
UNIVERSITÉ DE MONTRÉAL

VERIFYING TIMED LTL PROPERTIES USING SIMULINK DESIGN VERIFIER

MOHAMMAD-REZA GHOLAMI
DÉPARTEMENT DE GÉNIE INFORMATIQUE ET GÉNIE LOGICIEL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

THÈSE PRÉSENTÉE EN VUE DE L’OBTENTION
DU DIPLÔME DE PHILOSOPHIÆ DOCTOR

(GÉNIE INFORMATIQUE)
AVRIL 2016

c© Mohammad-Reza Gholami, 2016.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PolyPublie

https://core.ac.uk/display/213620107?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNIVERSITÉ DE MONTRÉAL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

Cette thèse intitulée :

VERIFYING TIMED LTL PROPERTIES USING SIMULINK DESIGN VERIFIER

présentée par : GHOLAMI Mohammad-Reza
en vue de l’obtention du diplôme de : Philosophiæ Doctor
a été dûment acceptée par le jury d’examen constitué de :

Mme BELLAÏCHE Martine, Ph.D., présidente
Mme BOUCHENEB Hanifa, Doctorat, membre et directrice de recherche
Mme NICOLESCU Gabriela, Doctorat, membre
M. BENTAHAR Jamal, Ph.D., membre

iii

DEDICATION

This thesis is dedicated with love to my wife, Baharafarin, and two beautiful children,
Daniel and Diana.

iv

ACKNOWLEDGEMENTS

There are so many important people to whom I owe my sincere gratitude, and I will try
to highlight some of them in these acknowledgements. First off, I would like to thank my
supervisor, Professor Hanifa Boucheneb, for encouraging me and supporting me without
hesitation throughout my studies. Her dedication to my research and unwavering guidance
has been incredibly helpful and inspiring – words cannot express my appreciation for Dr.
Boucheneb’s efforts.

While the destination is grand, I would be nowhere without the journey to get here. This
journey with my colleagues at Ecole Polytechnique de Montreal has provided me with lifetime
experiences, and has set me up for a prosperous future. I would like to thank the Department
of Computer and Software Engineering for affording me the opportunity to learn and grow
with the best.

I would like to thank the committee members, Professor Martine Bellaiche, Professor Gabriela
Nicolescu, and Professor Jamal Bentahar, for their attention and dedication of their time to
evaluate my research work. I would like to thank my colleagues at VeriForm Laboratory,
especially Parisa Heidari and Aurel Randolph. I would also like to thank Daniel Wolfe, my
manager at IsaiX Technologies Inc. for his support throughout this process.

Lastly, but certainly not least, I would like to thank my “inner circle” support system : my
family. My amazing wife, Baharafarin, for her incredible patience and huge sacrifice – this has
been a tiresome journey for her as much as it has been for me. My mother-in-law and father-
in-law, Maryam RezaiTabar and Hossein Esbati, who have experienced this journey with my
wife and I, and have been so helpful in raising our children and taking care of our household.
My parents, for always encouraging me to be the best I can be, and pursue the highest level
of education. And of course, my children, Daniel and Diana, for being understanding when
their “Baba” didn’t have time to play, and had to work on his thesis.

v

RÉSUMÉ

Les logiciels jouent un rôle de plus en plus important dans les systèmes embarqués notam-
ment dans les domaines de la santé, de l’automobile et de l’avionique. Un objectif important
du génie logiciel est d’offrir, aux développeurs, un support ainsi que les outils d’aide à la
conception de systèmes fiables nonobstant leur complexité.

Dans le but d’atteindre cet objectif, des environnements de développement comme Simulink
et SCADE proposent un processus de développement, basé sur des modèles, qui intègre, d’une
manière réfléchie, différentes approches et outils de vérification (test, simulation, vérification
formelle, évaluation, génération de code, etc). Ils permettent ainsi de concevoir, tester, simu-
ler, vérifier, corriger des modèles puis de générer automatiquement du code à partir de ces
modèles.

Cette thèse s’intéresse aux méthodes formelles et à l’intégration de celles-ci dans l’environ-
nement de développement Simulink. Les méthodes formelles s’appuient sur des outils mathé-
matiques pour spécifier, par des modèles, le comportement et les propriétés d’un système et
prouver qu’il satisfait ses requis. Simulink-Design-Verifier (SLDV) est un outil de vérification
formelle, intégré à l’environnement de développement Simulink, qui permet de vérifier des
propriétés de sûreté (assertions) sur des modèles Simulink. Cette thèse vise à étendre cette
classe de propriétés à des propriétés linéaires LTL (Linear Temporal Logic), LTL temporisé
et LTL à base d’événements. Les contributions de cette thèse sont présentées sous forme de
trois articles.

Le premier article présente une étude de cas qui a permis d’expérimenter l’environnement
de développement Simulink, d’identifier ses caractéristiques et ses limitations. Il s’agit de
modéliser et vérifier un dispositif médical appelé sonde d’intubation. Une sonde d’intubation
est une tubulure mise en place sur un sujet inconscient qui permet notamment d’assurer en
permanence le passage de l’air vers les poumons. Ce système est composé de deux ballonnets,
deux robinets d’accès pour gonflage manuel, deux capteurs de pression, un distributeur de
puissance, une pompe et un réservoir d’air. Tous ces composants sont concurrents et contrôlés
par contrôleur programmable décrit par un grafcet. Cet article montre comment utiliser
l’environnement Simulink pour, d’une part, modéliser ces différents composants ainsi que leurs
interactions, et d’autre part, vérifier formellement des propriétés, afin de s’assurer du bon
fonctionnement du système. Cependant, la spécification de certaines propriétés temporelles
n’est pas évidente car elles doivent être exprimées sous forme d’assertions. Les articles suivants
proposent des blocks canevas pour des propriétés temporelles linéaires.

vi

Le deuxième article est une version améliorée et étendue du premier article. Il s’est intéressé à
réduire la complexité de vérification en modifiant significative le modèle et en proposant des
blocks de spécification de propriétés linéaires basées sur les événements émis par le contrôleur.

Le troisième article est dédié à la spécification de propriétés LTL en utilisant SLDV. Il
propose des blocs Simulink configurables qui spécifient ces propriétés. Le but de ces blocs est
de transformer les propriétés en assertions qui sont vérifiables par SLDV.

La solution proposée dans le seconde et troisième article, est donc une extension de la biblio-
thèque de blocs de Simulink qui permet aux utilisateurs moins experts de spécifier et vérifier
certaines propriétés LTL.

Ce travail est donc limité aux propriétés LTL à temps discret, et restreint à certaines pro-
priétés LTL. Nos travaux futurs consisteraient à l’extension de la bibliothèque de blocs de
Simulink pour supporter des propriétés LTL plus complexes et à plus grande échelle.

vii

ABSTRACT

Software plays increasingly a significant role in embedded systems particularly used in health-
care, automotive and avionics. An important goal of software engineering is to offer devel-
opers support tools to design reliable systems despite the system complexity.

In order to achieve this, development environments like Simulink and SCADE propose a
model-based development process, which integrates in a thoughtful way, different approaches
and verification tools (test, simulation, formal verification, evaluation, code generation, etc.).
They allow to design, test, simulate, verify, correct the models and then automatically gen-
erate code from these models.

This thesis is interested in formal methods and integrating them in the Simulink development
environment. Formal methods are based on mathematical tools to specify the behavior and
properties of a system by models, and prove, if it meets its requirements. Simulink Design
Verifier (SLDV) is a formal verification tool, integrated in Simulink development environment,
to verify safety properties (assertions) on Simulink models. This thesis aims to extend this
class of properties to linear properties LTL (Linear Temporal Logic), timed LTL and event
based LTL. The contributions of this thesis are presented in three articles.

The first article presents a case study that experiment the Simulink development environment,
to identify its characteristics and limitations. It consists of modeling and verifying a medical
device called intubation tube. An intubation tube is a tube that assures permanent air
flow to the lungs of unconscious person. This system consists of two balloons, two access
valves for manual inflation, two pressure sensors, a power distributor, a pump and an air
reservoir. All these components work in parallel and are controlled by a programmable
controller described by grafcet. This article shows how to use the Simulink environment, to
model these components and also how to verify formally the properties to ensure the system
is well functioning. However, the specification of certain temporal properties is not obvious
because they must be expressed as assertions. The following articles propose canvas blocks
for linear temporal properties.

The second article is an improved and extended version of the first article. It is interested in
reducing verification complexity by changing significantly the model, and proposing specifi-
cation blocks of linear properties, based on events issued by the controller.

The third article is dedicated to the specification of LTL properties using SLDV. It proposes
configurable Simulink blocks that specify these properties. The purpose of these blocks is to

viii

transform the properties into assertions that are verifiable by SLDV.

The solution proposed in the second and third articles, is to extend the block library of
Similink, which allows less-expert users to specify and verify some Linear Temporal Logic
(LTL) properties.

This work is limited to discrete time LTL properties, and restricted to specify some LTL
properties. Our future work is devoted to extend the block library of Simulink to have
support for a large scale and more complex LTL properties.

ix

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

RÉSUMÉ . v

ABSTRACT . vii

TABLE OF CONTENTS . ix

LIST OF TABLES . xiii

LIST OF FIGURES . xiv

LIST OF SIGNS AND ABREVIATIONS . xvi

LIST OF APPENDIX . xviii

CHAPTER 1 INTRODUCTION . 1
1.1 Definitions and Basic Concepts . 1

1.1.1 Software Development Process . 2
1.2 Problem Statement . 3
1.3 Research Objectives . 4
1.4 Thesis Structure . 5

CHAPTER 2 LITERATURE REVIEW . 6
2.1 Modeling Concepts . 6

2.1.1 Software Modeling . 6
2.1.2 Model-based Design . 7

2.2 Verification and Validation Techniques . 7
2.2.1 Software Verification and Validation 8
2.2.2 Model Checking . 9
2.2.3 Theorem Proving . 10

2.3 Simulink and Stateflow . 11
2.3.1 Simulink . 12
2.3.2 Simulink model . 12

x

2.3.3 Simulink Library . 12
2.3.4 Constant, Inport and Outport blocks 13
2.3.5 Sum block . 13
2.3.6 Unit Delay block . 13
2.3.7 Relational Operator block . 14
2.3.8 Logical Operator block . 14
2.3.9 Embedded MATLAB Function block 15
2.3.10 Subsystem block . 15
2.3.11 Function-Call Subsystem block . 16
2.3.12 Simulink Block Methods . 16
2.3.13 Simulink Semantics . 17
2.3.14 Simulink Block Priorities . 17
2.3.15 Stateflow . 18

2.4 Verification Tools . 18
2.4.1 SCADE Design Verifier . 19
2.4.2 Simulink Design Verifier . 19

2.5 Formal Verification of Simulink Models . 20
2.5.1 Approach based on other Model Checking Tools 20
2.5.2 Approach based on Simulink Design Verifier 22

2.6 Conclusion . 22

CHAPTER 3 ARTICLE 1
Applying Formal Methods into Safety-Critical Health Applications 25
3.1 Introduction . 25
3.2 Background and Related Work . 27
3.3 Simulink and Stateflow . 28
3.4 Case Study . 29

3.4.1 The model . 30
3.5 Results and Analysis . 36

3.5.1 Properties . 36
3.6 Conclusion . 39

CHAPTER 4 ARTICLE 2
Formal Verification of Event-driven Health Applications 40
4.1 Introduction . 40
4.2 Background and Related Work . 42
4.3 Simulink and Stateflow . 43

xi

4.3.1 Simulink Library . 45
4.3.2 Simulink Design Verifier . 46

4.4 Case Study . 47
4.4.1 The model . 48

4.5 Methods and Analysis . 57
4.5.1 Properties . 58
4.5.2 Verification . 67

4.6 Conclusion . 67

CHAPTER 5 ARTICLE 3
Using Design Verifier for Proving some LTL Properties 69
5.1 Introduction . 69
5.2 Background And Related Work . 70

5.2.1 Model-Based Design . 70
5.2.2 Formal Methods . 71
5.2.3 Formal Verification . 71
5.2.4 Related Work . 72

5.3 Temporal Logic . 73
5.3.1 Linear Temporal Logic . 73

5.4 Simulink and Stateflow . 75
5.4.1 Simulink . 75
5.4.2 Stateflow . 78
5.4.3 Simulink Design Verifier . 80

5.5 Implementation . 81
5.5.1 Understanding Simulink Model . 82
5.5.2 Property Specifying Process . 83
5.5.3 Definition of Properties . 85

5.6 Evaluation . 96
5.6.1 Case Study . 97
5.6.2 Verification . 100

5.7 Conclusion . 100

CHAPTER 6 GENERAL DISCUSSION . 102
6.1 Synthesis of work . 102
6.2 Analysis of the achievements . 104

CHAPTER 7 CONCLUSION AND RECOMMENDATIONS 106

xii

7.1 Summary of work . 106
7.2 Limitations of the proposed solution . 107
7.3 Future Work . 107

REFERENCES . 109

APPENDIX . 114

xiii

LIST OF TABLES

Table 2.1 The supported operations . 15
Table 3.1 Variables in Intubation Stateflow . 32
Table 3.2 Events . 32
Table 3.3 Actions . 34
Table 4.1 Variables in Intubation Stateflow . 51
Table 4.2 Events . 51
Table 4.3 Actions . 53
Table 4.4 Distributor - Evolution of states and status of events over the time . 56
Table 4.5 Evolution of variables over the time - Cylinder at rear 62
Table 4.6 Evolution of variables over the time - Cylinder at center 62
Table 4.7 Verification results . 68
Table 5.1 Evolution of signal values over the time - �[0,5]p 91
Table 5.2 Evolution of block outputs over the time - �[0,5]p 91
Table 5.3 Evolution of variables over the time - p U q 94
Table 5.4 p U[0,5] q - Evolution of variables over the time 97
Table 5.5 Verification results . 101

xiv

LIST OF FIGURES

Figure 1.1 V-Shaped Life Cycle Model [69] . 3
Figure 2.1 Model-based Design used in development of real applications 8
Figure 2.2 High-level overview of BMC . 11
Figure 2.3 Sample Simulink Model . 12
Figure 2.4 Source and Sinks blocks . 13
Figure 2.5 Sum block . 14
Figure 2.6 Unit Delay . 14
Figure 2.7 Relational Operators . 14
Figure 2.8 Logical Operators . 15
Figure 2.9 MATLAB Function . 15
Figure 2.10 Sum block with ports and functions at time t 17
Figure 3.1 Endotracheal intubation . 26
Figure 3.2 Stateflow Semantics . 29
Figure 3.3 Components of the Endotracheal Intubation 31
Figure 3.4 Part of Controller State . 33
Figure 3.5 Pressure distributor . 35
Figure 3.6 Timer State . 35
Figure 3.7 Lights status . 36
Figure 3.8 Balloons status . 36
Figure 3.9 Formalization of property I . 37
Figure 4.1 Endotracheal intubation [8] . 41
Figure 4.2 Stateflow Semantics . 44
Figure 4.3 Within Implies Simulink Block . 47
Figure 4.4 Physical Features of the control system 48
Figure 4.5 Grafcet describing the operation of the controller 49
Figure 4.6 Components of the Endotracheal Intubation 50
Figure 4.7 Intubation Stateflow with its I/O . 52
Figure 4.8 Pressure distributor . 54
Figure 4.9 Stateflow of Balloon1 . 55
Figure 4.10 Inflate/Deflate Timer State . 57
Figure 4.11 Formalization of property 1 . 59
Figure 4.12 Internal functions in property 1 . 59
Figure 4.13 Using Standard Simulink Block . 62

xv

Figure 4.14 Function-call Subsystem Block . 63
Figure 4.15 Property 2 . 63
Figure 4.16 Internal functions in property 2 . 64
Figure 4.17 Property 3 . 65
Figure 4.18 Property 4 . 66
Figure 5.1 Semantics of Temporal Operators . 75
Figure 5.2 Simulink sample blocks . 76
Figure 5.3 Simulink blocks with ports and functions at time t 77
Figure 5.4 Stateflow Semantics . 79
Figure 5.5 Within Implies Simulink Block . 81
Figure 5.6 Life cycle of the entire process . 82
Figure 5.7 Sample Simulink Model . 83
Figure 5.8 Simulink Model File Format . 84
Figure 5.9 Converting group of blocks to a Model Reference 85
Figure 5.10 The difference between Subsystem and Model Reference 86
Figure 5.11 LTL F p . 87
Figure 5.12 LTL F[0,n] p . 89
Figure 5.13 Internal functions in F[0,n] p . 89
Figure 5.14 LTL p U q . 92
Figure 5.15 Stateflow in p U q . 92
Figure 5.16 LTL p U[0,n] q Property . 94
Figure 5.17 Stateflow in p U[0,n] q . 95
Figure 5.18 Home Heating System . 97
Figure 5.19 Simulation: Home Heating System 98
Figure 5.20 Requirement 1 . 99
Figure 5.21 Requirement 2 . 99
Figure 5.22 Requirement 3 . 100
Figure 5.23 Requirement 4 . 100

xvi

LIST OF SIGNS AND ABREVIATIONS

ABS Antilock Break System
BDD Binary Decision Diagram
BMC Bounded Model Checking
CTL Computation Tree Logic
DAL Design Assurance Level
FCA Formal Concept Analysis
FM Formal Methods
FMTS Formal Methods Technical Supplement
FSM Finite-State Machine
FV Formal Verification
HLR High Level Requirements
IEEE Institute of Electrical and Electronics Engineers
LLR Low Level Requirements
LTL Linear Temporal Logic
MAAB MathWorks Automotive Advisory Board
MC/DC Modified Condition/Decision Coverage
MBD Model-based Design
MDD Model Driven Development
NASA National Aeronautics and Space Administration
OBDD Ordered Binary Decision Diagrams
PIL processor-in-the-loop
PVS Prototype Verification System
ROBDD Reduced Ordered Binary Decision Diagrams
SAT Satisfiability
SC Software Consideration
SCADE Safety-Critical Application Development Environment
SDLC Software Development Life Cycle
SDP Software Development Process
SG Sub Group
SIL software-in-the-loop
SLDV Simulink Design Verifier
SMT Satisfiability Modulo Theories
SMV Symbolic Model Verifier

xvii

SSM Safe State Machine
SysML System Modelling Language
TAF Test Automation Framework
TCG Test Case Generation
TDD Task Design Document
UML Unified Modelling Language

xviii

LIST OF APPENDIX

Appendix A Within Implies Code . 114

Appendix B Embedded Matlab Function . 115

1

CHAPTER 1 INTRODUCTION

Software plays an important role in almost every part of our everyday life from working in the
office and driving the car to navigation systems in the aircraft. Over the last decades, relia-
bility of complex software and hardware systems became increasingly crucial. Consequently,
software verification of such systems, has been a significant problem in computer science
for several years. Software failure could possibly cause catastrophic consequences regarding
human life. In addition, a system is identified as safety-critical, when its failure causes catas-
trophic consequences, such as compromising the human life or even destruction to the system
itself. Moreover, in the safety-related real-time system, verification and validation activities
are becoming larger and more costly whenever its size and complexity grows.

A key objectives of software engineering is to support developers building a system that
functions reliably even if it is complex. In order to attain this goal, formal methods are
advised to be employed. To clarify, these methods are mathematically based techniques, and
each tool has it own supported language. The use of formal methods has been addressed in
DO-178B 1 and can significantly increase the knowledge of developers about the system [43].
In addition, formal methods disclose inconsistencies as well as ambiguities in the early phase
of system design phase. As a result, they can be eliminated in order to make sure that the
system has a suitable behavior.

Applying Model-Based Design [33] in safety-related applications and using formal verification,
illustrates that the system fulfils its correctness criteria. For performing formal verification,
the first need is to specify a formal model of the system. In addition, availability of executable
models to perform verification, validation and test is one of the most effective factors of
model-based design that helps one to apply formal verification techniques.

1.1 Definitions and Basic Concepts

In this section, we introduce some concepts related to the software development process
and its enhancements. These concepts are the base and will be used in the process of
applying formal method techniques into development life-cycle of software for the safety-
critical embedded systems.

1. DO-178B is a standard for certification of software used in airborne systems

2

1.1.1 Software Development Process

The Software Development Process (SDP) sometimes is mentioned as Software Development
Life Cycle (SDLC). In fact, it is a structure which is required for the development of software
product. Moreover, it is a step-by-step process involved in the development of a software
product as well as altering software systems, methodologies and models which people employ
for developing these systems. Over the past years, efforts to enhance SDLC practices have
been presented for improving the quality of software, reliability, and fault-tolerance. In
addition, various software life cycle models exist which they describe different phases of the
software development cycle as well as the order in which those phases are implemented.
Furthermore, some companies have their own, but all models have very similar patterns
which are just customized in purpose. Each model has its advantages and disadvantages,
and it is up to the company’s development team to use the most suitable one for the project.

In the following, we briefly describe some process models that are used for developing the
safety-critical systems.

V-Shaped Model

The typical process of developing a safety-critical system is based on the V-Shaped life-
cycle model [14]. This model is highly disciplined and it is also an extended version of the
waterfall model which processes are executed in a sequential path. In addition, it is based
on association of a testing phase for each matching development phase. Moreover, a system
test plan is produced before the development phase is started. In this model, each phase in
the cycle has a particular deliverables and should be verified in the same phase. In other
words, the next phase of the development cycle starts only if the previous phase is successfully
completed. Figure 1.1, illustrated the V-Shaped model.

Formal Methods Model

The formal methods model includes a set of activities that advances to the formal mathemat-
ical specification of software system [62]. If formal methods are employed during the software
development, many of problems that are hard to find can be identified and eliminated by its
provided mechanism. In particular, mathematical analysis helps easily to discover Ambigu-
ity, inconsistency and incompleteness in the software system, so that they can be corrected
early in the development. In other words, by using formal methods during the design phase,
they assist as a basis for software verification, and consequently allows developers to identify
and fix errors that might be otherwise go undetected. Several notations are available for

3

Figure 1.1 V-Shaped Life Cycle Model [69]

formalizing the software specifications. In general, the automata theory is the one that can
be employed to design a system in finite state machines, in order to build and validate its
behavior. When the software is used in the safety-critical system like avionics systems, it is
recommended that formal methods be applied. Standards for safety assurance of software,
like DO178B [43] request formal methods at the highest level of classification (Level A).

1.2 Problem Statement

The growth in sophistication in embedded systems used in safety-critical applications such
as automotive, healthcare and avionics, necessitates to use more efficient processes for design
and development. Ordinary design processes are not responsive enough in identifying the
flaws in requirements; thus, the whole process would be more costly and take longer.

Even a sole error in the source code may cause the failure of the system. In a safety critical
system, this failure can impose high costs and might even have the risk for the health of
people. Imagine the Antilock Break System (ABS) in the car, navigation systems in an air
plane or medical devices in the hospital operation room. For such safety-critical systems,
availability of robust guidelines for software, have remarkable value for developers of these
systems. In fact, guidelines should outline processes, artifacts and goals for the development
of software that focuses on the quality.

In particular, support to build a system which functions reliably irrespective of its complexity,
is a key objective of software engineering. Moreover, run-time errors that are not identified
during the development phase of the software, might be serious. In addition, all commercial

4

software which are designed and developed for avionics in the U.S., are requested to comply
with the DO-178 standard. The guidelines defined in DO-178 are projected to determine
that developers of avionics systems employ a particular degree of process rigor. In fact,
development and verification must follow a rigorous process to ensure that the software will
perform its anticipated function with a suitable level of confidence in safety.

One of the ways to succeed this goal, is applying formal methods techniques, and tools to
the software development life-cycle for specifying and verifying properties in such systems.
Moreover, different levels of rigor or formality can be adopted, and different formal methods
techniques can be used as well, to address the tasks in software development.

