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RÉSUMÉ 

Selon les statistiques canadiennes sur le cancer, on estime que 196 900 Canadiens développeront 

un cancer et que 78 000 en mourront en 2015. Étant donné que les cellules tumorales sont plus 

sensibles que les cellules saines à une augmentation de température, cette propriété peut être 

utilisée in vivo pour détruire les cellules cancéreuses par l’élévation de la température du corps, 

également connu sous le nom d'hyperthermie. L’hyperthermie magnétique est une technique 

prometteuse pour le traitement ciblé du cancer à l'aide des nanoparticules magnétiques, et ayant 

donc moins d'effets secondaires que la chimiothérapie et la radiothérapie. 

Malgré que l'hyperthermie magnétique a été utilisée depuis des milliers d’années pour le traitement 

du cancer, le défi de destruction des cellules cancéreuses reste très difficile. Pour cette raison, les 

oncologues utilisent souvent le traitement par hyperthermie magnétique en combinaison avec la 

radiothérapie et/ou la chimiothérapie. Cette approche thérapeutique combinée a pour but de 

sensibiliser les cellules cancéreuses résistantes à la radiothérapie et/ou la chimiothérapie.   

Pour utiliser l’hyperthermie magnétique toute seule dans le traitement du cancer, des difficultés au 

niveau de la modification de surface des particules magnétiques, pour une absorption sélective par 

les cellules cancéreuses, et au niveau de la stabilité et des propriétés magnétiques, pour une capacité 

de chauffage élevée (> 1000 W/g), doivent être surmontées. L'objectif ultime de cette thèse est de 

synthétiser un excellent candidat pour une hyperthermie magnétique puissante. 

En raison des progrès rapides effectués dans le domaine des nanotechnologies, un procédé de 

synthèse de nanoparticules ayant une capacité de contrôle rigoureux de: la structure et la 

morphologie, la taille, la forme et la cristallinité, est nécessaire. L'électrodéposition est un procédé 

polyvalent pour la synthèse des NPs métalliques directement et sélectivement sur des substrats 

conducteurs par simple réglage du courant ou de la tension appliquée. En outre, la taille des 

particules et la forme sont facilement contrôlables, et les études ont montré que l'électrodéposition 

est d'une grande utilité dans la fabrication d'alliages palladium-cobalt (PdCo) nanocristallins.  

L'objectif principal de ce projet est de synthétiser des NPs d’alliage PdCo par électrodéposition sur 

une électrode de graphite. Les objectifs secondaires sont d'optimiser les paramètres suivants: la 

composition, la taille, la forme et la surface des NPs d’alliage PdCo afin d'améliorer leur stabilité, 

production de chaleur et nanotoxicité pour répondre aux besoins cliniques. 
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Pour synthétiser des NPs d’alliage PdCo monodispersées, nous avons développé une nouvelle 

méthode de synthèse impliquant une électrodéposition séquentielle de NPs PdCo, sur du graphite 

modifié par des atomes de Pd, suivi par un revêtement à l’aide de monomères de 1-dodécanethiol 

(DDT). Les paramètres d'électrodéposition tels que les grains d'activation, la composition du bain 

électrolytique, le potentiel appliquée, et le temps de dépôt ont été étudiés. La microscopie 

électronique à balayage (MEB) a montré que le revêtement des NPs de PdCo avec du DDT pendant 

19 heures augmente la concentration et la stabilité des nanoparticules de PdCo déposées. Les 

images MEB et la spectroscopie de rayons X à dispersion d'énergie ont montré que lorsque le 

potentiel appliqué passe de -1.0V à -1.3V: la morphologie des NPs PdCo change et évolue d’une 

forme de plaquette vers une forme sphérique et une agglomération de sphères, et la teneur en Co 

augmente pour atteindre un maximum de 35,65 %. Selon la diffraction des rayons X, la présence 

de glycine dans la solution du bain électrolytique améliore la structure cristalline des films de PdCo 

déposés. 

Dans une deuxième étape, la résistance à la corrosion des nanoparticules Pd65Co35, synthétisées 

précédemment pour l’hyperthermie magnétique, a été évaluée. En plus, on a étudié l'influence du 

traitement thermique à 200°C, 300°C et 400°C et de la passivation de la surface avec des 

monomères de DDT sur la résistance à la corrosion des NPs de PdCo. Pour atteindre cet objectif, 

on a effectué des tests de polarisation potentiodynamiques dans une solution de Ringer’s à 37°C 

suivie par l’analyse de la surface et du surnageant, pour comparer la stabilité des échantillons traités 

avec celle du control. D’après les tests de polarisation, les NPs de PdCo traitées par la chaleur 

possèdent les plus faibles densités de courant de corrosion 𝑖𝑐𝑜𝑟𝑟 environ 0.022114 µA/cm2 pour 

400°C, 0.027084 µA/cm2 pour 200°C et 0.065828µA/cm2 pour 300°C. Par contre, l’échantillon 

traité avec des monomères de DDT et le control présentent des densités de courant de corrosion les 

plus élevées, environ 0.87202 µA/cm2 et 0.23874 µA/cm2 respectivement. Selon la SAA, le 

traitement thermique et la passivation avec de l’alcanethiole diminuent significativement la 

libération d’ions Pd et Co dans le surnageant après le test de polarisation dans l’ordre 200°C > 

400°C > 300°C > DDT > control. En effet, les analyses XPS montrent que la corrosion des 

échantillons de PdCo varie selon la composition chimique à la surface, qui s’est révélée dépendante 

du type de traitement. De plus, après 7 jours d’immersion dans une solution de Ringer’s à 37°C les 

échantillons traités et le control montrent une excellente résistance à la corrosion ([Pd] < 0.01 ppm; 

[Co] < 0.01 ppm). D’après cette étude, on peut conclure que nos nanoparticules de PdCo peuvent 
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être utilisées comme nanodispositif médical, si ils sont traitées avec de la chaleur ou avec des 

monomères d’alcanethiole pour prévenir le relargage des ions Pd and Co dans l’environnement 

biologique et éviter ainsi une  nanotoxicité ultérieure.   

Dans une troisième étape, des mesures de la boucle d'hystérésis et du point de Curie ont été 

effectuées sur deux échantillons de NPs de PdCo. Les résultats des mesures de la boucle 

d'hystérésis semblent très prometteurs. Ils ont montré un comportement ferromagnétique, et de 

bonnes aimantations à saturation (152.78 memu/g et 233.54 memu/g) par rapport à la masse très 

faible des NPs. D’autre part, les mesures du point de Curie ont confirmé l'utilité du traitement 

thermique après l’électrodéposition pour améliorer la microstructure de l'alliage. 

Pour conclure, dans ce projet une nouvelle méthode de synthèse de NPs de Pd65Co35 sphériques, 

à l’échelle de 30-50 nm, a été réalisée par une électrodéposition séquentielle sur du graphite modifié 

par des atomes de Pd. De plus, le traitement des NPs de Pd65Co35 avec la chaleur ou à l’aide des 

monomères d’alcanethiol à diminuer la libération d'ions Pd et Co, pour atteindre [Pd] = 0.01 ppm ; 

[Co] = 0.013 ppm, dans la solution de Ringer après le test de polarisation. Cependant, les tests 

magnétiques ont montré que les NPs de PdCo non traités présentent un comportement 

ferromagnétique, en raison de la présence d’agglomération de particules, et un faible moment 

magnétique maximal (environ de 0.6 memu) comme résultat de la faible masse de particules 

déposées. Par conséquent, de nouvelles stratégies pour l’amélioration de la masse de NPs de PdCo 

déposée sur le substrat en graphite, essentielle pour une aimantation et  une efficacité de chauffage 

élevées, doivent être mises en place. En outre, les techniques de sonication et de filtration doivent 

être optimisées afin d'étudier la biocompatibilité et superparamagnétisme de ces NPs. 
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ABSTRACT 

According to Canadian Cancer Statistics, it is estimated that 196,900 Canadians will develop 

cancer and 78,000 will die of cancer in 2015. Given that tumor cells are more sensitive to a 

temperature increase than healthy ones, this property can be used in vivo to destroy the cancerous 

cells by elevation of body temperature, otherwise known as hyperthermia. Magnetic hyperthermia 

is a promising technique for cancer treatment because of ease in targeting the cancerous cells using 

magnetic nanoparticles (MNPs) and hence having fewer side effects than chemotherapy and 

radiotherapy.  

Despite the use of magnetic hyperthermia to treat cancer for thousands of years, the challenge of 

only heating malignant cells remains daunting. Thus, oncologists often use the heat treatment in 

combination with radiotherapy or chemotherapy or both. The combined approach results in 

eliminating many cancer cells in addition to making the resistant cancer cells more vulnerable to 

other treatments.   

To use stand-alone magnetic hyperthermia therapy, difficulties in surface modification of magnetic 

particles for selective uptake by cancerous cells and stability as well as magnetic properties for 

high heating capacity (> 1000 W/g) must be overcome. The ultimate objective of this thesis is to 

synthesize an excellent candidate for a powerful magnetic hyperthermia.  

Due to rapid advances in nanotechnology, a synthesis method of nanoparticles (NPs) with the 

ability to rigorously control the structure and morphology, such as size, shape and crystallinity, is 

needed. Electrodeposition is a versatile method for the synthesis of metal NPs directly and 

selectively onto conductive substrates, simply by regulating applied current or voltage. 

Furthermore, the particles size and the shape are easily controllable. Besides, studies have shown 

that the electrodeposition technique is of great utility in the fabrication of nanocrystalline 

palladium-cobalt (PdCo) alloys.  

The primary goal of this project is to synthesize monodispersed PdCo alloy NPs by 

electrodeposition, on graphite electrode. The secondary goals are to optimize the following 

parameters: composition, size, shape and surface of the PdCo alloy NPs in order to enhance its 

stability, heat generation and nanotoxicity facing their use for clinical applications.   
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To synthesize monodispersed PdCo alloy NPs, we first developed a new synthetic method 

involving a sequential electrodeposition of PdCo nanoparticles, onto Pd-modified graphite, 

followed by 1-dodecanethiol (DDT) coating. The electrodeposition parameters such as activation 

seeds, electrolytic bath composition, applied potential, and time of deposition were investigated. 

The scanning electron microscopy (SEM) results showed that coating PdCo NPs with DDT for 19 

hours will increase the concentration and the stability of the deposited PdCo nanoparticles. The 

SEM images and the energy dispersive x-ray spectroscopy (EDS) patterns showed that when the 

applied potential decreases from -1.0V to -1.3V: the morphology of PdCo nanoparticles changes 

from platelet to spherical and agglomeration-of-spheres, and the Co content increases to reach a 

maximum of 35.65 %. According to the x-ray diffraction (XRD) patterns, the presence of glycine 

in the electrolytic bath solution enhances the crystalline structure of the deposited PdCo films.   

In a second step, the corrosion resistance of previously synthesized Pd65Co35 nanoparticles (NPs) 

for magnetic hyperthermia was evaluated. Furthermore, the influence of heat treatment at 200°C, 

300°C and 400°C and surface passivation with DDT monomers on the corrosion resistance of PdCo 

NPs was investigated. We compared the corrosion behaviour of the treated samples with the control 

using potentiodynamic polarization assay in Ringer’s solution, followed by surface and corrosion 

electrolyte analysis. During polarization test, PdCo NPs treated with heat displayed the lowest 

corrosion current density 𝑖𝑐𝑜𝑟𝑟 of 0.022114 µA/cm2 for 400°C, 0.027084 µA/cm2 for 200°C and 

0.065828µA/cm2 for 300°C. On the contrary, the sample treated with DDT monomers and the 

control exhibited the highest corrosion density of 𝑖𝑐𝑜𝑟𝑟 of 0.87202 µA/cm2 and 0.23874 µA/cm2 

respectively. According to AAS, the heat and alkanethiol treatments significantly decrease the 

release of Pd and Co ions in the supernatant after the polarization assay in the order 200°C > 400°C 

> 300°C > DDT > Untreated. XPS analysis showed that the corrosion of treated/untreated PdCo 

samples varies upon the chemical composition at the surface, which revealed to be treatment-

dependent. Moreover, after 7 days of immersion in 37°C Ringer’s solution both treated and 

untreated samples exhibited an excellent corrosion resistance ([Pd] < 0.01 ppm; [Co] < 0.01 ppm). 

This study concluded that PdCo NPs could be use as medical nanodevice if they were treated with 

heat or alkanethiol monomers to prevent high Pd and Co ions release in biological environment 

and subsequent nanotoxicity.  

In a third step, the hysteresis loop and Curie point measurements were done over two samples of 

PdCo NPs. The results of the hysteresis loop measurements are very promising. They showed a 
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ferromagnetic behavior, and good saturation magnetizations (152.78 memu/g and 233.54 memu/g) 

compared to the very low mass of NPs. Besides, Curie point measurements confirmed the 

usefulness of the heating treatment after electrodeposition to enhance the microstructure of the 

alloy.  

To conclude, in this project a new synthesis method of spherical Pd65Co35 NPs, in the range of 30-

50 nm, was achieved by a sequential electrodeposition onto Pd-modified graphite. Moreover, the 

heat treated and alkanethiol treated Pd65Co35 NPs samples exhibited a low release of Pd and Co 

ions, which may reach [Pd] = 0.01 ppm; [Co] = 0.013 ppm, in the Ringer’s solution after the 

polarization assay. However, magnetic tests showed that untreated PdCo NPs exhibit ferromagnetic 

behaviour, due to the presence of agglomerated particles, and low maximum magnetic moment 

(about 0.6 memu) as result of low deposited mass of particles. Therefore, new strategies to improve 

the deposited mass of PdCo NPs onto graphite substrate, essential for high magnetizations and 

heating efficiencies, must be developed. In addition, sonication and filtration techniques must be 

optimized in order to study the biocompatibility and superparamagnetic properties of PdCo NPs. 
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CHAPTER 1 INTRODUCTION  

The term of nanotechnology is attributed to Nobel Laureate in physics Richard Feynman when he 

proposed miniaturizing computing devices toward their physical limits, during a speech in 

December 1959 at an annual meeting of the American Physical Society (at Caltech) [1].  

Nanotechnology refers to a field whose theme is the understanding and control of matter at 

dimensions of roughly 1–100 nanometers. Nanoparticles (NPs) are one of the most important 

ingredients in nanotechnology. NPs are the simplest form of structures, having one or more 

dimensions of the order of 100 nanometres or less. Due to their very small size, NPs display an 

immense surface area per unit volume. The resulting unique chemical and/or physical properties 

can differ quite extensively from the properties of the corresponding bulk material [2]. 

It has been recognized that, ‘In a relatively short interval for an emerging technology, 

nanotechnology has made a significant economic impact in numerous sectors 

including semiconductor manufacturing, catalysts, medicine, agriculture, and energy production’ 

[3]. According to the National Science Foundation, the value of products incorporating 

nanotechnology as the key component reached about $200 billion in value worldwide in 2008, and 

an estimation for a product value of $1 trillion by 2015 [4].  

The concept of nanoscale particles is not new. NPs occur naturally in biologic systems, such as 

protein (dimensions in the range of 1.0-20 nm), or formed in combustion process. Today, 

nanotechnology brings the capability to control production and make engineered particles of very 

specific sizes and shapes, based on its properties at the atomic scale [5]. 

The progress forward in nanotechnology requires collaboration among interdisciplinary area of 

research in science, medicine and engineering. Research and development in nanotechnology is 

changing how bioscientific research is conducted and how medicine is practiced. Nanotechnology 

is expected to revolutionize the practice of medicine [6]. 

Nanomedicine is the medical application of nanotechnology. It seeks to deliver a valuable set of 

research tools and clinical devices [7]. Over the past decade, several NPs-based therapeutic and 

diagnostic agents have been developed for the treatment and detection of cancer, infectious 
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diseases, and allergens [8]. The greatest impact of nanomedicine is expected to be in cancer therapy 

[9].  

Due to their size-tunable light emission (or magnetic properties) when used in conjunction with X-

ray radiation (or magnetic resonance imaging), NPs can produce a high contrast image. Another 

nanoproperties are: i) the high surface area to volume ratio, which allows many functional group 

to be attached in order to seek out and bind to certain tumor cells, and ii) the small size, which 

endows them to penetrate through leaky angiogenic vessels to finally accumulate at tumor sites, 

due to lack of an effective lymphatic drainage system [7]. 

Since the late 1960s, the interest in using magnetic hyperthermia therapy in medicine has increased. 

In oncology, magnetic hyperthermia is meant to target unhealthy cells and keep the healthy cells 

unharmed. Given that healthy cells have organized and systematic blood flow in their surrounding 

vascular network, they can easily cool down and dissipate excessive heat. However, cancer cells 

have often far less developed vascular network and therefore overheat [10]. 

Magnetic Hyperthermia can be achieved by heating tumors or tissues to temperatures between 

40°C and 45°C via MNPs in alternating magnetic field (AMF) [11], either to:  

i) Sensitise tumor to conventional treatments [12]. Studies show that moderate 

hyperthermia below 42°C increases tumor blood flow, which leads to higher supply of 

oxygen and nutritious supplements to the tumor. The resultant increase in blood flow 

assists in efficient delivery of drugs and chemotherapeutic agents to the tumor, and 

increased oxygen supply favors radiotherapy effects. In fact, in physiological conditions 

the blood flow is tightly regulated by vasodilatation  factors that stimulate endothelial 

cells to release nitric oxide, which then causes relaxation of the vascular smooth muscle 

and subsequent increased blood flow [13]. On the other hand, moderate hyperthermia 

showed to increase the amount of the overall tumor nitric oxide production [14] and 

thus increase the tumor oxygenation. 

ii) Perform tumor-targeted drug delivery [10]. Recently, there has been considerable 

attention on developing drug release systems through hyperthermia using 

thermosensitive magnetic gels, such as Poly (N-isopropylacrylamide). The 

thermosensitive Poly (N-isopropylacrylamide) hydrogels were found to exhibit volume 
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changes of over 800% when immersed in distilled water or seawater solutions at 

temperatures ranging from 5 °C to 50 °C [10]. In addition, these hydrogels are swollen 

at temperatures below 34 °C but collapse at 34 °C and above [15]. Therefore, by 

introducing magnetic particles within thermo sensitive hydrogel; as the magnetic 

particles get heated, they will raise the temperature of the hydrogel inducing the collapse 

transition. Hence, drug molecules dissolved in the hydrogel will be released during this 

collapse transition, creating a novel combined drug release and hyperthermia system. 

iii) Induce tumor regression. The study performed by Loo et al. [16] showed that at 

temperatures above 42 °C tumor blood flow decreases, due to changes in viscosity of 

blood cell membrane, leading to hypoxia, acidosis, and cell energy deprivation. In 

general, the tumor blood flow decreases as the tumors grow larger due to progressive 

deterioration of vascular beds and rapid growth of tumor cell population relative to 

vascular beds [17]. Consequently, the heat dissipation by blood flow in tumors is slow 

and thus their temperatures of tumor rise during heating. As a result, vasculature in 

tumor is significantly damaged upon heating [17]. 

iv) Boost immune system [18]. Pre-clinical studies suggest that, similar to fever, 

hyperthermia is associated with immunological reactions and can stimulate and activate 

host immune systems against malignant cells. Whole body hyperthermia in animals has 

been shown to reduce pathology and increase natural killer cell activity [19], since 

natural killer cells are thought to play an important role in the first line of defense 

against infectious and malignant disease [20]. 

Superparamagnetic NPs are suitable candidates for magnetic hyperthermia. Due to thermal 

fluctuations in sufficiently small size, they have no remanent magnetization at room temperature 

[21]. This minimizes the possibility of aggregation, which could have harmful effects, and favors 

biological absorption and eventually the excretion of particles by the body.  

Metals such as iron, cobalt and nickel (and their alloys) are useful MNPs for magnetic 

hyperthermia, because they are able to create heat once placed in an external AMF. Various 

compositions such as Cu-Ni [22], Gd-substituted Mn-Zn ferrite [23], CoFe2O4 [24], and Mn-Zn 

ferrite have also been used for the purpose of hyperthermia.  
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Among different chemical compositions of MNPs, the most studied superparamagnetic 

nanoparticles for hyperthermia are those of iron oxide, Magnetite (Fe3O4) and Maghemite (-

Fe2O3). That is due to its proven biocompatibility, very low toxicity and biodegradability [25]. 

