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RÉSUMÉ 

Cette thèse aborde l'un des enjeux actuels de la sécurité aérienne pour augmenter les 

capacités de simulation de givrage pour la prédiction des formes complexes 2D et 3D de verglas 

sur les surfaces des aéronefs. Durant les années 1980 et 1990, le domaine de l'aérogivrage 

numérique s’est développé pour soutenir la conception et la certification des aéronefs volant dans 

des conditions givrantes. Les technologies multidisciplinaires utilisées dans ces codes étaient : 

l'aérodynamique (méthode des panneaux), le calcul des trajectoires des gouttelettes (méthode 

Lagrangienne), le module thermodynamique (modèle Messinger) et le module de géométrie 

(accumulation de glace). Ceux-ci sont intégrés dans un module quasi-stationnaire pour simuler le 

processus d'accumulation de glace en fonction du temps (procédure à plusieurs pas de temps). 

Les objectifs de la présente recherche visent à améliorer le module aérodynamique en passant de 

Laplace à un solveur d’équations de Navier-Stokes moyennée (RANS). Les avantages sont 

nombreux. Tout d'abord, le modèle physique permet le calcul des effets visqueux dans le module 

aérodynamique. Deuxièmement, la solution du programme d’aérogivrage fournit directement les 

moyens pour caractériser les effets aérodynamiques du givrage, comme la perte de portance et la 

traînée accrue. Troisièmement, l'utilisation d'une approche de volumes finis pour résoudre les 

équations aux dérivées partielles (PDE) permet des analyses rigoureuses de convergence en 

maillage et en temps. Enfin, les approches développées en 2D peuvent être facilement 

transposées aux problèmes 3D. 

La recherche a été réalisée en trois étapes principales, chacune fournissant des aperçus des 

approches numériques globales. La réalisation la plus importante vient de la nécessité de 

développer des algorithmes de génération de maillage spécifiquement pour assurer des solutions 

réalisables en plusieurs étapes de calculs très complexes d’aéro-givrage. Les contributions sont 

présentées dans l’ordre chronologique de leurs réalisations. 

D'abord, un nouveau cadre de simulation de glace bidimensionnel basé sur un code 

RANS, CANICE2D-NS, est développé. Un code RANS à maillage à simple bloc de l’université 

de Liverpool (nommé SMB) fournit la solution aérodynamique en utilisant le modèle de 

turbulence Spalart-Allmaras. L'outil commercial ICEM CFD est utilisé pour le remaillage du 

profil glacé pour le lissage du domaine. Le nouveau couplage est entièrement automatisé et 

capable d’effectuer des simulations d’accumulation de la glace à plusieurs pas de temps par une 
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approche quasi-stationnaire. En outre, le logiciel permet une analyse de l’écoulement de l’air et la 

prévision des performances aérodynamiques des profils glacés. La convergence de l'algorithme 

quasi-stationnaire est vérifiée et identifie la nécessité de l’augmentation d'un ordre de grandeur 

dans le nombre de pas de temps dans les simulations de givrage afin de parvenir à des solutions 

indépendantes du nombre d’incréments de temps. 

Deuxièmement, un code Navier-Stokes à maillages à blocs multiples, NSMB, est couplé 

avec le programme de givrage CANICE2D. L’attention est accordée à l’implémentation du 

modèle de rugosité ONERA dans le modèle de turbulence Spalart-Allmaras et à la convergence 

de la procédure itérative stationnaire et quasi-stationnaire. Les effets d’une rugosité de surface 

uniforme dans la simulation quasi-stationnaire de l'accumulation de glace sont analysés à travers 

différents cas de validation. Les résultats de CANICE2D-NS montrent un bon accord avec les 

données expérimentales à la fois en termes de formes de glace prédites ainsi qu’en termes 

d’analyses aérodynamiques des formes de glace prédites et expérimentales. 

Troisièmement, un code Navier-Stokes structuré à maillage à simple bloc, NSCODE, est 

couplé avec le cadre de givrage CANICE2D-NS. L’attention est accordée à l’implémentation de 

la rugosité du modèle Boeing dans le modèle de turbulence Spalart-Allmaras, et à l'accélération 

de la convergence des procédures itératives stationnaires et quasi-stationnaires. Les effets d’une 

rugosité de surface uniforme dans la simulation de l'accumulation quasi-stationnaire de glace sont 

analysés à travers différents cas de validation et de comparaisons entre codes avec le même 

programme couplé avec le solveur Navier-Stokes NSMB. L'efficacité de l'approche à grilles 

multiples dans la direction J est démontrée pour la résolution des équations d'écoulement d’air sur 

des géométries glacées complexes. 

Puisqu’il a été remarqué à travers les différents résultats obtenus que le logiciel de 

génération de maillage ICEM-CFD produit un certain nombre de problèmes tels que la mauvaise 

qualité des maillages et les carences en lissage (notamment les chocs de mailles), une quatrième 

étude propose un nouvel algorithme de génération de maillages. Un code de génération de 

maillages en plusieurs blocs et basé sur la résolution d’équations aux dérivées partielles, 

NSGRID, est développé à cet effet. L'étude comprend les développements de nouveaux 

algorithmes de génération de maillage sur des formes complexes de verglas contenant des 

géométries d’accumulation de glace à courbure hautement variable, comme des cornes de glace 
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simples ou doubles. Une approche en deux étapes consiste à discrétiser la surface de la géométrie, 

puis le domaine de résolution. Un algorithme curviligne adaptatif contrôlant la courbure est 

construit en résolvant une équation elliptique 1D avec termes sources périodiques. Cette méthode 

contrôle l'espacement de la longueur d’arc des mailles sur la surface de telle sorte que les régions 

de forte courbure convexe et concave autour des cornes de glace sont captées de manière 

appropriée. Il est montré que cette méthode traite efficacement le problème de choc de mailles. 

Ensuite, une nouvelle méthode mixte est développée en définissant des combinaisons de termes 

sources avec des équations elliptiques 2D. Les termes sources comprennent deux fonctions de 

contrôle communes, Sorenson et Spekreijse, et un troisième terme source supplémentaire pour 

forcer l’orthogonalité. Cette méthode mixte s’avère être très efficace pour améliorer la qualité des 

mailles d’un maillage complexe de verglas avec une résolution RANS. La performance en termes 

de réduction des résidus par itérations non linéaires de plusieurs algorithmes de résolution (Point-

Jacobi, Gauss-Seidel, ADI, Point et Line SOR) est discutée dans le contexte d'un opérateur multi 

grilles complet. Des détails sont donnés sur les différentes formulations utilisées dans le procédé 

de linéarisation. Il est montré que la performance de l'algorithme de solution dépend de la nature 

de la fonction de contrôle utilisée. Enfin, les algorithmes sont validés sur des formes de glace 

expérimentales standards et complexes, démontrant l'applicabilité des méthodes. 

Finalement, un programme bidimensionnel de simulation d’accumulation de glace basé 

sur la résolution RANS et automatisé pour le calcul par plusieurs incréments de temps, 

CANICE2D-NS, est développé et couplé avec un code CFD Navier-Stokes multi blocs, 

NSCODE2D, un code de génération elliptique de maillages multi blocs, NSGRID2D, et un 

solveur multi blocs Eulérien pour la trajectoire des gouttelettes, NSDROP2D (développé à l'École 

Polytechnique de Montréal). Le programme permet des calculs Lagrangiens et Eulériens de 

trajectoires de gouttelettes, la dernière profitant d’une approche de maillages superposés pour 

traiter les géométries à éléments multiples. Le code a été testé sur des cas de validation 

confidentiels et publics, y compris les cas standards NATO. En outre, une accélération d’un 

facteur allant jusqu’à 10 est observée dans la procédure de génération de maillages en utilisant un 

lisseur implicite avec une procédure à grilles multiples. Les résultats démontrent les avantages et 

la robustesse du nouveau programme dans la prédiction des formes de glace et des paramètres de 

performances aérodynamique. 
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ABSTRACT 

This thesis addresses one of the current issues in flight safety towards increasing icing 

simulation capabilities for prediction of complex 2D and 3D glaze ice shapes over aircraft 

surfaces. During the 1980’s and 1990’s, the field of aero-icing was established to support design 

and certification of aircraft flying in icing conditions.  The multidisciplinary technologies used in 

such codes were: aerodynamics (panel method), droplet trajectory calculations (Lagrangian 

framework), thermodynamic module (Messinger model) and geometry module (ice accretion).  

These are embedded in a quasi-steady module to simulate the time-dependent ice accretion 

process (multi-step procedure). The objectives of the present research are to upgrade the 

aerodynamic module from Laplace to Reynolds-Average Navier-Stokes equations solver.  The 

advantages are many.  First, the physical model allows accounting for viscous effects in the 

aerodynamic module.  Second, the solution of the aero-icing module directly provides the means 

for characterizing the aerodynamic effects of icing, such as loss of lift and increased drag.  Third, 

the use of a finite volume approach to solving the Partial Differential Equations allows rigorous 

mesh and time convergence analysis. Finally, the approaches developed in 2D can be easily 

transposed to 3D problems. 

The research was performed in three major steps, each providing insights into the overall 

numerical approaches.  The most important realization comes from the need to develop specific 

mesh generation algorithms to ensure feasible solutions in very complex multi-step aero-icing 

calculations.  The contributions are presented in chronological order of their realization.        

First, a new framework for RANS based two-dimensional ice accretion code, 

CANICE2D-NS, is developed. A multi-block RANS code from U. of Liverpool (named PMB) is 

providing the aerodynamic field using the Spalart-Allmaras turbulence model. The ICEM-CFD 

commercial tool is used for the iced airfoil remeshing and field smoothing. The new coupling is 

fully automated and capable of multi-step ice accretion simulations via a quasi-steady approach.  

In addition, the framework allows for flow analysis and aerodynamic performance prediction of 

the iced airfoils.  The convergence of the quasi-steady algorithm is verified and identifies the 

need for an order of magnitude increase in the number of multi-time steps in icing simulations to 

achieve solver independent solutions.    
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Second, a Multi-Block Navier-Stokes code, NSMB, is coupled with the CANICE2D icing 

framework. Attention is paid to the roughness implementation of the ONERA roughness model 

within the Spalart-Allmaras turbulence model, and to the convergence of the steady and quasi-

steady iterative procedure. Effects of uniform surface roughness in quasi-steady ice accretion 

simulation are analyzed through different validation test cases. The results of CANICE2D-NS 

show good agreement with experimental data both in terms of predicted ice shapes as well as 

aerodynamic analysis of predicted and experimental ice shapes. 

Third, an efficient single-block structured Navier-Stokes CFD code, NSCODE, is coupled 

with the CANICE2D-NS icing framework. Attention is paid to the roughness implementation of 

the Boeing model within the Spalart-Allmaras turbulence model, and to acceleration of the 

convergence of the steady and quasi-steady iterative procedures. Effects of uniform surface 

roughness in quasi-steady ice accretion simulation are analyzed through different validation test 

cases, including code to code comparisons with the same framework coupled with the NSMB 

Navier-Stokes solver. The efficiency of the J-multigrid approach to solve the flow equations on 

complex iced geometries is demonstrated. 

Since it was noted in all these calculations that the ICEM-CFD grid generation package 

produced a number of issues such as inefficient mesh quality and smoothing deficiencies (notably 

grid shocks), a fourth study proposes a new mesh generation algorithm. A PDE based multi-block 

structured grid generation code, NSGRID, is developed for this purpose. The study includes the 

developments of novel mesh generation algorithms over complex glaze ice shapes containing 

multi-curvature ice accretion geometries, such as single/double ice horns. The twofold 

approaches tackle surface geometry discretization as well as field mesh generation. An adaptive 

curvilinear curvature control algorithm is constructed solving a 1D elliptic PDE equation with 

periodic source terms. This method controls the arclength grid spacing so that high convex and 

concave curvature regions around ice horns are appropriately captured and is shown to effectively 

treat the grid shock problem. Then, a novel blended method is developed by defining 

combinations of source terms with 2D elliptic equations. The source terms include two common 

control functions, Sorenson and Spekreijse, and an additional third source term to improve 

orthogonality. This blended method is shown to be very effective for improving grid quality 

metrics for complex glaze ice meshes with RANS resolution. The performance in terms of 

residual reduction per non-linear iteration of several solution algorithms (Point-Jacobi, Gauss-
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Seidel, ADI, Point and Line SOR) are discussed within the context of a full Multi-grid operator. 

Details are given on the various formulations used in the linearization process. It is shown that 

the performance of the solution algorithm depends on the type of control function used. Finally, 

the algorithms are validated on standard complex experimental ice shapes, demonstrating the 

applicability of the methods.  

Finally, the automated framework of RANS based two-dimensional multi-step ice 

accretion, CANICE2D-NS is developed, coupled with a Multi-Block Navier-Stokes CFD code, 

NSCODE2D, a Multi-Block elliptic grid generation code, NSGRID2D, and a Multi-Block 

Eulerian droplet solver, NSDROP2D (developed at Polytechnique Montreal).  The framework 

allows Lagrangian and Eulerian droplet computations within a chimera approach treating multi-

elements geometries.  The code was tested on public and confidential validation test cases 

including standard NATO cases. In addition, up to 10 times speedup is observed in the mesh 

generation procedure by using the implicit line SOR and ADI smoothers within a multigrid 

procedure.  The results demonstrate the benefits and robustness of the new framework in 

predicting ice shapes and aerodynamic performance parameters. 
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CHAPTER 1  INTRODUCTION 

1.1  Context 

One of the current challenges towards increasing our knowledge of aircraft icing effects is the 

development of numerical algorithms for predicting complex 3D glaze ice shapes [1-3]. Ice 

forms as a result of water droplet impact on the airplane surfaces while flying in weather 

conditions with low temperature and high water droplets density. There are three major ice 

formations types (Figure 1.1): rime, glaze and mixed ice. Rime ice forms when all water 

impinging on the surface freezes instantly. It is white or opaque and usually forms in conditions 

with low speed, low water content and low temperatures. Wet glaze ice forms when a portion of 

impinging water freezes on impact while the other part flows as water on the downstream surface 

and might freezes downstream. It is glassy ice and usually occurs in flight conditions with high 

speed, high liquid water content and temperatures close to the freezing point. Mixed ice forms 

when flight conditions change the way that both rime and glaze ice accumulate and mix on the 

airfoil. Note that glaze ice has a more complex shape including ice horns compared to rime or 

mixed ice, and causes higher flow disturbance and larger airplane aerodynamic performance 

degradation [2].  

Temperature range for aircraft icing accretion phenomena is approximately between -40 °C to 

0 °C. The altitude range for icing phenomena is 300 to 30,000 feet, when aircraft flies in dense 

clouds with high water droplets content. Two basic cloud types can be categorized for icing 

phenomena: large horizontal extended stratiform clouds with low liquid water content and low 

horizontal extended cumuliform clouds with high Liquid Water Content (LWC). The main 

parameters affecting the ice accretion process are the environment liquid water content, droplet 

size, air temperature, air speed and aircraft surface roughness [3]. 

The icing research topics are generally categorized as, amongst others, multi-physic/multi-

phase modeling, numerical simulation, icing effects and experimental research. They are all 

essential as they give the capability for industry to improve the design of ice accretion systems; 

to reduce in-flight or wind tunnel experimental icing test costs; and also to increase its ability for 

introducing safer airplanes to the marketplace [4-7]. The present work aims to improve the 

numerical simulation of various icing phenomena. 
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Figure 1.1: Rime and glaze ice shapes [2]. 

1.2  Simulation 

Traditional icing simulation methods are mainly based on potential panel method flow 

simulation along with viscous boundary layer calculation [8-10]. The resulted potential flow 

solutions are used in Lagrangian droplet trajectory and impingement efficiency calculations, 

while boundary layer solutions provide data to the ice accretion thermodynamic model 

combining semi-empirical models, surface roughness effect and the heat transfer determination 

(also referred as Messinger model) [11]. To simplify the unsteady physic of icing problem, icing 

simulation is done in a quasi-steady method (single or multi-time steps), where each icing time 

steps is solved as a steady state problem [9]. After each time steps, the new surface is updated 

using the accumulated ice height on each panel and the simulation process repeated until the total 

icing time is reached. Using this methodology, a number of well known icing simulation codes 

have been developed such as LEWICE (NASA Glenn Research Center) [8, 12], CANICE 

(Polytechnique Montreal) [9, 13], FENSAP-ICE (Mcgill University) [14], ONERA [10]. Table 

1.1 shows the specifications of a number of well known icing codes. 

The icing simulation codes CANICE2D&3D have been developed at Polytechnique Montréal 

as part of a collaborative R&D activity funded by Bombardier Aerospace and NSERC [15-19]. It 

should be noted that the version presented here slightly differs from the version used at 

Bombardier (named CANICE-BA) and the results and conclusions presented here do not apply 

to CANICE-BA. CANICE2D [19] contains an inviscid flow solver (panel method) and 

icing/anti-icing resolution modules. The potential flow solution is used to determine the water 
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droplet trajectory and droplet impingement distribution via the Lagrangian approach. An integral 

boundary layer formulation is implemented in CANICE to determine the local heat transfer 

coefficient, skin friction, and near-body flow characteristics. The traditional Messinger model is 

used for ice accretion thermodynamic analysis. The thermodynamic model incorporates 

roughness, runback and water splash/ice shed models based on a water-bead model [17]. The ice 

shape and the amount of runback water are determined from the thermodynamic analysis. 

CANICE2D panel-method based is validated through NATO/RTO exercises (Figure 1.2) [9]. 

Table 1.1: Icing codes info. 

 
Code 

 
Developer 

Solver Specifications 
Mesh Flow Droplet Ice 

LEWICE 
(2D/3D) 

NASA - Panel-
method/BL 

Lagrangian 
method 

Traditional 
Messinger 

ICEG2D 
(Struct./Parabolic) 

RANS 
NPARC 

Lagrangian 
method 

Traditional 
Messinger 

CANICE 
(2D/3D) 

Polytech. 
Montréal,  
Bombardier 
Aerospace 

- Panel-
method/BL 

Lagrangian 
method 

Traditional 
Messinger 

NSGRID (Struct./ 
Elliptic 

Blended) 

RANS (PMB 
/NSMB 

/NSCODE) 

Lagrangian 
/Eulerian 
method 

Traditional 
Messinger 

ONERA  
(2D/3D) 

ONERA - Panel-
method/BL 

Lagrangian 
method 

Traditional 
Messinger 

FENSAP-
ICE (2D/3D) 

McGill 
University 

OptiGrid 
(Unstructured) 

RANS 
FENSAP 

Eulerian 
method 

SWIM 

 

 

Figure 1.2: CANICE2D results and comparison for NATO/RTO exercise case studies [9]. 
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While these models provide engineering accuracy on smooth ice shapes (i.e. rime), 

discrepancies occur on horn shapes (i.e. glaze) when viscosity effects play an important role. 

This issue prompts to move toward use of Reynolds Averaged Navier-Stokes (RANS) based 

flow solver [4, 12, 20]. Moving toward RANS based flow field simulation give rise to a number 

of issues: 

1) Grid generation: Structured grids, which are the framework of this project, are considered 

efficient from the point of solution accuracy and computation time, but highly depend on 

the quality of the grid [21-24]. The proposed approaches in structured grid generation 

using PDE equation system with inclusion of grids control functions (stretching, 

orthogonality, curvature, etc.) and surface point distribution control, have improved the 

efficiency and quality of the grid generation process for 2D and 3D complex ice shapes 

domains [17]. There have been a number of grid generation tools developed mostly for 

iced airfoil analysis, such as SmaggIce (NASA Glenn) [25], parabolic structured and 

semi-structured grid generator ICEG2D (Thompson, [12]), but still they require extensive 

user know-how and lack multiblock compatibility. They also have poor grid metrics 

(orthogonality, smoothness, skewness) on complex shapes.  

2) Roughness effects: A number of models have been developed to impose the surface 

roughness effects in RANS based flow simulation. Models such as Boeing and ONERA 

rough wall treatment extension are implemented in Spalart-Allmaras turbulence model 

[26, 27]. Models such as Wilcox and Knopp are implemented in k-ω turbulence model 

[26, 28]. The roughness effects also have been imposed to the calculation of heat transfer 

coefficient for turbulent boundary layer using a roughness based semi-empirical model. 

Roughness is computed using empirical sand-grain method and assumed to be constant on 

the surface [2]. Also a number of methodologies (based on surface water bed 

accumulation) are proposed to compute a non-uniform roughness on the ice surface [29].  

3) Numerical methods: Computation time can be reduced through the use of acceleration 

methods such as multi-grid, etc. and through the use of parallel computing, which is 

almost a requirement when targeting 3D icing simulation process [30-32].  

4) Droplet trajectory: The Lagrangian approach is used in most icing simulation tools. The 

Lagrangian method is based on equation of motion to compute the water droplets 

trajectories [5]. The method has some drawbacks such as droplet trajectory lost and 
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extensive computation time in 3D complex domains. A breakthrough was made by 

(Beaugendre [33]), who introduced an Eulerian formulation for the droplet density. 

5) Ice accretion: Thermodynamic Messinger model has been used extensively for 2D and 3D 

ice accretion process [11, 17]. The methodology is based on simplified runback water 

model and single stagnation point assumption. Multiple stagnation points can be treated 

with an iterative Messinger model [34], while a Shallow Water Model (SWIM, [35]) 

provides a more accurate water runback model. 

6) Unsteady flow: The unsteady problem is solved in a quasi-steady process, as decoupling 

the aerodynamic and ice growth effects. Recently, a fully coupled approach [36] has 

shown the importance of modeling the disciplines influences for complex glaze ice 

conditions. 

Two well known CFD based icing codes are briefly introduced in next section. 

1.2.1  LEWICE-NS 

LEWICE-NS is one of the first ice accretion codes integrated with RANS based flow solver to 

perform multi-time step ice accretion simulations [8, 12]. The main difficulty of the RANS based 

multi-time steps icing is the complexity of grid generation for difficult geometries (ice horns or 

multi-element airfoils), and the deformation/regeneration/automation of the ice shape grids 

during the multiple time steps icing process. LEWICE is based on potential flow integrated with 

viscous boundary layer methods. The droplet trajectory and collection efficiency computation are 

based on the Lagrangian method. In RANS based LEWICE (LEWICE-NS), a parabolic grid 

generation code ICEG2D developed by Thompson and Sony [12] has been used to integrate the 

NPARC RANS flow solver to the LEWICE icing module (instead of the panel-method/integral 

boundary layer method). The structured grid generator is based on parabolic marching scheme, 

which mainly includes two steps: algebraic generation of reference grids, and smoothing using 

elliptic Poisson equation. To update the ice grids after each ice accretion time steps, grid points 

are displaced using mesh deforming functions.  

The flow solution with the NPARC solver is integrated with icing module in two levels:  

level-1, integration of RANS flow solver results to the trajectory and impingent efficiency 

simulation (instead of the potential flow solution);   level-2, which includes level-1 with 
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additional use of RANS information, namely the heat transfer parameters to the icing 

thermodynamic module (instead of the boundary layer method solution). The results of 

LEWICE-NS using the ICEG2D grid generation package for two case studies (rime and glaze 

ice) are shown in Figure 1.3. It is observed that the quality of the grid is not well preserved for 

the glaze ice case. Grid shocks, clustering/opening, smoothness and stretching are issues arising 

from simple parabolic method. The surface roughness effect has not been addressed in these 

results although it is an important criterion through the process of icing simulation as it 

influences the computed surface skin friction and heat transfer and results changes in ice 

accretion calculation [37].  

  

Figure 1.3: Grid generated (rime ice [left] and glaze ice [right]) [12]. 

1.2.2  FENSAP-ICE 

FENSAP-ICE is one of the first icing simulation codes developed within an Eulerian 

approach [36-38]. The code includes five main modules: an unstructured grid generation module, 

a finite element RANS based solver (FENSAP), an Eulerian based water droplet approach, a 3D 

ice accretion module, and Conjugate Heat Transfer (CHT) computation in presence of anti-icing 

heat transfer through the wing skin. The code uses unstructured or hybrid grids and applies grid 

deformation for multi-time step icing simulation (Figure 1.4) [14]. Uses of unstructured grids 

allow treatment of more complex geometries compared to structured based methods. Roughness 

effect has been studied by FENSAP-ICE through the use of rough wall treatment Boeing 

extension implemented in the Spalart-Allmaras turbulence module [37]. A Shallow Water Icing 

Model (SWIM) model is developed for the ice accretion and water runback computations, to 

complete the Messinger model. The code includes a hot air jet anti-icing module incorporated 
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with the thermodynamic computation through CHT module. The third generation of FENSAP-

ICE-Unsteady has been developed to perform unsteady icing simulation [36]. 

  

Figure 1.4: FENSAP-ICE 3D ice solution [14]. 

1.3  Aerodynamic effects 

It is known that an iced airfoil shows significant reduced lift and increased drag. This 

consequently results in stall at lower angle of attack compared to clean airfoils as well as 

decrease aircraft speeds [6, 39]. Glaze ice forms create a more destructive effect with large flow 

separation and early stall compared to rime ice forms. Generally, there are three ways to 

determine the icing effects on the airplane aerodynamic performances: 1) Flight testing; 2) Wind 

tunnel testing; 3) CFD simulations. These assessment methods differ in cost, simulation 

constraints for realistic test conditions, and modeling errors. Flight tests are very expensive, but 

they are the best way to have the most realistic conditions and results, although freestream 

conditions are not easy to characterize [4]. Wind-tunnel tests are less expensive albeit still out of 

reach of routine use, but they give additional flexibility to change and control tests conditions 

and icing parameters [7]. One drawback is the geometry scaling factor which significantly alters 

the results. The cheapest method is the application of CFD to model in-flight icing with a high 

flexibility to control the icing and flow conditions [6]. The accuracy of the CFD approaches 

depend on mesh quality, efficient turbulence models, boundary layer transition models, steady or 

unsteady simulations, etc. However, they can model flight test Reynolds number while aiding 

extrapolation of wind-tunnel results. 

CFD methods help to determine proper trends with respect to the various parameters. RANS 

flow simulations can predict the flow behavior over simple ice shapes but lack sufficient 
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accuracy when ice shapes are more complex, such as those with large ice horns and very rough 

surfaces, or with unsteadiness effects. In these cases, there can be significant differences between 

the numerical predictions and the experimental results. In CFD analysis, grid sensitivity studies 

can be helpful to find the optimal grid properties for computation of the flow around the iced 

airfoil. The effects of grid quality and density can play a vital role when the analyses involve 

cases of high angle of attack or flow separation [40]. CFD methods need verification, as well as 

validation using experimental data. One of the major difficulties in validation of icing simulation 

codes is the availability of precise experimental data bases.  

Measuring the ice shape by 2D cross sections has been so far as the most prefer method to 

obtain the experimental ice shapes data. Measuring ice shapes is very difficult because the ice 

surface includes large number of sharp edges, feathers, porosity and small size roughness. Also 

the ice deformation and melting can occur during the measurements. Covering the ice with paint 

or powders and using optical scanning is another method for measuring the ice shape, but it still 

has many difficulties and measurement errors [4, 7]. 

1.4  Thesis objectives 

In view of the context described above, the overall goal of the work is to advance the 

numerical modeling towards advancing our understanding of the quasi-steady ice accretion 

process for complex ice accretion and aerodynamic effects. 

In particular, the specific objectives are: 

1- Examine the impact of RANS flow solver on the ice accretion framework. 

2- Examine multi-steps ice accretion quasi-steady convergence. 

3- Develop novel grid generation algorithms specifically for ice shape/growth. 

Note that the research is centered around algorithms development, thus excluding studies of 

specific physical phenomena such as Supercooled Large Droplets (SLD) or non-uniform surface 

roughness effects. Also, although the framework is linked to both Lagrangian and Eulerian 

droplet formulations, only the Lagrangian approach is used in the thesis. 
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Towards the thesis objectives, the following platforms are used: 

1) Polytechnique Montreal (PM) icing code, CANICE2D [15], based on Lagrangian 

formulation. 

2) Polytechnique Montreal (PM) grid generation code, NSGRID2D&3D [41], (developed as 

a part of this research project). 

3) ICEM-CFD commercial grid generation package [42]. 

4) PMB3D RANS solver [43], University of Liverpool. 

5) NSMB3D RANS solver [44], CFS Engineering Inc. 

6) Polytechnique Montreal (PM) RANS solver, NSCODE2D [45]. 

The CANICE2D framework provides the starting point, with RANS capabilities inserted 

gradually in a sequential manner to finally obtain the CANICE2D-NS framework [20, 39, 46]. 

The developed framework then is used to generate a validation database and enable studies of 

icing effects on aircraft aerodynamics. 

Note that the developments in NSCODE2D-ICE [34], NSGRID3D and icing framework of 

NSMB3D-ICE/NSGRID3D, published in ref. [47], are excluded from the content of this thesis. 

The thesis focuses on the development of two dimensional grid generation code NSGRID2D and 

RANS aero-icing framework CANICE2D-NS. The developed codes specifications are shown in 

Table 1.2. 

Table 1.2: PM icing codes info. 

 
Code 

 
Developer 

Solver Specifications 
Mesh Flow Droplet Ice 

CANICE-NS 
(2D) 
Multi-steps 

PM  NSGRID 
(Structured/ 

Elliptic 
Blended) 

RANS (PMB 
/NSMB 

/NSCODE) 

Lgrangian 
/Eulerian 
method 

Traditional 
Messinger 

NSCODE-ICE 
(2D) 
Multi-steps 

PM 
 

NSGRID 
(Structured/ 

Elliptic 
Blended) 

RANS 
NSCODE 

Eulerian 
method 

Iterative 
Messinger 

NSMB-ICE 
(2D/3D) 
Multi-steps 

PM/ 
Uni. de 

Strasbourg 

NSGRID 
(Structured/ 

Elliptic 
Blended) 

RANS 
NSMB 

Eulerian 
method 

Iterative 
Messinger 
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The thesis is organized as follows. Chapter 2 addresses the literature review, icing 

methodologies and algorithm developments. Chapter 3 addresses the consistency of the works 

and the publications toward the objectives of the project. Chapters 4 to 6 include the main 

publications, developments and discussion that address the three objectives of the thesis. A 

general discussion is presented in Chapter 7, before a conclusion in Chapter 8. Appendix A 

includes additional modeling descriptions. Appendix B includes additional NSGRID2D and 

CANICE2D-NS results and discussions. 
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CHAPTER 2  

LITERATURE REVIEW AND METHODOLOGY 

First the literature review is presented which includes: background in icing problem, the 

detailed description of traditional ice accretion process, and grid generation tools/methods survey 

for ice mesh generation problem. Finally the solution methodologies are addressed.  

2.1  Background 

2.1.1  Context 

To reduce the number of incidents/accidents due to icing and enlarge aircraft certificates for 

flying in all weather conditions, one needs to develop icing simulation capabilities. Prediction of 

precise complex ice accretion resulting in aircraft performance degradation represents a 

challenge in aeronautical science. The National Transport Safety Board identified ice accretion 

and its effects as one of the major causes of flight accidents [1]. Ice forms on different surfaces 

of the aircraft, when flying in weather conditions with temperature lower or close to freezing 

point and with water droplets impaction on the aircraft surfaces. Ice can form with different 

characteristics categorized generally in three types of formations: rime, glaze, and mixed ice. The 

physical complexity of ice formations on glaze ice is higher than for rime ice. For instant, ice 

horns growth can lead to very odd shapes that cause higher flow disturbance and aerodynamic 

performance degradation [3].  

In the field of ice accretion simulation, the traditional ice prediction simulation packages, such 

as LEWICE (NASA Glenn Research Center) [48], CANICE (Polytechnique Montreal) [18], are 

mainly based on potential flow solvers coupled with two dimensional boundary layer methods. 

The flow field solution is used to compute the water droplet trajectories and water collection 

efficiency on the aircraft via a Lagrangian approach, and also to compute the heat transfer 

coefficient needed for the ice accretion thermodynamic module [17]. Knowing the incoming 

water mass accumulation rate, water runback and heat transfer properties, the amount of 

accumulated ice is determined for a specific time period. Finally the surface geometry is updated 

using the amount of ice formed on the surface. Since, growth of ice on the body influences the 

flow field [31], the total ice accretion simulation is obtained by breaking the total icing time to 
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specific number of time steps, where each step is treated as a steady state flow problem (this 

approach is referred as multi-step procedure, using a quasi-steady approximation with each step).  

CANICE is an ice accretion simulation code developed at Polytechnique Montreal under 

research funded by NSERC and Bombardier Aerospace. The code includes four basic modules: 

external flow simulation, droplet trajectory and local catch efficiently calculation, surface 

ice/water interface thermodynamic balance and ice accretion and hot air anti-icing simulation 

(Figure 2.1).  

 

Figure 2.1: CANICE code structure [2]. 

 

The CANICE2D code can perform for multi-element, multi-time steps icing simulations of 

airfoils. The flow solution is obtained by the Hess and Smith panel-method approach and is used 

for droplet trajectory and viscous boundary layer calculation. CANICE3D is the extension of 

CANICE2D to three dimensions, which has been integrated to CMARC, a low order three-

dimensional panel method code, to compute the potential flow solution around the wing needed 

for the 3D droplet trajectories and impinging efficiency calculations [49, 50]. For both codes, a 

decoupled integral boundary layer or coupled viscous-inviscid interaction method is used to 

simulate viscous effects. To include the effect of roughness in the boundary layer model, the 

transition criteria, skin fiction and heat transfer calculation for laminar and turbulent region have 

been modified using roughness based empirical equations. Roughness is based on the equivalent 

sand-grain roughness height, which is calculated with an empirical model [15].  
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Droplet trajectory is simulated using the Lagrangian approach, solving the equation of motion 

of the water droplets for the defined time intervals using a forth-order Runge-Kutta scheme. The 

forces acting are the drag force on the spherical water droplets along with gravity and buoyancy 

force. The module thus determines the water droplet trajectories and impingement on the surface 

[49]. The droplet impingement distribution defines the water droplet local catch efficiency on the 

surface which determines the droplet mass flow rate impinged on the surface panels. Using the 

calculated local convective heat transfer and water droplet impingement flow rate on the surface 

panels along with runback water mass rate from the neighbor panels, the mass and energy 

balance is applied to the surface control volumes to calculate the amount of supercooled 

impinged water droplets converted to ice mass. The Messinger model is used to define the type 

of ice surface (wet, dry rime or wet glaze), freezing fraction (fraction of ice mass to the entering 

total mass flux to the control volume), and surface temperature [2, 11]. To take into account the 

hot air anti-icing heat flux, the anti-icing module solves the internal heat transfer coefficient 

using an empirical correlation related to impinging jet on flat plate. The correlation takes into 

account the average Nusselt number based on the jet parameters such as jet Reynolds number, 

nozzle to surface distance, and nozzle width [16]. Using the calculated internal hot-air local heat 

transfer coefficient and conduction through the thin leading edge skin, in an iterative process, 

wall heat transfer rate is calculated and integrated to the surface control volume thermodynamic 

balance. Final ice geometry is updated by calculating the ice height growth at the center of each 

panel and interpolating and smoothing the panel’s connectivity on the edges using panel size and 

angle criteria [51]. This step is not as easy as it appears, so a non-conservative method is used to 

simplify the process. 

The panel method flow solver shows increasing errors in the flow solution as the complexity 

of the ice shapes increases, such as glaze ice with horns. The errors mainly comes from the 

higher influence of viscous effect and shows the need for RANS based flow solution for icing 

phenomena simulation and effects analysis [52]. The main difficulty of CFD based icing 

simulation comes from the point of grid generation for complex ice shapes, computation time 

and memory usage. New improvement in CFD based flow solution such as modified turbulence 

models with roughness effects, solution approaches for speeding up the convergence, parallel 

computing, unsteady flow solution, along with new developments in grid generation, smoothing 

and automation methods, have increased the efficiency of CFD based approaches in the ice 
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accretion simulation and effects analysis [53]. Note that CFD methods belonging to the class of 

Immersed Boundary Method (IBM), which considerably eases the grid generation problems of 

body-conforming methods, are not addressed here. 

