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RÉSUMÉ

Chaque phase du processus de soins en radiothérapie se compose de plusieurs étapes. Le
patient est d’abord référé au centre de radiothérapie. Après une consultation avec le médecin,
un scan permettra de délimiter les contours de la tumeur à soigner afin d’établir le plan de
traitement. Les doses sont calculées par des dosimétristes et ensuite validées par le médecin.
La phase de prétraitement commence donc par la consultation avec le médecin et se termine
lorsque le traitement en tant que tel peut commencer. Dans cette étude, notre objectif est de
minimiser la durée de la phase de prétraitement.

Bien que plusieurs ressources (humaines et matérielles) soient impliquées dans la phase de
prétraitement, nous nous concentrons dans ce projet sur les médecins. En effet, à chacune
des étapes du prétraitement le médecin est impliqué et doit donner son aval avant de passer
à l’étape suivante. Notre objectif est de déterminer un horaire cyclique et hebdomadaire des
tâches à affecter aux médecins, dans le but d’améliorer le flux des patients et de réduire la
durée de la phase de prétraitement des patients. Bien que cet objectif soit primordial, nous
incluons la satisfaction des médecins quant au choix des tâches affectées chaque jour lors de
l’élaboration de l’horaire.

Le défi de ce problème réside dans l’incorporation d’éléments incertains (tels que l’arrivée
des patients au centre de radiothérapie et leur profil). L’horaire des médecins est identique
semaine après semaine tandis que la distribution de l’arrivée des patients varie au courant de
l’année. Deux types de patients sont traités par le centre : les patients curatifs et palliatifs.
Ces patients n’ont pas le même objectif de traitement, et surtout n’ont pas les mêmes délais
d’attente.

Afin de résoudre ce problème nous avons développé une méthode de recherche Tabou basée
sur trois types de mouvements. Dans un premier temps nous validons la performance de notre
algorithme en nous basant sur des instances déterministes. Nous montrons qu’en moyenne,
notre méthode est à 0.67% de la solution obtenue par CPLEX dans un temps de calcul rai-
sonnable. Dans un deuxième temps nous incluons les paramètres stochastiques du problème.
La fonction d’évaluation du coût des mouvements dans l’algorithme tient désormais compte
du fait que l’arrivée et le profil des patients ne sont pas connus d’avance. Nous montrons que
l’horaire obtenu par notre algorithme est de meilleure qualité que celui utilisé en pratique
sur une cinquantaine de scénarios générés.
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ABSTRACT

Patients are interacting with many different types of healthcare resources. At the same time,
new technologies in laboratories, radiology departments and surgeries have increased the
number of procedures in diagnosing and curing diseases. Due to financial issues, healthcare
organizations are trying to provide the best quality services with reasonable cost by improving
the utilization of existing resources. The variability in demand and uncertainty in treatment
as well as test duration can cause situations that some resources may not be available at
the time they are required which create bottlenecks. Various factors, such as the lack of
physical capacity, staff, proper scheduling method, equipment, supplies and sometimes even
information, can cause bottlenecks which result in a delay for patients who are receiving the
treatment.

According to the Canadian Cancer Society reports, every three minutes one person is di-
agnosed and every seven minutes one person dies from cancer, Canadian Cancer Society
(2013). Besides, long waiting times for radiotherapy treatments can cause serious effects on
the treatment process. In Quebec, the waiting time for radiation oncology (the time between
the patient becomes ready for the treatment and the starting day of treatment) is 4 weeks,
Ministère de la santé et des services sociaux (2010). However, time has a major impact on
the treatment process and delay in starting radiotherapy has negative effects on treatment
progress. The optimal use of existing resources along with keeping the quality of treatment
can be the best possible option. In cancer facilities and radiotherapy centers, the sooner
the disease is recognized and the treatment is started, strengthen the chance of success in
treatment. Since a patient is referred to a radiotherapy center till the start of the treatment,
the patient should go through a sequence of tasks. Therefore, reducing the time for the
pre-treatment phase becomes crucial, which again explains the importance of this study in
making the patient ready for the treatment, thus shortening the pre-treatment phase to less
than a week.

The objective of this study is determining a task schedule for physicians in a radiotherapy
center. Attempts were made to find a scheme for physicians in order to minimize the pre-
treatment phase for patients, which would help them to start their treatment earlier by
preventing physicians from being bottleneck. Satisfaction of physicians was also considered.
To reach this objective, some uncertainty items such as arrival rate of patients and their
profiles were considered.

A meta-heuristic approach, Tabu Search algorithm, was developed and then compared with
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two mathematical models, one based on patterns and the other based on tasks of physicians.
Due to the size of the problem and different conditions, either task-based model or pattern-
based one could be used. It is shown that the method developed in this project is compatible
with different situations. In addition, two heuristic approaches were developed based on
physicians’ tasks.
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CHAPTER 1 INTRODUCTION

A medical procedure to a patient often includes sequences of tasks performed by different
individuals. Each task is in combination with equipment, supplies and specialized staff. The
movement of patients through different departments in a healthcare center is a part of the
patient flow, where long waiting lists, uncertainty and emergency admissions are common.
An efficient and coordinated patient flow would result in improving the quality of treatment,
shortening hospital lengths of stay and decreasing wait times for patients. Patient flow has
been defined in different settings. For example, in an emergency department, the efficiency of
patient flow is measured where a patient is treated immediately after arrival while in a walk-in
clinic the patient can be seen in 30 minutes. In Canada, reducing the waiting time of patients
to receive services and improving the availability of healthcare resources has received more
attention. However, medical centers are challenged to provide highly complex and specialized
services to ensure that patient flow will be smoothed from one step to the next.

Although a fast service with few disruption result in an effective patient flow, various chal-
lenges exist in patient flow optimization, (i.e., different resources, uncertainty in patient
arrival, profile and service). Patients are interacting with different types of healthcare profes-
sionals and services, along with new technologies in laboratory, radiology and surgeries that
increased the number of tests and procedures. Even though a resource may not be available
at the time it is needed due to variability in demands and uncertainty in different factors
(i.e., treatment and test duration), healthcare organizations are trying to provide high quality
services with utilization of existing resources and eliminating waste and time. These bottle-
necks and disruptions in patient flow can cause a delay in patients’ treatment, poor patient
satisfaction and even delays in the start or completion of medical treatment. Various items
can cause bottlenecks, such as : physical capacity, staff, equipments and supplies, information
and scheduling. The managing system in healthcare focuses on making a balance between
keeping the capacity investments as low as possible and handling the patient demand without
experiencing bottlenecks.

This study focuses on patient flow in cancer treatment centers, since aside from various needs
for medical services, the number of patients diagnosed with cancer has increased significantly.
In Canada, cancer is the major cause of death and almost half Canadians experience this
disease in their lifetime. Figure 1.1 represents different causes of death in Canada and shows
cancer as a leading one.

Based on Canadian Cancer Society reports, every 3 minutes one patient is diagnosed and
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Figure 1.1 Selected causes of death and their associated potential years of life lost (PYLL),
Canada, 2010.

every 7 minutes one patient dies from cancer and besides to the few resources, it is crucial
to ensure that everyone has good access to cancer care facilities, Canadian Cancer Society
(2013). Surgery, chemotherapy and radiation therapy are three most effective and standard
cancer treatments. In the U.S., approximately 300,000 newly patients diagnosed with cancer
benefited from radiation therapy, American Cancer Society report (2006), and approximately
52% of cancer patients experience radiotherapy at least once in their treatment process, De-
laney (2005).

The radiotherapy treatment consists of different stages and each has different steps. Pre-
treatment and treatment are two phases of radiotherapy. In the pretreatment phase, the area
that must be treated with radiation, the doses of radiation and a treatment plan would be
defined and prepared. When a patient is referred to a radiotherapy center, before starting the
treatment, he/she needs to go through some steps, including a consultation with a physician,
a CT scan and indicating the dosage of treatment. After verifying the radiation doses, the
treatment plan can be prepared. After completing this pre-treatment phase, patients can
start their treatment.

Cancer patients are classified based on their treatment purpose and waiting list status to
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two categories of palliative and curative. The treatment for palliative patients is aiming to
relieve the pain and symptoms of cancer while in curative patients, the purpose is curing. In
cancer facilities and radiotherapy centers, time plays a significant role. The sooner the disease
is recognized and treatment is started, the better are the chances of success in treatment.
Almost all resources are a bottleneck in the patient flow of cancer patients : availability of
slots on the treatment machines, availability of dosimetrists and physicians, etc. Given the
fact that in a hospital physicians play a significant role in providing healthcare services for
patients, we focus on the physicians schedule.