Iron cobalt has shown higher magnetization than iron oxide [26]. However, due to unknown 

toxicity issues of this magnetic compound further investigation is required before it can reach 

human clinical trials.  

To use stand-alone magnetic hyperthermia therapy, difficulties in surface modification of magnetic 

particles for selective uptake by cancerous cells and stability as well as magnetic properties for 

high heating capacity (> 1000 W/g) must be overcome [27].  

According to Rosensweig, the heating efficiency in a uniform magnetic field only depends upon 

the saturation magnetization (Ms), Néel relaxation time and the volume fraction of the 

superparamagnetic particles [28]. However, the preparation of metallic NPs with high Ms (>100 

emu/g) remains challenging due to: i) the chemical synthesis of the nanoparticles, which is often 

associated with a poorly crystalline structure and the presence of oxides [29], or ii) the oxidation 

of nanoparticles and the release of metallic ions [30]. This explains why the heating efficiency of 

the common MNPs is low (<1000 W/g). 

In general, an annealing step followed by a polymer (or silica) coating is required to improve their 

Ms by avoiding the oxidation of the metal [31]. However, the existence of a magnetically dead 

layer on the surface of particles can lead to a decrease of the Ms with respect to the core value [32].  

On the other hand, modern implant design is directed on making use of the immune response to 

improve implant integration while avoiding its perpetuation leading to chronic inflammation and 

foreign body reactions, and thus loss of the intended function [33]. The adsorbed protein layer on 

biomaterial surface usually provides binding sites for protein-specific receptors (integrins, specific 

pattern recognition receptors) on polymorphonuclear neutrophils, monocytes and macrophages. 

Thus, depending on the surface chemistry of the nanoparticles proteins adhering may either initiate 

and foster inflammation or assist healing.  

To conclude, there is an unmet technical challenge to design new MNPs which possess not only 

high thermal efficiency as heating elements and stability in physiological medium but are also 

immunomodulator to escape the immune system. To successfully overcome the issues mentioned 
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above, the relationship between the magnetic and the physicochemical properties as well as the 

interaction between the NPs’s surface and biological medium must be investigated.   

Due to rapid advances in nanotechnology, a synthesis method of NPs with the ability to rigorously 

control the structure and morphology, such as size, shape and crystallinity, is needed. 

Electrodeposition is a versatile method for the synthesis of metal nanoparticles directly and 

selectively onto conductive substrates, simply by regulating applied current or voltage [34]. 

Furthermore, the particles size and the shape are easily controllable. Besides, studies have shown 

that the electrodeposition technique is of great utility in the fabrication of nanocrystalline PdCo 

alloys [35]. 

The ultimate objective of this project is to synthesize new candidate for a stand-alone magnetic 

hyperthermia. The primary goal is to synthesize monodispersed PdCo alloy NPs by 

electrodeposition, on graphite electrode, and optimize the following parameters: composition, size, 

shape and surface. The secondary goals are to study the corrosion resistance and the magnetic 

performance in order to evaluate the stability, heat generation and nanotoxicity of our PdCo NPs 

facing their use for clinical applications. Moreover, complementary magnetic tests (such as 

hysteresis loop and Curie point measurements) and ultrasonic bath were done over PdCo NPs 

samples to investigate their magnetic behavior and the feasibility of separating these NPs from the 

graphite electrode, respectively.   

PdCo is chosen based on: i) the excellent corrosion resistance of palladium [36], unlike iron which 

is the most corrosion vulnerable metal and ii) the great magnetic properties of cobalt, CoFe 

achieved an extremely high heating performance of 1300–1600 W/g [37]. The significance of our 

project is to develop a PdCo based MNPs with better magnetic properties than iron oxide due to 

less corrosion-related problems, and uselessness of coating material. Moreover, the values of the 

saturation magnetization (Ms) for PdCo alloys of 5 mm diameter and 0.1 mm thickness disk were 

given by Bagguley et al. [38] and are very promising. The values of Ms decreased with the cobalt 

content from a value near 89.96 emu/g for the 74.7 at. % Co to reach 40.60 emu/g for the 23.0 at. 

% of Co. 
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In addition, Pd–based material has a powerful oxygen reduction properties compared to iron, which 

can be used to decrease the Reactive Oxygen Species1 (ROS) level and thus enhance the 

biocompatibility of NPs. 

The ROS (such as superoxide, hydrogen peroxide, hydroxyl radical, hydroxyl ion, and nitric oxide) 

are free radicals derived from sequential reduction of atomic oxygen, which have two unpaired 

electrons in its outer electron shell, through the addition or loss of electrons. Metals such as iron 

are capable of redox cycling in which a single electron may be accepted (e.g. Fe(III)) or donated 

(e.g. Fe(II)) by the metal, according to Fenton reactions [39]. Thus, the presence of such metals in 

biological systems catalyzes the production of ROS and can significantly increase the level of 

oxidative stress. 

The ROS is the most commonly considered factor in the NP toxicity studies because NPs have high 

surface-to-volume ratio that make interaction with surrounding elements and electron attack more 

likely [40]. Moreover, NPs can induce ROS both outside and inside cells, disrupting organelles 

such as mitochondria, lysosomes, and nuclei and trigger cell signaling pathways, leading to cell 

death through necrosis or apoptosis [41].   

Furthermore, there is a lack of research on PdCo alloys for biomedical application, which makes 

this project unique. In general, PdCo is most studied as magnetic film for magnetic recording media 

and catalyst for fuel cell application.  

                                                 

1 Known also as oxidative stress, ROS (such as oxygen ions and peroxides) are chemically reactive molecules 

containing oxygen. They are formed as a natural byproduct of the normal metabolism of oxygen.  
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Abstract- Recent advances in nanomaterials science contributed to develop new micro- and nano-

devices as potential diagnostic and therapeutic tools in the field of oncology. The synthesis of 

superparamagnetic nanoparticles (SPMNPs) has been intensively studied, and the use of these 

particles in magnetic hyperthermia therapy has demonstrated successes in treatment of cancer. 

However, some physical limitations (such as the saturation magnetization ‘Ms’ is inversely 

proportional to the particle size) have been found to impact the heating efficiency required to kill 

cancer cells. Moreover, the bio-safety of NPs remains largely unexplored. The primary goals of 

this review are to summarize the recent progress in the development of magnetic nanoparticles 

(MNPs) for hyperthermia, and discuss the limitations and advances in the synthesis of these 

particles. Based on this knowledge, new perspectives on development of new biocompatible and 

biofunctional nanomaterials for magnetic hyperthermia are discussed.    

Keywords— Magnetic nanoparticles, synthesis, magnetic hyperthermia, cancer. 

2.1.1 Introduction  

According to the national cancer institute, cancer is currently the second leading cause of death in 

the United States, exceeded only by heart disease as the number one killer. A total of 1,620 

Americans are expected to die of cancer per day in 2015.  

Significant progress has been made so far in nanotechnology for the diagnosis and treatment of 

cancer. A variety of magnetic nanomaterials has been developed to achieve improved efficacy in 

mailto:osavadogo@polymtl.ca
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cancer therapy as well as reduced side effects compared to conventional therapies. The interest in 

MNPs is due to their unique magnetic properties, they exhibit diagnostic tool, drug carrier and heat 

generator for therapy in magnetic resonance imaging (MRI), so-called ‘theranostic’ and their small 

sizes, which allow the particles to reach most biological tissues. Currently, iron oxide nanoparticles 

(IONPs) are the most explored MNPs for magnetic hyperthermia, because of their lack of toxicity 

and their known pathways of metabolism [42]. 

The generation of heat by the exposition of MNPs to a non-invasive alternating magnetic field 

(AMF) can be used to destroy tumor tissue, given that heat promotes cell apoptosis through 

irreversible physiological changes [43]. This approach is known as magnetic hyperthermia.  

Apoptosis is generally induced through extrinsic and intrinsic pathways. The extrinsic pathway is 

mediated through cell surface death receptors and the intrinsic pathway is mediated through the 

mitochondria [44]. In the extrinsic pathway, the tumor necrosis factor receptor-associated death 

domain protein binds to and activates apoptosis initiator caspases-8 and caspases-10 [45]. Whereas 

in the intrinsic pathway, DNA damage with subsequent translocation of Bax protein to the 

mitochondria results in dissipation of mitochondrial transmembrane potential with release of 

cytochrome-c and thus induce apoptosis through activation of apoptosis initiator caspase-9 [46]. 

The basics of the magnetic properties required in MNPs for magnetic hyperthermia applications 

will be discussed later in details. 

The synthesis methods of MNPs have an impressive impact on the magnetic and morphological 

properties of the final product [47]. Therefore, a synthesis method with the ability to rigorously 

control the composition, size and shape, is needed. This paper presents a short review on the current 

methods for synthesis of MNPs for nanomedicine, and discusses important findings reported 

earlier.  

2.1.2 Basics of magnetism in magnetic hyperthermia 

An understanding of the relationship between physicochemical properties (for example: structure, 

particle size) and magnetic properties is essential in order to design new magnetic materials for 

magnetic hyperthermia applications. Therefore, a review on the basic concepts in nano-magnetism 

will be discussed shortly.  



9 

 

 

2.1.2.1 Soft and hard magnets  

When a ferromagnetic material, such as Iron, nickel and cobalt, is placed in a magnetic field of 

strength ‘H’, the atoms acquire an induced magnetic moment ‘m’ randomly oriented. The magnetic 

moments pointed in the same direction per volume of atoms are called magnetization ‘M’. The 

magnetic induction ‘B’ is given by Maxwell’s equation (Equation 1) [48]. 

B= μ0(H+M)             (Equation 1) 

Where μ0 is the permeability in vacuum, and has an exact value of 4π.10−7V.s/A.m.  

The small regions of magnetization are called magnetic domains, and the boundaries between 

domains are called domain walls. In the absence of an external magnetic field, ferromagnetic 

material does not show any magnetization due to the random orientation of the magnetizations in 

magnetic domains (Point a, figure 2-1). However, when an external magnetic field is applied 

magnetic moments become aligned to the direction of the magnetic field, so domain walls 

disappear and the magnetization becomes saturated, so-called saturation magnetization (Ms) 

(figure 2-1).  

Once the applied magnetic field is removed, ferromagnetic materials keep some memory of the 

applied field (Point b, figure 2-1), called remanence (Mr). A coercive force must be applied to 

reduce the remanent magnetization to zero and close the loop. 
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Figure 2-1 Typical hysteresis loop of ferromagnetic materials [49]. 

Ferromagnetic materials can be categorized into soft and hard magnets [49]. Soft magnets have a 

low coercivity (Hc), so they can be demagnetized at low magnetic field. However, hard magnets 

exhibit a high Hc and thus they are difficult to demagnetize. 

2.1.2.2 Multi-domain to single domain 

The magnetostatic (dipole-dipole) energy is inversely proportional to the volume of the particle 

(𝑟3), and the domain-wall energy is proportional to the area of the wall (𝑟2) (Figure 2-2) [50].  

By looking at the balance between the magnetostatic energy and the domain wall energy, it is 

energetically unfavorable to form domain walls below a critical radius, because the domain-wall 

energy is very low, and a single-domain is formed as result of high magnetostatic energy. 
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Figure 2-2 Relative stability of multi-domain and single-domain [50]. 

 

For a sphere containing two semi-sphere domains of opposite magnetization with axial magnetic 

anisotropy, the critical single-domain radius is given by equation 2 [51]. 

𝑟𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 
36√A𝐾1

μ0𝑀𝑠
2                (Equation 2) 

Where A is the exchange stiffness and 𝐾1 is first uniaxial anisotropy constant. 

The critical radius values corresponding to ferromagnetic elements Fe, Co and Ni are calculated 

according to equation 2 and are presented in table 2-1.  

 

Table 2-1 Magnetic parameters at room temperature [51]. 

Ferromagnetic 
particles   

Fe Co Ni 

A (pJ/m) 8.3 10.3 3.4 

K1 (MJ/𝑚3) 0.05 0.53 -0.005 

μ0.Ms (T) 2.15 1.76 0.61 

rC (nm) 6 34 16 
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2.1.2.3 Superparamagnetism  

It has been found that with a further decrease in particle size below the critical radius, the coercivity 

Hc decreases significantly to reach zero. When the coercivity becomes zero, the particles magnetize 

in the presence of an external magnetic field and revert to a non-magnetic state when the external 

magnetic field is removed (Figure 2-3) [49]. 

 

Figure 2-3 The magnetic response characteristic of a superparamagnetic material [49].     

This behavior can be explained by the fact that a small magnetic particle less than critical size 

prefers to be uniformly magnetized along one of its easy axes (θ= 0, θ= π), and the energy required 

to rotate the magnetization away from the easy direction is called magnetic anisotropy energy. In 

a simple model for a non-interacting single-domain spherical particle with uniaxial anisotropy in 

zero magnetic field, the magnetic anisotropy energy ‘𝐸𝐴’ is given by an expression of equation 3 

[52]. 

𝐸𝐴= K.V.𝑆𝑖𝑛2θ            (Equation 3) 

Where K is the anisotropy constant, V is the volume of the particle and θ is the angle between the 

particle magnetization and the easy magnetization axis of the particle. 
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According to equation 3, the magnetic anisotropy energy decreases when the volume of the particle 

becomes smaller. Furthermore, the anisotropy energy becomes comparable to or even lower than 

the thermal energy (𝐸𝑡ℎ𝑒𝑟𝑚𝑎𝑙=𝑘𝐵.T, where 𝑘𝐵 is Boltzmann constant) [53]. As a result, the energy 

barrier for magnetization reversal can be overcome thermally (Figure 2-4). This phenomenon is 

called ‘superparamagnetism’. 

 

Figure 2-4 Schematic of anisotropy energy barrier for magnetization reversal [52]. 

Due to the fact that these particles are magnetically controlled by an external magnetic field and 

maintain a colloidal stability upon removal of the external magnetic field, superparamagnetic 

particles have a unique advantage for biomedical applications.  

For spherical magnetic particles, the transition from single-domain to superparamagnetic ‘𝑟0’ 

depends upon the size and/or geometry of the particles and can be determined by the following 

equation [54]: 

𝑟0= (
6.𝑘𝐵.𝑇𝐵

𝐾
)1/3         (Equation 4) 

Where 𝑇𝐵 is the blocking temperature. 

Table 2-2 provides calculated values of the transition radius ‘𝑟0’, according to equation 4, for the 

main magnetic nanomaterials [54,55].     
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Table 2-2 Maximum radius for superparamagnetic NPs of different compositions [54,55]. 

Superparamagnetic 
NPs 

Co CoPt CoFe2O4 FeCo Fe3O4 Fe2O3 FePt Ni 

r0 (nm) 5 1 5 10 12.5 15 1.5 15 

 

Although particle moves toward superparamagnetism when the size of the particle decreases below 

the transition point and becomes suitable for biomedical application, the saturation magnetization 

‘Ms’ reduces. The magnitude of Ms is inversely proportional to the ratio of disordered spin layer 

at the surface to the radius of the particle, which significantly increases when the size of the 

nanoparticle becomes too small. The relationship between Ms, the size and the disordered spin 

layer is described by equation (5) [56]: 

Ms = Msb[
(𝑟−𝑑)

𝑟
]3           (Equation 5) 

Where d is the thickness of the particle’s surface exhibiting disordered spins, and Msb is the bulk 

Ms. Recent studies on the effect of the size of MNPs upon its saturation magnetization are 

summarized in table 2-3. According to the studies listed in table 2-3, the Ms increases with the size 

of the MNPs due to the reduction of the spin disorder effect.  

 

Table 2-3 Magnetizations of a variety of types of MNPs of varying sizes. 

MNPs Size (nm) 
Ms 

(emu/g) 
Ref 

CoFe2O4 
4.2 30.6 

[57] 

4.8 46.0 

18.6 48.8 

Fe3O4 
4.9 60.4 

6.3 64.8 

Ni 
24 25.3 

[58] 
50 32.3 
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Recent study done by Guardia et al. have demonstrated that the surface coating of iron oxide 

(Fe3O4) NPs with oleic acid increases their measured Ms to reach the bulk value, by reducing the 

level of surface spin disorder [59].  

2.1.2.4 Heat generation  

Heating tumor cells with SPMNPs by magnetic hyperthermia is based on Néel and Brownian 

relaxations. In the presence of an external alternating magnetic field, the magnetic moment rotates 

and the nanoparticle itself rotates then relax back to their original magnetic field orientation. The 

rotation of the magnetic moment (Néel mode) and the friction arising from particle oscillations 

(Brownian mode) lead to a phase lag between applied magnetic field and the direction of the 

magnetic moments. As result, the heat is released.  

The efficiency of heating is measured in terms of the specific absorption rate (SAR), or specific 

loss of power (SLP), which is defined in equation 6. For biomedical applications, the value of SAR 

is crucial because the higher the specific absorption rate, the lower the injected dose to the patient.  

SAR or SLP (W/g) = C 
𝛥𝑇

𝛥𝑡
  (Equation 6) 

Where C is the specific heat capacity of water, and ΔT/Δt is the rate of change of temperature 

versus time.  

According to Rosensweig [60], there is a strong relationship between the SAR of SPMNPs and its 

magnetic relaxation ‘τ’ (Equation 7).  

SAR= 4.1868 μ0
2 𝜑𝑀𝑠

2𝑉

1000𝑘𝑇
 𝐻0

2ν 
2πντ

1+(2πντ)2           (Equation 7) 

Where φ is the volume fraction of the SPMNPs, V = 
4𝜋𝑟3

3
 is the magnetic volume for a particle of 

radius r, 𝐻0 is the magnetic field intensity, ν is the frequency of the oscillating magnetic field and 

τ is the relaxation time.  

Also, equation 7 shows that the SAR strongly depends on the 𝑀𝑠 and the volume fraction of the 

SPMNPs. Not only high 𝑀𝑠 values are required for thermal energy dissipation in the tumor cells, 

but also to give more control on the magnetophoretic velocity of the MNPs ‘𝑉𝑚𝑎𝑔’ in the blood 

using external magnetic field [61] (Equation 8).   
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 𝑉𝑚𝑎𝑔= 
𝑀𝑠.𝑉𝑚𝑖𝑐𝑟𝑜𝑑𝑒𝑣𝑖𝑐𝑒.𝛻𝐵

6.𝜋.𝑅𝑚𝑖𝑐𝑟𝑜𝑑𝑒𝑣𝑖𝑐𝑒 .𝜇
                 (Equation 8) 

Where 𝑉𝑚𝑖𝑐𝑟𝑜𝑑𝑒𝑣𝑖𝑐𝑒 is the volume of microdevice (𝑚3), 𝛻𝐵 is the magnetic gradient applied (T/m), 

𝑅𝑚𝑖𝑐𝑟𝑜𝑑𝑒𝑣𝑖𝑐𝑒 is the microdevice radius (m) and 𝜇 is the blood viscosity (Pa.s). 

Theoretically, a critical diameter 𝑑𝑐 is defined as the diameter for which Néel relaxation time ‘τ𝑁’ 

(equation 9) is equal to Brownian relaxation time ‘τ𝐵’ [62] (equation 10). For small particles with 

a diameter < 𝑑𝑐, Néel relaxation is predominant. However, the heating is primarily due to Brownian 

rotation in larger particles with a diameter > 𝑑𝑐. The dominating contribution will be by the faster 

relaxation time.  

τ𝑁= τ0𝑒
𝐾.𝑉

𝑘𝐵.𝑇             (Equation 9) 

τ𝐵= 
3 𝜂𝑉𝐵

𝑘𝐵.𝑇
               (Equation 10) 

Where τ0≈ 10−9- 10−12s is the relaxation time of non-interacting MNPs, η is the viscosity of the 

surrounding liquid and 𝑉𝐵 is the hydrodynamic volume of the particle.  

The frequency 𝜈𝑁 for maximal heating via Neel relaxation is given by equation 11, and the 

frequency 𝜈𝐵 for maximal heating via Brown rotation is given by equation 12 [63]. 

