIP, as a norm, is widely used in constructing the sensing matrix.

Currently, it is proven that a random matrix satisfies the RIP with a high probability if the entries

are chosen according to a Gaussian, Bernoulli, or more generally any sub-Gaussian distribution

[130]. Besides the random matrix, a deterministic matrix can be used for the construction of the

sensing matrix [141].

3. Signal recovery via ℓ1 minimization

The best recovery method should be ℓ0 minimization, because it can give the most sparse signal,

but the algorithm is NP hard; therefore, ℓ1 minimization is used as a replacement, which is shown

in (2.18) [130].

 𝑥𝑥′ = argmin
𝑧𝑧

‖𝑧𝑧‖1                     subject  to               𝑧𝑧 ∈ 𝐵𝐵(𝑦𝑦) (2.18)

where 𝐵𝐵(𝑦𝑦) = {𝑧𝑧: 𝐴𝐴𝑧𝑧 = 𝑦𝑦}.

For a noise-free signal recovery, we can use the following theorem to guarantee that the solution

𝑥𝑥′ in (2.18) can very closely approximate the original vector x.

Suppose that A satisfies the RIP of order 2k with 𝛿𝛿2𝑘𝑘 < √2 − 1 and we obtain measurements of

the form y = Ax. Then when 𝐵𝐵(𝑦𝑦) = {𝑧𝑧: 𝐴𝐴𝑧𝑧 = 𝑦𝑦}, the solution 'x to (2.18) obeys (2.19) [130].

 ‖𝑥𝑥′ − 𝑥𝑥‖2 ≤ 𝐶𝐶0
𝜎𝜎𝑘𝑘(𝑥𝑥)1

√𝑘𝑘
 (2.19)

The specific recovery algorithms include the ℓ1 minimization algorithm [142] and the Greedy

algorithm [143] [144].

2.3.2.2 Neural Signal Processing Using Compressed Sensing Technique

In this section, we review some applications of neural signal processing based on the CS

technique. Figure 2.19 illustrates the structure of analog and digital CS-based compression

systems; currently, nearly all CS systems are designed as one of these two structures.

Currently, it is still in dispute whether neural signals are sparse or not. For some biomedical

signals, some authors regard neural spikes as sparse in the wavelet domain [145] [146]; others

34

suggest that EEG signals can be compressed in the Gabor domain [9], and that ECG signals are

sparse in the wavelet domain [147]. The author in [139] asserts that EEG signals are not sparse in

the time or transformed domain. Therefore, it is appropriate to find a method to compress both

sparse and non-sparse neural signals in the time domain.

As shown in Figure 2.19, the CS technique can be applied using analog and digital methods.

Some applications are based on analog circuit implementation, such as the random demodulator

[148] [149], random filtering [150], the modulated wideband converter [151], random

convolution [152], and the compressive multiplexer [153]. Some of these analog applications are

introduced below.

The block diagram of the random demodulator (RD) is shown in Figure 2.20 [149]. This structure

includes a random number generator Pc, a mixer, an accumulator, and a sampler. Based on this

block, the random demodulation pre-integrator (RMPI) (in some articles, it is called the

modulated wideband converter) is proposed [148] [151]. This structure is composed of parallel

channels of RD, as shown in Figure 2.21 [148]. RMPI can reduce the sampling rate of the system,

but it needs more multiplexers or mixers.

Figure 2.20 Block diagram of the random modulator [149]

To further reduce the power consumption of the RMPI, another structure, called spread spectrum

random modulator pre-integrator (SRMPI), is proposed, shown in Figure 2.22 [148]. Compared

with the RMPI, this structure uses another random block to randomly modulate the input signal.

Compared using the traditional Nyquist sampling method, RMPI reaches 3% power reduction,

and SRMPI reaches up to 43% energy saving [148].

The digital implementation of the RD is called the CS encoder, shown in Figure 2.23 [134]. This

structure uses several multiplexers and adders to make linear transformations, and it also contains

35

a sensing matrix generator. The compression of the EEG signals reduces the power consumption

of the whole system, reported as 1.9 μW at 0.6 V [134].

There are already some implementations of analog and digital circuits based on the CS theory,

but which circuit implementation is superior – analog or digital – is still a matter of dispute [134]

[148].

Figure 2.21 Block diagram of random demodulator pre-integrator (RMPI) [148]

An important consideration in all CS applications is how to generate the sensing matrix. As noted

above, researchers agree that the sensing matrix can be constructed from a random matrix. In the

following text, we review sensing matrix generation methods or circuits.

Figure 2.22 Block diagram of SRMPI [148]

The simplest method to generate the sensing matrix is using a look-up table or memory, but this

method cannot be used for large measurements circuits [134].

In addition to this simple method, another method called pseudorandom number (PN, also called

pseudo-random bit sequence (PRBS)) binary sequence can be used to generate the random matrix

36

[138]. This method is much more compact than the look-up table implementation, but the PN

generator and associated clocks are the largest contribution to power consumption [154].

Figure 2.23 Block diagram of CS encoder [134]

To improve the PN generator, a double-PN generator is used. The structure is shown in Figure

2.24 [134]. This block uses two PRBSs to create the columns of the sensing matrix. This

structure can reduce the whole power consumption by 10%. The entries of the PN generator obey

the Bernoulli distribution, which are ±1 with the same probabilities.

Figure 2.24 Block diagram of the measurement matrix generation block [134]

37

Moreover, there is a sensing matrix generating method called sparse binary matrices generator [8]

[155]. This method is attractive; because it consists of 0/1 instead of ±1, when the number of the

+1s in each column is a small fixed number, many of the calculations can be avoided.

Finally, several system designs using CS techniques are proposed for processing some

biomedical signals. In [156], the authors proposed a data-dictionary-based signal processing

system using CS, based on the similarity of shapes of the spikes. The proposed system is shown

in Figure 2.25; in [11] and [64], the authors discussed the corresponding circuit design based on

this system, which is shown in Figure 2.26. The area can be as little as 0.11 mm2/channel and the

power consumption 16 μW/channel (CMOS 0.18 μm, 20 kHz). The multichannel design and

neural spike reconstruction are discussed in [157] and [158] respectively.

Figure 2.25 Proposed data dictionary based CS system [156]

Figure 2.26 Proposed CS digital circuit [64]

38

In reference [159], the authors put forward a digital CS-based wireless sensor system. The

authors in [138] proposed a 16-channel cortical recording system, with area and power

consumption of 0.008 mm2/channel and 0.95 μW/channel (CMOS 0.18 μm, 4 kS/s) respectively.

In summary, the CS technique has a simple structure which facilitates compression and

implementation. Some designers already use this technique for the design of neural recording

circuits; however, there are still some problems waiting to be solved. First, the sparsity of neural

signals is not high in the time domain; therefore, a method to increase the sparsity of neural signals

or to compress non-sparse or low-sparsity signals is required. Second, the design of the circuit based

on the CS technique needs improvement, in areas including lowering the power consumption,

shrinking the silicon area, and multichannel signal processing.

2.4 General Discussion of the Literature Review

In this section, we continue to discuss neural signal processing. Through reviewing the state-of-

the-art compressed sensing techniques and automatic template matching-based spike detection

and classification systems, we compare several similar works and explain the contribution of our

research.

2.4.1 Neural Signal Processing Strategies

From the above literature review, it can be found that there are mainly two strategies for the

neural signal processing inside a neural recording interface: signal reduction and compression.

Firstly, signal reduction strategy involves spike detection [83] [106] and sorting [92] [123], and it

is usually used for biomedical researches based on neural spikes. The advantage of this method is

that it can largely remove the useless information of neural signals and retain their most

important information. The disadvantage of this method is that this strategy causes distortion or

loss of the data information. For example, for the neural spike detection, the data are obtained

only as an impulse signal or in a time series which are no longer the signal itself [148]. Besides,

if the thresholds of the detection are not properly set, then the spikes cannot be detected. The

feature extraction usually requires a period of time to train, so the precision of this method

usually cannot be guaranteed, and the hardware design of feature extractor is also complicated

[160]. Second, for the signal compression strategy, the compressed sensing technique is a new

signal compression technique. The advantage of the CS technique is that it can maximumly retain

39

the details of the recorded signals and has a simple structure, and disadvantage of this method is

the limits of its usage, which is only used for sparse signals [130].

2.4.2 Discussion of Sensing Matrices

In 2.3.2, we briefly review the theory of the compressed sensing technique. From this section, it

can be found that the traditional compressed sensing technique is mainly focused on the sparse

signals, but in reality, not all of the signals are sparse, and using the approximation or changing

the basis also cannot acquire sparse signals. Therefore, if signals are not sparse, the CS technique

cannot be applied to compress them.

For the CS technique, the sensing matrix is an important research content, which has great

influence on the signal compression and reconstruction [130]. The sensing matrix can be divided

into random and deterministic matrices. In Table 2.3, we give a comparison between random and

deterministic sensing matrices. The random matrices, such as the sub-Gaussian sensing matrix

[134] [148] or the random discrete Fourier transmission matrix [161], are largely used by most of

the designers. However, the random sensing matrix has disadvantages, for example, it usually

needs a large amount of space to store the random matrices, and the superior randomness is

usually needed for guaranteeing the compression performance. Besides, a random number

generator usually has large power consumption and a large silicon area, which is not a good

option for an implantable device [134].

Moreover, a deterministic sensing matrix is another option for the design of sensing matrix.

There are several deterministic sensing matrices, such as the Discrete Chirp sensing matrix, the

Reed Muller sensing matrix, the Bose-Chaudhuri-Hocquenghem sensing matrix, and low-density

parity-check (LDPC) matrix. The advantage of the deterministic matrix is that it can generate the

items of the sensing matrix on the fly without storing the data, and it is also easy to reconstruct

original signals. However, current deterministic sensing matrices are very complicated in the

hardware implementation, and they cannot be used for a non-sparse or low-sparse signal;

although a low-density parity-check (LDPC) matrix contains only 0’s and 1’s, the compression of

a non-sparse or low-sparse signal requires a very high-girth sensing matrix that is very difficult to

generate [135] [162]. Therefore, a deterministic sensing matrix with simple structure and high

compression performance needs to be researched.

40

Table 2.3 Comparison between random and deterministic sensing matrices

Type Advantages Disadvantages

Random sensing

matrix
More mature in application

Needing a large space;

needing a high-randomness

random number generator

Deterministic sensing

matrix

On the fly without storing data;

reconstruction performance can be

guaranteed

Complicated, not easy for

implementation in hardware

design

To explain the contribution and necessity of our research, In Table 2.4, we compared the

performance of signal compression based on the CS technique using several state-of-the-art

random or deterministic sensing matrices, such as the digital wavelet transform-based sensing

matrix [8], Chirp sensing codes matrix [163], Bose-Chaudhuri-Hocquenghem sensing matrix

[164], Ternary matrix [164], Elliptic curve matrix [141], Fourier-based transform sensing matrix

[165]. From the comparison, several conclusions can be found. First, all the compared sensing

matrices are used to compress sparse signals. In Table 2.4, it can found that the research

objectives are all high-sparsity signals, and low-sparsity or non-sparse signals cannot be

compressed through these sensing matrices. Second, the reconstruction error has a tight

relationship with the degree of the sparsity of signals. Under a large compression rate, if the

reconstruction error needs to be kept small, it requires the signals to have a large degree of

sparsity. Besides, if the degree of sparsity is determined, using a small compression rate can

reconstruct the original signal with a small reconstruction error. Third, the compared

deterministic sensing matrices have a better compression performance than the random sensing

matrices in Table 2.4. For signals with a similar degree of sparsity and having similar

reconstruction error, using the deterministic sensing matrices can compress signals with a larger

compression rate. Finally, from the comparison, two challenges for the construction of sensing

matrices can be found:

1. Applying the CS to compress low-sparsity or non-sparse signals.

41

2. Compressing a compressible signal with a large compression rate while this signal can be

reconstructed with high fidelity (very small reconstruction error).

Table 2.4 The signal compression performance of some compressed sensing matrices

Sensing matrix Types Degree of Sparsity
Compression

 Rate (%)

Reconstruction

Error

Chirp sensing
codes matrix Deterministic 0.95 0.90 98 98 ≈ 0 > 1

Bose-
Chaudhuri-

Hocquenghem
matrix

Deterministic 0.98 0.94 88 88 ≈ 0 > 1

Ternary matrix Deterministic 0.996 0.99 98 98 ≈ 0 > 1

Elliptic curve
matrix Deterministic 0.99 0.97 93 93 ≈ 0 > 1

Digital wavelet
transform-based
sensing matrix

Random 0.97 0.97 50 80 0.1 0.6

Fourier-based
transform

sensing matrix
Random 0.98 0.98 88 96 ≈ 0 ≈ 1

Our proposed
sensing matrix Deterministic 0 0.98 96 96 < 0.2 < 0.1

In chapter 3, we proposed a sensing matrix which tries to resolve these two issues. From the

comparison in Table 2.4, our system can compress the sparse and non-sparse signals with a

relatively large compression rate and a small reconstruction error. In this chapter, we proposed a

sensing matrix which can compress the sparse and non-sparse signals with a large compression

and a small reconstruction error. We use the similarity that is in a signal to make the compression,

which can largely compress a specific neural signal may contain many identical (or similar)

points, Additionally, we use the advantages of the deterministic sensing matrix to construct a

sensing matrix that is based on the clustering of the neural signal itself, also the process of the

construction is simple, which is appropriate for hardware implementation.

42

2.4.3 Discussion of Neural Signal Processing Systems

In section 2.3.2, we discussed several signal processing systems which are based on the CS

techniques. In this section, we continue to discuss and compare these systems, and illustrate the

challenges of signal processing for implantable neural recording devices.

From the comparison of different neural recording systems in Tables 2.1 and 2.2, it can be found

that a neural signal processing system mainly has two main functions: detecting neural spikes and

compressing neural spikes or original signals. In Table 2.5, we further compare several neural

signal processing systems inside implantable neural recording devices. From the comparison,

several conclusions can be acquired. First, current neural signal processing systems usually

implement one signal processing strategy, which does not provide both functions of spike

detection and signal compression. For some processing systems, they may include spike detection

and compression, but the compression block is only to effectively transmit the detected neural

spikes, and it does not include any processing for lossless compression of original neural signals.

Second, for the CS-based neural signal processing systems in Table 2.5, it is mainly used to

compress sparse signals, and none of signal processing systems are designed to compress non-

sparse signals, but efficiently compressing the non-sparse signals can enlarge the scope of

application for neural signal processing systems; therefore, it is necessary to design a CS-based

signal processing system for low-sparsity or non-sparse signals. Third, some signal processing

systems only include single channel processing, and with the increasing of recorded channels and

high requirement of the users, efficient multichannel neural signals processing is important and

significant, so multichannel signal processing still needs to be researched. Finally, power

consumption and area are two very important parameters for an implantable neural signal

processing system, and it is necessary to research some methods to reduce both parameters while

maintain the best processing performance of the processor.

In chapter 5, we implement a neural signal processing system, which includes spike detection and

CS-based neural signal compression. In this system, the signal compression block is based on our

proposed MDC matrix, so the sparse and non-sparse signals can both be compressed through the

implemented processing system. Moreover, our proposed system can effectively deal with the

signals recorded by single-channel and multichannel recording devices, and also, from the

43

comparison in Table 2.5 our proposed processing system has relatively small area and low power

consumption while maintains good processing performance.

Table 2.5 Comparison of several signal processing systems for neural recording devices

Reference [166] [167] [168] [134] [64] [138] Our
system

Technology
(μm CMOS) 0.5 0.5 0.065 0.18 0.18 0.13

Signal
reduction

Spike
detection

Spike
detection

Spike
detection
feature

extraction

- - - Spike
detection

Signal
compression

Discrete
wavelet

transform-
based

- - CS-
based

CS-
based

CS-
based

CS-
based

Signal for
compression - - - Sparse

signals
Sparse
signals

Sparse
signals

Sparse
and non-

sparse
signals

Number of
channels

(electrode)
32 32 16 1 32 16 256

Area per
channel

(electrode)
(mm2)

0.18 0.12 0.07 0.103 0.11 0.008 0.03

Power
consumption
per channel
(electrode)

(μW)

95 75 4.68 1.9 0.83 0.95 12.5

2.4.4 Discussion of Spike Detection Methods

In section 2.3.1, we review the categories of the spike detection and sorting methods. In this

section, we continue to discuss the methods of spike detection and classification, and the research

issues of automatic template matching-based spike detection system.

The main purpose of the spike detection and classification is correctly detecting neural spikes

from the recorded neural signals and separating the spike series from the composite spikes. From

44

the above literature review, it can be found that spike detection can be divided into amplitude-

based, energy-based and template matching methods. In Table 2.6, we compare the performance

of these three methods. The idea of the first two methods is that when a spike occurs, the signal

usually has a sudden change in amplitude or energy [97] [103] . Comparing with the template

matching method, both methods cannot make the spike classification and they have poor

detection accuracy for signals with a low signal-to-noise ratio. The template matching method

applies another idea for spike detection, that is, the designer can use a detected spike (spike

template) to compare with recorded neural signals, and then locate neural spikes [112]. This

method has a high accuracy, but this method usually has high complexity, which is not easy for

implementation. Comparing all of three methods, using template matching method is better in the

detection accuracy, but the disadvantage of this method is its complexity and the requirement of

the spike templates, therefore, it is necessary to research a low-complexity template matching-

based spike detection method without foreknowing templates.

Table 2.6 Comparison among amplitude-based, energy-based and template matching-based spike

detection

Type Advantages Disadvantages

Amplitude-based

detection method More mature in application;

easily implemented

Cannot make the spike

classification;

poor accuracy for low-SNR

signals
Energy-based

detection method

Template matching

High detection accuracy for low

SNR signals;

can make the spike classification

Complicated, not easy for

hardware implementation

In section 2.3.1.3, we review several template matching-based spike detection systems. Based on

the review, it can be found that for the template matching-based spike detection methods, the

complexity and detection accuracy are two important factors. First, designing a system with low

complexity can reduce the difficulties of hardware design, especially for the implantable neural

recording devices. Second, the designed system should have high detection accuracy which is the

45

basis of many biomedical researches. In Table 2.7, we compare the complexity and detection

accuracy of several automatic template matching-based spike detection systems. From the

comparison, it can be found that the complexity of system can be further reduced, and detection

accuracy also can be improved.

Table 2.7 Comparison of several template matching-based spike detection systems

Reference Detection
method Types Complexity Accuracy

[112]
Fast

normalized
correlator

Automatic

(N+1)*multiplication +
(N+1)*addition +

1*division + 1* squared
roota

TPR : 0.84(SNR =3)
FPR : 0.01(SNR =3)

[115] M-sorter Non-
automatic

> (N*multiplication +
(N+1)*addition)

TPR : ≈ 0.85(SNR > 6)
FPR : ≈ 0.2 (SNR > 6)

[169]

Wavelet-
based

template
matching

Non-
automatic

> (N*multiplication +
(N+1)*addition)

TPR : 0.6(SNR = 3)
FPR : 0.04(SNR = 3)
TPR : 0.9(SNR = 5)
FPR : 0.04(SNR = 5)

[170] Deconfusio
n method Automatic

P* (Number of
neuron)2 * length of the

filtera

TPR : 0.86(SNR =3)
FPR : 0.04(SNR =3)

Our
system

Bayesian
inference-

based
Automatic N*multiplication +

(N+1)*addition

TPR : 0.90(SNR=3)
FPR : 0.04(SNR=3)
TPR : 0.90(SNR=6)
FPR : 0.03(SNR=6)

Moreover, for the template matching-based spike detection method, it can be divided into non-

automatic and automatic template matching. Non-automatic template matching means that the

templates need to be given in advance and template matching means that the templates can be

generated by the device itself. Currently, designing an automatic template matching system is

necessary [112]. For an automatic template matching system, when the templates are not known,

it needs to generate the templates first and the spike sorting needs to be involved. To generate the

spike templates, three are three main steps: spike alignment, feature extraction and spike

classification. For the spike alignment, there are two mean methods: aligning each spike to the

point of its maximum amplitude or the point of maximum slope [88]. Besides, there are several

feature extraction techniques, such as principal components analysis [171], discrete wavelet

transform [172], matched subspace detector [173], etc. In [174] , a method, called discrete

derivatives (DD) method, is described as less complicated in terms of calculation while

46

maintaining fairly high accuracy, and it is suitable for use in the general circuit design. Spike

clustering is the final step to sort out detected spikes from different neurons. The K-means

method is a sophisticated method for the spike clustering, but it needs to manually set k in order

to determine the number of required clusters [128] [175]. The Osort algorithm, introduced in

section 2.3.2.1, can automatically determine k, which can be used for the automatic template

matching system [116].

From above literature review, it can be found that to design template matching-based spike

detection system, it has two main challenges. First, it needs to design a low-complexity and high-

detection accuracy system, and second, the templates need to be automatically generated. In

chapter 4, we propose an automatic template matching-based spike detection and classification

system. From the comparison in Table 2.7, the system has a simple structure and fast calculation,

which is appropriate for the hardware design. Besides, our proposed system can automatically

generate templates and perform spikes detection and classification.

47

CHAPTER 3 ARTICLE 1 : NEURAL SIGNAL COMPRESSION USING

A MINIMUM EUCLIDEAN OR MANHATTAN DISTANCE CLUSTER-

BASED DETERMINISTIC COMPRESSED SENSING MATRIX

According to the discussion in chapter 2, signal compression is an important signal processing

method for implantable neural recording interfaces. Among different signal compression methods,

compressed sensing technique is a new technique for signal compression, which can be employed

to compress neural signals. For the traditional compressed sensing theory, it is mainly focus on the

sparse signals. However, neural signals are usually not sparse in the time domain but contain lots of

similar non-zero points; therefore, it is necessary to research a method to compress low-sparsity

and non-sparsity signals. Besides, it needs to research a method to compress signals with a large

compression rate and a mall reconstruction error.

In this chapter, we put forward a new method to compress not only a sparse signal but also a non-

sparse signal that has identical points. Firstly, several concepts about the identical items of the

signal are introduced; then, the method to construct the Minimum Euclidean or Manhattan Distance

Cluster-based (MDC) deterministic compressed sensing matrix is given. Moreover, the Restricted

Isometry Property of the MDC matrix is proved. Thirdly, three groups of real neural signals are

used for the validation. Six different random or deterministic sensing matrices under diverse

reconstruction algorithms are used for the simulation. From the simulation results, it can be proved

that the MDC matrix can largely compress neural signals and also have a small reconstruction error.

For a six-thousand-point signal, the compression rate can be up to 98%, whereas the reconstruction

error is less than 0.1. In addition, from the simulation results, the MDC matrix is optimal for a

signal with a long length. Finally, the MDC matrix can be constructed by zero and one; also, it has

a simple construction structure, which is very practicable for the design of an implantable neural

recording device.

48

(Biomedical Signal Processing and Control, publication date: May 2015)

Neural Signal Compression Using a Minimum Euclidean or Manhattan

Distance Cluster-Based Deterministic Compressed Sensing Matrix

Nan Li a*, Mohamad Sawana

a Polystim Neurotechnologies Lab.

Electrical Engineering Dept., Polytechnique Montreal

2900 Edouard-Monpetit, H3T 1J4, Montréal (QC), CANADA

ABSTRACT — Multichannel wireless neural signal recording systems are a prominent topic in

biomedical research, but because of several limitations, such as power consumption, the device

size, and enormous quantities of data, it is necessary to compress the recorded data. Compressed

sensing theory can be employed to compress neural signals. However, a neural signal is usually

not sparse in the time domain and contains a large number of similar non-zero points. In this

article, we propose a new method for compressing not only a sparse signal but also a non-sparse

signal that has identical points. First, several concepts about the identical items of the signal are

introduced; thus, a method for constructing the Minimum Euclidean or Manhattan Distance

Cluster-based (MDC) deterministic compressed sensing matrix is given. Moreover, the Restricted

Isometry Property of the MDC matrix is supported. Third, three groups of real neural signals are

used for validation. Six different random or deterministic sensing matrices under diverse

reconstruction algorithms are used for the simulation. From the simulation results, it can be

demonstrated that the MDC matrix can largely compress neural signals and also have a small

reconstruction error. For a six-thousand-point signal, the compression rate can be up to 98%,

whereas the reconstruction error is less than 0.1. In addition, from the simulation results, the

MDC matrix is optimal for a signal that has an extended length. Finally, the MDC matrix can be

constructed by zeros and ones; additionally, it has a simple construction structure that is highly

practicable for the design of an implantable neural recording device.

Keywords — multichannel neural recording device, low power design, neural signal processing

and compression, deterministic compressed sensing matrix, restricted isometry property.

49

3.1 Introduction

Over the past several years, neural recording and stimulation systems have contributed substantial

benefit to patients who suffer from Parkinson’s disease, major depressive disorder, and epilepsy

[176], [177]. However, research and applications demand an increasing number of requirements,

which implies more requirements for the neural recording system. These requirements include

having high-density integration of the recording electrodes [58] [59] (now, to our knowledge, a

neural recording system can integrate more than a thousand electrodes [61]), low temperature (an

increase in the temperature of the cortex must be smaller than one centigrade, which means that

the maximum power density should be 0.8 mW/mm2 for the exposed tissue area [178]), long

device lifetime, and small device size. Among all of these requirements, the power consumption

is one of the most challenging issues. In a patient who requires an implantable medical device,

there must be limit to the frequency of replacing the batteries to both reduce the cost of the

surgeries and improve the quality of life. For example, if there is a portable battery that has an

energy density in the range of 1 W-hr/cc, a battery volume on the order of 10 μW average power

per cubic centimeter is required for a 10-year device life span [134]. Moreover, many of the

implantable devices integrate a wireless transmission part, which aggravates the situation of

having stringent energy constraints, because large amounts of recorded data required a very high

carrier frequency, which substantially increases the power consumption of the device [57] [72]

[179]. A common ultra-wideband (UWB) radio exhibits energy-efficiencies in the nJ/bit range,

whereas the power consumption of the other components is 103 times less than that of the UWB

radio [134]. Therefore, a signal reduction strategy for an implantable device should be employed

to minimize the power consumption of the system.

Most of existing methods for implementing integrated data reduction under these constraints

involves detecting neural spikes [83] [106] or extracting the data features of the signal [92] [123].

However, both of these methods cause distortion or loss of the data information. For example, in

a neural spike-detection recorder, the data are obtained only in a time series or as an impulse

signal but not as the signal itself [148]. If the thresholds of the detection are not properly set, then

the spikes cannot be detected. At the same time, the feature extraction requires a period of time to

train. Based on this method, the precision usually cannot be guaranteed, and the hardware design

is also complicated [160]. Therefore, we must find a new method that does not lose the details of

the signal to accomplish the goal of recording the signal.

50

Compressed sensing (CS) technology gives us a new choice for signal compression. In recent

years, this approach has attracted considerable attention in the areas of computer science, applied

mathematics and electrical engineering [131] [140]. CS technology can be divided into three

main parts: sparse signal, signal reconstruction and sensing matrix.

3.1.1 Sparse Signal

CS theory is based on the sparsity of the signal. If a signal Y, which can be found in a basis such

as V = [v1 ,   v2 , v3, ⋯, vn] has a sparse representation, then the signal is called a sparse signal.

Specifically, suppose Y can be described as in (3.1).

 𝑌𝑌 =   𝑉𝑉𝑉𝑉       or       𝑌𝑌 =    ∑ 𝑥𝑥𝑚𝑚𝑣𝑣𝑚𝑚
𝑛𝑛
𝑚𝑚=1

(3.1)

where xi is the coefficient vector for Y under the basis V. If Y is sparse, then the coefficient xi

must be almost zero or negligible, and as a result, they can be omitted without any loss.

If a signal is sparse under some basis, then it can be regarded as a compressible signal. Usually, a

signal is not sparse, but if the basis can be changed, then the sparse representation under the new

basis can be obtained. For example, a sine wave is not sparse in the time domain, but it is sparse

in the Fourier domain.

3.1.2 Signal Reconstruction

There are many reconstruction methods; an example is the ℓ1 (or ℓ2) norm-based reconstruction

method, which searches for the minimum ℓ1 (or ℓ2) value to construct the signal [136] [180]. This

type of algorithm includes the basis pursuit algorithm (BP), matching pursuit algorithm (MP),

orthogonal matching pursuit algorithm (OMP) [181] [182], and threshold-based method (such as

the iterative hard or soft thresholding algorithm [182] [183]). Probability-based reconstruction

methods constitute another type; for example, the sparse Bayesian method uses the maximum

likelihood to reconstruct the signal [184] [185]. As of now, it has been proven that for a k-sparse

signal, if the order of the measurement is 2k, the original signal can be recovered exactly [186].

3.1.3 Sensing Matrix

Not all of the signals are sparse, and the “sparse” basis is usually difficult to find. Although the

“sparse” basis of a signal can be found, how to implement it into a device is still difficult [9]. To

51

compress the non-sparse signal, we introduce a new concept for the compressed sensing, which is

that not only the zero points in a signal can be compressed but also the identical non-zero points

in the signal can be compressed. Therefore, in this article, we construct a deterministic sensing

matrix that is based on this idea to compress the neural signals.

The sensing matrix can be divided into two types: random and deterministic matrices. Currently,

most of the designers use a type of random matrix as a sensing matrix in the system, such as the

sub-Gaussian sensing matrix [134] [148] or the random discrete Fourier transmission matrix

[161]. However, the random matrix has disadvantages. First, storing the random matrix requires a

large amount of space, and the effectively proven random sensing matrices require items with

superior randomness, which causes there to be stringent requirements for the design of a random

number generator. Moreover, a random number generator aggravates the complexity of the

hardware design, especially for an implantable device, because the generator usually has large

power consumption and a large silicon area. Therefore, the current random sensing matrices are

not the best choice for an implantable hardware design.

In addition, a deterministic sensing matrix is discussed as an optional type of sensing matrix. The

advantage of the deterministic matrix is that it can generate the items of the sensing matrix on the

fly without storing the data, and it is also easy to reconstruct the original signal. However, current

deterministic sensing matrices, such as the Discrete Chirp sensing matrix [163], the Reed Muller

sensing matrix [187], and the BCH sensing matrix [164], are also complicated with respect to the

hardware implementation, and they cannot be used for a non-sparse or low-sparse signal;

although a low-density parity-check (LDPC) matrix contains only 0’s and 1’s, the compression of

a non-sparse or low-sparse signal requires a very high-girth sensing matrix that is very difficult to

generate [135] [162]. Therefore, a novel deterministic sensing matrix must be constructed.

Moreover, there are two important contributions in this article. First, we use the similarity that is

in a signal to construct the compression. In fact, a specific neural signal may contain many

identical (or similar) points, and traditional compressed sensing concerns only the zero items in a

signal; it does not concern two identical (or similar) non-zero points in the signal. Therefore, we

research these identical or highly similar non-zero points, i.e., the similarity of the points in a

signal, from the perspective of compressed sensing theory. Additionally, we use the advantages

of the deterministic sensing matrix to construct a sensing matrix that is based on the clustering of

52

the neural signal itself. In brief, the primary contribution of this article is that we design a

deterministic compressed sensing matrix to compress non-sparse or low-sparse signals that have

identical non-zero points, and the compressed signals can be largely recovered.

To illustrate our work, we give definitions and proof for the MDC sensing matrix in section 3.2.

We introduce the dataset of the simulation in section 3.3. The simulation results and a discussion

based on the MDC sensing matrix are given in section 3.4. Finally, in section 3.5, we provide a

conclusion.

3.2 Minimum Euclidean or Manhattan Distance Cluster-Based Deterministic

Sensing Matrix

First, we provide the definitions of several basic concepts and the method of MDC matrix

construction. (Some important variables or symbols are illustrated in Table 3.1).

The most important concept in compressed sensing theory is the Restricted Isometry Property

(RIP), which is shown as follows.

Restricted Isometry Property An M  ×  N sensing matrix Φ is said to satisfy the Restricted

Isometry Property of order k if it satisfies (3.2):

 (1 − 𝜀𝜀𝑘𝑘)‖ 𝑉𝑉 ‖2
2 ≤ ‖ ΦX ‖2

2 ≤ (1 + 𝜀𝜀𝑘𝑘)‖ 𝑉𝑉 ‖2
2   (3.2)

for all of the k-sparse vectors X. The restricted isometry constant εk of matrix Φ lies between 0

and 1. The restricted isometry constant εk, k ∈ (1, n) of sensing matrix Φ is defined as (3.3):

 εk(Φ) = max
|𝑇𝑇|≤𝑘𝑘

�Φ𝑇𝑇
* ΦT − 𝐼𝐼 T

� = max
|𝑇𝑇|=⌊𝑘𝑘⌋

�Φ𝑇𝑇
* ΦT − I T

� (3.3)

where the maximum is over all subsets []T n⊆ with T k≤ or T k= , and Φ𝑇𝑇 means all M k×

sub-matrices of Φ.

After the presentation of the RIP, we give some basic concepts to construct the MDC matrix.

Definition 1: (Equal Index Permutation) Given a vector X (x1, x2, ⋯, xn) , there exists a

permutation A1  (a1, a2,⋯, at) of the index vector (1, 2,⋯, n), and there is a vector that is based on

this index permutation XA1(xa1, xa2,⋯ , xai ,⋯ , xat
) , xai ∈ X . If every two items from XA1 are

identical under some measures, in other words, xai = xaj, xai , xaj ∈ XA1, A1 is called an equal index

53

permutation. If this measure is based on Euclidean (or Manhattan) distance, then A1 is called an

equal index permutation under the Euclidean (or Manhattan) distance.

Table 3.1 Symbols and variables

Variable

or notation
Meaning

Variable

or notation
Meaning

C One cluster C D(K)
Degree of the sparsity;

D(K) = 1 - (k N⁄)

→ Approximate to K or k Sparsity of the signal

Y
Measurement;

 Y = ΦX
ΦM × N

M rows N columns sensing

matrix

 Φ = [𝜙𝜙1   ;    𝜙𝜙2   ;   ⋯     ;    𝜙𝜙𝑚𝑚]

L(X) Length of a vector X I(C) Size of a cluster C

CR
Compression rate;

CR  =  1- (N M⁄)
Set(C) or S

Cluster set;

Set(C) contains n clusters

MD

Maximum distance;

The maximum value between

two points. There are two

different maximum distances

in this article: inner MD and

0-MD. The inner MD is

mainly the distance between

two points of a vector. The 0-

MD indicates the distance

between one point with the

zero-value point in a vector.

RER

Reconstruction error;

If ∇(Φx) is the reconstruction

of a measurement, so the

reconstruction error is the

Euclidean distance between the

reconstructed signal and the

original signal

 RER   =   ‖∇(Φx) − x‖2 ‖x‖2⁄

54

Table 3.1 Symbols and variables (cont’d)

Variable

or notation
Meaning

Variable

or notation
Meaning

CEER

Compression error of the

expected measurement;

CEER

= ‖E(‖Φx‖2
2) − ‖x‖2

2‖2 ‖x‖⁄

δ(S)

Standard deviation of the size of

all of the clusters in a cluster set,

in other words,

δ(I(C(xA1)), I(C(xA2)),⋯, I(C(xAn)))

Imax(Set(C))
Maximum size of a cluster

in a cluster set
CER

Compression error;

CER = ‖‖Φx‖2
2 − ‖x‖2

2‖2 ‖x‖2
2⁄

R(S) R(S) = Imax(S) (N M⁄⁄) R(K,M,N) R(K,   M, N) =  (k - M) N⁄

A vector that has identical items can be clustered into several clusters according to the minimum

Euclidean or Manhattan distance; thus, some other concepts are given.

Definition 2: Given a vector X (x1, x2, ⋯, xn), there exists an index set that contains M equal

index permutations under the Euclidean (or Manhattan) distance, i.e., AM (A1, A2, ⋯, Am) ,

where Ai = (ai1, ai2, ⋯, aij , ⋯,ait) , aij ∈  (1, 2, ⋯, n) . X can be clustered into M clusters

according to the index AM, in other words, XAM(xA1, xA2, ⋯, xAm). If a1i ∈  (1, 2, ⋯, n)

1. ∀xi ∈ X , xi  ∈  xAi and xi  ∉  xAj , Ai , Aj ∈ AM ; Ai ≠ Aj

2. ∀xi , xj ∈ X, xi  ∈  xAi , xj  ∈  xAj and xi  ≠  xj , Ai , Aj ∈ AM ; Ai ≠ Aj

Thus, AM is called an exclusive equal index permutation set, and vector 𝑉𝑉 is called an M-cluster

exclusive vector under permutation set AM.

Definition 3: (p-dissimilar vector) Assume that a vector X (x1, x2, ⋯, xn) is an M-cluster

exclusive vector under the permutation set AM (A1, A2,⋯, Am), where Ai = (ai1, ai2, ⋯, aij , ⋯,ait), aij ∈

 (1, 2,⋯, n). According to definition 2, X can be clustered into M clusters based on the index AM,

in other word, XAM(xA1, xA2, ⋯, xAm). Let p = M; then vector X is called a p-dissimilar vector. The

size of each cluster CxAi
 is I(CxAi

) =  t, XAi ∈ XAM. So CxAi
 is called a t-large cluster. If t = 1, then CxAi

55

is called a unit-large cluster. If Ai, ∀Ai ∈ AM, is an equal index permutation under the Euclidean

(or Manhattan) distance, then X is called a minimum Euclidean (or Manhattan) distance p-

dissimilar vector.

From the definition above, t ≠ 0, because a cluster contains at least one point.

Lemma 1: Assume that there is a p-dissimilar vector X under permutation

set XAM(xA1, xA2, ⋯, xAm) and that its length is L(X) = n; thus it can be clustered into M clusters,

i.e., Set(C) = {C(xA1),  C( xA2), ⋯, C(xAm)}. Thus, Set(C) satisfies (3.4) and (3.5).

I(C(xA1)) + I(C(xA2)) + I(C(xA3)) + ⋯ + I(C(xAm)) = n (3.4)

And

C(xAi) ∩ C(xAj) = 0 (3.5)

Definition 4: (Equivalent Index Subset Vector) Assume that there are two

vectors, X (x1, x2,⋯, xn) and Y �y1, y2, ⋯, yn�, that have the same length L(X) = L(Y) = n. X is an

M-cluster exclusive vector under permutation set AM (A1, A2, ⋯, Am) ,

where Ai = (ai1, ai2, ⋯, aij , ⋯,ait) , aij ∈  (1, 2,⋯, n) . For a determined subset Ai , Ai ∈ AM , if

{ yai
= r  |     ai ∈ Ai     }  and { yai

=   0  |     ai ∉ Ai     } , then Y is called an equivalent index subset vector of

the vector X.

When r = 1, Y is called the unit equivalent index subset vector. When r = 1/� ‖ Y ‖0, it is called

the normalized equivalent index subset vector. ‖ Y ‖0 is the total number of non-zero elements in

vector Y. For a p-dissimilar M-cluster exclusive vector X, there are M equivalent index subset

vectors.

