View metadata, citation and similar papers at core.ac.uk brought to you by X{'CORE

provided by PolyPublie

UNIVERSITE DE MONTREAL

ON THE DETECTION OF LICENSES VIOLATIONS IN THE ANDROID ECOSYSTEM

ONS MLOUKI
DEPARTEMENT DE GENIE INFORMATIQUE ET GENIE LOGICIEL
ECOLE POLYTECHNIQUE DE MONTREAL

MEMOIRE PRESENTE EN VUE DE L’OBTENTION
DU DIPLOME DE MAITRISE ES SCIENCES APPLIQUEES
(GENIE INFORMATIQUE)

AVRIL 2016

(© Ons Mlouki, 2016.

https://core.ac.uk/display/213620113?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNIVERSITE DE MONTREAL

ECOLE POLYTECHNIQUE DE MONTREAL

Ce mémoire intitulé :

ON THE DETECTION OF LICENSES VIOLATIONS IN THE ANDROID ECOSYSTEM

présenté par : MLOUKI Ons

en vue de 'obtention du dipléme de : Maitrise es sciences appliquées

a ¢té diiment accepté par le jury d’examen constitué de :

M. MERLO Ettore, Ph. D., président

M. ANTONIOL Giuliano, Ph. D., membre et directeur de recherche
M. KHOMH Foutse, Ph. D., membre et codirecteur de recherche
M. ADAMS Bram, Doctorat, membre

1ii

DEDICATION

To my family

iv

ACKNOWLEDGEMENTS

First, I want to express my deepest gratitude to my supervisors Dr. Giuliano Antoniol, for his
faith in me, his support, and his good mood. And Dr. Foutse Khomh for his great guidance.

They were really a continual source of learning during all our discussion and meeting.
Secondly, I would like to thank Dr. Bram Adams for his good suggestions.

In addition a particular acknowledgement for my committee members, Dr. Ettore Merlo, Dr.
Giuliano Antoniol, Dr. Foutse Khomh and Dr. Bram Adams, for their valuable feedback on
this thesis. For all my professors during these last two years. They were an inexhaustible

source of learning.

Finally, I would like to thank all professors and students who work in SOCCER, SWAT,
PTIDEJ and MCIS labs for the cordial reception they reserved to me. They provided me

with a great comfort with their kindness, favour, generosity and humour.

My thoughts go to all those who have been a real help for me my parents and my hus-
band for their continuous support. This work couldn’t be achieved without their continuous

encouragement.

ABSTRACT

Mobile applications (apps) developers often reuse code from existing libraries and frameworks
in order to reduce development costs. However, these libraries and frameworks are governed
by licenses to which developers must comply. A license governs the way in which a library
or chunk of code can be reused, modified or redistributed. It can be seen as a list of rules
that developers must respect before using the component. A failure to comply with a license

is likely to result in penalties and fines.

In this thesis, we propose our approach for license identification in open source applications.
By applying this approach, we conduct a case study to identify licenses in 857 mobile apps
from the F-droid market with the aim to understand the types of licenses that are most
used by developers and how these licenses evolve overtime. We conduct our study both at
project level and file level. We also investigates licenses violations and the evolution of these
violations overtime; we compare licenses declared at the project level, file level and those of
the libraries used by a project to seek for licenses that are incompatible and used in the same

project.

Results show that most used Licenses are GPL and Apache licenses both at the project
level and file level. In many cases we noticed that developers didn’t pay too much attention
to license their source code. For 3,250 apps releases out of 8938 releases, the apps were
distributed without licenses information. Regarding license evolution, we noticed that the
probability for a project to stay under the same license is very high (95% in average) and
in case of change, changes are generally toward more permissive licenses. At the file level,
we noticed that developers tend to delay their decision about license selection, also in 15%
of license changes, developers removed licensed information. We identified 15 projects out of
857 projects, with a license violation; 7 projects had violations in their final release. To solve
license violations, developers either changed the license of some of the apps’ files or removed

the contentious files from the apps. It took in average 19 releases to solve a license violation.

These findings suggest that developers of mobile apps may be having some difficulties in
understanding the legal constraint of licenses’ terms or it may be that the lack of consistency
and standardization in license declarations fosters confusion among developers. Our license

detection approach can be used by developers to track license violations in their projects.

vi

RESUME

Tres souvent, les développeurs d’applications mobiles réutilisent les bibliotheques et les com-
posants déja existants dans le but de réduire les cotits de développements. Cependant, ces
bibliotheques et composants sont régies par des licences auxquelles les développeurs doivent
se soumettre. Une licence contrdle la maniere dont une bibliotheque ou un bout de code
pourraient étre réutilisés, modifiés ou redistribués. Une licence peut étre vu comme étant
une liste de regles que les développeurs doivent respecter avant d’utiliser le composant. Le
non-respect des termes d’une licence pourrait engendrer des pénalités et des amendes.

A travers ce mémoire de maitrise, nous proposons une méthode d’identification des licences
utilisées dans une application a code source ouvert. A ’aide de cette méthode, nous menons
une étude pour identifier les licences utilisées dans 857 applications mobiles, provenant du
marché “F-Droid”, dans le but de comprendre les types de licences les plus souvent util-
isées par les développeurs ainsi que la maniére avec laquelle ces licenses évoluent a travers le
temps. Nous menons notre étude sur deux niveaux; le niveau du projet et celui du fichier.
Nous investigons également les infractions portées aux licences et leursévolutions a travers le
temps; Nous comparons les licences déclarées au niveau du project avec celles de ses fichiers,
des fichiers entre eux et des projets et fichiers avec ceux des bibliotheques utilisées par le
projet, afin d’identifier des licences incompatibles utilisées dans un méme projet.

Les résultats montrent que les licences les plus utilisées sont les licences “GPL" et “Apache";
aussi bien au niveau du projet qu’au niveau fichiers. Nous remarquons que, dans plusieurs
cas, les développeurs ne portent pas assez attention aux licences de leurs code source. Des 8
938 versions d’applications analysées, 3 250 versions ne sont pas accompagnées d’informations
relatives aux licences. Concernant l’évolution des licences, nous remarquons que la proba-
bilité pour un projet de demeurer sous une méme licence est tres élevée (95% en moyenne),
et dans le cas d’un changement de license, le changement se fait généralement vers des li-
cences plus permissives. Au niveau du fichier, nous avons remarqué que les développeurs
ont tendance a retarder leur choix de licence. Dans 15% des changements de license, les
développeurs retirent les informations relatives aux licences. Parmi les 857 projets analysés,
nous avons identifier 15 projets contenant des infractions concernant les licences. 7 de ces
projets contenaient encore des infractions dans leur version finale. Dans les autres cas, pour
résoudre les infractions, les dévloppeurs ont changés les licences liés a quelques fichiers de
I’application; ou ont retirés les fichiers problématiques des applications. En moyenne, 19 ver-
sions de 'application étaient nécessaires pour résoudre les infractions portées aux licences.

Ces résultats sont une indication que les développeurs ont de la difficulté a comprendre les con-

vii

traintes légales des termes des licences. Une autre explication est que le manque de cohérence
et d’uniformisation des déclarations des licences créent une confusion chez les développeurs.
Notre méthode de détection des licences pourrait étre appliqué par les développeurs afin de

traquer les infractions portées aux licences dans leurs projets avant la mise en marché.

viii

CO-AUTHORSHIP

Earlier study in the thesis was published as follows:

e On the Detection of Licenses Violations in the Android Ecosystem
Ons Mlouki, Foutse Khomh and Giuliano Antoniol , in Proceedings of the 23rd IEEE In-
ternational Conference on Software Analysis, Evolution, and Reengineering (SANER),
Osaka, Japan, 16-18 March, 2016.
My contribution: methodology and analysis, paper writing, and presentation at the

conference.

X

TABLE OF CONTENTS

DEDICATION e iii
ACKNOWLEDGEMENTS e iv
ABSTRACT 4
RESUMEo vi
CHAPTER CO-AUTHORSHIP viii
TABLE OF CONTENTS e e e ix
LIST OF TABLES e xi
LIST OF FIGURES e e e xii
CHAPTER 1 INTRODUCTION 1
1.1 Research Statement 1

1.2 Thesis Overview 2

1.3 Thesis Contribution 2

1.4 Organisation of the Thesis 3
CHAPTER 2 LITERATURE REVIEW 4
2.1 License identification 4
2.2 Licensing evolution 6
2.3 License violations 8
2.4 Chapter Summary 10
CHAPTER 3 LICENSE IDENTIFICATION 11
3.1 LIT: A clone detection based approach to identify the license of mobile apps 12
3.1.1 Step 1: Identification of license statements 12

3.1.2 Step 2: Identification of the licenses of libraries used by Apps 12

3.1.3 Step 3: Identification of similar source files 14

3.2 Study Design 15
3.2.1 Data Collection 15

3.3 Results 15

3.4 Discussion 18
3.5 Threats to Validityo 19
3.6 Chapter Summary 20
CHAPTER 4 LICENSE EVOLUTION 21
4.1 Study Design L 21
4.1.1 Data Collection 22

4.1.2 Data Processing 22

4.2 Results 22
4.2.0.1 License changes at the file level 24

4.2.0.2 Licenses changes at the project level 29

4.3 Discussion e 29
4.4 Threats to Validity 29
4.5 Chapter Summary 31
CHAPTER 5 LICENSE VIOLATIONS DETECTION 32
5.1 Study Design 32
5.1.1 Data Collectiono 33

5.1.2 Data Processingo 33

5.2 Results o 35
5.3 Discussion L 35
5.4 Threats to Validity 37
5.5 Chapter Summary 37
CHAPTER 6 CONCLUSION e 38
6.1 Summary 38
6.2 Limitations of the proposed approaches 39
6.3 Future work 39

REFEFENCES o e 40

Table 2.1
Table 3.1
Table 3.2
Table 4.1
Table 4.2
Table 4.3
Table 4.4
Table 4.5
Table 5.1
Table 5.2
Table 5.3

xi

LIST OF TABLES

Evaluation of license identification tools [1] 5

Inconsistencies found among the license statements of the studied apps 17

License inconsistencies by categories 17
Licenses detected at filelevel 25
Proportion of files with missing license 26
General patternso 27
Specific patternso 28
License change patterns at project level 30
Licensing Rules [2] L oo 34
License incompatibilities o000 34

