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RÉSUMÉ 

Description du problème: La sclérose en plaques (SEP) est une maladie dévastatrice 

touchant plus de 100.000 personnes au Canada (MS Society of Canada). Les déficits fonctionnels 

engendrés par la maladie peuvent se traduire en troubles moteurs, cognitifs et sensoriels ayant un 

grand impact sur les activités sociales et professionnelles des patients. Le coût socio-économique 

de la SEP est colossal. Premièrement, la qualité de vie des patients ainsi que celle de leur familles 

peut se voir considérablement altérée. Deuxièmement, les traitements diminuant les effets 

handicapant de la SEP sont extrêmement dispendieux, leur coût annuel est estimé à plusieurs 

milliards de dollars au Canada (Karampampa et al. 2012) ainsi qu’aux USA (Hartung et al. 2015). 

De nos jours, la SEP ne se soigne pas et les détails de sa pathophysiologie restent obscures.  

La SEP est une maladie du système nerveux central, chronique, inflammatoire et 

démyélinisante. Elle est caractérisé par la formation de lésions inflammatoires et démyélinisantes 

prenant place dans la moelle épinière et dans les matières blanche et grise du cerveau. 

Bien que l’Imagerie par Résonance Magnétique (IRM) soit resté l’outil principal de 

diagnostic de SEP, les lésions observées dans la matière blanche ne corrélaient que très peu avec 

les déficits fonctionnels observés. Récemment, il à été montré que la démyélinisation de la matière 

grise est un meilleur indice de l’aggravement fonctionnel (Mainero et al. 2015). Cependant, les 

techniques d’IRM classiques sont difficilement utilisables pour l’imagerie du cortex, en effet, son 

épaisseur est seulement 2 à 4 mm et la résolution spatiale d'une IRM standard est de l’ordre de 

grandeur de 1 mm, ce qui n’est pas suffisant pour examiner précisément la pathologies corticales. 

L’IRM à ultra-haut champ (7 Tesla) à été montré capable d’imager des détails 

microstructurels du cortex, grâce à un gain en résolution et en signal sur bruit. Récamment, il a été 

montré que la relaxation transverse (apellée T2*) acquise à 7 Tesla est un marqueur sensible de la 

progression de la pathologie corticale des patients polyscléreux, notamment, de la démyélinisation 

corticale (Pitt et al. 2010; Mainero et al. 2015; Cohen-Adad et al. 2011). Cependant, des effets 

confondants réduisent la spécificité qu’a le contraste T2* à quantifier la myéline (notamment, le 

contenu en fer, ou les vaisseaux sanguins) (Hwang et al. 2010; Lee et al. 2012). Une seconde 

mesure indépendante serait bénéfique pour augmenter la spécificité d’une potentielle estimation de 

quantitée de myéline. Le Ratio de Transfert de Magnétisation (MTR) à aussi été démontré sensible 

à la myéline dans le cortex (Derakhshan et al. 2014; Chen et al. 2013) et serait une excellent mesure 

https://paperpile.com/c/IEz485/owVx
https://paperpile.com/c/IEz485/srVY
https://paperpile.com/c/IEz485/KSkc
https://paperpile.com/c/IEz485/2boM
https://paperpile.com/c/IEz485/1Y3i+2boM+ma0h
https://paperpile.com/c/IEz485/zkmy+yVqY
https://paperpile.com/c/IEz485/HmTU+ff5v
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complémentaire car ses principes physiques sont différents de ceux de T2*. Mentionnons qu’il n’est 

pas facile d’imager T2* et MTR dans le cortex car le cortex est fin, très convolué et sa géométrie 

varie beaucoup entre individus.  

Objectifs: Le premier objectif de cette étude est de combiner MTR et T2* en utilisant des 

statistiques multivariées, dans le but d’augmenter la spécificité, de l’imagerie de myéline. Le 

deuxiéme objectif est d’évaluer les bénéfices d’une telle combinaison pour l’étude de la pathologie 

corticale de patients polyscléreux.  

Méthode: Des sujets sains (témoins) et des patients polyscléreux ont été scannés à 7 Tesla 

et à 3 Tesla pour acquérire les données T2* et MTR respectivement. Un modèle multivarié 

d’estimation de myéline à été développé et consiste à (i) normaliser les données T2* et MTR (ii) 

extraire le signal commun aux deux contrastes en utilisant une analyse en composantes 

indépendantes (ICA). La dépendence à l’orientation du champ B0 et l’épaisseur corticales ont aussi 

été calculé et incluses dans le modèle. Une comparaison avec des précédents résultats histologiques 

et des simulations ont permis de valider le gain obtenu en utilisant les métriques combinées. Un 

modéle Linéaire Général (GLM) à été utilisé pour évaluer les différences entre patients vs sujets 

témoins.  L’âge, le genre et l’épaisseur corticale moyenne furent inclus comme régresseurs dans le 

GLM. Des estimations de la spécificité et sensibilité ont été faites sur certaines régions du cortex 

en utilisant des courbes ROC. Finalement, une étude laminaire de la pathologie diffuse fut conduite 

en utilisant des coupes à différendes profondeurs du cortex.  

Résultats: De fortes corrélations ont été observées entre MTR et T2*, dans le cortex entier 

(r = 0.76, p = 10−16), suggérant que les deux métriques soit en partie influancées par la même source 

de contraste, supposée étant la myéline. Les valeurs moyennes du MTR et T2* dans le cortex sont 

respectivements de 31.0 +/− 0.3% et 32.1 +/− 1.4 ms. La carte de myéline résultant de la 

combinaison a montré une tendance similaire aux travaux histologiques de quantification de 

myéline (r = 0.77, p  = 0.01). Des différences significatives inter hémisphères ont été détéctées 

dans le cortex moteur primaire, le cortex posterieur singulier et le cortex visuel (p=0.05). Les GLM 

ont révélés des régions de démyélinisation significatives dans les cortexes moteurs, visuels, auditifs 

et somato-sensoriels (p<0.05). Ces différences se sont montrées statistiquement significatives 

quand les cartes de myélines combinées étaient utilisées, alors qu’aucune différence significative 

ne fut détectée en utilisant les autres métriques seules (c.à.d MTR et T2*). De plus, les cartes 
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combinées ont été montrées capables de révéler des aires de démyélinisation dans les cortexes de 

jeunes patients polyscléreux (diagnostiqués in y a moins de 3 ans). 

Discussion: Cette étude à démontré que les modalitées MTR et T2* sont fortement corrélées 

dans le cortex. La combinaison de MTR, T2*, épaisseur corticale orientation par rapport à B0 est 

un moyen efficace pour étudier la myélo-architecture corticale avec plus de spécificité qu’en 

utilisant seulement T2* ou MTR. Ceci fournit un outil puissant pour l’étude des fines variations de 

myéline survenant dans le cortex des patients polyscléreux. Les premières applications de la 

méthode supportent le fait que la démyélinisation corticale est un évènement survenant tôt dans la 

sclérose en plaques, même en présence d’un handicap neurologique léger. 

Impacte: La quantification non-invasive de la pathologie corticale de la SEP est  la pièce 

manquante du puzzle pathophysiologie de la SEP. Comprendre les liens entre la pathologie de la 

matière blanche, la pathologie de la matière grise et les déficits fonctionnels peut i) aider à 

comprendre des détails fins des mécanismes de la SEP ii) aider à concevoir et cibler des futures 

traitements. 
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ABSTRACT 

Problem description: Multiple Sclerosis (MS) is a devastating disease affecting around 

100,000 people in Canada (MS Society of Canada). The functional deficits resulting from the 

disease include motor, cognitive and somatic troubles, affecting the social and professional 

activities of MS patients. The socio-economic cost of MS is colossal. Firstly, life quality of MS 

patients and those of their family members can be drastically hampered. Secondly, existing 

treatments  that reduce handicapping effects of MS are expensive, with an annual cost estimated in 

billions of dollars in Canada (Karampampa et al. 2012) and in the USA (Hartung et al. 2015). To 

date, MS is not curable and its pathophysiological mechanisms are still obscure.   

MS is known to be a chronic, inflammatory, demyelinating disease of the central nervous 

system. It is characterized by the formation of inflammatory and demyelinating lesions in the spinal 

cord and in the brain’s white and gray matters. 

While Magnetic Resonance Imaging (MRI) has been the main tool for diagnosing MS, 

correlations of white matter lesions with functional deficits remain poor. Recently, it was shown 

that grey matter demyelination provides a more specific assessment of functional worsening 

(Mainero et al. 2015). However, it is difficult to image the grey matter with standard MRI methods 

because the cortex is only 2-4 mm thick and the spatial resolution of standard MRI system is on 

the order of 1 mm, which is not sufficient for proper examination of cortical pathology. 

Ultra-high field MRI (7 Tesla) was shown to reveal microstructural features thanks to an 

increase in signal to noise ratio and spatial resolution. Recently, transverse relaxation 

(characterized by a time constant: T2*) at 7 Tesla was shown to be a sensitive marker of pathology 

and disease progression associated with demyelination in the cortex of MS patients (Pitt et al. 2010; 

Mainero et al. 2015; Cohen-Adad et al. 2011). However, several confounds hamper the specificity 

of T2* measures (iron content, blood vessels) (Hwang et al. 2010; Lee et al. 2012). An independent 

measure would increase the specificity to the myelin content. Magnetization Transfer Ratio (MTR) 

imaging has been shown to be sensitive to myelin content (Derakhshan et al. 2014; Chen et al. 

2013) and thus would be an excellent complementary measure because its underlying contrast 

mechanisms are different than that from T2*. However, mapping MTR and T2* in the cortex is 

challenging because the cortical ribbon is thin, highly convoluted and its geometry varies across 

individuals.  

https://paperpile.com/c/IEz485/owVx
https://paperpile.com/c/IEz485/srVY
https://paperpile.com/c/IEz485/KSkc
https://paperpile.com/c/IEz485/2boM
https://paperpile.com/c/IEz485/1Y3i+2boM+ma0h
https://paperpile.com/c/IEz485/1Y3i+2boM+ma0h
https://paperpile.com/c/IEz485/zkmy+yVqY
https://paperpile.com/c/IEz485/HmTU+ff5v
https://paperpile.com/c/IEz485/HmTU+ff5v
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Goals: The first goal of this study was to combine MTR and T2* using multivariate statistics 

in order to gain insights into cortical myelin content. The second goal was to assess the benefits of 

the combination to study the cortical disease progression in various groups of MS patients.  

Method: Healthy Control (HC) subjects and MS patients were scanned at 7 T and at 3 T to 

obtain T2* and MTR data, respectively. A multivariate myelin estimation model was developed, 

and consists of (i) normalizing T2* and MTR values and (ii) extracting their shared information 

using independent component analysis (ICA). B0 orientation dependence and cortical thickness 

were also computed and included in the model. Comparisons with previous histological work and 

simulated MRI data were used to validate the improvement given by the combined metrics. General 

Linear Models (GLM) were used to assess group differences in MS versus HC. Age, gender and 

mean cortical thickness were included as regressing factors. Sometimes, specificity/sensitivity 

assessment using Receiver Operating Characteristics (ROC) curves was performed on various 

cortical areas. Finally, laminar study of the diffuse pathology was achieved in a group of early MS 

patients by using samplings at diverse cortical depth. 

Results: High correlations were found between MTR and T2* in the whole cortex (r = 0.76, 

p = 10−16), suggesting that both metrics are partly driven by a common source of contrast, here 

assumed to be the myelin. Average MTR and T2* were respectively 31.0 +/− 0.3% and 32.1 +/− 

1.4 ms. Resulting combined map showed similar trends to that from histological work stained for 

myelin (r = 0.77, p  = 0.01). Significant right-left differences were detected in the primary motor 

cortex, the posterior cingulate cortex and the visual cortex (p = 0.05). General linear models have 

revealed regions of significant cortical demyelination, namely in the motor, visual, auditory and 

somatosensory cortices (p<0.05). These differences were statistically significant while using the 

combined myelin map, although no significant difference was detected when using others matrices 

(i.e. MTR and T2*) taken alone. Moreover, the combined myelin map was shown to detect areas 

of diffuse demyelination in the cortices of early MS patients (p<0.05, disease duration < 3 years). 

Discussion: This research demonstrated that MTR and T2* are highly correlated in the 

cortex. The combination of MTR, T2*, cortical thickness and B0 orientation may be a useful means 

to study cortical myeloarchitecture with more specificity than taking each contrast separately. This 

provides a powerful tool to study slight and early cortical demyelination in MS patients. Pioneer 



xi 

 

applications of the method support subpial demyelination as an early event in MS, even in the 

presence of mild neurological disability.  

Impact: Non-invasive quantification of the MS cortical pathology is the missing piece of 

the MS pathophysiology puzzle. Effectively relating WM pathology, GM pathology and functional 

worsening, will i) help to understand fine MS mechanism ii) help to design and target future MS 

treatments.  
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CHAPTER 1 INTRODUCTION 

Multiple Sclerosis (MS) is a neurodegenerative disease of the central nervous system (CNS) 

affecting around 100,000 people in Canada (MS Society of Canada). MS is the second cause of 

handicap in young adults. The functional deficits resulting from the disease include motor, 

cognitive and somatic troubles, affecting the social and professional activities of MS patients. The 

socio-economic cost of MS is colossal. Firstly, life quality of MS patients and those of their family 

members can be drastically hampered, they can for example lose their job or not anymore be able 

to live autonomously. Secondly, existing treatments  that reduce handicapping effects of MS are 

expensive, with an annual cost estimated in billions of dollars in Canada (Karampampa et al. 2012) 

and in the USA (Hartung et al. 2015). MS is thus a colossal socio-economic concern for the society. 

To date, MS is not curable and its pathophysiological mechanisms are still obscure.   

MS is known to be an inflammatory and demyelinating disease. Inflammation comes from 

an immune reaction of the nervous system against itself. This mechanism classifies MS with the 

autoimmune diseases. Moreover, MS attacks and disrupts the protective layer of axons, called 

myelin. Myelin is essential for the transmission of action potentials in axons, thus amongst 

neurons. Without myelin, information travels slower and bare axons become vulnerable to external 

attacks. Unfortunately, loss or degeneration of axons are common outcomes of MS, making it a so-

called neurodegenerative disease.  

MS patients can present various kind of symptoms. Some patients can keep a good quality 

of life and a perfect social integrity during their entire life, while others will quickly lose their 

cognitive abilities and social skills (Lhermitte 1924). One difficulty that clinicians and researchers 

developing treatment face is that MS is difficult to diagnose. In addition to a neurological 

examination, Magnetic Resonance Imaging (MRI) is used to detect tissue damages in the brain 

(and spinal cord). Because MRI can detect in-vivo a variety of MS features in the brain, such as 

inflammations, oedemas or demyelinating lesions, it has become the principal tool for the study of 

the disease progression, pathophysiology and treatment assessment. 

Until the beginning of 2000s, MS has been primarily known as a white matter disease. 

However, evidence of diffuse gray matter (GM) pathology has been reported since the nineteenth 

century (Wyllys Taylor 1894; Brownell & Hughes 1962). This biased view has been partly 

https://paperpile.com/c/IEz485/owVx
https://paperpile.com/c/IEz485/HQdk
https://paperpile.com/c/IEz485/70u8+gBKg
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influenced by the difficulty in detecting MS lesions in the cortex. Moreover, the damaged WM 

areas and the observed functional deficits were not correlating well, letting doubts in the 

comprehension of the pathology. Eventually, progress in MRI technology (including 

superconductors) allowed to increase the MRI’s magnetic field, permitting to gain resolution and 

sensitivity in MR images. Notably, 7 Tesla MRI devices led to a significant breakthrough in the 

study of the progression of MS in the cortical gray matter (also called cerebral cortex). Researchers 

not only discovered that MS pathology was present in the cortex, but studies found that the cortical 

pathology was at least as important as in the WM (Kidd et al. 1999; Peterson et al. 2001). Thus, 

new questions are raised, such as the potential interplay between GM and WM pathology, the role 

of GM demyelinating lesion or their correlation with functional deficits.  

The cerebral cortex is a complex and still poorly-known part of the human brain, where the 

neuronal fibers converge and inter-connect. Despite its thin structure (2-4mm thick and 1.1-1.5% 

of the total brain volume), it contains more than 100 billion neurons and 100 trillion neural 

connexions. The brain cortex is involved in the Human intelligence, consciousness, senses 

perceptions, memory, motor functions, etc.. Thus, it is not surprising that cortical damages, such 

as cortical demyelinating lesions can seriously impact nervous functions.  

The use of MRI to study myelo-architectural structures in-vivo (and MS damages) of the 

cortex is still a research practice. Indeed, cortical studies are challenging because of the thin aspect 

of the cortex, its high level of convolution, the low MR signal caused by a limited spatial resolution 

and the high structural variability across individuals. Moreover, even when using a cutting edge 

MRI device, there are only a few MR modalities (sometimes called metrics) capable of producing 

a good signal and contrast in the cortex. 

Recently, T2* acquired with 7 Tesla scanners was shown to provide quantitative markers of 

the pathology progression and the myelin organisation in the cortex (Deistung et al. 2013; Cohen-

Adad et al. 2011; Mainero et al. 2015; Li et al. 2015). Although there are several aspects supporting 

a significant role of cyto/myelo- architecture in T2* relaxation in the brain, several confounds exist 

that reduce the specificity of T2* as a marker of myelin, such as the tissues iron level, B0 field 

inhomogeneities or tissue orientation with respect to B0 (Lee et al. 2012; Lee et al. 2011; Cohen-

Adad et al. 2012; Stüber et al. 2014; Spees et al. 2001; Li et al. 1998).  

https://paperpile.com/c/IEz485/6Esw+Tx0x
https://paperpile.com/c/IEz485/ESw0+ma0h+2boM+B73L
https://paperpile.com/c/IEz485/ESw0+ma0h+2boM+B73L
https://paperpile.com/c/IEz485/yVqY+lB6c+bvLl+QuL0+ktwJ+60EJ
https://paperpile.com/c/IEz485/yVqY+lB6c+bvLl+QuL0+ktwJ+60EJ
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An independent measure would increase the specificity to myelin. Magnetisation Transfer (MT) 

imaging has been shown to be sensitive to myelin content in WM (Schmierer et al. 2004; Schmierer 

et al. 2007) & GM (Chen et al. 2013; Derakhshan et al. 2014) and thus would be an excellent 

complementary measure because its underlying contrast mechanisms are substantially different 

from T2*. The MT effect results from the interaction between water protons and protons associated 

with macromolecules. Macromolecules, such as myelin can be indirectly imaged by using an off-

resonance pulse that will saturate their spins in magnetisation and lower their contribution in an 

ensuing MR image (Henkelman et al. 2001; Pike Bruce 1996). The term transfer comes from the 

fact that macromolecules will transfer their magnetisation to the surrounding water molecules, and 

this mechanism of transfer is the principal source of MT contrast. 

The goal of my master’s thesis was to acquire both MR metrics (MTR and T2*) in the cortex 

of subjects and to combine them by using multivariate statistics in order to obtain a metric more 

specific to the cortical myelin content. The usefulness of such a metric being to study the cortical 

myeloarchitecture of the Human brain and the progression of cortical MS pathology.  

My research hypotheses were: H1) The combination of T2* and MTR using multivariate 

statistics will provide a sensitive and specific mapping of myelin content, as validated using 

previous histology work in humans (Braitenberg 1962; Geyer et al. 2011). H2) The combined 

metrics corrected for confounds will show changes in the cortex of MS patients versus healthy 

controls. H3) These changes will be correlated to functional deficits in MS patients, as assessed 

using clinical scores. 

1.1 Publications 

During my two years of Master’s study, I’ve been working on the above hypotheses. As a 

result, I have published one scientific article and one conference poster about the validation of H1 

(Mangeat et al. 2014; Mangeat, et al. 2015) as well as one conference presentation and one 

conference poster about the validation of H2 and H3 (Mangeat et al. 2015; G. Mangeat, et al. 2015; 

Mangeat et al. 2016). More explicitly, these publications were:  

 Mangeat et. al., 2015, Multivariate combination of magnetization transfer, T2* and B0 

orientation to study the myelo-architecture of the in vivo human cortex. Neuroimage 119, 

89–102. 

https://paperpile.com/c/IEz485/3zDC+KXAQ
https://paperpile.com/c/IEz485/3zDC+KXAQ
https://paperpile.com/c/IEz485/ff5v+HmTU
https://paperpile.com/c/IEz485/hLw9+6lkl
https://paperpile.com/c/IEz485/3FvG+YWIJ
https://paperpile.com/c/IEz485/jRIu+0UqB
https://paperpile.com/c/IEz485/tXJW+cb0w+H8AV
https://paperpile.com/c/IEz485/tXJW+cb0w+H8AV
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 Mangeat et. al., 2014, Comparison between 7T T2* and 3T MTR in the in vivo human 

cortex, in: ISMRM, poster #1783. 

 Mangeat et. al., 2015, Multivariate combination of magnetization transfer ratio and 

quantitative T2* to detect subpial demyelination in multiple sclerosis, in: ISMRM, 

presentation #0823. 

 Mangeat et. al., 2015, Multivariate combination of quantitative T2* and T1 at 7T MRI 

detects in vivo subpial demyelination in the early stages of MS, in: Mult Scler. Presented at 

the ECTRIMS, p. 485. 

 Mangeat et. al., 2016, Association between cortical demyelination and structural 

connectomics in early multiple sclerosis, in: ISMRM, presentation #237. 

1.2 Memoire organization 

This present mémoire is divided in eight chapters: 

Chapter 1 is the present introduction.  

Chapter 2 is the literature review. This review first introduces the physiology of a neuron 

with the emphasis on the axon composition and the key role played by myelin in the transmission 

of actions potentials. Then, it zooms out to present the laminar organisation of the Human cortex, 

namely, the various cortical layers, their typical neural composition and the differents techniques 

used to image the ex-vivo cyto- and myelo-architecture of the Human cortex. It zooms out again, 

and introduces the whole Human cortex, its various parcellations in cortical areas and the 

advantages of previous parcellation works. Then, challenges in creating and using cortical 

parcellations are pointed out. Next, Multiple Sclerosis is introduced. Elements of the 

pathophysiology are explained, and the various MRI techniques to study the disease features and 

progression are summarized. Then, the focus is put on cortical MS features and the cutting edge 

MRI methods to image them in-vivo. The second part of the review introduces the concept of 

nuclear resonance imaging and its evolutions leading to the concept of quantitative imaging 

(qMRI). Ensuingly, particular attention is given to the two quantitative MRI modalities MTR and 

T2*, their contrast mechanism, their sources of signal and their abilities to image cortical myelin 

content. Thereafter, the rationale behind combining MTR and T2* is presented. The third part of 

the review is about mathematics. It presents the concept of the Independent Component Analysis 
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(ICA) decomposition and compares diverse algorithms available in the literature, in term of 

computation time, robustness and accuracy. Finally, the Mathematics review outlines the problem 

of groups statistics when using normalized data and derives a solution based on relative distribution 

parameters.  

Chapter 3 gives an overview of the research methodology followed in this mémoire. It shows 

the scientific publications resulting from this mémoire and explains the scientific approach that 

links these publications amongst them.  

Chapter 4 presents the main scientific publication of this work: Multivariate combination of 

magnetization transfer, T2* and B0 orientation to study the myelo-architecture of the in vivo human 

cortex, article published in the scientific journal NeuroImage on October 1st, 2015.  

Chapter 5 gives supplementary information about the methodology behind the choice of 

combining MTR and T2*. It presents Comparison between 7T T2* and 3T MTR in the in vivo human 

cortex, which is a scientific poster presented in may 2014 at the conference ISMRM (International 

Society for Magnetic Resonance in Medicine). This work explored the feasibility to combine MTR 

and T2* metrics in the human cortex.  

Chapter 6 discusses the applications of the combination method to study cortical MS 

pathology. It summarises the study: Multivariate combination of magnetization transfer ratio and 

quantitative T2* to detect subpial demyelination in multiple sclerosis, which is an oral presentation 

presented in june 2015 at the conference ISMRM, as well as the study Multivariate combination 

of quantitative T2* and T1 at 7T MRI detects in vivo subpial demyelination in the early stages of 

MS, which is a scientific poster presented in october 2015 at the conference ECTRIMS (European 

Committee for Treatment and Research in Multiple Sclerosis).  

