

UNIVERSITÉ DE MONTRÉAL

A FUNCTIONAL REASONING FRAMEWORK AND DEPENDENCY MODELING

SCHEME FOR MECHATRONICS CONCEPTUAL DESIGN SUPPORT

ELIE HADDAD

DÉPARTEMENT DE GÉNIE MÉCANIQUE

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

MÉMOIRE PRÉSENTÉ EN VUE DE L’OBTENTION

DU DIPLÔME DE MAÎTRISE ÈS SCIENCE APPLIQUÉES

(GÉNIE MÉCANIQUE)

DÉCEMBRE 2015

© Elie Haddad, 2015.

UNIVERSITÉ DE MONTRÉAL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

Ce mémoire intitulé:

A FUNCTIONAL REASONING FRAMEWORK AND DEPENDENCY MODELING

SCHEME FOR MECHATRONICS CONCEPTUAL DESIGN SUPPORT

présenté par : HADDAD Elie

en vue de l’obtention du diplôme de : Maîtrise ès sciences appliquées

a été dûment accepté par le jury d’examen constitué de :

M. BARON Luc, Ph. D., président

M. ACHICHE Sofiane, Ph. D., membre et directeur de recherche

M. LAKIS Aouni, Ph. D., membre et codirecteur de recherche

M. RAISON Maxime, Doctorat., membre

iii

ACKNOLEDGMENT

I would like to thank my advisor professor Sofiane Achiche and my co-advisor professor Aouni

Lakis for giving me the opportunity to pursue my studies at Ecole Polytechnique de Montreal and

supporting me financially during my studies. I would also like to thank them for their kindness,

support, valuable time, and patience.

Many people have walked next to me during this thesis, it has been a bumpy road, and without

them it would have been hard to reach the end. I would specifically like to thank Abolfazl

Mohebbi for his advice, encouragement, and the time he spent motivating me and pushing me to

work harder.

Finally, I would like to thank my parents to whom this thesis is dedicated. Thank you for

believing in me, and for supporting me financially and emotionally. I hope I have made you

proud.

iv

RÉSUMÉ

La conception mécatronique est un processus de design pluridisciplinaire, il repose sur

l'intégration synergique des domaines d’ingénierie mécanique, électrique, contrôle et logiciel

pour concevoir des produits qui surpassent les autres produits en termes d'efficacité, de précision,

de coût et de fiabilité. Toutefois, cela a un coût, la conception de systèmes multidisciplinaire est

une tâche ardue qui exige beaucoup de coordination et de coopération entre les ingénieurs

concepteurs. Beaucoup de ces difficultés ont été reportées dans les domaines académique et

industriel. Il en ressort que la communication technique entre les concepteurs appartenant à

diverses disciplines d’ingénierie se fait très difficilement et ce en raison de l'absence d'un langage

commun pour représenter les différents concepts. Ceci entraîne des difficultés majeures à

transférer les modèles et les informations pertinentes entre les domaines ce qui entrave la

possibilité d’appliquer un processus de développement intégré (concurrent). Pourtant, d’une part,

un processus de conception intégré et dynamique doit être suivi pour réduire le temps de

conception du projet et ainsi réduire les couts et supporter l'innovation. D’autre part, la

conception multidisciplinaire se traduit par l’introduction d’un grand nombre de dépendances

durant la conception, rendant ainsi les activités de conception difficile à synchroniser entravant le

processus intégré.

En raison de l'absence d'outil de support informatique pour le design conceptuel, et l'importance

de considérer les dépendances le plus tôt possible dans le processus de conception, un cadre de

raisonnement fonctionnel en conjonction avec un système de modélisation des dépendances (liées

au produit) ont été développés dans ce mémoire de maîtrise.

Le cadre de raisonnement fonctionnel a été réalisé par la personnalisation du langage SysML

(Systems Modeling Language), et par le développement d’un module d’extension (plug-in) dans

l'outil de modélisation MagicDraw (No Magic, Inc.). Le plug-in intègre un système expert à base

de règles (CLIPS : C Language Integrated Production System - NASA) qui permet d’encapsuler

les connaissances d'ingénierie sous la forme de règles pour analyser et effectuer des tâches sur

des diagrammes fonctionnels.

Une nouvelle approche d'acquisition et une représentation schématique de dépendances ont été

proposées. La notion de "méta-dépendances» a été introduite pour modéliser les dépendances qui

sont partagées par un grand nombre d'éléments dans un même système. Cela permet aux

v

concepteurs de capter efficacement et abstraitement les dépendances tôt dans le processus de

conception et ainsi réduire le nombre de relations à construire manuellement entre les éléments

dans ce système.

Pour prouver l'efficacité de la méthode de modélisation proposée, les effets indésirables, un type

de dépendances qui peut être utilisé avec le schéma de modélisation proposé, ont été utilisés et

intégrés dans le cadre de raisonnement fonctionnel. Ce dernier a été programmé pour générer

automatiquement une matrice de conception de la structure pour chaque type de dépendance et

les présenter aux concepteurs.

Deux études de cas ont été réalisées où des produits mécatroniques ont été modélisés en utilisant

le cadre de raisonnement fonctionnel tout en prenant les dépendances d’effets indésirables en

compte. Tout d'abord, un dispositif simple qui régule la température de l'eau a été utilisé pour

illustrer le principe. Ensuite, le modèle conceptuel d'un drone quadrotor a été conçu. La

modularisation fonctionnelle résultante et la disposition géométrique approximative du quadrotor

ont été présentées, ainsi qu’un ensemble de problèmes de conception qui ont été évités.

Le cadre de conception de raisonnement fonctionnel en conjonction avec le schéma de

modélisation méta-dépendance proposé et développé dans cette thèse de maîtrise ont prouvé

d’être un outil de modélisation dynamique et flexible qui permet d’apporter des changements au

design durant la conception avec peu d'efforts de la part des concepteurs. Le marquage des

fonctions avec les dépendances d’effets indésirables c’est avéré être une méthode efficace et

effective pour acquérir et gérer l’information sur ce type de dépendances.

vi

ABSTRACT

Mechatronics is a multidisciplinary design process that relies on the synergic integration of

mechanical, electrical, control, and software engineering to deliver products that outperform their

competitors in terms of efficiency, precision, cost and reliability. However, this comes at a cost,

designing multi-disciplinary systems is a challenging task that requires a lot of coordination and

cooperation between designers. Several challenges are reported by both academic and industry-

related literature. One of the most important is the tedious communication between engineering

designers from various disciplines due to a lack of a common language to represent concepts.