Although there are several cases proving the applicability of formal methods in the high
complexity domains as well as industrial applications, they use more complex notations than
other lightweight and intuitive graphical notations (e.g., Unified Modeling Language (UML)).
So, creating a mathematical model of a system as well as specifying the functional require-
ments are not easy and could be mentioned as one of the important concerns to software
producers. In addition, model checking technique might cause the state space explosion for
large or complex systems. Moreover, the absence of easy to use tools that can assist the
developers during the life cycle activities, could be another case. In addition to this, formal
verification requires specific environment. Matlab/Simulink is an often used industrial tool
in designing embedded systems. One of the primary uses of Matlab/Simulink is modeling
the embedded software and its physical environment in a common formalism. This feature of
the tool renders it highly valuable in the validation of embedded software design, leveraging
numerical simulation. Having claimed this, formal verification of such models still proves
problematic, as Simulink is a programming language without enough documented formal
semantics. Furthermore, currently verification tools which have supports for DO-178C stan-
dard (e.g., SCADE Design Verifier and Simulink Design Verifier), does not support formal
verification of continuous time systems.

1.3 Research Objectives

According to previously mentioned problems and obstacles, tremendous amount of effort is
needed in order to have complete system verification acquiring the highest level of safety. In
this chapter, we explain our objectives as well as the methodology to achieve those objectives.
One of the main goals of this thesis is to address the essential problems for early detection
of errors, in complex and safety critical applications, whereby facilitate the research in this
area for developing and maintain a high-integrity application which comply with DO-178 [43]
objectives for certification.

5

We summarize the detailed objectives of our research as the following items:

— To improve verification of critical systems we use Simulink and we add some customiz-
able blocks into the Simulink library and make the formalization of the requirement
specifications easier.

— Introducing a tool that facilitates instrumenting Simulink models by automatically
adding some predefined and customizable properties to the model.

— Specifying some critical properties that are not easy to become formalized in Simulink.
— Investigation of applying verification for some LTL properties in Simulink Design

Verifier.

1.4 Thesis Structure

The rest of this document is organized as follows: Chapter 2 presents a critical review on
methods and environments for verification of safety critical systems. In particular, in this
chapter, we review verification techniques and some available tools, and introduce Simulink
Design Verifier which is qualified for development of safety-critical systems.

The next three chapters are articles that deal with formalization and verification of some
safety and (timed) linear properties that are modeled in the Matlab/Simulink environment.

The first article, whose title is Applying Formal Methods into Safety-Critical Health Applica-
tions, is dedicated to the result of our studies for modeling and formalizing the requirements
of an embedded system in the Simulink and Stateflow environment. We bring an introduc-
tion about the tool, its library of blocks and Stateflow as well. This article is the subject
of the chapter 3, and is published in Model-Based Safety and Assessment, Lecture Notes in
Computer Science (LNCS).

Chapter 4 entitled Formal Verification of Event-driven Health Applications, is an article which
is published in the Journal of Software Engineering: Theories and Practices. It focuses on
applying formal verification for an event-driven safety-critical system. This extends the
previous work by proposing a technique for verification of temporal properties in a system
which is modeled with Stateflow and issues some of external events.

In chapter 5, we propose a technique to facilitate formalizing some LTL properties which can
be added to the Simulink block library. This chapter also presents the LTL2SL tool that
helps the instrumentation of Simulink models with predefined properties.

Finally, chapters 6 and 7 discuss the techniques proposed in previous chapters, the general
results, and possible avenues for future work.

6

CHAPTER 2 LITERATURE REVIEW

The following chapter puts forth a review of different development environments for safety-
critical systems and corresponding development process such as advanced formal verification
techniques and tools. We first explain the basic concepts and verification techniques in a
categorized format, including modeling concepts and different model checking approaches.
The remainder of the chapter will consist of the following: Introducing Simulink tool suit
and its block library that the thesis is based on it, followed by describing two different formal
verification tools and approaches.

2.1 Modeling Concepts

In order to apply formal methods into development process of safety critical applications,
there is a need to construct a formal model of such systems. In addition, development tools
in safety critical domain offer a design environment for modeling the system. Following this
section modeling concepts are briefly described.

2.1.1 Software Modeling

A model is generally identified as the abstract demonstration of a system. Software modeling
is one of the ways to express the software design. To address this, some sort of abstract
languages or images are typically used. In addition, the whole software design comprising
all software methods, its interactions with other software and interfaces needs to be dealt
in software modeling [34]. As such, the system can be modeled by developers with the help
of a modeling language which can be textual or graphical [39]. As an illustration, UML
which is an object modeling language and can be used to express the software design for an
object-oriented language [35].

In addition, System Modeling Language (SysML) [7] is another multi-use modeling language
for engineering applications. It is actually a domain specific language which is firstly de-
veloped by an open-source specification project for defining the specifications, applying the
analysis, design and verification of wide collection of systems.

Since simulation is the execution of a model, by using models at the core of the develop-
ment process and performing simulation, developers have an intuition into the dynamics and
algorithmic characteristics of the system [56].

7

2.1.2 Model-based Design

Model-based design can be used to facilitate the addressing of difficulties as well as com-
plexities in a control system design. It actually provides an executable specification that
indicates the model acts as a functional part of the design process rather than being just a
document [54]. It empowers developers to use a single model of their entire system by pro-
viding a design environment. In addition, the constructed model can be visualized, analyzed,
tested, validated and eventually deployed through the design environment [46]. Additionally,
model-based design produces a structure for the software reuse. In particular, it enables that
designs being efficiently and dependably upgraded in a more simplistic and cost effective way.

Model-based design as well as automated code generation, are being used gradually at Na-
tional Aeronautics and Space Administration (NASA) [28]. That is because this kind of
design offers several benefits such as higher productivity, increased portability, and elimina-
tion of errors that might be caused by manual coding. In addition, MathWorks Simulink R©

[6] and Simulink CoderTM[4] which formerly known as Real-Time Workshop are currently
being used by NASA for some part of their modeling and code development [29].

To put it differently, this type of design emphases on using executable system models as
the basis for all phases such as specification, design, implementation, test, as well as the
verification behboodian2006model. Some parts or all the system specification and require-
ments in the paper format can be replaced by the executable specification in Model-based
design as the main deliverables among design stages. It also contains of an executable model
of the application logic that can be simulated. The model elaboration is the next step in
the Model-Based Design. In fact, it comprises of some actions to transform the executable
specification into a more design based form [60].

The executable model can be built by Simulink R© which is a tool that provides an environ-
ment for Model-based Design as well as the simulation for dynamic and embedded systems.
Moreover, an interactive graphical environment as well as a customizable set of block libraries
are provided by Simulink that let the developer to design, simulate, implement, and test a
wide range of systems. The Figure 2.1 illustrates some application that Model-based design
is used for their development [46].

2.2 Verification and Validation Techniques

Due to advancements in embedded computing technologies, people are incredibly dependent
on that technology in home electronic appliances, phones, cars, and more. As a result, those
complex software and hardware systems are relied on more than ever in everyday life, and

8

Figure 2.1 Model-based Design used in development of real applications

their reliability became gradually essential. Therefore, as demand rises there is a rise in the
complexity of the technologies as well as size, and a decrease in development time it has
become more difficult to produce said applications with current standards of production.
This creates concern over the embedded software’s quality. In order to resolve this problem,
various verification techniques which can be used for the verification of software, have been
introduced. Following this section, verification and validation concepts as well as different
verification techniques are briefly described.

2.2.1 Software Verification and Validation

Software producers typically spend large amounts of their total development time and re-
sources for testing the software. In addition, the severity of the flaws also increases the
required time for detect the bug. As a result, the cost of the entire development budget
for software product increases correspondingly. For this reason, a sophisticated discipline
of software engineering is required in order to make sure that all requirements are satisfied
by the developed software. In accordance with the IEEE Standard Glossary of Software
Engineering Terminology [41]:

• Verification: When a system or the component under development is evaluated, to
figure out whether the artifacts of the given phase fulfils the requirements imposed at
the beginning of that phase, it is called verification process.
• Validation: When a system or the component under development is evaluated during

or at the end of the development phase, to figure out whether it fulfils specified
requirements, it is called validation process.

In other words, software verification is about to guaranty that the software has been developed
according to the provided design specifications and requirements. Moreover, as defined by
DO-178B standard, verification is performed by applying the reviews, analyses or test [43].

9

Two fundamental approaches to software verification are: 1) Dynamic verification, 2) Static
verification. Dynamic verification is commonly known as the Software testing, and Static
verification applies to a process that formally analyses for proving the correctness of a program
to meet the requirements.

2.2.2 Model Checking

Model checking has been developed in early 80’s by Clarke and Emerson [25] and also individ-
ually has been introduced by Queille and Sifakis [63]. The elementary idea is an automated
method to determine if a given specification holds, by exhaustively exploring the reachable
states of a program. In other words, it is an automated verification technique that checks
whether the given model of a system meets specified properties of the system. If the speci-
fied property does not hold in each state, a counterexample as well as an execution trace are
produced by the model checker, which leads to a state where the property is violated.

In order to overcome the challenge of directly examining the large state space of software pro-
grams, model checking is often combined with abstraction techniques. The Kripke structure
is the formalism, which is used to represent the system models as a state-transition graph in
model checking. A Kripke structure M is a four tuple M = (S, S0, T, L):

• S is a set of states.
• S0 ⊆ S is an initial state set.
• T ⊆ S × S is a transition relation over S, such that for every s ∈ S there is s′ ∈ S

such that (s, s′) ∈ T .
• L : S → 2AP is a labeling function that maps each state to a set of atomic propositions

that hold in this state.

The property P is often specified as a temporal logic formula and LTL and Computation Tree
Logic (CTL) are two temporal logics which are mostly used. LTL formulas are employed to
express the properties pertaining to all paths in the model, while CTL formulas can be used
to discriminate among paths.

Symbolic Model Checking

Symbolic model checking is a variation of the traditional format in that it includes the
new representation for transition relations [26], and with it the user is able to verify ex-
tremely large reactive systems. In symbolic model checking, boolean functions implicitly

10

represent sets of states. In addition, manipulating Boolean formulas can be done efficiently
with Reduced Ordered Binary Decision Diagrams (ROBDD) [20] (or shortly Binary Decision
Diagram (BDD)), which is a compact, canonical graph representation of Boolean functions.

This is able to be accomplished due to the number of nodes in the Ordered Binary Decision
Diagrams (OBDD) that have to be built, and no longer having to rely on the number of
states or size of the transition relation. This has allowed for the possibility to verify reactive
systems with realistic complexity.

Bounded Model Checking

Bounded Model Checking (BMC) was first proposed in 1999 by Biere et al. [16], and got
its name because it involves states that can only be reached during a bounded number of
steps. At its core, the BMC is about looking for a counterexample in executions that has
a length bounded through the integer k. In the event that a bug is not found then the
steps are repeated, but k is increased by one, until the bug is discovered, the issue becomes
intractable, or a pre-known upper bound is reached (known as Completeness Threshold).
By reducing the BMC problem to a propositional satisfiability problem, it can be solved by
Satisfiability (SAT) methods instead of Binary Decision Diagram BDDs. Unlike BDD based
methods, SAT do not hampered by the space explosion problem. Moreover, they are able
to support propositional satisfiability problems that have hundreds of thousands of variables
or more. Through experiments, the SAT has shown that it is able to solve many issues that
BDD-based techniques cannot. However, BMC has the disadvantage that it cannot prove the
absence of errors in many realistic cases [17]. When applying design verification in BMC, the
design first unwound for k times, and then conjoined with a property to make a propositional
formula, and finally is passed to a SAT solver (Figure 2.2 [30]).

2.2.3 Theorem Proving

Theorem proving is considered as a formal verification technique in which the system and
desired properties are represented as formulas in some mathematical logics. Provided by a
formal system, this logic defines a set of axioms and inference rules. It is actually the process
of discovering a proof for a property, from the axioms of the system. Theorem provers
are being used more and more in the mechanical verification of safety-critical properties of
hardware and software designs.

According to Clarke et al. in [27], theorem provers for the most part can be divided in a
spectrum from highly automated to interactive systems. The former referring to general-

11

Figure 2.2 High-level overview of BMC

purpose programs and the later referring to special purpose capabilities. The automated
systems are beneficial when used for general search procedures and have had a substantial
amount of success in solving the different combinational problems. Moreover, the interactive
systems are more useful with regards to the systematic formal development of mathematics
and mechanizing formal methods.

Since theorem proving does not have the state space explosion problem, it can be used for
systems with infinite state spaces. This feature makes it different from model checking that
suffers from state space explosion problem. There is also a reliance on structural induction
techniques to prove over infinite domains. However, this technique is flawed in the sense that
a human is required for the interactive theorem provers, making the process time consuming
and sometimes vulnerable to errors.

2.3 Simulink and Stateflow

By definition, Simulink is a platform for model-based Design and multi-domain simulation
of dynamic systems. Stateflow, on the other hand, is a model-based development environ-
ment that is widespread and is used in several industries, such as medical, aerospace and
automotive. Particularly, Stateflow diagram facilitates the graphical representation of paral-
lel and hierarchical states together with transitions between them and inherits all code and
simulation generation capabilities from Matlab toolset. Following this section, Simulink and
Stateflow semantics are briefly described.

12

2.3.1 Simulink

Simulink helps in the design and simulation of wide range of systems by providing an interac-
tive environment along with collections of customizable blocks. It includes extensive library
and toolboxes of functions commonly employed in modeling a system.

2.3.2 Simulink model

A physical model can be represented graphically as block diagrams in Simulink environment.
This is possible through the use of different blocks hosted in the standard library which
is provided by Simulink tool suite. In other words, a Simulink model contains different
blocks that are connected through lines as well as some special blocks for communicating
to external environment. In addision, Simulink models are stored as ’.mdl’ files, which
contains textual description of the model (properties of blocks and their interconnections
along with information required for simulation and graphical display of model) [51],[64].
Sample Simulink model is denoted in Figure 2.3.

Figure 2.3 Sample Simulink Model

2.3.3 Simulink Library

Simulink comes with a standard block library whose blocks are placed in different categories.
To build models in Simulink, blocks are the main elements that are used, and they are hosted
in the library. A Simulink block has sets of input and output ports. A block with N input
and M output ports defines a function which describes each of the signals at the output ports
as a (possibly time-dependent) expression of the signals at the input ports. Formally, a block
is a tuple (Pi, Po, f), where Pi is the set of input ports, Po is the set of output ports and
f : RN → RM is a function which defines the behavior of the block [52]. In the following,
some blocks from the standard Simulink library [6] are briefly described. These blocks are
also used in our contribution while specifying properties.

13

2.3.4 Constant, Inport and Outport blocks

The Constant block produces a constant value with the type real or complex, and it can be
found in Sources category of Simulink library. The constant value as well as the output data
type for this block can be defined when designing the model.

Inport block connects a subsystem into an external input by creating an input port. Likewise
to Constant block, this block can also be found in Sources category of Simulink library.

Outport block represents output from a subsystem. In other words, it connects a subsystem
to a destination outside of the subsystem by creating an output port. This block and can be
found in Sinks category of Simulink library.

Simulink R© [6] software assigns port numbers for both Inport and Outport blocks automati-
cally within a top-level system or subsystem sequentially, starting with 1. Figure 2.4, illus-
trates how above mentioned blocks are represented in Simulink.

2.3.5 Sum block

The Sum block applies addition or subtraction on its given inputs, and it is hosted in the
Math Operations category of Simulink library. It has no state and the sample time for this
block is also inherited from driving blocks. This block has two different icon shapes: 1)
Round, 2) Rectangular. The Sum block in illustrated in Figure 2.5b has two inputs and one
output ports. In this case, the output of the block at the time step t, equals to the addition
of both input values at the same time.

2.3.6 Unit Delay block

The Unit Delay block holds and delays its given discrete sample time input by the sample
period specified as parameter. In other words, unit-delay block gives the opportunity to
change the sample time of the signal. In addition, he output of this block for the first
sampling period is specified using the initial conditions parameter.

(a) Constant (b) Inport (c) Outport

Figure 2.4 Source and Sinks blocks

14

(a) Round (b) Rectangular

Figure 2.5 Sum block

Figure 2.6 Unit Delay

2.3.7 Relational Operator block

The Relational Operator block performs a relational operation on its two inputs and produces
output. Given operators can be equal, not-equal, smaller than, smaller or equal, greater than,
and greater than or equal. Different icon shapes for this block are illustrated in Figure 2.7.

Figure 2.7 Relational Operators

2.3.8 Logical Operator block

The Logical Operator block is being used to perform the specified logical operation on its
given inputs. The supported operations consist of AND, OR, NAND, NOR, XOR,NXOR
and NOT. Table 2.1, represents the supported operations along with their descriptions.

In this block, the number of input ports is specified with the number of input ports parameter.
The output type is specified with the Output data type parameter. An output value is 1 if
True and 0 if False.

Figure 2.8, denotes the different icon shapes for this block.

15

Table 2.1 The supported operations

Operation Item Description
AND TRUE if all inputs are TRUE
OR TRUE if at least one input is TRUE

NAND TRUE if at least one input is FALSE
NOR TRUE when no inputs are TRUE
XOR TRUE if an odd number of inputs are TRUE
NXOR TRUE if an even number of inputs are TRUE
NOT TRUE if the input is FALSE

Figure 2.8 Logical Operators

2.3.9 Embedded MATLAB Function block

The Embedded MATLAB Function Block facilitates writing the MATLAB m-code which can
be incorporated into a Simulink model. this block is placed in the User Defined Functions
Library and can be inserted into a model in the same way as any other Simulink blocks. We
use this block whenever there is a need to implement part of the logic of the property by
code.

Figure 2.9 MATLAB Function

2.3.10 Subsystem block

A subsystem is a set of blocks that we replace with a single block called a Subsystem block.
As the model increases in size and complexity, it can be simplified by grouping blocks into
subsystems. In other words, using Subsystem blocks can make the system look simpler and

16

more easier to debug, because these blocks can include other blocks within themselves. Using
subsystems has these advantages:

— Assists in decreasing the number of blocks demonstrated in the model window.
— Retains functionally related blocks together.
— Forms a hierarchical block diagram, where a Subsystem block is on one layer and lower

layer contains the blocks which made the subsystem.

2.3.11 Function-Call Subsystem block

This block represents a subsystem that can be invoked as a function by another block.
In other words, a function-call subsystem is a subsystem that another block can invoke it
directly during a simulation. It is similar to a function in a procedural programming language.
Invoking a function-call subsystem is equivalent to invoking the output methods of the blocks
that the subsystem contains in sorted order. The block that invokes a function-call subsystem
is called the function-call initiator. Moreover, the Stateflow, Function-Call Generator, and
S-function blocks can all serve as function-call initiators.

2.3.12 Simulink Block Methods

Blocks represent multiple equations which are represented through Output and Update types
known as block methods. Moreover, by running a block diagram these methods are also
evaluated.

A simulation loop is used to evaluate block methods in which each cycle through the simula-
tion illustrates a block diagram evaluation at a specific point in time. As such, at the current
time step, outputs of each block as well as its states at the previous time step, are calculated
by the output method depending on the block inputs. Likewise, discrete state of each block
at current and the previous time step are calculated by update method.

A Simulink block has sets of input and output ports. A block with N input and M output
ports defines a function which describes each of the signals at the output ports as a (possibly
time-dependent) expression of the signals at the input ports. Formally, a block is a tuple
(Pi, Po, f), where Pi is the set of input ports, Po is the set of output ports and f : RN → RM

is a function which defines the behavior of the block [52, 22].

As an illustration, the Sum block in Figure 2.10 has two inputs and one output ports. In
particular, the output of this block at time step t, equals to the addition of values of both
input ports at time t, and the block function is shown as m1(t) = n1(t) + n2(t) .

17

Figure 2.10 Sum block with ports and functions at time t

2.3.13 Simulink Semantics

Simulink has a plethora of semantics (depending on options that are configured by the user),
which are informally and partially documented.

Regarding Simulink timing, it is a known fact that the discrete-time Simulink signals are
piecewise-constant, continuous-time signals [72]. Associated timing information can be linked
to these signals, referred to as sample time. Furthermore, the sample time of a signal shows
exactly when the signal is updated in the model. When the sample time equals zero, the
block is identified as having continuous sample time. This means that, it executes at every
point in time. When sample time has a value greater than zero, the block is identified to
have discrete sample time.

In Simulink, a discrete block executes at sample time points, and remains constant in the
intervals between these sample time points. In like manner, Simulink block methods such as
Output and Update methods are executed at each sample time.

2.3.14 Simulink Block Priorities

Update priorities to blocks can be assigned explicitly. The output methods of each block in
the model are executed depending on the their priorities from higher to lower priority. If
there is consistency with block sorting rules the priorities can be honoured. Moreover, if the
execution order of the block is set explicitly by setting block priorities within a subsystem,
Simulink removes those block priority settings when the subsystem is expanded. Simulink
checks the block properties in the following order:

— Sample time (faster rate first)
— Priority (lower priority number first)
— Port number (lower input port number first)

18

2.3.15 Stateflow

Simulink is used to model the continuous dynamics and Stateflow is used to specify the
discrete control logic and the modal behavior of the system [71]. The Stateflow modeling
language is based on hierarchical state machines with discrete transitions between states. It
employs a variant of the finite state notation of machine as established by Harel [38] and
offers the elements of language needed to describe complex logic in a readable, natural and
understandable form. Given that it is strongly integrated with Simulink and MATLAB,
it can offer an environment efficient enough for designing embedded systems that contain
supervisory and control.

A state is referred to as superstate if there are other states in it and a substate when it is
held in another state. When a state comprises of two or more substates, it has decomposition
that can be either parallel (AND) or exclusive (OR) decomposition. All substates at a given
level in the hierarchy of the Stateflow must have the same decomposition. In parallel (AND)
decomposition, states can be active simultaneously and the activity of each parallel state is
independent of all other states.

Defined Events can be used to trigger actions in parallel states of a Stateflow chart. One way
of triggering an action and/or transition is through broadcasting of an event. The execution
of Actions can be either as part of a transition from one state to another or based on the
activity status of a state which can be during exit, entry and on event actions.

Temporal Operators in Stateflow

These operators are used in the Stateflow and control the execution of a chart in terms
of time. In state actions and transitions, you can use two types of temporal logic: event-
based and absolute-time. Event-based temporal logic keeps track of recurring events, and
absolute-time temporal logic defines time periods based on the simulation time of your chart.

For event-based temporal logic, the following operators after, before, every and temporalCount
can be used in the Stateflow. For instance, in the porovided model for our case study, the
operator after is used in Timers and Cylinders states.

2.4 Verification Tools

This section presents an overview of the modeling and verification tools from different produc-
ers. Some of the tools have integrated environment for modeling, simulation and verification.
Different tools used different techniques for verification. However, compliance with the stan-

19

dard for safety-critical application is also considered.

2.4.1 SCADE Design Verifier

Safety-Critical Application Development Environment (SCADE) [3] is a model-based devel-
opment as well as automatic code generation environment which is based on the synchronous
language Lustre. SCADE System has been developed specifically for use on safety critical
embedded applications with high dependability requirements. Moreover, different versions
are now marketed by Esterel Technologies. As an example, SCADE Suite R© is also a model
based development environment, which is dedicated to avionics industry. SCADE Design
VerifierTMis a powerful formal proof engine within the SCADE tool. It uses formal meth-
ods and its formal analysis portion is based on the Prover Plug-In R© [2] formal analysis
engine. SCADE Design Verifier enables us to prove that a design is safe with respect to its
requirement. In fact, it can prove that something ’bad’ will never happen.