Grid generation methods, such as structured, unstructured, and hybrid grids, have been 

applied to icing problems [6, 14]. A finding of the NASA “CFD Vision 2030 Study: A Path to 

Revolutionary Computational Aerosciences” explicitly says “Mesh generation and adaptivity 

continue to be significant bottlenecks in the CFD workflow, and very little government 

investment has been targeted in these areas” [54], perhaps explaining the few developments in 

multi-block structured mesh generation algorithms in the last decades. Structured-grid methods 

suffer from the aspect of flexibility and grid quality for complex shapes such as ice accretion, but 

the flow solver is typically more efficient and accurate. The main difficulty of structured mesh in 

complex ice shapes domains is related to the grid smoothing approaches on physical domain 

boundaries which contain discontinuities, sharp angles, highly concave and convex area, etc. The 

process of grid generation for flow simulation on iced airfoils typically includes three basic 

steps: determination and smoothing of the iced surface; distribution of the grid points on the 

surface; and finally generation of the volume mesh using various approaches [23, 55]. There are 

three major classes for structured grid generation: algebraic methods, partial differential equation 

(PDE) methods, conformal mapping methods. PDE methods can be categorized as elliptic, 

hyperbolic and parabolic methods [23, 24]. 

PDE based methods such as elliptic Poisson equation (based on Laplacian operators), are 

solved by finite difference or finite volume discretizations to generate smoothed structured grids. 

They are more complex than algebraic methods but provide more flexibility to generate high 

quality grids using control functions. These methods use an algebraic grid generated as a starting 

grid (initial solution) and perform an iterative procedure to generate the desirable grid quality 

[22, 55]. There are still some difficulties using Laplacian operators, such as controlling grid 

spacing close to the wall or generating large cells in concave domain and small cells in convex 

regions. Control functions such as mesh spacing control, orthogonality control, and curvature 

control have been developed and used to increase the control on the generated grid quality. 

Spacing control functions modify the wall normal spacing and the stretching ratio of the grids. 

Orthogonality control functions modify the grid orthogonality and skewness throughout the 

domain. Curvature control functions modify normal spacing in concave/convex regions and grid 
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negative volumes [22, 56]. These grid controls, especially close to the wall for viscous 

dominated regions, have extensive influence on Navier-Stokes flow solution accuracy. It is thus 

important to have grids with good metrics, which are very difficult to obtain when geometries 

contain concave/convex domains with sharp corners [57]. A number of well known control 

functions developed by Sorenson, Steger, Thompson, Soni, and others, solve for spacing and 

orthogonality on the boundary and propagate the information throughout the domains using 

Laplacian operators [21, 23, 55]. Other control functions developed by Spekreije, solve the 

spacing, orthogonality and curvature using parametric space and impose the properties to the 

physical grid domain to retain the desired quality [22]. There are also methods to control grid 

quality such as boundary orthogonality approaches developed by Khamayseh, Kuprat through 

the use of specified Dirichtlet or Numann boundary condition in elliptic equation system of grids 

[23]. For the problem of ice, no elliptic method has yet produce adequate metrics, because of the 

complexity of the ice surface. 

Conformal mapping approaches such as parabolic marching methods are another grid 

generation class discussed for the problem of ice grid generation. Thompson and Soni have 

developed an efficient parabolic grid generation code ICEG2D integrated to LEWICE and 

NPARC solver to perform multi-time steps ice accretion simulation [58]. The grid generation 

code is capable of surface and field grid generation and smoothing. The surface grid generation 

is done using a weight functioning based on the surface points. Also the surface is smoothed, to 

remove the sharp point complexity, prior using the parabolic approach. Surface is defined by 

NURBS functions. To develop the field grid, the code uses a conformal mapping approach and 

generates structured and semi-structured grids. Semi structured grids include quad and 

hexahedral elements. The structured grid approach includes two main steps: algebraically 

generation of locally orthogonal reference mesh and smoothing of the reference mesh using 

Poisson equation. To generate the semi-structured grid one need to add a third step: deletion and 

insertion algorithm based on the reference grid quality and defining the appropriate initial data 

surface for next layer generation. The efficiency of the method is addressed for icing 

aerodynamic performance simulation and analysis in reference [59]. Difficulties of structured 

parabolic grid rise from grid clustering and grid opening caused by concave and convex 

domains, respectively, and their propagation throughout the domain. The other issue is the nature 

of parabolic methods that are not well applicable for multi surface grid. In semi-structured grids, 



16 
 

the memory usage and the flow solver developments represent the main difficulties. These grids 

have unstructured data storage method and applications.   

Some approaches and tools have also been introduced specifically for structured ice grid 

generation, and are mainly based on heuristics approaches. Shih developed an interactive tool to 

generate multi-block structured algebraic grid and block modification for ice grid problem [6]. 

The tool includes a large number of grid manipulation and modification applications on 

geometry, blocks, edges, domain grids, etc. The code also includes simple elliptic domain 

smoothing. To prepare the ice surface grid, first the ice geometry is smoothed to remove the 

complexity of the ice shapes with horns, sharp edges, feathers and surface roughness. Then to 

generate the field grid, one needs to define the blocking topology as single block or multi-block. 

Both blocking topologies result in some advantages and disadvantages to control the grid quality. 

Single block method includes two domain sections, a fine grid domain close to the ice shape that 

will be smoothed and a coarse grid domain in far field. The multi-block method includes a thick 

wrap-around section covering the ice shapes that minimizes the influence of ice geometry on the 

field grid. The rest of the domain is divided into as many numbers of blocks for better grid 

manipulation. Both single and multi-block methodologies are very time consuming and need 

extensive application by user. Automation of the methodologies is also an issue. The generated 

grids by these approaches have been used for different application of iced airfoil RANS based 

flow simulations.  

Although there have been many proposed grid methods, CFD applications for icing 

simulations remain impeded by the absence of a robust grid generation process that results in 

high quality Navier-Stokes resolution grids for severe mixed concave/convex glaze ice shapes. 

The process of mesh generation in multi-time steps icing sequences can be performed via mesh 

regeneration or mesh movement (spring analogy [60], elastic [61], adjoint-based [30]). Although 

mesh movement is used by some researchers for icing simulations [58, 38], it has been found 

that, at least in 2D, the alternate approach of mesh regeneration provides increased robustness 

[13].  Automation of the grid generation process is another important aspect for performing 

multi-time steps icing simulations. 

The other important aspect in CFD based icing simulation is the modeling and imposing the 

effect of roughness in ice accretion process as it highly influences the computed surface skin 

friction and heat transfer rate that results in changes in ice accretion determination [31, 37]. 
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Surface roughness height generally is computed using empirical models such as sand-grain 

model [2] within boundary layer codes. To impose the effect of roughness for RANS based icing 

simulation, one need to implement the roughness effects in standard turbulence models. For this 

aspect, the rough wall treatment implementation in turbulence models such Spalart-Allmaras and 

k-ω models have been developed [26]. For the Spalart-Allmaras turbulence model, there are two 

extensions: the ONERA and Boeing models [27]. The roughness is incorporated to the S-A 

model by affecting the turbulent eddy viscosity in the wall region. One can relate the roughness 

height to the changes in velocity profile which changes the wall skin friction. Using two 

equations k-ω model, two rough wall models have been addressed: Wilcox method and Knopp 

method [28]. 

Generally the roughness value is assumed to be constant on the ice surface but in reality its 

value changes through time and space. There have been attempts to compute its value based on 

the water beading on the surface [62]. Based on the observed behavior of the impinging water on 

the surface, water droplets at first form small beads with spherical shape (because of the surface 

tension force). The beads start to grow as more droplets impinge the surface. Part of the bead 

freezes while the other liquid part covers the surface. As the beads grow in size, it finally reaches 

a maximum bead height and the water starts to flow on the surface due to the air flow shear 

force. The frozen part of the bead (ice bead) forms the surface roughness height which is taken 

equivalent as the sand grain roughness height and used in single and multi-time steps icing 

simulation [2, 63]. 

For the problem of icing droplet trajectory and impinging efficiency calculation, two 

approaches have been addressed: Lagrangian and Eulerian methods. In the traditional Lagrangian 

approach where the droplets are treated, the equations of motion for the droplet are solved to 

compute the droplet velocity and position in space through the time intervals [5]. The difficulties 

of the Lagrangian approach are its high computation time and collection efficiency calculation in 

complex domains. In the Eulerian approach, the droplet flow field is solved as a two-phase flow 

problem through the conservation mass and momentum equations [32, 33]. Solving the 

continuity and momentum equation for the water droplets provides droplets velocities and water 

volume fractions solution in the domain. The water droplets velocity is solved on the same mesh 

and nodes than the fluid and the water flux impinging on the surface is calculated directly [49, 

64]. Different approaches such as FEM or FVM can be applied for discretization of the 
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hyperbolic systems [65, 66]. One of the main advantages of the Eulerian approach is that the 

discrete droplet trajectory as the Lagrangian approach is not solved and therefore it reduces the 

computational memory usage and cost time especially in three-dimensional trajectory simulation. 

Also the Eulerian collection efficiency can be used simply for multi-element airfoil without the 

difficulty of impinging boundary calculation difficulties presence in Lagrangian approach [34]. 

Another important aspect is the modeling of the physics and effects of Supercooled Large 

Droplet (SLD) in ice accretion simulation. Supercooled large droplet icing condition (i.e. 40 μm 

to 400 μm diameters) have been addressed by the Federal Aviation Administration as one of the 

main concerns for ice accretion simulation codes to increase flight safety [1]. To simulate the 

SLD effects in icing simulation codes, SLD deformation, break up, splashing and rebounding 

need to be studied and modeled. SLD deformation make changes in droplet drag force and its 

trajectories. SLD break up generates secondary droplets which need to be tracked again and their 

trajectory calculated as well. SLD splash or rebounding also influences water catch efficiency 

and impinging water loss [67, 68]. A number of empirical models have been developed to 

modify the calculation of the droplet trajectory and collection efficiency in Lagrangian or 

Eulerian methods [69]. The study of SLD models is outside the scope of this research. 

Ice accretion thermodynamics performs a mass and energy balance on the impinging surface. 

To calculate the accreted ice mass on the surface from the impinging droplet velocity and 

impinging water mass, and water runback, the surface heat flux and convective heat transfer 

coefficient are used to solve the governing equations on the surface control volume [2, 8]. The 

traditional Messinger model is used extensively for the ice accretion calculations, which along 

with the thermodynamic equations, defines the surface type, freezing fraction and surface 

temperature [11, 70]. Using the traditional method, one needs to have a single stagnation point to 

be capable of defining the runback water directions. An iterative Messinger model is developed 

to improve the difficulty of multi-stagnation problem and water runback computation [32, 34]. 

The iterative Messinger model also improves the limitation if extend to 3D equation system. Ice 

accretion can also be modeled via partial differential equation systems. Based on this model, 

mass, momentum and energy conservation PDE equation systems are solved to compute the 

surface water film flow and ice height thickness. This model is named Shallow-Water Icing 

Model (SWIM) and is used in FENSAP-ICE [35]. Transformation of the thermodynamic 
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Messinger model to a partial differential model also improves the ability to extend from 2D 

model to 3D systems.  

Finally, numerical efficiency must be addressed when simulating multi-step icing problem in 

2 and 3 dimensional domain. This area has received less attention and is extensively examined in 

the present work.  

A more detailed description on the proposed approaches and methodologies in ice accretion 

simulation process are described in the next sections.  

2.1.2  Traditional ice accretion framework of CANICE 

Here we present the detailed modules of the traditional icing simulation code CANICE. The 

icing simulation process includes three main modules: 1) Panel method flow simulation, 2) 

Lagrangian droplet computation, 3) Traditional Messinger model thermodynamics and ice 

accretion.  

2.1.2.1  Panel method flow simulation 

Flow field parameter solution for the icing simulation in CANICE code is obtained by 

potential inviscid flow integrated with viscous boundary layer calculation [2, 8, 14]. The flow is 

assumed inviscid, irrotational and incompressible. The continuity and momentum equation for 

inviscid flow are [2, 53]: 
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where ሬܸԦ is the velocity, p is the pressure and ߩ is the density. For incompressible (ߩ constant) 

and irrotational flow (׏ ൈ ሬܸԦ ൌ 0), the continuity and momentum equation simplify to: 
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Using the velocity potential Φ defined as ሬܸԦ ൌ ଶΦ׏ Φ, the continuity equation becomes׏ ൌ 0. 

The Hess and Smith panel-method is used as the flow solver of the Laplace equation, which is a 

linear partial differential equation of the second order. More complex potential flows can be 

simulated by the sum of elementary flow potentials Φୣ and superimposing singularities such as 

sources, vortices and doublets: 
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Φ ൌ ∑ αୣΦୣ
୬
ୣୀଵ              (2.5) 

These singularities are distributed on the body surface, discretized by a number of panels. The 

linear equations system is solved to compute the flow parameters. The potential at the point P is 

written as: 

ΦሺPሻ ൌ ΦஶሺPሻ ൅ ׬ qሺsሻୗౙ
Φୱds ൅ ׬ γሺsሻୗౙ

Φ୴ds      (2.6) 

where Φஶ is the free stream potential, Φୱ is the potential of source distribution of strength qሺsሻ 

per unit length, and  Φ୴ is the potential of vortex distribution of strength γሺsሻ per unit length. 

The discretization of equation for N panel reduces to:  
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The q୨ሺsሻ source strength is assumed to be constant for the panel j, and γ୨ vorticity strength 

assumed to be constant on all the panels. The velocity ሬܸԦat each point (x, y) is: 

ሬܸԦ ൌ ሬܷሬԦ ൅  Ԧ              (2.8)ݒ

where ሬܷሬԦ is the uniform velocity at the infinity ( ሬܷሬԦ ൌ ஶܸሺܿߙݏ݋ଓԦ൅  Ԧ is theݒ ଔԦሻ), andߙ݊݅ݏ

perturbation flow velocity due to the body which has been represented by source and vortex 

flows. The normal and tangential velocity components of the total velocity at each panel control 

point i can be written as: 
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where ܣ௜,௝
௡ ௜,௝ܣ ,

௧ ௜,௝ܤ ,
௡ ௜,௝ܤ	,

௧  are the influence coefficient related to the airfoil geometry [53]. 

Using the Kutta-Joukowski condition for trailing edge tangential velocities ( ௡ܸ
௧ ൌ െ ଵܸ

௧), normal 

velocity condition ( ௜ܸ
௡ ൌ 0) for each panels, and γ୧ vorticity strength assuming to be constant as 

γ, the normal velocity ௜ܸ
௡ equation reduces to: 
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The final generated algebraic equations system ሾܣሿሼݔሽ ൌ ሼܾሽ can be solved using methods such 

as the GAUSS elimination approach [2]. 

Integral boundary layer methods using the potential flow solution is applied for the 

calculation of the boundary layer properties, skin friction and heat transfer with inclusion of the 

surface roughness effect. Normal pressure gradient is assumed negligible for the viscous 
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boundary layer calculation. The laminar boundary layer can be modeled by Thwaites method 

[71]. The laminar momentum thickness ߠ௟ is defined by: 
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where ݑ௘ is the surface velocity computed by the potential flow solver. The laminar boundary 

layer thickness ߜ is computed by: 
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The heat transfer coefficient (݄௖,௟) for the laminar region is defined by: 

݄௖,௟ ൌ 0.296 ௞ೌ
√ఔ
ሾݑ௘ିଶ.଼଼ ׬ ݏ଼଼݀.௘ଵݑ

௦
଴ ሿି଴.ହ         (2.14) 

where ݇௔ is the air thermal conductivity. The transition from laminar to turbulent regime is 

computed using the roughness based Von Doenhoff criterion: 
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where ݇௦ is the roughness height, ݑ௞ is the local velocity at y = ks : 
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For ܴ௘௞ ൒ 600, the boundary layer is assumed to be turbulent. The turbulent momentum 

thickness ߠ௧ is defined by: 
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where ́ݏ is the value of ݏ at the transition point. The turbulent skin friction coefficient is 

computed by: 

஼೑
ଶ
ൌ ଴.ଵ଺଼

ሾ୪୬	ሺ଼଺ସ
ഇ೟
ೖೞ
ሻሿమ

             (2.18) 

The Stanton number is defined by: 
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where ܲݎ௧ ൌ 0.9 is the turbulent Prandtl number for air, and ܵݐ௞ is the roughness Stanton 

number, calculated by: 

௞ݐܵ ൌ 1.156ሾ௨ഓ௞ೞ
ఔ
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where shear velocity is calculated as ( ݑఛ ൌ ௘ටݑ
஼೑
ଶ

 ). 
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The heat transfer coefficient for the turbulence region is defined by: 

݄௖,௧ ൌ .ݐܵ .ߩ .௘ݑ ܿ௣            (2.21) 

Roughness height is based on the equivalent sand-grain roughness model [2]. The resulted heat 

transfer coefficient is then added in the icing thermodynamic calculation.  

2.1.2.2  Lagrangian droplet computation 

To estimate the amount of water impinging on the surface, one way is to track the droplet 

trajectory from the far field to the body surface using the Lagrangian approach. The equation of 

motion is solved for the released droplet during the time intervals to track the droplets 

trajectories (Figure 2.2) [2, 49, 50, 72]. Droplets trajectories have deviations compared to the air 

streamlines and this deviation increases with the droplet size. The equation of motion is obtained 

using Newton’s Law for droplets: 

Ԧܨ ൌ ݉ௗ
ௗమ௥Ԧ೏
ௗ௧మ

             (2.22) 

The assumptions chosen:  

 Volume of the droplets remain constant  

 Droplets shape are not necessarily spherical 

 Droplets do not affect the flow field 

 Initial droplets have the farfield velocity 

 Droplet density is constant 

 Droplet lift is assumed to be zero 

The forces are: droplet drag, gravitational and buoyancy forces: 

݉ௗ Ԧܽௗ ൌ ௔ߩሺߴ െ ଓԦ൅ߠ݊݅ݏௗሻ݃൫െߩ ሬ݇Ԧ൯ߠݏ݋ܿ ൅ ଵ
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஽หሬܸԦܥ௔ܵிߩ െ ሬܸԦௗหሺሬܸԦ െ ሬܸԦௗሻ    (2.23) 

where ݉ௗ is the droplet mass, Ԧܽௗ is droplet acceleration, ߩ௔ and ߩௗ are air and water droplet 

densities, ߴ is the water droplet volume, ሬܸԦ and ሬܸԦௗ are the velocities of fluid and droplet, ܥ஽ is the 

droplet drag coefficient, and ܵி is the droplet area normal to free stream direction. 
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Figure 2.2: Reference system definition for droplet trajectory calculation [49]. 

 

Droplet gravity force is: 

Ԧ௚ܨ ൌ ଓԦെߠ݊݅ݏௗ݃ሺߩߴ  ሬ݇Ԧሻ           (2.24)ߠݏ݋ܿ

Droplet buoyancy force is:  

Ԧ௕ܨ ൌ ଓԦ൅ߠ݊݅ݏ௔݃ሺߩߴ  ሬ݇Ԧሻ           (2.25)ߠݏ݋ܿ

Assuming the droplet shape as a sphere, we have:  

݉ௗ ൌ ௗߩ ቀ
ଷ

ସ
ቁߨ ሺ

஽೐೜
ଶ
ሻଷ            (2.26) 

ܵி ൌ
గ

ସ
௘௤ܦ

ଶ               (2.27) 

ߴ ൌ గ

଺
௘௤ܦ

ଷ                (2.28) 

ܴ݁ௗ ൌ
ఘೌ
ఓೌ
௘௤หሬܸԦܦ െ ሬܸԦௗห            (2.29) 

where ܦ௘௤ is droplet equivolumetric diameter, and ܴ݁ௗ is droplet Reynolds number. Air forces 

are represented by pressure and shear forces on the droplet surface. It has been observed, for non 

rotational droplet, irrotational flow and axisymmetric droplet shape along U direction, that 

droplets would not have any lift forces [2]. To calculate the droplet drag force, both pressure and 

shear forces need to be taken into account. Droplet drag coefficient is calculated via the 

empirical model of Gunn and Kinzer and adapted interpolation referred in reference [49]: 
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For Re ≤ 1 :            CdRe / 24 = 1                   (2.30) 

For 1 ≤ Re ≤ 175 :         CdRe / 24 =  1.00098596+0.26089615[ln(Re)]-

0.13329568[ln(Re)]2+0.10783876[ln(Re)]3-0.02343379[ln(Re)]4+0.002442409[ln(Re)]5 

For 175 ≤ Re ≤ 3500:    CdRe / 24 =  -43396.14356345+34106.69196587[ln(Re)]-

10691.51498487[ln(Re)]2+1671.42366542[ln(Re)]3-

130.35326094[ln(Re)]4+4.0600087[ln(Re)]5 

For Re ≥ 3500 :           CdRe / 24 = 1.699 (10-5) Re1.92  

The equation of motion finally becomes: 

ௗమ௥Ԧ೏
ௗ௧మ

൅ ஼ವோ௘

ଶସ

ଵ

௄ಲ

ௗ௥Ԧ೏
ௗ௧

ൌ ଓԦെߠ݊݅ݏ൫ீܭ ሬ݇Ԧ൯ߠݏ݋ܿ ൅ ஼ವோ௘

ଶସ

ଵ

௄ಲ
ሬܸԦ௔     (2.31) 

஺ܭ ൌ
ఘ೏஽೐೜

మ	

ଵ଼ఓೌ
ீܭ  ,   ൌ

ሺఘೌିఘ೏ሻ

ఘ೏
݃          (2.32) 

This second order differential equation can be solved using classical methods. The fourth, fifth 

and seventh order Runge-Kutta along with Adams-Moulton method are applied to solve the 

droplet equation of motion, as referred in reference [49]. Here is the position and velocity 

solution using the fourth order Runge-Kutta: 

Ԧௗሺ௜ାଵሻݎ ൌ Ԧௗ௜ݎ ൅ ߬ሬܸԦௗ௜ ൅
ఛ

଺
ሺ݇ଵ ൅ ݇ଶ ൅ ݇ଷሻ        (2.33) 

ሬܸԦௗሺ௜ାଵሻ ൌ ሬܸԦௗ௜ ൅
ఛ

଺
ሺ݇ଵ ൅ 2݇ଶ ൅ 2݇ଷ ൅ ݇ସሻ       (2.34) 

The time interval (߬) should be small enough to reduce the calculation errors while providing 

reasonable computation times. The new droplet position and velocity are obtained and used as 

initial solution for the next time interval. Initial positions of the droplet release typically are five 

chords upstream of the leading edge. Based on the assumptions above, initial droplet velocity has 

the same velocity as air velocity at this point. The complete Lagrangian trajectory calculation is 

implemented in CANICE2D&3D [2, 50] and CANICE2D-NS [20].  

The droplet shape assumption is important for droplet drag coefficient prediction. For large 

droplets the shape deviates from spherical which increases the errors in drag force prediction. 

One of the drag models for non-spherical large droplet models is developed by Clif, Grace and 

Weber [64]: 

CD = e CD,disk + (1-e) CD,sphere             (2.35) 

This model divides the droplet drag coefficient in a disk and a sphere and interpolates these 

predicted coefficients with the (e) fraction which depends on the Weber number (We): 
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݁ ൌ 1 െ ଵ

ሺଵା଴.଴଴଻√ௐ௘ሻల
            (2.36) 

ܹ݁ ൌ
ఘ௏ೝ೐೗

మ ௗ೛
ఙೢ

               (2.37) 

The disk drag coefficient is calculated as: 

Re ≤ 0.01 :        ܥ஽ ൌ
଺ସ

గோ௘
ሺ1 ൅ ோ௘

ଶగ
ሻ                                (2.38) 

0.01 < Re ≤ 1.5 :  ܥ஽ ൌ
଺ସ

గோ௘
ሺ1 ൅ 10௫ሻ  

1.5 < Re ≤ 133 : ܥ஽ ൌ
଺ସ

గோ௘
ሺ1 ൅ 0.138ܴ݁଴.଻ଽଶሻ  

Re > 133 :        ܥ஽ ൌ 1.17  

where x = -0.883+0.906 log10(Re) – 0.025 (log10(Re))2. After calculation of droplet trajectories, 

the local catch efficiency is computed based on the ratio of the area of the droplet impingements 

to the surface area normal to free stream velocity. The total catch efficiency is the ratio of the 

wing area impinging by droplets to the wing area normal to the free stream (Figure 2.3). 

 

Figure 2.3: Definition of the local and global collection efficiency [2]. 

 

Total water mass flow ሶ݉ ௘ impinging to the wing is calculated using the total catch efficiency: 

ሶ݉ ௘ ൌ ீߚ ஶܸܵி(2.39)            ܥܹܮ 
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where ீߚ  is the global catch efficiency, ஶܸ is the free stream velocity, ܵி is the airfoil area 

normal to free stream velocity and ܥܹܮ is the Liquid Water Content. To find the droplet impact 

points on the surface, a sweep process is done in (x, y, z) directions. The origin point for the 

sweep process is the stagnation point. For two-dimensional (x, y) domain, after defining the first 

droplet impinging the stagnation point, sweep process is performed in y direction and ends when 

droplets does not impact to the upper and lower wing. For 3D domain, sweep process is done in z 

direction for each value of y. Impact points are calculated by defining the intersections of each 

panels with the droplet trajectories, with more details provided in references [2, 49]. Impinging 

droplet velocity and impinging water mass flow on the surface are used in the icing 

thermodynamic module for surface mass and energy balance to compute the accreted ice mass. 

2.1.2.3 Traditional Messinger model thermodynamics and ice accretion 

A mass and energy balance on the impinging surface control volume is performed to calculate 

the accreted ice on the surface. Solution of the droplet trajectory module (impinging droplet 

velocity and impinging water mass) along with runback water, the surface heat flux, convective 

heat transfer coefficient and the other needed terms (such as anti-icing heat fluxes) are used to 

solve the governing model on the specific surface control volume. The freezing process of the 

icing simulation has been studied by Messinger [2, 11, 70]. The model is based on the 

thermodynamic first law of mass and energy conservation on the impinging surface control 

volume. The mass balance includes mass rate of impinging droplets, mass rate of runback water 

incoming into the control volume, mass rate of runback water going out of control volume, mass 

rate of evaporated water or sublimation ice and mass rate of accreted ice. The energy balance 

includes convective heat, latent heat, evaporation or sublimation heat, and droplet kinetic energy 

heat (Figure 2.4) [2]. A number of assumptions for the energy balance are:  

 Radiation is neglected 

 Conduction between surface/water and water/air is neglected 

 Runback water temperature is set to surface temperature 

 Runback water kinetic energy is neglected 
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Figure 2.4: Surface control volume for mass and energy balance [5]. 

 

Mass and energy balance for the surface control volume are: 

ሶ݉ ௜௠௣ ൅ ሶ݉ ௜௡ ൌ ሶ݉ ௜௖௘ ൅ ሶ݉ ௘௩௔௣ ൅ ሶ݉ ௢௨௧                     (2.40) 

ሶ݉ ௜௠௣ܪ௜௠௣, ಮ் ൅ ሶ݉ ௜௡ܪ௪௔௧௘௥, ೞ்షభ൅ݍሶ௪௔௟௟∆ݏ ൌ ሶ݉ ௜௖௘ܪ௜௖௘, ೞ் ൅ ሶ݉ ௘௩௔௣ܪ௩௔௣௢௥, ೞ் ൅ ሶ݉ ௢௨௧ܪ௪௔௧௘௥, ೞ்൅ݍሶ௖∆ݏ  

 (2.41) 

where: 

,௜௠௣ܪ ಮ் ൌ ௣,௪௔௧௘௥ሺܥ ஶܶ െ 273.15ሻ ൅ ௏ಮ
మ

ଶ
             (2.42) 

,௪௔௧௘௥ܪ ೞ்షభ ൌ ௣,௪௔௧௘௥ሺܥ ௦ܶିଵ െ 273.15ሻ        (2.43) 

,௜௖௘ܪ ೞ் ൌ ௣,௜௖௘ሺܥ ௦ܶ െ 273.15ሻ െ  ௙          (2.44)ܮ

,௩௔௣௢௥ܪ ೞ் ൌ ௣,௪௔௧௘௥ሺܥ ௦ܶ െ 273.15ሻ െ  ௩        (2.45)ܮ

ሶ௖ݍ ൌ ݄௖ ൬ ௦ܶ െ ௘ܶ െ
௏೐మ

ଶ஼೛,ೌ೔ೝ
൰            (2.46) 

ሶ݉ ௜௠௣ is the water impinging mass rate, ሶ݉ ௘௩௔௣ is the water evaporation mass rate, ሶ݉ ௜௖௘ is the 

accreted ice mass rate, ሶ݉ ௜௡ and ሶ݉ ௢௨௧ are the runback water going in and out of the control 

volume respectively, H is the total enthalpy, ݍሶ௪௔௟௟ is the heat rate through the surface, ݍሶ௖ is the 

convective heat rate resulted by airflow and kinetic energy, ܮ௙ and ܮ௩ are the fusion and 

evaporation latent heat respectively. The local convective heat coefficient is highly affected by 

the surface roughness and is calculated using a number of empirical roughness based models [2]. 

There can be three types of surface depending on the surface temperature: liquid, dry and wet 

surfaces. Liquid surface means there is no ice accretion on the surface. Dry surface means all the 
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incoming droplets freezes on impact and there is no water runback. Wet surface means that a 

portion of the water mass solidifies and the other portion flows as water runback. One way to 

define the surface type is through a try and false procedure using temperature and freezing 

fraction terms developed by Messinger [11]. Freezing fraction terms are defined as the portion of 

the incoming water mass to the control volume that freezes to the total incoming water mass: 

݂ ൌ ௠ሶ ೔೎೐
௠ሶ ೔೘೛ା௠ሶ ೔೙

             (2.47) 

Based on the methodology, for dry rime ice, f = 1, for wet glaze ice, 0 < f < 1, and for liquid 

surface, f = 0. Defined reference state for thermodynamic balance is water at zero velocity and 

temperature of 273.15 ºK. Based on the equations (2.40, 2.41, 2.47) there are two unknowns, 

surface temperature Ts and freezing fraction f. By defining Ts = 273.15 ºK, the freezing fraction 

is determined from the equations.  

 If (f < 0), surface is liquid type with (f = 0) and (Ts > 273.15 ºK), then need to set (f = 0) 

to recalculate the Ts.  

 If (f > 1), surface is dry rime ice type with (f = 1) and (Ts < 273.15 ºK), then need to set (f 

= 1) to recalculate the Ts.  

 If (0 ≤ f ≤ 1) the assumed Ts is correct and surface is wet glaze ice type.  

Ts will be calculated in an iterative process until the difference of two successive values is lower 

than a defined tolerance. By defining the freezing fraction and surface temperature, the other 

unknowns such as water runback out ሶ݉ ௢௨௧ , ice mass ሶ݉ ௜௖௘ and evaporative mass ሶ݉ ௘௩௔௣ are 

defined from equations. 

2.1.3  Grid generation survey 

Here a number of well known grid generation tools (general or specific for icing problem) are 

discussed for the problem of ice structured grid generation and their capabilities and weaknesses 

are addressed. 

2.1.3.1  ICEM CFD 

ICEM-CFD is a commercial grid generation tools based on algebraic mesh generation 

capabilities [42]. It is used for structured, unstructured and hybrid mesh generation in 2&3 

dimensional space. The surface preparation is done using the tool CAD capabilities. The 

blocking is performed by the interactive user interface. The tool has different methods for 
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surface point’s distribution, edge modification, block modification and orientations, etc. ICEM 

includes replay control setting which allows the user to save/repeat the grid generation process 

for the similar case studies. The tool includes a number of elliptic smoothing methods such as 

Steger-Laplace, Steger-Sorenson and Middlecoff-Thomas with limited capabilities such as: local 

block smoothing, fixed block boundaries, inefficient smoothed grid metrics [73, 74]. The output 

grid can be generated in a variety of formats for different solvers applications. Figure 2.5 shows 

a number grids generated using ICEM-CFD commercial tool. The inefficient grid smoothing 

methods and extensive user work are the main disadvantages of the considered tool. 

 

Figure 2.5: Grids generated with ICEM-CFD [31, 39]. 

2.1.3.2  GRIDGEN 

GRIDGEN is a multi-block unstructured/structured elliptic and hyperbolic grid generation 

commercial tool. The software has been used for different academic and industrial applications 

[75]. The preliminary Transfinite Interpolation (TFI) grid is generated and used for the elliptic 

smoothing process. There are different types of elliptic control functions implemented in 

GRIDGEN, that are similar to the one in ICEM CFD package, such as Thomas-Middlecoeff, 

Steger-Sorenson, Hilgenstock-White [73]. The surface mesh generation is done using NURBS 

and PDE elliptic surface generation methods. GRIDGEN is used for various aerospace 

applications, but has not been used for the ice shapes problems. The hyperbolic grid is based on 

the front propagation of the grid from the initial surface and is solved via finite difference. The 

hyperbolic method is based on two main constraints to retain: the trajectory of the propagation 

and the cell size extension. Figure 2.6 shows few grid cases generated using GRIDGEN tool. The 

grid shock problem in concave area can be seen in Figure 2.6. 
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Figure 2.6: Mesh generated using GRIDGEN, elliptic (left), hyperbolic (right) [75]. 

2.1.3.3  SmaggIce (Specific for icing)  

There are a number of proposed approaches for ice grid quality improvements using different 

blocking topologies and domain decomposition methods that are applied in grid generation 

software developed specifically for ice effect analysis. SmaggIce software has been developed 

by NASA for this purpose [76, 77]. Preparation of the geometry surface needs to be properly 

done because of complexity of the ice shapes with horns and sharp edges. The blocking topology 

is defined as either single-block or multi-block. Single-block topology results in grid clustering 

issues in concave region that reduces the accuracy of the flow solution and increases the grid 

induced errors. Multi-block topology results in extension of the clustering along the block 

boundaries caused by grid cluster on the solid walls (Figure 2.4). These high aspect ratio cells are 

extended into the domain along the block boundaries, producing considerable errors in the flow 

solution. For the small scale roughness on the ice surface, both of the single and multi-block 

approaches have the difficulty to contain high quality grid on the surface and propagation of the 

surface discontinuities to the domains.  

Shih [6, 25] developed a new blocking strategy implemented in SmaggIce to overcome these 

difficulties. The strategy for the single-block includes a generation of domain grids which 

contains two sections: fine grids close to the airfoil and coarse grids in the farfield. In fine grid 

section, a grid line away from iced surface is chosen and all the cells in between (between the 

chosen line and iced surface) are regenerated and smoothed. The inner block close to the surface 

can contain many numbers of sub-blocks to increase the quality of the grid close to the iced 

surface (Figure 2.7). At the end of grid generation process, all blocks are combined as a single 
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block grid. The approach efficiently reduces the grid clustering in the domain but it efforts 

extensive manipulation such as line decision, sub-blocking and smoothing. Automation of the 

process is one of the main difficulties of the proposed approach.  

Developed strategy for the multi-block grid generation includes a thick wrap-around layer that 

covers the iced surface and removes the extension of the wall grids clustering along the block 

boundary into the domain (Figures 2.7 and 2.8). To solve the difficulty of surface small 

roughness propagation into the domain, a transition surface is used to smooth the grid in between 

(Figures 2.9). This strategy also needs to be applied manually such as creating the thick wrap-

round layer, blocking and defining transition layer. The difficulty of automation is one of the 

main problems that reduces the flexibility of the approach for multi-time step icing RANS based 

methodologies. 

 

Figure 2.7: Grid generated for a glaze ice shape: (a) Single-block. (b) Multi-block [77]. 

 

Figure 2.8: Grid generated and modified for glaze ice shape: (a) Grid line cluster next to the wall 

propagates into the domain along the block boundaries, (b) Effect of wrap-around to remove the 

clustering via the multi-block decomposition [77]. 
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Figure 2.9: Grid generated and modified for a glaze ice shape: (a) Surface oscillation propagated 

into domain, (b) Transition layer removed the surface oscillation propagation [77]. 

2.1.3.4  TurboGrid 

 Turbo-Grid [78] is an interactive tool performing single and multi-block structured algebraic 

grid generation with surface and simple field Laplace/elliptic smoothing. Use of control points, 

stretching, refining, boundary manipulation on the workstation monitor gives the flexibility to 

the user to control the algebraic grid quality. However, when applied on complex geometries 

such as experimental glaze ice shapes, the tool suffers from heavy dependence on user inputs to 

improve the grid quality. Note the PDE smoothing capability of the tool is very primitive. Figure 

2.10 shows a grid generated and modified for an ice case study using TurboGrid. 