Chapter 7 is a general discussion about the performed studies. It relates the limitations and 

the potential weakness of the methods and gives the details of potential improvements relevant for 

researchers interested in this work.  

Chapter 8 concludes this Master’s thesis and states examples of future work relevant to the 

study of cortical MS pathology using MRI. 
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CHAPTER 2 LITTERATURE REVIEW 

2.1 Medical review 

2.1.1 Physiological bases 

2.1.1.1 Physiology of the neuron 

Neurons are the basic functional units of both the central and the peripheral nervous 

systems. They are the cells responsible for the transmission of nervous information. Neurons 

operate by generating electrical signals (ionic currents) that move from one part of the cell to 

neighboring cells. Depending on the amount and amplitude of stimulations received by neighboring 

cells, a neuron will decide whether it will transmit the signal, called action potential, or not. This 

basic principle drives the whole nervous system and leads, for example, to memory, cognition or 

consciousness. This section will cover the anatomy of the neuron, the principle of circulation of 

information and the key role played by the molecules of myelin.  

2.1.1.1.1 Anatomy 

Neurons appear in a wide variety of sizes and shapes, but all share dendrites and axons 

terminals, used to receive and transmit the nervous information, respectively .Moreover, all 

neurons have a cell body, called soma, and a wiring system, called axon, that convey the electrical 

information through the nervous system. Figure 2-1 A shows a representation of a neuron and its 

basic components as well as the shape of a neuron observed through a microscope. As in other 

types of cells, a neuron contains a nucleus in its cell body (or soma) that enclose the genetic 

information as well as ribosomes and machinery necessary for protein synthesis. The dendrites 

are a series of highly branched outgrowths linked to the soma. their role is to receive the inputs 

from others neurons. On average a neuron has 1,000 dendrites, but some neurons may have as 

many as 400,000 dendrites. The number of dendrites increase the cell capacity to receive signal 

from many afferent neurons. The components that actually transmit the information are the axon 

terminals. Under the command of an action potential, axons terminals are releasing the 

neurotransmitters through the synaptic terminals, that reach another neuron or an excitatory cell. 

Finally, the part of the neuron which links the soma with the axons terminals is a kind of organic 

wire called axon. An axon can be some micrometers to many centimeters long. Axons are 
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encompassed by sheaths of myelin, a fatty white substance produced by a cell called 

oligodendrocyte, Figure 2-1 B. Axons transmit the actions potentials from the cell body to the 

axons terminals using ionic currents. To understand the key role played by myelin in the 

conveyance of action potentials, it is important to understand first the principles of membrane ionic 

currents. 

 

Figure 2-1, Adapted from (Widmaier et al. 2013, Fig. 6-1 & 6-2). Representation of a neuron and 

its basic components as well as the shape of a neuron observed through a microscope (A). 

Representations of axons encompassed by macromolecules of myelin. Myelin is produced by 

oligodendrocytes cells in the CNS and by Schwann cell in the Peripheric Nervous System (PNS). 

The portion of bare axon in between two myelin blocks is called Node of Ranvier. 

 

The two ions that are playing the main role in neural ionic current are K+ (Potassium) and 

Na+ (Sodium). At resting state K+ ions are found in high concentration in the intracellular fluid 

(~150 [mmol/L]), whereas they are found in low concentration in the extracellular fluid (~5 

[mmol/L]). Inversely, Na+ ions are present in low concentration in the intracellular fluid (~15 

[mmol/L]), but  are found in high concentration in the extracellular fluid (~145 [mmol/L]). 
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Moreover, the cell membrane is equipped with channels which act like a door and which are 

specific to one kind of ion, for example the potassium channel and the sodium channel. When 

these channels are open, the gradient in concentration is creating a diffusion flux through the 

membrane. For example, if the sodium channels open, a flux of Na+ ions will enter the cell because 

their concentration is lower inside the cell. 

In addition to the diffusion gradient, the electrical force plays a role on ions flux. Indeed, 

some anions such as Cl- keeps the extracellular fluid neutral, in term of electric charge, while some 

negatively charged proteins keep the intracellular fluid negatively charged. At rest, the typical 

potential difference between intra- and extra- cellular fluids is -70 [mV]. This negative potential 

polarises the cell membrane and thus contributes to retain K+ ions inside the cell and to attract Na+ 

ions inside the cell as well. To maintain the gradient in concentration, Na+/K+ -ATPase pumps 

use energy contain in ATP to pump K+ inside the cell and pump Na+ outside. Figure 2-2, A 

represents the polarisation of the cell membrane, while Figure 2-2 B summarises the two forces 

driving K+ and Na+ flux occurring when channels are open.  

 

Figure 2-2, Adapted from (Widmaier et al. 2013, Fig. 6-9 & 6-12). Polarisation of the cell 

membrane, anions such as Cl- keeps the extracellular fluid neutral, in term of electric charge, while 

some negatively charged proteins keep the intracellular fluid negatively charged. At rest, the typical 

potential difference between intra- and extra- cellular fluids is -70 [mV] (A).  Gradient in ions 
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concentration is creating a diffusion flux through the membrane. For example, if the sodium 

channels open, a flux of Na+ ions will enter the cell because their concentration is lower inside the 

cell. To maintain the gradient in concentration, Na+/K+ -ATPase pumps use energy contain in ATP 

to pump K+ inside the cell and pump Na+ outside (B). 

 

To understand how neurons transmit action potentials, it is necessary to understand how 

ionic channels open and what happens with the membrane potential when they open. Potassium 

and sodium channels are triggered by a variation of the membrane potential, they are called 

voltage-gated channels. Indeed, at rest, the membrane potential is -70 [mV], but if an external 

stimulus, such as the action of a synapse, changes this membrane potential to approximately -60 

[mV], potassium and sodium channels will briefly open. Sodium channels open very briefly (~1 

[ms]) whereas potassium channels open for a longer time (~4 [ms]). Moreover, the potassium 

channels opening is a bit delayed compared to sodium channels opening. Figure 2-3 A shows the 

variations of the membrane potential resulting of all these ion fluxes. while Figure 2-3 B shows 

the variations of membrane permeability after an action potential for both K+ and Na+.  

To summarize, here are the steps taking place during an action potential: 1) The membrane 

is at its steady potential -70 [mV]. 2) an external depolarizing stimulus bring the membrane 

potential to the threshold potential. 3) Na+ channels open, thus Na+ ions enter rapidly (because 

both electrical force and and concentration gradient influence Na+ to enter the cell). This results in 

a fast depolarisation of the membrane (up to 30 [mV]). 4) Na+ channels are closing while K+ 

channels open. 5) K+ ions are going out of the cell, which has for effect to repolarizes the 

membrane. 6) A hyper-polarisation occurs because K+ channels close slowly and too much K+ is 

left out. 7) back to the steady potential. 
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Figure 2-3, Adapted from (Widmaier et al. 2013 Fig. 6-19). Variations of the membrane potential 

resulting of  K+ and Na+ fluxes (A). Variations of membrane permeability after an action potential 

for both K+ and Na+ (B). Steps 1-7 represents: 1) The membrane is at its steady potential -70 [mV]. 

2) an external depolarizing stimulus brings the membrane potential to the threshold potential. 3) 

Na+ channels open, thus Na+ ions enter rapidly. This results in a fast depolarisation of the 

membrane (up to 30 [mV]). 4) Na+ channels close while K+ channels open. 5) K+ ions exit the 

cell, inducing repolarization of the membrane. 6) A hyper-polarisation occurs because K+ channels 

close slowly and too much K+ is left out. 7) back to the steady potential. 

 

2.1.1.1.2 Circulation of information 

After an action potential, the membrane is refractory for 2-4 [ms], meaning that it can not 

be re-excited while the channels are closing and the pumps are bringing K+ and Na+ concentrations 

back at their resting values. This refractory period turns out to be essential for the directional 

transmission of information. Figure 2-4 illustrates the principle of the propagation of the 

membrane depolarisation. i) The local depolarisation of the membrane by an action potential will 

trigger the neighbouring membrane to depolarise itself (because K+ and Na+ channels are voltage-

gated channels sensitive to a neighboring depolarisation). ii) the “already depolarised” membrane 

is refractory so that only the resting membrane will be depolarised and so on. This is the principle 

that causes actions potential propagation along axons. 
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Figure 2-4, Adapted from (Widmaier et al. 2013 Fig. 6-22). Principle of the propagation of the 

membrane depolarisation. i) The local depolarisation of the membrane by an action potential will 

trigger the neighbouring membrane to depolarise itself (because K+ and Na+ channels are voltage-

gated channels sensitive to a neighboring depolarisation). ii) the “already depolarised” membrane 

is refractory so that only the resting membrane will be depolarised and so on. 

 

2.1.1.1.3 The key role of myelin 

The velocity with which an action potential propagates along a membrane depends on fiber 

diameter and whether or not the fiber is surrounded by myelin sheaths (such fibers are called: 

myelinated fibers). The larger the fiber diameter, the faster the action potential propagates. Indeed, 

a large fiber offers less resistance to local current, so that more ions will flow in a given time, 

bringing adjacent regions of the membrane to threshold faster. (Widmaier et al. 2013)  

Moreover, the larger part of axons are myelinated. Myelin acts as an insulator that decreases 

the membrane permeability to ions. Because there is less flux of charge across the myelin, a local 

current can spread farther along an axon. Furthermore, the concentration of voltage-gated sodium 

channels in the myelinated region of axons is low. Therefore, action potentials occur only at the 

nodes of Ranvier, where the myelin coating is interrupted and the concentration of voltage-gated 

https://paperpile.com/c/IEz485/Fezv
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sodium channels is high, Figure 2-5. As, action potentials jump from one node to the next as they 

propagate along a myelinated fiber, such propagation is called saltatory conduction. 

Propagation via saltatory conduction is faster than propagation in non-myelinated fibers of 

the same axon diameter because less charge leaks out through the myelin-covered sections of the 

membrane. More charge arrives at the node adjacent to the active node, and an action potential is 

generated there sooner than if the myelin were not present. Moreover, because ions cross the 

membrane only at the nodes of Ranvier, the membrane pumps need to restore fewer ions. 

Myelinated axons are therefore metabolically more efficient than unmyelinated ones. In this way, 

myelin adds speed, reduces metabolic cost, and saves room in the nervous system because the 

axons can be thinner.  

 

Figure 2-5, Adapted from (Widmaier et al. 2013 Fig. 6-23). Representation of the saltatory 

conduction. Concentration of voltage-gated sodium channels is low in the myelinated regions. 

Action potentials occur only at the nodes of Ranvier, where axon is bare and the concentration of 

voltage-gated sodium channels is high. Action potentials thus “jump” from one node to the next as 

they propagate along a myelinated fiber. 
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2.1.1.2 Physiology of the Human cortex 

2.1.1.2.1 The cerebral cortex 

The cerebral cortex is the outer layer of the brain neural tissue, Figure 2-6. Is is often called 

cerebral Grey Matter (GM) because it appears darker than the inner neural tissue called White 

Matter (WM). Although GM is commonly used as a synonymous of cerebral cortex, it is important 

to notice that the term GM actually includes cerebral cortex along with others neural tissues such 

as the thalamus or spinal grey matter. Basically, GM can be used to design any neural tissue that 

includes neurons bodies and neurites. In this review GM will refer to the cerebral cortex. 

 

Figure 2-6, MRI T1-w image, sagittal view. The cortical grey matter (GM) is the outer (dark) layer 

of the brain, while the inside white region is the white matter (WM). 

 

2.1.1.2.2 Cortical composition: neurons and glial cells 

In humans, the cerebral cortex is 2 to 4 mm thick. It contains the cell bodies and the dendrites of 

the cerebral neurons whereas the axons are found in the cerebral white matter. Moreover, neurons 
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account for only 28% of the cells in the cerebral cortex (Azevedo et al. 2009), the 72% remaning 

cells are the glial cells, also called neuroglial cells (glia = glue). Glial cells surround the soma, 

axons and dendrites, one of their role is to provide them with metabolic support. The main glial 

cells are the Astrocytes, Microglia, Ependymal cells and Oligodendrocytes, Figure 2-7. The 

Astrocytes help regulate the composition of the extracellular fluid and sustain the neurons 

metabolically, for example by providing glucose and removing ammonia. Astrocytes also stimulate 

the formation of tight junctions between the wall cells of the capillaries in order to form the so-

called blood-brain barrier (BBB), which prevents toxins and other undesired substances to enter 

the brain. Microglia are macrophage cells that perform immune function in the cortex and in the 

central nervous system in general. Ependymal cells form the boundaries between the brain matter 

and the cerebrospinal fluid. Lastly, the Oligodendrocytes produce the myelin sheaths that cover 

the axons. As we saw in the precedent section, the myelin sheaths are essentials for the propagation 

on the actions potentials. Therefore, death of oligodendrocytes in a region of the cortex leads to a 

demyelination of axons that hampers the afferent communications between neurons. The 

demyelination processes and effects will be discussed in more details in the next section. So far, 

glial cells are known to play a secondary role in the information processing but they are critical for 

the synergy of the central nervous system. Moreover, as well as neurons, they are contributing to 

the MRI signal, thus, a change in the neuroglial composition implies a change in an MRI image. 

https://paperpile.com/c/IEz485/RIP8
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Figure 2-7, Adapted from (Widmaier et al. 2013). Representation of the main glial cells of the 

central nervous system. 

 

2.1.1.2.3 Cortical structure: layer based 

The spatial organisation of neuron bodies is uneven in the cortex.  A straightforward parcellation 

can be made by layer: the cortex can be divided in six layers where neurons bodies are found with 

differents shapes and concentrations. Cortical neuron come in two main forms: excitatory 

(pyramidal) and inhibitory (Azevedo et al. 2009). Commonly, a neuron ‘belongs’ to the layer in 

which its body cell is sited, even if its dendrites span several more layers. Inhibitory neurons are in 

minority (20%) and have more diverses morphologies. Inhibitory neurons are known as local 

circuit neurons because they are purely intrinsic, i.e. they remain entirely in the cortex. Some 

pyramidal neurons are also intrinsic but others make short and long connexions with others parts 

of the CNS. Figure 2-8 shows a representation of the structural organisation of neurons through 

the differents layers of the cortex. 

https://paperpile.com/c/IEz485/Fezv
https://paperpile.com/c/IEz485/RIP8
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Figure 2-8, From (Gray & Standring 2008). Representation of the structural organisation of neurons 

through the differents layers of the cortex. The most frequent types of neocortical neurones, 

showing typical connections with each other and with afferent fibers are represented. 

 

Basically, there are two layers of pyramidal neurons (III and V) indicated with two layers 

of granular neurones (non-pyramidal, II and IV), all of this enveloped in two mainly connective 

layers (I and VI). 

More precisely, Layer I is called the molecular zone and contains mostly horizontal (or 

tangential) cell fibers. This layer contribute to the cortico-cortical connexions which for example 

contribute to connect two adjacent Brodmann areas. Layer II is the external granular layer and 

contains both small and non-pyramidal neurons. Myelin staining shows mainly vertically arranged 

neural fibers. Layer III is the external pyramidal layer, it contains pyramidal cells of varying sizes 

and scattered non-pyramidal neurons. This layer is often subdivided in IIIa, IIIb and IIIc, 

containing respectively small, medium and large pyramidal neurons. Like in Layer II, myelin 

staining reveals mainly vertical myelinated fibers. Layer IV is the internal granular layer, it 

contains small round cell bodies of non-pyramidal cells. In this layer, the myelinated fibers are 

mainly horizontally organised. Layer V is the internal pyramidal layer, it contains the largest 

pyramidal cells. Scattered non-pyramidal cells are also present. It contains descending vertical 

https://paperpile.com/c/IEz485/Pm0d
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fibers as well as a prominent central band of horizontal fibres. Finally, Layer VI includes neurons 

with a variety of shapes, mostly small to medium in size. This layer is adjacent to the white matter 

clear determination of its boundary is not always possible. Figure 2-9 shows a representation of 

the cortical layers as revealed by three different staining methods, namely the Golgi staining, the 

Nissl staining and the Weigert staining. These staining methods are complementary, they 

respectively show the whole neurons (soma + dendrites), the cells bodies only and the myelinated 

fibers only (Gray & Standring 2008). 

 

Figure 2-9, From (Gray & Standring 2008), representation of the six cortical layers as revealed by 

three different stainings, namely the Golgi staining, the Nissl staining and the Weigert staining. 

These staining methods are complementary, they respectively show the whole neurons (soma + 

dendrites), the cells bodies only and the myelinated fibers only. 

 

https://paperpile.com/c/IEz485/Pm0d
https://paperpile.com/c/IEz485/Pm0d
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2.1.1.2.4 Cortical parcellations: Atlases 

2.1.1.2.4.1 Morphological atlases 

There are many features of the cortex that could be used to create a parcellation or an atlas. 

In the literature, the most occurring parcellations are based either on the cortical morphology, the 

microstructural organisation or the functional processing. Below are some examples of these 

three types of atlases. The next sub-section will review challenges encountered when creating an 

atlas, such as the Human cortex variability or the choice of number of regions.  

The morphological parcellation is one of the most intuitive, unfortunately, this is also the 

most variable across the literature. Firstly, each hemisphere of the cortex can be divided in four 

areas called “lobes”: the frontal lobe, the parietal lobe, the temporal lobe and the occipital lobe. 

For example, this basic parcellation has been made in 1858 by Henry Gray (Gray & Standring 

2008), as shown in Figure 2-10 A. This basic representation is quite robust because the borders of 

the four areas are defined from evident sulci present in every Human brain. 

Furthermore, instead of using the lobes, the main sulci and gyri can be used to divide the 

cortex. For example, the Mindboggle atlases made by the group of freesurfer (Fischl et al. 2004; 

Desikan et al. 2006; Klein & Tourville 2012) segment the cortex based on different gyri such as 

the precentral gyrus or the orbital gyrus, Figure 2-10 B. A name is given to every gyrus, then the 

gyrus boundaries can be drawn manually or automatically by using a parcellation software.  

 

Figure 2-10, (A) Basic four-areas parcellation of the cerebral cortex, made by Henry Gray in 1858 

(Gray & Standring 2008). These four areas are: the frontal lobe (blue), the parietal lobe (yellow), 

https://paperpile.com/c/IEz485/Pm0d
https://paperpile.com/c/IEz485/Pm0d
https://paperpile.com/c/IEz485/pYud+HemQ+tUkI
https://paperpile.com/c/IEz485/pYud+HemQ+tUkI
https://paperpile.com/c/IEz485/Pm0d


19 

 

the temporal lobe (green) and the occipital lobe (red). (B) Anatomical atlas made from cortical gyri 

parcellation (Klein & Tourville 2012). 

 

2.1.1.2.4.2 Microstructural atlases 

Atlases based on microstructural organization are  difficult to create but are very useful 

to study the composition of the cortex. The main microstructural atlases in the literature are 

describing either the cyto-architecture or the myelo-architecture of the human cortex. Cyto-

architectural atlases are classifying areas of the human cortex depending on the cell composition, 

for example the number of visible cortical layer and the number and shapes of neurons present in 

these layers. A pioneer in cytoarchitectural atlases is  Korbinian Brodmann, who created a cyto-

architerctual atlas of the Human cortex in 1909 (Zilles & Amunts 2010; Brodmann 1909).(Zilles 

& Amunts 2010; Brodmann 1909) that is still widely used in many studies. Brodmann used the 

Nissil method to stain histological samples of the cortex and study the cellular organisation of 

neurons. He found approximately 50 adjacent regions containing distinct cellular organisations. 

Figure 2-11 shows a representation of the Brodmann atlas as well as samples of several cellular 

organisations. 

https://paperpile.com/c/IEz485/tUkI
https://paperpile.com/c/IEz485/pT4D+yBpe
https://paperpile.com/c/IEz485/pT4D+yBpe
https://paperpile.com/c/IEz485/pT4D+yBpe
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Figure 2-11, atlas of the Brodmann areas (left,(Zilles & Amunts 2010) of the Human cortex and 

samples of the cellular organisation of the brodmann area (BA) 6 and BA 4 in monkeys (right, 

(Brodmann 1909)).  

While Brodmann used the Nissil stain to visualize the neural cell bodies of the cortex, Oscar 

and Cecile Vogt used the Weigert stain to reveal the myelinated nerves fibers. Based on the amount 

and organization if the cortical myelinated fibers, they have proposed a 185-regions atlas of the 

human cortex (Vogt 1911). However, their work is not as widely used as the Brodmann atlas, 

maybe because of the complexity of the atlas, or because of the lack of documentation. For this 

reason, Rudolf Nieuwenhuys decided to pass through all the Vogt-Vogt archives and recreate a 

modern version of the myelo-architectural Vogt-vogt atlas (Nieuwenhuys et al. 2014; 

Nieuwenhuys 2013). Figure 2-12 shows a representation of the restored Nieuwenhuys atlas and 

some sample of the myelinated fiber staining made by Vogt and Vogt in 1911. 

https://paperpile.com/c/IEz485/pT4D
https://paperpile.com/c/IEz485/yBpe
https://paperpile.com/c/IEz485/qMXc
https://paperpile.com/c/IEz485/ON1R+MA5q
https://paperpile.com/c/IEz485/ON1R+MA5q
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Figure 2-12, Nieuwenhuys atlas: restored version of the myelo-architectural Vogt-Vogt atlas (left, 

(Nieuwenhuys et al. 2014) and sample of the myelinated fibre, stained with the Weigert method 

made by Vogt and Vogt in 1911 (Vogt 1911). 

 

2.1.1.2.4.3 Functional atlases 

Finally, the cortical parcellation by functional processing is widely used in the literature. 

Indeed, the functional areas are containing groups of neurons (or tracts) that link a specific 

functional region of the body. For example the motor area contains neurons governing motor 

functions and visual area receives the neuronal inputs from the optic nerve. Interestingly, it turns 

out that many of the  Brodmann areas have been correlated closely to diverse cortical functions 

(Gray & Standring 2008; Barbier et al. 2002; Lanzilotto et al. 2013; Glasser & Van Essen 2011), 

although they were defined based on their neuronal organisation. This has surely contributed to the 

standing of the Brodmann atlas. Figure 2-13 shows a detailed parcellation of Brodmann areas and 

the legend names the main Brodmann areas associated with a specific function. 

https://paperpile.com/c/IEz485/ON1R
https://paperpile.com/c/IEz485/qMXc
https://paperpile.com/c/IEz485/Pm0d+ihrA+78qP+6Ig7
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Figure 2-13, From (Gray & Standring 2008), shows  a detailed parcellation in Brodmann Areas 

(BAs) in lateral (A) and medial (B) views of the left hemisphere of the Human cortex. Here is a 

non-exhaustive functional description of some BAs: 

 BA 1, 2 & 3: Primary Somatosensory Cortex, i.e. receive somatosensory inputs. 

 BA 4: Primary Motor Cortex, i.e. receive and send motor commands. 

 BA 6: Premotor Cortex, i.e. helps the motor cortex for example by preparing movements.  

 BA 17, 18 & 19: Primary, Secondary and Associative Visual Cortices. 

 BA 41 & 42: Auditory Cortex. 

 BA 43: Gustatory Cortex. 

 

2.1.1.2.4.4 Reported challenges 

The main challenge in creating an atlas is the compromise between the variability of the 

Human cortex and the desired level of accuracy. The first question is: What is my Atlas based on? 

Previous sections showed that an atlas of the cortex could be based on the cortical morphology, on 

the microstructural organization or on the functional processing. In fact,  metrics can be used to 

create an atlas, for example the gyri’s spatial orientation, the cortical thickness, content in iron and 

so on. The chosen metric depends on the purpose of the atlas and the means available to create it. 

Then comes the question of “how accurate does my atlas need to be?”, or “How do I define 

boundaries between two regions”. For example, an atlas based on the microstructural organisation 

https://paperpile.com/c/IEz485/Pm0d
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across cortical layers (as Brodmann did) could have been done with only five areas, as presented 

in Figure 2-14, containing only the Agranular, Frontal, Parietal, Granular and Polar organisations. 