Projects with license violation 36

Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 5.1

LIST OF FIGURES

Identification of license information
An Example of POM file from Agit-an Android Git client.
F-Droid categrories L
Identification of files’ license reported as NONE by Ninka
Identification of files’ license reported as UNKNOWN by Ninka
Licenses of libraries used by the studied apps.
Projects licenses when considering only the latest release of each app
Projects licenses when considering all the releases of the apps
Evolution of licenses at the file level
Evolution of licenses at the projects level
Overview of our approach to identify applications with license violation
in an Android Market

xii

11
14
16
16
16
18
23
23
26
28

CHAPTER 1 INTRODUCTION

When developing a new software, developers often reuse code chunks and components that
have been made available under a variety of licenses (e.g., Apache, BSD, GPL, or LGPL).
Software licenses govern the way a software component or chunk of code can be reused or
distributed. These software licenses describe the liabilities and responsibilities of parties in-
terested in using, modifying, or redistributing software artifacts. Unlike proprietary licenses,
open-source licenses allow access to the source code at any time and without any restriction.
However, reuse and-or distribution are often limited by certain conditions [3]. For example,
the Section 5 of the GPLv3.0 license [4] states the following about code modification: “You
must license the entire work, as a whole, under this License to anyone who comes into pos-
session of a copy”. Hence, the use of components governed by different licenses into a same
software system can generate a licence violation if the rules of the different licenses are not
compatible. This is the case for GPLv2 and Apachev2. In fact, GPLv2 requires that any
software system using a component licensed under its terms should be licensed under the
GPLv2 license while the Apache Software Foundation requires that all Apache software must
be distributed under the Apachev2 license. These two licenses are therefore incompatibles
and any software system that contains components under these two licenses (at the same

time) is exposed to penalties [5]

With the very high speed of apps development (on average 2,371 new apps are published
in Google Play [6] every day), developers are increasingly inclined to reuse code from other
open source projects. Vendome et al. [7] who investigated how developers of open-source
projects adopt and change licenses found that these developers often experience difficulties
understanding licensing terms. These factors combined with the large number of available
licenses (i.e., more than 70 open source licences exist today [3]) that developers could choose
from, makes license violations very likely. Therefore, apps development teams should track
and correct any license violation before releasing their software to the public. In this thesis,

we aim to examine the state of license usages and violations in the Android Ecosystem.

1.1 Research Statement

Prior research have studied license usages in open-source software systems, but to the best
of our knowledge, none of the studies have specifically targeted mobile apps. Mobile apps
developers perform substantial software reuse [8], making licenses violations very likely. In

this thesis, we investigate license violations on a set of applications from the F-droid market,

taking into consideration the different artifacts of the apps. We also investigate the evolution

of licenses overtime as well as the evolution of license violations.

1.2 Thesis Overview

e Can we accurately detect license information from mobile apps (Chapter 3)?

Ninka is considered to be the state-of-the-art tool for license identification. However,
Ninka cannot detect the license information of a library used by an application. In this
thesis, we propose a novel approach named LIT (License Identification Technique),
that can detect license information from both the source code of an application and
the libraries used by the apps. We evaluate and compare the performance of LIT with

the performance of Ninka.

e How do mobile apps licenses evolve overtime (Chapter 4)?

In this chapter, we examine the evolution of licenses overtime both at project and file
levels, in order to understand the main patterns of licenses evolution in the Android

Ecosystem.

e Can we accurately detect and track licenses violations in mobile apps (Chapter 5)¢

In this chapter, we study licenses violations in mobile apps and examine the evolution of
license violations overtime, with the aim to understand if and—how developers address

these violations.

1.3 Thesis Contribution

This thesis make the following contributions:

e We propose a new approach LIT to identify licenses in mobile apps, while taking into
account the libraries used by the apps. We validate our proposed approach on a set
of 857 Android apps and their releases (8,938 release in total). Results show that LIT
outperforms the state-of-the-art approach Ninka when detecting license information
from source code. In fact, LIT could recovered 16% of license information missed by
Ninka. Thanks to LIT we conducted a study on the license usages, to figure out the

preference of developers in license choices. We found that at project level, release level

1.4

and file level, the most used licenses are first GPL and then Apache.

In Chapter 4, we observed that many apps change their licenses overtime. We conduct
a study on licensing evolution over releases both at project and file levels, in order
to identify the main licenses evolution patterns followed by developers of mobile apps.
Our goal was to determine if overtime, developers tend to make their apps more—or—less
open for reuse. Results show that developers often change the license of their mobile

apps towards a less restrictive license.

In Chapter 3, we proposed a methodology for license violation detection. We applied
this methodology on our 857 apps and observed that 85% of apps contain files with
potential licenses violations. We investigated the domains of the apps (e.g., Games,
Multimedia, office, etc...) involved in these potential violations and found that the
similar files that are licensed under different terms mostly belong to apps from different
domains. This suggests that developers tend to copy code from apps that are not in
the same category as their app (i.e., a Games app vs. a Multimedia app). We do
not claim license violations for the 85% of apps that contain files with inconsistencies
because although these apps contain files that share code with files licensed under a
different (conflicting) license, it is possible that the two apps copied the code from a
third app that released the code under a dual license, and the two apps simply picked
different licenses. We investigated license violations in more details and analyzed their
evolution overtime. Out of the 857 studied apps, we found 17 apps with clear license
violations. These 17 apps have inconsistencies between their declared licenses and the
licenses of their files and—or the licenses of their dependencies. For the 17 projects that
clearly violate license terms, 10 of them corrected the issue after 19 releases in average.

The remaining 7 projects still had a license violation at the time of this study.

Organisation of the Thesis

The rest of this thesis is organised as follows:

Chapter 2 outlines literature review in the areas of license identification, license evolu-

tion, and license violations.

Chapter 3 describes our approach for license identification.

Chapter 4 presents our empirical study on license evolution.

Chapter 5 presents our empirical study on license violation detection.

Chapter 6 summarises and conclude the thesis and discuss future work.

CHAPTER 2 LITERATURE REVIEW

In this chapter, we present our critical review of the literature related to license detection,

license evolution, and license violation.

2.1 License identification

A license statement is a textual information included in the top of each source code file
or in a separate textual file often named (COPYING, LICENSE, README or POM), and
stored under the main repository of the project. It includes copyright information, such as
the names of contributors to a source code file, the copyright owner, warranty, and liability
statements. Many tools have been proposed to identify License statements in source files or
license files (e.g., README files): Ninka [1], FOSSology [9] and OSLC!. In the following,

we discuss each of these tools in more details.

FOSSology, a tool proposed by Gobeille [9], uses a binary symbolic alignment matrix pattern
matching algorithm (bSAM) [10] to compare two sequences of symbols against each other and
determine whether they are similar. To identify the license statement of a file, FOSSology
matches the text of the file with templates of license contained in a database. If a match is
found, the matching license is reported as the license of the file. FOSSology is reported to

have a low speed and precision [1].

OSLC, is a tool based on regular expression, that finds exact or partial matches against
licenses stored in a database. The project was started by five developers and released on

sourceforge on December 2005. The main disadvantage of OSLC is its low precision [1].

Ninka, state-of-the-art tool for license identification, proposed by German et al. [1], identifies
the license of a file by matching sentences in the license statement with sentences stored in
Ninka databases. Once it extracts license statements, Ninka performs a text segmentation
to extract sentences from these statements. The sentences are then normalizes using known
sentences of licenses. This step is primordial to remove any syntax mistakes that might have
been into the license statement. Relevant sentences are retained and a sequence of tokens
is generated from them. Finally, Ninka matches the tokens with a set of predefined tokens
from existing licenses. Although Ninka needs predefined rules (license sentences) to perform
license identification, at the time of this writing, Ninka can identify 112 most known OS

licenses and it can be extended. Unlike OSLC, whenever license informations are missing,

Thttp://osle.sourceforge.net/

Ninka explicitly reports that it can not recognize a license. For license analyses studies,
it is important to distinguish between a file without license information and a file with an

unknown license.

Table 2.1 Evaluation of license identification tools [1]

Tools Recall | Precision | Execution Time
Ninka 82.3% 96.6% 22s
FOSSology | 99.2% 55.0% 923s
OSLC 100% 29.5% 372s

The aforementioned tools can identify license information from source code files, however,
binary files are often the only data available for a project. To address this issue, researchers

have also developed approaches to identify license informations from binary files.

Di Penta et al. [11] proposed an approach to identify the license of Jar archives using a
code search engine. Their proposed approach consists in querying a code search engine
for matching and mining the textual files in jars using the FOSSology tool. Although the
approach was validated on a sample of 37 jars and reported a 95% precision, it is based on
Google Code Search? for finding matching. Having qualified package and class name found
by ASM bytecode analysis library® into jars, the search engine returns only the license’s
family name of the class if found. Also the approach is not capable of matching the binary
jar to a precise version.

Davies et al [12] downloaded libraries from the Maven2 repository, computed signatures
(classes and method signatures) for these libraries and stored them in a database. They
also developed the tool Joa that can compute the signature of any new library and match
it against the database (both source code and binaries) to identify the license of the new
library and its specific version. They were able to get provenance information for over 95%
of the subject archives (84 open source binary archives found in a proprietary e-commerce
application). German et al. [13] used the Joa tool to track the provenance of 57 jars that
were used in a commercial product. Knowing the identity of the libraries used in the product
and since its source code is available in Maven2, they perform license identification from the

source code using the Ninka tool.

Among the three tools presented above, we selected Ninka for our study, since it is reported
to have a high accuracy and performance (see Table 2.1). To identify library provenance for

license identification, we use Joa tool.

2https://code.google.com /p/chromium /codesearch
3http://asm.ow2.org/

2.2 Licensing evolution

When the license of a component is modified, applications making use of the component have
to be updated to adjust to the change. License changes can have harmful consequences on
software reuse. This was the case when the license of the security package IPFilter added a
condition incompatible with the license of OpenBSD to its license terms [14]. OpenBSD had
to replace the IPFilter package by an OpenBSD based implementation of the same features.

Also, we can cite the case of MySQL client libraries, which changed their license from LGPLv2
to the GPLv2 license. This change was made to prevent the usage of MySQL within pro-
prietary products. However, this change had an impact on PHP systems since they can no
longer connect to MySQL, because the PHP license is incompatible with the GPLv2 license.
Eventually, this problem was solved by adding the MySQL FLOSS Licence Exception [15].

Licenses are also changed to facilitate software reuse. This was the case for Java JDK which
was distributed under the Common Development and Distribution Licence (CDDL) until
novembre 2006. Because CDDL is incompatible with GPL licenses. Sun Microsystems col-
laborated with the FSF (Free Software Foundation) to change the license of Java to GPLv2
(in order to encourage its usage). However, any system that runs under the JVM is consid-
ered as a part of it and needed to be licensed under the GPLv2 license. To solve this issued
Sun added the Classpath exception to the license in Java 5.0. Enabling Java programs to be

released under any license as long as it satisfy the Classpath requirements [16].

