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RÉSUMÉ 

La conception mécatronique est un processus de design pluridisciplinaire, il repose sur 

l'intégration synergique des domaines d’ingénierie mécanique, électrique, contrôle et logiciel 

pour concevoir des produits qui surpassent les autres produits en termes d'efficacité, de précision, 

de coût et de fiabilité. Toutefois, cela a un coût, la conception de systèmes multidisciplinaire est 

une tâche ardue qui exige beaucoup de coordination et de coopération entre les ingénieurs 

concepteurs. Beaucoup de ces difficultés ont été reportées dans les domaines académique et 

industriel. Il en ressort que la communication technique entre les concepteurs appartenant à 

diverses disciplines d’ingénierie se fait très difficilement et ce en raison de l'absence d'un langage 

commun pour représenter les différents concepts. Ceci entraîne des difficultés majeures à 

transférer les modèles et les informations pertinentes entre les domaines ce qui entrave la 

possibilité d’appliquer un processus de développement intégré (concurrent). Pourtant, d’une part, 

un processus de conception intégré et dynamique doit être suivi pour réduire le temps de 

conception du projet et ainsi réduire les couts et supporter l'innovation. D’autre part, la 

conception multidisciplinaire se traduit par l’introduction d’un grand nombre de dépendances 

durant la conception, rendant ainsi les activités de conception difficile à synchroniser entravant le 

processus intégré. 

En raison de l'absence d'outil de support informatique pour le design conceptuel, et l'importance 

de considérer les dépendances le plus tôt possible dans le processus de conception, un cadre de 

raisonnement fonctionnel en conjonction avec un système de modélisation des dépendances (liées 

au produit) ont été développés dans ce mémoire de maîtrise. 

Le cadre de raisonnement fonctionnel a été réalisé par la personnalisation du langage SysML 

(Systems Modeling Language), et par le développement d’un module d’extension (plug-in) dans 

l'outil de modélisation MagicDraw (No Magic, Inc.). Le plug-in intègre un système expert à base 

de règles (CLIPS : C Language Integrated Production System - NASA) qui permet d’encapsuler 

les connaissances d'ingénierie sous la forme de règles pour analyser et effectuer des tâches sur 

des diagrammes fonctionnels.  

Une nouvelle approche d'acquisition et une représentation schématique de dépendances ont été 

proposées. La notion de "méta-dépendances» a été introduite pour modéliser les dépendances qui 

sont partagées par un grand nombre d'éléments dans un même système. Cela permet aux 
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concepteurs de capter efficacement et abstraitement les dépendances tôt dans le processus de 

conception et ainsi réduire le nombre de relations à construire manuellement entre les éléments 

dans ce système.  

Pour prouver l'efficacité de la méthode de modélisation proposée, les effets indésirables, un type 

de dépendances qui peut être utilisé avec le schéma de modélisation proposé, ont été utilisés et 

intégrés dans le cadre de raisonnement fonctionnel. Ce dernier a été programmé pour générer 

automatiquement une matrice de conception de la structure pour chaque type de dépendance et 

les présenter aux concepteurs. 

Deux études de cas ont été réalisées où des produits mécatroniques ont été modélisés en utilisant 

le cadre de raisonnement fonctionnel tout en prenant les dépendances d’effets indésirables en 

compte. Tout d'abord, un dispositif simple qui régule la température de l'eau a été utilisé pour 

illustrer le principe. Ensuite, le modèle conceptuel d'un drone quadrotor a été conçu. La 

modularisation fonctionnelle résultante et la disposition géométrique approximative du quadrotor 

ont été présentées, ainsi qu’un ensemble de problèmes de conception qui ont été évités. 

Le cadre de conception de raisonnement fonctionnel en conjonction avec le schéma de 

modélisation méta-dépendance proposé et développé dans cette thèse de maîtrise ont prouvé 

d’être un outil de modélisation dynamique et flexible qui permet d’apporter des changements au 

design durant la conception avec peu d'efforts de la part des concepteurs. Le marquage des 

fonctions avec les dépendances d’effets indésirables c’est avéré être une méthode efficace et 

effective pour acquérir et gérer l’information sur ce type de dépendances.  
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ABSTRACT 

Mechatronics is a multidisciplinary design process that relies on the synergic integration of 

mechanical, electrical, control, and software engineering to deliver products that outperform their 

competitors in terms of efficiency, precision, cost and reliability. However, this comes at a cost, 

designing multi-disciplinary systems is a challenging task that requires a lot of coordination and 

cooperation between designers. Several challenges are reported by both academic and industry-

related literature. One of the most important is the tedious communication between engineering 

designers from various disciplines due to a lack of a common language to represent concepts. 

This leads to difficulties in transferring models and pertinent information between domains. To 

succeed in nowadays competitive markets, a concurrent and dynamic design process should be 

followed to reduce the project lead-time and spark innovation. However, such a process results in 

many dependencies as a consequence of multi-disciplinary design and it is often difficult to 

streamline the design activities. 

Due to the lack of existing computational support tools for conceptual design of mechatronics 

and the importance of taking dependencies (product related) into account as early as possible in 

the design process, a functional reasoning framework as well as a dependency modeling scheme 

were developed in this master thesis.  

The functional reasoning framework was realised by customizing the SysML (Systems Modeling 

Language) language and developing a plug-in in the modeling tool MagicDraw (No Magic, Inc.). 

The plug-in integrates the rule-based expert system CLIPS (C Language Integrated Production 

System - NASA) that allows encapsulating engineering knowledge in the form of rules to analyze 

and perform tasks on functional diagrams.  

A new acquisition method and representation scheme of dependencies was proposed in this 

master thesis. The concept of “meta-dependency” was introduced to model dependencies shared 

by a large number of elements in a same mechatronic system or sub-system. It allows engineering 

designers to efficiently and abstractly capture dependencies early in the deign process and 

reduces the number of relationships to be built manually between dependent elements in the 

system. To prove the efficacy of the proposed modeling method, adverse effects, a type of 

dependency that suits the proposed modeling scheme, were used and integrated into the 
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functional reasoning framework, which was programmed to automatically generate a Design 

Structure Matrix for each type of dependency and present them to the engineering designers. 

Two case studies were carried-out where mechatronic products were modeled using the 

functional reasoning framework while taking adverse-effect dependencies into account. First, a 

simple device that regulates the temperature of water was used to illustrate the principle. Then, 

the conceptual model of a quadrotor drone was designed. The resulting functional modularization 

and rough geometric layout of the quadrotor were presented, as well as a set of design problems 

that were avoided. 

The functional reasoning design framework in conjunction with the meta-dependency modeling 

scheme proposed and developed in this master thesis proved to be a dynamic modeling tool that 

is flexible and allows changes to be made in the design with little effort from the engineering 

designer. Tagging functions with adverse effects proved to be an efficient and effective method 

of acquiring information on this type of dependencies and managing them. It is an intuitive way 

of handling and capturing abstract dependencies early in the design process without shifting the 

designer’s focus away from solution finding.  
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CHAPTER 1 INTRODUCTION AND LITERATURE REVIEW 

1.1 Introduction to mechatronics 

Mechatronics is a multidisciplinary design process that covers a very wide spectrum of products 

and industries ranging from fully automated manufacturing lines, biomedical devices, agricultural 

equipment, aerospace, automotive, military defense systems, to various other consumer products. 

Mechatronics relies on the synergic integration of mechanical, electrical, control and software 

engineering to deliver simple products that outperform other products in terms of efficiency, 

precision, cost and reliability. It not only improves the design of products, it also allows to create 

new functions that were not possible before, such as active suspension and electronic stability in 

the automotive industry and fly-by-wire in aeronautics (Jürgen Gausemeier & Moehringer, 2003).  

 

Figure 1.1 Mechatronics Euler diagram (Alciatore, Histand, & Alciatore, 2007) 

 

Figure 1.2. Illustrates general idea of how the design process of a mechatronic product is usually 

carried out. The nomenclature and subsections can vary depending on the design methodology 

and the industry in question. The process is divided in two main categories in terms of conceptual 
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and preliminary design followed by manufacturing and testing. In this master thesis we do not 

consider the market aspect of the mechatronic products. 