However, Brodmann had decided to subdivide his parcellation in more than forty regions because 

he thought the variation of the organisation was clear enough to do so. This highlights the fact that 

the number of region in an atlas is an arbitrary parameter that has to be carefully chosen. Indeed, 

if there are very few regions the atlas might not be useful to precisely locate a small region of 

interest, for example a cortical lesion. Furthermore, if there are too many regions, the variability of 

the cortex morphology across people might affect the precision of the areas locations, and again 

the usefulness of such an inaccurate atlas can be questioned.  

A technique to minimise the inter-subjects variability is to deform and project the subject 

cortex into a common cortex-template allowing to average the information of several subjects 

(Klein & Tourville 2012) and thus create robust atlases. This technique was namely used to create 

the PALS-B12 Brodmann Atlas (Van Essen 2005) that is further used in this work. 

 

Figure 2-14, From (Gray & Standring 2008). Representation of the five main neural organisations 

of the cerebral cortex (B) and a map of their respective location (B). 

 

https://paperpile.com/c/IEz485/tUkI
https://paperpile.com/c/IEz485/k3EP
https://paperpile.com/c/IEz485/Pm0d
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2.1.2 Pathophysiology of  Multiple Sclerosis 

2.1.2.1 Overview of MS in the central nervous system 

Multiple Sclerosis (MS) is a chronic, inflammatory and demyelinating disease of the 

central nervous system. MS inflammation affects the sheaths of myelin in the brain and the spinal 

cord. This damage disrupts the ability of regions of the central nervous system to communicate, 

resulting in various symptoms including physical, mental and sometimes psychiatric problems. 

Most of the time the inflammation disappears and reparation mechanisms, called remyelination 

take place and allow the patient to recover. However, sometimes the inflammation and 

demyelination are too high compared to the remyelination mechanism and non-reversible 

connectivity disorders occurs (Compston & Coles 2008; Anon n.d.). These different progressions 

of disease lead to several phenotypes of MS, depending on the progression of the disease over time. 

Relapsing Remitting MS (RRMS) patients present relapses which are “spikes” of disability over 

time after which patients fully or partially recover (Figure MS1 A). Secondary Progressive MS 

(SPMS) patients show a constant and non-reversible progression of disability, Figure 2-15 A. As 

well as functional disability episodes, inflammation events, axonal loss and brain atrophy occurs 

in various intensities depending of the MS phenotype, Figure 2-15 B. 

 

Figure 2-15, adapted from (Compston & Coles 2008). (A) Example of the progression of the 

disability over time for RRMS and SPMS patients. (B) Example of the progression of inflammation 

events, axonal loss and brain atrophy over time for RRMS and SPMS patients. 

 

Loss of myelin (or demyelination) occurs in plaques which are localised areas where 

myelin is being attacked, Figure 2-16. Plaques have various sizes and shapes, their volume can be 

https://paperpile.com/c/IEz485/YT7S+N8j3
https://paperpile.com/c/IEz485/YT7S
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less than a cubic millimeter to more than several cubic centimeters. Moreover, axonal 

demyelination can take place in diverse myelinated axons of the CNS, such as spinal cord axons, 

cerebral white matter axons or cerebral grey matter axons. GM demyelination has been challenging 

to detect with MRI, for this reason MS used to be wrongly called a white matter disease. Indeed, 

the recent improvement of MRI features, such as the spatial resolution, the signal to noise ratio 

(SNR) or the contrast mechanisms, helped to observe demyelination spots inside the cerebral 

cortex, Figure 2-16 B. This finding raised new questions: Is there a link between WM and GM 

demyelination? If yes, which one is afferent and which one is efferent?  Which one has the more 

effect on functional deficits? And so on. Thus, study of cortical demyelination in MS is becoming 

an important field of research. The goals being to better understand the pathophysiology of the 

disease and to target potentials treatments to damaged cortical areas. Cortical demyelination will 

be discussed further as it is the main topic of my research. 

 

Figure 2-16, Adapted from (Compston & Coles 2008) (A) and (Mainero et al. 2009) (B). A: 

Example of WM plaques or lesions observed in RRMS and SPMS patients. B: Example of plaques 

or lesions in the cortical grey matter of MS patients. 

 

2.1.2.2 Elements of MS pathophysiology 

2.1.2.2.1 Causes of Multiple Sclerosis 

Even though the causes of multiple sclerosis are still unclear, studies are mostly reporting 

environmental and genetic factors (Compston & Coles 2008). The global distribution of multiple 

https://paperpile.com/c/IEz485/YT7S
https://paperpile.com/c/IEz485/ONaM
https://paperpile.com/c/IEz485/YT7S
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sclerosis can be generalised as increasing with distance north or south of the equator, but some 

countries do have a higher incidence of MS, e.g. Canada, UK, Sweden, Finland or New Zealand. 

In Canada, a significant increase in incidence of MS has been reported in Canadian women over 

the past 30 years (Orton et al. 2006), causing a change in the female to male ratio to more than 3:1. 

Moreover, it has been reported that hygiene can be a negative indirect factor, indeed, individuals 

not exposed to infections early in life, because of a clean environment, make aberrant responses to 

infections as young adults (Levin et al. 2010). Especially, an inadequate immune response to the 

Epstein-Barr virus can cross-react with myelin and induce demyelination, because several T-cell 

receptor peptide contacts are identical for myelin basic protein and Epstein-Barr virus (Lang et al. 

2002). Some studies suggested other environmental triggers such as low sunlight, vitamin D 

deficiency, diet, geomagnetism, air pollutants, radioactive rocks, cigarettes, and toxins (Marrie 

2004). Genetics also plays a role in MS. The familial recurrence rate is about 20% to 30% 

depending on the country and which first-degree relative is diagnosed with MS (Willer et al. 2003). 

2.1.2.2.2 Disease mechanisms 

The formation of the sclerotic plaque is the end stage of a process involving inflammation, 

demyelination and remyelination, oligodendrocyte depletion and degeneration of astrocytes, axons 

and neurons in general. However, the order and relation of these separate components remain fully 

to be resolved. Some studies suggest that the process starts with the migration of autoreactive 

lymphocytes across the blood brain barrier then, because of a regulatory defect, these cells are 

allowed to set up an immune response within the brain (Viglietta et al. 2004). Failure of local 

regulatory mechanisms within the brain accounts for the particular sites of inflammation, causing 

plaques that cluster around the lateral ventricles, corpus callosum, throughout the spinal cord, in 

the subcortical white matter and in the cerebral cortex. More specifically, the inflammation would 

be partly due to a T-cell subtype that secretes interleukins-17, disrupting the blood-brain-barrier 

and allowing efficient penetration of Th17 cells into the brain where they can kill neurons (Kebir 

et al. 2007). Demyelinating lesions show axonal injury with transection that correlates with T-cell 

and microglial infiltration (Kuhlmann et al. 2002). Moreover, areas of demyelination coexist with 

diffuse neuronal and axonal degeneration (Anderson et al. 2008). Demyelinating lesions seem to 

grow slowly by radial expansion whereas focal brain inflammations fades into diffuse microglial 

activation resulting in extensive abnormalities of the normal appearing white matter (Kutzelnigg 

https://paperpile.com/c/IEz485/Ttta
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https://paperpile.com/c/IEz485/g5gC
https://paperpile.com/c/IEz485/GUkv
https://paperpile.com/c/IEz485/lMkP
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et al. 2005). The interplay between degenerative and inflammatory processes is still a topic of 

research. Indeed, causality between axonal loss and demyelination is difficult to interpret, and both 

mechanism are maybe independent. To some extent, every pathological component can be detected 

in-vivo with MRI.  

 

2.1.2.2.3 MRI studies of MS 

Table 2-1 gives an overview of various MRI contrasts that have been shown sensitive to the main 

pathological components of MS. 

Table 2-1, Overview of various MRI contrasts that have been shown sensitive to the main 

pathological components of MS. These studies have looked at the sensitivity of MR modalities to 

MS-related pathology, however they did not address (or only partially addressed) the issue of 

specificity.This list is not exhaustive, studies were selected by pertinence and recent publication 

dates. 

Component of MS 

Pathology 

Sensitive MRI 

modality 

References 

Inflammation Hyperintense T2w 

Gadolinium 

FLAIR 

(He et al. 2001)  

Axonal loss/injury Hyperintense T1w 

 

DTI 

DSI 

MTR 

(Barkhof & van Walderveen 1999; Kidd et 

al. 1999) 

(Shu et al. 2011) 

(Wang et al. 2015) 

(Schmierer et al. 2007) 

WM demyelination and 

WM remyelination 

MT 

MTR (1.5T, 7T) 

 

qT1 

 

qT2 

 

DSI (RD) 

T2* (7T) 

MTV 

Hypointense T2w 

(Pike 1997) 

(Mottershead et al. 2003; Schmierer et al. 

2004; Schmierer et al. 2008) 

(Mottershead et al. 2003; Schmierer et al. 

2008) 

(Mottershead et al. 2003; Schmierer et al. 

2008) 

(Wang et al. 2015) 

(Li et al. 2015) 

(Vargas et al. 2015) 

(Barkhof & van Walderveen 1999) 

https://paperpile.com/c/IEz485/lMkP
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https://paperpile.com/c/IEz485/TN3O
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GM demyelination and  

GM remyelination 

MTR (1.5T, 9.5T) 

 

T2* (7T) 

(Derakhshan et al. 2014; Chen et al. 2013) 

(Pitt et al. 2010; Li et al. 2015) 

Gliosis Mid-intense T1w 

T2w 

(Barkhof & van Walderveen 1999)  

Microglia and 

macrophages activation 

PET 

T2* (7T, 

hyperintense ring) 

(Faria et al. 2014) 

(Pitt et al. 2010) 

Vasogenic oedema DSI (RD) 

Hyperintense T2w 

(Wang et al. 2015) 

(Barkhof & van Walderveen 1999) 

Intracellular oedema Mid-intense T1w (Barkhof & van Walderveen 1999)  

BBB disruption Gadolinium (He et al. 2001)  

All of these studies have validated the link between pathological components and MRI 

contrast, for example by using ex-vivo histology to directly observe a specific pathological feature 

and draw a correlation with the variations of the studied MRI contrast. These studies are extremely 

useful to properly analyse in-vivo MRI images of MS patients, and thus they contribute making 

MRI the ultimate tool for in-vivo study of the progression of the disease.  

However studies involving histological validations are challenging in terms of time, cost 

and resources. It is not always possible to compare the in vivo image acquired with a brand new 

MRI contrast and the corresponding ex-vivo histology of the tissue. For this reason, many MRI 

studies of MS patients are comparatives. It means that MR images of MS patients are compared to 

the same MR images acquired in Healthy Controls subjects (HC). Such studies are useful to find 

out what kind of MS lesions the studied MRI contrast is able to detect. However, the nature of such 

lesions has to be inferred based on prior knowledge and similar studies. For example, a 

vasogenic oedema and a local demyelination can appear very similar on T2-w images (hyperintense 

spot) (Barkhof & van Walderveen 1999; Sahraian et al. 2010), therefore both changes will be called 

lesions. The term lesion is rather vague, a lesion does not describe the area where a specific 

pathological component is taking place, but describes an area where the MRI signal takes 

significantly abnormal values in comparison with healthy tissue. The a priori physiological 

mechanism underlying a lesion remains unsure since we know that several pathological features 

are occurring simultaneously in MS. A lesion can be an inflammation, an oedema, a loss of myelin, 

https://paperpile.com/c/IEz485/HmTU+ff5v
https://paperpile.com/c/IEz485/1Y3i+B73L
https://paperpile.com/c/IEz485/qE8G
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https://paperpile.com/c/IEz485/1hjq
https://paperpile.com/c/IEz485/qE8G
https://paperpile.com/c/IEz485/qE8G
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https://paperpile.com/c/IEz485/qE8G+lyCj
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a loss or injury of axons, an area with activation of macrophages, an area of re-myelination or even 

a combination of several simultaneous processes.  

The term lesion being clarified, it is important to say a few words about two kinds of lesion 

occurring often in the literature: the local lesion and the diffuse lesion. A local lesion is a relatively 

small region (from some millimeters to (say) 4 or 5 centimeters maximum) where the MR signal 

drops or rises strongly enough to be detected with a naked eye. A diffuse lesion (or diffuse 

pathology) points out spread changes that are detected using software because they are visually 

not detectable. Because diffuse lesions are hard to delimit, arbitrary areas can be chosen and 

compared between MS patients and HC. A widely used example is to compare the changes 

occurring in the Normal Appearing White Matter (NAWM) or in the Normal Appearing Grey 

Matter (NAGM) in MS vs HC. Table 2-2 gives an overview of MRI contrasts mainly used to 

observe various types of MS lesions: 
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Table 2-2, Overview of MRI contrasts mainly used to observe various types of MS lesions. This 

list is not exhaustive (especially for WM studies). While thousands of studies exists on the topic, 

studies were selected by pertinence and recent publication dates, with the emphasis put on 

quantitatives MR modalities. 

MS lesion type Sensitive MR 

modality 

References 

WM focal lesion Hyperintense T2w 

Hypointense T1w 

QSM 

 

qT1 

qT2 

MTR 

(Sahraian et al. 2010) 

(Sahraian et al. 2010) 

(Chen et al. 2014; Reichenbach et al. 2015) 

(Schmierer et al. 2008) 

(Schmierer et al. 2008) 

(Schmierer et al. 2004; Schmierer et al. 

2007) 

GM focal lesion DIR (3T, 7T) 

 

FLAIR (7T) 

SPRG 

MTR 

 

T2* 

(Geurts & Barkhof 2008; de Graaf et al. 

2012) 

(de Graaf et al. 2012) 

(Tardif et al. 2012) 

(Chen et al. 2013; Derakhshan et al. 2014) 

(Pitt et al. 2010; Mainero et al. 2009) 

NAWM alteration qT1 

qT2 

MTR 

(Schmierer et al. 2008) 

(Schmierer et al. 2008) 

(Schmierer et al. 2004; Schmierer et al. 

2007) 

NAGM alteration MTR (1.5T, 9.4T) 

 

T2* (7T) 

(Chen et al. 2013; Derakhshan et al. 2014) 

(Cohen-Adad et al. 2011; Mainero et al. 

2015) 

Laminar cortical 

changes 

T2* (7T) (Cohen-Adad et al. 2011; Mainero et al. 

2015) 

WM rimmed lesions T2* (7T) (Harrison et al. 2016; Pitt et al. 2010)  

 

As seen in Table 2-2, detection of MS lesions in the cortex can be done by only few MR 

contrasts and requires higher field strengths. Indeed, MS cortical pathology is more challenging to 

observe in-vivo because of low MR signal emitted from the cortex. If the focus is put on the cortical 

pathology, Table 2-2 suggests that MTR, 7T T2*, SPGR, qT1, qT2, FLAIR and DIR, can detect 

cortical lesions. Moreover, if the pathological component of interest is in the cortex, Table 2-1 tells 
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that MTR and 7T T2* are sensitive to it. This implies that MTR and 7T T2* are sensitive to cortical 

demyelinating lesions. 

 

2.1.2.3 MS in the cerebral cortex 

Although MS was, until recently, called a white matter disease, the involvement of grey 

matter was reported as far back as the beginning of the 20th century (Dawson 1916). However, the 

significance of GM pathology was underestimated until recent histopathologic data revealed that 

they constitute a substantial proportion of the total brain MS lesion load (Kidd et al. 1999). 

The pathological feature of cortical lesions (CL) is mainly demyelination (Tardif et al. 2012). 

They also occasionally exhibit a minor microglial reaction, axonal transection, as well as neuronal, 

glial, and synaptic loss (Wegner et al. 2006; Trapp et al. 1998). The contrast between demyelinated 

CLs and surrounding normal appearing cortex is further reduced due to the lower myelin content 

of GM, about 10% that of WM. 

(Bø et al. 2003) defined a system of CL classification that distinguishes mixed GM-WM 

lesions (type I, leukocortical) from purely GM lesions. The latter include small intracortical lesions 

(type II), subpial lesions that affect the superficial cortical layers and may extend over several gyri 

(type III, subpial), and lesions affecting the entire width of the cortex from pial surface to the 

subcortical WM (type IV).  

https://paperpile.com/c/IEz485/O8bv
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Figure 2-17. (A) Representation of the four types of cortical lesions (courtesy of Dr. C. Louapre). 

(B) Example of cortical lesions seen on MS patients, using 7T FLASH T2* modality. Adapted from 

(Mainero et al. 2009) (C) Example of cortical lesions seen on MS patients, using 7T T2*w modality. 

Adapted from (Pitt et al. 2010). 

 

Type III subpial lesions are most extensive and frequent, and may lead to general subpial 

demyelination affecting up to 70% of the total cortical area (Bø et al. 2003; Kutzelnigg et al. 2005). 

The subset of CL load detected using DIR is highly correlated with overall CL load and 

demyelinated area (Seewann et al. 2011), and is associated with disability, especially cognitive 

impairment (Roosendaal et al. 2009; Calabrese et al. 2009; Calabrese et al. 2010; Mainero et al. 

2015). 

However, combined MRI and neuropathology studies of fixed (Geurts et al. 2005; Seewann 

et al. 2011) and fresh (Seewann et al. 2012) post mortem MS brain tissue have shown that CLs, in 

particular type III subpial lesions, remain significantly under-detected using 3 Tesla DIR and 

FLAIR images. Ultra-high field imaging (≥7 Tesla (T)) and multichannel phased array coils have 

contributed to improved in vivo imaging of cortical MS pathology, due to the increase in signal-

to-noise ratio and accelerated acquisition (Mainero et al. 2015; Cohen-Adad et al. 2011).  Despite 

using ultra high field imaging to detect the Type III “diffuse” cortical lesions has been been 

revealed promising (Mainero et al. 2015; Cohen-Adad et al. 2011), a lack of specificity regarding 

the nature of observed 7T T2* changes arises because of it’s sensitivity to several underlying 
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https://paperpile.com/c/IEz485/2boM+ma0h


33 

 

mechanisms (Cohen-Adad 2014; Stüber et al. 2014). Indeed, 7T T2* has been shown to be sensitive 

to myelin distribution in the cortex (Cohen-Adad et al. 2012; Deistung et al. 2013; Mainero et al. 

2015) but also to others features of the cortical tissues, such as iron content (Fukunaga et al. 2010; 

Stüber et al. 2014) or fiber sizes and orientation (Hwang et al. 2010; Lee et al. 2012; Pitt et al. 

2010).  

The main goal of my Master’s thesis is to propose a method to increase the specificity in the 

in-vivo detection of cortical demyelination such as diffuse or type III demyelinating cortical lesions, 

using MRI. Now that we have a better idea of the scope of this work, let’s take a deeper look inside 

the technology involved in order to better understand the solution proposed. The next chapter will 

review the physics part of this work: the principles of Magnetic Resonance Imaging.  

 

2.2 Physics Review 

2.2.1 MRI basics 

Magnetic Resonance Imaging is a powerful noninvasive imaging modality that is widely 

used around the globe. MRI is based on the phenomena of Nuclear Magnetic Resonance (NMR) 

of atoms. Sometimes the acronym NMR is used to designate the MR device, but word nuclear is 

commonly removed to avoid the negative connotation and the amalgam with nuclear ionizing 

radiations phenomenons. All nuclei with an odd number of neutrons possess a nuclear spin angular 

momentum. In biological tissues, hydrogen (1H) is the most abundant because it is present in every 

water molecule (H2O). The spin acts as a magnetic dipole that precesses around the nucleus at a 

rotational frequency called Larmor frequency. The Larmor frequency \omega is proportional to 

the strength of the surrounding magnetic field B. 

𝜔 = 𝛾𝐵 

where 𝛾 is called the gyromagnetic ratio. For 1H, 𝛾/2𝜋 = 42.58 [MHz/Tesla]. In MR 

devices, a static magnetic field, called B0, is applied to the whole sample in order to 

macroscopically polarize all the angular momentums in the same direction (arbitrarily defined as 

the z-direction). Typical B0 field strengths are within the range 1.5T to 7T. Spins will then be 

excited by a rotational magnetic field called B1 which rotate at the larmor frequency in the xy-plane 

https://paperpile.com/c/IEz485/dKDw+QuL0
https://paperpile.com/c/IEz485/bvLl+ESw0+2boM
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in order to be seen as stationary in the point of view of the spin. To acquire an MR image, a brief 

excitation with a magnitude B1 will rotate the spins towards the x-y planeand will make all spins 

precess with the same phase. Once the B1 field is turned off, receiving antennas will record the 

signal emitted by the spins, while they go back to the steady state. Two independent phenomena 

will affect the recorded signal. Firstly, spins will eventually realign themselves with the main 

magnetic field B0 thus making the macroscopic magnetization aligning to B0 (z-direction), the 

characteristic realigning time can be measured and is called T1 , Figure 2-18 A. Typical T1 time is 

about 100-2000ms in the brain tissues. Secondly, when B1 field is turned off, spin-spin 

interactions will slightly affect the Larmor frequency of each spin, making them dephase with 

each other and destruct the macroscopic magnetization initially present in the xy-plane, the 

characteristic dephasing time is called T2 , Figure 2-18 A. Typical  T2 time is about 10-300ms. 

These two characteristic times, T1 and T2 are properties of the imaged biological tissue and thus 

create the contrast observable in MR images Figure 2-18 B. The spatial encoding of the image is 

obtained with gradient fields that are used to affect the spin’s Larmor frequency and the spin’s 

phase depending on their location. 
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Figure 2-18. (A) Representation of the characteristic T1 and T2 relaxation times. The B1 excitation 

rotates the spins in the xy plane and sets them in-phase. T1 is the characteristic realigning time 

while T2 is the characteristic dephasing time. (B) MRI images of T1 and T2 weighted contrasts, 

acquired at 7T. 

 

The recorded signal depends on various parameters, such as the excitation time (TE), the 

repetition time (TR) or the kind of B1 pulse sequences, to cite only few of them. Every set of 

parameters will lead to a different MRI contrast. The most used MRI contrasts are T1w, T2w and 

PDw (Proton Density weighted). These contrasts are recognizable by some specific features, for 

example, T1w will show a GM darker than the WM, inversely T2W will show a darker WM (Figure 

2-18 B), while PDw will present a very bright CSF. The letter “w” means weighted, it indicates 
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that such a contrast is not quantitative, i.e., when measured in another scanner with other 

parameters, the values will change. Even though two T2w images of the same patient acquired with 

the same acquisitions parameters will look similar, the values behind each voxel won’t necessarily 

be comparable. It is like taking pictures of an object with various sources and positions of lighting. 

The object will still look the same, but the values of each pixel will show different numbers. 

Because the necessity to perform group studies has arisen during the past decades, solutions 

had to be found to be able to quantitatively compare MRI images of different subjects, or different 

regions of the same brain. Thus, a set of quantitative MRI metrics (or contrasts) has been developed 

during the past years. To emphasize the fact that a metric is quantitative, the suffix q is sometime 

added before the metric’s name, e.g. qMT, qT2* or qT1. Sometimes the q is not present, but the 

quantitative aspect of the metric is clarified by the context. 

 

2.2.2 Quantitative MRI 

2.2.2.1 Usefuleness of qMRI 

MRI presents unprecedented opportunities to quantify in-vivo brain tissues properties, 

information about disease mechanisms and provide pronostics to patients. However, the abilities 

of MRI to accurately quantify tissues properties or brain metrics is challenging. For example, the 

variations of the scanner performance across space and time on a given machine, or the variability 

in software and hardware across platforms has to be taken into account to obtain quantitative 

measurements. Even simple quantitative measures such as brain volume or atrophy are subject to 

difficulties due to image qualities, quantitative measure implementation or variability in methods 

daily used by different centers. This section will summarize the principles and methods used to 

obtain the two quantitative metrics of interest in this study, which are MTR and T2*.  

 

2.2.2.2 MTR modality 

Magnetization Transfer (MT) was first demonstrated in vivo by (Wolff & Balaban 1989). 