Another example of license change toward a more permissive license is Mono*, which is an
open-source framework proposed by Novell to support .NET software systems under other
operating systems than Microsoft Windows. Mono class libraries were originally released
under LGPL, this created a problem since running .Net systems could be considered as a
derivative work of Mono [17]. To solve the issue, Mono’s developers decided to change the
license to MITX11 license, which allows developers to create free open source or proprietary

systems with it.

The license of a software can also be changed to impede the development of a competing
product. In 20XX KDE, the desktop suite for Unix systems was attacked for using the Qt
cross-platform GUIT toolkit [18]. The problem was due to the fact that many applications in
KDE were under GPL and Qt was under Q Public License, which is incompatible with GPL.
To solve the issue, the Harmony project was started, to create a Qt replacement that would
be licensed under GPL. To stop this competing project, Trolltech the company behind Qt
decided to change the licence of QTv3 to GPL.

“http://mono-project.com

Researchers have investigated this important phenomenon, i.e., license changes, with the goal
to understand the context of licensing changes and identify the most relevant patterns for

license changes.

Di Penta et al. [19] proposed a four steps method to track files licensing evolution across
releases. First, they extracted licensing statement using a comment extractor. Second, They
identified changes in licensing statements by comparing licensing statements of file revisions.
The third step consisted in classifying licenses. They used the FoSSology tool for license
identification and experienced its hight execution time. In the final step of their study, they
performed the identification of changes in copyright years. The proposed method was applied
on six well known open source systems: ArgoUML, Eclipse-JDT, the FreeBSD and OpenBSD
kernels, the Mozilla Suite, and Samba to better understand when and how developers change
licensing statements in source code files and the impact of these license changes. Based on
the analysis of those six open source systems, they observed that many files experienced
changes in their licensing statements. Many files started without license information and in
later releases the license was added. Other files moved toward less restrictive licensed. Those
finding needs to be validated by further studies since the low precision of the tool used for
license identification (55%) is a threat to validity. Also, despite the variety of systems that
were analyzed (belonging to different domains and developed under different programming

languages), more studies are required to make their findings generic.

Vendom et al. [20] conducted a large study on license usage and changes in a set of 16,221
java projects from Github, analyzing source code files, tracing commit notes and discussions
related to license changes and identifying the most common license change patterns. They
extracted commit information (e.g.,commit message, file paths, changes applied to files, li-
cense changes occurrences, etc...) using The Markos code analyzer [21], which uses Ninka for
license identification. In their study, they were interested in atomic license changes without
considering the occurrence of license changes within the same project. They found that 1,833
projects among 16,221 projects experienced an atomic license change. Regarding discussions
related to license changes, they found that only 0.9% of commit messages and 0% of issue
discussion reports were related to license issues. They concluded that developers are very shy
in documenting license changes. They also observed a trend towards the usage of permissive
licenses like Apachev2 and MIT; licensing change patterns were toward less restrictive li-
censes. The authors didn’t investigated the reasons for the observed license evolutions. Also,
their analysis were limited to java projects from Github. In a follow up study [7] the authors
conducted a survey to understand when and why developers adopt and change licenses. They
found that developers have some difficulties in dealing with license terms e.g.,with incompat-

ible licenses, and that they change licenses toward more permissive licenses to facilitate the

reuse of their product in commercial systems.

In our study, we analyse a sample of applications (857) from an Android Market and study
license evolution across their releases. We consider also hybrid applications with ¢ and cpp
source code for diversity. We aim to validate previous results on Android Market and study

in depth the causes of license evolution.

2.3 License violations

The reuse of different pre-existent components to build a new application can lead to licenses
violations. In March 2011, OpenLogic, a company that advocates for (and helps ensure) the
proper use of open source software ran their private OSS Deep Discovery license compliance
scanner against 635 apps from both the Android Market and the Apple App Store, and
found that 71% of the apps that were using open source code failed to comply with the
terms of the open source licenses. The apps did not license their code properly. In the case
of Apache licenses, information about the notice/attribution of the licenses were missing.
For GPL licenses, developers of the apps failed to provide information about how to access
the code. The detection of license violations in this study was done manually. Although
these developers were not pursued in court for their infringements, penalties for licensing
violations can be severe. In August 2012, Samsung was found guilty of violating Apple’s
iPhone and iPad technologies licenses, and condemned to pay to Apple a billion dollars in
damages. In march 2015, VMware was also sued by Christoph Hellwig, a Linux developer
and the nonprofit organisation SFC (Software Freedom Conservancy) over an improper use
of the Linux kernel [5]. Christoph and SFC claimed that VMware violated the terms of
the copyright license of the Linux kernel. Sojer et al [22] [23] conducted a survey with 869
developers and found that reusing open source code is so common but developers have limited
knowledge on licenses terms and thus they don’t understand the associated legal risks and
this is due to the fact that industry and academic institutions do not give importance and
training regarding licenses and their impact on code reuse. In march 2016, Oracle was asking
for more than 9 billions dollars (yes, billions!) to Google for copyright infringement of the
Java APIs claiming that it used 37 Java API packages to create its Android mobile operating
system [24].

These evidences highlight the importance of tracking and correcting eventual licenses vio-
lations early on before the distribution of a software system. Two main categories of open
source licenses exist: restrictive licenses (also known as copyleft or reciprocal), and permissive
licenses. Restrictive licenses require that developers use them to distribute their software if

they happen to use a component under such license, e.g.,GPL license; “You must license the

entire work, as a whole, under this License to anyone who comes into possession of a copy" [4].
However, permissive licenses allow the distribution under a different license, e.g.,BSD, MIT
licenses [25]. License violations concern restrictive licenses. Researchers has investigated
licenses violations with the goal to understand the context in which they occur and how

developers address them.

German et al. [3] manually examined 124 OSS packages to understand the way in which
developers solve license incompatibilities. They built a model to document integration pat-
terns that are used to help developers to solve license inconsistency issues and highlighted
the characteristics of certain licenses and their applicability. In [26], authors propose a semi-
automatic method to detect licenses incompatibilities in software packages. They compared
the declared licenses of binary packages with the licenses of their source files identified by the
Ninka tool and license of dependent packages documented in the dependency graph iden-
tified by rpmquery, to identify possible inconsistencies. They validated their approach on
3,874 binary packages from the Fedora-12 GNU/Linux distribution.

Companies, like Black Duck® and HewlettParckard® propose their own infrastructure to help
users avoid license incompatibility issues. They build their own databases and validate that
it does not contain any license violation. The databases are then provided to users who can
reuse code from them without any fear of license violation. Although this technique solves
license incompatibility issues and makes developers feel safe, it is quite limited by the scope
of the databases that are built.

Hemel et al. [27] introduced BAT, a tool that detects code cloning in binaries. They im-
plemented three binary clone detection techniques. The tool helps users to detect clones
between a subject binary and the binaries from their repository to identify license violations
e.g.,using third-party software packages licensed under GPL in a binary that could be used
in a proprietary product. Although in theory BAT could track license violations, in practice,

its accuracy is poor.

German et al. [13] proposed Kenen, a semi-automatic approach to verify license compliance
in java applications. Kenen identifies the license of souce code using the Ninka tool. It also
identifies dependancies’ license by combining both Joa (to identify jar provenance in order to
obtain the source code) and Ninka (to identify license information from the obtained source
code). With the given license informations, authors manually identified license violations.

Kenen has been applied to one proprietary application (an editor of music files).

In our study we analyse a sample of Android applications (8,938) from Github to identify

Shttp:/ /blackducksoftware.com
Shttp://www.hp.com

10

license violations automatically, using a table specifying licenses that cannot co-exist together.

2.4 Chapter Summary

In this chapter we have reviewed the relevant literature on license identification, license evolu-
tion and license violation. For license identification, we have in one hand license identification
techniques that can be applied to source code, in this category Ninka performs better than
other existing tools, however in some cases it fails to identify licenses existing into source files
as well as the licenses of source files that are not explicitly declared. On the other hand we
have license identification techniques for binaries. This second category is mostly composed
of derivatives of the Joa tool. Most license evolution studies are performed using a license
identification tool with low precision and/or a small number of applications and are often
limited to projects written in specific programming languages. Concerning license violations,
existing approaches considers source code and binaries separately. Also, companies, like
Black Duck have proposed the use of proprietary databases of code that can be safely reused
in order to prevent license violations. In this thesis we will propose a methodology for license
identification that improves over the limitations of Ninka. We will study license evolution in
Android applications with the aim the identify the most common license evolution patterns.
We will also study license violations and the evolution of license violations in our subject

apps, considering both the source code of the apps and the libraries used by these apps.

In the following chapter, we describe our approach for license identification and the different

observations we made related to the licensing practice in the Android Ecosystem.

11

CHAPTER 3 LICENSE IDENTIFICATION

In this thesis, our goal is to examine licenses usages and violations in the Android Ecosystem.
To achieve this goal, we first need to identify license informations from mobile apps. License
information can be found in source file as a license statement or in a separate text document
generally included in the main directory of the project. Moreover, this textual information
can be inconsistent across the files of a system because of developers failing to update them
properly. Android apps as many projects may use some external libraries. Often, those
libraries are in the binary format, making it impossible to retrieve their license information
through a textual analysis. In this chapter we introduce our license identification technique
named LIT (License Identification Technique) which leverages the state-of-the-art tool Ninka
to identify license information from textual files, the clone detection technique CCFinderX,
to track missing license informations using similarity between files, and Joa to identify the
license of libraries used by apps. Figure 3.1 presents an overview of LIT. We conduct a case
study with 857 mobile apps to assess the effectiveness of LIT, answering the following two

research questions:

L|cense identifier

"""""" -
y O\ Clone
o) » Clone data - ,Sourceflles pairs
\CCFlnder : ~__ analysor ,,,VYEMEenEeS/
| Projects’
! J— Li Licenses
; e icense P ———
COTETEL > Nink Hllcense data» 2am I —
Apps) SN ——— »l Source Files'
T~ analysor ; licenses
73 5 Dependenues\ HTML+XML | _Dependencies’
oa . links / parser | | licenses
x I g P TEISES
Maven T e
database

repository

Figure 3.1 Identification of license information

RQ1: Could LIT outperform the state-of-the-art approach Ninka when identifying the license
of mobile apps?
License statements are textual informations that can be changed during the evolution

of a project, which often results in inconsistent informations or files with missing license

statements. In these cases, tools like Ninka are unable to accurately identify the license

12

information of the projects. Our proposed approach LIT relies on clone detection tech-
niques to identify similar code files and transitively recover missing license informations.

This research question aims to evaluate the effectiveness of this approach.
RQ2: Could LIT identify the license of libraries used by a mobile app?

Libraries are generally composed of binary files. Hence, it is difficult to identify li-
brary’s license informations since this information is absent from binaries. Traditional
approaches like Ninka cannot be applied to binary files. LIT makes use of the API
provenance tracking approach Joa proposed by Davies et al. [12] to identify the loca-
tion of the source code of libraries in order to detect license informations. This research

question assesses the effectiveness of this approach.