SCADE also offers an interactive graphical environment that enables the users to assemble
system specifications by dragging and dropping blocks onto a pallet and connecting outputs
of one block to inputs of another. By employing the integrated Safe State Machine (SSM)
add-on, control logic for representing system states and state transitions can be modelled.
SCADE can generate C source code by using the KCGTMcode generator which has been
qualified as a Level A software development tool in accordance with RTCA/DO-178B [43].
In addition, SCADE Suite also includes a gateway that can import Simulink models.

2.4.2 Simulink Design Verifier

Simulink Design Verifier R© [5] is a tool set of Matlab which uses formal methods to identify
hard to find design errors in the models without requiring extensive tests or simulation runs.
It uses the Prover Plug-In R© [2] formal analysis engine, in order to prove the properties. It is
known from the documentation of the SLDV, that the Prover Plug-In is based on Stålmarck’s
proof procedure which was patented in 1992 [68]. In addition, performing bounded and
unbounded model checking, sequential and combinational equivalence checking as well as the
test generation are some features provided by this tool. Moreover, modeling of sequential
systems employing imperative and declarative formalisms is also supported by prover engines.
It also supports a wide range of data types including integers, reals, arrays and booleans.
Design errors that can be detected by this tool are as follows:

— Dead logic: Discovers the certain designed functionality that can never be activated.
— Integer overflow: If certain valid input data causes non-deterministic behavior.

20

— Division by zero: Identifies whether this situation happens early in design time.
— Violations of design properties: Verifies the design against requirements.
— Assertions: Detects faulty behavior by using the assertion block.

Blocks in the model are highlighted by the Simulink Design Verifier, containing the above
mentioned errors. For every block with an error, it calculates signal-range boundaries and
generates a test vector that reproduces the error in simulation.

Simulink Design Verifier enables us to accomplish model analysis within the Simulink envi-
ronment, in order to verify the system design and validate the requirements earlier. We can
use Simulink, MATLAB functions, and Stateflow to express formal requirements. The pro-
vided block library, includes test objectives, proof objectives, assertion, and a set of temporal
operator blocks for modeling of systems with temporal characteristics. Furthermore, model
coverage objectives can be chosen as: Condition, Decision, and Modified Condition/Decision
Coverage (MC/DC).

Also, the MathWorks DO Qualification Kit product, helps applying the tool qualification
for RTCA/DO-178B [43] and related standards. The model Advisor also checks modelling
standards for DO-178B and detect, troubleshoot modelling and code-generation issues.

2.5 Formal Verification of Simulink Models

Many projects currently use MathWorks Simulink and Simulink Coder [9] which formerly
known as Real-Time Workshop for at least some of their modeling and code development
[29]. This kind of Design focuses on using executable system models as the foundation
for the specification, design, implementation, test, and verification [13]. The executable
specification in Model-based design, replaces parts or all of the paper format of the system
specification and requirements as the main deliverable between design stages. It consists
of an executable model of the application algorithm that can be simulated. The next step
of Model-Based Design is known as model elaboration which consists of transforming the
executable specification into a more design based form [60].

2.5.1 Approach based on other Model Checking Tools

Simulink is a platform for model-based Design of embedded systems fromMathworks. Simulink
Design Verifier is a toolset that uses formal analysis for property proving. Although Simulink
design Verifier provides some temporal operator blocks in its library, but specifying LTL prop-
erties is not potentially straightforward. For this reason, proving linear temporal properties

21

in a Simulink model is done by transforming the model into the input language of another
model checkers.

For the verification of properties, there are works describing the translation of Simulink
models into the various model checking languages, including NuSMV, Lustre, SAL and
Promela/SPIN [55, 53, 72, 59, 50].

The primary motivation in [53] presenting a translator algorithm along with a tool that can
automatically translate a subset of Simulink model into NuSMV model checker as an input
language. Meenkashi et al. believe that using the proposed tool shortens the process of
formal verification of safety avionics components with less error.

Christian Heinzemann et al. in [40], proposed a model-2-text transformation that is used
to transform instances of the given Simulink EMF-Model. Similarly, Pajic et al. In [58],
presented a matlab plug-in tool known as UPP2SF that can be used for the translation
of models from UPPAAL to Simulink/Stateflow. The proposed tool also enables UPPAAL
models to be simulated and tested in Simulink/Stateflow.

With attention to linear temporal properties, efforts have been exerted recently in describing
LTL verification of Simulink models. As an illustration, Miller et al. [55] propose using the
symbolic model checker NuSMV [23] as the verification tool. Since the simulink model can
not be used directly as an input for NuSMV model checker, as a result it should be first being
translated into synchronous dataflow language Lustre [36] and then into NuSMV. Similarly,
the primary motivation in [12] was to verify the correctness of Simulink models with respect
to a set of specifications given as LTL formulae. The authors applied the explicit model
checking technique, after initially formalizing the simulink models based on the set-based
reduction concept. it is done to reduce the state space and support for non-determinism of
input.

Roy et al. in [65], defined an approach that uses a contract system for partial verification of
the given Simulink model. They used the contract annotation language to capture constraints
on signals along with the relations between them. Furthermore, annotations were translated
into verification conditions. In order to apply the verification using Yices SMT solver. For
this reason, annotations finally translated into the constraint language of Yices.

Authors in [67], employed the SPIN model checker for verification of the Simulink model
including the Stateflow.

Leitner in [49], performed and evaluation between Simulink Design Verifier and the SPIN
model checker by using a NVRAM case study. The safety properties are specified in Simulink
Design Verifier, but for the LTL properties the author used the SPIN model checker.

22

2.5.2 Approach based on Simulink Design Verifier

There has been recent developments to use formal methods in order to design critical systems.
A prime example of this is with Jian et al. [42] who developed a Virtual Heart Model
(VHM) that works in real-time in order to model the electro-physiological operation of proper
functioning and malfunctioning. Through this procedure the team used Simulink Design
Verifier to design a timed-automaton model to define the timing properties of a heart.

Similarly, Simulink and Stateflow have been employed in [32] in order to model the tracking
function of trains in an automatic train protection system. It was implemented using the
provided requirements specification document which has the safety and functional properties
presented in natural language. The authors of [32] claimed to have had a positive experience
when they used Simulink Design Verifier in the train transportation field and they also used
it for verification as well as validation.

In [57], another instance of using Simulink with a medical device has been demonstrated in
which an iterative approach is used in system verification based on the software architectural
model. In this instance, Simulink/Stateflow is used for describing the behavior of the model at
a component level. Moreover, authors employed the Simulink Design Verifier for establishing
component-level properties by proving the system level properties.

In [11], the Fuel Level Display System of the Scania is modeled in Simulink and safety
requirements are verified using Simulink Design Verifier.

Bergquist et al. in [15], modeled an electronic climate control module of a car in Simulink.
The Simulink model then instrumented with some assertion based properties, and finally
Simulink Design Verifier is used as the verification tool.

2.6 Conclusion

Various tools and techniques may be used for modeling, simulation and verification of the
safety-critical applications. Each technique might have its own limitations, consequently the
tools that use those techniques may have the same limitations.

In terms of verification technique and comparison to model checking, theorem proving can be
applied to systems with infinite state spaces because it doesn’t have the state space explosion
problem like the one that other model checking technique has.

In terms of theorem proving in two well suited tools, it should be noticed that, both Simulink
Design Verifier R© [5] and SCADE Suite Design VerifierTM[3], use the Prover Plug-In R© [2]
formal analysis engine, in order to prove the properties. This Plug-In is developed and

23

maintained by Prover Technology and can be used to perform bounded and unbounded
model checking, combinational and sequential equivalence checking, and test generation.

Simulink Design Verifier uses Simulink and Stateflow for model-based design and create the
models, in fact, they both use the same development environment. SCADE models can
be described within the SCADE model editor. Moreover, the SCADE software model can
be automatically translated from Simulink through the SCADE Simulink Gateway or UML
Rhapsody through the SCADE UML Gateway. In terms of limitations of Simulink Design
Verifier, below items illustrate some of major limitations:

— Models containing algebraic loops are not supported
— Supports only fixed-step solvers and discrete time system (not variable-step solvers

that are used for continuous time systems)
— Supports only real signals (not Complex signals which consist of a real part and an

imaginary part)
— Recursion in Stateflow is not supported due to not supporting the recursive functions

by Simulink Design Verifier (SLDV). Although, the Stateflow software allows devel-
oper to create cyclic behavior (a sequence of steps is repeated indefinitely), but if the
model has a chart with cyclic behavior, SLDV cannot analyse it.

As a benefit, Simulink Design Verifier provides a mechanism that checks whether the model
is compatible for analysis. Otherwise, it alerts the developer to any incompatibilities that it
identifies in the model. It also performs design error detection on the given Simulink model.
As an illustration, integer overflow, division by zero, dead logic, and assertion violations are
such design errors that are supported by Simulink Design Verifier.

The existing verification blocks in the block library provided by Simulink Design Verifier, are
suitable for modeling of safety requirements. For this reason, some efforts have been exerted
in transforming Simulink models into the input language of other model checkers to be able
to specify LTL properties. This thesis aims to enrich the development process provided by
Simulink tool suite. To address this, it proposes formal verification of Simulink models based
on extending the Simulink library with some customizable blocks. In other words, the idea
is to translate the LTL propertiy into an invariant by using existing blocks. In addition, the
proposed blocks have the support for some LTL properties and will facilitate the process of
instrumenting models with properties. As a benefit of this approach, we can mention that
Simulink Design Verifier and Simulink are integrated in the same environment. The specified
LTL properties in the Simulink model can be analysed by Simulink Design Verifier, so the
entire process has less step due to no need for transforming the model.

24

The next three chapters are represented by three articles that deal with formalization and
verification of some safety and (timed) linear properties using the Simulink tool suite.

25

CHAPTER 3 ARTICLE 1
Applying Formal Methods into Safety-Critical Health Applications

Mohammad-Reza Gholami, Hanifa Boucheneb
Model-Based Safety and Assessment, Lecture Notes in Computer Science (LNCS)

Abstract– Software performs a critical role in almost every aspect of our daily life specially
in the embedded systems of medical equipments. A key goal of software engineering is to
make it possible for developers to construct systems that operate reliably regardless of their
complexity. In this paper, by employing model-based design for large and safety-related
applications and applying formal verification techniques, we define specific properties to
ensure that a software system satisfies its correctness criteria. We use the formal approach to
study and verify the properties of a medical device known as Endotracheal intubation. We
present how the system is modeled in the Simulink and Stateflow and present a functionality
formalization. In order to formally prove some critical properties, we employ Simulink Design
Verifier toolset.

Keywords– Formal Methods, Formal Verification, Design Verification, Model-Based Design,
Safety-Critical.

3.1 Introduction

The increasing complexity of embedded systems (e.g. avionics, health and automotive sys-
tems) conveys the producers of safety-critical applications to use more systematic processes
for development. Traditional design processes are not fast enough in discovering the errors
in requirements; hence, the whole process would be longer and more expensive.

A key goal of software engineering is to construct systems that operate reliably regardless
of their complexity. A promising approach to achieve this goal is to use formal methods,
which are mathematically based languages, tools and techniques for specifying and verifying
such systems. Formal methods can significantly increase our understanding of a system by
disclosing inconsistencies, ambiguities, and incompleteness in the early design phase so that
they can be eliminated in order to ensure the appropriate behavior of the system.

Software vendors typically spend large amounts of time of their total development time and
resources on software testing. The severity of the defects also increases the detection time
and the cost of total development budget for a software product. So there is a need for a

26

sophisticated discipline of software engineering to ensure that all the expected requirements
were satisfied by means of the specified software. In other words, software verification refers
to the process that can determine whether the artifacts of one software-development phase
fulfil the specified requirements produced during the previous phase.

In a safety critical system, even a single error in the source code and an associated malfunction
of the system can cause high costs and could even endanger the health of people. In critical
real-time embedded systems, verification and validation activities are becoming huge and
quite costly when the complexity and size of the systems grows.

Formal verification can be performed by employing Model-Based Design [33] in order to spec-
ify formal model of the system. Model-Based design facilitates the addressing of difficulties
and complexities existing in control system design by providing an executable specification
which implies that the model exists as more than just a document, but as a functional part of
the design process [54]. It also provides a single design environment that enables developers
to use a single model of their entire system for data analysis, model visualization, testing
and validation, and ultimately product deployment, with or without automatic code gen-
eration [46]. Furthermore, model-based design creates a structure for software reuse that
permits established designs to be effectively and reliably upgraded in a more simplistic and
cost effective manner.

In this paper we are using the formal approach to study and verify the properties of an
Endotracheal intubation which is a specific type of tracheal tube that is inserted through
the patient’s mouth to maintain an open airway [1]. This medical device is illustrated in
Figure 3.1. Using Simulink/Stateflow, we come up with a model with parallel components,
where event passing and synchronization is efficiently provided.

Figure 3.1 Endotracheal intubation

The rest of the paper is organized as follows: Section 3.2 presents some background and
previous work related to this research topic. Employed tools are described in Section 3.3.
We present our case study in Section 3.4, its properties and implementation of the model. The

27

outcomes of our implementation are analysed in Section 3.5. Finally, Section 3.6 concludes
our paper.

3.2 Background and Related Work

Formal methods enhance verification process by using formal notations and concepts in writ-
ing requirements and specifications. In formal methods, mathematical and logical techniques
are used to express, investigate, and analyze the specification, design, documentation, and
behavior of both hardware and software. The word formal in formal methods derives from
formal logic and means “to do with form” [66]. In formal logic, dependence on human in-
tuition and judgment is avoided in evaluating the arguments. In order to constitute an
acceptable statement or a valid proof, formal logic employs a restricted language with very
precise rules for writing assumptions, theorems, and proofs. In formal methods for computer
science, languages are enriched with some of the ideas from programming languages and
are called specification languages, but their underlying interpretation is usually based on a
standard logic.

Formal verification in the field of software means the automated proof of specified properties
on the code without executing the program. Also, it ensures that a design conforms to some
precisely expressed notion of functional correctness [18]. The main benefits of formal verifi-
cation in comparison to testing (dynamic verification), are its soundness and exhaustiveness.
Specifications in formal methods are well-formed mathematical statements which are used
to specify a property that needs to be verified in the system [10].

Many projects currently use MathWorks Simulink and Simulink Coder [9] which formerly
known as Real-Time Workshop for at least some of their modeling and code development
[29]. This kind of Design focuses on using executable system models as the foundation for
the specification, design, implementation, test, and verification [13]. The executable model
replaces parts or all of the paper format of the system specification and requirements as the
main deliverable between design stages. It consists of an executable model of the application
algorithm that can be simulated. The next step of Model-Based Design is known as model
elaboration which consists of transforming the executable specification into a more design
based form [60]. In Section 3.3, we briefly explain how to build an executable model by using
Simulink and Stateflow.

Recently, some efforts have been made in order to employ formal methods in designing critical
systems. In particular, Jiang et al. [42] developed a real-time Virtual Heart Model (VHM)
for modeling the electro-physiological operation of proper functioning and malfunctioning.

28

They introduced a timed-automaton model to define the timing properties of the heart and
used Simulink Design Verifier as the main tool for designing their model.

Simulink/Stateflow has also been used in [32] to model a train tracking function for an
automatic train protection system. The model was implemented based on the requirements
specification document in which safety and functional properties were originally written in
natural language. The authors of [32] used Simulink Design Verifier for verification and
validation. They also had a positive experience when they used this tool for the safety-
critical function in the railway transportation domain.

Another case example for a medical device has been presented in [57] where an iterative
approach is applied for system verification based on software architectural model. They
employed Simulink/Stateflow for describing the component level behavior of the model and
used Simulink Design Verifier for proving the system level properties to establish component-
level properties.

In our work, we also use Simulink/Stateflow to model and simulate the system. For the
formal analysis, we use Simulink Design Verifier, which intensively employs the BMC and
K-Induction features of the PROVER[2] engine to establish the satisfiability of the proof
objectives. We also employ this tool to verify Integer overflow, Division by zero, Assertions
and Violations of design properties as a part of our work.

3.3 Simulink and Stateflow

The executable model can be built by Simulink which is an environment for multi-domain
simulation and Model-based Design for dynamic and embedded systems. Mode logic in
Simulink models is described in terms of hierarchical state machines specified in a variant of
Statecharts called Stateflow [9].

Stateflow is a widespread model-based development environment in Matlab/Simulink toolset,
which is used in several industries, such as aerospace, medical, and automotive. It uses a
variant of the finite state machine notation established by Harel [38] and provides the lan-
guage elements required to describe complex logic in a natural, readable, and understandable
form. Since it is tightly integrated with MATLAB and Simulink, it can provide an efficient
environment for designing embedded systems that contain control and supervisory. In par-
ticular, Stateflow diagram enables the graphical representation of hierarchical and parallel
states as well as transitions between them and inherits all simulation and code generation
capabilities from Matlab toolset.

A state is called as superstate when it contains other states and a state is called substate

29

when it is contained by a superstate. When a state consists of one or more substates,
it has decomposition that can be either parallel (AND) or exclusive (OR) decomposition.
All substates at a particular level in the hierarchy of the stateflow must have the same
decomposition.

In parallel (AND) decomposition, states can be active at the same time and the activity of
each parallel state is essentially independent of other states.

We can use our defined Events to trigger actions in parallel states of a Stateflow chart.
Broadcasting of an event can trigger a transition and/or an action. The Actions can be
executed either as part of a transition from one state to another or based on the activity
status of a state which can be entry, during, exit, and on event actions.

Figure 3.2 Stateflow Semantics

The general form of a transition in Stateflow is presented in Figure 3.2. It shows the behavior
of a simple event, condition and transition action specified on a transition from one exclusive
(OR) state to another. Initially, state Start is active and Entry action is executed. When the
event eFill is received, the chart root detects that there is a valid transition to state Fill as a
result of the event eFill, so it validates the condition and if the result is true, the Condition
Action immediately gets executed and completed. The state Start is marked as inactive and
the Transition Action is executed and completed when the transition destination Fill has
been determined to be valid. States can have different actions such as: entry, during, exit,
and on event-name which are being executed based on the current status of the active state.

3.4 Case Study

This case study aims to show and familiarize how a system works with a framework where
time aspects are combined with multi task programming. In this case study, we are modeling
and verifying the properties of a Filling system of balloons of an intubation probe. An

30

intubation probe is placed to ensure continuous passage of air to the lungs and introduce
oxygen sensors, aspiration probes to the lung for patient treatment. This system consists of
two balloons, two access valves for manual inflation, two pressure sensors, a power distributor,
a pump and an air tank. The pump is actuated by a gear motor and a transmission by a
cylinder rack. The pumped air is propelled through the power distributor (B and D) to one
of the balloons or outside. The probe has several buttons (Start, Stop, Duration, Pressure,
StopAlarm) and LEDs (L1, L2, Alarm). The Alarm LED reports the anomalies. L1 and L2
are witnesses indicating the inflated balloons, and the button StopAlarm allows the user to
stop the alarm. The system controlled by a Programmable Controller who is responsible for
controlling the commands and messages which are sent to or received by other components.
We are using Simulink and Stateflow as an integrated tool environment for modeling, and
Simulink Design Verifier for verification of some properties.

3.4.1 The model

A model is known as abstract representation of a system. Software model is actually the
ways of expressing a software design, and in order to express the software design some kind
of abstract language or pictures are usually used. Software modeling need to deal with
the entire software design, including interfaces, interactions with other software, and all the
software methods [34]. Engineers can model the system using a modeling language which it
can be graphical or textual [39].

According to the description of the case study, the first step when modeling the Intubation,
is to pinpoint the superstates in the system. One of the most important parts of the design is
to find out which superstates should be parallel (AND) and which ones should be exclusive
(OR).

In the Intubation statechart there are ten distinguished blocks which are illustrated in Fig-
ure 3.3. All of these blocks are working in a parallel execution order. These blocks are
represented with ten different superstates in the model. In every moment of running the
model, at least one state has to be active in each superstate. The superstates are: Con-
troller, Distributor, Cylinder, Balloons, Alarm, Lights and Timers. These superstates are
designed to be parallel (AND) because a change in these states is allowed at every time step.

The superstates interact together through sending direct broadcast event and one simplified
function to make the model smaller, initializing the variables and status. Direct event broad-
casting is used to prevent receiving an error pertaining to recursion in the Stateflow chart.
In figures, some functions are removed because of simplicity. To explain and describe the
model, this section is divided into three different parts as follows:

31

Figure 3.3 Components of the Endotracheal Intubation

• Inputs & Local variables, ranges and default values
• Events
• Components (Parallel (AND) States)

In the following we will give a short description of the components. We include some screen-
shots taken from Simulink to complement the description of the statecharts.

Variables:
We maintain the current state and values of the processes using local variables. For simplifi-
cation, we used integer values to represent the corresponding physical step of the components.
The input type variable corresponds to the variable whose value is coming from the Simulink
model. Conversely, the output type variable is modified and used in the Stateflow, and it is
accessible through the Simulink model. Both input and output type variables, their range,
and default values are defined and set in declaration of the stateflow, for example, for the
cylinder component:

int nCylPos = −1

For this specific variable, the value can be set to either -1, 0 or 1 which respectively corre-
sponds to the position of the cylinder as: Back, Center and Forward. Similarly, the different
values for nBallonState correspond to different status of the balloon, such as: Empty, Not-
Full and Full. The target pressure of the balloon in which the balloon is considered as full
inflated, is stored in nPressure. The variable nDuration, sets the amount of the time that an
inflated balloon should remain full before controller sends a deflation command.

32

Some input and output variables for the Stateflow diagram are listed in Table 3.1.

Table 3.1 Variables in Intubation Stateflow

Name Type Values
nCylPos Output -1, 0, 1, 2
nBallonState Output -1, 0, 1
bLightState Output true, false
bAlarm Output true, false
nDuration Input 10, 20, 30 mins
nPressure Input 12, 18, 24
bStopAlarm Input true, false
bStart Input true, false

Events:
Different events were defined to model the communication between different components of
the system. According to their usage, they are defined in the Stateflow as Directed Event
Broadcast. The relationship between events and the corresponding component that receives
these events, is listed in the Table 3.2.

Table 3.2 Events

Component Events
Alarm eStartAlarm, eStopAlarm
Lights eLight1On, eLight1Off, eLight2On, eLight2Off
Distributor eFill, eEmpty
Cylinder vPlus, vMinus

As an illustration, the event eStartAlarm is sent by the controller whenever the inflation or
deflation period of a particular balloon exceeds the specified time (15 Seconds). Similarly,
eFill and eEmpty events, are sent to Distributor state (along with appropriate values for B
and D), for every request for inflating and deflating of a particular balloon.

Stateflow:
This section describes each component that we have modeled as superstates. We explain the
nature and the interaction of each one of them.

Controller

The model of the controller was realized from the specification based on the provided Grafcet
[61]. In order to model the controller, some local variables representing the steps, transitions

33

and actions and some local variables representing the channels and reflecting the value of
local actions in the system are also defined. The local variables B and D are defined as
boolean, and being used to set the channels and activate them.

Figure 3.4 Part of Controller State

The entire controller is included in a single superstate. In order to do a specific action, the
controller sets the values for the channels and sends the event to the Distributor state. Table
3.3 presents events and channels used by the controller for the specific actions.

Instead of modeling the user’s interaction with the system. We use local variables to simulate
the choice of target pressure and the targeted cycle time (nPressure and nDuration). Those
values are set at the beginning and are left untouched during the simulation. Our model
assumes that at the beginning the cylinder is in the position Back and both balloons are
considered Empty.

One of the major building blocks of our controller which is responsible to fill and empty the
balloons is illustrated in Figure 3.4. In this figure, in order to inflate the first balloon, on the
entry action of the state S2 corresponded values for B and D are set then the event eFill is
sent to the Distributor.