2𝜈𝑁τ𝑁= 1                (Equation 11) 

2𝜈𝐵τ𝐵= 1                (Equation 12) 

When the diameter of the particle is close to 𝑑𝑐, τ𝑁 ≈ τ𝐵 and an effective relaxation time ‘τ𝑒𝑓𝑓’ is 

defined in equation 13. The frequency for maximal heating ‘𝜈𝑒𝑓𝑓’ is then given by equation 14 [64]. 

τ𝑒𝑓𝑓= 
τ𝑁τ𝐵

(τ𝑁+τ𝐵)
                  (Equation 13)  

2𝜈𝑒𝑓𝑓τ𝑒𝑓𝑓= 1                (Equation 14) 

Recent research optimized the heating efficiency by tuning the MNPs size in order to match the 

total relaxation time (τ𝑡𝑜𝑡𝑎𝑙= τ𝑁+ τ𝐵) to the applied frequency (ν = 
1

2π.τ𝑡𝑜𝑡𝑎𝑙
) [65].  

The strong dependence of the SAR on multiple magnetic properties such as saturation 

magnetization and relaxation time, physical parameters like size, shape and composition can be 
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tailored to enhance the heat dissipation and thus lower the injected dose of SPMNPs in the tumor 

site.  

2.1.3 Biomaterials for magnetic hyperthermia 

In order to develop excellent candidates for magnetic hyperthermia, it is very important to review 

the recent advances and limitations in the development of MNPs for magnetic hyperthermia 

applications. 

Superparamagnetic iron oxide nanoparticles (SPMIONPs) are the most used MNPs for biomedical 

applications, especially magnetic hyperthermia. They received considerable attention due to their 

biocompatibility compared to other magnetic materials such as cobalt and nickel [66]. The high 

biocompatibility of IONPs is due to well controlled cell homeostasis by uptake, excretion and 

storage [67]. Moreover, they do not cause oxidative stress even at high doses [68]. However, nickel 

and cobalt are susceptible to oxidation and toxic, even though they exhibit a high magnetic 

moment, because they are not essential elements to the body like iron and thus accumulate in the 

body and cause illness.  

IONPs become superparamagnetic at room temperature when their radius is below about 15 nm 

[55], and aggregation is a common phenomenon among SPMIONPs [69]. Therefore, bare 

SPMIONPs are coated against aggregation by either non-magnetic or magnetic shell [70]. Usually 

the type of coatings has an impact on the heating efficiency of the core through modifying the 

surface properties. Details on the types of shells used to protect IONPs and their effect over 

magnetic properties will be discussed.  

Among iron oxides, magnetite (Fe3O4) and maghemite (γ-Fe2O3) are very popular candidates and 

have unique magnetic properties suitable for biomedical applications.  

Iron metal (Fe) has a higher magnetization than magnetite and maghemite. However, Fe is highly 

susceptible to oxidation, which limits its use for biomedical applications. Qiang et al. synthesize 

oxidative stable Fe-core MNPs coated with iron oxide and having an increasing Ms from about 80 

emu/g (at the cluster size of 3 nm) to 200 emu/g (at the size of 100 nm) [71]. 

In general, MNPs are coated with a selected material to enhance their colloidal stability and 

biocompatibility or to offer them the capacity to functionalize the surface, like in the case of a 
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coating of silica (SiO2) [72]. Furthermore, coating can be used to modify MNPs surface in order to 

increase their Ms and consequently increase the SAR.  

Studies show that coating MNPs with non-magnetic material, for example Fe3O4 coated with SiO2 

[73], will reduce Ms (from 72 emu/g to 37 emu/g) and hence SAR (from 1.5±0.1 W/g to 1.08±0.04 

W/g) as compared to uncoated MNPs. The decrease in Ms was attributed to the enhanced surface 

spin effects, and thus not all the IONPs mass contribute to Ms. Furthermore, the effective 

anisotropy constant ‘Keff’ increases due to the strain and surface spin disorders created by SiO2 

coating, and the blocking temperature TB experience similar variations since TB is defined as the 

product of the Keff and the volume of the nanoparticles ‘V’ (Equation 15) [74]. 

 TB= 
Keff.V

25.kB
       (Equation 15) 

Surface spin effect (or surface spin disorder) is the result of the surface electrons engagement in 

the bond with the coating material, which no longer participate in the magnetic super-exchange 

bonds between metal cations (example: Fe-O-Fe), and thus reduce the coordination between 

surface spins [75]. 

Fe3O4 NPs coated with SiO2 and functionalized with propylamine groups showed higher 

magnetization saturation (Ms≈ 42 emu/g) than uncoated Fe3O4 (Ms≈ 27 emu/g), where both were 

synthesized by thermal decomposition in oleic acid [76]. It seems that the surface of Fe3O4 is 

magnetically more active in Fe3O4 NPs coated with silica-propylamine than that of uncoated 

Fe3O4 covered with oleic acid. 

On the contrary, Fe3O4 NPs coated with silica-propylamine showed slightly lower magnetization 

saturation (Ms≈ 58 emu/g) than uncoated Fe3O4 (Ms≈ 60 emu/g) [77], where Fe3O4 NPs were 

obtained by co-precipitation in aqueous medium. The contradictory results of these two studies 

suggest that the synthesis and coating methods can be tailored to enhance the magnetic properties 

of the MNPs. 

Capping Co-MNPs with metallic shell (such as Cu or Au) provides us a high tuning opportunity 

over the magnetic properties (for example, enhance surface anisotropy and higher blocking 

temperature), due to the bonding of the d-orbital electrons of the core to the conduction band 

orbitals of the capping layer [78]. This suggests that the surface anisotropy is mainly determined 
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by the electronic states of the core-shell metals and therefore it could be tuned by choosing 

materials with appropriate electronic band structures. 

For hyperthermia applications, an SLP of 1000 W/g is necessary at 100 kHz and 20 mT (human-

compatible conditions). By taking advantage of the exchange coupling between a magnetically 

hard core (CoFe2O4) and soft shell (MnFe2O4), MNPs exhibiting a significant enhancement in 

SLP have been developed [79]. Various combinations of core–shell nanoparticles tuned Ms of the 

single-component MNPs to achieve high SLP while maintaining the superparamagnetism. For 

example Zn0.4Co0.6Fe2O4 core and Zn0.4Mn0.6Fe2O4shell MNPs have an SLP of 3866 W/g and 

thus exhibit 1.7 times higher SLP than that for CoFe2O4(core) MnFe2O4(shell) MNPs (2274.12 

W/g) (NP size= 12 nm, at 500 kHz and 37.3 kA/m) and 34 times larger than that for commercial 

Feridex Fe3O4 NPs (210 W/g) (NP size= 10-12 nm, at 880 kHz and 7.2 kA/m). 

Spherical MnFe2O4 SPMNPs show lower SLP of 411 W/g (r= 15 nm) when compared to that of 

MnFe2O4(core) CoFe2O4(shell) (r= 12 nm) where SLP is about 3034 W/g (at 500 kHz and 37.3 

kA/m)) [80]. Clearly, core-shell design has the advantage in achieving large SLP while keeping 

the superparamagnetism of the nanoparticle. In the same work, cubes of CoFe2O4 coated with 

Zn0.4Fe2.6O4 (NP size= 60 nm) showed a 4-fold increase in coercivity as compared to the core 

alone (NP size= 50 nm). This increase is consequently followed by a dramatically higher SAR for 

the shell-core MNPs (10 600 W/g) when compared to that of MNPs composed of just the core 

(4060 W/g) (at 500 kHz and 37.4 kA/m). 

Many efforts have been dedicated toward understanding the relationship between the shape of 

MNPs and their magnetic properties. Several studies showed that the Ms is proportional to the 

volume of the particle (V) with the same crystalline composition but different shape [81,82], due 

to the decrease of the surface-to-volume ratio and consequently surface spin disorder. For example, 

considering MNPs having the same unit size (d) (where ‘d’ corresponds to the side length for 

nanocubes, the width for nanorods and the diameter for nanospheres), the V of nanocube is higher 

than the V of nanorod, and the V of nanosphere is lower than the V of nanorod. Therefore, the 

same order of Ms is expected (Ms of nanocube > Ms of nanorod > Ms of nanosphere). 

A study on the effect of the shape of Fe3O4 NPs over its saturation magnetization is done by Zhen 

et al. [83]. The authors observed a higher Ms for the cubic shape (Ms= 40 emu/g) compared to the 
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spherical shape (Ms= 31 emu/g), where the volume of the cube is slightly higher than that of the 

sphere (𝑉𝑐𝑢𝑏𝑒>𝑉𝑠𝑝ℎ𝑒𝑟𝑒). They attributed the lower magnetization of spherical Fe3O4 NPs to their 

crystalline defect structure or greater degree of oxidation and non-magnetic iron oxide (Fe2O3) 

content. 

According to Noh et al. [80], the cubic shape of Zn0.4Fe2.6O4 has a higher Ms (165 emu/g) value 

than the spherical shape (145 emu/g) with the same volume. In fact, the surface of the cube shape 

has a smaller surface anisotropy since its topology comprises low energy facets. As result, 

disordered magnetic spins in cubic NPs (4 %) are lower than in spherical NPs (8 %). 

However, in a study done by Montferrand et al. on Fe3O4 NPs [84] Ms for the cubic shape (40 

emu/g) is lower than the spherical shape (80 emu/g) of the same size. Unexpected Ms could be 

related to size polydispersity and polymorphism detected in TEM images. 

Magnetic properties are also defined by the atomic state of the elements, especially the number of 

unpaired valence electrons. For example, Fe(III) have five unpaired electrons and thus a moment 

of 5x1.73= 8.65 Bohr magnetons. Moreover, the distribution of ions in the structure is another 

parameter responsible for the determination of the moment. For example, in an inverse spinel 

structure of ferrites, the magnetic moments of the cations in the octahedral sites are aligned parallel 

to the magnetic field, and the ones in the tetrahedral sites are antiparallel, leading to a decrease in 

the net moment [85].  

Hence, doping MNPs with cations is of great interest in nanomedicine because it tailors the physical 

and magnetic properties, without affecting its crystal structure, due to the nature of the cation and 

its relative distribution in the tetrahedral and octahedral sites [86]. 

Lee et al. [85] compared the crystal structure of four spinel ferrites (M𝐹𝑒2𝑂4): MnFe2O4 (110 

emu/g), FeFe2O4 (101 emu/g), CoFe2O4 (99 emu/g), and NiFe2O4 MNPs (85 emu/g). MnFe2O4 

had a mixed spinel structure, where Mn2+and Fe3+ occupied both octahedral and tetrahedral sites, 

and an inverse spinel structure where Mn2+and Fe3+ occupied octahedral sites and only Fe3+ 

occupied the tetrahedral sites.  

The inclusion of 𝑁𝑖2+ in the ferrite spinel structure (NixFe3−xO4 with x= 0, 0.04, 0.06 and 0.11) 

has no substantial change in the value of Ms, where 𝑁𝑖2+occupy 𝐹𝑒2+ octahedral sites [87].  Gabal 
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et al. examined the Zn2+doped nickel ferrite (Ni1−xZnxFe2O4; 0<x<1) and noticed that the Ms 

increases by increasing Zn doping levels up to 0.5 [88]. This behavior can be explained by the fact 

that magnetite (Fe3O4), with a spinel structure, has Fe3+ions occupying tetrahedral (inverse) sites 

and Fe2+ with Fe3+ ions residing in the octahedral sites. During cation exchange Fe2+in octahedral 

site is replaced by Ni2+ and NiFe2O4 is formed. Since the tetrahedral and octahedral sites are 

antiferromagnetically coupled, the net moment of Ni ferrite equals the moment of octahedral site 

(Ni2+,Fe3+) minus the moment of tetrahedral (Fe3+). The inclusion of non-magnetic Zn2+ in 

NiFe2O4 substitutes Ni2+then occupies a tetrahedral site and force magnetic Fe3+to migrate to 

octahedral site and, as x increases. As result, the net moment increases due to the decrease in 

fraction of moment of tetrahedral site and an increase in moment of octahedral sites [88].  

FeCo MNPs usually exhibit high Ms values (122 - 230emu/g) compared with CoFe2O4 MNPs [89], 

due to the absence of the non-magnetic oxygen component [90]. However, the ease of oxidation in 

the presence of air is the key issue for these alloys [90].  

Palladium metal is a non-magnetic element but tends to order ferromagnetically when alloyed with 

a small amount of magnetic transition metal impurities (such as Fe, Co and Ni 3d metals) [91]. A 

polarization of Pd atom by a magnetic impurity is due to the hybridization and exchange between 

4d and 3d orbitals (Figure 2-5) [92].  

 

Figure 2-5 Illustration of the covalent interaction between Fe 3d and Pd 4d orbitals [92].  

The appearance of ferromagnetism can be explained by the large density of states at the Fermi level 

(EF).  

Joseph A. Paulus and Robert D. Tucker proposed for the first time PdCo seeds for thermal treatment 

of tumors [93]. PdCo thermoseeds (typically rode shape where d=1mm and L= 1-2 cm) are 

permanently implanted into the cancerous tissue, and thus the patient can be scheduled for 
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activation of the thermoseeds at intervals of minimal thermotolerance [93]. The authors developed 

a new approach to treat prostate cancer, post-radiotherapy, using these thermoseeds. During 

thermotherapy, PdCo rods heat up when exposed to an alternative magnetic field (due to eddy 

current) to a specific temperature (Curie temperature), at which the alloy goes from being magnetic 

to non-magnetic, and ceases to heat up and it simply maintains the Curie temperature as long as it 

remains in the magnetic field [93]. 

Deger et al. [94] conducted a clinical study on the treatment of patients with localized prostate 

cancer with a magnetic hyperthermia, using self-regulating PdCo thermoseeds, after radiotherapy. 

During hyperthermia, PdCo thermoseeds heating temperatures were between 42 and 46°C with a 

curie temperature of 55°C. The initial median prostate specific antigen (PSA) value was 11.6 ng/ml, 

and then decreased to 1.3 ng/ml and 0.55 ng/ml after 12 and 24 months respectively after the 

therapy. Moreover, PdCo seeds proved to be biocompatible and do not show major complication 

during the treatment, and remain in the prostate during follow up [94].  

According to Brezovich et al. [95], a heat production rate of 200 mW/cm is adequate for most 

clinical application. El-Sayed et al. calculate the power dissipated from Pd89.2Co10.8, Pd73Ni27 and 

Cu29.6Ni70.4 ferromagnetic seeds, having a rode shape with a diameter of 0.9 mm diameter and a 

5.5 cm length as function of temperature [96]. At 20°C, the heating power of Pd89.2Co10.8 was 

about 171 mW/g, and 150 mW/g for Pd73Ni27. The Cu29.6Ni70.4 seed showed a much smaller 

heating power of 80 mW/g. Therefore, Pd89.2Co10.8 seed exhibit the highest heating power to treat 

localized tumors compared with the other two alloys, at 100 kHz and 4 kA/m. 

Iron based-MNPs have been widely studied for nanomedicine (especially for cancer treatment) and 

palladium-cobalt alloys have not received significant attention. Although Pd and Co are toxic 

elements, PdCo alloy has a higher stability and resistance to corrosion [97] compared to Fe based-

alloy [98]. Moreover, the researches done over PdCo thermoseeds are very promising and 

encouraging to develop new MNPs candidates for thermotherapy made of PdCo alloys.  

2.1.4 Nanotoxicity of biomaterials 

Upon administration into tumor tissue MNPs interact with blood components (e.g. Plasma and 

platelets), where thousands of biomolecules compete for limited space on a NP surface [99], due 
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to van der Waal's interactions, electrostatic interactions, hydrogen bonding and/or hydrophobic 

interactions [100]. As result, MNPs acquire a dynamic exchange plasma proteins layer, so-called 

‘corona’ [99], in which competitive displacement of earlier adsorbed proteins (generally small 

molecular weight and highly concentrated proteins, such as serum albumin) by other proteins with 

stronger binding affinities (typically of a larger molecular weight, such as kininogen) take place 

and is referred to ‘Vroman Effect’ [101]. Thus, the identity, organization and residence time of 

these proteins determine the way cells interact with NPs [99]. Moreover, the adsorbed proteins 

identity and their total amount showed to be strongly dependent on the particle surface chemistry 

(like surface composition, charge, topography and area) [100].  

Studies show that plasma proteins, including immunoglobulins and complement proteins, once 

adsorbed to NPs surfaces it target the particles as pathogens for clearance (called ‘opsonization’) 

by the reticulo-endothelial system and mononuclear phagocytic system [102]. In fact, the immune 

system may recognize the proteins as native or as foreign pathogen depending on whether the 

proteins bind or not to immune cells receptors. Following proteins adsorption, platelets cells 

adhesion and activation on NPs may occur via interaction of adhesion receptors with the adsorbed 

blood proteins such as fibrinogen, fibronectin, vitronectin, and the von Willebrand factor 

[103,104]. As result, inflammatory cells (primary polymorphonuclear leukocytes) migrate from the 

blood toward the NPs, triggered by chemoattractants released from activated cells [105]. 

Inflammatory cells adsorption over the protein-coated NPs surface, due to protein ligands of 

integrins, lead to an acute or chronic inflammation [106].  

The concept of inert biomaterials points out the need of strategies for improving implant 

integration, to avoid foreign body reactions. It was shown that when macrophages are cultured on 

surface-modified polymers displaying hydrophobic, hydrophilic and/or ionic chemistries, they 

change their protein expression profiles and cytokine/chemokine responses [107]. Consequently, 

current studies in the design of such biomaterials include passive modulation of the surface 

chemistry, to limit immune responses. For example, polyethylene glycol (PEG)-modified surface 

prevents proteins adsorption due to its sterically hindered and hydrophilic coating [108], and are 

thus protected against cell adhesion and activation. On the other side, functionalization of the 

surface with bioactive molecule such as adhesion sites (e.g. Fibronectin) [109], anti-inflammatory 
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drugs (e.g. Glucocorticoid)  [110] and growth factors (e.g. Platelet-derived growth factor) [111] is 

also a very interesting strategy for modulating or suppressing inflammatory responses.  

MNPs can induce toxicity, not only by activating cells in a direct way as discussed above, but also 

indirectly by excessive tissue accumulation of free metal ions [112].  It was shown that reactive 

oxygen species (ROS) are generated by the cells as a result of leached ions after exposure to an 

acidic environment, such as lysosomes (pH= 4.5) [113]. In general, most cells can tolerate a certain 

amount of ROS, whereas higher levels of ROS persist over a longer time and may result in cell 

damage and subsequent induction of toxic effects [114].  

The mechanism by which NPs cause cell apoptosis via ROS remains unclear. However, the 

intrinsic apoptosis pathway is generally proposed for superparamagnetic iron oxide-induced cell 

apoptosis [40]. In the intrinsic pathway, NPs infiltrate into the mitochondria and boost ROS 

production resulting in mitochondrial membrane disorder and subsequent release of pro-apoptotic 

proteins, cytochrome c, and apoptosis-inducing factor, which then activates caspase-9 and caspase-

3 to boost cell apoptosis [41].  

Since the toxicity of the NPs is affected by the level of induced ROS, the surface must be stable 

against degradation to limit the quantity of free metal ions. 

Potential (Eh)-pH diagram or Pourbaix diagram is essential to investigate the thermodynamic of 

material corrosion, by monitoring the regions of potential and pH where the metal is: unreacted 

(region of immunity), protected by a surface film of an oxide or a hydroxide (region of passivity) 

or dissolved (region of corrosion) [115]. Figure 2-6 shows the Pourbaix diagram for both iron and 

palladium elements in water containing fluoride ions [116]. According to the diagram, iron will 

corrode and produce Fe(II) and/or Fe(III) at potential zero and at pH below 6, whereas palladium 

remains unreacted under these conditions. This difference in stability is due to the higher reactivity 

of iron towards oxidation (EFe(II)/Fe
° = -0.44V; EFe(III)/Fe

° = -0.04V), compared with palladium 

(EPd(II)/Pd
° = +0.915V). Moreover, iron forms a porous oxide layer when exposed to water or air 

[117], and consequently anodic (iron)/cathodic (iron oxide) sites created at the surface trigger the 

process of corrosion. 
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Figure 2-6 Pourbaix diagram showing iron and palladium species and water stability region 

[116]. 