In this research, the main objective is to shorten the pretreatment phase for patients who are
referred to the oncology department. Besides, attempts are made to maximize the satisfaction
and preferences of physicians on performance of tasks. We developed a meta-heuristic method
in order to propose an efficient weekly cyclic schedule for physicians in a radiotherapy center,
which is proved to perform very well compared to a commercial solver, CPLEX. It considers
uncertainty and should be easy to transfer to a cancer treatment facility.

The thesis is organized as follows. A brief review of related literature is given in the next
chapter, which is followed by the problem statement and definition in chapter 3. In chapter 4,
the methodology of solving the problem is given and it is followed by defining given instances
and results in chapter 5. Finally, the conclusion is discussed in chapter 6.
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CHAPTER 2 LITERATURE REVIEW

The objective of this chapter is to place our contribution in the context of previous works.

Management in healthcare organization has got great attention in recent years. Various
concepts have been studied in this area, either with the objective of decreasing the processing
and waiting times or decreasing the cost. Scheduling is one of the main topics that has been
studied in different contexts, specifically in nurse rostering, appointment scheduling, opera-
ting room scheduling and outpatient appointment planning, ( Burke (2004), Gupta (2008),
Cayirli (2003), Cardoen (2010)). However, to the best of our knowledge, only few works have
been done on physicians’ scheduling. A large number of rules should be taken into account in
generating a physician roster, such as the availability of physicians, the consecutive shifts or
nights, and weekend shifts that one can work. Rousseau (2002) presented a hybridization of a
constraint programming (CP) model and local search techniques in the context of physician
rostering problem based on shifts scheduling.

Our attempts are made to find a task schedule for physicians in a radiotherapy center with
maximising their preferences and minimising the patients’ pre-treatment phase at the same
time. We are proposing a meta-heuristic approach, which can be used in different situations
and helps to avoid using commercial solvers. The arrival rate of patients and their profiles
are not known in advance and has been considered through the proposing method.

The related literature can be divided into three categories of task scheduling, patient flow,
and uncertainty conditions.

2.1 Task scheduling

The physician scheduling problem may be placed in the context of job-shop scheduling which
is defined as processing a known set of jobs on a known set of machines. The goal in the
job-shop scheduling problem is to assign each job to a relevant machine by considering a
variety of conditions, Nowicki (1996).

In this problem, physicians are treated as machines and their tasks are considered as jobs.
The goal is to minimize the total length of pre-treatment time for patients.

Sawik (2000) studied the scheduling of a flexible flow line problem. In a flexible flow line,
several processing stages were separated by finite intermediate buffers. At each stage, each
product must be processed by one machine among different ones. The buffer would prevent
another product from being processed on the blocked machine. Sawik proposed a mixed
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integer programming model to find a production schedule in order to minimize the completion
time of products. Bard (2005) introduced overtime for regular shifts in a week for regular
workers and added shifts for temporary employees in the problem of adjusting the overall
schedule at USPS. A large-scale MIP was solved by a MIP solver. In order to speed up the
solution process, they used the linear relaxation solution. Assigning breaks to shifts and days
off to the temporary employees were also post-processed by heuristic algorithms. A similar
problem was also addressed by Zhang (2009) in rescheduling the equipments to adjust the
activity demands. A multi-criteria MIP was composed to three modules of : scheduling the
operations on each equipment by a multi-level lot sizing problem ; scheduling the shifts ; and
assigning the breaks to shifts.

An extensive review of genetic algorithms applied to job-shop scheduling problems was given
by Cheng (1996). They first represented the schemes proposed for job-shop problems and
then discussed different hybrid approaches of genetic algorithms which could be applied to
scheduling problems in various manufacturing systems and other combinatorial optimization
problems. A hybrid framework integrating a heuristic and a genetic algorithm (GA) was
presented by Zhou (2009) in job-shop scheduling to minimize weighted tardiness. In their
approach, for each new generation, the GA finds the first task of each machine and the
assignment of the remaining tasks was determined by the heuristic. Their attempts were to
improve the performance of a heuristic with a GA and to improve the computational efficiency
of a GA with a heuristic. They also developed a generalized hybrid framework that can solve
different job-shop problems with multi-objective scheduling problems. They concluded that
their hybrid framework performs significantly better results than either a heuristic or GA
alone.

Staff is one of vital resources in hospitals who has great impact on the quality of services
they give, so providing a flexible schedule with considering their preferences is important in
health services. However, employees’ satisfaction have been mostly studied in airline crew
scheduling, rail crew scheduling, operating room scheduling, nurse rostering and timetabling
problems.

Demassey (2005) proposed a hybrid constraint programming-based method to solve the Em-
ployee Timetabling Problem which is determining a set of work shifts to cover each activity
with a sufficient number of employees. A set of additional constraints takes into account the
preferences and qualifications of employees in assigning activities. A different cost is asso-
ciated to the priority of each employee for the same assignment which is considered with
the coverage costs in a single objective function. The ability of constraint programming in
modeling the complex constraints is its advantage.



6

In this thesis, the preferences of physicians is defined as their priority of performing tasks on
days over the planning horizon.

A review of literature on different contexts and approaches to improve the patient flow is
also given in the following.

2.2 Patient flow

In our study, the physicians’ tasks or stages of pretreatment phase are the steps of patient
flow that should be smoothed. We had a look into the literature to find out how others took
this context into account.

Improving the patient flow has been studied in various contexts. For example, the influence of
different factors on patient flow in the emergency department was evaluated by Miro (2003).
They broke down the main reasons of remaining each patient at ED into four categories, ED
internal factors, hospital interrelation factors, factors related to hospital and factors related
to neither of ED and hospital. They measured the number of patients, whom has been arrived
between three hours, waiting to be seen. They concluded that the ED effectiveness can be
determined by some ED and hospital internal factors.

Health care would be provided as either inpatient or outpatient systems. Inpatient care is
defined as providing health care for patients who need to stay at a hospital for the duration
of their treatment while in an outpatient clinic patients are treated on the day that they visit
the clinic.

Hashimoto (1996) investigated the influence of staff number on the patients’ length of stay in
an appointment-based outpatient clinic through a computer simulation. It can be concluded
from their study that increasing the number of providers in any group, increased the patient
total time in clinic. For example, when the number of physicians working during a session
increased, because the number of other servers was not proportionately increased, patient
waiting time to see those servers would be increased. Thus patients spent more time in the
clinic on the average. A discrete-event simulation model on physician’s activities, is developed
by Cote (1999) to examine the impacts of examining room capacity on the patient flow in an
outpatient clinic. Their application developed for known paths for patient flow and necessary
service distributions which proved the fact that simulation models cannot only apply on
large projects but also its application on a much simpler and straightforward system can
express meaningful analyses. Chand (2009) developed a simulation model to reduce both
the patient wait times and physicians’ finish times in an outpatient clinic. They believe that
identifying the sources of variability at different stages can significantly improve the process
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performance. Two stages of registration and see-the-Doctor were considered in their patient
flow process in which long wait times and variability can occur at any stage. However, their
system could not achieve a steady state.

Lummus (2006) applied lean principles on a small medical center by a value stream mapping.
They draw a set of scheduling guidelines to decrease patient wait time and increase patient
throughput. At the current state of the center, patients are being scheduled by a scheduling
department and pushed to a scheduling list, despite the current situations of the offices.
Hence, the patients waiting time to be processed vary extremely from each other. This would
even get worse, if a physician is called from the emergency department. They suggested some
modifications which they summarized as :

1. "A ‘pass-through’ lane must be available to handle acute cases that arrive, without
adding significant work-around steps to the support staff."

2. "The physician’s time is similar to a hotel room or airline seat – once it has passed
without creating revenue – that potential revenue is lost."

3. "All in-process inventories must be processed by the end of the day."

4. "The time with the physician is by far the bottleneck in the system, while the average
time of a 15 minute cycle is viewed as highly accurate."

A discrete-event simulation was developed by White (2011) to examine the influence of
integrated scheduling and capacity allocation policies on reducing patient waiting times and
improving resource utilization. Two decision factors of appointment scheduling rules and
exam rooms allocation have been considered int their study. As a conclusion, they concluded
that their given policy perfectly optimized the resources by minimizing waiting time and
mean clinic duration among maximizing physician utilization.