 

 

Figure 1.2   Main stages of product design process 

 

Conceptual
and

preliminary design

• Customer needs gathering

• Feasibility study 

• Generation of multiple concepts 

• Requirements for potential solutions are derived and allocated to 
design teams

• Functional analysis and system decomposition is made

• Concept evaluation and trade off studies are carried out to pick the 
best design

• Development specifications are produced before passing to 
detailed design

Detailed design
and

development

• Detailed design of system architecture 

• Specification of interfaces between

• System and environment 

• Subsystem and modules

• Detailed design and synthesis of parameters

• Integration of subsystems 

• Development of prototypes 

• Simulation or prototype testing

• Detailed design review

Manufacturing
and

testing

• Manufacturing and assembly according to requirements

• Operational testing and system verification

• Packaging and distribution

• Product design assessment 
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Creating development solutions for the design of mechatronic products is not an easy task. In 

order to contribute to this field of research, it is important to identify and understand the 

challenges faced in both academia and in the industry throughout the different stages of the 

design process (Mohebbi, Achiche, Baron, & Birglen, 2014). 

 

1.2 Summary of mechatronic design challenges 

The multi-disciplinary nature of mechatronics makes the design process a complex activity where 

designers from various backgrounds and work proficiencies have to cooperate closely to deliver a 

functional and optimal product. Unfortunately, designers rarely have sufficient knowledge 

outside their domain of expertise (Tomiyama, D’Amelio, Urbanic, & ElMaraghy, 2007) and are 

usually not well trained to integrate their work with other disciplines. During creative meetings 

they have difficulty sharing models and information, and often hesitate to communicate with one 

another (Salminen & Verho, 1989) due to a lack of a common language among disciplines to 

represent concepts (Albers et al., 2011). When looking at the system from a domain specific point 

of view they interpret realities differently, make various assumptions about the product, and end 

up forming their own mental model of the system (Danilovic & Browning, 2007). With this 

mindset, it is difficult to understand the overall design, its goals and purposes, and it makes the 

design process inefficient. Driven by professional loyalty, designers try to come up with solutions 

or optimize the subsystems they are working on in ways they think are beneficial to the overall 

system. However, a good mechatronic design is not always a combination of optimal subsystems 

but a harmonious interaction of its subsystems. For example, a mechanical engineer might 

optimize the drive train of a machine to minimize backlash, when this problem can be solved by a 

control engineer using programmatic compensation. While both alternatives lead to the same 

result, the mechanical solution increases design and manufacturing costs. 

To succeed in an ever evolving market, a fast paced design process with a high degree of 

innovation is required. During product development designers have to cope with modified 

customer requirements, changes in regulations, advances in technology, etc. all while trying to 

reduce the project lead time. Some of the major challenges faced during a design process of this 

kind are synchronizing the design activities (Jurgen Gausemeier, Frank, Donoth, & Kahl, 2009) 
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and managing the dependencies that arise as a consequence of the interactions between the 

different disciplines (J. M. Torry-Smith, Mortensen, & Achiche, 2014). Designers also face 

difficulty in evaluating design concepts and assessing the consequences of selecting between 

alternatives (Mohebbi et al., 2014; J. M. r. Torry-Smith et al., 2011). 

 

1.2.1 Mechatronic design methods 

A lot of research effort has been put recently in developing a reliable design methodology for 

mechatronic systems, however, these endeavors have not completely reached their goal yet 

(Blessing & Chakrabarti, 2009). A Traditional design method, or a sequential method, exhibits a 

successive flow of activities where design tasks are separated in a manner that some parts use 

information resulted by the design of previous parts (e.g. control engineers use physical 

parameters provided by mechanical engineers to design a stabilization system) (Mohebbi et al., 

2014). In a concurrent design method, all phases of a product’s lifecycle are taken into 

consideration during conceptual design and products are usually divided into single domain 

subsystems that are designed simultaneously. To ensure consistency during assembly, special 

attention is needed when designing the interfaces among the subsystems. Preferably, it is 

important to focus on the interaction between the different engineering disciplines rather than 

only on the subsystem interfaces (Wikander, Törngren, & Hanson, 2001). Sequential design does 

not meet the requirements of today’s fast paced multidisciplinary product development. It lacks 

the flexibility to deal with dynamic markets and is unsuitable for complex system integration, 

which leads to increases in design cost and development time (Wang, Shen, Xie, Neelamkavil, & 

Pardasani, 2002). Concurrent design is a means to reduce the project lead time and benefit from 

the multidisciplinary design synergy (J. M. Torry-Smith et al., 2014). It allows designers, early in 

the design process, to detect and deal with issues related to later stages of the design  (Rzevski, 

2003) which can also be used to manage the interactions between designers and their designs 

(Mohebbi et al., 2014). Even though a concurrent design approach has desirable advantages, it 

has been reported in the industry that traditional and sequential design methods are still being 

used (Behbahani & De Silva, 2007) because there is still no formal and systematic approach that 

promotes it. And that is due to the complexity of multidisciplinary systems, the difficulty in 
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synchronizing the development activities, and the lack of methods and tools to manage 

dependencies that arise between subsystems and disciplines during design. 

 

1.2.2 Tools, Support, and Integrated solutions for mechatronic design 

To assist engineering designers during the development activity of mechatronics many solutions 

have been proposed, and many have been implemented and are used in the industry. These 

solutions range from design guidelines and frameworks to paper based tools and software (J. M. 

Torry-Smith, Mortensen, Ploug, & Achiche, 2015). Advancements in computer and software 

technologies to date have extremely facilitated engineering design. Providing computational 

support early in the design process has a lot of benefits view that most "added value" to a product 

is contributed during this phase (Starling & Shea, 2005). Contradictorily, most of the available 

tools, such as CAD drawing tools, thermal simulation tools, computational fluid dynamics tools, 

or control and instrumentation tools, only support later stages of design. When it comes to 

conceptual design, designers use a variety of tools for organization activities such as managing 

requirements, but there is still a lack of tools that support the design synthesis activity (Wölkl & 

Shea, 2009). Translating customer requirements into functional requirements and developing 

product architectures are important but difficult parts of conceptual design and there is ongoing 

research in this field to provide computational support (Albers et al., 2011; Helms & Shea, 2012; 

Komoto & Tomiyama, 2012). 

As previously mentioned, the design of mechatronics greatly benefits from concurrent and 

integrated design, where all phases of the design are considered starting from the beginning, and 

all the domains involved cooperate simultaneously to the design activity. The same applies to the 

software tools used to support design. Interoperable programs can exchange and share models 

and coupled or linked tools communicate at runtime. A lot of frameworks have been developed to 

automate model exchange between various tools. For example, SysML, a model based system 

engineering language, was used to represent a common design model of a system (Shah, 

Kerzhner, Schaefer, & Paredis, 2010). SysML is a powerful tool that allows designers to capture 

requirements and to model the structure and behavior of a system. As shown in Figure 1.3, to 

address issues associated with multi-view modeling, the common SysML model was used to map 
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models between domain specific tools and to represent the dependencies between them, thus 

supporting designers throughout the design process.  

 

Figure 1.3 SysML as a common modeling language and mapping between different domains 

(Shah et al., 2010) 

 

Integrated programs on the other hand allow the work in different domains and at various design 

phases within the same tool (Mohebbi et al., 2014). For example, a lot of mechanical CAD tools 

incorporate tools from other domains such as electronics and control modeling into their 

software. While design frameworks and integrated tools are desirable, even with the considerable 

research being conducted there are sill a number of challenges to be addressed before tools will 

allow efficient integration and use of multidisciplinary tools and data. Some of the  major 

challenges are developing a single language that can effectively capture all the needed 

information in multi-disciplinary design, and ensuring consistency between the models of the 

various domain specific tools (Shah et al., 2010). 
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1.3 Functional modeling 

Designers map ideas they conceive to a semantic domain they understand. They represent 

concepts by drawing sketches, graphs, and diagrams to facilitate sharing and explanation of 

thoughts between team members. Functional modeling allows modeling at an abstract level and 

can be used by designers of various expertise as a common language to communicate ideas 

during conceptual design. By breaking down the overall system into small easy to solve sub-

functions, they can easily concretize requirement specifications into product concepts. (Eisenbart, 

Blessing, & Gericke, 2012). 

The definition of function in the literature varies a lot depending on the field of study (Far & 

Elamy, 2005). When it comes to engineering design there are multiple definitions that can be put 

into two categories. Some definitions emphasize that for a function to be fulfilled a 

transformation has to take place, whereas others state that a goal or a requirement has to be 

achieved (Crilly, 2010), namely  transformation functions and purpose functions. 