 

The reactivity of iron towards oxidation reveals the toxicity of uncoated IONPs [118], and suggests 

more study into the biocompatibility of the coatings on the long term [119]. The most important 

source of toxicity of IONPs is described by ‘Fenton’ and ‘Fenton like’ reactions (equation 16 and 

equation 17 respectively) [39], in which the Fe(II) or Fe(III) reacts with H2O2 to produce ROS 

species. 

Fe(II) + H2O2 → Fe(III) + HO∗ + HO− (Equation 16) 

k= 76 M−1s−1 

Fe(III) + H2O2 → Fe(II) + HO2
∗  + H+ (Equation 17(a)) 

Fe(III) + HO2
∗  → Fe(II) + O2 + H+     (Equation 17(b)) 

k= 0.01 M−1s−1 

Free ROS species exhibit a lack of specificity with which they react [120], and this makes the study 

of the oxidative mechanism in the toxicity of iron ions very complex [121]. However, ROS 

interactions with biological components have been classified into three types of reactions: electron 

transfer, radical addition and atom abstraction, and identified to cause cells damage [122].   
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The toxicity of Pd, Co pure metal and Pd43Co57 alloy was tested in vitro for dental casting (Figure 

2-7) [123]. It was shown that the cells multiply in the presence of Pd as much as those for the 

control, and keep their natural form. Whereas in the presence of Co, the cells degenerate with time 

and approaches zero at 72h of incubation due to cytoplasmic shrinkage and blister formation. On 

the other hand, the binary alloy Pd43Co57 enhances the cells growth and morphology compared 

with pure Co, showing a monotonically increase of cell multiplication like the control. These results 

indicate that the toxicity of Co may be avoided when alloyed with Pd. 

 

Figure 2-7 Growth curves for a) the pure metals composing the Pd-Co alloys, b) the Pd34Co57 

alloys [117]. 

The corrosion of the binary alloy Pd80,8Co19,2 in synthetic saliva [124] produces a selective 

dissolution of the less-noble components ‘Co’ on the surface of the alloy, leaving a Pd-enriched 

layer on the surface. The results of corrosion are in accordance with that of toxicity, the safety of 

a biomaterial largely dependent on its corrosion resistance. Therefore, pure palladium is non-toxic 

due to the low dissolution rate of palladium ions [125], while pure Co is not stable and thus releases 

toxic cobalt ions. 

a b 
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Despite belonging to essential trace elements of the human body, the accumulation of cobalt ions 

is genotoxic and may cause induce necrosis with inflammatory response [126]. The oral median 

lethal dose (LD50) for soluble Co salts has been estimated to be between 150 and 500mg/kg body 

weight [126]. Further, very low doses of Pd are sufficient to cause allergic reactions in susceptible 

individuals [127]. An allergy response is a hypersensitive immune reaction towards harmless 

allergens. At the first exposure to an allergen, B cells encounter the allergen and differentiate into 

a plasma cell to produce large amounts of antigen-specific IgE. The IgE molecules attach to mast 

cells inducing the release of large amounts of histamine and other inflammatory chemicals, which 

lead to swelling and redness. 

Oral LD50 of palladium oxide is about 4.9g/kg body weight [128]. Also high concentrations of Pd 

ions are capable of eliciting a series of cytotoxic effects [127]. 

Electrochemical corrosion test and immersion test were performed at 37°C for Pd93.85Co6.15 alloy 

sample (with a density of 11.4g/cm3) in mammalian Ringer’s solution [129]. The tests results 

showed a long-term corrosion rate of 7.7 10−8 μm/year, and a release of 0.7μg/l of Pd(II) with 

1.8μg/l of Co(II) per year, indicating a significantly high corrosion resistance of PdCo compared 

with standard surgical implants (0.04 μm/year) [129].  

According to phase diagram of PdCo alloy (figure 2-7), a single phase solid solution of 

substitutional Co atoms in a Pd lattice is formed when the atomic percentage of Pd is higher than 

53 %. Consequently, the corrosion behavior of the PdCo alloy will be similar to that of pure Pd. In 

fact, palladium remains unreacted at normal pH or even acidic environment, as stated in Pourbaix 

diagram (figure 2-6). Pure palladium corrodes only in extremely acidic medium, which is unlikely 

to occur in biological media. The selective dissolution of Co near or at the surface on the long-term 

is possible [129], and as result Co-depleted layer is formed. The alloy is then likely to exhibit 

passivation behavior of pure palladium. An additional dissolution of cobalt may occur by volume 

diffusion of these less noble atoms to the surface [130].  
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Figure 2-8 Phase diagram of PdCo system obtained from FactSage software [131]. 

 

Alloying Pd and Co not only induces ferromagnetism in Pd atoms but also enhances the corrosion 

resistance of Co atoms, which makes this alloy a good candidate for biomedical application.  

2.1.5 Conclusions 

In this study, we have reviewed the basics of magnetic properties and nanotoxicity of NPs for 

magnetic hyperthermia. Also, recent advances on the most used MNPs for biomedical application 

were discussed. From this study it can be seen that despite its corrosion problem, iron oxide NPs 

have received considerable attention. However, new candidates such as PdCo NPs may have a 

great potential for magnetic hyperthermia due to their high corrosion resistance and good 

ferromagnetic behaviour.  
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CHAPTER 3 OBJECTIVES AND METHODOLOGY 

Magnetic NPs are frequently employed in biomedical research as drug delivery systems and/or 

magnetic resonance contrast agents. Nevertheless, the safety issues of these particles have not been 

completely solved because it is difficult to compare the cytotoxicity data since the toxic effects of 

NPs are influenced by many parameters (such as size distribution, surface coating, magnetic 

properties, etc.) [132]. Also, numerous studies showed contradicting findings since different cell 

types will interact with the same particle in different ways [133]. Moreover, the lack of coherence 

between various research activities for establishing priorities among the research needs is one 

reason why a toxicological profile of these particles has not yet been well documented in the 

literature. Therefore, along with the expanding applications of NPs and the growing numbers of 

consumer products containing NPs, the release of these substances into the environment is 

expected, and the impact of these materials is increasing significantly [134].  

Recent studies show that Fe3O4 NPs can affect the cellular functionality by altering the level of 

transferrin receptor expression and can change the cellular proliferation capacity by altering the 

expression of cyclins and cyclin-dependent kinases in cell cycle [135,136]. Other research has 

reported the cytotoxic effects of Fe3O4 NPs on the cytoskeleton of growing neurons [137], by 

increasing cytoskeletal disruption and decreasing their ability to form mature neurites in response 

to nerve growth factor exposure. Moreover, researchers are finding evidence that Fe3O4 NPs 

exposure can produce mutagenic effects including: chromosomal aberrations, DNA strand 

breakage, oxidative DNA damage and mutations [138]. It is worth noting that the excess of iron 

exposure has been found to cause elevated ROS generation through the Fenton reaction, resulting 

in oxidative stress that damages DNA, lipids and proteins, consequently resulting in carcinogenesis 

[139]. These findings confirm previous reports that the presence of intracellular Fe2O3 nanoparticle 

constructs can result in significant changes in cell behavior and viability [140].  

Based on the above literature review, PdCo NPs produced by electrodeposition have never been 

considered as potential magnetic materials for cancer treatment using hyperthermia therapy. 
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On the other hands, magnetic nanoparticles can induce toxicity by excessive tissue accumulation 

of free metal ions [141], due to the high levels of reactive oxygen species (ROS) generated by the 

cells [142], as a result of leached ions, and which may result in cell damage and subsequent toxic 

effects [143]. Since the toxicity of the nanoparticles is affected by the levels of induced ROS, the 

surface of the nanoparticles must be stable upon degradation to limit the quantity of free metal ions. 

Corrosion tests done over Pd-rich PdCo alloys in oral simulated environment showed a high 

corrosion resistance [144]. Furthermore, Pd rich-PdCo seeds showed a heating temperatures 

between 42 and 46°C during the treatment of localized prostate cancer, as result of ferromagnetic 

properties of Co [145].  

Therefore, Pd-rich PdCo NPs may have also a great potential for magnetic hyperthermia use, and 

thus it will be very interesting to investigate for the first time the synthesis and corrosion resistance 

of Pd-rich PdCo NPs.  

From these interesting results, the main objective of this work is to develop magnetic PdCo NPs 

for cancer treatment using magnetic hyperthermia therapy. 

Accordingly, the first step of this work is the synthesis of the PdCo nanoparticles by 

electrodeposition.  

In fact, the nanofabrication processes can be divided into the two well-known approaches: bottom-

up and top-down. The bottom-up approach (such as self-assembly of NPs or monomer/polymer 

molecules, chemical or electrochemical reactions for precipitation of nanostructures, sol–gel 

processing, laser pyrolysis, chemical vapor deposition (CVD), plasma or flame spraying synthesis, 

and atomic or molecular condensation) implies that the nanostructures are synthesized onto the 

substrate by stacking atoms onto each other, which gives rise to crystal planes, and then crystal 

planes stack onto each other, resulting in the synthesis of the nanostructures. Whereas, the top-

down approach (such as photo-lithography and electron beam lithography, anodization, and ion- 

and plasma etching (PE)) implies that the nanostructures are synthesized by etching out crystals 

planes that are already present on the bulk material.  

Top-down methods are generally not suitable for production on a very large scale because they 

presently encounter technological limitation and require extremely long and costly processes. In 

addition, the biggest issue with top-down approach is the imperfection of the surface structure and 
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the significant crystallographic damage to the processed patterns. While bottom-up approach 

promises a better chance to obtain nanostructures with less defects and more homogenous chemical 

composition. 

Electrodeposition is a bottom-up method that uses electrical current to reduce dissolved metal 

cations into a thin layer of the material onto a conductive substrate surface. Typically, a 

conventional three electrodes electrochemical cell (Figure 3-1) is used for this purpose. It allows 

the application of the potential/current onto the working electrode (WE) without the contribution 

of the other electrodes. The counter electrode (CE) is used to complete the current path, while the 

reference electrode (RE) serves as potential control and measurement.  

The strengths of electrodeposition technique are numerous, such as rapidity, simplicity, low-cost, 

scalability, manufacturability and does not require high vacuum facilities [146]. However, the 

powerful feature is its ability to control the composition, size and shape of the electrodeposited 

material.  

 

Figure 3-1: Schematic of three electrodes electrochemical cell [147]. 

Furthermore, the potential of degradation of metallic NPs and the subsequent release of cytotoxic 

metallic ions can be determined by using the same electrochemical setup.  

According to the literature, the resistance of metallic NPs toward corrosion can be enhanced by 

heat treatments or surface passivation, as they reduce the surface reactivity towards oxidation. 
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Thus, it is very interesting to investigate the corrosion resistance of PdCo NPs and evaluate the 

effect of heat and alkanethiol layer on their stability. 

In addition, no in-depth research has been performed so far neither on the electrodeposition of 

PdCo NPs onto graphite nor the study of the stability of these particles. Hence, this work consists 

of four main studies: 

 Synthesis and characterization of magnetic PdCo films and nanoparticles. 

 Optimization of the electrodeposition parameters during the synthesis of PdCo.  

 Corrosion behaviour of PdCo nanoparticles in Ringer’s solution. 

 Effect of the heat and alkanethiol treatments on the corrosion resistance of PdCo 

nanoparticles. 

To achieve these goals, we have developed a new method for the synthesis of PdCo NPs using a 

sequential electrodeposition on graphite electrode. Despite the difficulties to deposit PdCo on the 

highly oriented pyrolitic graphite, it was used as working electrode to obtain a 3D growth required 

to produces nanoparticles. To enhance the deposition on graphite electrode, small Pd particles were 

deposited by electroless on the graphite surface acting as an efficient particle-mediated electron 

transfer, from graphite to Pd(II) + Co(II) ions, for Pd and Co electrodeposition. Later, a sequential 

electrodeposition followed by 1-dodecanethiol coating was adopted to increase the number of 

nanoparticles. Moreover, electrodeposition parameters (such as graphite surface, bath composition, 

applied potential and time of electrodeposition) were optimized to produce spherical Pd-rich PdCo 

nanoparticles in the range 30-50 nm.  

As a second step and this is the main goal of this study, the corrosion behaviour of the 

electrodeposited PdCo NPs was investigated. Polarization assays and surface analysis were done, 

as well as immersion test and corrosion electrolyte analysis. Also, the effect of heat and passivation 

layer of alkanethiol treatment on the corrosion resistance was studied. The heat treatment of 

metallic alloys can strongly influence the corrosion resistance because it is associated with the 

modification of the material microstructure and consequently the structure and the chemical 

composition at the surface, including the oxide layer. On the other hand, the corrosion passivation 

of metals using an electrically insulating layer of self-assembled alkanethiol monomers may also 
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affect the corrosion resistance due to their ability to resist to electron transfer at the metal-solution 

surface, as result of the hydrophobicity of the alkyl chain.  

Several methods were used to characterize and study the properties of PdCo nanoparticles. The 

surface morphology of the NPs was examined by scanning electron microscope (SEM), while the 

composition was analyzed by energy dispersive X-ray analysis (EDX). X-ray diffraction (XRD) 

was performed to obtain information on the crystalline structure of the PdCo films. X-ray 

photoelectron spectroscopy (XPS) is used in order to measure the elemental composition, and 

chemical state of the atoms at the NP’s surface. The open circuit potential (OCP) was adopted to 

monitor the potential over the time and thus to determine initial surface changes and stabilization 

of corrosion conditions. Corrosion analysis was done by potentiodynamic polarization assays, 

where Tafel plot is used to calculate the corrosion parameters (corrosion potential (𝐸𝑐𝑜𝑟𝑟) and 

current (𝐼𝑐𝑜𝑟𝑟)). Contact angle measurements were realized on PdCo samples with water, in order 

to evaluate to wettability of the material and determine if it affects its corrosion behaviour. 

In general, the surface reactivity of a biomaterial increases with increasing its surface area. In 

addition, studies showed that a hydrophilic surface allows the establishment of contact between the 

body environment (e.g. blood proteins) and the biomaterial’s surface, and thus contributes to cell 

and biomolecule migration and adhesion [148]. Therefore, the value of the contact angle indicates 

whether the surface is hydrophilic or hydrophobic and thus evaluates the interface area between 

solution and sample, which determine the behavior of a biomaterial towards corrosion. 

Atomic force microscope (AFM) images before and after the corrosion assay were essential to 

study the roughness of the surface, and therefore have an idea about the corrosion type. The 

corrosion solution analysis by atomic absorption spectroscopy (AAS) is used to identify and 

quantify the ion release before and after the corrosion experiment.  

Pourbaix diagram, also known as a potential/pH diagram or equilibrium diagram, provides 

information about the regions of stability and instability of a metal. These regions are determined 

from the curve of the variation of the potential (V) as a function of the pH of the electrolyte in 

which it is immersed. This diagram of the variation of V vs pH is used to identify the region of the 

active state (corrosion behavior) of a metal and also the region of its passivity (formation of 

oxide/hydroxide layer) and immunity (thermodynamic stability). Thus, this diagram is used to 
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estimate the corrosion product compositions at various potential-pH combinations, and to 

determine the environmental pH and potential essential to prevent corrosion. 

Potentiodynamic polarization method involves changing the potential of the working electrode and 

monitoring the current produced as a function of potential. This method is used for corrosion testing 

because it can provide useful informations regarding the corrosion mechanisms, rate and 

susceptibility of specific materials in designated environments.  

The Tafel plot is a plot of the electrochemical kinetics which relates the rate of an electrochemical 

reaction of an electrode immersed in an electrolyte to its over potential.   The Tafel equation was 

first deduced experimentally and was later shown to have a theoretical justification. 

Experimentally, in the case of this study, the Tafel plot is performed on a PdCo specimen by 

potentiodynamic polarization about 250 mV anodically (above the open circuit potential) and 250 

mV cathodically (below the open circuit potential). The corrosion current (icorr) is obtained by 

extrapolating the linear portion of the Tafel plots to the zero overpotential, and then calculated 

using Stern-Geary equation (Equation 18).  

𝑖𝑐𝑜𝑟𝑟 = 
(𝛽𝑎)(𝛽𝑐)

2.3 (𝑅𝑝)(𝛽𝑎+ 𝛽𝑐))
                    (Equation 18) 

The value of 𝛽𝑎 can be determined by taking the slope for the anodic portion of the Tafel plot and 

𝛽𝑐 for the corresponding cathodic part. 

The polarization resistance (𝑅
𝑝
) is defined as the slope of the potential-current density plot near 

Ecorr and is equal to  
𝛥𝐸

𝛥𝑖
.   

Ringer's solution, also known as physiological salines or balanced salt solutions, is a solution of a 

mixed of several salts (NaCl, KCl, CaCl and NaHCO3) dissolved in water. This solution was used 

as electrolytic bath during potentiodynamic polarization (corrosion test) for the purpose of 

simulating the in vivo fluid environment. 

Finally, magnetization measurements, such as magnetic moments and Curie temperatures, were 

carried out to obtain the basic magnetic properties of the PdCo samples. As the saturation 

magnetization can be calculated from the maximum magnetic moment of the hysteresis loop, the 

http://corrosion-doctors.org/KTS/roberge.htm
http://corrosion-doctors.org/Forms/Framework.htm
http://corrosion-doctors.org/Principles/mechanism.htm
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hysteresis loop will inform us on the heat-generation efficiency of PdCo NPs. Giving that the 

specific loss of power is proportional to the saturation magnetization, according to Rosensweig 

relationship. In addition, the coercivity obtained from the hysteresis loop will indicate if the PdCo 

NPs exhibit a ferromagnetic or a superparamagnetic behaviour. Therefore, it will show if these NPs 

are suitable for biomedical applications or not.  

Each magnetic alloy has its characteristic Curie point. Thus, Curie point measurements were used 

to determine if PdCo NPs are composed of PdCo alloys and evaluate the homogeneity of the 

composition in the deposited PdCo particles. 

PdCo NPs are deposited onto 0.7 mm x 0.7 mm (0.3 mm thickness) graphite substrate. However, 

these particles must be transferred to a culture medium in order to study their biocompatibility. For 

this purpose, we tested the feasibility of separating the NPs from the graphite using ultrasonic bath. 

The time of sonication and the temperature of the bath were also evaluated to study their effect on 

the quantity of the particles transferred into the solution.   
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Abstract: A method involving a sequential electrodeposition of PdCo nanoparticles, onto Pd-

modified graphite, followed by 1-dodecanethiol (DDT) coating has been developed for the first 

time. The electrodeposition parameters such as activation seeds, bath composition, applied 

potential, and time of deposition were investigated. The comparative study performed on the 

electrochemical properties of graphite and Pd-modified graphite showed that Pd seeds increase the 

electrocatalytic activity for the reduction of Pd(II) and Co(II) to PdCo alloy, compared to clean 

graphite. Furthermore, the co-deposition of PdCo starts at a potential lower than -0.375 V. The 

scanning electron microscopy (SEM) results showed that coating PdCo nanoparticles with 1-

dodecanethiol (DDT) for 19 hours, before subsequent electrodeposition, will increase the 

concentration and the stability of the deposited PdCo nanoparticles. The SEM images and the 

energy dispersive x-ray spectroscopy (EDS) results showed that when the applied potential 

decreases from -1.0 V to -1.3 V the morphology of PdCo nanoparticles changes from clusters to 

spherical and agglomeration-of-spheres, and the Co content increases to reach a maximum of 35.6 

%. According to the x-ray diffraction (XRD) patterns, the presence of glycine in the bath solution 

enhances the crystalline structure of the deposited PdCo films.   

mailto:osavadogo@polymtl.ca
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Keywords— Electrodeposition; graphite electrode; medical nanodevices; PdCo nanoparticles. 

4.1.1 Introduction 

The advantage of the magnetic targeted nanoparticles is the automatic navigation in the blood 

vessels, for targeting regions that are inaccessible or at high risks with existing interventional tools. 

In addition to the external manipulation by the magnetic field, the net field inhomogeneity created 

by the disruption of the local magnetic field can be picked up as a negative contrast in magnetic 

resonance imaging (MRI), which is essential for monitoring the navigation of these nanoparticles 

(NPs) in the human body [149].  