Besides to reducing patients’ waiting time, some other factors has been also considered as
a measurement for patient flow. Abraham (2010) studied two clinical and one non-clinical
department of an academic hospital to evaluate the socio-technical requirements in order to
improve the patient flow. They identified ineffectiveness of interdepartmental interactions,
information handoffs and information technologies as the three major challenges in coordi-
nating the patient transfer process.

A method was proposed by Pickard (2007) to evaluate the impact of staffing and demand
management on patient flow. They predicted the number of staff needed for the near future
by adding the patient progress in scheduled admissions and a prediction of unscheduled ones,
which would effectively manage the staff.

For improving the patient flow in cancer care facilities, Santibáñez (2009) analyzed the si-
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multaneous impact of several operational characteristics of a cancer care outpatient service
by simulation. They presented the important factors in the appointment process that can
help reduce patient wait time and improve resource utilization. Besides, radiotherapy pro-
cess consists of several stages, therefore, Kapamara (2007) studied the treatment process and
identified the the bottlenecks in the process using discrete-event simulation. Proctor (2007)
also identified and quantified the factors that affect the number of days since the patient is
referred to a radiotherapy center till the date the patient receives the first treatment. A simu-
lation model was developed after a series of discussions and interviews with staff to represent
the way a patient moves from a referral till starting the treatment.

By opposition to the presented studies, we want to improve the patient flow through more
efficient physician task scheduling. However, healthcare processes consists of many variability
items. A state of arts is presented in the following section to identify uncertainty factors and
the proposed solutions for them.

2.3 Uncertainty situations

In real world problems, many factors are not fixed and known in advance. We review the
literature to identify uncertainty factors in different problems and find out how others dealt
with this problem. The concept of stochastic parameters has been studied in different areas
through simulation and optimization methods. In the following subsections, different solution
approaches are explained.

2.3.1 Simulation methods

Jongbloed (2001) showed how to compute a prediction of the arrival rates by proposing a
queueing model for a call center with unknown arrival rates. They applied their model to the
call centre of a Dutch insurance company.

A dynamic task scheduling scheme is proposed by Kong (2011) for virtualized data centers
with uncertain workloads in which a two-objective optimization of the availability and res-
ponsiveness performance is modeled through a fuzzy prediction method. They concluded that
their dynamic task scheduling algorithm can improve the total availability of the virtualized
data centers and their responsiveness performance.

Vermeulen (2008) proposed an adaptive scheduling method with dynamic capacity usage
for scheduling of outpatients appointments. They simulated the stochastic arrival process
considering busier periods of weeks by means of a random walk. In their multi-agent approach
the local department scheduling objectives was represented by departments agents whom were
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interacting with patient agents in coordinating scheduling of patient appointments.

2.3.2 Optimization methods

The literature in radiotherapy scheduling is mainly focused on the short term planning and
mainly on specific parts of the care process, such as appointment scheduling on linac ma-
chines, which customize high energy x-rays to destroy cancer cells. Legrain (2014) developed
a hybrid method combining stochastic optimization and online optimization to schedule pa-
tients on these machines. Conforti (2008) developed an optimization model to determine an
efficient outpatient scheduling in a radiotherapy department. They evaluated their model
on randomly generated instances and a real case study. Their constraint-based model for
optimizing the sequencing of outpatients in radiotherapy treatment planning maximized the
number of patients that begin the radiotherapy treatment in dynamic environment where fu-
ture arrivals are considered continuously over the week. Conforti (2011) extended the models
proposed in Conforti (2008) by considering patient availability.

A linear programming model solved by Saure (2012) through column generation to obtain
an efficient allocation of available treatment capacity while reducing wait times in radiation
therapy units. In their approach, an approximated value of linear programming formulation
of Markov decision process is estimated and then column generation would solve its dual
which gives an approximate optimal booking policy.

2.3.3 Simulation - Optimization methods

A two-stage algorithm was developed by Robbins (2008) in scheduling call centers with
uncertain arrival rates. Using a constructive heuristic, the first schedule is developed in less
than a minute and then improved by a simulation-based optimization approach. They claimed
that the rapid scheduling process helps the managers to have a quick evaluation of multiple
schedules. However, they could not have any claim on optimality, since their approach is
based on heuristics.

A simulation-optimization approach is presented by Klassen (2009) to determine a scheduling
of appointments in stochastic environment. Contrary to its similar studies, their approach
provide more flexibility over different problem settings. In the simulation part, for each candi-
date solution, they calculated the relevant statistic and passed it to a heuristic to be optimized
and the solution obtained through the heuristic, would be returned to the simulation to be
evaluated.

De Angelis (2003) also studied the integrating of simulation and optimization in a transfusion
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centre. They used the simulation tool to generate observations and the optimization is then
used to identify the optimal estimation methods. In case that the gap between the solution
value of the optimization model and the simulated one was large, they would set a new
configuration and produce a more accurate estimation. The combination of estimation and
optimization makes their approach more effective in finding good configurations.

2.3.4 Heuristics

Bianchi (2009) presented a survey on meta-heuristics approaches and their application to
stochastic combinatorial optimization problems.

A TS algorithm for solving the vehicle routing problem, was proposed by Gendreau (1996), in
which they considered stochastic demands and customers. They developed an approximation
objective function to use the evaluation of potential moves in their objective function. They
solved the VRPSDC problem as a two stage objective in which they evaluated the expected
value of the second stage objective function associated with a first stage solution, xν , by
T(xν) for kth route of xν . T(xν) is defined as :

T (xν) =
mν∑
k=1

T k(xν)

where mν is the number of routes at iteration ν, T k(xν) was defined as the expected cost
of route k in which the probability of the demands are considered. The proposed TS was
successful to solve instances up to about 50 customers.

The uncertainty in TS has mainly studied over VRPSD and TSP problems. In Bianchi (2004)
and Bianchi (2006) a simple TS algorithm has been compared with other meta-heuristics
(ACO, EC, SA, and Iterated Local Search) and concluded that TS obtained results better
than ACO and SA, but worse than EC.

The uncertainty has been solved through various methods in scheduling problems, however,
to the best of our knowledge, it has not been studied through the Tabu Search method.
We are applying the concept of uncertainty in task scheduling problem in the procedure of
proposing Tabu Search method.
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CHAPTER 3 PROBLEM DEFINITION

This chapter presents a complete description of the problem, including definition, characte-
ristics and evaluation methods.

3.1 Definition

The goal of physician scheduling problem is to find a weekly cyclic scheme for physicians of
radiation department and assigning the arriving patients to the best possible physician in
their cancer type. It means that, the number of arriving patients and their cancer type cannot
be known in advance. Figure 3.1 shows a schematic diagram of stages in the pre-treatment
phase in a radiotherapy center. However, for patients with different types of cancer, some
stages may vary.

Figure 3.1 Stages of pre-treatment phase in a radiotherapy centre.

At the arrival of a patient, a consultation will be scheduled with a physician with considering
the physician’s availability and specialization in cancer type. Then, the patient is sent to
take a CT-scan. After preparing the scan results and contouring them by the physician, a
dosimetrist would determine the doses of radiation that the patient needs. At this step, the
physician can validate the dosimetry and prepare the treatment plan, so the patient can start
his/her treatment on linacs. In this thesis, we are focusing on the pre-treatment phase. The
attempts are to decrease the time that a patient spends in this phase by determining a task
schedule for physicians with these four main tasks.
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3.2 Characteristics

The main characteristics of the physicians scheme which were considered are as follows :

— A weekly cyclic schedule is being proposed.
— All physicians should perform all tasks in a planning horizon.
— Two different categories of patients (curative and palliative) are considered.
— Each patient is assigned to one physician.
— The pre-treatment phase includes four sequential stages of Consultation, CT scan,

Scan contouring and Treatment plan.
— Each physician specified his/her priority to perform a task on different days of a week

by weighting task/day between 1-9.

In the rest of this work, each step of the patient flow is aligned with a task for the physician
in which "Consultation " is addressed as task "A", CT-Scan" as task "B", "Scan Contouring"
as task "C" and "Treatment Plan" as task "D". An example of the scheme that we are looking
for is shown in table 3.1.

Table 3.1 An example of a schedule for 4 physicians in a week.