MT is a contrast based on a mechanism of exchange of magnetization between two different kinds 

of protons, characterized by different molecular environments. Interestingly, MT provides a source 

https://paperpile.com/c/IEz485/jyrG
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of contrast different from T1 and T2. MT reflects the relative density of macromolecules, such as 

lipids or proteins. As myelin has a lipid-protein structure (60-70% lipids and 20- 30% protein), MT 

is able to probe indirectly a measure associated with the myelin content. The MT phenomenon is 

complex, and several details of the process are still unknown.  

 

2.2.2.2.1 Magnetisation transfer principle 

The MT effect results from the interaction between two kinds of hydrogen nucleus. Protons 

in a liquid state (free state) associated with water molecules and protons in semisolid state 

associated with macromolecules. Macromolecular spins cannot be imaged by conventional MRI 

method, because of their very short T2 (<1ms). However, macromolecular spins can be indirectly 

imaged. Indeed it is possible to saturate macromolecular spins by an off-resonance radio frequency 

pulse because they have a much boarder absorption lineshape than the liquid spins, Figure 2-19. It 

creates a preferential saturation of the macromolecular spins that can be transferred to the liquid 

spins, depending on the rate of exchange (Levesque & Pike 2009). And hence, this water spin 

saturation can be detected with MRI (Henkelman et al. 2001). 

 

Figure 2-19. From (Henkelman et al. 2001). Schematic absorption lineshape of protons in the liquid 

pool (water protons) and protons in the macromolecular pool (protons linked to macromolecules). 
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2.2.2.2.2 Magnetisation Transfer Ratio 

MT pulses are designed to saturate the semi-solid spins bound to macromolecules. This 

results in a suppression of the MRI signal that is proportional to the amount of macromolecules in 

a given tissue. One of the simplest way to separate MT phenomenon is to acquire two images, with 

and without off-resonance pulse. Taking the ratio of these two images highlights variations caused 

by the magnetization transfer. This method is called Magnetization Transfer Ratio (MTR) 

(Schmierer et al. 2004). MTR is the percentage difference of the image acquired with off-resonance 

saturation 𝑀S and without saturation 𝑀0: 

𝑀𝑇𝑅 =
𝑀0 − 𝑀𝑆

𝑀0
∗ 100 

An example of MTR image is shown in Figure 2-20. The MTR is a semi-quantitative 

measure reflecting the amount of bound protons. Moreover, some studies suggest that molecules 

associated with myelin dominate the MT exchange in WM (Schmierer et al., 2004) and that MTR 

increases with myelin content. 

 

Figure 2-20. Adapted from (G. Mangeat, 2013). Example of MTR image of the brain. 

 

2.2.2.2.3 Usefulness 

The MT Ratio can be computed on a voxel by voxel basis to obtain MTR maps. The MTR 

is very popular to characterize WM disease and is often used to image the spinal cord. The MT 

phenomenon reduces the signal from tissues with “large amount of transfer” so it increases the 

https://paperpile.com/c/IEz485/3zDC
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signal of low MT tissues such as MS lesions (Tanttu et al. 1992). Myelin content is a popular metric 

to study neurodegenerative diseases. MTR was shown to correlate with myelin content in WM 

(Schmierer et al. 2004) and is thus commonly used to study MS patients. Moreover, as shown in 

Table 2-1 & 2-2, MTR is commonly used to study GM lesions, especially demyelinating lesions 

(Tardif et al. 2012; Pitt et al. 2010; Chen et al. 2013; Derakhshan et al. 2014).  

However, MTR is only a semi-quantitative metric, in the sense that MTR values depend on 

the sequence parameters (Berry et al. 1999). Moreover, some confounding factors hamper the MT 

phenomenon making it not fully specific to myelin. Firstly, B1 inhomogeneities related to RF 

transmission induce variabilities on the MT pulse power, which affect MTR measures. Secondly, 

MTR values are affected by T1 relaxation (Pike Bruce 1996). Thirdly, others macromolecules such 

as large proteins can play a role in the MT effect and thus decrease the specificity of MTR to 

myelin.  

My idea was to minimize these confounds by combining MTR with another metric sensitive 

to myelin but which does not share the same confounding factors. Let’s see why T2* was an 

appropriate candidate. 

 

2.2.2.3 T2* modality 

T2* contrast was shown to reveal feature of cortical anatomy. As we can see on Table 2-1 

& 2-2, T2* is also used by several groups to study features of MS progression in the cortex, 

especially at high fields strength (7T) (Mainero et al. 2015; Pitt et al. 2010; Cohen-Adad et al. 

2011). The features of which T2* is sensitive interestingly includes myelin content, but also iron, 

blood vessels and structure orientation. 

 

2.2.2.3.1 T2* principles 

As explained at the beginning of this section, the T2 relaxation time is coming from the dephasing 

amongst spins driven by the phenomena called spin-spin relaxation. In a perfect hypothetical case, 

the signal amplitude decay would be modulated by exp(-t/T2), where t is the time after excitation 

and T2 is the transverse relaxation time constant. However, various factors are influencing the T2 

https://paperpile.com/c/IEz485/FKLv
https://paperpile.com/c/IEz485/3zDC
https://paperpile.com/c/IEz485/xIub+1Y3i+ff5v+HmTU
https://paperpile.com/c/IEz485/w6IK
https://paperpile.com/c/IEz485/6lkl
https://paperpile.com/c/IEz485/2boM+1Y3i+ma0h
https://paperpile.com/c/IEz485/2boM+1Y3i+ma0h
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signal decay, for example water diffusion, influence of electrons from non-hydrogen atoms or the 

multiple water compartments. These inhomogeneities will slightly and locally change the value of 

the static magnetic field B0, this will induce a faster dephasing and thus a faster relaxation time. 

The effective relaxation time taking into account these inhomogeneities is called T2* (Haacke et 

al. 2005; Chavhan et al. 2009).  T2 and T2* relaxations times are related according to the following 

equation: 

1

𝑇2
∗ =

1

𝑇2
−

𝛾

2𝜋
𝛥𝐵𝑖𝑛ℎ𝑜𝑚 

where 𝛾 is the gyromagnetic ratio and 𝛥𝐵𝑖𝑛ℎ𝑜𝑚 is the magnetic field inhomogeneity across a voxel. 

 

2.2.2.3.2 Acquisition 

T2* volume is obtained by acquiring a set of T2*w images with various echo-times (TE). 

Then, for each voxel, the T2* decay curve is obtained by fitting a negative monoexponential curve 

on T2*w values (Cohen-Adad 2014; Govindarajan et al. 2014). Figure 2-21 shows the transverse 

relaxation decay curves as well as an example of experimentals T2*w values acquired at regular 

TEs. The T2* value of a voxel is a time constant (characterizing the response to a step input of a 

first-order, linear time-invariant system), and as such is defined as the time at which the signal is 

37% of the maximum signal (at t=0). 

https://paperpile.com/c/IEz485/PWNa+l1gH
https://paperpile.com/c/IEz485/PWNa+l1gH
https://paperpile.com/c/IEz485/dKDw+FKh6
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Figure 2-21, From (Cohen-Adad 2014), shows the transverse relaxation decay curves T2 and T2* 

as well as an example of experimentals T2*w values acquired at regular TEs. The T2* decay curve 

is obtained by fitting a negative monoexponential curve on T2*w values while T2* value of a voxel 

is defined as being the time value for which the signal is 37% of the maximum signal (at t=0). 

 

2.2.2.3.3 Usefulness 

T2* contrast is known to be sensitive to myelin content in the cortex (Pitt et al. 2010; Cohen-

Adad et al. 2011; Mainero et al. 2015), but it is also sensitive to tissue iron level (Lee et al. 2012; 

Stüber et al. 2014) as well as cortical fibers orientation (Cohen-Adad et al. 2012), blood vessels 

(Spees et al. 2001) and blood oxygen level (Li et al. 1998). Figure 2-22 shows a T2* map zoomed 

in the cortex as well as two histological maps of myelin content and iron content of the same area. 

The contribution of both is visible in the T2* map. But the most beautiful feature in this T2* map 

is the high contrast and the level of details revealed in the cortex. 

https://paperpile.com/c/IEz485/dKDw
https://paperpile.com/c/IEz485/ma0h+2boM
https://paperpile.com/c/IEz485/ma0h+2boM
https://paperpile.com/c/IEz485/yVqY+QuL0
https://paperpile.com/c/IEz485/yVqY+QuL0
https://paperpile.com/c/IEz485/bvLl
https://paperpile.com/c/IEz485/ktwJ
https://paperpile.com/c/IEz485/60EJ
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Figure 2-22, From (Cohen-Adad 2014), shows two histological maps of myelin content and iron 

content of the same cortical area, as well as the corresponding T2* map acquired at 7T.  

 

2.2.2.4 Combining MTR and T2* 

So far, we saw that MTR and T2* are two powerful techniques to image features of the 

cortical gray matter. While they are both already used to study the progression of demyelinating 

lesions in the cortex of MS patients (Table 2-1 & 2-2), we saw that both techniques are not fully 

specific to myelin. Because of their divergent physical underlying sources (transfer of 

magnetisation vs inhomogeneous spin dephasing), their confounding factors are not overlapping. 

Indeed, the specificity of MTR to myelin is mainly confounded by B1 inhomogeneities and others 

macromolecules, while the specificity of T2* to myelin is mainly confound by iron and fiber 

orientation. 

Starting from this point we now understand that it is possible to improve the myelin 

specificity of quantitative cortical maps, which would be relevant for the study in vivo of the 

cortical demyelinating lesions is MS.  Figure 2-23 summarizes the conceptual idea of the myelin 

extraction from several myelin-sensitive MRI contrasts. The next section presents the mathematical 

features used to perform this multimodal combination. 

https://paperpile.com/c/IEz485/dKDw
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Figure 2-23, simplified concept of myelin extraction from several myelin-sensitive MRI contrasts. 

As presented in the previous section, MTR and T2* have both confounding factors hampering their 

specificity to myelin, but interestingly, their confounding factors are not overlapping. The idea is 

thus to extract the source of signal shared by both metrics, yielding a better estimator of myelin 

than when taking each metric separately.  

 

2.3 Mathematical Review 

2.3.1 Multimodal combination challenges 

The actual multimodal combination framework revealed many practical challenges. For 

example, mapping the MTR and T2* values in the cortex is challenging because of its thin and 

convoluted shape. Moreover, registering both metrics in the same space is not easy because non-

linear deformations imply re-interpolation, which can affect T2* and MTR value, and which is 

particularly problematic at interfaces (T2* and MTR are noisy in the CSF). The full combination 

framework as well as the solutions and discussions about practical challenges are detailed in the 
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article (SECTION 4). This mathematical review covers two mathematical concepts that deserve a 

particular attention to better understand the capabilities and the limitation of the myelin extraction 

framework. 

 

2.3.2 Independent Component Analysis (ICA) principles 

2.3.2.1 Principles 

Independent Component Analysis is a computational method for separating a multivariate 

signal into additive subcomponents.  ICA finds the independent components (also called latent 

variables or sources) by maximizing the statistical independence of the estimated components. 

There are two types of algorithms in the literature which are maximizing the independence either 

by minimisation of mutual information or maximisation of non-Gaussianity (Hyvärinen & Oja 

2000). I decided to use the FastICA algorithm (Hyvärinen & Oja 1999) based on maximisation of 

non-Gaussianity because of faster computation (cubic convergence),  little required memory space 

and possibility of parallelization (Bingham & Hyvärinen 2000). The principle of sources extraction 

by maximisation of  non-gaussianity is coming from the Central Limit Theorem (CLT). Indeed, 

according to the CLT, the distribution of a sum of independent random variables with finite 

variance tends towards a gaussian distribution. This means that if we take two random variables, 

for example the distribution of iron and the distribution of myelin, their sum will have a distribution 

closer to gaussian that any of the two original variables. 

 

2.3.2.2 Measures of non-gaussianity 

Assessing the non-gaussianity of a distribution can be performed by comparing its kurtosis 

or its negentropy  with those of a gaussian distribution. The kurtosis is a predictor of the shape of 

a distribution. Mathematically, it represents the fourth standardized moment, defined as:  

𝐾𝑢𝑟𝑡[𝑋] =
𝜇4

𝜎4
=

𝐸[(𝑋 − 𝜇)4]

(𝐸[(𝑋 − 𝜇)2])2
 

with 𝜇4 the fourth moment about the mean. The kurtosis of a gaussian distribution is 3. Thus, the 

estimator defined as Kurt[X] - 3, called excess kurtosis, is a measure of non-gaussianity. Despite 

https://paperpile.com/c/IEz485/oCmU
https://paperpile.com/c/IEz485/oCmU
https://paperpile.com/c/IEz485/y7Zi
https://paperpile.com/c/IEz485/dFSl


45 

 

excess kurtosis is a very intuitive measurement, it has shown very sensitive to outliers  (Huber 

1985; Hyvärinen & Oja 1999) and its value may depend on only a few observations in the tail of 

the distribution.  

A second measure of the non-gaussianity is given by the negentropy. Negentropy means 

negative entropy and the concept was introduced by Erwin Schrödinger in 1944, in his book What 

is Life? (Schrödinger 1967).  

Entropy is a key concept in information theory. The entropy of a random variable can be 

interpreted as the degree of information that the observation of the variable gives. The more random 

or unpredictable or unstructured the variable is, the larger is the entropy. Mathematically, the 

entropy S(X) of a discrete random variable X is defined as:  

𝑆(𝑋) = − ∑ 𝑃(𝑋 = 𝑎𝑖)log (𝑃(𝑋 = 𝑎𝑖))

𝑖

 

where 𝑎𝑖 are the possible values of X. It turns out that the Gaussian distribution is the distribution 

that maximises the entropy. The Negentropy is thus defined as the difference between the entropy 

of a gaussian distribution and the entropy of a random variable: 

𝐽(𝑋) = 𝑆(𝑋𝑔𝑎𝑢𝑠𝑠) − 𝑆(𝑋) 

where 𝑋𝑔𝑎𝑢𝑠𝑠 is a Gaussian random variable with the same covariance matrix as X. The higher the 

negentropy, the less Gaussian the random variable X. The advantage of using negentropy is that it 

is the optimal estimator for non-Gaussianity, from statistical point of view (Hyvärinen & Oja 1999). 

However, estimating negentropy is computationally difficult. Therefore, approximations of 

negentropy are used in the FastICA algorithm in order to reduce the computing time. (Hyvärinen 

& Oja 1999) demonstrated that a robust approximation of the negentropy can be written as: 

𝐽(𝑋) ∝ [𝐸[𝐺(𝑋) − 𝐸[𝐺(𝛮)]]]2 

where, N is a Gaussian variable with zero mean and unit variance (i.e. standardized), and G is a 

non-quadratic function such as 𝑥2, 𝑥3, tan(𝑎𝑥) , 𝑜𝑟 𝑥 𝑒−𝑎/𝑥2
. One of these four G functions has to 

be chosen in the FastICA algorithm. The choice of G will affect the computing time and will not 

have a significant impact on the result.  

 

https://paperpile.com/c/IEz485/r9BL+y7Zi
https://paperpile.com/c/IEz485/r9BL+y7Zi
https://paperpile.com/c/IEz485/xZcA
https://paperpile.com/c/IEz485/y7Zi
https://paperpile.com/c/IEz485/y7Zi
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2.3.2.3 Simplified algorithm 

The FastICA algorithm starts by centering and weighting the data. This means that the input 

set of data X is transformed into a set of data x with zero mean, uncorrelated components and 

variance equal to unity. Then, the determination of the direction of the projection that minimizes 

gaussianity works as following: 

1. Choose an initial weight (direction) vector w. 

2. Let 𝒘+ = 𝐸[𝒙𝐺(𝒘𝑻𝒙)] − 𝐸[𝐺′(𝒘𝑻𝒙)]𝒘 

3. Let 𝑤 = 𝒘+/‖𝒘+‖  

4. If not converged, go back to 2. 

Note that the convergence means that the old and new values of w point in the same 

direction (i.e. their dot products almost equal to 1). The derivation of w+ by approximation of 

negentropy convergence (step 2) is detailed in (Hyvärinen & Oja 1999). 

Despite the concept of ICA in very intuitive, the implementation of a fast and robust 

algorithm is complex and challenging. The FastICA algorithm presented an excellent compromise 

between robustness of results and computation speed. 

 

2.3.3 Group statistics and ICA normalisation 

2.3.3.1 Problem 

Group statistics refer to statistics performed between two (in our case) groups, for example, 

MS patients (MS) versus Healthy Controls (HC). Various statistical tests are available to compare 

two groups, for example, the  Student’s t-test or a General Linear Model (GLM). Considering a 

normal case, we can compute a marker (value) for each subject, for example the mean MTR across 

the cortex, and use a t-test to see if, based on their mean cortical MTR values, MS can be 

distinguishable from HC (the only assumption to make being that both distributions of mean values 

are Gaussian). 

 

https://paperpile.com/c/IEz485/y7Zi
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However, this kind of group comparison is not feasible when using raw IC (Independent 

Components) instead of e.g. MTR maps. The problem comes from the fact that the ICA algorithm 

needs to center and weight the data before finding the ICs. Because ICAs are performed 

independently for each subject, we lose the information of mean and SD of the recorded signals 

(i.e. MTR and T2* maps). Thus, two relative parameters need to be saved in order to restitute the 

apparent (or relative) mean and standard deviation to the resulting ICs. Otherwise, all MS and HC 

maps would have a mean of 0 and a SD of 1. Even if the distribution of each individual map is 

closer to the actual distribution of myelin, we couldn't compare the maps amongst them neither 

compare MS vs HC. 

 

2.3.3.2 Derivation of a solution 

An unbiased solution is to use the relative mean (𝛹) and the coefficient of variation 

(COV) of each component of the recorded signal (i.e. here MTR and T2*), and to compute 𝛹s and 

COVs of the ICs by using the ICA solution wT. Technically speaking, for one subject’s recorded 

signal, the relative mean 𝛹 is defined as: 

𝛹𝑖 =
𝜇𝑖 − 𝜇𝐺𝑖

𝜇𝐺𝑖
 

with i representing each recorded signal (i.e. here i = MTR, T2*). Where, 𝜇𝑖 is the mean of the 

distribution i of the computed subject, while 𝜇𝐺𝑖 is the mean of the whole group (the mean of the 

means). (Note that the value of the group mean is not a critical parameter and could even be set as 

an arbitrary constant as long as the same constant is used for the computation of every subject). So, 

the relative mean is an information of how far the mean of the subject is, compared to the mean of 

the group. The COV is defined as follow: 

𝐶𝑂𝑉𝑖 =
𝜎𝑖

𝜇𝑖
 

with i representing each recorded signal (i.e. here i = MTR, T2*), 𝜎𝑖 is the standard deviation of the 

distribution i of the computed subject. The idea is that these parameters are relatives and can thus 

be compared amongst recorded signals i.  Now, let’s define: 
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𝜓 = [
𝛹1

⋮
𝛹𝑛

] , ℎ𝑒𝑟𝑒, 𝜓 = [
𝛹𝑀𝑇𝑅

𝛹𝑇2
∗

] 

and 

𝜁 = [
𝐶𝑂𝑉1

⋮
𝐶𝑂𝑉𝑛

] , ℎ𝑒𝑟𝑒, 𝜁 = [
𝐶𝑂𝑉𝑀𝑇𝑅

𝐶𝑂𝑉𝑇2
∗

] 

 

So, if wj is the direction of the jst IC, 

𝐶𝑂𝑉𝐼𝐶𝑗 = 𝑤𝑗
𝑇𝜙 

and  

𝛷𝐼𝐶𝑗 = 𝑤𝑗
𝑇𝜁 

and thus, the new group comparable ICs (noted IC’) can be recovered as following: 

𝐼𝐶𝑗
′ = 𝐼𝐶𝑗

𝑤𝑗
𝑇𝜁

50(1 + 𝑤𝑗
𝑇𝜙)

+ 50(1 + 𝑤𝑗
𝑇𝜙) 

Where, j=[1, ..., k] with k the number of ICs if interest. The factor 50 is arbitrary. It means 

that the average amongst all distributions IC’ will have a mean of 50.  

This processing fixes the problem of normalisation or centralisation of data imposed by 

multivariate processing methods. Group comparable ICs are essential to keep the quantitative 

aspect of resulting maps and thus to be able to perform group statistics such as t-test or GLM.  
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CHAPTER 3 METODOLOGY 

3.1 Approach of the problem  

A careful review of the literature revealed three points: i) MTR and T2* are amongst the 

most efficient MR modalities to study the cortical pathology of MS patients. ii) Both metrics lack 

specificity when used to assess cortical demyelination. iii) No model aiming to combine MR 

modalities using an ICA-based approach was proposed in the literature.  

Hence, the idea was to develop a novel approach to combine MTR and T2* modalities 

acquired in the in-vivo human cortex. The goal being to obtain a metric more specific to myelin, 

that could be used to study the cortical demyelination of MS patients.  

Firstly, the feasibility and the relevance of combining MTR and T2* was investigated. Then, 

an approach based on the principle of signal decomposition using minimization of gaussianity was 

developed. The framework pre-processing includes a normalisation, a first order correction to 

partial volume effect and a correction to tissue orientation with respect with B0. The gain in myelin 

specificity of the extracted components has been validated using simulations and previous 

histology works. In a second time, the method was applied on MS patients in order to study their 

cortical variations of myeloarchitecture. Two groups of MS patients have been studied with the 

above method. A classic cohort and an early cohort (disease duration < 3years), MS vs HC numbers 

were respectively 6 HC vs 11 MS and 5 HC vs 10 MS.  

 

3.2 Publications resulting from this mémoire 

Researches conducted along this Mémoire led to several publications, notably one in a high 

impact factor journal (Neuroimage, IF=6.357). Steps of this project have also been presented in the 

following international and local conferences/symposiums: 

 22nd annual meeting of International Society for Magnetic Resonance in Medicine, Milan, 

Italy, June 2014. Poster #1783   

 13e journée de la recherche, Polytechnique Montreal, Montreal, Canada, Mai 2015. 
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 23nd annual meeting of International Society for Magnetic Resonance in Medicine, 

Toronto, Canada, June 2015. Presentation #0823 

 31st annual meeting of European Committee for Treatment and Research in Multiple 

Sclerosis, Barcelona, Spain, October 2015. Poster #957 

 7st journée scientifique du Réseau de Bio-Imagerie du Québec, Montreal, Canada, January 

2016. 

 24nd annual meeting of International Society for Magnetic Resonance in Medicine, 

Singapore, Mai 2016. Presentation #237 

The next section presents the content of these publications and their coherence along with 

the scientific goals of this Memoire. 

3.3 Coherence between publications 

As mentioned previously, the choice of the MR modalities to be combined was first based 

on previous literature review demonstrating the potential of both metrics to image myelin in the 

cortex. Then, a deeper analysis of i) the mechanisms of both modalities, ii) their respective 

behaviour in the cortex iii) their mutual interplay in various cortical areas, was performed to ensure 

the quality of the future combination. This preliminary work led to a presentation of a poster at the 

conference ISMRM 2014. This poster was entitled: Comparison between 7T T2* and 3T MTR in 

the in vivo human cortex., presented in CHAPTER 5. 

Once the relevance of the combination demonstrated, several ideas and algorithms were 

tested to effectively extract the main information of myelin contained in both modalities. An ICA-

based algorithm was revealed to be the best compromise between robustness, reproducibility and 

calculus time. Following the development of the combination framework, and its validations, a 

scientific article was published in the journal NeuroImage: Multivariate combination of 

magnetization transfer, T2* and B0 orientation to study the myelo-architecture of the in vivo human 

cortex., presented in CHAPTER 4.  

This new tool being available, its application to study MS patients could start. A first study 

comparing the ability of the combined metric to detect cortical demyelination relatively to standard 

metrics was performed. It resulted in a presentation at the conference ISMRM 2015: Multivariate 
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combination of magnetization transfer ratio and quantitative T2* to detect subpial demyelination 

in multiple sclerosis., presented in CHAPTER 6.  