Lemma 2: Assume that X is an p-dissimilar vector under permutation set AM (A1, A2, ⋯, Am) and

that its length is L(X) = n; then, it can be clustered into M clusters under an exclusive equal index

permutation set, and the equivalent index subset vector of every cluster is YM{Y1,  Y2, ⋯, Ym},

which implies that it satisfies (3.6).

 Yi*  Yj
 ' = 0   , Yi, Yj ∈ YM (3.6)

Proof: If Yi*  Yj
 ' ≠ 0  , then C(xAi) ∩ C(xAj)  ≠  0, but the opposite holds under the assumption in

lemma 1, so Yi*  Yj
 ' = 0.

56

With the definitions above, we can construct the sensing matrix for a minimum Euclidean (or

Manhattan) distance p-dissimilar vector.

Definition 5: (Minimum Euclidean or Manhattan distance cluster-based deterministic sensing

matrix (MDC matrix))

If a vector 𝑉𝑉 is a minimum Euclidean (or Manhattan) distance p-dissimilar vector, then we can

construct a deterministic sensing matrix through the following three steps.

(St1) Divide X into M dissimilar clusters {C(xA1),  C( xA2), ⋯, C(xAm)} based on the exclusive

equal index permutation set XAM(xA1, xA2,⋯, xAm).

(St2) The equivalent subset index vector of these clusters {C(xA1),  C( xA2), ⋯, C(xAm)}  is

{𝜙𝜙1,  𝜙𝜙2, ⋯ , 𝜙𝜙m}, m ∈

.

(St3) Composing the matrix with {𝜙𝜙1,  𝜙𝜙2, ⋯ , 𝜙𝜙m}, m ∈

, which is Φ = [𝜙𝜙1   ;   𝜙𝜙2   ;  ⋯     ;   𝜙𝜙m].

Thus, Φ is called a minimum Euclidean or Manhattan distance cluster-based deterministic

sensing matrix (MDC) matrix. If all of the 𝜙𝜙i , i ∈ [1, m] in the Φ are the normalized

equivalent index subset vectors, so Φ is called a normalized MDC (NMDC) matrix . If all the 𝜙𝜙i ,

i ∈ [1, m] in the Φ are the unit equivalent index subset vectors, so Φ is called a unit MDC

(UMDC) matrix. An example of the construction is shown as follows.

Given a vector X (x1, x2,  ⋯, x6) and that X can be clustered into three clusters based on the

minimum Euclidean (or Manhattan) distance (these clusters are {{x1, x2, x5},{x3, x6},{x4}}) ;

therefore, the NMDC matrix for the vector X is Φ , which is shown in (3.7).

Φ =  �
1 √3⁄ 1 √3⁄ 0

0 0 1 √2⁄
0 0 0

0 1 √3⁄ 0
0 0 1 √2⁄
1 0 0

� (3.7)

To research the property of the MDC matrix, we give a similar definition based on the Restricted

Isometry Property.

Definition 6: (Cluster Restricted Isometry Property (CRIP)) An M  ×  N sensing matrix Φ is said

to satisfy the Cluster Restricted Isometry Property of order k if it satisfies (3.8):

(1 − 𝜀𝜀𝑘𝑘)‖ X ‖2
2 ≤ ‖ 𝛷𝛷X ‖2

2 ≤ (1 + 𝜀𝜀𝑘𝑘)‖ X ‖2
2   (3.8)

for all of the k-sparse p-dissimilar vectors X that construct Φ through definition 5.

57

There are two important points that must be explained. First, every vector X has its own MDC

matrix, and the MDC matrix is a collection of all of the matrices that are built through the

algorithm in definition 5. In the following sections, we show that the MDC matrix obeys the RIP

for its related vector under some prerequisites. Moreover, the vector X is random, but if the

clustering method and the measure are determined, then the MDC matrix of a certain vector X is

determined; thus, the MDC can be regarded as a deterministic matrix.

Lemma 3: The NMDC matrix is a unit tight (or Parseval) frame.

Proof: Given a random vector X    ∈   ℂN, and that the NMDC matrix Φ satisfies (3.9).

 (Φ ∗ ΦΤ) = ∑ 𝜙𝜙𝑚𝑚𝜙𝜙𝑗𝑗 = 𝐼𝐼𝑀𝑀
𝑀𝑀
𝑚𝑚 ,𝑗𝑗 = 1 (3.9)

Vector X   satisfies (3.10).

� |〈X, ϕi〉|2 = X ∗ Φ ∗ ΦΤ  N
i = 1 ∗ X Τ = ‖X‖2

2 (3.10)

Therefore, the NMDC matrix is a unit tight frame.

Lemma 4: The NMDC matrix satisfies the Cluster Restricted Isometry Property definitely.

Proof: From reference [130], for signal X, if the restricted isometry constant of Φ is ε2k and

ε2k < √2 - 1, the solution to the ℓ1 problem is a unique k-sparse solution.

Given a k-sparse p-dissimilar signal, the index set of the non-zero items is T. A new signal X ′is

constructed by the non-zero items X2𝑇𝑇
 ′ ~{X𝑇𝑇,   X𝑇𝑇}. The NMDC matrix of X ′ is Φ′. From Lemma 3,

the NMDC matrix is an unit tight frame, in other words, ‖Φ′X′‖2 =  ‖X ′‖2, which means that

∃  λ > 0,  |ε2k|  < λ; therefore, X2T
 ′ can be recovered through the compression. Moreover, a subset

T of the set 2T can be found to construct Φ, in other words, ‖Φ𝑇𝑇X𝑇𝑇‖2 = ‖X𝑇𝑇‖2 , which means

that ‖Φx‖2
2   = ‖x‖2

2 ; thus, from measurement Y, it can exactly reconstruct X.

The NMDC matrix can compress any signal that contains identical items without considering the

signal to be a sparse signal or not, because the NMDC matrix is a unit tight frame for its

corresponding compressed signal; in other words, the restricted isometry constant εk of the

NMDC matrix is 0. In the simulation, we can find that the UMDC (the items of the UMDC

matrix are 0’s and 1’s) can reconstruct the original signal correctly, which indicates that UMDC

also satisfies the Cluster Restricted Isometry Property.

58

Although the MDC matrix obeys CRIP, we still want to know whether the MDC matrix satisfies

RIP, and we also hope to use the UMDC matrix that contains only zeros and ones. As a result, we

prove that the UMDC matrix obeys RIP when (k − M) N⁄ → 0 and Imax(Set(C)) ≤ N M⁄ .

Theorem 1 [188]: Let ΦM  N be a sensing matrix, and let a vector X (x1, x2,⋯, xn) be a random

vector. Given the following inequality (3.11):

Pr(|‖𝛷𝛷𝑥𝑥‖2
2 − ‖𝑥𝑥‖2

2| ≥ 𝜀𝜀‖𝑥𝑥‖2
2) ≤ 2e−Mc0(ε) (3.11)

where ε  ∈  (0, 1), and c0(ε)  >  0 is a constant that depends only on ε. If (3.11) is satisfied,

then ΦM  N satisfies the concentration inequality.

From reference [188], it can be learned that if we assume a sensing matrix ΦM  N and a k-sparse

signal and if Φ satisfies two conditions: E(‖Φx‖2
2) = ‖x‖2

2 and ‖Φx‖2
2 converges to ‖x‖2

2 ,

then Φ obeys the RIP with a probability of at least 1 − 2exp(−𝑐𝑐0(𝜀𝜀/2)M)(12/𝜀𝜀)k, ε ∈ (0,1). In

Lemmas 5 and 6, we prove both conditions.

Lemma 5: We are given a k-sparse n-length p-dissimilar random vector X(x1, x2,⋯, xn) and that

every item of X is uniformly distributed in the vector X, and it can be clustered into M t-clusters.

Every two items in the vector have the same probability of being identical. The number of non-

zero items in all of the clusters are {l1, l2,⋯, lm} , and their sum is ∑ li  =M
i = 1

 k . Φ{𝜙𝜙1,  𝜙𝜙2, ⋯ , 𝜙𝜙m}  is an M × N UMDC matrix, and Y   =    ΦX . The ℓ1 norm of each

column |𝜙𝜙i|1 =  𝑛𝑛𝑚𝑚,  i ∈ (1, 2, ⋯, n). If (k − M) N⁄ → 0, then E(‖Φx‖2
2) = ‖x‖2

2.

Proof: With the notation presented above, we are given a random vector X(x1, x2,⋯, xn) and

assume that its measurement can change to be (3.12):

E(‖𝑌𝑌‖2
2) = E(∑ |Φ𝑉𝑉|2𝑛𝑛

𝑚𝑚=1) =  E �∑ 𝑥𝑥𝑚𝑚𝑥𝑥𝑗𝑗𝜙𝜙𝑡𝑡𝑖𝑖𝜙𝜙𝑡𝑡𝑗𝑗𝑚𝑚,𝑗𝑗 �

(3.12)

where t is all of the possible permutations of {1, 2, ⋯, N }. The index couple �ti , tj� ranges

uniformly over all of the possible values (1, N) because of the assumption, i.e., the vector X is

random and every item is uniformly distributed in X. Assume one item in the ith cluster is xli. So

(3.12) can change to be (3.13):

59

E(‖𝑌𝑌‖2
2) = ∑ |𝑛𝑛𝑚𝑚𝑥𝑥𝑚𝑚|2𝑛𝑛

𝑚𝑚=1 + E(∑ 𝑥𝑥𝑚𝑚𝑥𝑥𝑗𝑗𝜙𝜙𝑡𝑡𝑖𝑖𝜙𝜙𝑡𝑡𝑗𝑗𝑚𝑚,𝑗𝑗
𝑚𝑚≠𝑗𝑗

)

                                = ∑ |𝑛𝑛𝑚𝑚𝑥𝑥𝑚𝑚|2𝑛𝑛
𝑚𝑚=1 + 1 𝑁𝑁⁄ ∑ (𝑛𝑛𝑚𝑚

2𝑙𝑙𝑚𝑚
2 − 𝑛𝑛𝑚𝑚𝑙𝑙𝑚𝑚)𝑥𝑥𝑙𝑙𝑖𝑖

2𝑀𝑀
𝑙𝑙𝑖𝑖,𝑙𝑙𝑗𝑗=1

            = ∑ |𝑛𝑛𝑚𝑚𝑥𝑥𝑚𝑚|2𝑛𝑛
𝑚𝑚=1 + 1 𝑁𝑁⁄ ∑ (𝑛𝑛𝑚𝑚

2𝑙𝑙𝑚𝑚 − 𝑛𝑛𝑚𝑚)𝑙𝑙𝑚𝑚𝑥𝑥𝑙𝑙𝑖𝑖
2𝑀𝑀

𝑚𝑚=1

 (3.13)

If the sensing matrix is an UMDC matrix, in other words, ni = 1, i  ∈  (1, n), thus, (3.13) can

change to be (3.14):

E(‖𝑌𝑌‖2
2) = E(‖𝛷𝛷𝑉𝑉‖2

2) =  ‖𝑥𝑥‖2
2 + 1 𝑁𝑁⁄ ∑ (𝑛𝑛𝑚𝑚

2𝑙𝑙𝑚𝑚 − 𝑛𝑛𝑚𝑚)𝑙𝑙𝑚𝑚𝑥𝑥𝑙𝑙𝑖𝑖
2𝑀𝑀

𝑚𝑚=1 (3.14)

If we want to obtain E(‖Φx‖2
2) = ‖x‖2

2, the second item (1 𝑁𝑁⁄ ∑ (𝑛𝑛𝑚𝑚
2𝑙𝑙𝑚𝑚 − 𝑛𝑛𝑚𝑚)𝑙𝑙𝑚𝑚𝑥𝑥𝑙𝑙𝑖𝑖

2𝑀𝑀
𝑚𝑚=1) in (3.14)

should be 0. Applying the Cauchy-Schwarz inequality, we can obtain (3.15):

 ∑ (𝑛𝑛𝑚𝑚
2𝑙𝑙𝑚𝑚 − 1)𝑙𝑙𝑚𝑚𝑥𝑥𝑙𝑙𝑖𝑖

2𝑀𝑀
𝑚𝑚=1 ≤ ∑ (𝑛𝑛𝑚𝑚

2𝑙𝑙𝑚𝑚 − 𝑛𝑛𝑚𝑚)𝑀𝑀
𝑚𝑚=1 ∑ 𝑙𝑙𝑚𝑚𝑥𝑥𝑙𝑙𝑖𝑖

2𝑀𝑀
𝑚𝑚=1

                       = (∑ 𝑛𝑛𝑚𝑚
2𝑙𝑙𝑚𝑚 − 𝑛𝑛𝑚𝑚𝑀𝑀𝑀𝑀

𝑚𝑚=1)‖𝑥𝑥‖2
2 (3.15)

(3.15) can change to be (3.16).

1 𝑁𝑁⁄ ∑ (𝑛𝑛𝑚𝑚
2𝑙𝑙𝑚𝑚 − 𝑛𝑛𝑚𝑚)𝑙𝑙𝑚𝑚𝑥𝑥𝑙𝑙𝑖𝑖

2𝑀𝑀
𝑚𝑚=1 ≤ 1 𝑁𝑁⁄ (∑ 𝑛𝑛𝑚𝑚

2𝑙𝑙𝑚𝑚 − 𝑛𝑛𝑚𝑚𝑀𝑀𝑀𝑀
𝑚𝑚=1)‖𝑥𝑥‖2

2 = ((𝑘𝑘 − 𝑀𝑀) 𝑁𝑁)⁄ ‖𝑥𝑥‖2
2 (3.16)

Because k  ≥ M , if (k − M) N⁄ → 0 , then (1 𝑁𝑁⁄ ∑ (𝑛𝑛𝑚𝑚
2𝑙𝑙𝑚𝑚 − 𝑛𝑛𝑚𝑚)𝑙𝑙𝑚𝑚𝑥𝑥𝑙𝑙𝑖𝑖

2𝑀𝑀
𝑚𝑚=1) → 0 , which means

E(‖Φx‖2
2) = ‖x‖2

2.

In the next step, we prove that ‖Φx‖2
2 converges to its expectation E(‖Φx‖2

2).

Theorem 2 [188] [189]: (Self-Avoiding McDiarmid inequality) Let X1,  X2, ⋯, Xm be the

probability space, and define X as the probability space of all distinct m-tuples, which is the

subset of the product set χ = X1 × X2 ⋯ × Xm given by (3.17).

𝑉𝑉 = {(𝑡𝑡1, ⋯ , 𝑡𝑡𝑚𝑚) ∈ ∏ 𝑉𝑉𝑚𝑚
𝑚𝑚
𝑚𝑚=1  s. th.   ∀𝑖𝑖 ≠ 𝑗𝑗:   𝑡𝑡𝑚𝑚 ≠ 𝑡𝑡𝑗𝑗} (3.17)

Let h(t1, ⋯, tm) be a function from the set X to ℝ such that for any coordinate i, given t1, t2 ⋯, ti-1,

| sup
𝑢𝑢∈ 𝑋𝑋𝑖𝑖;𝑢𝑢≠𝑡𝑡𝑛𝑛,𝑛𝑛=1→i

E[ℎ(𝑡𝑡1, ⋯ , 𝑡𝑡𝑚𝑚−1, 𝑢𝑢, 𝑇𝑇𝑚𝑚+1, ⋯ , 𝑇𝑇𝑚𝑚)] 

− inf
𝑙𝑙 ∈𝑋𝑋𝑖𝑖;𝑙𝑙≠𝑡𝑡𝑛𝑛,𝑛𝑛=1→i

E[ℎ(𝑡𝑡1, ⋯ , 𝑡𝑡𝑚𝑚−1, 𝑙𝑙, 𝑇𝑇𝑚𝑚+1, ⋯ , 𝑇𝑇𝑚𝑚)]| ≤ 𝑐𝑐𝑚𝑚 (3.18)

where the expectations are determined by the random variables Ti+1, ⋯, Tm . (For more

information, see in reference [189]). If (3.18) is satisfied, then for any positive 𝛾𝛾, (3.19) can be

obtained.

60

Pr[|ℎ(𝑇𝑇1 ⋯ , 𝑇𝑇𝑚𝑚) − E[(𝑇𝑇1 ⋯ , 𝑇𝑇𝑚𝑚)]| ≥ 𝛾𝛾] ≤ 2exp(−2𝛾𝛾2 ∑𝑐𝑐𝑚𝑚
2⁄)  (3.19)

We use this theorem to prove the concentration inequality.

Lemma 6: Assume that a random vector X ( x1  ,   x2,   ⋯,   xk)  is a p-dissimilar vector and that xi ≠ 0,

Every item of X is uniformly distributed in X, and its MDC sensing matrix is ΦM  N. Assume that

 f(X) = ∑ xi𝜙𝜙pi
k
i = 1 . The cluster set of this vector is Set(C) = {C1, C2, ⋯, Cm} and

 Imax(Set(C)) ≤ N M⁄ . Therefore, ΦM  N satisfies (3.20).

 Pr[|‖𝑓𝑓‖2 − ‖𝑥𝑥‖2| ≥ 𝛽𝛽‖𝑥𝑥‖2]    ≤ 2e−(𝑀𝑀𝑀𝑀(𝛽𝛽2) ) (3.20)

Proof: Assume that Ωk is the set of all k-tuple permutations (t1, t2,⋯, tk), which follows the

definition that all entries of k-tuples of Ωk are distinct. The set Ωk is finite, has a counting

measure and also can be renormalized to have a total mass of 1. Ωk is the probability space of the

random vector X ( x1  ,   x2,   ⋯,   xk)  with k non-zero entries. Let set Tk   ~ (t1, t2, ⋯,  tk) denote a

permutation of {1, 2, ⋯, N }. Because X is random and every item distributes uniformly in X,

(t1, t2, ⋯,  tk) can be regarded as being uniformly distributed in Ωk .

Let f:   tk  →  CM be defined by f(t1, t2, ⋯, tk)= ∑ xi𝜙𝜙pi
k
i = 1 , and let h:   tM   →  ℝ by h(t1, t2, ⋯, tk) =

 ‖ f(t1, t2, ⋯, tk)‖2
2, in other words (3.21).

ℎ�𝑡𝑡1,𝑡𝑡2 ⋯ 𝑡𝑡𝑘𝑘� = � |𝑥𝑥𝑚𝑚|2𝑘𝑘
𝑚𝑚=1 + ∑ 𝑥𝑥𝑚𝑚𝑥𝑥𝚥𝚥� (𝜙𝜙𝑡𝑡𝑖𝑖)

𝑇𝑇𝜙𝜙𝑡𝑡𝚥𝚥
����𝑘𝑘

 𝑚𝑚,𝑗𝑗=1
 𝑚𝑚≠𝑗𝑗

 (3.21)

Then, (3.22) can be obtained:

ℎ(𝑡𝑡1, ⋯ , 𝑡𝑡𝑙𝑙 , ⋯ 𝑡𝑡𝑘𝑘) − ℎ(𝑡𝑡1, ⋯ , 𝑡𝑡𝑝𝑝, ⋯ 𝑡𝑡𝑘𝑘) = {∑ [𝑥𝑥𝑙𝑙𝑥𝑥𝚤𝚤� (𝜙𝜙𝑡𝑡𝑙𝑙 − 𝜙𝜙𝑡𝑡𝑝𝑝)𝑇𝑇𝜙𝜙𝑡𝑡𝚥𝚥
����]𝑚𝑚 𝑤𝑤𝑚𝑚𝑡𝑡ℎ  𝑚𝑚≠𝑙𝑙 +      ∑ [𝑥𝑥𝑙𝑙𝑥𝑥𝚤𝚤� 𝜙𝜙𝑡𝑡𝑗𝑗

𝑇𝑇(𝜙𝜙𝑡𝑡𝑙𝑙 − 𝜙𝜙𝑡𝑡𝑝𝑝)���������������]𝑚𝑚 𝑤𝑤𝑚𝑚𝑡𝑡ℎ  𝑚𝑚≠𝑙𝑙 }

   = {∑ �𝑥𝑥𝑙𝑙𝑥𝑥𝚤𝚤� (𝜙𝜙𝑔𝑔(𝑡𝑡𝑙𝑙,𝑡𝑡𝑗𝑗) − 𝜙𝜙𝑔𝑔(𝑡𝑡𝑝𝑝,𝑡𝑡𝑗𝑗))� +     ∑ �𝑥𝑥𝑙𝑙𝑥𝑥𝚤𝚤� (𝜙𝜙𝑔𝑔(𝑡𝑡𝑗𝑗,𝑡𝑡𝑙𝑙) − 𝜙𝜙𝑔𝑔(𝑡𝑡𝑗𝑗,𝑡𝑡𝑝𝑝))�
(3.22)

Where 𝜙𝜙g(i , j)(x) = 𝜙𝜙i
𝛵𝛵𝜙𝜙j.

Assume that t1, ⋯ , t𝑙𝑙 , ⋯ , tN and tp are all different and |ϕi(x)|i=1, 2⋯, N
2 ≤ M -2η, η ≥ 0.

From the definition of the MDC matrix, it can be obtained that max �𝜙𝜙g(i , j)(x)� =

Imax(Set(C)) and min �𝜙𝜙g(i , j)(x)� = 0; therefore, (3.23) can be obtained.

61

|ℎ(𝑡𝑡1, ⋯ , 𝑡𝑡𝑙𝑙 , ⋯ 𝑡𝑡𝑘𝑘) − ℎ(𝑡𝑡1, ⋯ , 𝑡𝑡𝑝𝑝, ⋯ 𝑡𝑡𝑘𝑘)| ≤ 2|𝑥𝑥𝑙𝑙|∑|𝑥𝑥𝑗𝑗||𝜙𝜙𝑔𝑔(𝑙𝑙,𝑗𝑗)(𝑥𝑥) − 𝜙𝜙𝑔𝑔(𝑝𝑝,𝑗𝑗)(𝑥𝑥)|
    ≤ 2|𝑥𝑥𝑙𝑙|∑|𝑥𝑥𝑗𝑗|  𝐼𝐼𝑚𝑚𝑚𝑚𝑥𝑥(𝑆𝑆𝑆𝑆𝑡𝑡(𝐶𝐶)) 𝑀𝑀−𝜂𝜂

    ≤ 2𝑁𝑁𝑀𝑀−(𝜂𝜂+1)|𝑥𝑥𝑙𝑙| � |𝑥𝑥𝑗𝑗|
𝑗𝑗  𝑚𝑚𝑛𝑛𝑚𝑚  𝑗𝑗≠𝑙𝑙

 (3.23)

Assume that xt𝑙𝑙 is the largest item and has the most identical points in X ; at the same time, xtp has

no identical items in X, which implies the sufficient condition of the Self-Avoiding McDiarmid

inequality. Therefore, we can use this inequality to obtain (3.24),

Pr[|ℎ − E(ℎ)| ≥ 𝛽𝛽‖𝑥𝑥‖2
2] ≤ 2exp(− 𝛽𝛽2‖𝑥𝑥‖2

4𝑀𝑀2(𝜂𝜂+1)

2𝑁𝑁2 ∑ |𝑥𝑥𝑙𝑙|2[∑ |𝑥𝑥𝑗𝑗|𝑗𝑗  𝑎𝑎𝑛𝑛𝑎𝑎  𝑗𝑗≠𝑙𝑙]2𝑘𝑘
𝑖𝑖=1

)  (3.24)

Because

� |𝑥𝑥𝑙𝑙|2𝑘𝑘
𝑙𝑙=1 �∑ �𝑥𝑥𝑗𝑗�𝑗𝑗  𝑚𝑚𝑛𝑛𝑚𝑚  𝑗𝑗≠𝑙𝑙 �2

         ≤        ∑ |𝑥𝑥𝑙𝑙|2𝑘𝑘
𝑙𝑙=1 �∑ �𝑥𝑥𝑗𝑗�𝑘𝑘

𝑗𝑗=1 �2
     ≤     ‖𝑥𝑥‖2

2 × 𝑘𝑘 ×   ‖𝑥𝑥‖2
2 =     𝑘𝑘‖𝑥𝑥‖2

4 (3.25)

Can be combined with (3.25), (3.24) can change to be (3.26).

Pr[|‖𝑓𝑓‖2
2 − 𝐸𝐸(‖𝑓𝑓‖2

2)| ≥ 𝛽𝛽‖𝑥𝑥‖2
2] ≤ 2exp(− 𝛽𝛽2𝑀𝑀2(𝜂𝜂+1)

2𝑁𝑁2𝑘𝑘
)  (3.26)

Now, the statement that ‖Φx‖2
2 converges to E(‖Φx‖2

2) is proved.

From Lemma 5, we can obtain (3.27):

 Pr[|‖𝑓𝑓‖2
2 − ‖𝑥𝑥‖2

2| ≥ β‖𝑥𝑥‖2
2] = Pr[|ℎ − E(ℎ)| ≥ 𝛽𝛽‖𝑥𝑥‖2

2]

≤ 2exp(− 𝛽𝛽2𝑀𝑀2(𝜂𝜂+1)

2𝑁𝑁2𝑘𝑘
)   ≤ 2exp(− 𝛽𝛽2𝑀𝑀2𝜂𝜂+1

2𝑁𝑁2𝑘𝑘
) (3.27)

When 𝜂𝜂  =  0, Φ is the UMDC matrix.

Given the determined values for N and k, let ε(x) =  x 2𝑁𝑁2k⁄ , then (3.27) can change to be (3.28).

 Pr[|‖𝑓𝑓‖2
2 − ‖𝑥𝑥‖2

2| ≥ 𝛽𝛽‖𝑥𝑥‖2
2]    ≤ 2e−(𝑀𝑀𝑀𝑀(𝛽𝛽2) )                (3.28)

Now, we prove that the UMDC matrix obeys the concentration inequality.

As mentioned above, when a matrix obeys Lemmas 5 and 6, it will satisfy the RIP, in other

words, (3.29):

(1 −    𝜀𝜀)‖𝑥𝑥‖2
2 ≤ ‖𝛷𝛷𝑈𝑈𝑀𝑀𝑈𝑈𝑈𝑈𝑥𝑥‖2

2 ≤ (1 + 𝜀𝜀)‖𝑥𝑥‖2
2 (3.29)

with a probability of at least 1 − 2exp(−𝑐𝑐0(𝜀𝜀/2)M)(12/𝜀𝜀)k, ε ∈ (0,1) .

62

After proving the RIP of the UMDC matrix, a small point that we need to mention here is that the

MDC matrix is based on the signal having identical points, but not all of the signals are sparse,

and not all of the signals have the identical points; thus, the signal approximation is needed. In

the following sections, it can be observed that for a neural signal, its approximation vector

contains large numbers of identical points that can be compressed, which makes the neural

signals largely compressed.

3.3 Actual Data and Methods

All of the algorithms, methods and data analysis procedures were implemented in MATLAB

(Mathworks, Natick, MA).

The first dataset is obtained from an adult male rhesus macaque monkey in the Cognitive

Neurophysiology Laboratory of McGill University. The data are from a recording system that

contains 32 extracellular channels with a Utath 10 × 10 microelectrode array implemented in the

prefrontal cortex. The data comprise three different recordings over three trials. The duration of

each trial is 300s. First, data were filtered with a third-order bandpass Butterworth analog filter

that utilized cutoff frequencies of 300 Hz and 7 kHz. Then, the filtered data were amplified with a

gain of 80 db amplification, sampled at 30 kHz and digitized (10 bits per sample).

The second set of data was recorded from the visual cortex of a rat at the Center for Studies in

Behavioral Neurobiology of Concordia University. The researchers used a stainless-steel-tipped

microelectrode that had a shank diameter of 75 μm to record the data. The data were filtered with

a fourth-order bandpass Butterworth analog filter, and the cutoff frequencies were between 150

Hz and 10 kHz. After the filtration, the data were amplified with a gain of 100 db, sampled at 32

kHz and digitized (10 bits). The duration of the recording was 60 s.

The third dataset comes from the NeuroEngineering Lab, University of Leicester [190]. The

dataset comprises the simulated extracellular signals that were recorded from a human medial

temporal lobe using intracranial electrodes. The duration of the signal is ten seconds long. The

data were sampled at 32 kHz, filtered between 300 and 3000 Hz and digitized (12 bits).

First, to imitate similar recording conditions, all of the datasets were refiltered with a fourth-order

non-causal Butterworth high-pass digital filter with a cutoff frequency of 300 Hz and were

resampled at 24 kHz.

63

Then, we randomly selected ten (or five) groups of test data from three datasets and ensured that

the data of every set were used. To construct the MDC matrix, two different clustering methods

were used for the test: one is the core data clustering that we designed, and the other one is the

agglomerative hierarchical clustering. The algorithm of the core data clustering is described in

Table 3.2. Because of the comparison with the sparse signal, we also used an approximation

method that was based on the Manhattan distance to construct the sparse signal. The MDC

matrices in all of the simulations (except for the special explanation) are all UMDC matrices. The

core data clustering uses the Manhattan distance, and the agglomerative hierarchical clustering

uses the Euclidean distance.

Finally, all of the algorithms used in this article are BSBL (Block sparse Bayesian Learning

algorithm), BP (Basis Pursuit algorithm) and OMP (Orthogonal Matching Pursuit algorithm), MP

(Matching Pursuit algorithm), IRLS (Iterative Reweighted Least Square algorithm), StOMP

(Stagewise Orthogonal Matching Pursuit algorithm) and Lasso (Least Absolute Shrinkage and

Selection Operator). BSBL is BSBL_BO (groupStatLoc, learnlambda is 0, prune_gamma is -1,

max_iters is 20, see [191]). BP, OMP, MP, IRLS and StOMP are from [192] using the default

values. Lasso is from [193] using the default values.

3.4 Results and Discussion

In this section, several properties of the UMDC matrix are researched. First, the compression rate

of a neural signal is considered. A comparison between sparsity and similarity in a neural signal

with the Euclidean or Manhattan distance is given. Then, the property of the UMDC matrix is

researched, which includes the RIP, the influence of the length of the signal, the difference

between the NMDC and UMDC sensing matrices and the influence of the sampling rate.

Moreover, the signal reconstruction under different sensing matrices, reconstruction algorithms,

and other conditions is researched. Finally, a comparison between our work and the work from

other literature is given; also, a period of the neural signal and its reconstructed signals is

illustrated.

3.4.1 Compression Rate of the Neural Signal

The traditional compressed sensing theory is based on the sparsity of a signal, which is an

approach that has limitations. Not all of the signals are sparse; thus, the change of the basis of a

64

signal and the approximation are two common methods for signal compression when one wants

to use the compressed sensing technique. However, the change of the basis is complicated, which

is not a good choice for the low-power device design; at the same time, the approximation still

cannot compress large amounts of data, and neural signals in the time domain are an example.

The neural signal in the time domain is not sparse, and using an approximation still cannot

compress the majority of the points. To illustrate this problem, we use 10-group test data (each

group contains ten thousand points) to perform the simulation, and the results are indicated by

Figure 3.1. It can be observed in this figure that the neural signal is not a sparse signal, because

when MD equals 0, the sparsity of the signal is nearly equal to the length of the signal, which

means that the neural signals are not sparse. If the approximation method is not used, then it is

very hard to obtain a zero point. However, even though the approximation method can be used,

less than twenty percent of the points can approximate to zero, when setting the 0-MD

(Manhattan distance) to 2. As mentioned above, if a compressed signal can be recovered exactly,

then the sparsity of the signal must be at least half of the signal. If half of the number of point

must be compressed, then according to the simulation, the 0-MD must be set to 8. This number is

enormous for the simulated neural signal because of the error regarding the original signal.

Therefore, using the sparsity of the neural signal to make the compression is not an optimal

method.

However, the degree of similarity in a neural signal is very high. According to Figure 3.1, using

either the core data clustering or the agglomerative hierarchical clustering can largely compress

the signal. When the inner MD (Manhattan distance) to the core data is 0.1, all of the data can be

clustered into one thousand clusters; at the same time, setting the inconsistency (Euclidean

distance) to be 1 for the agglomerative hierarchical clustering, eighty percent of the points can be

clustered into two thousand clusters. Moreover, because the UMDC matrix obeys the CRIP or the

RIP under two prerequisites, using the UMDC matrix to compress the neural signals is a very

good choice.

65

Figure 3.1 Comparison between sparsity and similarity. In the simulation, for the core data

clustering method, the inner MD is the maximum Manhattan distance between each point to the

core data. For the hierarchical clustering, the inner MD is the inconsistency of each cluster (point)

under the Euclidean distance. For a signal, 0-MD is the Manhattan distance between a point and

the zero.

3.4.2 RIP of the UMDC Matrix

In the last sub-section, the conclusion is obtained that a neural signal can be regarded as a

minimum Euclidean (or Manhattan) distance p-dissimilar vector, which can be clustered into a

small number of clusters; as a result, it can be compressed largely by the UMDC matrix.

Although the CR is massive, it also needs the reconstruction error of the signal to be acceptable,

which means that the UMDC matrix must obey the RIP. According to the proof in section 3.2, if

the UMDC matrix obeys the RIP, there are two prerequisites: (k − M) N⁄ → 0 and

Imax(Set(C)) ≤ N M⁄ . Therefore, in this sub-section, both of the prerequisites are proved.

First, the relationship among K, N, and M, i.e., R(K, M, N), is researched. In section 3.2, if

(k − M) N⁄ → 0, then E(‖Φx‖2
2) = ‖x‖2

2 . We used five groups of neural signals from three

datasets to build the simulation. The length of the signal in every group used for the simulation is

one thousand points. We randomly selected the neural signal and repeated this process one

hundred times to calculate the expectation of the measurement under different values of

R(K, M, N). The simulation results are illustrated in Figure 3.2. In this figure, it can be seen

clearly that when R(K, M, N) gradually decreases, the CEER also decreases without consideration

66

of the sparsity of the signal. When R(K, M, N) = 0, CEER is decreased to be zero. Additionally,

when k is small (for example, 0.2N), the UMDC matrix can compress most of the data with a

small CEER, which means that if the signal is sparser, a larger CR can be applied to compress the

signal. Therefore, the result that (k − M) N⁄ → 0 implies that E(‖Φx‖2
2) = ‖x‖2

2 can be obtained.

Table 3.2 Core data clustering algorithm

A    vector   X(x1, x2,⋯ xn)  ∈   n
 .    Set    parameter   σ ≥ 0 ;  

{C1, C2, ⋯, Cn},  Ct    is   a   cluster ,     t ∈ (1, n); ′  ⇒  ′   means     "add    into"

L(X) = n; k = 1, i = 1

 while   k ≤ n    do

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧ if �xk ∉ Cd  ,   d ∈ (1 , i)�    do

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧

if (i = 1)
xk ⇒ C1

⎩
⎪
⎨

⎪
⎧ for   j =1, 2, ⋯, n   and   j ≠ k

 if � f(�xk – xj �2
 ≤ σ  (or   |xk – xj |1 ≤ σ))  and   xj ∉ C1  �

 then xj ⇒ C1
 end

 i = 1
else

 xk ⇒ Ci+1

⎩
⎪
⎨

⎪
⎧

 for   j =1, 2, ⋯, n   and   j ≠ k
if (f(‖xk – xj ‖2 ≤ σ  (or   |xk – xj |1 ≤ σ))   

and    xj ∉ Cd  ,   d ∈ (1 , i))
then xj ⇒ Ci+1

 end
 i = i + 1

else
k = k + 1

 end

{C1, C2, ⋯, Ci} is one cluster set

67

Figure 3.2 Relationship between CEER and R(K, M, N). The length of the data is 1000; they are

randomly picked from five groups of data, and the process is repeated 100 times. CEER is the

compression error of expected measurement.

Figure 3.3 Relationship between the CER and δ(S) , R(S). Here, N = 1800 and M = 180. δ(S) is

the Standard deviation of the size of all of the clusters in a cluster set, and R(K, M, N) = (k - M) /

N

Moreover, there are more ways in which the clustering influences the CER. Two effects are

researched: one is the extent of the evenness, and the other is the maximum size of the cluster in a

cluster set. In the simulation, we select a period of the signal that has a length of 1800 (N = 1800)

and compress it to 180 points (M = 180). First, the standard deviation δ(S) evaluates the

evenness of the cluster. In Figure 3.3(a), it can be noted that when the δ(S) decreases, the CER

68

also reduces, which means that the cluster is clustered more evenly, and ‖Φx‖2
2 approximates

deeply to ‖x‖2
2. In addition, it can be learned from Figure 3.3(b) that if the value of R(S) becomes

smaller, the CER becomes lower, which proves that when Imax(Set(C)) ≤ N M⁄ , ‖Φx‖2
2 → ‖x‖2

2.

Therefore, if the rows of the UMDC matrix are more even, and the number of the non-zero items

in the row containing the most non-zero items in the MDC matrix is smaller than N M⁄ , then the

UMDC matrix obeys the RIP.

3.4.3 Research on the Signal Reconstruction

In this sub-section, the reconstruction of the compressed signal is researched. We research the

neural signal compression under different (random or deterministic) sensing matrices and when

reconstructed by different reconstruction algorithms; then, we research the core data clustering

and agglomerative hierarchical clustering. Finally, we research the influence of the length of the

signal and compare the UMDC matrix with the NMDC matrix.

First, the UMDC matrix has the smallest RER compared with the random sub-Gaussian sensing

matrix, the random DFT matrix and the LDPC (girth = 10) sensing matrix. To better compare the

different sensing matrices, two groups of signals are constructed: one group is composed of the

non-sparse signals, and the other group comprises the sparse signals for which D(K) = 0.5. In this

simulation, we used ten groups of random signals from three datasets, and the length of every test

signal is 2560. Every signal is randomly selected. Figures 3.4 - 3.6 show all of the comparisons

in which there were five sensing matrices: UMDC, random Bernoulli, random discrete Fourier

transform, random Gaussian and LDPC sensing matrixes. In addition, three different

reconstruction algorithms are used: BSBL, BP and OMP. For the non-sparse signals, Figures

3.4(a), 3.5(a) and 3.6(a) show that the UMDC matrix has the smallest RER, although the

difference is small. Additionally, with the BP algorithm, the RER of the UMDC matrix

approximates zero when the CR is ninety percent, which is enormously better than the other

sensing matrices with the BP algorithm. In addition, with the OMP algorithm, the RER of the

UMDC matrix is obviously superb compared with the other sensing matrices. For the sparse

signals, Figures 3.4(b), 3.5(b) and 3.6(b) show that the advantage of using the UMDC matrix is

not obvious with the BSBL algorithm, which is nearly same with the random Bernoulli sensing

matrix. However, the BP algorithm can excellently reconstruct the compressed signal.

Additionally, when the CR is less than eighty percent, it has the smallest RER when using the

69

OMP reconstruction algorithm. Therefore, the UMDC matrix can be reconstructed by the BP

algorithm exactly with a trivial RER when the CR is less than ninety percent, regardless of

whether the signal is sparse or not; also, the UMDC sensing matrix has the best reconstruction

performance with the BSBL or the OMP reconstruction algorithm when the simulated neural

signal is non-sparse or low-sparse. In summary, using the UMDC matrix and the BP

reconstruction algorithm to compress and reconstruct the neural signal is one of the optimal

choices.