3.1 LIT: A clone detection based approach to identify the license of mobile apps

In this section, we explain the steps of our approach LIT, for license identification. Figure 3.1

summarizes the steps of this approach.

3.1.1 Step 1: Identification of license statements

A license statement is a textual information about license, generally found on the top of
a source code file (in this case it indicates the file’s license) or within a text file, so often
named (COPYING, LICENSE, README or POM) and located in the main directory of
the project (in this case it indicates the project’s license). Since Ninka is reported to have
a high accuracy and performance when identifying license information from text files, we
selected it for the identification of license information from source code files. To identify
license information contained in a file, Ninka splits statements contains in the file into textual
sentences, normalizes them, and matches them against known licences tokens. Whenever, it
cannot find any match or the license information is missing, Ninka explicitly reports that it
can not recognize a license, outputting the keyword “UNKNOWN® and “NONE* respectively.

In such case, we move to step 3.

The license information identified by Ninka both form source code files and textual files found

in the main directories of the projects are stored into a database.

3.1.2 Step 2: Identification of the licenses of libraries used by Apps

Mobile apps frequently use externally developed libraries to provide their services. However,

these libraries are often deployed in the form of binaries, making it impossible for Ninka, or

13

any of the tools mentioned in Chapter 2, to extract licenses information from these libraries.
To address this issue, we make use of the Joa tool proposed by Davies et al. [12]. Joa allows
to track the provenance of software artifacts (both source code and binaries). In fact, Davies
et al. [12] downloaded libraries from the Maven repository, computed signatures for these
libraries and stored them in a database. They also developed the tool Joa that can compute
the signature of any new library and match it against the database to identify the identity
of the new library. Knowing the identity of the libraries used by our studied mobile apps
allows us to extract their license information by parsing the POM files available in the Maven
repository. In POM files, license informations are stored under a tag named license or as a
license statement in the top of the file. We use Ninka to extract license information from
license statements and for license informations stored under the license tag, we use an xml
parser. Figure 3.2 presents an example of POM file in which we have both the information
in the statement and under the tag. In such case, we consider only the information under
the license tag. In this study we use the same database as Davies et al [12], which contains

all libraries that were available in the Maven repository in April 2013.

14

<?xml version="1.0" encoding="UTF-8"7>

<1--

Copyright (c) 2011 Roberto Tyley

This file is part of ’Agit’ - an Android Git client.

Agit is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

Agit is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program. If not, see <http://www.gnu.org/licenses/>.

-—>

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>

<version>1.0-SNAPSHOT</version>

<groupId>com.madgag</groupIld>

<artifactId>agit-parent</artifactId>

<packaging>pom</packaging>

<name>Agit parent POM project</name>

<licenses>
<license>
<name>GPL v3</name>
<url>http://www.gnu.org/licenses/gpl-3.0.html</url>
<distribution>repo</distribution>
</license>

</licenses>

</project>

Figure 3.2 An Example of POM file from Agit-an Android Git client

3.1.3 Step 3: Identification of similar source files

To identify the license of files with missing license statements or files for which Ninka could

not recognize the license, we use clone detection techniques to identify source files pairs that

15

share similar code.

Among multiple clone detection tools that exist, we choose to work with CCFinderX [28] since
it is known to scale well. CCFinderX represents the content of source code files as sequences
of tokens and uses a suffix-tree matching algorithm to compute matchings. Clone location
information is represented as a tree with sharing nodes for leading identical subsequence. It
gives as a result a list of clone pairs. We consider that two files should have the same license
if the portion of cloned code that is shared between the files is more than 50 tokens (which

represents about 20 lines of code). We consider only Type 1 and Type 2 clones in our study.

3.2 Study Design

In this section, we perform a case study to assess the effectiveness of LIT at identifying the

licenses of mobile apps. We aims to answer the following two research questions:

RQ1: Could LIT outperform the state-of-the-art approach Ninka when identifying the license
of mobile apps?

RQ2: Could LIT identify the license of libraries used by a mobile app?

3.2.1 Data Collection

We crawled the F-droid Website and downloaded 857 mobile apps from the Android Market
F-Droid. We chose these apps because their source code is available on Github!. Next, for
each app, we downloaded all its releases (8,938 releases in total) from the Github repository.

Figure 3.3 shows the distribution of our data across the categories of apps.

3.3 Results

This section presents and discusses the results of our two research questions.

RQ1: Could LIT outperform the state-of-the-art approach Ninka when identify-

ing the license of mobile apps?

By using CCFinderX to track similar files that should be under the same license, LIT could
identify the licenses of many files that Ninka failed to identify. Figures 3.4 and 3.5 present
the gain achieved in license information, taking into account different ranges of clone sizes

(number of tokens). Overall, LIT could recover 16% of the information missed by Ninka.

Thttp://github.com

16

250
|

200
1

150
1

100
1

Development Games Internet Multimedia Navigation Office Phone&SMS Reading Science&Education Security System Wallpapers

Figure 3.3 F-Droid categrories

The longest clone fragment found in our data set is composed of 54,540 tokens. The average
number of tokens in the clones found is 127 tokens, 7.e., 55 lines. As observed in Figures 3.4
and 3.5, there is still a considerable number of file for which we could not identify the license

information.

B UNKNOWN

M (50-126)tokens
(127-200)tokens

M (>200)tokens

= None

m (50-126)tokens
(127-200)tokens

 (>200)tokens

Figure 3.4 Identification of files’ license re- Figure 3.5 Identification of files’ license re-
ported as NONE by Ninka ported as UNKNOWN by Ninka

Moreover, Table 3.1 summarizes inconsistencies found among the licenses statements of our
studied apps. In this table, we highlight two harmful cases of inconsistencies that include
incompatible licenses “GPLv2-Apachev2" and “GPL-Other".

We investigated the domains of apps involved in these inconsistencies and found that the
similar files that are licensed under different terms mostly belong to apps from different

domains (as presented in Table 3.2). This result suggests that developers tend to copy code

17

Table 3.1 Inconsistencies found among the license statements of the studied apps

Kind of disagreement #Files #Releases | #Apps
GPLv2-Apachev2 54 335 1067 70
GPL-OTHER 18 853 940 7 141 685
Others 18 284 150 - -
Apps with license inconsistency - - 731

from apps that are not in the same category as their application. This was the case for

60,72% of the inconsistencies found.

Table 3.2 License inconsistencies by categories

Category Part of desagreement (%)
Inconsistent files from different domains 60,72
Internet Apps 16,62
OfficeApps 14,69
ScienceAndEducationApps 3,65
ReadingApps 1,75
SystemApps 1,09
GamesApps 0,08
MultimediaApps 0,29
DevelopmentApps 0,09
NavigationApps 0,73
PhoneAndSMSApps 0,28
Security Apps 0,01

RQ2: Could LIT identify the license of libraries used by a mobile app?

Figure 3.6 presents the licenses of the libraries that LIT could recover from our studied
apps. On this Figure (i.e., Figure 3.6) we report only libraries that perfectly matched a
known library from the Maven repository; i.e., the proportion of files in the library that
matched the files contained in a library from the Maven repository is 100%. We opted for
this conservative approach because if a library used by an app is licensed under Apachev2
and only matches 50% of the files in a library from the Maven repository that is licensed
under GPLv3, we cannot know for sure if the app is using the part of the features provided
by the files under the GPLv3 license, and hence, we cannot conclude on a potential license
violation for example. In fact, a GPLv3 library can contain files licensed under Apachev2
(since a project containing Apachev2 sources code and GPLv3 source code must be licensed

under GPLv3) and the app may be using only the Apachev2 files.

18

30000 40000 50000
1 1 |

20000
1

10000
1

[—

CDDLorGPLv2,ClassPathExceptionGPLv2 NONE Apachev2 UNKNOWN LGPLv2.1+ BSD (Other)

o 4

Figure 3.6 Licenses of libraries used by the studied apps

3.4 Discussion

Even though Ninka does a great job at identifying license identification from text files [1],
it relies blindly on the textual information declared in the files and in some cases fail to
recognize the license of the files. More over in case where the license information is missing,
Ninka reports NONE. LIT combines Ninka with a clone detection technique to overcome
this limitation and results show that this combination could recover 16% of the information
missed by Ninka; improving recall. By tracking similarities between files, LIT also found
license inconsistencies in 85% of the studied apps, i.e., 85% of the apps contain files that share
code with files licensed under a different (conflicting) license. Although these inconsistencies
could be symptoms of license violations, it is possible that the two apps copied the code
from a third app that released the code under a dual license, and the two apps simply picked
different licenses. For this reason, we can not confirm that the inconsistencies found are
violations of licenses terms unless we dispose of information about the origin of the cloned

code.

By leveraging the provenance analysis approach proposed by Davies et al [12], LIT could
identify the license of 75% of the libraries used by the studied apps. We expect this percentage

to increase if we can access a recent copy of the Maven repository.

19

3.5 Threats to Validity

This section discusses the threats to validity of our study following the guidelines for case
study research [30].

Construct validity threats concern the relation between theory and observation. In this study,
the construct validity threats are mainly due to measurement errors. We rely on Ninka, a
state-of-the-art tool for license identification from textual files. It has 97% precision and
82% recall. We rely on CCFinderX to track similarities between code files. Although, it
doesn’t have a 100% precision and recall, CCFinderX has the advantage that it can process
a large amount of data in a reasonable time [31]. It has been used successfully in previous
studies on clone detection [32]. We randomly selected 100 clone pairs from our obtained
results (which corresponds to a confidence level of 95% and a confidence interval of 10) and
manually examined them, to assess the precision of CCFinderX. Out of the 100 clone pairs,
57 were true clone pairs. This result is in line with the performance of CCFinderX reported
by [31]. The precision of the Joa tool has a limited impact on our results since we considered
only libraries that were perfectly matched. To the best of our knowledge, Joa is the only tool
that can detect the provenance of software artifacts. Our study relies on a copy of the Maven
repository that was obtained in 2013, therefore, it is possible that some libraries are missing.
However, it is no more possible to obtain a full copy of the Maven repository. Nevertheless,
it is possible that the license of some of the libraries from our Maven repository copy were
changed after 2013.

Internal validity threats concern our choice of tools and apps; i.e., Ninka for license identi-
fication, Joa for software provenance analysis, CCFinderX for clone detection and the 857
studied apps. Different tools and apps could yield different results. However, our approach
is generic and can be easily adapted for other tools and applied on other apps easily.
Conclusion wvalidity threats concern the relation between the treatment and the outcome.
We used a set of 857 mobile apps to evaluate LIT. A different corpus could give different
results. We share all the data of our study at: http://swat.polymtl.ca/data/SANER16/
AndroidAppsDataONF-DroidJanv2015.7z. Further studies with different sets of mobile apps
(including close source apps) from different markets are required to verify our results and

make our findings more general.