 
Figure 2.10: Grid generated and modified for a glaze ice shape with Turbo-Grid [78]. 

2.1.3.5  ICEG2D (Specific for icing) 

Conformal mapping approaches such as parabolic mapping methods are one of the grid 

generation classes discussed for the problem of ice grid generation. The parabolic structured and 

semi-structured grid generation approach developed by Thompson and Soni shows improved 

flexibility for two-dimensional and three-dimensional ice shapes grid generation [58, 79-81]. The 
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structured parabolic grid generation code has been used in LEWICE-NS integrated with NPARC 

solver to perform RANS based multi-time steps icing simulation ICEG2D [12]. Parabolic 

method starts by algebraically generation of two reference layers that are locally orthogonal. 

These layers have been smoothed using Poisson equation with control functions. After 

smoothing the reference layers, the last 2 grid layers are used to generate the next grid layer 

algebraically and then smoothed with Poisson equation. This procedure is repeated until the outer 

boundaries are reached. A 2D structured grid generated for glaze ice shapes using the proposed 

parabolic approach is shown in Figure 2.11. Note that the grid shock still poses challenges. 

  

Figure 2.11: Structured grid generated for two glaze ice shapes [12, 58]. 

Semi-structured grids have been examined using the same parabolic approach including 

additional curvature effect and line modification functions. Semi-structured meshes are types of 

hybrid grids that combines structured and unstructured concepts and can be used as an alternative 

approach for the problem of ice grid generation [80]. Hybrid grids are more flexible than 

structured grids for complex geometries. They also have higher resolution and lower elements 

compared to unstructured grids and, as unstructured grids, are based on an explicit connectivity 

table. The performance of the approach in flow simulation around the iced airfoil is tested by 

Thompson and Soni [79]. Semi-structured grids generate quad/hexahedral elements. The 

algorithm is based on parabolic marching scheme and generation of grids from initial data 

surface. It includes three steps: algebraic generation of locally orthogonal reference mesh, 

smoothing the reference mesh using Poisson equation, and finally deletion and insertion 

algorithm based on the reference grid quality. The resulted mesh is highly attractive for viscous 

flow calculation and near body region resolution. The parabolic structured and semi-structured 

methodologies are given here [12, 79]. Assuming the transformation is the form of: 
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 ξ = ξ(x,y,z) , η = η(x,y,z) , ζ= ζ(x,y,z) (2.48) 

the inverse transformation is: 

 x=x(ξ,η,ζ) , y=y(ξ,η,ζ) , z=z(ξ,η,ζ) (2.49) 

The initial data surface is assumed to be ߞ=constant surface and ߞ is chosen as marching 

direction.  

The approach is as follows:  First step: a structured reference mesh is algebraically generated 

to be locally orthogonal. This reference mesh includes three layers (subscript 0, 1, 2): one initial 

data surface and two grid layers. The first surface mesh for layer k is:   

௜,௝,ଵݎ
௞ ൌ ௜,௝,଴ݎ

௞ ൅ ௜,௝ߜ
௞ . ݊௜,௝,଴

௞              (2.50) 

where ݎ௜,௝,଴
௞  is the position vector of point (i,j) on the initial data surface, ݎ௜,௝,ଵ

௞  is the position 

vector of point (i,j) on the first surface of reference mesh, ߜ௜,௝ is the specified distance 

distribution, and ݊௜,௝,଴ is the unit surface normal. The second surface of reference mesh for layer 

k is: 

௜,௝,ଶݎ
௞ ൌ ௜,௝,ଵݎ

௞ ൅ ௜,௝ߜ
௞ାଵ. ݊௜,௝,ଵ

௞             (2.51) 

Second step: the standard Poisson equation is used to smooth the generated reference mesh 

layers. The orthogonality, spacing and curvature control are included in control functions to 

improve the quality of grids. The smoothing is only applied on the points of the first surface of 

the reference mesh, and the second surface is updated after completing the desired number of 

iterations for smoothing of the first surface. Based on the orthogonality assumption, ଵ݃ଷ, ଵ݃ଶ, 

and ݃ଶଷ should be zero, so that the Poisson equation reduces to: 
௚మమ௚యయ
௚మ

൫ݎకక ൅ Φݎక൯ ൅
௚భభ௚యయ
௚మ

൫ݎఎఎ ൅ Ψݎఎ൯ ൅
௚భభ௚మమ
௚మ

൫ݎ఍఍ ൅ Θݎ఍൯ ൌ 0    (2.52) 

ଵ݃ଵ ൌ కݔ
ଶ ൅ కݕ

ଶ ൅ కݖ
ଶ ,  ݃ଶଶ ൌ ఎଶݔ ൅ ఎଶݕ ൅ ఎଶ ,  ݃ଷଷݖ ൌ ఍ݔ

ଶ ൅ ఍ݕ
ଶ ൅ ఍ݖ

ଶ    (2.53) 

݃ ൌ อ
కݔ కݕ కݖ
ఎݔ ఎݕ ఎݖ
఍ݔ ఍ݕ ఍ݖ

อ                (2.54) 

where ଵ݃ଵ, ݃ଶଶ, ݃ଷଷ are covariant metrics components; ݔక  క are the position derivatives toݖ ,కݕ ,

 ఍ are the positionݖ ,఍ݕ ,఍ݔ  ;direction-ߟ ఎ are the position derivatives toݖ ,ఎݕ ,ఎݔ ;direction-ߦ

derivatives to ߞ-direction.  

The form of control functions with the curvature effects are:  

  Φ ൌ െ డ

డక
ln	ሺට

௚భభ
௚మమ௚యయ

ሻ                     (2.55) 
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Ψ ൌ െ డ

డఎ
ln ൬ට

௚మమ
௚భభ௚యయ

൰               (2.56) 

Θ ൌ െ డ

డ఍
ln	ሺට

௚యయ
௚భభ௚మమ

ሻ             (2.57) 

The control functions are computed on all layers. The initial data surface is used to define the 

value of Φ, Ψ, and all three surfaces in the layer are used to define the value of	Θ. For highly 

non-convex regions, it has been found that dissipation should be added to the Poisson smoothing 

equation [81].  In the domains where g11>>g33, the derivatives of ߞ are dominated in the 

Poisson equation, so that in non-convex domains this would results in lower effects of smoothing 

in the ߞ constant lines which lead to the grid lines crossing problem. This problem is solved 

using a dissipation term to modify the Poisson equation first term as follows: 
௚మమ௚యయ
௚మ

൫ሺ1 ൅ కకݎకሻߥ ൅ Φݎక൯           (2.58) 

where:  

కߥ ൌ ට
୫ୟ୶	ሺ௚భభ௚యయሻ

௚యయ
ൈ ݂ሺθకሻ           (2.59) 

݂൫θక൯ ൌ ൞

1 0 ൑ θక ൏
గ

ଶ

ሺ݊݅ݏθకሻఈ
గ

ଶ
൑ θక ൏ ߨ

0 ߨ ൑ θక

         (2.60) 

The term θకis the angle between ݎ௜ାଵ,௝ െ ௜,௝ݎ  and ݎ௜ିଵ,௝ െ ௜,௝ݎ  . The value of 0 ൏ ߙ ൏ 1 is defined 

by user to control the smoothing in the concave domains.  

The process of structured parabolic method is thus completed. Now to move forward with 

semi-structured grids, the following additional step is defined:  Third step: a geometry based line 

deletion/insertion algorithm is applied on the smoothed reference mesh. Two criteria are chosen 

for deletion of a line such as ߦ line. The first condition is the slenderness of the cell and if the 

condition is true, the ߦ=constant line is deleted: 

ଵ

௝೘ೌೣ
∑ ൬ට

௚యయ
௚భభ
൰
௝

௝೘ೌೣ
௝ୀଵ ൐  ௔௩௚         (2.61)ߙ

This translates as a cell on the ߦ=constant line where the average value of the ratio of ߦ arclength 

to ߞ arclength should be lower than the specified value of ߙ௔௩௚. Otherwise, the ߦ constant line 

will be deleted. The jmax is the number of points on the ߦ=constant line. The second condition is 

based on the cell maximum slenderness on the ߦ lines and defined as the ratio of ߦ arclength to ߞ 
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arclength which needs to be lower than the specified value of ߙ௠௔௫. Otherwise, the ߦ constant 

line is deleted. 

ݔܽ݉ ൬ට
௚యయ
௚భభ
൰
௝

൐  ௠௔௫           (2.62)ߙ

Note that the user specified values need to be chosen with the condition ( ߙ௠௔௫ ൐   .(௔௡௚ߙ

For the insertion algorithm, the criteria are based on the cell face divergence: 

∆ൌ ଵ

ඥ௚యయ

డ

డ఍
ሺඥ ଵ݃ଵሻ            (2.63) 

ଵ

௝೘ೌೣ
∑ ሺ∆ሻ௝
௝೘ೌೣ
௝ୀଵ ൐  ௔௩௚           (2.64)ߚ

where ∆ is the cell face divergence. If the average divergence condition is higher than the user 

specified value of ߚ௔௩௚, a ߦ line will be added to the surface of ߦ=constant and ߞ=constant. The 

second condition is specified as below: 

ሺ∆ሻ௝ݔܽ݉ ൐  ௠௔௫            (2.65)ߚ

If the condition is true, a ߦ line will be added to the surface of ߦ=constant and ߞ= constant. Note 

that user specified parameters ߚ௠௔௫ and ߚ௔௩௚ should follow the condition ( ߚ௠௔௫ ൐  .(௔௡௚ߚ

The deletion/insertion algorithm in two dimensional domain is shown in Figure 2.12. Points 1, 

2, and 3 are on the initial data surface for the layer k and points 4, 5, and 6 are generated 

algebraically and smoothed as discussed above. For the next layer, point 5 is not chosen for the 

generation of the next layer k+1, based on the criteria of the deletion/insertion algorithm. Only 

points 4 and 6 are used as initial data surface for generation of the next layer k+1 which results in 

points 7 and 8. 

 

Figure 2.12: Deletion/insertion algorithm in two dimensional grids [79]. 
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The cell generated by deletion/insertion condition can have 4 to 6 edges in their faces and 

their volume can have 6 to 17 faces. Decision of the cell aspect ratio as the criteria for 

deletion/insertion algorithm gives the flexibility to control the cell aspect ratio close to the body 

suitable for viscous dominated region. The main disadvantage of the semi-structured approach is 

that there are not many flow solvers capable of using this type of grids. Semi-structured 

generated grids for different 2D and 3D geometries are shown in Figure 2.13. Also the generated 

2D grids for two glaze ice shapes are shown in Figure 2.14. The grid shock is well addressed by 

this approach. 

 

Figure 2.13: Semi-structured grids for arbitrary 2D and 3D geometries [79, 80]. 

 

Figure 2.14: Structured grid (left) and Semi-structured grid (right), 2D glaze ice shapes [79, 80]. 

2.1.3.6  EGRID 

The multi-block structured elliptic grid generation EGRID is developed at Bombardier 

Aerospace [56]. The code has an advanced domain decomposition algorithm to solve the 

blocking topology problem. The tool is capable of algebraic grid generation, grid manipulation 

and improvements. It also includes an elliptic smoothing method with stretching, orthogonality 

and curvature control functions.  



38 
 

Considering ξi is the curvilinear coordinates and (n) is the direction normal to the ξi = constant 

curve, curvilinear coordinates must satisfy the following equation to remove the Laplace 

equation tendency to alter the mesh spacing and curvature in concave or convex regions: 

డమక೔

డ௡మ
ൌ 0 ;  i = 1, 2, 3             (2.66) 

For uniform spacing grids, the expressions for normal derivative and derivative for metric tensor 

are: 

డక೔

డ௡
ൌ ଵ

ඥ௚೔೔
݃௜௝ డక

೔

డకೕ
        ,         

డ௚೔೔

డక೔
ൌ െ2Γ௝௞

௜ ݃௜௞        (2.67) 

The term Γ௝௞
௜  are the Christoffel symbols [15]. The equation simplifies to: 

డమక೔

డ௡మ
ൌ െΓ௝௞

௜ ݃௜௜݃௜௞/݃௜௜ ൌ 0;      i =1, 2, 3         (2.68) 

This equation is similar to the curvilinear Laplace equation (׏ଶߦ௜ ൌ െΓ௝௞
௜ ݃௜௞ ൌ 0). Considering 

the equivalent Poisson equation form as: 

 2ξi = Ci ; i =1, 2, 3             (2.69)׏

where Ci is the curvature control function. By adding the equation (2.30) to the Poisson equation, 

and using the simplification addressed in literature [56], the curvature control function can be 

defined as: 

௜ܥ ൌ െሺܭଵ
ሺ௜ሻ ൅ ଶܭ

ሺ௜ሻሻඥ݃௜௜            (2.70) 

ଵܭ
ሺ௜ሻ ൅ ଶܭ

ሺ௜ሻ ൌ ଵ

௚൫௚೔೔൯
య
మ
ሺΓ௝௝

௜ ݃௞௞ ൅ Γ௝௞
௜ ݃௝௞ ൅ Γ௞௞

௜ ݃௝௝ሻ       (2.71) 

where the ܭଵ
ሺ௜ሻ and ܭଶ

ሺ௜ሻ are the local principal curvatures of the ξi constant surface. 

The Poisson equation with curvature control function for uniform mesh simplifies to: 

௜ߦଶ׏ ൌ െሺܭଵ
ሺ௜ሻ ൅ ଶܭ

ሺ௜ሻሻඥ݃௜௜   ;      i =1, 2, 3       (2.72) 

Note that the new Poisson equation system reduces to Laplace equation by removing the 

curvature function. 

To extend the curvature function to non-uniform spacing mesh, an elliptic equation with function 

controlling the spacing (Si) is used: 

 2si = 0 ; i =1, 2, 3             (2.73)׏

To remove the undesirable curvature effects, Si must satisfy the equation below, similar to 

equation (2.66) for ξi: 

డమ௦೔

డ௡మ
ൌ 0 ; i = 1, 2, 3            (2.74) 
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An equivalent Poisson system for function Si is: 

 ௜ ; i =1, 2, 3            (2.75)ܥ = 2si׏

௜ܥ ൌ െሺܭഥଵ
ሺ௜ሻ ൅ ഥଶܭ

ሺ௜ሻሻඥ݃̅௜௜           (2.76) 

where ܭഥଵ
ሺ௜ሻ, ܭഥଶ

ሺ௜ሻ, and ݃̅௜௜ are functions of Si. By solving the Laplacian of Si as a function of 

curvilinear coordinates ξi, we have: 

௜ݏଶ׏ ൌ ݃௝௞ డమ௦೔

డకೕడకೖ
൅ ௟ߦଶ׏ డ௦

೔

డక೗
ൌ  ௜         (2.77)ܥ

The term ׏ଶߦ௟ can be written as: 

௟ߦଶ׏ ൌ ௜ܥ డక
೗

డ௦೔
െ ݃௝௞ డక

೗

డ௦೔
డమ௦೔

డకೕడకೖ
           (2.78) 

In the right-hand side of above equation, the first term is the general form of curvature control 

function for non-uniform spacing mesh, and the second term is the function to control the mesh 

spacing. For uniform mesh this equation reduces to equation (2.72). 

In general, for generating non-uniform spacing grids with curvature effects, the equation system 

is written as: 

ݎଶ׏ ൌ ݃௝௞ డమ௥

డకೕడకೖ
൅ ௟ߦଶ׏ డ௥

డక೗
ൌ 0         (2.79) 

where r = (x,y,z) and ׏ଶߦ௟ is defined by equation (2.78). 

The presented Poisson equation with curvature function has been tested for different case studies. 

The effect of curvature control is shown in Figure 2.15. 

 

Figure 2.15: Grid generated without curvature effect (left), and with curvature effect (right) [56]. 

2.1.3.7  GRAPE2D 

 GRAPE a multi-block mesh generation/smoothing based on Poisson elliptic method. The 

control functions incorporated are developed by Sorenson [55, 74, 82, 83]. Figure 16 shows a 
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number of grid generated using GRAPE code [55]. In the Sorenson approach (RLS), PRLS and 

QRLS are defined as: 

Pୖ ୐ୗሺξ, ηሻ ൌ pሺξሻ ∙ eିαη ൅ rሺξሻ ∙ eିୡ൫ηౣ౗౮ିη൯       (2.80) 

Qୖ୐ୗሺξ, ηሻ ൌ qሺξሻ ∙ eିୠη ൅ sሺξሻ ∙ eିୢ൫ηౣ౗౮ିη൯      (2.81) 

where α, b, c and d are positive constants defining the propagation of sources on boundaries 

through domain.  

Two main control functions, grid spacing and grid orthogonality have been considered. The 

minimum spacing close to wall along ξ = constant is defined by the user as ∆s or ds to control 

the grid spacing distribution. Also the grid angle θ of layer η = 0 (inner boundary) has been 

defined by user to control the orthogonality of the grid on the body and the propagation through 

domain. For spacing control (ds), on the layer η = 0 (inner boundary), the equations are: 

ds ൌ ሾሺdxሻଶ ൅ ሺdyሻଶሿ଴.ହ            (2.82) 

Substitution the partial differentiations for dx and dy: 

ds ൌ ቂ൫xξdξ൅ xηdη൯
ଶ
൅ ൫yξdξ൅ yηdη൯

ଶ
ቃ
଴.ହ

       (2.83) 

As dξ ൌ 0  (ξ = constant) and dη ൌ 1 for the considered interval, the equation simplifies to: 

ds ൌ ቂ൫xη൯
ଶ
൅ ൫yη൯

ଶ
ቃ
଴.ହ

                  (2.84) 

For orthogonality control (θ), the angle between the first layer η = 0 (inner boundary) and ξ has 

been defined as follows: 

ሾ׏ξ ∙ ηሿ׏ ൌ ሾ|׏ξ|	|׏η| cos θሿ           (2.85) 

which results in:  

ቂξ୶η୶ ൅ ξ୷η୷ቃ ൌ ൤ቀξ୶
ଶ ൅ ξ୷

ଶቁ
଴.ହ
ቀη୶

ଶ ൅ η୷
ଶቁ

଴.ହ
cos θ൨       (2.86) 

Using the transformation correlation (4,5), the equation simplify to: 

ൣെyηyξ െ xηxξ൧ ൌ ቂ൫yηଶ ൅ xηଶ൯
଴.ହ
൫yξଶ ൅ xξଶ൯

଴.ହ
cos θቃ       (2.87) 

Importing the equation of ds; above correlation for the layer η=0 (inner boundary) will reduce to: 

xη ൌ ቈ
ୢୱ൫ି୶ξ	ୡ୭ୱ θି୷ξ	ୱ୧୬ θ൯

൫୶ξమା୷ξమ൯
బ.ఱ ቉            (2.88) 

yη ൌ ቈ
ୢୱ൫ି୷ξ	ୡ୭ୱ θି୶ξ	ୱ୧୬ θ൯

൫୶ξమା୷ξమ൯
బ.ఱ ቉            (2.89) 
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The same procedure can be applied for the source term on the last layer η = ηmax (outer 

boundary). 

 Back to the Pୖ ୐ୗ, Qୖ୐ୗ equations, based on the assumptions (using damping function 

controlled by the parameters α, b, c, d), the effect of the terms r and s should be negligible on the 

layer η=0 (inner boundary), and similarly the negligible effect of terms p and q on the layer η =  

ηmax (outer boundary). This assumption results in: 

On the inner boundary (η = 0): 

Pୖ ୐ୗ (ξ,0) = p(ξ) and Q(ξ,0) = q(ξ)          (2.90) 

Using the above correlations and Poisson transformed equation, results in: 

pሺξሻ ൌ ቂ
୷η൫ି൫α୶ξξିଶβ୶ξηାγ୶ηη൯ ୎మ⁄ ൯ି୶η൫ି൫α୷ξξିଶβ୷ξηାγ୷ηη൯ ୎మ⁄ ൯

୎
ቃ      (2.91) 

qሺξሻ ൌ ቂ
ି୷ξ൫ି൫α୶ξξିଶβ୶ξηାγ୶ηη൯ ୎మ⁄ ൯ା୶ξ൫ି൫α୷ξξିଶβ୷ξηାγ୷ηη൯ ୎మ⁄ ൯

୎
ቃ      (2.92) 

Similarly, on the outer boundary (η = ηmax), the terms r and s can be computed by the correlation 

Pୖ ୐ୗ (ξ,ηmax) = r(ξ), Qୖ୐ୗ (ξ,ηmax) = s(ξ) and Poisson transformed equation. 

Using the computed derivatives, the terms p, q, r, s are determined and finally sources PRLS 

and QRLS are computed through the domain. The iterative process proposed by Sorenson [82] 

starts by using an algebraic generated grid as the initial solution and the user specified spacing 

and stretching parameters. The initial values for p, q, r, s are assumed to be zero and input values 

for ∆s and θ are defined. All derivatives of the boundary grid points for the first iteration are 

computed. The solution of the first iteration is used in the next iteration to solve ݔηη, ݕηη and 

other derivatives on the boundaries. The values of p, q, r, s for the boundary points are then 

determined. Now PRLS and QRLS can be computed for all the interior grid points using Sorenson 

control function equations. The terms p, q, r, s of the defined control functions can be under-

relaxed to increase the numerical stability. The elliptic Poisson PDE equation system can be 

solved using any solution approach (implicit or explicit such as point and line SOR, Point Jacobi 

and ADI, with additional FMG method for speeding up the computation). This iterative process 

is continued to satisfy a convergence criterion. 
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Figure 2.16: GRAPE generated mesh [55]. 

2.1.3.8  ENGRID 

ENGRID, developed at NLR, is a multi-block structured grid generation based on algebraic 

and elliptic grid methods. The main elliptic method implemented in ENGRID is the Spekreije 

approach including spacing, orthogonality and curvature grid control. The equations are 

discretized using Finite Difference and Finite Volume methods. An efficient black-box Multi-

Grid solver is used to reduce the computation time [22, 84]. The elliptic method control 

functions are computed using the parametric space. The mapping domains are shown in Figure 

2.17. The parametric domain is defined by nonlinear algebraic transformations. Using the 

preliminary defined algebraic and parametric domains, the source terms are computed once for 

the first iteration and held fixed throughout the entire grid computation. 

 

Figure 2.17: Composite mapping [84]. 

The Poisson with control function equations are as follows: 

aଵଵXஞஞ ൅ 2aଵଶXஞ஗ ൅ aଶଶX஗஗ ൅ Pୗ୔ୗXஞ ൅ Qୗ୔ୗX஗ ൌ 0            (2.93) 

Pୗ୔ୗሺξ, ηሻ ൌ aଵଵpଵଵ
ଵ ൅ 2aଵଶpଵଶ

ଵ ൅ aଶଶpଶଶ
ଵ         (2.94) 

Qୗ୔ୗሺξ, ηሻ ൌ aଵଵpଵଵ
ଶ ൅ 2aଵଶpଵଶ

ଶ ൅ aଶଶpଶଶ
ଶ         (2.95) 
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pଵଵ ൌ െTିଵ ൬ୱಖಖ
୲ಖಖ
൰ , 	pଵଶ ൌ െTିଵ ൬ୱಖಏ

୲ಖಏ
൰ ,  pଶଶ ൌ െTିଵ ቀୱಏಏ୲ಏಏ

ቁ ,  T ൌ ൬
sஞ s஗
tஞ t஗

൰   (2.96) 

aଵଵ ൌ ൫x஗ଶ ൅ y஗ଶ൯ Jଶ⁄         aଶଶ ൌ ቀxஞଶ ൅ yஞ
ଶ
ቁ Jଶൗ   aଵଶ ൌ ൫xஞx஗ ൅ yஞy஗൯ Jଶ⁄      (2.97) 

where aଵଵ, aଵଶ, aଶଶ are the covariant metrics components and pଵଵ, pଵଶ, pଶଶ are the control 

function terms. 

To incorporate the orthogonality, the elliptic equation below is solved using FVM and the 

defined boundary conditions from the orthogonality criteria on physical space (Neumann 

boundary conditions ሺ∂s ∂n⁄ ൌ 0ሻ for edges s=0 and s=1 and ሺ∂t ∂n⁄ ൌ 0ሻ for edges t=0 and 

t=1.  

൫Jaଵଵsξ ൅ Jaଵଶsη൯ξ ൅ ൫Jaଵଶsξ ൅ Jaଶଶsη൯η ൌ 0       (2.98) 

൫Jaଵଵtξ ൅ Jaଵଶtη൯ξ ൅ ൫Jaଵଶtξ ൅ Jaଶଶtη൯η ൌ 0        (2.99) 

Once s and t are computed on the boundaries, they are used to regenerate the parametric grid 

domain by Hermit interpolation: 

 s ൌ s୉భሺξሻH଴ሺtሻ ൅ s୉యሺξሻHଵሺtሻ          (2.100) 

 t ൌ s୉మሺηሻH଴ሺtሻ ൅ s୉రሺηሻHଵሺtሻ          (2.101) 

  H଴ሺsሻ ൌ ሺ1 ൅ 2sሻሺ1 െ sሻଶ , Hଵሺsሻ ൌ ሺ3 െ 2sሻsଶ        (2.102) 

  H଴ሺtሻ ൌ ሺ1 ൅ 2tሻሺ1 െ tሻଶ , Hଵሺtሻ ൌ ሺ3 െ 2tሻtଶ        (2.103) 

Considering the new generated parametric space (s, t), terms P and Q are computed again for 

the first iteration and applied through the grid computation to impose the condition of 

orthogonality in the physical space. ENGRID has been used for different academic and industrial 

aerospace applications, but not for complex ice configurations. Figure 2.18 shows few generated 

grids by ENGRID meshing tool, which shows a poor resolution in highly concave regions. 

 

Figure 2.18: ENGRID generated mesh [22]. 



44 
 

2.2  Methodology 

Here we present the detailed methodology of the RANS based icing simulation developments 

performed in this thesis. 

2.2.1  Ice grid generation  

Here we propose algorithms for the ice grid problem, in particular the treatment of 

concave/convex regions to reduce the grid shock phenomena as well as choice of control 

functions to achieve appropriate grid metrics in the field. The solutions presented are moreover 

constrained by a requirement to be fully automated so they can eventually be used within a 

multi-steps icing calculation procedure. The 1D curvilinear curvature based algorithm is 

presented, followed by the field generation algorithms (parabolic, elliptic). A detailed account of 

the various control functions is made and a blended approach is proposed. The numerical 

solution of the governing Poisson equations is also presented.  

2.2.1.1  Surface adaptive curvature based grid point distribution algorithm 

Here a novel 1D elliptic geometry curvature based point distribution algorithm is described 

[41]. Considering the 2D transformed Poisson equation, a 1D elliptic transformed equation with 

curvature based source terms is developed to satisfy the curvature based point distribution on the 

iced body: 

rξξ ൌ S               (2.104) 

where r is the geometry point distribution arclength (normalized length, 0 ൑ ݎ ൑ 1), and S is the 

source term. The normalized length formulation is as follow: 

r୧ ൌ ሺr୧ିଵ ൅ ∆rሻ r୬⁄              (2.105) 

∆r ൌ ඥሺx୧ ൅ x୧ିଵሻଶ ൅ ሺy୧ ൅ y୧ିଵሻଶ           (2.106) 

A number of source functions such as Sign, Sine, Cosine, Spline, damping Cosine, damping 

Atangent, damping Spline, mixed functions, etc. have been analyzed. Periodic source terms 

functions are chosen to achieve clustering at and near high curvature maxima, while unclustering 

between 2 high curvature maxima. Here a simple efficient periodic function is heuristically 

selected as the source term to add to the right hand side of the elliptic PDE: 

S ൌ A ∙ ሺr ൅ sinሺ2πrሻሻ            (2.107) 

where A is the amplitude constant parameter defined by the user. This parameter adjusts the 

global intensity of the surface grid points on the curved domains and can change the stability of 
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the numerical elliptic scheme if chosen very large; it is defined as (0 ൑ A ൑ 0.001) for the case 

studies presented here.  

The step by step procedure of the proposed 1D elliptic curvature based PDE computation is as 

follows. First, the surface curvature is computed by a finite number of points uniformly 

distributed on the surface. The curvature value is defined as: 

Curv୧ ൌ െ1/Radius୧           (2.108) 

where Radius୧ is the computed radius of the circle mapped on 3 points (i-1, i, and i+1). For each 

point (and its arclength) the curvature is defined concave (negative) or convex (positive). Then, a 

number of points (k=2 to n-1) is selected by the user, depending on the curvature selection 

criterion, to apply the curvature source term S in a piecewise fashion. Note that k=1 and k=n are 

the first and last point on the 1D geometry. Second, the source term S is computed for the 

selected geometry points (k=1 to n): 

  S1୧ ൌ A ∙ Sin ቀ ୰౟ି୰ౡ
୰ౡି୰ౡషభ

∙ 2πቁ			                        for  ( k = 2 to n-1) and if ( r୩ିଵ ൑ r୧ ൑ r୩ )       

  S2୧ ൌ A ∙ ሺCurv୧ ∑ Curv୧
୬
୧ୀଵ⁄ ሻ ∙ ሺr୧ െ r୩ିଵሻ			        for  ( k = 2 to n-1) and if  ൫r୩ିଵ ൑ r୧ ൑ r୩ିଵ ൅

0.5ሺr୩െr୩ିଵሻ൯   

  S3୧ ൌ A ∙ ሺCurv୧ ∑ Curv୧
୬
୧ୀଵ⁄ ሻ ∙ ሺr୧ െ r୩ሻ			     for  ( k = 2 to n-1) and if  ሺr୩ିଵ ൅ 0.5ሺr୩െr୩ିଵሻ ൑

r୧ ൑ r୩ሻ     

S୧ ൌ S1୧ ൅ S2୧ ൅ S3୧            (2.109) 

Note that the source term S includes a periodic Sinus function (S1୧) with two additional linear 

functions (S2୧ and S3୧). Third, the 1D elliptic PDE equation with the RHS source term is solved 

for the new curvature based point distribution solution. Source terms are updated (because of 

embedded r୧) at each iteration of the 1D elliptic solver until a minimum residual is reached. The 

general discretized form of the proposed 1D elliptic PDE is: 

r୧ିଵ െ 2r୧ ൅ r୧ାଵ ൌ S୧            (2.110) 

The central difference discretized form of the 1D elliptic equation is solved using Point SOR or 

ADI schemes. Note that ADI scheme simplifies to the tridiagonal matrix algorithm (TDMA) or 

Thomas algorithm solver for 1D problem, simply by defining j=constant and only solving in i 

[85]. The transformation from solution r to physical space (x,y) is done using CAD surface. The 

CAD surface is preliminary generated for the geometry surface using spline curve (an out-of-

CAD representation). The cases providing verification and parametric study of the proposed 
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methodology are presented in Chapter 5 with additional details in Appendices A and B. Note that 

extension of the curvature control algorithm to 3D grids would require projection on a surface 

(u,v). This would require advanced geometry representation and are outside the scope of this 

thesis. 

2.2.1.2  Field grid generation algorithm 

The application of ICEM-CFD commercial tool and the developed in-house grid generation 

tool NSGRID with the blended elliptic method and the solution schemes are described here. 

ICEM CFD mesh generation tool (commercial) 

Through a study performed at Polytechnique Montreal, a fully automated grid re-generation 

process using the ICEM-CFD commercial mesh generation package was developed within the 

multi-time steps framework of CANICE2D-NS [20, 42]. The grid generation procedure includes 

a preliminary algebraic grid generation and smoothing of the grid using an elliptic operator 

including different control functions to improve stretching, orthogonality and clustering of the 

grids. A standard elliptic smoothing technique using two background and foreground control 

functions is used to generate the multi-block structured grids around the ice shapes. The 

background control functions such as Middlecoff-Thomas influences the interior grid points and 

modifies the domain clustering [73]. The foreground control function such as Steger-Laplace or 

Steger-Sorenson influence the orthogonality and grid spacing control on the boundaries [74]. 

Blending of these methods within the grid smoothing process results in control of the quality of 

the grids over the entire domain. The number of foreground smoothing iterations is increased for 

the leading edge block containing the ice grids to conform to the ice shapes. This technique 

proves a necessary step to provide meshes with non-crossing cells (or positive cell areas) when 

highly complex ice shapes are presented (see Figure 2.19). Grid parameters such as wall distance 

and number of elements were selected based on analysis of several test cases considering trade-

offs between computational cost, accuracy and robustness.  Relevant additional details about the 

grids are given in Chapter 4.  

Although this approach has been used for the framework of icing, it is not firmly robust. As 

seen in Figure 2.19, the smoothed multi-block grid visually contains poor grid qualities areas 

such as concave region clustering, block edge clustering extension, grid smoothness and 

stretching ratio. Also it is further observed that the orthogonality and wall spacing have not been 

retained well for complex ice grid problems. Automation of the grid meshing is also a time 
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consuming process. The blended elliptic smoother implemented in ICEM has not been shown to 

handle complex domain grids. Note that grid generation in 3D (considering only algebraic grid 

generation and quality improvements) is a very time consuming process using ICEM CFD. 

 

Figure 2.19: Mesh around an iced airfoil, algebraic (left) and elliptic smoothing (right). 

NSGRID elliptic mesh generation tool (in-house) 

PDE methods, such as elliptic Poisson equation, are more complex than algebraic methods but 

provide means to generate high quality grids by selection of control functions [21-23]. The 

algorithm performs an iterative procedure to generate the desired grid using algebraic grids as 

initial solution. Through the use of Laplacian operator, the grids metrics especially grid spacing 

and orthogonality close to wall are not retained as needed for RANS flow computations. Figure 

2.20 shows a Laplacian operator solution around a cylinder, where one can see the non-uniform 

first later wall spacing at ߠ ൌ 0° and ߠ ൌ 90°. 

 

Figure 2.20: Grid spacing changes (curvature undesirable effects of Laplacian operators) [56]. 

To overcome this issue, a number of control functions and mapping transformation were 

examined [74, 84]. Considering Cartesian coordinates (x,y) for physical space and curvilinear 

coordinates (ξ,η) for computational space (0 ≤ ξ ≤ ξmax and 0 ≤ η ≤ η max), points one-to-one 

mapping can be done from physical domain to computational domain and reverse. Figure 2.21 

shows the mapping for O-type and C-type mesh around an airfoil.  
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Figure 2.21: Mapping for O-type (up) and C-type (down) mesh around an airfoil [55]. 

Considering ξ=ξ(x,y) and η=η(x,y), one need to find the mapping equations to satisfy the Poisson 

equation [23]: 

ξ୶୶ ൅ ξ୷୷ ൌ P             (2.111) 

η୶୶ ൅ η୷୷ ൌ Q             (2.112) 

where the terms P and Q are the forcing functions (control functions). Different choices for these 

values result in different grid characteristics. Using transformation equations, the Poisson 

equation can be written as [74]: 

ξ୶ ൌ yη/J,   ξ୷ ൌ xη/J,   η୶ ൌ yξ/J,   η୷ ൌ xξ/J            (2.113) 

J ൌ xξyη െ yξxη             (2.114) 

൫xηଶ ൅ yηଶ൯xξξ െ 2൫xξxη ൅ yξyη൯xξη ൅ ൫xξଶ ൅ yξଶ൯xηη ൌ െ൫xξyη െ yξxη൯
ଶ
൫Pxξ ൅ Qxη൯ 

(2.115) 

൫xηଶ ൅ yηଶ൯yξξ െ 2൫xξxη ൅ yξyη൯yξη ൅ ൫xξଶ ൅ yξଶ൯yηη ൌ െ൫xξyη െ yξxη൯
ଶ
൫Pyξ ൅ Qyη൯ 

(2.116) 
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These transformed equations are type of quasi-linear equations, which need to be linearized in 

order to be solved efficiently. 