Figure 3.4 Signal reconstruction comparison with the BSBL algorithm: (a) D(K) = 0, (b) D(K) =

0.5

Moreover, two clustering methods are researched. Seven reconstruction algorithms are used for

the comparison, namely, BSBL, BP, OMP, MP, IRLS, StOMP and Lasso. The test data are from

ten groups of random signals. In Figure 3.7, with the same CR, the RER of the UMDC matrix

70

based on agglomerative hierarchical clustering is larger than the UMDC matrix based on the core

data clustering, but the difference of the RER is small, which means that the UMDC matrices

based on both clustering methods have a similar RER. Additionally, the complexity of the two

methods is compared. We compare the algorithms with respect to their running times and

memory space. The running times of the two algorithms are 1.3 ms and 23.4 ms, respectively.

The occupation of memory space for the two algorithms is 468 kB and 1.5 MB, respectively.

Therefore, it can be observed that agglomerative hierarchical clustering is more complicated than

the core data clustering method. In addition, it can be observed that the BP and Lasso algorithms

can excellently reconstruct the compressed signals, which shows that both methods can be chosen

to reconstruct the compressed signals.

Figure 3.5 Signal reconstruction comparison with the BP algorithm: (a) D(K) = 0, (b) D(K) = 0.5

71

Figure 3.6 Signal reconstruction comparison with the OMP algorithm: (a) D(K) = 0, (b) D(K) =

0.5

Third, the UMDC matrix is excellent for a long-length neural signal. Five groups of random

neural signals from three datasets with different lengths are researched. The N in Figure 3.8 is 50;

thus, the lengths are 50, 500, 1000, 2500 and 5000 points. Figure 3.8 shows that under massive

compression, e.g., CR = 90%, when the signal length is 50, the RER is large; however, when the

data length exceeds 500, the RER is negligible (specifically, less than 0.1). In addition, under the

same RER, the longer the signal is, the higher the compression rate, which means that the UMDC

matrix is very suitable for long-length signal compression. For example, in Figure 3.8, under the

same RER of 0.1, a 1000-point signal can be compressed to be 20 points, and a 5000-point signal

can be compressed to be 50 points. Therefore, the UMDC matrix can largely compress a long-

length neural signal.

72

Fourth, the NMDC matrix and UMDC matrix are compared. Ten groups of random neural signals

are used for the simulation. Although all of the simulations are based on the UMDC matrix, it is

still better to research the difference between the UMDC and NMDC matrices. Figure 3.9 shows

clearly that with the BP reconstruction algorithm, the difference in the RERs of the two MDC

matrices is not recognizable, which means that through the BP algorithm, using the UMDC

matrix or the NMDC matrix has the same results. This finding occurs because the UMDC matrix

contains only 0’s and 1’s, which is very useful for the hardware design. Therefore, the unit MDC

matrix is the first choice for an electrical device design.

Figure 3.7 Reconstruction comparison between core data clustering and agglomerative

hierarchical clustering with different reconstruction algorithms: (a) block bayesian learning

algorithm, (b) basis pursuit algorithm, (c) iterative reweighted least square algorithm, (d)

matching pursuit algorithm, (e) iterative threshold-selective projection algorithm, (f) orthogonal

matching pursuit algorithm, (g) least absolute shrinkage and selection operator algorithm

73

Figure 3.8 Comparison among the data with different length, N = 50

Figure 3.9 Comparison between normalized MDC and unit MDC matrices

Finally, the sampling rate does not influence the reconstruction error. A comparison of the

sampling rate, compression rate and reconstruction error is shown in Figure 3.10. From the three

parts of this figure, when the compression rate is determined, the reconstruction error does not

change substantially when there is a change in the sampling rate. In Figures 3.10(a)-(c), when the

sampling rate changes from 100 Hz to 25 kHz and the compression rate is determined, the

reconstruction error does not change when the compression rate is small. Additionally, when the

compression error increases, the RER fluctuates slightly, and the largest difference in the RER is

approximately 0.02, 0.1 and 1, respectively. This finding indicates that under the same

compression rate, the reconstruction error is not influenced by the sampling rate, and also that the

MDC matrix can compress neural signals at a sampling rate of 100 Hz – 25 kHz.

74

Figure 3.10 Comparison of the reconstruction results among sampling rate, compression rate and

reconstruction error under three reconstruction algorithms: (a) BSBL algorithm, (b) BP algorithm,

(c) OMP algorithm

75

3.4.4 Other Comparisons

In this sub-section, we provide a comparison between the MDC matrix and the other matrices.

Then, the results between a 600-point real neural signal and its reconstructions will be shown in

Figure 3.11.

Firstly, a comparison between the MDC matrix and the sensing matrices designed by other

researchers is provided in Table 3.3. The comparison shows that the compared sensing matrices

can compress only a highly sparse signal and that the compression rate depends strongly on the

number of zero points (usually D(K) is larger than ninety percent), which cannot compress a non-

sparse or low-sparse signal at a large compression rate. Nevertheless, the MDC matrix can

compress a non-sparse or low-sparse neural signal with a very high compression rate; also, it has

a very small reconstruction error and can reconstruct the original signal completely. Therefore,

the MDC matrix has an advantage in the compression of non-sparse signals that contain identical

points.

Finally, a comparison between a 600-point neural signal and its reconstructions using the BP

algorithm is given in Figure 3.11. Part (a) of this figure is a 600 non-sparse neural signal. Figures

3.11(b)-(e) shows its reconstructions when CR is 90%, 96%, 98%, and 99%, and the RERs are

0.03, 0.1, 0.2 and 0.4, respectively. From Figure 3.11, it can be noted that when the CR is less

than 96%, the reconstructed signal keeps a large number of details that appear in the original

signal. Additionally, even if the CR is approximately 99%, the spike of the original signal is still

retained very well. Therefore, the MDC matrix can be regarded as one of the optimal choices for

neural signal compression.

3.5 Conclusions

In this article, first, several concepts regarding the construction of the MDC sensing matrix in a

signal are presented. In addition, the construction method of the MDC matrix is given. To prove

the RIP of the UMDC matrix, two prerequisites must be satisfied: the first prerequisite is

that (k − M) N⁄ → 0 , and the second prerequisite is that the clustering must be more even

and Imax(Set(C)) ≤ N M⁄ . When both prerequisites are met, we prove that given a p-dissimilar

vector, the expectation of the measurement equals its ℓ2 norm. Then the concentration inequality

76

and the Self-Avoiding McDiarmid inequality are applied to prove the convergence of the

expectation of its measurement.

Table 3.3 Comparison between the MDC matrix and the other matrices

Ref. Sensing
matrix

Data length
(points) CR (%) D(K) Rec.aOr

RER

[8] DWTa 512 90 N/A 0.2

[163] Chirp sensing
codes 1681 98 0.90 Na

[164] BCH 512 88 0.94 N

[164] Ternary 2744 98 0.99 N

[141] Elliptic curve 512 93 0.97 N

[185] ACa 6561 98 0.99 N

[165] FBa 6400 96 0.99 N

This work MDC 5000 98 0 < 0.1
a DWT is the digital wavelet transform-based sensing matrix. FB is the Fourier-based transform

sensing matrix. AC is the addictive character sequences sensing matrix. Rec. is the reconstruction.

N means that it cannot perfectly recover the original signal

Moreover, five different random or deterministic sensing matrices under different reconstruction

algorithms are given to prove the performance of the compression of the neural signals. To

construct the MDC matrix, we use two clustering methods to construct the MDC matrix: the core

data clustering and the agglomerative hierarchical clustering methods. Throughout the simulation,

the MDC matrix can largely compress a neural signal, and with the BP or Lasso algorithm, the

results of the reconstruction are satisfactory. Additionally, the agglomerative hierarchical

clustering method is more complicated than the core data clustering method; thus, the core data

clustering method is more suitable for hardware design. Second, for an MDC matrix, the longer

the signal is, the larger the compression rate that can be employed under the same reconstruction

error. In addition, it is proven that the UMDC matrix has reconstruction errors that are very

similar to those of the NMDC matrix when using the BP reconstruction algorithm; thus, the

77

UMDC matrix is suitable for the hardware design of a neural recording system. Finally, the

sampling rate has a slight influence on the reconstruction error.

In the end, the MDC matrix is compared with some sensing matrices from the other researchers’

work. From the comparison, it can be observed that the MDC matrix has an advantage in cases

that involve non-sparse or low-sparse neural signal compression. From the simulation results, we

found that the RIP is too strict for the MDC matrix and that it still has some “loose” limitations

for the MDC matrix; as a result, in future work, we will perform more research on these

limitations. Moreover, the neural signal compression device based on the MDC matrix will be

considered for implementation.

Figure 3.11 Comparison of the reconstruction results of a 600-point non-sparse neural signal

using the UMDC matrix under different CRs, and the reconstruction algorithm is the basis pursuit

algorithm: (a) original signal, (b)-(e) are reconstruction results with different CR and (b) CR =

90%, (c) CR = 96%, (d) CR = 98%, (e) CR = 99%

78

CHAPTER 4 ARTICLE 2 : AN EFFICIENT REAL-TIME NEURAL

SPIKE DETECTION METHOD BASED ON BAYESIAN INFERENCE

WITH AUTOMATIC TEMPLATES GENERATION

For neural signal processing inside a neural recording interface, signal reduction is another

important signal processing method. Spike detection and sorting is a common method to reduce the

quantity of recorded data. For the spike detection, there are mainly three categories of methods:

amplitude-based, energy-based and template matching-based spike detection. Among these three

methods: template matching-based method has a better detection accuracy for low SNR signals and

also can make the spike classification., but this method is usually complicated, which is not easy

for hardware application, and also its detection accuracy still can be improved. Therefore, it is

necessary to research a high-efficiency automatic template matching-based spike detection system.

In this chapter, we put forward a novel Bayesian inference-based template matching (BBTM) spike

detection and clustering method to detect and cluster spikes from noisy neural signals. Bayesian

inference is applied to calculate the threshold to detect spikes, and the correlation and distance are

used for spike classification. Additionally, when the templates are unknown, the BBTM method

can automatically generate the templates for spike detection. Signals with different firing rates,

signal-to-noise ratios and spike template generation methods are researched. Compared with some

other popular spike detection methods, the BBTM method has the best detection accuracy. The

false and true positive rates (FPR and TPR) based on the generated templates can reach 0.05 and

0.92 respectively for spike detection, and the average FPR and TPR (AFPR and ATPR) can reach

0.05 and 0.6 respectively for spike classification. Compared with found similar works, our

proposed method displays significant advantages. Based on the analysis and discussion, BBTM

method not only has a simple structure and low complexity, but also has high detection and

classification accuracy.

79

(Biomedical Signal Processing and Control, submission date: February 2016)

An Efficient Real-Time Neural Spike Detection Method based on Bayesian

Inference with Automatic Templates Generation

Nan Lia, Liang Fangb, and Mohamad Sawana

a Polystim Neurotechnologies Lab. Electrical Engineering Dept., Polytechnique Montreal, 2900

Edouard-Monpetit, H3T 1J4, Montréal (QC), CANADA

b State Key Lab. of High Performance Computing National University of Defense Technology

Changsha, Hunan, 410073

ABSTRACT — This paper puts forward a novel Bayesian inference-based template matching

(BBTM) spike detection and clustering method to detect and cluster spikes from noisy neural

signals. Bayesian inference is applied to calculate the threshold to detect spikes, and the

correlation and distance are used for spike classification. Additionally, when the templates are

unknown, the BBTM method can automatically generate the templates for spike detection.

Signals with different firing rates, signal-to-noise ratios and spike template generation methods

are researched. Compared with some other popular spike detection methods, the BBTM method

has the best detection accuracy. The false and true positive rates (FPR and TPR) based on the

generated templates can reach 0.05 and 0.92 respectively for spike detection, and the average

FPR and TPR (AFPR and ATPR) can reach 0.05 and 0.6 respectively for spike classification.

Compared with found similar works, our proposed method displays significant advantages. Based

on the analysis and discussion, BBTM method not only has a simple structure and low

complexity, but also has high detection and classification accuracy.

Keywords — Neural spike detection and classification, spike sorting, template matching,

Bayesian inference, online adaptive neural signal processing

4.1 Introduction

Neural spikes are the electrical signals that neurons generate for communication with each other,

which is important in the study of neuromuscular functions in the nervous systems, where the

brain performs the most complex neural interactions [194] [195]. In many neuroscientific and

clinical research and applications, spike detection is usually the first step in many processes and

80

analyses [196] [197]. Through a multichannel recording device, neural signals can be recorded

from the given region, which helps researchers to investigate the activity of the given function in

the nervous system [47] [198] [199]. To implement neural spike detection, some challenges need

to be overcome. Primarily, the neural spikes should be extracted from the background noise. The

background noise is composed of internal and external noise sources. The internal noise comes

from the electrical noise that is produced in a living body and the external noise is produced by

the recording devices [200]. The noise can contaminate the recorded neural signals, which causes

difficulties in detecting the real spikes; therefore, correctly detecting neural spikes from the

background noise is necessary. Furthermore, recording from a single unit using one electrode, or

from multiple units through arrays of extracellular electrodes, the acquired neural signals are

composite spikes, known as overlapping spikes, which are generated by neurons located near an

electrode, but the spikes from one neuron are usually needed for research, so the separation and

classification of the recorded spikes presents another challenge [201].

In order to improve the performance of neural signal processing, spike sorting is applied on

recorded neural signals, which consists of spike detection and classification. Spike classification

is used to identify the neurons delivering the detected spikes. It involves alignment, feature

extraction, dimensionality reduction and spike clustering [88]. Among these steps, feature

extraction and clustering are the two most important tasks. There are established feature

extraction techniques, such as principal components analysis [171], discrete wavelet transform

[172], matched subspace detector [173], etc. In [174] , the authors present the discrete derivatives

(DD) method which is described as less complicated in terms of calculation while maintaining

fairly high accuracy, and it is considered for use in the general circuit design. Spike clustering is

the final step to sort out detected spikes from different neurons. The K-means method is a

sophisticated method for the spike clustering, but it needs to manually set k in order to determine

the number of required clusters [128] [175]. Some other unsupervised clustering algorithms are

also discussed, such as superparamagnetic clustering [202], mean shift clustering [203],

hierarchical adaptive means clustering [204].

Furthermore, spike detection is the first and an important step in spike sorting, and its goal is to

separate spikes from background noise. Successful spike detection is important for accurate spike

classification. According to previous research done on neural spike detection, it can be mainly

divided amongst three techniques: amplitude-based detection, energy-based detection and

81

template matching. The amplitude-based detection method is largely used and includes root mean

square (RMS) method [205], median absolute deviation (MAD) method [92], and max-min

spread (MMS) sorting method [102]. The aim of the amplitude-based detection technique is

mainly to calculate the standard deviation of the signals [206]. The energy-based detection

method uses the change of the energy of the signal to detect spikes. Standard smooth teager

energy operator (S_STEO) [103], modified smooth teager energy operator (STEO) [90], and

stationary wavelet transform (SWT) [207] are some methods corresponding to this category.

Amplitude-based and energy-based methods have adequate detection accuracy, but when the

signal-to-noise ratio (SNR) decreases, both methods produce poor detection results [208]. Also,

both methods cannot separate overlapping spikes [209]. Therefore, some other methods are

needed to meet the stringent requirements of spike detection.

Template matching is a method that not only has good detection accuracy for low SNR signals,

but also can separate the overlapping spikes. The template matching method applies the

necessary spike templates to make the detections. A typical template matching method is based

on a matching filter, such as the likelihood ratio test (LRT) detection, or the generalized

likelihood ratio tests detection (GLRTs) [111], and it is very important to find a proper threshold

to make the detection. Recently, several articles discuss how to use the Bayesian inference

method to implement spike detection or classification [113] [114] [210]. Also, considering

detection accuracy and the limits of implantable neural recording devices, an unsupervised online

adaptive detection method is needed. When using template matching to detect spikes, the

designed system should be able to generate the templates by itself, so several designers have tried

to design an automatic template-generation system [112] [115] [211], but these systems need to

be less complex and have higher detection accuracy before they see any practical use.

The contribution of this article is that we put forward a new Bayesian inference-based automatic

template matching system intended to implement spike detection. We first discuss the design of a

new threshold-based method using the Bayesian inference-based template matching (BBTM)

method to make the detection. The BBTM method has a simple structure, which has fast

calculation and is appropriate for the hardware design. Also, compared with different kinds of

spike detection methods, the BBTM method has good detection accuracy. Principally, our

designed system is an unsupervised adaptive online system; the system can automatically

generate templates by itself and perform spike detection and classification.

82

Finally, the mathematical formulations and illustrations of the BBTM method are described in

section 4.2. We introduce the dataset of the simulation in section 4.3. The simulation results and

the corresponding discussions are given in section 4.4. In section 4.5, a conclusion is drawn.

4.2 Methods

4.2.1 Models for Spike Generation

In order to imitate the ways of real spike generation and detection, we construct and discuss the

probabilistic models for spike series generation and multi-unit signal recording.

First, we construct the spike series generation model. As mentioned above, acquired signals are

not usually recorded from one single neuron, that is, recorded signals are mixed signals that come

from different neurons. Therefore, the spike-series generation is based on a multi-unit recording.

Supposing M neurons generate M signal waveforms, we define xt as a sampling point from one or

some neuron(s) at sampling time t, that is xt = 1, 2,….., m, where m is one neuron from M

neurons. If m equals 0, then it means that the current point is noise and not from any neurons.

Also, a neuron does not generate another spike within a period of time after generating a spike,

which is known as the refractory period, so the probability of the generation of a spike in the

refractory period is 0 for each neuron. We define the refractory period as L sampling points, and

the set of neurons inside the refractory period Cref can be written as 𝐶𝐶𝑟𝑟𝑚𝑚𝑟𝑟 =  {𝑚𝑚|  ∃𝑡𝑡′ ∈ ℕ,   1 ≤

𝑡𝑡′ ≤ 𝐿𝐿,   𝑥𝑥𝑡𝑡−𝑡𝑡′ = 𝑚𝑚}. If some neurons are not in the refractory period, and the probability of spike

generation of these neurons, Pfire, is identical, then the set of neurons that generate spikes Cfire can

be written as 𝐶𝐶𝑟𝑟𝑚𝑚𝑟𝑟𝑚𝑚 =  {𝑚𝑚|  ∃𝑡𝑡′ ∈ ℕ,   1 ≤ 𝑡𝑡′ ≤ 𝐿𝐿,   𝑥𝑥𝑡𝑡−𝑡𝑡′ ≠ 𝑚𝑚}. Finally, if at the sampling time t,

there is no spike and the probability of the non-spike is 1- MfirePfire , where Mfire is the number of

neurons inside Cfire . In summary, the model of the spike generation can be expressed as (4.1).

 1

1 , if 0

{ | , , } , if

0, if

fire fire

t t L t fire fire

ref

M P m

P x m x x P m C

m C
− −

 − =
= = ∈

∈

(4.1)

Second, we construct the relationship between the recorded signal and the templates. Assume that

the recorded signal at the sampling time t is ft and the template of each neuron is Tm. If the

templates of all neurons have the same length, that is, L1, then the template from each neuron can

83

be written as 𝑇𝑇𝑚𝑚 =   (𝑇𝑇𝑚𝑚[0],   ⋯   , 𝑇𝑇𝑚𝑚[𝐿𝐿1]). Also, the background noise can be regarded as white

Gaussian noise Nt with a standard deviation 𝜎𝜎. Finally, we can use all the templates to construct a

spike series which only contains single and composite spikes (St). Based on the assumptions, we

can construct the relation among the recorded signal, spikes and the noise, that is (4.2),

tt tf S N= + (4.2)

Considering the noise is Gaussian white noise, the recording models can be written in (4.3) [113].

2

2
()1(|) exp()

22
−

= −
sps

t t
t t

S
x

f
P f (4.3)

where xt is the spike template(s) that a spike point belong to at the sampling time t, and St is the

correspondent spike-template points. Specifically speaking, at the sampling time t, a recorded

point may contain only noise point or noise and spike points. If the recorded point ft contains

spike point St (St can be from one unique template or can be composite spike point from several

templates), the noise point can be acquired when the spike point is removed.

4.2.2 Bayesian Inference Analysis

After constructing the recording model, we need to further simplify this model and make it more

practical for use. Considering a period of recorded data point f’, we want to know whether or not

it is the point from a spike, and also we want to find which template the point comes from, that is,

we want to find the maximal conditional probability (' | ')P x f , which can be written as (4.4),

'
' argmax (| ')opt

x
x P x' f= (4.4)

Using the Bayesian inference, we can obtain (4.5):

'

(|) ()' argmax
(' |) ()opt

x i

P f' x' P x'x
P f i P i

=
∑

 (4.5)

where 𝑃𝑃(𝑓𝑓′|𝑥𝑥′) is the data likelihood when knowing the data templates. According to [114],

without considering all unnecessary computation; e.g. the denominator in (4.5), (4.5) can be

simplified to a new function (4.6),

_
() (|) ()F f P f x P x= (4.6)

84

where P(x) is the prior probability of a spike based on a template (Pfire in (4.1)). Combining (4.3)

with (4.6), we can obtain (4.7),

2_

2
1 ()() exp() ()

22
f SF f P x−

= −
sps

 (4.7)

Because 1 2p is an unchanged parameter, it can be omitted; also, we can take the logarithm, so

(4.7) can be further simplified to (4.8),

_ 1 ()*()() ln(()) ln() ln(())
2

f S f SF f F f P x− −
= =− s − +

s
 (4.8)

According to [114], (4.8) can be further simplified to (4.9),

1() (* *) ln(())
2

F f f S S S P x= − + (4.9)

4.2.3 Spike Detection Based on Template Matching

The discriminant for detection is built up. Suppose a spike, Sm, occurs during (' 1, ')t t t L∈ + + and it

contains a complete template Tm from neuron m (m = 1, 2…., n). So Sm can be written as (4.10),

,

,
m

m
m

T no overlap signals
S

T overlap signals

=
+ l

 (4.10)

If there are no overlap spikes, Sm is the only template Tm; if this spike is an overlapping spike

from the templates, λ represents the signals from the other whole or parts of the templates. So

(4.9) can change to (4.11),

1 1() (() () ()) ln(())
2
1 1 1() ln(())
2 2

1 1 1 1() () ln(())
2 2

= + l − + l + l +
s

= + l − − l − l l +
s

l
= − + l − l l − +

s s s

T T
m m m m

T T T T T
m m m m m

T
T T T T m

m m m m

F f f T T T P x

f T f T T T P x

T
f T T T f P x

 (4.11)

where 𝜎𝜎 is the standard deviation of the signal, P(xm) is the prior probability of a spike (point)

from template Tm

In (4.11), (𝐹𝐹(𝑓𝑓) − �𝑓𝑓𝑇𝑇𝜆𝜆 + 𝑇𝑇𝑚𝑚
𝑇𝑇𝜆𝜆 + 1

2
𝜆𝜆𝑇𝑇𝜆𝜆� 1

𝜎𝜎
) is a bounded value; therefore, to simplify (4.11), we

suppose that there exits an α, which satisfy (4.12),

85

1 1() () () ()
2 2 2
α α

− × ≤ − l + l + l l ≤ ×
s s s

T T T T T
m m m m mT T F f f T T T (4.12)

Combining (4.11) with (4.12), (4.13) can be written,

1() () ln(()) ()
2 2 2

T T T T
m m m m m m m mT T f T T T P x T Tα α

− × ≤ − + s ≤ × (4.13)

From (4.13), we extract (4.14)

(1)() ln(()) (1)() ln(())T T T
m m m m m m mT T P x f T T T P x−α −s ≤ ≤ +α −s (4.14)

where 𝛼𝛼 is the threshold control parameter (TCP). Assume ' () T
mF f f T= , we find the discriminant

to make the detection. Also, in the later section, we research and find the TCP value for the best

detection performance.

Moreover, we need to research the cases that include no spikes and only noise. When a period of

the signal only contains noise, () 0T
mE f T = ; therefore, if the signal contains a spike, then '() 0F f ≠ ,

that is, 0 1≤ α < . Now, we find a discriminant to detect the spike. When we do not know which

template a spike comes from, we need to use this discriminant with each template to make the

detection.

4.2.4 Bayesian Inference-based Template Matching (BBTM) Method

From (4.14), we acquire a threshold-based template matching system to detect the spikes. This

method contains two categories: 1) detection with known templates, and 2) detection with

unknown ones. The whole process of the two categories is shown in Figure 4.1. When the

templates are known, two thresholds are calculated to detect a spike. The inner product of the

template is calculated, then the threshold control parameter α is used to adjust the upper and

lower bounds to form two thresholds. The inner product of the signal and the template are also

calculated, and this product is compared with the thresholds. If the product is located between

two thresholds, one spike is detected out.

When the templates are not known, the generation of templates needs to be added. Template

generation can be divided into four steps: spike detection, alignment, feature extraction and spike

clustering. Spike detection can mainly be achieved by the amplitude-based and energy-based

detection methods, which are discussed in a later section. All spikes are aligned by the maximum

86

slope, and the DD method is selected to perform the feature extraction. The last step is using the

K-means method to cluster the spikes and form the templates. When using the K-means method,

the number of templates needs to be given. The K value can be given directly, but the BBTM

method also includes an Osort algorithm to generate the number of templates k. The Osort

algorithm is given in [112] [116].When a spike T is detected, the Euclidean distances between T

and the core points of all the clusters D is calculated. If this distance is larger than the threshold

η1, then a new cluster is created, or else, this spike is clustered into the correspondent cluster, then

we recalculate the distance of all the clusters Dc. If Dc is smaller than the threshold η2, then two

clusters are merged. To simplify the calculation, we assume η1 = η2 , and they are based on the

variances of the detected spikes [116]. After generating the templates, the spike detection is the

same in the case of detection with known templates.

Figure 4.1 Block diagram of proposed methods (a) BBTM method (b) Osort algorithm

87

Beyond detecting the spikes out, it needs to know the detected spikes belong to which template,

that is, the spike classification is needed. We use two factors, correlation and distance, to perform

the spike clustering. Two thresholds, ρ1 and ρ2, are first used to cluster the spikes. Based on the

experimental data, ρ1 is chosen as 0.8 and ρ2 is chosen as 0.5. After the first step, we use another

parameter 𝛿𝛿𝑚𝑚 to cluster the spikes, 𝛿𝛿𝑚𝑚 is shown in (4.15).

* *(1 ') * * , (1,)i i i i ia c b d a c b d i Mδ = + − = + ∈ (4.15)

where ci is the correlation coefficient between the detected spikes and the templates, di’ is the

normalized minimum distance between the detected spikes and the templates, a and b are weight

parameters, and we use two experimental coefficients, that is, a = b =1. If ci and di between a

detected spike and one template are bigger than ρ1 and ρ2, then we consider that this spike comes

from that template. If ci or di do not exceed the correspondent thresholds, then we classify this

spike within the template that corresponds to the largest 𝛿𝛿𝑚𝑚.

4.3 Test Dataset

Algorithms, methods and data analysis procedures for the proposed design were developed

within MATLAB environment. The corresponding software and programs are running on a 3.4

GHz Intel I7 processor with 16 Gb of main memory.

To better evaluate the detection performance, we used synthetic neural signals that come from

real recorded neural signals. With the synthetic data, we can build signals with different FR,

SNRs, etc.

The neural signal dataset is acquired from the prefrontal cortex of an adult male rhesus macaque

monkey (Cognitive Neurophysiology Laboratory, McGill University). The recording circuit

contains 32 extracellular channels with a Utath 10×10 microelectrode array. The available dataset

includes three different recordings over three trials. The duration of each trial is 300s. The data,

firstly, were filtered with a third-order bandpass Butterworth analog filter with cutoff frequencies

of 0.3 and 7 kHz. Then, the filtered data were amplified with a gain of 80 db amplifier, sampled

at 30 kHz and digitized (10 bits per sample).

To imitate similar detection conditions, all the datasets were refiltered with a fourth-order non-

causal Butterworth high-pass digital filter with a cutoff frequency of 300 Hz, resampled at 24

88

kHz and requantized with 10 bits per sample. Then, we extract the neural spikes. The spikes are

selected from thirty-two groups of real neural signals that are described above. We first detected

spikes, then we performed the feature extraction and clustering; at last, we selected three different

groups (templates) of spikes to build composite signals. The length of a neural spike series is 2

ms (48 samples per spike).

After the construction of the spike series, we inserted them into the white Gaussian background

noise. Signals from one neuron are first built, which is achieved by inserting one unique spike

template into the background noise with a Poisson firing model using a refractory period of 2 ms,

and the firing rate is set between 10 and 100 spikes per second. The prior probability P(x)

depends on the firing rate and can be regarded as a constant [114]. In this article, we assume that

all the neurons have the same firing rates. At the sampling rate of 24 kHz, P(x) are set as two

constant values, 0.02 and 0.2, for the firing rates 10 and 100. To imitate composite signals from

three neurons, three groups of the constructed neural signals built with three different templates

are synthesized to be the final three-neuron composite neural signals. Also, we build four groups

of signals with an SNR (see (4.16)) from 3 to 6 [90] [96]. This definition of SNR is a good

choice for the estimation of spike detection, because it prevents errors from the relative frequency

of spikes of different amplitudes [96].

Maximum magnitude of thespike waveformSNR =
Standard deviation of background noises

 (4.16)

To evaluate the detection performance, we use a receiver operation characteristic (ROC) curve.

The true positive rate (TPR) is the ratio between the number of the spikes that are correctly

detected out (True positive, TP) and the number of spikes that are not detected (False negative,

FN), and false positive rate (FPR) is the ratio between the number of times that noise is detected

as spikes (False positive, FP) and the number of times that noise is correctly detected as noise

(True negative, TN). Both ratios are defined in (4.17) and (4.18).

()TPR TP TP FN= + (4.17)

()FPR FP FP TN= + (4.18)

Also, to evaluate the classification accuracy of each neuron, we use the average true positive rate

(ATPR) and the average false positive rate (AFPR). ATPR and AFPR for three neurons are

89

defined in (4.19) and (4.20).

 1 2 3() 3ATPR TPR TPR TPR= + + (4.19)

 1 2 3() 3AFPR FPR FPR FPR= + + (4.20)

4.4 Results and Discussion

In this section, we analyze the accuracy of the neural spike detection using known and unknown

templates. The analysis is based on different firing rates. We select several related methods: RMS,

MAD, MMS, S_STEO and STEO to make comparisons. For the case of unknown templates, we

compare BBTM with other spike detection methods based on the signals with an SNR from 3 to

6. Additionally, we discuss the classification accuracy of the detected spikes and the influence of

the TCP. Finally, we give results about the spike detection and classification of real neural

signals.

4.4.1 Spike Detection with Known Templates

We compare the detection accuracy between BBTM and other detection methods using the

signals with an SNR from 3 to 6. The firing rate of the signal is 10 in Figure 4.2. In Figure 4.2(a),

it can be seen that when the FPR equals 0.05, the BBTM method has the highest TPR around

0.95, which is nearly two times larger than the amplitude-based methods. The second largest TPR

is the amplitude-based method, and for the three amplitude-based methods, the detection

accuracy is almost the same, which is around 0.45. The third largest TPR is among the energy-

based detection methods (S_STEO and STEO), which are around 0.2. Moreover, in Figures

4.2(b)-(d), when the FPR equals 0.05, for the signals with SNR 4-6, the TPRs gradually increase,

which are very close to 1 when using the BBTM method. For the three amplitude-based spike

detection methods, the TPRs increase from 0.65 to 0.85 when the SNR increases from 4 to 6. For

the energy-based method, we acquire similar results, and the TPRs increase with the rise of the

SNR. Therefore, we can make two conclusions that for a signal with the firing rate of 10, the

BBTM has the best detection accuracy under a small FPR, and also with the increase of the SNR,

the detection accuracy of all the detection methods increases, but for the BBTM method, the

difference in the detection accuracy is small. Finally, in our simulation for a three neuron

composite signals, comparing with the dot product of the template vector (𝑇𝑇𝑚𝑚
𝑇𝑇𝑇𝑇𝑚𝑚), the second

90

item (𝜎𝜎𝑙𝑙𝑛𝑛(𝑃𝑃(𝑥𝑥)) ) of discriminant is usually very small.

Figure 4.2 Comparison between BBTM and MAD, MMS, RMS, S_STEO and STEO methods

with firing rate equaling 10, (a) SNR = 3, (b) SNR = 4, (c) SNR = 5, and (d) SNR = 6

Moreover, all the methods are compared using the signal with a firing rate of 100. First, in Figure

4.3, it can be seen that when FPR equals 0.05, for all the simulated methods, the detection

accuracy is worse than the signal with firing rate 10. For the BBTM method, when the FPR and

the SNR equals 0.05 and 3, the TPR is around 0.9, and the difference between the firing rate 100

and 10 is small, which can be regarded as negligible. When the SNR increases, the TPR also

increases. Furthermore, when the FPR equals 0.05 and SNR of signals equals 3-6, the TPRs of

the other five methods are low for both firing rate 10 and 100, which is obviously smaller than

that of BBTM method. Therefore, we can conclude that, when the firing rate becomes higher, the

BBTM has the best detection accuracy under a small FPR, though the detection accuracy of all

methods decreases, but the BBTM method still maintains high detection accuracy, which means

the BBTM method is robust.

91

4.4.2 Spike Detection with Unknown Templates

When the spike templates are not known, they need to be first generated. In this section, we

mainly discuss how to use two kinds of spike detection methods, MMS and S_STEO methods, to

perform the spike detection when the spike templates are not known, and we also use the signals

with an SNR from 3 to 6, and firing rates of 10 and 100. For both MMS and S_STEO methods,

there is a coefficient P to adjust the threshold to make the detection, which causes changing

detection accuracy [96].

Figure 4.3 Comparison between BBTM and MAD, MMS, RMS S_STEO and STEO methods

with firing rate equaling 100, (a) SNR = 3, (b) SNR = 4, (c) SNR = 5, and (d) SNR = 6

The spike detection performance using the MMS detection method is researched. When the firing

rate equals 10, it can be found that choosing P as 4 and 5 has the biggest TPR for all the signals

with an SNR from 3 to 6, which can be seen in Figure 4.4. Comparing with Figure 4.2, the TPR

is slightly smaller than that of the known templates. When the FPR is 0.05, the TPR exceeds 0.9

for the signal with an SNR from 3 to 6 in Figure 4.4. Therefore, when using the MMS method for

detection, choosing 4 or 5 is the best option. Also, it can be gathered that for a signal with a large

92

SNR, the TPR is also large. When the firing rate and the FPR equal 100 and 0.05 respectively, in

Figure 4.5, if P equals 4, then the TPR is the largest, which is around 0.5. For the signals with

SNR 4 and 5, P’s equaling 3 and 4 have the biggest TPR, which is around 0.6. For the signal with

SNR 6, a P equaling 4 has the largest TPR, which is around 0.7. Comparing with Figure 4.3, it

can be found that when FPR equals 0.05, the BBTM method has better detection performance.

Third, considering both cases, choosing P as 4 or 5 is the best choice for detection when using the

MMS method.

Figure 4.4 BBTM spike detection using MMS to generate spike templates with firing rate

equaling 10, (a) SNR = 3, (b) SNR = 4, (c) SNR = 5, (d) SNR = 6

For a better comparison, we use the energy-based method, STEO, to generate the spike template.

In Figure 4.6 and Figure 4.7, it can be found that when firing rate and FPR equal 10 and 0.05

respectively, the TPR is less than 0.2 for the signal with an SNR from 3 to 6, but when firing rate

reaches 100, the TPR reaches around 0.9; especially, when P equals 4 and 5, the TPR can reach

the highest detection accuracy, so 4 or 5 can be chosen to generate the spike templates.

Considering the detection accuracy of MMS and STEO methods, it can be found that using

93

STEO has better detection accuracy when the firing rate is large. When the firing rate is 10, the

detection accuracy largely decreases, and the difference in detection accuracy for the MMS

method between firing rates 10 and 100 is smaller than that of the STEO method, so using the

MMS method for detection is more robust.

Figure 4.5 BBTM spike detection using MMS to generate spike templates when firing rate equals

100, (a) SNR = 3, (b) SNR = 4, (c) SNR = 5, and (d) SNR = 6

Moreover, using the BBTM method with the unknown templates yields better detection accuracy

compared with the amplitude-based and energy-based methods. When comparing Figures 4.6 and

4.7 with Figures 4.4 and 4.5, it can be found that using the MMS detection in the BBTM method

has better detection accuracy than the one which only uses the MMS detection method. When the

firing rate is 10 and P equals 5, the detection accuracy is larger than that of the RMS, MMS and

MAD methods, especially for an SNR equaling 3 and 4. Also, when firing rate is 100, the

detection accuracy is 3 or 4 times larger than that of the other amplitude-based methods, which

shows the BBTM method has better detection accuracy.

94

4.4.3 Spike Clustering and Threshold Control Parameter

The BBTM method involves spike clustering. The clustering method is described in section 4.3.

Figure 4.8 shows the clustering accuracy based on the MMS and STEO methods, respectively.

Also, in this figure, it can be found that the templates from the MMS method have better

clustering accuracy than that of the STEO method. For the signal with SNR 3 and 4, when AFPR

is 0.05 and P equals 4, the ATPR is more than 0.5, and for the signal with SNR 5 or 6, this rate is

around 0.65. When increasing the AFPR to 0.1, the ATPR is close to or equals 1 for the signal

with an SNR from 3 to 6.

Figure 4.6 BBTM spike detection using STEO to generate spike templates with firing rate

equaling 10, (a) SNR = 3, (b) SNR = 4, (c) SNR = 5, and (d) SNR = 6

95

Figure 4.7 BBTM spike detection using STEO to generate spike templates with firing rate

equaling 100, (a) SNR = 3, (b) SNR = 4, (c) SNR = 5, (d) SNR = 6

Figure 4.8 BBTM spike clustering with MMS-based and STEO-based spike generation methods,

(a) SNR = 3, (b) SNR = 4, (c) SNR = 5, (d) SNR = 6

96

Moreover, the threshold control parameter is researched. From (4.14), TCP is a major parameter

for detecting the spikes. In Figure 4.9, two parameters are used to research this parameter:

FPR/TPR and TPR. It is ideal to find the lowest FPR/TPR with the highest TPR. Figures 4.9(a)

and 4.9(b) are the results using known templates, and α can be chosen as 0.4 for the signals with

the firing rates 10 and 100. Figures 4.9(c) - 4.9(f) show the results with unknown templates and

using MMS methods to generate the templates. Figures 4.9(c), 4.9(e) and Figures 4.9(d), 4.9(f)

are the signals with firing rates of 10 and 100, and the coefficient P equals to 4 and 5. From

Figures 4.9(c) - 4.9(f), a P equaling 5 is more robust than the results of P equaling 4, because for

all the signals with SNR 3-6, we can set a deterministic parameter, which is convenient for the

circuit design. Comparing Figures 4.9(e) and 4.9(f), if we want to set TPR close to 1, then α can

be chosen as 0.7, and for both firing rates and signals with an SNR from 3 to 6, the FPR/TPR are

around 0.1 and 0.2.