When modeling a product, different designers tend to generate distinct functional models. To 

help make the design task more consistent, and get repeatable and meaningful models from such 

a representation, a formal function representation is needed. A lot of efforts, such as NIST 

(Szykman, Racz, & Sriram, 1999) and TIPS (Altshuller, 1984),  have been made to provide a 

functional vocabulary to model engineering systems. The functional basis for design reconciles 

and integrates these two efforts into a more evolved modeling language (Hirtz, Stone, McAdams, 

Szykman, & Wood, 2002). It consists of a standardized set of functions and flows where 

transformation functions are characterized by input/output relations in the form of verb-noun 

pairs (function-flow pairs). Functions can be connected by flows of material, energy, or signal to 

form a functional diagram that abstractly describes the product. Using a standardized set of 

functions and flows not only reduces ambiguity and ensures consistency; it forms a formal 

language that can be analyzed by algorithms and rules, thus it provides a strong foundation for 

computational support.  
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Figure 1.4 Functional Modeling (Stone, Wood, & Crawford, 2000) 

 

Another research effort, the function-behavior-state (FBS) (Umeda, Tomiyama, & Yoshikawa, 

1995), a modeling scheme of function for conceptual design, states that transformation functions 

do not provide enough flexibility for  designers to model without reference to behavior and 

structure. Purpose functions are used instead, and are defined as human intentions. These 

functions are then associated with behaviors which are a more objective representation of the 

design based on physical principles. 

 

 

Figure 1.5 Function behavior state (FBS) (Umeda et al., 1995) 
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Functional modeling also acts indirectly as a design scheme that guides design activities such as 

decomposing problems, generating concepts, and creating product architectures (Hirtz et al., 

2002). To allow modular design to be carried on earlier in the product development, heuristics 

were developed to search for and identify chains of functions in a functional diagram (Stone et 

al., 2000). A chain of functions is a group of functions that are aggregated based on the type of 

transformations that occur to the flows that go through them. Chains, also called modules, can 

either be replaced by existing components that fulfill their task or labeled as parts of the product 

that need to be designed. This helps dividing the design activity and assigning tasks to teams 

starting from conceptual design.   

Functional modeling acts as a bridge between human intentions and the physical structure and 

behavior of a product (Umeda et al., 1995).  When used in conjunctions with artificial 

intelligence techniques, smart modeling tools can be created to assist designers in product 

development related activities. The research field that relates these two fields is called functional 

reasoning (Chandrasekaran, 1994). There are three aspects to a functional reasoning framework, 

an ontology, a representation scheme, and a reasoning method (Far & Elamy, 2005). Ontology is 

defined as “a formal, explicit specification of shared conceptualization.” (Studer, Benjamins, & 

Fensel, 1998). For example, the functional basis for design (Hirtz et al., 2002), previously 

presented, is an ontology that describes the function modeling domain and the entities in it. The 

representation scheme models the entities of the ontology and the relations between them, such as 

their hierarchical decomposition. The reasoning method infers and explains how the entities 

function. A functional reasoning system can be used for planning, conceptualization, or 

explanation purposes, by applying various artificial intelligence techniques such as heuristic 

search, exploration and exploitation, pattern matching, and clustering (Erden et al., 2008). 

A substantial amount of work has been put in this field of research. For example, an automated 

modularization scheme was developed by using functional reasoning (Van Beek, Erden, & 

Tomiyama, 2010). The function behavior state was used to model the system and derive 

relationships between functions, an adapted k-means clustering algorithm was then used to group 

related functions together to better assign design activities and visualize dependencies in the 

system.  

Another example that applies exploration and exploitation, automates the synthesis of product 

architectures (Helms & Shea, 2012). A function behavior structure is used to model a system and 
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then, using object oriented graph grammars, various combinations components that can achieve 

the desired functionality are generated. 

 

1.4 Dependencies in mechatronics (multi-domain) systems 

1.4.1 Dependency definition, characteristics, and classification  

In business, a dependency is defined as “Relationship between conditions, events, or tasks such 

that one cannot begin or be-completed until one or more other conditions, events, or tasks have 

occurred, begun, or completed.” (BusinessDictionary.com). When it comes to multidisciplinary 

engineering design there is no clear definition of dependency. In most relevant research, the 

definition is taken for granted and it is often hard to distinguish between dependency and the 

particular domain of interest. There have been very few attempts to formalize and describe the 

distinctive natures of dependencies, most of those attempts are applied in computer science. A 

generalized definition of dependency is a relationship between two entities, where a change of 

state in one entity leads to a change of state in the other entity (Cox, Delugach, & Skipper, 2001).  

As shown in Figure 1.6, in a dependency d (A, B) between two entities A and B, where A 

depends on B, the entity A is referred to as the dependent and the entity B is referred to as the 

antecedent.  

 

Figure 1.6 Graphical representation of a dependency 

 

Dependencies were assigned the following 6 attributes to facilitate their classification and 

grouping (Keller, Blumenthal, & Kar, 2000). Domain, strength, type, activity, formalization, 

and criticality. Each attribute can take different discrete values, and dependencies that have 

similar attributes can be grouped together. Strength for example, expresses how strongly the 

dependent depends on the antecedent, it can take the 3 following values, mandatory, optional, 

and none. 
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A different approach (Qamar, Paredis, Wikander, & During, 2012) proposes taking into account 

the synthesis and analysis nature of properties and dependencies. Synthesis properties (SPs) are 

used to define system alternatives whereas analysis properties (APs) are used to constitute 

predictions rather than specifications of the system alternatives. For example, a designer defines 

the geometry of a part which is a synthesis property and predicts its cost or weight which are 

analysis properties. A dependency here is defined as a relationship between two properties, where 

the value of a property depends mathematically on the value of another property. A synthesis 

dependency reflects choices made by a designers and always results in a synthesis property. For 

example, a synthesis property can be heuristics for choosing controller gains. Analysis 

dependencies on the other hand, are relationships between a set of analysis and synthesis 

properties and are used to derive new analytical properties. An example of an analysis 

dependency is the prediction of the settling time of a system due to chosen controller gains and 

other properties such as the mass. 

 

Figure 1.7 Analysis and synthesis properties and dependencies 

(Qamar et al., 2012) 

 

The most recent state of the art on dependencies in multi-domain systems is a proposal that 

classifies product related dependencies during design of mechatronics (J. M. Torry-Smith et al., 

2014). By studying and investigating three mechatronic projects, 13 types of dependencies were 

identified. These dependencies can occur between the following attributes of a product: 

Functions, means, and properties. For example, a type of dependency between two functions, can 

be a “sync function” and is defined as a dynamic relation between functions where the timing of 

the initiation or ending of the concurrently executed functions. Another type of dependency 
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between a function and a means is an adverse effect, an undesired effect generated by a 

component and affects another component. For example, electromagnetic waves generated by a 

motor affect the function of an LCD screen. More information on the following types of 

dependencies can be found in (J. M. Torry-Smith et al., 2014):  Causal function, state/time 

function, response function, Fu-M disposition, cumulative Fu-M, property scheme, 

multidisciplinary means, volume allocation physical, liveliness, physical interface, 

communication interface.   

 

1.4.2 Common dependency management tools 

Matrix based complexity management tools are the most common way of handling dependencies. 