External validity threats concern the possibility to generalise our results. Although we only
conducted our evaluation of LIT on 857 mobile apps from the F-droid market, our finding

on the precision of CCFinderX is consistent with previous studies (e.g., [31]).

http://swat.polymtl.ca/data/SANER16/AndroidAppsDataONF-DroidJanv2015.7z
http://swat.polymtl.ca/data/SANER16/AndroidAppsDataONF-DroidJanv2015.7z

20

3.6 Chapter Summary

To conduct any study on licenses, e.g., license evolution, licensing usages, it is primordial to
be able to identify licenses informations accurately. In this chapter we have proposed LIT, a
license identification technique that can detect the license of libraries used by a mobile app.
Results show that LIT also outperforms the state-of-the-art approach Ninka when detecting
license informations from source code files. In the following chapter, we will leverage LIT to

examine license evolution, license violations and the evolution of these violations overtime.

21

CHAPTER 4 LICENSE EVOLUTION

Licenses as source code informations are subject to changes. Developers can change the li-
cense of their software for multiple reasons, e.g., they could update the license of a component
because the license of a dependent component was changed by the component owner. Study-
ing license changes is important to understand developers practice regarding license usages,
e.g., whether they follow specific patterns in licensing updates. In the previous chapter, while
evaluating LIT, we noticed license changes in many files across versions. In this chapter we
study license usages and evolutions in order to identify the most used licenses in the Android
Ecosystem, both at file level and project level, across releases. We address the following two

research questions:
RQ1: What are the most common licenses used in open source mobile apps?

This research question aims to identify licenses that are frequently used by developers
of Android apps. The results of this research question will provide insights about the
preferences of mobile apps developers among the more than 70 open source licenses

that are available.

RQ2: How do mobile apps licenses evolve overtime? In this research question, we analyse
the evolution of licenses overtime both at project and file levels, in order to understand

the main patterns of licenses evolution in the Android Ecosystem.

Chapter Overview

Section 4.1 describes the design of our case study. Section 4.2 describes and discusses the
results of our two research questions. Section 4.3 discusses the results of our study in the
context of previous work. Section 4.4 discloses the threats to validity of our study. Section 4.5

summarizes this chapter.

4.1 Study Design

This section presents the design of our case study, which aims to address the following two

research questions:
RQ1: What are the most common licenses used in open source mobile apps?

RQ2: How do mobile apps licenses evolve overtime?

22

4.1.1 Data Collection

We apply LIT to the 857 mobile apps downloaded from the Android Market F-Droid, to
identify their licenses and the licenses of each of their source files. Next, we build four
databases containing respectively, Android apps licenses, source files licenses, dependencies

(i.e., libraries) licenses and pairs of cloned files found with different licenses.

4.1.2 Data Processing

We analyse the evolution of licenses overtime both at project and file levels, in order to
understand the main patterns of licenses evolution in the Android Ecosystem. For each file
in each app, we track the evolution history of the file and build a genealogy. We identify
files across the releases using their absolute paths. To handled cases of renaming, we apply
clone detection to track files with similar contents that were renamed. Next, using licenses
information collected using LIT, we map licenses to the different versions of each file and
compute all licenses evolution patterns. Finally, we build state transition models capturing
the license evolution patterns at file and project levels, respectively. For each transition in
our state-transition diagrams, we compute the probability of the transition following Equa-
tion 4.1. To focus our interest, we narrow the data analyzed to only entities that experienced
at least one change in their life-cycle. Thus, to calculate the probability of a transition from
License A to License B, we calculate the occurrence of License A — License B divided by

the occurrence of License A in our reduced data set.

OccurrenceOf(A—B) /OccurrenceOf(A) (4.1)

4.2 Results

This section presents and discusses the results of our two research questions.

RQ1: What are the most common licenses used in open source mobile apps?

When considering only the information provided by F-Droid, we obtain that 35% of apps
are licensed under GPLv3, 24% under Apachev2 and 12% under MIT License.
Figure 4.1 presents the licenses distribution of the final releases of all the apps in our data

sets.

When considering all the released versions of each app from our data set, the picture is a

100 150 200 250 300
|

50

23

I | s s P —

GPLv3 Apache2 MIT GPLv3+ GPLv2

GPLv2+ NewBSD GPL WTFPL AGPLv3+ (Other)

Figure 4.1 Projects licenses when considering only the latest release of each app

1000 1500 2000 2500 3000 3500

500

NONE GPLv3+

UNKNOWN Apachev2

GPLv2+ MITX11 spdxBSD2 (Other)

Figure 4.2 Projects licenses when considering all the releases of the apps

24

bit different. We obtain that 37% of releases are licensed under GPLv3, 8% under
Apachev2 and 4% under MIT License. This difference is due to the fact that many
apps change their licenses overtime. Figure 4.2 presents the distribution of licenses for all the
releases of all the apps in our data set. We can observe that more than 3,250 apps releases
out of 8938 apps releases are unlicensed or their license information is not declared in any

of our analysed files (described in Section 3.1.1).

At the file level, GPL and Apache are still the most used license; representing
47% and 12% of files respectively. However, there are more files licensed under the BSD
license than the MIT license. Table 4.1 summarizes results obtained at the file level. Our
set of apps contained in total 1,429,330 source code files (1,168,899 written in Java; 81,378
written in C; and 138,396 C++ files). In Table 4.2 the keywords “SeeFile", “UNKNOWN"
and “ERROR" are used by Ninka and LIT (which is built on top of Ninka) to indicate that
the analyzed file points to another file that may contain the license, that the found license is

not recognized, and that Ninka (and LIT) encountered an error.

RQ2: How do mobile apps licenses evolve overtime?

We now report about licenses’ evolution in Android applications and identify the most com-

mon patterns of licenses change.

4.2.0.1 License changes at the file level

Among the 857 apps from our data set, 128 apps experienced a license change. These 128
apps contain 2,062 Java files(0,1% of the total number of java files in our data set) that
experienced at least a license change during their app’s life-cycle. Figure 4.3 summarizes
the transition patterns found in our data set and their probabilities. As one can see, the
probability for a file to stay under the same license is very high for almost all the licenses
(0.9 in average). We classify our patterns into two categories: general patterns (summarized
in Table 4.3), which contains patterns that include no license or unknown license; and specific
patterns (summarized in Table 4.4), which contains only patterns where we have changes be-

tween two known licenses. In the following, we discuss each of these categories in more details.

General patterns: files in this category generally start with no License (NONE) in their
first release. This finding is consistent with observations made by Vendome et al. [7] that
developers tend to delay their decision about license selection. Regarding transitions from a
known license to NONE or UNKNOWN license,

Table 4.1 Licenses detected at file level

License Version # Occurrence | %

noVersion 32

v2 37 388
GPL v2+ 395 198 45,68

v3 19 125

v3+ 201 171

Apache 2

v1.0 52
Apache 11 g 12,39

v2 184 765

v2 84

v2.1 2 962

v2.1+ 7 634
LGPL o oF 1,13

v3 2 097

v3+ 3 284

3NoWaranty 2279

BSD3 6 759

BSD4 168
BSD spdxBSD2 2 281 1,07

spdxBSD3 3 655

spdxBSD4 130

oldwithoutSelland 5

oldwithoutSelland- 147

NoDocumentationRequi

MIT Variant 1
MIT MITX11 11 965 0,87

X11BSDvar 4

X11noNotice 343
PublicDomain 2 957 0,21
artifex 136 0,01
BeerWareVer42 6 0
CDDLorGPLv2 475 0,03
CPLv1 20 0
DoWTFYWuv2 48 0
EPLv1 13 0
FreeType 1714 0,12
MPLv1_1 4 0
ZLIBref 137 0,01
SunSimpleLic 555 0,04
SimpleLicencel 18 0
orGPLv2+o0rLGPLv2.1+ 234 0,02
Total number of source code files analysed 1 429 330

25

0,0001

GPLv3+,Apachev2 20,75

Table 4.2 Proportion of files with missing license

License # Occurrence | %
None 392 314 27,45
SeeFile 8 053 0,56
UNKNOWN | 139 484 9,76
FERROR 930 0,07

GPLv2+,GPLv3+ Apachev2

1
0,0002 (0,0720
00038

0,0042

Figure 4.3 Evolution of licenses at the file level

0003

26

0,0071

27

Table 4.3 General patterns

Pattern #Occurence
UNKNOWNorNONE — GPL3+ 820
UNKNOWNorNONE — Apachev2 | 269
UNKNOWNorNONE — MITX11 92
UNKNOWNorNONE —spdxBSD2 | 79

GPL2+ — UNKNOWNorNONE 77

UNKNOWNorNONE — GPL3 75
UNKNOWNorNONE — GPL2+ 50
NONE — spdxBSD3 22
UNKNOWNorNONE — LGPLv3+ | 17
MITX11 — UNKNOWN 17
GPL34+ — UNKNOWNorNONE 10
NONE — LGPLv3 6

Apachev2 — UNKNOWNorNONE
LGPLv3 — NONE
MITX11noNotice - NONE
GPLv3+,Apachev2 — NONE
NONE — GPLv3+,Apachev2

— = = =

we could not find a plausible explanation, after manually examining all these patterns. It is
unclear why some developers remove the license of their app. Below are some examples of

general patterns found:

The app PageTurner started with no license. Later on developers licensed it to GPLv3+
and changed all its Apachev2 files to GPLv3+.

Wifi- Fizer also didn’t have any license initially but later on was licensed under GPLv3+ and
all its Apachev?2 files were licensed under GPLv3+.

AndroidCaldavSyncAdapater was initially under no license, developers later on changed all
its Apachev?2 files to GPLv3+ and licensed the app under GPLv3+. All other source files in
that app are under BSD3.

Specific patterns: We examined transitions between known licenses and noticed cases of

license upgrade and downgrade. We discuss some of these cases in the coming paragraphs.

The app keepassdroid was initially released under the GPLv2 license. However it contained
files licensed under Apachev2 and GPLv2 licenses which are incompatible. Later on, the
project was changed to the dual license “GPLv2, GPLv2+" in order to solve its license vio-

lation.