This leads to difficulties in transferring models and pertinent information between domains. To

succeed in nowadays competitive markets, a concurrent and dynamic design process should be

followed to reduce the project lead-time and spark innovation. However, such a process results in

many dependencies as a consequence of multi-disciplinary design and it is often difficult to

streamline the design activities.

Due to the lack of existing computational support tools for conceptual design of mechatronics

and the importance of taking dependencies (product related) into account as early as possible in

the design process, a functional reasoning framework as well as a dependency modeling scheme

were developed in this master thesis.

The functional reasoning framework was realised by customizing the SysML (Systems Modeling

Language) language and developing a plug-in in the modeling tool MagicDraw (No Magic, Inc.).

The plug-in integrates the rule-based expert system CLIPS (C Language Integrated Production

System - NASA) that allows encapsulating engineering knowledge in the form of rules to analyze

and perform tasks on functional diagrams.

A new acquisition method and representation scheme of dependencies was proposed in this

master thesis. The concept of “meta-dependency” was introduced to model dependencies shared

by a large number of elements in a same mechatronic system or sub-system. It allows engineering

designers to efficiently and abstractly capture dependencies early in the deign process and

reduces the number of relationships to be built manually between dependent elements in the

system. To prove the efficacy of the proposed modeling method, adverse effects, a type of

dependency that suits the proposed modeling scheme, were used and integrated into the

vii

functional reasoning framework, which was programmed to automatically generate a Design

Structure Matrix for each type of dependency and present them to the engineering designers.

Two case studies were carried-out where mechatronic products were modeled using the

functional reasoning framework while taking adverse-effect dependencies into account. First, a

simple device that regulates the temperature of water was used to illustrate the principle. Then,

the conceptual model of a quadrotor drone was designed. The resulting functional modularization

and rough geometric layout of the quadrotor were presented, as well as a set of design problems

that were avoided.

The functional reasoning design framework in conjunction with the meta-dependency modeling

scheme proposed and developed in this master thesis proved to be a dynamic modeling tool that

is flexible and allows changes to be made in the design with little effort from the engineering

designer. Tagging functions with adverse effects proved to be an efficient and effective method

of acquiring information on this type of dependencies and managing them. It is an intuitive way

of handling and capturing abstract dependencies early in the design process without shifting the

designer’s focus away from solution finding.

viii

TABLE OF CONTENTS

ACKNOLEDGMENT ... III

RÉSUMÉ ... IV

ABSTRACT .. VI

TABLE OF CONTENTS ... VIII

LIST OF TABLES ... X

LIST OF FIGURES ... XI

CHAPTER 1 INTRODUCTION AND LITERATURE REVIEW ... 1

1.1 Introduction to mechatronics .. 1

1.2 Summary of mechatronic design challenges .. 3

1.2.1 Mechatronic design methods .. 4

1.2.2 Tools, Support, and Integrated solutions for mechatronic design 5

1.3 Functional modeling ... 7

1.4 Dependencies in mechatronics (multi-domain) systems .. 10

1.4.1 Dependency definition, characteristics, and classification ... 10

1.4.2 Common dependency management tools ... 12

CHAPTER 2 RESEARCH FRAMEWORK ... 17

2.1 Challenges addressed and Objective .. 17

2.2 Proposed framework and dependency modeling ... 18

2.2.1 Functional Reasoning Framework ... 18

2.2.1.1 Ontology ... 18

2.2.1.2 Developing a Representation Scheme .. 19

2.2.1.3 Implementing a Reasoning method .. 22

ix

2.2.1.3.1 Linking the system modeling and the reasoning method: MagicDraw

openAPI plug-in ... 23

2.2.1.3.2 Rule-based expert system CLIPS ... 23

2.2.1.3.3 Assisted modularization using rule-based heuristics 26

2.2.2 Dependency Modeling ... 30

2.2.2.1 Modeling Using Meta-Dependencies Concept .. 30

2.2.2.2 Tagging elements with adverse effect dependencies ... 32

2.2.2.3 Automated Generation of the Dependency Matrix .. 32

2.2.3 Design Procedure summary ... 35

CHAPTER 3 CASE STUDY .. 37

3.1 Illustrating the principle ... 37

3.2 Quadrotor conceptual design .. 39

CHAPTER 4 CONCLUSION ... 53

BIBLIOGRAPHY ... 55

x

LIST OF TABLES

Table 1.1 Spatial adjacency (Pimmler & Eppinger, 1994) .. 13

Table 2.1 Functional basis set of functions and flows (Hirtz et al., 2002) 19

Table 3.1 Relevant Functions, Possible Adverse Effects, Alternative components 41

Table 3.2 Modules, problematic Adverse Effects, Solutions .. 47

xi

LIST OF FIGURES

Figure 1.1 Mechatronics Euler diagram (Alciatore, Histand et al. 2007) .. 1

Figure 1.2 Main stages of product design process ... 2

Figure 1.3 SysML as a common modeling language and mapping between different domains

(Shah, Kerzhner et al. 2010) ... 6

Figure 1.4 Functional Modeling (Stone, Wood et al. 2000) .. 8

Figure 1.5 Function behavior state (FBS) (Umeda, Tomiyama et al. 1995) 8

Figure 1.6 Graphical representation of a dependency .. 10

Figure 1.7 Analysis and synthesis properties and dependencies (Qamar, Paredis et al. 2012) 11

Figure 1.8 Task DSM (Braha 2002) ... 13

Figure 1.9 Example of a Multiple Domain Matrix (MDM) (http://www.plattformstrategie.de/) .. 15