The choices for control functions here are based on Sorenson (RLS) (Section 2.1.3.7), Spekreijse 

(SPS) (Section 2.1.3.8), and the developed blended (RLS-SPS-Para) method. In the proposed 

blended method (RLS-SPS-Para) [41], the different approaches source terms are added with 

weight factors and decay functions (optional): 

Pሺξ, ηሻ ൌ fୖ୐ୗ. Pୖ ୐ୗ ൅ fୗ୔ୗ. Pୗ୔ୗ ൅ f୔ୟ୰ୟ. P୔ୟ୰ୟ      (2.117) 

Qሺξ, ηሻ ൌ fୖ୐ୗ. Qୖ୐ୗ ൅ fୗ୔ୗ. Qୗ୔ୗ ൅ f୔ୟ୰ୟ. Q୔ୟ୰ୟ      (2.118) 

in which fRLS, fSPS, and fPara are the weight factors for Sorenson, Spekreijse (with parametric 

space generated from algebraic grid normalized arclength), and Spekreijse (with parametric 

space generated from parabolic grid normalized arclength), respectively. The algebraic grid is 

generated using TFI method [24]. The paparabolic grids are generated using the approaches 

described in Sections 2.1.3.5. Pୖ ୐ୗ and Qୖ୐ୗ are the Sorenson approach source terms.  Pୗ୔ୗ and 

Qୗ୔ୗ are the Spekreijse approach source terms, where the parametric grid is defined by the 

generated algebraic grid. P୔ୟ୰ୟ and Q୔ୟ୰ୟ are the Spekreijse approach source terms, where the 

parametric grid is defined by the generated parabolic grid. Optional decay functions such as 

exponential, linear, or periodic functions, are also implemented to control the effects of parabolic 

grid source terms (P୔ୟ୰ୟ and Q୔ୟ୰ୟ) on the elliptic grid equations. Note that changes in the 

sources weight factors can result in changes in the stability of the elliptic solution algorithm.  

The Spekreijse (SPS) source terms in the blended approach are either Pୗ୔ୗିୗେ or Pୗ୔ୗିୗେ୓. 

The Pୗ୔ୗିୗେ is the Spekreijse source term of spacing and curvature, that uses only the parametric 

space generated by algebraic grid. The Pୗ୔ୗିୗେ୓ is the Spekreijse source term of spacing and 

curvature with additional orthogonality. The orthogonality is achieved by elliptically smoothing 

the parametric space (with orthogonality boundary condition and algebraic parametric space as 

the initial solution). Adding Spekreijse orthogonality source term (Pୗ୔ୗିୗେ୓) results in a more 

relaxed problem and a better grid (for smoothed geometries), but a higher computation time 

because of additional elliptic solution on parametric space and also has difficulty at sharp convex 

corners. In the remainder of the paper, only the  Pୗ୔ୗିୗେ (named as Pୗ୔ୗ) is used for the proposed 

blended approach.  

In the proposed blended approach, the methodology can be summarized as follows. First, 

generating the algebraic grid and its transformed parametric space. Second, generating the 
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parabolic grid (or the parabolic/algebraic grid) and its transformed parametric space. Third, 

computing the 2D elliptic transformed Poisson equation with the proposed blended source terms. 

The initial solution of the iterative solver can either be the algebraic grid or the parabolic grid. 

The RLS control functions are computed at each iteration. The SPS and Para control functions 

are computed only at the first iteration and held fixed throughout the entire grid computation. 

The decision of the weight factors are based on two main criteria: the elliptic PDE solution 

scheme stability and the grid quality criteria decided by the user. The value of each weight 

factors can be chosen between 0 to 1. The approaches validation and discussions are presented in 

Chapter 5 and additional details are in Appendices A and B. 

Solution method 

Linearization 

 Successive Substitution technique (or Simple Iteration technique) can be used to solve the 

nonlinear algebraic system [85]: 

AሺUሻU ൌ BሺUሻ             (2.119) 

Using this technique, the nonlinear system can be simplified to: 

AሺU୬ሻU୬ାଵ ൌ BሺU୬ሻ            (2.120) 

where n=0,1,2,… is the iteration number. 

Using the Successive Substitution technique, the transformed Poisson equation simplifies to: 

αxξξ െ 2βxξη ൅ γxηη ൌ െJଶ൫Pxξ ൅ Qxη൯       (2.121) 

αyξξ െ 2βyξη ൅ γyηη ൌ െJଶ൫Pyξ ൅ Qyη൯       (2.122) 

α ൌ xηଶ ൅ yηଶ        γ ൌ xξଶ ൅ yξଶ  β ൌ xξxη ൅ yξyη    (2.123) 

where the coefficients α, β, γ, J are computed using the previous iteration solution, explicitly. 

 

The Newton-Raphson technique has also been applied to linearize the problem of Poisson 

equation. Assuming the form of the equation is defined as follows [24]: 

R ൌ BሺUሻ െ AሺUሻU           (2.124) 

ப୙

ப୲
ൌ R ൌ 0              (2.125) 

By simplifying the left hand side, the implicit form of the equation can be written as: 

୙౤శభି୙౤

∆୲
ൌ R୬ାଵ            (2.126) 

Using the Taylor series expansion for the right hand side in n+1: 
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R୬ାଵ ൌ R୬ ൅ பୖ

ப୙
∆U            (2.127) 

The delta form of the equation simplifies to: 

ቂ ୍
∆୲
െ பୖ

ப୙
ቃ ∆U ൌ R୬           (2.128) 

 

where R୬ is the computed residual at the time step n. To improve the stability of the iterative 

scheme, the Jacobian term (
பୖ

ப୙
) is active if (

பୖ

ப୙
 < 0), otherwise it is set to zero. 

Solution of system 

The linearized transformed Poisson equation by the Successive Substitution technique is 

solved using the approaches: Point-Jacobi (explicit), Point Gauss-Seidel (explicit), Point SOR 

(explicit), Line SOR (implicit) and ADI (implicit). The linearized transformed Poisson equation 

by the Newton-Raphson technique has been solved using the approaches Point-Jacobi (implicit) 

and ADI (implicit) [85, 41].  

As anticipated, the form of linearization plays a noticeable role in the convergence of the 

implicit and explicit approaches. Numerical experimentation shows that ADI shows better 

stability and convergence using Newton-Raphson technique than Successive Substitution 

technique for linearization of Poisson equation. 

Full Multi-Grid approach 

A Full Multi-Grid (FMG) approach has been applied to the grid generation solver to reduce 

the computation time, especially for ice grid generation extension in 3D [86, 87]. Assuming the 

form of the equations is defined as below: 

LU ൌ F              (2.129) 

where L is the operator, U is the solution, and F is the right hand side. 

The recursive nonlinear FMG approach is defined by the following steps: 

1. Solve the equation on the fine grid (k) with defined sweeping times (S1) and initial 

solution (U୭୪ୢ
୩ ): 

U୩ ൌ SolveୗభሺU୭୪ୢ
୩ , L୩, F୩ሻ         (2.130) 

2. Compute the residual on the fine grid (k): 

R୩ ൌ F୩ െ L୩U୩            (2.131) 

3. Restrict the residual and solution from the fine grid (k) to the coarse grid (k+1): 
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R୩ାଵ ൌ I୩ାଵ
୩ R୩            (2.132) 

Uഥ୩ାଵ ൌ I୩ାଵ
୩ U୩            (2.133) 

4. Solve the error (e) on the coarse grid (k+1) with defined sweeping times (S2),  initial 

solution (Uഥ୩ାଵ) and right hand side (R୩ାଵ): 

e୩ାଵ ൌ SolveୗమሺUഥ୩ାଵ, L୩ାଵ, R୩ାଵሻ        (2.134) 

5. Prolong the error (e) from the coarse grid (k+1) to the fine grid (k):  

e୩ ൌ I୩
୩ାଵe୩ାଵ            (2.135) 

6. Correct the solution on the fine grid (k) using the prolonged error (e୩): 

U୬ୣ୵୩ ൌ U୩ ൅ e୩           (2.136) 

7. Solve the equation on the fine grid with defined sweeping times (S3) and initial solution 

(U୬ୣ୵୩ ): 

U୩ ൌ SolveୗయሺU୬ୣ୵୩ , L୩, F୩ሻ         (2.137) 

where R is the residual, I୩ାଵ
୩  and I୩

୩ାଵ are the restriction and prolongation operators, respectively. 

This recursive procedure is repeated until a residual criterion is reached. An extensive 

description of the method and the results are discussed in Chapter 5 and Appendices A and B. 

2.2.2  RANS flow simulation 

Flow field parameter solution for the icing simulation is obtained by Navier-Stokes based 

solvers [8, 14], replacing the traditional potential inviscid flow integrated with viscous boundary 

layer calculation. The effects of viscous flow on the icing simulation augment as the complexity 

of ice shape increases especially for glaze ice cases. Therefore, research is moving towards using 

RANS modeling. The main difficulty of RANS based methods comes from the point of ice grid 

generation complexity and high computation times. Here we briefly discuss the RANS solvers 

and roughness models used in the studies for the coupling to the framework of aero-icing 

simulation, CANICE-NS code. 

2.2.2.1   RANS flow solvers 

There are number of RANS based solvers that have been linked to the CANICE-NS code: 

P/SMB [43], NSMB [44], and NSCODE [45]. The first RANS based flow solver coupled to 

CANICE-NS is P/SMB, which is a parallel or serial Multi-Block three dimensional 

Euler/Navier-Stokes flow solver developed by Badcock et al. [88, 89]. P/SMB3D is a cell-
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centered finite-volume code and can be applied for compressible steady and unsteady flow 

simulations. A wide range of turbulence models such as k-ω, k-ε, k-ω-SST, Spalart-Allmaras, 

hybrid (DES based on Spalart-Allmaras) are available and validated. Parallel processing version 

of the code is configured to decompose the structured multi-block grids solution on different 

processors using MPI and PVM. P/SMB3D has been used for a wide variety of aerospace 

applications [90]. The rough-wall extension treatment, important for icing simulation, is not 

implemented in P/SMB. The code is integration to CANICE2D-NS for multi-time step icing 

simulation and effects analysis [39]. 

The second code linked to CANICE-NS is NSMB, a three dimensional Euler/Navier-Stokes 

finite-volume flow solver developed by J. B. Vos et al. [26, 44, 91]. The code uses multi-block 

structured grids and can be applied for parallel or serial processing. A data base library 

“Memcom” is available to increase the speed of the data access. The turbulence models 

implemented in NSMB are: algebraic Baldwin Lomax and Granville, Spalart-Allmaras, k-ε, k-ω-

SST, and others. Also, a number of rough wall treatment extensions such as ONERA extension 

of Spalart-Allmaras, and Knopp and Wilcox extension of k-ω are available to simulate the effect 

of surface roughness in the flow computation. The code includes pre-conditioning option for low 

Mach number flows and has a Full Multi-Grid method to reduce the computation time. NSMB 

can be applied to steady and unsteady flow simulations [92, 93]. NSMB is integrated to 

CANICE2D-NS for RANS based single and multi-time step icing simulation with the analysis of 

roughness effects. Results, validation and comparison are published and discussed in Chapter 4 

[20, 31, 63 ].  

 The third flow solver integrated with CANICE-NS is NSCODE, a finite volume two 

dimensional multi-block Euler/Navier-Stokes based solver with Full Approximate Storage Multi-

Grid developed by the laboratory of prof. Laurendeau [31, 94]. Available turbulence models 

include the Spalart-Allmaras, k-ω-SST and γ-Rθ equations. The code incorporates the wall 

treatment roughness model of Boeing which is implemented and validated within the Spalart-

Allmaras turbulence model. NSCODE2D is capable of steady and unsteady flow analysis and 

incorporates a Chimera method. The code is verified and validated on a variety of steady and 

unsteady case studies [45, 63]. Results of CANICE-NS couple with NSCODE2D are discussed 

in Chapter 6 [13, 31, 46, 63].  
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2.2.2.2  Roughness modeling capabilities 

Surface roughness is one of the main parameters influencing the surface skin friction and heat 

transfer, and has a major influence in the ice accretion process. Roughness values are usually 

assumed to be constant on the surface, but in reality, ice shape roughness varies in space and 

time [20, 29, 37].  

The rough wall treatment implementations (roughness modeling in RANS solvers) in Spalart-

Allmaras and k-ω models are examined. There are two extensions for the Spalart-Allmaras 

roughness implementation: ONERA and Boeing [27]. In the two equations k-ω turbulence 

model, two rough wall models are addressed: Wilcox and Knopp methods [26, 28]. The Boeing 

extension rough wall treatment of Spalart-Allmaras is implemented in NSCODE. ONERA 

extension rough wall treatment of Spalart-Allmaras and k-ω model both Wilcox and Knopp 

rough wall models are implemented in NSMB code. Table 2.1 shows the rough wall treatment 

models available in each RANS solver. The roughness models formulations are cited in 

Appendix A. 

Table 2.1: RANS solvers roughness models info. 

 
Code 

S-A k-ω 
Boeing ONERA Wilcox Knopp 

P/SMB - - - - 
NSMB - yes yes yes 
NSCODE yes - - - 

 

2.2.3  RANS solution integration to CANICE2D-NS framework 

Following the convention used within NASA’s LEWICE code [12], the CANICE2D-NS 

framework couples the Navier-Stokes solver in two modes. Mode 1 makes use of the flow field 

solution obtained from RANS solver (density, velocities, pressure), instead of the panel method 

solution to determine the particle trajectories, impingement efficiency, and boundary layer 

parameters. Mode 2, in addition to mode 1, uses the Navier-Stokes skin friction coefficients in 

the thermodynamic module. Note that all the developments results presented here are based on 

Mode 2 integration. 

The RANS flow solution integration is done using a volume/area weighted interpolation as 

follows (Figure 2.22): 

P ൌ ሺPଵAଵ ൅ PଶAଶ ൅ PଷAଷሻ A⁄           (2.138) 
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where A is the area of triangle 1-2-3 and P is the flow parameters at point 4. 

 

Figure 2.22: Area weighted interpolation for 3 points. 

The position search also is calculated using these areas as follows: 

|ሺAଵ ൅ Aଶ ൅ Aଷሻ െ A| ൑ e          (2.139) 

where e is the threshold defined by user. 

The surface parameters interpolation is done using a linear interpolation between 2 points. Since 

all RANS solutions are cell centered, a simple algebraic average is used to transfer cell-centered 

values to cell-vertex one. These functions were available within each RANS library. 

The single stagnation point is defined based on the maximum pressure coefficient solution 

computed by the RANS solver around the leading edge. The stagnation point is the reference 

point for water runback direction assumption and ice thermodynamics computations. 

The heat transfer coefficients are calculated within the thermodynamic module through 

empirical methods relating to the skin friction and roughness values [95]. The heat transfer 

coefficient for the turbulent region is defined by (eq. 2.21).The Stanton (St) and roughness 

Stanton number (St୩) are defined by the equations (2.19, 2.20). The roughness value is defined 

by the user as an uniform or non-uniform value, although only constant roughness is used in the 

thesis. The boundary-layer edge velocity from the Navier-Stokes solution is determined from the 

isentropic relation for the wall pressure.  
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CHAPTER 3  

CONSISTENCY OF THE ARTICLES 

3.1  Context 

One of the major concerns in flight safety for flying in any weather conditions is ice accretion 

effects problems. Ice can be accreted on aircraft body surfaces such as wings, engines intakes, 

control surfaces, and instruments. One destructive effect is related to the complex ice formation 

on the aircraft lifting wings. As complexity of ice increases, shape or thickness, the flow 

disturbances on the wing surface result in higher reduction of aerodynamic performances, 

potentially leading to flight accidents. Understanding the physic of the complex ice accretion 

process and development of an efficient ice accretion simulation tool is one of the main 

objectives toward the analysis, control and reduction of flight accident due to icing effects. The 

main objective of the project is the development of the Navier-Stokes based icing simulation 

tools to perform efficient, automated, quasi-steady (multi-time steps) icing simulation for 

prediction of complex 2D glaze ice shapes, with algorithms compatible with 3D extension. 

To achieve this objective, first, the RANS code PMB3D was validated and coupled with the 

icing code CANICE2D. The panel method flow module in CANICE was deactivated and the 

flow solution (velocities and surface parameters) interpolated directly from the RANS solver 

solution. The traditional Messinger model and water runback simulation used in CANICE, are 

based on the assumption of single stagnation point which defines the water runback direction on 

the surface. The RANS flow, starting from field velocities were interpolated to the Lagrangian 

droplet trajectory module. The RANS surface skin friction solution is interpolated to the heat 

transfer computation module which is base on semi-empirical turbulence flow heat equation. It 

was discovered that mesh generation needs careful attention, since the panel method does not 

require a field mesh. 

Using the ICEM CFD commercial tool, a multi-block structured template was prepared. To 

perform remeshing process, the replay control developed within ICEM-CFD was used, with 

additional grid smoothing on the airfoil surface blocks in cases of ice growth. Finally for the 

multi-time steps icing simulation, a batch process was developed to repeatedly run the grid 
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generation, RANS solver and icing simulation CANICE2D-NS for defined number of time steps 

until it reaches the total ice accretion time and finally to post process the results.  

The results of these developments in addition to iced airfoil aerodynamic performances 

analysis were presented at the CFDSC conference in May 2012 [39]. The paper presents results 

of iced airfoil performance in comparison to experimental data using the newly developed two-

dimensional ice accretion simulation code, CANICE2D-NS. The framework is capable of 

performing multi-layer simulation and the flow analysis and performance prediction of iced 

airfoils. The results show good agreement with experimental data both in terms of predicted ice 

shapes, as well as aerodynamic analysis of predicted and experimental ice shapes including 

surface pressure distribution, lift and drag comparisons. 

Since PMB did not handle surface roughness, it was decided to couple the NSMB 3D RANS 

solver. Not only it contain surface roughness turbulent model, it moreover had a chimera 

capability, useful in the treatment of complex geometries. The NSMB3D solver was coupled to 

the framework of CANICE2D-NS with a further refined ICEM-CFD remeshing replay control to 

perform multi-time steps icing simulation. Here focus was the effects of surface roughness on ice 

accretion simulation. The roughness value is also incorporated in the semi-empirical heat transfer 

equation in CANICE thermodynamic module. A study was performed to achieve time 

independent icing solution by increasing the number of time steps in multi-time steps icing 

simulation up to 160. Results show the necessity of icing simulation with large number of time 

steps, of order of 20-40. This is significant, since most icing frameworks used 1-5 steps. This 

was possible because of our mesh regeneration procedure. These results were published in AIAA 

Journal of Aircraft (June 2013), attached in Chapter 4 [20]. The results demonstrates the benefits 

of the new framework in predicting ice shapes and aerodynamic performance parameters as well 

as iced airfoil surface pressure coefficients. Finally, the convergence of the quasi-steady 

algorithm is verified and identifies the need for an order of magnitude increase in the number of 

multi-time steps in icing simulations. 

The newly developed RANS solver NSCODE2D, developed within the research laboratory of 

prof. Laurendeau at Polytechnique Montreal, was also coupled with the framework of 

CANICE2D-NS. Here the focus is to improve the RANS icing computation times through the 

use of NSCODE solver capable of Full Multi-Grid (FMG) computation speed up. For the 

purpose of RANS multi-time steps simulation with high number of time steps (such as 200), the 
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flow computation times for 2D problem was improved by a factor of 10 in number of non-linear 

iterations compared to the use of NSMB. NSCODE also is capable of roughness computation 

through the use of wall treatment roughness model Boeing implemented in Spalart-Allmaras 

turbulence model. It also includes variety of turbulence models such as k-ω and , which have 

been incorporated in the ice accretion simulation and analysis. NSCODE can perform 

calculations on chimera meshes. The efficiency of the J-multigrid approach to solve the flow 

equations on complex iced geometries is demonstrated. Finally, results on up to 160 quasi time-

steps calculations are presented and analyzed. These developments and analysis were published 

in CASI (May 2013) and AIAA Scitech conference (June 2013) [63, 31].  

Up to this stage of the project, ICEM-CFD was used for the multi-time steps icing framework 

of CANICE2D-NS. The multi-block structured grids generated by ICEM CFD are mainly 

algebraic grids. The elliptic smoothing approaches implemented in ICEM do not have sufficient 

properties to overcome the problem of very complex ice shapes grids. It was observed that the 

grid quality properties such as spacing, orhtogonality, skewness are not retained when using the 

various available smoothers (such as elliptic blended methods: Steger-Sorenson or Thomas-

Middlecoff) on complex ice forms. Also ICEM needs a vast amount of time and user input to 

configure a suitable grid for a specific case study. This process is highly time consuming as the 

user need to configure the software input to address a number of issues such as the geometry and 

blocking definition, block edges modifications, edges point distribution, the smoother application 

on each block and its proper iterations, to obtain a user defined proper grid for an experimental 

or numerical icing airfoil surface case study. The automation is another issue using ICEM-CFD 

meshing tool which is based on the replay control batch file that records all the process of grid 

generation by the user for a specific case study. For the 3 dimensional icing problems, ICEM-

CFD grid generation issues would increase dramatically.  

These difficulties let to develop a meshing tool specific for ice shape grid generation, capable 

of generating high quality grids for the problem of complex glaze ice. A new PDE curvature 

based surface mesh generation algorithm was developed handling surface meshing sharp corners, 

concave and convex regions. A new elliptic blended method was developed to properly generate 

high quality field grid for very complex ice shapes. The meshing tool provides a multi-block 

capability. Variety of grid generation methods such as algebraic, parabolic, elliptic and blended 

parabolic/elliptic were implemented. Different choices of elliptic smoothing methods such as 
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Sorenson, Spekreije, boundary orthogonal method and blended methods were validated and 

compared. The algorithm has a Full Multi-Grid capability, and particular attention was paid to 

the choice of smoother. It also includes Point Jacobi, Point Gauss-Seidel, Point and Line SOR, 

ADI, including decoupled i or j or i and j. The code is automated and coupled within the 

framework of multi-time steps icing codes such as CANICE2D-NS and NSCODE-ICE [34]. The 

code has been validated through generation of high quality grid for very complex experimental 

ice cases and the aerodynamic performance analysis. These grid generation code developments 

and results were presented at the AIAA conference January 2015 and in AIAA Journal 

(Accepted on September 2015), attached in Chapter 5 [96, 41].  

The CANICE2D-NS framework, coupled with NSCODE2D and NSGRID2D, were validated 

through a vast number of icing case studies at Bombardier advanced aerodynamics department 

including benchmark NATO cases. The aim is study the robustness of the framework based on 

the number of successful computation compared to the total number of test runs. The results 

demonstrate the benefits of the new framework in predicting ice shapes and aerodynamic 

performance parameters. These developments, results and discussions are presented in Chapter 6. 

A Technical report was delivered to Bombardier Aerospace (October-November 2014) [13]. 

These results led to a joint Polytechnique Montreal/Bombardier publication at CASI conference 

(May 2015) [46].  

The 2D framework also includes an Eulerian droplet solver (developed at Polytechnique 

Montreal). Furthermore, the developed grid tool NSGRID2D was extended to 3D and coupled 

with the 3D icing simulation code NSMB3D-ICE (developed by Universite de Strasbourg and 

Polytechnique Montreal) to develop the framework of 3D multi-time steps icing simulation code 

NSMB3D-ICE/NSGRID3D. The resulted developments were published in SAE conference 

(June 2015) [47]. These developments are excluded from the thesis objectives, but nevertheless 

show the feasibility of the proposed methodologies for 3D problems. 
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CHAPTER 4    ARTICLE 1: 

QUASI-STEADY CONVERGENCE OF MULTI-STEP NAVIER-

STOKES ICING SIMULATIONS 

Article published in AIAA Journal of Aircraft (July-August 2013), written by: 

Kazem Hasanzadeh Lashkajani, Eric Laurendeau, Ion Paraschivoiu 

École Polytechnique de Montréal  

 

Abstract 

A newly developed two-dimensional ice accretion and anti-icing simulation code, 

CANICE2D-NS is presented.  The method is used to predict iced airfoil shapes and performance 

degradation with a multi-step approach. A Multi-Block Navier-Stokes code, NSMB, has been 

coupled with the CANICE2D icing framework, supplementing the existing panel method based 

flow solver. Attention is paid to the roughness implementation within the turbulence model, and 

to the convergence of the steady and quasi-steady iterative procedure. The new coupling allows 

fully automated multi-layer icing simulation while also permitting flow analysis and 

performance prediction of iced airfoils. Effects of uniform surface roughness in quasi-steady ice 

accretion simulation are analyzed through different validation test cases. The results 

demonstrates the benefits and robustness of the new framework in predicting ice shapes and 

aerodynamic performance parameters as well as iced airfoil surface pressure coefficients. 

Finally, the convergence of the quasi-steady algorithm is verified and identifies the need for an 

order of magnitude increase in the number of multi-time steps in icing simulations. 

4.1 Introduction 

 An iced airfoil, whether on an aircraft or wind-turbine, can show significant reduced lift and 

increased drag properties which stalls at lower angle of attack compared to its clean shape. The 

flow physics over the iced airfoil, especially around glaze ice horns, is quite complex and 

depends on the flow regime, as described in [4, 6]. For instance, at low angle of attacks, the flow 

can display separated flow regions behind the horns reattaching on the upper surface. At higher 

angle of attacks, the flow might separate entirely aft of the horns.  In either case, the effects on 
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the airfoil characteristics can be significant. Today’s aircraft industry relies on three methods to 

determine the icing effects on the aerodynamic performances of aircraft: flight testing, wind 

tunnel testing and computational fluid dynamics (CFD) simulations. The methods differ in costs, 

simulation constraints for realistic conditions and accuracy. The paper concentrates on the CFD 

approach, in particular the multi-step procedure for prediction of complex ice shapes stemming 

from long flight times and their influence on the aerodynamic characteristics of aircraft. 

In the field of numerical ice accretion simulations, the traditional method [8-10] contains an 

inviscid flow solver (panel method based) to obtain the flowfield. The potential solution is then 

used to determine the water droplet trajectory and droplet impingement distribution via the 

Lagrangian approach. A boundary layer formulation, integral or differential, is then used to 

determine the skin friction, the local heat transfer coefficient and the near-body flow 

characteristics. Finally, a Messinger model [11] is used for ice accretion thermodynamic 

analysis. These algorithms can become inaccurate or may even fail to provide a solution when 

the complexity of the ice formed on the surface increases, especially on glaze ice with sharp 

horns.  As viscous effects become more important, modeling of the flow via the panel method 

proves inadequate [52].  Additional difficulties arise from handling of multiple stagnation point 

within the boundary-layer parabolic marching scheme as well as increased discretization errors 

with paneling deformations. Improvements in the field of aircraft icing simulation has come from 

integration of Navier-Stokes based solver to model the flow field via the Reynolds Averaged 

Navier-Stokes equations (RANS) [12, 14]. The main difficulty of RANS based icing simulation 

comes from grid generation, especially for complex ice shapes.  Computation time and memory 

usage are also significantly increased.  Research is thus needed to address the various difficulties 

associated to the use of RANS based methodologies. 

In this paper, the introduction of a RANS solver within an icing framework is examined. 

Focus is on the development of a fully automated multi-step coupling procedure, capable of 

analyzing long ice accretion accumulation times (45 minutes) in a quasi-steady formulation.  The 

complexity of grid generation within the multi-step procedure to account for large deformations 

with concave/convex topologies is addressed. The choice for automation of the meshing process 

via mesh regeneration is justified. Effects of icing roughness modeling, important in rough rime 

ice accretion conditions are examined.  Finally, convergence studies are performed to validate 

the approach. The paper concludes that quasi-time step convergence must be achieved when 
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performing long ice accretion simulations times. Only then can modeling errors be properly 

assessed. 

4.2 Methodology 

4.2.1  Framework 

The icing/anti-icing simulation code CANICE2D has been developed at École Polytechnique 

de Montréal as part of a collaborative R&D activities funded by Bombardier Aerospace and the 

Natural Sciences and Engineering Research Council of Canada (NSERC) over fifteen years [5, 

15-18, 67, 71]. The version of CANICE presented here is the research version which differs from 

the version used at Bombardier Aerospace named CANICE-BA in the literature [19], but 

contains the same four basic modules: external flow simulation, droplet trajectory and local catch 

efficiently calculation, surface ice/water interface thermodynamic balance and ice accretion, and 

finally hot air anti-icing simulation (see Figure 4.1).  

 

Figure 4.1: CANICE code structure.  

The code can be applied for single and multi-element simulation, as discussed in [18]. The 

flow solution is obtained by the Hess and Smith panel method approach, used for droplet 

trajectory and boundary layer calculations. An integral boundary layer formulation is used for 

simulation of viscous effects. The first version of CANICE2D used the integral laminar flow 

method of Thwaites, the laminar to turbulent transition model of Michel and turbulent boundary 
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calculation using the lag-entrainment method [71]. The effect of roughness on the boundary layer 

model, the transition criteria and skin fiction/heat transfer calculations for laminar and turbulent 

regions are implemented using roughness based empirical relations. Conceptually, roughness is 

based on the equivalent sand-grain roughness height, which is determined by empirical methods 

[5].  

Droplet trajectories are simulated using a Lagrangian approach, which solves the equation of 

motion of the water droplets for the defined time intervals using a fourth-order Runge-Kutta 

scheme. It interpolates the solution of the panel method potential flow solver to estimate the drag 

force on the spherical water droplets along with gravity and buoyancy forces to finally compute 

the water droplet trajectories and impingement limits on the airfoil surface [2]. The droplet 

impingement distribution is used to calculate the water droplet local catch efficiency on the 

surface which is then used to estimate the droplet mass flow rate impinging on the surface 

panels. 

Using the calculated local convective heat transfer and water droplet impingement flow rates 

on the surface panels along with runback water mass rate from neighboring panels, the mass and 

energy balance is applied to the control volumes to solve for the amount of super-cooled 

impinged water droplet converted to ice mass. The Messinger model is used to define the type of 

ice surface (wet, dry rime or wet glaze), freezing fraction (fraction of ice mass to the entering 

total mass flux of the control volume), and surface temperatures [11]. 

To take into account the hot air anti-icing heat flux, the anti-icing module solves the internal 

heat transfer coefficient using an empirical correlation related to impinging jet on flat plate. The 

correlation is function of an average Nusselt number based on the jet parameters such as jet 

Reynolds number, nozzle to surface distance, and nozzle width [16]. Using the calculated 

internal hot-air local heat transfer coefficients and conduction through the thin leading edge skin 

(neglecting temperature variations across the plate thickness), the wall heat transfer rate is 

calculated and integrated in the thermodynamic balance via an iterative process. The final ice 

geometry is updated by calculating the ice height growth at the center of each panel, 

interpolating and smoothing the panel connectivity’s on the edges using panel size and angle 

criterion [5]. 

A number of modifications have been added to CANICE2D, such as compressibility effects to 

the potential inviscid flow solution, multi stagnation point smoothing, roughness prediction, 
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shear-driven water runback model, ice shape updates and smoothing, water droplet splash and 

shading effects on the droplet local catch efficiency and water loss, etc. These were added to 

increase simulation accuracy as well as robustness.  The CANICE2D icing framework has been 

validated through NATO/RTO exercises (see Figure 4.2) [9], which shows the need to increase 

the fidelity of the simulations especially in glaze ice horns conditions. 

 

Figure 4.2: CANICE2D results and comparison for NATO/RTO exercise case studies [9]. 

4.2.2  Navier-Stokes solver 

The Navier-Stokes flow solver NSMB3D, a finite volume three dimensional multi-block 

Euler/Navier-Stokes flow solver developed by Vos et al. [91, 97, 98] was incorporated within the 

CANICE icing framework.  The code is being developed by a group of researchers across 

Europe and now in Canada, and benefits from state-of-the-art advances in computational 

techniques: low Mach number preconditioning, Full Approximate Storage Multigrid, dual time 

stepping marching schemes for steady and unsteady flows simulations, Arbitrary Eulerian-

Lagrangian formulation suitable for aero-elastic calculations, and parallel implementation. 

Available turbulence models include the widely used Spalart-Allmaras and k-ω-SST models. The 

chimera approach is also implemented [92, 93]. Validations have been presented at the AIAA 
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validation workshop series, namely drag predictions [99], high-lift [100] and aero-elastic [101] 

and in a number of European framework program reports [102].  

4.2.3  Roughness modeling  

Surface roughness plays a role in the determination of the surface skin friction and heat 

transfer coefficients.  These can significantly alter the ice accretion process. One assumption is 

that the roughness size in any direction is smaller than the boundary layer thickness. Surface 

roughness height is generally computed using empirical models such as the sand-grain model, 

which takes into account height and density distribution. However, in Navier-Stokes mode, there 

exist many models that have addressed surface roughness. The model of ONERA [27] has been 

considered in this study, although reference [37] uses Boeing extension. 

The equivalent sand grain roughness height model is used to impose the wall roughness value. 

The effect of roughness is implemented within the S-A model by modifying the turbulent eddy 

viscosity in the near-wall region. One can relate the roughness height to changes in the velocity 

profile which then changes the wall skin friction. This implementation needs calibration by 

defining values of skin friction changes to the roughness value.  For completeness, the Boeing 

and ONERA models are summarized. 

Boeing’s extension replaces the Dirichlet wall condition by a Neumann condition: 

డఔ෥

డ௡
ൌ ఔ෥

ௗ
               (4.1) 

The wall distance is computed by: 

݀ ൌ ݀௠௜௡ ൅ ݀଴             (4.2) 

Where dmin is the grid distance to the nearest wall and d0 is a shift which depends on the 

roughness value (ks) by: 

݀଴ ൌ ሺെ8.5݇ሻ݇௦	݌ݔ݁ ൎ 0.03݇௦           (4.3) 

Changes in the wall distance cascades into the transport equation. This includes modifying the 

f୴ଵ function in the Spalart-Allmaras model, for better prediction of smaller roughness, through a 

new definition of the χ term in S-A model [27]: 

߯ ൌ ఔ෥

ఔ
൅ 0.5 ௞ೞ

ௗ
              (4.4) 

The Boeing model extension for rough wall has been implemented in the icing code 

FENSAP-ICE within the Spalart-Allmaras turbulence module and has been used for roughness 
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effects analysis. The effect of roughness is shown by the rime and glaze ice case studies 

simulated by FENSAP-ICE [37]. 

ONERA extension’s (hereafter referred to as SA-ONERA) centers on defining a non-zero 

value for turbulent viscosity at the wall. To determine the transport quantity at the wall, the 

dimensionless form of the Spalart-Allmaras transport and momentum equation with viscosity ν 

and friction velocity uத becomes: 
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By imposing the boundary conditions ν෤ାat the wall and far within the logarithmic region and 

solving the resulting non-dimensional transport equation, the solutions are obtained. The velocity 

profile included in S෨ is used to determine the velocity shift ∆uା. Changes in velocity profile can 

be related directly to the skin friction value on the wall. Similar to Boeing’s extension, the wall 

distance also has been shifted to control the wall boundary value through a relation that 

combines the smooth wall distance d୫୧୬
ା  and imposed transport quantity value ν෤୵ା  at the wall: 
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            (4.7) 

where k is Von Karman constant. Relating the normalized sand-grain roughness (݇௦ା ൌ
௞ೞ௨ഓ
ఔ

) 

to the imposed wall value ν෤୵ା  is done through the following correlations to close the problem: 
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Increased roughness plays an important role in icing calculations as it augments the surface 

skin friction and heat transfer which results in changes in ice shapes growth. Note that only a 

constant roughness height specification is available in the current implementation for a given 

calculation step. 
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4.2.4  Coupling mode 

Following the convention used within NASA’s LEWICE code [12], the CANICE2D-NS 

framework couples the Navier-Stokes solver in two modes. Mode 1 makes use of the flow field 

solution obtained from NSMB (density, velocities, pressure), instead of the panel method 

solution to determine the particle trajectories, impingement efficiency, and boundary layer 

parameters. Mode 2, in addition to mode 1, uses the Navier-Stokes skin friction coefficients in 

the thermodynamic module.  The heat transfer coefficients are calculated within the 

thermodynamic module through empirical methods relating to the skin friction and roughness 

values [95]. The heat transfer coefficient for the turbulent region is defined by: 

݄௖,௧ ൌ .ݐܵ .ߩ .௘ݑ ܿ௣            (4.9) 

The Stanton (St) and roughness Stanton number (St୩) are defined by: 
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             (4.10) 
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Where Pr୲ ൌ 0.9 is the turbulent Prandtl number for air. The roughness height kୱ is defined 

based on the equivalent sand-grain roughness model, and the skin friction is related to the shear 

velocity uத  and the boundary-layer edge velocity uୣ:  

ఛݑ ൌ ௘ටݑ
஼೑
ଶ

              (4.12) 

The boundary-layer edge velocity from the Navier-Stokes solution is determined from the 

isentropic relation for the wall pressure.  