Cylinder

The cylinder has three substates: Back, Center and Forward. This state is constantly waiting
to receive the events vPlus or vMinus from the controller to change its position forward or
backward. To model the 2 seconds delay for each position transition, we included an in-
between location, and used an after temporal operator between each position. Once the

34

delay is exhausted, the cylinder position changes. We use a local variable nCylPos (Back
= -1, Center = 0, Forward = 1 and In-between = 2) to store the current position of the
cylinder. Initially, the state Back is active. We set this variable to 2 when the cylinder is in
transition between two positions. The controller has guards using the transitional value to
ensure the cylinder has completed its movement.

Pressure Distributor

This state receives the specified event from the controller in order to launch the selected
action for filling or emptying the desired balloon. The selected action is relevant to the
current value of the local variables B and D which are set to true or false by the controller
before sending the event eFill or eEmpty. In addition, to complete the entire function, it
also sends specific events to states Cylinder and Balloon for their relevant actions. Table 3.3
shows the events and variables used for the specific functions.

Table 3.3 Actions

Distributor Channel Event Function
B=0, D=1 vPlus Inflate ballon 1
B=1, D=0 vPlus Inflate ballon 2
D=0 or B=0, D=0 vPlus Move cylinder forward
B=0, D=1 vMinus Deflate ballon 1
B=1, D=1 vMinus Deflate ballon 2
D=0 or B=0, D=0 vMinus Move cylinder backward

Initially, the state Init is active and waits to receive a specific event from Controller to
complete the selected function. The state on the rightmost side of Figure 3.5 has to run
iteratively until the destined balloon is filled. Similarly, the emptiness of the balloon is
ensured by running the state on the leftmost side of this figure.

Balloons

The state balloon has three substates: Empty, NotFull and Full. In this model, we consider
two different superstates corresponding to each balloon. Initially, the state Empty is active
in both balloons. The transition between substates has a guard; so, the movement is done
when one of the events eFill or eEmpty is received from the state Distributor. We use a local
variable nBalloonState (Empty = -1, NotFull = 0, Full = 1) to store the current status of
the balloon.

35

Figure 3.5 Pressure distributor

Timers

In our model, timers are designed as two different components: The InflateTimer which is
responsible for the inflation time of a balloon, and the HoldTimer which is the time that a
balloon should maintain the status Full.

The state InflateTimer contains two substates: State Off which is initially active, and the
state On which is activated by the controller while requesting for a Fill function. The
InflateTimer is illustrated in Figure 3.6:

Figure 3.6 Timer State

Alarm

The alert state contains two substates: Off and On. Initially, the state Off is active. When
the timer exceeds from the specified threshold or if any anomaly happens, the controller stops

36

the system operation and sends the event eAlarm. Once the event received, the state On will
be activated and remains in this state until the user stops the alarm.

3.5 Results and Analysis

This section describes our method and results of formal verification using Design Verifier
with Simulink and Stateflow. Before verification, we run the simulation for our provided
model using predefined input parameters in order to ensure that the model can be executed
properly. Figure 3.7 illustrates an execution snapshot of our Simulink implementation for
one of the system properties which states that two lights should not be turned on at the same
time. Similarly, Figure 3.8 validates the emptiness property of each balloon, meaning that a
balloon’s light is off when the balloon is completely empty.

The values 0 or 1 for the lights shows that the light is Off or On at corresponding time step.
In addition, the values -1, 0, 1 correspond to Empty, NotFull, and Full status for balloons.
As illustrated in Figure 3.8, at time step 1200, the status for balloon 1 becomes Empty (-1),
and as a result the corresponding light in Figure 3.7 becomes Off (0).

Figure 3.7 Lights status Figure 3.8 Balloons status

3.5.1 Properties

The term property refers to a logical expression of signal values in a model. For example,
we can specify that a signal in a model should attain a particular value during execution
of the system. The Simulink Design Verifier software can then prove the validity of such
properties. This is done by performing a formal analysis of the model to prove or disprove
the specified properties. If the software disproves a property, it provides a counterexample
that demonstrates a property violation. Our design model consists of the following properties:

37

1. Balloons should not be inflated simultaneously for more than five time steps.

2. The pressure in each balloon never exceeds a predetermined value.

3. Any anomaly is followed by alarm activation.

4. The lights L1 and L2 are never illuminated simultaneously.

5. There must be no anomaly alarm (False alarms).

6. If a light is ON then the corresponding balloon is inflated.

The following section details each property and the results obtained by Simulink Design
Verifier:

Property I: The goal of this property is to ensure that two balloons are not inflated simulta-
neously more than the accepted time. Although the controller sends appropriate commands
to inflate a balloon and deflate another, but the functionality also depends to the position
of the cylinder and current state of each balloons. So, verifying this property ensures this
time will not exceed the expected time steps. As illustrated in Figure 3.9, we use a temporal
operator Detector in formalization of this property. This property is proven Valid with values
greater than 5, and is proven Falsified with values between 1 and 5.

Figure 3.9 Formalization of property I

Property II: The goal of this property is to validate that the model do not permit the
pressure within the two balloons to exceed the maximum value given by the user. This
property can be defined as the following expression in LTL:

G (nPressB1 <= nPressure

&& nPressB2 <= nPressure)
(3.1)

We have modeled this property by doing a simple comparison between the balloon pressure
and the target pressure using our variables nPressB1 and nPressB2 which contains the
current pressure within the balloons 1 and 2, and by using nPressure which represents the

38

target pressure given by the user. We validate both pressures by using the same property
statement.

Property III: The goal of this property is to make sure our model does not skip any alarms.
Therefore all possible anomaly should be followed by an alarm activation. In our model, the
alarm is triggered by the event eAlarmOn. It automatically lights the Alarm indicator. We
have modeled this property by using the Alarm ’On’ state and the controller’s anomaly state
’S10’ which is a location where all anomaly detections are directed.

G ((bRunning == true && in(Controller.S10))

⇒ Alarm.On)
(3.2)

This property validates that our model is running and then makes sure that all paths that
goes through ’S10’ are followed by the ’Alarm.On’ state.

Property IV: The goal of this property is to make sure that both balloon’s status light are
not both lighted at the same moment.

G ((Light1.On+ Light2.On) <= 1) (3.3)

Since this property is a safety property, all paths needs to validate it. As we saw in property
I, we may have both balloons inflated for a short period of time. Therefore, in order to
validate this property, we have to make sure that the controller have control over the lights.
The controller always starts by closing a light, and then opens another. This is validated by
making the sum of values in states ’Light1.On’ and ’Light2.On’ which should not exceed 1.

Property V: The goal of this property is to make sure our model does not generate false
alarms. To address this property we have designed a statement that validates the opposite
condition and applied a ’not’ to it.

G (not (bRunning == true

&& bAlarmDetected == false

&& Alarm.On))

(3.4)

This invariant property makes sure that we never end up in a state where we have ’bRunning

39

== true’ (which means the process is undergoing) and we have the alarm light on without
having detected any anomaly. The anomaly detection always sets the variable ’bAlarmDe-
tected’ to true. Hence, if ’bAlarmDetected’ is set to false we have no anomaly and ’Alarm.Off’
is valid.

Property VI: The goal of this property is to ensure that when a light for a balloon is on,
the corresponding balloon’s pressure has reached the target pressure.

G ((Light1.On⇒ nPressB1 == nPressure)

and (Light2.On⇒ nPressB2 == nPressure))
(3.5)

We have included both balloons in the same property, where they both need to be true. This
statement validates that when the state ’Light1.On’ is active, we have reached the target
pressure in the first balloon. It does the same validation for the second balloon and ensures
that both condition are always valid.

3.6 Conclusion

In this paper, we used formal approach and model-based design in order to specify and for-
mally verify the functionalities of a medical device. The system is modeled with parallel
components in Simulink/Stateflow, where event passing/handling and synchronization is ef-
ficiently provided. We also employed Simulink Design Verifier toolset to prove correctness
of the model with respect to given properties as well as some important properties from dif-
ferent components of the system. Initially, total property proving time was about ten hours
on a Core 2 Due machine with 4GB of RAM. After applying optimizations such as remov-
ing deadlock dependencies in some states like Distributer, and specifying the precise proof
assumptions to inputs, we could significantly reduce it to seven hours and sixteen minutes.

40

CHAPTER 4 ARTICLE 2
Formal Verification of Event-driven Health Applications

Mohammad-Reza Gholami, Hanifa Boucheneb
Journal of Software Engineering: Theories and Practices

Abstract– Software does an important task in almost every part of our everyday life, par-
ticularly in systems designed for the healthcare, aircraft navigation and automotive. One of
the important objectives of software engineering is to support developers for building systems
that function reliably even they are complex. In this paper, we show how model-based design
is used to model a safety-related application. By applying formal verification techniques, we
also define specific properties to ensure that a software system satisfies its correctness criteria.
We use the formal approach to study and verify the properties of a medical device known as
Endotracheal intubation. The system is modeled in a concurrent manner and synchroniza-
tion between components is done through events. We present how the system is modeled in
the Simulink and Stateflow and present formalization of some safety and temporal require-
ments based on the events issued from the controller. In order to formally prove the defined
properties, we employ Simulink Design Verifier toolset.

Keywords– Formal Methods; Formal Verification; Design Verification; Model-Based Design;
Linear Temporal Logic; Safety-Critical.

4.1 Introduction

The increasing complexity of embedded systems (e.g. avionics, health and automotive sys-
tems) conveys the producers of safety-critical applications to use more systematic processes
for development. Traditional design processes are not fast enough in discovering the errors
in requirements; hence, the whole process would be longer and more expensive.

A key goal of software engineering is to make it possible for developers to construct systems
that operate reliably regardless of their complexity [27]. A promising approach to achieve
this goal is to use formal methods, which are mathematically based languages, tools and tech-
niques for specifying and verifying such systems. Formal methods can significantly increase
our understanding of a system by disclosing inconsistencies, ambiguities, and incompleteness
in the early design phase so that they can be eliminated in order to ensure the appropriate
behavior of the system.

41

Software vendors typically spend large amounts of time of their total development time and
resources on software testing [48]. The severity of the defects also increases the detection
time and the cost of total development budget for a software product. So there is a need for a
sophisticated discipline of software engineering to ensure that all the expected requirements
were satisfied by means of the specified software. In other words, software verification refers
to the process that can determine whether the artifacts of one software-development phase
fulfil the specified requirements produced during the previous phase.

In a safety critical system, even a single error in the source code and an associated malfunction
of the system can cause high costs and could even endanger the health of people. In critical
real-time embedded systems, verification and validation activities are becoming huge and
quite costly when the complexity and size of the systems grows.

Formal verification can be performed by employing Model-Based Design [33] in order to spec-
ify formal model of the system. Model-Based design facilitates the addressing of difficulties
and complexities existing in control system design by providing an executable specification
which implies that the model exists as more than just a document, but as a functional part of
the design process [54]. It also provides a single design environment that enables developers
to use a single model of their entire system for data analysis, model visualization, testing
and validation, and ultimately product deployment, with or without automatic code gen-
eration [46]. Furthermore, model-based design creates a structure for software reuse that
permits established designs to be effectively and reliably upgraded in a more simplistic and
cost effective manner.

In this paper, we study how to verify some safety and liveness requirements of an event-based
system using Simulink Design Verifier. We use the formal approach to verify properties of
an Endotracheal intubation, which is a specific type of tracheal tube that is inserted through
the patient’s mouth to maintain an open airway [1]. This medical device is illustrated in
Figure 4.1. Using Simulink/Stateflow, we come up with a model with parallel components,
where event passing and synchronization is efficiently provided.

Figure 4.1 Endotracheal intubation [8]

42

The rest of the paper is organized as follows: Section 4.2 presents some background and
previous work related to this research topic. Employed tools are described in Section 4.3.
We present our case study in Section 4.4 which consists of definition, properties, and imple-
mentation of the model. The outcomes of our implementation are analysed in Section 4.5.
Finally, Section 4.6 concludes our paper.

4.2 Background and Related Work

Formal methods enhance verification process by using formal notations and concepts in writ-
ing requirements and specifications. In formal methods, mathematical and logical techniques
are used to express, investigate, and analyse the specification, design, documentation, and
behavior of both hardware and software. The word formal in formal methods derives from
formal logic and means “to do with form” [66]. In formal logic, dependence on human in-
tuition and judgement is avoided in evaluating the arguments. In order to constitute an
acceptable statement or a valid proof, formal logic employs a restricted language with very
precise rules for writing assumptions, theorems, and proofs. In formal methods for computer
science, languages are enriched with some of the ideas from programming languages and
are called specification languages, but their underlying interpretation is usually based on a
standard logic.

Formal verification in the field of software means the automated proof of specified properties
on the code without executing the program. Also, it ensures that a design conforms to some
precisely expressed notion of functional correctness [18]. The main benefits of formal verifi-
cation in comparison to testing (dynamic verification), are its soundness and exhaustiveness.
Specifications in formal methods are well-formed mathematical statements which are used
to specify a property that needs to be verified in the system [10].

Many projects currently use MathWorks Simulink and Simulink Coder [9] which formerly
known as Real-Time Workshop for at least some of their modeling and code development
[29]. This kind of Design focuses on using executable system models as the foundation
for the specification, design, implementation, test, and verification [13]. The executable
specification in Model-based design, replaces parts or all of the paper format of the system
specification and requirements as the main deliverable between design stages. It consists
of an executable model of the application algorithm that can be simulated. The next step
of Model-Based Design is known as model elaboration which consists of transforming the
executable specification into a more design based form [60]. In Section 4.3, we briefly explain
how to build an executable model by using Simulink and Stateflow.

43

Recently, some efforts have been made in order to employ formal methods in designing critical
systems. In particular, Jiang et al. [42] developed a real-time Virtual Heart Model (VHM)
for modeling the electro-physiological operation of proper functioning and malfunctioning.
They introduced a timed-automaton model to define the timing properties of the heart and
used Simulink Design Verifier as the main tool for designing their model.

Simulink/Stateflow has also been used in [32] to model a train tracking function for an
automatic train protection system. The model was implemented based on the requirements
specification document in which safety and functional properties were originally written in
natural language. The authors of [32] used Simulink Design Verifier for verification and
validation. They also had a positive experience when they used this tool for the safety-
critical function in the railway transportation domain.

Another case example for a medical device has been presented in [57] where an iterative
approach is applied for system verification based on software architectural model. They
employed Simulink/Stateflow for describing the component level behavior of the model and
used Simulink Design Verifier for proving the system level properties to establish component-
level properties.

Above mentioned works used Simulink Design Verifier for proving safety properties which
is supported by this tool in nature. In this paper, authors employ Simulink/Stateflow to
model a system having different components. In addition, components of the system are
designed to act in parallel and synchronization between them is accomplished by events.
Furthermore, some liveness properties are also formalized in the model to describe our method
for proving this kind of properties. For the formal analysis, we use Simulink Design Verifier,
which intensively employs the BMC and K-Induction features of the PROVER[2] engine to
establish the satisfiability of the proof objectives. We also use this tool to verify design
issues like Integer overflow, Division by zero, Assertions and Violations of design properties
to eliminate runtime issues of the model.

4.3 Simulink and Stateflow

The executable model can be built by Simulink which is an environment for multi-domain
simulation and Model-based Design for dynamic and embedded systems. Mode logic in
Simulink models is described in terms of hierarchical state machines specified in a variant of
Statecharts called Stateflow [9].

Stateflow is a widespread model-based development environment is Matlab/Simulink toolset,
which is used in several industries, such as aerospace, medical, and automotive. It uses a

44

variant of the finite state machine notation established by Harel [38] and provides the lan-
guage elements required to describe complex logic in a natural, readable, and understandable
form. Since it is tightly integrated with MATLAB and Simulink, it can provide an efficient
environment for designing embedded systems that contain control and supervisory. In par-
ticular, Stateflow diagram enables the graphical representation of hierarchical and parallel
states as well as transitions between them and inherits all simulation and code generation
capabilities from Matlab toolset.

A state is called as superstate when it contains other states and a state is called substate
when it is contained by a supersate. When a state consists of one or more substates, it
has decomposition that can be either parallel (AND) or exclusive (OR) decomposition. All
substates at a particular level within the same state must have the same decomposition.

In parallel (AND) decomposition, states can be active at the same time and the activity of
each parallel state is essentially independent of other states.

We can use our defined Events to trigger actions in parallel states of a Stateflow chart.
Broadcasting of an event can trigger a transition and/or an action. The actions can be
executed either as a part of a transition from one state to another or based on the activity
status of a state which can be entry, during, exit, and on event actions. For instance, while
the state Fill is active, c = GetElapsed() is executed every time unit.

Figure 4.2 Stateflow Semantics

The general form of a transition in Stateflow is presented in Figure 4.2. It shows the behavior
of a simple event, condition and transition action specified on a transition from one exclusive
(OR) state to another. Initially, state Start is active and entry action is executed, which sets
the variable tempo to 15. When the event eFill is received, the chart root detects that there
is a valid transition to state Fill as a result of the event eFill, so it validates the condition
and if the result is true, the Condition Action immediately gets executed and completed.

45

Conversely, the state Start remains active and no Condition Action executes if the condition
is false. The state Start is marked as inactive and the Transition Action is executed and
completed when the transition destination Fill has been determined to be valid. States
can have different actions such as: entry, during, exit, and on event-name which are being
executed based on the current status of the active state.

4.3.1 Simulink Library

To build models in Simulink, blocks are the main elements that are used, and they are hosted
in the library. A Simulink block has sets of input and output ports. A block with N input
and M output ports defines a function which describes each of the signals at the output ports
as a (possibly time-dependent) expression of the signals at the input ports. Formally, a block
is a tuple (Pi, Po, f), where Pi is the set of input ports, Po is the set of output ports and
f : RN → RM is a function which defines the behavior of the block [52]. In the following,
some blocks from the standard Simulink library is briefly described:

Embedded Matlab Function block

The Embedded MATLAB Function Block facilitates writing the MATLAB m-code which can
be incorporated into a Simulink model. This block is placed in the User Defined Functions
Library and can be inserted into a model in the same way as any other Simulink blocks. We
use this block whenever there is a need to implement part of the logic of the property by
program code.

Subsystem block

A subsystem is a set of blocks that we replace with a single block called a Subsystem block.
As our model increases in size and complexity, we can simplify it by grouping blocks into
subsystems.

Function-Call Subsystem

This block represents a subsystem that can be invoked as a function by another block.
In other words, a function-call subsystem is a subsystem that another block can invoke it
directly during a simulation. It is similar to a function in a procedural programming language.
Invoking a function-call subsystem is equivalent to invoking the output methods of the blocks
that the subsystem contains in sorted order. The block that invokes a function-call subsystem

46

is called the function-call initiator. Moreover, the Stateflow, Function-Call Generator, and
S-function blocks can all serve as function-call initiators.

Temporal Logic Operators

These operators are used in the Stateflow and control the execution of a chart in terms of
time. In state actions and transitions, you can use two types of temporal logics: event-
based and absolute-time. Event-based temporal logic keeps track of recurring events, and
absolute-time temporal logic defines time periods based on the simulation time of your chart.

For event-based temporal logic, the following operators after, before, every and temporalCount
can be used in the Stateflow. For instance, in the provided model for our case study, the
operator after is used in Timers and Cylinders states.

4.3.2 Simulink Design Verifier

Simulink Design Verifier R© [5] is a tool set of Matlab which uses formal methods to identify
hard to find design errors in the models without requiring extensive tests or simulation runs.
Moreover, it enables us to perform model analysis within the Simulink environment, in order
to verify the designs and validate the requirements early, without having to generate code.

We can use Simulink, MATLAB functions, and Stateflow to express formal requirements. It
also provides a set of building blocks and functions that can be used to define and organize
verification objectives. The block library provided, includes blocks and functions for test
objectives, proof objectives, assertions, constraints. In addition, a dedicated set of temporal
operators like Detector, Extender and Within Implies blocks are also provided in order to
model the verification objectives with temporal aspects. Following to this, Within Implies
block that is used in our implementation is briefly described:

Within Implies block

The Within Implies block captures the within implication by observing whether the Obs
input is true for at least one step within each true duration of the first input In. Whenever
Obs is not detected within a particular input true duration, the output becomes false for one
time step in the step that follows the input true duration. This block captures the behaviour:
(’Within’ In) ⇒ Obs.

In the example illustrated in Figure 4.3, model sample time is considered as 1 second.
— In Figure 4.3a, although Obs is observed within the first true duration of In (steps

47

(a) False Output (b) False Output (c) True Output

Figure 4.3 Within Implies Simulink Block

1...4), but it is not observed within the second true duration of In (steps 5...10), so
Out becomes false for one time step after the In signal becomes false (step 11).

— In Figure 4.3b, Obs is not observed within the first true duration of In, so Out becomes
false for one time step after the In signal becomes false.

— In Figure 4.3c, Obs is observed within the true duration of In (at time step 4), so Out
remains true until the end of the simulation. The input is true if Obs becomes valid
for at least one time every true duration of the input.

4.4 Case Study

This case study aims to show and familiarize how a system works with a framework where
time aspects are combined with multi task programming. In this case study, we are modeling
and verifying the properties of a Filling system of balloons of an intubation probe. An
intubation probe is placed to ensure continuous passage of air to the lungs and introduce
oxygen sensors, aspiration probes to the lung for patient treatment.

As illustrated in Figure 4.4, this system consists of two balloons, two access valves for manual
inflation, two pressure sensors, a power distributor, a pump and an air tank. The pump is
actuated by a gear motor and a transmission by a cylinder rack. The pumped air is propelled
through the power distributor (B and D) to one of the balloons or outside. The probe has
several buttons (Start, Stop, Duration, Pressure, StopAlarm) and LEDs (L1, L2, Alarm). The
Alarm LED reports the anomalies. L1 and L2 are witnesses indicating the inflated balloons,
and the button StopAlarm allows the user to stop the alarm. The system controlled by

48

Figure 4.4 Physical Features of the control system

a Programmable Controller who is responsible for controlling the commands and messages
which are sent to or received by other components. The controller operation is also described
by means of the Grafcet [73] that is shown in Figure 4.5. We are using Simulink and Stateflow
as an integrated tool environment for modeling, and Simulink Design Verifier for verification
of some properties.

4.4.1 The model

A model is known as abstract representation of a system. Software model is actually the
ways of expressing a software design, and in order to express the software design some kind
of abstract language or pictures are usually used. Software modeling needs to deal with
the entire software design, including interfaces, interactions with other software, and all the
software methods [34]. Engineers can model the system using a modeling language which it
can be graphical or textual [39].

According to the description of the case study, the first step when modeling the Intubation, is
to pinpoint the superstates in the system and their interactions. One of the most important
parts of the design is to find out which superstates should be parallel (AND) and which ones
should be exclusive (OR).

In the Intubation Stateflow, there are ten distinguished blocks corresponding to each com-
ponent, which are illustrated in Figure 4.6. All of these blocks are working in a parallel
execution order. These blocks are represented with ten different states in the model. In ev-

49

Figure 4.5 Grafcet describing the operation of the controller

ery moment of running the model, at least one substate has to be active in each state. These
states are: Controller, Distributor, Cylinder, Balloons, Alarm, Lights and Timers. These
states are designed to be parallel (AND) because a change in these states is allowed at every
time step.

The states corresponding to each component, interact together through sending direct broad-
cast event and one simplified function (Initialize) to make the model smaller, initialize vari-
ables and the status. In other words, using function helps to group the different actions that
are associated to each transition. Direct event broadcasting is used to prevent receiving an
error pertaining to recursion in the Stateflow chart. The temporal logic operator after is
also used whenever there was a need to control the execution of states in terms of time. In

50

Figure 4.6 Components of the Endotracheal Intubation

figures, some defined functions in the Stateflow are removed for the sake of simplicity. To
explain and describe the model, this section is divided into three different parts as follows:

• Inputs & Local variables, ranges and default values.
• Events.
• Components (Parallel (AND) States).