Figure 2.1 Material, Energy, and Signal flow stereotypes ... 21

Figure 2.2 Function stereotype ... 21

Figure 2.3 Custom functional modeling diagram ... 21

Figure 2.4 Material flow hierarchical decomposition in SysML ... 22

Figure 2.5 Function hierarchical decomposition in SysML ... 22

Figure 2.6 Custom functional modeling diagram example .. 22

Figure 2.7 Functional modeling diagram representation in CLIPS ... 25

Figure 2.8 Exported functional diagram using CLIPS templates sample 26

Figure 2.9 Dominant flow module (Stone, Wood et al. 2000) ... 27

Figure 2.10 Branching flow module (Stone, Wood et al. 2000) .. 27

Figure 2.11 Conversion-transmission flow module (Stone, Wood et al. 2000) 28

Figure 2.12 Flow template with chain slot CLIPS .. 29

Figure 2.13 Chain template CLIPS .. 29

xii

Figure 2.14 Rule that identifies flows that branch CLIPS ... 30

Figure 2.15 Meta-dependency modeling .. 31

Figure 2.16 Meta-dependency elements ... 31

Figure 2.17 Affecter and affected meta-dependency tagging slots .. 32

Figure 2.18 Adverse effect dependency stereotype bloc .. 33

Figure 2.19 createDependency CLIPS rule .. 34

Figure 2.20 Design procedure flowchart .. 35

Figure 3.1 temperature regulator functional model .. 37

Figure 3.2 Electric field DSM and heat DSM of temperature regulator .. 38

Figure 3.3 Partial Quadrotor drone functional model .. 40

Figure 3.4 Chains of functions resulting from CLIPS ... 43

Figure 3.5 Chains of flows in SysML functional diagram ... 44

Figure 3.6 Preliminary modularization .. 45

Figure 3.7 Vibration DSM ... 46

Figure 3.8 Heat DSM ... 46

Figure 3.9 Electric field DSM .. 47

Figure 3.10 Power supply and Power Control modules .. 50

Figure 3.11 Quadrotor layout: bottom, top ,and side views ... 51

1

CHAPTER 1 INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction to mechatronics

Mechatronics is a multidisciplinary design process that covers a very wide spectrum of products

and industries ranging from fully automated manufacturing lines, biomedical devices, agricultural

equipment, aerospace, automotive, military defense systems, to various other consumer products.

Mechatronics relies on the synergic integration of mechanical, electrical, control and software

engineering to deliver simple products that outperform other products in terms of efficiency,

precision, cost and reliability. It not only improves the design of products, it also allows to create

new functions that were not possible before, such as active suspension and electronic stability in

the automotive industry and fly-by-wire in aeronautics (Jürgen Gausemeier & Moehringer, 2003).

Figure 1.1 Mechatronics Euler diagram (Alciatore, Histand, & Alciatore, 2007)

Figure 1.2. Illustrates general idea of how the design process of a mechatronic product is usually

carried out. The nomenclature and subsections can vary depending on the design methodology

and the industry in question. The process is divided in two main categories in terms of conceptual

2

and preliminary design followed by manufacturing and testing. In this master thesis we do not

consider the market aspect of the mechatronic products.

Figure 1.2 Main stages of product design process

Conceptual
and

preliminary design

• Customer needs gathering

• Feasibility study

• Generation of multiple concepts

• Requirements for potential solutions are derived and allocated to
design teams

• Functional analysis and system decomposition is made

• Concept evaluation and trade off studies are carried out to pick the
best design

• Development specifications are produced before passing to
detailed design

Detailed design
and

development

• Detailed design of system architecture

• Specification of interfaces between

• System and environment

• Subsystem and modules

• Detailed design and synthesis of parameters

• Integration of subsystems

• Development of prototypes

• Simulation or prototype testing

• Detailed design review

Manufacturing
and

testing

• Manufacturing and assembly according to requirements

• Operational testing and system verification

• Packaging and distribution

• Product design assessment

3

Creating development solutions for the design of mechatronic products is not an easy task. In

order to contribute to this field of research, it is important to identify and understand the

challenges faced in both academia and in the industry throughout the different stages of the

design process (Mohebbi, Achiche, Baron, & Birglen, 2014).

1.2 Summary of mechatronic design challenges

The multi-disciplinary nature of mechatronics makes the design process a complex activity where

designers from various backgrounds and work proficiencies have to cooperate closely to deliver a

functional and optimal product. Unfortunately, designers rarely have sufficient knowledge

outside their domain of expertise (Tomiyama, D’Amelio, Urbanic, & ElMaraghy, 2007) and are

usually not well trained to integrate their work with other disciplines. During creative meetings

they have difficulty sharing models and information, and often hesitate to communicate with one

another (Salminen & Verho, 1989) due to a lack of a common language among disciplines to

represent concepts (Albers et al., 2011). When looking at the system from a domain specific point

of view they interpret realities differently, make various assumptions about the product, and end

up forming their own mental model of the system (Danilovic & Browning, 2007). With this

mindset, it is difficult to understand the overall design, its goals and purposes, and it makes the

design process inefficient. Driven by professional loyalty, designers try to come up with solutions

or optimize the subsystems they are working on in ways they think are beneficial to the overall

system. However, a good mechatronic design is not always a combination of optimal subsystems

but a harmonious interaction of its subsystems. For example, a mechanical engineer might

optimize the drive train of a machine to minimize backlash, when this problem can be solved by a

control engineer using programmatic compensation. While both alternatives lead to the same

result, the mechanical solution increases design and manufacturing costs.

To succeed in an ever evolving market, a fast paced design process with a high degree of

innovation is required. During product development designers have to cope with modified

customer requirements, changes in regulations, advances in technology, etc. all while trying to

reduce the project lead time. Some of the major challenges faced during a design process of this

kind are synchronizing the design activities (Jurgen Gausemeier, Frank, Donoth, & Kahl, 2009)

4

and managing the dependencies that arise as a consequence of the interactions between the

different disciplines (J. M. Torry-Smith, Mortensen, & Achiche, 2014). Designers also face

difficulty in evaluating design concepts and assessing the consequences of selecting between

alternatives (Mohebbi et al., 2014; J. M. r. Torry-Smith et al., 2011).

1.2.1 Mechatronic design methods

A lot of research effort has been put recently in developing a reliable design methodology for

mechatronic systems, however, these endeavors have not completely reached their goal yet

(Blessing & Chakrabarti, 2009). A Traditional design method, or a sequential method, exhibits a

successive flow of activities where design tasks are separated in a manner that some parts use

information resulted by the design of previous parts (e.g. control engineers use physical

parameters provided by mechanical engineers to design a stabilization system) (Mohebbi et al.,

2014). In a concurrent design method, all phases of a product’s lifecycle are taken into

consideration during conceptual design and products are usually divided into single domain

subsystems that are designed simultaneously. To ensure consistency during assembly, special

attention is needed when designing the interfaces among the subsystems. Preferably, it is

important to focus on the interaction between the different engineering disciplines rather than

only on the subsystem interfaces (Wikander, Törngren, & Hanson, 2001). Sequential design does

not meet the requirements of today’s fast paced multidisciplinary product development. It lacks

the flexibility to deal with dynamic markets and is unsuitable for complex system integration,

which leads to increases in design cost and development time (Wang, Shen, Xie, Neelamkavil, &

Pardasani, 2002). Concurrent design is a means to reduce the project lead time and benefit from

the multidisciplinary design synergy (J. M. Torry-Smith et al., 2014). It allows designers, early in

the design process, to detect and deal with issues related to later stages of the design (Rzevski,

2003) which can also be used to manage the interactions between designers and their designs

(Mohebbi et al., 2014). Even though a concurrent design approach has desirable advantages, it

has been reported in the industry that traditional and sequential design methods are still being

used (Behbahani & De Silva, 2007) because there is still no formal and systematic approach that

promotes it. And that is due to the complexity of multidisciplinary systems, the difficulty in

5

synchronizing the development activities, and the lack of methods and tools to manage

dependencies that arise between subsystems and disciplines during design.