As this study revealed the benefits of the combined metric to study MS patients, a second 

study was performed in a cohort of early MS patients, for whom the cortical demyelination is more 

subtle. This study was presented at the conference ECTRIMS 2015: Multivariate combination of 

quantitative T2* and T1 at 7T MRI detects in vivo subpial demyelination in the early stages of MS., 

presented in CHAPTER 6. 
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MAGNETIZATION TRANSFER, T2* AND B0 ORIENTATION TO 

STUDY THE MYELO-ARCHITECTURE OF THE IN-VIVO HUMAN 

CORTEX 

 This article presents the combination framework, from its development details to its 

validation. Please note that the Tables and Figures will have the suffix 4- (i,.e. CHAPTER 4) before 
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4.1 Abstract 

Recently, T2* imaging at 7 tesla (T) MRI was shown to reveal microstructural features of the 

cortical myeloarchitecture thanks to an increase in contrast-to-noise ratio. However, several 

confounds hamper the specificity of T2* measures (iron content, blood vessels, tissues 

orientation). Another metric, magnetization transfer ratio (MTR), is known to also be sensitive 

to myelin content and thus would be an excellent complementary measure because its underlying 

contrast mechanisms are different than that from T2*. The goal of this study was thus to combine 

MTR and T2* using multivariate statistics in order to gain insights into cortical myelin content. 

Seven healthy subjects were scanned at 7T and 3T to obtain T2* and MTR data, respectively. A 

multivariate myelin estimation model (MMEM) was developed, and consists in (i) normalizing 

T2* and MTR values and (ii) extracting their shared information using independent component 

analysis (ICA). B0 orientation dependence and cortical thickness were also computed and 

included in the model. 

Results showed high correlation between MTR and T2* in the whole cortex (r=0.76, p<10-16), 

suggesting that both metrics are partly driven by a common source of contrast, here assumed to 

be the myelin. Average MTR and T2* were respectively 31.0 +/- 0.3% and 32.1 +/- 1.4 ms. Results 

of the MMEM spatial distribution showed similar trends to that from histological work stained 

for myelin (r=0.77, p<0.01). Significant right-left differences were detected in the primary motor 

cortex (p<0.05), the posterior cingulate cortex  (p<0.05) and the visual cortex (p<0.05).  

This study demonstrates that MTR and T2* are highly correlated in the cortex. The combination 

of MTR, T2*, CT and B0 orientation may be a useful means to study cortical myeloarchitecture 

with more specificity than using any of the individual methods. The MMEM framework is 

extendable to other contrasts such as T1 and diffusion MRI. 

 

Keywords: | MTR | T2* | B0 orientation | myeloarchitecture | ICA | Brodmann 
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4.2 Introduction 

Myeloarchitecture refers to the spatial organization of myelinated fiber in the central 

nervous system, including features such as their size, density orientation, and myelination 

(Flechsig, 1920; Vogt, 1911). The study of myeloarchitecture in the in vivo human cortex can 

provide further elements about the organization of the healthy and pathological cortex.  

Previous studies have shown that T2* magnitude and phase images can reveal exquisite 

details of cortical microstructure, with enhanced contrast at ultra-high field strength (Duyn et al., 

2007; Li et al., 2009, 2006). T2* is the effective transverse relaxation and is driven by microscopic 

and macroscopic field inhomogeneities, e.g. caused by susceptibility differences between tissues 

(Cohen-Adad, 2014). Of interest, T2* contrast is notably influenced by the size, density and 

orientation of myelinated fibers (Hwang et al., 2010; Lee et al., 2012; Pitt et al., 2010). Surface-

based analysis of T2* revealed several features that correlate with myelin distribution in the cortex 

(Cohen-Adad et al., 2012, 2011; Deistung et al., 2013; Mainero et al., 2012). Similar observations 

were obtained from T1 (Dinse et al., 2013) and T1w/T2w (Glasser and Van Essen, 2011) 

measurements, further confirming the influence of myelin on T2* contrast. Despite its sensitivity 

to myeloarchitecture, T2* it is influenced by several confounds, such as the tissues iron level 

(Fukunaga et al., 2010), B0 field inhomogeneities (Hernando et al., 2012) and fibers orientation 

with respect to B0 (Cohen-Adad et al., 2012). Hence, combining T2* with another measure sensitive 

to myelin would increase the confidence in assessing the degree of myelination, as has been shown 

ex vivo (Tardif et al., 2012).  

Magnetization Transfer (MT) imaging was shown to be sensitive to myelin content 

(Levesque and Pike, 2009; Schmierer et al., 2004) in white matter (WM) and thus would be an 

excellent complementary measure because its underlying contrast mechanisms are different than 

that from T2*. The MT effect results from the interaction between two kinds of hydrogen nucleus: 

protons in a liquid state associated with water molecules and protons in semisolid state associated 

with macromolecules. The macromolecular spins can be saturated by an off-resonance radio 

frequency (RF) pulse because they have a much broader absorption lineshape than the liquid spins. 

The preferential saturation of the macromolecular spins can be transferred to the liquid spins, 

depending on the rate of exchange (Levesque and Pike, 2009). This water spin saturation can then 

be detected with MRI (Henkelman et al., 2001). MTR is an index calculated using images with and 

https://paperpile.com/c/MJFwzo/qRi8v+sf9z1
https://paperpile.com/c/MJFwzo/T6lGo+3DzKu+SG17h
https://paperpile.com/c/MJFwzo/T6lGo+3DzKu+SG17h
https://paperpile.com/c/MJFwzo/MwXat
https://paperpile.com/c/MJFwzo/gBPTU+oYbIr+pjy38
https://paperpile.com/c/MJFwzo/orsM1+fnOSM+sIRbC+X3kJO
https://paperpile.com/c/MJFwzo/XrNl6
https://paperpile.com/c/MJFwzo/b6Syi
https://paperpile.com/c/MJFwzo/fFewA
https://paperpile.com/c/MJFwzo/GruU7
https://paperpile.com/c/MJFwzo/orsM1
https://paperpile.com/c/MJFwzo/6WL5U
https://paperpile.com/c/MJFwzo/Rk0l5+RNcQb
https://paperpile.com/c/MJFwzo/Rk0l5
https://paperpile.com/c/MJFwzo/SrvBi
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without MT saturation pulse and was shown to correlate with myelin content (Henkelman et al., 

2001; Schmierer et al., 2004). Recently, MTR was mapped in the cortex of MS patients  (Chen et 

al., 2013; Derakhshan et al., 2014) and showed similarities between myelinated regions and high 

MTR values. However, MTR is only a semi-quantitative metric as it depends on sequence 

parameters, B1 profile and T1 relaxation (Berry et al., 1999; Pike Bruce, 1996).  

Combining MTR with T2* thus appears to be a useful means to gain insight into cortical 

myelination because these two metrics are sensitive to myelin content but are based on different 

biophysical phenomena. MTR increases with myelin and T2* decreases with myelin. 

However, mapping T2* and MTR in the cortex is challenging because the cortical ribbon is 

thin, highly convoluted and its geometry varies across individuals. Cortical surface-based analysis 

allows robust visualization of MRI measurements across the entire cortex and enables the 

calculation of spatial statistics at a population scale (Dale et al., 1999; Derakhshan et al., 2014; 

Fischl, 2012; Fischl et al., 1999; Glasser and Van Essen, 2011). Other confounds exist that can 

affect cortical mapping studies. Namely, (i) the effect of cortical thickness, which can introduce 

variable amount of partial volume effect and (ii) the angle between coherently-oriented myelinated 

fibers in the cortex and the direction of the main magnetic field (B0) (Cohen-Adad et al., 2012). 

Multivariate statistics, such as Independent Component Analysis (ICA) can decompose 

multivariate signal into independent signals coming from independent sources (Bingham and 

Hyvärinen, 2000; Hyvärinen and Oja, 2000; Xie and Wu, 2006). Here, ICA would be an adequate 

candidate for probing the existence of shared information between T2*- and MTR-derived signal 

related to myelin content, while taking into account confounding factors (thickness, B0 orientation). 

The goals of the present study were: (i) to map T2* at 7T and MTR at 3T in the healthy in 

vivo human cortex using surface-based analysis and (ii) to combine T2* and MTR using a 

multivariate model in order to extract the shared information related to myelin. 

 

https://paperpile.com/c/MJFwzo/RNcQb+SrvBi
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https://paperpile.com/c/MJFwzo/oYOKG+TWXmz+xkxjb+w9Yfy+b6Syi
https://paperpile.com/c/MJFwzo/orsM1
https://paperpile.com/c/MJFwzo/IZ83c+VmAJK+9RLRq
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4.3 Material and Methods 

4.3.1 Data acquisition 

 Healthy subjects (N=7, gender = 4F and 3M, age = 36 +/- 5 years) were recruited.  Subjects 

were scanned with a 7T whole-body scanner (Siemens Healthcare, Erlangen, Germany) to measure 

T2* and with a 3T scanner (Siemens TIM Trio) to measure MTR. We chose not to perform the 

MTR protocol at 7T due to the less homogeneous B1 profile and SAR limitations. Both scanners 

were equipped with a 32-channel coil. Parameters values at 7T were: 2D gradient-echo, TR = 2020 

ms, TE = 6.34+3.2n [n=0,...,11] ms, resolution = 0.33x0.33x1 mm3, acquisition time (TA) was 20 

min (10 min/slab * 2 slab). Parameters for the 3T magnetization transfer contrast were: Spoiled 

gradient echo sequence: 3D FLASH (Fast Low-Angle Shot), TR/TE = 30/2.49 ms, matrix = 

192x192, resolution = 1.2x1.2x1.2 mm3, with (mt_on) and without (mt_off) MT pulse. The MT 

pulse is a Gaussian envelope with pulse duration = 9984μs and frequency offset = 1200 Hz. The 

acquisition time (TA) of each FLASH volume was 7:45 min. In addition to the MTR protocol, a 

T1-weighted image was acquired at 3T for cortical surface reconstruction using a magnetization-

prepared rapid acquisition with multiple gradient echoes (MEMPR) (van der Kouwe et al., 2008). 

Parameters were: TR/TI=2530/1200 ms, TE=[1.7, 3.6, 5.4, 7.3] ms, flip angle (α)=7°, 

FOV=230×230 mm2, resolution=0.9×0.9×0.9 mm3, bandwidth=651 Hz/pixel, scan time=6.5min. 

The reason for doing surface reconstruction from 3T data is that this protocol has been thoroughly 

validated (Dale et al., 1999; Govindarajan et al., 2014; Postelnicu et al., 2009; van der Kouwe et 

al., 2008), in comparison with the 7T MEMPR protocol, from which the less homogeneous B1+ 

profile can produce errors in segmentations. 

4.3.2 Data processing 

Figure 1 shows an overview of the data processing pipeline. Pre-processing steps included: (i) 

computing MTR and T2*. (ii) registering MTR and T2* volumes to the cortical surface model, (iii) 

sampling the obtained values within the cortex, (iv) calculate the cortical thickness and (v) 

computing the angle between B0 field and the vector normal to the cortical surface. Processing was 

done with FreeSurfer (http://surfer.nmr.mgh.harvard.edu) and custom-made scripts written in 

MATLAB.   

https://paperpile.com/c/MJFwzo/PUFWb+PhrbA+oYOKG+4uM0
https://paperpile.com/c/MJFwzo/PUFWb+PhrbA+oYOKG+4uM0
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Figure 4-1. Pre-processing framework. The cortical surface was extracted with freesurfer from an 

anatomical T1-weighted volume. MT data: mt_on and mt_off volumes were registered to the T1-w 

volume (Reuter et al., 2010), then the MT ratio (MTR) was computed. mt_off  was registered to the 

cortical surface (CS) using boundary based registration technique (12 d.o.f.) (Greve and Fischl, 

2009). The transformation matrix of the registration was applied to the MTR volume. T2* volume 

was registered to the T1-w volume using header information. Then, T2* volume was registered to 

the cortical surface using boundary based registration (9 d.o.f.). MTR and T2* cortical maps were 

computed at each vertex along the mid-cortical surface. Cortical thickness map was acquired by 

computing the distance between white and pial surfaces for each vertex. B0 orientation map was 

computed from the angle between the normal of the cortical surface and the orientation of the B0 

field. Lastly, the four metrics (T2*, MTR, cortical thickness and B0 orientation) were projected to 

a common space (fsaverage) using a spherical averaging procedure (FreeSurfer). 

 

https://paperpile.com/c/MJFwzo/Mi0g2
https://paperpile.com/c/MJFwzo/NZHbS
https://paperpile.com/c/MJFwzo/NZHbS
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 T2* data were first corrected for background inhomogeneities as described in (Cohen-Adad 

et al., 2012), then T2* was estimated using monoexponential fitting. A gross alignment was first 

performed between the averaged first 4 echoes of the T2*-weighted volume and the T1weighted 

volume (at 3T) following the protocol described in (Govindarajan et al., 2014) Then, a fine 

alignment of the T2*-weighted volume to the surface was estimated using the boundary-based 

registration method (BBR, 9 degrees of freedom), which is based on the local intensity gradient 

and was shown to have high robustness and accuracy (Greve and Fischl, 2009). Then, the 

registration matrices were applied to the T2* volume. More details can be found in (Cohen-Adad, 

2014). All registrations were visually inspected. For pre-processing of MTR data, both volumes 

with (mt_on) and without (mt_off) the Gaussian MT pulse were registered to the 3T T1-weighted 

volume using the function mri_robust_register available in FreeSurfer (Reuter et al., 2010). The 

mt_off volume was registered to the surface using bbregister (12 d.o.f.). The resulting affine matrix 

was then applied to the MTR volume. Once both mt_on and mt_off were registered to the cortical 

surface, MTR was computed as follows: 

𝑀𝑇𝑅 = 100 ∗  
𝑚𝑡−𝑜𝑓𝑓 − 𝑚𝑡−𝑜𝑛

𝑚𝑡−𝑜𝑓𝑓
          (1)  

 Figure 1 shows the MTR registrations steps. Once registered to the individual surface, MTR 

and T2* were sampled at the mid distance between the pial and the white matter surface (50% 

depth) as done in (Cohen-Adad, 2014). The mid-cortical distance was chosen in order to minimize 

partial volume effect. Cortical thickness (CT) map was calculated using the normal distance 

between both pial and white matter surfaces previously segmented by freesurfer. B0 orientation 

dependence was estimated using the angle θz between the normal vector of the surface and the B0 

field direction (Cohen-Adad et al., 2012). MTR, T2*, CT and B0 orientation data were then spatially 

normalized to the existing common space (fsaverage) available in FreeSurfer V4.2. Spatial 

normalization was performed using a spherical averaging procedure as described in (Fischl et al., 

1999). For each subject, the cortical manifold was projected onto the target surface (fsaverage) and 

assigned a normal vector field with a consistent orientation. 

 Mean and inter-subject standard deviation (SD) maps were calculated for MTR, T2*, CT 

and B0 orientation. Then, Pearson’s coefficient was calculated vertex-wise between each pair of 

the following parameters: MTR, T2*, CT and B0 orientation. 

https://paperpile.com/c/MJFwzo/orsM1
https://paperpile.com/c/MJFwzo/orsM1
https://paperpile.com/c/MJFwzo/PUFWb
https://paperpile.com/c/MJFwzo/NZHbS
https://paperpile.com/c/MJFwzo/MwXat
https://paperpile.com/c/MJFwzo/MwXat
https://paperpile.com/c/MJFwzo/Mi0g2
https://paperpile.com/c/MJFwzo/MwXat
https://paperpile.com/c/MJFwzo/orsM1
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4.3.3 Multivariate Myelin Estimation Model (MMEM) 

 Here we propose a method to merge the myelin-related information contained in MTR and 

T2* into a single metric. The framework works as follows: Firstly, multilinear regressions were 

performed using predictors of myelin content (MTR and T2*) and confounding covariates (cortical 

thickness, which can introduce variable amount of partial volume effect, and B0 orientation 

dependency). Secondly, independent component analysis (ICA) is used to combine MTR- and T2*-

derived signal related to myelin. 

 The detailed steps of the MMEM are represented in Figure 2. Firstly, two maps were 

estimated using multi-linear regressions: one using the regressors MTR, CT and B0 orientation 

(ME_MTR) and one using the regressors T2*, CT and B0 orientation (ME_T2*). ME_MTR and 

ME_T2* maps respectively represent MTR and T2* values corrected for partial volume effect and 

fibers orientation. Notice that constant regressors such as age and gender were in the constant term 

of the regression because the MMEM was performed independently for each subjects and the 

resulting map was normalized under a common dynamic range (explained below). ME_MTR and 

ME_T2* maps were calculated using equations (2) and (3): 

𝑀𝐸_𝑀𝑇𝑅 =  𝑎1 +   𝑏1𝑀𝑇𝑅 + 𝑐1𝐶𝑇 + 𝑑1𝑠𝑖𝑛(2𝜃𝑧)  + 𝑒1𝑐𝑜𝑠(2𝜃𝑧)    (2) 

𝑀𝐸_𝑇2
∗ =   𝑎2  +   𝑏2𝑇2

∗ + 𝑐2𝐶𝑇 + 𝑑2𝑠𝑖𝑛(2𝜃𝑧)  + 𝑒2𝑐𝑜𝑠(2𝜃𝑧)     (3) 

 where a, b, c, d and e are the resulting parameters of the multilinear regressions. 𝜃𝑧 is the 

angle between the surface’s normal vector and the B0 magnetic field direction. The estimation of 

B0 orientation dependency was based on the model presented in (Cohen-Adad et al., 2012; Lee et 

al., 2011) but rearranged in a linear form to be used in a linear regression. More specifically, the 

sine function from the orientation dependency model was broken down into a linear sum of sine 

and cosine (see equation 1,2 and Supplementary Material S1 for the whole derivation). In order to 

merge MTR and T2* within the same framework, both linear regressions were performed with a 

common dependent variable. This dependent variable was a binary map made of regions that are 

known to be highly (BA1, BA4 and BA42) and poorly myelinated (BA8 and BA9) (Annese et al., 

2004; Glasser and Van Essen, 2011; Glasser et al., 2014; Laule et al., 2008; Nieuwenhuys, 2013; 

Vogt, 1911). BA3 was not considered because of the thinness of the cortex in this region (mean 

CT=1.8mm) and hence strongly hampered by partial volume effect. The regions of high and low 

myelin content were arbitrarily set to 70% and 30%. It is however important to keep in mind that 

https://paperpile.com/c/MJFwzo/DXwUv+orsM1
https://paperpile.com/c/MJFwzo/DXwUv+orsM1
https://paperpile.com/c/MJFwzo/Rvmjt+sf9z1+b6Syi+M5Xv5+Ba523+4rVAA
https://paperpile.com/c/MJFwzo/Rvmjt+sf9z1+b6Syi+M5Xv5+Ba523+4rVAA
https://paperpile.com/c/MJFwzo/Rvmjt+sf9z1+b6Syi+M5Xv5+Ba523+4rVAA
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these arbitrary values were only chosen for adjusting the dynamics of both metrics (i.e. ME_MTR 

and ME_T2*), on a subject-by-subject basis, in order to explore the relative distribution of myelin-

related values throughout the entire cortical ribbon. Secondly, the shared information between 

ME_MTR and ME_T2* was extracted using ICA decomposition, for each subject. ICA was chosen 

because (i) it is an unsupervised data-driven algorithm and is therefore free from arbitrary priors, 

(ii) it outputs mathematically independent components (as opposed to PCA) and (iii) the ‘so-called’ 

first component represents the shared information from ME_MTR and ME_T2* with the highest 

variance, which is assumed to represent myelin. This assumption is based on previous studies 

demonstrating the sensitivity of T2* and MTR to myelin content (Cohen-Adad et al., 2011; 

Deistung et al., 2013; Levesque and Pike, 2009; Mainero et al., 2012; Schmierer et al., 2004). The 

hypothesis being that the first component of the ICA was a more specific indicator for myelin 

content than a single metric taken separately. This hypothesis was further confirmed by simulations 

(see Supplementary Material S2) and comparison with previous histology works (Braitenberg 

1962). The final multivariate myelin estimation was calculated from the principal independent 

vector of the ICA’s separating matrix (V1) and the matrix (X) containing ME_MTR and ME_T2* 

data (equation 4). This map was named Combined Myelin Estimation (CME).  

𝐶𝑀𝐸 =  𝑉1
𝑇 ∗  𝑋                       (4) 

 The robustness of the ICA decomposition was qualitatively checked for each subject by 

plotting the ICA's vectors on the original set of data. The ICA’s first component map was then 

computed for each subject separately. Lastly, the ICA’s first component map were averaged across 

subjects. 

 The PALS-B12 Brodmann atlas (Van Essen, 2005) was used for interrogating sub-region 

of the cortex defined by their cyto-architecture. This choice was driven by previous studies showing 

homogenous myeloarchitecture within functional areas (Abdollahi et al., 2014; Bock et al., 2009; 

Geyer and Turner, 2013; Glasser and Van Essen, 2011; Glasser et al., 2014; Nieuwenhuys, 2013; 

Sereno, 1991). 

https://paperpile.com/c/MJFwzo/Mmyc9
https://paperpile.com/c/MJFwzo/Rvmjt+wzdGB+b6Syi+M5Xv5+9CRKL+UNZmx+NFtgl
https://paperpile.com/c/MJFwzo/Rvmjt+wzdGB+b6Syi+M5Xv5+9CRKL+UNZmx+NFtgl
https://paperpile.com/c/MJFwzo/Rvmjt+wzdGB+b6Syi+M5Xv5+9CRKL+UNZmx+NFtgl
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Figure 4-2. Multivariate myelin estimation model (MMEM). MMEM aimed to estimate a cortical 

myelin map using MTR, T2*, cortical thickness (CT) and B0 orientation maps. The MMEM was 

divided into two steps. Firstly, two maps were estimated using multi-linear regressions: one using 

MTR, CT and B0 orientation (ME_MTR) and one using T2*, CT and B0 orientation (ME_T2*). 

ME_MTR and ME_T2* maps represent myelin-correlated values corrected for partial volume 

effect and fibers orientation. In order to merge MTR and T2* within the same framework, both 

linear regressions were performed with a common dependent variable (BMM). Secondly, the 

shared information between ME_MTR and ME_T2* was extracted using ICA decomposition, for 

each subject. The ICA decomposed the signal into two component that are mathematically 

independent. The ‘so-called’ first component of the ICA was the source that share the highest 
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variance between ME_MTR and ME_T2*. The hypothesis being that the first component of the 

ICA was an indicator for myelin content.  

 

4.4 Results 

4.4.1 MTR, T2*, CT and B0 orientation mapping 

 MT and T2* data were successfully acquired in 6 out of 7 subjects. Visual inspection 

revealed excessive motion in one subject for the MT data. Hence only 6 subjects were used for 

subsequent analyses.  

 Figure 3A shows maps of 3T MTR, 7T T2*, CT and B0 orientation averaged across subjects. 

MTR map shows high values (>32%) notably in the primary motor cortex (BA4), in the primary 

somatosensory cortex (BA1, BA2 & BA3), in the somatosensory association cortex (BA5 & BA7), 

in the posterior cingulate cortex (BA31 & BA23), in the visual cortex (BA17, BA18 & BA19) and 

in the auditory cortex (BA42). However, some ‘strip’ patterns of lower MTR are observed in these 

regions, notably in the central sulcus (~BA3) and in the calcarine fissure. The CT map also 

highlights a ‘strip’ pattern in BA3 and shows some regions of low cortical thickness (< 2mm) 

around the calcarine sulcus. These regions are also highlighted by the CT map by showing thin 

cortical thickness (between 1 and 2mm). In the frontal cortex MTR is notably low. T2* map shows 

an overall similar pattern but with an opposite tendency. Low values (<25ms) are visible in the 

primary motor cortex, the primary somatosensory cortex and in the visual cortex whereas T2* is 

high (~35ms) in the frontal lobe. The CT map shows lower cortical thickness in BA3, BA17 and 

BA18 as previously shown (Clarkson et al., 2011; Cohen-Adad et al., 2012).   