4.2.5  Mesh generation 

CFD modeling for icing simulations is impeded by the absence of a robust grid generation 

process which creates high quality Navier-Stokes mesh for severe mixed concave/convex glaze 

ice shapes. Automation of the grid generation process is another important aspect for performing 

multi-time steps during icing simulations.  The process can iterate between the icing sequences 

via mesh regeneration or mesh movement (spring analogy [60], elastic [61], adjoin-based [30]). 

Although mesh movement is used by some researchers for icing simulations [12, 14], it has been 

found that, at least in 2D, the alternate approach of mesh regeneration provides increased 
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robustness.  In the present study, a fully automated grid re-generation process using the ICEM-

CFD commercial mesh generation package was developed within CANICE2D-NS. The grid 

generation procedure includes a preliminary algebraic grid generation and smoothing of the grid 

using an elliptic operator including different control functions to improve the stretching, 

orthogonality and clustering of the grids. A standard elliptic smoothing technique using two 

background and foreground control functions is used to generate the multi-block structured grids 

around the ice shapes. The background control functions such as Middlecoff-Thomas influences 

the interior grid points and modify the domain clustering [73]. The foreground control function 

such as Steger-Laplace or Steger-Sorenson influence the orthogonality and grid spacing control 

on the boundaries [74]. A blending of these methods within the grid smoothing process results in 

control of the quality of the grids over the entire domain. The number of foreground smoothing 

iterations has been increased for the leading edge block containing the ice grids to conform to the 

ice shapes. This technique proves a necessary step to provide meshes with non-crossing cells (or 

positive cell areas) when highly complex ice shapes are presented (see Figure 4.3). Grid 

parameters such as wall distance, number of elements, etc. were selected based on analysis of 

several test cases considering trade-offs between computational cost, accuracy and robustness.  

Relevant additional details about the grids will be given within each validation sections. 

 

Figure 4.3: Mesh with algebraic (left) and elliptic smoothing (right) around ice shape. 

4.3    Results and discussion 

In this section, different simulation cases are presented with the objective to validate first the 

NSMB code then the CANICE2D-NS icing code by comparing results with known experimental 

data. The selected test cases are the smooth and rough flat plate, the NACA0012 and RAE2822 

clean airfoil and several rime and glaze ice cases that are considered standard within the icing 
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community. All results in this paper using the NSMB solver have been run in mode 2 with the 

SA-ONERA rough wall treatment on grids generated with the elliptic grid generation package of 

ICEM CFD. 

4.3.1 Validation of NSMB solver 

4.3.1.1 Rough wall turbulent skin-friction over flat plate 

The selected case for the ONERA rough wall model validation within the flow solver is the 

case of Hellsten and Laine [28] with the following specifications: chord of 1 m, Reynolds 5 

Million, Mach 0.2, normalized roughness height Ks of 0.00005 (smooth surface equivalent), 

0.0001, 0.00025, 0.0005, 0.001, 0.0015. The Cartesian grids have 42,000 nodes with a 1st layer 

wall spacing of 10-6 chord (y+<1) and an expansion ratio of 1.5 in the normal wall direction (see 

Figure 4.4). Convergence levels reached 10-5 on the L2-norm of the density residual, as shown in 

Figure 4.5. 

 

Figure 4.4: Flat plate grid. 

 

Figure 4.5: Residual convergence, flat plate test case. 
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The skin friction results with the S-A model and the ONERA corrections have been compared 

in Figure 4.6 with the Mills and Hang [28] semi-empirical relation for turbulent skin friction 

coefficient over a rough flat plate:  

௙ܥ ൌ ሺ3.476 ൅ 0.707݈݊ ௫

௞ೞ
ሻିଶ.ସ଺         (4.13) 

The error on the skin-friction coefficient between both models at a Reynolds number of 5 

million is within 9%. 

 

Figure 4.6: Turbulent flat plate skin friction comparison: NSMB (SA-ONERA) with semi-

empirical relation. 

4.3.1.2 CL-α over NACA0012 airfoil (smooth and rough) 

Computations were carried on a clean NACA0012 airfoil geometry with smooth and rough 

walls with a Reynolds of 6 million, Mach 0.2 using the SA-ONERA turbulence model. The wall 

roughness value is 0.2794 mm [103]. A 3D extruded O-mesh with 60,000 nodes with minimum 

normal wall spacing of 10-6 chord (y+<1) with an expansion ratio of 1.5 was generated by 

extruding a 2D O-Mesh, since NSMB is a 3D solver. The airfoil has 299 points on the surface, 

with concentrations at the leading and trailing edge regions as shown in Figure 4.7. The far-field 

distance was 100 chord to ensure proper lift and drag values. Convergence levels reached 10-5 on 

the L2-norm of the density residual, as seen on Figure 4.8.  The CL-α curve for the smooth and 

rough NACA0012 are shown in Figure 4.9. Lift values at constant angle of attack are differing 

by less than 5% up to 11 degrees before stall.  CLmax is predicted within 7% and 5% for the clean 

and rough cases, respectively. 
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Figure 4.7: NACA0012 N-S grids. 

 

Figure 4.8: Residual Convergence, NACA0012 test case. 

 

Figure 4.9: CL-Alpha graph for NACA0012 smooth and rough surface. 
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4.3.1.3 2D transonic RAE2822 airfoil 

For completeness of the 2D validation, a transonic test case is used in our validation [104].  

Experimental results from the AGARD test case 6 of the RAE2822 smooth airfoil, namely 2.31° 

angle-of-attack, Mach 0.729, Reynolds 6.5 million were compared to numerical results using the 

Spalart-Allmaras turbulence model [39]. The 3D C-mesh was generated by extruding a 2D C-

mesh with 350 grid points in the wake-cut/airfoil and 50 in the normal directions totaling 35,000 

nodes with minimum wall spacing of 2 10-6 chord (y+<1) and expansion ratio of 1.5 as shown in 

Figure 4.10. The far-field distance was located 100 chords from the mean aerodynamic center. 

The solution density residual convergence is shown in Figure 4.11, achieving 7 orders reduction. 

Comparison of the pressure coefficients with results of the WIND and NPARC1 CFD codes and 

the experimental data is shown in Figure 4.12, confirming the accuracy of the NSMB solver. 

 

Figure 4.10: RAE2822 N-S grids. 

 

Figure 4.11: Residual convergence, RAE2822 test case. 

                                                           
1 NPARC Alliance Verification and Validation Archive Web Site 
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Figure 4.12: Pressure coefficients comparison for the case RAE2822. 

4.3.2 Roughness effects on multi-time steps ice accretion 

The CANICE2D-NS code was used to perform multi-step ice growth simulation with uniform 

roughness modeling. The Spalart-Allmaras turbulence model with the ONERA rough wall 

extension, SA-ONERA, was used. The boundary conditions of the discretized airfoil domain 

include the airfoil solid surface, the symmetry planes and farfield boundaries. Throughout the 

calculations, the automatic grid generation/re-generation process using the ICEM CFD mesh 

generator with elliptic smoothing, described in Section 4.2.5, was used. The effects of surface 

roughness are examined on two different case studies over the NACA0012 airfoil: one rime ice 

and the other glaze ice. 

 

4.3.2.1 Rime ice NACA0012 run 405 

The effect of surface roughness is analyzed with CANICE2D-NS for the NACA0012 rime ice 

case 405. The study also indirectly validates the underlying roughness model extension of 

ONERA to the Spalart-Allmaras turbulence model, as well as the multi-step grid re-generation 

process with ICEM-CFD. The test conditions are listed in Table 4.1 [48].  
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Table 4.1: NACA0012 run 405 test conditions. 

Chord Length 0.5334 m 

Angle of Attack 3.5 deg. 

Flight Speed 102.8 m/s 

Static Temperature 250.37oK 

Mach Number 0.3242 

Reynolds Number 4.62 106 

LWC 0.55 g/m3 

MED 20 μm 

Icing Duration 420 sec. 

CANICE2D-NS  
Icing Time-Steps   

4 times 105-sec. 
steps 

 

 

The clean airfoil droplet impingement efficiency graph, commonly referred to as the 

collection efficiency curve, is shown in Figure 4.13 for the LEWICE, CANICE2D-panel method 

and CANICE2D-NS icing codes.  The selected normalized surface roughness values for 

analyses, hold constant during each of the calculations, are 0.0001, 0.0005, 0.001, 0.005. The 

accreted ice shapes for 4 multi-time steps are shown in Figure 4.14.  Note that the number of 

time steps, varying between 4 and 7 intervals, is typically used in previously published panel and 

Navier-Stokes icing simulations [10, 37].  Comparison of the final roughness based ice shapes 

with the experimental ice shape is shown in Figure 4.15. The comparison shows that a surface 

roughness of value 0.005 results in the best match to the experimental ice shape.  
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Figure 4.13: Collection efficiency comparison (NACA0012 run 405). 

 

 

Figure 4.14: Effect of increased roughness on ice shape using CANICE2D-NS (run 405). 

 

Figure 4.15: Ice shape comparison for different roughness, CANICE2D-NS (run 405). 
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Comparison of the CANICE2D-NS multi-time step ice shape with the shape obtained by 

LEWICE and CANICE2D panel-method are shown in Figure 4.16 along with the experimental 

results [48]. Note that the calculations with LEWICE and CANICE2D use 7 and 4 time steps, 

respectively. The impingement limits are well captured, as well as the ice thickness distribution. 

The 3D (2D extruded) structured grid generated with ICEM-CFD, includes around 40,000 nodes 

and wall spacing of 2 10-6 chord (y+<1) on the first layer on each plane. The expansion ratio is 

1.5 up to a far field distance located 100 chord away from the airfoil. The computational mesh 

generated after the 4th time step is shown in Figure 4.17 and shows that the quality of the mesh 

has been retained throughout the procedure. The convergence of the residual using CANCIE2D-

NS with normalized roughness value of 0.005 for this case is shown in Figure 4.18. The density 

residuals converge to more than 4 orders at each time step intervals.  

 

Figure 4.16: Ice shape comparison (NACA0012 run 405). 

 

Figure 4.17: NACA0012 run 405: C-mesh using automated ICEM grid generation for 

CANICE2D-NS multi-time step run. 
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Figure 4.18: NSMB convergence for 4 time-steps of CANICE2D-NS (case 405). 

 

4.3.2.2 Glaze ice NACA0012 run 408  

The effect of surface roughness is now analyzed with CANICE2D-NS for the NACA0012 

rime ice case 408 with the Spalart-Allmaras turbulence model with the ONERA rough wall 

extension, SA-ONERA as well as the ICEM-CFD mesh regeneration procedure. The test case 

conditions are listed in Table 4.2 [48]. The clean airfoil droplet impingement efficiency is shown 

in Figure 4.19, and compares results of CANICE2D-NS with the LEWICE and CANICE2D 

panel method. The selected normalized surface roughness values for this case, which were hold 

constant in space and time, are 0.0001, 0.0005 and 0.001. The accreted ice shapes throughout the 

5 time steps calculation for each roughness value are shown in Figure 4.20. Comparisons of the 

final ice shapes for each roughness value with the experimental ice are shown in Figure 4.21. 

The effect of changes in roughness values affects the ice horn growing directions with the value 

of 0.0005 providing the best match to the experimental results, compared with the calculated 

uniform roughness value 0.001 for CANICE2D-panel method using an empirical model [2]. The 

roughness value for LEWICE2D is less relevant because it used a non-uniform water bead height 

model. 
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Table 4.2: NACA0012 run 408 test conditions. 

Chord Length 0.5334 m 

Angle of Attack 3.5 deg. 

Flight Speed 102.8 m/s 

Static Temperature 262.04oK 

Mach Number 0.3169 

Reynolds Number 4.44 106 

LWC 0.86 g/m3 

MED 20 μm 

Icing Duration 270 sec. 

CANICE2D-NS  
Icing Time-Steps   

5 times 54-sec. 

steps 

 

 

 

Figure 4.19: Collection efficiency comparison (NACA0012 run 408). 
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Figure 4.20: Effect of increase in roughness on ice shape using CANICE2D-NS (NACA0012 run 

408). 

 

Figure 4.21: Ice shape comparison for different roughness value, CANICE2D-NS (NACA0012 

run 408). 

Figure 4.22 compares the final 5 time-steps glaze ice obtained with CANICE2D-NS 

compared to CANICE2D panel-method, LEWICE and experimental data [48]. The LEWICE and 

CANICE2D panel-method solutions were also run using 5 time-steps. The ice shape horns 

heights are under predicted by the CANICE2D panel-method. The CANICE2D-NS 5 time-steps 

ice shape shows better prediction of the upper ice horn, but still underestimates the lower ice 

horn. The final structured mesh generated for the 5th ice layer is shown in Figure 4.23. The mesh 

has the same topological properties than described in case 405 above, and manages to conserve 

its quality throughout the multi-step procedure. The NSMB3D flow solver density residual 

convergence for the 5 time-steps is shown in Figure 24. Residual reduction of 4 orders is attained 

on each sequence.  
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One observation not apparent from the results presented is that increase in ice shape 

complexity can generate multiple stagnation points which create difficulties in performing 

accurate boundary layer prediction. The CANICE-NS code formulation used here removes these 

difficulties altogether. 

 

Figure 4.22: Ice shape comparison for NACA0012 run 408. 

 

Figure 4.23: NACA0012 run 408 C-mesh using automated ICEM grid generation for 

CANICE2D-NS multi-time step run. 

 

Figure 4.24: NSMB convergence for 5 time-steps of CANICE2D-NS (case 408). 

 



81 
 

4.3.3 Aerodynamic performance analysis 

The aerodynamic performance reduction analysis resulting from the accreted ice on the airfoil 

for the cases above is presented. Calculations are performed all the way up to and beyond stall 

angles for the iced and clean airfoils. This allows quantification of the reduction in CLmax, but as 

important, the qualification of the post-stall behavior.  Indeed, aircraft certification requires 

controllability conditions in the post-stall regime [105]. Thus, the prediction of whether or not 

abrupt stall occurs is an important quality of an icing simulation framework. In this section, the 

Spalart-Allmaras turbulence model is used for clean airfoil simulations, and its ONERA rough 

wall extension used for iced geometries in all flow simulations. 

4.3.3.1 Rime ice NACA0012 run 405 

The flow conditions for this test case are listed in Table 4.1. The experimental data of 

aerodynamic characteristics such as lift, drag or pitching moment for this test case is only 

available for the clean airfoil geometry.  For the iced airfoil, we replace the experimental 

validation by CFD-based comparisons of the aerodynamic characteristics between the flow 

around the airfoil with experimental ice shape and the CANICE2D-NS ice shape of Section 

4.3.2. To perform the comparison, a grid around the airfoil with the experimental ice shape was 

created with the grid properties and topology similar to the ones used in Section 4.2.5. The 

generated grid is shown in Figure 4.25. The computed aerodynamic lift as a function of angle of 

attack using the NSMB3D solver for the clean airfoil and the predicted ice shape airfoil are 

shown in Figures 4.26. For the simulated ice and experimental ice calculations, a surface 

roughness value of 0.005 is used. The clean airfoil stall angle for the numerical results is close to 

12o compared to the experimental data of 13-14o. The simulation of the experimental ice shape 

geometry shows a stall angle close to 6o. The numerical solutions for higher angles of attack 

contain oscillation in the solution density residual convergence and are therefore not included in 

the graph. The stall angle simulation with CANICE2D-NS is close to 7-8o, only 1-2o degree off 

the experimental ice shape numerical result. Comparison of pressure coefficients for an angle of 

attack of 6o are presented in Figure 4.27, where oscillations in the pressure due to the presence of 

the ice surface seen in Figure 4.25 can be observed.  It can be observed that the pressure 

coefficient distribution predicted by CANICE2D-NS for the numerical and experimental ice 

shapes are in close agreement which explains why the numerical flow solutions are in agreement. 
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Figure 4.25: ICEM mesh generated experimental ice shape (case 405). 

 

Figure 4.26: CL comparison (case 405). 

  
Figure 4.27: Pressure coefficient comparison (α=6o, case 405). (Right, leading edge zoom). 

4.3.3.2 Glaze ice NACA0012 run 408 

The flow conditions for this test case are listed in Table 4.2. Similar to the previous test case, 

numerical predictions were performed with the experimental ice shape geometry to perform 

numerical comparisons between clean and iced geometries. The smoothed grid generated for the 
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experimental ice shapes of case 408 using the grid generation method of Section 4.2.5 is shown 

in Figure 4.28. Note that this geometry possesses severe leading edge curvature with sign 

changes, and that the mesh regeneration process does not fail. The close match in simulated ice 

shape shown in Figure 4.22, particularly the upper horn position and shape, results in a close 

match in aerodynamic lift coefficient prediction (see Figure 4.29). 

The aerodynamic performance analysis is performed using the automatic process to determine 

the lift coefficients as function of the airfoil angle of attack.  For the CANICE2D-NS simulated 

and experimental ice shapes, a surface roughness value of 0.0005 was selected for the flow 

simulation.  The results are shown in Figure 4.29. The simulation of the clean airfoil shows a 

stall angle close to 13o compared to the experimental stall angle of 13o. Both experimental ice 

shape and CANICE2D-NS ice shape CFD simulation shows stall angle close to 6o. Pressure 

coefficients comparison for the clean airfoil and the predicted ice shapes for angle of attack of 6o 

are shown in Figure 4.30. It can be observed that the pressure distribution for the CANICE2D-

NS ice shape is in close agreement with the pressure distribution predicted for the experimental 

ice shape, thereby providing similar stall angles.  

Figure 4.29, also includes the performance of the converged ice shape using CANICE2D-NS 

with 160 time steps. It shows the stall angle close to 9o, compared to 5 time steps ice result of 6o. 

The 5 time step ice shape is closer to the experimental ice shape which results in better 

prediction of the stall angle of attack, but the ice shape is not numerically converged. The 160 

time steps ice shape shows lower ice accumulation compared to the experimental ice which 

results in the prediction of the stall point at a higher angle of attack, but the ice shape solution is 

numerically consistent. This issue will be further discussed in the next section. 

 

Figure 4.28: ICEM mesh generated for experimental ice shape (case 408). 
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Figure 4.29: CL comparison (case 408). 

  
Figure 4.30: Pressure coefficient comparison (α=6o, case 408). (Right, leading edge zoom). 

4.3.4 Convergence analysis of the numerical solution of multi-time step ice 
accretion prediction 

The objective of this section is to achieve time-independent numerical results of the quasi-

steady ice accretion simulation.  The number of time steps has been parameterized and varied 

from 4 to 160 to verify the convergence of the numerical scheme used in the CANICE2D-NS 

framework. The multi-step procedure is compared to results obtained with the CANICE-panel 

method based solution framework.  

4.3.4.1 Rime ice NACA0012 run 405 

The numbers of time steps used for this test case were 4, 8, 16, 32, 64 and 128 steps, with 

results shown in Figure 4.31. The ice shapes simulated by CANICE2D-NS converge 

asymptotically towards the result obtained with 128 steps. It can be inferred that, within 
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engineering accuracy, the results using 32 and 64 layers are converged. Although the solution of 

the CANICE2D panel method appears reasonable, the numerical results fail to converge when 

increasing the number of time steps, as shown in Figure 4.32. 

 

Figure 4.31: NACA0012 run 405 ice shape comparison with increasing time steps (CANICE2D-

NS). 

 

Figure 4.32: NACA0012 run 405 ice shape comparison with increasing time steps (CANICE2D-

Panel Method). 

4.3.4.2 Glaze ice NACA0012 run 408 

For this test case, the number of time step chosen for the calculations were 5, 10, 20, 40, 80 

and 160 time steps, with results shown in Figure 4.33.  The choice stems from the fact that most 

icing simulations for this test case are performed with 5 steps, which were doubled until 160 time 

steps. Once again, the results for the CANICE-NS framework are converging asymptotically 

towards the finest time step results.  Results obtained with 40 time steps are reaching engineering 
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accuracy. However, the solution of the CANICE2D panel method fails to converge when 

increasing the number of time steps, as seen in Figure 4.34.  

 

Figure 4.33: NACA0012 run 408 ice shape comparison with increasing time steps (CANICE2D-

NS). 

 

Figure 4.34: NACA0012 run 408 ice shape comparison with increasing time steps (CANICE2D-

Panel Method). 

4.3.4.3 Multi-time steps results analysis 

Figure 4.35 shows the convergence of the ice shape results using a Root Mean Square of the 

ice shape difference between the multi-step and the reference multi-step ice shapes, the reference 

profile being the one with the maximum number of time steps.  The figure shows that the method 

converges asymptotically. However, the results of Section 4.3.4 show that the converged ice 

shapes are agreeing less with the experimental ice shapes than the shapes obtained running the 

simulations on a small number of time step intervals. This is due to the fact that the combination 
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of small number of time steps intervals with selection of appropriate roughness values were 

previously tuned to match the experimental results, but without satisfying convergence criteria.  

Time-independent results need to have an order increase in time steps, around 40-60 compared to 

4-5 used previously.  

 

Figure 4.35: RMS comparison for the multi-time steps ice shape convergence (cases 405 and 

408). 

4.4   Conclusion 

In this paper, simulation results of iced airfoil geometries and aerodynamic performance using 

a newly developed Reynolds Averaged Navier-Stokes based two-dimensional ice accretion 

framework CANICE2D-NS are presented. The code is based on the CANICE2D-panel method 

framework and has been augmented with the addition of the NSMB Multi-Block Navier-Stokes 

solver. The skin-friction coefficients are obtained from the Navier-Stokes solution and used to 

calculate the heat transfer coefficients through empirical relations.  During the process, the grids 

are obtained by using ICEM CFD with elliptic smoothing using a mesh regeneration approach.  

To facilitate multi-time step ice accretion simulations, the framework has been entirely 

automated.  It has been shown that the Navier-Stokes solver and grid generation process provides 

an accurate and robust process for application to complex ice shapes simulations, namely rime 

and glaze ice accretion. The importance of using rough wall modeling, here using the ONERA 

rough wall treatment implemented in the Spalart-Allmaras turbulence model is demonstrated. 

The aerodynamic performance analysis of the accreted ice shapes, specifically the lift-curve, 

have shown that the simulation leads to predict the stall angle and CLmax values which were not 
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possible with the panel-method based framework. A convergence analysis of the multi-step 

process demonstrated that the CANICE2D-NS code provides asymptotically time-independent 

results between 40-60 time steps whereas the CANICE2D-Panel method failed to converge. The 

results are moreover showing that time-independent results are in less agreement with 

experimental results than when using small number of time steps intervals because the roughness 

values of the test cases have been previously selected to match non-converged solutions to 

experimental results.  The converged multi-step procedure will require new baselines of 

roughness values while providing a rigorous approach to further our advancements in reducing 

modeling errors in the ice accretion process. 
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Abstract 

 The paper presents the developments of novel mesh generation algorithms over complex 

glaze ice shapes containing multi-curvature ice accretion geometries, such as single/double ice 

horns. The twofold approaches tackle surface geometry discretization as well as field mesh 

generation.   First, an adaptive curvilinear curvature control algorithm is constructed solving a 

1D elliptic PDE equation with periodic source terms. This method controls the arclength grid 

spacing so that high convex and concave curvature regions around ice horns are appropriately 

captured and is shown to effectively treat the grid shock problem. Second, a novel blended 

method is developed by defining combinations of source terms with 2D elliptic equations. The 

source terms include two common control functions, Sorenson and Spekreijse, and an additional 

third source term to improve orthogonality. This blended method is shown to be very effective 

for improving grid quality metrics for complex glaze ice meshes with RANS resolution. The 

performance in terms of residual reduction per non-linear iteration of several solution algorithms 

(Point-Jacobi, Gauss-Seidel, ADI, Point and Line SOR) are discussed within the context of a full 

Multi-grid operator. Details are given on the various formulations used in the linearization 

process. It is shown that this performance of the solution algorithm depends on the type of 

control function used. Finally, the algorithms are validated on standard complex experimental ice 

shapes, demonstrating the applicability of the methods.  
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5.1 Introduction 

There has been significant progress in the field of aircraft ice prediction based on the 

Reynolds Averaged Navier-Stokes (RANS) approach. New improvement such as turbulence 

models with roughness effects, convergence acceleration techniques, parallel computing, 

unsteady flow calculations, etc. have improved the usability of RANS based approaches in the 

field of ice accretion simulation and effects analysis [52, 106, 107]. A common difficulty resides 

in mesh generation around complex glaze ice shapes. There have been many efforts in use of 

structured, unstructured, and hybrid approaches, but they all encounter different difficulties in 

terms of mesh quality, algorithm automation, numerical accuracy, etc. [4, 36, 38, 107-109]. The 

focus of this paper is on structured grid generation approach for complex ice shapes. Simplicity 

and lower memory usage in grid data structure is one advantage of this approach, but still there 

remain many difficulties when generating grids with sufficient quality for complex domains. The 

challenges are in the treatment of discontinuities, sharp angles and highly concave and convex 

areas present on glaze ice shapes [14, 54, 58, 82, 110, 111].  

In general, icing grid generation process involves three basic steps: i) description of the iced 

surface geometry, ii) grid points distributions on the surface [58] and finally iii) generation of the 

field mesh points. There are three major classes for grid generation: algebraic methods, partial 

differential equation (PDE) methods and conformal mapping methods. Within these, the PDE 

approach is chosen as it is easily amenable to extension to 3D.  PDE methods can further be 

categorized as elliptic, hyperbolic and parabolic methods [21-24].  

PDE methods, such as those based on the elliptic Poisson equations, are more complex than 

algebraic methods but provide means to generate high quality grids by selection of control 

functions. Starting from a generated algebraic grid as initial solution, the algorithm performs an 

iterative procedure to generate the desired grid. Elliptic equations have been used extensively for 

grid generation as they allow control of mesh clustering. Functions have been developed to 

control mesh spacing, orthogonality and curvature metrics [22].  

Several grid generation tools have been developed specifically for iced airfoil effects analysis 

i.e. SmaggIce [25], Turbo-Grid [78] and parabolic structured and semi-structured grid generator 

of Thompson (ICEG2D) [58]. There are also other grid generation software such as ICEM [20, 

42], GRIDGEN [75], ENGRID [84], which are more general and can be used for multi-block 

structured grid generation but they still have many limitations when dealing with ice shapes.  
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SmaggIce [25] performs single and multi-block structured algebraic grid generation with 

surface smoothing for icing cases. SmaggIce mesh efficiency is highly dependent on user 

specifications: ice surface preparation and smoothing, grid topology, creation of lines, layers, 

blocks, sub-blocks, local smoothing and so on. The difficulty in its automation is one of the main 

problems which reduce the flexibility of such methods for multi-step icing CFD based 

methodologies. 

Turbo-Grid [78] performs single and multi-block structured algebraic grid generation with 

surface and field smoothing. However, when applied on complex geometries such as 

experimental glaze ice shapes, the tool also suffers from heavy dependence on user inputs to 

improve the grid quality. 

ICEG2D is based on conformal mapping or parabolic structured and semi-structured grid 

generation approaches which were specifically developed for icing problem by Thompson et al 

[58]. The preparation of the iced surface is performed using NURBS curves. The distribution of 

the boundary grid points on the iced airfoil surface has been improved using weight function 

based on the surface curvature. In the parabolic method, the grid is constructed layer by layer 

outward from body and extended through the domain. Grid clustering in concave regions, grid 

opening in convex regions, outer boundary definition, grid properties close to sharp corners and 

boundaries, multi-elements geometries grid or multi-blocking are issues limiting the use of 

structured parabolic methods. The semi-structured grid approach also needs complementary 

heuristic algorithms such as line deletion/insertion functions to treat grid clustering [79].  

This paper proposes algorithms that address some of the issues discussed, in particular the 

treatment of concave/convex regions to reduce the grid shock problem (related to surface mesh 

generation) as well as choice of control functions to achieve appropriate grid metrics in the field 

(related to field mesh generation). The 1D curvilinear curvature based algorithm is presented, 

followed by the field generation algorithms (parabolic, elliptic). A detailed account of the 

various control functions is made; Sorenson, Spekreijse and a proposed blended approach. 

Numerical solution of the governing Poisson equations is then discussed. Section 5.3 presents the 

results of 1D curvature based algorithm and field generation methods. Efforts have been made to 

compare the proposed blended approaches to standard algorithms. In Section 5.4, the algorithms 

are finally applied to 2 standard validation cases, namely the clean NLF0414 airfoil and the 

experimental glaze ice 623 of the same airfoil, before concluding. 
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5.2 Methodology 

5.2.1  Surface adaptive curvature based grid point distribution algorithm 

Here a novel 1D elliptic geometry curvature based point distribution algorithm is described. 

Considering the 2D transformed Poisson equation, a 1D elliptic transformed equation with 

curvature based source terms is developed to satisfy the curvature based point distribution on the 

iced body: 

rξξ ൌ S               (5.1) 

where r is the geometry point distribution arclength, and S is the source term. A number of 

source functions such as Sign, Sin., Cos., Spline, damping Cos., damping Atan., damping Spline, 

mixed functions, etc. have been analyzed. Here a simple efficient periodic function has been 

selected as the source terms to add to the right hand side (RHS) of the elliptic PDE: 

S ൌ A ∙ ሺr ൅ sinሺ2πrሻሻ            (5.2) 

where A is the amplitude constant parameter defined by the user. This parameter adjusts the 

global intensity of the surface grid points on the curved domains and can change the stability of 

the numerical elliptic scheme if chosen very large; it is defined as (0 ൑ A ൑ 0.001) for the case 

studies presented here.  

 The step by step procedure of the proposed 1D elliptic curvature based PDE computation is as 

follows. First, the surface curvature is computed by a finite number of points uniformly 

distributed on the surface. The curvature value is defined as: 

Curv୧ ൌ െ1/Radius୧            (5.3) 

where Radius୧ is the computed radius of the circle mapped on 3 points (i-1, i, and i+1). For each 

point (and its arclength) the curvature is defined concave (negative) or convex (positive). Then, a 

number of points (k=2 to n-1) is selected by the user, depending on the curvature selection 

criterion, to apply the curvature source term S in a piecewise fashion. Note that k=1 and k=n are 

the first and last point on the 1D geometry. Second, the source term S is computed for the 

selected geometry points (k=1 to n): 

S1୧ ൌ A ∙ Sin ቀ ୰౟ି୰ౡ
୰ౡି୰ౡషభ

∙ 2πቁ			                     for  ( k = 2 to n-1) and if ( r୩ିଵ ൑ r୧ ൑ r୩ )   (5.4) 

S2୧ ൌ A ∙ ሺCurv୧ ∑ Curv୧
୬
୧ୀଵ⁄ ሻ ∙ ሺr୧ െ r୩ିଵሻ			    for  ( k = 2 to n-1)   and if    ൫r୩ିଵ ൑ r୧ ൑ r୩ିଵ ൅

0.5ሺr୩െr୩ିଵሻ൯       (5.5) 
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S3୧ ൌ A ∙ ሺCurv୧ ∑ Curv୧
୬
୧ୀଵ⁄ ሻ ∙ ሺr୧ െ r୩ሻ			     for  ( k = 2 to n-1) and if  ሺr୩ିଵ ൅ 0.5ሺr୩െr୩ିଵሻ ൑

r୧ ൑ r୩ሻ      (5.6) 

S୧ ൌ S1୧ ൅ S2୧ ൅ S3୧            (5.7) 

Note that the source term S includes a periodic Sinus function (S1୧) with two additional linear 

functions (S2୧ and S3୧). Third, the 1D elliptic PDE equation with the RHS source term is solved 

for the new curvature based point distribution solution. Source terms are updated (because of 

embedded r୧) at each iteration of the 1D elliptic solver until a minimum residual is reached. The 

general descritized form of the proposed 1D elliptic PDE is: 

r୧ିଵ െ 2r୧ ൅ r୧ାଵ ൌ S୧            (5.8) 

The central difference discretized form of the 1D elliptic equation is solved using Point SOR or 

ADI schemes. The case studies providing verification and parametric study of the proposed 

methodology are presented in Section 5.3.1. 

5.2.2    Field grid generation algorithm 

 The elliptic and parabolic grid generation approaches are described here including the novel 

blended elliptic method and the solution schemes. 

5.2.2.1 Parabolic method 

Conformal mapping approaches such as parabolic mapping methods are one of the grid 

generation classes suitable for ice grid generation. The parabolic structured grid generation 

method mainly includes two steps which iteratively generates the grid propagating from body 

throughout the domain. First step is generation of the algebraic reference grid which includes 2 

local orthogonal grid layers on the base layer.  

X୧,ଵ
୨ ൌ X୧,଴

୨ ൅ δ୧
୨n୧,଴
୨              (5.9) 

X୧,ଶ
୨ ൌ X୧,ଵ

୨ ൅ δ୧
୨ାଵn୧,ଵ

୨              (5.10) 

Second step is smoothing of the reference grid layers using elliptic Poisson equation including 

stretching and orthogonality control functions which are briefly shown here in generalized form.  

gଶଶ ቀሺ1 ൅ νሻXξξ ൅ PXξቁ ൅ gଵଵ൫Xηη ൅ QXη൯ ൌ 0       (5.11) 

gଵଵ ൌ xξ
ଶ ൅ yξ

ଶ ,    gଶଶ ൌ xηଶ ൅ yηଶ          (5.12) 
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An additional term ሺ1 ൅ νሻ is added to the elliptic smoothing to improve the grid line crossing 

in concave domain [58]: 

ν ൌ maxට
୫ୟ୶ሺ୥భభ,୥మమሻ

୥మమ
ൈ f൫θξ൯          (5.13) 

f൫θξ൯ ൌ ൞

1																,						0 ൑ θξ ൏ ߨ
2ൗ

sin	ሺθξሻ				,					ߨ 2ൗ ൑ θξ ൏ ߨ
ߨ																			,																	0 ൑ θξ

          (5.14) 

θξ ൌ atan	ሺሺy୧ାଵ െ y୧ିଵሻ ሺx୧ାଵ െ x୧ିଵሻ⁄ ሻ         (5.15) 

After smoothing the reference grid layers, the middle grid layer is used to generate the next 

parabolic grid layers. This procedure is repeated until the grid reaches the domain outer 

boundaries. Verification of the method is presented in Section 5.3.2. 

5.2.2.2 Elliptic method  

Elliptic equations are used extensively for grid smoothing. Control functions such as mesh 

spacing, orthogonality, and curvature control have been used to increase the grid quality [55, 82, 

83, 112]. A new choice of control function for the elliptic grid generation system is presented.  

Considering Cartesian coordinates (x,y) for physical space, and curvilinear (ξ,η) for 

computational space (0 ≤ ξ ≤ ξmax and 0 ≤ η ≤ η max), a simple one-to-one mapping can be done 

from physical domain to computational domain and reverse (Figure 5.1).  

 
Figure 5.1: Simple mapping: Computational space (left), Physical space (right). 

 
Considering ξ=ξ(x,y) and η=η(x,y), one need to find the mapping equations to satisfy the 

Poisson equations: 

ξ୶୶ ൅ ξ୷୷ ൌ P             (5.16) 
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η୶୶ ൅ η୷୷ ൌ Q             (5.17) 

 The terms P and Q are the forcing functions (control functions). Different choices for these 

values result in different grid characteristics. Using transformation equations (5.18), the Poisson 

equations can be written as [82]: 

ξ୶ ൌ yη/J,   ξ୷ ൌ xη/J,   η୶ ൌ yξ/J,   η୷ ൌ xξ/J       (5.18) 

J ൌ xξyη െ yξxη               (5.19) 

൫xηଶ ൅ yηଶ൯xξξ െ 2൫xξxη ൅ yξyη൯xξη ൅ ሺxξଶ ൅ yξଶሻxηη ൌ െሺxξyη െ yξxηሻଶ൫Pxξ ൅ Qxη൯  

 (5.20) 

൫xηଶ ൅ yηଶ൯yξξ െ 2൫xξxη ൅ yξyη൯yξη ൅ ሺxξଶ ൅ yξଶሻyηη ൌ െሺxξyη െ yξxηሻଶ൫Pyξ ൅ Qyη൯  

 (5.21) 

The transformed equation is a quasi-linear type equation, which needs to be linearized in order to 

be solved efficiently. 