Since its introduction in the early 80ies, the Design Structure Matrix (DSM) has been widely 

taken up in research (Kortler & Lindemann, 2011). The DSM, also referred to as dependency 

structure matrix, is a square matrix that provides a compact visual representation of 

dependencies. Elements in a DSM belong to the same domain (components, requirements, 

tasks…) and are identical on both axes. Dependencies are filled in the matrix cells and should be 

of the same type, semantically and quantitatively. For example, in Figure 1.8, binary entries in 

the DSM show tasks that satisfy the same requirements (Braha, 2002), by visually aggregating 

related tasks and optimally assigning them to working teams the cost and length of product 

development can be kept at a minimum. In another application, a DSM was used to visualize 

spatial dependencies between components by mapping them in terms of physical adjacency 

(Pimmler & Eppinger, 1994). To better express these dependencies, entries in the DSM are 

numerical instead of binary and range from -2 to 2 as shown in Table 1.1. 
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Figure 1.8 Task DSM (Braha, 2002) 

  

Table 1.1 Spatial adjacency (Pimmler & Eppinger, 1994)  

Required +2 Physical adjacency is necessary for functionality 

Desired +1 Physical adjacency is beneficial but no necessary for functionality 

Indifferent 0 Physical adjacency does not affect functionality 

Undesired -1 Physical adjacency causes negative effects but does not prevent 

functionality 

Detrimental -2 Physical adjacency must be prevented to achieve functionality 

 

DSMs were extended to Domain Mapping Matrices (DMMs) to include elements from two 

different domains. DMMs are usually rectangular, and elements from each of the domains are 

respectively placed either along the vertical axis and the horizontal axis or vice versa. In the work 

presented by (Danilovic & Browning, 2007), an aircraft design was undergoing a large number of 

technical upgrades which were based on multiple business deals with various clients; the project 
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was also divided into functional elements for final system approval and certification (landing gear 

and breaking system, secondary power system…). Here, a DSM was used to visualize and group 

related business deals into sub-projects and assign them to different teams. However, with 

configuration, many designers had to work separately on different business deals that are highly 

interdependent on the functional level. These dependencies and their degree of interaction (the 

extent to which the antecedent affects the dependent) were identified and entered in DMM that 

maps business deals against the elements of the functional organization. By rearranging columns 

in the DMM, dependencies were clustered to identify sub-projects (group of business deals) that 

require a high level of coordination and integration. 

Managing dependencies in mechatronic systems is a complex procedure that requires modeling 

multiple domains while viewing various dependency types. These requirements can be met by the 

Multiple Domain Matrix (MDM), a square matrix that has system elements in exact order on both 

axes. It is comparable to a DSM except that it can include elements of different types that are 

grouped into domains on each axis. As shown in Figure 1.9, the resulting MDM is formed out of 

smaller matrices with DSMs on the diagonal and DMMs elsewhere. Different types of 

dependencies can be used individually in each sub matrix, therefore MDMs can include all 

possible combinations of domains and dependency types that can be viewed individually in its 

DSMs and DMMs. This makes it easier for designers to understand the relationships between 

elements and apply various analysis methods, such as clustering, separately on each one of the 

sub-matrices. 



15 

 

 

 

Figure 1.9 Example of a Multiple Domain Matrix (MDM) (http://www.plattformstrategie.de/) 

 

One of many applications where MDMs are used, is the analysis of multiple architectures of a 

BMW hybrid electric vehicle (Gorbea, Spielmannleitner, Lindemann, & Fricke, 2008). Data were 

collected through meetings with engineering domain experts and dependencies between and 

amongst the functional and component domain were used to build the MDM model. ΔMDMS 

and ΣMDMs, respectively MDM matrix subtraction and matrix addition, where used to compare 

and highlight the differences between individual architectures of the hybrid electric vehicle. 

Given that entries in the MDMs are either 0 or 1, a ΔMDM results in a matrix that has 0s where 

no differences are present and 1s/-1s where dependencies are present in only the first/second 

MDM. ΣMDM on the other hand provides another kind of information, for example, by looking 

at the component/function DMM in the ΣMDM of all MDMs (sum of all matrices) one can see 

the different components that can fulfill a function.  This kind of information is very valuable for 

automation of design, it can be used to compile a repository of components with information on 

which functions they can fulfil and to which degree (how often). 

One of the difficulties that limit the use of matrix based complexity management tools is he 

complexity and the cost in time of information acquisition. In the previously presented examples, 

most of the work done using DSMs was applied to designs of existing products, and the 
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researchers relied on meetings with experts to get information on dependencies between elements 

in the matrices. When developing new products there is usually a lack of existing documentation, 

acquiring information to use in DSMs requires time consuming interviews (Lindemann, Maurer, 

& Braun, 2008). Another difficulty is the manual filling of dependencies in matrices, this activity 

is also time consuming and highly error prone. These issues are addressed in (Van Beek et al., 

2010) and overcame by automatically extracting information on dependencies from the function-

behavior-state model and filling them in the matrices. There is also ongoing research to develop 

clustering algorithms and methods (Hölttä-Otto, Tang, & Otto, 2008; Zakarian, 2008) for 

complexity management tools, because to get meaningful information from DSMs and 

understand it, designers rely heavily on rearranging and grouping dependencies in the matrices. 
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CHAPTER 2 RESEARCH FRAMEWORK 

 

2.1 Challenges addressed and Objective 

The main challenges in multi-disciplinary design have been identified in the literature review, the 

research carried out in this master thesis addresses difficulties faced during preliminary phases of 

design. By studying other academic efforts, it was revealed that there is a strong need for a design 

framework for preliminary design complemented by a computational support tool that integrates 

the conceptual model of mechatronic products with software used at later stages of design, such 

as CAD and other domain specific tools. As previously mentioned, nowadays’ markets are 

constantly evolving, new competitive products are rolled out, new regulations are put in place, 

new technologies are developed, and so on. To meet the changes in requirements without much 

increasing the project lead time, the design framework and support tool should be flexible enough 

to allow changes to the design with minimum efforts from designers. The major difficulties that 

arise when modifying a design are the ability to determine the consequences that result because 

of those changes, assessing the effects of choosing between alternatives, and evaluating the 

design concept.  

Dealing with these difficulties requires strong communication between the various disciplines 

and management of dependencies. Advancements in matrix based dependency management tools 

have come a long way, their limitations do not lie in the tools themselves but in the difficulty 

acquiring information about dependencies and modeling them. In the preliminary phases of 

design, the product concept is not very well defined yet and most of the underlying dependencies 

are only known at a coarse grain level in the designers' mind (Qamar et al., 2012).  As the number 

of component in a system increases, the number of dependencies increases exponentially. 

Modeling them often proves to be quite time consuming, and shifts the designers’ attention away 

from solution finding. Often these dependencies are left unattended, only to reappear at later 

stages of design and cause integration problems which require costly design iterations to fix. 

The work in this research proposes a design methodology using a functional reasoning 

framework and a new way to model dependencies during conceptual design. The aim is to 

provide a dynamic modeling tool that allows designers to focus on solution finding, and a 
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methodical acquisition and representation scheme of dependencies that encourages designers not 

to ignore pertinent information and boosts the synthesis activity. 

This master thesis is framed by the following research questions: Can a functional reasoning 

framework act as a common language understood among designers and improve collaboration?  

Of this research question stems the following sub-questions: Can the project lead time be reduced 

by capturing and managing abstract dependencies during conceptual design? Will it help 

designers better integrate work from various domains to avoid design iterations? 

 

2.2 Proposed framework and dependency modeling 

2.2.1 Functional Reasoning Framework 

In this section, we will introduce the functional reasoning framework that was used in order to 

describe the product flow and help highlight the dependencies.  

 

2.2.1.1 Ontology 

The term ontology has its roots in philosophy where it is defined as a systematic account of 

existence. In engineering, ontology is an explicit specification of conceptualisation (Gruber, 

1993). It is a set of objects and relationships among them that are used to represent knowledge in 

a domain, this set forms a primitive vocabulary for knowledge based systems (Kitamura, Ikeda, 

& Mizoguchi, 1997) such as the reasoning method presented in the next sections. Flexibility and 

formality are two qualities of ontology that often have a negative correlation. For example, 

representing functions as a finite number of types lacks flexibility and does not allow designers to 

cover all possible functionalities (Erden et al., 2008). However, such a representation provides a 

formal vocabulary that can be easily computationally searched and analyzed. 

The functional basis for design presented in the literature review will be used as an ontology in 

this functional framework, it is a comprehensive list of function-flow that can be used to model 

multi-domain systems. The set of functions and flows are shown in Table 2.1. Such a formal 

representation allows repeatable and meaningful results from modeling and is meant for use in 
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design repositories,  product architecture, and design synthesis (Hirtz et al., 2002). The functional 

basis for design has its limitations and advantages, the aim here is to develop a functional 

reasoning framework that serves as a proof of concept and a structure for the dependency 

modeling method proposed in the next sections. 