Monday Tuesday Wednesday Thursday Friday
Phys. 1 B C A A D
Phys. 2 A B B C D
Phys. 3 B D C B A
Phys. 4 C D A B C

3.3 Mathematical models

In order to evaluate the quality of our proposing method and compare its results with the
optimum solution, two mathematical models are presented as a solution of this problem to
evaluate it in different situations. Due to the characteristics of this problem, either of the
models can be used. Some parameters in these two models are similar.

Let I be the set of physicians, J be the set of patients and D be the set of days. Moreover, dj
indicates the arrival day of patient j and Cap is considered as the capacity of each physician
which is the number of patients each physician can accept in a week.

Each model has also some more parameters which will be explained particularly.
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3.3.1 Pattern-Based

A pattern is defined as a possible sequences of tasks for a physician in a planning horizon.
In this model, all feasible patterns were generated and each physician and arriving patient
was allocated to one of the patterns. The allocation respects the capacity of each pattern
and ensures that a patient is assigned to a pattern which has already been assigned to a
physician. Figure 3.2 represents this concept.

Physician 3

B C D A D

A C B A D

D C B A D

Patient 1

-

� @
@
@

@
@I

�
�
�

�
�	

Selected

Figure 3.2 Pattern selection

In this figure, since only the first pattern is assigned to a physician, considering the capacity
of physician for accepting patients, patient 1 can be assigned to the first pattern, therefore
the patient is assigned to physician 3.

In addition to the defined sets and parameters, P is defined as the set of feasible patterns
and for parameters, Sip is defined as the preference of physician i for pattern p and Wdjp is
defined as the pre-treatment duration time for patient j arrives on day d with pattern p.

We used binary variables as :

xip =

1, if Physician i is assigned to pattern p

0, otherwise

yjp =

1, if Patient j is assigned to pattern p

0, otherwise

The complete model can be written as :

maximize
∑
i∈I

∑
p∈P

Sipxip −
∑
j∈J

∑
p∈P

Wdjpyjp,
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The objective is divided into two parts : maximizing the weight of physicians’ preferences
and minimizing the patients’ pre-treatment duration.

subject to ∑
j∈J yjp ≤ Cap×∑

i∈I xip, ∀p ∈ P (3.1)∑
p∈P yjp = 1, ∀j ∈ J (3.2)∑
p∈P xip = 1, ∀i ∈ I (3.3)

xip ∈ {0, 1}, ∀i ∈ I , ∀p ∈ P (3.4)

yjp ∈ {0, 1}, ∀j ∈ J, ∀p ∈ P (3.5)

Constraint (3.1) ensures that a patient would be assigned to pattern p only if a physician has
been assigned to p with considering its capacity. Constraint (3.2) ensures that all patients are
assigned to a pattern. Constraint (3.3) ensures that all physicians are assigned to a pattern.
Constraints (3.4) and (3.5) enforce the integrality of decision variables.

This model will be denoted as model P1 in the rest of this thesis.

3.3.2 Task-based

The task-based model (denoted as model P2) concentrates on the physicians’ daily schedule.
In the following, the definition of additional sets and parameters that are used in this model
are explained.

Let T be the set of tasks. The parameters are also defined as :

Parameters :
dj : The arrival day of patient j
Sdti : Score/Preference of physician i for task t on day d.
bt : Duration of task t.

Moreover, the binary variables are defined as :

xdti =

1, if Physician i perform task t on day d

0, otherwise

yij =

1, if Patient j is assigned to physician i.

0, otherwise
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The integer variable of pjt is also defined as the completion time of task t for patient j.

The task-based model is more complicated since the schedule of physicians on each day is not
known on the arrival day of patients and minimizing the pre-treatment process for patients
depends on physicians’ schedule. The attempts are made to avoid presenting a non-linear
programming (NLP) model. Thus, the horizon is extended to 20 days which is maximum
processing time for each patient and the schedule of physicians is repeated every 5 days. In
the following the proposed model and its complete description can be found.

maximize
∑
i∈I

∑
t∈T

∑
d∈D

Sdtix
d
ti −

∑
j∈J

∑
tn∈T

(pjtn − dj)

The objective is divided into two parts : Maximizing priorities of physicians to perform tasks
on different days and minimizing the patients’ pre-treatment duration which is the difference
between their arrival day and the ending time of their last task.

subject to ∑
t∈T x

d
ti = 1, ∀i ∈ I , ∀d ∈ D (3.6)∑

d∈D x
d
ti ≥ 1, ∀i ∈ I , ∀t ∈ T (3.7)

xdti = xd+5
ti , ∀i ∈ I , ∀t ∈ T, ∀d ∈ D (3.8)∑

i∈I yij = 1, ∀j ∈ J (3.9)∑
j∈J yij ≤ Cap, ∀i ∈ I (3.10)

wdijt ≤ xdti, ∀i ∈ I ,∀j ∈ J ,∀t ∈ T , ∀d ∈ D (3.11)

wdijt ≤ yij , ∀i ∈ I ,∀j ∈ J ,∀t ∈ T , ∀d ∈ D (3.12)∑
d′∈D w

d′
ijt + 1 ≥ xdti + yij , ∀i ∈ I,∀j ∈ J ,∀t ∈ T,∀d ∈ D (3.13)∑
d∈D w

d
ijt ≤ 1, ∀i ∈ I,∀j ∈ J, t ∈ T (3.14)

pjt ≥ dwdijt + bt, ∀i ∈ I,∀j ∈ J,∀d ∈ D, ∀t ∈ T (3.15)

dwdijt1 ≥ djw
d
ijt1 , ∀j ∈ J,∀d ∈ D, t1 ∈ T (3.16)∑

i∈I
∑
d∈D dw

d
ijtk>1

≥ pjtk−1 , ∀j ∈ J,∀tk>1 ∈ T (3.17)

xdti ∈ {0, 1}, ∀i ∈ I , ∀t ∈ T, ∀d ∈ D (3.18)

yij ∈ {0, 1}, ∀i ∈ I , ∀j ∈ J (3.19)

Pjt ∈ N, ∀j ∈ J , ∀t ∈ T (3.20)

Constraint (3.6) ensures that only one task t is assigned to a physician on each day. Constraint
(3.7) ensures that all tasks are performed by all physicians during a week. Constraint (3.8)



16

repeats the same schedule every 5 days for all physicians. Constraint (3.9) assigns all patients
to a physician and constraint (3.10) tries to satisfy the capacity of each physician in accepting
patients. In order to determine the pre-treatment days, there is a need to understand which
patient is assigned to which physician as well as the task that the physician is performing on
each day. An auxiliary binary variable is declared as wdijt which takes value 1, when physician i
performs task t for patient j on day d. wdijt helps to track patients’ assignments and physicians
schedules. Constraints (3.11), (3.12) and (3.13) are tracking this issue. These three constraints
ensure that wdijt takes value 1 only when xdti and yij equal to 1. Constraint (3.13) allows to
find all d ∈ D that satisfy the constraint. Besides, constraint (3.14) ensures that each task is
performed once for each patient. Thus, the best d ∈ D will be chosen.

Now that we are tracking the schedule of physicians with wdijt, dwdijt denotes the day that task
t is performed for patient j. Constraint (3.15) finds the ending time of task t for patient j.
Constraint (3.16) ensures that the ending time of the first task for each patient is considered
after his/her arrival day and constraint (3.17) ensures that the ending time of tasks are based
on their order. Constraints (3.18)-(3.20) enforce the integrality of decision variables.

3.4 Extension

So far we explained the case for one block per day shift for physicians. However, doing the
same activity during a day may not be desirable. Moreover, a patient needs to wait to be
processed the next task until the following day. Thus, in order to smooth the flow of patients
and help them to be processed as soon as possible, the number of time slots per day can be
increased. A physician can perform different tasks during different time slots in a day and
his preferences may be better satisfied. Two time slots per day are considered for physicians ;
i.e., mornings and afternoons. This would also help reduce the risk of passing the deadlines.
Table 3.2 shows an example for this kind of scheme for four physicians.
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Table 3.2 An Example of a Schedule for 4 Physicians with two tasks per day.

Monday Tuesday Wednesday Thursday Friday
A.M. P.M. A.M. P.M. A.M. P.M. A.M. P.M. A.M. P.M.