Moreover, the heat generated by the exposition of the magnetic NPs to an alternating magnetic 

field can be used to destroy tumor tissue, because tumor cells are more sensitive to a temperature 

increase than healthy ones [150]. 

Iron oxide-based magnetic nanoparticles (MNPs), composed of magnetite (Fe3O4) or maghemite 

(γ-Fe3O4), continue to attract attention for magnetic hyperthermia application due to their lack of 

toxicity, excellent biocompatibility, ability to escape from the reticuloendothelial system, and low 

protein adsorption [151]. However, iron is the most corrosion vulnerable metal. A variety of 

methods have been employed to functionalize the iron-based particles with a coating of inert 

polymers including dextran, polysaccharides, polyethylene glycol, and polyethylene oxide 

[152,145] in order to increase their stability, and biocompatibility. In addition to polymer coatings, 

biocompatible silica becomes another attractive approach for developing iron oxide- based MNPs 

for biomedical applications.  

The main drawbacks of capping the MNPs with silica are the synthesis of uniform silica shells with 

controlled thickness on the nanometer scale and the risk of oxidization [153]. Moreover, the use of 

physically adsorbed polymers, such as dextran, is limited by the lack of stability; this issue have 

involved cross-linking to form cross-linked iron oxide particles [154].  

Another consideration to take into account is the effect of polymer or other non-magnetic coating 

on the nanoparticles magnetic properties, where the saturation magnetization (Ms) decreases when 

the thickness coating increases. This reduction has been mainly associated with the existence of a 
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magnetically dead layer on the surface of particles [155]. Accordingly it is very important to 

develop other magnetic nanodevices which are not limited by this dead layer. 

PdCo alloys rich in Pd have demonstrated excellent corrosion resistant properties [156], and Co-

based alloys such as Co-Fe achieved an extremely high heating performance of 1300–1600 W/g 

[157].  

The ultimate objective of this project is to synthesize PdCo based MNPs for magnetic 

hyperthermia, with better magnetic properties than iron oxide due to less corrosion-related 

problems, and uselessness of coating material. To achieve this goal, the electrodeposition method 

is used because of its great capability in optimizing the composition, size, and shape of the NPs in 

order to enhance their stability, magnetic performance, and nanotoxicity for biomedical 

applications. 

4.1.2 Materials and methods 

4.1.2.1 Chemicals 

Highly oriented pyrolytic graphite plate was purchased from Alfa Aesar (China), and then cut into 

cuboid electrodes. The graphite substrate had a surface area of 0.7 cm2.  

Acetone (CH3COCH3, Sigma-Aldrich) and nitric acid (HNO3, 68 %, Fluka) were used as organic 

and metals solvents, respectively, during the cleaning process of the graphite electrodes.   

The wettability of graphite substrate was improved by dipping its surface in sodium dodecyl sulfate 

(SDS) (CH3 (CH2)11OSO3Na, ≥ 99 %, Sigma-Aldrich). 

Tin(II) chloride (SnCl2, ≥ 99.99 %, Aldrich) and/or chromium potassium sulfate dodecahydrate 

(CrK(SO4)2.12H2O, ≥ 98 %, Aldrich) were used to sensitize the graphite substrate before its 

activation with Palladium(II) chloride (PdCl2, 99 %, Aldrich)  and/or cobalt(II) chloride 

hexahydrate (CoCl2.6H2O, 99 %, Fluka), respectively, by electroless.   

PdCl2 and CoCl2.6H2O were used also for electrochemical deposition. The supporting electrolytes 

used during electrodeposition were: hydrochloric acid (HCl, 37 %, Fluka), ammonium hydroxide 

(NH4OH, 50 %, Fluka) and glycine (NH2CH2COOH, ≥ 99 %, Aldrich). The pH was adjusted to 

10 by the addition of concentrated ammonium hydroxide.   
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For the Self-Assembled Monolayers (SAMs) of alkanethiols, 1-dodecanethiol (DDT) 

(CH3(CH2)11SH, ≥98 %, Aldrich) was used.  

Sulfuric acid (H2SO4, 98 %, Fluka) is used as electrolyte during the linear scan voltammetry. 

Nitrogen gas was purchased from Air Liquide, Canada (99.9 % purity). Aqueous solutions were 

prepared using Milli-Q water (18.2 MΩ cm). Ethanol (96 %, Scharlau) was used for the preparation 

of DDT solution and for washing the electrodes after treatment with DDT.   

All chemicals were provided by Aldrich (Ontario, Canada) and used as received. 

4.1.2.2 Electrode preparation 

Prior to the PdCo alloy electrodeposition, graphite substrates were hand-polished with 180 grit 

microcloth of aluminum oxide and silicon carbide wetted with deionized water, until a mirror-like 

surface was obtained. It is then immersed in 68 % nitric acid for 1 minute and rinsed with acetone 

and deionized water thoroughly.  

After cleaning the graphite surface from organic and metals impurities, it is necessary to provide a 

hydrophilic surface as well as a high density of nucleation sites for the subsequent electrodeposition 

process. To achieve this goal, graphite surface was immersed in 0.004 M sodium dodecyl sulfate 

(SDS) solution for 1 hour, and then modified with Pd and/or Co seeds. 

4.1.2.3 Preparation of Pd (and/or Co) modified graphite 

In order to prepare Pd-modified graphite, electroless deposition of Pd precursors is performed after 

up to three pretreatments with Sn sensitization followed by Pd activation. This process involved 

the immersion of graphite surface sequentially in two solutions consisting of: 25 mL of 0.56 mM 

palladium(II) chloride in 0.166 M hydrochloric acid solution and 25 mL of 10 mM tin(II) chloride 

in 0.166 M hydrochloric acid solution, for 30 minutes in each solution at room temperature. After 

the Sn sensitization - Pd activation process was completed, the samples were washed thoroughly 

again with distilled water to remove residual used electrolyte followed by drying in air.  

The tin(II) chloride solution was aged for more than 3 months [158] before it was used, for 

improving its sensitizing performance due to the formation of uniform colloidal compound of 

Sn(IV) and Sn(II). 
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The sensitizing solution for Co-modified graphite consists of: 25 mL of 10 mM chromium(III) 

potassium sulfate dodecahydrate in 20 ml ammonium hydroxide solution (pH=13.8), and the 

activating solution includes: 25 mL of 10 mM cobalt(II) chloride hexahydrate in 20 ml ammonium 

hydroxide solution (pH=13.8).  

The sensitization and activation process for the preparation of PdCo -modified graphite involved 

Sn sensitization-Pd activation followed by Cr sensitization-Co activation. 

4.1.2.4 Electrochemical measurements 

Electrochemical experiments were conducted on a PAR 273A potentiostat (Princeton Applied 

Research, Oak Ridge, TN). A conventional three-electrode system is employed, in which a Pd 

(and/or Co) -modified graphite electrode and a platinum plate are used as the working and counter 

electrodes, respectively. The reference electrode is a saturated calomel electrode (SCE). All 

potentials in this work are reported with respect to SCE. All the experiments are carried out at room 

temperature. 

4.1.2.5 PdCo films and PdCo nanoparticles synthesis 

The electrodeposition of PdCo films onto Pd (and/or Co) modified graphite substrate were 

accomplished by dipping the graphite surface in a solution of Pd(II) and Co(II) with electrolytes 

deaerated with nitrogen atmosphere, and then a constant negative potential less than -0.375 V is 

applied for 1 hour to the graphite electrode.  

PdCo NPs are obtained by reducing the time of deposition to 1 minute. Sequential electrodeposition 

of PdCo NPs is realized by dipping the graphite surface in a deaerated solution of Pd(II) and Co(II) 

as electrolytes, and then a constant potential is applied for 1 minute to the graphite electrode, 

followed by coating the deposited PdCo NPs with DDT before subsequent electrodeposition for 1 

minute. This method of successive rounds deposition-DDT treatment has been developed to: 

maintain a narrow size distribution and increase the number density of the PdCo NPs at the graphite 

surface by using SAMs of DDT strategy.  

The concentration of DDT and the exposure time to these monomers were tested by evaluating the 

size distribution of PdCo NPs treated with DDT under three different conditions.   
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During the first treatment (T1), a 50 μL of the 0.002 M DDT solution was immobilized for 2 hours 

on graphite substrate immediately after the deposition of PdCo NPs. The electrodes were carefully 

washed in stirred ethanol for 20 minutes to remove any DDT that was not chemisorbed onto the 

electrode surface. Subsequently, the substrate is immersed in 25 mL of 0.004 M SDS solution to 

enhance the wettability of the graphite for 30 minutes.  

The second treatment (T2) is similar to the first one but the electrode substrate was immersed in 

the DDT solution for 2 hours and then washed with ethanol for 5 minutes without stirring. The 

third treatment (T3) is similar to the second treatment but the immersion in 0.004 M DDT solution 

was kept for 19 hours. 

The three different treatments are summarized in figure 4-1. 

 

 

Figure 4-1 Illustration of the three treatments (T1, T2, and T3) for coating PdCo nanoparticles by 

self-assembled monolayers of DDT. 
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4.1.3 Results and discussion 

4.1.3.4 Impact of sensitization – activation process on PdCo deposition 

According to figure 4-2, the clean graphite surface didn’t show any cathodic or anodic peak during 

the cyclic voltammetry test in 0.003 M Pd(II) + 0.006 M Co(II) solution. On the other hand, Pd-

modified graphite exhibits an increase in electrocatalytic activity for oxidation-reduction reactions 

(four cathodic peaks (A-D) and three anodic peaks (E-G)) compared to clean graphite. 

In fact, small Pd particles have a large surface-to-volume ratio compared to bulk graphite. As a 

result, adsorption of large number of Co(II) + Pd(II) ions onto the small particles surface is possible. 

Furthermore, the passage of an electron is slow between graphite surface and Pd(II) + Co(II) ions 

due to the low density of states in the basal plane of the highly ordered pyrolitic graphite used 

[159].  

However, small Pd particles act as an efficient particle-mediated electron transfer, from graphite 

to Pd(II) + Co(II) ions. This may be related to the decrease of the open circuit voltage (OCP) 

(OCP(graphite)= 0.768 V, OCP(Pd-modified graphite)= 0.465 V ) of the graphite electrode after 

Pd modification. This allows the decrease of the overvoltage of the PdCo electrodeposition.  
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Figure 4-2 Cyclic Voltammograms (10th cycle) curves of clean and Pd-modified graphite 

registered in the electrolytes with different composition of both palladium (II) and cobalt (II) 

ions. (Scan rate: 50 mV/s) 

4.1.3.5 Determination of the codeposition potential 

Cyclic voltammograms (CVs) shown in figure 4-2 illustrate the electrochemical behavior of a Pd-

modified graphite electrode in an aqueous solution (pH = 10) containing palladium chloride (0.003 

M) with/without cobalt chloride (0.01 M), or cobalt chloride (0.01 M) in hydrochloric acid (0.5 

M), ammonium hydroxide (0.5 M) and glycine (0.6 M), at a scan rate of 50 mV/s.  

In the cathodic current regions, there are four visible peaks currents (figure 4-2) identified as: A, 

B, C and D, whereas in the anodic part three peaks are identified as: E, F and G can be seen. In 

Pd(II) solution, the sharp increase of the cathodic current at potentials below 0 V (peak A) indicates 

the onset of Pd electrodeposition. At more cathodic potentials, the appearance of peak B (below -

0.625 V) can be attributed to the reduction of hydrogen adsorbed on Pd surface. The significant 
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increase of the cathodic current below -1.0 V can be associated to the hydrogen evolution reaction 

(HER) process. 

Following the addition of cobalt chloride to Pd(II) solution, peak A disappeared and a new cathodic 

peak rises at -0.25 V (peak D). Comparing peak D with peak C (below -0.375 V, characteristic of 

the reduction of Co(II) to Co(0)) and peak A, the electrodeposition of the alloy PdCo occurs at a 

potential that lies between the deposition potentials of the pure metals. This behavior is classically 

and, of course, frequently observed for the electrodeposition of binary alloys [160]. 

The anodic peaks at -0.6 V and −0.55 V (peaks E and F, respectively) can be attributed to the 

oxidation reactions of different Co phases deposited during the direct scan. The increase of anodic 

current in the region of peak G, above -0.4 V, is related to the oxidation of hydrogen adsorbed on 

electrodeposited palladium surface. The comparison of the cathodic current peaks position allows 

to conclude that a potential lower than -0.375 V is needed for the co-electrode position of PdCo 

particles. 

4.1.3.6 Optimization of the electrodeposition parameters 

4.1.3.6.1 Activation seeds 

The aim of Sn sensitization - Pd activation (and/or Cr sensitization - Co activation treatment) was 

to investigate the effect of the Pd (and/or Co seeds) on the epitaxial growth. According to DRX 

patterns (figure 4-3), the three broad diffraction peaks present at 2θ = 40.6 °,46.6 °, and 68.4 ° can 

be indexed to the (111), (200), and (220) facets diffractions of face-centered cubic (fcc) of pure Pd, 

respectively. The other diffraction peaks at 42.4 °, 44.5 °, 51.7 °, 54.4 °, and 59.7 ° corresponding 

to the (100), (101), (102), (004), and (103) diffraction of graphite, respectively. In addition, Co 

standards peaks at 2θ values of 44.3 °, and 51.6 ° corresponding to the (111), and (200) crystal 

planes peaks, respectively, cannot be found. This indicates that all the PdCo samples prepared 

exhibit the characteristics of a single-phase face-centered cubic (FCC) crystalline structure, and are 

substitution solid solutions where some atoms of Pd are replaced by Co atoms. A small positive 

shift was observed and can be related to the alloy formation. 

Also, it can be seen from figure 4-3 that PdCo films deposited on Pd-modified graphite exhibit 

slightly higher crystallinity compared to those deposited on Co or PdCo modified graphite. The 
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shifted peak to high angle means that the crystal lattice is compressed and thus the FCC structure 

of the deposited PdCo is modified.     

EDS results in table 4-1 shows that the activation of the graphite surface with Co precursors and 

PdCo precursors increase the Co content in the deposited films, when compared with 

electrodeposited films obtained prior to the surface activation with Pd seeds.  

 

 

 
Figure 4-3 XRD patterns of electrodeposited PdCo films at different electrodeposition 

parameters, after addition of glycine. 

 

These results can be explained by the fact that more there is Co atoms in the seeds more there is 

the Co nucleation in the deposited films.  As a result of the increase of the Co content in the film, 

the FCC crystalline structure starts to change towards FCC + hexagonal structures.  

4.1.3.6.2 Bath composition 

Glycine is an amino acid molecule and was chosen as a complexing agent since it exists in many 

forms depending on the pH of the bath solution. Accordingly, Co-Glycine and Pd-Glycine 

complexes depend strongly on the pH of the solution. In the pH investigated in this work (pH = 

10), Pd and Co are mainly complexed with anionic and zwitterionic forms of glycine [160]. 
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The effect of the addition of glycine in the PdCo alloy composition is shown in Table 4-1. At low 

time of electrodeposition (30 minutes) there is more cobalt in the electrodeposited films, whereas 

at high electrodeposition time (1 h) palladium-rich alloy is obtained.  

Preferential electrodeposition may take place depending on the stability constant (K) of the 

individual complexes and ease of electron transfers. The anionic form of glycine forms a tris-

glycinato complexes with cobalt [161] and very stable bis-glycinato complexes with palladium, 

this stability makes difficult the reduction of Pd(II) compared with Co(II), case on 30 min 

deposition samples. As the pH fluctuates at the graphite surface during the electrodeposition, 

because the hydroxide ions are consumed by the graphite electrode during hydrogen evolution, 

some glycinato ligands become zwitterionic complexes with similar stability constant with Pd and 

Co. This feature of glycine molecule pH dependent seems responsible of the variation in the ratio 

Pd/Co during the eletrodeposition time [162].  

SEM images (Figure 4-4) show that the glycine favors the dendritic morphology over the time, as 

a result of easy directions for electron transfer. This complex structure can explain the reason why 

before adding glycine to the electrodeposition bath the deposit is compact and flat and in the 

presence of glycine the electrodeposited film is less dense with a 3D shape.  

Furthermore, it can be seen from figure 4-3 that the degree of crystallinity increases when the 

glycine is added to the bath solution. The increase in crystallinity can be attributed to the deposit 

uniformity controlled by glycine molecule. 

 

 

 

 

 

Table 4-1 Energy dispersive x-ray spectroscopy (EDS) results of electrodeposited PdCo at 

different electrodeposition parameters before and after addition of Glycine. 
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Activation  
Bath 

composition 
Overpotential 

(V) 
Time of 

deposition 
EDS (Co at. % 

in PdCo) 

Pd modified 
graphite  

Before addition 
of Glycine 

 -1.2 

1 h  22.10 

After addition   
of Glycine 

30 min 31.00 

1 h  9.87 

Pd modified 
graphite 

After addition   
of Glycine 

 -1.2 1 h  

9.87 

Co modified 
graphite 

15.00 

PdCo modified 
graphite 

22.20 

Pd modified 
graphite  

After addition   
of Glycine 

 -1.0 1 min (two 
sequential 
deposition, 
treatment 

3) 

13.45 

 -1.1 35.65  

 -1.2 38.41  

 -1.3 34.47 

 

  

Figure 4-4 SEM images of electrodeposited PdCo films before (a) and after (b) the addition of 

glycine to the bath solution. (Magnification of 3K x) 

 

4.1.3.6.3 Applied potential  

To investigate the effect of the applied potential on the Pd/Co ratio in the deposited PdCo films, 

four potentials were applied: E1= -1.0 V, E2= -1.1 V, E3= -1.2 V, E4= -1.3 V vs SCE. Table 4-1 

shows that the Co content increases to reach a constant value (around 35 %) with the applied 

negative potential. According to the CVs curves shown in figure 4-2, the hydrogen evolution 

reaction (HER) is much more pronounced during Pd electrodeposition (CV in 0.003 M Pd(II)) than 

a b 
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during the electrodeposition of Co (CV curve obtained in 0.006 M Co). This is due to the better 

electrocatalytic activity of Pd than Co for the HER. This good electrocatalytic feature of Pd for the 

HER makes the electrodeposition of Pd difficult. This explains why at high applied potential there 

is a decrease in the ratio Pd/Co in the electrodeposited PdCo films. 

Furthermore, the applied potential not only controls the composition ratio but also affects the 

particle size and shape of metallic deposits, because the ratio of the nucleation rate/growth rate of 

the nuclei depends on the applied potential.  

According to figure 4-5, when the applied potential decreases from -1.0 V to -1.3 V, the 

morphology of PdCo nanoparticles changes from clusters to spherical and agglomeration-of-

spheres. 

4.1.3.6.4 Sequential electrodeposition 

For magnetic hyperthermia application, PdCo NPs with Co content between 10 and 48 %, and 

crystalline FCC structure are needed [163]. To achieve this goal, graphite surface was modified 

with Pd small particles, glycine was added to the bath solution, the applied potential was fixed at -

1.2 V, and the time of deposition was decreased till 30-40 nm uniform PdCo NPs are obtained. 

Three samples were synthesized at different times of deposition: 5, 2 and 1 minute. SEM images 

in figure 4-6 show that 1 minute deposition is enough to obtain nanoparticles in the range of 30-50 

nm.  

During sequential electrodeposition, the treatment with DDT was investigated by varying the 

concentration of DDT and the exposure time to this compound, to enhance the size distribution of 

the PdCo on the graphite surface. SEM images in figure 4-7 were used to measure the size 

distribution of the deposited PdCo NPs with and without treatments with DDT.  

Figure 4-7 shows that two successive electrodepositions of 1 minute without treatment with DDT 

increase the ratio size/number of NPs, compared to one electrodeposition of 1 minute. After 

treatments T1 and T2, the NPs are dispersed but bigger than those obtained in the case of one 

electrodeposition during 1 minute. Even though T1 and T2 were not efficient, sample treated with 

T3 has a high concentration of PdCo NPs with a uniform particle size distribution.  
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These results allow us to conclude that the nanoparticles must be treated with DDT for 19 hours to 

obtain a self-assembly monolayer on the PdCo surface. 