In the following, we give a short description of components, including some screenshots taken
from the Simulink to complement the description of the Stateflow.

Variables:
We maintain the current state and values of the components using local variables. For
simplification, we used integer values to represent the corresponding physical step of the
components. The input type variable corresponds to the variable whose value is coming
from the Simulink model. Conversely, the output type variable is modified and used in
the Stateflow, and it is accessible through the Simulink model. Both input and output
type variables, their range, and default values are defined and set in the declaration of the
stateflow, for example, for the cylinder component:

int nCylPos = −1

For this specific variable, the value can be set to either -1, 0 or 1 which respectively correspond
to the position of the cylinder as: rear, center and front. Similarly, the different values for
nBallonState correspond to different status of the balloon, such as: Empty, NotFull and
Full. The target pressure of the balloon in which the balloon is considered as full inflated,

51

is stored in nPressure. The variable nDuration, sets the amount of the time that an inflated
balloon should remain full before controller sends a deflation command.

Some input and output variables for the Stateflow diagram listed in Table 4.1.

Table 4.1 Variables in Intubation Stateflow

Name Type Values
nCylPos Output -1, 0, 1, 2
nBallonState Output -1, 0, 1
bLightState Output true, false
bAlarm Output true, false
nDuration Input 10, 20, 30 mins
nPressure Input 12, 18, 24
bStopAlarm Input true, false
bStart Input true, false

Events:
Different events were defined to model the communication between different components of
the system. According to their usage, they are defined in the Stateflow as Directed Event
Broadcast. The relationship between events and the corresponding component, is listed in
the Table 4.2. The status column illustrates if the event is sent to components of the chart
or is sent out from the Stateflow to the Simulink model of the system. As such, the event
exFillB1 means that the event will be sent out from Distributer component whenever a Fill
attempt is required to inflate balloon 1. Similarly, the external event exEmptyB1 is sent out
from Distributer, for every deflating requests. In addition, the event exFillB1 is also sent
from Balloon1 component out from the Stateflow whenever balloon 1 is completely inflated.

Table 4.2 Events

Component Events Status
Alarm eStartAlarm, eStopAlarm Internal
Light1 eLight1On, eLight1Off, Internal
Light2 eLight2On, eLight2Off Internal
Distributor eFill, eEmpty, Internal

exFillB1, exFillB2, External
exEmptyB1, exEmptyB2 External

Cylinder vPlus, vMinus Internal
Balloons exB1Full, exB2Full External

Stateflow:
This section describes each component that we have modeled as different states. We explain

52

the nature and the interaction of each one of them.

Controller

The model of the controller was realized from the specification based on the provided Grafcet
illustrated in Figure 4.5. In order to model the controller some local variables representing
the steps, transitions and actions and some local variables representing the channels and
reflecting the value of local actions in the system were also defined. The local variables B
and D are defined as boolean, and being used to set the channels and activate them (B and
D are shown in Figure 4.4).

Figure 4.7 Intubation Stateflow with its I/O

The entire controller is included in a single superstate. In order to do a specific action, the
controller set the values for the channels and send the event to the Distributor state. Table
4.3 presents events and channels used by the controller for specific actions.

Instead of modeling the user’s interaction with the system, we use local variables to simulate
the choice of target pressure and the targeted cycle time (nPressure and nDuration). Those
values are set at the beginning and are left untouched during the simulation. Our model
assumes that at the beginning the cylinder is in the position rear and both balloons are
considered Empty.

53

One of the major building blocks of our controller which is responsible to inflate and deflate
the balloons is illustrated in Figure 4.7. In this figure, in order to inflate the first balloon,
on the entry action of the state S2 corresponded values for B and D are set then the event
eFill is sent to the Distributor.

Cylinder

The cylinder has three substates: rear, center and front. This state is constantly waiting
to receive the events vPlus or vMinus from the controller to change its position forward or
backward. To model the 2 seconds delay for each position transition, we included an in-
between location, and used an after temporal operator between each position. Once the
delay is exhausted, the cylinder position changes. We use a local variable nCylPos (rear =
-1, center = 0, front = 1 and In-between = 2) to store the current position of the cylinder.
Initially, the state rear is active. We set this variable to 2 when the cylinder is in transition
between two positions. The controller has guards using the transitional value to ensure the
cylinder state has completed its movement.

Pressure Distributor

This state receives the specified event from the controller in order to launch the selected
action for inflating or deflating the desired balloon. The selected action is relevant to the
current value of the local variables B and D which are set to true or false by the controller
before sending the event eFill or eEmpty. In addition, to complete the entire function, it
also sends specific events to states Cylinder and Balloon for their relevant actions. Table 4.3
shows the events and variables used for specific functions.

Table 4.3 Actions

Distributor Channel Event Function
B=0, D=1 vPlus Inflate ballon 1
B=1, D=0 vPlus Inflate ballon 2
D=0 or B=0, D=0 vPlus Move cylinder forward
B=0, D=1 vMinus Deflate ballon 1
B=1, D=1 vMinus Deflate ballon 2
D=0 or B=0, D=0 vMinus Move cylinder backward

Initially, the state Init is active and waits to receive a specific event from Controller to
complete the selected function. The state FillB1, on the rightmost side of Figure 4.8 has to

54

run iteratively until the destined balloon is inflated. Similarly, the emptiness of the balloon
is ensured by running the state EmptyB1 on the leftmost side of this figure.

Figure 4.8 Pressure distributor

The state of this component is formally defined by sets of states, actions and transitions.
First thing to remember is that the composition of states can be either an Parallel AND or
an Exclusive OR composition.

Outgoing transitions for Distributor state as illustrated in Figure 4.8, are defined as:
TR = {tr1, tr2, tr3, tr4, tr5, tr6, tr7, tr8, tr9, tr10, tr11, tr12}.

A state definition sd, is a triplet composed of actions A = {entry,during, exit}, executed
respectively upon entering, during, and exiting the state, an internal composition (Parallel
AND, Exclusive OR), and a list of outgoing transitions [37].

The state definition list SD [37], which associates state definitions sd with corresponding
substates in the Distributor, is denoted as:

SD = {Dist : sd0; Init : sd1;EmptyB1 : sd2;FillB1 : sd3;EmptyB2 : sd4;FillB2 : sd5}

The definition of the states for the Distributor depicted in Figure 4.8, can be listed as:

— sd0 = (AND)
— sd1 = (OR, {tr1, tr4, tr7, tr10})
— sd2 = ((A.e), OR, {tr2, tr3})

55

— sd3 = ((A.e), OR, {tr5, tr6})
— sd4 = ((A.e), OR, {tr8, tr9})
— sd5 = ((A.e), OR, {tr11, tr12})

The sample trace information represented in Table 4.4, illustrates the status of events and
evolution of states over the time, when the controller tries to inflate the first balloon which
is empty. Values of B and D channels specifies the current requested function to the pressure
distributor component. During the process some events are handled or triggered by Distribu-
tor component and is denoted as follows: Event(Recv) is an internal event that is issued from
the controller to distributor component to tell which of these functions (Inflate, Deflate, Move
Cylinder) is requested. Event(Send) is an internal event that will be sent from Distributor
state to Cylinder state to perform the movement. Event(Extern) is sent from Distibutor state
out from the Stateflow chart. This event later will be handled by other subsystem block in
the Simulink model.

Balloons

The state balloon has three substates: Empty, NotFull and Full. In this model, we consider
two different superstates corresponding to each balloon. Initially, the state Empty is active
in both balloons. The transition between substates has a guard; so, the movement is done
when one of the events eFill or eEmpty is received from the state Distributor. We use a local
variable nBalloonState (Empty = -1, NotFull = 0, Full = 1) to store the current status of
the balloon.

Figure 4.9 Stateflow of Balloon1

Outgoing transitions for Balloon1 state as illustrated in Figure 4.9, are defined as:
TR = {tr1, tr2, tr3, tr4, tr5, tr6, tr7, tr8}.

56

Table 4.4 Distributor - Evolution of states and status of events over the time

t t0 ... ti ti+1 ti+2 ti+3 ti+4 ti+n

B 0 0 1 1 1 1 1 0
D 0 0 0 0 0 0 0 0
Sa Init Init Init Init F illB1 Init F illB1 Init

Event(Recv) - - eF ill - eF ill - - -
Event(Send) - - vP lus - vP lus - - -
Event(Extern) - - - - eF ill(B1) - eF ill(B1) -
CylPos rear rear rear rear center center front front
Baloon1 empty empty empty NotFull NotFull full full full

The state definition list SD, which associates state definitions sd with corresponding substates
in the Balloon1, can be denoted as:

SD = {Baloon1 : sd0;Empty : sd1;NotFull : sd2;Full : sd3}

The definition of the states for the Stateflow depicted in Figure 4.9, can be listed as:

— sd0 = (AND)
— sd1 = ((A.e), OR, {tr1, tr2})
— sd2 = ((A.e), OR, {tr3, tr5, tr6, tr7})
— sd3 = ((A.e), OR, {tr4, tr8}})

Timers

In our model, timers are designed as two different components: The InflateTimer which is
responsible for the inflation time of a balloon, and the HoldTimer which is the time that a
balloon should maintain the status Full.

The state InflateTimer contains three substates: State Wait which is initially active, the
state Start which is activated by the controller while requesting for a Inflate procedure, and
Stop that gets activated whenever the maximum time is reached. The temporal logic operator
after is used as a transition condition from state Start to state Stop. The InflateTimer is
illustrated in Figure 4.10:

Outgoing transitions for the inflateTimer state as illustrated in Figure 4.10, are defined as:
TR = {tr1, tr2, tr3, tr4}.

57

Figure 4.10 Inflate/Deflate Timer State

The state definition list SD, which associates state definitions sd with corresponding substates
in the inflateTimer can be denoted as:

SD = {inflateT imer : sd0;Wait : sd1;Start : sd2;Stop : sd3}

The definition of the states for inflateTimer that is depicted in Figure 4.10, can be listed as:

— sd0 = ((A.e), AND)
— sd1 = (OR, {tr1, tr2, tr4})
— sd2 = (OR, {tr1, tr2, tr3})
— sd3 = (OR, {tr3, tr4})

Alarm

The alert state contains two substates: Off and On. Initially, the state Off is active. When
the timer exceeds from the specified threshold or if any anomaly happens, the controller stops
the system operation and sends the event eAlarm. Once the event received, the state On will
be activated and remains in this state until the user stops the alarm.

4.5 Methods and Analysis

This section describes our method and results of formal verification using Design Verifier
with Simulink and Stateflow. Before verification, we run the simulation for our provided
model using predefined input parameters in order to ensure that the model can be executed
properly.

58

4.5.1 Properties

The term property refers to a logical expression of signal values in a model. For example,
we can specify that a signal in a model should attain a particular value during execution of
the system. The Simulink Design Verifier software can then prove the validity of such safety
properties. This is done by performing a formal analysis of the model to prove or disprove
the specified properties. If the software disproves a property, it provides a counterexample
that demonstrates a property violation.

The developer can specify properties by using two blocks provided in the Simulink Design
Verifier library. The Proof Objective block is used to define the values of a signal that the
Simulink Design Verifier software will prove. The Proof Assumption block is used to constrain
the values of a signal during a proof [39].

The definition of properties comes with the execution order of contained blocks (e.g. a, b,
c, ...). The update functions of each block in the property gets executed respectively after
other blocks in the main model. The modeled system consists of the following properties:

1. A balloon should be inflated in less than or equal three fill attempts.

2. The fill command remains active until corresponding balloon is inflated.

3. There must be no anomaly alarm (False alarms).

4. The pressure in each balloon never exceeds a predetermined value.

The term Pre(x, t) is used for Predecessor in provided equations when defining specified
properties (It corresponds to Unit Delay block in Simulink library). As such, The predecessor
of signal x at time t is denoted by Pre(x, t) that corresponds to the value of that signal at
time step t − 1. The term Pre∗(x, t) is also used as the transitive closure of Pre(x, t). The
following section details each property and the results obtained by Simulink Design Verifier:

Property 1

The goal of this property is to verify the number of fill attempt events that are sent by the
controller, in an inflate procedure, meets the number specified in the requirement specifica-
tions. Consider the scenario that the controller needs to inflate balloon 1 at the beginning of
the system run. At start, we assume that the balloon is empty (has 6 cm of water) and the
cylinder is at rear position, and each Fill attempt increases 6 cm of water to the balloon’s
pressure. If the target pressure is set to 18 cm of water, the controller needs to issue 2 fill
attempts in the inflation procedure.

59

Figure 4.11, illustrates the implementation of this property in Simulink. The Distributer
component sends out an external event from the Stateflow whenever a fill attempt is issued.

Figure 4.11 Formalization of property 1

The Function-Call Subsystem is a triggered subsystem and increases the count of the at-
tempts whenever an event is received.

In Figure 4.11, the Logical Operator LO1 validates isFill and isRun input signals, and
ensures that ’b’ becomes false as soon as the inflating procedure is terminated. The Relation
Operator RO1 validates the count input against the desired value. Afterwards the Within
Implies block checks if the input ’c’ was true for at least one time step during the time steps
that ’b’ is true.

In Figure 4.12, as per definition of Within Implies block shown in Equation 4.4, it captures
the within implication by observing whether the input ′c′ is true for at least one time step
within each true duration of the first input ′b′.

Figure 4.12 Internal functions in property 1

60

Formalization: Let M be a Simulink model, and property 1 denoted by p:

M |= p iff G fd(b, c, t) = 1

Proof : The block function of this property can be written as: fd(b, c, t), where the output
should hold true during the execution for any time t.

As illustrated in Figure 4.12, this function can be divided into four different sub-functions
that are denoted as:
fa(event, count, t) ,
fb(isRun, isF ill, count, desired, t) ,
fc(count, desired, t) ,
fd(b, c, t).

Let n be the number of consecutive time steps that b is true. The output of each function
over the evolution of time t is as follows:

fa(event, count, t) =

0 if t = 0

count+ 1 if t > 0 ∧ event = 1

count Otherwise

(4.1)

fb(isRun, isF ill, t) =

1 if (isRun ∧ isF ill)

0 if ¬(isRun ∧ isF ill)
(4.2)

fc(count, desired, t) =

1 if count = desired

0 if count 6= desired

(4.3)

61

fd(b, c, t) =

0 if ¬b(t) ∧ ¬Pre∗(c, t) ∧ (t = n+ 1)

1 Otherwise

(4.4)

Finally, d as the output of this property, must hold true during the entire execution of the
system and corresponds to the result of b(t)⇒ c(t).

Simulation and trace of the property p is done by specifying the time offset To = 0 and
sample time period Ts = 1sec. In the following, the active state in Cylinder component as
well as output variables of the Stateflow are shown for these situations:

— If cylinder is at rear position.
— If cylinder is at center position.

Table 4.5, denotes the evolution of variables over the time when the cylinder is at rear
position. We assume that the inflate procedure for balloon 1 is started at time step ti by the
controller. Initial values are also shown in the table at time 0.

As per design of the controller, when a fill command is issued but if the cylinder position
is in front position, the controller holds the fill command, sends backward command to the
cylinder and re-issues the fill command and sends the external event. Table 4.6, displays the
evolution of the variables over the time when the cylinder is at center position.

In terms of block execution sequence, the execution order of Implies block is after ’Intubation’
chart, and Proof Objective block is after the Implies block. Thus, in each time step of the
execution, inputs of the Stateflow are evaluated first and then its outputs are updated and
fed to the specified property including the Implies block.

The implementation of the function fa in Figure 4.12 is illustrated in Figure 4.13.

To explain, the purpose of using the Unit Delay block is to prevent causing the Algebraic-
loop. As depicted in Figure 4.13 the evaluation of the Sum block is done in each sample time,
so direct feedback the output of the Sum block to one of its inputs causes an algebraic loop
and reports an error in compile time, so there is a need to use Unit Delay block which has
an internal state and stores the previous input. The initial state of this block is set to zero.

We also proposed another implementation for the function fa to investigate the verification
time of this property when two different implementations are used. To address this, we

62

Table 4.5 Evolution of variables over the time - Cylinder at rear

t 0 ... ti ti+1 ti+2 ti+3 ti+4 ti+5 ti+6 ...
Cylinder rear rear rear - center - front - center ...
isRun 0 1 1 1 1 1 1 1 1 ...
isF ill 0 0 1 1 1 1 1 0 0 ...
event - - - - 1 - 1 - - ...
count 0 0 0 0 1 1 2 2 2 ...

Table 4.6 Evolution of variables over the time - Cylinder at center

t 0 ... ti ti+1 ti+2 ti+3 ti+4 ti+5 ti+6 ti+7 ti+8 ...
Cylinder center center center - front - center - front - center ...
isRun 0 1 1 1 1 1 1 1 1 1 1 ...
isF ill 0 0 1 1 1 1 1 1 1 0 0 ...
event - - - - 1 - - - 1 - - ...
count 0 0 0 0 1 1 1 1 2 2 2 ...

Figure 4.13 Using Standard Simulink Block

employed an Embedded Matlab function which has the same functionality and increments
the output count as soon as receiving the external event from the controller. Figure 4.14a
represents the subsystem’s internal blocks along with its corresponding code.

63

(a) Embedded Matlab Function (b) Subsystem Code

Figure 4.14 Function-call Subsystem Block

Property 2

The goal of this linear temporal property is to make sure when a controller initiates an
inflation procedure, the fill signal remains enable until the corresponding balloon is inflated
completely. As per design of the controller, when the state corresponding to the inflation of
first balloon is activated, it activates the Filling signal and send the appropriate events to
the Distributor and Cylinder respectively in order to complete the inflating process. Since
in each movement of the Cylinder component adds a specific pressure (6 cm of water) to the
balloon, this sequence should be executed more than one time, based on the target pressure
that is defined for the balloons in the configuration (18 cm of water for an inflated balloon).

Figure 4.15 Property 2

64

Figure 4.15, illustrates the implementation of this property. The input Running is used to
bound the time steps of the verification to the time that the system is running.

As illustrated in Figure 4.16, this function can be divided into four different sub-functions
that are denoted as:

fa(Filling, t) ,
fb(baloon_stat, t),
fc(Running, t),
fd(a, b, c, t).

Figure 4.16 Internal functions in property 2

The function fd(a, b, c, t) is constructed by using an Embedded Matlab function and its output
is updated at each time step t after the preceding functions a,b and c. The output of this
function over the time is represented in Equation 4.5. Moreover, whenever the Running signal
is true and when the Filling signal is true, it must be remain true until the BaloonStat1 signal
becomes true (Full = 1). The code corresponding to MATLAB Function 2 is provided in
Appendix B.

Formalization: Let M be a Simulink model, and property 2 denoted by p:

M |= p iff G fd(a, b, c, t) = true

Proof : The block function of this property can be written as: fd(a, b, c, t), where the
output should hold true during the execution at any time step t. This property has three
inputs and one output which is connected to a Proof Objective block (P-block).

fd(a, b, c, t) =

0 if (¬c(t) ∧ ¬Pre(b, t) ∧ ¬b(t))
∨ (c(t) ∧ Pre(a, t) ∧ ¬a(t) ∧ ¬b(t))

1 otherwise

(4.5)

65

Property 3

The goal of this property is to assure the model does not generate any false alarms. To
address this property we have designed a statement that validates the opposite condition
and applied a ’not’ to it.

This property ensures that the controller never ends up in a state where we have ’Filling
== true’ (which means the process is undergoing) and we have the alarm light on without
having detected any anomaly. The anomaly detection always sets the variable ’bError’ to
true. Hence, if ’bError’ is set to false, means there is no anomaly and the state ’Alarm.Off’
in the controller is active.

Figure 4.17, illustrates the implementation of this property. The input Filling is used to
bound the verification to the time that the system is in the balloon inflation process.

Figure 4.17 Property 3

Formalization: Let M be our Simulink model, and property 3 is denoted by p:

M |= p iff G fd(a, b, c, t) = true

Proof : The block function of this property can be written as:
fd(a, b, c, t), where its output should hold true during the execution of the program at each
t time steps. This property has three inputs and one output which is connected to a Proof
Objective block.

66

As shown in Figure 4.17, the output of Embedded Matlab function at each time step, is
also the result of the property and should be hold true at any time step t. The value of d
over time in the Figure 4.17, corresponds to the output of the function fd(a, b, c, t) which
is already declared in Equation 4.5. The function fd is constructed by using an Embedded
Matlab function and its output is updated at each time step t after the preceding blocks
(AND, RO1 and RO2).

Property 4

The goal of this property is to validate that the model do not permit the pressure within
the two balloons to exceed the maximum value configured by the user. This property can be
modeled in simulink as represented in Figure 4.18.

Figure 4.18 Property 4

We have modeled this property by performing a simple comparison between the balloon
pressure and the target pressure when the status of balloon is reported as full by the controller.

fc(a, b, t) = ¬a(t) ∨ b(t) (4.6)

The Relational Operator block RO1 validates if the balloon status is full by comparing the
input value BaloonStat1 to the constant FULL (−1 = empty, 0 = notfull, 1 = full). In
addition, RO2 validates if the pressure reported by the controller at the time step t is equal
to the configured target pressure. The output value of the Imply block over the time should
be always true to prove that the property is satisfied. The function corresponding the this
block can be represented as Equation 4.6. This property also has two inputs, and its output
is updated at each time step t after the preceding blocks (RO1 and RO2).

67

4.5.2 Verification

Formal verification of specified properties are done on a computer having an Intel Core i7
CPU with 6GB of RAM. We employed Matlab version 2013b and Simulink Design Verifier
toolbox is also used as the verification engine.

Table 4.7 depicts the result of the property proving for different properties with their param-
eters. Since we had two different implementation for the Function-call Subsystem block in
property I, they are denoted as 11 and 12 in the result table. (Implementations are shown in
Figures 4.13,4.14a).

As can be seen in results illustrated in Table 4.7, the verification time varies in different
properties. Some has shorter and some has longer analysis time. The column Elapsed in
results table, specifies the time that verification engine spends to find appropriate test cases
to prove or disprove the corresponding property. The column Params & Conditions in the
table denotes parameter values and conditions that are set to verify a particular property.

For instance, based on the design of the system, a cylinder has a movement lag which is
defined as 2 seconds by default. In addition, each cylinder movement increases the pressure
equal to 6 cm of water, and if the target pressure for balloon is defined as 18 cm (Empty
balloon has 6 cm), the cylinder needs to move two times. Every request for inflate a balloon
should be done within 15 seconds which is defined in InflateTimer. As such, if the cylinder
lag set to 7 seconds, the total inflation time including time spent for other states exceeds 15
seconds, as a result the property becomes falsified.

In fact, complex properties spend more analysis time than others. On the other hand, using
the Proof Assumption block and defining the appropriate parameter value , is one of the ways
that can reduce the verification time.