1.2.2 Tools, Support, and Integrated solutions for mechatronic design

To assist engineering designers during the development activity of mechatronics many solutions

have been proposed, and many have been implemented and are used in the industry. These

solutions range from design guidelines and frameworks to paper based tools and software (J. M.

Torry-Smith, Mortensen, Ploug, & Achiche, 2015). Advancements in computer and software

technologies to date have extremely facilitated engineering design. Providing computational

support early in the design process has a lot of benefits view that most "added value" to a product

is contributed during this phase (Starling & Shea, 2005). Contradictorily, most of the available

tools, such as CAD drawing tools, thermal simulation tools, computational fluid dynamics tools,

or control and instrumentation tools, only support later stages of design. When it comes to

conceptual design, designers use a variety of tools for organization activities such as managing

requirements, but there is still a lack of tools that support the design synthesis activity (Wölkl &

Shea, 2009). Translating customer requirements into functional requirements and developing

product architectures are important but difficult parts of conceptual design and there is ongoing

research in this field to provide computational support (Albers et al., 2011; Helms & Shea, 2012;

Komoto & Tomiyama, 2012).

As previously mentioned, the design of mechatronics greatly benefits from concurrent and

integrated design, where all phases of the design are considered starting from the beginning, and

all the domains involved cooperate simultaneously to the design activity. The same applies to the

software tools used to support design. Interoperable programs can exchange and share models

and coupled or linked tools communicate at runtime. A lot of frameworks have been developed to

automate model exchange between various tools. For example, SysML, a model based system

engineering language, was used to represent a common design model of a system (Shah,

Kerzhner, Schaefer, & Paredis, 2010). SysML is a powerful tool that allows designers to capture

requirements and to model the structure and behavior of a system. As shown in Figure 1.3, to

address issues associated with multi-view modeling, the common SysML model was used to map

6

models between domain specific tools and to represent the dependencies between them, thus

supporting designers throughout the design process.

Figure 1.3 SysML as a common modeling language and mapping between different domains

(Shah et al., 2010)

Integrated programs on the other hand allow the work in different domains and at various design

phases within the same tool (Mohebbi et al., 2014). For example, a lot of mechanical CAD tools

incorporate tools from other domains such as electronics and control modeling into their

software. While design frameworks and integrated tools are desirable, even with the considerable

research being conducted there are sill a number of challenges to be addressed before tools will

allow efficient integration and use of multidisciplinary tools and data. Some of the major

challenges are developing a single language that can effectively capture all the needed

information in multi-disciplinary design, and ensuring consistency between the models of the

various domain specific tools (Shah et al., 2010).

7

1.3 Functional modeling

Designers map ideas they conceive to a semantic domain they understand. They represent

concepts by drawing sketches, graphs, and diagrams to facilitate sharing and explanation of

thoughts between team members. Functional modeling allows modeling at an abstract level and

can be used by designers of various expertise as a common language to communicate ideas

during conceptual design. By breaking down the overall system into small easy to solve sub-

functions, they can easily concretize requirement specifications into product concepts. (Eisenbart,

Blessing, & Gericke, 2012).

The definition of function in the literature varies a lot depending on the field of study (Far &

Elamy, 2005). When it comes to engineering design there are multiple definitions that can be put

into two categories. Some definitions emphasize that for a function to be fulfilled a

transformation has to take place, whereas others state that a goal or a requirement has to be

achieved (Crilly, 2010), namely transformation functions and purpose functions.

When modeling a product, different designers tend to generate distinct functional models. To

help make the design task more consistent, and get repeatable and meaningful models from such

a representation, a formal function representation is needed. A lot of efforts, such as NIST

(Szykman, Racz, & Sriram, 1999) and TIPS (Altshuller, 1984), have been made to provide a

functional vocabulary to model engineering systems. The functional basis for design reconciles

and integrates these two efforts into a more evolved modeling language (Hirtz, Stone, McAdams,

Szykman, & Wood, 2002). It consists of a standardized set of functions and flows where

transformation functions are characterized by input/output relations in the form of verb-noun

pairs (function-flow pairs). Functions can be connected by flows of material, energy, or signal to

form a functional diagram that abstractly describes the product. Using a standardized set of

functions and flows not only reduces ambiguity and ensures consistency; it forms a formal

language that can be analyzed by algorithms and rules, thus it provides a strong foundation for

computational support.

8

Figure 1.4 Functional Modeling (Stone, Wood, & Crawford, 2000)

Another research effort, the function-behavior-state (FBS) (Umeda, Tomiyama, & Yoshikawa,

1995), a modeling scheme of function for conceptual design, states that transformation functions

do not provide enough flexibility for designers to model without reference to behavior and

structure. Purpose functions are used instead, and are defined as human intentions. These

functions are then associated with behaviors which are a more objective representation of the

design based on physical principles.

Figure 1.5 Function behavior state (FBS) (Umeda et al., 1995)

9

Functional modeling also acts indirectly as a design scheme that guides design activities such as

decomposing problems, generating concepts, and creating product architectures (Hirtz et al.,

2002). To allow modular design to be carried on earlier in the product development, heuristics

were developed to search for and identify chains of functions in a functional diagram (Stone et

al., 2000). A chain of functions is a group of functions that are aggregated based on the type of

transformations that occur to the flows that go through them. Chains, also called modules, can

either be replaced by existing components that fulfill their task or labeled as parts of the product

that need to be designed. This helps dividing the design activity and assigning tasks to teams

starting from conceptual design.