 

  

  

Figure 4-5 SEM images of electrodeposited PdCo NPs at:   -1.0 V (a); -1.1 V (b); -1.2 V (c) and -

1.3 V (d). (magnification of 100k x) 

 

 

a b 

c d 
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Figure 4-6 SEM images of electrodeposited PdCo at different time of deposition: 5 minutes (a); 2 

minutes (b); and 1 minute (c). (magnification of 100k x) 

  

a b 

c 
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Figure 4-7 SEM images and the corresponding size distribution histograms of two sequential 

electrodeposition of PdCo with and without treatment with 1-dodecanthiol (DDT): without 

treatment (a); treatment 1 (b); treatment 2 (c); and treatment 3 (d). (magnification of 100K x). 
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4.1.4 Conclusion 

In this work, the electrodeposition of spherical PdCo NPs, in the range of 30-50 nm, with a ratio 

Pd/Co = 65.3:34.7 (accuracy ± 2 %) was achieved on Pd-modified graphite using 19 h of surface 

treatment with 0.004 M DDT (as coating) between two successive deposition at -1.2 V for 1 minute 

in a bath solution containing: 0.003 M Pd(II) + 0.006 M Co(II) + 0.5 M (ammounium hydroxide + 

hydrochloric acid) + 0.6 M glycine.  

Future studies must be done on the stability, magnetic behaviour and biocompatibility of these 

MNPs. This will help to evaluate whether these PdCo NPs can be used as medical nanodevices, 

because biomaterials must be biofunctional and biocompatible in order to perform well for the 

purpose which it was designed for. 
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4.2 Article 3: Corrosion behavior of Palladium-Cobalt nanoparticles 
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Abstract: The main toxicity of metallic nanoparticles comes from their ability to corrode and 

release metallic ions. Therefore, their potential degradation and release of cytotoxic ions has to be 

determined. In this study, the corrosion resistance of newly developed Pd65Co35 nanoparticles 

(NPs) for magnetic hyperthermia was evaluated. Furthermore, the influence of heat treatment at 

200 °C, 300 °C and 400 °C and surface passivation with 1-dodecanethiol (DDT) monomers on the 

corrosion resistance of PdCo NPs was investigated. We compared the corrosion behaviour of the 

treated samples with the as-deposited sample. The corrosion parameters of the samples were 

determined using potentiodynamic polarization assay in Ringer’s solution, followed by surface and 

corrosion electrolyte analysis. During polarization test, PdCo NPs treated with heat at 400 °C 

displayed the lowest corrosion current density icorr of 0.022114 µA/cm2, while the sample treated 

with DDT monomers exhibited the highest corrosion density of icorr of 0.87202 µA/cm2. 

According to AAS, the heat and alkanethiol treatments significantly decrease the release of Pd and 

Co ions in the supernatant after the polarization assay in the order 200 °C > 400 °C > 300 °C > 

DDT > Untreated. XPS analysis showed that the corrosion of treated/untreated PdCo samples 

varies upon the chemical composition at the surface, which revealed to be treatment-dependent. 

Moreover, the immersion test in Ringer’s solution for both treated and untreated samples exhibited 

an excellent corrosion resistance ([Pd(II)]<0.01 ppm; [Co(II)]<0.01 ppm). This study concluded 

that PdCo NPs could be used as a medical micro-device if they are treated with heat to prevent high 

Pd and Co ions release in biological environment and subsequent nanotoxicity.  

Keywords— Corrosion, palladium-cobalt alloy, biocompatibility, magnetic hyperthermia. 
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4.2.1 Introduction 

The use of palladium-based alloys has increased in the late 1970s due to the increasing price of 

gold (Price of Pd :110 $US/oz; Price of Au: 500-1000 $US/oz), after deregulation of gold in USA. 

As result, palladium-silver alloys have increasingly been used in Germany and worldwideas dental 

prosthesis, such as crowns and bridges, as leading alternative to gold [164]. In the 1990s and 

following publications [165] on chronic illnesses and periodontal inflammation caused by 

corrosion of Pd alloys, there have been major warning in Germany about the safety of using Pd in 

dental casting alloys [166,167]. In the late 1990, Pd cost increased to over 1000 $US/oz after 

political crisis in Russia, the major producer of Pd ore, and eliminate the advantage of low cost Pd 

alloys. Since then the price of Pd has decreased, and documented studies showed that metallic Pd 

didn’t exhibits cytotoxicity effects and the risk of releasing Pd ions in Pd-rich dental casting alloys 

appears to be extremely low [168], except allergic reactions for some individuals. 

Palladium-cobalt binary alloy was firstly introduced to medicine, more precisely for thermal 

treatment of tumor, in 1993 by Paulus and Tucker [169]. They proposed Pd rich-alloy for this 

purpose due to the relative corrosion resistance of Pd and ferromagnetic behaviour of Co. In fact, 

the corrosion resistance of Pd [170] is attributable to its stable electronic configuration 5s0 4d10, 

where the outer 4d shell orbitals are paired. Despite that 5s orbitals are lower in energy and thus 

should be filled first, the 5s electrons are transferred to the 4d orbitals because the two orbitals are 

close enough in energy. Furthermore, the face centered cubic (fcc) lattice structure of Pd forms 

stable solid solutions with Co in Pd-rich PdCo alloys (figure 4-8), which exhibits a low corrosion 

tendency because it has the same composition throughout and thus avoids galvanic corrosions 

between the microscopic areas of different composition [170]. 
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Figure 4-8 Phase diagram of PdCo system obtained from FactSage software [171]. 

Polarization tests done over Pd-rich PdCo alloys in oral simulated environment showed a lower 

corrosion behaviour and the presence of potential region where the current density is potential-

independent, compared with Co-rich PdCo alloys [172]. This potential region was attributed to the 

palladium enriched surface, formed as consequence of Co selective dissolution at the surface [173]. 

Pourbaix diagrams of Pd-water and Co-water in figure 4-9 show that the stability region of Pd is 

bigger than that of Co, and thus confirm the proposed mechanism of selective dissolution of Co in 

Pd rich-PdCo alloys.  

Furthermore, studies showed that oxygen chemisorbed layer of PdO may form at the Pd rich surface 

during the current-voltage polarization curves, due to the existence of the electron vacancies in the 

PdCo 3d orbitals, and can strongly limit the dissolution rate of Co atoms [174].  



56 

 

 

 

Figure 4-9 Pourbaix diagram showing palladium and cobalt species and water stability region. 

Heat treatments of metallic alloys are usually associated with the modification of the material 

microstructure in order to obtain a single phase (figure 4-8), in which the alloying elements are 

dissolved. The resulting phase transformation influences the structure and the chemical 

composition of the surface, including the oxide layer, and therefore the resistance toward corrosion 

[175]. Our laboratory developed for the first time, PdCo alloys for the oxygen reduction reaction 

in acid medium for polymer electrolyte fuel cell applications [176,177]. It was shown that the 

chemical surface composition might have an important effect on the stability of the palladium 

alloys against corrosion in this medium. On the other hand, the corrosion passivation of metals 
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using an electrically insulating layer of self-assembled alkanethiol monomers showed to protect 

gold from the corrosion in aqueous Br− solution [178]. The effectiveness of these monomers in 

corrosion resistance is due to their ability to resist to electron transfer at the metal-solution surface, 

as result of their hydrophobic alkyl chain.  

The degradation of PdCo NPs by electrochemical corrosion and the release of cytotoxic Pd(II) and 

Co(II) ions can limit their use for biomedical applications. To the best of our knowledge, the 

corrosion resistance of PdCo NPs in physiological solution was not yet investigated. In order to 

study the effect of heat and alkanethiol monomers treatments on the corrosion resistance of PdCo 

NPs, three heated samples at 200 °C, 300 °C and 400 °C, and one sample treated with 1-

dodecanethiol (DDT) for 19 hours were tested in this manuscript. 

The corrosion behaviour of the four treated samples was compared to the untreated sample of PdCo 

NPs (the control) using polarization assays followed by the characterizations of their surface 

chemical compositions. To achieve this goal, scanning electron microscopy (SEM), atomic force 

microscopy (AFM), X-ray Photoelectron Spectroscopy (XPS) and static contact angle (SCA) 

measurement were used to evaluate the surface modification after the polarization assay. Also, 

atomic absorption spectroscopy (AAS) was adopted to quantify the ions release.  

4.2.2 Materials and methods  

4.2.1.1 Materials and sample preparation  

Palladium- 35 % Cobalt NPs used in this study were synthesized using the electrodeposition 

method onto Pd-modified graphite developed in our previous work [179]. Hence, chemicals and 

electrochemical equipment are used according to the latter study [179]. 

The electrodeposition was accomplished by dipping the graphite surface in a solution of Pd(II) and 

Co(II) with electrolytes deaerated with nitrogen atmosphere, and then a constant negative potential 

of -1.2 V was applied for 1 minute to the graphite electrode.  

Five samples of Pd-35 % Co NPs were synthesized and four of them were subsequently treated 

with heat at 200 ºC, 300 ºC and 400 ºC (under nitrogen atmosphere) for one hour or treated with 4 

mM DDT monomers (in ethanol solution) for 19 hours. Untreated sample was used as control in 
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order to study the effect of the heat and electrically insulating layer on the corrosion resistance of 

the PdCo alloy.  

4.2.1.2 Surface analysis  

The morphologies of the five samples were observed on a scanning electron microscopy (SEM, 

JEOL JSM7600F) at 10.0 kV. Sample’s topography was measured by atomic force microscopy 

(AFM, Topometrix discoverer), and the average roughness was determined using the software 

embedded within the AFM system having an absolute accuracy of 0.5 nm. 

X-ray photoelectron spectroscopy (XPS) was done with  ESCALAB 3 MKII de VG. Survey and C 

1s, O 1s, Pd 3d and Co 2p high resolution spectra of the samples were obtained, using 

nonmonochromated Mg Kα radiation (1253.6 eV), at a power setting of 300 W, having an 

instrument resolution of 0.7 eV. The samples were deposited onto graphite, using two-sided 

adhesive Cu tape. The base pressure during scanning was less than 1x10-9 torr. Electrons were 

detected at a perpendicular take-off angle, using 0.05 eV steps, and spectra were analyzed using 

the VG Avantage software. The sputtering of the untreated PdCo alloy was carried out using the 

Ar beam and XPS survey and high resolution spectra were obtained after sputtering. During the 

sputtering, the Ar energy and sputtering duration were 1kV and 2 minutes. The absolute accuracy 

of this instrument is 0.1-0.2 %. 

The high resolution spectra of the chemical elements, including Pd and Co, after the sputtering 

were obtained.  

4.2.1.2.1 Contact angle  

The contact angle measurements were achieved by placing 2 μL of water on the Pd/Co alloys 

deposited on the graphite. The sessile drop contact angle being stable on the minute time frame, 

one measurement per location was taken immediately using a NRL C.A. Goniometer (Model No. 

100-00 115). The measurements were carried out on several spots on the un-treated and treated 

PdCo alloys and graphite in triplicata. The accuracy of the instrument is ±2°. 
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4.2.1.2.2 Potentiodynamic polarization assay  

Polarization measurements were performed by a standard three-electrode cell, in which a platinum 

plate, saturated calomel electrode (SCE), and PdCo NPs sample (graphite supported) were used as 

counter, reference, and working electrodes respectively, with a microprocessor-controlled 

electronic potentiostat (PAR 273A, Princeton Applied Research, Oak Ridge, TN). All measured 

potentials presented in this work were referred to SCE.  

The electrolyte was 50mL of Ringer’s physiological solution (Sigma-Aldrich) with the following 

composition: 0.12 g/L CaCl2, 0.105 g/L KCl, 0.05 g/L NaHCO3, 2.25 g/L NaCl, to simulate the 

body fluid. The electrolyte solution was deaerated with nitrogen gas for 1 hour before the 

polarization assay. During the polarization, the latter solution was maintained at 37 °C under a low 

flow of nitrogen atmosphere.  

The open circuit potential (Eocp) of the samples, immersed in deaerated Ringer’s solution, was 

monitored for 1 hour. Polarization tests were carried out with a sweep rate of 0.17 mV/s, weeping 

potential from -250 mV under Eocp to +250 mV above Eocp. The corrosion parameters, corrosion 

current density (icorr (A/cm2)) and corrosion potential (Ecorr (V/SCE)), were determined by Tafel 

extrapolation using CorrWare version 3.4e. 

4.2.1.2.3 Immersion test  

An immersion test was performed to determine the short-term corrosion behaviour of the PdCo 

NPs samples. The five samples were placed into separate vials of 100 ml Ringer’s solution at 37 

°C. A control of Ringer’s solution was prepared and similarly stored to measure baseline levels of 

constituent element ions. 11 Samples of supernatant were collected during 7 days and stored for 

atomic absorption spectroscopy analysis of Pd and Co concentrations (Lambda 19 Spectrometer). 

Ion concentrations in the test solutions were compared to standard solutions containing known 

ranges of the constituent ions for instrument calibration. Absolute accuracy of the instrument is 

within 10 ppb for the ions tested.  
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4.2.3 Results and discussion  

4.2.3.1 Polarization assay 

Figure 4-10 shows the variation of the open circuit voltage (Eocp) of the PdCo alloy with time for 

the five samples of PdCo. This Eocp is created at the working electrode’s surface as result of the 

formation of the electrical double layer of ions and subsequent electrochemical reactions at the 

electrode-Ringer’s solution interface [180]. The Eocp value varies as function of time until it 

reaches equilibrium, where the oxidation and reduction currents are equal. Measuring Eocp (vs SCE 

reference electrode) as function of time is essential to evaluate the kinetics of electron transfer on 

the sample’s surface. As shown in figure 4-10, untreated sample of PdCo exhibits the highest value 

of Eocp, among those of the other treated samples, with a significant increase to reach a plateau 

value of 0.368 V vs SCE in 1 hour. It seems that untreated PdCo surface exhibits spontaneous 

passivity in Ringer’s solution. On the other hand, after a short decrease during the first 800 s the 

Eocp of the PdCo samples treated increases (in the case of 300 °C) or remain stable (in the case of 

200 °C and 400 °C). The decrease may be due to the oxidation of the Co at the surface. Following 

the decrease, the increase of Eocp can be attributed to the passivation of the sample of Pd-rich 

treated at 300 °C, whereas the stability of Eocp in samples treated at 200 °C and 400 °C can be 

explained by the stability of the Pd-rich surface in this range of potential. The Eocp of the sample 

treated with DDT remains stable during the first 2100 s and then increases significantly. This 

behaviour can be explained by a first step protection of the physisorbed DDT monomers at the 

surface of the sample, which prevents the dissolution of the sample, and in a second step the 

dissolution of the physisorbed DDT monomers from the surface of the sample in Ringer’s solution 

and resulted in some bared regions of the surface. Bared surface will behave like untreated surface 

and thus exhibits a spontaneous passivity.  
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Figure 4-10 Open circuit potential (vs 𝐸𝑆𝐶𝐸) as function of time for the 5 differently treated PdCo 

NPs samples, immersed in 37 °C Ringer’s solution. 

 

The potentiodynamic polarization curves of the PdCo untreated/treated samples are shown in figure 

4-11, and the derived electrochemical parameters extracted from these curves are summarized in 

table 4-2. It could be seen that the samples which exhibit passivation behaviour in OCP test, sample 

heated at 300 °C, DDT treated and untreated samples, have the highest corrosion current densities 

(Icorr) compared with stable behaviour samples (treated at 200 °C and 400 °C). These results 

suggest that the passive layer formed on these PdCo surfaces is inhomogeneous, maybe due to the 

non-homogeneity of the material, which induces galvanic cells at the interface which enhances 

corrosion of the surface and consequently increases the Icorr.  
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Figure 4-11 Polarization curves of PdCo NPs samples in Ringer’s solution. 

 

Table 4-2 Corrosion parameters for the PdCo samples extracted from Tafel curves.  

 OCP Ecorr (V) Icorr (µA/cm2) 

Untreated 0.368 0.24888 0.23874 

Protection with DDT 0.013 0.39037 0.87202 

Heated at 200°C 0.133 -0.015252 0.027084 

Heated at 300°C 0.237 0.13457 0.065828 

Heated at 400°C 0.064 -0.081646 0.022114 

 

4.2.3.2 Atomic absorption spectroscopy 

According to atomic absorption spectroscopy analysis (table 4-3) following polarization test, the 

Pd and Co concentrations in the supernatant decrease significantly after heat treatments. This 

indicates heating at 200 °C, 300 °C and 400 °C for 1 hour may have a significant impact on the 

cristallinity enhancement of PdCo.  
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On the other hand, DDT treatment also reduces the release of Pd and Co by 2 times in comparison 

to those of the untreated sample. But the concentration of the released Pd and Co ions is higher for 

DDT treated samples than those of heat treated samples. This can be explained by the loss of 

physisorbed DDT monomers from the sample surface during the polarization test. This loss allows 

formation of non-protected areas at the surface of the sample, which are more sensitive to 

corrosion.  

Table 4-3 Corrosion supernatants analysis by atomic absorption spectroscopy. 

  Pd (ppm) Co (ppm) 

Untreated 0.07 0.055 

Protection with DDT  0.03 0.029 

Heated at 200°C 0.01 0.013 

Heated at 300°C 0.02 0.019 

Heated at 400°C 0.02 0.012 

4.2.3.3 Contact angle  

Contact angle measurements were done with water on graphite (the support of PdCo samples) and 

treated/untreated PdCo samples (figure 4-12). The average values of the right and left contact 

angles are presented in table 4-4. According to table 4-4, the surface of graphite and DDT treated 

sample were hydrophobic because hydrophobic areas are obtained for samples which contact 

angles are higher than 90° [181]. In contrary, the surfaces of the untreated and heat treated samples 

at 200 °C and 300 °C were hydrophilic because the contact angle are lower than 90 ° [181]. In fact, 

hydrophobic long carbon chain and methyl tail group of DDT monomers are responsible of the 

high contact angle of DDT treated sample. Hydrophobicity is a great feature of this sample because 

it reduces the contact between PdCo and Ringer’s solution and thus decreases the ions release, 

compared with untreated sample. Despite the hydrophobicity of the DDT treated sample, the higher 

release of ions compared with the hydrophilic samples treated with heat can be explained by the 

presence of bared regions. The results above indicate that the wettability of the surface might not 

be an appropriate parameter to probe the corrosion behaviour of biomaterials in Ringer’s solution, 

because it will predict the average of the surface hydrophobicity regardless of the non-homogeneity 

of the composition at the surface.  
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The wetting behaviour of the untreated and heated samples suggests that the chemical composition 

of the surface vary upon the treatment, and becomes more hydrophilic when treated at 200 °C than 

at 300 °C. The surface may contain different type of oxides such as hydrophobic PdO and 

hydrophilic Co(OH)3 which exhibit different solubility in water.  

 

Figure 4-12 Contact angles of a) graphite, PdCo NPs b) untreated, c) DDT treated and d) treated 

with heat at 200 °C and e) at 300 °C. 

Table 4-4 Static contact angle measurements before the corrosion assay on the PdCo samples. 

 Contact Angles (°) 

Graphite 125.2 

Untreated 50.7 

Protection with DDT  96.4 

Heated at 200 °C 41 

Heated at 300 °C 58 
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4.2.3.4 SEM and AFM 

The corrosion of the samples was also evaluated qualitatively by the analysis of the surface 

morphology using SEM and AFM microscopy and by measuring the surface roughness (Rq) from 

AFM images. SEM images of the untreated/treated samples, before and after polarization test, are 

showed in figure 4-13. According to SEM images, the spherical morphology of the PdCo NPs 

samples didn’t appear visibly different for untreated and treated surfaces. They do not also show 

any sign of pitting corrosion after the polarization test. AFM images (figure 4-14) confirm that the 

samples were uniformly degraded, and thus the surface of PdCo samples resists to the attack from 

aggressive species (such as chloride ions) in Ringer’s solution.  