Phys. 1 A A C B D D A B C D
Phys. 2 D A A B C B D A D C
Phys. 3 B D B A A A C C D B
Phys. 4 C B D C B C B D A A

The only change in model P2, is in constraint (3.8) which would become as follows :

xdti = xd+10
ti , ∀i ∈ I,∀t ∈ T,∀d ∈ D (3.21)

It ensures that for every 10 time slots (5 days), the schedule will be repeated.
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CHAPTER 4 METHODOLOGY

Two simple constructive heuristics (Hrandom and Hgreedy) and an improving Tabu Search
algorithm are presented in this section to determine a schedule for physicians in a radiotherapy
center. The main goal is minimizing the pre-treatment process of cancer patients. In the
following, each approach can be found in details.

4.1 Heuristic approaches

In this section, heuristic approaches based on physicians’ tasks are being proposed. The
problem consists of two parts, (1) assigning tasks to physicians and (2) assigning patients to
physicians.

All main characteristics of the problem have been considered for constructing the heuristics.

4.1.1 Heuristic Hrandom

The problem solving procedure was started with a simple iterative heuristic. It starts from
a feasible initial solution. The initial solution consists of assigning tasks to physicians and
assigning patients to physicians. The former one was constructed completely randomly while
the latter one was constructed by a heuristic criterion. Each patient is assigned to a physi-
cian who performs the first task on his/her arrival day by considering the cancer type and
the capacity of physicians to accept patients. After generating the initial solution, at each
iteration, it finds the best possible movement for all physicians by swapping their tasks in a
planning horizon. The pseudo-code of this heuristic is presented in algorithm 1.
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Algorithm 1 Hrandom algorithm

1: procedure Hrandom

2: Generate a random initial solution ;
3: Calculate initial cost ;
4: for it < Number of iterations do
5: for i < Number of Physicians do
6: Find the best possible Movement by swapping the tasks in the horizon ;
7: end for
8: Apply the best move ;
9: Update cost ;

10: end for
11: end procedure

The initial solution has a great impact on the quality of solution, thus we tried to find out
the performance of other heuristics and used a constructive initial solution which is described
in the Hgreedy section.

4.1.2 Heuristic Hgreedy

In this heuristic, we constructed the initial schedule based on tasks’ duration and order.
However, the initial assignment was constructed similar to the heuristic Hrandom. Each patient
is assigned to a physician who performs the first task on his/her arrival day. The idea is
changing the repeated task at each iteration. In the simple form of the problem, since the
planning horizon is five days and we have four main tasks, one task is repeated for each
physician. In an iterative procedure, we checked all possible replacements for this repeated
task (T) and chose the best one. This procedure presented in algorithm 2.
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Algorithm 2 Hgreedy algorithm

1: procedure Hgreedy

2: Generate initial solution ;
3: Calculate initial cost ;
4: for it < Number of iterations do
5: for i < Number of Physicians do
6: T ← Find the repeated task ;
7: Find the best possible replacement for task T ;
8: end for
9: Apply the best move ;

10: Update cost ;
11: end for
12: end procedure

However, heuristic approaches usually get stuck in a local optimum and stop improving after
some iterations. In order to help it look in to all neighborhoods to find the optimal solution,
we applied the Tabu Seach method on the problem. In the following, the complete description
of the Tabu Search procedure can be found.

4.2 Tabu Search

Tabu Search method is basically an iterative procedure, which starts from a feasible initial
solution and moves step by step in the feasible space to reach a better solution in a neigh-
borhood. Since a risk of cycling in finding a better solution still exists, a procedure should
prevent the modifications which brings back the procedure to previously visited solutions.
However, sometimes it can be useful to search from an already visited solution in another
direction. In order to forbid cycling in solutions, a Tabu list is considered ; it contains recently
visited solutions, and forbids revisiting them for a specific number of modifications. Based
on the problem, different strategies can be applied to search through neighborhood solutions.
To apply the Tabu Search method to our problem, an initial solution was first generated,
which is separated into two parts, assigning tasks to physicians and assigning patients to
physicians. Similar to the heuristic algorithms, we generated a complete random schedule for
the physicians and assigned patients to physicians who perform the first task on their arrival
days. Moreover, three different kinds of modifications were considered to improve the solution
and move to the next solution. In movement type 1, we tried to find the best sequence of
physicians’ tasks by swapping the tasks assigned to them in the initial solution from one day
to another in the planning horizon. Figure 4.1 shows this type of movement.
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C D B A C

B C D A B

A B C D A

-

Figure 4.1 Movement "1" - Swapping.

In this example, the schedule of 4 physicians is given and possible sequences of tasks evaluated
by swapping the current schedule. For example, after evaluating the swap of all tasks for
all physicians, it is concluded that swapping ’A’ and ’B’ for physician 3 gives the best
improvement in the cost. Therefore, the swap of ’A’ and ’B’ is applied and the solution is
updated.

In movement type 2, for all physicians, we found the repeated task and changed it with tasks
visited once in a planning horizon and found the best combination of them. This movement
is shown in figure 4.2.

Phys. 1

Phys. 2

Phys. 3

Phys. 4

?

?

D A B C D

C D A B C

B C D A B

A B C D A Phys. 1

Phys. 2

Phys. 3

Phys. 4 D A B C D

C D B A C

B C D A B

D B C D A

’B’ OR ’C’ OR ’D’

’A’ OR ’B’ OR ’D’
-

Figure 4.2 Movement "2" - Changing repeated task.

As shown in figure 4.2, for each given schedule to physicians, one task is repeated. The
improvement of cost will be evaluated by replacing the repeated task with the remaining
ones. In this example, task ’A’ for physician 1 will be replaced with task ’D’.

These two movements, helped to improve the schedule and found the best scheme for phy-
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sicians. We still need to improve the assignment of patients to physicians. Thus, our third
movement is changing the assignment of patients considering physicians capacity and spe-
cialty until finding the best assignments. Figure 4.3 represents movement type 3.

Patient 1.
Patient 2.
Patient 3.

.

.

.
Patient n.

-

-

-

-

Phys. 2
Phys. 4
Phys. 6

.

.

.
Phys. 1

-

-

-

-

Phys. 1 OR 3 OR 4 OR ... m
Phys. 1 OR 2 OR 3 OR ... m
Phys. 1 OR 2 OR 3 OR ... m

.

.

.
Phys. 2 OR 3 OR 4 OR ... m

Figure 4.3 Movement "3" - Changing Assignment.

Figure 4.3 shows that the improvement of cost by changing the current assignment of patients
with the rest of physicians would be evaluated through movement 3.

The advantage of proposed movements is that they search into a feasible space and present
a new feasible solution. Although each one is effective, the combination of movements would
have a greater impact and we need to propose an efficient strategy for that. Preliminary
tests show that movements ”1” and ”3” have the greatest impact on the solution and the
best results can be derived when the schedule and assignment are improved simultaneously.
Therefore, we started with the ”Movement 1” to improve the schedule and we applied ”Mo-
vement 3” to improve the assignment, immediately after each iteration with no improvement
in the cost.

There might be no improvement in cost after some iterations. Thus, a diversification strategy
is required to encourage the method to search into the unvisited regions of the search space.
Thus, after ω iterations, which had no improvement in the cost, we applied ”Movement 2”
as a diversification strategy. After evaluating each possible move and accepting the best one,
the Tabu List will be updated and the accepted move will be forbidden for a specific number
of iterations. However, sometimes the forbidden move may help to improve the best solution
found update to date. Therefore, this move will be accepted through the aspiration criterion.

In the following, one can find a pseudo-code for the complete process.
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Algorithm 3 Tabu Search algorithm

1: procedure Tabu Search
2: Generate initial solution ;
3: Calculate initial cost ;
4: neighborhood n ← 1 ;
5: it ← 0 ;
6: while it < Maxit do
7: for neighborhood n do
8: for i < Number of Physicians do
9: Find the best possible movement through Movement "1" ;

10: end for
11: Update Tabu List and the aspiration criteria ;
12: Apply the move ;
13: Update cost ;
14: if No improvement in cost for "1" iteration then
15: for j < Number of Patients do
16: Find the best possible movement through Movement "3" ;
17: end for
18: Update Tabu List and the aspiration criteria ;
19: Apply the move ;
20: Update cost ;
21: end if
22: if No improvement in cost for ω iterations then
23: for j < Number of Patients do
24: Find the best possible movement through Movement "2" ;
25: end for
26: Update Tabu List and the aspiration criteria ;
27: Apply the move ;
28: Update cost ;
29: end if
30: end for
31: end while
32: end procedure
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4.3 Stochastic version of the algorithm

In the deterministic problem patients’ arrival days and profiles are considered fixed. However,
in practice, these two factors are not known in advance and they can vary from one patient to
another. An efficient strategy is required to consider the uncertainty items in the Tabu Search
procedure. A modification on the evaluation function, can easily extend the deterministic
problem to the stochastic problem. In this procedure, we considered different patterns for
arrival days of patients and their profiles as different scenarios. The uncertain elements can
drawn from historical data or probability distributions and then they should be considered
in evaluating a move. Thus, at each move we evaluated the expected cost of each scenario
and considered the average expected cost of the scenarios in evaluating the moves. Although
each move is searching into the feasible space and it is effective itself, we improved the
assignments of patients at each move to make the procedure more efficient. This procedure
helps to implicitly consider the uncertainty. Figure 4.4 shows a schematic process.