4.4.4 Other Important Results and Discussions

The comparison between the original templates and generated templates is given. Figure 4.10

shows original and generated templates with SNRs 3-6 for three neurons. It can be found that the

generated templates have shapes similar to the original templates.

The results of the spike detection and clustering for the signal with SNR 3 are given in Figure

4.11 and Figure 4.12. These two figures show the spike detection and classification results. It can

be seen that for the signal with an SNR equaling 3, all the spikes are almost detected out, and that

the BBTM method has good classification accuracy.

Finally, we compare our method with some other automatic template matching spike detection

and clustering methods. Complexity and detection accuracy are compared among all these

methods. Considering the complexity, it can be found that our proposed method has less

calculation from Table 4.1, and the real computation time of the BBTM method is 1.2 ms. Also,

comparing the TPRs and FPRs of the methods, when the SNR equals 3 and FPR equals around

0.03 respectively, BBTM method has a relatively higher TPR; therefore, BBTM method has

comparatively low complexity and high detection accuracy.

97

Figure 4.9 Research of the threshold control parameters, (a) firing rate is 10 with known

templates, (b) firing rate is 100 with known templates, (c) firing rate is 10 with MMS template

generation method when P equals 4, (d) firing rate is 100 with MMS template generation method

when P equals 4, (e) firing rate is 10 with MMS template generation method when P equals 5, (f)

firing rate is 100 with MMS template generation method when P equals 5

98

Figure 4.10 The results of the generation of the spike templates, (a)-(c) comparison between

original and generated templates with signals SNR equaling 3, (d)-(f) comparison between

original and generated templates with signals SNR equaling 6. The red color line is the generated

spike templates and the green line is the original spike templates.

99

Figure 4.11 The detection results for the signal with SNR equaling 3, (a) original signals, (b) the

spikes in the signal, (c) the detected spikes

Figure 4.12 The comparison between the classified spikes and the original signals for the signal

with the SNR equaling 3 for three neurons

100

Table 4.1 Comparison between the proposed BBTM method and other similar works

Ref. Detection
method Complexity Accuracy

[112]
Fast

normalized
correlator

(N+1)*multiplication +
(N+1)*addition + 1*division + 1*

squared roota

TPR : 0.84 (SNR =3)
FPR : 0.01 (SNR =3)

[115] M-sorter Not given TPR: ≈ 0.85 (SNR > 6)
FPR : ≈ 0.2 (SNR > 6)

[211] EC-PC spike
detection Not given

TPR: 0.2 (SNR = 3)
FPR : 0.1 (SNR = 3)
TPR: 0.95 (SNR = 6)
FPR : 0.1 (SNR = 6)

[170] Deconfusion
method

P* (Number of neuron)2 * length
of the filtera

TPR : 0.86 (SNR =3)
FPR : 0.04 (SNR =3)

This
work BBTM N*multiplication +

(N-1)*additiona

TPR : 0.90 (SNR =3)
FPR : 0.04 (SNR =3)
TPR : 0.90 (SNR =6)
FPR : 0.03 (SNR =6)

a N is the number of the points, P is the coefficient

4.5 Conclusions

In this article, we described a Bayesian-based template matching spike detection system. This

system not only can detect the spikes with known templates, but can also automatically generate

spike templates to detect and cluster the spikes when the templates are unknown. We compared

the proposed BBTM method with RMS, MAD, MMS, STEO, and S_STEO spike detection

methods. It can be seen that the BBTM method has the best detection accuracy, and it can also

automatically generate the spike templates using amplitude-based and energy-based methods.

Based on the comparison, we chose the MMS method to generate the templates. Using the

BBTM method, the TPR can reach up to 0.95 with an FPR of 0.05, which is a good detection

accuracy. Additionally, the BBTM method provides spike classification. We used correlation and

Euclidean distance to estimate the difference between the templates and the neural signals, and

the thresholds are 0.8 and 0.5 respectively. Based on this method, the clustering accuracy can be

around 1 when FPR equals 0.1 for three-neuron composite signals. The BBTM method has a

short computational time, which is only around 1.2 ms for the spike detection and clustering of

101

each spike. Therefore, the BBTM method not only has a simple structure and low complexity, but

also has accurate spike detection and classification.

102

CHAPTER 5 ARTICLE 3 : A DIGITAL MULTICHANNEL NEURAL

SIGNAL PROCESSING SYSTEM USING COMPRESSED SENSING

Chapters 3 and 4 discuss the signal compression and reduction systems respectively, and it is

necessary to further research the implementation of a neural signal processing system involving

signal compression and reduction for an implantable neural recording interface.

In this chapter, we put forth a single and a multichannel system which includes signal

compression and spike detection. The single-channel signal processing system is composed of

spike detection and data compression blocks. The signal compression block applies the Minimum

Euclidean or Manhattan Distance Cluster-based deterministic compressed sensing matrix that is

proposed in chapter 3. The spike detection block uses amplitude-based spike detection, and

threshold is calculated by root-mean-square method. For the construction of the MDC matrix, the

distance σ is an important parameter, which can take a value of 4 or 5. In addition, based on the

single-channel signal processing system, the sharing strategy is used to construct a multichannel

system, and we analyze the influence of the number of the channels; scan rate on the

reconstruction error, compression rate and power consumption; the influence of the signal-to-

noise ratio; and reconstruction performance on neural signals. Based on the results, a 256-channel

digital signal processing system, implemented in a 130-nm CMOS process, is proposed. This

system has power consumption per channel of 12.5 μW and silicon area per channel of 0.03 mm2,

and provides data reduction of around 90% while enabling accurate reconstruction of the original

signals.

103

(Digital Signal Processing, publication date: August 2016)

A Digital Multichannel Neural Signal Processing System Using Compressed

Sensing

Nan Lia*, Morgan Osborna, Guoxing Wangb, and Mohamad Sawana

a Polystim Neurotechnologies Lab. Electrical Engineering Dept., Polytechnique Montreal

2900 Edouard-Monpetit, H3T 1J4, Montreal (QC), Canada

b Department of Micro/Nano Electronics, School of Microelectronics, Shanghai Jiao Tong

University Dongchuan Road #800, Minhang District, Shanghai, China 200240

ABSTRACT — This paper concerns a wireless multichannel neural recording system using a

compressed sensing technique to compress the recorded data. We put forth a single and a

multichannel system applying a Minimum Euclidean or Manhattan Distance Cluster-based (MDC)

deterministic compressed sensing matrix. The single-channel signal processing system is

composed of spike detection and data compression blocks. For the construction of the MDC

matrix, the distance σ is an important parameter, which can take a value of 4 or 5. In addition, the

sharing strategy is used to construct a multichannel system, and we analyze the influence of the

number of the channels; scan rate on the reconstruction error, compression rate and power

consumption; the influence of the signal-to-noise ratio; and reconstruction performance on neural

signals. Based on the results, a 256-channel digital signal processing system, implemented in a

130-nm CMOS process, is proposed. This system has power consumption per channel of 12.5

μW and silicon area per channel of 0.03 mm2, and provides data reduction of around 90% while

enabling accurate reconstruction of the original signals.

Keywords — Multichannel neural recording, neural signal processing, data compression,

compressed sensing, DSP, VLSI.

5.1 Introduction

Wireless monitoring of neural activity through implantable devices is an important technology

that enables advanced diagnosis and treatment of brain disorders such as Parkinson’s disease,

major depressive disorder and epilepsy [212] [213] [214]. Figure 5.1 shows a typical wireless

neural recording system. However, designing such a wireless neural recording device faces

104

numerous challenges. These include integrating high-density recording electrodes [215] [216],

avoiding the heating of tissues due to energy transfer to power the implants (the maximum power

density should be 0.8 mW/mm2 for the exposed tissue area [178]), maximizing the device

lifetime [57] [217], and minimizing the device size [218]. The conflict between huge data size

and limited energy available for implantable recording devices is one of the principal challenges;

specifically, integrating the necessary wireless transmission component in an implantable device

exacerbates the problem of stringent energy constraints [134]. Therefore, data reduction or

compression strategies should be employed to minimize the power consumption of the dedicated

implantable devices.

Several neural signal reduction or compression techniques are already in use. Signal reduction is

widely used to implement data reduction under certain constraints; methods include neural spike

detection [90] [93] [95] and data feature extraction [88] [122]. Both methods involve locating

important information and eliminating the remaining parts of the signals. However, signal

reduction methods distort or lose some necessary information. For instance, a spike-detection-

based neural recording device usually obtains data as the time series or the impulse, which cannot

provide the details (shape or amplitude) of the original signal or spikes [148]; feature extraction

methods are usually computationally complex, which conflicts with the design of a low-power

device [105]. Therefore, it is necessary to find a new method that does not cause significant loss

of features when recording neural signals.

Data compression methods avoid these drawbacks by preserving maximum information during

the compression phase, which allows recovery of the original signal. Recently introduced

compressed sensing (CS) technique shows great potential in compressing neural signals [131].

CS has low-encoder complexity and universality for different kinds of signals. It has attracted

considerable attention in the areas of computer science, applied mathematics and electrical

engineering [130]. CS preserves the temporal and morphological information of the signal, which

is much better than spike detection or feature extraction methods [138].

5.1.1 Introduction of the CS Technique

In this section, we briefly introduce basic concepts in CS theory. First, the sparsity of the signal is

an important concept. A sparse signal can be compressed through a sensing matrix. Suppose a

vector (or signal) 𝑥𝑥(𝑥𝑥1, 𝑥𝑥2 ⋯ , 𝑥𝑥𝑛𝑛) ∈ ℝ𝑁𝑁 and some items of x are zero or close to zero, so this

105

vector can be called a sparse vector (or signal). If x is not sparse in the current basis, but it is

sparse under some bases, then it still can be regarded as a sparse signal. For example, suppose a

basis 𝛹𝛹𝑁𝑁×𝑇𝑇, in which 𝑥𝑥 = 𝛹𝛹𝑧𝑧 can be sparsely represented, so x is sparse under basis 𝛹𝛹.

Figure 5.1 Simplified diagram of a typical wireless neural monitoring system

If 𝑥𝑥(𝑥𝑥1, 𝑥𝑥2 ⋯ , 𝑥𝑥𝑛𝑛) ∈ ℝ𝑁𝑁 is sparse, then it can be compressed through a sensing matrix 𝛷𝛷𝑁𝑁×𝑀𝑀 to

𝑦𝑦 ∈   ℝ𝑀𝑀. When the sparsity of the signal is large, x can be largely compressed, that is, 𝑀𝑀 ≪ 𝑁𝑁,

which can be described as in (5.1).

 𝑦𝑦 =   𝛷𝛷𝑁𝑁×𝑀𝑀𝑥𝑥

(5.1)

If x is sparse under basis 𝛹𝛹, then (5.1) can change to be (5.2).

 𝑦𝑦 = 𝛷𝛷𝛹𝛹𝑧𝑧 (5.2)

Second, the original signal can be reconstructed by ℓ1 minimization. Given the original sparse

signals and the measurement y, the best way to reconstruct the signal is through ℓ0 minimization

[130]. But finding a solution that approximates ℓ0 minimization is NP (non-deterministic

polynomial-time) hard; therefore, ℓ1 minimization is widely used in signal reconstruction for CS

application [130]. The form of ℓ1 minimization is shown in (5.3). Based on the signal

reconstruction via ℓ1 minimization, many signal reconstruction algorithms exist. ℓ1 minimization

reconstruction algorithms, which directly use framework shown in (5.3), are powerful methods

for computing sparse representations [136]; basis pursuit algorithms (BP) belong to this category

[219]. Greedy algorithms are another category, which includes match pursuit algorithm (MP),

106

orthogonal matching pursuit algorithm (OMP) [181], and iterative hard or soft thresholding

algorithm [182] [183]. Greedy algorithms are computationally efficient, but they are usually

sensitive to noise especially when the original signals are not exactly sparse. By comparison, ℓ1

minimization reconstruction algorithms are more robust to noise but at the price of a higher

computational cost [220]. In addition, other kinds of algorithms can be used to reconstruct the

original signals; for example, a Bayesian-based reconstruction method, called Block Sparse

Bayesian Learning (BSBL) algorithm, uses the maximum likelihood to reconstruct the signal, and

can reconstruct non-sparse signals [184].

𝑥𝑥′ = argmin
𝑧𝑧

‖𝑧𝑧‖1                    subject  to               𝑧𝑧 ∈ 𝐵𝐵(𝑦𝑦) (5.3)

where B(y) = {z : Az = y}.

Third, the design of the sensing matrix is another important topic. The sensing matrix strongly

influences the amount of reconstruction error and also transmission of compressed signals [221].

In CS theory, the sensing matrix 𝛷𝛷 can be a random matrix, such as a sub-Gaussian matrix [222],

a random discrete Fourier transmission matrix [161], or a deterministic matrix, such as the

Discrete Chirp matrix [163], the Reed Muller matrix [187], low-density parity-check (LDPC)

matrix [155]. To correctly reconstruct x, the sensing matrix 𝛷𝛷𝑁𝑁×𝑀𝑀 should obey the Restricted

Isometry Property, which is described as follows.

Restricted Isometry Property An 𝑀𝑀  ×  𝑁𝑁 sensing matrix 𝛷𝛷 is said to satisfy Restricted Isometry

Property (RIP) of k order, if it satisfies (5.4),

 (1 − 𝜀𝜀𝑘𝑘)‖ 𝑉𝑉 ‖2
2 ≤ ‖ 𝛷𝛷𝑉𝑉 ‖2

2 ≤ (1 + 𝜀𝜀𝑘𝑘)‖ 𝑉𝑉 ‖2
2  (5.4)

for all the k-sparse vectors X. The restricted isometry constant 𝜀𝜀𝑘𝑘 of matrix Φ lies between 0 and

1. The process of CS compression is shown Figure 5.2. In this diagram, a sparse signal is firstly

compressed by a sensing matrix. Then the signal is recovered through the ℓ1 norm-based

reconstruction. After the reconstruction, if x is sparse under the basis 𝛹𝛹, it still needs to recover

the signal in the current basis.

Finally, the research in the field of compressed sensing is not just in the theoretical concept but

also in the design of underlying circuitry. There are several articles about the application of the

CS technique [8] [185] [223]. Also, some designers used the CS technique to design the neural

recording circuit [11] [134] [138]. Figure 5.3 shows the principles of use of the CS technique in

107

neural recording circuit design. Figures 5.3(a) and 5.3(b) depict analog and digital single-channel

designs that apply the CS technique. The designs have two common parts: a sensing matrix

generator and a multiplication block. In Figure 5.3, the sensing matrix generator could be a

random or deterministic matrix (vector) generator, but most current designs use a random sensing

matrix to design the circuit. The multiplication block does the matrix multiplication of the

sensing matrix and the signal vector.

Figure 5.2 Framework of the compressed sensing technique

5.1.2 Contribution of This Article

In a recent article, we introduced a sensing matrix construction method called a minimum

Euclidean or Manhattan distance cluster-based deterministic (MDC) sensing matrix [224]. We

proved that the MDC matrix obeys the RIP under two prerequisites; also, we concluded that the

MDC matrix can compress a signal with a relatively large compression rate (CR) and small

reconstruction error rate (RER). We also previously proved that the MDC matrix can be used to

compress signals whether the signal is sparse or not [224].

In this article, our contribution is using the MDC matrix to implement single and multi-channel

digital systems. It can be seen from Figure 5.3 that the process of sensing matrix generation does

not include any information from the signals that need to be compressed, but the MDC matrix

can use the information of the signal. According to [224], we design a digital signal processing

system which applies the MDC matrix; the principle of the circuit is shown in in Figure 5.3(c).

The difference between our design and the ones in Figures 5.3(a) and 5.3(b) is that our design

108

uses the information of the signal itself to generate the sensing matrix. In later sections, we give

details of construction of a digital circuit using the MDC matrix and discuss how to use the MDC

matrix to design a multichannel signal processing system.

5.1.3 Structure of the Article

In the remaining parts of this paper, we briefly reiterate some concepts of the MDC sensing

matrix for the construction of the sensing matrix in section 5.2. We introduce the simulation

dataset in section 5.3. The circuit design and implementation are introduced in section 5.4. The

simulation results and the discussion based on the design of the signal processing system are

given in section 5.5. Finally, in section 5.6, we present our conclusions.

5.2 The Construction of the MDC Matrix

In this section, we briefly review concepts relating to the MDC matrix. The definitions of a p-

dissimilar vector and the construction method of an MDC matrix, which are also discussed in

[224], are given as follows.

Definition 1: (Equal Index Permutation) Suppose for a vector X �x1, x2,⋯, xn�, there exists a

permutation A1  (a1, a2,⋯, at) of the index vector (1, 2,⋯, n), and a vector based on this index

permutation XA1(xa1, xa2,⋯, xat). If every two items from XA1 are identical under some measures,

specifically, xai = xaj, xai , xaj ∈ XA1, A1 is called an equal index permutation. If this measure is a

Euclidean (or Manhattan) measure, A1 is called an equal index permutation under a Euclidean (or

Manhattan) measure.

Definition 2: Suppose for a vector X �x1, x2,⋯, xn�, there exists an index set containing M equal

index permutations under a Euclidean (or Manhattan) measure, i.e. AM (A1,A2,⋯,Am) ,

where Ai = (ai1, ai2,⋯,ait), a1t ∈  (1, 2,⋯, n). X can be clustered into M clusters according to the

index AM, that is, XAM(xA1, xA2,⋯, xAm). If

1. If ∀𝑥𝑥𝑚𝑚 ∈ 𝑉𝑉, 𝑥𝑥𝑚𝑚   ∈   𝑥𝑥𝐴𝐴𝑖𝑖 and 𝑥𝑥𝑚𝑚   ∉   𝑥𝑥𝐴𝐴𝑗𝑗, 𝐴𝐴𝑚𝑚, 𝐴𝐴𝑗𝑗 ∈ 𝐴𝐴𝑀𝑀, then 𝐴𝐴𝑚𝑚 ≠ 𝐴𝐴𝑗𝑗.

2. If ∀𝑥𝑥𝑚𝑚, 𝑥𝑥𝑗𝑗 ∈ 𝑉𝑉, 𝑥𝑥𝑚𝑚   ∈   𝑥𝑥𝐴𝐴𝑖𝑖, 𝑥𝑥𝑗𝑗   ∈   𝑥𝑥𝐴𝐴𝑗𝑗 and 𝑥𝑥𝑚𝑚   ≠   𝑥𝑥𝑗𝑗, 𝐴𝐴𝑚𝑚, 𝐴𝐴𝑗𝑗 ∈ 𝐴𝐴𝑀𝑀, then 𝐴𝐴𝑚𝑚 ≠ 𝐴𝐴𝑗𝑗.

109

So AM is called an exclusive equal index permutation set, and vector 𝑉𝑉 is called an M-cluster

exclusive vector under permutation set AM. This definition ensures that each point is clustered

into a unique cluster, and also two identical points need to be clustered into the same cluster.

Definition 3: (p-dissimilar vector) Suppose a vector X �x1, x2,⋯, xn� is an M-cluster exclusive

vector under permutation set AM (A1,A2,⋯,Am) , where Ai = (ai1, ai2,⋯,ait) , a1t ∈  (1, 2,⋯, n) .

According to definition 2, X can be clustered into M clusters based on the index AM , that is,

 XAM(xA1, xA2,⋯, xAm). Letting p = M, vector 𝑉𝑉 can be called a p-dissimilar vector. The size of

each cluster CxAi
 is I(CxA1

)  =  t, 𝑉𝑉𝐴𝐴1 ∈ 𝑉𝑉𝐴𝐴𝑀𝑀 . So CxAi
 is called a t-large cluster. If 𝑡𝑡 = 1, CxAi

 is

called a unit-large cluster. If Ai, ∀Ai ∈ AM, is an equal index permutation under a Euclidean (or

Manhattan) measure, X is called a Euclidean (or Manhattan) measure p-dissimilar vector.

Definition 4: (Equivalent Index Subset Vector) Suppose two vectors X �x1, x2,⋯, xn� and

 Y �y1, y2,⋯, yn� have the same length L(X) = L(Y) = n. X is an M-cluster exclusive vector under

permutation set AM (A1,A2,⋯,Am), where Ai = (ai1, ai2,⋯,ait), a1t ∈  (1, 2,⋯, n). For a determined

subset Ai, Ai ∈ AM, if { yai
= r  |     ai ∈ Ai     }  and { yai

=   0  |     ai ∉ Ai     } , Y is called an equivalent index

subset vector of the vector X.

When r = 1, Y is called the unit equivalent index subset vector; when r = r/ℓ2(r), it is called the

normalized equivalent index subset vector. For a p-dissimilar vector X, there are M equivalent

index subset vectors.

Definition 5: (Minimum Euclidean or Manhattan distance cluster-based deterministic sensing

matrix (MDC matrix))

If a vector 𝑉𝑉 is a Euclidean (or Manhattan) measure p-dissimilar vector, we can construct a

deterministic sensing matrix through the three following steps.

(Step1).Divide X into M dissimilar clusters {C(xA1),  C( xA2), ⋯, C(xAm)} based on the exclusive

equal index permutation set XAM(xA1, xA2,⋯, xAm).

(Step2).The equivalent subset index vector of these clusters {C(xA1),  C( xA2), ⋯, C(xAm)}  is

{𝜙𝜙1,  𝜙𝜙2, ⋯ 𝜙𝜙m}, m ∈ ℕ.

(Step3).Compose the matrix with {𝜙𝜙1,  𝜙𝜙2, ⋯ 𝜙𝜙m}, m ∈ ℕ, which is Φ = [𝜙𝜙1   ;    𝜙𝜙2   ;   ⋯     ;    𝜙𝜙m].

110

Thus, Φ is called a minimum Euclidean or Manhattan distance cluster-based deterministic

sensing (MDC) matrix. If all of the 𝜙𝜙i , i ∈ [1, m] in Φ are the normalized equivalent index

subset vectors, Φ is called a normalized MDC (NMDC) matrix . If all 𝜙𝜙i , i ∈ [1, m] in Φ are

the unit equivalent index subset vectors, Φ is called a unit MDC (UMDC) matrix.

Figure 5.3 Diagram of the circuit design using the CS technique: (a) analog design, (b) digital

design, (c) proposed digital circuit design using the MDC matrix

Given a vector X (x1, x1, x2, x3 , x1 , x2), (1,2,5) and (3, 6) are two equal index permutations.

According to definition 2, this vector can be clustered into three clusters {𝑥𝑥1, 𝑥𝑥1, 𝑥𝑥1},  {𝑥𝑥2, 𝑥𝑥2}, {𝑥𝑥3}

and its correspondent AM is {(1,2,5),  (3,6), (4)} . X is called a 3-dissimilar vector. The

normalized equivalent index subset vectors of the clusters {𝑥𝑥1, 𝑥𝑥1, 𝑥𝑥1},   {𝑥𝑥2, 𝑥𝑥2}, {𝑥𝑥3} are

{(1/√3, 1/√3, 0, 0, 1/√3, 0),  (0, 0,1/√2, 0, 0,1/√2), (0, 0, 0, 1, 0, 0)}, and the NMDC matrix, Φ,

for the vector X is shown in (5.5).

 𝛷𝛷 =   �
1 √3⁄ 1 √3⁄ 0

0 0 1 √2⁄
0 0 0

0 1 √3⁄ 0
0 0 1 √2⁄
1 0 0

� (5.5)

111

5.3 Materials and Methods

All the algorithms, methods and data analysis procedures were implemented in MATLAB

(Mathworks, Natick, MA). The circuit was described in Modelsim (Mentor Graphics, Wilsonville,

OR) and the post-layout of the circuit was designed in Cadence Encounter (Cadence Design

Systems, San Jose, CA). The power consumption and silicon area of the circuit were estimated by

Synopsys (Synopsys, Mountain View, CA). We used three datasets to make the simulation.

The first dataset was acquired from the prefrontal cortex of an adult male rhesus macaque

monkey (Cognitive Neurophysiology Laboratory, McGill University). The recording circuit

contained 32 extracellular channels with a Utath 10 × 10 microelectrode array. The data were

comprised of three different recordings over three trials. The duration of each trial was 300 s. The

data were filtered initially with a third-order bandpass Butterworth analog filter with cutoff

frequencies of 0.3 and 7 kHz. Then, the filtered data were amplified with an 80 db gain amplifier,

sampled at 30 kHz and digitized at 10 bits per sample.

The second dataset was obtained from the visual cortex of a rat (Center for Studies in Behavioral

Neurobiology, Concordia University). The researchers used a stainless-steel-tipped

microelectrode with a shank diameter of 75 μm to record the data. The duration of the recording

was 60 s. The data were filtered with a fourth-order bandpass Butterworth analog filter and the

cutoff frequencies were between 150 Hz and 10 kHz. After filtering, the data were amplified with

a gain of 100 db, sampled at 32 kHz and digitized at 10 bits per sample.

The third dataset came from a human medial temporal lobe (NeuroEngineering Lab, University

of Leicester [190]). The dataset was acquired by using intracranial electrodes. The duration of the

signal was ten seconds long. The data were sampled at 32 kHz, filtered between 300 Hz and 3

kHz and digitized at 12 bits per sample.

To imitate similar recording conditions, the datasets were refiltered with a fourth-order non-

causal Butterworth high-pass digital filter with a cutoff frequency of 300 Hz and resampled at 25

kHz. Then, we randomly selected five groups of test data from the three datasets and ensured that

data from every set were used. The circuit was designed with VHDL in Modelsim. Then we

employed two different methods to acquire the results: the first involved designing the post-

synthesis circuit (Synopsys) and post-layout circuit (Cadence Encounter), the other involved a

Xilinx Virtex-6 FPGA ML605 evaluation board. The area of our designed digital circuit was

112

estimated by Synopsys Design Vision. The power consumption was estimated by Synopsys

Design Vision and Prime Time. The library for simulation was IBM CMOS130 nm at room

temperature 25 ̊C and the voltage was 1.2 V.

We used two methods to measure power consumption accurately. We first used Design Vision to

estimate the power consumption, then generated 16 groups of the test benches to imitate different

input data under different scan rates. All the input data were used to generate value change dump

(VCD) files which contain the signal activities in one second. Then the VCD files and the circuit

description were input to Prime Time to generate the power consumption. Finally, we compared

and synthesized the power consumption estimates generated by two methods to produce a reliable

estimate of power consumption under different scan rates, and analyzed the relationship between

the scan rate and the power consumption.

The reconstruction algorithms used in this article were BP and Least Absolute Shrinkage and

Selection Operator (Lasso) algorithms. BP , using default values, is from [192]. Lasso, using

default values, is from [193].

The definitions of RER and CR are given in (5.6) and (5.7),

RER   =   ‖𝛻𝛻(𝛷𝛷𝑥𝑥) − 𝑥𝑥‖2 ‖𝑥𝑥‖2⁄ (5.6)

CR   =   1 −  (𝑁𝑁 𝑀𝑀⁄) (5.7)

where 𝛷𝛷𝑀𝑀 × 𝑁𝑁 is the sensing matrix with M rows and N columns, ∇(𝛷𝛷𝑥𝑥) is the reconstruction of

the original signal and x is the signal.

To study the influence of the signal-to-noise ratio (SNR), we built signals with different SNRs.

We first extracted the neural spikes. The spikes were selected from 32 groups of real neural

signals from our first dataset. We detected spikes, then performed feature extraction and

clustering. At last, we selected five different groups (templates) of spikes to build composite

signals. The length of a neural spike series is 2 ms (48 samples per spike). After the construction

of the spike series, we inserted them into Gaussian background noise. Signals were achieved by

inserting one unique or composite spike template(s) into the background noise with a Poisson

firing model using a refractory period of 2 ms, and the firing rate was set at 100 spikes per second.

Finally, we built four groups of signals with an SNR (see (5.8)) from 3 to 6; every group

contained 32 signals to imitate signals from 32 different channels. This definition of SNR is a

113

good choice for the estimation of spike detection, because it prevents errors from the relative

frequency of spikes of different amplitudes [90] [96].

 Maximum magnitude of thespike waveformSNR =
Standard deviation of background noises

 (5.8)

5.4 Circuit Design and Implementation

In this section, we describe the design of a CS-based digital signal processing circuit. A top-level

view of the design is initially introduced, then the design of a spike detection block is reported,

followed by the design of the data compression block using the MDC matrix, and the design of a

multichannel system is detailed.

5.4.1 Single-channel Digital Data Compression System

The diagram of a neural recording circuit is shown in Figure 5.4. The system can be divided into

three parts: front-end (mainly amplifier and filter), signal processing module and transmitter

block. Our design is focused on the signal processing module, which is composed of the spike

detection and data compression blocks.

5.4.2 Spike Detection Block

The spike detection block, shown in Figure 5.5, is used in deterministic single-channel processing.

Both detection and compression blocks work in the single-channel processing, but for the

multichannel processing, only the data compression block works.

For the spike detection block, we chose the root mean square (RMS) method to calculate the

standard deviation (SD). We compared the RMS method with the median absolute deviation

(MAD) method [98], maximum and minimum spread (MMS) sorting method [96], and smooth

Teager energy operator (STEO) method [90] in terms of power consumption, estimation accuracy

and complexity. We found that RMS has the lowest power consumption, the lowest complexity

and an acceptable detection performance. Additionally, the system includes the data compression

block, and spikes can also be detected through the reconstructed signal. Therefore, we chose the

RMS estimator as the detection block. The spike detection block contains three major parts:

1) The standard deviation calculation. The calculation is based on (5.9).

114

 1
1 ()N

nSD x x
N

= −∑ (5.9)

where nx is the data point and x is the expected value of the data. The circuit design

contains an adder, a multiplier, a square root calculator and a shifter.

2) After calculating SD, the threshold is acquired. The calculation of the threshold is based on

(5.10).

 T P SD= × (5.10)

where P is the threshold coefficient, which can be 2 ~ 6. Based on the experimental

comparison, we chose 3 for the design (the user can choose P for their specific usage).

3) When the threshold is computed, the detection is carried out by the spike detector. In our

system, we use a two-bit detection code to express the results shown in Table 5.1. With the

detection code, the spike can be found through a spike-analysis algorithm in a computer.

Figure 5.4 Diagram of the design of digital single-channel circuit

5.4.3 Data Compression Block

The data compression block can be divided into two major parts: the MDC matrix generator and

the matrix multiplication block shown in Figure 5.6.

The MDC matrix generator is an important part of the proposed system. In [224], we described

an algorithm, called the core data clustering algorithm, used to construct the MDC matrix. The

115

core data clustering algorithm is shown in Figure 5.6(a) and the data compression block is based

on this algorithm. This algorithm has two important parameters: the core data (in Figure 5.6(a),

the core data is the first data added into a new cluster) and the distance σ. Figure 5.6(b) and 5.6(c)

show the behavior diagram and the implemented structure of this algorithm. The mathematical

expression of σ is in Figure 5.6(a), which is ‖𝑥𝑥𝑚𝑚 − 𝑥𝑥𝑗𝑗‖ ≤ 𝜎𝜎, 𝑥𝑥𝑚𝑚 , 𝑥𝑥𝑗𝑗 ∈ 𝑥𝑥(𝑥𝑥1, 𝑥𝑥2 ⋯ 𝑥𝑥𝑛𝑛). 𝜎𝜎 determines

the number of the clusters and the sensing matrix for a specific signal. The whole block is

composed of the comparator, the cluster indicator and the decoder. When new data are input, the

enabled comparators make the comparison between the input x and the core data. If x is the first

piece of data, then it is regarded as core data and put into the first cluster; if the input x is inside

the range of the core data under the indicated distance, then it is clustered into the corresponding

clusters. Supposing a unit of core data ci of the cluster Ci and distance l, if 𝑥𝑥 ∈ (𝑐𝑐𝑚𝑚 − l, 𝑐𝑐𝑚𝑚 + l), x is

clustered into the cluster Ci and the output of the cluster indicator is 1, or else, the output is 0. If x

can be clustered into several clusters, for example, (Ci , Ci+1 , Ci+2 , ……, Cj), then x is clustered

into the first cluster Ci . If x cannot be clustered into the existing clusters, then a new cluster is

created with x as the core data.

Figure 5.5 Diagram of the spike detection block

Table 5.1 Detection code of the spike detector

Code 00 01 10 11

Meaning normal points > positive
threshold

< negative
threshold no detection

116

Figure 5.6 Design of the data compression block: (a) core data clustering algorithm [224], (b)

behavior diagram of the core data clustering algorithm, (c) diagram of the digital circuit of the

core data clustering algorithm

After the construction of the MDC matrix, a multiplication block is needed to compress the data.

This block, shown in Figure 5.6(c), implements the multiplication between a signal vector and

the MDC matrix. After compression by an N M sensing matrix, an N-length vector becomes an

117

M-length vector, which completes the compression. We proved in [224] that the UMDC matrix

can be efficiently used to compress signals. Because the UMDC matrix consists of zeros and ones,

it can greatly reduce the complexity of the system (i.e. the power consumption and the area of the

designed circuit). The multiplication block is mostly composed of adders to fulfill the matrix

multiplication.

5.4.4 Multichannel Signal Processing

Based on the discussion of the single-channel processing method, in this sub-section, we

introduce our method of construction of a multichannel system. The multichannel system has two

modes: the first is for signal processing inside a single block (scan mode I), and the second is for

processing between different blocks (scan mode II). In Figure 5.7, we give an example of a 256-

channel system. These 256 channels are divided into 16 main blocks and each block comprises

16 channels. Scan mode I mainly records signals from a small volume of neurons, that is, one

block. In this mode, a block is first chosen from block A to P. Then, a scan rate is selected to read

the input data in this selected block. The second mode is scan mode II. This mode is used to

record signals from different blocks, and it is mainly for the recording of signals from a relatively

larger area or longer distance. In this mode, it needs to select one channel from each 16 blocks

(16 channels from block A to P), for example, choosing A11, B21, …, P23. Then the user chooses

one scan rate to simultaneously record signals from these channels. Finally, the channels inside a

block and the number of the blocks must be chosen. The number of channels inside a block

should be two to the nth power and each block has the same number of channels. The number of

blocks should be two to the mth power. The number of the channels can be calculated by (5.11).

 Total  channels   =     2𝑛𝑛   ×     2𝑚𝑚, 𝑛𝑛  ,    𝑚𝑚 = 1  ,   2 ⋯ ⋯ 𝑇𝑇 ,    𝑇𝑇 ∈ ℕ (5.11)

where n is the inside-block channel control parameter and m is the block control parameter;  2𝑛𝑛 is

the number of the channels in one block and   2𝑚𝑚 is the number of the blocks.

Because we use the sharing strategy to construct a 256-channel system, it is important that both

modes use the scan. The scan refers to the quantity of data used at the input of the system during

a period of time. Scan has two aspects: scan direction and scan rate. The scan direction is

periodically from left to right, and also from top to bottom (e.g. in Figure 5.7, A11 → A14 →

A24 → A21 → A31→ A34 → A44 → A41 → A11 for scan mode I and A → D → H → E → I

118

→ L → P → M → A for scan mode II). This scan direction is used for both scan modes. Scan

rate is related to the sampling rate of one channel and can be chosen by (5.12).

SR =   𝑠𝑠𝑠𝑠𝑚𝑚𝑝𝑝𝑙𝑙𝑖𝑖𝑛𝑛𝑙𝑙  𝑟𝑟𝑠𝑠𝑡𝑡𝑆𝑆    ×    2𝑟𝑟 ,    𝑟𝑟 ≤ 𝑛𝑛   𝑙𝑙𝑟𝑟  𝑚𝑚 (5.12)

where r is the scan rate control parameter, n is the inside-block channel control parameter and m

is the block control parameter. In scan mode I, r should be small or equal to n. In scan mode II, r

needs to be smaller than m. Under both scan modes, the designer can choose different r to adjust

the scan rate. Following from the scan modes, the channel-to-scan (ChS) parameter, shown in

(5.13) needs to be introduced.

 ChS =     2
𝑡𝑡  ×  𝑠𝑠𝑚𝑚𝑚𝑚𝑝𝑝𝑙𝑙𝑚𝑚𝑛𝑛𝑔𝑔  𝑟𝑟𝑚𝑚𝑡𝑡𝑚𝑚

SR
,   𝑡𝑡 = 𝑛𝑛, 𝑚𝑚 (5.13)

where SR is the scan rate, n is the inside-block channel control parameter and m is the block

control parameter. In (5.13), n and m are for scan mode I and II respectively. These parameters

can be used in the following sections to estimate the sampling rate and the number of channels or

blocks.

Figure 5.7 Diagram of the multichannel system

119

5.5 Results and Discussion

In this section, main parameters related to both single-channel and multichannel designs are

highlighted. Then, the results of multichannel simulation and the specific post-layout circuit are

discussed. Finally, the achieved design is compared to similar work in the literature.

5.5.1 Single-channel Data Compression System

In the core data clustering algorithm, the distance between the current data point and the core data

point is an important parameter. This parameter determines the compression rate and

reconstruction error. In Figure 5.8, the relationship between the distance and the compression rate,

and the relationship between the distance and the reconstruction error are presented. Figure 5.8 (a)

shows the relation between the reconstruction error and the distance under two introduced

reconstruction algorithms above: BP and Lasso algorithms. In [224], we showed that the BP and

Lasso algorithms are the two best algorithms to use when constructing the original signal

compressed by the MDC matrix, and now we compare both algorithms with varying distances.

Figure 5.8 (a) demonstrates that with increasing distance, the reconstruction errors under the two

reconstruction algorithms show a nearly linear increase.

Lasso and BP algorithms have similar reconstruction performance at different distances. The

reconstruction error under the BP algorithm is slightly smaller than that under the Lasso

algorithm when distance is greater than 10, but the difference is not obvious when distance is less

than 10. Effectively, both methods can be used to reconstruct original signals. In addition, Figure

5.8(a) shows that when distance equals 4 or 5, the RER is around 0.2, so if a minimal

reconstruction error is necessary, then the distance should be smaller than 5.

The relationship between the compression rate and the distance requires explanation. Figure 5.8

(b) shows two cases: the compressed data alone and the compressed data with the sensing matrix.

If we only consider the compressed data, the compression rate of the signal can be up to 99%, but

when using CS, the unit usually needs the sensing matrix to reconstruct the original signals, that

is, the same MDC is needed to recover the signal, so the sensing matrix has to be transmitted. In

our implementation, we need to transmit the sensing matrix out. If we take into account the

transmission of the sensing matrix, the compression rate can be up to around 60%. Considering

data with a resolution of 10 bits and a distance exceeding 6, in Figure 5.8 (b), the compression

120

rates are close to 90% and 60% when considering only compressed data and compressed data

with the sensing matrix, respectively. After evaluating the compression rate and reconstruction

error, we can conclude that the distance should be chosen as 4 or 5. Under either value, the

compression rate can exceed 50% and the reconstruction error is only around 0.2 using 10-bit

data points. In our design, we chose 4 as the distance for construction of the MDC matrix.