The app open-keychain was initially licensed under Apachev2, then, developers changed all

Table 4.4 Specific patterns

pattern #Occurrence
GPLv3+—GPLv2+ 109
GPLv34+—GPLv3 73
Apachev2—GPLv3+ 56
GPLv3+—Apachev2 50
GPLv2+—GPLv3+ 52
GPLv2+— Apachev2 23
GPLv2—GPLv2,GPLv2+ 5
MITX11—-GPLv3+ 4
Apachev2—GPLv2+ 2
LGPLv2.1—-LGPLv2.1+ 2
LGPLv3+—GPLv3+ 1
LGPLv3+—GPLv3 1
GPLv2+,GPLv34+—GPLv2+,GPLv3+,Apachev2 | 1

spdxBSD3MITX11 21

Figure 4.4 Evolution of licenses at the projects level

28

29

Apachev2 Java files to the GPLv3+ license and updated the license of the app to GPLv3+.
The app geopaparazzi is now under GPLv3+. It started with no license, then, developers
changed some Apachev2 files to the GPLv3+ license. The app also contain files under
LesserGPLv2.1+ and GPLv3 licenses. The last 15 releases of the app (out of a total of 79
releases) are under GPLv3+.

The connectbot app started under the GPLv3+ license. It maintained this license through
11 releases. It contains files under BSD3, BSD, GPL2+, MITX11, GPLv3+ and apachev2
licenses. The license of connectbot was changed to Apachev2 in the last 22 releases (out of
a total of 33 releases). During this transition, developers changed the license of all GPLv3+
files to Apachev2.

gnucash-android was first released under GPLv2+, files were under GPLv2+ and Apachev2
licenses, then, the license of the app was changed to Apachev2 and all GPLv2+ files were

licensed under Apachev2.

4.2.0.2 Licenses changes at the project level

We noticed that the probability for a project to stay under the same license is very high
(see Figure 4.4). Only 122 apps(14%) out of 857 apps changed their license at least once
during their lifetime. Apps license changes are generally toward more permissive licenses (see
Table 4.5)

4.3 Discussion

This section discusses some of the key findings of this chapter. By tacking licenses changes
across releases, we observed that license changes are toward less restrictive licenses, this
finding confirms the observation of Vendome et al. [20] that open source developers tend to
make their projects more open for reuse. However, a deeper look at license changes at file
level reveals a strange phenomenon; the licenses of all files are often changed at the same time,
and usually after the project has experienced some license inconsistencies. This observation
lead us to suspect potential licenses infringement issues. In fact, studies made by Vendome
and al. [7] have shown that developers have a limited knowledge on licensing issues. In the

following chapter we will investigate license violations in more details.

4.4 Threats to Validity

This section discusses the threats to validity of our study following the guidelines for case

study research [30].

Table 4.5 License change patterns at project level

Patern

\ Occurence

General Patern

UNKNOWNorNONE—GPLv3+

W
(@)

UNKNOWNorNONE— Apachev2

—_
[=p}

GPLv3+—UNKNOWNorNONE 7

UNKNOWNorNONE—GPLv2+

NONE—MITX11

UNKNOWNorNONE—GPLv3

GPLv24+—UNKNOWN

UNKNOWNorNONE—spdxBSD2

NONE—MITX11noNotice

NONE—spdxBSD3

NONE—GPLv3+,BSD3

Apachev2—NONE

GPLv3—NONE

GPLv3+,BSD3—NONE

LesserGPLv2.1-=UNKNOWN

== = = =] N NN DN YO

Specific Pattern

GPLv3+— Apachev2

GPLv2+— Apachev2

Apachev2—GPLv3+

GPLv24+—GPLv3+

Apachev2—GPLv3+,Apachev2

GPLv3—GPLv3+

GPLv3+—GPLv2+

GPLv2+—GPLv2

GPLv2—Apachev2

spdxBSD3—spdxBSD3,MITX11

spdxBSD3— Apachev?2

GPLv2—GPLnoVersion

GPLv2,GPLv2+ MITX11—-GPLv2,GPLv2+,Apachevl.0, MITX11

e Rl Rl R R R B R R e L A R I RS RN

GPLv2,GPLv2+,Apachevl.0 MITX11
—GPLv2,GPLv2+ LesserGPLv2.1,Apachevl.0,MITX11

—_

30

31

Construct validity threats concern the relation between theory and observation. In this study,
the construct validity threats are mainly due to measurement errors. The precision of our
detection approach LIT is likely to affect our findings. However, as shown in Chapter 3, LIT

outperforms state-of-the-art approaches like Ninka.

Internal validity do not affect this particular study, being an exploratory study [30]. Thus,

we cannot claim causation.

Conclusion wvalidity threats concern the relation between the treatment and the outcome.
To track file’s license changes, we relied only on the absolute path of the file. However,
we required that the files in the subsequent releases share a significantly large similarity

(measured using CCFinderX).

FExternal validity threats concern the possibility to generalise our results. Although we only
conduct our case study with 857 mobile apps from the F-droid market, most of our findings

are consistent with previous studies (e.g., [7]).

We share our data at:
http://swat.polymtl.ca/data/SANER16/AndroidAppsDataONF-DroidJanv2015.7z.
Further studies with different sets of mobile apps (including close source apps) from different

markets are required to verify our results and make our findings more general.

4.5 Chapter Summary

In this chapter we conduct a study on licensing evolution, our findings corroborate those
obtained by Vendome et al. [20] on open-source projects. In the following chapter we will

study license violations and their evolution.

http://swat.polymtl.ca/data/SANER16/AndroidAppsDataONF-DroidJanv2015.7z

32

CHAPTER 5 LICENSE VIOLATIONS DETECTION

With the very high speed of apps development, developers are increasingly inclined to copy
code from pre-existing open source applications. Open source application are made available
under specific license terms that developers should follow. A failure to satisfy license terms
can lead to serious penalties. With the large number of licenses available (more than 70 OSS
license and their different versions), it is becoming more and more complex to decipher all the
different rights and obligations of licenses; making it difficult for developers to understand all
the legal constrains of their software. In this chapter we conduct a study on license violation

using LIT and try to answer the following research question:
RQ1: Can we identify license violations using LIT?

In Chapter 3, we propose LIT, our three steps technique for license identification. Using
LIT, we identified 85% of applications with license inconsistencies. However, not all
of these inconsistencies are likely to be license violations. In fact, since it is possible
to release code under a dual license (e.g., Apachev2 and GPLv2), two apps reusing a
code licensed under a dual license could simply chose to pick different licenses (e.g.,
the first app picking Apachev2 and the second app GPLv2). Our clone analysis (with
LIT) would report this as a case of license inconsistency. However, there is no license
violation in this case. In this research question, we aim to identify clear cases of licenses

violations in the Android free software apps ecosystem.
RQ2: How do mobile apps licenses violations evolve overtime?

This research question aims to track license violations across the apps’ releases in order

to examine if and—how developers address these violations.
Chapter Overview

Section 5.1 describes the design of our case study. Section 5.2 describes and discusses the
results of our two research questions. Section 5.3 discusses the results of our study contrasting
it with previous works. Section 5.4 discloses the threats to validity of our study. Section 5.5

summarizes this chapter.

5.1 Study Design

This section presents the design of our case study, which aims to address the following two

research questions:

33

RQ1: Can we identify license violations using LIT?

RQ2: How do mobile apps licenses violations evolve overtime?

5.1.1 Data Collection

The data set used in this chapter is composed of the same 857 mobile apps downloaded from
the Android Market F-Droid. We studied the documentations about open-source licenses
and identified 24 types of license incompatibilities (i.e., licenses that should not coexist in a

same project) that we summarize in Table 5.1 and Table 5.2.

5.1.2 Data Processing

Data collection Detection

|1/ Licenses " !

‘\gggstreyrgts/' :
Y S ,,,,,J'Eensei,,,- \{

i Source files pairs
@ : _Wwith #licenses | i
b Maven -\

repository -

" Projects’ | |

=

? HTML | < / \\ Violations
e i ownloader : i i ifi N
el parser }\!T,'Elfs/ *E ndroid apps ™ License identifier S / detector

F-Droid| = —

e e g

p p o . J—
 Ninka | [CCFinder| | Joa :

Dependencies' { |
licenses

3

Maven _TRETbes Apps with

database violations

Figure 5.1 Overview of our approach to identify applications with license violation in an
Android Market

Figure 5.1 shows an overview of our approach to identify license violations. First, we used our
license identification approach LIT, described in Chapter 3 to extract licenses information
for all the 857 apps. Next, we build four databases containing respectively, Android apps
licenses, source files licenses, dependencies (i.e., libraries) licenses and pairs of cloned files

found with different licenses.

To track licenses violations, we implemented a script that checks for licenses inconsistencies
using information from Table 5.1 and Table 5.2. Then, we ran this script against our three
databases to obtain information about licenses violations. The source code of our script is

available online at http://swat.polymtl.ca/data/SANER16/Curseurl.sql.

To track license violations, we adopt a conservative approach. We consider that an app

violates some license terms only when there are inconsistencies between the declared license

http://swat.polymtl.ca/data/SANER16/Curseur1.sql

34

Table 5.1 Licensing Rules [2]

Library License | Project include

Combination
must be under

GPLv2

LGPLv2.1 GPLv2 only

GPLv2

LGPLv2.1+ GPLv2 only

GPLv2+

LGPLv2.1 GPLv2+

GPLv2+

LGPLv2.1+ GPLv2+

GPLv2+

LGPLv3+ GPLv3

GPLv3

GPLv2+ GPLv3

GPLv3

LGPLv2.1 GPLv3

GPLv3

LGPLv2.1+ GPLv3

GPLv3

LGPLv3+ GPLv3

LGPLv3

GPLv2+ GPLv3

Table 5.2 License incompatibilities

Incompatible license

Reason for the incompatibility

Apachev2 vs. GPLv2

Copyleft licenses are “reciprocal”, “share-alike”; or “viral” license
each of them says, “If you include code under this license in a larger program,
the larger program must be under this license t00.”[33]

Apachev2 vs. GPL (except GPLv3)

restrictions of copyleft licenses; each of them says, “If you include code under
this license ... the larger program must be under this license too.”
“Apachev2 software can ... be included in GPLv3 projects"

Apachev2 vs. GPLv3

Copyleft licenses
But one way is permitted; project under GPL3 source may have Apachev2[33]

Apachev2 vs. LGPL 2, 2.1, 3

“The LGPL is ineligible primarily due to the restrictions it places on larger works,
violating the third license criterion. Therefore, LGPL-licensed works must not
be included in Apache products”[34]

GPLv2 vs. GPLv3+

restrictions of copyleft licenses; each of them says, “If you include code under
this license ... the larger program must be under this license too.”

GPLv2 vs. GPLv3

restrictions of copyleft licenses; each of them says, “If you include code under
this license ... the larger program must be under this license too.”