4.6 Conclusion

In this paper, we used the formal approach and model-based design in order to specify and
formally verify the functionalities of a medical device known as Endotracheal intubation. We
proposed a formal model of the system as well as specification blocks of its linear properties,
and formally verified the specified properties using Simulink Design Verifier. The system is
modeled with parallel components in Simulink/Stateflow, where the event passing/handling
and synchronization is efficiently provided. The chart is also optimised to avoid having
possible issues such as State Inconsistency, Conflicting transitions, Data Range Violations
and Cyclic Behavior in the Stateflow. We also employed Simulink Design Verifier toolset
to prove correctness of the model as well as the safety and some temporal properties. In

68

Table 4.7 Verification results

Property Params & Conditions Elapsed Result
11 Fill attempts > 2 17m, 42s Falsified
11 Fill attempts = 2 17m, 43s Satisfied
12 Fill attempts > 2 15m, 14s Falsified
12 Fill attempts = 2 15m, 18s Satisfied
2 Cylinder lag=7 secs 1h, 3m, 24s Falsified
2 Cylinder lag=4 secs 1h, 3m, 24s Satisfied
3 Cylinder lag=2 secs 3s Falsified
3 Cylinder lag=6 secs 2h, 4m, 25s Satisfied
4 Set point=18, Target <=18 1m, 10s Satisfied
4 Set point=18, Target <16 30m, 56s Falsified

this effort, property proving as well as simulation traces for different components is done
based on the discrete timing concept. In addition to the previous work, the subsystem
advantage is used for encapsulation the specified properties. Moreover, the capability of
triggered subsystems to handle the event from another components in the model is also
used. The authors plan to extend this work for more linear temporal properties, in order
to overcome the limitations of the Simulink for specifying such properties. These properties
will be available through Simulink library as different customizable blocks.

69

CHAPTER 5 ARTICLE 3
Using Design Verifier for Proving some LTL Properties

Mohammad-Reza Gholami, Hanifa Boucheneb
International Journal of Intelligent Information and Database Systems (IJIIDS)

Abstract– The increase in sophistication in embedded systems such as in healthcare and
avionics, requires design of safety-critical applications to use more systematic processes for
development. Traditional design processes are not responsive enough in identifying the flaws
in requirements; thus, the whole process would be more expensive and take longer. Mat-
lab/Simulink is an often used industrial tool in designing embedded systems. One of the
primary uses of Simulink is modeling the embedded software and its physical environment
in a common formalism. This feature of the tool renders it highly valuable in the validation
of embedded software design, leveraging numerical simulation. Having claimed this, formal
verification of such models still proves problematic, as Simulink is a programming language
without enough documented formal semantics. In this paper, we propose a technique to
facilitate formalizing some LTL properties so that they can be added to the Simulink model
as some customized blocks. We also present how the Simulink model can be instrumented
by using proposed custom library and show the way that the functionality is formalized.

Keywords– Formal Methods; Formal Verification; Design Verification; Model-Based Design;
Linear Temporal Logic; Safety-Critical.

5.1 Introduction

In most day-to-day activities that we undertake, software performs a crucial role. Such
diverse activities as driving cars, operation aircraft navigation systems, and working in an
office all require software. In the last few years, reliability of complex hardware and software
systems has become progressively vital. As a result, the need for verification of software is
a major problem in the world of computer science. The systems used today are real-time
which require more effort to find defects, and as a result, validation and verification activities
are becoming quite costly. The essence of software validation cannot be over-emphasized
given that some software can cause catastrophic repercussions to human life. When the
catastrophic consequences are caused by failure in a computer system, the system is termed
as safety-critical.

70

In software engineering a crucial goal is to come up with a system that operates reliably
irrespective of its complexity. That is to say, employing formal methods which are mathe-
matically based languages, techniques and tools, is a prospective approach to attaining this
goal. With regard to a safety critical system, having one single error in the source code may
causes an unexpected behavior of the system. Consequently, it can even incur high costs and
could possibly compromise people’s well being. With regard to critical real-time embedded
systems, validation and verification activities are becoming quite costly with the growth in
the size and complexity of these systems.

Applying a Model-Based Design [33] for safety-related and large applications, and employing
formal verification techniques, demonstrate that a system or its software component satisfies
its accurate criteria. For conducting a formal verification, the first step is to define the formal
model of the system. Additionally, accessibility of executable models to perform validation,
verification and test is the most operative factor of Model-Based Design that aids in applying
formal verification techniques.

This paper is organized as follows: Section 5.2 presents some background and previous work
connected to this research topic. Description of the employed tool and its components along
with their semantics are placed in Section 5.4. We depict implementation of our properties
in Section 5.5. The results of our implementation are evaluated in Section 5.6. Finally,
Section 5.7 forms the conclusion.

5.2 Background And Related Work

The abstract representation of a system is what forms a model. A software model refers to
the way of expressing a software design, so as to depict the design, some sought of abstract
figures or language typically used. When conducting software modeling, there is a need to
include interactions with other software, interfaces and the entire software methods [34]. A
modeling language can be used by engineers to model the system which can be textual or
graphical [39].

5.2.1 Model-Based Design

The identification of errors is done late by traditional design processes and hence, the entire
process becomes more costly and long. As for the model based design, the complexities
and difficulties are addressed by the provision of an executable specification which denotes
that the model is more than just a document. It is a crucial part of the design process
[54]. It further offers a single design environment that enables developers to utilize a single

71

model of the whole system for purposes of model visualization, single design, data analysis,
testing and validation and finally the deployment of the product, with or without automatic
code generation [46]. Additionally, model-based design establishes a structure for reusing the
software that permits established designs to be reliably and effectively upgraded in a cost
effective and more simplistic way. This sort of design concentrates on utilizing executable
system models as the basis for the, implementation, specification, test and design verification
[13].

Simulink R© can be used to build an executable model. This is an environment for simulation
that is multi-domain and model-based design for embedded and dynamic systems. It offers a
graphical environment that is interactive and a customizable set of block libraries that help
the user to simulate, design, implement and test a wide range of time-varying systems that
include controls, signal processing, image processing and video processing.

5.2.2 Formal Methods

These methods improve the process of verification by using formal concepts and notations in
writing specifications and requirements. These methods offer different degrees of formal proof
that is used within the process of verification. It can also be used to augment the validation
process, by allowing the properties and consequences of non-executable specifications to be
identified through a theorem proving at the early stages of the life cycle. Also in the formal
methods, logical and mathematical techniques are used to investigate, express and analyze
the specification, documentation, design and behavior of both software and hardware.

The term formal in formal methods comes from formal logic and implies ”to do with form”
[66]. In formal logic, reliance on judgment and human intuition is evaded in assessing the
arguments. In order to constitute a valid proof or an acceptable statement, formal logic
utilizes a constrained language with precise rules for writing theorems, assumptions and
proofs.

5.2.3 Formal Verification

Formal verification in respect to software refers to the automated proof of properties that
are specified on the code without the program being executed. Further, it ascertains that
a design is aligned to some notion of functional correctness which are expressed precisely
[18]. The main benefits of formal verification relative to testing or dynamic verification,
are its exhaustiveness and soundness. Specifications in formal methods are the well-formed
statements that are mathematical in nature and are used to specify a property that is to be

72

verified in the system [10].

In formal verification, the mathematical representation of the system refers as a model and
model checking [24] is one of the most common formal verification techniques. By applying
model checking technique and having design’s model along with a temporal logic formula used
to describe a specification, can determine whether or not the model satisfies the specification
[44].

5.2.4 Related Work

Simulink is a platform for model-based Design of embedded systems fromMathworks. Simulink
Design Verifier is a toolset that uses formal analysis for property proving. Although Simulink
design Verifier provides some temporal operator blocks in its library, but specifying LTL prop-
erties is not potentially straight forward. For this reason, proving linear temporal properties
in a Simulink model is done by transforming the model into input language of another model
checkers.

Recently, efforts have been exerted in transforming the Simulink model. In particular, for
an embedded system application Yelamuri [64] presented a new technique to generate C-
code from Simulink models. In the proposed technique, FLEX and BISON are used as
code-generating tools as well as generating the model parser which can then extract detailed
information pertain to blocks and lines in the model and create tree of blocks. The primary
motivation in [53] presenting a translator algorithm along with a tool that can automati-
cally translate a subset of Simulink model into NuSMV model checker as an input language.
Meenkashi et al. believe that using the proposed tool shortens the process of formal verifi-
cation of safety avioncs components with less error.

Christian Heinzemann et al. in [40], proposed a model-2-text transformation that is used
to transform instances of the given Simulink EMF-Model. Similarly, Pajic et al. In [58],
presented a matlab plug-in tool known as UPP2SF that can be used for translation of models
from UPPAAL to Simulink/Stateflow. The proposed tool also enables UPPAAL models to
be simulated and tested in Simulink/Stateflow.

For the verification of properties, there are works describing the translation of Simulink mod-
els into various model checking languages, including NuSMV, Lustre, SAL and Promela/SPIN [55,
53, 72, 59, 50].

With attention to linear temporal properties, efforts have been exerted recently in describing
LTL verification of Simulink models. As an illustration, Miller et al. in [55], propose using
the symbolic model checker NuSMV [23] as verification tool. Since the simulink model can

73

not be used directly as an input for NuSMV model checker, as a result it should be first being
translated into synchronous dataflow language Lustre [36] and then into NuSMV. Similarly,
the primary motivation in [12] was to verify the correctness of Simulink models with respect
to a set of specifications given as LTL formulae. The authors applied the explicit model
checking technique, after initially formalising the simulink models based on the set-based
reduction concept. it is done to reduce the state space and support for non-determinism of
input. In terms of operational semantics, formalization of Mathwork’s Stateflow is described
in [37] by Hamon et al. Similarly, Bouissou [19] also outlined the operational semantics of
Simulink engine.

Above mentioned works were done on transforming between Simulink model into another
model checker tools. In our work, we propose formal verification of Simulink models based
on extending the Simulink library with some customizable blocks. In addition, the proposed
blocks have support for some LTL properties and facilitate the process of instrumenting the
models with properties. Moreover, The generated model can also be analysed by Simulink
Design Verifier.

5.3 Temporal Logic

The other type of logic, symbolic logic, supports generally the reasoning with propositions,
i.e., with statements to be evaluated to false or true. Temporal logic is a branch of the
broad symbolic logic concentrating on propositions whose truth values rely on time. That
is contrary to the classical logic point of view where the truth value of a recurrently spoken
proposition must always be the similar and must neither depend on the mechanisms of
additional information nor on the repetition. Temporal propositions classically contain some
(implicit or explicit) reference to time conditions, while classical logic is involved in timeless
propositions [47].

5.3.1 Linear Temporal Logic

LTL (linear temporal logic) formulas are constructed from predicates through the usual propo-
sitional connectives (∨,∧,⇒,¬) and two temporal operators: © and ∪ [70].

Following this logic, one illustrates the distinct properties of different paths making up a
computation tree. Specifically, following this logic can express such properties as ’for every n
consecutive states’ or ’for some state on the path’. This logic is known as a linear temporal
logic, or simply LTL.

Formulas such as these are satisfied through computations. These are functions which assign

74

truth values to the proposition elements at each time step [31].

Semantics of LTL formulas [45] are defined as follows:

— If A is a formula, then ¬A is a formula.
— If A is a formula, then ©A, ♦A and �A are formulas.
— If A and B are formulas, then A ∪ B is a formula.

The symbols ©,♦,�,∪ are called temporal operators

In advance of formally defining the semantics of LTL formulas, we must first try to explain
their meaning more informally. LTL formulas are statements - either true or false - of
computation paths, or sequences of states s0, s1, s2,

Semantics of LTL formulas is defined as follows:

Let π = s0, s1, s2, ... be a sequence of states and A be an LTL formula. We define the notation
A is true on π, denoted by π |= A, by induction on A as follows. For all i = 0, 1, ... denote
by πi the sequence of states si, si+1, si+2, ... (Note that π0 = π).

— π � ¬A if π 2 A.
— π �©A if π1 � A;
— π � ♦A if for some i = 0, 1, ... we have πi � A;
— π � �A if for all i = 0, 1, ... we have πi � A
— π � A ∪ B if for some k ≥ 0 we have πk � B and π0 � A, ..., πk−1 � A.

When we consider a path π and paths πi as in this definition, instead of saying that a temporal
formula A is true on πi we will sometimes say that A is true at the state si on the path π.

Semantics of Temporal Operators are illustrated in Figure 5.1, and can be explained as
follows:

© (next) The formula ©A holds, if A holds at the next state on the path.

♦ (eventually) The formula ♦A holds, if A eventually occurs, i.e., A holds at some state on
the path.

� (always) The formula �A holds, if A holds globally, i.e., at every state along the path.

∪ (until) The formula A∪B holds, if A holds until B occurs, i.e., there is a state on the path
at which B holds, and at every state before A holds.

75

Figure 5.1 Semantics of Temporal Operators

5.4 Simulink and Stateflow

By definition, Simulink is a platform for model-based Design and multi-domain simulation
of dynamic systems. Stateflow, on the other hand, is a model-based development environ-
ment that is widespread and is used in several industries, such as medical, aerospace and
automotive. Particularly, Stateflow diagram facilitates the graphical representation of paral-
lel and hierarchical states together with transitions between them and inherits all code and
simulation generation capabilities from Matlab toolset. Following this section, Simulink and
Stateflow semantics are briefly described.

5.4.1 Simulink

Simulink helps the design and simulation of wide range of systems by providing an interactive
environment along with collections of customizable blocks. It includes extensive library and
toolboxes of functions commonly employed in modelling a system.

Simulink Library

Simulink comes with a standard block library whose blocks are placed in different categories.
In addition, we can create our own block libraries as a way to reuse the functionality of blocks
or subsystems in one or more models. The basic work flow for creating and using our custom
block libraries (VeriForm) with Simulink blocks is presented in the implementation section.

In the following, some of the most common Simulink blocks from the standard library is
briefly described [6]. These blocks are used to specify some LTL properties.

Inport blocks connect outside of a modeled system into the system, and can be found in Ports
& Subsystems, Sources library. Simulink R© [6] software assigns Inport block port numbers
automatically within a top-level system or subsystem sequentially, starting with 1. Outport
blocks are connections from a modeled system to a destination outside of the system, and can

76

be found in Ports & Subsystems, Sinks library. Simulink R© software assigns Outport block
port numbers automatically within a top-level system or subsystem sequentially, starting
with 1. The Constant block produces a constant value with the type real or complex. The
Relational Operator block performs a relational operation on its two inputs and produces
output. Given operators can be equal, not-equal, smaller than, smaller or equal, greater
than, and greater than or equal. The Logical Operator block is being used to perform the
specified logical operation on its given inputs. The supported operations consist of AND,
OR, NAND, NOR, XOR, NXOR and NOT. The Sum block applies addition or subtraction
on its given inputs. It has no state and the sample time for this block is also inherited from
driving blocks. The Unit Delay block holds and delays its given input by the sample period
specified as parameter. In other words, unit-delay block gives the opportunity to change the
sample time of the signal.

Figure 5.2, denotes how the above mentioned blocks are displayed in the Simulink standard
library.

Figure 5.2 Simulink sample blocks

Simulink Block Methods

Blocks represent multiple equations which are represented through Output and Update types
known as block methods. By running a block diagram these methods can be evaluated too.

A simulation loop is used to evaluate block methods in which each cycle through the simula-
tion illustrates a block diagram evaluation at a specific point in time. As such, at the current
time step, outputs of each block as well as its states at the previous time step, are calculated
by the output method depending on the block inputs. Likewise, discrete state of each block
at current and the previous time step are calculated by update method.

A Simulink block has sets of input and output ports. A block with N input and M output
ports defines a function which describes each of the signals at the output ports as a (possibly
time-dependent) expression of the signals at the input ports. Formally, a block is a tuple

77

(Pi, Po, f), where Pi is the set of input ports, Po is the set of output ports and f : RN → RM

is a function which defines the behavior of the block [52, 22].

Some Simulink blocks [52, 37, 21] with their ports and functions are denoted in Figure 5.3.

Figure 5.3 Simulink blocks with ports and functions at time t

As an illustration, the Sum block in Figure 5.3 has two inputs and one output ports. In
addition, output of the block at time step t, equals to the addition of values of its input ports
at time t, and the block function is shown as m1(t) = n1(t) + n2(t) .

78

Simulink Semantics

Simulink has a plethora of semantics (depending on options that are configured by the user),
which are informally and often times only partially documented.

Regarding Simulink timing, it is a known fact that the discrete-time Simulink signals are
piecewise-constant, continuous-time signals [72]. Associated timing information can be linked
to these signals, referred to as sample time. Furthermore, the sample time of a signal shows
exactly when the signal is updated in the model. When the sample time equals zero, the
block is identified as having continuous sample time. This means that, it executes at every
point in time. When sample time has a value greater than zero, the block is identified to
have discrete sample time.

In Simulink, a discrete block executes at sample time points, and remains constant in the
intervals between these sample time points. In like manner, Simulink block methods such as
Output and Update methods are executed at each sample time.

Simulink Block Priorities

Update priorities to blocks can be assigned explicitly. The output methods of each block in
the model are executed depending on the their priorities from higher to lower priority. If
there is consistency with block sorting rules the priorities can be honoured. Moreover, if the
execution order of the block is set explicitly by setting block priorities within a subsystem,
Simulink removes those block priority settings when the subsystem is expanded. Simulink
checks the block properties in the following order:

— Sample time (faster rate first)
— Priority (lower priority number first)
— Port number (lower input port number first)

5.4.2 Stateflow

Simulink is used to model the continuous dynamics and Stateflow is used to specify the
discrete control logic and the modal behavior of the system [71]. The Stateflow modeling
language is based on hierarchical state machines with discrete transitions between states. It
employs a variant of the finite state notation of machine as establsihed by Harel [38] and
offers the elements of language needed to describe complex logic in a readable, natural and
understandable form. Given that it is strongly integrated with Simulink and MATLAB,
it can offer an environment efficient enough for designing embedded systems that contain
supervisory and control.

79

A state is referred to as superstate if there are other states in it and a substate when it is
held in another state. When a state comprises of two or more substates, it has decomposition
that can be either parallel (AND) or exclusive (OR) decomposition. All substates at a given
level in the hierarchy of the Stateflow must have the same decomposition. In parallel (AND)
decomposition, states can be active simultaneously and the activity of each parallel state is
independent of all other states.

Defined Events can be used to trigger actions in parallel states of a Stateflow chart. One way
of triggering an action and/or transition is through broadcasting of an event. The execution
of Actions can be either as part of a transition from one state to another or based on the
activity status of a state which can be during exit, entry and on event actions.

Figure 5.4 Stateflow Semantics

A transition in a Stateflow is represented as an arrow between two states in Figure 5.4. It
depicts the behavior of a condition, simple event and transition action detailed on a transition
from one exclusive (OR) state to another. At first, state S1 is active and Entry action is
then executed. Upon receipt of the event evData the chart root identifies a valid transition
to state S2 due to the event evData, so it validates the condition and if the result is true,
the Condition Action gets immediately executed and completed. The state S1 is marked
as inactive and the Transition Action is executed and completed just when the transition
destination S2 has been established to be valid. In other word, whenever a transition is
enabled (Source state is active and condition is true), its corresponding condition action
takes place before the transition action is taken. In contrast, transition actions occur only
after the source state of a valid transition becomes inactive, i.e., the transition is taken.

For instance, transition from S1 to S2 can occur when S1 is active, event evData occurs and
the condition flag==true is also valid. States can have diverse actions such as: entry, during,
exit, and on event-name which are being executed based on the current status of the active
state. In like manner, (i=1) is executed whenever the state Start becomes active and entry

80

action is executed. Moreover, func2() is called whenever the state S2 loses control and its
exit action is executed.

5.4.3 Simulink Design Verifier

Simulink Design Verifier R© [5] (SLDV) is a tool set of Matlab which uses formal methods
to identify hard to find design errors in the models without requiring extensive tests or
simulation runs. It uses the Prover Plug-In R© [2] formal analysis engine, in order to prove the
properties. It is known from the documentation of the SLDV, that the Prover Plug-In is based
on Stålmarck’s proof procedure which was patented in 1992 [68]. In addition, performing
bounded and unbounded model checking, sequential and combinational equivalence checking
as well as the test generation are some features provided by this tool. Moreover, modelling
of sequential systems employing imperative and declarative formalisms is also supported by
prover engines. It also supports a wide range of data types including integers, reals, arrays
and booleans.

In the following, Implies and Within Implies blocks from Simulink Design Verifier library
which are used in specifying LTL properties, are briefly described:

Implies block

The Implies block from Simulink Design Verifier library let the designer to specify a condition
to produce a given response. It tests whether the first input implies the second. For instance,
if input A is true and input B is false, the output is false; for all other pairs of inputs, the
output is true.

Within Implies block

The Within Implies block captures the within implication by observing whether the ’Obs’
input is true for at least one step within each true duration of the first input In. Whenever
Obs is not detected within a particular input true duration, the output becomes false for one
time step in the step that follows the input true duration. This block captures the behaviour:
(’Within’ In) ⇒ Obs.

To put it another way, the true duration of a signal corresponds to consecutive time steps
during which a signal is true. Based on the definition of the Within Implies block, if Obs is
not observed within the true duration of In, the Out becomes false for one time step. When
there is no true duration of In, Out remains true, and if Obs occurs multiple times during
the true duration of input, it does not affect the output.

81

(a) False Output (b) False Output (c) True Output

Figure 5.5 Within Implies Simulink Block

In the example illustrated in Figure 5.5, model sample time is considered as 1 second.
— In Figure 5.5a, although Obs is observed within the first true duration of In (steps

1...4), but it is not observed within the second true duration of In (steps 5...10), so
Out becomes false for one time step after the In signal becomes false (at step 11).

— In Figure 5.5b, Obs is not observed within the first true duration of In, so Out becomes
false for one time step after the In signal becomes false.

— In Figure 5.5c, Obs is observed within the true duration of In (at step 4), so Out
remains true until the end of the simulation.

5.5 Implementation

In Simulink Design Verifier, the generic Proof Objective block with the Implies block will
be used for almost all requirement types except for undesired behavior where an alternative
modeling strategy closer to the written formulation were used [51]. In addition, requirement
specification is needed to be formalized by using different Simulink blocks. In fact, this
procedure is crucial and time consuming when those requirements are either complex or
frequently used.

Following this section, the Simulink file format and our proposed tool is described. Some cus-
tomizable LTL properties which are included in the VeriForm library are detailed right after.
Since any modification in the Simulink model applies some modifications in the model file,
the impact of using different types of proposed properties (e.g. Model Reference, Verification
Subsystem) from VeriForm library are also discussed.

82

There are two different ways that the user can employ VeriForm library: 1) Using this
predefined library when creating the Simulink model, 2) Using LTL2SL tool that can add
the chosen block to the previously made Simulink model. In our description, we assume that
the provided Simulink model is compatible with Simulink Design Verifier (Some blocks such
as continuous-time blocks are not compatible with SLDV).

Using VeriForm library to specify properties is not easy for less-experts, so to help designers
we propose LTL2SL tool that facilitates the process. In addition, the user can use LTL2SL
tool to instrument the model by choosing any predefined LTL block from the VeriForm
library and specify which signal should be connected to which port. following this step the
user can also specify the value for an input port of the block if needed.

The work flow of the proposed solution is illustrated in Figure 5.6.

Figure 5.6 Life cycle of the entire process

5.5.1 Understanding Simulink Model

Simulink models are stored as ’.mdl’ files, which contains textual description of the model
(properties of blocks and their interconnections along with information required for simulation
and graphical display of model) [51],[64]. Hierarchy of model properties is shown in Figure 5.8.
Model file contains many properties and only few which are of interest with respect to a code
generator are highlighted in the Figure 5.8.

Model file begins with keyword Model then enclosed inside curly braces are the model prop-
erties, default block properties used in this model and system details.

Additionally, the file starts by defining an outer section called Model. Inside the section, the
name of the model is defined by the parameter with the key Name and the value "Minimal".

83

As a convention, this name should be equal to the actual file name. The next six nested
sections Array, Simulink.ConfigSet, BlockDefaults, AnnotationDefaults, LineDefaults, Block-
ParameterDefaults, contain some configuration parameters and default values, which are not
used in the code generation, but have to be present in the file. Sample Simulink model is
denoted in Figure 5.7.