Functional modeling acts as a bridge between human intentions and the physical structure and

behavior of a product (Umeda et al., 1995). When used in conjunctions with artificial

intelligence techniques, smart modeling tools can be created to assist designers in product

development related activities. The research field that relates these two fields is called functional

reasoning (Chandrasekaran, 1994). There are three aspects to a functional reasoning framework,

an ontology, a representation scheme, and a reasoning method (Far & Elamy, 2005). Ontology is

defined as “a formal, explicit specification of shared conceptualization.” (Studer, Benjamins, &

Fensel, 1998). For example, the functional basis for design (Hirtz et al., 2002), previously

presented, is an ontology that describes the function modeling domain and the entities in it. The

representation scheme models the entities of the ontology and the relations between them, such as

their hierarchical decomposition. The reasoning method infers and explains how the entities

function. A functional reasoning system can be used for planning, conceptualization, or

explanation purposes, by applying various artificial intelligence techniques such as heuristic

search, exploration and exploitation, pattern matching, and clustering (Erden et al., 2008).

A substantial amount of work has been put in this field of research. For example, an automated

modularization scheme was developed by using functional reasoning (Van Beek, Erden, &

Tomiyama, 2010). The function behavior state was used to model the system and derive

relationships between functions, an adapted k-means clustering algorithm was then used to group

related functions together to better assign design activities and visualize dependencies in the

system.

Another example that applies exploration and exploitation, automates the synthesis of product

architectures (Helms & Shea, 2012). A function behavior structure is used to model a system and

10

then, using object oriented graph grammars, various combinations components that can achieve

the desired functionality are generated.

1.4 Dependencies in mechatronics (multi-domain) systems

1.4.1 Dependency definition, characteristics, and classification

In business, a dependency is defined as “Relationship between conditions, events, or tasks such

that one cannot begin or be-completed until one or more other conditions, events, or tasks have

occurred, begun, or completed.” (BusinessDictionary.com). When it comes to multidisciplinary

engineering design there is no clear definition of dependency. In most relevant research, the

definition is taken for granted and it is often hard to distinguish between dependency and the

particular domain of interest. There have been very few attempts to formalize and describe the

distinctive natures of dependencies, most of those attempts are applied in computer science. A

generalized definition of dependency is a relationship between two entities, where a change of

state in one entity leads to a change of state in the other entity (Cox, Delugach, & Skipper, 2001).

As shown in Figure 1.6, in a dependency d (A, B) between two entities A and B, where A

depends on B, the entity A is referred to as the dependent and the entity B is referred to as the

antecedent.

Figure 1.6 Graphical representation of a dependency

Dependencies were assigned the following 6 attributes to facilitate their classification and

grouping (Keller, Blumenthal, & Kar, 2000). Domain, strength, type, activity, formalization,

and criticality. Each attribute can take different discrete values, and dependencies that have

similar attributes can be grouped together. Strength for example, expresses how strongly the

dependent depends on the antecedent, it can take the 3 following values, mandatory, optional,

and none.

11

A different approach (Qamar, Paredis, Wikander, & During, 2012) proposes taking into account

the synthesis and analysis nature of properties and dependencies. Synthesis properties (SPs) are

used to define system alternatives whereas analysis properties (APs) are used to constitute

predictions rather than specifications of the system alternatives. For example, a designer defines

the geometry of a part which is a synthesis property and predicts its cost or weight which are

analysis properties. A dependency here is defined as a relationship between two properties, where

the value of a property depends mathematically on the value of another property. A synthesis

dependency reflects choices made by a designers and always results in a synthesis property. For

example, a synthesis property can be heuristics for choosing controller gains. Analysis

dependencies on the other hand, are relationships between a set of analysis and synthesis

properties and are used to derive new analytical properties. An example of an analysis

dependency is the prediction of the settling time of a system due to chosen controller gains and

other properties such as the mass.

Figure 1.7 Analysis and synthesis properties and dependencies

(Qamar et al., 2012)

The most recent state of the art on dependencies in multi-domain systems is a proposal that

classifies product related dependencies during design of mechatronics (J. M. Torry-Smith et al.,

2014). By studying and investigating three mechatronic projects, 13 types of dependencies were

identified. These dependencies can occur between the following attributes of a product:

Functions, means, and properties. For example, a type of dependency between two functions, can

be a “sync function” and is defined as a dynamic relation between functions where the timing of

the initiation or ending of the concurrently executed functions. Another type of dependency

12

between a function and a means is an adverse effect, an undesired effect generated by a

component and affects another component. For example, electromagnetic waves generated by a

motor affect the function of an LCD screen. More information on the following types of

dependencies can be found in (J. M. Torry-Smith et al., 2014): Causal function, state/time

function, response function, Fu-M disposition, cumulative Fu-M, property scheme,

multidisciplinary means, volume allocation physical, liveliness, physical interface,

communication interface.

1.4.2 Common dependency management tools

Matrix based complexity management tools are the most common way of handling dependencies.

Since its introduction in the early 80ies, the Design Structure Matrix (DSM) has been widely

taken up in research (Kortler & Lindemann, 2011). The DSM, also referred to as dependency

structure matrix, is a square matrix that provides a compact visual representation of

dependencies. Elements in a DSM belong to the same domain (components, requirements,

tasks…) and are identical on both axes. Dependencies are filled in the matrix cells and should be

of the same type, semantically and quantitatively. For example, in Figure 1.8, binary entries in

the DSM show tasks that satisfy the same requirements (Braha, 2002), by visually aggregating

related tasks and optimally assigning them to working teams the cost and length of product

development can be kept at a minimum. In another application, a DSM was used to visualize

spatial dependencies between components by mapping them in terms of physical adjacency

(Pimmler & Eppinger, 1994). To better express these dependencies, entries in the DSM are

numerical instead of binary and range from -2 to 2 as shown in Table 1.1.

13

Figure 1.8 Task DSM (Braha, 2002)

Table 1.1 Spatial adjacency (Pimmler & Eppinger, 1994)

Required +2 Physical adjacency is necessary for functionality

Desired +1 Physical adjacency is beneficial but no necessary for functionality

Indifferent 0 Physical adjacency does not affect functionality

Undesired -1 Physical adjacency causes negative effects but does not prevent

functionality

Detrimental -2 Physical adjacency must be prevented to achieve functionality

DSMs were extended to Domain Mapping Matrices (DMMs) to include elements from two

different domains. DMMs are usually rectangular, and elements from each of the domains are

respectively placed either along the vertical axis and the horizontal axis or vice versa. In the work

presented by (Danilovic & Browning, 2007), an aircraft design was undergoing a large number of

technical upgrades which were based on multiple business deals with various clients; the project

14

was also divided into functional elements for final system approval and certification (landing gear

and breaking system, secondary power system…). Here, a DSM was used to visualize and group

related business deals into sub-projects and assign them to different teams. However, with

configuration, many designers had to work separately on different business deals that are highly

interdependent on the functional level. These dependencies and their degree of interaction (the

extent to which the antecedent affects the dependent) were identified and entered in DMM that

maps business deals against the elements of the functional organization. By rearranging columns

in the DMM, dependencies were clustered to identify sub-projects (group of business deals) that

require a high level of coordination and integration.