 Figure 3B shows maps of SD across subjects for the respective metrics. MTR SD is fairly 

homogenous and small in the whole cortex (~1.5%). T2* SD also exhibits fairly small values across 

the cortex (~2.5ms), however extreme values are found in the lower brain region, likely due to 

inhomogeneous B0 field at 7T. These fairly small SD maps for MTR and T2* suggest that the two 

metrics have centered and narrow distributions across subjects and hence the averaged maps are 

representative of the population studied here. Cortical thickness SD and B0 orientation SD were 

fairly large on a voxel-by-voxel basis (average SD was respectively 0.47mm and 17.4°), suggesting 

https://paperpile.com/c/MJFwzo/orsM1+QvEj1
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that there is an inter-subject variability in the morphology of the cortex, e.g., thickness, location 

and orientation of different gyri/sulci. 

 Table 1 summarizes the whole brain statistics (mean, inter subject SD and coefficient of 

variation (COV)). COV coefficients are calculated by performing the ratio between the inter-

subjects SD and the mean across the whole cortex. COV are displayed percentage. Inter-subject 

SD and COV are fairly small for all metrics as previously seen on the maps. 

 

Table 4-1. Mean, inter-subject SD and coefficient of variation (COV) of MTR, T2* and CT maps. 

Left and Right tables are showing results for left (LH) and right (RH) hemispheres respectively. 

LH MTR [%] T2* [ms] CT [mm]  RH MTR [%] T2* [ms] CT [mm] 

Mean 31.04 32.16 2.61  Mean 31.02 32.03 2.60 

SD 0.34 1.42 0.053  SD 0.41 1.39 0.061 

COV [%] 1.1 4.4 2.0  COV [%] 1.3 4.3 2.3 
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Figure 4-3. (A) Maps averaged across subjects of MTR, T2*, cortical thickness (CT) and B0 

orientation. In MTR and T2* maps, white lines are showing the borders of the primary 

somatosensory cortex (BA1, BA2 & BA3), the somatosensory association cortex (BA5 & BA7), 

the posterior cingulate cortex (BA31 & BA23) and the visual cortex (BA17, BA18 & BA19). 

Arrow are also showing the primary motor cortex (BA4) and the primary auditory cortex (BA42). 

White dashed lines are showing the central sulcus and the calcarine fissure. The colormap was 

thresholded (mid-value of each distribution) to enhance its dynamic. For un-thresholded maps, see 

Supplementary Material S4. (B) Maps of the standard deviation across subjects for MTR, T2*, CT 

and B0 orientation. 

 

4.4.2 Pearson’s correlations between MTR and T2* 

 Figure 4 shows the Pearson’s correlations between MTR and T2*. Different colors are 

showing the vertices density in order to better visualize scatter’s shape. To reduce the high-
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frequency noise in the correlation space (MTR vs. T2*) a 2-dimensional smoothing of 10 points 

was achieved before computing the Pearson’s correlation. Strong correlations were observed in the 

right (r=-0.77) and left (r=-0.75) hemispheres. The colormap reveals higher density in the center 

of the scatter showing a 2D Gaussian tendency well defined at the center of the distributions. 

 

Figure 4-4. Pearson’s correlations between MTR and T2* maps averaged across subjects. Strong 

correlations were observed in right (r = -0.77) and left (r = -0.75) hemispheres. The colormap shows 

the data-point density in the scatter and suggest a 2D Gaussian tendency well defined in the center 

of the distribution.   

 

 We also assessed the whole cortex correlation between T2* & CT ; T2* & B0 orientation ; 

MTR & CT and MTR & B0 orientation. Table 2 shows their corresponding Pearson’s correlation 

coefficient. We can see that in the whole cortex, correlations with B0 orientation are fairly low.  

 

Table 4-2. Pearson’s coefficient calculated vertex-wise between each pair of the following 

parameters: MTR, T2*, CT and B0 orientation for left (LH) and right (RH) hemispheres. 

LH Thickness B0 orientation  RH Thickness B0 orientation 

MTR r = -0.19 

p < 10-16 

r = 0.18 

p < 10-16 

 MTR r = -0.24 

p < 10-16 

r = 0.14 

p < 10-16 

T2* r = 0.52 

p < 10-16 

r = -0.13 

p < 10-16 

 T2* r = 0.42 

p < 10-16 

r = -0.05 

p < 10-8 
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4.4.3 Distribution graph 

 The distribution graph (Figure 5) is a qualitative way to visualize spatial correlations 

between MTR, T2*, CT and B0 orientation for assessing the feasibility to combine these four 

metrics using a linear model (first step of the MMEM). First, we compared the shape of MTR, T2*, 

CT and B0 orientation across all 164,000 vertices. Vertices of the mean T2* map (in red) were 

sorted in the ascending order. The same index distribution was then used to display MTR (blue), 

CT (magenta) and B0 orientation (green) values. For clarity, values were smoothed along the 

abscissa (100-point window). Inter subjects SD have also been plotted for each vertex. We chose 

to sort T2* values instead of MTR due to the larger number of artefactual vertices in the T2* data, 

leading to extremely low or high values, related to field inhomogeneity and/or surface registration 

(Cohen-Adad, 2014). Only the right hemisphere values are plotted for more clarity. Similar trends 

are observed between left and right hemispheres.  

 In order to further explore the different trends between metrics, the distribution graph was 

divided into four ensembles of vertices: 

 Region 1 (light blue on figure 5): Vertices hampered by strong artifacts on T2* data caused 

by signal dropout (T2*<24ms). This region contains less than 2% of all cortical vertices.  

 Region 2 (dark blue): Vertices for which MTR and T2* are correlated. Interestingly, these 

vertices are mainly located in the gyri adjacent to the central sulcus and the calcarine fissure. 

There are some dark blue areas that neighbor light blue areas in the lower brain region, and 

these vertices are likely affected by artifacts due to poor shimming in this region. However, 

we believe that the same pattern observed in other vertices (e.g., visual and motor cortex) 

is genuine. This region contains less than 2% of all vertices. 

 Region 3 (yellow): Vertices where MTR and T2* are anti-correlated (R-squared > 0.90). 

This region contains more than 96% of all vertices.  

 Region 4 (red): Vertices with high T2* values (>40ms), notably in anterior cingulate cortex 

(BA24 & BA32). These vertices are possibly affected by surface misregistration. 

 The main purpose of this graph was to identify vertices where a linear relationship between 

MTR and T2* can be tested without introducing too much bias. Based on these results, the 

https://paperpile.com/c/MJFwzo/MwXat
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combination into a unique framework for estimating myelin content (MMEM, see below) will be 

performed on region #3. 

 

Figure 4-5. The graph on the left panel shows the distribution of the four signals used in the 

MMEM: MTR (blue), T2* (red), CT (magenta) and B0 orientation (green). The abscissa represents 

vertices defining the cortical surface (total number of vertices = 163,842). For clarity, the vertices 

order was chosen to make T2* increasing and values were smoothed along the abscissa (100-point 

window). Error strips represent the inter-subjects SD. Similar trends are observed between the left 

and the right hemispheres, therefore only the signal of the right hemisphere was plotted. The 

distribution graph was divided into four ensembles of vertices (1, 2, 3 & 4) based on their signal’s 

shapes. Vertices corresponding to these regions are plotted on the right panel with the respective 

colors: light blue, dark blue, yellow & red.  

 

4.4.4 Multivariate myelin estimation model (MMEM) 

4.4.4.1 Multilinear regression 

 Table 3 shows results of the linear models defined in Figure 2 and equations 2,3. These 

results show that myelin estimation is proportional to MTR and is inversely proportional to T2*, as 

was expected (Cohen-Adad et al., 2011; Schmierer et al., 2004). Secondly, we notice that MTR 

accounts for about 54% of the ME_MTR metric and T2* accounts for about 38% of the ME_T2* 

metric, whereas cortical thickness and B0 orientation have lesser influence (6% and <1%, 

respectively). Thirdly, we notice a fairly low inter-subject variability for the fittings coefficients of 

the constant part (a), the MTR or T2* part (b) and the cortical thickness part (c), that suggest a 

https://paperpile.com/c/MJFwzo/sIRbC+RNcQb
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fairly good robustness of the model. However we notice a high variability of d and e parameters. 

We believe this is related to the fact that even though T2* is modulated by B0 orientation with 

respect to cortical surface (Cohen-Adad et al., 2012), this modulation is fairly low compared to that 

in the white matter. Evidences are found in gray/white matter comparative studies from (Sati et al., 

2012). Moreover, it is possible that there is an inter-subject variability in the morphology of the 

cortex, e.g., orientation of coherently-aligned cortical fibers. Again, our model is performed in a 

subject by subject basis, and thus is not affected by the morphological inter-subject variability. 

 

Table 4-3. Resulting coefficients of the linear models defined in equation 2,3 and their inter-

subjects SD. Coefficients values are expressed in percentages in order to show their relatives 

contributions to the output maps (ME_MTR and ME_T2*). a is the constant coefficient, b is the 

coefficient of the main metric (MTR in the ME_MTR regression and T2* in the ME_T2* 

regression), c is the CT coefficient, d and e are the coefficients of the B0 orientation dependency 

(see equations (2) and (3)).  

 a [%] b [%] c [%] d [%] e [%] 

ME_MTR -39.1 ± 1.9 54.2 ± 0.4 -6.2 ± 1.7 -0.14 ± 0.4 -0.05 ± 0.13 

ME_T2* 54.4 ± 2.0 -37.6 ± 2.9 -6.0 ± 2.5 0.33 ± 0.33 0.05 ± 0.12 

 

4.4.4.2 Independent Component Analysis (ICA) 

 The second step was to perform an ICA for each subject, in order to find a transformation 

matrix that optimizes the extraction of the common information contained in ME_MTR and 

ME_T2* (Hyvärinen and Oja, 2000; Xie and Wu, 2006). However, performing an ICA with large 

data vector (~164,000 vertices) is poorly robust. Therefore, a graphical validation of each ICA 

result (one per subject) was made. This graphical validation was useful to assess the result of each 

ICA’s and the inter-subject consistency between results.  

 Figure 6A shows results of ICA for each subject. Pink arrows are the two vectors of the 

separating matrix W found by the ICA (Hyvärinen et al, 2000). Figure 6B represents the projection 

of the ME_MTR and ME_T2* data into the space defined by the two vectors of the ICA’s separating 

matrix. These graphs are useful to assess the non-correlation (r<0.06) of the resulting set of data. 

https://paperpile.com/c/MJFwzo/orsM1
https://paperpile.com/c/MJFwzo/lgsJg
https://paperpile.com/c/MJFwzo/lgsJg
https://paperpile.com/c/MJFwzo/VmAJK+9RLRq
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The inter-subject variability of ICA results is fairly low (First vector direction = 58±4° and angle 

between both vectors = 112±5°), justifying the relevance of computing an average map of principal 

components across subjects.  

 

Figure 4-6. (A) Scatters of the individual data (ME_MTR vs ME_T2*) and both ICA’s resulting 

components (pink arrows). For each subjects, first ICA’s component is the one sharing most 

variance between ME_MTR and ME_T2* (pointing upper right). (B) Projection of the ME_MTR 

and ME_T2* data into the space defined by the two ICA’s components.  These graphs are used to 

assess the non-correlation (r<0.06) of the resulting set of data. The colormap shows the data-point 

density in the scatters. 

 

4.4.4.3 Combined Myelin Estimation (CME) 

 Figure 7 shows the average map of the Combined Myelin Estimation (CME). This map was 

computed from the first component of the ICA using equation (3) and averaged across subjects. 

The CME represents the common entity contained by ME_MTR and ME_T2*, i.e., the source 

shared  between ME_MTR and ME_T2* that is mathematically independent from the rest of the 

acquired signal. Therefore, CME is thought to reflect the cortical myelin content with greater 

specificity than MTR or T2* alone. The mean and SD of CME across the cortex was 50.3±0.7. 

Overall, we notice a high myelin estimation (yellow/red) in the primary motor cortex BA4=74±3% 

(here, % refers to the CME metric, and ±3% refers to the SD across subjects) and in the primary 
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somatosensory cortex (BA1=67±7%, BA2=59±4% and BA3=63±13%). Moreover, a high myelin 

estimation is also observed in the visual cortex (BA17=67±5% & BA18=68±6%) and the auditory 

cortex (BA42=57±10%). These results are consistent with previous study (Annese et al., 2004; 

Glasser and Van Essen, 2011; Glasser et al., 2014; Laule et al., 2008; Nieuwenhuys, 2013; Vogt, 

1911).  

 

Figure 4-7. Average map of the Combined Myelin Estimation (CME). The mean and SD of CME 

across the cortex was 50.3±0.7. Overall, we notice a high myelin estimation (yellow/red) in the 

primary motor cortex BA4=74±3% (here, % refers to the CME metric, and ±3% refers to the SD 

across subjects) and in the primary somatosensory cortex (BA1=67±7%, BA2=59±4% and 

BA3=63±13%). Moreover, a high myelin estimation is also observed in the visual cortex 

(BA17=67±5% & BA18=68±6%) and the auditory cortex (BA42=57±10%).  

 

4.4.4.4 CME maps comparisons  

 Figure 8A shows a side-by-side comparison of CME, ME_MTR and ME_T2* on the 

inflated cortical surface. Major differences between ME_MTR and ME_T2* are indicated with 

white circles (plain and dashed). In the medial view of ME_T2*, one can observe a higher signal 

in the visual cortex than that in the ME_MTR (plain-circle). Inversely, the ME_T2* map shows a 

https://paperpile.com/c/MJFwzo/sf9z1+Rvmjt+Ba523+4rVAA+b6Syi+M5Xv5
https://paperpile.com/c/MJFwzo/sf9z1+Rvmjt+Ba523+4rVAA+b6Syi+M5Xv5
https://paperpile.com/c/MJFwzo/sf9z1+Rvmjt+Ba523+4rVAA+b6Syi+M5Xv5
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lower signal in the precuneus areas (small-dashed-circle) and superior frontal cortex (middle-

dashed-circle) compared to that in the ME_MTR map. In the lateral view of the ME_MTR map, 

one can observe a higher signal in the somatosensory association cortex (small-dashed-circle) and 

in the angular gyrus (plain-circle), compared to that in the ME_T2* map. Figure 8B,C show 

correlations between the myelin estimations metrics and histology values from (Braitenberg 1962), 

which are based on optical attenuation measures in an ex vivo human cortex stained for myelin. 

The Pearson’s correlation coefficients of: ME_MTR vs. Histology, ME_T2* vs. Histology and 

CME vs. Histology, were respectively 0.71 (p-value < 0.05), 0.69 (p-value < 0.05) and 0.77 (p-

value < 0.01). These correlations suggest that CME is a more specific marker for cortical myelin 

content than ME_MTR or ME_T2* taken separately. 

 

Figure 4-8. (A) Side-by-side comparison between CME maps and its both parents contrasts: 

ME_MTR and ME_T2*. Major differences between ME_MTR and ME_T2* are circled by white 
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circles. The CME map is labelled with the Brodmann areas used in the histological comparison. 

(B) Comparison between our myelin-related maps (CME,  ME_MTR and ME_T2*) and previous 

cortical myelin content histology data performed by Braitenberg (Braitenberg, 1962) in different 

Brodmann areas. The equations of the linear regressions are displayed at the bottom-right of the 

graph. The linear regression between T2* and histological myelin staining (HMS) is: T2*=-15.2*10-

3[ms/a.u.]*HMS+39.4[ms]; and the linear regression between MTR and HMS is: MTR=4.2*10-

3[%/a.u.]*HMS+29.0[%]. (C) Pearson’s correlations coefficients between MTR vs Histology, T2* 

vs Histology, ME_MTR vs Histology, ME_T2* vs Histology and CME vs Histology and their 

respective P_values. Results suggests first that ME_MTR and ME_T2* contrasts are relevant 

marker of the cortical myelin content and second that CME is a more specific marker for cortical 

myelin content than ME_MTR or ME_T2* taken separately. 

 

4.4.4.5 Analyses within Brodmann Areas 

 Figure 9A shows the CME map with an overlay of the PALS-B12 Brodmann Areas (BA). 

This figure shows a fair adequation between variations of CME and BA borders, for instance in 

BA1, BA2, BA3 and BA4 (primary motor and primary somatosensory cortex, green arrows), in 

BA17, BA18, BA19 (visual cortex, blue arrows) and in BA42 (auditory cortex, yellow arrow). 

However, in several areas (for instance BA22 or BA39) CME is quite heterogeneous, suggesting 

to divide these regions in smaller areas if we aimed to build a more accurate myelo-architectural 

atlas.  

 Figure 9B shows the CME map averaged within each BA and Figure 9C shows the mean 

BA values, as well as the inter-subject SD and the intra-area SD. In comparison with the SD across 

the entire cortex (26.5%), the intra-area SD is fairly low (in average 11.9%). We also note that the 

inter-subject SD is low, with an average coefficient of variation of 25% (here the average COV 

was calculated by computing the COV for each area, and then averaging all COVs across areas). 

https://paperpile.com/c/MJFwzo/MMN8E
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Figure 4-9. (A) CME map with an overlay of the PALS-B12 Brodmann Areas (BA). This figure 

shows a fair adequation between variations of CME and BA borders, for instance in BA1, BA2, 

BA3 and BA4 (primary motor and primary somatosensory cortex, green arrows), in BA17, BA18, 

BA19 (visual cortex, blue arrows) and in BA42 (auditory cortex, yellow arrow). (B) CME map 

averaged within each BA. (C) Mean BA values, as well as the inter-subject SD and the intra-area 

SD. In comparison with the SD across the entire cortex (26.5%), the intra-area SD is fairly low (in 

average 11.9%). 

 

 Figure 10 shows bar graphs representing mean and intersubject SD values of the different 

metrics used in the model (CME, MTR, ME_MTR, T2*, ME_T2*) within Brodmann regions. This 

graph shows the inter-hemispheric differences across (CME, MTR, ME_MTR, T2* and ME_T2*). 

Overall, we observe a fairly good right-left reproducibility, except in some regions as described 

hereafter. The CME map shows significant hemispheric differences in BA4 and BA31 (more 

myelin estimated in RH, p<0.05) and in BA17 and BA23 (more myelin estimated in LH, 

respectively p<0.05 and p<0.01). 
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Figure 4-10. Bar graphs representing mean and inter-subject SD values of the different metrics 

used in the MMEM (CME, MTR, ME_MTR, T2*, ME_T2*) within Brodmann regions. Overall, 

we observe a fairly good right-left reproducibility. The CME map shows significant hemispheric 

differences in BA4 and BA31 (more myelin estimated in rh, p<0.05) and in BA17 and BA23 (more 

myelin estimated in lh, respectively p<0.05 and p<0.01). 

 

4.5 Discussion 

 This study presented a novel approach to combine MTR and T2* in the in vivo human 

cortex, with the goal of studying cortical myeloarchitecture. We proposed to use a multivariate 

model to extract myelin-related information shared by both metrics. The model takes into account 

cortical thickness and B0 orientation and is flexible, i.e., other metrics such as T1 and diffusion data 

can be added. In the following, we discuss the sensitivity and specificity of MTR and T2* to detect 

myelin content, the multivariate model and ICA decomposition for combining MTR and T2* and 

the resulting maps, limitations and perspectives. 
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4.5.1 Sensitivity and specificity of MTR and T2* for quantifying myelin content 

 MT reflects the relative density of macromolecules, such as lipids or proteins. Since myelin 

has a lipid-protein structure (~80% lipids and ~20% protein), MT is able to provide indirect 

measure of myelin content. The MT phenomenon is complex and some of its underlying physical 

mechanisms are still unknown (Kim and Cercignani, 2014). Overall, the MT effect induces 

reduction of signal in tissues with large amount of MT, such as those with high concentration in 

macromolecules (e.g., lipids). For example, MT ratio (MTR) was shown to correlate well with 

myelin content in the white matter (Schmierer et al., 2004). Recently, MTR was shown to be 

sensitive to cortical demyelination in multiple sclerosis patients (Chen et al., 2013; Derakhshan et 

al., 2014). However, MTR is only a semi-quantitative metric and has several confounds. Firstly, 

B1 inhomogeneities related to RF transmission induce variabilities on the MT pulse power, which 

affect MTR measures. Secondly, MTR values depend on the sequence parameters (Berry et al., 

1999). Thirdly, MTR values are affected by T1 relaxation (Pike Bruce, 1996). Despite the longer 

acquisition time, quantitative MT (Levesque and Pike, 2009) provides more accurate estimation of 

myelin content. 

 T2* is the effective transverse relaxation time and is therefore affected by (i) mesoscopic 

field inhomogeneities, which result from susceptibility differences between tissues (parenchyma, 

deoxygenated blood, bone, cartilage, etc.) and (ii) macroscopic field inhomogeneities, which arise 

from magnetic field imperfections, air–tissue boundaries, or ferromagnetic objects (e.g., metal 

clips, implants, dental prosthesis). The latter are characterized by large-scale gradients that cause 

enhanced signal decay in gradient echo images and thus apparent decrease in T2* that can confound 

the underlying biology. Furthermore, the specificity of T2* contrast to myelin content is hampered 

by fiber orientation in the white matter (Lee et al., 2011) and in the cortex (Cohen-Adad et al., 

2012), tissue iron level (Lee et al., 2012; Stüber et al., 2014), blood vessels (Spees et al., 2001), 

blood oxygen level (Li et al., 1998). Note that in this study, the effect of blood vessel was 

minimized by excluding large blood vessels using manual masks. Also, capillary blood should only 

contribute minimally to the T2* contrast, as reported by Lee et al. (Lee et al., 2012). 

https://paperpile.com/c/MJFwzo/YNW5X
https://paperpile.com/c/MJFwzo/RNcQb
https://paperpile.com/c/MJFwzo/w9Yfy+wS50p
https://paperpile.com/c/MJFwzo/w9Yfy+wS50p
https://paperpile.com/c/MJFwzo/VmvQp
https://paperpile.com/c/MJFwzo/VmvQp
https://paperpile.com/c/MJFwzo/nUbtH
https://paperpile.com/c/MJFwzo/Rk0l5
https://paperpile.com/c/MJFwzo/DXwUv
https://paperpile.com/c/MJFwzo/orsM1
https://paperpile.com/c/MJFwzo/orsM1
https://paperpile.com/c/MJFwzo/gBPTU+IzF73
https://paperpile.com/c/MJFwzo/oMyyE
https://paperpile.com/c/MJFwzo/Oq40e
https://paperpile.com/c/MJFwzo/gBPTU
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4.5.2 Combining MTR and T2* using ICA 

 The main goal of this study was to gain specificity in myelin mapping by combining T2* 

and MTR. Here, ICA decomposition was chosen to extract shared information between MTR and 

T2* that represents myelin content. The ICA offers the advantage of recovering sources of interest 

(here: myelin content) from observed mixtures, making it well suited for the brain data analysis 

because of the multifaceted origin of MTR and T2* contrasts. Here we used the fast-fixed point 

algorithm presented by Hyvärinen et al (Bingham and Hyvärinen, 2000). This algorithm transforms 

the observed data to the linear combination of source signals (or independent components) which 

are non-gaussian and mutually independent. The output of the ICA is a separating matrix, which is 

represented by two vectors defining a new basis of independent components. Results of the ICA 

on our MTR and T2* data showed a fairly low inter-subject variability of the directions of the first 

vector (58±4°), which is assumed to represent myelin content. This low variability suggests 

stability of the decomposition process with respect to the spatial distribution of myelin-related 

source. Note that the current ICA framework is modular and the model would benefit from 

complementary sources of contrast sensitive to myelin content, such as T1 (Bock et al., 2009; Dinse 

et al., 2013; Sereno, 1991), T1w/T2w (Glasser and Van Essen, 2011), phase images (He and 

Yablonskiy, 2009) and diffusion data. While adding more metrics will likely increase the 

sensitivity and specificity to myelin, it is important to keep in mind that some metrics can share 

variance due to a shared MR contrast mechanism and/or artifactual contribution. For example, 

MTR contrast is partly driven by T1. In this study we chose to acquire T2* and MTR. The rationale 

behind acquiring these two contrasts was to show a proof-of-concept for combining two myelin 

mapping techniques with very different biophysical properties: susceptibility-related effect for T2* 

and macromolecular-related magnetization transfer effect for MTR. 