Table 2.1 Functional basis set of functions and flows (Hirtz et al., 2002) 

Functions Flows 

Primary  Secondary Primary Secondary 

Channel Distribute, Import, 

Export, Transfer, 

Guide 

Material Human, Gas, Liquid, 

Solid, Plasma, Mixture 

Connect Couple, Mix Signal Status, Control (Analog, 

discrete) 
Control Actuate, Regulate, 

Change, Stop 

Convert -- Energy Human, Acoustic, 

Biological, Chemical, 

Electrical, 

Electromagnetic, 

Hydraulic, Magnetic, 

Mechanical, Pneumatic, 

Radioactive/Nuclear, 

Thermal 

Provision  Store, Supply 

Signal Sense, Indicate, 

Process 

Support Stabilize, Secure, 

Position 

 

2.2.1.2 Developing a Representation Scheme  

The scope of this research is to support designers with concept generation and dependency 

management, however the farfetched ultimate goal is to provide a tool that allows concurrent and 

integrated design throughout the design process. SysML, defined in italic below, is a very 
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powerful language that can, with modifications, fulfill this task and act as a representation 

scheme for the functional basis for design. Also, SysML has already been used as a common 

modeling language to map between various domain specific tools as shown in Figure 1.3 (Shah et 

al., 2010). 

“SysML is a general-purpose graphical modeling language that supports the analysis, 

specification, design, verification, and validation of complex systems. These systems may include 

hardware and equipment, software, data, personnel, procedures, facilities, and other elements of 

human made and natural systems. The language is intended to help specify and architect systems 

and to specify components that can then be designed using other domain-specific languages, such 

as UML for software design, VHDL for electrical design, and three-dimensional geometric 

modeling for mechanical design. SysML is intended to facilitate the application of an MBSE 

approach to create a cohesive and consistent model of the system.” (Friedenthal, Moore, & 

Steiner, 2014).   

SysML is decomposed into meta-classes that are used to illustrate concepts in the modeling 

domain. It uses stereotypes to support domain specific modeling, they are mechanisms that allow 

customization of the meta-classes to suit the designers’ needs. To speed up modeling, SysML 

also supports the creation of model libraries, collections of reusable elements that can be defined 

by a system modeller.  

There are multiple tools in the market that support the modeling language SysML. MagicDraw, 

the multi award-winning UML business process, architecture, software and system modeling tool 

with teamwork support, is used here due to the availability of an OpenAPI that facilitates 

integrating a reasoning method to the functional framework. 

To create a representation scheme and provide a computational tool to use for functional 

modeling, the customization capabilities of SysML were used in this master thesis to create a 

custom functional modeling diagram and a model library of the set of functions and flows 

presented in the functional basis for design. 

The material, energy, and signal flow stereotypes shown in Figure 2.1 extend the activity 

parameter node, object flow, and class meta-classes, while the function stereotype in Figure 2.2 

extends the meta-class call behavior action. This represents one of the original contributions of 

the work presented in this master thesis and will be further explained in the following sections. 
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Figure 2.1 Material, Energy, and Signal flow stereotypes 

 

 

Figure 2.2 Function stereotype 

 

The meta-classes activity parameter node, object flow, and call behavior action in SysML are 

used in activity diagrams. Extending these stereotypes allows the creation of a custom functional 

modeling diagram and a user interface in MagicDraw as show in Figure 2.3. 

 

 

Figure 2.3 Custom functional modeling diagram 

 

Figure 2.4 and Figure 2.5 show the functional basis for design libraries. A hierarchical 

decomposition was achieved using the generalization path symbol which indicates for example 

that a particulate flow is a solid flow, which is also a material flow. The hierarchy allows 

flexible modeling, where a more specific flow can be connected to a more abstract port. For 

example, a gas-liquid flow can be connected to a to mixture port, but not vice versa. It also allows 
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writing algorithms and rules at different levels of abstraction which will be elaborated in the next 

section. 

 

 

Figure 2.4 Material flow hierarchical decomposition in SysML 

 

Figure 2.5 Function hierarchical decomposition in SysML 

Figure 2.6 shows a part of the functional diagram found in Figure 1.4  modeled in MagicDraw 

using the custom functional diagram and the functional basis libraries. 

 

 

Figure 2.6 Custom functional modeling diagram example 

2.2.1.3 Implementing a Reasoning method 

This section is divided into three parts. The first two parts explain how the MagicDraw openAPI 

and the rule based expert system “CLIPS” were used to develop and implement the reasoning 

method, and how they can infer information from the functional modeling diagram to support the 
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engineering designers in planning and conceptualization. The third part illustrates an example 

where possible heuristics followed by designers were integrated into the reasoning method to 

automatically modularize the functional model. 

 

2.2.1.3.1 Linking the system modeling and the reasoning method: MagicDraw openAPI plug-in 

The openAPI supports the modification of Magic Draw’s functionality through the creation of 

plug-ins. After customizing SysML to support functional modeling using the functional basis for 

design, a plug-in was developed using JAVA to check the functional diagrams for consistency at 

the representation level and report it back to the designer. For example, the plug-in would check 

for things like: ports that are not connected to a flow, types of flows that do not match, a “branch” 

function that does not split the incoming flow into 2 outgoing flows, ... If the functional diagram 

is proved to be complete/consistent, the plug-in was coded to proceed and extract relevant 

information from the functional diagram and export it in a more simplified format that will be 

used by the rule based expert system (CLIPS) and explained in the next section. 

This automated approach reduces the burden on the engineers as it helps them carryout a very 

high-level of consistency check-up in their models in a very effective, systematic, and automated 

manner. It is worth noting that from now on, in this master thesis, the MagicDraw openAPI plug-

in will be referred to as MagicDraw plug-in. 

 

2.2.1.3.2 Rule-based expert system CLIPS 

Expert systems are computer programs where the knowledge and the reasoning process of human 

experts are codified in an attempt to mimic their decision making skills. Rule-based expert 

systems are usually composed of these main components: an interaction mechanism, a 

knowledge base, and an inference engine. Rule-based expert systems are used in various 

engineering domains (Achiche, Appio, McAloone, & Di Minin, 2012; Achiche, Baron, 

Balazinski, & Benaoudia, 2007; Ren, Balazinski, Jemielniak, Baron, & Achiche, 2013) 

The interaction mechanism can be either a user interface that the expert system uses to interact 

with a user or an integration platform that allows it to interact with other computer applications. 
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The knowledge base contains a set of rules that are coded to encapsulate information acquired 

from human experts. Rules are written in an If A Then B format, where A is called the antecedent 

and B is called the consequent. When the antecedent of a rule is matched to data in the working 

memory, data usually provided by the interaction mechanism, the rule is said to be satisfied and 

can be triggered to perform the action stored in its consequent. Actions could be anything from 

modifying data in the working memory, storing new information for other rules to use, to 

reporting back to the interaction mechanism.  

The inference engine is the main processing unit of an expert system, it manages the rules that 

are satisfied and choses in which order to trigger them based on priorities set in the code and the 

followed search strategy.  

CLIPS, an acronym for C Language Integrated Production System, is an expert system tool 

developed by NASA and released in 1986, and will be used for reasoning in the functional 

framework. As previously mentioned, the MagicDraw plug-in was used to extract relevant 

information from the functional diagram and export it to the working memory of CLIPS. The 

functional modeling diagram in CLIPS is represented using the templates shown in Figure 2.7 

and developed in this research work. Input and output templates define the elements that are on 

the boundary of the functional diagram. 

 All elements in a SysML diagram have an unique identifier. To have an exchangeable model 

between MagicDraw and CLIPS, the slot “id” was added to all templates of the CLIPS 

representation and is used to store the unique identifier. 

The slot “name” is not needed for computational purposes and is there only to facilitate 

debugging and explanation.  

The slot “type” is used to indicate the category of the function or flow found in the functional 

basis for design set. 
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Figure 2.7 Functional modeling diagram representation in CLIPS 

 

The slots “source-id” and “destination-id” store the unique identifiers of the functions to which a 

flow is connected. Figure 2.8 shows a sample of how the functional diagram template 

representation is written when exported by the plug-in to CLIPS.  

 

Since the ontology and the representation scheme are hierarchically structured, rules can be 

written to reason at various levels of abstraction. Rules can be used for various goals such as 

pattern matching and component selection, heuristic search, clustering … The next section 

illustrates the implementation of heuristic search on the functional diagram in CLIPS to identify 

modules of functions. An example of a rule is shown in Figure 2.14. 
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Figure 2.8 Exported functional diagram using CLIPS templates sample 

 

2.2.1.3.3 Assisted modularization using rule-based heuristics 

As previously mentioned in the literature review, functional modeling acts indirectly as a design 

scheme that guides designers in activities such as decomposing problems, generating concepts 

and creating product architectures (Hirtz et al., 2002). To allow modular design to be carried on 

earlier in the product development phase, three heuristic methods for identifying modules in a 

functional diagram were developed. The efficacy of these methods was confirmed and verified by 

applying them on a database of 70 consumer products (Stone et al., 2000). 