Managing dependencies in mechatronic systems is a complex procedure that requires modeling

multiple domains while viewing various dependency types. These requirements can be met by the

Multiple Domain Matrix (MDM), a square matrix that has system elements in exact order on both

axes. It is comparable to a DSM except that it can include elements of different types that are

grouped into domains on each axis. As shown in Figure 1.9, the resulting MDM is formed out of

smaller matrices with DSMs on the diagonal and DMMs elsewhere. Different types of

dependencies can be used individually in each sub matrix, therefore MDMs can include all

possible combinations of domains and dependency types that can be viewed individually in its

DSMs and DMMs. This makes it easier for designers to understand the relationships between

elements and apply various analysis methods, such as clustering, separately on each one of the

sub-matrices.

15

Figure 1.9 Example of a Multiple Domain Matrix (MDM) (http://www.plattformstrategie.de/)

One of many applications where MDMs are used, is the analysis of multiple architectures of a

BMW hybrid electric vehicle (Gorbea, Spielmannleitner, Lindemann, & Fricke, 2008). Data were

collected through meetings with engineering domain experts and dependencies between and

amongst the functional and component domain were used to build the MDM model. ΔMDMS

and ΣMDMs, respectively MDM matrix subtraction and matrix addition, where used to compare

and highlight the differences between individual architectures of the hybrid electric vehicle.

Given that entries in the MDMs are either 0 or 1, a ΔMDM results in a matrix that has 0s where

no differences are present and 1s/-1s where dependencies are present in only the first/second

MDM. ΣMDM on the other hand provides another kind of information, for example, by looking

at the component/function DMM in the ΣMDM of all MDMs (sum of all matrices) one can see

the different components that can fulfill a function. This kind of information is very valuable for

automation of design, it can be used to compile a repository of components with information on

which functions they can fulfil and to which degree (how often).

One of the difficulties that limit the use of matrix based complexity management tools is he

complexity and the cost in time of information acquisition. In the previously presented examples,

most of the work done using DSMs was applied to designs of existing products, and the

16

researchers relied on meetings with experts to get information on dependencies between elements

in the matrices. When developing new products there is usually a lack of existing documentation,

acquiring information to use in DSMs requires time consuming interviews (Lindemann, Maurer,

& Braun, 2008). Another difficulty is the manual filling of dependencies in matrices, this activity

is also time consuming and highly error prone. These issues are addressed in (Van Beek et al.,

2010) and overcame by automatically extracting information on dependencies from the function-

behavior-state model and filling them in the matrices. There is also ongoing research to develop

clustering algorithms and methods (Hölttä-Otto, Tang, & Otto, 2008; Zakarian, 2008) for

complexity management tools, because to get meaningful information from DSMs and

understand it, designers rely heavily on rearranging and grouping dependencies in the matrices.

17

CHAPTER 2 RESEARCH FRAMEWORK

2.1 Challenges addressed and Objective

The main challenges in multi-disciplinary design have been identified in the literature review, the

research carried out in this master thesis addresses difficulties faced during preliminary phases of

design. By studying other academic efforts, it was revealed that there is a strong need for a design

framework for preliminary design complemented by a computational support tool that integrates

the conceptual model of mechatronic products with software used at later stages of design, such

as CAD and other domain specific tools. As previously mentioned, nowadays’ markets are

constantly evolving, new competitive products are rolled out, new regulations are put in place,

new technologies are developed, and so on. To meet the changes in requirements without much

increasing the project lead time, the design framework and support tool should be flexible enough

to allow changes to the design with minimum efforts from designers. The major difficulties that

arise when modifying a design are the ability to determine the consequences that result because

of those changes, assessing the effects of choosing between alternatives, and evaluating the

design concept.

Dealing with these difficulties requires strong communication between the various disciplines

and management of dependencies. Advancements in matrix based dependency management tools

have come a long way, their limitations do not lie in the tools themselves but in the difficulty

acquiring information about dependencies and modeling them. In the preliminary phases of

design, the product concept is not very well defined yet and most of the underlying dependencies

are only known at a coarse grain level in the designers' mind (Qamar et al., 2012). As the number

of component in a system increases, the number of dependencies increases exponentially.

Modeling them often proves to be quite time consuming, and shifts the designers’ attention away

from solution finding. Often these dependencies are left unattended, only to reappear at later

stages of design and cause integration problems which require costly design iterations to fix.

The work in this research proposes a design methodology using a functional reasoning

framework and a new way to model dependencies during conceptual design. The aim is to

provide a dynamic modeling tool that allows designers to focus on solution finding, and a

18

methodical acquisition and representation scheme of dependencies that encourages designers not

to ignore pertinent information and boosts the synthesis activity.

This master thesis is framed by the following research questions: Can a functional reasoning

framework act as a common language understood among designers and improve collaboration?

Of this research question stems the following sub-questions: Can the project lead time be reduced

by capturing and managing abstract dependencies during conceptual design? Will it help

designers better integrate work from various domains to avoid design iterations?

2.2 Proposed framework and dependency modeling

2.2.1 Functional Reasoning Framework

In this section, we will introduce the functional reasoning framework that was used in order to

describe the product flow and help highlight the dependencies.

2.2.1.1 Ontology

The term ontology has its roots in philosophy where it is defined as a systematic account of

existence. In engineering, ontology is an explicit specification of conceptualisation (Gruber,

1993). It is a set of objects and relationships among them that are used to represent knowledge in

a domain, this set forms a primitive vocabulary for knowledge based systems (Kitamura, Ikeda,

& Mizoguchi, 1997) such as the reasoning method presented in the next sections. Flexibility and

formality are two qualities of ontology that often have a negative correlation. For example,

representing functions as a finite number of types lacks flexibility and does not allow designers to

cover all possible functionalities (Erden et al., 2008). However, such a representation provides a

formal vocabulary that can be easily computationally searched and analyzed.