The choices for control functions here are based on Sorenson (RLS), Spekreijse (SPS), and 

the developed blended (RLS-SPS-Para) method. The control functions equations are detailed 

below.  

In the Sorenson approach (RLS) [55], PRLS and QRLS are defined as: 

Pୖ ୐ୗሺξ, ηሻ ൌ pሺξሻ ∙ eିαη ൅ rሺξሻ ∙ eିୡ൫ηౣ౗౮ିη൯       (5.22) 

Qୖ୐ୗሺξ, ηሻ ൌ qሺξሻ ∙ eିୠη ൅ sሺξሻ ∙ eିୢ൫ηౣ౗౮ିη൯      (5.23) 

where α, b, c, and d are positive constants defining the propagation of sources on boundaries 

through domain.  

Two main grid controls, grid spacing and grid orthogonality, have been considered. The 

minimum spacing close to wall along ξ = constant is defined by the user as ∆s to control the grid 

spacing distribution. Also the grid angle θ of layer η = 0 (inner boundary) is defined by the user 

to control orthogonality of the grid on the body and the propagation through domain. Based on 

the Sorenson equations, the effect of the terms r and s should be negligible on the layer η=0 

(inner boundary), and similarly the terms p and q have negligible effect on the layer η = ηmax 

(outer boundary), so that: 

On the inner boundary (η = 0): 

PRLS(ξ, 0) = p(ξ) and QRLS(ξ, 0) = q(ξ)    

Using the above correlations and equations (5.20), (5.21): 
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pሺξሻ ൌ ቂ
୷η൫ି൫α୶ξξିଶβ୶ξηାγ୶ηη൯ ୎మ⁄ ൯ି୶η൫ି൫α୷ξξିଶβ୷ξηାγ୷ηη൯ ୎మ⁄ ൯

୎
ቃ      (5.24) 

qሺξሻ ൌ ቂ
ି୷ξ൫ି൫α୶ξξିଶβ୶ξηାγ୶ηη൯ ୎మ⁄ ൯ା୶ξ൫ି൫α୷ξξିଶβ୷ξηାγ୷ηη൯ ୎మ⁄ ൯

୎
ቃ      (5.25) 

Similarly, on the outer boundary (η = ηmax), the terms r and s can be computed by the correlation 

PRLS(ξ, ηmax) = r(ξ), QRLS(ξ, ηmax) = s(ξ) and equations (5.20), (5.21). 

Using the computed derivatives, the terms p, q, r, s are determined and finally sources PRLS 

and QRLS are computed through the domain. The iterative process starts by using an algebraic 

generated grid as the initial solution and the user specified spacing and stretching parameters. 

The initial values for p, q, r, s are assumed to be zero and input values for ∆s and θ are defined. 

All derivatives of the boundary grid points for the first iteration are computed. The solution of 

the first iteration is used in the next iteration to solve ݔηη, ݕηη and other derivatives on the 

boundaries. The values of p, q, r, s for the boundary points are then determined. Now PRLS and 

QRLS can be computed for all the interior grid points using Sorenson control function equations. 

The terms p, q, r, s of the defined control functions can be under-relaxed to increase the 

numerical stability. This iterative process is continued to satisfy a convergence criterion. 

In the Spekreijse approach (SPS) [84], the parametric space as shown in Figure 5.2 is used to 

compute the source terms as: 

Pୗ୔ୗሺξ, ηሻ ൌ aଵଵpଵଵ
ଵ ൅ 2aଵଶpଵଶ

ଵ ൅ aଶଶpଶଶ
ଵ        (5.26) 

Qୗ୔ୗሺξ, ηሻ ൌ aଵଵpଵଵ
ଶ ൅ 2aଵଶpଵଶ

ଶ ൅ aଶଶpଶଶ
ଶ        (5.27) 

pଵଵ ൌ െTିଵ ቀୱξξ୲ξξቁ, 	pଵଶ ൌ െTିଵ ቀୱξη୲ξηቁ,  pଶଶ ൌ െTିଵ ቀୱηη୲ηηቁ,  T ൌ ൬
sξ sη
tξ tη

൰   (5.28) 

aଵଵ ൌ ൫xηଶ ൅ yηଶ൯ Jଶ⁄         aଶଶ ൌ ቀxξଶ ൅ yξ
ଶ
ቁ Jଶൗ   aଵଶ ൌ ൫xξxη ൅ yξyη൯ Jଶ⁄        (5.29) 

 

Figure 5.2: Composite mapping: Computational space (left), Parametric space (middle), Physical 
space (right). 
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The parametric domain is defined by the nonlinear algebraic transformations. Using the 

preliminary defined algebraic grid and parametric domain grid, the proposed source terms can be 

easily computed once for the first iteration and held fixed throughout the entire grid computation.  

To include orthogonality, the equations below need to be solved on parametric space using 

proper boundary conditions to impose the orthogonal boundary of the physical domain: 

൫Jaଵଵsξ ൅ Jaଵଶsη൯ξ ൅ ൫Jaଵଶsξ ൅ Jaଶଶsη൯η ൌ 0          (5.30) 

൫Jaଵଵtξ ൅ Jaଵଶtη൯ξ ൅ ൫Jaଵଶtξ ൅ Jaଶଶtη൯η ൌ 0          (5.31) 

These equations have been solved using finite-volume approach with Neumann boundary 

conditions ሺ∂s ∂n⁄ ൌ 0ሻ for edges s=0 and s=1 and ሺ∂t ∂n⁄ ൌ 0ሻ for edges t=0 and t=1. The 

computed s and t values on boundaries are used to regenerate the parametric grid domain using 

Hermit interpolation defined by: 

s ൌ s୉భሺξሻH଴ሺtሻ ൅ s୉యሺξሻHଵሺtሻ                (5.32) 

t ൌ s୉మሺηሻH଴ሺtሻ ൅ s୉రሺηሻHଵሺtሻ                (5.33) 

H଴ሺsሻ ൌ ሺ1 ൅ 2sሻሺ1 െ sሻଶ , Hଵሺsሻ ൌ ሺ3 െ 2sሻsଶ             (5.34) 

H଴ሺtሻ ൌ ሺ1 ൅ 2tሻሺ1 െ tሻଶ , Hଵሺtሻ ൌ ሺ3 െ 2tሻtଶ              (5.35) 

Considering the new generated parametric space (s,t), PRLS and QRLS are computed for the first 

iteration and applied through the grid computation to impose the condition of orthogonality in 

the physical space. 

In the proposed blended method (RLS-SPS-Para), the different approaches source terms are 

added with weight factors and decay functions (optional): 

Pሺξ, ηሻ ൌ fୖ୐ୗ. Pୖ ୐ୗ ൅ fୗ୔ୗ. Pୗ୔ୗ ൅ f୔ୟ୰ୟ. P୔ୟ୰ୟ             (5.36) 

Qሺξ, ηሻ ൌ fୖ୐ୗ. Qୖ୐ୗ ൅ fୗ୔ୗ. Qୗ୔ୗ ൅ f୔ୟ୰ୟ. Q୔ୟ୰ୟ       (5.37) 

in which fRLS, fSPS, and fPara are the weight factors for Sorenson, Spekreijse (with parametric 

space generated from algebraic grid normalized arclength), and Spekreijse (with parametric 

space generated from parabolic grid normalized arclength), respectively. Pୖ ୐ୗ and Qୖ୐ୗ are the 

Sorenson approach source terms.  Pୗ୔ୗ and Qୗ୔ୗ are the Spekreijse approach source terms where 

the parametric grid is defined by the generated algebraic grid. P୔ୟ୰ୟ and Q୔ୟ୰ୟ are the Spekreijse 

approach source terms where the parametric grid is defined by the generated parabolic grid. 

Optional decay functions such as exponential, linear, or periodic functions are also implemented 

to control the effects of parabolic grid source terms (P୔ୟ୰ୟ and Q୔ୟ୰ୟ) on the elliptic grid 
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equations. Note that changes in the sources weight factors can result in changes in the stability of 

the elliptic solution algorithm.  

The Spekreijse (SPS) source terms in the blended approach are either 

Pୗ୔ୗ ൌ Pୗ୔ୗିୗେ			or			Pୗ୔ୗିୗେ୓          (5.38) 

Pୗ୔ୗିୗେ is the Spekreijse source term of spacing and curvature, that uses only the parametric 

space generated by algebraic grid. Pୗ୔ୗିୗେ୓ is the Spekreijse source term of spacing and 

curvature with additional orthogonality. The orthogonality is achieved by elliptically smoothing 

the parametric space (with orthogonality boundary condition and algebraic parametric space as 

the initial solution). Adding Spekreijse orthogonality source term (Pୗ୔ୗିୗେ୓) results in a more 

relaxed problem and a better grid (for smoothed geometries), but a higher computation time 

because of additional elliptic solution on parametric space and also has difficulty at sharp convex 

corners. In the remainder of the paper, only the  Pୗ୔ୗିୗେ (named as Pୗ୔ୗ) is used for the proposed 

blended approach.  

In the proposed blended approach, the methodology can be summarized as follow. First, 

generating the algebraic grid and its transformed parametric space. Second, generating the 

parabolic grid (or the parabolic/algebraic grid) and its transformed parametric space. Third, 

computing the 2D elliptic transformed Poisson equation with the proposed blended source terms. 

The initial solution of the iterative solver can be chosen by either the algebraic grid or the 

parabolic grid. The RLS control functions are computed at each iteration. The SPS and Para 

control functions are computed only at the first iteration and held fixed throughout the entire grid 

computation. The decision of the weight factors are based on the two main criteria: the elliptic 

PDE solution scheme stability and the grid quality criteria decided by the user. The value of each 

weight factors can be chosen between 0 to 1.  

5.2.3     Solution method 

5.2.3.1 Linearization 

Successive Substitution technique (or Simple Iteration technique) can be used to solve the 

nonlinear algebraic system. Using the Successive Substitution technique, the transformed 

Poisson equations (5.20) and (5.21) simplify to: 

αxξξ െ 2βxξη ൅ γxηη ൌ െJଶ൫Pxξ ൅ Qxη൯        (5.39) 

αyξξ െ 2βyξη ൅ γyηη ൌ െJଶ൫Pyξ ൅ Qyη൯        (5.40) 
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α ൌ xηଶ ൅ yηଶ        γ ൌ xξଶ ൅ yξଶ  β ൌ xξxη ൅ yξyη           (5.41) 

where the coefficients α, β, γ, J are computed using the last iteration solution, explicitly. 

 

Newton-Raphson technique has also been applied to linearize the problem of Poisson 

equation. The delta form of equation simplifies to: 

ቂ ୍
∆୲
െ பୖ

ப୙
ቃ ∆U ൌ R୩            (5.42) 

 

where R୩ is the computed residual at the time step k. To improve the stability of the iterative 

scheme, the Jacobian term (
பୖ

ப୙
) is active if (

பୖ

ப୙
 < 0). 

5.2.3.2 Solution of system 

The linearized transformed Poisson equation by the Successive Substitution technique is 

solved using Point-Jacobi (explicit), Point Gauss-Seidel (explicit), Point SOR (explicit), Line 

SOR (implicit) and ADI (implicit). The transformed Poisson equation linearized by the Newton-

Raphson technique is solved using Point-Jacobi (implicit) and ADI (implicit) [85]. Note that a 

Full Multi-grid approach has been applied to reduce the computation time [86, 87, 113]. 

5.3 Mesh generation results 

In this section, different simulation cases are presented with the objective to first verify the 

implementation. All the grid results are generated with the developed elliptic grid generation 

package NSGRID. First, a case study for validation of the proposed novel 1D curvature based 

elliptic PDE surface mesh generation is presented. Then, verification of the correct 

implementation of the field grid approaches (algebraic, parabolic grid approaches and also the 

elliptic grid approach with either Sorenson (RLS) or Spekreijse (SPS) control functions) are 

presented for a clean NACA0012 airfoil. Finally, the proposed novel blended approach is 

analyzed and validated for field mesh generation of a complex ice shape. The method capability 

is described and compared with two other approaches using grid quality parameters such as 

orthogonality, wall spacing, stretching ratio and skewness. The solution methods and 

convergence rates of the approaches are also discussed. The improvements in grid quality and 

convergence using the novel blended method are then discussed. 
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5.3.1    1D elliptic grid curvature based point distribution 

The case study is the experimental glaze ice 623 on NLF0414 airfoil. The grid includes 257 

points in I and 129 points in J. The experimental ice geometry data is cited in reference [48]. The 

1D elliptic curvature based grid point distribution is applied on the surface and the effects of the 

coefficient A on the spacing along the wall are examined. The curvature computed for the 

geometry is shown in Figure 5.3. The geometry points with positive curvature higher than 0.4   

m-1 (green points triangle in Figure 5.3) are selected for the application of the curvature based 

source terms. It includes 5 surface points with positive high curvature and 2 trailing edge points. 

The new elliptic point distribution along the geometry is shown in Figure 5.3 for different values 

of source term coefficient A (A=2.5×10-4, 5×10-4, and 1×10-3). The coefficient A changes the 

global density of the distributed points solution, which large value of A can cause solution 

scheme divergence. As shown, the concentration of the point is increased around the 5 selected 

high curvature regions and the airfoil trailing edge (indicated by the minimum spacing values 

along the wall). The parabolic grid generated for the geometry point distributions are shown in 

Figure 5.4, which better show the grid concentrations on and off the body. By increasing the 

source term coefficient A, the grid concentration on convex domains increases and grid density 

on concave domains decreases.  

 
Figure 5.3: Computed curvature (left axis: geometry curvature in red, selected points in green); 

Curvature based distributed points spacing along the wall (right axis: for different coefficient A). 
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Figure 5.4: Parabolic grid generated for 1D PDE geometry points distribution for two different 

coefficients A: 2.5×10-4, left, and 1×10-3, right. 
 

The solution convergence of the 1D elliptic point distribution using ADI and Point SOR for 

different values of A are shown in Figure 5.5. It is seen that Point SOR converges faster than 

ADI. 

 
Figure 5.5: 1D PDE Curvature based point distribution for different coefficient A with Point 

SOR (PS) and ADI. 

5.3.2    Field grid generation approaches  

5.3.2.1 Clean NACA0012 airfoil 

The case study considered here is the simple clean NACA0012 airfoil, since focus is the 

verification of the correct implementation of the grid generation approaches. The grid includes 

129 points in I (tangential) and 65 points in J (normal). All elliptic grid solutions are converged 

to residual value of 1×10-8. The algebraic and parabolic grids are shown in Figures 5.6 and 5.7, 

respectively. The elliptic Poisson grid solution with no source terms is shown in Figure 5.8. 
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These grids are explained by visual inspection. Indeed, the transfinite interpolation (Figure 5.6), 

the parabolic marching (Figure 5.7) and Laplace operator (Figure 5.8) effects can be easily 

noticed. 

 
Figure 5.6: Algebraic grid. 

 

 
Figure 5.7: Parabolic grid. 

 

 
Figure 5.8: Poisson elliptic grid with no source terms. 

 

Finally, the elliptic Poisson grid solution with Sorenson approach (RLS), and Spekreijse 

approach (SPS) are shown in Figures 5.9 and 5.10, respectively. The effect of Sorenson operator 

can readily be observed in the mid-chord region (Figure 5.9), where the first larger cell height is 

significantly reduced. The effect of the Spekreijse operator tends to exacerbate grid skewness 

near the wall. 
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Figure 5.9: Elliptic grid with RLS source terms. 

 

 
Figure 5.10: Elliptic grid with SPS source terms. 

 

5.3.2.2 Experimental glaze ice case 623-2D on NLF0414 airfoil 

The case study is the experimental glaze ice 623 on NLF0414 airfoil. Here focus is on the 

validation of the proposed blended grid generation approach. The experimental ice geometry 

data is given in reference [48]. The grid includes 257 points in I and 129 points in J. The 1D 

elliptic curvature based grid point distribution is applied on the surface with coefficient   

A=8×10-4 for the surface grid points source term. The curvature computed for the geometry and 

the new curvature based grid point distribution is shown in Figure 5.11. The geometry points 

with positive curvature higher than 0.1 m-1 (green points triangle in Figure 5.11) are selected for 

application of the curvature based source terms. 

 
Figure 5.11: Computed curvature (left axis: geometry curvature in red, selected points in green); 
Curvature based distributed points spacing along the wall (right axis: for coefficient A=8×10-4). 
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The generated elliptic grids for different source term are shown in Figure 5.12. The first grid 

is generated using source term RLS with weight factor fୖ୐ୗ= 1. The second grid is generated 

using blended source terms RLS-SPS with the weight factors of fୖ୐ୗ= 1 and fୗ୔ୗ= 0.5. The third 

grid is generated using blended source terms RLS-SPS-Para with the weight factors of fୖ୐ୗ= 1, 

fୗ୔ୗ= 0.5 and f୔ୟ୰ୟ= 0.2. A change in weight factors results in different grids. The generated 

algebraic grid and parabolic grid including their parametric domains are shown in Figure 5.13. 

The parabolic grid generated in this case includes 80 layers of parabolic grid marching, blended 

thereafter with the algebraic grid to better control the outer boundaries. The choice of initial 

solution can be either algebraic or parabolic, but it has been found that the parabolic grid as the 

initial solution is better conditioned. 

 

 
Figure 5.12: Elliptic grid comparison for different right hand side source term: RLS (top left), 

RLS-SPS (top right), and RLS-SPS-Para (bottom). 
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Figure 5.13: Algebraic grid (top left) and its parametric space (bottom left); Parabolic grid (top 

right) and its parametric space (bottom right). 
 

Blending the source terms on the right hand side of the PDE elliptic equation results in high 

flexibility on grid parameters control, relaxed problem (or stiffness) and improved convergence 

properties and computation time. The grid computation time is shown in Figure 5.14, using Line 

SOR in I (LS-I) with (ω = 1) and 2 levels of Multi-Grid with 20 relaxation on the coarse mesh. 

 

 
Figure 5.14: NSGRID solution convergence for different blended source terms.   
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The problem of spacing-curvature control in RLS approach has been improved by adding the 

SPS source term to the right hand side. The SPS source terms are computed using the parametric 

space generated by algebraic grid normalized arclength. The elliptic equations are now more 

relaxed, and the spacing resolution close to wall is improved as shown in Figure 5.15. For more 

complex geometries, the generated grid still suffers from low orthogonality and negative 

volumes, which mainly occur in sharp convex corners. An additional source term is added to the 

right hand side to solve the grid orthogonality issue, maintaining the other grid quality factors 

proper, such as the minimum spacing resolution, Skewness, stretch ratio, positive volume, etc. 

The additional source terms are SPS terms computed on the parametric space generated by 

parabolic grid normalized arclength. It has been observed that the third source term not only 

improves the orthogonality, but also removes the negative grid volume issues on the surface 

sharp points that could not be handled by the Sorenson or Spekreijse Source terms.  

 
Figure 5.15: Minimum grid spacing close to wall. 

Figure 5.16 shows the selected I (148) and J (50) lines to compute the grid quality factors to 

highlight the generated grids differences. The comparisons of the grid quality factors 

orthogonalty, skewness and J stretching ratio is shown in Figures 5.17 and 5.18. The comparison 

of the grid quality factor I stretching ratio is shown in Figure 5.19. Grid quality criterion and 

their equations are detailed in the Appendix A, Grid Metrics [114]. Orthogonality, skewness and 

stretching ratio criteria are aimed to be close to 1, 0 and 1, respectively. 
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Figure 5.16: Grid selected indexes, I (148) and J (50) to compare the grid quality criteria. 

 

Figure 5.17 compares the grid orthogonality on i=148 for j=1 up to j=50, which properly 

cover the boundary layer zone of the surface. It shows significant increase in grid orthogonality 

using RLS-SPS-Para compared to the other source terms. Figure 5.17 also shows the 

improvement in grid Skewness using RLS-SPS-Para. Figure 5.18 shows proper j stretching ratio 

using the blended RLS-SPS-Para source terms.  

The comparison of I stretch ratio for a selected index j=50 also shows proper range of parameter 

fluctuation, using RLS-SPS-Para, shown in Figure 5.19. 

 

  
Figure 5.17: Grid quality comparison on i=148 (for (1≤ j ≤50): Orthogonality (left), Skewness 

(right).  
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Figure 5.18: J Stretch Ratio comparison on i=148 (for (1≤ j ≤50). 

 

 
Figure 5.19: I Stretch Ratio comparison on j =50 (for 1≤ i ≤257). 

 
A study has been done on the solution approaches used for solving the elliptic grid generation 

with the blended source terms (RLS-SPS-Para). Figure 5.20 shows all the Single-Grid solution 

convergence for ADI (in I, J, and IJ), Line SOR (LS) (in I, J, and IJ), Point SOR (PS), Point 

Jacobi (PJ), and Gauss Seidel (GS). Note that for ADI and Point Jacobi, the elliptic equation has 

been linearized using Newton Raphson approach, while for the rest, the successive substitution is 

applied. The factor ω is the SOR relaxation factor and dt is the implicit scheme time stepping, 

which is adjusted to the maximum possible value to reduce the computation time. The order of 

magnitude of dt is 10-2 to 1010. Sweeping forward, backward or back and forth sometimes shows 

different stability behaviors, but a single forward sweep is found to be the most efficient. The 

Line SOR in I (LS-I) algorithm provides the best convergence time. ADI solution in I (ADI-I) 

also shows good convergence properties. 
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Figure 5.21 shows the effect of Multi-Grid application on the equation solved by LS-I and 

ADI-I. Only 2 levels of Multi-Grid V-cycle have been used with 20 relaxing steps on the coarse 

mesh, which shows reduction of the computation time by 48% for LS-I and by 44% for ADI-I. 

Note that the source terms are only computed on the fine mesh, with simple restriction to the 

coarse mesh. 

 
Figure 5.20: Solver comparison on the elliptic equation with blended source term (RLS-SPS-

Para). 

 
Figure 5.21: Multi-grid effects comparison on ADI-I and LS-I. 
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The effect of the linearization method for the quasi-linear elliptic equation of grid is now 

examined. Figure 5.22 shows the comparison of the linearization methods, Newton-Raphson 

(NR) and Successive Substitution (SS), for ADI solution approach. The factor dt is adjusted to 

the maximum value for stability and computation time reduction. It has been observed that the 

ADI in I with Newton-Raphson linearization (NR) has significantly better convergence 

compared to Successive Substitution linearization (SS) technique. Notably, the ADI-I (NR) 

scheme allows dt to be at 1010. 

 
Figure 5.22: Linearization comparison, NR and SS, on ADI-I. 

5.4    Standard validation cases results 

In this section, different simulation cases are presented with the objective to validate the flow 

solution simulation on the generated structured grids. The selected test cases are a clean 

NLF0414 airfoil and an experimental glaze ice 623 on NLF0414 airfoil. All the results in this 

paper were produced using the NSCODE solver to solve the flow on the structured grids 

generated with the developed elliptic ice grid generation package NSGRID. 

5.4.1 Navier-Stokes solver 

The Navier-Stokes flow solver NSCODE, a finite volume two-dimensional multi-block 

Euler/Navier-Stokes flow solver with Full Approximate Storage Multi-Grid developed at Ecole 

Polytechnique [94], was also incorporated within the CANICE icing framework [20, 31, 63]. 



111 
 

Implemented turbulence models include the widely used Spalart-Allmaras and k-ω-SST, γ-Rθ 

equations. NSCODE also includes a wall treatment roughness Boeing model which has been 

implemented and validated with the Spalart-Allmaras turbulence model. 

5.4.2 Standard validation cases 

Two case studies are now analyzed for NSGRID validation, the clean NLF0414 airfoil and the 

experimental glaze ice 623 on NLF0414 airfoil, both at Mach 0.29 and Reynolds 6.4×106. The 

clean and experimental ice geometry data are given in reference [48]. The case has been 

analyzed in the literature using SmaggIce grid generation (with multi-block structured grids) and 

WIND CFD solver to compute the aerodynamic performances [6] and in [7, 115, 116] using 

ICEG2D grid generation (with structured grid) and NPARC solver to compute the aerodynamic 

performances. Note that the solution of WIND CFD solver is with the k-ω-SST turbulence model 

and the solution of NPARC solver is with Spalart-Allmaras turbulence model.  

For the grid generation process using NSGRID, the surface mesh generation solver uses Point 

SOR (convergence to 1×10-4) with source term coefficient A=2×10-4 and the curvature section 

criterion of 0.1 (for the glaze ice shape). The field mesh generation solver uses the blended 

approach (RLS-SPS-Para) with weight factors of 1, 0.5 and 0.2 (corresponding to RLS, SPS and 

Para source terms, respectively) and Line SOR in I with 2 levels V-cycle Multi-Grid 

(convergence to 1×10-4). 

5.4.2.1 Clean NLF0414 airfoil 

Using NSGRID, the generated elliptic grid (257 by 129) using 1D PDE elliptic curvature 

based surface point’s distribution and blended approach (RLS-SPS-Para) is shown in Figure 

5.23. 

 
Figure 5.23: Elliptic grid generated with blended approach RLS-SPS-Para. 
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The grid convergence solution is shown in Figure 5.24, using Line SOR in I with 2 levels of 

Multi-Grid. The computed aerodynamic performances versus angle of attack, Lift and Drag 

coefficients are shown in Figures 5.25 and 5.26, respectively. Results show good stall prediction 

compared to the numerical and experimental data. It is observed that the k-ω turbulence model 

results in better flow prediction compared to Spalart-Allmaras model, especially in ܥ௅௠௔௫ 

prediction. All cases are run by NSCODE with 5 levels of Multi-Grid (ij coarsening) and JST 

artificial dissipations of 1/4 (second order dissipation), and 1/128 (fourth order dissipation) 

[117]. The roughness model is not activated for the case and the surface is assumed to be 

smooth. In the case of unsteady oscillations occurring at high angle of attack, aerodynamic 

results are averaged in time. The flow convergence for an angle of attack of 0°, and different 

turbulence models, Spalart-Allmaras (S-A) and k-ω, is shown in Figure 5.27.  

 
Figure 5.24: Grid solution convergence of the blended source term (RLS-SPS-Para), using LS-I, 

with 2 levels of Multi-Grid. 

  
Figure 5.25: Lift coefficient versus angle of attack. 
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Figure 5.26: Drag coefficient versus angle of attack. 

 

 
Figure 5.27: NSCODE flow convergence comparison for AOA of 0°. 

5.4.2.2 Experimental glaze ice case 623-2D on NLF0414 airfoil 

The experimental ice geometry data is given in reference [48]. Using NSGRID, the generated 

elliptic grid (513 by 129) using 1D PDE elliptic curvature based surface point distribution and 

blended approach (RLS-SPS-Para) is shown in Figure 5.28. The computed ice surface curvature 

is shown in Figure 5.29 with selected points with curvature higher than 0.1 (user input) in green 

(triangle). The elliptic curvature based grid method is applied on the surface with coefficient 

A=2×10-4 for the surface grid points source term. The computed curvature based points are 

shown in Figure 5.29, based on the point spacing along the ice surface geometry versus point 

arclength and shows the concentration of the grid around selected points with positive curvature.  
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Figure 5.28: Elliptic grid generated with blended approach RLS-SPS-Para. 

 

 
Figure 5.29: Computed curvature (left axis: geometry curvature in red, selected points in green); 
Curvature based distributed points spacing along the wall (right axis: for coefficient A=2×10-4). 

 

The NSGRID convergence solution is shown in Figure 5.30, using Line SOR in I with 2 

levels V-cycle Multi-Grid. The computed aerodynamic performances versus angle of attack, Lift 

and Drag coefficients are shown in Figures 5.31 and 5.32, respectively. Using S-A turbulence 

model results in higher lift coefficient compared to k-ω model as shown in Figure 5.31. All the 

cases are run by NSCODE with 5 levels of Multi-Grid (j coarsening) and JST artificial 

dissipations of 1/2 (second order dissipation), and 1/80 (fourth order dissipation). Because of the 

complexity of the ice shape geometry ij coarsening has shown stability issues, but j coarsening 

has solved the problem. In the case of oscillations at high angle of attack, aerodynamic results 

are averaged in time. 
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Figure 5.30: Grid solution convergence of the blended source term (RLS-SPS-Para), using LS-I, 

with 2 levels of Multi-Grid. 
 

  
Figure 5.31: Lift coefficient versus angle of attack. 

 

 
Figure 5.32: Drag coefficient versus angle of attack. 
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The pressure coefficient comparison for the angle of attack of 0° is shown in Figure 5.33. The 

flow convergence for different turbulence models, Spalart-Allmaras (S-A) and k-ω, is shown in 

Figure 5.34. Note that the flow solution with the k-ω model indicates the presence of unsteady 

flow patterns. The roughness model is not activated for the case and the surface is assumed to be 

smooth. The predicted lift-curve by NSGRID-NSCODE (elliptic structured grid) shows good 

results compared to ICEG2D-NPARC [115] (parabolic structured grid) results and SmaggIce-

WIND [6] (multi-block structured grid) results. The predicted lift coefficient is in line with two 

experimental data sets (LTPT2D and IRT) [6, 7, 115]. Also, the predicted drag coefficient by 

NSGRID-NSCODE presents good comparison with the experimental data and is better than the 

ICEG2D-NPARC (parabolic structured grid) solution [115].  

 
Figure 5.33: Cp comparison for AOA of 0°. 

 

 
Figure 5.34: NSCODE flow convergence comparison for AOA of 0°. 
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5.5    Conclusion  

In this paper, a novel grid generation method has been proposed to handle both surface and 

field mesh generation around complex glaze ice with convex/concave regions.  First, a novel 

elliptic curvature based surface point distribution scheme treating convex/concave regions is 

presented. Second, a blended approach has been developed in the context of elliptic grid 

generation via appropriate choice of source terms. Results show the improvements of the 

proposed blended approach (RLS-SPS-Para) compared to other classical methods (Sorenson, 

Spekreijse and parabolic) in resolving complex glaze ice shapes by carefully describing the role 

of the source terms properties (spacing, curvature, orthogonality) and examining their effects on 

grid metrics (wall spacing, orthogonality, stretching ration, skewness).  Solution of the resulting 

partial differential equation is analyzed in the context of a full-multigrid operator, showing the 

superior convergence rate of the Line SOR-I and ADI-I algorithms.  Finally, a demonstration of 

the applicability of the mesh generation procedure to standard icing cases is made by comparing 

Navier-Stokes solutions using École Polytechnique NSCODE with results of NASA’s SmaggIce-

WIND and ICEG2D-NPARC packages. 
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CHAPTER 6  

UPGRADE OF MULTI-STEPS RANS BASED ICE ACCRETION 

FRAMEWORK OF CODE CANICE2D-NS  

Here we present the newly upgraded framework of CANICE2D-NS using first: a new RANS 

flow solver NSCODE2D (replacing NSMB3D solver) and second, a new grid generation solver 

NSGRID2D (replacing ICEM-CFD meshing tool). The code is validated by a variety of standard 

icing cases to study the robustness of the framework that is considered here by the number of 

successful computations. 

6.1  Upgrade of RANS solver 

The NSCODE2D RANS solver contains a very efficient Full Multigrid algorithm with an 

explicit multistage Runge-Kutta solver which differs from the single grid LU-SGS implicit 

solver in NSMB. Here, the effects of the Full Multigrid operator and an implementation of a      

J-coarsening strategy are examined. 

6.1.1  NSCODE2D RANS solver 

NSCODE2D is a finite volume two dimensional multi-block Euler/Navier-Stokes based 

solver with Full Approximate Storage Multi-Grid developed by the laboratory of prof. 

Laurendeau [31, 94]. Available turbulence models include the Spalart-Allmaras, k-ω-SST and γ-

Rθ equations. The code incorporates the wall treatment roughness model of Boeing which is 

implemented and validated within the Spalart-Allmaras turbulence model. NSCODE2D is 

capable of steady and unsteady flow analysis and incorporates a Chimera method. The code is 

verified and validated on a variety of steady and unsteady case studies [45, 63].  

A J-coarsening multigrid approach, as examined by Giles et al. [118], was implemented in the 

solver by simply performing the coarsening operations in the wall normal direction (J), while 

leaving the curvilinear direction (I) unchanged. The effect is to retain the icing surface geometry 

on the coarse meshes while removing stiffness in the boundary-layer direction. 
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6.1.2  Icing validation results 

Here a number of case studies are considered to validate first, NSCODE RANS solver and 

second, the new framework of CANICE2D-NS. The standard cases for NSCODE include: a flat 

plate cases for roughness model analysis, a transonic airfoil RAE2822 for aerodynamic 

performance analysis and a glaze ice case for FMG-J coarsening analysis. The standard cases for 

CANICE-NS framework include a rime ice run 405 and a glaze ice run 408. 

6.1.2.1  Validation of NSCODE solver 

 The Boeing roughness model is a new addition to NSCODE, implemented by a Post-doctoral 

student (Dr. Ali Mosahebi) but validated in the context of this thesis. 

Rough wall turbulent skin-friction over flat plate 

The selected cases study for the Boeing rough wall model validation is the case of Hellsten 

and Laine [34], flat plate with the specifications: Length (or Chord) of 1 m, Reynolds 5 Million, 

Mach 0.2, and non-dimensionalised roughness height Ks (ks/L or ks/C) of (0.0001, 0.00025, 

0.0005, 0.001 and 0.0015). The generated mesh is shown in Chapter 4, as it was used for NSMB 

Rough wall ONERA model validation. The comparison of NSCODE skin friction solution, using 

Spalart-Allmaras turbulence model with Boeing extension, with the with the Mills and Hang [34] 

semi-empirical relation (cited in Chapter 4) is shown in Figure 6.1, which shows a good 

agreement. 

 

Figure 6.1: Turbulent flat plate skin friction comparison: NSCODE (SA-Boeing) with semi-

empirical relation. 
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2D transonic RAE2822 airfoil 

The second validation cases is a 2D transonic airfoil RAE2822 [35] with the following 

specifications: AOA of 2.31°, Mach 0.729, Reynolds 6.5 Million [36]. The generated grid is 

shown in Chapter 4, as it is it was used for NSMB solver validation. The solution convergence 

comparison between NSMB and NSCODE is shown in Figure 6.2. Note that NSCODE is using 5 

levels FMG operator compared to NSMB Single-Grid solution that results shows over 14 orders 

reduction. The pressure coefficient comparison for both NSMB and NSCODE codes and the 

literature data (cited in Chapter 4 as part of NSMB validation process) are shown in Figure 6.3, 

proving the accuracy of the NSCODE solver. 

 

Figure 6.2: Residual Convergence, NSMB and NSCODE on the RAE2822 airfoil. 

 

Figure 6.3: Pressure coefficients comparison for the RAE2822 airfoil. 
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FMG solution for glaze ice 

Application of FMG-J coarsening has shown increase in RANS flow solution robustness for 

complex glaze ice form problems. The generated mesh is shown in Figure 6.4. It is seen that the 

I-coarsening of FMG operator results in interpolation errors over the complex ice forms which 

finally cause computation divergence. The solution convergence rates for single-grid, FMG and 

FMG-J are shown in Figure 6.5, proving the FMG-J coarsening efficiency. Therefore, in this 

work, FMG-J coarsening operator is used for increase in robustness of the multi-time steps 

RANS based ice accretion framework of CANICE2D-NS. 

 

Figure 6.4: NACA0012 run 408 glaze ice C-mesh using automated ICEM grid generation. 

 

Figure 6.5: Convergence rates comparison of SG, FMG, and FMG-J. 

6.1.2.2  Validation of CANICE2D-NS framework 

Two standard icing cases, a rime ice run 405 and a glaze ice run 408 are considered. The case 

studies data are cited in Chapter 4, as they were used for the preliminary icing frame work 

validation of (CANICE2D-NS with NSMB solver). The collection efficiency comparison is 
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shown in Figure 6.6. The ice shapes growth is effected by different roughness values and the ice 

shapes comparisons with literature data are shown in Figures 6.7 and 6.8,  respectively. Note that 

the Ks value of 0.005 results in the best match to the experimental ice shape. The NSCODE 

RANS solver uses the Spalart-Allmaras turbulence model with Boeing rough wall model 

correction. The FMG-J coarsening operator is used in NSCODE for solution convergence 

improvement and acceleration. The convergence comparison of NSCODE FMG-J with NSMB 

Single-Grid is shown in Figure 6.9, which demonstrates over 10 time reduction in number of 

iterations for similar residuals reductions. 