In the work presented here, we aim to support engineering designers in modularising functional 

models. Before explaining how these heuristics are translated, in this work, to be used as 

embedded rules in CLIPS, they are presented below, each with a corresponding figure that 

illustrates it. 
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The Dominant flow heuristic, as shown in Figure 2.9, defines a module as a set of sub-functions 

which a flow passes through, from entry or initiation of the flow in the system to exit from the 

system or conversion of the flow within the system. 

 

Figure 2.9 Dominant flow module (Stone et al., 2000) 

 

The Branching flow heuristic, as shown in Figure 2.10, defines modules as the limbs of a 

parallel function chain. Each of the modules interface with the remainder of the product through 

the flow at the branch point. 

 

Figure 2.10 Branching flow module (Stone et al., 2000) 
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The Conversion-transmission flow heuristic, as shown in Figure 2.11, defines a module as a 

conversion sub-function or a conversion—transmission pair or proper chain of sub-functions. 

 

 

Figure 2.11 Conversion-transmission flow module (Stone et al., 2000) 

Creating chains of functions by coding the heuristics at a high level of abstraction is very difficult 

if not impossible. Getting more information from the designing user about the functional 

diagram, such as to which flow each of the functions are applied, hinders the dynamic modeling 

capacity of the modeling tool, one of the main goals of this research master thesis.  

Instead of identifying chains of functions, rules that identify chains of flows are coded. The 

results are then presented to assist the designing user modularize the functional diagram. If the 

diagram has a simple layout, the chains of flows will always correspond to the expected chains of 

functions. When the diagram is more complex, such as having multiple flows passing through 

functions, the user can be given the choice to select the resulting chains of flows that are 

pertinent. All the flows in a chain that is selected are marked as “primary flows” and the 

functions that they pass through are grouped to create a module. This method facilitates 

information acquisition about primary flows in the diagram and assists the designer in identifying 

modules faster. 
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The following logic was coded into CLIPS and is centered around the functional modeling 

representation defined in the templates above. To note, due to time limitation, but not technical, 

only the flow chain identification was coded and tested, but not integrated into MagicDraw. 

First, a new slot “chain” was added to the flow template, and a new “chain” template was created 

as shown in Figure 2.12 and Figure 2.13. The slot “chain” is an integer, its default value is 0, and 

it is used as a flag that indicates if a flow was added to a chain or not. The template chain, has a 

multi-slot “flow-ids” where the unique identifiers of the flows that belong to it can be added. 

 

 

Figure 2.12 Flow template with chain slot CLIPS 

 

 

Figure 2.13 Chain template CLIPS 

As previously mentioned, the inference engine in an expert system decides in which order 

satisfied rules can be executed. CLIPS allows giving priority to some satisfied rules to be 

executed before other using “salience”. Salience can be added to the definition of a rule and can 

take values up to 99, rules with higher salience have higher priority. 
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To identify chains of flows, two types of rules are coded, ones that identify a starting point of a 

chain (a starting flow) and ones that propagate from the starting points adding flows to each chain 

until it they can no longer be satisfied. Rules that identify starting points have a higher priority to 

be triggered and identify these types of flows: input flows, flows that branch, flows that merge.  

Figure 2.14 shows an example of a rule that labels a branch of a flow as a starting point of a new 

chain. Section 4 shows an example where assisted modularization is used. 

 

 

Figure 2.14 Rule that identifies flows that branch CLIPS 

 

2.2.2 Dependency Modeling  

This section proposes a methodical acquisition and representation scheme of dependencies that 

encourages designers not to ignore pertinent information and boosts the synthesis activity. During 

preliminary phases of design there is a lot of non-quantified abstract information that needs to be 

modeled, the following method aims to help experts concretize their knowledge on dependencies 

in multi-domain systems.  

2.2.2.1 Modeling Using Meta-Dependencies Concept 

Modeling dependencies using common graphical methods, such as shown in Figure 1.6, requires 

building relationships between each and every single element in the system. As the number of 

elements in a system increases, the number of dependencies increases exponentially, and 
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managing these dependencies becomes costly and time consuming if not impossible, specially 

when doing design modifications. 

Instead of building relationships between all dependent elements, we propose the concept of 

meta-dependencies such as shown in Figure 2.15, where a dependency is defined as a relationship 

between an element (function, module, component, …) and a meta-dependency. Similarly to the 

graphical dependency shown in Figure 1.6, the elements E1 and E2 in Figure 2.16 are considered 

dependent and antecedent elements respectively and the potential relationship dependency 

between them is shown in dashed lines. 

Early in the design process, dependencies tend to be too abstract to be easily represented and their 

existence is often uncertain. Since several elements share the same type of dependency, using a 

meta-dependency modeling scheme allows grouping these related dependencies under the same 

model. Therefore, this helps reduce the number of relationships to be created, and encourages 

implicit acquisition of abstract information during design activities. 

 

Figure 2.15 Meta-dependency modeling 

 

Figure 2.16 Meta-dependency elements 
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2.2.2.2 Tagging elements with adverse effect dependencies  

To use a meta-dependency modeling scheme, the dependency at hand should be shared among 

several elements in the system. Adverse effects for example, are undesired effects such as heat, 

vibration, and electromagnetic waves, that are generated by one element and affect the 

functionality of other elements in the system. Adverse effects are one of many types of 

dependencies that can be modeled using the meta-dependency modeling scheme and will be used 

as an illustration in the rest of this research.  

To reduce the graphical clutter and make the design process more dynamic, instead of building 

relationships with a meta-dependency we propose to tag elements with adverse effects. Using 

SysML’s customization mechanism two new property slots were added to the function 

stereotype, affecter and affected as shown in Figure 2.17. These slots can take as values adverse 

effects that are defined by the designer. When the slot affecter is tagged by an adverse effect, it 

implies that the function can generate such an undesired effect and that it has an antecedent 

relationship with this meta-dependency. When the slot affected is tagged, it implies that this 

function’s performance can be hindered by this adverse effect and that it has a dependent 

relationship with it. 

 

Figure 2.17 Affecter and affected meta-dependency tagging slots 

 

2.2.2.3 Automated Generation of the Dependency Matrix 

As cited above, dependency structure matrices (DSMs) offer designers an overview of the system 

at hand and the relationships between its elements but are quite complex and time consuming to 

generate manually by engineers. By using the meta-dependency modeling scheme, DSMs can be 

automatically generated, thus freeing designers from filling them which saves them time and 

reduces possible human induced errors. 
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To achieve this, SysML’s customization mechanism, the functional reasoning expert system, and 

the MagicDraw plug-in were used in this master thesis. 

As shown in Figure 2.18, the dependency relationship in SysML was extended to create adverse 

effects using a stereotype. 

 

 

 

Figure 2.18 Adverse effect dependency stereotype bloc 

 

 

Two multi-slots for the attributes Affecter and Affected were added to the function template in 

the CLIPS knowledge base. Then new rules were developed and then embedded to create an 

adverse effect dependency between functions that affect each other. An example of a rule is show 

in Figure 2.19 and explained in italic below, more complex rules can be written to derive 

dependencies by taking multiple factors into account and will be further discussed in the future 

work section. 

  

 

If  Function1 is affected by AdverseEffectA 

 &   Function2 is an affecter of AdverseEffectA 

 Then  a Dependency of type AdverseEffectA will be created  

   with dependent Function1 and antecedent Function2 
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Figure 2.19 createDependency CLIPS rule 

 

The openAPI was then used to import the dependencies from the CLIPS generated file and create 

adverse effect dependencies between the two functions in the SysML model; and then create a 

DSM for each type of adverse effect to present them to the designer user. Section 4.1, Illustrating 

the principle, shows a design process example where multiple DSMs are created. 
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2.2.3 Design Procedure summary 

 

Figure 2.20 Design procedure flowchart 
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Figure 2.20 sums up the design procedure and methodology that should be followed while using 

the developed design support tool in this master thesis. Engineering designers start the 

conceptualization of a mechatronic product by gathering customer needs and deriving 

requirements and then they proceed by translating these requirements into a functional model of 

the product. Here designers are required to simultaneously identify adverse effects that can 

possibly affect or be generated by the various functions and tag them appropriately.  