Figure 5.7 Sample Simulink Model

The actual content of the model resides in the System section. In Simulink, the basic elements
that a model consists of are called blocks. The behavior of the whole model is defined by the
individual blocks as well as the connection between them.

System begins with keyword System and contains block details followed by line details inside
curly braces. Subsystem and Stateflow are treated as a System inside another system. Lines
normally contain source and destination block names and port numbers. Branch information
is included in line details if output of one block is connected as input to more than one block.

Typical blocks are for example constant blocks, subsystems, clocks, or scopes. An important
block in Simulink is the Subsystem block. A subsystem is used to group blocks and to create a
hierarchy in the model. In addition, the Subsystem block contains a specific parameter Ports
which lists the number of ports for this subsystem. Moreover, a subsystem contains a nested
section called System. This sections contains the common Name parameter, which needs
to be equal to the name of the outer block, and a specific parameter Open, which tells the
Simulink user interface whether it should display a window containing the contents of that
subsystem or not. At last, the System section contains all block which are contained in the
subsystem. In the example illustrated in Figure 5.7, the model contains two incoming ports,
one single outgoing port and Add block. Hierarchy of model properties for this example is
shown in Figure 5.8.

5.5.2 Property Specifying Process

The steps for creating and using the proposed custom library is described in this section. To
begin, we can enumerate the steps as follows:

84

Figure 5.8 Simulink Model File Format

1. Specify the property by using blocks from the standard Simulink library including
other subsystems or embedded matlab functions (EMF).

2. Group blocks in the defined property and convert them as a new Subsystem.

3. Create the VeriForm Simulink custom library from the resulted Subsystem.

4. Make a parametrized template from the resulted Subsystem to be used by the stand-
alone tool.

5. Make a Referenced Model from the resulted Subsystem then make a parametrized
template as well to be used by the stand-alone tool.

6. Instrument the model by using the proposed tool or choosing the property from the
Simulink library browser where the VeriForm custom library is added.

85

As shown in Figure 5.8, each block has an identifier named SID which is unique in each model.
Making parametrized template means that for each property a single block will be created
and the required items and values are parametrized to simply being used by the proposed
stand-alone tool. Figure 5.9b, illustrates the created subsystem from property defined in
Figure 5.9a.

When using the default subsystem block from Simulink library in the instrumentation process
of the model, the definition of all the blocks which are grouped and encapsulated in the
Subsystem will be transferred to the generated model. By using Model Reference instead
of default Subsystem block, we can make the process lighter while we also made the logic
of the property hidden. The proposed method suggests using model reference which is also
configured as an atomic. The difference between generated model code for the Subsystem
block and Model Reference is illustrated in Figure 5.10.

The implementation of this method makes the generated model more simple and easy to
debug. For instance as per shown in Figure 5.10b, just a tiny code corresponding to inputs
and outputs of the property is added to the Simulink model file.

5.5.3 Definition of Properties

Following this section, the proposed custom properties will be described along with their
inputs and outputs. We assume that M is the provided Simulink model, and selected outputs
of blocks inside M are connected to inputs of proposed properties.

The term Pre(x, t) is used for Predecessor in provided equations when defining specified
properties (It corresponds to Unit Delay block in Simulink library). As such, The predecessor
of signal x at time t is denoted by Pre(x, t) that corresponds to the value of that signal at
time step t− 1. The term Pre∗(x, t) is also used as the transitive closure of Pre(x, t).

(a) Part of a sample model (b) Model Reference

Figure 5.9 Converting group of blocks to a Model Reference

86

(a) Subsystem Code (b) Model Reference Code

Figure 5.10 The difference between Subsystem and Model Reference

87

Property Eventually p

This LTL property denoted by ♦p, holds for a given path π, if p eventually occurs in some
state of π. We can not directly implement this property with temporal operators provided
by Simulink Design Verifier, because it only allows verification of assertion-based temporal
properties and the verifier doesn’t know when the execution path terminates. To prove this
property, we can use the negation so the violation of the property corresponds to the formula
¬(�¬p). As such the verifier checks if there is any state in the path π that doesn’t hold ¬p.

Let p be desired_val = signal. The proposed block concludes the desired value as the
second input to apply it in the condition. The implementation of this property is illustrated
in Figure 5.11.

Figure 5.11 LTL F p

This property has two inputs, one for the signal corresponding the current value of signal,
and the second one as mentioned earlier is used for the condition (at each time step, p is
satisfied iff signal = desired_val). For instance if we want to verify the signal eventually has
the desired_val of 5, the condition is made based on the signal’s value.

The sample time for the entire model is set to 1 second. Since this part is added lately to the
model so the execution order of the Relational Operator block RO1 is lower than the other
blocks in the model(every block added to the model has a sorted order starting from 0, and
blocks with lower sorted order number have higher execution order). The evaluation of the
Relatinal Operator block diagram which is denoted in Figure 5.3 is performed at each time
step. Its output is also available to the Proof Objective block (P-block) at the same time step
which specified to have execution order than Relational Operator block.

The Proof Objective is used in this custom block and validates the output for false. If the
result of the design verifier shows that the property is not satisfied, in fact it found that in
a particular step of the execution the signal held the desired value and (�¬p) is not true,
consequently the property ♦p is satisfied.

88

Property Eventually p in [0,n] steps

This LTL property denoted by ♦[0 ,n]p, holds for a given path π, if p eventually occurs within
the first n steps of π. The desired specification for 5 time steps can be modelled in LTL as:

ϕ = �[0,5]p

where �[0,5]p is an abbreviation for ’p may be satisfied within five steps of time’ and is defined
by:

�[0,5]p = p ∨ ◦p ∨ ◦ ◦ p ∨ ◦ ◦ ◦p ∨ ◦ ◦ ◦ ◦ p ∨ ◦ ◦ ◦ ◦ ◦p

Satisfaction of formula ϕ requires that at least at one time step p holds, that is, communica-
tion will always occur within the next 5 time units.

To implement this property we used the standard Simulink library to build a required amount
of time steps and a temporal operator Within Implies which is provided by Simulink Design
Verifier library. As per definition of Within Implies block, it captures the within implication
by observing whether the ’Observer’ input is true for at least one step within each true
duration of the first input In. By employing of Unit Delay, Sum and Relational Operator
blocks we first constructed a limited steps of execution, and then, the output of the first part
is fed to Within Imply block. A Proof Objective with the desired value of true is used to
let the design verifier prove if the property is satisfied or not. The implementation of this
property along with the execution order of the blocks are illustrated in Figure 5.12.

At each time step, the Relational Operator block RO1 evaluates if the property did not
exceed the specified time steps, and ensures that the input of the Whithin Implies block
becomes false as soon as the desired duration is passed. The Relational Operator validates
the input signal against the desired value. This signal then becomes the ’Observer’ input of
the temporal operator Whithin Implies block and afterwards the Within Implies block checks
if the Obs was true for at least one time step during the specified number of time steps.

The purpose of using the Unit Delay block is to prevent causing the Algebraic-loop. As
depicted in Figure 5.3 the evaluation of the Sum block is done in each sample time, so direct
feedback the output of the Sum block to one of its inputs causes algebraic loop and will be
reported as an error in compile time. In other words, when using unit-delay, once the output
of all blocks at time t is computed, the internal state of unit-delay block can be computed
and this internal state will be the input of the Sum block at the next time step (Predecessor
of time step t+ 1).

89

Figure 5.12 LTL F[0,n] p

This property comes with three inputs, first is the input signal, second is the value that should
be held eventually within n time steps in the path π, and the third defines the duration steps
n. In particular, specification of the property is located in the block illustrated in Figure 5.12,
and its output represents p.

Simulink model M can have different inputs and outputs, and depend on the chosen property,
desired outputs are connected to the property block to get verified.

Moreover, the unit-delay has an initial condition set to zero, so at the first time step, its
output will be the value of the initial condition.

Figure 5.13 Internal functions in F[0,n] p

Formalization: Let M be a Simulink model and p be a formulae:

M |= ♦[0,n] p iff G fc(m4,m5, t) = 1

90

Proof : The block function of this property can be written as fc(m4,m5, t), where the output
should hold true during the execution for any time t. To put it another way, the idea is to
translate an LTL property into an invariant. As illustrated in Figure 5.13, the functional-
ity of this block can be divided into three different functions that are denoted as fa(n, t),
fb(input, value, t) and fc(m4,m5, t), where the output of each function based on the evolution
of time t is as follows:

fa(n, t) =

1 if 0 ≤ t ≤ n

0 if t > n

fb(input, value, t) =

1 if input = value

0 if input 6= value

fc(m4,m5, t) =

0 if ¬m4(t) ∧ ¬Pre∗(m5, t) ∧ (t = n+ 1)

1 Otherwise

Pre∗(m5, t) = 1 iff m5 holds at least once before the current time.

By using fixed-step discrete sample time, at each time interval tn = nTs + |To|, Simulink
executes all block outputs or block update methods based on the execution order denoted
on the Figure 5.12. The sample time period Ts is always greater than zero and less than the
simulation time Tsim. Offset time Tsim will be used if initial sample time delays is required.
The number of periods (n) is also an integer that must satisfy: 0 ≤ n ≤ Tsim

Ts
. As a matter of

fact, the simulation time is applicable when simulating the model, not property proving.

According to the code associated with Within Implies block in Appendix A, the initial output
of m6 is true. Table 5.1 denotes the output of each function and predecessor values over the
evolution of time t for 8 time steps when input = value at time step 6.
(Property falsified due to m5 did not become true at least once within time t ≤ n).

For simulation of the property ϕ = �[0,5]p, let us assume that the input signal has the values
of input = {2, 4, 6, 8, 10, 12, 14}, and the desired value for the signal input is 8 in maximum 5
time steps (p must be true within 5 time steps). The result of simulation of the property as
block outputs M = {m1,m2,m3,m4,m5,m6,m7}, by considering Tsim = 7, Ts = 1, To = 0
is listed in Table 5.2.

91

Table 5.1 Evolution of signal values over the time - �[0,5]p

t 0 1 2 3 4 5 6 7 8
m4 1 1 1 1 1 1 0 0 0
m5 0 0 0 0 0 0 1 0 0
m6 1 1 1 1 1 1 0 1 1

Pre∗(m5) ... 0 0 0 0 0 0 1 1

Table 5.2 Evolution of block outputs over the time - �[0,5]p

t 0 1 2 3 4 5 6 7
m1 1 1 1 1 1 1 1 1
m2 0 1 2 3 4 5 6 7
m3 1 2 3 4 5 6 7 8
m4 1 1 1 1 1 1 0 0
m5 0 0 0 0 1 0 0 0
m6 1 1 1 1 1 1 1 1
m7 1 1 1 1 1 1 1 1

Property p Until q

This LTL property denoted by p ∪ q and holds, if p holds until q occurs, i.e., there is a state
on the path at which q holds, and at every state before p holds.

Specifying this property by assertion which is supported by Simulink Design Verifier is not
straightforward. Let us assume that p holds true in consecutive steps but still q is not true
during the execution path. So if we make the output signal (result in Figure 5.14) based on
assertion for the trueness of the p, the result will not be accurate because we don’t know if
the q will hold true in the next step or not.

The implementation of this property is illustrated in Figure 5.14. To produce this, we em-
ployed a Stateflow chart named ’Calculate’ to make enable and output signals. The output
of this block is connected to a Proof Objective block which verifies where the property can
be satisfied or not. The Stateflow has two inputs p and q and one output as prop.

A discrete state s ∈ S of a Simulink model with Stateflow chart consists of the set of active
states in a Stateflow of the model along with the various choices of the conditional blocks in
the model.
S = {main,main.s1,main.s2,main.s3,main.s4} denotes the set of discrete states in the

92

Figure 5.14 LTL p U q

Figure 5.15 Stateflow in p U q

proposed Stateflow chart.

In the Stateflow, composition of states is either Parallel (And) or Exclusive (OR). In addition,
A state definition sd is a triplet of actions A = {entry,during, exit}, executed respectively
upon entering, during, and exiting the state, an internal composition, and a list of outgoing
transitions [37]. As such, Outgoing transitions for the Calculate Stateflow chart as illustrated
in Figure 5.15, is defined as: TR = {tr1, tr2, tr3, tr4, tr5, tr6, tr7, tr8}.

The state definition list SD which associates state definitions sd with corresponding states
in the chart is denoted as:

SD = {Main : sd0;S1 : sd1;S2 : sd2;S3 : sd3;S4 : sd4}

93

The definition of the states for the Stateflow depicted in Figure 5.15, can be listed as:

— sd0 = ((A.e, A.d), OR)
— sd1 = ((A.e), OR, {tr1, tr2, tr3})
— sd2 = ((A.e), OR, {tr4, tr5, tr6})
— sd3 = ((A.e), OR, {tr7})
— sd4 = ((A.e), OR, {tr8})

As per shown in definition of state SD, chart has four sub-states. Since states has a OR
composition, at each time step only the active state is evaluated depending on the inputs.
Initially, in the Stateflow illustrated in Figure 5.15, S1 is active and prop = 0 and the goal
is to have eventually prop = 1. The property is considered as satisfied as soon as state S3 is
active. On the contrary the property considered as falsified if state S4 is active or state S3
has never reached. After the second step, if we have only p∧¬q, the state S2 remains active
and the state S3 never reaches, consequently the property becomes falsified. According to
the Stateflow, if q holds in the first state, it reaches the state S3 and the property becomes
satisfied.

Formalization: Let M be a Simulink model and p, q be two formulas:

M |= p U q iff F prop

Proof : The block function of this property is denoted as result = Calculate(p, q), where to
declare that if the path π satisfies F prop, it means that the path allows to reach to state
S3 in the Stateflow (Figure 5.15). According to the Stateflow, S3 is reached if all preceding
states satisfy p p p ... q, which means that the path satisfies p U q. In addition, if the path
satisfies p U q, then the Stateflow reaches the state S3.

Finally, m3 as the output of this property, must eventually hold true during the entire
execution of the chart.

In order to trace p U q, by specifying the time offset To = 0 and sample time period Ts = 1 sec,
the status of the states as sa (Active States) and the output value prop of Stateflow for n = 7
time steps are:

In terms of evolution of time, the execution order Proof Objective block is after the ’Calculate’
chart. Thus, in each time step of the execution, inputs of the Stateflow are evaluated first
and then its outputs are updated and fed to Proof Objective block.

94

Table 5.3 Evolution of variables over the time - p U q

t 0 1 2 3 4 5 6 7
p 1 1 1 1 1 1 0 0
q 0 0 0 0 1 0 0 0
Sa S1 S2 S2 S2 S3 S3 S3 S3
prop 0 0 0 0 1 1 1 1

Property p Until[0,n] q

This LTL property denoted by p ∪[0,n] q, holds for a given path π, if p holds until q occurs
within n steps, and p must be satisfied before q. As described earlier, the only difference
from implementation of p ∪ q is that the property should be satisfied during the n specified
time steps on the path.

Figure 5.16 LTL p U[0,n] q Property

In order to specify this property, we used Stateflow to make enable and prop signals which
are then sent to Imply block. The only difference to p ∪ q is that the property should be
satisfied within n time steps of the path π. This time step limitation is implemented in the
Stateflow by defining a local variable c that is initially set to zero.

This property comes with three inputs. Two inputs for p and q, and the third value t is the
duration steps in the path that property should be satisfied.

The stateflow Calculate, has three inputs p, q, n, and two outputs enable and prop. The output
enable is used to become true and remain true as soon as q became true after consecutive
true occurrence of p in specified n time steps. It also becomes true and remains true even

95

Figure 5.17 Stateflow in p U[0,n] q

after q is not true after p (to set the result to false). In other words, this assures to set true
for the first input of Imply block, otherwise the output of Imply block will be true for false
inputs. The prop has a value false unless q becomes true in n time steps after consecutive
true values of p.

Outgoing transitions for the Calculate Stateflow chart as illustrated in Figure 5.17, is defined
as:
TR = {tr1, tr2, tr3, tr4, tr5, tr6, tr7, tr8, tr9}.

The state definition list SD which associates state definitions sd with the corresponding states
in the chart can be denoted as:

SD = {Main : sd0;S1 : sd1;S2 : sd2;S3 : sd3;S4 : sd4}

The definition of the states for the Stateflow depicted in Figure 5.17, can be listed as:

— sd0 = ((A.e, A.d), OR)
— sd1 = ((A.e), OR, {tr1, tr2, tr3})
— sd2 = ((A.e), OR, {tr4, tr5, tr6, tr7})
— sd3 = ((A.e), OR, {tr8})
— sd4 = ((A.e), OR, {tr9})

Formalization: Let M be a Simulink model and p, q are two formulas:

M |= p U[0,n] q iff G enable⇒ prop

96

Proof : The block function of this property, denoted as result = Calculate(p, q, n), where
the output result should hold true during the execution for all time steps t. The function
Calculate that is encased in this block function, reads p and q and produces two outputs based
on the inputs p, q at each time steps t. The output of the block function Calculate(p, q, n)
based on the evolution of time t ∈ {0, ..., n} is shown as:

prop(t) =

1 if [(c(t) ≤ step) ∧
(q(t) ∨ (q(t) ∧ Pre(p, t)))] ∨
[c(t) > step ∧ Pre(prop, t)]

0 if ¬p(t) ∧ ¬q(t) ∧ c(t) < step

enable(t) =

1 if [(c(t) ≤ step) ∧
(q(t) ∨ (q(t) ∧ Pre(p, t)))] ∨
[c(t) ≤ step ∧ ¬p(t) ∧ ¬q(t)] ∨
(c(t) = step ∧ ¬q(t)) ∨ (c(t) > step)

0 otherwise

To clarify, c is the local variable defined in the Stateflow and acts as a step counter. Finally,m3

as the output of this property, must hold true during the entire execution time t ∈ {0, ..., n}
time, and corresponds to the result of m1 ⇒ m2.

In order to trace p U[0,5] q, by specifying the time offset To = 0 and sample time period
Ts = 1, the status of the states as sa (Active States) and the output values enable and prop
of Stateflow for 7 time steps are shown in Table 5.4. As can be seen in Table 5.4, the property
is not satisfied due to q became true at time step t > 5. Consequently, the last row of the
table denotes that the property did not satisfy G enable⇒ prop.

In terms of evolution of time, the execution order of Implies block is after ’Calculate’ chart,
and Proof Objective block is after the Implies block. Thus, in each time step of the execution,
first inputs of the Stateflow are evaluated and and the outputs are updated and fed to Implies
block.

5.6 Evaluation

Following this section, we introduce a case study in order to use the proposed blocks for LTL
properties to specify some requirements of a home heating control system. The properties

97

Table 5.4 p U[0,5] q - Evolution of variables over the time

t 0 1 2 3 4 5 6 7
c 0 1 2 3 4 5 6 7
p 1 1 1 1 1 1 0 1
q 0 0 0 0 0 0 1 1
Sa S1 S2 S2 S2 S2 S2 S4 S4

enable 0 0 0 0 0 0 1 1
prop 0 0 0 0 0 0 0 0

enable⇒ prop 1 1 1 1 1 1 0 0

are specified based on the requirement specifications of the case study and the verification
results are denoted right after. Since Simulink semantics depends on the simulation method,
we restrain ourselves only to one method, namely, ’solver: fixed-step, discrete’ and ’mode:
auto’. This settings is also used for Simulink Design Verifier that has only support for discrete
time systems. We assume that for every input of the model (i.e., every input of the controller)
the sampling time is explicitly specified.

5.6.1 Case Study

In this section we present a case study as a Simulink model for the home heating control
system. The model is depicted in Figure 5.18.

Figure 5.18 Home Heating System

The home heater control logic lies within the Stateflow chart and controls when the heater
is turned on and off. Initially, the heater is turned off through the use of the start_switch
block. When the system starts, the controller turns the heater on. During the system run,
current temperature is also fed to controller and then the controller checks if the temperature
is reached to the set-point and then it turns the heater off . If the set-point is reached the
controller turns off the heater and waits until the temperature goes lower than the set-pint

98

and then turns it on to keep the home temperature around the set-point.

The sample time for the model of the case study is set to 1 and fixed-step discrete time is also
used. The simulation of the case study for the set-point equal to 25 is shown in Figure 5.19.

Figure 5.19 Simulation: Home Heating System

As can be seen in Figure 5.19, the home temperature reaches the set-point at time step 40.

Requirements

For the presented model consider the requirements listed below that we would like to verify:

1. The home temperature eventually reaches the set-point.

2. The home temperature eventually reaches the set-point in 45 time steps.

3. The heater is on until the home temperature reaches the set-point.

4. The heater is on until the home temperature reaches the set-point in 45 time steps.

Property Specification

In the specification the Assumption and the Proof Objective blocks (called as P-Block) are
also used. With a proof objective, one can design a range of values that a specific signal has
to hold during program execution. With an assumption, one can restrict input signals to a
range of values for the analysis of the respective proof objective.

Requirement 1:
This property verifies if the room temperature eventually reaches the set-point specified
at the beginning. Since the number of steps for verifying this property is unspecified, the
Simulink Design Verifier can not tell directly that if the property holds or not. To solve this

99

by negation, the specified P-Block is set to false checks if the property doesn’t hold during
the verification process.

Figure 5.20 Requirement 1

Requirement 2:
For specifying this property, first we represent the number of time steps required, cur-
rent_temp as input signal and the set-point as desired value. The Output goes to the
P-Block which is a property block and as specified should hold true during the verification.
The specification for this property is illustrated in Figure 5.21

Figure 5.21 Requirement 2

Requirement 3:
In this property, when the controller was started, the heater should turned on and remain
on until the temperature reaches the set-point or set-point plus 0.5 degree. For illustration,
this requirement is broken down roughly into two pieces of interest:

— The current temperature is greater than or equal to the set-point.
— The current temperature is less than the set-point plus margin (0.5 degree).

The heater status is considered as first input (p) of the verification sub-system, and logical
AND of the two above mentioned conditions considered as input (q). The output goes to the
P-Block and as specified should hold true during the verification. The specification of this
property is illustrated in Figure 5.22.

Requirement 4:
In this property, when the controller was started, the heater should turned on and remain on
until the temperature reaches the set-point or set-point plus 0.5 degree in the specified time
steps. The only difference between this requirement and the previous one is that the there

100

Figure 5.22 Requirement 3

is a limitation of time steps that are allowed until the property being considered as satisfied.
The number of time steps can be set as a constant value to the third input of the verification
sub-system. The specification of this property is illustrated in Figure 5.23.

Figure 5.23 Requirement 4

5.6.2 Verification

Verification of the proposed properties are done on a computer having an Intel Core 2 Quad
CPU with 6GB of RAM. We employed Matlab version 2013b and Simulink Design Verifier
toolbox is also used as the verification engine.

As the simulation of the model shows in Figure 5.19, by specifying the set-point equal to 25,
the home temperature reaches to the set-point at time step 44. Table 5.5 depicts the result
of the property proving for different properties with different inputs.

5.7 Conclusion

Simulink and Stateflow have a suitable environment to model and simulate the embedded
systems. We have outlined an approach to the verification of some linear temporal logic
properties in Simulink. This is done on models through the use of Stateflow and some
Simulink blocks from the standard and design verifier libraries. Although there is a lack
of formal and rigorous semantics for the modeling language of this tool, we presented some

101

Table 5.5 Verification results

Row Property SetPoint Steps Elapsed Result
1 R I 25 - 2m, 10s Satisfied
2 R II 25 50 3m, 24s Satisfied
3 R II 25 30 33s Falsified
4 R III 25 + 0.5 - 1s Satisfied
5 R III 25 + 0.2 - 3s Falsified
6 R IV 25 45 2h, 3m, 24s Satisfied
7 R IV 25 15 3s Falsified
8 R IV 25 25 3s Falsified
9 R IV 25 35 30m, 56s Falsified

basic LTL properties and evaluated them as a case study using Simulink Design Verifier. The
LTL2SL tool is also introduced to facilitate the instrumentation process of Simulink models
with proposed customized properties. For the future work, we plan to define more complex
LTL properties and add them to our customized library.