Figure 4.4 Stochastic process at each iteration.
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In other words, we started with movement type ”1” and in each movement, we found the
best assignment for patients with the current move, evaluated the expected cost of different
scenarios in the move and considered the average of them as the cost of the move. After ω
iterations with no improvement in the cost, we applied movement type ”2” as a diversification
strategy and continued the procedure similar to movement ”1”. You can find the complete
procedure in algorithm 4.

Algorithm 4 Stochastic Tabu Search algorithm

1: procedure Stochastic Tabu Search
2: Scenarios ← Generate S random patterns of arrival days and profiles ;
3: Generate the initial solution ;
4: Calculate the initial cost ;
5: neighborhood n ← 1 ;
6: it ← 0 ;
7: while it < Maxit do
8: for neighborhood n do
9: for i < Number of Physicians do

10: for s < Number of Scenarios do
11: Find the best assignments of patients to physicians ;
12: Find the best possible movement through Movement "1" ;
13: Evaluate cost of the move and assignment through scenario s ;
14: end for
15: Evaluate the expected cost of the move as the average of costs of scenarios ;
16: end for
17: Update Tabu List and the aspiration criteria ;
18: Apply the move ;
19: Update cost ;
20: if No improvement in cost for ω iterations then
21: for j < Number of Physicians do
22: Find the best possible movement through Movement "2" ;
23: end for
24: Update Tabu List and the aspiration criteria ;
25: Apply the move ;
26: Update cost ;
27: end if
28: end for
29: end while
30: end procedure
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CHAPTER 5 EXPERIMENTS

In this chapter, all proposed algorithms, including those based on the mathematical models,
the Tabu Search algorithm and heuristics, are evaluated through different instances. The
remainder of this chapter organized as follows : section 5.1 presents the generated instances,
which will be followed by performance of approaches for deterministic and stochastic cases
in sections 5.2 and 5.3. This chapter will be concluded by presenting the results obtained
through the application of the method on the real data obtained from CICL.

5.1 Instances

In order to evaluate our method, 18 instances are generated for different numbers of patients
and physicians. To take into account the small, medium and large range sizes of data in the
proposed method, we tested the generated instances based on the table 5.1.

Table 5.1 Brief description of instances.

Small Medium Large
Tests physicians patients Tests physicians patients Tests physicians patients
pr-1 4 7 pr-3 4 11 pr-5 4 20
pr-2 4 9 pr-4 4 12 pr-6 4 40
pr-7 6 7 pr-9 6 11 pr-11 6 20
pr-8 6 9 pr-10 6 12 pr-12 6 40
pr-13 8 7 pr-15 8 11 pr-17 8 20
pr-14 8 9 pr-16 8 12 pr-18 8 40

In which, pr-1, 2, 7, 8, 13 and 14 were generated as small sets of data, pr-3, 4, 9, 10, 15 and
16 were considered as medium size and pr-5, 6, 11, 12, 17 and 18 as large sets of data. The
size of instances were determined based on the number of arriving patients in a week.

Some initial parameters were set in the beginning. The preferences of physicians were genera-
ted randomly between 1 to 9, which shows their priority for performing each task on different
days of a week. The service time of each task were considered as follows : {1, 2, 1, 1} time
blocks for tasks A, B, C and D.

The method was meant to evaluate either of deterministic and stochastic situations. For
each instance, we generated 50 different patterns for patients’ arrival days based on Poisson
distribution. 50 different patterns were also generated for patients profiles with Bernoulli
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distribution for two types of curative and palliative patients. In the deterministic case, one of
the 50 scenarios was selected to obtain a typical schedule among all, while, in the stochastic
situation, all 50 scenarios were considered.

5.2 Performance of proposed deterministic approaches

We considered both cases of one block per day and two blocks per day. In tables 5.2 and 5.3
all results obtained in four hours are presented.

After some preliminary tests, the parameters used in TS are set as follows : Size of Tabu list
was tested between 5 to 21 and different sizes related to the size of the instances (i.e., number
of patients, number of physicians and their combinations). The size of Tabu list finally set
to 19 in both one-task-per-day problem and two-tasks-per-day problem. The number of non-
improved iterations to perform the diversification criterion, ω, was set to ”twice of the number
of patients + number of physicians + number of blocks in a week” for the one-task-per-day
problem.

Table 5.2 Results for generated instances.

Tests Results GAP CPU Time (seconds)
Hr Hgr TS - Ave. TS - Best CPLEX Hr Hgr TS TS P1 P2∗

pr-1 (4,7) 99 63 102.3 105 105 5% 40% 0% 1.9 <1 9.4
pr-2 (4,9) 77 55 103.6 107 107 28% 48% 0% 11.2 <1 12
pr-3 (4,11) 73 39 84.2 88 90 18% 56% 2% 108.8 <1 142
pr-4 (4,12) 57 32 86.8 93 94 39% 65% 1% 32 <1 166
pr-5 (4,20) 13 6 46.6 50 50 74% 88% 0% 364 <1 586
pr-6 (4,40) -16 -34 15.1 20 22 172% 236% 9% 553 <1 945
pr-7 (6,7) 172 132 181.7 188 188 8% 29% 0% 180 <1 84
pr-8 (6,9) 164 124 182.1 190 191 14% 35% 0.5% 111 <1 58
pr-9 (6,11) 140 126 159.4 165 165 15% 23% 0% 260 <1 278
pr-10 (6,12) 147 128 172.6 177 177 17% 27% 0% 170 <1 323
pr-11 (6,20) 92 53 126.5 131 132 30% 59% 0.7% 567 <1 788
pr-12 (6,40) 24 11 57.2 62 63 61% 82% 1.5% 723 1 1096
pr-13 (8,7) 236 178 242.1 253 253 6% 29% 0% 5.6 <1 122
pr-14 (8,9) 228 170 255.6 262 262 12% 35% 0% 260 <1 264
pr-15 (8,11) 205 142 233.7 241 241 14% 41% 0% 133 <1 656
pr-16 (8,12) 211 138 234.6 243 244 13% 43% 0.4% 196 <1 804
pr-17 (8,20) 156 99 192.8 203 203 23% 51% 0% 289 <1 1245
pr-18 (8,40) 43 9 134.7 140 141 69% 93% 0.7% 1311 <1 2852
Average : 34% 60% 0.87%

∗ The CPU time for model P2 (the task-based model) shows the time that CPLEX found
the best integer solution and not the computation time.
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Table 5.2 shows the best results obtained through ten randomly generated initial solutions
for all instances. As shown, the pattern-based model can solve the problem in less than a
second while the task-based model is considerably time consuming. Even though it can reach
the solution, usually it takes lots of time to prove the optimality. The quality of solution and
finding the optimum one is our main purpose, so for large instances, we considered the time
that model P2 obtained best integer solution with the Gap of 5%. Heuristics Hr and Hgr

stopped improving after some iterations, which shows that they got stuck in a local optimum
in less than a second. The gap between the results obtained from Tabu search method and
the optimal solution obtained from models P1 and P2 is 0.87% in average, which shows that
TS performs well on these instances.

Figure 5.1 illustrates the schedule obtained for instance pr-5 (Tabu Search and exact me-
thods).

Figure 5.1 Schedule obtained through TS Procedure.

In this case, Tabu Search found the optimal solution, same as the models P1 and P2. The
presented schedule indicates that tasks ’B’ and ’C’ are repeated more frequently for each
physicians. Since these tasks take more time to be processed, having them more frequently
in the schedule appears to help decrease the processing time of patients. Besides, at least
three of the tasks are performed by different physicians in a day. Hence, the patient would
be served at the earliest time from the arrival.