The functional basis for design presented in the literature review will be used as an ontology in

this functional framework, it is a comprehensive list of function-flow that can be used to model

multi-domain systems. The set of functions and flows are shown in Table 2.1. Such a formal

representation allows repeatable and meaningful results from modeling and is meant for use in

19

design repositories, product architecture, and design synthesis (Hirtz et al., 2002). The functional

basis for design has its limitations and advantages, the aim here is to develop a functional

reasoning framework that serves as a proof of concept and a structure for the dependency

modeling method proposed in the next sections.

Table 2.1 Functional basis set of functions and flows (Hirtz et al., 2002)

Functions Flows

Primary Secondary Primary Secondary

Channel Distribute, Import,

Export, Transfer,

Guide

Material Human, Gas, Liquid,

Solid, Plasma, Mixture

Connect Couple, Mix Signal Status, Control (Analog,

discrete)
Control Actuate, Regulate,

Change, Stop

Convert -- Energy Human, Acoustic,

Biological, Chemical,

Electrical,

Electromagnetic,

Hydraulic, Magnetic,

Mechanical, Pneumatic,

Radioactive/Nuclear,

Thermal

Provision Store, Supply

Signal Sense, Indicate,

Process

Support Stabilize, Secure,

Position

2.2.1.2 Developing a Representation Scheme

The scope of this research is to support designers with concept generation and dependency

management, however the farfetched ultimate goal is to provide a tool that allows concurrent and

integrated design throughout the design process. SysML, defined in italic below, is a very

20

powerful language that can, with modifications, fulfill this task and act as a representation

scheme for the functional basis for design. Also, SysML has already been used as a common

modeling language to map between various domain specific tools as shown in Figure 1.3 (Shah et

al., 2010).

“SysML is a general-purpose graphical modeling language that supports the analysis,

specification, design, verification, and validation of complex systems. These systems may include

hardware and equipment, software, data, personnel, procedures, facilities, and other elements of

human made and natural systems. The language is intended to help specify and architect systems

and to specify components that can then be designed using other domain-specific languages, such

as UML for software design, VHDL for electrical design, and three-dimensional geometric

modeling for mechanical design. SysML is intended to facilitate the application of an MBSE

approach to create a cohesive and consistent model of the system.” (Friedenthal, Moore, &

Steiner, 2014).

SysML is decomposed into meta-classes that are used to illustrate concepts in the modeling

domain. It uses stereotypes to support domain specific modeling, they are mechanisms that allow

customization of the meta-classes to suit the designers’ needs. To speed up modeling, SysML

also supports the creation of model libraries, collections of reusable elements that can be defined

by a system modeller.

There are multiple tools in the market that support the modeling language SysML. MagicDraw,

the multi award-winning UML business process, architecture, software and system modeling tool

with teamwork support, is used here due to the availability of an OpenAPI that facilitates

integrating a reasoning method to the functional framework.

To create a representation scheme and provide a computational tool to use for functional

modeling, the customization capabilities of SysML were used in this master thesis to create a

custom functional modeling diagram and a model library of the set of functions and flows

presented in the functional basis for design.

The material, energy, and signal flow stereotypes shown in Figure 2.1 extend the activity

parameter node, object flow, and class meta-classes, while the function stereotype in Figure 2.2

extends the meta-class call behavior action. This represents one of the original contributions of

the work presented in this master thesis and will be further explained in the following sections.

21

Figure 2.1 Material, Energy, and Signal flow stereotypes

Figure 2.2 Function stereotype

The meta-classes activity parameter node, object flow, and call behavior action in SysML are

used in activity diagrams. Extending these stereotypes allows the creation of a custom functional

modeling diagram and a user interface in MagicDraw as show in Figure 2.3.

Figure 2.3 Custom functional modeling diagram

Figure 2.4 and Figure 2.5 show the functional basis for design libraries. A hierarchical

decomposition was achieved using the generalization path symbol which indicates for example

that a particulate flow is a solid flow, which is also a material flow. The hierarchy allows

flexible modeling, where a more specific flow can be connected to a more abstract port. For

example, a gas-liquid flow can be connected to a to mixture port, but not vice versa. It also allows

22

writing algorithms and rules at different levels of abstraction which will be elaborated in the next

section.

Figure 2.4 Material flow hierarchical decomposition in SysML

Figure 2.5 Function hierarchical decomposition in SysML

Figure 2.6 shows a part of the functional diagram found in Figure 1.4 modeled in MagicDraw

using the custom functional diagram and the functional basis libraries.

Figure 2.6 Custom functional modeling diagram example

2.2.1.3 Implementing a Reasoning method

This section is divided into three parts. The first two parts explain how the MagicDraw openAPI

and the rule based expert system “CLIPS” were used to develop and implement the reasoning

method, and how they can infer information from the functional modeling diagram to support the

23

engineering designers in planning and conceptualization. The third part illustrates an example

where possible heuristics followed by designers were integrated into the reasoning method to

automatically modularize the functional model.

2.2.1.3.1 Linking the system modeling and the reasoning method: MagicDraw openAPI plug-in

The openAPI supports the modification of Magic Draw’s functionality through the creation of

plug-ins. After customizing SysML to support functional modeling using the functional basis for

design, a plug-in was developed using JAVA to check the functional diagrams for consistency at

the representation level and report it back to the designer. For example, the plug-in would check

for things like: ports that are not connected to a flow, types of flows that do not match, a “branch”

function that does not split the incoming flow into 2 outgoing flows, ... If the functional diagram

is proved to be complete/consistent, the plug-in was coded to proceed and extract relevant

information from the functional diagram and export it in a more simplified format that will be

used by the rule based expert system (CLIPS) and explained in the next section.

This automated approach reduces the burden on the engineers as it helps them carryout a very

high-level of consistency check-up in their models in a very effective, systematic, and automated

manner. It is worth noting that from now on, in this master thesis, the MagicDraw openAPI plug-

in will be referred to as MagicDraw plug-in.

2.2.1.3.2 Rule-based expert system CLIPS

Expert systems are computer programs where the knowledge and the reasoning process of human

experts are codified in an attempt to mimic their decision making skills. Rule-based expert

systems are usually composed of these main components: an interaction mechanism, a

knowledge base, and an inference engine. Rule-based expert systems are used in various

engineering domains (Achiche, Appio, McAloone, & Di Minin, 2012; Achiche, Baron,

Balazinski, & Benaoudia, 2007; Ren, Balazinski, Jemielniak, Baron, & Achiche, 2013)

The interaction mechanism can be either a user interface that the expert system uses to interact

with a user or an integration platform that allows it to interact with other computer applications.