Surface roughness may have a strong influence on the corrosion resistance of the material; therefore 

the average roughness of PdCo samples (before and after polarization test) was estimated (in table 

4-5) using AFM images. Before the polarization assay, untreated and 200 °C heated samples 

exhibited an average roughness (42.2 nm and 40.1 nm, respectively) lower than samples treated 

with DDT or heated at 300°C (Rq = 59.2 nm and 81.9 nm, respectively). After the polarization 

assay, the samples with higher initial surface roughness showed an increase by 150.8 nm (for DDT 

treated) or a reduction by 55.5 nm (for the heat treated at 300 °C) of the surface roughness, whereas 

the samples with lower initial surface roughness didn’t show a significant change of their surface 

roughness. This behavior can explain the higher Co2+ ions released ([Co2+]= 0.029 ppm) and 

corrosion current density (icorr= 0.87202 µA/cm2) of the DDT treated and 300°C heat treated 

([Co2+]= 0.019 ppm; icorr= 0.065828 µA/cm2) samples when compared to those obtained with the 

200 °C heat treated sample ([Co2+]=0,012 ppm;  icorr= 0.027084 µA/cm2).  

Despite that the untreated sample, which exhibit an average initial roughness (42.2 nm), didn’t 

show a difference in the roughness after the polarization assay, it displays the highest release of 

Co2+ ions and a high corrosion current density (([Co2+]= 0.055 ppm; icorr= 0.23874 µA/cm2) among 

all the samples. This might be an indication that the surface roughness might reveal the type of 

corrosion (pitting or uniform) involved in a corrosion process rather the corrosion rate value.  



66 

 

 

  

  

  

  

  

Figure 4-13 SEM micrographs of PdCo NPs before (left) and after (right) polarization assay. (A): 

untreated, (B): treated with DDT, (C): heated at 200 °C, (D): heated at 300 °C, and (E): heated at 

400 °C. 

A 

B 

C 

D 

E 
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Figure 4-14 AFM images of PdCo NPs before and after polarization assay, left and right 

respectively. (A): untreated, (B): treated with DDT, (C): heated at 200 °C, and (D): heated at 300 
°C. 

A 

B 

C 

D 
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Table 4-5 Surface average roughness (Rq) of the 4 samples, obtained from AFM images before 

and after the polarization test. 

PdCo Samples  
Rq (nm) 

Before corrosion After corrosion 

Untreated 42.2 42.9 

Protection with DDT 59.2 210 

Heated at 200°C 40.1 41.1 

Heated at 300°C 81.9 26.4 

 

4.2.3.5 X-ray Photoelectron Spectroscopy (XPS) 

The typical XPS survey spectra of the PdCo samples before and after polarization are shown in 

figure 4-15 (a-d). The XPS data allows the identification of the chemical composition of the alloy 

surface before and after polarization and the oxidation states of Pd and Co at the surface of the 

PdCo samples, including the passive layer. According to the elemental composition obtained from 

XPS spectra (table 4-6), palladium (Pd), cobalt (Co), carbon (C), oxygen (O), nitrogen (N), silica 

(Si), sodium (Na), chloride (Cl), sulfur (S) and tin (Sn) were shown to be present on the sample’s 

surfaces. Nitrogen (N) may arise from the laboratory’s environment whereas Na and Cl may come 

probably from the synthesis electrolytes (NaOH and HCl, or Pd and Co salts) and Ringer’s solution 

during polarization. Sn contamination results from the Pd-sensitization/activation of the graphite 

before the synthesis, S is present in DDT monomers. Si and C may refer to the graphite electrode 

and DDT monomers.   

High resolution analysis of the XPS spectra allows the determination of binding energies (table 4-

7) of Pd3d5/2, O1s and Co2p3/2 involved in chemical species at the surface of the various PdCo 

samples. 

Pd metallic is present on the surface of the heat treated samples before the polarization test, whereas 

Co metallic appears only on the DDT treated sample before the polarization test. Moreover, Pd is 

more stable than Co in aqueous medium as predicted by the Pourbaix diagram (figure 4-9). 

Therefore, the surface of the sample treated with DDT is less stable than that of samples treated 

with heat. The results of XPS are in good agreement with the results of the polarization assays, 

where the corrosion current density of DDT treated samples (icorr = 0.87202 µA/cm2) is 
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significantly higher than those of the samples treated with heat (icorr(300 °C) =  0.065828 µA/cm2, 

icorr(200 °C) = 0.027084 µA/cm2). 

The composition of the passive layer seems to be dependent on the sample’s treatment. For 

example, the energy binding of Pd3d5/2 corresponding to PdO appears only in untreated and 300 

°C heat treated samples. The hydrophobic property of PdO explains the higher contact angle values 

of these samples among the other samples. 

It can be clearly seen from table 4-6 that Pd is enriched and Co is depleted at the surface of 200 °C 

and 300 °C heat treated samples after the polarization assay. It should be noted that these samples 

exhibited a Co(hydroxide)-rich surface and Pd0 content before the corrosion study. In addition, the 

Pd metallic content is higher on the 200 °C heat treated sample than on the 300 °C heat treated 

sample. Moreover, the sample treated at 300 °C contains a high quantity of Pd in the form of PdO. 

These results may explain the lower concentration of Pd and Co ions released from the heat treated 

sample at 200 °C in comparison to those from the heat treated sample at 300 °C.  

However, Pd (oxide)-rich surface with Co (oxide, hydroxide) content exhibit a higher decrease in 

Co than in Pd (case of untreated sample). Pd (metallic)-rich surface with PdCl2 contamination and 

Co metallic contents show a small decrease in Pd and a subsequent increase in Co (case of DDT 

treated sample). These results indicate that the corrosion of PdCo NPs varies upon the chemical 

composition at their surfaces, which is related to the method of the sample’s treatment.  
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Figure 4-15.a XPS survey spectra before (upper) and after (lower) polarization of untreated PdCo 

samples. 
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Figure 4-15.b XPS survey spectra before (upper) and after (lower) polarization of PdCo samples 

protected with DDT. 
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Figure 4-15.c XPS survey spectra before (upper) and after (lower) polarization of PdCo samples 

heated at 200 °C. 
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Figure 4-15.d XPS survey spectra before (upper) and after (lower) polarization of PdCo samples 

heated at 300 °C. 

Table 4-6 Chemical composition of the elements for PdCo samples surface before (B.P.) and 

after polarization (A.P.). 

Atomic composition % C O N Na Cl S Pd Co Si Sn 

Untreated 
B. P. 76.9 15.3 3.5 0.3 0.7 0.4 0.9 0.6 0.4 1.0 

A. P. 76.2 16.4 2.0 1.0 1.2 --- 0.7 0.2 0.3 1.8 

Protection with DDT 
B. P. 81.5 11.4 0.8 --- 0.4 1.2 2.7 0.7 --- 1.3 

A. P. 75.0 17.2 1.1 --- 0.6 0.9 2.4 1.2 --- 1.6 

Heated at 200 °C 
B. P. 72.2 18.0 3.4 --- 1.2 --- 1.1 3.0 --- 1.1 

A. P. 73.0 16.6 2.6 0.7 1.2 0.4 1.9 1.1 0.5 1.7 

Heated at 300 °C 
B. P. 77.9 14.4 2.4 0.1 0.8 0.3 0.5 2.5 --- 1.1 

A. P. 79.5 14.4 1.3 0.6 0.6 0.5 0.8 0.2 --- 1.9 
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Table 4-7 Identification and quantification of the binding energies of Pd3d5/2, O1s and Co2p3/2, 

involved in chemical species at the surface of the various PdCo samples, from high energy 

resolution. 

Elements 
Binding 

Energy (eV) 
Chemical Bonds 

Atomic composition % 

Untreated 
sample 

Protection 
with DDT 

Heat 
treated at 

200 °C 

Heat 
treated at 

300 °C 

B.P. A.P. B.P. A.P. B.P. A.P. B.P. A.P. 

 Pd3d5/2 

335.2 

Pd-Pd° 

-  - -  2.1  -   - -  - 

335.7 -  - 2.2 - 1.3 1.7 -  - 

335.8 -  - -  - -  - 0.5 - 

336 

Pd-O 

0.5 - -  - -  - -   - 

336.1 -  - -  - -  - -  0.7 

336.2 -  0.4 -  - -  - -  - 

337.1 Pd-O or   Pd-Cl -  - -  0.6 -  - -  - 

337.6 

Pd-Cl2 

-  - 0.7 - -  0.6 -  - 

338 -  -  -  - -  - 0.1  - 

338.1 -  -  -  - -  - -  0.2 

338.4 0.4 0.4  -  - -  - -   - 

O1s 

530.9 

M-O 

-   - -  5.4 -   - -  -  

531.1 -  3.3 -   - -  6.5 -  6.2 

531.3 2.4 - 4.3 - -  - - - 

531.4  -  - -  - 6.3 - 4.8 - 

532 
M-OH and C=O 

9.1 7.3 4.3 8.1  -   -  -  5.2 

532.3  -   -  -   - 10.6 7.7 7.8  - 

533 C-O 4.2 5.5 -   - 1.6 1.4 2.7 3.9 

Co2p3/2 

778 
Co-Co° 

-   - -  0.6 -  -  -   - 

778.4 -   - 0.4  - -   - -  0.2 

778.8 
Co°, Co-O in Co3O4, 

Co-C or Co-M 
 -   - -   - -  0.4 -   - 

779.3 
Co-O in Co3O4, Co-C 

or Co-M 
0.2  - -   - -   - -   - 

780.8 
Co-O in Co3O4, Co-OH 

in Co(OH)2 or Co-Cl in 

CoCl2 

-   - 0.4 1 -   - -   - 

781.5 Co-OH in Co(OH)2 or 

Co-NH3 in  

Co(NH3)3Cl3 

-   - -   - -   - -  0.4 

781.7 0.4  - -   - 3.7 1  -  - 

781.8 -  0.2 -   - -   - 3.2  - 

782.8 Co-Cl in CoCl2.xH2O -   - 0.1  - -   - -  -  
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As untreated sample didn’t show Pd metallic atoms at the surface, therefore sputtering were done 

to investigate the oxidation states of palladium below the passive layer. The atomic composition 

(%) of the chemical elements observed in the survey spectra of the untreated PdCo sample before 

and after sputtering are summarized in table 4-8. 

 

Table 4-8 Atomic composition of the chemical elements observed in the survey spectra of the 

untreated PdCo alloy before and after sputtering. 

Atomic composition (%) Pd Co C O Sn N Si S Cl Na 

Before sputtering 0.9 0.6 76.9 15.3 1 3.5 0.4 0.4 0.7 0.3 

After sputtering 

(1 kV; 2 minutes) 

0.3 0 97.1 1.5 0.3 0 0.2 0 0.2 0.4 

 

No amount of Co, S and N was observed after the sputtering of the untreated PdCo alloy, whereas 

these elements were present on the surface before the sputtering. The amounts of Pd, O, Si, Sn and 

Cl were decreased, whereas that of C increased on the surface of the sample due to the sputtering.  

It should be noted that Co element was not detected in the survey spectra after sputtering, while 

peaks for Co were identified from XPS high resolution spectra. The peak shapes obtained in high 

resolution mode are more accurate, and consequently quantification is also better. 

The high resolution XPS spectra of Pd 3d and Co 2p before and after sputtering are illustrated in 

figure 4-16. Co 2p XPS spectrum before sputtering is comprised of three main peaks at about 779.8 

eV, 781.7 eV and 786.2 eV assigned to Co 2p3/2. The peak at 779.8 eV is characteristic of cobalt 

oxides (e.g. Co2O3, Co3O4), cobalt oxyhydroxide (e.g. CoO(OH)) and cobalt hydroxide (Co(OH)2) 

[182]. The peak at 781.7 eV can be attributed to cobalt hydroxides or trichlorotriamminecobalt 

(Co(NH3)3Cl3), and the peak at 786.2 eV (shake up) is associated to cobalt oxides and cobalt 

chloride [182].  After sputtering, the peaks of Co 2p3/2 are observed at 778.6 eV and 782.1 eV 

(shake up), they are assigned to metallic Co only [182]. 

It is worth noting that after sputtering at 1 kV for 2 minutes, the amount of Co oxides and 

hydroxides calculated from the high resolution XPS data decreased from 0.6 % to a very low atomic 
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%, and the amount of Co metallic increased from 0 to 0.7 %, at the surface of the untreated PdCo 

sample. These results suggest two possibilities, whether sputtering method induced the reduction 

of the cobalt oxides/hydroxides at the surface to cobalt metal or eroded the surface elements 

(including cobalt oxides/hydroxides) and thus metallic Co in the underlayer shows up. 

On the other hand, Pd 3d XPS spectrum before sputtering is comprised of four main peaks at about 

336.1 eV, 338.7 eV, 341.5 eV and 344 eV. The peaks at 336.1 eV and 341.5 eV are attributed to 

Pd 3d5/2 and are characteristic of Pd–O species [182]. However, those at about 338.7 eV and 344 

eV correspond to Pd 3d3/2 and are assigned to Pd-Cl species [182]. After sputtering, the peaks of 

Pd 3d5/2 are observed at 336.7 eV and 341.7 eV, and are characteristic of Pd–O species [182,182]. 

It is important to mention that the atomic % of palladium oxide (PdO), calculated from the high 

resolution XPS data, increased from 0.5 to 0.9 % whereas the % of palladium chloride (PdCl2) 

decreased from 0.4 to 0 % after sputtering the surface of the untreated PdCo sample. Therefore, 

untreated PdCo NPs consist of PdO core and PdO with PdCl2 shell.  

 

  



77 

 

 

 

Figure 4-16 High resolution XPS of Pd 3d5/2 and Co 2p3/2 before (upper) and after sputtering 

(lower). 

4.2.3.6 Immersion test 

The quantity of Pd and Co ions released during the immersion of PdCo samples in 37 °C Ringer’s 

solution for 7 days are indicated in table 4-9. The concentrations of both Pd and Co ions are less 

than 0.01 ppm for all the samples, indicating that PdCo samples exhibit a very good resistance to 

corrosion on the short-term. 

Table 4-9 Quantity of metal ions released during 166 hours. 

Ion release 
(ppm) 

Untreated 
Protected 
with DDT 

Heated at 
200 °C 

Heated at 
300 °C 

Pd <0.01 <0.01 <0.01 <0.01 

Co <0.01 <0.01 <0.01 <0.01 

 

4.2.4 Conclusions 

Palladium-cobalt is a very good candidate for magnetic hyperthermia because of the stability of 

palladium and ferromagnetic properties of cobalt. Few studies were done on the corrosion of PdCo 

alloys [124,183,184,185]. They showed a good stability for Pd rich PdCo alloys. However, the 
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stability of Pd rich PdCo NPs was not investigated. Thus, it is very interesting to investigate for the 

first time the corrosion resistance of PdCo NPs. Moreover, the effect of heat and alkanethiol layer 

on the stability of PdCo NPs was evaluated. 

Based on the results of this work, it can be concluded that: 

1) PdCo based alloys were produced by electrodeposition under a constant negative potential of -

1.2 V applied for 1 minute to the graphite electrode, as a supporting electrode, in a three 

electrochemical cell configuration. The supporting electrode was immersed in a solution containing 

Pd(II) and Co(II)  salts and de-aerated with nitrogen atmosphere. 

2) The PdCo NPs samples treated with heat displayed the lowest corrosion current densites (icorr) 

of 0.022114 µA/cm2 for 400 °C, 0.027084 µA/cm2 for 200 °C and 0.065828 µA/cm2 for 300 °C. 

On the contrary, the sample treated with DDT monomers and untreated sample exhibited the 

highest corrosion densities of icorr of 0.87202 µA/cm2 and 0.23874 µA/cm2 respectively.  

3) According to AAS, the heat treated and alkanethiol treated samples exhibited a low release of 

Pd and Co ions, which may reach [Pd] = 0.01 ppm; [Co] = 0.013 ppm, in the Ringer’s solution 

after the polarization assay. The increase in the ions concentrations is in the following order for 

heat treated (at 200 °C, 300 °C and 400 °C) samples, DDT treated sample and untreated samples: 

heat treated at 200 °C < heat treated at 400 °C  < heat treated at 300 °C  < treated with DDT  < 

Untreated. XPS analysis showed that the corrosion of treated/untreated PdCo samples varies upon 

the chemical composition at the surface, which revealed to be treatment-dependent. Moreover, after 

7 days of immersion in 37 °C Ringer’s solution both treated and untreated samples exhibited an 

excellent corrosion resistance ([Pd]<0.01 ppm; [Co]<0.01 ppm).  

This study concluded that PdCo NPs could be used as a medical micro-device if they are treated 

with heat, because this treatment showed to be very efficient in the enhancement of the PdCo NPs 

stability upon corrosion in Ringer’s solution, and thus prevent high Pd and Co ions release in 

biological environment and subsequent nanotoxicity.  
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CHAPTER 5 GENERAL DISCUSSION 

This discussion helps to make relation between the various parts of the thesis; the originality of 

work and the correlations between the method of the PdCo alloys synthesis, their chemical 

composition to their resistance to corrosion and magnetic properties. An electrochemical method 

for the synthesis of new medical micro-device of PdCo NPs was developed for the first time, using 

a sequential electrodeposition on graphite electrode. Despite the difficulties to deposit PdCo on the 

highly oriented pyrolitic graphite, we modified its surface with Pd particles by electroless to 

enhance the deposition of PdCo (due to the efficient Pd particles-mediated electron transfer) and 

then used it as working electrode to obtain a 3D growth required to produce nanoparticles. Later, 

a sequential electrodeposition followed by DDT coating was adopted to increase the number of 

nanoparticles. Moreover, the electrodeposition parameters (such as graphite surface, bath 

composition, applied potential and duration of electrodeposition) were optimized to produce 

spherical Pd-rich PdCo nanoparticles, with a ratio Pd/Co= 65.3:34.7, in the range 30-50 nm.  

To the best of our knowledge, no in-depth research has been performed so far on the stability of 

Pd65Co35 NPs. Therefore, it was very interesting to investigate for the first time the corrosion 

resistance of PdCo NPs. Moreover, we studied the effect of heat and alkanethiol layer treatment on 

the corrosion behaviour of these NPs. The heat treatment showed a strong influence on the 

corrosion resistance, reducing the release of Pd and Co ions ([Pd] = 0.01 ppm and [Co] = 0.013 

ppm) during polarization assay by enhancing the microstructure of the alloy and thereby the passive 

layer at the surface. On the other hand, the treatment with alkanethiol layer also enhances the 

corrosion resistance of the PdCo NPs by protecting Pd and Co metallic states from oxidation after 

the corrosion test, as long as the hydrophobic DDT are chemisorbed at the PdCo surface. The 

immersion of the treated and untreated samples of PdCo NPs done in 37 °C Ringer’s solution 

revealed an excellent corrosion resistance ([Pd] < 0.01 ppm; [Co] < 0.01 ppm).  

From the results of this work, we can conclude that PdCo NPs must be treated with heat or 

alkanethiol monomers to prevent high Pd and Co ions release in biological environment and 

subsequent nanotoxicity. 

As limitations are inevitable in a research, these nanoparticles cannot be used directly neither for 

biocompatibility tests nor for magnetic investigations because of their deposition onto 0.7 mm x 

0.7 mm (0.3 mm thickness) graphite substrate and their ferromagnetism behaviour due to the 
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presence of agglomerated particles. Furthermore, the concentration of PdCo NPs is very low 

resulting in difficulties for studying the crystalline structure using XRD analysis. 

Despite the drawbacks mentioned above, the hysteresis loop and Curie point measurements were 

done over two samples A and B of PdCo. Samples A (Pd-14 % Co) and B (Pd-12 % Co) are both 

synthesized in the same conditions using two sequential electrodepositions at -1.2 V (vs SCE), for 

1 min each followed by DDT protection (19h).  

The hysteresis loop (magnetic moment versus the applied magnetic field) and the Curie point 

measurements were measured using a vibrating sample magnetometer (VSM).  

According to the hystheresis loop (in figure 5-1), both samples are ferromagnetic and the maximum 

induced magnetic moments are about 0.60 and 0.55 memu for sample A and sample B respectively. 

The saturation magnetization (memu/g) of the sample can be obtained by dividing the maximum 

magnetic moment (memu) by the deposited PdCo mass (g), estimated from equation (19). 

Q (C) = I (A) x t (s)    (Equation 19) 

                                                  1 F = 96 500 C = 1 mole of e−            

For example, Q(sample A) = 7.66 C during the electrodeposition, so the number of moles of 𝑒− 

passed through the graphite electrode is 
7.66 𝐶

96 500 𝑐
 = 7.938 x 10−5.  