In two-tasks-per-day problem, since the size of the problem is twice the one-task-per-day
problem, more diversification is required to check all possible movements. Thus, the number
of non-improved iterations, ω, was set equal to the "number of patients" for each instance. The
results obtained from the generated instances for a two-tasks-per-days problem is displayed
in table 5.3.
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Table 5.3 Results for 2 tasks/day.

Tests Results GAP CPU Time (seconds)
TS CPLEX GAP TS CPLEX

pr-1 (4,7) 258 258 0% 132 18
pr-2 (4,9) 257 259 0.7% 222 20
pr-3 (4,11) 239 241 0.8% 243 317
pr-4 (4,12) 241 244 1.2% 144 194
pr-5 (4,20) 193 193 0% 526 223
pr-6 (4,40) 108 110 1.8% 101 247
pr-7 (6,7) 408 410 0.5% 641 86
pr-8 (6,9) 404 407 0.7% 718 171
pr-9 (6,11) 383 388 1.2% 733 66
pr-10 (6,12) 386 390 1% 647 22
pr-11 (6,20) 330 334 1% 289 172
pr-12 (6,40) 248 250 0.8% 1024 2081
pr-13 (8,7) 554 554 0% 828 381
pr-14 (8,9) 551 554 0.5% 455 2163
pr-15 (8,11) 539 543 0.7% 329 147
pr-16 (8,12) 540 540 0% 1189 430
pr-17 (8,20) 481 481 0% 1311 276
pr-18 (8,40) 394 399 1.2% 1081 3134
Average 0.67%

Table 5.3 shows that the proposed TS method can again obtain excellent results with a gap
of 0.67% from the optimum solution in average. Besides, for small instances, it could present
outstanding results with a maximum gap of 0.7% ; on large instances, the gap can reach 1.8%.

As an illustration, a comparison of patients pre-treatment duration in instance pr-5 is given
in figure 5.2 for the one-task-per-day and the two-task-per-day problems.
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Figure 5.2 Comparison of pre-treatment duration for different blocks per day in instance pr-5.

Figure 5.2 presents the number of days that the process took. It can be derived that when
tasks are two blocks per day, a much better performance is obtained and all patients can
finish their pre-treatment process in less than four days, while it takes seven days for the
one-block-per-day problem.

According to tables 5.2 and 5.3 the CPU time is dependent on the number of patients and for
a fixed number of physicians, the CPU time increases with the number of patients. Besides,
the objective in the two-task-per-day problem is more than twice of the value observed
in the one-task-per-day case, which indicates that increasing time blocks per day not only
increases the physicians’ satisfaction, but also improved the patient flow and decreased the
pre-treatment duration.

After solving the main objective, we tried to understand the effects of physicians’ preferences
on the patients’ waiting time. Table 5.4 represents the results of minimizing the pre-treatment
duration for patients regardless of physicians’ satisfaction in the one-task-per-day problem.
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Table 5.4 Results for minimizing pre-treatment.

Tests Results GAP CPU Time (seconds)
TS CPLEX GAP TS CPLEX

pr-1 (4,7) 30 30 0% 1.2 <1
pr-2 (4,9) 33 33 0% 4.2 <1
pr-3 (4,11) 50 48 4% 21 <1
pr-4 (4,12) 51 50 2% 43 <1
pr-5 (4,20) 97 95 2% 73 <1
pr-6 (4,40) 184 184 0% 105 <1
pr-7 (6,7) 30 29 3% 37 <1
pr-8 (6,9) 32 32 0% 39 <1
pr-9 (6,11) 47 47 0% 54 <1
pr-10 (6,12) 46 48 4% 68 <1
pr-11 (6,20) 91 90 1% 93 <1
pr-12 (6,40) 180 177 1.6% 121 <1
pr-13 (8,7) 29 29 0% 1.9 <1
pr-14 (8,9) 30 30 0% 33 <1
pr-15 (8,11) 47 46 2% 86 <1
pr-16 (8,12) 48 48 0% 57 <1
pr-17 (8,20) 93 90 3.3% 176 <1
pr-18 (8,40) 176 172 2.3% 243 <1
Average 1.4%

It can be derived from the results indicated in table 5.4 that the pre-treatment duration is
dependent on the number of physicians working in the center. The patient completes this
phase earlier when the number of physicians is increased. Table 5.4 also indicates that TS can
present outstanding performance on small set of data, in which it could obtain the optimum
solution in most of the cases. However, the gap between its results and the optimum one is
1.4% on average.

Figure 5.3 shows a comparison between patients pre-treatment duration with considering
physicians’ preferences and without physicians’ preferences in instance pr-5 for the two-task-
per-day problem.
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Figure 5.3 Pre-treatment with and without preferences.

It is indicated in figure 5.3 that in both cases patients would finish the pre-treatment phase
in five days on average. However, in the case that we considered physicians’ preferences in
the objective function, we were trying to find a balanced schedule for both physicians and
patients. Therefore, there are more diversity in the patients’ pre-treatment duration.

Besides to the pre-treatment duration, figure 5.4 represents the average waiting time of
patients to start their pre-treatment phase in different instances.
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Figure 5.4 Average waiting times to start the pre-treatment process.

It is indicated from figure 5.4 that starting the pre-treatment is not dependant on the number
of physicians are working in the center and starting the pre-treatment phase is similar for
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instances with same number of arriving patients in a week. Although the number of working
physicians affects the pre-treatment duration for patients, starting this phase since the arrival,
is regardless of how many physicians are working in the center.

5.3 Performance of approaches under uncertainty conditions

In this section, first the stochastic algorithm evaluated and compared with the deterministic
case, and then the effects of different scenarios on the objective value is studied. In the
following sections, one can find the results obtained for the generated instances.

5.3.1 Algorithm validation

Due to the complexity of the task-based model, solving the current instances based on the
scenarios, takes an extremely large time and encounters memory capacity problem. Therefore,
the performance of Tabu Search method was validated for a small set of data. A very small
instance with 5 scenarios was tested with the task-based model and the TS method. In the
exact method, each scenario in arrival days of patients was considered as a new patient which
has the same profile, thus, it would be similar to having the same patient arriving on two
different days. In this case, both approaches (TS and exact methods) obtained the objective
value of 65.

After validating the accuracy of TS, the method was applied to the generated instances. Its
performance on different instances is presented in the following section.

5.3.2 Algorithm performance

In order to evaluate the solution obtained from the stochastic tabu search algorithm, we
proceed as follows :

— Generate set A of scenarios of patients’ arrival and profile. We generate up to 50
different scenarios.

— For each instance (i.e. pr-1 to pr-18), run the algorithm using 1, 10, 20, 30, 40 or 50
scenarios from set A (Note : using only one scenario is equivalent to the deterministic
case) for 2000 iterations. We keep the best solution obtained and refer to it as «
sol_pr-x_y » where x refers to the instance being solved and y to the number of
scenarios used to generate the solution ;

— Generate set B of scenarios of patients’ arrival and profile to test the quality of solu-
tions « sol_pr-x_y ». We generate 40 different scenarios for set B ;
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— Evaluate the cost of the schedule obtained for each instance on the set B.

Table 5.7 shows the average value of the solutions on set B of scenarios. For each instance,
we provide the average value and the standard deviation σ.

Table 5.5 Evaluation of results with different number of scenarios in stochastic situation.

Tests/ # scenarios sol_pr-x_1 sol_pr-x_10 sol_pr-x_20 sol_pr-x_30 sol_pr-x_40 sol_pr-x_50
pr-1 (4,7) Ave. 220 206 212 211 205 207

σ 7.24 8.7 8.2 7.45 7.7 9.3
pr-4 (4,12) Ave. 161 156 158 159 161 159

σ 10.96 11.79 12.39 12.05 12.47 13.56
pr-6 (4,40) Ave. -72 -55 -46 -51 -43 -44

σ 21.57 24.3 17.66 17.26 16.67 16.82
pr-7 (6,7) Ave. 371 375 372 375 377 371

σ 8.72 8.21 7.19 8.41 8.2 6.96
pr-10 (6,12) Ave. 321 323 334 325 331 325

σ 12.94 13.9 13.26 12.24 10.86 12.76
pr-12 (6,40) Ave. 77 87 105 107 97 98

σ 25.29 26.78 23.52 19.44 23.23 18.12
pr-13 (8,7) Ave. 519 527 528 526 528 525

σ 8.18 9.2 8.52 8.55 8.57 8.74
pr-16 (8,12) Ave. 488 485 486 487 486 489

σ 12.9 10.79 10.75 9.39 10.83 12.1
pr-18 (8,40) Ave. 202 239 224 236 242 236

σ 25.18 25.88 25.17 23.21 24.04 26.31
Average Ave. 254 260 263 263 264 262

σ 14.85 15.51 14.07 13.1 13.62 13.86

We observed that between 20 and 40 scenarios results seem to stabilize. It can be derived
from table 5.5 that, depending on the instances, one gives better solution than the other.
However, based on the average of standard deviations, 30 number of scenarios gives a better
solution.