To identify the product architecture, designers are required to use the assisted modularization to 

help them apply the heuristics and identify modules. They should also inspect the automatically 

generated dependency matrices to identify problematic functions or modules, identify important 

dependencies that should be expressed in more detail or be added to the evaluation criteria of the 

product.  

While generating modular concepts, designers should take account of all the problematic 

dependencies. The easiest way to avoid some adverse effect dependencies is to choose 

compatible components in a system, however sometimes they can be avoided by creating new 

creative modules and changing the physical allocation of some components. If no solution can be 

easily implemented sometimes it is better to derive a new functional model of the product. 

The following section will illustrate how this design method and the support tool can be used in 

two concrete examples.  
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CHAPTER 3 CASE STUDY 

 

3.1 Illustrating the principle 

In order to illustrate the developed design support tool, a small example of a design of a 

mechatronic device that regulates the temperature of water by mixing a cold flow with a hot flow 

will be used. Figure 3.1 shows a simplified functional diagram of the device, it is an abstract 

model of the concept and can be transformed into various working physical models. 

 

Figure 3.1 Temperature regulator functional model 

 Many components, such as a proportional solenoid valve or a motorized valve, can fulfill the 

function "regulate hot flow", It is up to the designer to decide which one suits the application 

better. However, while one component might perform better than another, it might hinder the 

overall performance of the device.  

Functions are tagged by effects capable of impairing their intended behavior, as well as effects 

they might generate. Dependencies between functions are then automatically generated by the 

MagicDraw plug-in and presented in design structure matrices as shown in Figure 3.2. 
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Electric Fields DSM 

 

Heat DSM 

Figure 3.2 Electric field DSM and heat DSM of temperature regulator 

Solenoid valves generate electric/magnetic fields when activated, and a lot of heat when 

operating continuously, these two undesired adverse effects can cause other components such as 

the temperature sensor and the control circuit to malfunction. This creates dependencies between 

them. Requirements come into play when trying to find the best solution and the designer needs 

to answer several questions such as: 

 Is there a device size limit? 

 How far from the valves can the temperature sensor be positioned?  

 What's the required temperature accuracy? 

 Can a less accurate sensor that is not affected by electric fields be used? 

 For how long will the solenoids operate? 

 Is heat management required? 

 Is it enough to insulate the electric circuit? 

 Or is a heat dissipation device required? 

 Which one of these possible solutions is cheaper to produce? 

 Etc. 

All these questions were derived out of two adverse effect dependencies between three 

components. If left unaddressed, they might reappear at some point during the detailed design 
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phase or cause functional problems after production, which will require costly design feedback 

iterations in order to fix them. 

However, one can argue that, for a simple system as the one presented above, one does not 

necessarily need a design support since the adverse effects dependencies can be easily found by 

the engineering designers. Therefore, in order to better illustrate the developed design support 

tool, it will be applied to a more complex mechatronic system such as a quadrotor drone. 

3.2 Quadrotor conceptual design 

A quadrotor is a highly complex system to design, it involves various engineering domains that 

affect each other such as aerodynamics, mechanics, control, and intelligence (Mohebbi, Achiche, 

& Baron, 2015). Integrating various sensors, actuators, a power supply, and other components 

into a lightweight flying system that can operate for a relatively long period is not an easy task 

and requires a well-defined methodology. 

In order to validate the conceptual design framework developed in chapter 3, it was applied on a 

conceptual design task of a quadrotor while taking into account adverse effect of complex 

dependencies. Nowadays, quadrotor drones are considered as mature products; their design went 

through much iteration and has been largely optimised. The experience acquired over the time by 

designers is very well documented in the literature, on online websites, and hobbyist forums 

[1][2]. This well documented information was surveyed in this research to find the various 

possible component alternatives that can fulfill the desired functionality of a quadrotor drone, and 

to identify the typical design problems faced by engineers during development that are related to 

adverse effect dependencies. 

Figure 3.3 shows the developed functional model of the quadrotor, the structure is considered 

rigid and symmetric, thus only one of the four symmetric ends of the quadrotor was modeled. 

 

 

[1]http://copter.ardupilot.com/wiki/common-vibration-damping/ 

[2]http://dronespeak.com/article-topics/uas-potential-topics/electromagnetic-radio-frequency-emission-

interference-reduction/ 

 

http://copter.ardupilot.com/wiki/common-vibration-damping/
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Figure 3.3 Partial Quadrotor drone functional model  
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The main flows that go in and out of the black box system representing the drone are: 

- Energy in: Electrical, Weight 

- Energy out: Weight 

- Material in/out: Air 

- Signals in: Position, Heading, Orientation, and Visual input 

 

While developing the functional model, each function was tagged with possible adverse effects 

that it can generate or that can hinder its functionality, regardless of the alternative chosen. At 

this stage of design, these dependencies are still not very clear in the designer’s mind, and they 

should only be implicitly captured in the form of tags to be examined closely later on.  

The adverse effects related to the relevant functions in the system were documented in Table 3.1, 

as well as the alternative components that can possibly fulfill them. 

 

Table 3.1 Relevant Functions, Possible Adverse Effects, Alternative components 

Relevant Function Possible adverse effects Alternative components  

Store 

Electricity 

Affected: Heat 

Affecter:  Electric field, Heat 

Lithium ion 

Lithium polymer 

Alkaline  

Supply 

Electricity 

Affected: Heat 

Affecter:  Electric field, Heat 

Power regulator 

Battery eliminator circuit 
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Regulate 

Electricity 

Affected: Heat 

Affecter: Electric field, Heat 

Power transistors (some DC 

motors) 

Electronic Speed Controller (AC 

motors) 

 

Convert 

Electricity 

To 

Rotational energy 

Affected: Heat, Vibrations 

Affecter: Electric field, 

Vibrations, Heat, Noise 

AC motors 

• Brushed 

• Brushless 

DC motors 

Sense 

Rotational speed 

Affecter: 

Affected: Vibration, Electric 

field, Heat 

Encoder 

Tachometer   

Current sense 

None (open loop) 

Sense 

Position, Heading, 

Orientation 

Affecter: 

Affected: Electric field, 

Vibrations 

Accelerometer, Gyroscope, 

Magnetometer, GPS 

IMU 

GPS + Compass 

Sense 

Visual input 

Affecter: 

Affected: Vibrations 

Camera 

 

         Table 3.1 (continued) Relevant Functions, Possible Adverse Effects, Alternative components  
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The MagicDraw plug-in was then used to assist in the modularization of the functional diagram. 

Figure 3.4 shows the results displayed by the CLIPS rule-based expert system and Figure 3.5 

shows these results displayed on the SysML functional diagram. 

 

Figure 3.4 Chains of functions resulting from CLIPS 

. 
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Figure 3.5 Chains of flows in SysML functional diagram 

At this point in the design stage, by applying the heuristics presented in 2.2.1.3.3 and based on 

the work in (Stone et al., 2000), a preliminary modularization is obtained and is illustrated in 

Figure 3.6.  Before starting to generate various modular concepts, the developed MagicDraw 

plug-in is used to automatically create and display the DSMs of the various adverse effects 

present in the system. These DSMs will be closely inspected to look for problematic 

functions/modules, identify the dependencies that should be expressed in more detail and they 

can even be added to the evaluation criteria of the product.  

This information will be used to select components that are compatible, find solutions to 

eliminate adverse effects, and to create a better modularization of the system. This would help us 

achieve a modularization where not only aspects such as maintenance and ease of assembly are 

taken into account, but also efficiency and functionality of the overall system. 
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Figure 3.6 Preliminary modularization 

Figure 3.7, Figure 3.8, and Figure 3.9 show the automatically generated DSMs for vibration, 

heat, and electric fields adverse effects, respectively. An arrow in the DSM means that a function 

affects the function to which the arrow is pointing, an “X” in the  DSM means both functions 

affect each other. Problematic modules/functions were highlighted in each of the DSMs and some 

possible solutions to avoid them were reported in Table 3.2. 
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Figure 3.7 Vibration DSM 

 

 

Figure 3.8 Heat DSM 

Motor Control 

Motor assembly 

Power supply  

Camera 

 

Motor assembly 

 

 

Propeller 

Encoder ? 