Figure 5.8 Relation between the distance and reconstruction error, compression rate: (a) relation

between the distance and the reconstruction error using BP and Lasso algorithms, (b) relation

between the distance and the compression rate

5.5.2 Multichannel Signal Compression System

It is important to note that the compression block can be shared by several channels, so some

parameters for the design of the multichannel system need to be discussed. As explained above,

121

the multichannel system is mainly controlled by SR and ChS. We are mainly concerned with the

relation between these two parameters and CR, RER and power consumption. In fact, the

reconstruction error does not fluctuate much with the compression rate under different ChS.

Moreover, when ChS increases, the reconstruction rate also increases. In Figure 5.9, when ChS

equals 1, which means that the scan rate is equal to the maximum frequency

(2𝑛𝑛    ×   sampling  rate or 2𝑚𝑚    ×   sampling  rate) and all the data can be recorded and input into the

signal processing system, the RER remains at the minimum value (less than 0.1). When ChS

equals 2 and the scan rate is half of the maximum scan rate, the RER reaches around 35%. When

the scan rate reaches one-fourth and one-eighth of the maximum scan rate, the RERs are around

70% and 90% respectively. When increasing the scan rate to 1/16 and 1/32 of the maximum SR,

the RERs exceed 1, which is not appropriate for use. Therefore, a ChS equals to 1,2,4 or 8 can be

considered for designing the multichannel system. We used BP and Lasso algorithms to recover

the original signals. We found that the algorithms give similar reconstruction performance: in

Figure 5.9(a)-(b), the RERs are very similar under the same CRs. Therefore, reconstruction error

increases with the increase of ChS, and BP and Lasso algorithms can both be applied to recover

the multichannel signals.

Moreover, the influence of the SNR is researched. The relationship between the ChS, SNR and

RER is shown in Figure 5.10. Figure 5.9 shows the RERs are steady when the compression rates

are between 0.05 and 0.9; therefore, we studied the SNR under CR of 0.5 and 0.9. Figure 5.10(a)

demonstrates that when the ChS increases, the RER also increases. Under the same ChS, when

SNR equals 3, the reconstructed error are larger than that of SNR equaling 4 to 6, but the RER

differs little when SNR equals 4 to 6. The same results appear in Figure 5.10(b), in which CR

equals 0.9. Comparing Figure 5.10(a) and 5.10(b), it shows that the results are almost the same.

The simulation results prove that SNR has influence on the reconstruction error, and using high

SNR has better reconstruction performance for each value of ChS, but when the SNR increases to

4 or higher, the reconstruction error does not decrease. In addition, SNR has no obvious influence

on the CR.

Power consumption is a major concern in the design of the multichannel system. Figure 5.11

shows the relationship between the scan rate and power consumption. It can be found that the

power consumption and the scan rate have an approximately linear relationship. In our design,

suppose the sampling frequency is 25 kHz for each channel, and that we want to design a 256-

122

channel system, if we want to acquire the best reconstruction performance, that is, the minimum

RER, we need to use a scan rate of 400 kHz for both modes. The power consumption is around

800 μW in this case, which may be too large for an implantable neural recording system, but it

turns out that using the maximum scan rate is not necessary. When we reduce the scan rate to 200

kHz, 100 kHz and 50 kHz, the power consumption correspondingly reduces to be around 400 μW,

200 μW and 100 μW. Meanwhile, as discussed above, the RER also increases when the scan rate

is reduced. Therefore, the designer needs to make a compromise between the power consumption

and the reconstruction performance.

Figure 5.9 Relationship between the compression rate and the reconstruction error for the

multichannel using: (a) BP algorithm, (b) Lasso algorithm

123

Figure 5.10 Relation among channel-to-scan, SNR and reconstruction error rate for the

multichannel processing using: (a) compression rate = 0.5, (b) compression rate = 0.9

Figure 5.11 Relation between the scan rate and the power consumption

124

Finally, we discuss how to choose the number of the blocks and corresponding channels per

block. The configuration is based on the demands of the research. Suppose the distances between

two electrodes d1 and between two blocks d2 (d1 ≠ d2) are determined; if users want to record the

signals from adjacent channels, they should choose more channels per block; if users want more

information from the channels within a relatively large distance, they should choose more blocks.

Moreover, the design of the channels also depends on the size of the device. In our design, we

think both aspects are important, so we designed a 24   ×   24 array to process the signals.

5.5.3 The Reconstruction under Multichannel Operation

The reconstruction of the original signals under different ChS and an example of a 16-channel (or

16 blocks) reconstruction is described. First of all, the reconstruction of the signals under

different ChS is discussed. Figures 5.12(a)-(1), (b)-(1), (c)-(1), (d)-(1) show the original signals

and Figures 5.12(a)-(2), (b)-(2), (c)-(2), (d)-(2) are their corresponding reconstructions. The

comparison shows that when the ChS equals 1, the reconstructed signal has the best resolution,

and it is nearly identical to the original signal. With increasing ChS, the resolution of the

reconstructed signal is reduced. When ChS equals 4, the RER is around 0.7, but the reconstructed

signal still has good resolution and keeps some details. When ChS equals 8, the reconstructed

signal begins to lose details but keeps the morphology of the original signal. Therefore, when the

design needs more details from a signal, choosing a small ChS (1,2,4) is a good option; when the

details of the signal are not important and the shape of the signal is sufficient, using a larger ChS

(8) is better.

125

Figure 5.12 The comparison between original signals and their reconstructed signals under

different ChS: (a) ChS = 1, (b) ChS = 2, (c) ChS = 4, (d) ChS = 8

126

The ChS can be increased in two ways: reducing the scan rate control parameter, which means

acquiring fewer samples, or keeping the maximum scan rate control parameter and reducing the

sampling rate. A lower sampling rate reduces the power consumption of the analog-to-digital

converter of the system, which is appropriate for a system that does not need to record many

details of signals. If we want to design a frequency-changeable system, it is better to use a higher

sampling frequency.

127

Figure 5.13 An example of the original signals and their reconstructed signals from 16 channels:

(a) channels 1-4, (b) channels 5-8, (c) channels 9-12, (d) channels 13-16

A comparison of the original signals and their reconstructed signals for 16 blocks is given (Figure

5.13). In our design, we chose a ChS equaling 4 and a sampling rate of every channel of 25 kHz

to process the 256-channel system; all the reconstructed signals and their original signals are

illustrated. Figures 5.9 and 5.13 show that the reconstructed signals are very similar to the

original signals from these 16 channels, even where the compression rate is around 90%.

128

5.5.4 Other Important Results

Figure 5.14(a) shows the output format of the system. There are two output ports: one is for the

output of the sensing matrix and detection, and the other is for the compressed data. The first port

outputs the indicator for the start of the sensing matrix (SSM, one-bit), the indicator for the start

of the detection (ID, 1-bit), the matrix results (MR, 5-bit) and the detection results (DR, 2-bit).

There are two formats for this output. The first format output (FO) is 9 bits (including the start bit

and stop bit), when there are no detection results (ID = 0). When detection begins (ID = 1), the

output is 11 bits, which is transmitted as the second format (SO). The second port outputs an

indication of the start of the compressed signal (SCS) and the compressed data (CD). The format

of the output from this port is called compressed data output format (CO). After every 1000

sampled points, compressed signals are sent out. Each compressed data unit has 23 bits. When

the first port outputs the data, the second port stops sending data out, and vice versa. The timing

diagrams of the three formats are shown in Figures 5.14(b) and (c).

Figure 5.14 The output of the digital circuit: (a) format of the outputs, (b) timing diagram of the

FO and SO, (c) timing diagram of the CO

The post-layout diagram and the real tested results are given in Figure 5.15. It can be seen that

the core area of the custom chip is around 0.49 mm2. Figure 5.16(a) shows the FPGA-based

simulation. We randomly generated one period of the data, imitating the multichannel recording,

to test the system. Figure 5.16(b) shows the first format output (FO) from the test board, Figure

5.16(c) shows the second format output (SO) from the test board, and Figure 5.16(d) shows the

output format of the compressed signals (CO) from the FPGA board. The power consumption of

129

the system (256-channel, ChS equals 4) is around 200 μW (12.5 μW/channel) and the area is

around 0.49 mm2 (0.03 mm2/channel), as estimated by Synopsys and Cadence using IBM

CMOS130.

Figure 5.15 Post-layout of the proposed 256-channel digital neural signal processing system

Finally, we compare our results with those from related publications in Table 5.2. Our work is

based on a digital circuit design and the MDC matrix-based CS technique. Table 5.2 shows our

work has relatively low power consumption and a small area.

Table 5.2 Comparison of proposed MDC-based digital neural signal processing system with

similar existing systems

Reference [225] [226] [227] [166] [167] [168] This
Work

Technology
(μm CMOS) 0.35 0.5 0.18 0.5 0.5 0.065 0.13

Supply
voltage (V) 1.5 3.3 1.8 − 3 0.27 1.2

130

Reference [225] [226] [227] [166] [167] [168] This
Work

Compression
method

Spike
Waveform

Spike
detection

Spike
detection

Spike
detection

Spike
detection

Spike
sorting

Digital
CS

Number of
channels 16 100 16 32 32 16 256

Area per
channel

(mm2/channel)
- < 0.16 >0.0475 0.18 0.12 0.07 0.03*

Power
consumption
per channel

(μW/channel)

269 27 >96 95 75 4.68 12.5

Sampling rate
per

channel(kS/s)
1250 15 30 25 20 - 25

* This includes the core area only.

Figure 5.16 The FPGA-based simulation: (a) the picture of the FPGA-based test system, (b) FO

from the FPGA board, (c) SO from the FPGA board, (d) CO from the FPGA board

131

5.6 Conclusions

In this article, we put forward a multichannel digital neural signal processing system using an

MDC matrix. We introduced the construction of the MDC matrix and we discussed the

construction of a single-channel signal processing system. The single-channel system includes

two building blocks: the spike detection block and the data compression block. We chose the

RMS method to detect the spikes and applied the MDC matrix to compress neural signals. When

using the MDC matrix to compress the signal, the distance between the current data point and the

core data point is an important parameter. We evaluated the relationship between the distance and

the reconstruction error with two reconstruction algorithms. We also explained the relationship

between the compression rate and the distance, and we found that choosing 4 or 5 for the distance

σ is appropriate. Additionally, it can be proved that the original signal can be recovered by both

BP and Lasso algorithms. The construction of the multichannel system was detailed, where a

scan was applied to process signals, and both the scan direction and the scan rate were analyzed.

The scan rate has a tight relationship with the power consumption and reconstruction

performance. The lower the ChS is set, the better the reconstruction performance, while also

demanding greater power consumption. Based on the discussion, we put forward a 256-channel

(24   ×   24) signal processing system with a ChS equaling 4. The power consumption of this

system is about 12.5 μW/channel and the area is around 0.03 mm2/channel, and compression rate

is around 90% while the reconstructed signals keep most of the details of the original signals.

Finally, an example of 16-channel original signals and their corresponding reconstructed signals

were provided. The post-layout diagram and FGPA-based real signal tests were given, and a

comparison with other similar works was given to highlight the importance of our proposed

system. From the simulation results and comparison, we found that our system has not only large

compression rate and good reconstruction accuracy but also relatively low power consumption

and a small area.

132

CHAPTER 6 GENERAL DISCUSSION

We describe, in this thesis, systematic and detailed methodologies into the design of neural signal

processing for neural recording devices. In the early days, neural recording device designers

focused on acquiring and transmitting neural signals, but the needed high and increasing data

requirements of modern neural recording devices mean that only designing the signal acquisition

or transmission components is insufficient, and integrating a high-performance neural signal

processing system becomes more and more important.

A neural signal processing device should have high processing performance; for example, the

spike detection block should have a low false positive rate and high true positive rate; the signal

compression system needs to be designed with a high compression rate and low reconstruction

error. Also, because the proposed neural processing techniques are designed for implantable

neural recording devices, they should have low complexity architecture, which eases the circuit

design. In this thesis, several new techniques for neural signals processing were developed and

tested; these techniques have relatively simple structures that are easily implemented and present

high accuracy for their specific usage.

For signal processing of neural recording interfaces, there are principally two strategies: signal

reduction and compression, and both techniques were investigated in this thesis. In chapter 3, we

focused on the signal compression strategy, and proposed a new method to construct the sensing

matrix based on the compressed sensing (CS) technique, which can be used to effectively

compress neural signals. In chapter 4, we mainly discussed the signal reduction strategy. In this

chapter, we designed an automatic template matching system to make the spike detection, which

can be used to remove the noise of neural signals. In addition, in chapter 5, based on both

strategies, we designed a digital signal processing system, which includes the amplitude-based

spike detection block and CS-based signal compression block. The signal compression block

contains a subblock generating the MDC matrix which is discussed in chapter 3.

In chapter 2, we review several state-of the-art works, and we also compare our works with these

state-of-the-art works in chapter 2-5. In Table 6.1, we continue to discuss the comparison between

our work and the reviewed state-of-the-arts works, and summarize the contribution of our research.

133

Table 6.1 Discussion of contribution of our work comparing with the state-of-the-arts works

 Summary of comparison of state-

of-the-arts works

Summary of the contribution of our

research

First

work

Table 2.4 Tables 2.4 and 3.3

1. Only for sparse signals

2. Have high complexity

3. The processing performance can

be further improved

1. Our proposed sensing matrix can

compress low-sparsity and non-sparse

signals

2. The proposed sensing matrix has low

complexity

3. The proposed sensing matrix can

compress sparse and non-sparse with a

relatively large compression rate and a

small reconstruction error

Second

work

Table 2.7 Tables 2.7 and 4.1

1. Several systems are not

automatic template matching

systems

2. Have high complexity

3. Detection accuracy can be

improved

1. Our system has low complexity and

relatively good detection performance

2. Our system is an automatic template

matching-based system, the templates

need not be foreknown.

134

Table 6.1 Discussion of contribution of our work comparing with the state-of-the-arts works

(cont’d)

 Summary of comparison of state-

of-the-arts works

Summary of the contribution of our

research

Third

work

Table 2.5 Tables 2.5 and 5.2

1. Cannot make the spike detection

and signal compression in the

same processor

2. CS-based compressor only

compress sparse signals

3. Power consumption and area

still can be reduced

1. Our processing system can compress

low-sparsity and non-sparse signals

2. The implemented system include spike

detector and CS-based signal

compressor

3. Our system has a relatively low power

consumption, small area and good

processing performance

More specifically, concerning our first work in chapter 3, from Tables 2.4 and 3.3, it can be found

that for compared sensing matrices, they only compress sparse signals, but lots of signals are not

sparse even applying approximation or changing the bases. In our research, we found that some

non-sparse signals which contain identical points can be also compressed, and we proposed a

method to construct the MDC sensing matrix using the concept of similarity. Besides, our

proposed sensing matrix can compress the sparse and non-sparse signals with a large compression

rate and a small reconstruction error, which is better than compared systems; for example, the

MDC matrix can compress non-sparse and sparse neural signals (degree of sparsity equaling 0 and

50%) with a compression rate equaling 98%, and reconstruction errors are both lower than 0.2

when using basis pursuit reconstruction algorithm. Finally, our sensing matrix is a deterministic

sensing matrix and also composed of zeros and ones, comparing with the similar random or

deterministic sensing matrices, such as digital wavelet transform-based sensing matrix, chirp

sensing codes matrix, Bose-Chaudhuri-Hocquenghem matrix, etc., our proposed sensing matrix

has low complexity, which is suitable for hardware implementation.

Second, regarding our second work in chapter 4, from Tables 2.7 and 4.1, it can be found that our

135

proposed Bayesian inference-based automatic template matching spike detection and

classification system has a simple structure and also the least calculation in the comparison tables,

which is suitable for the hardware design. Besides, this system is an automatic template generation

system, and the templates need not to be given in advance, which is better than several compared

template matching-based spike detection systems. Finally, comparing with several amplitude-

based, energy-based and template matching-based system, our system has relatively high

detection accuracy.

Third, we compare several state-of-the-arts neural signal processing systems and also compare our

third work with them in Tables 2.5 and 5.2. Firstly, our proposed system is based on our proposed

MDC matrix; therefore, it can be used to compress sparse and non-sparse neural signals, which

are better than the other compared systems. Besides, our system includes spike detector and CS-

based signal compressor. Comparing with the other systems, our system is the only system

providing both functions of spike detection and signal compression. Finally, our system supports

single-channel and multichannel processing, and also comparing with the compared systems, it

has relatively low power consumption and a small area.

For each work, first, we studied the CS technique, a new signal processing method for

compression of neural signals. Whether or not neural signals are sparse is still in dispute. In our

research, we found that neural signals are not sparse in the time domain, so directly applying CS

technique is not appropriate. Fortunately, we found that neural signals have a lot of similar points.

Compared with traditional CS technique based on the sparsity, the proposed method can be

innovatively applied for signal compression. We investigated the use of the restricted isometry

property of the MDC matrix for compression. The simulation results show that with the MDC

matrix, the compression rate of the signal can reach 90%, and the reconstruction error is lower

than 10% using the Basis Pursuit reconstruction algorithm. Also, the MDC matrix can be

composed of zeros and ones, which has low complexity. A comparison between the proposed

method and the other CS-based compression ones revealed that the proposed system can compress

signals with a large compression rate and small reconstruction error, and can be used for the

compression of non-sparse signals. Therefore, the MDC matrix is a good candidate for

implementation in a neural recording system.

On the other hand, signal reduction methods remove useless information (noise) from signals and

136

only keep the spikes that neurons generate. These spikes are usually composite signals generated

by different neurons, whereas the spikes from single-unit neuron are usually needed for various

research purposes. Traditional amplitude-based and energy-based spike detection methods do not

have enough detection accuracy for use on low-SNR signals. Furthermore, neither methods can be

directly used for spike classification. The template matching method has good detection accuracy

for low-SNR signals, and can be directly used for spike classification, but this method is

complicated and needs foreknown templates. We proposed a system using a Bayesian Inference

template matching method to perform the spike detection and sorting. Compared with the

amplitude-based or energy-based spike detection methods, the BBTM method has high detection

accuracy for the low SNR signal and can perform spike classification. Compared with some other

template matching methods, BBTM has a simple structure, high detection and classification

accuracy, and the templates need not be foreknown.

Taking into consideration detailed study on signal reduction and compression techniques, the

power consumption limits, the small area, and other important parameters, a neural recording

module including spike detection and signal compression was proposed. Based on this module,

single-channel and multichannel signal processing architectures were investigated and validated.

The simulation results showed that the proposed module has a relatively small area and low power

consumption, compared with several existing neural signal processing ones. In addition, the

proposed module was tested and verified through an FPGA testing board (Virtex-6 FPGA

ML605). The proposed digital signal processing module not only performs both spike detection

and compression, but has relatively low power consumption and a small area.

In summary, this thesis involves the key points related to neural signal processing activities. The

research covered several neural signal processing techniques, and a digital neural processing

system was proposed. We proposed two innovative methods for the neural signal processing

based on the CS and template matching techniques, and we provided methods for the construction

of new and efficient neural processing devices. Also, the corresponding circuit implementation is

fulfilled. Through our research, the proposed methods cannot only be applied in the design of the

neural recording device, but also the signal processing for other biomedical signals, such as MEG,

ECoG, or the image , video or speech processing .

137

CHAPTER 7 CONCLUSION AND RECOMMENDATIONS

7.1 Conclusion

We described in this thesis several methods intended for neural signal reduction and compression

using template matching and CS techniques, which culminated in a new and highly efficient

digital neural signal processing system.

First of all, the minimum Euclidean or MDC sensing matrix for neural signal compression was

generated, and its restricted isometry property was proved. Proving the restricted isometry

property of the MDC matrix required the satisfaction of two prerequisites: that (k − M) N⁄ → 0 (k

is the sparsity of the signal, M and N are the numbers of rows and columns of the sensing matrix),

and that the clustering must be more even and Imax(Set(C)) ≤ N M⁄ . Also, several reconstruction

algorithms for the reconstruction of original signals were evaluated. The simulation results

confirmed that BP and Lasso algorithms are useful reconstruction algorithms. The influence of

the sampling rate and length of data on the compression and reconstruction was also examined,

and it was found that a UMDC matrix composed of zeros and ones is appropriate for the circuit

implementation.

For signal reduction, we proposed a Bayesian inference-based template matching method which

can automatically generate templates. The BBTM method has better detection accuracy than the

amplitude-based or energy-based spike detection methods when the templates are known. When

the templates are unknown, we used the maximum minimum spread sorting method to generate

the templates; the true positive rate can reach up to 0.95 with a false positive rate of 0.05. The

BBTM method also enables spike classification. We used correlation and Euclidean distance to

estimate the difference between the templates and processed neural signals, and the thresholds of

both estimations can be set as 0.8 and 0.5 respectively. The clustering accuracy is around 1 when

false positive rate equals 0.1 for three-neuron composite signals. The BBTM method has low

computation complexity, requiring only around 1.2 ms for spike detection and clustering of each

spike.

Finally, we proposed a digital neural signal processing system including spike detection and

compression building blocks. For the single-channel design, the root mean square method and

MDC matrix were chosen for spike detection and signal compression. We evaluated the

138

relationship between the distance and the reconstruction error using two reconstruction

algorithms, and also the relationship between the distance and compression rate. Choosing 4 or 5

for the distance σ proved to be appropriate. In contrast, the construction of the multichannel

system is detailed, in that a scan is applied to process signals and both the scan direction and rate

must be analyzed. The scan rate has a tight relationship with the power consumption and

reconstruction performance. The lower the channel-to-scan parameter is set, the better the

reconstruction performance, but the higher the power consumption. As found by one of the most

advanced simulation tools, Synopsys, the power consumption and area of the proposed 256-

channel system are 12.5 μW/channel and 0.03 mm2/channel respectively.

Our research demonstrated that the MDC matrix and BBTM methods have good compression

and detection performance, and the proposed overall neural signal processing module has small

area and low power consumption comparing with existing modules while maintaining good

compression performance.

7.2 Recommendation for Future Work

We described, in this thesis, a method that uses the similarity of spikes to compress signals.

Sparsity can be regarded as a special form of similarity, as all data are zeros. Based on this idea,

more sensing matrices can be designed and evaluated for their signal compression performance.

We recommend to conduct further investigations on the properties of the sensing matrix and

develop more mathematical theories on the construction of the sensing matrix and the

reconstruction of the original signals based on similarity.

The BBTM method used in this thesis is an automatic template generation method. We used the

K-mean clustering method for final clustering, and adapted an Osort algorithm to determine K.

The accuracy of the determination of K for this algorithm can be further improved, and is an

obvious avenue for more research.

The systems based on the BBTM method and the MDC matrix both need to be optimized. In

particular, the power consumption of the digital circuit based on the BBTM method should be

reduced. Similarly, the performance of the circuit based on the MDC matrix can be enhanced. In

future work, we recommend to concentrate on designing a circuit with even lower power

consumption using both the BBTM method and the MDC matrix.

139

Finally, the front-end circuit and wireless transmitter should be added into the proposed neural

signal processing module, and a system-on-chip neural recording device should be fabricated,

and a test in vivo must be performed. In future work, the transmitter needs to be implemented,

and the design of the custom neural recording device will be researched.

140

REFERENCES

[1] S. Motamedi-Fakhr, M. Moshrefi-Torbati, M. Hill, et al., "Signal processing techniques
applied to human sleep EEG signals—A review," Biomedical Signal Processing and
Control, vol. 10, pp. 21-33, Mar. 2014.

[2] A. Caria, R. Sitaram, and N. Birbaumer, "Real-Time fMRI a tool for local brain
regulation," The Neuroscientist, vol. 18, pp. 487-501, 2012.

[3] D. Mantini, S. D. Penna, L. Marzetti, et al., "A signal-processing pipeline for
magnetoencephalography resting-state networks," Brain connectivity, vol. 1, pp. 49-59,
2011.

[4] K. Muller, T. Adali, K. Fukumizu, et al., "Special Issue on Advances in Kernel-Based
Learning for Signal Processing," Signal Processing Magazine, IEEE, vol. 30, pp. 14-15,
2013.

[5] Z. Saad Zaghloul and M. Bayoumi, "Adaptive neural matching online spike sorting VLSI
chip design for wireless BCI implants," in Acoustics, Speech and Signal Processing
(ICASSP), 2015 IEEE International Conference on, 2015, pp. 977-981.

[6] T. Gürel and C. Mehring, "Unsupervised Adaptation of Brain-Machine Interface
Decoders," Frontiers in Neuroscience, vol. 6, p. 164, Nov. 2012.

[7] Y. X. Yang and M. M. Shanechi, "An adaptive brain-machine interface algorithm for
control of burst suppression in medical coma," in Engineering in Medicine and Biology
Society (EMBC), 2014 36th Annual International Conference of the IEEE, 2014, pp.
1638-1641.

[8] H. Mamaghanian, N. Khaled, D. Atienza, et al., "Compressed Sensing for Real-Time
Energy-Efficient ECG Compression on Wireless Body Sensor Nodes," Biomedical
Engineering, IEEE Transactions on, vol. 58, pp. 2456-2466, 2011.

[9] S. Aviyente, "Compressed Sensing Framework for EEG Compression," in Statistical
Signal Processing, 2007. SSP '07. IEEE/SP 14th Workshop on, 2007, pp. 181-184.

[10] M. A. Shaeri and A. M. Sodagar, "A Method for Compression of Intra-Cortically-
Recorded Neural Signals Dedicated to Implantable Brain-Machine Interfaces," Neural
Systems and Rehabilitation Engineering, IEEE Transactions on, vol. 23, pp. 485-497,
2015.

[11] J. Zhang, Y. M. Suo, S. Mitra, et al., "An Efficient and Compact Compressed Sensing
Microsystem for Implantable Neural Recordings," Biomedical Circuits and Systems,
IEEE Transactions on, vol. 8, pp. 485-496, 2014.

[12] D. E. Bellasi, R. Rovatti, L. Benini, et al., "A Low-Power Architecture for Punctured
Compressed Sensing and Estimation in Wireless Sensor-Nodes," Circuits and Systems I:
Regular Papers, IEEE Transactions on, vol. 62, pp. 1296-1305, 2015.

[13] R. M. Rangayyan, " Introduction to Biomedical Signals" in Biomedical signal analysis: a
case-study approach. New York: John Wiley & Sons, Inc., 2012, pp. 1 - 59

141

[14] L. F. Nicolas-Alonso and J. Gomez-Gil, "Brain Computer Interfaces, a Review," Sensors,
vol. 12, pp. 1211-1279, 2012.

[15] J. J. Shih, D. J. Krusienski, and J. R. Wolpaw, "Brain-Computer Interfaces in Medicine,"
Mayo Clinic Proceedings, vol. 87, pp. 268-279, Mar. 2012.

[16] M. A. Lebedev and M. A. L. Nicolelis, "Brain–machine interfaces: past, present and
future," Trends in Neurosciences, vol. 29, pp. 536-546, Sept. 2006.

[17] R. Salmelin, M. Hámáaláinen, M. Kajola, et al., "Functional Segregation of Movement-
Related Rhythmic Activity in the Human Brain," NeuroImage, vol. 2, pp. 237-243, Dec.
1995.

[18] J. Freeman. "Cognitive Consonance: Neuroimaging: EEG, MRI, fMRI, MEG, PET and
TMS." Internet: http://cognitiveconsonance.info/2014/01/13/updated-neuroimaging-eeg-
mri-fmri-meg-pet-and-tms/ [2015].

[19] E. Flynn, "Magnetic Relaxometry: A Comparison to Magnetoencephalography," in
Magnetoencephalography, S. Supek and C. J. Aine, Eds. Berlin Heidelberg: Springer,
2014, pp. 979-991.

[20] M. Sawan, M. T. Salam, J. Le Lan, et al., "Wireless Recording Systems: From
Noninvasive EEG-NIRS to Invasive EEG Devices," Biomedical Circuits and Systems,
IEEE Transactions on, vol. 7, pp. 186-195, 2013.

[21] D. K. Nguyen, J. Tremblay, P. Pouliot, et al., "Non-invasive continuous EEG-fNIRS
recording of temporal lobe seizures," Epilepsy Research, vol. 99, pp. 112-126, Mar. 2012.

[22] G. Buzsáki, C. A. Anastassiou, and C. Koch, "The origin of extracellular fields and
currents — EEG, ECoG, LFP and spikes," Nature Reviews Neuroscience, vol. 13, pp.
407-420, June 2012.

[23] T. Ball, M. Kern, I. Mutschler, et al., "Signal quality of simultaneously recorded invasive
and non-invasive EEG," NeuroImage, vol. 46, pp. 708-716, July 2009.

[24] N. K. Logothetis, J. Pauls, M. Augath, et al., "Neurophysiological investigation of the
basis of the fMRI signal," Nature, vol. 412, pp. 150-157, July 2001.

[25] P. Pouliot, J. Tremblay, M. Robert, et al., "Nonlinear hemodynamic responses in human
epilepsy: A multimodal analysis with fNIRS-EEG and fMRI-EEG," Journal of
Neuroscience Methods, vol. 204, pp. 326-340, Mar. 2012.

[26] C. J. Price, "A review and synthesis of the first 20 years of PET and fMRI studies of
heard speech, spoken language and reading," NeuroImage, vol. 62, pp. 816-847, Aug.
2012.

[27] P. Molenberghs, R. Cunnington, and J. B. Mattingley, "Brain regions with mirror
properties: A meta-analysis of 125 human fMRI studies," Neuroscience & Biobehavioral
Reviews, vol. 36, pp. 341-349, Jan. 2012.

[28] G. de Zubicaray, K. Johnson, D. Howard, et al., "A perfusion fMRI investigation of
thematic and categorical context effects in the spoken production of object names,"
Cortex, vol. 54, pp. 135-149, May 2014.

142

[29] R. R. Harrison, "The Design of Integrated Circuits to Observe Brain Activity,"
Proceedings of the IEEE, vol. 96, pp. 1203-1216, 2008.

[30] R. M. a. J. E. R. Dowben, "A Metal-Filled Microelectrode," Science vol. 118(3053), pp.
22-24, 1953.

[31] J. D. Green, "A Simple Microelectrode for recording from the Central Nervous System,"
Nature, vol. 182(4640), pp. 962-962, 1958.

[32] H. Jamille and A. David, "Silicon microelectrodes for extracellular recording," in
Handbook of Neuroprosthetic Methods, Florida: CRC Press, 2002, pp. 163 - 191.

[33] E. a. J. E. A. Marg, "Indwelling Multiple Micro-Electrodes in the Brain,"
Electroencephalography and Clinical Neurophysiology, pp. 277-280, 1967.

[34] Polystim. "Multichannel implantable neural signal acquisition system." Internet:
http://www.polystim.org/?page=axes-projets.php [2015].

[35] B. Gosselin and M. Sawan, "A low-power integrated neural interface with digital spike
detection and extraction," Analog Integrated Circuits and Signal Processing, vol. 64, pp.
3-11, July 2010.

[36] R. Chebli and M. Sawan, "Low noise and high CMRR front-end amplifier dedicated to
portable EEG acquisition system," in Engineering in Medicine and Biology Society
(EMBC), 2013 35th Annual International Conference of the IEEE, 2013, pp. 2523-2526.

[37] B. Gosselin, M. Sawan, and E. Kerherve, "Linear-Phase Delay Filters for Ultra-Low-
Power Signal Processing in Neural Recording Implants," Biomedical Circuits and
Systems, IEEE Transactions on, vol. 4, pp. 171-180, 2010.

[38] L. Liu, X. Zou, W. L. Goh, et al., 800 nW 43 nV/√Hz neural recording amplifier with
enhanced noise efficiency factor. Electronics Letters, vol.48(9), pp. 479-480, 2012.

[39] K. A. Ng and X. Yong Ping, "A Compact, Low Input Capacitance Neural Recording
Amplifier," Biomedical Circuits and Systems, IEEE Transactions on, vol. 7, pp. 610-620,
2013.

[40] K. Abdelhalim, L. Kokarovtseva, J. L. Perez Velazquez, et al., "915-MHz FSK/OOK
Wireless Neural Recording SoC With 64 Mixed-Signal FIR Filters," Solid-State Circuits,
IEEE Journal of, vol. 48, pp. 2478-2493, 2013.

[41] X. D. Zou, L. Liu, J. H. Cheong, et al., "A 100-Channel 1-mW Implantable Neural
Recording IC," Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 60,
pp. 2584-2596, 2013.

[42] M. Judy, A. M. Sodagar, R. Lotfi, et al., "Nonlinear Signal-Specific ADC for Efficient
Neural Recording in Brain-Machine Interfaces," Biomedical Circuits and Systems, IEEE
Transactions on, vol. 8, pp. 371-381, 2014.

[43] V. Chaturvedi, T. Anand, and B. Amrutur, "An 8-to-1 bit 1-MS/s SAR ADC With VGA
and Integrated Data Compression for Neural Recording," Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on, vol. 21, pp. 2034-2044, 2013.

143

[44] S. Kim, S. I. Na, T. H. Kim, et al., "Neural recording system with low-noise analog front-
end and comparator-based cyclic ADC," in SOC Conference (SOCC), 2012 IEEE
International, 2012, pp. 110-114.

[45] A. Moradi, M. Zgaren, and M. Sawan, "A 0.084 nJ/b FSK transmitter and 4.8 μW OOK
receiver for ISM-band medical sensor networks," in New Circuits and Systems
Conference (NEWCAS), 2013 IEEE 11th International, 2013, pp. 1-4.

[46] S. A. Mirbozorgi, H. Bahrami, M. Sawan, et al., "A Smart Multicoil Inductively Coupled
Array for Wireless Power Transmission," Industrial Electronics, IEEE Transactions on,
vol. 61, pp. 6061-6070, 2014.

[47] A. Borna and K. Najafi, "A Low Power Light Weight Wireless Multichannel
Microsystem for Reliable Neural Recording," Solid-State Circuits, IEEE Journal of, vol.
49, pp. 439-451, 2014.

[48] J. Tan, W. S. Liew, C. H. Heng, et al., "A 2.4 GHz ULP Reconfigurable Asymmetric
Transceiver for Single-Chip Wireless Neural Recording IC," Biomedical Vircuits and
Systems, IEEE Transactions on, vol. 8, pp. 497-509, 2014.

[49] S. Gibson, J. W. Judy, and D. Markovic, "Technology-aware algorithm design for neural
spike detection, feature extraction, and dimensionality reduction," Neural Systems and
Rehabilitation Engineering, IEEE Transactions on, vol. 18, pp. 469-478, 2010.

[50] C. Szi-Wen and C. Shih-Chieh, "Compressed sensing for Integral Pulse Frequency
Modulation (IPFM)-based Heart Rate Variability spectral estimation," in 2012 34th
Annual International Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC), Piscataway, NJ, USA, 2012, pp. 5626-5629.

[51] Y. C. Liu, C. C. Lin, J.J. Tsai, et al., "Model-Based Spike Detection of Epileptic EEG
Data," Sensors, vol. 13, pp. 12536-12547, 2013.

[52] L. Orosco, A. G. Correa, and E. Laciar, "Review: a survey of performance and techniques
for automatic epilepsy detection," Journal of Medical and Biological Engineering, vol. 33,
pp. 526-537, 2013.

[53] L. Massi, M. Lagler, K. Hartwich, et al., "Temporal dynamics of parvalbumin-expressing
axo-axonic and basket cells in the rat medial prefrontal cortex in vivo," The Journal of
Neuroscience, vol. 32, pp. 16496-16502, 2012.

[54] A. Rodriguez-Perez, J. Ruiz-Amaya, M. Delgado-Restituto, et al., "A low-power
programmable neural spike detection channel with embedded calibration and data
compression," Biomedical Circuits and Systems, IEEE Transactions on, vol. 6, pp. 87-100,
Apr. 2012.

[55] M. L. F. Janssen, D. G. M. Zwartjes, Y. Temel, et al., "Subthalamic neuronal responses to
cortical stimulation," Movement Disorders, vol. 27, pp. 435-438, 2012.

[56] A. Berényi, M. Belluscio, D. Mao, et al., "Closed-loop control of epilepsy by transcranial
electrical stimulation," Science, vol. 337, pp. 735-737, 2012.

[57] R. R. Harrison, R. J. Kier, C. A. Chestek, et al., "Wireless Neural Recording With Single
Low-Power Integrated Circuit," Neural Systems and Rehabilitation Engineering, IEEE
Transactions on, vol. 17, pp. 322-329, 2009.

144

[58] R. R. Harrison, P. T. Watkins, R. J. Kier, et al., "A low-power integrated circuit for a
wireless 100-electrode neural recording system," Solid-State Circuits, IEEE Journal of,
vol. 42, pp. 123-33, Jan. 2007.

[59] M. S. Chae, Z. Yang, M. R. Yuce, et al., "A 128-channel 6 mW wireless neural recording
IC with spike feature extraction and UWB transmitter," Neural Systems and
Rehabilitation Engineering, IEEE Transactions on, vol. 17, pp. 312-321, 2009.

[60] A. M. Sodagar, G. E. Perlin, Y. Yao, et al., "An implantable 64-channel wireless
microsystem for single-unit neural recording," Solid-State Circuits, IEEE Journal of, vol.
44, pp. 2591-2604, 2009.

[61] U. Frey, U. Egert, F. Heer, et al., "Microelectronic system for high-resolution mapping of
extracellular electric fields applied to brain slices," Biosensors and Bioelectronics, vol. 24,
pp. 2191-8, Mar. 2009.

[62] F. DePiero. "Digital Vs Analog Signal Processing." Internet:
https://courseware.ee.calpoly.edu/~fdepiero/fdepiero_dsp_notes/dsp_notes.html [2015].

[63] X. L. Liu, H. J. Zhu, M. L. Zhang, et al., "Design of a low-noise, high power efficiency
neural recording front-end with an integrated real-time compressed sensing unit," in
Circuits and Systems (ISCAS), 2015 IEEE International Symposium on, 2015, pp. 2996-
2999.

[64] J. Zhang, M. Srinjoy, Y. M. Suo, et al., "A closed-loop compressive-sensing-based neural
recording system," Journal of Neural Engineering, vol. 12 (036005), pp. 1-17, 2015.

[65] L. Duan, T. Wang, S. Wang, et al., "A Wireless Neural Recording SoC and Implantable
Microsystem Integration," Georgia Institute of Technology. Internet:
https://smartech.gatech.edu/bitstream/handle/1853/54042/GT-CS-15-06.pdf [2015].

[66] T. K. T. Nguyen, Z. Navratilova, H. Cabral, et al., "Closed-loop optical neural stimulation
based on a 32-channel low-noise recording system with online spike sorting," Journal of
Neural Engineering, vol. 11, p. 046005, 2014.