LGPLv3+ vs. GPLv2

[35]

GPL vs Apachevl1.0

“a lax, permissive non-copyleft free software license with an advertising clause.
This creates practical problems like those of the original BSD license,
including incompatibility with the GNU GPL” [35]

GPL vs Apachevl.1

“a permissive non-copyleft free software license.
It has a few requirements that render it incompatible with the GNU GPL,
such as strong prohibitions on the use of Apache-related names” [35]

GPL vs CDDL

http://www.gnu.org/licenses/license-list.en.html
“It has a weak per-file copyleft. This means a module covered by the GPL
and a module covered by the CDDL can not legally be linked together.” [36]

GPL vs CPLv1

“its weak copyleft and choice of law clause make it incompatible with the GPL” [35

GPL vs EPLv1

“its weak copyleft and choice of law clause make it incompatible with the GPL” [35

GPL vs MPLv1.1

“a free software license which is not a strong copyleft; unlike the X11 license,
it has some complex restrictions that make it incompatible with the GNU GPL” [35]

GPL vs BSD4

“a lax, permissive non-copyleft free software license with a serious flaw:
the “obnoxious BSD advertising clause”” [35]

35

of the app and the licenses of its files, among its files and—or the license of its dependencies.

5.2 Results

This section presents and discusses the results of our two research questions.

RQ1: Can we identify license violations using LIT?

Table 5.3 shows the proportion of license violations found in our data set. Among the 857
studied apps, we found 17 apps (totaling 229 releases) that clearly violate the terms of some
open-source licenses. Apps from eight categories are involved in license infringements. Most

of the applications that violate a license term are under “development’ category.

RQ2: How do mobile apps licenses violations evolve overtime?

From the 17 apps that contain a license violation, only 10 apps solved the license violations
after some releases. The remaining 7 projects still had a license violation at the time of this
study. To solve license violations, developers either changed the licenses of some of the app’s
files or removed the contentious files from the apps. For the 10 apps that solved licenses
violations. We noticed that it took them on average 19 releases to correct the violation. This
means that 19 releases of some apps were distributed into the Android Market with license

violations, which is quite troubling.

5.3 Discussion

This section discusses some of the key aspects of our study. We define a methodology
for the detection of license violations within open source software systems. Our proposed
methodology takes into consideration different artifacts of an open source software; its source
code, its libraries and its declared licenses. Using our methodology we were able to detect
license violations within a set of applications from an Android Market. We observed that
licenses violations persist through multiple releases of the apps before they are eventually
resolved. This finding suggests that developers seem to lack proper knowledge about licenses

management.

36

Table 5.3 Projects with license violation

zaeyoedy SA ZATTdD

LeATdD) SA ZTATD c-1 14 +EATdD IONPH-1XRL,-036 .
oypedy sa ga]dn (loxd)] <03 wojshs
+ZATdD sa T Taoyoedy Lol L CAIdD proiposo

(qr) 14T sa gasyoedy (foxd) 4 9 gaoyoedy PrOIpUR-104TPa-3S07
gadyoedy sa gaTdD 06 - 9¢ TTXLIN ‘0 Taoypedy
1orpssedod
+EATAD SA TATdD 06 - 1 WL | gatdD “+ea1dD ‘Za1dD proipssedooyy e
(eoanos)gaayoedy sa gargdH(foad) 1€ -QT]¢ TATdD proipue
+EATADT SA TATAD €1 JouIojUT
1[)gAdyoedy SA ga 90IN0S -
(qu)gaey <+m> mmwmmwmﬁmmw Ve -1 - oD S———
gadyoedy sa gadD e -1
(901mo0s)+ga D) sa gasyoedy (foid) p-1 0¢ garepedy ureyoLax-uodo
+2ATdD sa 0 TaePRdY Lo
+EATdD s 0 TAsyoRdy L-g'eT 6 4NON urdiop soures)
+gATdD sa O Tasypedy ;
+¢ATdD sa 0 Ta0yedy €T -1 ¢4 NMONMNN ddssdd
(e0anos)gaoyoredy sa garggo (foad) -1 0T eATdD | ddyproipuyourmipuereg
(qm) TdOT sa gaoyoedy (foid) 9z - ¥ 9z ghopedy sopk[pue
(qu) TdDHT sa gaeyoedy (foid) c-1 c gaoypedy proipAios yuowrdoeAd(J
(am) TdDT sa gasyoedy (foxd) g-1 e ghoyoedy If-sIARL
(001mos)+ga7 gD sa gasyoedy (foid) 22T - 02 2C garopedy YONOJWIA
UOISIOAOUTJY) SA gadydedy 98 - 8¢ 98 NMONMNO Io[quIMSZOoIN uoryesiaeN
+ea SA ZA
N>EMMW sa @me b ot - VLD rondied | sispryenond
+eATTdD sA gA
N>w£odaw SA M>MMW 61 -¢ 1€ NMON3MNN [remje Ajunooag
UOIJE[OIA JO PUIY | UOIJR[OIA [)IM SOSBO[OI | SOSBI[dI N 9SUADIT aureN K108099€))

37

5.4 Threats to Validity

This section discusses the threats to validity of our study following the guidelines for case

study research [30].

Construct validity threats concern the relation between theory and observation. In this study,
the construct validity threats are mainly due to measurement errors. The precision of our
detection approach LIT is likely to affect our findings. However, as shown in Chapter 3, LIT

outperforms state-of-the-art approaches like Ninka.

Internal validity do not affect this particular study, being an exploratory study [30]. We do
not claim causation. Conclusion validity threats concern the relation between the treatment
and the outcome. License terms could be interpreted in deferent ways. There are ongoing
discussions among developers about the interpretations of the legal terms of some open-
source licenses. In our study, we relied only on the information explicitly written in the
official websites of the licenses. This conservative approach may limit us from detecting more
incompatible licenses. However, our proposed approach to detect license violations can be

easily extended to include more license rules.

External validity threats concern the possibility to generalise our results. Although we only
conduct our case study with 857 mobile apps from the F-droid market, most of our find-
ings are consistent with previous studies (e.g., [7]). We share our data and scripts at:
http://swat.polymtl.ca/data/SANER16/AndroidAppsDataONF-DroidJanv2015.7z. Fur-
ther studies with different sets of mobile apps (including close source apps) from different

markets are required to verify our results and make our findings more general.

5.5 Chapter Summary

In this chapter we propose a methodology for the detection of license violations in open
source software systems. This methodology is based on LIT, our three steps approach for
license identification. Results shows that our methodology can help detect license violations
within a set of apps from an Android Market. In the following chapter we will summarize

our thesis, discuss the limitations of our work and outline some avenues for future work.

http://swat.polymtl.ca/data/SANER16/AndroidAppsDataONF-DroidJanv2015.7z

38

CHAPTER 6 CONCLUSION

This chapter summarizes the findings of this thesis, discusses the limitations of our proposed

approaches, and outlines some avenues for future work.

6.1 Summary

With the very high speed of apps development; on average 2,371 new apps are published in
Google Play every day; developers are increasingly inclined to reuse code from other open
source systems. Those open source systems are made available under certain licenses. So
the reuse of existing code from different systems can produce a system with heterogeneous
components with different licenses. Although licenses clearly describe the legal constraints of
individual components, i.e., the various rights/obligations of each license, the large number
of existing licenses (more than 70 OSS licenses) and their different versions makes license
violations very likely. Many license violation issues are raised in courts and lead to big fines.
Researchers and practitioners have been looking for solutions, to detect and prevent license
violations early before the release of software products to the public. Some studies focused
on the detection; They tried to detect license violations by analyzing the source code and its
declared license or the byte code and its declared license. Some studies went on the preventive
way, proposing their own database with the validation that it does not contain any violation.
Open source projects are generally a mixture of source code and binaries, which makes it
impossible to use one of the solutions proposed in literature, thus, in this thesis, we proposed
a more complete solution for identifying license violation.

Our proposed methodology is based on LIT; a three steps approach for license identification.
First, we identify the licenses of source files and the project license using Ninka; a state-
of-the-art tool for license identification; Second we identify the license of libraries used by
the projects with the help of the Joa tool and finally we use clone detection techniques
to identify license inconsistencies and to improve Ninka. Having license informations, we
could detect license violations using a set of rules derived from the rights and obligations
of 8 open-source licenses and their versions. We applied our methodology on a set of 857
Android applications from an Android open source Market, i.e., F-Droid, and their 8,938
releases, downloaded from Github. Results shows that LIT performs better than Ninka
when identifying license informations; we observed a gain of 16% of the information missed
by Ninka. LIT could also identify the license information of more than 80,000 libraries used

by the studied Android apps. We examined licenses evolution and observed that developers

39

tend to change the license of their app toward less restrictive licenses. We found 17 apps
out of the 857 apps with clear violations of license terms. We also observed that licenses

violations persist through multiple releases of the apps before they are eventually resolved.

6.2 Limitations of the proposed approaches

Our methodology rely on many pre-existing tools and its precision is directly impacted by
the precision of those tools. Although we have selected state of the art tools that are known
to achieve the best performances to date, if better tools are developed, our methodology can
be easily adapted for these tools. License terms could be interpreted in different ways. There
are ongoing discussions among developers about the interpretations of the legal terms of some
open-source licenses. In our study, we relied only on the information explicitly written in
the official Websites of the licenses. This conservative approach may limit us from detecting
more incompatible licenses. However, our proposed approach to detect license violations can
be easily extended to include more license rules. Although we only conduct our case study
with 857 mobile apps from the F-droid market, most of our findings are consistent with
previous studies (e.g., [7]). We share our data and scripts at: http://swat.polymtl.ca/
data/SANER16/AndroidAppsDataONF-DroidJanv2015.7z.

Further studies with different sets of mobile apps (including close source apps) from different

markets are required to verify our results and make our findings more general.

6.3 Future work

This thesis reports the results of a large empirical study aimed at understanding licenses
usages and violations in the Android Ecosystem. The results of the study suggests that
developers of mobile apps frequently fail to comply with the terms of licenses. Even more
problematic is the fact that licenses violations persist through multiple releases of the apps
before they are eventually resolved. Developers seem to lack proper knowledge about licenses
management or it may be that the lack of consistency and standardization in license decla-
rations fosters confusion among developers (as suggested by Vendome et al. [7]). Indeed, the
fact that some licenses are contained in source code heading comments, while others are put
in separate license files or README documents may cause developers to miss some license
information. To help address this issue, we advocate for the development of tools that can
assist developers in the management of licenses throughout the lifecycle of their apps. In the
future, we plan to investigate further our fining that app developers tend to copy the code

of apps from different domains, in order to understand the root causes of this behaviour.

http://swat.polymtl.ca/data/SANER16/AndroidAppsDataONF-DroidJanv2015.7z
http://swat.polymtl.ca/data/SANER16/AndroidAppsDataONF-DroidJanv2015.7z

1]

[10]

[11]

40

REFEFENCES

D. M. German, Y. Menabe, and K. Inoue, “A sentence-matching method for automatic
license identification of source code files,” in Proceedings of the IEEE/ACM international
conference on Automated software engineering. ACM, 2010, pp. 437-446.