It takes 2 moles of 𝑒− to form 1 mole of Pd (Pd(II)+2e− Pd), which contribute to 86 % of the 

alloy, therefore n(Pd)= 
7.938 10−5

2
 x 

86

100
 = 3.413 x 10−5 mole, and m(Pd)= n.M = 3.413.10−5 mole 

x 106.42 g = 3.6 mg. 

Also, it takes 2 moles of 𝑒− to form 1 mole of Co (Co(II)+2e−
Co), which contribute to 14 % of 

the alloy, therefore n(Pd)= 
7.938 10−5

2
x

14

100
=0.556 x 10−5 mole and m(Co)= n.M = 0.556 x 10−5 mole 

x 58.93 g = 0.327 mg. 

The total deposited mass of PdCo in sample A is m(A)= m(Pd)+m(Co) = 3.927 mg. 

Thus the saturation magnetization of sample A is about Ms(A)= 
0.6

0.003927
 =152.78 memu/g 

 



81 

 

 

Using the same calculation above we obtained Ms(B)= 
0.55

0.002355
 = 233.54 memu/g 

Although samples A and B are deposited in the same conditions and have almost the same 

composition, they exhibit different saturation magnetizations. The higher magnetization of sample 

B (Ms= 233.54 memu/g) can be attributed to the agglomeration of particles seen in SEM images 

(figure 5-2) and subsequently higher particle size of PdCo particles compared with sample A (Ms= 

152.78 memu/g).  
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Figure 5-1 Longitudinal M–H hysteresis loop for Pd–14 % Co (A) and Pd–12 % Co (B) alloys, 

obtained by two sequential electrodepositions at -1.2 V, during 1 minute each and followed by 

DDT protection (19 h). 
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Figure 5-2 SEM images of electrodeposited Pd–14 % Co (A) and Pd–12 % Co (B) alloys 

obtained by two sequential electrodepositions at -1.2 V, during 1 minute each and followed by 

DDT protection (19 h). (magnification of 20k x) 

A 

B 
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The above results showed that the saturation magnetization of untreated PdCo NPs is about 200 

memu/g, because both samples have a very low mass of NPs. This is another reason why the 

quantity of deposited NPs must be increased to enhance their magnetization, which is 450 times 

lower than those of the bulk material (Ms= 90 emu/g). [38].   

Curie point measurements were done on the sample B (figure 5-4), sample of Pd–30 % Co 

deposited at -1.2 V for 45 s (figure 5-5), and on the graphite as well (figure 5-5). As expected, the 

graphite didn’t undergo phase transitions and thus detected Curie points will belong to PdCo NPs. 

The Curie measurement showed that sample B exhibits a Curie temperature between 450 K and 

475 K. According to Curie point graph of PdCo (figure 5-3) and EDX analysis (12 % Co), the 

Curie temperature is probably due to Pd87Co13 phase. However, it is not the only Curie temperature 

and other Curie temperature(s) is (are) expected.  

The sample of Pd–30 % Co, deposited at -1.2 V for 45 s, showed at least two Curie temperatures. 

The first one is between 700 K and 850 K indicating a phase of 30 % Co, according to Curie point 

graph and EDX analysis. The second one is between 400 K and 450 K and reveals lower percentage 

of cobalt (about 10-15 %). The percentage of cobalt seems to vary significantly in the deposited 

NPs. 

Therefore, neither sample B nor sample Pd-30 % Co are a single phase and this confirms the 

usefulness of the heating treatment after electrodeposition to enhance the microstructure of the 

alloy, which should be a single phase FCC solid solution. 

 
 

Figure 5-3 Curie point as a function of the atomic percentage of cobalt [186]. 
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Figure 5-4 Magnetic moment as a function of temperature for sample B (Pd–12 % Co), obtained 

by two sequential electrodepositions at -1.2 V, during 1 minute each and followed by DDT 

protection (19 h). 

 

 

  
 

Figure 5-5 Magnetic moment as a function of temperature for Pd–30 % Co (left), deposited at -

1.2 V for 45 s, and for graphite (right).  

 

Based on Curie temperature results, we can conclude that samples treated with DDT (sample B or 

sample Pd-30 % Co) have a heterogeneous composition and also generally exhibit a lower 

corrosion resistance than the samples which have homogeneous composition. When a sample has 

two chemical compositions is immersed in an electrolyte, the component of the sample with the 
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lower potential is attacked. The lower corrosion resistance of the heterogeneous composition, 

compared with homogeneous composition, is the reason of the higher corrosion current of the 

sample treated with DDT (icorr= 0.87202 µA/cm2) compared with the samples treated with heat 

(icorr= 0.022114 µA/cm2 for 400 °C). This highlight again the effectiveness of the heat treatment 

after the synthesis of NPs to obtain samples exhibiting one uniform chemical composition sample. 

The development of this family of samples consequently will increase the corrosion resistance of 

the NPs. Hysteresis loop, Curie temperature and XRD tests have to be done over PdCo NPs samples 

treated with heat to confirm if the enhanced cristallinity and homogeneity of the composition will 

increase the saturation magnetization. 

 

On the other hand, the form of the magnetisation vs temperature curve and the negative magnetic 

moments obtained during these Curie point measurements come from the low magnetic moments 

of the graphite substrate. Therefore, a simple subtraction of the graphite magnetic moments from 

the overall magnetic moments of the samples was achieved (figure 5-6) in order to show the 

magnetic behavior of PdCo NPs as function of temperature.        
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Figure 5-6 Magnetic moment as a function of temperature for sample B (Pd-12% Co) and sample 

Pd–30 % Co after subtraction of the graphite magnetic moments. 

The NPs investigated exhibit a ferromagnetism behavior as result of agglomerated particles. To 

solve this problem and obtain superparamagnetic behavior, NPs must be transferred to a solution 

and then the solution of dispersed NPs is filtered to eliminate the big and very small particles.  

We tested the feasibility of separating the NPs from the graphite using ultrasonic bath.  

The PdCo NPs sample was placed in a vial containing 2 mL ethanolic solution of 50 mM DDT 

monomers. It can be seen from figure 5-7 that 30 minutes sonication at room temperature remove 

a visible mass of NPs from a certain region of the graphite surface; however the concentration of 
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PdCo particles is very low in the 36 μL solution evaporated on a clean graphite surface (used for 

SEM analysis). 
 

 

 

 

  

 

 

   

 

       

 
 

 

 
 

 

 

 
 

 

 

 

 

Figure 5-7 SEM images of (a) PdCo sample before sonication, (b) PdCo sample after sonication 

for 30 minutes at room temperature and (c) 36 μL solution of PdCo on graphite. 

 

To understand the controversy in the SEM analysis, the time of sonication was increased more 7 

hours to enhance the concentration of PdCo in the ethanolic solution and a brass substrate was used 

a 

b1 

c 

b2 
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instead of graphite, as a flat surface, to enhance the concentration of PdCo in the ethanolic solution. 

As seen from figure 5-8, the quantity of NPs in the solution increased significantly and the bared 

regions of graphite become more frequent.  

 

 
 
 

 

 

 

Figure 5-8 SEM images of (a) PdCo sample after sonication for 7 hours and 30 minutes at room 

temperature and (b) 36 μL solution of PdCo on brass. 

 

To evaluate the effect of the temperature during the sonication, the same sample of PdCo was 

sonicated during 6 hours at 55 °C (figure 5-9). SEM images have shown a very high concentration 

of NPs in the ethanolic solution as result of the very low concentration of the remaining 

electrodeposited PdCo NPs.  

a 

b 
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Figure 5-9 SEM images of (a) PdCo sample after sonication for 7 hours and 30 minutes at room 

temperature and more 6 hours at 55 °C, and (b) 36 μL solution of PdCo on brass. 

 

It can be concluded from the sonication test that it is possible to obtain a solution of dispersed PdCo 

NPs using a sonicator. Also, this test showed that the separation of the NPs from the graphite 

surface is time and temperature dependent.  

Unfortunately, the cytotoxicity of Pd65Co35 NPs was not evaluated in this study due to the 

adsorption of these NPs onto graphite support and the sonication technique must be optimized. 

Furthermore, filtration technique is required to separate the NPs in a size range of 10-50 nm from 

those in higher ranges. Once these limitations are overcome and 10-50 nm Pd65Co35 NPs are 

obtained, the cellular toxicity of these NPs can be investigated. Therefore, in vitro exposure of 

cultured cells to NPs (prior to in vivo translation) is necessary to understand the cell-NP interaction 

and thus improve the biocompatibility of the NPs. 

In the biomedical field, palladium has primarily been used as a component of alloys for dental 

prostheses, and current evidence suggests that palladium alloys (such as Au–Cu–Ag–Pd) are safe 

[187]. In addition, the growth curves of FL cells (epithelial cell strain derived from human amnion 

tissue membrane [188]) for the PdCo alloy showed that the toxicity of the alloy is very weak [123]. 

However, the toxic effects of NPs are influenced by many parameters (such as size distribution, 

surface coating, magnetic properties, etc) so it is very important to evaluate the nanotoxicity of 

Pd65Co35 NPs and compare it with the toxicity of PdCo bulk material. 

a b 
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An important challenge in realizing magnetic hyperthermia using magnetic nanoparticles is 

controlling the temperature during treatment. A ferromagnetic material having a Curie temperature 

just above the target temperature range (42 - 45 °C) would stop dissipating heat at the target 

temperature [188]. This is believed to explain why so much attention has been devoted to the study 

of ferromagnetic elements, such as Fe, Ni and Co (with Curie points far above the therapeutic 

range) mixed with non-magnetic elements to lower the Curie point [169]. Various candidate 

materials have been suggested, such as Co mixed with Pd (50 % – 30 %) which exhibits a Curie 

temperature in a therapeutic range from about 42 °C to about 100 °C [169] and thus can be used to 

treat many types of cancer. For example, the therapeutic range can vary from 42 °C up to 65 °C in 

the treatment of prostate tumors, whereas the range may extend to 100 °C in ablating a portion of 

brain tissue. 

However, 23% Co mixed with 77% Pt has a Curie temperature about 500 °C, and it has only slight 

loss of magnetism at 350 °C [189]. Moreover, PtCo has a coercitive force above 341.850 A/m, and 

a residual induction of 0.645T [189]. Thus, PtCo alloy is of current interest in magnetic storage 

devices and there is no current research on its usefulness for magnetic hyperthermia applications. 

In addition, the platinum is an expensive metal compared with palladium (Pt: 1269$/Oz, Pd: 

775$/Oz) and the values of the saturation magnetization for PtCo alloys are lower than that of PdCo 

(Ms (Pt-3.5 % Co)= 5.17 emu/g, Ms (Pd-3.5 %  Co)= 15.12 emu/g) [38]. For the reasons mentioned 

above, PdCo is chosen instead of PtCo for investigating its properties in order to use it in magnetic 

hyperthermia.  

According to Bagguley et al. [38], the saturation magnetization of PdCo FCC alloys (5 mm 

diameter and 0.1 mm thickness disk) fluctuate between 24.66 emu/g and 40.58 emu/g with 

increasing cobalt content from 8.9 to 23.0 at. %. However, the saturation magnetization of 

untreated Pd- 12% Co NPs synthesized in this project is about 0.23 emu/g. This 100 times lower 

value of magnetization can be attributed to the following reasons: 

1) Decreasing size of PdCo particles: the saturation magnetization decreases with the size of 

a ferromagnetic particle. This is due to the growth of the disordered spin layer at the surface 

of the particle when it size decreases [56].  

2) Usefulness of heating treatment: Pd- 12% Co NPs sample was not treated with heat (as the 

PdCo tested by Bagguley et al.) and thus showed a heterogeneous composition during Curie 



92 

 

 

temperature measurements. The heating treatment is necessary to enhance the 

microstructure of the alloy in order to obtain a homogeneous single phase FCC solid 

solution. Generally, a heterogeneous composition exhibits a lower corrosion resistance than 

the sample which has homogeneous composition. Hence, the magnetization of the 

homogeneous composition is higher than that of heterogeneous composition.  

3) Low deposited mass of 0.00235 g of Pd- 12% Co NPs was deposited onto graphite during 

the sequential electrodeposition. As the magnetic moment of a sample is proportional to the 

number of particles, the overall magnetization increases with the increasing number or mass 

of the deposited PdCo particles. Thus, the synthesis method of PdCo NPs must be optimized 

to enhance the deposited mass of particles. 
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CHAPTER 6 CONCLUSION AND RECOMMENDATIONS  

6.1 Conclusion 

In this project, a new synthesis method of PdCo NPs has been developed. This method involves a 

sequential electrodeposition onto Pd-modified graphite, followed by 1-dodecanethiol (DDT) 

coating. Pd-modified graphite showed that Pd seeds increase the electrocatalytic activity for the 

reduction of Pd(II) and Co(II) to PdCo alloy. On the other hand, coating PdCo nanoparticles with 

1- dodecanethiol (DDT) for 19 hours, before subsequent electrodeposition, increases the 

concentration and the stability of the deposited PdCo nanoparticles.  

The SEM images and the EDS results showed that when the applied potential decreases from -1.0 

V to -1.3 V, the morphology of PdCo NPs changes from clusters to spherical and agglomeration-

of-spheres, and the Co content increases to reach a maximum of 35.6 %. On the other hand, the 

presence of glycine in the bath solution enhances the crystalline structure of the deposited PdCo 

films, according to the x-ray diffraction (XRD) patterns 

As a second step and this is the main goal of this study, the corrosion resistance of newly developed 

Pd65Co35 NPs was evaluated. Furthermore, the influence of heat treatment at 200 °C, 300 °C and 

400 °C and surface passivation with 1-dodecanethiol (DDT) monomers on the corrosion resistance 

of PdCo NPs was investigated. Based on the results of this study, it can be concluded that PdCo 

NPs treated with heat at 400 °C displayed the lowest corrosion current density icorr of 0.022114 

μA/cm2, while the sample treated with DDT monomers exhibited the highest corrosion density of 

icorr of 0.87202 μA/cm2. However, the heat and alkanethiol treatments significantly decrease the 

release of Pd and Co ions in the supernatant after the polarization assay in the order 200 °C > 400 

°C > 300 °C > DDT > Untreated.  

XPS analysis showed that the corrosion resistance of treated/untreated PdCo samples varies upon 

the chemical composition at the surface, which revealed to be treatment-dependent. In addition, 

the immersion test for both treated and untreated samples exhibited an excellent corrosion 

resistance in Ringer solution ([Pd(II)]<0.01 ppm; [Co(II)]<0.01 ppm).  

This study concluded that Pd65Co35 NPs could be used as a medical micro-device if they are treated 

with heat, because this treatment showed to be very efficient in the enhancement of the PdCo NPs 
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stability upon corrosion in Ringer’s solution, and thus prevent high Pd and Co ions release in 

biological environment and subsequent nanotoxicity. 

The hysteresis loop and Curie point measurements were done over two samples of PdCo NPs. The 

results of the hysteresis loop measurements are very promising. They showed a ferromagnetic 

behavior, and good saturation magnetizations (152.78 memu/g and 233.54 memu/g) compared to 

the very low mass of NPs. Besides, Curie point measurements confirmed the usefulness of the 

heating treatment after electrodeposition to enhance the microstructure of the alloy.  

The sonication test showed that it is possible to obtain a solution of dispersed PdCo NPs using a 

sonicator. Also, this test showed that the separation of the NPs from the graphite surface is time 

and temperature dependent. 

As limitations are inevitable in a research, these nanoparticles cannot be used directly neither for 

biocompatibility tests nor for magnetic investigations because of their deposition onto 0.7 mm x 

0.7 mm (0.3 mm thickness) graphite substrate and their ferromagnetism behaviour due to the 

presence of agglomerated particles. Furthermore, the concentration of PdCo NPs is very low 

resulting in difficulties for studying the crystalline structure using XRD analysis. 

The toxicity of untreated/treated Pd65Co35 NPs must be evaluated in vitro to investigate the toxicity 

potential of these NPs for medical applications. Colorimetry assay (such as MTT assay) can be 

done in order to investigate the cell viability in the presence of untreated/treated Pd65Co35 NPs.  

In fact, viable cells with active metabolism convert MTT into a purple colored formazan product 

via reducing molecules (e.g. NADH). However, died cells lose the ability to convert MTT into 

formazan and thus the color formation serves as a useful marker of only the viable cells.  

Also, flow cytometry can be used to assess ROS levels by using fluorescent probes such as 

dichlorodihydrofluorescein and its derivatives, or to distinguish cells in different phases of the cell 

cycle by treating cells with a fluorescent dye (e.g. propidium iodide) that stains DNA 

quantitatively, in order to study the genotoxic effect of NPs.  

Since the toxicity of NPs is affected by the level of induced ROS generated by leached metallic 

ions and corrosion tests done over untreated/treated Pd65Co35 NPs showed a high corrosion 

resistance, low ROS levels and high cells viability are expected during toxicity tests over Pd65Co35 
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NPs. Therefore, it will be very interesting to study the biocompatibility of untreated/treated 

Pd65Co35 NPs and determine their ability to perform without having toxic effects on biological 

systems 

6.2 Recommendations 

After discussing the original contribution of this work to the advancement of the knowledge and 

the corresponding limitations, the following list of recommendations for future works are proposed: 

- Development of new strategies to improve the deposited mass of PdCo NPs onto graphite 

substrate, essential for high magnetizations and heating efficiencies.  

Magnetic tests showed that untreated PdCo NPs display low maximum magnetic moment (m= 0.55 

memu) and consequently low saturation magnetization (Ms= 233.54 memu/g) as result of low 

deposited mass of particles (about 2.355 mg). Therefore, new strategies to improve the deposited 

mass of PdCo NPs must be developed to increase the saturation magnetization and therefore the 

heating efficiency and the reliability of the magnetization. 

The deposited mass can be improved in several ways, such as:  

a) Increasing the surface area of the working electrode: the enhancement of the graphite 

electrode’s surface aims to broaden the electrode-electrolytes interface and thus enhance 

the electron transfer required for the reduction of Pd and Co salts into metallic PdCo alloy. 

b) Increasing the concentration of the electrolytes: in a concentrated Pd(II) and Co(II) solution, 

there are more precursor ions that can be reduced to Pd(0) and Co(0). Therefore, in higher 

concentrated electrolytes there are more deposited Pd and Co atoms and consequently 

higher deposited mass of PdCo NPs.  

c) Heating the electrolytic bath: the increased temperature of the electrolytic bath will increase 

the diffusion of the Pd(II) and Co(II) ions towards the working electrode. So, heating the 

bath solution will lower the value of the mass transport overpotential and subsequently 

increase the deposited mass.    

- Optimization of sonication and filtration techniques, in order to study the biocompatibility 

and superparamagnetism of PdCo NPs. 
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The PdCo NPs investigated in this project are deposited onto graphite substrate and exhibit a 

ferromagnetism behavior as result of agglomerated particles. Thus, these NPs cannot be used 

directly neither for biocompatibility tests nor for magnetic investigations. To solve this problem 

and obtain superparamagnetic behavior, NPs must be transferred to a solution and then the solution 

of dispersed NPs is filtered to eliminate the big and very small particles. We tested the feasibility 

of separating the NPs from the graphite using ultrasonic bath. According to ultrasonic bath tests, it 

is possible to obtain a solution of dispersed PdCo NPs using a sonicator. Also, these tests showed 

that the separation of PdCo NPs from the graphite surface is time and temperature dependent. 

Hence the need to optimize the techniques of sonication and filtration to produce 

superparamagnetic NPs, dispersed in culture medium, in order to perform biocompatibility tests 

and study their superparamagnetism behavior.   

- Investigation on the effect of length and composition of alkanethiol monomers on the 

corrosion resistance of PdCo NPs. 

The corrosion passivation of PdCo NPs using an electrically insulating layer of self-assembled 

alkanethiol monomers showed to enhance their corrosion resistance compared to untreated PdCo 

NPs. The effectiveness of these monomers in corrosion resistance is due to their ability to resist to 

electron transfer at the metal-solution surface, as result of their hydrophobic alkyl chain. Moreover, 

the length and the composition of these monomers also determine the behavior of the NPs towards 

corrosion. Thus, it is very important to study the effect of length and composition of self-assembled 

alkanethiol monomers on the corrosion behavior of PdCo NPs. 
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