Camera 
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Figure 3.9 Electric field DSM 

Table 3.2  Modules, problematic Adverse Effects, Solutions 

Component Problem Solution 

Camera (Capture: 

Sense) 

Vibrations cause noise 

(Jello effect) 

Dampers on camera supports 

Expensive optical stabilization 

Software stabilization (not always effective) 

Accelerometer (pho: 

Sense) 

Vibrations Dampers on circuit board support 

 

Propellers 

(generate_thrust: 

transfer…) 

Vibrations Take vibration into consideration during 

selection (operating speed…)    (unlike 

helicopters, efficiency is often not taken into 

account in quadrotors) 

Magnetometer + GPS 

(pho: Sense) 

Electric Fields Physical allocation (keep away from sources) 

Component selection (select components that 

generate less electromagnetic noise) 

Shield sources (if possible) 

Encoder ? 

Magnetometer  
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Battery (Elec: store) 

 

Heat Heat dissipation should be taken into account 

specially if Lithium Polymer batteries are 

chosen. 

Should system be waterproof? … 

Power transistor 

or 

Electronic speed 

controller (ESC) 

(Elec: control) 

Heat 

Electric Fields 

Heat dissipation 

Physical allocation, position on lower side of 

frame (shield if possible), away from center 

(control circuits) 

Voltage regulator 

or 

Battery eliminator 

circuit (BEC) 

(Elec: supply) 

Heat 

Electric fields  

Heat dissipation 

Physical allocation, position on lower side of 

frame (shield if possible), away from center 

(control circuits) 

Motor (convert: elec to 

rot) 

Heat 

Electric fields 

Vibrations  

Component selection  

AC motors (more efficient, less heat, AC 

electromagnetic fields can be shielded if 

problematic) 

 

Encoder? 

Tachometer? Current 

sense? 

Electric fields 

Vibrations 

Heat 

Component selection 

Since AC motors are favorable, Effects of 

vibrations and electromagnetic fields on 

Encoders and Tachometers can be avoided by 

choosing Electronic speed controllers that have 

built in current sense and speed feedback. 

 

 

 Table 3.2 (continued) Modules, problematic Adverse Effects, Solutions 
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After taking adverse effects into consideration and inspecting the DSMs the following design 

decisions were taken: 

Motor selection: Brushless AC motors: They are usually more expensive than other 

alternatives but were chosen for the following reasons. 

 High power to weight ratio  

 Low power consumption  

 AC vs DC electromagnetic noise can be easily shielded 

 Availability of electronic speed controllers with feedback eliminates 

the need for Encoders or tachometers. 

 Some of these motors are available with high quality bearings to 

withstand forces and vibrations. This allows direct assembly to 

propellers.  

Wiring:  Keep high power DC wires as short as possible during physical allocation. 

Long AC wires can be twisted and need to be shielded. 

Battery: Weight, Heat, and Electromagnetic noise should be taken into account 

when allocating space for batteries and choosing between Lithium ion and 

Lithium Polymer. 

Lithium ion batteries have a better power to weight ratio (or power density) 

Lithium polymer batteries have a higher discharge rate (available power 

when needed), however this generates a lot of electromagnetic noise and 

heat (they can be hazardous) 

Propellers: Take into account the vibrations at the operating motor speeds and sudden 

load changes. Do ducted propellers reduce vibrations? 

Creative modules: 

- Split the inertia measurement unit (IMU +GPS) into two modules: 
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o Accelerometer + Gyroscope Module, placed on circuit board with dampers to 

reduce vibrations (filtered frequencies to be determined in detailed design) 

o GPS + Compass (magnetometer) Module, will be placed on case cover as far away 

from electromagnetic noise (Battery, ESC, BEC, Motors)  

- Remove the “Supply” function from the “power supply module” to “Power Control” 

module as shown in Figure 3.10. These two functions fulfilled by the Electronic Speed 

Control (ESC) and the Battery Eliminator Circuit which is needed to increase the voltage 

provided by Lithium batteries. Each motor will have its own BEC which reduces heat 

and electromagnetic noise concentration. BEC and ESC should be close to battery to 

shorten DC wires and away from control circuit board and GPS + Compass. 

 

Figure 3.10  Power supply and Power Control modules 

The resulting rough geometric layout sketch is shown in Figure 3.11. To reduce effects of Heat 

and Electromagnetic noise, the Battery, charger input, BEC, and ESC were positioned on the 

lower side of the frame towards the back of the device. The frame should be made of light 

material and act as a heat sink and insulator, and as a magnetic shield to protect the rest of the 

electronic circuit which is placed on the upper part of the device. The frame should also be 

designed to reduce vibrations with anti-resonant frequencies.  

The center of gravity of a quadcopter should always be in the middle, the camera was positioned 

towards the front to balance the weight of the power supply and power control modules. This also 

allows to position the GPS + Compass module as far away from sources of electromagnetic noise 

on the casing towards the front of the device. 
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Figure 3.11 Quadrotor layout: bottom, top, and side views 
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This case study shows that the functional reasoning framework allows designers to develop a 

functional model of a product in a more dynamic way and makes the resulting diagrams more 

consistent. Designers can easily apply changes to the diagram and they have to select predefined 

functions and flows from the developed library and cannot do syntactic errors such as connecting 

a flow to a port of a different type, etc... The functional reasoning framework also supports 

designers during functional diagram modularisation, and as seen in the quadcopter example in 

figure xx, it provides them with preliminary modules which speeds up the modularization 

process. More importantly, the case study shows that if adverse effect dependencies abstractly 

captured and taken into consideration during conceptual design, a lot of design iterations could 

have been avoided by identifying incompatible components and finding solutions to product 

related problems before passing into detailed design which reduces the project lead time. If the 

design computational tool and dependency modeling scheme developed in this master thesis were 

used, the final generated concept of the quadcopter would've been similar if not better than the 

mature designs available nowadays in the market.  
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CHAPTER 4 CONCLUSION  

In this master thesis, a functional reasoning framework was developed to allow engineering 

designers to abstractly model a mechatronic product during conceptual stage using a formal 

functional modeling language, the functional basis for design, which allows the use of 

computational power to support the design activity. The functional reasoning framework was 

achieved by customizing the SysML language and developing a plug-in in the modeling tool 

MagicDraw, the plug-in integrates the rule-based expert system CLIPS that allows encapsulating 

engineering knowledge in the form of rules to analyze and perform tasks on the functional 

diagrams. For example, heuristics were coded as rules in CLIPS to assist engineering designers 

and speed up the modularization of functional diagrams. 

A new methodical acquisition method and representation scheme of dependencies was proposed. 

The concept of “meta-dependency” was introduced to model dependencies that are shared by a 

large amount of elements in a system. Compared to available methods of managing 

dependencies, where designers have to model each dependency as a single relationship between 

two elements, the proposed method allows engineering designers to efficiently and abstractly 

capture dependencies early in the deign process by modeling them as a relationship between an 

element and a meta-dependency. To prove the efficacy of the proposed modeling method, 

adverse effects, a type of dependency, were used and integrated into the functional reasoning 

framework, which was programmed to automatically generate a Design Structure Matrix for each 

type of dependency and present them to the engineering designers. 

Two case studies were carried-out where mechatronic products were modeled using the 

functional reasoning framework while taking adverse-effect dependencies into account. First, a 

simple device that regulates the temperature of water was used to illustrate the principle. Then, 

the functional model of a quadrotor drone was designed. The resulting modularization and rough 

geometric layout of the quadrotor were presented, as well as a list of design problems that were 

avoided. 

The functional reasoning design framework in conjunction with the meta-dependency modeling 

method proposed and developed in this research thesis proved to be a dynamic modeling tool that 

is flexible and allows changes to be made in the design with little effort from the engineering 

designer. Tagging functions with adverse effects proved to be an efficient and effective method 
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of acquiring information on this type of dependencies and managing them. It is an intuitive way 

of handling and capturing abstract dependencies early in the design process without shifting the 

designer’s focus away from solution finding. By using assisted modularization and by inspecting 

the automatically generated Design Structure Matrices, collaboration between various disciplines 

is increased. Additionally, important questions that need to be asked by engineering designers to 

experts are pinpointed and narrowed down. This leads to the modularization of the product to be 

allowed early its development stages in a more efficient, effective way. Also, most importantly, 

the development time is reduced, and the activity streamlined through better integration of 

multidisciplinary design and by avoiding costly design loop backs. 
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