102

CHAPTER 6 GENERAL DISCUSSION

This chapter gives an overview of our work and contributions. It also presents a discussion
of the approach followed, as well as an analysis of the outcomes.

The approach of focusing on the formal verification of software from the model, helps de-
velopers for building a system that functions dependably irrespective of its complicacy. To
put it differently, using Model-Based Design in safety-related applications and using formal
verification, supports preventing catastrophic consequences.

By the same token, the work presented in this thesis has debuted with a review of literature
that is devoted to formal verification of Simulink models. At first, formal verification was
briefly described and some verification tools were reviewed. The limitation of the block
library provided by Simulink Design Verifier, that obliged other authors to apply the model
transformation and employing different verification tools, is also described after. In the later
chapters, we presented an approach for specifying and verifying the requirements of the
system in an integrated environment from Mathworks.

6.1 Synthesis of work

In the first part, the research focuses on the modeling a concurrent system in Simulink,
formalizing the requirement specifications and then verification of specified properties. To do
this, a medical device known as Endotracheal intubation is modeled in Simulink, using the
given Grafcet. The controller is constructed by Stateflow in Simulink. In order to make this
possible to specify the properties, the values of required active states as well as active states
corresponding to different components, are defined as output ports. Although the design of
the system was provided through Grafcet, but implementation of a system with concurrent
running components in Stateflow requires more considerations. In other words, when using
a Stateflow in the model, it is advised to take this into account that Simulink Design Verifier
does not support all Stateflow features. For example, attempts to call MATLAB functions
or accessing to variables in the MATLAB workspace from the Stateflow, and calls to certain
C math function is not supported by Simulink Design Verifier [5].

With this in mind, the controller chart designed as Intubation superstate, which includes
different states corresponding to each component of the system. All these components are
defined as Parallel (AND) states, so that in every moment of running the model, at least one
substate has to be active in each state.

103

In order to hamper recursion and cyclic behavior in the chart, components interact each
other through sending direct broadcast events. In addition, the current state and values
of the processes are maintained using local and output variables. To put it differently, the
Active State Output Data feature in the Stateflow employed to produce -1, 0 or 1 respectively
correspond to the position of the cylinder at: rear, center and front. The temporal logic
operator after is used to construct Timer states as well as the lag in the Cylinder state.
Likewise, the Detector block from Temporal Operator library provided by Simulink Design
Verifier is also employed to specify a time related property.

The second part is in pursuit of the first part of work. Moreover, this part involves the
formalization of some safety and temporal requirements based on the events issued from
the controller. Since the controller is designed in the Stateflow, working with events can be
divided in two different categories. One is issuing the event from the Stateflow, and another
is handling the issued event with other blocks in the same Simulink model. In fact, all
temporal properties are designed and formalized for a bounded time slots that is specified by
running duration or a procedure execution (e.g. when controller issues an inflate or deflate
procedure).

In order to issue the event and activate other blocks in the same model, we used output
events in the Stateflow. In fact, this type of event allows a chart to notify other blocks in
a model about events that happen in the chart. We employed the triggered subsystem, to
specify the first property which stands to verify the number of fill attempt issues by the
controller to inflate a balloon. In particular, it has a single control input, called the trigger
input that determines whether the subsystem executes. Moreover, the subsystem executes
each time a trigger event occurs, and it outputs the number of events received so far to an
Embedded-Matlab function. Finally, the output of this function is an invariant that can be
verified by Simulink Design Verifier. In addition, the function block also has an input port
which the value of the incoming signal bounds the time steps. To explain, whenever the input
for this port is false, it tells to the function that the examining time is over. In the second
and third property the authors again employs the Embedded-Matlab function corresponding
to operator U in linear temporal logic. These functions also benefit from an input port which
bound the number of time steps. Since the execution order of the function specified to be
after other blocks in the model, its update method is called after. Finally, the output of this
function will be the output of the property which can be verified by the Simulink Design
Verifier.

In the third part of work, we propose a technique to facilitate formalizing some LTL properties
so that they can be added to the Simulink model as some customizable blocks. In addition,

104

the subsystem advantage is also used to group and encapsulation the specified properties and
hosted in the VeriForm library. We also present how the Simulink model can be instrumented
by using the proposed custom library and show the way that the functionality is formalized.
In particular, to specify LTL property, the idea is to translate the selected LTL properties to
an invariant so that they can be verified by the Simulink Design verifier.

To specify the LTL property ♦[0 ,n]p, we used the standard Simulink library to build a re-
quired amount of time steps n, and a temporal operator Within Implies which is provided
by Simulink Design Verifier library. Moreover, in the implementation the Unit Delay block
is also used to prevent the algebraic loop. The output of property is an invariant and must
hold true at any time step in a given path π.

Specifying the property p ∪ q with an assertion in Simulink is also not straightforward. To
implement this property, authors employed a Stateflow called Calculate, which hast two
input corresponding to p and q and one output that must hold true at least once within the
execution. Similarly, the property p ∪[0,n] q, is specified using the Stateflow which has two
outputs that fed to an Implies block. The output of the Implies block must hold true for all
time steps to satisfy the property.

There are two different ways that the user can employ proposed VeriForm library: 1) Using
this predefined library while creating the Simulink model, 2) Using LTL2SL tool that can add
the chosen block to the previously made Simulink model. Since applying above mentioned
properties, might be difficult for less-expert users, the LTL2SL tool is also proposed to
facilitate the process.

6.2 Analysis of the achievements

Apart from the complexity of the requirement specification, defining appropriate inputs is
also important. In other words, the assumption of signal inputs in the model, is one of the
significant factors that can have direct impact on the verification time of specified properties.

By optimizing the Controller chart in the model described in Chapter 3 and 4, we obtained
the shorter verification time. In particular, specifying the boundaries for local variables and
output signals as well as using the Proof Assumption block with appropriate values, are part
of our optimization.

On the other hand, choosing a proper transition order as well as the suitable guard for the
transition conditions in the Stateflow can increase the performance. Moreover, there is a
parameter in the configuration of Simulink Design Verifier pertaining to the maximum veri-
fication time. As such, using the optimized model with specifying appropriate signal values

105

helped us to prevent having verification results as undecided. On the contrary, choosing the
wrong values results the model becomes contradictory in its configuration, and all objectives
become Unsatisfiable/Falsifiable.

106

CHAPTER 7 CONCLUSION AND RECOMMENDATIONS

Software plays increasingly a substantial role in embedded systems used particularly for
healthcare, automotive and avionics. On the other hand, most of the application induced
failures are due to a failure in design phase of the software. In addition, activities related
to verification and validation are becoming huge and quite costly when the complexity and
size of the systems grows. As such, design of safety-critical systems requires to benefit from
a more systematic development process. By the same token, one of the ways to achieve
this goal consists of using formal verification tools such as Simulink Design Verifier. In this
thesis, we have addressed the problem of specification and verification of LTL properties in
the context of Simulink Design Verifier. We have shown how to combine Simulink blocks so as
to translate LTL properties into equivalent invariants. In this chapter, we present a summary
of the contributions which have been made, followed by a critique of our work through their
limitations. Finally, we state the avenues on which axes will be our future work.

7.1 Summary of work

Our research has given rise to three main contributions. The first contribution consists of a
case study that allows us to study, apply and evaluate the power and features of Simulink
development environment. A concurrent system corresponding to a medical device known
as endotracheal intubation, is modeled in Simulink. Since the specifications of the control
unit of the mentioned device is given in Grafcet, authors needed to explore the way to con-
struct its Simulink model. We used formal approach and model-based design in order to
specify and formally verify the functionalities of this system. The next step was formalizing
the requirement specifications and then verification of specified safety properties. In order
to prevent recursion and cyclic behavior in the chart, components are designed to interact
each other through sending direct broadcast events. Moreover, event passing/handling and
synchronization is efficiently provided. Finally, various proof strategies along with the ap-
propriate set of data for this model are presented in order to prove the correctness of the
model.

The contribution deals with the improvement and optimisation of the model of endotracheal
intubation device, that allows a significant gain in the verification time of properties. More-
over, these improvement involves the formalization of some safety and temporal requirements
based on the events issued from the controller. In the proposed solution for specifying the
temporal properties, the triggered subsystem block as well as the Embedded-Matlab function

107

block from the standard Simulink library are employed. In other words, the Stateflow chart
for the controller is modified to trigger an output event, and triggered subsystem block has
the duty to capture the events. The rest of the works is handled through the Embedded-
Matlab function block which makes an output as invariant. The output then is connected to
P-Block to be verified by the Simulink Design Verifier. Furthermore, all temporal properties
are designed and formalized for a bounded time slots which can be specified in the proposed
property block.

Since the block library provided Simulink Design Verifier is limited to specify the safety
properties, we proposed a technique to facilitate formalizing some LTL properties. In this
case, we offer different customizable Simulink blocks corresponding to each property. In other
words, the subsystem advantage is used to group the definition of specified properties. The
standard Simulink blocks and the Stateflow chart are used to implement the specification for
blocks corresponding to ♦p, ♦[0 ,n]p, p ∪ q and p ∪[0,n] q.

In particular, to specify LTL property, the idea was to translate the selected LTL properties
to an invariant so that they can be verified by Simulink Design verifier. By the same token,
LTL2SL tool is also proposed to facilitate the process of specifying the LTL properties for
the less-expert users.

7.2 Limitations of the proposed solution

We have shown how to specify some basic linear temporal properties in Simulink models by
offering some customizable blocks. In particular, the proposed blocks are limited to bounded
time steps, and there is also no support for recursive LTL properties. However, further
consideration is needed in order to improve the techniques to bring support for specifying
more complex LTL properties. Although we have proposed LTL2SL tool in order to facilitate
the process of instrumentation of the given model, it has limited to the first layer of model
blocks. In other words, it does not support to automatically add proposed blocks inside the
subsystems which are under the first layer in the model.

7.3 Future Work

Some techniques and directions for future work have already been mentioned in individual
chapters of this thesis. Since recursive LTL properties are not included in the offered Simulink
blocks, it is remarkable to have support for them in the future effort. Additionally, we will
also investigate how to specify recursive LTL properties using Simulink Design Verifier. In
the LTL2SL tool we considered to modify the given Simulink model and insert the property

108

block at top level in the model. It is interesting to improve the tool that can support inserting
blocks into subsystems at different level of the model.

109

REFERENCES

[1] Intensive care hotline, intubation, http://intensivecarehotline.com/intubation/.

[2] Prover plug-in, prover, http://www.prover.com/products/.

[3] Scade, prover, http://www.esterel-technologies.com/products/scade-suite/.

[4] Simulink coder, the mathworks, http://www.mathworks.com/products/simulink-
coder/.

[5] Simulink design verifier, http://www.mathworks.com/products/sldesignverifier/.

[6] Simulink, the mathworks, http://www.mathworks.com/products/simulink/.

[7] Sysml forum: Sysml specification ’draft’ 2005, http://www.sysml.org/.

[8] Tracheal intubation, https://en.wikipedia.org/wiki/tracheal_intubation.

[9] User’s guide, the mathworks, http://www.mathworks.com/products/.

[10] V.S. Alagar and K. Periyasamy. Specification of software systems. Springer-Verlag New
York Inc, 2011.

[11] Shahid Ali, Muhammad Sulyman, Mattias Nyberg, Jonas Westman, Giuseppe Del-
lapenna, Guillermo Rodríguez-Navas González, and Paul Pettersson. Applying model
checking for verifying the functional requirements of a scania’s vehicle control system.
School of Innovation, Design and Engineering Malardalen University, Vasteras, Sweden,
2012.

[12] Jirí Barnat, Petr Bauch, and Vojtech Havel. Temporal verification of simulink dia-
grams. In High-Assurance Systems Engineering (HASE), 2014 IEEE 15th International
Symposium on, pages 81–88. IEEE, 2014.

[13] A. Behboodian. Model-based design. DSP Magazine, May, 2006.

[14] M Beine. A model-based reference workflow for the development of safety-critical soft-
ware. Embedded Real Time Software and Systems, pages 1–6, 2010.

[15] Olof Bergquist and Marcus Sjödin. Modeling and verification of a stepper motor super-
visory controller. 2008.

[16] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without bdds.
Tools and Algorithms for the Construction and Analysis of Systems, pages 193–207,
1999.

[17] A. Biere, A. Cimatti, E.M. Clarke, O. Strichman, and Y. Zhu. Bounded model checking.
Advances in computers, 58:117–148, 2003.

110

[18] P. Bjesse. What is formal verification? ACM SIGDA Newsletter, 35(24):1, 2005.

[19] Olivier Bouissou and Alexandre Chapoutot. An operational semantics for simulink’s
simulation engine. ACM SIGPLAN Notices, 47(5):129–138, 2012.

[20] R.E. Bryant. Graph-based algorithms for boolean function manipulation. Computers,
IEEE Transactions on, 100(8):677–691, 1986.

[21] Alexandre Chapoutot and Matthieu Martel. Abstract simulation: a static analysis of
simulink models. In Embedded Software and Systems, 2009. ICESS’09. International
Conference on, pages 83–92. IEEE, 2009.

[22] Chunqing Chen. Tic library functions for simulink library blocks.

[23] Alessandro Cimatti, Edmund Clarke, Enrico Giunchiglia, Fausto Giunchiglia, Marco
Pistore, Marco Roveri, Roberto Sebastiani, and Armando Tacchella. Nusmv 2: An
opensource tool for symbolic model checking. In Computer Aided Verification, pages
359–364. Springer, 2002.

[24] E. Clarke. Model checking. In Foundations of software technology and theoretical com-
puter science, pages 54–56. Springer, 1997.

[25] E. Clarke and E. Emerson. Design and synthesis of synchronization skeletons using
branching time temporal logic. Logics of Programs, pages 52–71, 1982.

[26] E. Clarke, K. McMillan, S. Campos, and V. Hartonas-Garmhausen. Symbolic model
checking. In Computer Aided Verification, pages 419–422. Springer, 1996.

[27] E.M. Clarke and J.M. Wing. Formal methods: State of the art and future directions.
ACM Computing Surveys (CSUR), 28(4):626–643, 1996.

[28] E. Denney. A software safety certification for automated code generators. 2006.

[29] E. Denney and S. Trac. A software safety certification tool for automatically generated
guidance, navigation and control code. In Aerospace Conference, 2008 IEEE, pages
1–11. IEEE, 2008.

[30] V. D’Silva, D. Kroening, and G. Weissenbacher. A survey of automated techniques for
formal software verification. Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, 27(7):1165–1178, 2008.

[31] E Allen Emerson. Temporal and modal logic. Handbook of Theoretical Computer Science,
Volume B: Formal Models and Sematics (B), 995:1072, 1990.

[32] J.F. Etienne, S. Fechter, and E. Juppeaux. Using simulink design verifier for proving
behavioral properties on a complex safety critical system in the ground transportation
domain. Complex Systems Design & Management, pages 61–72, 2010.

111

[33] I. Fey, J. Mller, and M. Conrad. Model-based design for safety-related applications.
Proceedings of SAE Convergence, 2008.

[34] M. Fowler. UML distilled: a brief guide to the standard object modeling language.
Addison-Wesley Professional, 2004.

[35] E. Gamma. Design patterns: elements of reusable object-oriented software. Addison-
Wesley Professional, 1995.

[36] Nicholas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. The synchronous
data flow programming language lustre. Proceedings of the IEEE, 79(9):1305–1320, 1991.

[37] G. Hamon and J. Rushby. An operational semantics for stateflow. Fundamental Ap-
proaches to Software Engineering, pages 229–243, 2004.

[38] D. Harel. Statecharts: A visual formalism for complex systems. Science of computer
programming, 8(3):231–274, 1987.

[39] X. He, Z. Ma, W. Shao, and G. Li. A metamodel for the notation of graphical modeling
languages. In Computer Software and Applications Conference, 2007. COMPSAC 2007.
31st Annual International, volume 1, pages 219–224. IEEE, 2007.

[40] Christian Heinzemann, Jan Rieke, Jana Bröggelwirth, Andrey Pines, and Andreas Volk.
Translating mechatronicuml models to matlab/simulink and stateflow. Software Engi-
neering Group, University of Paderborn, Tech. Rep. tr-ri-13-330, 2013.

[41] E. Iee. Ieee standard glossary of software engineering terminology. 1990.

[42] Zhihao Jiang, Miroslav Pajic, Allison Connolly, Sanjay Dixit, and Rahul Mangharam.
Real-time heart model for implantable cardiac device validation and verification. In Real-
Time Systems (ECRTS), 2010 22nd Euromicro Conference on, pages 239–248. IEEE,
2010.

[43] LA Johnson. Do-178b: Software considerations in airborne systems and equipment
certification. Crosstalk, The Journal of Defense Software Engineering, 11(10), 1998.

[44] S. Katz. Techniques for increasing coverage of formal verification. PhD thesis, The
Technion-Israel Institute of Technology, 2001.

[45] Konstantin Korovin. Chapter 14 - linear temporal logic.
http://www.control.aau.dk/ raf/hybrid/korovinkchapter14.pdf.

[46] Jerry Krasner. Model-based design and beyond: Solutions for todays embedded systems
requirements. Technical report, Mathworks, 2004.

[47] Heiko Krumm. Temporal logic. Technical report, Technical report, Department of
Computer Science, University of Dortmund, 2000.

112

[48] Lj Lazić and D Velašević. Applying simulation and design of experiments to the embed-
ded software testing process. Software Testing, Verification and Reliability, 14(4):257–
282, 2004.

[49] Florian Leitner. Evaluation of the matlab simulink design verifier versus the model
checker spin. 2008.

[50] Florian Leitner and Stefan Leue. Simulink design verifier vs. spin a comparative case
study. In Proceedings of FMICS, 2008.

[51] Marcus Liliegard and Viktor Nilsson. Model-based testing with simulink design verifier.

[52] Karthikeyan Manamcheri Sukumar. Translation of simulink-stateflow models to hybrid
automata. 2011.

[53] B Meenakshi, Abhishek Bhatnagar, and Sudeepa Roy. Tool for translating simulink
models into input language of a model checker. In Formal Methods and Software Engi-
neering, pages 606–620. Springer, 2006.

[54] Jon Friedman Mike Anthony. Model-based design for large safety-critical systems: A
discussion regarding model architecture. Technical report, Mathworks.

[55] S. Miller, E. Anderson, L. Wagner, M. Whalen, and M. Heimdahl. Formal verification
of flight critical software. In Proceedings of the AIAA Guidance, Navigation and Control
Conference and Exhibit, pages 15–18, 2005.

[56] B. Murphy, A. Wakefield, and J. Friedman. Best practices for verification, validation,
and test in model-based design. The Mathworks, Inc, 2008.

[57] Anitha Murugesan, Michael W Whalen, Sanjai Rayadurgam, and Mats PE Heimdahl.
Compositional verification of a medical device system. In Proceedings of the 2013 ACM
SIGAda annual conference on High integrity language technology, pages 51–64. ACM,
2013.

[58] Miroslav Pajic, Insup Lee, Rahul Mangharam, and Oleg Sokolsky. Upp2sf: Translating
uppaal models to simulink. University of Pennsylvania, Tech. Rep, 2011.

[59] Paula J Pingree, Erich Mikk, Gerard J Holzmann, Margaret H Smith, and Dennis
Dams. Validation of mission critical software design and implementation using model
checking [spacecraft]. In Digital Avionics Systems Conference, 2002. Proceedings. The
21st, volume 1, pages 6A4–1. IEEE, 2002.

[60] K. Popovici and M. Lalo. Formal model and code verification in model-based design. In
Circuits and Systems and TAISA Conference, 2009. NEWCAS-TAISA’09. Joint IEEE
North-East Workshop on, pages 1–4. IEEE, 2009.

[61] Paulo Portugal and Adriano Carvalho. The grafcet specification. 2005.

113

[62] R.S. Pressman. Software Engineering-A Practitioners Approach-Required. McGraw Hill,
1992.

[63] J.P. Queille and J. Sifakis. Specification and verification of concurrent systems in cesar.
In International Symposium on Programming, pages 337–351. Springer, 1982.

[64] Yelamuri Srinivasa Rao. C-code generation from simulink models using flex and bison.
http://sourceforge.net/projects/sim2c/files/.

[65] Pritam Roy and Natarajan Shankar. Simcheck: a contract type system for simulink.
Innovations in Systems and Software Engineering, 7(2):73–83, 2011.

[66] J. Rushby. Formal methods and the certification of critical systems. SRI International,
Computer Science Laboratory, 1993.

[67] Paul Seigman. APPLYING THE SPIN MODEL-CHECKER TO MODEL-BASED DE-
SIGNS IMPLEMENTED IN MATLAB SIMULINK/STATEFLOW. 2006.

[68] Mary Sheeran and Gunnar Stålmarck. A tutorial on stålmarck’s proof procedure for
propositional logic. Formal Methods in System Design, 16(1):23–58, 2000.

[69] Neil R Storey. Safety critical computer systems. Addison-Wesley Longman Publishing
Co., Inc., 1996.

[70] Paulo Tabuada and George J Pappas. Linear time logic control of discrete-time linear
systems. Automatic Control, IEEE Transactions on, 51(12):1862–1877, 2006.

[71] A. Tiwari. Formal semantics and analysis methods for simulink stateflow models. Un-
published report, SRI International, 2002.

[72] Stavros Tripakis, Christos Sofronis, Paul Caspi, and Adrian Curic. Translating discrete-
time simulink to lustre. ACM Transactions on Embedded Computing Systems (TECS),
4(4):779–818, 2005.

[73] Richard Zurawski, Paulo Portugal, and Adriano Carvalho. The grafcet specification
language. In The Industrial Information Technology Handbook, pages 993–1013. CRC
Press, 2004.

114

APPENDIX A Within Implies Code

Function: Within Implies block code

1: function out = whithin(u, reset, r)
2: {
3: if isempty(inU) then
4: inU = false;
5: endif
6:
7: if isempty(rOcc) then
8: rOcc = false;
9: endif
10:
11: if u && not(reset)
12: inU = true;
13: if r then
14: rOcc = true;
15: endif
16: out = true;
17: elseif not(u) && inU
18: if not(rOcc) then
19: out = false;
20: else
21: out = true;
22: endif
23: inU = false;
24: rOcc = false;
25: elseif
26: out = true;
27: rOcc = false;
28: endif
29: }

115

APPENDIX B Embedded Matlab Function

Function: Embedded MATLAB Function 2

1: function out = whithin(p, q, act)
2: {
3: persistent pre, done, res;
4: if isempty(pre) then
5: pre = false;
6: endif
7:
8: if isempty(done) then
9: done = false;
10: endif
11:
12: if isempty(res) then
13: res = false;
14: endif
15:
16: if act && not(done)
17: if not(pre) then
18: if q then
19: done = true;
20: elseif p && not(q) then
21: pre = true;
22: endif
23: res = true;
24: endif
25:
26: if p && pre then
27: res = true;
28: endif
29:
30: if not(p) && pre then

116

31: if not(q) then
32: res = false;
33: else
34: res = true;
35: done = true;
36: endif
37: endif
38:
39: elseif act && done
40: res = true;
41: elseif not(act) && pre then
42: if done then
43: res = true;
44: elseif q then
45: res = true;
46: else
47: res = false;
48: endif
49: elseif not(act) && not(pre) then
50: res = false;
51: endif
52: out = res;
53: }