Figure 5.5 shows a comparison between the pre-treatment duration of patients in determi-
nistic and stochastic cases in instance pr-5.
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Figure 5.5 Pre-treatment duration for deterministic and stochastic cases in instance pr-5.

It can be derived from the presented figure that, the results obtained through the stochas-
tic version are more realistic. In practice, the arrival of patients and their cancer type are
unknown in advance, thus fixing them in the algorithm, may show completely different per-
formance. However, figure 5.5 shows the pre-treatment duration for both deterministic and
stochastic algorithms on instance pr-5. It is indicated that in the deterministic case, patients
would finish the pre-treatment phase in less than four days, while in the stochastic case, this
phase will be completed in less than five days, which meets our main goal perfectly.

5.4 Case study in CICL

In collaboration with the radiation therapy department of the Centre Intégré de Cancérologie
de Laval (CICL), we obtained data for a real case in this center. 1740 patients were referred
to the center in 2012. The center served 75% of them. In this department, nine physicians
serve patients ; they have a capacity of nine patients per week. In addition to tasks that were
presented previously, every week they also have a research-time schedule. Each physician can
also have some vacation time every six weeks, which means that almost every week only eight
physicians serve patients.

Table 5.6 presents the current schedule at CICL.
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Table 5.6 Current schedule of CICL.

Monday Tuesday Wednesday Thursday Friday
A.M. P.M. A.M. P.M. A.M. P.M. A.M. P.M. A.M. P.M.

Phys. 1 D D C A F F C E A B
Phys. 2 A C A A D D B C E A
Phys. 3 C B D D C A A A C E
Phys. 4 A A C B A A D D E C
Phys. 5 C A D D C A B E C A
Phys. 6 C A A E C B D D C A
Phys. 7 E C C A A C A B D D
Phys. 8 A C B A D D A C A E
Phys. 9 C A A A C B D D C E

It can be derived from this schedule that the main strategy of CICL is, the more consultation
(task ’A’), the better performance. Besides, a physician scheduled to task ’D’ performs the
same task the whole day. Research time (task ’E’) is mainly scheduled on Thursdays and
Fridays.

We used their schedule to solve the problem where the preferences were respected 100%.
Besides, we also adapted TS to solve the same problem. In order to show the advantage of
the new schedule to the previous one, we compared our obtained schedule with their current
one in two ways. Figure 5.6 indicates the comparison of pre-treatment durations of patients
for both schedules.
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Figure 5.6 Comparison of pre-treatment durations on CICL data.

As shown in figure 5.6, in the current schedule, patients would finish the pre-treatment phase
in 14 days while it would be in eight days regarding the proposed one.

Besides, figure 5.7 indicates the comparison of patients’ waiting time to start the pre-
treatment phase for both schedules. It shows the number of days that a patient waited
for a consultation based on some historical data in 2014.

CICL TABU

0

5

10

15

20

25

30

35

Figure 5.7 Comparison of waiting time to start the pretreatment phase on CICL data.

According to figure 5.7 patients started the pre-treatment phase in 10 days on average with
their current schedule while they would start this phase in five days regarding the proposed
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schedule obtained through TS.

Table 5.7 shows the schedule obtained from our proposed TS method for the CICL data.

Table 5.7 Obtained schedule through the proposed TS method on CICL data.

Monday Tuesday Wednesday Thursday Friday
A.M. P.M. A.M. P.M. A.M. P.M. A.M. P.M. A.M. P.M.

Phys. 1 B A B D C D E F B E
Phys. 2 C C D C E B A B A B
Phys. 3 B C C D E C C A D A
Phys. 4 D A E B D A B D C C
Phys. 5 D E C C E B D E A B
Phys. 6 E A B B B A B B C D
Phys. 7 A B A C D B E C D E
Phys. 8 C C D E A B E D A B
Phys. 9 A B D B C D E E D E

In the proposed schedule, we considered both preferences of physicians and patients in mini-
mizing their process time. It can be derived from the schedule that having tasks ’B’ and ’C’
appear more frequently in a schedule, improves performance for both physicians and patients.
Since the processing of dosimetry and its validation take more time, it is better to have these
tasks more frequently in a week.

Thus, changing the strategy from performing more consultation in a week to performing more
dosimetry validation would satisfy both patients and physicians.
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CHAPTER 6 CONCLUSION

In this chapter, a summary of the importance of proposing a scheduling method is presented
with corresponding conclusion. In addition, further improvements for the method and possible
future research areas are recommended.

6.1 Summary

In order to increase the chance of cure in cancer treatment, time plays a significant role. There
is not much time to waste in the pre-treatment phase. Therefore, we proposed a physician
scheduling methodology to shorten the wait time in order to start the treatment on the
patient within a week of the diagnosis.

To do so, an efficient weekly cyclic schedule for physicians in a radiotherapy center was
proposed to help physicians prevent bottlenecks from forming and keep the patient flow
moving ; thus, the pretreatment phase would be shortened for patients who are referred to
the oncology department. Besides, attempts were made to maximize the satisfaction and
preferences of physicians on the performance of tasks.

We considered both deterministic and stochastic cases in which the arrival rate of patients
and treatment types, either curative or palliative, were the uncertain parameters of the
problem. For this problem, a Tabu Search meta-heuristic was developed and evaluated with
two equivalent Integer Programming models, one based on patterns and the other based on
physicians’ tasks. We could find a way to include the uncertainty factors in the Tabu Search
procedure. Moreover, we compared our basic IP model with two alternative heuristics on the
possible sequences of physicians’ tasks within the planning horizon.

In collaboration with the Centre Intégré de Cancérologie de Laval (CICL), we also evaluated
our proposed method based on real data from there.

6.2 Synthesis of the study

Significant results obtained through small, medium, and large instances in various terms.
In terms of accuracy, in deterministic cases, the gap between results obtained from TS and
exact models is less than 1% on average. Besides, the objective value in two-task-per-day
problem increased more than twice of one-task-per-day case, which indicates that increasing
time blocks per day, not only increased the physicians satisfaction, but also improved the
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patient flow and decreased the pre-treatment duration. Moreover, the method is applicable
to any size of problem. The advantage of TS over the pattern-based model is that TS can be
applied to any size of problem while solving either the pattern-based or task-based models
for large-size instances is more complicated and takes more time.

As shown, in both deterministic and stochastic cases, the pre-treatment phase would be
completed within a week, which perfectly meets our main goal. Besides, the flexibility in
the algorithm helped to determine a preferred schedule for physicians and to keep the pre-
treatment time within an acceptable range for patients.

Moreover, to study the application of our proposed method on a real case data, the data
obtained from CICL is analyzed and their current schedule was compared to our proposed
one. It is indicated that patients would finish the pre-treatment phase within 14 days with
their current schedule, while it would be decreased to eight days regarding the proposed one.
We also suggested that changing the strategy from performing more consultation in a week
to performing more dosimetry validation would satisfy both patients and physicians.

6.3 Future enhancements

This work can be extended in various directions, such as considering different quality mea-
surements, more uncertainty items, more limitations on performing tasks in a week and
evaluating the effects of different parts of the objective.

In healthcare, service quality is measured in different terms, i.e., how did the treatment work ?
How did I feel during the treatment process ? Sometimes even when a patient is in pain and
needs to be seen by the first available physician, he/she may have a strong preference to be
seen by a particular physician, which would complicate the efforts to align the healthcare
resources with the demand. Therefore, other quality measurements than treatment duration
can be modeled and applied to evaluate the satisfaction of patients.

Besides, we considered patients arrival rate and cancer types as two parameters of uncertainty,
which can be extended to various ones in different contexts. Processing time of each task is
another factor that can be vary in some contexts.

Moreover, the effects of either parts of the objective can be studied, which is considered with
the same weights in this thesis.

Finally, the purpose of this study was to propose a Tabu Search algorithm, which was evalua-
ted with mathematical models. However, in proposing MIP models, the attempts were made
to keep them linear and simple, while they can be improved by column generation method
and stochastic programming.
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