[67] P. Kmon, "Digitally assisted neural recording and spike detection multichannel integrated
circuit designed in 180 nm CMOS technology," Microelectronics Journal, vol. 45, pp.
1187-1193, Sept. 2014.

[68] T. Morrison, M. Nagaraju, B. Winslow, et al., "A 0.5 cm3 Four-Channel 1.1 mW Wireless
Biosignal Interface With 20 m Range," Biomedical Circuits and Systems, IEEE
Transactions on, vol. 8, pp. 138-147, 2014.

[69] K. W. Cheng, X. D. Zou, J. H. Cheong, et al., "100-Channel wireless neural recording
system with 54-Mb/s data link and 40%-efficiency power link," in Solid State Circuits
Conference (A-SSCC), 2012 IEEE Asian, 2012, pp. 185-188.

[70] K. Abdelhalim, H. M. Jafari, L. Kokarovtseva, et al., "64-Channel UWB Wireless Neural
Vector Analyzer SOC With a Closed-Loop Phase Synchrony-Triggered Neurostimulator,"
Solid-State Circuits, IEEE Journal of, vol. 48, pp. 2494-2510, 2013.

[71] Q. Chengliang, J. Shi, J. Parramon, et al., "A Low-Power Configurable Neural Recording
System for Epileptic Seizure Detection," Biomedical Circuits and Systems, IEEE
Transactions on, vol. 7, pp. 499-512, 2013.

145

[72] M. Yin, D. A. Borton, J. Aceros, et al., "A 100-channel hermetically sealed implantable
device for wireless neurosensing applications," in 2012 IEEE International Symposium on
Circuits and Systems, ISCAS 2012, Seoul, Republic of Korea, 2012, pp. 2629-2632.

[73] L. Huang, X. Zhang, N. Guan, et al., "Real-time multi-channel system for neural spikes
acquisition and detection," in 2012 IEEE 10th International New Circuits and Systems
Conference, NEWCAS 2012, Montreal, QC, Canada, 2012, pp. 149-152.

[74] S. J. Thomas, R. R. Harrison, A. Leonardo, et al., "A battery-free multichannel digital
neural/EMG telemetry system for flying insects," Biomedical Circuits and Systems, IEEE
Transactions on, vol. 6, pp. 424-436, 2012.

[75] R. R. Harrison, H. Fotowat, R. Chan, et al., "Wireless Neural/EMG Telemetry Systems
for Small Freely Moving Animals," Biomedical Circuits and Systems, IEEE Transactions
on, vol. 5, pp. 103-111, 2011.

[76] R. F. Yazicioglu, K. Sunyoung, T. Torfs, et al., "A 30 μW Analog Signal Processor ASIC
for Portable Biopotential Signal Monitoring," Solid-State Circuits, IEEE Journal of, vol.
46, pp. 209-223, 2011.

[77] A. Bonfanti, G. Zambra, G. Baranauskas, et al., "A wireless microsystem with digital data
compression for neural spike recording," Microelectronic Engineering, vol. 88, pp. 1672-
1675, 2011.

[78] A. Bonfanti, M. Ceravolo, G. Zambra, et al., "A multi-channel low-power IC for neural
spike recording with data compression and narrowband 400-MHz MC-FSK wireless
transmission," in ESSCIRC, 2010 Proceedings of the, 2010, pp. 330-333.

[79] S. Farshchi, A. Pesterev, P. Nuyujukian, et al., "Embedded Neural Recording With
TinyOS-Based Wireless-Enabled Processor Modules," Neural Systems and Rehabilitation
Engineering, IEEE Transactions on, vol. 18, pp. 134-141, 2010.

[80] N. Verma, A. Shoeb, J. Bohorquez, et al., "A Micro-Power EEG Acquisition SoC With
Integrated Feature Extraction Processor for a Chronic Seizure Detection System," Solid-
State Circuits, IEEE Journal of, vol. 45, pp. 804-816, 2010.

[81] J. N. Y. Aziz, K. Abdelhalim, R. Shulyzki, et al., "256-Channel Neural Recording and
Delta Compression Microsystem With 3D Electrodes," Solid-State Circuits, IEEE Journal
of, vol. 44, pp. 995-1005, 2009.

[82] W. S. Liew, X. D. Zou, L. B. Yao, et al., "A 1-V 60-μW 16-channel interface chip for
implantable neural recording," in Custom Integrated Circuits Conference, CICC '09.
IEEE, 2009, pp. 507-510.

[83] K. Donghwi, M. Stanacevic, R. Kamoua, et al., "A low-power low-data-rate neural
recording system with adaptive spike detection," in Circuits and Systems, MWSCAS 2008.
51st Midwest Symposium on, 2008, pp. 822-825.

[84] M. Mollazadeh, K. Murari, H. Schwerdt, et al., "Wireless multichannel acquisition of
neuropotentials," in Biomedical Circuits and Systems Conference, BioCAS 2008. IEEE,
2008, pp. 49-52.

[85] T. Borghi, A. Bonfanti, G. Zambra, et al., "A Compact Multichannel System for
Acquisition and Processing of Neural Signals," in Engineering in Medicine and Biology

146

Society, EMBS 2007. 29th Annual International Conference of the IEEE, 2007, pp. 441-
444.

[86] J. Aziz, R. Karakiewicz, R. Genov, et al., "In Vitro Epileptic Seizure Prediction
Microsystem," in Circuits and Systems, ISCAS 2007. IEEE International Symposium on,
2007, pp. 3115-3118.

[87] W. JG, Medical Instrumentation: Application And Design. New York: John Wiley &
Sons, Inc., 1998, pp. 121-176.

[88] S. Gibson, J. W. Judy, and D. Markovic, "Spike Sorting: The First Step in Decoding the
Brain: The first step in decoding the brain," Signal Processing Magazine, IEEE, vol. 29,
pp. 124-143, 2012.

[89] J. H. Byrne. "Resting Potentials and Action Potentials." Internet:
http://neuroscience.uth.tmc.edu/s1/chapter01.html [2015, 10.19].

[90] H. Semmaoui, J. Drolet, A. Lakhssassi, et al., "Setting Adaptive Spike Detection
Threshold for Smoothed TEO Based on Robust Statistics Theory," Biomedical
Engineering, IEEE Transactions on, vol. 59, pp. 474-482, 2012.

[91] M. S. Lewicki, "A review of methods for spike sorting: the detection and classification of
neural action potentials," Network: Computation in Neural Systems, vol. 9, pp. 53-78,
Nov. 1998.

[92] S. Gibson, J. W. Judy, and D. Markovic, "Comparison of spike-sorting algorithms for
future hardware implementation," in Engineering in Medicine and Biology Society, EMBS
2008. 30th Annual International Conference of the IEEE, 2008, pp. 5015-5020.

[93] M. H. Zarifia, N. K. Ghalehjogh, and M. Baradaran-nia, "A new evolutionary approach
for neural spike detection based on genetic algorithm," Expert Systems with Applications,
vol. 42, pp. 462-467, Jan. 2015.

[94] X. Liu, X. Yang, and N. Zheng, "Automatic extracellular spike detection with piecewise
optimal morphological filter," Neurocomputing, vol. 79, pp. 132-139, Mar. 2012.

[95] V. Karkare, S. Gibson, and D. Marković, "Energy-Efficient Digital Processing for Neural
Action Potentials," in Neural Computation, Neural Devices, and Neural Prosthesis, Z.
Yang, Ed. New York: Springer, 2014, pp. 23-40.

[96] H. L. Chan, M. A. Lin, T. Wu, et al., "Detection of neuronal spikes using an adaptive
threshold based on the max–min spread sorting method," Journal of Neuroscience
Methods, vol. 172, pp. 112-121, July 2008.

[97] K. S. Guillory and R. A. Normann, "A 100-channel system for real time detection and
storage of extracellular spike waveforms," Journal of Neuroscience Methods, vol. 91, pp.
21-29, Sept.1999.

[98] D. L. Donoho, "De-noising by soft-thresholding," Information Theory, IEEE Transactions
on, vol. 41, pp. 613-627, 1995.

[99] Z. Yang, W. Liu, M. R. Keshtkaran, et al., "A new EC–PC threshold estimation method
for in vivo neural spike detection," Journal of neural engineering, vol. 9(046017), pp. 1-
16, 2012.

147

[100] P. H. Thakur, H. Lu, S. S. Hsiao, et al., "Automated optimal detection and classification
of neural action potentials in extra-cellular recordings," Journal of Neuroscience Methods,
vol. 162, pp. 364-376, May 2007.

[101] A. Guanglei, D. Kanishka, H. Cheng, et al., "An analog front-end circuit with spike
detection for implantable neural recording system design," in Circuits and Systems
(MWSCAS), 2014 IEEE 57th International Midwest Symposium on, 2014, pp. 881-884.

[102] N. Li, H. Semmaoui, and M. Sawan, "Modified Maximum and Minimum Spread
estimation method for detection of neural spikes," in Electronics, Circuits, and Systems
(ICECS), 2013 IEEE 20th International Conference on, 2013, pp. 530-533.

[103] S. Mukhopadhyay and G. Ray, "A new interpretation of nonlinear energy operator and its
efficacy in spike detection," Biomedical Engineering, IEEE Transactions on, vol. 45, pp.
180-187, 1998.

[104] J. Drolet, H. Semmaoui, and M. Sawan, "Low-power energy-based CMOS digital
detector for neural recording arrays," in Biomedical Circuits and Systems Conference
(BioCAS), 2011 IEEE, 2011, pp. 13-16.

[105] V. Karkare, S. Gibson, and D. Markovic, "A 130-W, 64-channel neural spike-sorting DSP
chip," Solid-State Circuits, IEEE Journal of, vol. 46, pp. 1214-1222, 2011.

[106] B. Gosselin and M. Sawan, "An ultra low-power CMOS automatic action potential
detector," Neural Systems and Rehabilitation Engineering, IEEE Transactions on, vol. 17,
pp. 346-353, 2009.

[107] I. N. Bankman, K. O. Johnson, and W. Schneider, "Optimal detection, classification, and
superposition resolution in neural waveform recordings," Biomedical Engineering, IEEE
Transactions on, vol. 40, pp. 836-841, 1993.

[108] H. Kaneko, S. S. Suzuki, J. Okada, et al., "Multineuronal spike classification based on
multisite electrode recording, whole-waveform analysis, and hierarchical clustering,"
Biomedical Engineering, IEEE Transactions on, vol. 46, pp. 280-290, 1999.

[109] I. Obeid and P. D. Wolf, "Evaluation of spike-detection algorithms fora brain-machine
interface application," Biomedical Engineering, IEEE Transactions on, vol. 51, pp. 905-
911, 2004.

[110] T. Sato, T. Suzuki, and K. Mabuchi, "Fast Template Matching for Spike Sorting,"
Electronics, Information and Systems, IEEJ Transactions on, vol. 127, pp. 1680-1685,
2007.

[111] K. Oweiss and M. Aghagolzadeh, "Detection and classification of extracellular action
potential recordings," in Statistical Signal Processing for Neuroscience and
Neurotechnology, Amsterdam: Elsevier, 2010, pp. 15-74.

[112] W. J. Hwang, S. H. Wang, and Y. T. Hsu, "Spike Detection Based on Normalized
Correlation with Automatic Template Generation," Sensors, vol. 14, pp. 11049-11069,
June 2014.

[113] T. Haga, O. Fukayama, Y. Takayama, et al., "Efficient sequential Bayesian inference
method for real-time detection and sorting of overlapped neural spikes," Journal of
Neuroscience Methods, vol. 219, pp. 92-103, Sept. 2013.

148

[114] F. Franke, R. Quian Quiroga, A. Hierlemann, et al., "Bayes optimal template matching for
spike sorting – combining fisher discriminant analysis with optimal filtering," Journal of
Computational Neuroscience, vol. 38, pp. 439-459, June 2015.

[115] Y. Yuan, C. Yang, and J. Si, "The M-Sorter: An automatic and robust spike detection and
classification system," Journal of Neuroscience Methods, vol. 210, pp. 281-290, Sept.
2012.

[116] U. Rutishauser, E. M. Schuman, and A. N. Mamelak, "Online detection and sorting of
extracellularly recorded action potentials in human medial temporal lobe recordings, in
vivo," Journal of Neuroscience Methods, vol. 154, pp. 204-224, June 2006.

[117] S. Kim and J. McNames, "Automatic spike detection based on adaptive template
matching for extracellular neural recordings," Journal of Neuroscience Methods, vol. 165,
pp. 165-174, Sept. 2007.

[118] S. M. Thurman and H. Lu, "Bayesian integration of position and orientation cues in
perception of biological and non-biological forms," Frontiers in Human Neuroscience,
vol. 8, p. 91, Feb. 2014.

[119] M. A. Nicolelis, "Actions from thoughts," Nature, vol. 409, pp. 403-407, 2001.

[120] T. W. Berger, A. Ahuja, S. H. Courellis, et al., "Restoring lost cognitive function,"
Engineering in Medicine and Biology Magazine, IEEE, vol. 24, pp. 30-44, 2005.

[121] A. Pavlov, V. A. Makarov, I. Makarova, et al., "Sorting of neural spikes: when wavelet
based methods outperform principal component analysis," Natural Computing, vol. 6, pp.
269-281, 2007.

[122] S. E. Paraskevopoulou, D. Y. Barsakcioglu, M. R. Saberi, et al., "Feature extraction using
first and second derivative extrema (FSDE) for real-time and hardware-efficient spike
sorting," Journal of Neuroscience Methods, vol. 215, pp. 29-37, Apr. 2013.

[123] R. Q. Quiroga, Z. Nadasdy, and Y. Ben-Shaul, "Unsupervised spike detection and sorting
with wavelets and superparamagnetic clustering," Neural computation, vol. 16, pp. 1661-
1687, Aug. 2004.

[124] H. Abdi and P. Molin, "Lilliefors/Van Soest’s test of normality," Encyclopedia of
measurement and statistics, pp. 540-544, 2007.

[125] C. Zhang, X. Zhang, M. Q. Zhang, et al., "Neighbor number, valley seeking and
clustering," Pattern Recognition Letters, vol. 28, pp. 173-180, Jan. 2007.

[126] A. M. Kamboh and A. J. Mason, "Computationally Efficient Neural Feature Extraction
for Spike Sorting in Implantable High-Density Recording Systems," Neural Systems and
Rehabilitation Engineering, IEEE Transactions on, vol. 21, pp. 1-9, 2013.

[127] Y. Q. Li, Z. L. Yu, N. Bi, et al., "Sparse Representation for Brain Signal Processing: A
tutorial on methods and applications," Signal Processing Magazine, IEEE, vol. 31, pp. 96-
106, 2014.

[128] M. Shoaib, N. K. Jha, and N. Verma, "Signal Processing With Direct Computations on
Compressively Sensed Data," Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, vol. 23, pp. 30-43, 2015.

149

[129] B. D. He, A. Wein, L. R. Varshney, et al., "Generalized Analog Thresholding for Spike
Acquisition at Ultra-Low Sampling Rates," Journal of Neurophysiology, vol.114, pp. 746-
760, 2015.

[130] Y. C. Eldar and G. Kutyniok, Compressed sensing: theory and applications. Cambridge
UK: Cambridge University Press, 2012, pp. 1- 303.

[131] G. Peyre, "Best basis compressed sensing," Signal Processing, IEEE Transactions on, vol.
58, pp. 2613-2622, 2010.

[132] C. Caratheodory, "Uber den Variabilitatsbereich der Koeffizienten von Potenzreihen,die
gegebene Werte nicht annehmen," Mathematische Annalen, vol. 64, pp. 95-115, 1907.

[133] E. J. Candes, J. Romberg, and T. Tao, "Robust uncertainty principles: exact signal
reconstruction from highly incomplete frequency information," Information Theory, IEEE
Transactions on, vol. 52, pp. 489-509, 2006.

[134] F. Chen, A. P. Chandrakasan, and V. M. Stojanovic, "Design and Analysis of a Hardware-
Efficient Compressed Sensing Architecture for Data Compression in Wireless Sensors,"
Solid-State Circuits, IEEE Journal of, vol. 47, pp. 744-756, 2012.

[135] A. G. Dimakis, R. Smarandache, and P. O. Vontobel, "LDPC Codes for Compressed
Sensing," Information Theory, IEEE Transactions on, vol. 58, pp. 3093-3114, 2012.

[136] E. J. Candes and T. Tao, "Decoding by linear programming," Information Theory, IEEE
Transactions on, vol. 51, pp. 4203-4215, 2005.

[137] M. Rudelson and R. Vershynin, "Sparse reconstruction by convex relaxation: Fourier and
Gaussian measurements," in Information Sciences and Systems, 2006 40th Annual
Conference on, 2006, pp. 207-212.

[138] M. Shoaran, M. H. Kamal, C. Pollo, et al., "Compact Low-Power Cortical Recording
Architecture for Compressive Multichannel Data Acquisition," Biomedical Circuits and
Systems, IEEE Transactions on, vol. 8, pp. 857-870, 2014.

[139] Z. L. Zhang, T. P. Jung, S. Makeig, et al., "Compressed Sensing of EEG for Wireless
Telemonitoring With Low Energy Consumption and Inexpensive Hardware," Biomedical
Engineering, IEEE Transactions on, vol. 60, pp. 221-224, 2013.

[140] M. F. Duarte and Y. C. Eldar, "Structured Compressed Sensing: From Theory to
Applications," Signal Processing, IEEE Transactions on, vol. 59, pp. 4053-4085, 2011.

[141] S. X. Li, F. Gao, G. N. Ge, et al., "Deterministic Construction of Compressed Sensing
Matrices via Algebraic Curves," Information Theory, IEEE Transactions on, vol. 58, pp.
5035-5041, 2012.

[142] A. Beck and M. Teboulle, "A Fast Iterative Shrinkage-Thresholding Algorithm for Linear
Inverse Problems," SIAM Journal on Imaging Sciences, vol. 2, pp. 183-202, 2009.

[143] S. G. Mallat and Z. Zhang, "Matching pursuits with time-frequency dictionaries," Signal
Processing, IEEE Transactions on, vol. 41, pp. 3397-3415, 1993.

[144] T. Blumensath and M. E. Davies, "Iterative hard thresholding for compressed sensing,"
Applied and Computational Harmonic Analysis, vol. 27, pp. 265-274, Nov. 2009.

150

[145] Z. Charbiwala, P. Martin, and M. B. Srivastava, "CapMux: A scalable analog front end
for low power compressed sensing," in Green Computing Conference (IGCC), 2012
International, 2012, pp. 1-10.

[146] Z. Charbiwala, V. Karkare, S. Gibson, et al., "Compressive Sensing of Neural Action
Potentials Using a Learned Union of Supports," in Body Sensor Networks (BSN), 2011
International Conference on, 2011, pp. 53-58.

[147] M. Shaou-Gang and C. Shu-Nien, "Wavelet-based lossy-to-lossless ECG compression in
a unified vector quantization framework," Biomedical Engineering, IEEE Transactions on,
vol. 52, pp. 539-543, 2005.

[148] H. Mamaghanian, N. Khaled, D. Atienza, et al., "Design and Exploration of Low-Power
Analog to Information Conversion Based on Compressed Sensing," Emerging and
Selected Topics in Circuits and Systems, IEEE Journal on, vol. 2, pp. 493-501, 2012.

[149] J. A. Tropp, J. N. Laska, M. F. Duarte, et al., "Beyond Nyquist: Efficient Sampling of
Sparse Bandlimited Signals," Information Theory, IEEE Transactions on, vol. 56, pp.
520-544, Jan. 2010.

[150] J. A. Tropp, M. B. Wakin, M. F. Duarte, et al., "Random filters for compressive sampling
and reconstruction," 2006 IEEE International Conference on Acoustics, Speech, and
Signal Processing, Vol III , pp. 872 - 875, 2006.

[151] M. Mishali and Y. C. Eldar, "From Theory to Practice: Sub-Nyquist Sampling of Sparse
Wideband Analog Signals," Selected Topics in Signal Processing, IEEE Journal of, vol. 4,
pp. 375-391, 2010.

[152] J. Romberg, "Compressive Sensing by Random Convolution," Siam Journal on Imaging
Sciences, vol. 2, pp. 1098-1128, 2009.

[153] J. P. Slavinsky, J. N. Laska, M. A. Davenport, et al., "The compressive multiplexer for
multi-channel compressive sensing," in Acoustics, Speech and Signal Processing
(ICASSP), 2011 IEEE International Conference on, 2011, pp. 3980-3983.

[154] X. Chen, Z. Z. Yu, S. Hoyos, et al., "A Sub-Nyquist Rate Sampling Receiver Exploiting
Compressive Sensing," Circuits and Systems I: Regular Papers, IEEE Transactions on,
vol. 58, pp. 507-520, 2011.

[155] W. Z. Lu, K. Kpalma, and J. Ronsin, "Sparse Binary Matrices of LDPC Codes for
Compressed Sensing," in 2012 Data Compression Conference (DCC), 2012, pp. 405-405.

[156] Y. M. Suo, J. Zhang, T. Xiong, et al., "Energy-Efficient Multi-Mode Compressed Sensing
System for Implantable Neural Recordings," Biomedical Circuits and Systems, IEEE
Transactions on, vol. 8, pp. 648-659, 2014.

[157] T. Xiong, Y. M. Suo, J. Zhang, et al., "A dictionary learning algorithm for multi-channel
neural recordings," in Biomedical Circuits and Systems Conference (BioCAS), 2014 IEEE,
2014, pp. 9-12.

[158] J. Zhang, Y. M. Suo, S. Mitra, et al., "Reconstruction of neural action potentials using
signal dependent sparse representations," in Circuits and Systems (ISCAS), 2013 IEEE
International Symposium on, 2013, pp. 1520-1523.

151

[159] D. Bellasi, R. Rovatti, L. Benini, et al., "An architecture for low-power compressed
sensing and estimation in wireless sensor nodes," in Circuits and Systems (ISCAS), 2014
IEEE International Symposium on, 2014, pp. 1732-1735.

[160] V. Karkare, S. Gibson, and D. Markovic, "A 130-μW, 64-channel spike-sorting DSP
chip," in Solid-State Circuits Conference, A-SSCC 2009. IEEE Asian, 2009, pp. 289-292.

[161] A. C. Gilbert, M. J. Strauss, J. A. Tropp, et al., "One sketch for all: fast algorithms for
compressed sensing," presented at the Proceedings of the thirty-ninth annual ACM
symposium on Theory of computing, San Diego, California, USA, 2007, pp. 237-246.

[162] X. J. Liu and S. T. Xia, "Reconstruction guarantee analysis of binary measurement
matrices based on girth," in Information Theory Proceedings (ISIT), 2013 IEEE
International Symposium on, 2013, pp. 474-478.

[163] L. Applebaum, S. D. Howard, S. Searle, et al., "Chirp sensing codes: Deterministic
compressed sensing measurements for fast recovery," Applied and Computational
Harmonic Analysis, vol. 26, pp. 283-290, Mar. 2009.

[164] A. Amini and F. Marvasti, "Deterministic Construction of Binary, Bipolar, and Ternary
Compressed Sensing Matrices," Information Theory, IEEE Transactions on, vol. 57, pp.
2360-2370, 2011.

[165] N. Yu and Y. Li, "Deterministic construction of Fourier-based compressed sensing
matrices using an almost difference set," EURASIP Journal on Advances in Signal
Processing, vol. 2013, pp. 1-14, Oct. 2013.

[166] A. M. Kamboh, K. G. Oweiss, and A. J. Mason, "Resource constrained VLSI architecture
for implantable neural data compression systems," in Circuits and Systems, ISCAS 2009.
IEEE International Symposium on, 2009, pp. 1481-1484.

[167] R. H. Olsson and K. D. Wise, "A three-dimensional neural recording microsystem with
implantable data compression circuitry," Solid-State Circuits, IEEE Journal of, vol. 40, pp.
2796-2804, 2005.

[168] V. Karkare, S. Gibson, and D. Markovic, "A 75-µW, 16-Channel Neural Spike-Sorting
Processor With Unsupervised Clustering," Solid-State Circuits, IEEE Journal of, vol. 48,
pp. 2230-2238, 2013.

[169] V. Shalchyan, W. Jensen, and D. Farina, "Spike Detection and Clustering With
Unsupervised Wavelet Optimization in Extracellular Neural Recordings," Biomedical
Engineering, IEEE Transactions on, vol. 59, pp. 2576-2585, 2012.

[170] F. Franke, M. Natora, C. Boucsein, et al., "An online spike detection and spike
classification algorithm capable of instantaneous resolution of overlapping spikes,"
Journal of Computational Neuroscience, vol. 29, pp. 127-148, Aug. 2010.

[171] A. Meraoumia, S. Chitroub, and A. Bouridane, "2D and 3D palmprint information, PCA
and HMM for an improved person recognition performance," Integrated Computer-Aided
Engineering, vol. 20, pp. 303-319, 2013.

[172] E. Gokgoz and A. Subasi, "Comparison of decision tree algorithms for EMG signal
classification using DWT," Biomedical Signal Processing and Control, vol. 18, pp. 138-
144, Apr. 2015.

152

[173] S. C. Wu, A. L. Swindlehurst, and Z. Nenadic, "A novel framework for feature extraction
in multi-sensor action potential sorting," Journal of Neuroscience Methods, vol. 253, pp.
262-271, Sept. 2015.

[174] M. Zamani and A. Demosthenous, "Feature Extraction Using Extrema Sampling of
Discrete Derivatives for Spike Sorting in Implantable Upper-Limb Neural Prostheses,"
Neural Systems and Rehabilitation Engineering, IEEE Transactions on, vol. 22, pp. 716-
726, 2014.

[175] E. J. Zuperku, I. Prkic, A. G. Stucke, et al., "Automatic classification of canine PRG
neuronal discharge patterns using K-means clustering," Respiratory Physiology &
Neurobiology, vol. 207, pp. 28-39, Feb. 2015.

[176] J. T. Moyer, S. F. Danish, J. G. Keating, et al., "Implementation of dual simultaneous
microelectrode recording systems during deep brain stimulation surgery for Parkinson's
disease: technical note," Operative Neurosurgery, vol. 60, pp. E177 - E178, Feb. 2007.
DOI:10.1227/01.NEU.0000249250.40676.7E.

[177] J. Neimat, C. Hamani, P. Giacobbe, et al., "Neural stimulation successfully treats
depression in patients with prior ablative cingulotomy," Am J Psychiatry, vol. 165, pp.
687-93, 2008.

[178] F. Shahrokhi, K. Abdelhalim, D. Serletis, et al., "The 128-Channel Fully Differential
Digital Integrated Neural Recording and Stimulation Interface," Biomedical Circuits and
Systems, IEEE Transactions on, vol. 4, pp. 149-161, 2010.

[179] G. Charvet, L. Rousseau, O. Billoint, et al., "BioMEA: a versatile high-density 3D
microelectrode array system using integrated electronics," Biosensors and Bioelectronics,
vol. 25, pp. 1889-96, Apr. 2010.

[180] E. J. Candes and Y. Plan, "Near-ideal model selection by ℓ1 minimization," The Annals of
Statistics, vol. 37, pp. 2145-2177, Oct. 2009.

[181] X. Y. Zhang, J. T. Wen, Y. X. Han, et al., "An improved compressive sensing
reconstruction algorithm using linear/non-linear mapping," in 2011 Information Theory
and Applications Workshop (ITA), 2011, pp. 1-7.

[182] D. Needell and J. A. Tropp, "CoSaMP: Iterative signal recovery from incomplete and
inaccurate samples," Applied and Computational Harmonic Analysis, vol. 26, pp. 301-321,
May 2009.

[183] T. Blumensath and M. Davies, "Iterative Thresholding for Sparse Approximations,"
Journal of Fourier Analysis and Applications, vol. 14, pp. 629-654, Dec. 2008.

[184] Z. Zhang and B. D. Rao, "Extension of SBL Algorithms for the Recovery of Block Sparse
Signals With Intra-Block Correlation," Signal Processing, IEEE Transactions on, vol. 61,
pp. 2009-2015, 2013.

[185] B. Liu, Z. Zhang, G. Xu, et al., "Energy efficient telemonitoring of physiological signals
via compressed sensing: A fast algorithm and power consumption evaluation,"
Biomedical Signal Processing and Control, vol. 11, pp. 80-88, May 2014.

[186] R. G. Baraniuk, V. Cevher, M. F. Duarte, et al., "Model-Based Compressive Sensing,"
Information Theory, IEEE Transactions on, vol. 56, pp. 1982-2001, 2010.

153

[187] S. D. Howard, A. R. Calderbank, and S. J. Searle, "A fast reconstruction algorithm for
deterministic compressive sensing using second order reed-muller codes," in Information
Sciences and Systems, CISS 2008. 42nd Annual Conference on, 2008, pp. 11-15.

[188] R. Baraniuk, M. Davenport, R. DeVore, et al., "A Simple Proof of the Restricted Isometry
Property for Random Matrices," Constructive Approximation, vol. 28, pp. 253-263,
2008/12/01 2008.

[189] R. Calderbank, S. Howard, and S. Jafarpour, "Construction of a Large Class of
Deterministic Sensing Matrices That Satisfy a Statistical Isometry Property," Selected
Topics in Signal Processing, IEEE Journal of, vol. 4, pp. 358-374, 2010.

[190] J. Martinez, C. Pedreira, M. J. Ison, et al. "Dataset # 3: Simulated extracellular
recordings."Internet:www2.le.ac.ul/departments/engineering/research/bioengineering/neur
oengineering-lab/software [2015]

[191] Z. L. Zhang, T. P. Jung, S. Makeig, et al., "Compressed Sensing for Energy-Efficient
Wireless Telemonitoring of Noninvasive Fetal ECG Via Block Sparse Bayesian
Learning," Biomedical Engineering, IEEE Transactions on, vol. 60, pp. 300-309, 2013.

[192] D. Donoho, V. Stodden, and Y. Tsaig. (2007) "Sparse Lab." Internet:
http://sparselab.stanford.edu/ [2015].

[193] E. v. den Berg and M. P. Friedlander. (2013). "SPGL1: A solver for large-scale sparse
reconstruction." Internet: https://www.math.ucdavis.edu/~mpf/spgl1/ [2015].

[194] N. C. Klapoetke, Y. Murata, S. S. Kim, et al., "Independent optical excitation of distinct
neural populations," Nature Methods, vol. 11, pp. 338-346, Mar. 2014.

[195] D. Khodagholy, J. N. Gelinas, T. Thesen, et al., "NeuroGrid: recording action potentials
from the surface of the brain," Nature Neuroscience, vol. 18, pp. 310-315, Feb. 2015.

[196] M. A. J. Lourens, H. G. E. Meijer, M. F. Contarino, et al., "Functional neuronal activity
and connectivity within the subthalamic nucleus in Parkinson’s disease," Clinical
Neurophysiology, vol. 124, pp. 967-981, May 2013.

[197] Y. C. Yang, C. H. Tai, M. K. Pan, et al., "The T- type calcium channel as a new
therapeutic target for Parkinson’s disease," Pflügers Archiv - European Journal of
Physiology, vol. 466, pp. 747-755, Apr. 2014.

[198] D. Han, Y. J. Zheng, R. RajKumar, et al., "A 0.45 V 100-Channel Neural-Recording IC
With Sub-μW/Channel Consumption in 0.18 μm CMOS," Biomedical Circuits and
Systems, IEEE Transactions on, vol. 7, pp. 735-746, 2013.

[199] T. A. Szuts, V. Fadeyev, S. Kachiguine, et al., "A wireless multi-channel neural amplifier
for freely moving animals," Nature Neuroscience, vol. 14, pp. 263-269, Feb. 2011.

[200] Z. Yang, Q. Zhao, E. Keefer, et al., "Noise characterization, modeling, and reduction for
in vivo neural recording," in Advances in neural information processing systems, 2009, pp.
2160-2168.

[201] E. N. Brown, R. E. Kass, and P. P. Mitra, "Multiple neural spike train data analysis: state-
of-the-art and future challenges," Nature Neuroscience, vol. 7, pp. 456-461, May 2004.

154

[202] J. Wild, Z. Prekopcsak, T. Sieger, et al., "Performance comparison of extracellular spike
sorting algorithms for single-channel recordings," Journal of Neuroscience Methods, vol.
203, pp. 369-376, Jan. 2012.

[203] N. Thanh, A. Khosravi, I. Hettiarachchi, et al., "Classification of neural action potentials
using mean shift clustering," in Systems, Man and Cybernetics (SMC), 2014 IEEE
International Conference on, 2014, pp. 1247-1252.

[204] S. E. Paraskevopoulou, D. Wu, A. Eftekhar, et al., "Hierarchical Adaptive Means (HAM)
clustering for hardware-efficient, unsupervised and real-time spike sorting," Journal of
Neuroscience Methods, vol. 235, pp. 145-156, Sept. 2014.

[205] P. T. Watkins, G. Santhanam, K. V. Shenoy, et al., "Validation of adaptive threshold
spike detector for neural recording," in Engineering in Medicine and Biology Society,
IEMBS '04. 26th Annual International Conference of the IEEE, 2004, pp. 4079-4082.

[206] U. Iruansi and S. Apeh, "Optimal Spike Detection Technique Based on Amplitude
Threshold," British Journal of Applied Science & Technology, vol. 4, pp. 3539 - 3549,
2014.

[207] R. J. Brychta, R. Shiavi, D. Robertson, et al., "Spike detection in human muscle
sympathetic nerve activity using the kurtosis of stationary wavelet transform
coefficients," Journal of Neuroscience Methods, vol. 160, pp. 359-367, Mar. 2007.

[208] S. Kim, J. McNames, and K. Burchiel, "Action potential detection with automatic
template matching," in Annual International Conference of the IEEE Engineering in
Medicine and Biology Proceedings, 2004, pp. 41-44.

[209] C. Ekanadham, D. Tranchina, and E. P. Simoncelli, "A unified framework and method for
automatic neural spike identification," Journal of Neuroscience Methods, vol. 222, pp. 47-
55, Jan. 2014.

[210] V. Shalchyan and D. Farina, "A non-parametric Bayesian approach for clustering and
tracking non-stationarities of neural spikes," Journal of Neuroscience Methods, vol. 223,
pp. 85-91, Feb. 2014.

[211] Y. Zhou, T. Wu, A. Rastegarnia, et al., "On the robustness of EC–PC spike detection
method for online neural recording," Journal of Neuroscience Methods, vol. 235, pp. 316-
330, Sept. 2014.

[212] Z. Q. Dong, H. Y. Gu, Y. Wan, et al., "Wireless body area sensor network for posture and
gait monitoring of individuals with Parkinson's disease," in Networking, Sensing and
Control (ICNSC), 2015 IEEE 12th International Conference on, 2015, pp. 81 - 86.

[213] G. Valenza, M. Nardelli, A. Lanata, et al., "Wearable Monitoring for Mood Recognition
in Bipolar Disorder Based on History-Dependent Long-Term Heart Rate Variability
Analysis," Biomedical and Health Informatics, IEEE Journal of, vol. 18, pp. 1625-1635,
2014.

[214] J. Jeppesen, S. Beniczky, P. Johansen, et al., "Exploring the capability of wireless near
infrared spectroscopy as a portable seizure detection device for epilepsy patients," Seizure,
vol. 26, pp. 43-48, Mar. 2015.

155

[215] D. Han, Y. Zheng, R. Rajkumar, et al., "A 0.45 V 100-channel neural-recording IC with
sub-µW/channel consumption in 0.18µm CMOS," in Solid-State Circuits Conference
Digest of Technical Papers (ISSCC), 2013 IEEE International, 2013, pp. 290-291.

[216] A. Berényi, Z. Somogyvári, A. J. Nagy, et al., "Large-scale, high-density (up to 512
channels) recording of local circuits in behaving animals," Journal of neurophysiology,
vol. 111, pp. 1132-1149, 2014.

[217] K. Hyejung, K. Sunyoung, N. Van Helleputte, et al., "A Configurable and Low-Power
Mixed Signal SoC for Portable ECG Monitoring Applications," Biomedical Circuits and
Systems, IEEE Transactions on, vol. 8, pp. 257-267, 2014.

[218] B. Gosselin, "Recent Advances in Neural Recording Microsystems," Sensors, vol. 11, pp.
4572-4597, 2011.

[219] S. S. Chen, D. L. Donoho, and M. A. Saunders, "Atomic decomposition by basis pursuit,"
SIAM journal on scientific computing, vol. 20, pp. 33-61, 1998.

[220] M. Lin, R. Jin, and C. S. Zhang, "Efficient sparse recovery via adaptive non-convex
regularizers with oracle property," in Uncertainty in Artificial Intelligence - Proceedings
of the 30th Conference, UAI 2014, Quebec City, Quebec, Canada, 2014.

[221] A. Shirazinia and S. Dey, "Optimized compressed sensing matrix design for noisy
communication channels," in Communications (ICC), 2015 IEEE International
Conference on, 2015, pp. 4547-4552.

[222] R. Saab and Ö. Yilmaz, "A short note on non-convex compressed sensing," in
SAMPTA'09, 8th international conference on Sampling Theory and Applications,
Marseille, France, 2009.

[223] A. M. Dixon, E. G. Allstot, D. Gangopadhyay, et al., "Compressed sensing system
considerations for ECG and EMG wireless biosensors," Biomedical Circuits and Systems,
IEEE Transactions on, vol. 6, pp. 156-166, 2012.

[224] N. Li and M. Sawan, "Neural signal compression using a minimum Euclidean or
Manhattan distance cluster-based deterministic compressed sensing matrix," Biomedical
Signal Processing and Control, vol. 19, pp. 44-55, May 2015.

[225] A. Bonfanti, M. Ceravolo, G. Zambra, et al., "A multi-channel low-power system-on-chip
for single-unit recording and narrowband wireless transmission of neural signal," in 2010
32nd Annual International Conference of the IEEE Engineering in Medicine and Biology
Society, EMBC'10, Buenos Aires, Argentina, 2010, pp. 1555-1560.

[226] R. R. Harrison, "A low-power integrated circuit for adaptive detection of action potentials
in noisy signals," in Engineering in Medicine and Biology Society, Proceedings of the
25th Annual International Conference of the IEEE, 2003, pp. 3325-3328.

[227] B. Gosselin, A. E. Ayoub, J. F. Roy, et al., "A mixed-signal multichip neural recording
interface with bandwidth reduction," Biomedical Circuits and Systems, IEEE
Transactions on, vol. 3, pp. 129-141, 2009.