4.5.3 Interpretations of the combined myelin estimation (CME) maps 

 The CME exhibited high values (>70%) in the primary motor cortex (BA4), in the primary 

somatosensory cortex (BA1, BA2 and BA3), in the visual cortex (BA17 & BA18) and in the 

auditory cortex (BA42). Contrariwise, the insula, the frontal and prefrontal cortex (BA8, BA9 & 

BA10) and the anterior cingulate cortex (BA24 & BA32) have low CME values (<30%). Seen as 

an indicator of myelin content, this pattern of CME across the cortex is in concordance with 

previous cortical myelin-oriented studies (Annese et al., 2004; Glasser and Van Essen, 2011; 

https://paperpile.com/c/MJFwzo/IZ83c
https://paperpile.com/c/MJFwzo/sf9z1+Rvmjt+Ba523+4rVAA+b6Syi+M5Xv5
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Glasser et al., 2014; Laule et al., 2008; Nieuwenhuys, 2013; Vogt, 1911). Moreover, the intra-

regional standard deviation of the CME is low in comparison to that across the whole cortex. This 

suggests a fairly homogenous myelin estimate inside the putative cortical areas. This observation 

is consistent with previous studies showing homogeneous myeloarchitecture within functionally-

defined areas. (Abdollahi et al., 2014; Bock et al., 2009; Geyer and Turner, 2013; Glasser and Van 

Essen, 2011; Glasser et al., 2014; Nieuwenhuys, 2013; Sereno, 1991).  

 The CME map was compared with existing myelin-related maps from the literature. The 

MR longitudinal relaxation time T1 has been shown to be closely related to myelin content in vivo 

(Dick et al., 2012; Koenig et al., 1990; Sigalovsky et al., 2006) and ex vivo (Mottershead et al., 

2003; Schmierer et al., 2008, 2004) showing for example high correlation (r = 0.89) between T1 

relaxation time and myelin content in fixed brain (Schmierer et al., 2008). Recently, (Sereno et al., 

2013) have computed high resolution quantitative R1 (inverse of T1) maps from PDw and T1w 

images according to the formalism developed by Helms et al. (2008) and including a correction for 

imperfect RF spoiling (Preibisch and Deichmann, 2009) in order to obtain an accurate estimation 

of the cortical myelin content. Moreover, the ratio between T1w and T2w images has been shown 

to be an accurate estimate of the relative myelin content across cortex (Glasser and Van Essen, 

2011; Glasser et al., 2014). Glasser et al. (2014) have demonstrated that T1w/T2w maps reveals an 

observer-independent map of the area boundaries for dozens of cortical areas in a population-

average analysis. Figure 11 shows a side-by-side comparison between our CME maps and the 

cortical myelin estimations based on T1w/T2w from Glasser et al. (Glasser and Van Essen, 2011; 

Glasser et al., 2014) and R1 (inverse of T1) contrast from Sereno et al. (Sereno et al., 2013). Strong 

similarities are observed across maps, notably high myelin indices in the motor, visual and auditory 

cortices and low myelin indices in the anterior frontal cortex and in the temporal cortex. Small 

details are also shared by all contrasts, for example the middle-high spot located in the frontal lobe 

of the left hemisphere (green circle), the middle-high spot in the superior temporal cortex of the 

right hemisphere (green circle) and the bright spot in the lateral occipital cortex (near BA19). More 

interestingly, some discrepancies are observed for the CME map (red circles), i.e. regions of strong 

contrast previously not seen in other metrics. For example, we can observe a stronger signal in 

CME maps than in R1 or T1w/T2w maps in the pars triangularis area (dashed-red circle, near BA47) 

and in the superior parietal area (red circle, near BA7). Further work is needed to validate these 

findings with histology. 

https://paperpile.com/c/MJFwzo/sf9z1+Rvmjt+Ba523+4rVAA+b6Syi+M5Xv5
https://paperpile.com/c/MJFwzo/Rvmjt+wzdGB+b6Syi+M5Xv5+9CRKL+UNZmx+NFtgl
https://paperpile.com/c/MJFwzo/Rvmjt+wzdGB+b6Syi+M5Xv5+9CRKL+UNZmx+NFtgl
https://paperpile.com/c/MJFwzo/is0s+ubpe+Bvki
https://paperpile.com/c/MJFwzo/RNcQb+rZN1+uZO8
https://paperpile.com/c/MJFwzo/RNcQb+rZN1+uZO8
https://paperpile.com/c/MJFwzo/rZN1
https://paperpile.com/c/MJFwzo/TwUz
https://paperpile.com/c/MJFwzo/TwUz
https://paperpile.com/c/MJFwzo/DGBc
https://paperpile.com/c/MJFwzo/b6Syi+M5Xv5
https://paperpile.com/c/MJFwzo/b6Syi+M5Xv5
https://paperpile.com/c/MJFwzo/b6Syi+M5Xv5
https://paperpile.com/c/MJFwzo/b6Syi+M5Xv5
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Figure 4-11. Comparison with recent in vivo studies showing different contrasts sensitive to 

cortical myelin content in healthy adults. (A) quantitative R1 maps averaged across 6 control 

subjects (Sereno et al., 2013). ΔR1 is the difference between the mean R1 (across the cortex) and 

the R1 in a specific vertex. (B) T1w/T2w maps averaged across 69 subjects (Glasser and Van Essen, 

2011). (C) CME maps averaged across 6 subjects, unsmoothed. Green circles show similarities 

between CME maps and R1 or T1w/T2w. Red circles show differences. 

 

 We chose to analyse our data with respect to cortical parcellation offered by the PALS-B12 

atlas, which aims at representing homogeneous cytoarchitecture within the human cortex as 

proposed by Brodmann (Brodmann, 1909). Borders of these regions are defined by the variation 
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of the cells organization and structure of the cortex and are thought to represent functional units 

(Barbier et al., 2002; Jacot-Descombes et al., 2012; Lanzilotto et al., 2013). In analogy to the 

present study, we observe that regions representing specific functions of the human body (primary 

motor, auditory, visual) overlap with regions where CME was high. However, there is not 

necessarily a direct correspondence between myelo- and cyto-architecture (Geyer et al., 2011). 

Other atlases are available in the literature, notably the myeloarchitectonic atlas of Nieuwenhuys 

et al. (Nieuwenhuys et al. 2014), which divides the cortex into 180 myeloarchitectonic areas. A 

qualitative side-by-side comparison revealed some similarities between this atlas and the CME 

map. For example, in the pars triangularis region the bright spot visible in CME map only (dashed-

red circle in Figure 11C) seems to overlap with area 57-58 in the Nieuwenhuys atlas (red circle in 

Supplementary material S3). We notice that this bright spot is in accordance with a previous ex 

vivo monkey histology (Cruz-Rizzolo et al., 2011). Moreover, the motor cortex in the CME map 

exhibits a multiple-line pattern along the central sulcus, which is also visible in the Nieuwenhuys 

atlas. Moreover, the motor cortex in the CME map exhibits a multiple-line pattern along the central 

sulcus, which is also visible in the Nieuwenhuys atlas. 

 It should be noted that CME is currently not calibrated on true myelin values. CME's limits 

(0% to 100%) were defined based on regions with qualitatively low and high myelin content 

(Annese et al., 2004; Glasser and Van Essen, 2011; Glasser et al., 2014; Laule et al., 2008; 

Nieuwenhuys, 2013; Vogt, 1911).  Such a calibration procedure is challenging because ex vivo 

measures of myelin content may not be accurate for in vivo assessment. Histology and 

immunohistochemistry techniques may suffer from non-uniformity (Cruz-Rizzolo et al., 2011; 

Culling, 2013). Moreover, optical density measurements of the stain do not provide an accurate 

measure of myelin density because it does not probe the quantity of myelin in a slice (Culling, 

2013). (Stüber et al., 2014) introduced the PIXE technique recently using complex experimental 

setup. Furthermore, MR parameters change post mortem due to fixation. For instance, the 

correlation of MTR with myelin content is much stronger before fixation (Schmierer et al., 2008).  

Moreover, image registration is not easy in such studies, and spatial sampling is limited. Finally, 

more knowledge is required about the relationship between CME and true myelin content. For 

example, here we assumed linearity, but this has to be verified before calibration procedure. 

 Concerning the fiber orientation dependency, we are aware that various models have been 

proposed in the literature. For example, (Bender and Klose, 2010; Denk et al., 2011) have shown 

https://paperpile.com/c/MJFwzo/jdXZ8+plsBF+Mj2su
https://paperpile.com/c/MJFwzo/FL5jQ
https://paperpile.com/c/MJFwzo/o6by
https://paperpile.com/c/MJFwzo/Rvmjt+sf9z1+b6Syi+M5Xv5+Ba523+4rVAA
https://paperpile.com/c/MJFwzo/Rvmjt+sf9z1+b6Syi+M5Xv5+Ba523+4rVAA
https://paperpile.com/c/MJFwzo/iL1U+o6by
https://paperpile.com/c/MJFwzo/iL1U+o6by
https://paperpile.com/c/MJFwzo/iL1U
https://paperpile.com/c/MJFwzo/iL1U
https://paperpile.com/c/MJFwzo/IzF73
https://paperpile.com/c/MJFwzo/rZN1
https://paperpile.com/c/MJFwzo/ccNB+EzMT
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that the fiber orientation dependence can be well described using the term sin(theta)^2. We have 

therefore compared our model with the sin(theta)^2 model. Results were similar, with a square 

difference (averaged across all vertices) of 0.32 %2 for ME_MTR and 0.11 %2 for ME_T2*. 

 The correlations with histological work of Braitenberg (Braitenberg, 1962) suggest that 

CME is a more specific marker for cortical myelin content compared to ME_MTR or ME_T2* 

taken separately.  We have also shown that ME_MTR and ME_T2* are more specific markers of 

myelin than MTR and T2* (see Figure 8). This type of comparison is however limited by several 

factors. Firstly, the Braitenberg dataset was only limited to a few regions. Secondly, the study of 

Braitenberg was hampered by imperfect tissue fixation and staining, which added potential biases 

in the measures. 

4.5.4 Limitations and futures studies 

 T2* volumes were acquired with anisotropic voxels in order to maintain a high in-plane 

resolution (0.3x0.3 mm). Anisotropic voxels are subject to more inhomogeneous partial volume 

effect during the cortical sampling. In the future, EPI-Based multi-echo measurements 

(Zwanenburg et al., 2011) may sufficiently accelerate acquisition to allow use of isotropic voxels. 

MTR volumes were acquired with isotropic voxels, despite a somewhat low resolution (1.2mm) in 

comparison with the thickness of the cortex. Future studies could benefit from MT-prepared multi-

echo EPI (Helms and Hagberg, 2005) in order to acquire faster MT-weighted images and 

potentially increase the spatial resolution thanks to the higher SNR efficiency of EPI sequences. 

However it is important to keep in mind that EPI measurement suffers from geometric distortions, 

which are difficult to perfectly correct using standard approaches (fieldmap-based or non-rigid 

alignment). Residual distortions would lead to imperfect registration to the cortical surface and 

hence lead to potentially wrong values when sampling along the cortical ribbon. 

 The MMEM used a normalization procedure based on regions that are known to be highly 

and poorly myelinated. Thus, the output of the MMEM does not give an absolute measure of myelin 

content, but rather an indicator of relative level of myelin compared to other brain areas. 

Furthermore, it could be argued the choice of regions for normalization purpose was not adequate, 

however the robustness of the resulting MMEM coefficients was fairly high. For example, when 

using only BA4 (high myelin) and BA9 (low myelin), the resulting coefficients were less than 1% 

different compared to the results presented in this study.  
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 Validation is essential to these types of MRI studies. Although CME maps showed 

remarkably high spatial correspondence with previous in vivo and postmortem studies (Annese et 

al., 2004; Glasser and Van Essen, 2011; Glasser et al., 2014; Laule et al., 2008; Nieuwenhuys, 

2013; Vogt, 1911) it remains essential to further compare MRI maps with full cortex histology 

samples stained for myelin. However, limitations exist with histological staining, as it does not 

necessarily represent quantitative measure of myelin content and is hampered by the attachment 

properties of the tissue (depends on preparation, fixation, etc.) (Jain et al., 1998; Pistorio et al., 

2006). 

 The multivariate myelin estimation model has the potential to be useful in assessing early 

cortical changes in myelin in patients with neurodegenerative diseases such as multiple sclerosis. 
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CHAPTER 5 SUPPLEMENTARY METHODOLOGICAL 

INFORMATION 

5.1 Comparison between 7T T2* and 3T MTR in the in vivo human cortex, 

ISMRM 2014. 

 This section presents the abstract of a poster presentation investigating the feasibility to 

combine 7T T2* and MTR in the cortex, it has been published in June 2014, at the conference 

ISMRM. (before the Article 1). Please note that the Tables and Figures will have the suffix 5- (i,.e. 

CHAPTER 5) before their actual number, because the document formmating had to be respected. 
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5.1.1 Purpose 

 Characterization of cortical myelo-architecture with MRI is an active field of research1, 

which can give insights on the structural and functional organization of the brain. It is however 

challenging to image the cortex due to its convoluted and thin geometry (2- 4mm). Recently, ultra-

high field MRI (7T) combined with T2* was shown to reveal features of myelin density2. However, 

several confounds hamper the specificity of T2* measures such as iron content and blood vessels3. 

An independent measure with different contrast mechanisms would increase the specificity to 

myelin. Magnetization Transfer Ratio (MTR) imaging at 3T was shown to be sensitive to myelin 

content4 and thus would be an excellent complementary measure. The goal of this study was to 
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evaluate the relationship between T2* at 7T and MTR at 3T, and show their respective sensitivity 

and specificity to myelin content.  

5.1.2 Methods  

5.1.2.1 Data acquisition.  

 Healthy subjects (N=6, age = 36 +/- 5 years) were recruited and scanned with a 7T whole-

body scanner (Siemens Healthcare, Erlangen, Germany) to measure T2* and with a 3T scanner 

(Siemens TIM Trio) to measure MTR. Both scanners were equipped with a 32-channel coil. 

Parameters at 7T were: TR = 2020ms, TE = 6.34+3.2n [n=1...12], resolution = 0.33x0.33x1mm3. 

Parameters at 3T were: 3D FLASH, TR/TE = 30/2.49ms, matrix = 192x192, 

resolution=1.2x1.2x1.2 mm3, with and without Gaussian MT pulse (7:45min each). 

5.1.2.2  Data processing.  

 T2* and MTR data were registered to individual cortical surfaces, sampled at the mid-

cortical distance and registered to a common template surface5. Data were first averaged in the 

common space and SD maps were computed to assess inter-subject variability. A linear regression 

between the mean T2* and MTR maps was performed for each hemisphere, as well as within 

Brodmann regions with different myelin content.  

5.1.3 Results  

 Average and SD maps of T2* and MTR are shown in Fig. 1. SD map of T2* show high 

variability in the lower brain, likely due to poor shimming in this region. Conversely, SD of MTR 

shows fairly good reproducibility (mean SD = 1.59%). Fig. 2 shows the relationship between T2* 

and MTR. Strong correlations in the right (r=-0.77) and left (r=- 0.75) hemispheres were detected. 

To verify if partial volume effect affected our measures, cortical thickness was correlated with 

these measures and showed low effect (r=0.14 and r=-0.09 for T2* and MTR, respectively). Fig. 3 

shows the mean values of T2* and MTR for the Brodmann regions (B1, B2, B3, B4, B43 and B44), 

sorted by T2* values. Once again, T2* and MTR are highly anti-correlated.  
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 Fig. 4 is a supplementary figure from the poster, it shows the map of Pearson’s correlation 

coefficients between MTR andT2* calculated within Brodmann areas, as well as the behiviour of 

MTR and T2* in various Brodmann areas. 

 

Figure 5-1. Mean and SD maps between the six controls for the T2* metric (left) and the MTR 

values (right). Mean maps (top) shows an increase in MTR and a decrease in T2* in the central 

sulcus.  

 

 

Figure 5-2. Linear regression between T2* and MTR vertices values. The Pearson’s correlation 

coefficient for this regression is r=-0.77.  
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Figure 5-3. Mean values of T2* and MTR across Brodmann regions with different myelin content. 

Data are averaged between the six controls. Error bars represent SD across subjects.  

 

 

Figure 5-4. Map of Pearson’s correlation coefficients between MTR andT2* calculated within 

Brodmann areas. Repartition graphs are shown for selected regions. Once again, the right-left 

reproducibility is high, however we note that correlations are slightly higher on the left hemisphere. 

Overall, we note that correlations are negative, meaning that MTR increases where T2* decreases.  
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Regions with high correlations (BA.2, BA.4, BA.6, BA.23 and BA.43) are known to be highly 

myelinated. However, the repartition graphs show slight differences amongst them, which could 

be attributed by specific features of myeloarchitecture. For example the repartition graphs for the 

anterior cingulate cortex show distinctive features, i.e., part of the anterior cingulate cortex shows 

MTR and T2* that co-vary (instead of being anticorrelated, see green square). This might be due 

to the level of tissue iron that T2* is sensitive to [1]. 

 

5.1.4 Discussion 

 Our results show within the same subjects an increase of T2* and a decrease of MTR, in 

regions that are known to be heavily myelinated (e.g., B4, B1). These trends were expected given 

the sensitivity of T2* and MTR to myelin content. However, this is the first time these two metrics 

are combined within the same subjects, providing a framework to isolate confounding parameters 

affecting T2* (iron, issue orientation, poor shimming) and MTR (B1 inhomogeneities, T1). 

Combining other metrics (quantitative T1, diffusion, T2w/T1w) within the same methodological 

framework could potentially bring more insight into cyto- and myeloarchitecture than if these 

metrics were studies separately.  
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CHAPTER 6 SUPPLEMENTARY PUBLISHED WORK : 

APPLICATIONS IN MULTIPLE SCLEROSIS 

6.1 Multivariate combination of magnetization transfer ratio and quantitative 

T2* to detect subpial demyelination in multiple sclerosis, ISMRM 2015 

 This section presents the abstract of an oral presentation investigating the ability of the 

combined contrast to detect cortical changes in MS patients, it has been presented in June 2015, at 

the conference ISMRM (after the Article 1). This presentaion won an ISMRM Mertit Award: 

Magna Cum Laude. Please note that the Tables and Figures will have the suffix 6- (i,.e. CHAPTER 

6) before their actual number, because the document formmating had to be respected. 
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Synopsis  

 We introduce a multivariate statistical framework for combining cortical sampling of MTR 

and T2* to gain specificity for mapping cortical myelin content. (i) We sampled cortical MTR and 

T2* from Freesurfer segmentation. (ii) we normalized MTR and T2* maps and corrected them for 

partial volume effect and B0 orientation. (iii) we extracted the shared myelin information using a 
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spatial independent component analysis. We demonstrate the benefits of this framework for 

separating healthy controls from subject with multiple sclerosis on the basis of cortical pathology.  

6.1.1 Target audience 

Scientists and clinicians interested to the cortex mapping related to the myelin content and applied 

to the subpial demyelination in multiple sclerosis.  

6.1.2 Purpose 

The ability to assess in vivo subpial demyelination in multiple sclerosis (MS) is motivated by 

improved correlation with functional deficits and for understanding the pathophysiology of the 

disease 1,2. In vivo detection of cortical subpial lesions, however, is challenging due to the thin 

aspect of the cortex (2-4 mm) and to the low contrast using standard clinical MR contrasts. 

Recently, T2* at 7 Tesla was shown to be a sensitive biomarker of pathology and disease 

progression associated with demyelination in the cortex of MS patients1,3. However, several 

physiological and technical confounds (i.e. iron content, blood vessels and poor shimming) may 

hamper the specificity of T2* measures. Magnetization Transfer Ratio (MTR) imaging was 

demonstrated to be sensitive to myelin content4 and cortical myelin changes in MS5,6, potentially 

being an excellent complementary measure to T2* estimation even more given that its underlying 

contrast mechanisms are different than those from T2*. Additional confounds exist that can affect 

cortical mapping studies, including (i) the effect of cortical thickness, which can introduce variable 

amount of partial volume effect, and (ii) the angle between coherently-oriented myelinated fibers 

in the cortex and the direction of the main magnetic field (B0)
7. The goal of this study was to use 

multivariate statistics to combine cortical MTR (from 3T) and T2* (from 7T) measurements, 

cortical thickness, and B0 orientation dependency measure using a surface-based analysis 

framework in order to gain specificity to subpial demyelination in MS.  

6.1.3 Methods 

Data acquisition. We recruited 6 healthy subjects (mean age=36 +/- 5 years, 3 females) and 11 MS 

patients (mean age 46 +/- 12 years, 8 females). Subjects were scanned with a 7T whole-body 

Siemens scanner to measure T2* and on a 3T scanner (Siemens TIM Trio) to measure MTR. MTR 

was not acquired at 7T due to difficulties in obtaining homogeneous B1 profile and SAR 
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limitations. Both scanners were equipped with a 32- channel coil. Parameters at 7T were: TR = 

2020 ms, TE = 6.34+3.2n [n=0,...,11] ms, resolution = 0.33x0.33x1 mm3. Parameters at 3T were: 

3D FLASH, TR/TE = 30/2.49 ms, matrix = 192x192, resolution = 1.2x1.2x1.2 mm3, with and 

without Gaussian MT pulse (7:45 min each). Data processing. T2* and MTR data were (i) 

registered to individual cortical surfaces (extracted from 3 T T1-weighted anatomical scans), (ii) 

sampled along the cortical ribbon at the mid distance between the pial surface and the white matter 

surface and (iii) registered to a common template surface (fsaverage). Cortical thickness and B0 

orientation maps were computed from the cortical surface of each subject as previously detailed7. 

Multivariate combination. First, multilinear regressions were performed using predictors of myelin 

content (MTR and T2*) and potentially confounding covariates (cortical thickness and B0 

orientation). The outputs of this step were 2 normalized maps representing the myelin-related 

information contained in MTR and T2*, and corrected for partial volume effect and B0 orientation. 

A spatial independent component analysis (ICA)8 was subsequently used to extract the shared 

myelin-related signal  

between MTR and T2*. The result was a Combined Myelin Estimation (CME) map that reflected 

the cortical myelin content of each subject with more specificity than MTR or T2* maps taken 

separately. All steps are summarized in Figure 1. Statistical analysis. General Linear Models 

(GLM) were run on a vertex-by-vertex basis to assess regions of significant differences (p<0.05) 

between controls and MS patients, for each of the following metric: MTR, T2* and CME. The 

following regressors were used: age, gender and mean cortical thickness. Specificity/Sensitivity 

assessment using Receiver Operating Characteristics (ROC) curves. Cortical regions that are 

known to be preferentially affected by subpial demyelination in MS1,2,6 were selected out of the V1 

atlas9: primary motor cortex (BA4a and BA4p), somatosensory cortex (BA1 and BA2), and pre-

motor cortex (BA6). Then, from the inter-group distributions of each metric (MTR, T2* and CME), 

the ROC curves were computed.  
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Figure 6-1. Processing steps applied to combine the cortical information of 7T T2*, 3T MTR and 

B0 orientation in order to extract a metric more specific to myelin than other metric taken 

separately.  

6.1.4 Results 

Figure 2A shows the results of the GLM performed for T2*, MTR and CME. Significant 

differences (p<0.05, not corrected) between both groups were detected in the motor cortex and in 

the frontal lobe. Figure 2B shows a zoom in the posterior primary motor cortex: BA4p (regions 

selected for the ROC analysis), illustrating the greater z-score for the CME metric (other regions 

exhibited similar large z-score in the CME map). Figure 2C represents the distributions of the 

metrics in BA4p for the controls group (blue) and the MS group (red). Figure 2D shows the 

resulting ROC curve for each metric, suggesting a potential gain in specificity and sensitivity for 

the CME map. For example, for a given sensitivity of 60%, the specificity of pathological-related 

change in this cortical region is 53%, 40% and 66% for MTR, T2* and CME, respectively. Figure 

3 shows the gain in specificity for other cortical regions.  
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Figure 6-2. A. Overlay f the GLM significance maps averaged on the mid-cortical surface. B. Zoom 

in the lower precentral gyrus (part of BA4). C. Distribution of both control and MS patient groups 

in BA4p. D. ROC curves of the distributions in C.  