 

Figure 6.6: Collection efficiency comparison. 

 

Figure 6.7: Ice shape comparison for different roughness, CANICE2D-NSCODE, run 405 (left), 

run 408 (right). 
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Figure 6.8: Ice shape comparison with literature data, CANICE2D-NSCODE, run 405 (left), run 

408 (right). 

  

Figure 6.9: Multi-steps convergence of CANICE2D-NSBM compared to CANICE2D-NSCODE, 

run 405 (left), run 408 (right). 

6.2  Upgrade of grid solver 

The newly developed grid generation code NSGRID2D, described in Chapter 5, is coupled 

with the framework of CANICE2D-NS (replacing ICEM-CFD mesh solver) with NSCODE 

RANS solver. The framework is validated by a variety of standard NATO test cases.  
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6.2.1  Icing validation results  

Since the grid generation solver is validated in Chapter 5 and NSCODE in validated in [94] 

we present here the validation of the icing framework of CANICE2D-NS coupled with 

NSGRID2D grid solver and NSCODE2D flow solver. Focus is the analysis of the robustness of 

the framework and its limitations. The icing framework robustness is considered by the number 

of successful case studies computation out of the total number of cases. 

The NATO cases studied here include: C09, C10, C13, C14, C15, C16, C17, and C18 [9], 

which are cited in literatures for validation of LEWICE-Panel, CANICE-Panel, and CANICE-

BA-Panel (v3.5) codes [20, 119]. The cases data are shown in Table 6.1. Three choices for 

number of time steps are chosen: Single-time (TS=1), 5-time steps (TS=5), and 10-time steps 

(TS=10). Three choices for roughness value Ks are chosen (0.0001, 0.0005 and 0.001). Therefore 

the total number of case runs is equal to 72. 

The NSGRID2D solver properties are: O-mesh topology with 257 and 129 points in i and j 

respectively, blended elliptic solver with weight factors of (fRLS=1, fSPS=0.5, and fortho=0.001), 

ADI-I solver, 1st cell height of (y+<1), and stretching ratio less than 1.15. The NSCODE2D flow 

solver properties are: Runge-Kutta scheme with 4 levels FMG-J coarsening, JST dissipation 

coefficients of 1/2 and 1/32, and CFL=7.5. The CANICE2D-NS solver uses a Lagragian droplet 

computation and a traditional Messinger model ice thermodynamics computation. Note the grid, 

flow and ice solvers properties are decided in a sense to relax the icing problem and increase the 

framework robustness. 

Figure 6.10 shows the typical grid (NSGRID2D) and flow (NSCODE2D) solution 

convergence rate of 5 time-steps ice accretion calculation for the cases (here shown C09). Figure 

6.11 shows the typical effects of roughness values on 5 time-steps ice accretion formation for the 

cases (here shown C09). 

The essential results comparisons for all the test cases are shown in Figures 6.12-6.27 to 

emphasis the test cases successful computations. Note that based on the literature data, the 

number of time steps applied in CANICE-BA (v3.5) code in the comparisons are as follows: 2-

steps for the cases C9, C10 and C14 and 3-steps for the cases C15 to C18.  

We note that glaze ice test cases can have ice horns so large that the flow solver steady state 

convergence is not reached, as shown in Figure 6.28. The convergence pattern indicates the 

present of unsteady flow effects that cannot be captured by the current steady RANS approach. 
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Table 6.1: NATO cases test conditions. 

Cases C09 C10 C13 C14 C15 C16 C17 C18 

Airfoil NLF0414 NLF0414 NACA0012 NACA0012 SA13112 SA13112 NACA0012 NACA0012 

Chord 

(m) 
0.9 0.9 0.53 0.27 0.6 0.6 0.91 0.91 

AOA  0 3.5 0 0 10 0 3 3 

Speed 

(m/s) 
92.54 67.04 67 57 81.3 163 67 67 

Temp. 

(K) 
257.59 262.73 264.39 267.59 263.19 263.19 265.99 265.99 

Mach  0.2876 0.2063 0.2055 0.1738 0.2499 0.5012 0.2049 0.2049 

Rey.  6.95E6 4.86E6 2.82E6 1.19E6 3.91E6 7.85E6 4.80E6 4.80E6 

LWC 

(g/m3) 
0.33 0.44 0.65 1.04 0.6 0.6 1 1 

MVD 

(μm) 
20 20 40 27.73 20 20 24.8 38.8 

Time 

(min.) 
20.4 22 11.2 4.12 15 7.5 20 20 

 

 

Figure 6.10: Convergence rate, NSGRID2D (left), NSCODE2D flow (right), (case C09, TS=5). 
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Figure 6.11: Ice shape formation effected by roughness for case with 5 time steps: case C09 rime 

ice (top), case C17 glaze ice (down); Ks =0.0001 (left), Ks =0.0005 (middle), Ks =0.001 (right). 

The collection efficiency comparison and the ice shape comparison for case C09 are shown in 

Figure 6.12. The generated grid and flow for a test run are shown in Figure 6.13.  

 

 

Figure 6.12: Collection efficiency comparison: Lagrangian method, top-left; Ice shape 

comparison: (Ks=0.0001), top-right; (Ks=0.0005), down-left; (Ks=0.001), down-right. 
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Figure 6.13: Generated grid and computed flow, (TS=5, Ks=0.001, case C09). 

The collection efficiency comparison and the ice shape comparison for case C17 are shown in 

Figure 6.14. The generated grid and flow for a test run are shown in Figure 6.15.  

 

 

Figure 6.14: Collection efficiency comparison: Lagrangian method, top-left; Ice shape 

comparison: (Ks=0.0001), top-right; (Ks=0.0005), down-left; (Ks=0.001), down-right. 

 

Figure 6.15: Generated grid and computed flow, (TS=5, Ks=0.001, case C17).  
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The collection efficiency comparison and the ice shape comparison for case C10 are shown in 

Figure 6.16. The generated grid and flow for a test run are shown in Figure 6.17.  

 

 

Figure 6.16: Collection efficiency comparison: Lagrangian method, top-left; Ice shape 

comparison: (Ks=0.0001), top-right; (Ks=0.0005), down-left; (Ks=0.001), down-right. 

  

Figure 6.17: Generated grid and computed flow, (TS=5, Ks=0.001, case C10).  

The collection efficiency comparison and the ice shape comparison for case C13 are shown in 

Figure 6.18. The generated grid and flow for a test run are shown in Figure 6.19.  
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Figure 6.18: Collection efficiency comparison: Lagrangian method, top-left; Ice shape 

comparison: (Ks=0.0001), top-right; (Ks=0.0005), down-left; (Ks=0.001), down-right. 

 

Figure 6.19: Generated grid and computed flow, (TS=5, Ks=0.001, case C13).  

The collection efficiency comparison and the ice shape comparison for case C16 are shown in 

Figure 6.20. The generated grid and flow for a test run are shown in Figure 6.21.  
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Figure 6.20: Collection efficiency comparison: Lagrangian method, top-left; Ice shape 

comparison: (Ks=0.0001), top-right; (Ks=0.0005), down-left; (Ks=0.001), down-right. 

 

Figure 6.21: Generated grid and computed flow, (TS=5, Ks=0.001, case C16).  

 

The collection efficiency comparison and the ice shape comparison for case C18 are shown in 

Figure 6.22. The generated grid and flow for a test run are shown in Figure 6.23.  
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Figure 6.22: Collection efficiency comparison: Lagrangian method, top-left; Ice shape 

comparison: (Ks=0.0001), top-right; (Ks=0.0005), down-left; (Ks=0.001), down-right. 

 

Figure 6.23: Generated grid and computed flow, (TS=5, Ks=0.001, case C18).  

 

The collection efficiency comparison and the ice shape comparison for case C14 are shown in 

Figure 6.24. The generated grid and flow for a test run are shown in Figure 6.25.  
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Figure 6.24: Ice shape comparison: (Ks=0.0001), left; (Ks=0.001), right. 

 

Figure 6.25: Generated grid and computed flow, (TS=5, Ks=0.001, case C14).  

 

The collection efficiency comparison and the ice shape comparison for case C15 are shown in 

Figure 6.26. The generated grid and flow for a test run are shown in Figure 6.27.  

 

Figure 6.26: Ice shape comparison: (Ks=0.0001), left; (Ks=0.001), right. 
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Figure 6.27: Generated grid and computed flow, (TS=5, Ks=0.001, case C15).  

Figure 6.28 shows a typical unsteady flow behavior caused by complex ice horns formation in 

glaze ice cases. 

 

Figure 6.28: Unsteady flow: pressure contour (left), convergence (right), (case C18). 

6.3  Conclusion 

 In total 72 individual test runs is performed for 8 icing test cases with 3 choices for number of 

time steps and 3 choices for roughness values. There are 6 failed test runs that are all type of 

complex glaze ice forms, as exemplified by Figure 6.28. The list of the 6 cases is in Table 6.2. 

The problems are mainly due to complex flow behavior (i.e. flow recirculation, unsteady effects) 

caused by ice horn growth which resulted in Lagrangian trajectory calculation failure. In general, 

there are 66 successful multi-steps computations which results in 91.6% success rate that here is 

defined as a measure of the robustness of the developed RANS based ice accretion simulation 

code CANICE2D-NS. Note there is no grid solver failure which shows the robustness of the 

developed mesh solver NSGRID2D. The computation times is also significantly reduced by the 
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order of 10 to around 10 minutes (for each time steps) using the upgraded framework of 

CANCIE2D-NS coupled with NSCODE2D and NSGRID2D compared to prior version 

(CANCIE2D-NS/ICEM/NSMB). 

Table 6.2: NATO cases failed test runs. 

NATO Cases TS Ks Crashed on Layer 

C13 10 0.0001 8 

C13 10 0.0005 7 

C13 10 0.001 10 

C15 10 0.0005 10 

C16 5 0.0005 5 

C16 5 0.001 5 
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CHAPTER 7  

GENERAL DISCUSSION 

7.1  Context 

Starting with a panel-method, Lagrangian based icing framework CANICE2D, a RANS based 

framework was created by sequential steps. First, the panel solution was replaced with the 

PMB3D solver. This required the introduction of a mesh generation step, done with the 

commercial package ICEM-CFD. Thus, a new RANS based icing framework was created, 

satisfying objective 1 of the research project of Section 1.4. 

Then to cater for the importance of surface roughness in an icing framework, the flow solver 

NSMB was introduced. The work, presented in Chapter 4, allows an automated RANS based ice 

accretion process to reach a converged ice shape solution (or time steps independent solution) 

through increase in number of quasi time steps. It is shown that number of time steps (20 to 40) 

results in converged ice shape solution, as opposed to the widely used number of steps (3 to 5) in 

icing codes. Up to now, most of the ice accretion simulation codes are used based on matching 

the ice shape formation with the experimental data using calibration parameters such as number 

of time steps and roughness. Here we have shown that reaching numerically converged solution 

is an essential step for further improvements in ice accretion modeling. 

The developed framework includes roughness analysis capabilities to further improve the ice 

mass formation in comparison with the experimental data, for validation purposes. An aero-icing 

framework has been also developed to further calculate the aerodynamic performances 

parameters at each steps of quasi steps ice accretion process. This allows to fully analyze the ice 

accretion effects and further to compute the aerodynamic stall and increase in aerodynamic drag. 

This work therefore addressed objective 2 of the thesis. 

An automated grid generation process capable of complex ice shape mesh generation is 

proved to be a critical step and a bottleneck toward numerical consistency of the RANS based 

multi-steps aero-icing simulations. The ICEM-CFD commercial tool is shown to have significant 

disadvantages: automation issues, deficient grid smoothing methods, and insufficient quality grid 

metrics. Therefore Chapter 5 describes the development of an in-house grid generation tool, 

NSGRID, to address these issues. The tool is capable of automated grid regeneration with 
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minimal user input to generate/smooth complex ice shapes grids with improved grid metrics 

which are essential for RANS simulations. A novel PDE curvature based 1D surface mesh 

generation is developed to address ice surface mesh generation problem containing large number 

of concave/convex regions and sharp corners. The approach is automated with minimal user 

input. It captures the high curvature points and solves an elliptic equation with efficient, 

heuristically determined, control functions to increase mesh density in high curvature regions 

and decrease mesh density in between. It results in an improved mesh point distribution and 

reduction in field grid shock problems caused by concave regions. Note here, there is no need for 

surface geometry smoothing prior to surface mesh generation which is done in different mesh 

generation tools. This reduces the user work and preserves the real physical ice geometry. 

Moreover the PDE method, based on its nature, is easily extendable to 2D surface mesh 

generation.  

In field mesh generation, NSGRID is embedded with the developed elliptic blended method 

combining three control functions on the right hand side with their weight factors. These source 

terms are RLS, SPS with algebraic parametric domain and SPS with parabolic parametric 

domain (named Para). The blending method with right weight factors results in a significant 

improvements in grid metrics for complex ice geometry mesh generation. It results in reduction 

in grid minimum spacing needed for RANS resolution, increase in grid orthogonaly in viscous 

region, reduction in grid skewness, improvements in grid stretch ratio and grid folding removal. 

A number of explicit and implicit solvers embedded within FMG operators are analyzed on the 

blended method which results in computation time reduction by about 100 times using implicit 

Line-SOR in I with 2 levels of FMG compared to ADI in J, Line-SOR in J (and reduction by 

about 65 times compared to Gauess-Seidel and Point-Jacobi). 

Moreover, NSGRID is capable of multi-block smoothing with boundary updates with 

flexibility of different smoothing approaches application on different blocks. A variety of mesh 

enhancements are implemented in NSGRID such as mesh movement method, surface/domain 

manipulation/modifications and algebraic/parabolic grid methods, which all resulted in increase 

in capabilities for complex domain mesh generation. 

To improve the preliminary developed RANS based multi-steps aero-icing framework of 

CANCE2D-NS (described in Chapter 4), two major upgrades are performed: first steps is the 

coupling of an efficient in-house RANS solver NSCODE2D, replacing the prior NSMB RANS 
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solver, and second step is the coupling of an efficient in-house grid generation solver 

NSGRID2D, replacing the prior ICEM-CFD mesh solver. These developments, validation and 

analysis are discussed in Chapter 6.  

The RANS solver upgrade to NSCODE2D has improved the computation time by the order of 

10 times reduction compared to prior NSMB RANS solver. It is also shown that FMG-J 

coarsening improves the robustness of the solver on glaze ice form flow simulation. The flow 

solver includes a rough wall treatment model Boeing embedded in S-A turbulence model for ice 

roughness analysis. Moreover NSCODE is capable of Chimera method which facilities the 

RANS aero-icing simulation for high-lift configurations (future work).  

The new upgraded CANICE2D-NS framework is further used to analyze a variety of standard 

case studies to evaluate the robustness of the multi-steps RANS based ice accretion process. 

Here robustness is considered based on the number of successful ice accretion computations (66 

run) among large number of multi-steps test runs (72 individual run), which represent 91.6% 

success. Note that the flow, grid and ice solvers properties are configured in a sense to relax the 

computations to have minimum failure. The failed test cases are mainly due to complex flow 

behavior (i.e. flow recirculation, unsteady effects) which resulted in Lagrangian droplet 

computation failure. An important observation is that there is no grid solver failure using 

NSGRID2D mesh solver that proves the robustness of the grid solver for complex ice shape 

mesh generation. Note that both NSCODE2D flow solver and NSGRID2D grid solver have 

significantly improved the multi-steps ice accretion computation time by order of over 10 times 

compared to preliminary framework (NSMB/ICEM-CFD). 

In general, these developments form the baseline/benchmark RANS multi-steps ice accretion 

simulations at Polytechnique de Montreal, for further study of ice accretion physical modeling 

and extension to 3 dimensional domains.  

7.2  Limitations 

The RANS based multi-steps ice accretion includes number of limitations in each step of grid, 

flow and ice solvers.  

Grid solver is shown to be a critical bottleneck in multi-steps aero-icing simulation. ICEM-

CFD mesh solver showed number of limitations for complex ice form problems such as grid 

smoothing deficiencies, inefficient grid metrics and automation restrictions.  
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The newly developed grid generation code NSGRID demonstrated significant capabilities to 

address all the issues encountered with the ICEM-CFD grid solver. A limitation of the grid 

solver comes when, within a multi-steps ice formation, closing cavities occur which require 

surface treatments. Further testing on more complex geometries, including multi-element airfoil, 

could reveal more limitations. 

One of the major limitations in steady state RANS solver application is due to unsteady flow 

behavior caused by complex ice shapes. This can result in failure in quasi-steady ice accretion 

process using a Lagrangian approach. Therefore there is a need for further investigation and 

development toward fully unsteady flow and ice accretion simulation. In this work, for complex 

case studies, the steady state RANS solver properties is defined in a manner to dissipate the 

problem as much as possible using the JST dissipation factors, CFL values, and multigrid 

algorithm.  

Computation of convective heat transfer (for ice accretion thermodynamics calculation) is 

performed using the RANS skin friction solution and semi-empirical roughness based turbulence 

heat transfer formula that is another limiting issue. This results in low heat transfer and 

consequently low ice mass accumulation in the laminar region of stagnation points. Therefore 

there is a need to study convective heat transfer computation directly through RANS modeling. 

A limiting issue in ice accretion simulation is the conservation of ice mass after geometry 

update. There is a need to study this problem to preserve the amount of accumulated ice mass at 

each time steps. This issue results in low ice mass solution results in converged ice shape (20-40 

steps) compared to experimental data. Our literature survey on this particular issue, not examined 

in this work, indicate that the mass conservation is not enforced in many frameworks i.e. 

ONERA-2D. The other causing factor also can be the surface roughness value that may change 

in time and space and affects the convective heat transfer values and consequently ice mass 

growth. Therefore there is a need to fully study the uniform/non-uniform roughness modeling 

and its effects.  

The other limiting issue in ice accretion simulation is the assumption of single stagnation 

point, simple water runback modeling and traditional Messinger model calculation that are 

performed in this work. This results in error in ice mass growth computation as the outcome of 

wrong water runback direction assumption. Therefore there is a need for further study in 



139 
 

modeling of multi-stagnation points problem and water runback computations toward application 

of iterative Messinger method or SWIM. 

Lagrangian droplet computation is another limiting issue in traditional ice accretion 

simulation. As complexity of ice increases, it results in more complex flow behavior and 

consequently unsteady flow behavior. This issue in addition to RANS flow interpolation method, 

mesh size and the Lagrangian method properties such as time increment, releasing point 

increment and positions, can affect the droplet computation and results in computation failure 

and droplets loss. Therefore there is a need to study the Eulerian method application that is 

directly solved using a PDE approach and can impact the numerical solutions. 
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CHAPTER 8  

CONCLUSION AND RECOMMENDATION 

8.1  Conclusion 

A step by step approach is used to develop a novel, aerodynamic ice accretion and ice 

degradation effect framework based on a RANS formulation. The work has addressed all three 

specific objectives of the thesis. Chapter 4 and 6 address the first and second specific objectives 

to examine the impact of RANS flow solver on ice accretion framework and examine multi-steps 

ice accretion shape convergence. Chapter 5 addresses the third specific objective to develop 

novel grid generation algorithms specifically for ice shape/growth. 

The work starts with Polytechnique Montreal’s CANICE framework, which contains a panel 

solver, a boundary layer code and an ice accretion suite based on the Messinger model. Two 3D 

RANS solver, PMB and NSMB are coupled to CANICE and used for 2D airfoils. The 

importance of having a turbulence model handling rough surfaces in ice accretion validation is 

demonstrated. The RANS codes are using meshes created with the commercial ICEM-CFD grid 

generation package. A multi-steps icing capability is developed, thanks to using a mesh 

regeneration procedure instead of using a mesh movement approach. The fully automated 

procedure allows providing solutions for over 200 multi-steps calculations via a quasi-steady 

approach. The results indicate the need to perform 20-40 steps to reach engineering converged 

results, as opposed to the 1-5 steps procedure used in other studies.  

The meshes created with ICEM-CFD have a few deficiencies, notably that they are expensive 

to run, need high expertise to generate them, have an inefficient replay function but most 

importantly, generated meshes with poor grid metrics. A new 2D mesh generation code, 

NSGRID, is created to address these issues. A novel curvature-based surface adaption algorithm 

is developed to address the grid shock problem in concave regions by automatically 

refine/coarsen in concave/convex regions, respectively. The final mesh is created by a PDE 

approach, effective and comprehensive. An elliptic Poisson solver with carefully devised 

blended source terms enables to attain excellent grid metrics in term of orthogonality, skewness 

and stretching ratios. Furthermore, a detailed study on the selection of an effective Poisson solver 

smoother in the content of a Full Multigrid operator allows generating meshes in 5 seconds for a 
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4 order residual drop, and to machine accuracy if needed. Not only does NSGRID generate better 

grids, but it also allows the RANS solvers to assemble a much better conditioned system. 

Two major improvements are performed to the preliminary framework of CANICE2D-NS 

coupled with NSMB flow solver and ICEM-CFD grid solver. First step, replacing NSMB with 

an efficient 2D RANS solver NSCODE, to significantly improve the multi-steps computation 

time and FMG robustness problem, using NSCODE FMG-J coarsening operator. Second step, 

replacing ICEM-CFD with an efficient in-house mesh solver NSGRID2D, to significantly 

improve the remeshing process as detailed in Chapter 5. Finally the new framework is validated 

on standard NATO cases including 72 individual test runs. The success rate of the calculation is 

91.6%, which is considered as a robustness criteria of the CANICE2D-NS framework. The 6 

failed computations are mainly due to the complex flow behavior caused by glaze ice horn 

growth which is inevitable. The grid solver NSGRID has shown significant robustness with no 

failure for these test runs. Moreover the new framework improved the computation time by over 

10 times compared to the prior framework (ICEM/NSMB). 

A 3D extension of NSGRID is successfully performed, and is coupled to NSMB-ICE, a 3D 

chimera/level-set/Eulerian icing, framework developed via collaboration with University of 

Strasbourg. The work enables 2D and 3D ice accretion and icing effects analysis within a multi-

step procedure. This work is excluded from the thesis, but demonstrates the feasibility of the 

proposed algorithms for 3D problems. 

8.2  Future work 

The following steps are proposed for future research and improvements in mesh generation 

and ice accretion simulations: 

 Full extension of blended grid generation method to 3 dimensional meshes, with 

quantitative analysis. 

 Additional source terms implementation in the blended method. 

 Optimization of the grid factors and parameters in the blended method for grid quality 

and convergence improvements. 

 Extension of the 1D PDE curve based mesh generation to 2D surface mesh generation for 

3D problems. 
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 Full extension of newly developed multi-time steps RANS based ice accretion codes, 

CANICE-NS and NSCODE-ICE to 3D. 

 Investigation of unsteady effects in icing simulations. 

Other recommendations, indirectly addressed in the thesis, are: 

 Further physical studies on the impact of non-uniform roughness, Supercooled Large 

Droplet model. 

 Detailed studies of the various thermodynamics models such as Iterative Messinger, 

Shallow-Water Icing Model on the final ice shapes. 

 A study of more advanced heat transfer coefficient models. 
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APPENDIX A – ADDITIONAL METHODOLOGIES DESCRIPTION 

 

Content: 

1. Roughness effect implementation within turbulence model  

2. Grid Metrics 

1. Roughness effect implementation within turbulence model 

Surface roughness is one of the main parameters influencing the surface skin friction and heat 

transfer, and has a major influence in the ice accretion process. Roughness values are usually 

assumed to be constant on the surface, but in reality, ice shape roughness varies in space and 

time [1-3]  

Rough wall treatment implementation in Spalart-Allmaras and k-ω models are examined here. 

There are two extensions for the Spalart-Allmaras roughness implementation: ONERA and 

Boeing [4]. The assumption is that the roughness size in any direction is smaller than the 

boundary layer thickness. The roughness is computed using sand grain roughness height model 

[5]. The effects of roughness are incorporated in the S-A model by affecting the turbulent eddy 

viscosity in the wall area. One can relate the roughness height to the changes in velocity profile 

that changes the wall skin friction. 

The ONERA extension of the Spalart-Allmaras model is applied by defining non-zero value 

for turbulent viscosity at the wall, achieved by improving the value of transport quantity ߥ෤ at the 

wall. To determine the transport quantity at the wall, the dimensionless form of the Spalart-

Allmaras transport equation and momentum equation with viscosity ߥ and friction velocity ݑఛ 

change to (respectively) [4, 6]: 
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By imposing the boundary conditions ߥ෤ାat the wall and into the logarithmic region, and solving 

the addressed non-dimension transport equation, the ߥ෤ and ሚܵ solutions are obtained. The velocity 

profile included in ሚܵ is used to determine the velocity shift ∆ݑା. Changes in velocity profile is 

thus related directly to the skin friction value on the wall. The wall distance is also shifted to 
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control the imposed wall boundary value via a relation involving the smooth wall distance ݀௠௜௡
ା  

and the imposed transport quantity value ߥ෤௪ା at the wall: 

݀ା ൌ ݀௠௜௡
ା ൅ ఔ෥ೢ

శ

௞
              (3) 

where k is the Von Karman constant. By relating the normalized sand-grain roughness ݄௦ା ൌ
௛ೞ௨ഓ
ఔ

 

to the imposed wall value ߥ෤௪ା using the correlations below and solving the transport equation 

addressed before, the shift in velocity profile is obtained. 

103595 ≤ ݄௦ା            ߥ෤௪ା = 1.1066 (10)-6 (݄௦ା)2 + 1.1949 (10)-2 (݄௦ା) = P                       (4) 

150.4 ≤ ݄௦ା≤ 103595     ߥ෤௪ା = P – 6.4762 (10)-12 (݄௦ା)4 + 1.653 (10)-8 (݄௦ା)3  

- 1.279 (10)-5 (݄௦ା)2 + 9.66 (10)-4 (݄௦ା) + 1.8067  

4.24 ≤ ݄௦ା≤ 150.4          ߥ෤௪ା = P + 1.72 – 2.8 exp (െ ௛ೞ
శ

ଶଷ.ଷ
)  

݄௦ା≤ 24.4                ߥ෤௪ା = 0  

The Boeing extension is performed by defining the non-zero value of transport quantity ߥ෤ at 

the wall. Here, the wall condition (ߥ෤ ൌ 0) is replaced by a new wall condition that gives a non-

zero value of transport quantity ߥ෤ at the wall [4]: 

డఔ෥

డ௡
ൌ ఔ෥

ௗ
               (5) 

where the wall distance is computed by (d = dmin + d0), dmin being the smooth wall grid distance 

and d0 is the imposed shift, which depends to the roughness value (hs): 

݀଴ ൌ exp	ሺെ8.5݇ሻ݄௦ ൎ 0.03݄௦          (6) 

The other changes include modifying the ௩݂ଵ function in the Spalart-Allmaras model, for better 

prediction of smaller roughness, through the new definition of ߯: 

߯ ൌ ఔ෥

ఔ
൅ 0.5 ௛ೞ

ௗ
            (7) 

In the two equations k-ω model, two rough wall models are addressed: Wilcox and Knopp 

methods [6, 7]. In Wilcox method, a boundary condition for specific dissipation rate ω is applied 

to define the suitable value of ω on the wall for the imposed roughness: 

߱ ൌ ௨ഓమ

ఔ
ܵோ              (8) 

ܵோ ൌ ൞
ቀହ଴
௛ೞ
శቁ

ଶ
݄௦ା ൏ 25

ቀଵ଴଴
௛ೞ
శ ቁ ݄௦ା ൒ 25

           (9) 

where ݑఛ is the friction velocity and ݄௦ା is the normalized sand grain roughness. 
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In Knopp method, the wall distance d is shifted by (݀ ൌ ݀௠௜௡ ൅ 0.03݄௦). The turbulent 

kinetic energy parameter at the wall kw is computed by: 

݇௪ ൌ ߮௥ଵ݇௥௢௨௚௛  ,  ݇௥௢௨௚௛ ൌ
௨ഓమ

ఉೖ
భ/మ  ,  ߮௥ଵ ൌ min	ሺ1, ௛ೞ

శ

ଽ଴
ሻ      (10) 

where ߚ is a constant equal to 0.9. The dissipation rate ωw at the wall is computed by: 

߱௪ ൌ ௨ഓ

ఉೖ
భ/మ௞ௗబ

   ,  ݀଴ ൌ ߮௥ଶ0.03݄௦          (11) 

߮௥ଶ ൌ min ቈ1, ቀ
௛ೞ
శ

ଽ଴
ቁ
మ
య
቉ .min ቈ1, ቀ

௛ೞ
శ

ସହ
ቁ
భ
ర
቉ . min ቈ1, ቀ

௛ೞ
శ

଺଴
ቁ
భ
ర
቉       (12) 

The computed ωw is limited compared to the ωw value for smooth wall: 

߱௪ ൌ min	ሺ ௨ഓ

ఉೖ

భ
మ௞ௗబ

, ଺଴ఔ
ఉೢ௬మ

ሻ            (13) 

The Boeing extension rough wall treatment of Spalart-Allmaras is implemented in NSCODE. 

ONERA extension rough wall treatment of Spalart-Allmaras and k-ω model both Wilcox and 

Knopp rough wall models are implemented in NSMB code. 

 

2. Grid Metrics 

Here, a number of grid metrics formulations are presented [8]. 

Orthogonality: positive value and favorable to be close to 1. 

Orthogonality ൌ 1 െ	 หtనሬሬԦ. t఩ሬሬԦห                                 (14) 

where tనሬሬԦ and t఩ሬሬԦ are the tangent unit vectors pointing out the selected point on the direction of two 

adjacent edges. 

Skewness: positive value and favorable to be close to 0. 

Skewness ൌ 1 െ	
∆୐ూ౗ౙ౛	౩౞౥౨౪౛౨	ౚ౟౗ౝ౥౤౗ౢ
∆୐ూ౗ౙ౛	ౢ౥౤ౝ౛౨	ౚ౟౗ౝ౥౤౗ౢ

                                (15) 

Stretch Ratio: positive value and favorable to be close to 1. 

I	Stretch	Ratio ൌ
∆୐ሺ౟మష౟యሻ
∆୐ሺ౟భష౟మሻ

  and J	Stretch	Ratio ൌ
∆୐ሺౠమషౠయሻ
∆୐ሺౠభషౠమሻ

           (16) 
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APPENDIX B – ADDITIONAL NSGRID AND CANICE2D-NS DATA 

 

Content: 

1. Grid generation NSGRID results 

2. User manual of CANICE2D-NS/NSGRID/NSCODE/NSDROP 

 

1. Grid generation NSGRID results 
 
1.1.  Full Multi-Grid application 

Considering the transformed elliptic Poisson equations in the computational domain are as 

follows: 

αxஞஞ െ 2βxஞ஗ ൅ γx஗஗ ൌ െJଶ൫Pxஞ ൅ Qx஗൯         (1) 

αyஞஞ െ 2βyஞ஗ ൅ γy஗஗ ൌ െJଶ൫Pyஞ ൅ Qy஗൯         (2) 

α ൌ x஗ଶ ൅ y஗ଶ   ,     γ ൌ xஞଶ ൅ yஞଶ           (3) 

β ൌ xஞx஗ ൅ yஞy஗   ,    J ൌ xஞy஗ െ yஞx஗          (4) 

The transformed equations are in quasi-linear form. The equations of control functions P, Q are 

based on Sorenson method, as follows: 

Pሺξ, ηሻ ൌ pሺξሻeିୟ஗ ൅ rሺξሻeିୡሺ஗ౣ౗౮ି஗ሻ         (5) 

Qሺξ, ηሻ ൌ qሺξሻeିୠ஗ ൅ sሺξሻeିୢሺ஗ౣ౗౮ି஗ሻ         (6) 

where p, q, r, s are the calculated functions on the boundaries and a, b, c, d are the propagation 

parameters. 

A range of explicit and implicit solution approaches such as Point Jacobi, Point Gauss Seidel, 

Point and Line SOR, Line Implicit and ADI in the context of Full Multigrid method are 

implemented with their stability and convergence rate examined. A number of clean and icing 

problems are studied to validate the elliptic grid generation: Laplace, transformed elliptic 

equation without/with source terms (Sorenson). 

 

Laplace 

Figure 1 shows the Multigrid (MG) and Single-grid (SG) solution convergence curves of the 

Laplace equations for NACA0012 clean airfoil geometry. Note that the symbols SG4, SG3, SG2, 

SG1 and SG0 stand for single grid solutions of the coarse (4), medium (3), fine (2), extra-fine (1) 
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and superfine grid (0), whereas the symbols MG2, MG3, MG4 and MG5 stand for Multigrid 

solutions on the extra-fine grid with 2, 3, 4 and 5 levels, respectively. In addition, the Figure 

contains results obtain with different smoothers: SOR, ADI, and Line implicit schemes. 

 

Transformed elliptic equation without source terms 

Figures 2 and 3 show the Single-grid solution convergence of transformed elliptic grid equations 

without source terms (P,Q=0) for the approaches such as Point Jacobi (PJ), Point Gauss Seidel 

(PGS), Point SOR (PS), Line SOR in I (LSI), Line SOR in J (LSJ), Line SOR in I and J (LSIJ), 

and ADI for NACA0012 clean airfoil. 

 

Transformed elliptic equation with source terms 

Figures 4-6 shows the Multi-grid and Single-grid solution of the elliptic grid equation with 

source terms (Sorenson control function P,Q) forced on the iced boundaries and throughout the 

grid domains, using the approaches: PGS, PS, LSI, LSJ, LSIJ, ADI for NACA0012 run 408 ice 

shape, which shows LSI providing better computation time, almost 45% faster than PS. The 2 

levels V cycle Multi-grid speed up convergence with 10 relaxation steps on coarse grid is shown 

in Figure 6 for the PS and LSI approaches, which results LSI-FMG faster in computation time 

(16 seconds, almost 60% faster than PS) compared to the other analyzed methods (grid density of 

257 by 129, O-mesh).  

 

 

Figure 1: Laplace grid (α, γ=1 and β,P,Q=0) and FMG convergence rate (SOR, ADI, Line 

Implicit), NACA0012 clean (129 by 65). 
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Figure 2: Ice shape elliptic smoothed grid (without control functions, P,Q=0), NACA0012 clean 

(257 by 129). 

 

 

Figure 3: Convergence of grid generation (Single-Grid), (without control functions, P,Q=0), 

NACA0012 clean. 

 

 

Figure 4: Ice shape elliptic smoothed grid with control functions, P,Q, NACA0012 ice run 408 

(O-mesh, 257 by 129). 
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Figure 5: Convergence of grid generation with control functions, P,Q, NACA0012 ice run 408 

(Single-Grid). 

 

 

Figure 6: FMG Convergence of grid generation, with control functions, P,Q, NACA0012 ice run 

408 (V cycle, 2 levels, 10 relaxation steps on coarse mesh).  

 

1.2.  Surface curvature based mesh adaptation 

Experimental 2D Glaze ice 944 airfoil GLC305 

The case study is the experimental ice 944 on GLC305 airfoil. A grid sensitivity analysis is 

studied for the developed elliptic grid generation with curvature based elliptic surface points 

distribution. Using NSGRID, 3 levels of grids have been generated as coarse, 257by129, 

medium, 513by129 and fine, 1025by129 that are shown in Figure 7. Two different surface points 

distributions are applied, multiple points curvature distribution based (Curv.) and single point 

curvature distribution based (Sin.).  
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Figure 7: Elliptic grid with curvature based point distribution for case ice 944 (257-129, top; 

513-129, middle; 1025-129, down) (Sorenson approach, RLS). 
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 The curvature based point distribution (Curv.) is compared by a simple point distribution 

(Sin.). For the curvature based (Curv.), points with positive curvature higher than 0.1 (user input 

value) are chosen to apply the source terms. For the simple distribution (Sin.), the point with 

highest curvature is selected to apply the source terms. The ice surface curvature and the new 1D 

elliptic point distributions (Curv. based and Simple Sin. based, for all 3 grid levels) are shown in 

Figures 8 and 9, respectively. The grid generation convergence is shown in Figures 10. 