156

APPENDIX A – COMPLEMENTARY BACKGROUND ON COMPRESSED

SENSING THEORY

A.1. Vector Space

In the case of a discrete, finite domain, signals can be viewed as vectors in an n-dimensional

Euclidean space, and the ℓp norms are frequently used for the measure. ℓp norms can be defined as

(A.1),

1

1

1,2,...,

() , (0,)

max ,

n p p
ii

p
ii n

x p
x

x p
=

=

 ∈ ∞=
=∞

∑
 (A.1)

A set 1 2{ , , }nv v v is called a basis for n
 if the vectors in the set span n

 and are linearly

independent. Each vector in the space has a unique representation as a linear combination of

these basis vectors. Regarding an nx∈ , there exist coefficients { }1 2, , , na a a a= to form

(A.2),

 𝑥𝑥 = ∑ 𝑠𝑠𝑚𝑚𝑣𝑣𝑚𝑚
𝑛𝑛
𝑚𝑚=1 (A.2)

Note that {𝑣𝑣1,   𝑣𝑣2 ⋯ , 𝑣𝑣𝑛𝑛} comprises an n n matrix V, so (A.2) can be written as (A.3),

 𝑥𝑥 = 𝑉𝑉𝑠𝑠 (A.3)

For a basis {𝑣𝑣1,  𝑣𝑣2 ⋯ , 𝑣𝑣𝑛𝑛} and every entry of this vector, if (A.4) is satisfied,

1,
,

0,i j
i j

v v
i j
=

= ≠
 (A.4)

then {𝑣𝑣1,   𝑣𝑣2 ⋯ , 𝑣𝑣𝑛𝑛} is called an orthonormal basis.

If a set vectors {𝑣𝑣1
′ ,  𝑣𝑣2

′ ⋯ , 𝑣𝑣𝑛𝑛
′ } in m

 , where m n< , comprise a matrix 'V , such that for all vector
mx∈ ,

 𝐶𝐶‖𝑥𝑥‖2
2     ≤     ‖𝑉𝑉′  𝑇𝑇𝑥𝑥‖2

2 ≤   𝐷𝐷‖𝑥𝑥‖2
2 (A.5)

where , (0,)C D∈ ∞ , then {𝑣𝑣1
′ ,   𝑣𝑣2

′ ⋯ , 𝑣𝑣𝑛𝑛
′ } calls a frame. If C and D can be chosen as C D= , then

the frame is called A-tight. If C = D = 1, then V’ is a parseval frame.

157

A.2. Sensing Matrix

(Johnson-Lindenstruss Lemma) Let 𝜀𝜀   (0,1)∈ be given. For every set P of ()N P points in N
 , if

n is a positive integer such that 𝑛𝑛   >    𝑛𝑛0 =   O(ln(N(𝑃𝑃)) 𝜀𝜀2⁄), there exists a Lipschitz mapping f :
N n→ such that (A.6),

(1 − 𝜀𝜀)‖𝑢𝑢 − 𝑣𝑣‖𝑙𝑙𝑝𝑝
2 ≤ ‖𝑓𝑓(𝑢𝑢) − 𝑓𝑓(𝑣𝑣)‖𝑙𝑙𝑝𝑝

2 ≤ (1 + 𝜀𝜀)‖𝑢𝑢 − 𝑣𝑣‖𝑙𝑙𝑝𝑝
2 (A.6)

For all ,u v P∈ .

Let 𝛷𝛷 be a random matrix of size nN drawn according to any distribution that satisfies the

concentration inequality. Then, for any set T with N(T) = k < n and any 0 < ε < 1, we have

(A.7),

 (1 − 𝜀𝜀)‖𝑥𝑥‖𝑙𝑙𝑝𝑝 ≤ ‖𝛷𝛷𝑥𝑥‖𝑙𝑙𝑝𝑝 ≤ (1 + 𝜀𝜀)‖𝑥𝑥‖𝑙𝑙𝑝𝑝 , for all 𝑥𝑥   ∈   𝑉𝑉𝑇𝑇 (A.7)

with probability

≥ 1 − 2(12/𝜀𝜀)𝑘𝑘exp(−𝑐𝑐0(𝜀𝜀/2)𝑛𝑛) (A.8)

The concentration equality is defined as (A.9),

 Pr(|‖𝛷𝛷𝑥𝑥‖𝑙𝑙𝑝𝑝
2 −     ‖𝑥𝑥‖𝑙𝑙𝑝𝑝

2 | ≥ 𝜀𝜀‖𝑥𝑥‖𝑙𝑙𝑝𝑝
2) ≤ 2exp(−𝑛𝑛𝑐𝑐0(𝜀𝜀)) (A.9)

A matrix 𝛷𝛷 satisfies the null space property (NSP) of order k if there exists a constant 0C > such

that,

 ‖𝑦𝑦𝛬𝛬‖2 ≤    𝐶𝐶 ‖𝑦𝑦𝛬𝛬𝑐𝑐‖1

√𝑘𝑘
 (A.10)

Holds for all 𝑦𝑦 ∈   Null(𝛷𝛷) and for all Λ such that kΛ ≤ , Null(𝛷𝛷) = {𝑧𝑧: 𝛷𝛷𝑧𝑧 = 0} .

{1, 2, , }nΛ ⊂ is a subset of indices and {1, 2, , }\c nΛ ⊂ Λ . If a vector y is exactly k-sparse,

then there exists a Λ such that ‖𝑦𝑦𝛬𝛬𝑐𝑐‖1 = 0 and implies that 𝑦𝑦𝛬𝛬 = 0.

Defining F1 : m n→ . (A.10) can be changed to be (A.11),

C‖𝐹𝐹1(𝛷𝛷𝑥𝑥)1 − 𝑥𝑥‖2 ≤   𝐶𝐶 𝜎𝜎𝑘𝑘(𝑥𝑥)1

√𝑘𝑘
 (A.11)

For all x, where 𝜎𝜎𝑘𝑘(𝑥𝑥)1 is defined in (2.16). This guarantees exact recovery of all possible k-

sparse signals.

158

A.3. Signal Recovery In Noise

For the signal recovery, 1 minimization is applied, which is expressed as (A.12)

𝑥𝑥′ = arg min
𝑧𝑧

‖𝑧𝑧‖1  ,      subject  to   𝑧𝑧 ∈ 𝑓𝑓(𝑦𝑦) = {𝑧𝑧: 𝐴𝐴𝑧𝑧 = 𝑦𝑦}, (A.12)

The bounded and Gaussian noisy signal recoveries are listed as follows.

Suppose that 𝛷𝛷 satisfies the RIP of order 2k with 𝜀𝜀2𝑘𝑘 <    √2 − 1 , and let y Ax B= + where

2B ≤ γ , the solution x’ to (A.12) obeys (A.13),

‖𝑥𝑥′ − 𝑥𝑥‖2 ≤ 𝐶𝐶0
𝜎𝜎𝑘𝑘(𝑥𝑥)1

√𝑘𝑘
+ 𝐶𝐶1𝛾𝛾 (A.13)

where 𝐶𝐶0 = 2 1−(1−√2)𝑀𝑀2𝑘𝑘
1−(1+√2)𝑀𝑀2𝑘𝑘

 and 𝐶𝐶1 = 4 �1+𝑀𝑀2𝑘𝑘)
1−(1+√2)𝑀𝑀2𝑘𝑘

.

Suppose that 𝛷𝛷 satisfies the RIP of order 2k with 𝜀𝜀2𝑘𝑘 <    √2 − 1. Moreover, suppose 𝑥𝑥 ∈    ∑𝑘𝑘 and

that the measurement can be expressed as y Ax B= + where B obeys the Gaussian distribution,

that is, 2~ (0,)B N s . When f(y) = {𝑧𝑧: ‖𝐴𝐴𝑧𝑧 − 𝑦𝑦‖2 ≤ 2√𝑚𝑚𝜎𝜎}, the solution x’ to (A.12) obeys

(A.14),

‖𝑥𝑥′ − 𝑥𝑥‖2 ≤ 8 �1+𝑀𝑀2𝑘𝑘)
1−(1+√2)𝑀𝑀2𝑘𝑘

√𝑚𝑚𝜎𝜎 (A.14)

With probability at least 1 − exp(−𝑐𝑐0𝑚𝑚).

159

APPENDIX B – IMPLEMENTATION OF THE FRONT-END CIRCUIT

The built front-end circuit including signal filtering, amplifier and ADC is shown in B.1.

Figure B.1 The front-end circuit for the proposed signal processing system

The result of signal amplification for a signal of 100 mV with the gain of 10 is shown in B.2.

Figure B.2 The output of AD620 (1 Vpp, blue) for the input signal (100 mV, yellow)

160

The results of active filter AD704 for a 100 mV input signal with the gain of 10. Figures B.3 -

B.8 show the results with an oscilloscope using the frequencies of 200 Hz, 300 Hz, 1 kHz, 5 kHz,

10 kHz and 12 kHz.

Figure B.3 Bandpass filter output is 300 mV (blue) for a 100 mV input (yellow) to the AD620

with the gain of 10. The input of the filter is 1Vpp. Frequency = 200 Hz

Figure B.4 Bandpass filter output is 600 mV (blue) for a 100 mV input (yellow) to the AD620

with the gain of 10. The input of the filter is 1 Vpp. Frequency = 300 Hz

161

Figure B.5 Bandpass filter output is 1 V (blue) for a 100 mV input (yellow) to the AD620 with

the gain of 10. The input of the filter is 1 Vpp. Frequency = 1 kHz

Figure B.6 Bandpass filter output is 1.25 V (blue) for a 100 mV input (yellow) to the AD620 with

the gain of 10. The input of the filter is 1 Vpp. Frequency = 5 kHz

162

Figure B.7 Bandpass filter output is 1 V (blue) for a 100 mV input (yellow) to the AD620 with

the gain of 10. The input of the filter is 1 Vpp. Frequency = 10 kHz

Figure B.8 Bandpass filter output is 500 mV (blue) for a 100 mV input (yellow) to the AD620

with the gain of 10. The input of the filter is 1 Vpp. Frequency = 12 kHz

The results after the ADC through SPI protocol are shown in B.9. The reference voltage is 0 to 2

V. The output is 0 and 1 V. Also, Table B.1 shows several sampling points in the binary and

decimal formats.

163

 (a) (b)

 (c) (d)

Figure B.9. The output of the ADC through SPI protocol. (a) DC Input = 0 V, 16 bits = 1111

1110 0000 0000 = -512. (b) DC Input = 2 V, 16 bits = 0000 0001 1111 1111 = 511. (c) DC Input

= 1 V, 16 bits = 0000 0000 0010 1100 = 44 (d) DC Input = 1.4 V, 16 bits = 0000 0001 1111 0000

= 496

Table B.1 Some sampling voltage points in the binary and decimal formats

Samples Binary Format Decimal Format Voltage
1 1111 1110 1101 0001 -303 0.49032
2 1111 1111 0111 1111 -129 0.898531
3 0000 0000 0010 0000 32 1.276243
4 0000 0000 1000 1001 137 1.522578
5 0000 0000 1001 1110 158 1.571844
6 0000 0000 0101 1000 88 1.407622
7 1111 1111 1100 1011 -53 1.07683
8 1111 1111 0001 1101 -227 0.668619
9 1111 1110 0111 1101 -387 0.293252
10 1111 1110 0001 0111 -489 0.053956
11 1111 1110 0000 0101 -507 0.011727

164

APPENDIX C – IMPLEMENTATION OF THE DIGITAL SIGNAL

PROCESSING SYSTEM

The structure diagrams of the signal processor are shown in Figures C.1 – C.10.

Figure C.1. The structure diagram of the serial_CDS_200M block

Figure C.2. The structure diagram of the compression_detection_system block

Figure C.3. The structure diagram of the spike_detection block

165

Figure C.4. The structure diagram of the multiplier1 block

Figure C.5. The structure diagram of the standard deviation calculation block

Figure C.6. The structure diagram of the square root calculation block

166

Figure C.7. The structure diagram of the data compression block

Figure C.8. The structure diagram of the add_com_unit_two block

167

Figure C.9. The structure diagram of the Multi_C block

Figure C.10. The structure diagram of the adder_2in1 block

168

Table C.1 Explanation of some important blocks
Block name Figure Explanation

Serial_CDS_200M C.1 Top module of the digital signal processing
system

Clock_divider C.1 Frequency divider
SertoPar C.1 Serial to parallel interface
PartoSer C.1 Parallel to serial interface

Compression_detection_system C.1, C.2 Main module of the signal processing
system

Register_N C.2, C.5,
C.7-C.10 Register

Spike_detection C.2, C.3 Spike detection block
Compression_system_32 C.2, C.7 Data compression block

Counter,counter2,counter4,
counter5, counter_input,

input_control_sig
register_N_sig_detection

 C.2, C.3,
C.5, C.7 Control signal

Multiplex_for_Y C.3 Input of coefficient P for detection
Detection C.3 Ouput of detection results

Change_negative C.3 Calculation of the negative value
Cal_threshold C.3 Calculation of the threshold

Multi C.4 Multiplier
Cal_std C.5 Calculation of the standard deviation

Shift_register_a C.5, C.7 Shift register
Sqroot C.6 Square root calculation

Whole_compression_32 C.7 Sensing matrix generation and signal
compression

Serial_out C.7 Output of the sensing matrix
Comparator C.8 Comparator

Mult_C C.9 Multiplier for the data using two’s
complement code

Adder_2in1 C.10 Adder

Some implementations of the signal processing system in VHDL language are listed as follows.

The clock is 200M
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.numeric_std.all;

------ Top module of the signal processing system, serial input and serial output ------
entity serial_CDS_200M is
generic (DATA_WIDTH : integer :=10; NUM : integer:=31; DATA_WIDTH_m : integer:=5;

169

DATA_WIDTH_n : integer:=5); -- DATA WIDTH
Port (
clk: in std_logic;
rst: in std_logic;
en: in std_logic; -- 0 is non-work, 1 is work first part
en_sam: in std_logic; -- sanpling time indication
X : in std_logic;
data_out_1: out std_logic;
data_out_2: out std_logic); -- detection begin
end serial_CDS_200M;

architecture circuits of serial_CDS_200M is
component compression_detection_system is
generic (DATA_WIDTH : integer ; NUM : integer; DATA_WIDTH_m : integer;
DATA_WIDTH_n : integer); -- DATA WIDTH
Port (
clk: in std_logic;
rst: in std_logic;
en: in std_logic; -- 0 is non-work, 1 is work first part
en1: in std_logic; -- compression part
en_low: in std_logic; --0 is low_style, 1 is normal
num1: in std_logic_vector(1 downto 0); -- num for detection counter
num2: in std_logic_vector(1 downto 0); -- num for compression counter
num3: in std_logic_vector(1 downto 0); -- num for compression counter divided the core
number data high power
flag_num: in std_logic_vector(2 downto 0); -- num for the detection
flag_Y: std_logic;
X : in std_logic_vector(DATA_WIDTH-1 downto 0);
Y: in std_logic_vector(4 downto 0); -- coefficient in the detection
B : in std_logic_vector(9 downto 0); -- core data clustering number
input_flag: out std_logic; -- compression data begin
out_flag : out std_logic_vector(4 downto 0); -- matrix flag
P_out : out std_logic_vector (2*DATA_WIDTH-1 downto 0); -- data
num_out: out std_logic_vector(1 downto 0); -- detection signal
TT1: out std_logic_vector(DATA_WIDTH - 1 downto 0);
TT2: out std_logic_vector(DATA_WIDTH - 1 downto 0);
flag_out: out std_logic); -- detection begin
end component;

component SerToPar is
port(
clk : in std_logic;
rst : in std_logic;
en: in std_logic;
serial: in std_logic;
clk_out : out std_logic;
parallel: out std_logic_vector(9 downto 0));

170

end component;

component clock_divider is
generic (n : integer);
port(
clk : in std_logic;
rst_n : in std_logic;
clk_out: out std_logic);
end component;

component register_out is
generic (DATA_WIDTH : integer ; NUM : integer);
port(
clk : in std_logic;
rst : in std_logic;
en: in std_logic;
input_flag: in std_logic;
flag_out: in std_logic;
out_flag: in std_logic_vector(4 downto 0);
num_out: in std_logic_vector(1 downto 0);
reg_out: out std_logic_vector(8 downto 0));
end component;

component ParToSer is
generic (DATA_WIDTH : integer);
port(
clk : in std_logic;
rst : in std_logic;
en: in std_logic;
data_in: in std_logic_vector(DATA_WIDTH-1 downto 0);
data_out: out std_logic);
end component;

component ParToSer1 is
generic (DATA_WIDTH : integer);
port(
clk : in std_logic;
rst : in std_logic;
en: in std_logic;
data_in: in std_logic_vector(DATA_WIDTH-1 downto 0);
data_out: out std_logic);
end component;

signal num1, num2, num3, num_out: std_logic_vector(1 downto 0);
signal flag_num: std_logic_vector(2 downto 0);
signal out_flag: std_logic_vector(4 downto 0);
signal clk1,en_low, flag_Y, input_flag, flag_out, cout1, cout2, cout3, cout4, cout5, cout6, cout7,

171

rout, rout1, en_rst: std_logic;
signal max_flag: std_logic_vector(NUM-1 downto 0);
signal T11, T22, B, X1: std_logic_vector(DATA_WIDTH - 1 downto 0);
signal Y: std_logic_vector(DATA_WIDTH_n-1 downto 0); -- coefficient in the detection
signal P_out: std_logic_vector(2*DATA_WIDTH-1 downto 0);
signal r_out: std_logic_vector(8 downto 0);constant clk_period2 : time := 1 us;
signal AA1, enn2, enn3: std_logic;

begin
en_low <= '0';
num1 <= "11";
num2 <= "10";
num3 <= "10";
flag_num <= "010";
flag_Y <= '0';
Y <= "00000";
B <= "0000000100";

-----200MHz quartz
clkk: clock_divider
generic map(n => 1)
port map (clk => clk, rst_n => rst, clk_out => clk1);

-----50MHz quartz
clkk1: clock_divider
generic map(n => 249)
port map (clk => clk1, rst_n => rst, clk_out => cout1);

clkk2: clock_divider
generic map(n => 24)
port map (clk => clk1, rst_n => rst, clk_out => cout2);

clkk3: clock_divider
generic map(n => 1)
port map(clk => cout1, rst_n => rst, clk_out => cout4);

clkk4: clock_divider
generic map(n => 49)
port map (clk => clk1, rst_n => rst, clk_out => cout5);

clkk5: clock_divider
generic map(n => 249)
port map (clk => clk1, rst_n => rst, clk_out => cout6);

clkk6: clock_divider
generic map(n => 4)
port map (clk => clk1, rst_n => rst, clk_out => cout7);

172

CDS: compression_detection_system
generic map(DATA_WIDTH => DATA_WIDTH, NUM => NUM, DATA_WIDTH_m =>
DATA_WIDTH_m, DATA_WIDTH_n => DATA_WIDTH_n)
port map(clk => cout1, rst => rst, en => en, en1 => en, en_low => en_low, num1 => num1,
num2 => num2, num3 => num3, flag_num => flag_num, flag_Y => flag_Y, X =>X1,
Y => Y, B => B, input_flag => input_flag, out_flag => out_flag, P_out => P_out, num_out =>
num_out, TT1 => T11, TT2 => T22, flag_out => flag_out);

reg: register_out
generic map(DATA_WIDTH => DATA_WIDTH, NUM => NUM)
port map (clk => cout1, rst => rst, en => en, input_flag => input_flag,flag_out => flag_out,
out_flag => out_flag, num_out => num_out, reg_out => r_out);
 --- cout4

STP: SerToPar
port map (clk => cout2, rst => rst, en => en_sam, serial => X, clk_out => cout3, parallel =>
X1);

en_rst <= not cout6 and input_flag;

PTS: ParToSer
generic map(DATA_WIDTH => 9)
port map (clk => cout5, rst => rst, en => cout4, data_in => r_out, data_out => rout);

PTS1: ParToSer1
generic map(DATA_WIDTH => 20)
port map (clk => cout7, rst => rst, en => en_rst, data_in => P_out, data_out => rout1);

data_out_1 <= rout;
data_out_2 <= rout1;
A <= AA1;
cclk <= enn3;
ss_en <= enn2;

end circuits;

------------------- compression_detection_system -----------------
entity compression_detection_system is
generic (DATA_WIDTH : integer ; NUM : integer; DATA_WIDTH_m : integer;
DATA_WIDTH_n : integer); -- DATA WIDTH
Port (
clk: in std_logic;
rst: in std_logic;
en: in std_logic; -- 0 is non-work, 1 is work first part
en1: in std_logic; -- detection part
en_low: in std_logic; --0 is low_style, 1 is normal

173

num1: in std_logic_vector(1 downto 0); -- num for detection counter
num2: in std_logic_vector(1 downto 0); -- num for compression counter
num3: in std_logic_vector(1 downto 0); -- num for compression counter divided the core
number data high power
flag_num: in std_logic_vector(2 downto 0); -- num for the detection
flag_Y: std_logic;
X : in std_logic_vector(DATA_WIDTH-1 downto 0);
Y: in std_logic_vector(DATA_WIDTH_n-1 downto 0); -- coefficient in the detection
B : in std_logic_vector(DATA_WIDTH-1 downto 0); -- core data clustering number
input_flag: out std_logic; -- compression data begin
out_flag : out std_logic_vector(4 downto 0); -- matrix flag
P_out : out std_logic_vector (2*DATA_WIDTH-1 downto 0); -- data
num_out: out std_logic_vector(1 downto 0); -- detection signal
TT1: out std_logic_vector(DATA_WIDTH - 1 downto 0);
TT2: out std_logic_vector(DATA_WIDTH - 1 downto 0);
flag_out: out std_logic); -- detection begin
end compression_detection_system;

architecture circuits of compression_detection_system is
component compression_system_32 is
generic (DATA_WIDTH : integer ; NUM : integer); -- DATA WIDTH
port (
clk: in std_logic;
rst: in std_logic;
en: in std_logic; -- 0 is non-work, 1 is work first part
en1: in std_logic; -- compression part
en2: in std_logic; -- controlinput
en_low: in std_logic; --0 is low_style, 1 is normal
num_in: in std_logic_vector(1 downto 0);
num_in1: in std_logic_vector(1 downto 0);
X : in std_logic_vector(DATA_WIDTH-1 downto 0);
B : in std_logic_vector(DATA_WIDTH-1 downto 0);
std_num: in std_logic_vector(4 downto 0);
std_flag: in std_logic;
input_flag: out std_logic;
out_flag : out std_logic_vector(NUM-1 downto 0);
P_out : out std_logic_vector (2*DATA_WIDTH-1 downto 0));
end component;

component spike_detection is
generic (DATA_WIDTH : integer;DATA_WIDTH_m : integer; DATA_WIDTH_n : integer);
-- DATA WIDTH
port (
clk: in std_logic;
rst: in std_logic;
en: in std_logic; -- 0 is non-work, 1 is work
en_low: in std_logic; --0 is low_style, 1 is normal

174

num: in std_logic_vector(1 downto 0);
flag_num: in std_logic_vector(2 downto 0);
flag_Y: in std_logic;
X : in std_logic_vector(DATA_WIDTH-1 downto 0);
Y: in std_logic_vector(DATA_WIDTH_n-1 downto 0);
flag_std_out: out std_logic;
P_std_out : out std_logic_vector (4 downto 0);
num_out: out std_logic_vector(1 downto 0);
TT1: out std_logic_vector(DATA_WIDTH - 1 downto 0);
TT2: out std_logic_vector(DATA_WIDTH - 1 downto 0);
flag_out: out std_logic);
end component;

component register_2N_cov is
generic (DATA_WIDTH_m : integer);
port(
A: in std_logic_vector(2*DATA_WIDTH_m -1 downto 0);
clk: in std_logic;
rst_n: in std_logic;
en: in std_logic;
out_flag: out std_logic;
Out_A: out std_logic_vector (DATA_WIDTH_m -1 downto 0));
end component;

component counter_input IS
generic (DATA_WIDTH : integer);
PORT(
A: in std_logic_vector(DATA_WIDTH -1 downto 0);
CLK :IN std_logic;
rst_n :IN std_logic;
en: in std_logic;
en_inp: in std_logic;
num: in std_logic_vector (1 downto 0);
A_out: out std_logic_vector(DATA_WIDTH -1 downto 0);
CP:OUT std_logic);
END component;

component input_control_sig is
port(
clk: in std_logic;
rst_n: in std_logic;
en: in std_logic;
en1: in std_logic;
en_low: in std_logic;
en_com: in std_logic;
en_int: in std_logic;
out_flag: out std_logic);

175

end component;

component Decoder is
port(
clk: in std_logic;
rst: in std_logic;
en: in std_logic; -- 0 is non-work, 1 is work first part
din : in std_logic_vector(30 downto 0);
dout : out std_logic_vector(4 downto 0);
en_out: out std_logic);
end component;

component clock_divider IS
generic (n : integer);
PORT(
clk :IN std_logic;
rst_n :IN std_logic;
clk_out:OUT std_logic);
end component;

component register_N is
generic (DATA_WIDTH_m : integer);
port(
A: in std_logic_vector(DATA_WIDTH_m -1 downto 0);
clk: in std_logic;
rst_n: in std_logic;
en: in std_logic;
Out_A: out std_logic_vector(DATA_WIDTH_m -1 downto 0));
end component;

signal num_cur: std_logic_vector(1 downto 0);
signal fla1, fla2, fla21,fla3, std1, std3, fla4, enout, c_out: std_logic;
signal max_flag: std_logic_vector(NUM-1 downto 0);
signal T1, X1, T11, T22, com1,com2: std_logic_vector(DATA_WIDTH - 1 downto 0);
signal T2: std_logic_vector(2*DATA_WIDTH - 1 downto 0);
signal std2, max: std_logic_vector(4 downto 0);

begin
reg: register_N
generic map(DATA_WIDTH_m => DATA_WIDTH)
port map (A=>X, clk => clk, rst_n => rst, en => en, Out_A => com1);

reg1: register_N
generic map(DATA_WIDTH_m => DATA_WIDTH)
port map (A=>X, clk => c_out, rst_n => rst, en => en, Out_A => com2);

count: counter_input

176

generic map(DATA_WIDTH => DATA_WIDTH)
port map (A => com1, clk =>clk, rst_n => rst, en => fla4, en_inp => std3, num => num2, A_out
=> X1, CP => std3);

count_con: input_control_sig
port map (clk =>clk, rst_n => rst, en => en, en1 => en, en_low => en_low, en_com => std1,
en_int => fla4, out_flag => fla4);

detection: spike_detection
generic map(DATA_WIDTH => DATA_WIDTH, DATA_WIDTH_m => DATA_WIDTH_m,
DATA_WIDTH_n => DATA_WIDTH_n) ----- X => com1
port map (clk => c_out, rst => rst, en => en1, en_low => en_low, num => num1, flag_num =>
flag_num, flag_Y => flag_Y, X => com2, Y => Y, flag_std_out => std1, P_std_out => std2,
num_out => num_cur, TT1 => T11, TT2 =>T22,flag_out => fla1);

compression: compression_system_32
generic map(DATA_WIDTH => DATA_WIDTH, NUM => NUM) --- enlager the signal enable
NUM => NUM
port map (clk =>clk, rst => rst, en => en, en1 => en, en2 => std3, en_low => en_low, num_in
=> num2, num_in1 => num3, X => X1, B => B, std_num => std2, std_flag => en, input_flag
=> fla2, out_flag => max_flag, P_out => T2); --std_flag => std1

Dec: Decoder port map (clk =>clk, rst => rst, en => fla21, din => max_flag, dout => max,
en_out => enout);

div: clock_divider
generic map(n => 1)
port map (clk =>clk, rst_n => rst, clk_out => c_out);

fla21 <= not fla2;

input_flag <= fla2; -- compression data begin
out_flag <= max; -- matrix flag
P_out <= T2; -- data
num_out <= num_cur; -- detection signal
flag_out <= fla1; -- detection begin
TT1 <= T11;
TT2 <= T22;

end circuits;

----------------- spike detection block ----------------------
entity spike_detection is
generic (DATA_WIDTH : integer;DATA_WIDTH_m : integer; DATA_WIDTH_n : integer);
Port (
clk: in std_logic;

177

rst: in std_logic;
en: in std_logic; -- 0 is non-work, 1 is work
en_low: in std_logic; --0 is low_style, 1 is normal
num: in std_logic_vector(1 downto 0);
flag_num: in std_logic_vector(2 downto 0);
flag_Y: in std_logic;
X : in std_logic_vector(DATA_WIDTH-1 downto 0);
Y: in std_logic_vector(DATA_WIDTH_n-1 downto 0);
flag_std_out: out std_logic;
P_std_out : out std_logic_vector (4 downto 0);
num_out: out std_logic_vector(1 downto 0);
TT1: out std_logic_vector(DATA_WIDTH - 1 downto 0);
TT2: out std_logic_vector(DATA_WIDTH - 1 downto 0);
flag_out: out std_logic);
end spike_detection;

architecture circuits of spike_detection is

component calc_threshold is
generic (DATA_WIDTH : integer;DATA_WIDTH_m : integer; DATA_WIDTH_n : integer);
Port (
clk: in std_logic;
rst: in std_logic;
en: in std_logic; -- 0 is non-work, 1 is work
en_low: in std_logic; --0 is low_style, 1 is normal
num: in std_logic_vector (1 downto 0);
X : in std_logic_vector(DATA_WIDTH-1 downto 0);
Y: in std_logic_vector(DATA_WIDTH_n-1 downto 0);
flag_std_out: out std_logic;
P_std_out : out std_logic_vector (4 downto 0);
flag_out: out std_logic;
P_out : out std_logic_vector (DATA_WIDTH-1 downto 0));
end component;

component counter4 IS
PORT(
CLK :IN std_logic;
rst_n :IN std_logic;
en: in std_logic;
num: in std_logic_vector (2 downto 0);
CP:OUT std_logic);
END component;

component register_N_sig_detection is
port(
sig: in std_logic;
clk: in std_logic;

178

rst_n: in std_logic;
en: in std_logic;
out_flag: out std_logic);
end component;

component change_negative is
generic (DATA_WIDTH : integer); -- DATA WIDTH
Port (
clk: in std_logic;
rst: in std_logic;
en: in std_logic;
A : in std_logic_vector (DATA_WIDTH-1 downto 0);
flag_out : out std_logic;
Add_out : out std_logic_vector (DATA_WIDTH-1 downto 0));
end component;

component detection is
generic (DATA_WIDTH : integer); -- DATA WIDTH
Port (
clk: in std_logic;
rst: in std_logic;
en: in std_logic; -- 0 is non-work, 1 is work
en_d: in std_logic;
X : in std_logic_vector(DATA_WIDTH-1 downto 0);
A: in std_logic_vector(DATA_WIDTH -1 downto 0);
B: in std_logic_vector(DATA_WIDTH -1 downto 0);
num_out: out std_logic_vector(1 downto 0);
flag_out: out std_logic);
end component;

component multiplex_for_Y is
generic (DATA_WIDTH_n : integer);
port(
A: in std_logic_vector(DATA_WIDTH_n -1 downto 0);
B: in std_logic_vector(DATA_WIDTH_n -1 downto 0);
clk: in std_logic;
rst_n: in std_logic;
en: in std_logic;
en_low: in std_logic;
flag_Y: in std_logic;
out_flag: out std_logic;
Out_A: out std_logic_vector(DATA_WIDTH_n -1 downto 0));
end component;

signal T1, T2: std_logic_vector(DATA_WIDTH - 1 downto 0);
signal fla, fla1, fla2, fla3, fla4, fla5, std1: std_logic;
signal sig1: std_logic_vector(DATA_WIDTH-1 downto 0);

179

signal sig2, Y1: std_logic_vector(DATA_WIDTH_n-1 downto 0);
signal out_num : std_logic_vector(1 downto 0);
signal std2: std_logic_vector(4 downto 0);

begin
sig1 <= (others => '1');
sig2(1 downto 0) <= "11";
sig2(DATA_WIDTH_n-1 downto 2) <= (others => '0');

count: counter4
port map (clk =>clk, rst_n => rst, en => en, num => flag_num, CP => fla);

multi: multiplex_for_Y
generic map(DATA_WIDTH_n => DATA_WIDTH_n)
port map(Y, sig2, clk, rst, en, en_low, flag_Y, fla5, Y1);

thr1: calc_threshold
generic map(DATA_WIDTH => DATA_WIDTH, DATA_WIDTH_m => DATA_WIDTH_m,
DATA_WIDTH_n => DATA_WIDTH_n)
port map (clk =>clk, rst => fla, en => fla2, en_low => en_low, num => num, X => X , Y => Y1,
flag_std_out => std1, P_std_out => std2,flag_out => fla1, P_out => T1);

thre1: register_N_sig_detection
port map (sig => fla1, clk =>clk, rst_n => rst, en => en,out_flag => fla2);

cha1: change_negative
generic map(DATA_WIDTH => DATA_WIDTH)
port map (clk =>clk, rst => fla, en => fla1, A => T1 , flag_out => fla3, Add_out => T2);

det1: detection
generic map(DATA_WIDTH => DATA_WIDTH)
port map (clk =>clk, rst => fla, en => en, en_d => fla3, X => X, A => T1 , B => T2, num_out
=> out_num, flag_out => fla4);

num_out <= out_num;
flag_out <= fla4;
flag_std_out <= std1;
P_std_out <= std2;
TT1 <= T1;
TT2 <= T2;
end circuits;
entity spike_detection is
generic(DATA_WIDTH : integer;DATA_WIDTH_m : integer; DATA_WIDTH_n : integer);
Port (
clk: in std_logic;
rst: in std_logic;
en: in std_logic; -- 0 is non-work, 1 is work

180

en_low: in std_logic; --0 is low_style, 1 is normal
num: in std_logic_vector(1 downto 0);
flag_num: in std_logic_vector(2 downto 0);
flag_Y: in std_logic;
X : in std_logic_vector(DATA_WIDTH-1 downto 0);
Y: in std_logic_vector(DATA_WIDTH_n-1 downto 0);
flag_std_out: out std_logic;
P_std_out : out std_logic_vector (4 downto 0);
num_out: out std_logic_vector(1 downto 0);
TT1: out std_logic_vector(DATA_WIDTH - 1 downto 0);
 TT2: out std_logic_vector(DATA_WIDTH - 1 downto 0);
flag_out: out std_logic);
end spike_detection;

architecture circuits of spike_detection is
component calc_threshold is
generic(DATA_WIDTH : integer;DATA_WIDTH_m : integer; DATA_WIDTH_n : integer);
Port (
clk: in std_logic;
rst: in std_logic;
en: in std_logic; -- 0 is non-work, 1 is work
en_low: in std_logic; --0 is low_style, 1 is normal
num: in std_logic_vector (1 downto 0);
X : in std_logic_vector(DATA_WIDTH-1 downto 0);
Y: in std_logic_vector(DATA_WIDTH_n-1 downto 0);
flag_std_out: out std_logic;
P_std_out : out std_logic_vector (4 downto 0);
flag_out: out std_logic;
P_out : out std_logic_vector (DATA_WIDTH-1 downto 0));
end component;

component counter4 IS
PORT(
CLK :IN std_logic;
rst_n :IN std_logic;
en: in std_logic;
num: in std_logic_vector (2 downto 0);
CP:OUT std_logic);
END component;

component register_N_sig_detection is
port(
sig: in std_logic;
clk: in std_logic;
rst_n: in std_logic;
en: in std_logic;
out_flag: out std_logic);

181

end component;

component change_negative is
generic (DATA_WIDTH : integer); -- DATA WIDTH
Port (
clk: in std_logic;
rst: in std_logic;
en: in std_logic;
A : in std_logic_vector (DATA_WIDTH-1 downto 0);
flag_out : out std_logic;
Add_out : out std_logic_vector (DATA_WIDTH-1 downto 0));
end component;

component detection is
generic (DATA_WIDTH : integer); -- DATA WIDTH
Port (
clk: in std_logic;
rst: in std_logic;
en: in std_logic; -- 0 is non-work, 1 is work
en_d: in std_logic;
X : in std_logic_vector(DATA_WIDTH-1 downto 0);
A: in std_logic_vector(DATA_WIDTH -1 downto 0);
B: in std_logic_vector(DATA_WIDTH -1 downto 0);
num_out: out std_logic_vector(1 downto 0);
flag_out: out std_logic);
end component;

component multiplex_for_Y is
generic (DATA_WIDTH_n : integer);
port(
A: in std_logic_vector(DATA_WIDTH_n -1 downto 0);
B: in std_logic_vector(DATA_WIDTH_n -1 downto 0);
clk: in std_logic;
rst_n: in std_logic;
en: in std_logic;
en_low: in std_logic;
flag_Y: in std_logic;
out_flag: out std_logic;
Out_A: out std_logic_vector(DATA_WIDTH_n -1 downto 0));
end component;

signal T1, T2: std_logic_vector(DATA_WIDTH - 1 downto 0);
signal fla, fla1, fla2, fla3, fla4, fla5, std1: std_logic;
signal sig1: std_logic_vector(DATA_WIDTH-1 downto 0);
signal sig2, Y1: std_logic_vector(DATA_WIDTH_n-1 downto 0);
signal out_num : std_logic_vector(1 downto 0);
signal std2: std_logic_vector(4 downto 0);

182

begin
sig1 <= (others => '1');
sig2(1 downto 0) <= "11";
sig2(DATA_WIDTH_n-1 downto 2) <= (others => '0');

count: counter4
port map (clk =>clk, rst_n => rst, en => en, num => flag_num, CP => fla);

multi: multiplex_for_Y
 generic map(DATA_WIDTH_n => DATA_WIDTH_n)
 port map(Y, sig2, clk, rst, en, en_low, flag_Y, fla5, Y1);

thr1: calc_threshold
generic map(DATA_WIDTH => DATA_WIDTH, DATA_WIDTH_m => DATA_WIDTH_m,
DATA_WIDTH_n => DATA_WIDTH_n)
port map (clk =>clk, rst => fla, en => fla2, en_low => en_low, num => num, X => X , Y => Y1,
flag_std_out => std1, P_std_out => std2,flag_out => fla1, P_out => T1);

thre1: register_N_sig_detection
port map (sig => fla1, clk =>clk, rst_n => rst, en => en,out_flag => fla2);

cha1: change_negative
generic map(DATA_WIDTH => DATA_WIDTH)
port map (clk =>clk, rst => fla, en => fla1, A => T1 , flag_out => fla3, Add_out => T2);

det1: detection
generic map(DATA_WIDTH => DATA_WIDTH)
port map (clk =>clk, rst => fla, en => en, en_d => fla3, X => X, A => T1 , B => T2, num_out
=> out_num, flag_out => fla4);

num_out <= out_num;
flag_out <= fla4;
flag_std_out <= std1;
P_std_out <= std2;
TT1 <= T1;
TT2 <= T2;

end circuits;

---------------- data compression block ----------------
entity compression_system_32 is
generic (DATA_WIDTH : integer ; NUM : integer);
Port (
clk: in std_logic;
rst: in std_logic;