“GNU General Public License Legal,” http://www.gnu.org/licenses/gpl-faq.html#
AllCompeatibility, 2015, online; accessed September 09th, 2015.

D. M. German and A. E. Hassan, “License integration patterns: Addressing license
mismatches in component-based development,” in ICSE -09: Proceedings of the 31st
International Conference on Software Engineering. IEEE, 2009, pp. 188-198.

“GNU General Public License,” http://www.gnu.org/licenses/gpl.html, 2015, online;
accessed October 05th, 2015.

“VMware lawsuit. GPL violation case,” http://www.infoworld.com/article/2893695/
open-source-software /vmware-heading-to-court-over-gpl-violations.html, 2015, online;
accessed April 15th, 2015.

J. Koetsier. (2013, August) 700k of the 1.2m apps available for
iphone, android, and windows are zombies: Last accessed: Novem-
ber 14, 2015. [Online]. Available: http://venturebeat.com/2013/08/26/
700k-of-the-1-2m-apps-available-for-iphone-android-and-windows-are-zombies /

C. Vendome, M. Linares-Vasquez, G. Bavota, M. Di Penta, D. German, and D. Poshy-
vanyk, “When and why developers adopt and change software licenses,”
of the 31st IEEE International Conference on Software Maintenance and Evolution (IC-

SME), 2015.

in Proceedings

I. J. Mojica, B. Adams, M. Nagappan, S. Dienst, T. Berger, and A. E. Hassan, “A
large-scale empirical study on software reuse in mobile apps,” IFEE Software, vol. 31,
no. 2, pp. 78-86, Mar 2014.

R. Gobeille, “The fossology project,” in Proceedings of the 2008 international working
conference on Mining software repositories. ACM, 2008, pp. 47-50.

N. Krawetz, “Symbolic alignment matrix,” 2008, http://www.fossology.org/projects/fo-,
ssology /wiki/Symbolic_ Alignment Matrix.

M. Di Penta, D. M. German, and G. Antoniol, “Identifying licensing of jar archives
using a code-search approach,” in Mining Software Repositories (MSR), 2010 7th IEEE

http://www.gnu.org/licenses/gpl-faq.html#AllCompatibility
http://www.gnu.org/licenses/gpl-faq.html#AllCompatibility
http://www.gnu.org/licenses/gpl.html
http://www.infoworld.com/article/2893695/open-source-software/vmware-heading-to-court-over-gpl-violations.html
http://www.infoworld.com/article/2893695/open-source-software/vmware-heading-to-court-over-gpl-violations.html
http://venturebeat.com/2013/08/26/700k-of-the-1-2m-apps-available-for-iphone-android-and-windows-are-zombies/
http://venturebeat.com/2013/08/26/700k-of-the-1-2m-apps-available-for-iphone-android-and-windows-are-zombies/

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

41

Working Conference on. 1EEE, 2010, pp. 151-160.
J. Davies, D. M. German, M. W. G. Godfrey, and A. Hindle, “Software bertillonage:

Finding the provenance of software development artifacts,” Empirical Software Engi-
neering, vol. 18, no. 6, pp. 1195-1237, 2013.

D. German and M. Di Penta, “A method for open source license compliance of java
applications,” IEEFE software, no. 3, pp. 5863, 2012.

“CNET News: Open-source spat spurs software change,” http://www.cnet.com/news/

open-source-spat-spurs-software-change/, 2002, online; accessed October 13th, 2014.

“Mysql. foss license exception,” http://www.mysql.com/about/legal/licensing/
foss-exception/, 2012, online; accessed january 17th, 2016.

D. M. German and J. M. Gonzalez-Barahona, “An empirical study of the reuse of soft-
ware licensed under the gnu general public license,” in Open Source Ecosystems: Diverse

Communities Interacting. Springer, 2009, pp. 185-198.

“Novell inc. faq: Licensing,” http://www.mono-project.com/docs/faq/licensing/, 2016,

online; accessed january 12th, 2016.

“KDE. Qt issue: Licensing,” https://www.kde.org/community /history/qtissue.php, on-
line; accessed january 14th, 2016.

M. Di Penta, D. M. German, Y.-G. Guéhéneuc, and G. Antoniol, “An exploratory
study of the evolution of software licensing,” in Proceedings of the 32nd ACM/IEEE

International Conference on Software Engineering-Volume 1. ACM, 2010, pp. 145-
154.

C. Vendome, M. Linares-Vasquez, G. Bavota, M. Di Penta, D. German, and D. Poshy-
vanyk, “License usage and changes: A largescale study of java projects on github,” in

23rd IEEE International Conference on Program Comprehension, ICPC, Florence, Italy.
IEEE, 2015, pp. 18-19.

G. Bavota, A. Ciemniewska, I. Chulani, A. De Nigro, M. Di Penta, D. Galletti, R. Ga-
loppini, T. F. Gordon, P. Kedziora, I. Lener et al., “The market for open source: An
intelligent virtual open source marketplace,” in Software Maintenance, Reengineering
and Reverse Engineering (CSMR-WCRE), 2014 Software Evolution Week-IEEE Con-
ference on. TEEE, 2014, pp. 399-402.

M. Sojer and J. Henkel, “Code reuse in open source software development: Quantita-
tive evidence, drivers, and impediments,” Journal of the Association for Information
Systems, vol. 11, no. 12, pp. 868-901, 2010.

http://www.cnet.com/news/open-source-spat-spurs-software-change/
http://www.cnet.com/news/open-source-spat-spurs-software-change/
http://www.mysql.com/about/legal/licensing/foss-exception/
http://www.mysql.com/about/legal/licensing/foss-exception/
http://www.mono-project.com/docs/faq/licensing/
https://www.kde.org/community/history/qtissue.php

[23]

[24]

28]

[29]

[30]

[31]

[32]

42

M. Sojer, O. Alexy, S. Kleinknecht, and J. Henkel, “Understanding the drivers of unethi-
cal programming behavior: The inappropriate reuse of internet-accessible code,” Journal

of Management Information Systems, vol. 31, no. 3, pp. 287-325, 2014.

“arstechnica: Oracle will seek a staggering $9.3 billion in 2nd
trial against Google,” http://arstechnica.com/tech-policy /2016/03/
oracle-will-seek-a-staggering-9-3-billion-in-2nd- trial-against-google/, 2016, online;
accessed March 30th, 2016.

P. V. Singh and C. Phelps, “Networks, social influence, and the choice among competing
innovations: Insights from open source software licenses,” Information Systems Research,
vol. 24, no. 3, pp. 539-560, 2012.

D. M. German, M. Di Penta, and J. Davies, “Understanding and auditing the licensing
of open source software distributions,” in Program Comprehension (ICPC), 2010 IEEE
18th International Conference on. TEEE, 2010, pp. 84-93.

A. Hemel, K. T. Kalleberg, R. Vermaas, and E. Dolstra, “Finding software license viola-
tions through binary code clone detection,” in Proceedings of the 8th Working Conference
on Mining Software Repositories. ACM, 2011, pp. 63-72.

T. Kamiya, S. Kusumoto, and K. Inoue, “Ccfinder: a multilinguistic token-based code
clone detection system for large scale source code,” Software Engineering, IEEE Trans-
actions on, vol. 28, no. 7, pp. 654-670, 2002.

J. Svajlenko and C. K. Roy, “Evaluating modern clone detection tools,” in 2014 IEEFE
International Conference on Software Maintenance and FEvolution (ICSME). 1EEE,
2014, pp. 321-330.

R. K. Yin, Case Study Research: Design and Methods - Third Edition, 3rd ed. SAGE
Publications, 2002.

S. Dang and S. A. Wani, “Performance evaluation of clone detection tools,” INTERNA-
TIONAL JOURNAL OF SCIENCE AND RESEARCH (IJSR), pp. 1903-1906, 2015.

L. Barbour, F. Khomh, and Y. Zou, “Late propagation in software clones,” in Software
Maintenance (ICSM), 2011 27th IEEE International Conference on, Sept 2011, pp.
273-282.

“Apache License vs GPLv3,” http://www.apache.org/licenses/ GPL-compatibility.html,
2015, online; accessed September 17th, 2015.

“Apache License Legal,” http://www.apache.org/legal /resolved.html, 2015, online; ac-
cessed September 17th, 2015.

http://arstechnica.com/tech-policy/2016/03/oracle-will-seek-a-staggering-9-3-billion-in-2nd-trial-against-google/
http://arstechnica.com/tech-policy/2016/03/oracle-will-seek-a-staggering-9-3-billion-in-2nd-trial-against-google/
http://www.apache.org/licenses/GPL-compatibility.html
http://www.apache.org/legal/resolved.html

[35]

[36]

43

“GNU General Public License Legal,” http://www.gnu.org/licenses/license-list.en.html,
2015, online; accessed September 09th, 2015.

“CDDL License. 10 questions-answered,” http://www.whitesourcesoftware.com/

top-10-cddl-license-questions-answered/, 2015, online; accessed September 29th, 2015.

http://www.gnu.org/licenses/license-list.en.html
http://www.whitesourcesoftware.com/top-10-cddl-license-questions-answered/
http://www.whitesourcesoftware.com/top-10-cddl-license-questions-answered/

	DEDICATION
	ACKNOWLEDGEMENTS
	ABSTRACT
	RÉSUMÉ
	CO-AUTHORSHIP
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	1 INTRODUCTION
	1.1 Research Statement
	1.2 Thesis Overview
	1.3 Thesis Contribution
	1.4 Organisation of the Thesis

	2 LITERATURE REVIEW
	2.1 License identification
	2.2 Licensing evolution
	2.3 License violations
	2.4 Chapter Summary

	3 LICENSE IDENTIFICATION
	3.1 LIT: A clone detection based approach to identify the license of mobile apps
	3.1.1 Step 1: Identification of license statements
	3.1.2 Step 2: Identification of the licenses of libraries used by Apps
	3.1.3 Step 3: Identification of similar source files

	3.2 Study Design
	3.2.1 Data Collection

	3.3 Results
	3.4 Discussion
	3.5 Threats to Validity
	3.6 Chapter Summary

	4 LICENSE EVOLUTION
	4.1 Study Design
	4.1.1 Data Collection
	4.1.2 Data Processing

	4.2 Results
	4.2.0.1 License changes at the file level
	4.2.0.2 Licenses changes at the project level

	4.3 Discussion
	4.4 Threats to Validity
	4.5 Chapter Summary

	5 LICENSE VIOLATIONS DETECTION
	5.1 Study Design
	5.1.1 Data Collection
	5.1.2 Data Processing

	5.2 Results
	5.3 Discussion
	5.4 Threats to Validity
	5.5 Chapter Summary

	6 CONCLUSION
	6.1 Summary
	6.2 Limitations of the proposed approaches
	6.3 Future work

	REFEFENCES