 

Figure 8: Ice-944 geometry point’s curvature (selected points in green for Curv. based and in 

blue for simple Sin.), (zoom view on right). 

 

 

Figure 9: Curvature based distributed points spacing along the wall, (zoom view on right). 
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Figure 10: NSGRID solution convergence (LSOR-I, MG V-cycle) (Sorenson approach, RLS). 

 

2. User manual of CANICE2D-NS/NSGRID/NSCODE/NSDROP 

The CANICE2D icing code has been modified to interact with an automated Multi-block 

structured mesh generation code NSGRID, the Reynolds-Averaged Navier-Stokes (RANS) code 

NSCODE, and the Eulerian droplet simulation code NSDROP, developed at Polytechnique 

Montreal. The resulting icing code, CANICE2D-NS, is capable of automated multi-step ice 

accretion simulations. The computation time of the framework is successfully reduced using the 

FMG algorithm in the flow solver as well as the mesh generation procedure. The CANICE2D-

NS multi-time steps process is based on an automated batch procedure. To run the code, one 

needs to have the folder (input) and the file (batch.txt). The folder (input) includes all the 

necessary input files and executable files of the codes (NSGRID2D, NSCODE2D, NSDROP, 

and CANICE2D-NS). The file (batch.txt) has two different modes to use: Lagrangian or Eulerian 

droplet computation. The file (batch.txt) is shown below: 

 

#!/bin/sh 
 
maxlayer=1 
 
mkdir results 
mkdir temp 
 
######### input files ########## 
cd input 
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cp nsgrid2d input_nsgrid2d_main input_nsgrid2d_algebraic input_nsgrid2d_smoothing 
input_nsgrid2d_geometry  -t ../ 
cp nscode2d input_nscode2d_main input_nscode2d_topo  -t ../ 
cp NSDROP input_NSDROP_main  -t ../ 
cp canice2dns input_canice2dns_main input_canice2dns_rmassl  -t ../ 
 
cd ../ 
################################ 
 
for ((i=1; i<=maxlayer; i++)) ; do 
 
mkdir layer_$i 
 
cp nsgrid2d input_nsgrid2d_main input_nsgrid2d_algebraic input_nsgrid2d_smoothing 
input_nsgrid2d_geometry  -t layer_$i 
cp nscode2d input_nscode2d_main input_nscode2d_topo -t layer_$i 
cp NSDROP input_NSDROP_main -t layer_$i 
cp canice2dns input_canice2dns_main input_canice2dns_rmassl -t layer_$i 
 
cd layer_$i 
 
./nsgrid2d input_nsgrid2d_main  
./nscode2d input_nscode2d_main  
#./NSDROP input_NSDROP_main  
./canice2dns  
 
 
cp output_canice2dns_geometry output_canice2dns_rmassl -t ../ 
 
mv ice.tec ice_lay_$i.tec 
cp ice_lay_$i.tec -t ../results 
mv beta.tec beta_lay_$i.tec 
cp beta_lay_$i.tec -t ../results 
mv beta_drop.tec beta_drop_lay_$i.tec 
cp beta_drop_lay_$i.tec -t ../results 
mv conv_grid conv_grid_lay_$i.tec 
cp conv_grid_lay_$i.tec -t ../results 
mv conv_flow conv_flow_lay_$i.tec 
cp conv_flow_lay_$i.tec -t ../results 
mv conv_drop conv_drop_lay_$i.tec 
cp conv_drop_lay_$i.tec -t ../results 
 
cd ../ 
 
mv output_canice2dns_geometry input_nsgrid2d_geometry 
mv output_canice2dns_rmassl input_canice2dns_rmassl 
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done 
 
mv nsgrid2d input_nsgrid2d_main input_nsgrid2d_algebraic input_nsgrid2d_smoothing 
input_nsgrid2d_geometry  -t temp 
mv nscode2d input_nscode2d_main input_nscode2d_topo -t temp 
mv NSDROP input_NSDROP_main -t temp 
mv canice2dns input_canice2dns_main input_canice2dns_rmassl -t temp 
 
date 
 

This batch.txt file is for icing run with 1 layer (maxlayer=1) and Lagrangian droplet 

computation. To change it to multi time steps, only needs to change the variable (maxlayer) to 

the number of layers that is decided for icing computation. Also, it is needed to define the icing 

accretion time for each layer and import it to the CANICE2D-NS input file 

(inpu_canice2dns_main), to the section (TOTAL ACCRETION TIME (sec)). To change it to 

Eulerian droplet mode, only needs to activate the line (./NSDROP input_NSDROP_main ), so 

the NSDROP code starts to run after each NSCODE2D run. Also, in CANICE2D-NS input file 

(inpu_canice2dns_main), it is needed to change the section (DropletTrajectory (0=Lagragian  

1=Eulerian)) to 1. 

In general, the batch.txt creates the folders (results, temp, and layer_1 to maxlayer). The 

folders (layer_1 to maxlayer) include all the data (input and computations) related to each layer 

(1 to maxlayer). Thus, by running the batch.txt, at first, it creates the folder layer_1 and copies 

the necessary initial files into it and then starts running the computation related to layer 1. When 

the computation of the layer 1 is completed, the batch.txt creates the folder layer_2 and this 

process continues until the maximum layer. At the end of the computation of all the layers, the 

output files (ice.tec, beta.tec, beta_drop.tec, conv_grid.tec, conv_flow.tec, conv_drop.tec) of all 

layers are copied in folder (results) and tagged with their layers numbers. The un-necessary files, 

at the end of the computation, are moved to the folder (temp). 

To move from each layer to the next layer, 2 necessary output files need to be renamed and 

used as the input files for the next layer computations (this is done in batch.txt file). These files 

are (output_canice2dns_geometry) and (output_canice2dns_rmassl) which need to be renamed as 

(input_nsgrid2d_geometry) and (input_canice2dns_rmassl), respectively. The file 

(output_canice2dns_geometry) is the CANICE2D-NS generated ice shape coordinates prepared 
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for NSGRID2D code to produce the mesh, thus its name need to be changed to 

(input_nsgrid2d_geometry). The file (output_canice2dns_rmassl) is the water mass stationary on 

the surface at the end of the ice accretion process completed by the CANICE2D-NS. Thus, to 

import the amount of surface stationary water mass of the last layer to the icing computation of 

the next layer, the file needs to be renamed as (input_canice2dns_rmassl) which will be used by 

the CANICE2D-NS. 

 

2.1. Grid generation code (NSGRID2D) 

NSGRID2D input files include (input_nsgrid2d_main, input_nsgrid2d_geometry, 

input_nsgrid2d_algebraic, input_nsgrid2d_smoothin, and input_nsgrid2d_postprocessing). The 

main output files of NSGRID2D are: algebraic grid (xalg_mb), parabolic grid (xp_mb), 

smoothed elliptic grid in plot3d format (xs_mb) and in ascii format (xs_ascii_mb), geometry 

input for CANICE2D-NS (input_canice2dns_geometry), and conv_grid (convergence 

monitoring file). The file (input_nsgrid2d_main) is the main input defining the other input files, 

the initial grid, the parametric domains grid, and the maximum iteration and residual criterion for 

smoothing. The sample file (input_nsgrid2d_main) is as follows: 

 

Airfoil 

gen. algebraic grid(0-no 1-yes)  

             1                 

input_nsgrid2d_algebraic 

input_nsgrid2d_geometry 

smoothing grid(0-no 1-yes)   

         1  

input_nsgrid2d_smoothing    

read xinitial(0-n 1-y)  read st(0-n 1-y) read stp(0-n 1-y)  

         1                1                 1      

xp_mb 

st_mb 

stp_mb 

post-processing grid(0-no 1-yes)  
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         0 

input_nsgrid2d_postprocessing 

xs_temp 

MB_iter      MB_logtoldown   MB_logtolup 

 500      -4           1e3   

 

The file (xp_mb) is the generated parabolic grid which is used as the initial solution. The files 

(st_mb, and stp_mb) are the parametric arclength domain grids generated by algebraic and 

parabolic physical domain grids. The total number of iteration is defined by (MB_iter), and the 

minimum and maximum residual criterion is defined by (MB_logtoldown) and (MB_logtolup), 

respectively. 

 

The sample file (input_nsgrid2d_algebraic) is as follows: 

 

Multi-Block mesh for an Airfoil 

Total ijK:  it1       it2       jt1       jt2 

             1         257       1        129 

Number of blocks 

         1 

/////////////////////////////////////////////////  BLOCK 1  ////////////////////////////////////////////////////////// 

Block     i1        i2        j1        j2 

   1        1      257       1        129 

AlgebGrid(0-lagrange 1-hermit)   if hermit: gslop_j1  gslop_j2  

       0                                       1       1 

AlgebST(0-lagrange 1-hermit)   if hermit: stslop_j1  stslop_j2  

       0                                       1       1 

//////////  Lower boundary j=j1 :           

Option 6,pde_dist: solver[12-PS,16-AI]   iter    logtoldown sweepi  omega(SSOR,ADI) 

deltime(ADI) 

                      12                 50000        -6      0         1.5             4   
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Parabolic grid smoother: (0-no, 1-yes) wall-ds1(<=0_no, alg) aspect-ratio  ttalg_i1_option(0-new 

1-old) 

                                1            0.0000008               1.067             0    

Parabolic grid smoother: cf-0-0.5pi(def=1)  cf-0.5pi-pi(def=1)  cf-pi(def,0)  

                             10                    1             0        

Parabolic grid smoother:  j-start   iter   beta   cf-rls   cf-sps   cf-bks  

                             10       5     -1      1       0         0    

Parabolic grid smoother:  LSI-omega   pe-omega   qe-omega   coeff-a   coeff-b   

                               0.5         0.5          0.5       0.5      0.5    

Algebraic-Parabolic grid: para-extend(1-yes)  j-inter   option   ds1     ds2 

                                 1             95       3    0.001    0.2    

Algebraic-Parabolic grid: alg-papa-modif(1-yes) js-smoo  je-smoo  iter   beta   cf-rls   cf-sps   cf-

bks  

                                  1                50       127     20     -1      1       0         0    

Algebraic-Parabolic grid:  LSI-omega   pe-omega   qe-omega   coeff-a   coeff-b   

                               1         0.5          0.5       0.5      0.5    

Algebraic-Parabolic grid:  cf-0-0.5pi(def=1)  cf-0.5pi-pi(def=1)  cf-pi(def,0)  

                               0                    0            0                      

Read boundary points:   geometry file  

Coordinates:  x   y    z 

PhysicalDomainPointsDitributionCycles  2 

Points ditribution 1 

inumb   npd  mpd 

  1     500  3000  

  nst  nnd  mst  mnd  opt (opt0-5:)ds1  ids2  (opt6:)isrc  isincf(0-no)  ipicf  ialtol  <=icmin  

>=icmax   ntol_1  ntol_n 

   1   500   1  3000   5     0.050   0.000050        10       0.002       4     0.0001  -100000   100000       

0       0 

Points ditribution final 

inumb   npd  mpd 

  1     3000  257  
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  nst  nnd  mst  mnd  opt (opt0-5:)ds1  ids2  (opt6:)isrc  isincf(0-no)  ipicf  ialtol  <=icmin  

>=icmax   ntol_1  ntol_n 

   1   3000   1  257   6     0.0020   0.0050        10       0.0003      4     0.0001  -1000000    1000000       

0       0 

ParametricDomainPointsDitributionCycles  0 

//////////  Upper boundary j=j2 :         

Option 6,pde_dist: solver[12-PS,16-AI]   iter    logtoldown sweepi  omega(SSOR,ADI) 

deltime(ADI) 

                      12                 50000        -6      0         1.5             4        

Read boundary points:   npd  

   219  

coordinates:  x   y    z 

 54.2404 -5.8 

 51.9846 -17.101 

 48.3013 -25 

 43.3022 -32.1394 

 37.1394 -38.3022 

 . 

 . 

 . 

 5 50 

 13.6824 49.2404 

 22.101 46.9846 

 30 43.3013 

 37.1394 38.3022 

 43.3022 32.1394 

 48.3013 25 

 51.9846 17.2 

 54.2404 8.6824 

 55 0 

 54.2404 -5.8 
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PhysicalDomainPointsDitributionCycles  1 

points ditribution final 

inumb   npd  mpd 

  1     219  257  

  nst  nnd  mst  mnd  opt (opt0-5:)ds1  ids2  (opt6:)isrc  isincf(0-no)  ipicf  ialtol  <=icmin  

>=icmax   ntol_1  ntol_n 

   1   219   1  257   5     0.000150   0.00250        10       0.02           2     0.0001  -100000  100000     

0       0 

PparametricDomainPointsDitributionCycles  0 

//////////  Left boundary i=i1 : 

Option 6,pde_dist: solver[12-PS,16-AI]   iter    logtoldown sweepi  omega(SSOR,ADI) 

deltime(ADI) 

                      12                 50000        -6      0         1.5             4              

Read boundary points:   npd  

    2 

coordinates:  x   y    z 

  1.000000000       0.0000000000000000000 

 54.2404 -5.8 

PhysicalDomainoPintsDitributionCycles  1 

points ditribution final 

inumb   npd  mpd 

  1     2  2  

  nst  nnd  mst  mnd  opt (opt0-5:)ds1  ids2  (opt6:)isrc  isincf(0-no)  ipicf  ialtol  <=icmin  

>=icmax   ntol_1  ntol_n 

   1   2   1  129   3      0.000000008    0.05        10       0.02           2     0.0001  -100000  100000       

0       0 

ParametricDomainPointsDitributionCycles  0 

//////////  Right boundary i=i2 : 

Option 6,pde_dist: solver[12-PS,16-AI]   iter    logtoldown sweepi  omega(SSOR,ADI) 

deltime(ADI) 

                      12                 50000        -6      0         1.5             4       
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Read boundary points:   npd  

    2 

coordinates:  x   y    z 

  1.0000000000       0.0000000000000000000 

 54.2404 -5.8 

PhysicalDomainPointsDitributionCycles  1 

points ditribution final 

inumb   npd  mpd 

  1     2  2  

  nst  nnd  mst  mnd  opt (opt0-5:)ds1  ids2  (opt6:)isrc  isincf(0-no)  ipicf  ialtol  <=icmin  

>=icmax   ntol_1  ntol_n 

   1   2   1  129   3     0.000000008    0.05        10       0.02           2     0.0001  -100000  100000       

0       0 

ParametricDomainPointsDitributionCycles  0 

 

The file (input_nsgrid2d_algebraic) defines the parameters to generate both algebraic and 

parabolic grids. The necessary parameters for grid generation for the application of CANICE2D-

NS are presented. The file includes 4 data sections (for single block application) for different 

edges definitions: Lower boundary (j=j1), Upper boundary (j=j2), Left boundary (i=i1), Right 

boundary (i=i2). The parameters it1, it2,jt1, and jt2 are the starting and ending numbers of points 

defined to distribute on the edges in i and j. Parameters i1, i2, j1, j2 are also the number of points 

on the edges which need to be defined as (i1=1, i2=257, j1=1 and j2=129). The parabolic grid 

input parameters are in the sections (parabolic grid smoother, and algebraic-parabolic grid). The 

important parameters are: (j-inter) is the j line intersection of parabolic and algebraic; (js-smoo) 

and (je-smoo) are the starting and the ending j lines to smooth the grid in j, respectively. The 

input file (input_nsgrid2d_algebraic) is set by default to generate both algebraic and parabolic-

algebraic grid.  

The section (PhysicalDomainPointsDitributionCycles) defines the properties of the point 

distribution on the edges. The first distribution is for curvature computations and the second 

distribution is for grid generation. The important parameters are npd and mpd which are the 

number of point before and after the distributions. Parameters nst, nnd, mst, and mnd are the 
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starting and ending numbers of points before and after the distribution. The parameter opt 

defines the option of point distribution: 0 for the same distribution as initial data; 1 for the lower 

side concentration, 2 for the upper side concentration, 3 for both sides concentration, 4 for 

central concentration, 5 for uniform concentration, and 6 for PDE curvature based  distribution. 

The parameters (ds1 and ds2) are used to control the spacing close to the starting and ending 

points for the options (1,2,3,4). To use option 6 (PDE curvature based distribution), the 

important parameters are: isrc to define the source term (isrc=10, by default, is the sin(x) source 

term); isincf is the source terms factor which defines the ratio of points concentration and 

propagation; ipicf value is 2 for the curvature based point distribution (and 4 for simple sin(x) 

distribution to concentrate the points only in leading edge and trailing edge); the parameter 

(<=icmin) defines the minimum curvature value for selecting the geometry points to apply the 

source terms (the geometry points with the higher curvature value are selected to concentrate the 

points around); the parameter (>=icmax) defines the maximum curvature value for selecting the 

geometry points to apply the source terms (the geometry points with the lower curvature value 

are selected to concentrate the points around). The section (Read boundary points:  npd) and 

(coordinates:  x   y    z) define the number of initial points and their coordinates. 

The initial geometry points for the ice surface are defined in file (input_nsgrid2d_geometry). 

The file (input_nsgrid2d_geometry) includes: the name of the airfoil (first line); the airfoil chord 

value (second line); number of points (third line); and the geometry points coordinates. The 

sample file (input_nsgrid2d_geometry) is as follows:  

 

  NLF0414 

  0.9 

    216 

    1.002000     -2.750795E-02 

    1.000000     -2.7513999E-02 

   0.9986255     -2.7411999E-02 

   0.9966345     -2.7280301E-02 

   0.9938821     -2.7125200E-02 

   0.9902904     -2.6961500E-02 

   0.9866976     -2.6824800E-02 
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 . 

 .  

 . 

   0.9690340     -2.2205999E-02 

   0.9761550     -2.3456000E-02 

   0.9823700     -2.4491999E-02 

   0.9876600     -2.5333000E-02 

   0.9912001     -2.5880700E-02 

   0.9939670     -2.6298899E-02 

   0.9961652     -2.6621999E-02 

   0.9983661     -2.6926700E-02 

    1.000000     -2.7122000E-02 

    1.002000     -2.750795E-02 

 

The file (input_nsgrid2d_smoothing) includes all the parameters related to the definition of 

the grid smoother source terms and the multi-grid solver. The sample file 

(input_nsgrid2d_smoothing) is as follows: 

 

 

Multi-Block Mesh for an airfoil 

TOTAL ijK: it1      it2       jt1       jt2 

             1      257       1        129 

Number of Blocks EDGsmooth_ValueForAllBlocks(-1,no) 

         1   -1 

/////////////////////////////////////////////////  BLOCK 1  ////////////////////////////////////////////////////////// 

Block     i1b        i2b     j1b      j2b     BLKsmooth(0-no 1-singleBLKsmooth 2-MultiBLKsmooth)   

  1         1       257       1        129         1 

FreeEdgesNumb  2 

Block     Edge     is       ie      js        je     EDGsmooth(0-no 1-yes)   

  1       1        1        257       1        1       0 

  1       3       257        1       129        129      0 
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ConnectivityEdgesNumb  2    EDGsmooth_ValueForAllEdges(-1,no):  -1 

Block     Edge     is       ie      js        je     EDGsmooth(0-no 1-mod1 2-mod2)  

  1        2      257     257       1        129      0 

  1        4       1        1        1        129      0 

  1        4       1        1       129       1       0 

  1        2      257     257       129       1       0 

//////////  smoothing solver options:   

mg mode(0-lin, 1-nonlin)  mg type[0-V(1,0), 1-V(1,1), 2-w(1,1)]   coarsest_relax   relax_mg_pre   

relax_mg_post   

         1                              1                             25                1              1 

FMG(FMG: 0-j, 1-ij)   Interpol-opt(0-lin1 1-lin2)   P,Q interpolation (0-solve on each level  1-

restrict from level_0  2-only on level_0, 0 on other levels)  

     1                             0                      1   

residual smoothing[0-no, 1-yes]   source_smooth: (0-no 1-yes)   sc_solver[12-PS]  sc_sweepi  

sc_omega(SSOR,ADI) sc_deltime(ADI) 

            0                                         0                12               1        1.5        10000    

solverapp(0-allitc 1-eachitc)  sweepi(-1,0,+1) sweepj(-1,0,+1)  solver[10,20-PJ,11,21-

PGS,12,22-PS,13,23-LSI,14,24-LSJ,15,25-LSIJ,16,26-AI,17,27-AJ,18,28-AIJ]  

          1                           +1             +1                    13      0 

logtoldown  logtolup   boundsmooth(0-no 1-Omeah 2-Cmesh)    

   -5         1e3                       0 

P,Q selection (0-no 1-sigma 2-ro_si 3-RLS 4,5-SPS0 6,7-SPS 8,9-FEQ 10-RLS-SPS 12-

ORTHO-D) 

 10 

Othogonality-Numann(0-no 1-yes)  relax-f 

     0                      1  

(if P,Q selection = 0)  LaplacEq(0-no 1-yes)  alpha   beta   gamma (active if >=0)  

                                0                1      0       1   

(if P,Q selection = 1)  sigma_p(in kesi)    sigma_q(in eta)   

     0.001                0.1 
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(if P,Q selection = 2) options[1-ro,si_const., 2-ro,si_form1(min), 3-ro,si_form1(max), 4-

ro,si_form2]  (opt=1)ro_constant  si_constant   

            1                0          0.05    

(if P,Q selection = 3) source(0-Eta_min 1-Eta_max 2-both)   

                    0                        

 spacing_Eta_min(0-input 1-alggrid 2-fromfile),value   spacing_Eta_max(0-input 1-alggrid 2-

fromfile),value   (if P,Q = 3) 

              1           0.000001                                 0             0.01 

 angle-Eta_min(0-input 1-fromfile),value  angle-Eta_max(0-input 1-fromfile),value   (if P,Q = 3)   

        0             90                             0             90        

 Coeff_a(Eta_min)  Coeff_b(Eta_min)  Coeff_c(Eta_max)   Coeff_d(Eta_max)  (if P,Q = 3) 

       0.2             0.3                0.5               0.5      

 omega_pe(Eta_min)  omega_qe(Eta_min)  omega_re(Eta_max)  omega_se(Eta_max) (under-

relax[0_1])  (if P,Q = 3) 

        0.02            0.002                    0.2            0.02 

(if P,Q selection = 7 SPS-Orthogonal)  method(10-FDM, 11-FDM2, 20-FVM, 21-FVM2)   

solver(0-SOR 1-LSOR-I 2-LSOR-J 3-LSOR-IJ)  

                           11                                     0    

 iteration    SweepI   SweepJ        omega     logtol 

   2000        1        1          1.5          -8        

(if P,Q selection = 8,9 FEQ)  WA(Area)   WL(length)   WO(orthogonality)  (with 

WA+WL+WO=1, WA,W,WO>=0)  

      0.0          0.8            0.2 

(if P,Q selection = 10 RLS_SPS)  cf_rls: P,Q  cf_sps: P,Q (if sps: 0-s,c 1-s,c,o) 

             1  1       0.5  0.5         0           

(if P,Q selection = 10 RLS_SPS)  cf_sps_orth: P,Q  a_sps_orth,b_sps_orth  i_1,coef_sin_1  

i_n,coef_sin_n  ji_1_n  j_n,coef_sin_jn  

                                           0.001  0.001    0  0           0  0    0  0            0              0  0 

(if P,Q selection = 12 ORTHO-D)  dlt-ortho    

        0.5       
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closewall grid gen:  cwg_active(0-no 1-mode1 2-mode2 3-mode3) mode1: cwg_subnum   

cwg_ratio     cwg_wallsp_tol  

                                       0                                       4          2.5          0.0000000001 

closewall grid gen(mode 2): hmtimes  linebreaksnumerby    ratio     

                                       9              2        0.5  

closewall grid gen(mode 3): pointnumber   option      j1minsp      j2minsp     

                                       129          3        0.000001       0.1   

itc 1 

level iter  mglevel  solver(if solvapp=1) sweepi  sweepj omega(SSOR,ADI) deltime(ADI) 

  0    1         2        26             1     1       1        10000 

 

The parameters it1, it2,jt1, and jt2 are the starting and ending total numbers of points defined 

to distribute on the edges in i and j. Parameters i1b, i2b, j1b, j2b are the number of points (for 

each block) on the edges which need to be defined as (i1b=1, i2b=257, j1b=1, j2b=129). The 

section (FreeEdgesNumb) defines the edges for the application of the smoother RLS source 

terms. The section (ConnectivityEdgesNumb) defines the connectivity between the domain 

edges. The file is set to use the blended approach source terms (the parameter (P,Q selection) is 

equal to 10) and to use 2 levels of multi-grid. The blended approach uses source terms RLS, SPS, 

and ortho. The input files for RLS source terms are defined in section (if P,Q selection = 3). The 

main important parameters are: Coeff_a(Eta_min) and Coeff_b(Eta_min) that define the 

propagation of the RLS source term into the domain (by default, they are set to 0.2 and 0.3, 

respectively); omega_pe(Eta_min) and omega_qe(Eta_min) are the under-relaxation factors for 

the source terms (by default, they are set to 0.02 and 0.002, respectively). 

The important parameters of the blended approach are in the section (if P,Q selection = 10). 

They include: the weight factors (cf_rls: P,Q) for RLS source term (by default, they are set to 1, 

1); the weight factors (cf_sps: P,Q) for SPS source term (by default, they are set to 0.5, 0.5); the 

weight factors (cf_orth: P,Q) for parabolic source term (by default, they are set to 0.001, 0.001). 

At the end, the parameter (solver(if solvapp=1)) defines the type of solver to use (value 26 

defines ADI in I). The parameters (omega) and (deltime(ADI)) are the relaxation and delta-time 

factors in (Point and Line SOR) and (Point-Jacobi and ADI), respectively. The options for the 
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solver selections are: 20-PJ; 11-PGS; 12-PS; 13-LSI; 14-LSJ; 15-LSIJ; 26-AI; 27-AJ; 28-AIJ. 

The preferable solvers are LSI (13) with relaxation of 1 and ADI-I (26) with delta-time of 1010. 

 

2.2. Flow solver code (NSCODE2D) 

The main input file for NSCODE2D run is (input_nscode2d_main) which reads the other 

input files: the grid topology file (input_nscode2d_topo) and the grid file (xs_mb). The output 

files of NSCODE2D are: level_0 (flow solution), level (flow velocity and density solution for 

CANICE2D-NS), cp (pressure coefficient, skin friction solution on the surface and density close 

to the wall for CANICE2D-NS), conv_flow (monitoring file), and the file 

(input_nscode2d_main.air) for NSDROP code. The sample of the file (input_nscode2d_main)is 

as follows: 

 

Topology file: input_nscode2d_topo 

Mesh file: xs_mb 

mach   alpha  cl  dcl    reynolds     

0.2876   0.0   no  0.001  6.95e6 

Alpha ramping (1-yes/0-no initial_alpha MGcycles) 

0      0.   100.  

flow(0 steady 1 unsteady)    dt     tmax 

0                            .2e0   1000. 

xref   yref cmac 

0.125   0.0  0.9 

dissip vis2    vis4 (1-first order dissipation  2-JST dissipation  3-MATD) 

2      1/2     1/32 

V_n   V_l   V_nc  V_lc  switching coefficients (for MATD only). c indices indicate coefficients 

for coarse meshes. 

0.3   0.3   0.4   0.4 

Runge-Kutta scheme (1-Explicit  2-Point-Jacobi) 

1 

a 

1 
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turbulent method (0-no 1-baldwin_lomax 2-spalart_allmaras 3-k_omega) Transition (0-no 1-yes) 

2                      0 

a b 

1 1 

viscosity ratio    FSTI 

100.                 .5 

roughness method (0-no 1-boeing 2-ONERA)  hs 

1                                         0.0001 

residual smoothing (0-no 1-yes) 

1 

vortex correction (0-no 1-yes) 

1 

read restart (no or filename) 

no 

write restart (1-yes or 0-no) 

0 

coarsening (1 - i&j coarsening   0 - j coarsening) 

0 

itc 

1 

level  iter    mglevel rk  cfl  logtol  a  b c  

0      600      4     5   6.5    -4       2  1 

seg_coup  Freeze_mode   Freeze_numb Trans_relax F_corel 

0         3             500            0.1          0 

    

The important parameters are: mach, alpha (angle of attack), Reynolds number, cmac (chord 

value), dissip (choice of dissipation, preferable JST), vis2 (second order dissipation), vis4 (forth 

order dissipation), turbulent method (preferable spalart_allmaras), roughness method (preferable 

Boing), hs (roughness value), J coarsening (for multi-grid application, preferable 0 (coarsening 

in j only) for icing problem), iter (number of iterations), mglevel (number of multi-grid levels), 

cfl (preferable 7.5), and logtol (minimum residual criterion).  
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2.3.  Eulerian droplet solver code (NSDROP) 

The main input file for NSDROP is (input_NSDROP_main) which reads the files: the grid 

file in ascii format (xs_ascii_mb), and the flow solution file (input_nscode2d_main.air) that 

made by NSCODE2D. The main output files of NSDROP are: the droplet beta and water 

solution for CANICE2D-NS (beta_water_drop), the droplet convergence monitor (conv_drop). 

The sample of the file (input_NSDROP_main) is as follows: 

 

AIRFOIL  

meshtopology 0                   [0-O_mesh_1-C_mesh] 

 257x 129  itl 1 itu 257            [imax_x_jmax_itl_itu] 

xs_ascii_mb 

airflow filename 

input_nscode2d_main.air 

mach alpha reynolds  altitude  tinf 

0.2876   0.0   6.95e6   10000.0    257.59 

xref yref cmac   

0.25   0.   0.9 

MVD    LWC  (droplet parameters) 

20e-6  0.33 

dissip vis2 

0       1.0 

residual smoothing (0-no 1-yes) 

0 

runge kutta update scheme (0-explicit 1-point-jacobi) 

1 

Add source term (0-no 1-yes) 

1 

Limiter (Vl   Vn    Vs  psi) 

        0.1 1.  0.1  1. 

itc 
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1 

level iter mglevel rk   cfl    LOGTOL 

    0  500     1     5    0.8     -5 

 

The main parameters are: mach, alpha (angle of attack), Reynolds number, altitude, tinf 

(temperature), cmac (chord value), MVD (Mean Equivolumetric Diameter), LWC (Liquid Water 

Content), Limiter (set as defaults), iter (number of iterations), cfl (set as default), LOGTOL 

(minimum residual criteria).  

 

2.4.  RANS based icing code (CANICE2D-NS) 

The input files of CANICE2D-NS are: (input_canice2dns_main) that includes the icing 

parameters, (input_canice2dns_rmassl) that includes the stationary water mass on the surface 

from the icing last layer, (input_canice2dns_geometry) that is generated by NSGRID2D and 

defines the geometry data for CANICE2D-NS, (level) that is generated by NSCODE2D and 

defines the flow velocity and density, (cp) that is generated by NSCODE2D and defines the flow 

properties on the surface, (beta_water_drop) that is generated by NSDROP and defines the 

Eulerian beta and water solution. The main output files of CANICE2D-NS are: (beta.tec) is the 

Lagrangian beta solution, (ice.tec) is the computed ice shape solution, (output) is the main 

computed parameters data, (I-SXC-XC-CF-CP-UEIM-ST-HC-IMCFD and I-SXC-XC-RKS-

RHOOAA-CPAIR-IMCFD) are the heat transfer computation parameters data. The sample of 

the main input file (input_canice2dns_main) is as follows: 

 

************* FLIGHT CONDITIONS ************* 

_____________________________________________ 

DropletTrajectory (0=Lagragien  1=Eulerien) 

     1 

MODE OF CANICE2D-NS (1=CFDFLOW OR 2=CFDFLOWTHERMO) 

     2        

CFCOEFF  RHOmodif  CF-UEsmooth(0=No, 1=Yes)  niter    I+    I- 

   1       0     1                    10      5    5 

ANGLE OF ATTACK(deg.) OR Cl (ILIFT = 0 OR 1)  
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     0   0.0 

CHORD (0=m , 1=inch) 

     0   0.9 

FREESTREAM VELOCITY (0=m/s , 1=ft/s , 2=Knots(KEAS) ) 

     0      92.54 

ALTITUDE ISA (0=m, 1=ft) 

     0      0.0 

USE OF AMBIENT TEMPERATURE(0) OR TOTAL TEMPERATURE(1) 

     0 

AMBIENT TEMPERATURE (0=Celsius, 1=Fahrenheit) 

     0    -15.56 

LIQUID WATER CONTENT (g/m**3) 

     0.33 

MEAN EQUIVOLUMETRIC DIAMETER (m) 

     20.0E-6 

ROUGHNESS HEIGHT (m) GIVEN BY USER OR CALCULATED (IKS = 0 OR 1) 

     0.0001       0 

TOTAL ACCRETION TIME (sec) 

     1224 

NUMBER OF ICE LAYERS 

     1 

________________________________________ 

************* TRAJECTORIES ************* 

________________________________________ 

Y INCREMENT FOR TRAJECTORIES AND ACCURACY REQUIRED(Runge-Kutta 5) 

     0.0005      1.0D-04 

Droplet Release point (x times of chord) 

     5 

________________________________________ 

*************** OPTIONS **************** 

________________________________________ 
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TRANSITION POINT 1st BODY[0=AUTO, 1=MANUAL, INTRADOS (S/C) , EXTRADOS 

(S/C), 2=IMPINGEMENT LIMITS] 

     0      0.06       0.06  

USE SMOOTHING FOR ICE SHAPE CALCULATION (YES=1,NO=0) 

     0 

USE OF THERMODYNAMIC ANALYSIS (YES=1,NO=0) 

     1 

OUTPUT FILES ( .OUT=0, .TEC=1) 

     1     

PRINT TRAJECTORIES (YES=1,NO=0) 

     1 

PRINT HEAT AND MASS TERMS (YES=1,NO=0) 

     1 

USE OF FINITE DIFFERENCE CALCULATION FOR THE FIRST BODY (YES=1,NO=0) 

     0 

USE OF HIGHLIGHT FOR CURVILINEAR DISTANCE IN BETA (YES=1, NO=0) 

     0 

USE OF METER OR INCH FOR COORDINATES IN PANEL.OUT (METER = 0, INCH = 1) 

     0 

________________________________________ 

*************** ANTI ICING ************* 

________________________________________ 

USE OF ANTI-ICING PROCEDURE(YES=T,NO=F) 

F 

CONVERGENCE CRITERIA FOR RESIDUE 

1.D-03 

MAXIMUM NUMBER OF ITERATION FOR ANTI-ICING PROCEDURE 

250 

RELAXATION FACTOR FOR SURFACE TEMPERATURE AND HEATFLUX 

5.D-01   5.D-02 

STARTING POINT OF THE ANTI-ICING DEVICE (NODE NUMBER) 
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150 

END POINT OF THE ANTI-ICING DEVICE ON THE INTRADOS (PANEL) 

100 

END POINT OF THE ANTI-ICING DEVICE ON THE EXTRADOS (PANEL) 

200 

NAME OF THE FILE FOR THE CONVECTION COEFFICIENT ON THE ANTI-ICING SIDE 

q53.dat 

WALL CONDUCTIVITY (W/(m K)) 

1.00 

WALL THICKNESS(m) 

0.2D-02 

USE OF INITIAL TEMPERATURE FILE (YES=1, NO=0,NAME) 

0  dataanti.in 

   

The main parameters are: (DropletTrajectory) that needs to set to 0 for the case of Lagragian 

droplet computation and 1 for the case of Eulerian droplet calculation, (CF-UEsmooth) which 

defines the choice of skin friction smoothing (1 for activation), (niter) is the number of iteration 

for smoothing, (I+ and I-) are the number of selected panels before and after the stagnation 

points for smoothing the skin friction, and the other defined parameters as (ANGLE OF 

ATTACK), (CHORD), (FREESTREAM VELOCITY), (AMBIENT TEMPERATURE), 

(LIQUID WATER CONTENT), (MEAN EQUIVOLUMETRIC DIAMETER), (ROUGHNESS 

HEIGHT), (TOTAL ACCRETION TIME), (Y INCREMENT FOR TRAJECTORIES). 
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