183

en: in std_logic; -- 0 is non-work, 1 is work first part
en1: in std_logic; -- compression part
en2: in std_logic; -- controlinput
en_low: in std_logic; --0 is low_style, 1 is normal
num_in : in std_logic_vector(1 downto 0);
num_in1: in std_logic_vector(1 downto 0);
X : in std_logic_vector(DATA_WIDTH-1 downto 0);
B : in std_logic_vector(DATA_WIDTH-1 downto 0);
std_num: in std_logic_vector(4 downto 0);
std_flag: in std_logic;
input_flag: out std_logic;
out_flag : out std_logic_vector(NUM-1 downto 0);
P_out : out std_logic_vector (2*DATA_WIDTH-1 downto 0));
end compression_system_32;

architecture circuits of compression_system_32 is
component calc_Y is
generic (DATA_WIDTH : integer); -- DATA WIDTH
Port (
clk: in std_logic;
rst: in std_logic;
en: in std_logic; -- 0 is non-work, 1 is work
std_num: in std_logic_vector (4 downto 0);
num1: in std_logic_vector (1 downto 0);
out_flag : out std_logic;
P_out : out std_logic_vector (DATA_WIDTH-1 downto 0));
end component;

component multiplex_XY is
generic (DATA_WIDTH_m : integer);
port(
A: in std_logic_vector(DATA_WIDTH_m -1 downto 0);
B: in std_logic_vector(DATA_WIDTH_m -1 downto 0);
clk: in std_logic;
rst_n: in std_logic;
en: in std_logic;
en1: in std_logic;
en_low: in std_logic;
out_flag: out std_logic;
Out_A: out std_logic_vector(DATA_WIDTH_m -1 downto 0));
end component;

component whole_compression_32 is
generic (DATA_WIDTH: integer; NUM : integer); -- DATA WIDTH
Port (
clk: in std_logic;
rst: in std_logic;

184

en: in std_logic; -- 0 is non-work, 1 is work
en_f: in std_logic;
X : in std_logic_vector(DATA_WIDTH - 1 downto 0);
Y : in std_logic_vector(DATA_WIDTH - 1 downto 0);
num_in: in std_logic_vector(1 downto 0);
flag_out: out std_logic;
flag_out_en: out std_logic_vector (NUM - 1 downto 0);
flag_out_com: out std_logic_vector (NUM -1 downto 0);
P_out0 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0);
P_out1 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0);
P_out2 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0);
P_out3 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0);
P_out4 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0);
P_out5 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0);
P_out6 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0);
P_out7 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0);
P_out8 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0);
P_out9 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0);
P_out10 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0);
P_out11 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0);
P_out12 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0);
P_out13 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0);
P_out14 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0);
P_out15 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0);
P_out16 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0);
P_out17 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0);
P_out18 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0);
P_out19 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0);
P_out20 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0);
P_out21 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0);
P_out22 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0);
P_out23 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0);
P_out24 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0);
P_out25 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0);
P_out26 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0);
P_out27 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0);
P_out28 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0);
P_out29 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0);
P_out30 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0));
end component;

component signal_N is
port(
A: in std_logic;
clk: in std_logic;
rst_n: in std_logic;
en: in std_logic;

185

out_flag: out std_logic);
end component;

component counter3 IS
PORT(
CLK :IN std_logic;
rst_n :IN std_logic;
en: in std_logic;
num: out integer;
CP:OUT std_logic);
END component;

component serial_out is
generic (DATA_WIDTH_m : integer);
port(
A: in std_logic_vector(DATA_WIDTH_m -1 downto 0);
B: in std_logic_vector(DATA_WIDTH_m -1 downto 0);
clk: in std_logic;
rst_n: in std_logic;
en: in std_logic;
en1: in std_logic;
en2: in std_logic;
out_A: out std_logic_vector(DATA_WIDTH_m -1 downto 0));
end component;

component register_N is
generic (DATA_WIDTH_m : integer);
port(
A: in std_logic_vector(DATA_WIDTH_m -1 downto 0);
clk: in std_logic;
rst_n: in std_logic;
en: in std_logic;
Out_A: out std_logic_vector(DATA_WIDTH_m -1 downto 0));
end component;

component multiplex_sig is
generic (DATA_WIDTH_m : integer);
port(
A: in std_logic_vector(DATA_WIDTH_m -1 downto 0);
B: in std_logic_vector(DATA_WIDTH_m -1 downto 0);
clk: in std_logic;
rst_n: in std_logic;
en: in std_logic;
en_sig: in std_logic;
out_flag: out std_logic;
Out_A: out std_logic_vector(DATA_WIDTH_m -1 downto 0));
end component;

186

component register_WC is
port(
A: in std_logic;
clk: in std_logic;
rst_n: in std_logic;
en: in std_logic;
out_flag: out std_logic);
end component;

component register_three is
port(
A: in std_logic;
clk: in std_logic;
rst_n: in std_logic;
en: in std_logic;
out_flag: out std_logic);
end component;

component register_N_sig_four is
port(
sig: in std_logic;
clk: in std_logic;
rst_n: in std_logic;
en: in std_logic;
out_flag: out std_logic);
end component;

component signal_N_com is
generic (DATA_WIDTH_m : integer);
port(
A: in std_logic_vector(DATA_WIDTH_m -1 downto 0);
clk: in std_logic;
rst_n: in std_logic;
en: in std_logic;
out_A: out std_logic_vector(DATA_WIDTH_m -1 downto 0));
end component;

component register_sig_or is
port(
A: in std_logic;
B: in std_logic;
clk: in std_logic;
rst_n: in std_logic;
en: in std_logic;
out_flag: out std_logic);
end component;

187

component register_control_input is
generic (DATA_WIDTH : integer);
port(
A: in std_logic_vector(DATA_WIDTH -1 downto 0);
clk: in std_logic;
rst_n: in std_logic;
en: in std_logic;
Out_A: out std_logic);
end component;

signal sig1, sig2, sig3: std_logic_vector(1 downto 0);
signal T1, T2: std_logic_vector(DATA_WIDTH - 1 downto 0);
signal fla, fla_or, flaa , flaa1, flaa11, fla1, fla11, fla4,fla5, fla6, fla7, fla8, clk1: std_logic;
signal fla2, fla21, fla3, sig_out1, sig_out2: std_logic_vector (NUM-1 downto 0);
type M_array is array (0 to NUM - 1) of std_logic_vector (2*DATA_WIDTH - 1 downto 0);
signal reg_array_add : M_array; -- addition results
signal Pout : M_array;
signal num_out : integer;

begin
std1: calc_Y
generic map(DATA_WIDTH => DATA_WIDTH)
port map (clk =>clk, rst => rst, en => std_flag, std_num => std_num, num1 => num_in1,
out_flag => fla, P_out => T1);

sig_or: register_sig_or
port map(fla, en_low, clk, rst, en1, fla_or);

sig: signal_N
port map(fla_or, clk, rst, en1, flaa);

mul1: multiplex_XY
generic map(DATA_WIDTH_m => DATA_WIDTH)
port map (A => T1, B => B, clk =>clk, rst_n => fla7, en => en1, en1 => en1, en_low =>
en_low, out_flag => fla1, Out_A=> T2); --en1 => flaa,

rci: register_control_input
generic map(DATA_WIDTH => DATA_WIDTH)
port map (A => X, clk =>clk, rst_n => rst, en => en1, Out_A => fla11);

com1: whole_compression_32
generic map(DATA_WIDTH => DATA_WIDTH, NUM => NUM)
port map (clk =>clk, rst => fla7, en => en1, en_f => fla11, X => X, Y => T2, num_in =>
num_in, flag_out => flaa1, flag_out_en => fla2, flag_out_com => fla3, --en1
P_out0 => reg_array_add(0)(2*DATA_WIDTH - 1 downto 0),
P_out1 => reg_array_add(1)(2*DATA_WIDTH - 1 downto 0),
P_out2 => reg_array_add(2)(2*DATA_WIDTH - 1 downto 0),

188

P_out3 => reg_array_add(3)(2*DATA_WIDTH - 1 downto 0),
P_out4 => reg_array_add(4)(2*DATA_WIDTH - 1 downto 0),
P_out5 => reg_array_add(5)(2*DATA_WIDTH - 1 downto 0),
P_out6 => reg_array_add(6)(2*DATA_WIDTH - 1 downto 0),
P_out7 => reg_array_add(7)(2*DATA_WIDTH - 1 downto 0),
P_out8 => reg_array_add(8)(2*DATA_WIDTH - 1 downto 0),
P_out9 => reg_array_add(9)(2*DATA_WIDTH - 1 downto 0),
P_out10 => reg_array_add(10)(2*DATA_WIDTH - 1 downto 0),
P_out11 => reg_array_add(11)(2*DATA_WIDTH - 1 downto 0),
P_out12 => reg_array_add(12)(2*DATA_WIDTH - 1 downto 0),
P_out13 => reg_array_add(13)(2*DATA_WIDTH - 1 downto 0),
P_out14 => reg_array_add(14)(2*DATA_WIDTH - 1 downto 0),
P_out15 => reg_array_add(15)(2*DATA_WIDTH - 1 downto 0),
P_out16 => reg_array_add(16)(2*DATA_WIDTH - 1 downto 0),
P_out17 => reg_array_add(17)(2*DATA_WIDTH - 1 downto 0),
P_out18 => reg_array_add(18)(2*DATA_WIDTH - 1 downto 0),
P_out19 => reg_array_add(19)(2*DATA_WIDTH - 1 downto 0),
P_out20 => reg_array_add(20)(2*DATA_WIDTH - 1 downto 0),
P_out21 => reg_array_add(21)(2*DATA_WIDTH - 1 downto 0),
P_out22 => reg_array_add(22)(2*DATA_WIDTH - 1 downto 0),
P_out23 => reg_array_add(23)(2*DATA_WIDTH - 1 downto 0),
P_out24 => reg_array_add(24)(2*DATA_WIDTH - 1 downto 0),
P_out25 => reg_array_add(25)(2*DATA_WIDTH - 1 downto 0),
P_out26 => reg_array_add(26)(2*DATA_WIDTH - 1 downto 0),
P_out27 => reg_array_add(27)(2*DATA_WIDTH - 1 downto 0),
P_out28 => reg_array_add(28)(2*DATA_WIDTH - 1 downto 0),
P_out29 => reg_array_add(29)(2*DATA_WIDTH - 1 downto 0),
P_out30 => reg_array_add(30)(2*DATA_WIDTH - 1 downto 0));

out_reg_199: register_N
generic map(DATA_WIDTH_m => 2*DATA_WIDTH)
port map(A => reg_array_add(30)(2*DATA_WIDTH - 1 downto 0), clk => clk, rst_n => fla4,
en => flaa1, out_A => Pout(30)(2*DATA_WIDTH - 1 downto 0));

parti: for i in 0 to NUM - 2 generate
out_reg_i: serial_out
generic map(DATA_WIDTH_m => 2*DATA_WIDTH)
port map(A => reg_array_add(i)(2*DATA_WIDTH - 1 downto 0), B =>
Pout(i+1)(2*DATA_WIDTH - 1 downto 0), clk => clk, rst_n => fla4, en => en1,
en1=>flaa1, en2 => flaa11, out_A => Pout(i)(2*DATA_WIDTH - 1 downto 0));
end generate;

sig11: signal_N
port map(flaa1, clk, fla4, en1, flaa11);

sig12: register_three
port map(flaa11, clk, fla4, en1, fla6);

189

mulsig: multiplex_sig
generic map(DATA_WIDTH_m => NUM)
port map(fla21, sig_out1, clk, fla4, flaa11, fla5, fla5, sig_out1);

sig_WC: register_WC
port map(fla5, clk, rst, fla6, fla4);

sign13: register_N_sig_four
port map(flaa1, clk, rst, en1, fla7);

reg14: signal_N_com
generic map(DATA_WIDTH_m => NUM)
port map(fla2, clk, fla4, flaa1, fla21);

P_out <= Pout(0)(2*DATA_WIDTH - 1 downto 0);

input_flag <= flaa11;
out_flag <= fla3;

end circuits;

------------------ threshold calculation for spike detection -------------
entity calc_std is
generic (DATA_WIDTH : integer); -- DATA WIDTH
Port (
clk: in std_logic;
rst: in std_logic;
en: in std_logic;
en_low: in std_logic;
num: in std_logic_vector (1 downto 0);
X : in std_logic_vector(DATA_WIDTH-1 downto 0);
flag: out std_logic;
P_out : out std_logic_vector (4 downto 0));
end calc_std;
architecture circuits of calc_std is

component register_N is
generic (DATA_WIDTH_m : integer);
port(
A: in std_logic_vector(DATA_WIDTH_m -1 downto 0);
clk: in std_logic;
rst_n: in std_logic;
en: in std_logic;
Out_A: out std_logic_vector(DATA_WIDTH_m -1 downto 0));
end component;

190

component sqroot is
port (clk: in std_logic;
rst: in std_logic;
en: in std_logic;
P : in std_logic_vector(9 downto 0);
U : out std_logic_vector(4 downto 0));
end component;

component Mult is
generic (DATA_WIDTH_m : integer; DATA_WIDTH_n : integer); -- DATA WIDTH
Port (
clk: in std_logic;
rst: in std_logic;
en: in std_logic;
X : in std_logic_vector (DATA_WIDTH_m-1 downto 0);
Y : in std_logic_vector (DATA_WIDTH_n-1 downto 0);
P_out : out std_logic_vector (DATA_WIDTH_m + DATA_WIDTH_n -1 downto 0));
end component;

component adder_2in1 is
generic (DATA_WIDTH : integer); -- DATA WIDTH
Port (
clk: in std_logic;
rst: in std_logic;
en: in std_logic;
A : in std_logic_vector (DATA_WIDTH-1 downto 0);
B : in std_logic_vector (DATA_WIDTH-1 downto 0);
Add_out : out std_logic_vector (DATA_WIDTH-1 downto 0));
end component;

component counter IS
PORT(
CLK :IN std_logic;
rst_n :IN std_logic;
en: in std_logic;
num: in std_logic_vector (1 downto 0);
CP:OUT std_logic);
END component;

component counter2 IS
PORT(
CLK :IN std_logic;
rst_n :IN std_logic;
en: in std_logic;
num: in std_logic_vector (1 downto 0);
CP:OUT std_logic);

191

END component;

component shift_register_a is
generic (DATA_WIDTH : integer); -- DATA WIDTH
Port (
clk : in std_logic;
rst : in std_logic;
en : in std_logic;
din : in std_logic_vector (DATA_WIDTH-1 downto 0);
num: in std_logic_vector (1 downto 0);
end component;

component Mult_C is
generic (DATA_WIDTH_m : integer); -- DATA WIDTH
Port (
clk: in std_logic;
rst: in std_logic;
en: in std_logic;
X : in std_logic_vector (DATA_WIDTH_m-1 downto 0);
Y : in std_logic_vector (DATA_WIDTH_m-1 downto 0);
P_out : out std_logic_vector (DATA_WIDTH_m + DATA_WIDTH_m -1 downto 0));
end component;

component register_5 is
port(
A: in std_logic_vector(4 downto 0);
clk: in std_logic;
rst_n: in std_logic;
en: in std_logic;
fla: out std_logic;
Out_A: out std_logic_vector(4 downto 0));
end component;

component register_10_cov is
generic (DATA_WIDTH_m : integer);
port(
A: in std_logic_vector(DATA_WIDTH_m -1 downto 0);
clk: in std_logic;
rst_n: in std_logic;
en: in std_logic;
out_flag: out std_logic;
Out_A: out std_logic_vector(9 downto 0));
end component;

component register_20_cov is
generic (DATA_WIDTH : integer);
port(

192

A: in std_logic_vector(DATA_WIDTH -1 downto 0);
clk: in std_logic;
rst_n: in std_logic;
en: in std_logic;
Out_A: out std_logic_vector(2*DATA_WIDTH-1 downto 0));
end component;

component multiplex_ab is
generic (DATA_WIDTH_m : integer);
port(
A: in std_logic_vector(DATA_WIDTH_m -1 downto 0);
B: in std_logic_vector(DATA_WIDTH_m -1 downto 0);
clk: in std_logic;
rst_n: in std_logic;
en: in std_logic;
en_low: in std_logic;
out_flag: out std_logic;
Out_A: out std_logic_vector(DATA_WIDTH_m -1 downto 0));
end component;

signal X1: std_logic_vector(2*DATA_WIDTH - 1 downto 0);
signal T1: std_logic_vector(2*DATA_WIDTH - 1 downto 0);
signal T11: std_logic_vector(2*DATA_WIDTH - 1 downto 0);
signal T12: std_logic_vector(2*DATA_WIDTH - 1 downto 0);
signal T2: std_logic_vector(2* DATA_WIDTH - 1 downto 0);
signal T3: std_logic_vector(2* DATA_WIDTH-1 downto 0);
signal T4,T5,T51,T6, T61: std_logic_vector(2* DATA_WIDTH-1 downto 0);
signal T14, T16: std_logic_vector(DATA_WIDTH-1 downto 0);
signal T13, T15, T17: std_logic_vector(2* DATA_WIDTH-1 downto 0);

signal T7: std_logic_vector(9 downto 0);
signal T8: std_logic_vector(4 downto 0);
signal T9: std_logic_vector(4 downto 0);
signal sig4: std_logic_vector(DATA_WIDTH-1 downto 0);
signal fla, fla1, fla2, fla3, fla4, fla41,fla5, fla6, fla7: std_logic;

begin
sig4 <= (others => '1');

mul: Mult_C
generic map(DATA_WIDTH_m => DATA_WIDTH)
port map (clk =>clk, rst => rst, en => en,X => X, Y => X, P_out => T1);

add: adder_2in1
generic map(DATA_WIDTH => 2 * DATA_WIDTH)
port map (clk, rst, en, T1, T2, T2);

193

reg1: register_N
generic map(DATA_WIDTH_m => DATA_WIDTH * 2)
port map(T2, clk, rst, en, T3);

count: counter port map(clk, rst, en, num, fla);

count2: counter2 port map(clk, rst, en, num, fla7);

shif: shift_register_a
generic map(DATA_WIDTH => 2*DATA_WIDTH)
port map(clk,rst, fla,T3, num, T4);

reg2: register_N
generic map(DATA_WIDTH_m => DATA_WIDTH * 2)
port map(T4, clk, rst, en, T5);

reg21: register_N
generic map(DATA_WIDTH_m => DATA_WIDTH * 2)
port map(T5, clk, rst, en, T51);

count1: counter port map(clk, rst, en, num, fla1); --en_low

con_reg: register_20_cov
generic map(DATA_WIDTH => DATA_WIDTH) --en_low
port map(X, clk, rst, en, X1);

add1: adder_2in1
generic map(DATA_WIDTH => 2*DATA_WIDTH)
port map (clk =>clk, rst => rst, en => en, A=> X1, B => T11, Add_out => T11);

reg11: register_N
generic map(DATA_WIDTH_m => 2*DATA_WIDTH)
port map(T11, clk, rst, en, T12);

shif1: shift_register_a
generic map(DATA_WIDTH => 2*DATA_WIDTH)
port map(clk,rst, fla1 ,T12, num, T13);

reg12: register_10_cov
generic map(DATA_WIDTH_m => 2*DATA_WIDTH)
port map(T13, clk, rst, en, fla4, T14); --en_low

mul1: Mult_C
generic map(DATA_WIDTH_m => DATA_WIDTH)
port map (clk =>clk, rst => rst, en => en,X => T14, Y => T14, P_out => T15);

reg13: register_10_cov

194

generic map(DATA_WIDTH_m => 2*DATA_WIDTH)
port map(T15, clk, rst, en, fla41, T16); --en_low

mul2: Mult_C
generic map(DATA_WIDTH_m => DATA_WIDTH)
 port map (clk =>clk, rst => rst, en => en, X => T16, Y => sig4, P_out => T17);

add2: adder_2in1
generic map(DATA_WIDTH => 2*DATA_WIDTH)
port map (clk =>clk, rst => rst, en => en, A => T51, B => T17, Add_out => T6);

multi1: multiplex_ab
generic map(DATA_WIDTH_m => 2*DATA_WIDTH)
port map (A => T51, B => T6, clk =>clk, rst_n => rst, en => en, en_low => en, out_flag =>
fla3, Out_A=> T61); --en_Low

reg14: register_10_cov
generic map(DATA_WIDTH_m => DATA_WIDTH * 2)
port map(T61, clk, rst, fla3, fla5, T7);

sqr: sqroot port map(clk, rst, en, T7, T8);

reg5: register_5 port map(T8,clk, rst, fla5, fla6, T9);

P_out <= T9;
flag <= fla7;

end circuits;

--------------- detection ------------------
entity detection is
generic (DATA_WIDTH : integer); -- DATA WIDTH
Port (
clk: in std_logic;
rst: in std_logic;
en: in std_logic; -- 0 is non-work, 1 is work
en_d: in std_logic;
X : in std_logic_vector(DATA_WIDTH-1 downto 0);
A: in std_logic_vector(DATA_WIDTH -1 downto 0);
B: in std_logic_vector(DATA_WIDTH -1 downto 0);
num_out: out std_logic_vector(1 downto 0);
flag_out: out std_logic);
end detection;

architecture behavior of detection is
signal flag1: std_logic;
signal flag2: std_logic_vector(1 downto 0);

195

signal a1: std_logic_vector(DATA_WIDTH - 1 downto 0);

begin
a1(DATA_WIDTH - 1)<= '1';
a1(DATA_WIDTH - 2 downto 0)<= (others =>'0');

process(clk, rst, en)
begin
if(rst = '1') then
flag1 <='0';
flag2 <= "00";
else if (clk'event and clk='1') then
 if (en = '1') then
 if(en_d = '1') then
 flag1 <= '1';
 if(X(DATA_WIDTH - 1) = '0') then
 if((X > A) or(X = A)) then
 flag2 <= "01";
 else
 flag2 <= "00";
 end if;
 else if(X = a1) then
 flag2 <= "00";
 else if((X < B) or (X = B)) then
 flag2 <= "10";
 else
 flag2 <= "00";
 end if ;
 end if;
 end if;
 Else
 flag2 <= "00";
 end if;
 else
 flag2 <= "11";
 flag1 <= '0';
 end if;
 end if;
end if;
end process;

num_out <= flag2;
flag_out <= flag1;

end behavior;

------------ sensing matrix generator and data compression --------

196

entity whole_compression_32 is
generic (DATA_WIDTH: integer; NUM: integer); -- DATA WIDTH
Port (
clk: in std_logic;
rst: in std_logic;
en: in std_logic; -- 0 is non-work, 1 is work
en_f: in std_logic;
X : in std_logic_vector(DATA_WIDTH - 1 downto 0);
Y : in std_logic_vector(DATA_WIDTH - 1 downto 0);
num_in: in std_logic_vector(1 downto 0);
flag_out: out std_logic;
flag_out_en: out std_logic_vector (NUM - 1 downto 0);
flag_out_com: out std_logic_vector (NUM -1 downto 0);
P_out0 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0);
P_out1 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0);
P_out2 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0);
P_out3 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0);
P_out4 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0);
P_out5 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0);
P_out6 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0);
P_out7 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0);
P_out8 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0);
P_out9 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0);
P_out10 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0);
P_out11 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0);
P_out12 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0);
P_out13 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0);
P_out14 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0);
P_out15 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0);
P_out16 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0);
P_out17 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0);
P_out18 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0);
P_out19 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0);
P_out20 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0);
P_out21 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0);
P_out22 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0);
P_out23 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0);
P_out24 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0);
P_out25 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0);
P_out26 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0);
P_out27 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0);
P_out28 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0);
P_out29 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0);
P_out30 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0));
end whole_compression_32;

architecture circuits of whole_compression_32 is

197

component add_com_unit_two is
generic (DATA_WIDTH: integer); -- DATA WIDTH
Port (
clk: in std_logic;
rst: in std_logic;
en: in std_logic; -- 0 is non-work, 1 is work
en_f: in std_logic;
X : in std_logic_vector(2*DATA_WIDTH - 1 downto 0);
Y : in std_logic_vector(DATA_WIDTH - 1 downto 0);
flag_out1: out std_logic;
flag_out2: out std_logic;
flag_out3: out std_logic;
flag_out4: out std_logic;
P_out1 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0);
P_out2 : out std_logic_vector (2*DATA_WIDTH - 1 downto 0));
end component;

component register_20_cov_com is
generic (DATA_WIDTH : integer);
port(
A: in std_logic_vector(DATA_WIDTH -1 downto 0);
clk: in std_logic;
rst_n: in std_logic;
en: in std_logic;
Out_A: out std_logic_vector(2*DATA_WIDTH-1 downto 0));
end component;

component not_reg is
Port (clk: in std_logic;
rst: in std_logic;
en: in std_logic;
b : in std_logic;
bo : out std_logic);
end component;

component register_N_Neg is
generic (DATA_WIDTH_m : integer);
port(
A: in std_logic_vector(DATA_WIDTH_m -1 downto 0);
clk: in std_logic;
rst_n: in std_logic;
en: in std_logic;
en_f: in std_logic;
en_x: in std_logic;
out_flag: out std_logic;
Out_A: out std_logic_vector(DATA_WIDTH_m -1 downto 0));

198

end component;
component register_N is
generic (DATA_WIDTH_m : integer);
port(
A: in std_logic_vector(DATA_WIDTH_m -1 downto 0);
clk: in std_logic;
rst_n: in std_logic;
en: in std_logic;
Out_A: out std_logic_vector(DATA_WIDTH_m -1 downto 0));
end component;

component register_Neg_follow is
generic (DATA_WIDTH_m : integer);
port(
A: in std_logic_vector(DATA_WIDTH_m -1 downto 0);
clk: in std_logic;
rst_n: in std_logic;
en: in std_logic;
out_flag: out std_logic;
Out_A: out std_logic_vector(DATA_WIDTH_m -1 downto 0));
end component;

component register_N_sig is
generic (DATA_WIDTH_m : integer);
port(
A: in std_logic_vector(DATA_WIDTH_m -1 downto 0);
clk: in std_logic;
rst_n: in std_logic;
en: in std_logic;
out_flag: out std_logic;
Out_A: out std_logic_vector(DATA_WIDTH_m -1 downto 0));
end component;

component counter5 IS
PORT(
CLK :IN std_logic;
rst_n :IN std_logic;
en: in std_logic;
num: in std_logic_vector (1 downto 0);
CP:OUT std_logic);
END component;

component judge is
generic (NUM: integer); -- DATA WIDTH
Port (
clk: in std_logic;
rst: in std_logic;

199

en: in std_logic; -- 0 is non-work, 1 is work
X : in std_logic_vector(NUM - 1 downto 0);
Out_X: out std_logic_vector(NUM-1 downto 0));
end component;

signal X1 : std_logic_vector(2*DATA_WIDTH - 1 downto 0);
signal fla: std_logic;
signal sig_a : std_logic_vector(NUM - 1 downto 0); -- enbale signal
signal sig_b : std_logic_vector(NUM - 1 downto 0); -- comparable signal
signal sig, sig1, sig2 : std_logic_vector(NUM - 1 downto 0);
signal sig_d : std_logic_vector(NUM - 1 downto 0); -- addition signal
signal sig_d1 : std_logic_vector(NUM - 1 downto 0); -- addition signal
signal sig_e : std_logic_vector(NUM - 1 downto 0); -- enable signal
type M_array is array (0 to NUM - 1) of std_logic_vector (2*DATA_WIDTH - 1 downto 0);
signal reg_array_add : M_array; -- addition results
signal reg_array_a : M_array; -- first register data
signal reg_array_b : M_array; -- second register data
signal reg_array_c : M_array; -- thirst lever data

begin
reg: register_20_cov_com
generic map(DATA_WIDTH => DATA_WIDTH)
port map (A => X, clk =>clk, rst_n => rst, en => en, Out_A => X1);

parti: for i in 1 to NUM generate
part1 : add_com_unit_two
generic map(DATA_WIDTH => DATA_WIDTH)
port map (clk =>clk, rst => rst, en => en_f, en_f => sig(i-1), X => X1, Y => Y, flag_out1 =>
sig_a(i-1), flag_out2 => sig_b(i-1), flag_out3 => sig_e(i-1) , flag_out4 =>sig_d(i-1), P_out1 =>
reg_array_a(i-1)(2*DATA_WIDTH - 1 downto 0), P_out2 => reg_array_add(i-
1)(2*DATA_WIDTH - 1 downto 0));

end generate;
ju: judge
generic map(NUM => NUM)
port map (clk =>clk, rst => rst, en => en_f, X => sig_b, Out_X => sig);

count: counter5 port map(clk, rst, en_f, num_in, fla);

P_out0 <= reg_array_add(0)(2*DATA_WIDTH - 1 downto 0);
P_out1 <= reg_array_add(1)(2*DATA_WIDTH - 1 downto 0);
P_out2 <= reg_array_add(2)(2*DATA_WIDTH - 1 downto 0);
P_out3 <= reg_array_add(3)(2*DATA_WIDTH - 1 downto 0);
P_out4 <= reg_array_add(4)(2*DATA_WIDTH - 1 downto 0);
P_out5 <= reg_array_add(5)(2*DATA_WIDTH - 1 downto 0);
P_out6 <= reg_array_add(6)(2*DATA_WIDTH - 1 downto 0);
P_out7 <= reg_array_add(7)(2*DATA_WIDTH - 1 downto 0);

200

P_out8 <= reg_array_add(8)(2*DATA_WIDTH - 1 downto 0);
P_out9 <= reg_array_add(9)(2*DATA_WIDTH - 1 downto 0);
P_out10 <= reg_array_add(10)(2*DATA_WIDTH - 1 downto 0);
P_out11 <= reg_array_add(11)(2*DATA_WIDTH - 1 downto 0);
P_out12 <= reg_array_add(12)(2*DATA_WIDTH - 1 downto 0);
P_out13 <= reg_array_add(13)(2*DATA_WIDTH - 1 downto 0);
P_out14 <= reg_array_add(14)(2*DATA_WIDTH - 1 downto 0);
P_out15 <= reg_array_add(15)(2*DATA_WIDTH - 1 downto 0);
P_out16 <= reg_array_add(16)(2*DATA_WIDTH - 1 downto 0);
P_out17 <= reg_array_add(17)(2*DATA_WIDTH - 1 downto 0);
P_out18 <= reg_array_add(18)(2*DATA_WIDTH - 1 downto 0);
P_out19 <= reg_array_add(19)(2*DATA_WIDTH - 1 downto 0);
P_out20 <= reg_array_add(20)(2*DATA_WIDTH - 1 downto 0);
P_out21 <= reg_array_add(21)(2*DATA_WIDTH - 1 downto 0);
P_out22 <= reg_array_add(22)(2*DATA_WIDTH - 1 downto 0);
P_out23 <= reg_array_add(23)(2*DATA_WIDTH - 1 downto 0);
P_out24 <= reg_array_add(24)(2*DATA_WIDTH - 1 downto 0);
P_out25 <= reg_array_add(25)(2*DATA_WIDTH - 1 downto 0);
P_out26 <= reg_array_add(26)(2*DATA_WIDTH - 1 downto 0);
P_out27 <= reg_array_add(27)(2*DATA_WIDTH - 1 downto 0);
P_out28 <= reg_array_add(28)(2*DATA_WIDTH - 1 downto 0);
P_out29 <= reg_array_add(29)(2*DATA_WIDTH - 1 downto 0);
P_out30 <= reg_array_add(30)(2*DATA_WIDTH - 1 downto 0);

flag_out_en <= sig_e;
flag_out_com <= sig;
flag_out <= fla;

end circuits;

----------- Comparator for compression block ----------
entity comparator is
generic (DATA_WIDTH : integer);
port(
clk: in std_logic;
rst_n: in std_logic;
en: in std_logic;
en_flag: in std_logic;
A: in std_logic_vector(DATA_WIDTH -1 downto 0);
B: in std_logic_vector(DATA_WIDTH -1 downto 0);
C: in std_logic_vector(DATA_WIDTH -1 downto 0);
out_flag: out std_logic;
out_flag_b: out std_logic;
Out_A: out std_logic_vector(DATA_WIDTH -1 downto 0);
Out_B: out std_logic_vector(DATA_WIDTH -1 downto 0));
end comparator;

201

architecture behavior of comparator is
signal Aout, Bout, zero, nul: std_logic_vector(DATA_WIDTH -1 downto 0);
signal flag, flag1: std_logic;

begin
zero <= (others => '0');
nul (DATA_WIDTH -1)<= '1';
nul (DATA_WIDTH - 2 downto 0)<= (others =>'0');

process(clk, rst_n, en)
 begin
 if(rst_n = '1') then
 Aout <= nul; --(others => '0');
 Bout <= nul; --(others => '0');
 flag <='0';
 flag1<= '0';
 else if (clk'event and clk='1') then
 if (en = '1') then
 if(A = nul) then
 flag <= '0';
 Aout <= nul;
 flag1 <= '0';
 Bout <= A;
 else if(B = zero and C= zero) then --and en_flag = '0') then
 flag <= '1';
 Aout <= A;
 flag1 <= '0';
 Bout <= nul;
 else if((B(DATA_WIDTH -1)='1' and C(DATA_WIDTH -1)='0')) then
 if(((A(DATA_WIDTH -1)='0') and ((A < C) or (A = C))) or ((A(DATA_WIDTH -
1)='1') and ((A > B) or (A = B)))) then
 flag <= '1';
 flag1 <= '0';
 Aout <= A;
 Bout <= nul;
 else
 flag <= '0';
 flag1 <= '1';
 Aout <= (others => '0');
 Bout <= A;
 end if;

 else if (((A > B) or (A = B)) and ((A < C) or (A = C))) then
 flag <= '1';
 flag1 <= '0';
 Aout <= A;
 Bout <= nul;

202

 else
 flag <= '0';
 flag1 <= '1';
 Aout <= (others => '0');
 Bout <= A;
 end if;
 end if;
 end if;
 end if;
 else
 flag <= '0';
 flag1 <= flag1;
 Aout <=(others => '0') ;
 Bout <= nul;
 end if;
 end if;
end if;
end process;

Out_A <= Aout;
Out_B <= Bout;
Out_flag <= flag;
Out_flag_b <= flag1;

end behavior;

----------- judger for compression block -----------
entity judge is
generic (NUM: integer); -- DATA WIDTH
Port (
clk: in std_logic;
rst: in std_logic;
en: in std_logic; -- 0 is non-work, 1 is work
X : in std_logic_vector(NUM - 1 downto 0);
Out_X: out std_logic_vector(NUM-1 downto 0));
end judge;

architecture behavior of judge is
signal X1: std_logic_vector(NUM-1 downto 0);
signal nu: integer;

begin
process(clk, rst, en)
 begin
 if(rst = '1') then
 X1 <=(others => '0');
 nu <= 0;

203

 else if (clk'event and clk='1') then
 if(en = '1')then
 if(nu = 1) then
 for i in 0 to NUM -2 loop
 if(X(i) = '1') then
 X1(i) <= '1';
 X1(i-1 downto 0) <=(others => '0');
 X1(NUM-2 downto i+1) <=(others => '0');
 exit;
 end if;
 end loop;
 nu <= nu+1;
 else
 X1 <= (others => '0');
 nu <= nu +1;
 if(nu = 3) then
 nu <=0;
 end if;
 end if;
 else
 nu <= 0;
 X1 <= (others => '0');
 end if;
 end if;
end if;
end process;

Out_X <= X1;

end behavior;

	DEdicATION
	Acknowledgements
	RÉsumÉ
	Abstract
	Table OF CONTENTS
	List OF TABLES
	List of abbreviations
	List of appendices
	Chapter 1 Introduction
	1.1 Research Motivation
	1.2 Objectives
	1.3 Contributions
	1.4 Thesis Organization

	Chapter 2 STATE OF THE ART OF NEURAL RECORDING interfaces and NEURAL signal processing TECHNIQUEs
	2.1 Brain-Machine Interfaces
	2.2 Neural Recording Devices
	2.3 Neural Signal Processing
	2.3.1 Spike Detection and Sorting
	2.3.1.1 Amplitude-based Spike Detection
	2.3.1.2 Energy-based Spike Detection
	2.3.1.3 Spikes Detection with Template Matching
	2.3.1.4 Spike Sorting

	2.3.2 Signal Compression with CS Technique
	2.3.2.1 Introduction to Compressed Sensing Theory
	2.3.2.2 Neural Signal Processing Using Compressed Sensing Technique

	2.4 General Discussion of the Literature Review
	2.4.1 Neural Signal Processing Strategies
	2.4.2 Discussion of Sensing Matrices
	2.4.3 Discussion of Neural Signal Processing Systems
	2.4.4 Discussion of Spike Detection Methods

	Chapter 3 ARticle 1 : Neural Signal Compression Using a Minimum Euclidean or Manhattan Distance Cluster-Based Deterministic Compressed Sensing Matrix
	3.1 Introduction
	3.1.1 Sparse Signal
	3.1.2 Signal Reconstruction
	3.1.3 Sensing Matrix

	3.2 Minimum Euclidean or Manhattan Distance Cluster-Based Deterministic Sensing Matrix
	3.3 Actual Data and Methods
	3.4 Results and Discussion
	3.4.1 Compression Rate of the Neural Signal
	3.4.2 RIP of the UMDC Matrix
	3.4.3 Research on the Signal Reconstruction
	3.4.4 Other Comparisons

	3.5 Conclusions

	Chapter 4 ARticle 2 : an efficient real-time neural spike detection method based on bayesian inference with automatic templates generation
	4.1 Introduction
	4.2 Methods
	4.2.1 Models for Spike Generation
	4.2.2 Bayesian Inference Analysis
	4.2.3 Spike Detection Based on Template Matching
	4.2.4 Bayesian Inference-based Template Matching (BBTM) Method

	4.3 Test Dataset
	4.4 Results and Discussion
	4.4.1 Spike Detection with Known Templates
	4.4.2 Spike Detection with Unknown Templates
	4.4.3 Spike Clustering and Threshold Control Parameter
	4.4.4 Other Important Results and Discussions

	4.5 Conclusions

	Chapter 5 ARticle 3 : A Digital Multichannel Neural Signal Processing System Using Compressed Sensing
	5.1 Introduction
	5.1.1 Introduction of the CS Technique
	5.1.2 Contribution of This Article
	5.1.3 Structure of the Article

	5.2 The Construction of the MDC Matrix
	5.3 Materials and Methods
	5.4 Circuit Design and Implementation
	5.4.1 Single-channel Digital Data Compression System
	5.4.2 Spike Detection Block
	5.4.3 Data Compression Block
	5.4.4 Multichannel Signal Processing

	5.5 Results and Discussion
	5.5.1 Single-channel Data Compression System
	5.5.2 Multichannel Signal Compression System
	5.5.3 The Reconstruction under Multichannel Operation
	5.5.4 Other Important Results

	5.6 Conclusions

	Chapter 6 GENERAL DISCUSSION
	Chapter 7 CONCLUSION and recommendations
	7.1 Conclusion
	7.2 Recommendation for Future Work

	references
	Appendix A – complementary BackGround ON COMPRESSed SENSING theory
	Appendix B – Implementation of the front-end circuit
	Appendix C – Implementation of the digital signal processing System