 

 

Figure 6-3. Specificity of the subject classification from the assessment of the subpial 

demyelination in the selected cortical regions, assuming a sensitivity of 60%.  

 

 Figure 4 and Figure 5 are supplementary figures from the actual presentation. Figure 4 

shows MTR map, T2* map and CME map, averaged across controls. And Figure 5 shows the result 

of a HC vs MS GLM performed on BA basis and using the regressors: gender, age and mean 

cortical thickness. 
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Figure 6-4. MTR map, T2* map and CME map, averaged across controls. An average decrease of 

signal between both MTR group maps is observed, which is consistent with a cortical demylination 

because MTR is proportional to myelin content. T2* is inversely proportional to myelin content, 

and as expected we observe an increase if signal. CME should be proportional to the amount of 

myelin, and again, as expected we observe a decrease of signal. All these results suggest subpial 

demyelination, but, are the observed variations significant? 
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Figure 6-5. Result of a HC vs MS GLM performed on BA basis and using the regressors: gender, 

age and mean cortical thickness. Some significant differences in prefrontal and motor, visual and 

auditory cortices are observed. We also notice a higher level of significance in LH. 

6.1.5 Discussion 

 We introduced a multivariate statistical framework for combining MTR and T2* measures 

in order to gain specificity to myelin content. We demonstrate its benefits for separating healthy 

controls from MS patients on the basis of cortical pathology. The framework is adaptable in that 

other relevant metrics such as T1 and diffusion-weighted measures can be added to the model.  

6.1.6 References 
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6.2 Multivariate combination of quantitative T2* and T1 at 7T MRI detects in 

vivo subpial demyelination in the early stages of MS, ECTRIMS 2015 

 

 This section presents the abstract of a poster presentation investigating the ability of the 

combined contrast to detect cortical changes a cohort of early MS patients (disease duration <3 

years), it has been published in October 2015, at the conference ECTRIMS.  
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6.2.1 Background and goals 

 Subpial demyelination occurs early in the course of multiple sclerosis (MS), but in vivo 

detection is challenging due to low contrast at conventional field strengths. Quantitative mapping 
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of T2* and T1 relaxation rates at 7T MRI was shown to be sensitive to cortical myelin content, and 

to cortical MS demyelination associated with clinical measures. Given that several confounds 

hamper the specificity of both metrics, we used multivariate statistics to combine cortical T1 and 

T2* maps to gain specificity to subpial demyelination in early MS. This approach has shown 

improved sensitivity to cortical myelin content in healthy subjects.  

6.2.2 Methods 

 Acquisition: In 5 healthy controls (HC, 34±12 years, 3 females) and 10 early MS patients 

(37±9 years; 8 females; disease duration≤3 years, median =1, range Expanded Disability Status 

Scale score = 0-3) we obtained 7T high resolution quantitative T2* (0.5x0.5x0.5mm3) and T1 

(0.75x0.75x0.75mm3) maps. For each subject, T1 and T2* were sampled at 25%, 50% and 75% 

depth from the pial surface. Scan parameters were: TR/ TE=3680/3.12+3.32*[1..6]ms for T2* and 

MP2RAGE sequence, double inversion gradient echo, TR/TE/TI=5000/2.93/[900 3200]ms for T1.  

 Processing: For each subject, T1 and T2* were sampled at 25%, 50% and 75% depth along 

the cortex (Pial = 0%;WM = 100%). Then, we applied a first order correction for partial volume 

effect to both metrics and a spatial Independent Component Analysis was used to extract the shared 

myelin related signal in T1 and T2* maps thus creating the Combined Myelin Estimation (CME), a 

new metric more specific to myelin than T1 or T2* separately, as previously done in.  

 Statistics: A General Linear Model (GLM), including age and gender as adjustment factors, 

was used to compare T1, T2* and CME in MS patients vs healthy controls in whole cortex and in 

selected Brodmann areas (BA). 

6.2.3 Results  

 In the whole cortex, CME was increased while T1 and T2* were decreased in MS vs HC  

(CME=47±0.8% vs 49±1.3%; T1=1727±56 vs 1654±70 ms; T2*=34.0±1.2 vs 33.0±1.1 ms). Whole  

cortex GLM of CME showed significant loss of myelin (p< 0.05), though variations of T2* and T1 

were not significant. The GLM of CME within BAs showed significant loss of myelin in sensory, 

motor (BA3, BA4, BA6) and prefrontal (BA10) areas (p< 0.05). A significant higher T1 was 

observed in frontal cortex (BA45, p< 0.05). No regions were significantly different using T2*. 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 Figure 6-6 and Figure 6-7 are supplementary figures from the actual poster. Figure 6-6 

shows CME maps averaged across groups (HC and MS). Figure 6-7 shows the result of the GLM 

comparing HC vs MS, performed on BA basis, and using the regressors: gender, age and mean 

cortical thickness. 

 

Figure 6-6. Myelin estimated maps averaged across HC and MS groups. We can visually observe 

a qualitative loss of myelin around the motor, visual and auditory cortices. Quantitatively, in the 

whole cortex, CME was decreased while T1 and T2* were increased in MS vs HC: CME=47±0.8% 

vs 49±1.3%; T1=1727±56ms vs 1654±70ms; T2*=34.0±1.2ms vs 33.0±1.1ms). 

 

 

Figure 6-7. Result of the GLM comparing HC vs MS, performed on BA basis, at three cortical 

depths. Significant loss of myelin in sensory, motor (BA3, BA4, BA6) and prefrontal (BA10) areas 
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(p< 0.05). Significantly higher T1 was observed in frontal cortex (BA45, p< 0.05). No regions were 

significantly different using T2*. 

 

6.2.4 Discussion 

 CME, a multivariate statistical framework combining quantitative T1 and T2* from ultra 

high resolution 7T scans, i) shows increased specificity to detect changes in early MS compared to 

HC, ii) supports subpial demyelination as an early event in MS, even in the presence of mild 

neurological disability. 

6.2.5 Disclosure 

 The study was funded by R01 NS078322-03  G. Mangeat: nothing to disclose.  C. 

Louapre: has received a fellowship from ARSEP foundation.  E. Harranz: nothing to disclose.  

C. A. Treaba: nothing to disclose.  R. Ouellette: nothing to disclose.  J. A. Sloane: nothing to 

disclose.  E. C. Klawiter: has received consulting fees from Biogen Idec and Mallinckrodt 

Pharmaceuticals and research funding from Roche and Atlas5d.  J. CohenAdad: nothing to 

disclose.  C. Mainero: nothing to disclose.  
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CHAPTER 7 GENERAL DISCUSSION 

 This work presented a novel approach to combine several MRI modalities sensitive to 

myelin in the in-vivo human cortex. The combination framework is based on the principle of signal 

decomposition using minimisation of gaussianity. The framework pre-processing includes a 

normalisation, a first order correction of partial volume effects and a correction to tissue orientation 

with respect with B0. The extracted components are then de-normalized in order to be able to 

perform group statistics amongst them. The gain in myelin specificity of the extracted components 

has been validated using simulations and previous histology works. The method was then applied 

on MS patients in order to study their cortical variations of myeloarchitecture. So far, two groups 

of MS patients have been studied with the above method. A classic cohort and an early cohort 

(disease duration < 3years), MS vs HC numbers were respectively 6 HC vs 11 MS and 5 HC vs 10 

MS. In both cases the combined myelin maps leads to detect significant demyelination areas in 

various cortical regions while standard metrics couldn't.  

 The choice of the MR modalities to be combined was first based on previous literature 

review demonstrating the potential of both metrics to image myelin in the cortex. Then, a deeper 

analysis of i) the mechanisms of both modalities, ii) their respective behaviour in the cortex iii) 

their mutual interplay in various cortical areas, was performed to ensure the quality of the future 

combination. This preliminary work led to a presentation of a poster at the conference ISMRM 

2014. This poster was entitled: Comparison between 7T T2* and 3T MTR in the in vivo human 

cortex. , presented in CHAPTER 5. 

 Once the relevance of the combination was demonstrated, several ideas and algorithms were 

tested to effectively extract the main information of myelin contained in both modalities. An ICA-

based algorithm was revealed to be the best compromise between robustness, reproducibility and 

calculus time. Following the development of the combination framework, and its validations, a 

scientific article was published in the journal NeuroImage: Multivariate combination of 

magnetization transfer, T2* and B0 orientation to study the myelo-architecture of the in vivo human 

cortex. , presented in CHAPTER 4. This new tool being available, its application to study MS 

patients could start. A first study comparing the ability of the combined metric to detect cortical 

demyelination relatively to standard metrics was performed. It resulted in a presentation at the 

conference ISMRM 2015: Multivariate combination of magnetization transfer ratio and 
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quantitative T2* to detect subpial demyelination in multiple sclerosis. , presented in CHAPTER 6. 

As this study revealed the benefits of the combined metric to study MS patients, a second study 

was performed in a cohort of early MS patients, for whom the cortical demyelination is more subtle. 

This study was presented at the conference ECTRIMS 2015: Multivariate combination of 

quantitative T2* and T1 at 7T MRI detects in vivo subpial demyelination in the early stages of MS. 

, presented in CHAPTER 6.  

 However, while these studies have demonstrated cogent improvements, they come with 

some limitations and points to be ideally improved. The Article 1’s discussion relates mainly of 

the interpretation and topology of the resulting myeloarchitectural map, the choice of the combined 

contrasts and the comparison with similar studies. In this section, the limitations will be pointed 

out and potential improvements will be suggested. Points below are ordered by their potential 

impact on the results. 

7.1 Choice of Atlas.  

 In this study we chose to use the atlas PALS-12 (Van Essen 2005) delineating the cortex in 

Brodmann Areas (BAs). Firstly, the methodology used to obtain this atlas is effecient, but it is 

based on only 12 normal young adults. Due to the high inter-subject variability of the cortex 

topology, it would have been preferable to have more subjects in order to derive a probabilistic 

mapping of cortical parcellation. Secondly, The PALS-12 atlas is based on structural T1-w images. 

The choice of a more quantitative metric might have helped to improve the accuracy of the 

parcellation (Lutti et al. 2014; Sereno et al. 2013). Thirdly, BAs are by definition delineated by 

different cortical organization across cortical layers (Brodmann 1909). This method classifies the 

Brodmann Atlas in the cytoarchitectural atlases, which is close, but different than the 

myeloarchitectural atlases. Some work about the myeloarchitectural parcellation of the cortex exist 

in the literature (Vogt 1911; Nieuwenhuys et al. 2014) but no quantitative atlas of the full cortex is 

provided. A solution to fix these three limitations would be to create our own atlas of the cortical 

myeloarchitecture based on the CME metric computed on several subjects. The parcellation 

method would need to be determined. An online version of such an atlas in the MNI space as well 

as in the FreeSurfer space would be beneficial for the MR community. 

 

https://paperpile.com/c/IEz485/k3EP
https://paperpile.com/c/IEz485/ef56+1orN
https://paperpile.com/c/IEz485/yBpe
https://paperpile.com/c/IEz485/qMXc+ON1R
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7.2 Histological validation 

 Our results were compared with previous histological works performed by Braitenberg 

(1962). Despite a significant similarity, it would be relevant to perform ex-vivo histology and CME 

calculation in the same brain tissue (e.g. using myelin staining or CARS microscopy). Such a study 

would give more insight on the accuracy of the CME metric and the combination model. Also, it 

would help to calibrate the CME metric and thus associate an absolute myelin content value to the 

CME. Ultimately, a histological study conducted with ex-vivo MS tissue would give information 

on the sensitivity of CME to MS cortical lesions.  

7.3 HC and MS matching 

 In both studies performed with MS patients, HC and MS group presented a mean age 

difference of 5 to 10 years. These differences are taken into account when the GLM statistics are 

performed. However, a linear dependence is assumed, which is not necessarily true. Having more 

HC and MS would firstly increase the statistical power of the group tests and secondly allow to 

better match the MS group.  

7.4 Limitations of the surface-based analysis 

 All the combination framework is implemented using cortical surfaces. As seen previously, 

surface-based analysis (SBA) presents many advantages, for example the partial volume effect can 

be minimized by taking the mid-cortical surface, the surface visualisation is fast and clear, or the 

diffuse pathology is easy to compute and represent. However, SBA also carries some limitations. 

First, when surfaces are noisy, it is quite difficult to determine the source of the noise. Does it come 

from a misregistration, from partial volume effect or from sources images? Once sampled, it is not 

obvious to assess the quality of a surface. Secondly, it is difficult to visually detect small focal 

lesions on cortical surfaces. Indeed, surfaces are often noisy and a detailed observation is not trivial. 

Thirdly, a great part of MS cortical studies are not using SBA, which makes it more difficult to 

compare results on surface space. A relatively simple way to improve these points would be to 

extend the combination framework to volumetric inputs. Thus, both surface-based and volume-

based results could be compute. As proposed earlier, CME computed in the volume space could be 

relevant to study focal cortical (and WM) lesions. The ability (sensitivity & specificity) of CME to 

detect focal lesions could thus be compared to others metrics. Moreover, the behaviour of CME 
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relatively to the various MS pathological components (demyelination, inflammation, oedema) 

could be assessed. The bigger challenge in computing CME in the volume space is that the high 

fraction of cortical voxels subject to partial volume effect could bias the result of the ICA 

decomposition. 

7.5 The choice of an ICA-based combination 

 The choice of an ICA based algorithm was motivated by the good compromise between 

robustness, calculus time, simplicity of implementation and relevance of the concept. Similar 

techniques, (e.g. PCA-based) have been tested but shown as less robust and conceptually less 

satisfying. However, others combining techniques were not considered because of their complexity 

of implementation, for example non linear ICA based algorithms or Bayesian statistics. Such 

method could be interesting to investigate if the needs and opportunity comes.  

7.6 Glial cells and MRI 

 Glials cells account for 72%  of the cortical volume and contribute to the MRI signal. 

However, the impact of glial cells variation on MRI images is still vague in the literature. The 

emphasis is often put on the contribution of neurons and myelin rather than glia. For example, 

macrophages activation could potentially be responsible of a hyperintense halo on T2* lesions (Pitt 

et al. 2010), but the mechanisms of such signal variations are still poorly understood. It would be 

of interest to better understand why does myelin is responsible for the greater part of the signal and 

so to understand why the signal drops or rises in demyelination areas. A possible option would be 

to simulate the MRI signal from a given cell composition. Challenges would be to infer the MRI 

signal from the chemical composition and the 3D structure of a tissue. But the great interest would 

be to test different hypotheses about cells interaction in lesions and thus being able to validate them 

by studying the actual MR signal.  

7.7 P-values… 

 P-value is often seen as the ultimate marker of success (or fail) of a result. Indeed, it is a 

widely accepted practice to chose a p-value of 0.05 to test a null-hypothesis and classify the result 

as  “Scientifically proven” if the observed p-value is below this threshold. However, an abusing 

use and misinterpretation of p-values lead to serious issues of reproducibility and replicability of 

https://paperpile.com/c/IEz485/1Y3i
https://paperpile.com/c/IEz485/1Y3i
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scientific conclusions, as recently reported by the American Statistical Association (ASA) 

(Wasserstein & Lazar 2016). An example of p-value misuse is to consider it as a measure of the 

probability that the studied hypothesis is true, e.g. “the probability that random chance produced 

the observed data is 0.05, so my hypothesis is 95% true.”. However, p-values only indicates how 

incompatible the data are with a specified model, but give no information on how compatible  the 

data are with a specified model. Moreover, using the value of a p-value to measure the size of an 

effect or the importance of a result is not a good practice. ASA remembers that p-values are very 

sensitives to outliers or noisy data: “Any effect, no matter how tiny, can produce a small p-value if 

the sample size or measurement precision is high enough, and large effects may produce 

unimpressive p-values if the sample size is small or measurements are imprecise”. Next, the 

selective reporting of p-values also largely contributes to science irreproducibility. Indeed, 

conducting multiple analyses of the data and reporting only those with certain p-values renders the 

reported p-value un-interpretable. ASA warns that “such techniques leads to suspicious excess of 

statically significant results in the literature and should be vigorously avoid”. Finally, it is 

important to keep in mind that a p-value does not provide a good evidence regarding a model or 

hypothesis, and a scientific conclusion should not end based only on whether a p-value passed a 

threshold or not. For these reasons, some editors (e.g. those of Basic and Applied Social 

Psychology) chose to ban p-values because of constant doubts on results only validated by p-values 

(Trafimow & Marks 2015). Alternatives proposed by ASA are, for example, to emphasize 

estimation over testing, such as confidence, credibility or prediction intervals. Also, Bayesian 

methods or false discovery rates could be better tools to assess the size of an effect or whether an 

hypothesis is correct. 

 As seen above, statistics offers powerful tools to analyse and interpret the data; however, 

to maintain scientific credibility, it is important to remember that "with great power comes great 

responsibility”. 

 

  

https://paperpile.com/c/IEz485/uQ7u
https://paperpile.com/c/IEz485/RUOy
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CHAPTER 8 CONCLUSION AND RECOMMENDATIONS 

 The goal of this work was to develop a novel approach to combine several MRI modalities 

sensitive to myelin in the in-vivo human cortex. The rationale was to extract the shared source of 

signal, assumed to be an indicator of myelin content. The framework developed is based on the 

principle of signal decomposition using minimisation of gaussianity. The gain in myelin specificity 

of the extracted components has been validated using simulations and previous histology works. 

Thereafter, the method was applied on MS patients in order to study their cortical variations of 

myeloarchitecture. Two groups of MS patients have been studied. A classic cohort and an early 

cohort (disease duration < 3years). In both cases the combined myelin maps detected significant 

demyelination areas in various cortical regions, better than conventional metrics.  

 Until now, many studies or conferences speakers have suggested the idea to combine 

several MR modalities, because they saw the potential benefits. However, the literature presented 

a lack of actual combination framework, applied to structural MR modalities. Some “tricks” 

already existed, such as dividing T1-w by T2-w, but their relevance was questioned. Moreover, a 

more specific tool was needed to study the fine details of cortical disease progression in MS 

patients. Hence, this work has a double impact: improving studies related with in-vivo cortical 

myeloarchitecture, and suggesting a novel combination approach adaptable to various others MR 

modalities.  

 My contribution to this work is expressed by the framework development, the study of 

feasibility and analysis of the results. I also developed the scripts to pre-process MTR data and I 

conducted the analyses involving groups of MS patients. While I have been involved in subject 

scanning, scheduling, surfaces reconstruction and T2* pre-processing, the greater part has been 

performed by collaborators.  

 Compromises between time, complexity and relevance had to be taken. Hence, 

improvements could be done on various aspects of the methodology. My recommendations, 

ordered by relevance, are: choosing or building an accurate atlas of the cortical myeloarchitecture, 

validate and calibrate CME values with histological measurements (e.g. staining or CARS 

microscopy), investigate the relevance of the combination in volume-based analysis, investigate 

the potential benefits of a bayesian approach, and be careful with the statistics.  



109 

 

In addition to technical improvements of the method, future work investigating the 

hypothetic interplay between GM and WM pathological features of MS would be of great interest. 

The last study I have been working on explores MS in this direction, by using tractography methods 

to assess the connections between cortical areas and the CNS. One of the main reasons I am excited 

to pursue this study is because it will give me a chance to work with a broad range of scientific 

topics, including diffusion MRI and graph analysis. I hope that by making my research more 

interdisciplinary I will be able make a significant contribution to science. 
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APPENDIX A – ARTICLE 1 SUPPLEMENTARY MATERIALS 

 This appendix presents the supplementary materials of the ARTICLE 1 (CHAPTER 4). 

  

 

S1: Mathematical derivation of the B0 orientation model we used. 

Starting from the model presented in (Cohen-Adad et al., 2012; Lee et al., 2011): 

𝑅2
∗ = 𝑐0 + 𝑐1𝑠𝑖𝑛(2𝜃 +  𝜙)  

 

We can split the sin function as follows: 

𝑅2
∗ = 𝑐0 + 𝑐1𝑠𝑖𝑛(2𝜃)𝑐𝑜𝑠(𝜙) + 𝑐1𝑠𝑖𝑛(𝜙)𝑐𝑜𝑠(2𝜃) 

 

Now we can define the new fitting variables: 𝛼1 = 𝑐1𝑐𝑜𝑠(𝜙) and 𝛼2 = 𝑐1𝑠𝑖𝑛(𝜙), which are mathematically 

orthogonal. We can now use the following function to fit the model: 

 𝑅2
∗ = 𝑐0 + 𝛼1𝑠𝑖𝑛(2𝜃) + 𝛼2𝑐𝑜𝑠(2𝜃), with 𝑐0, 𝛼1 and 𝛼2 the fitting parameters. 

 

To obtain a  model as a function of 𝑇2
∗: 

 𝑇2
∗ =

1

𝑅2
∗ =

1

𝑐0 + 𝛼1𝑠𝑖𝑛(2𝜃) + 𝛼2𝑐𝑜𝑠(2𝜃)
 

⇔   𝑇2
∗ =

1

𝑐0
[

1

1−𝑋
] With  𝑋 = −𝛼1𝑠𝑖𝑛(2𝜃) − 𝛼2𝑐𝑜𝑠(2𝜃) 

 

If we keep the first order of the Taylor series, we obtain: 

 𝑇2
∗ =

1

𝑐0

[1 + 𝑋]𝑂(𝑋2) 

⇔  𝑇2
∗ ≃

1

𝑐0

[1 − 𝛼1𝑠𝑖𝑛(2𝜃) − 𝛼2𝑐𝑜𝑠(2𝜃)] 

⇔  𝑇2
∗ ≃ 𝑎 + 𝑑 𝑠𝑖𝑛(2𝜃) + 𝑒 𝑐𝑜𝑠(2𝜃) With a, d and e the fitting parameters. 

 

Hence, the B0 orientation dependency rearranged in a linear form is a sum of both terms 𝑑 𝑠𝑖𝑛(2𝜃)and 

𝑒 𝑐𝑜𝑠(2𝜃). The sum of these terms, plus the constant term of the multilinear model, are considered as a first 

order correction of the fibers orientation effect. 

https://paperpile.com/c/6Dql4x/bM6vD+MwpQS
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S2 is a proof-of-concept of “shared information extraction” using an ICA. The goal is to extract the common information contained 

in two (or more) images, called here “Measurement”. A measurement represent an actual metric that we may want to use in order to 

measure a physical entity (For example, we may want to acquire an MTR image in order to study the myelin content of the brain). 

A measurement is a combination of our physical entity and confounding factors (which can be physiological and/or due to the 

measurement device). Here, we started from a reference image (ground truth) and we added different distributions, intensity and 

shapes of noise in order to simulate different potential measurements. Then, we used an ICA algorithm in order to extract the shared 

information between both measurement, and then plot the final estimation of the reference image. We finally assessed the 

improvement by comparing the correlation between the ICA’s result and the actual reference image and the correlation between the 

measurements and the reference image. 

(A) shows an example of simulated measurements, made from the reference image and two different noise distribution; and the result 

of the ICA’s estimation. (B) shows the improvement if the ICA’s estimation for different types of noise distribution added to the 

measurements. Each experiment has been repeated 10,000 times. 
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S3.  Lateral view of the the myeloarchitectonic atlas of Nieuwenhuys et al. (Nieuwenhuys et al. 2014), as well as a lateral inflated 

and gyrified views of the mean CME map (left hemisphere). 
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S4. Inflated medial and lateral view of T2*, MTR, Cortical thickness, B0 orientation, ME_MTR, ME_T2* and CME maps plotted 

with a linear colormap. No positive threshold was applied. The blue color corresponds to negative values (i.e., extreme values that 

go beyond the range that was applied to normalize myelin values). 
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S5. Individual subject CME maps, plotted with a linear colormap in medial and lateral views. No positive threshold was applied. 

The blue color corresponds to negative values (i.e., extreme values that go beyond the range that was applied to normalize myelin 

values). 

 