24

The knowledge base contains a set of rules that are coded to encapsulate information acquired

from human experts. Rules are written in an If A Then B format, where A is called the antecedent

and B is called the consequent. When the antecedent of a rule is matched to data in the working

memory, data usually provided by the interaction mechanism, the rule is said to be satisfied and

can be triggered to perform the action stored in its consequent. Actions could be anything from

modifying data in the working memory, storing new information for other rules to use, to

reporting back to the interaction mechanism.

The inference engine is the main processing unit of an expert system, it manages the rules that

are satisfied and choses in which order to trigger them based on priorities set in the code and the

followed search strategy.

CLIPS, an acronym for C Language Integrated Production System, is an expert system tool

developed by NASA and released in 1986, and will be used for reasoning in the functional

framework. As previously mentioned, the MagicDraw plug-in was used to extract relevant

information from the functional diagram and export it to the working memory of CLIPS. The

functional modeling diagram in CLIPS is represented using the templates shown in Figure 2.7

and developed in this research work. Input and output templates define the elements that are on

the boundary of the functional diagram.

 All elements in a SysML diagram have an unique identifier. To have an exchangeable model

between MagicDraw and CLIPS, the slot “id” was added to all templates of the CLIPS

representation and is used to store the unique identifier.

The slot “name” is not needed for computational purposes and is there only to facilitate

debugging and explanation.

The slot “type” is used to indicate the category of the function or flow found in the functional

basis for design set.

25

Figure 2.7 Functional modeling diagram representation in CLIPS

The slots “source-id” and “destination-id” store the unique identifiers of the functions to which a

flow is connected. Figure 2.8 shows a sample of how the functional diagram template

representation is written when exported by the plug-in to CLIPS.

Since the ontology and the representation scheme are hierarchically structured, rules can be

written to reason at various levels of abstraction. Rules can be used for various goals such as

pattern matching and component selection, heuristic search, clustering … The next section

illustrates the implementation of heuristic search on the functional diagram in CLIPS to identify

modules of functions. An example of a rule is shown in Figure 2.14.

26

Figure 2.8 Exported functional diagram using CLIPS templates sample

2.2.1.3.3 Assisted modularization using rule-based heuristics

As previously mentioned in the literature review, functional modeling acts indirectly as a design

scheme that guides designers in activities such as decomposing problems, generating concepts

and creating product architectures (Hirtz et al., 2002). To allow modular design to be carried on

earlier in the product development phase, three heuristic methods for identifying modules in a

functional diagram were developed. The efficacy of these methods was confirmed and verified by

applying them on a database of 70 consumer products (Stone et al., 2000).

In the work presented here, we aim to support engineering designers in modularising functional

models. Before explaining how these heuristics are translated, in this work, to be used as

embedded rules in CLIPS, they are presented below, each with a corresponding figure that

illustrates it.

27

The Dominant flow heuristic, as shown in Figure 2.9, defines a module as a set of sub-functions

which a flow passes through, from entry or initiation of the flow in the system to exit from the

system or conversion of the flow within the system.

Figure 2.9 Dominant flow module (Stone et al., 2000)

The Branching flow heuristic, as shown in Figure 2.10, defines modules as the limbs of a

parallel function chain. Each of the modules interface with the remainder of the product through

the flow at the branch point.

Figure 2.10 Branching flow module (Stone et al., 2000)

28

The Conversion-transmission flow heuristic, as shown in Figure 2.11, defines a module as a

conversion sub-function or a conversion—transmission pair or proper chain of sub-functions.

Figure 2.11 Conversion-transmission flow module (Stone et al., 2000)

Creating chains of functions by coding the heuristics at a high level of abstraction is very difficult

if not impossible. Getting more information from the designing user about the functional

diagram, such as to which flow each of the functions are applied, hinders the dynamic modeling

capacity of the modeling tool, one of the main goals of this research master thesis.

Instead of identifying chains of functions, rules that identify chains of flows are coded. The

results are then presented to assist the designing user modularize the functional diagram. If the

diagram has a simple layout, the chains of flows will always correspond to the expected chains of

functions. When the diagram is more complex, such as having multiple flows passing through

functions, the user can be given the choice to select the resulting chains of flows that are

pertinent. All the flows in a chain that is selected are marked as “primary flows” and the

functions that they pass through are grouped to create a module. This method facilitates

information acquisition about primary flows in the diagram and assists the designer in identifying

modules faster.

29

The following logic was coded into CLIPS and is centered around the functional modeling

representation defined in the templates above. To note, due to time limitation, but not technical,

only the flow chain identification was coded and tested, but not integrated into MagicDraw.

First, a new slot “chain” was added to the flow template, and a new “chain” template was created

as shown in Figure 2.12 and Figure 2.13. The slot “chain” is an integer, its default value is 0, and

it is used as a flag that indicates if a flow was added to a chain or not. The template chain, has a

multi-slot “flow-ids” where the unique identifiers of the flows that belong to it can be added.

Figure 2.12 Flow template with chain slot CLIPS

Figure 2.13 Chain template CLIPS

As previously mentioned, the inference engine in an expert system decides in which order

satisfied rules can be executed. CLIPS allows giving priority to some satisfied rules to be

executed before other using “salience”. Salience can be added to the definition of a rule and can

take values up to 99, rules with higher salience have higher priority.

30

To identify chains of flows, two types of rules are coded, ones that identify a starting point of a

chain (a starting flow) and ones that propagate from the starting points adding flows to each chain

until it they can no longer be satisfied. Rules that identify starting points have a higher priority to

be triggered and identify these types of flows: input flows, flows that branch, flows that merge.

Figure 2.14 shows an example of a rule that labels a branch of a flow as a starting point of a new

chain. Section 4 shows an example where assisted modularization is used.

Figure 2.14 Rule that identifies flows that branch CLIPS

2.2.2 Dependency Modeling

This section proposes a methodical acquisition and representation scheme of dependencies that

encourages designers not to ignore pertinent information and boosts the synthesis activity. During

preliminary phases of design there is a lot of non-quantified abstract information that needs to be

modeled, the following method aims to help experts concretize their knowledge on dependencies

in multi-domain systems.

2.2.2.1 Modeling Using Meta-Dependencies Concept

Modeling dependencies using common graphical methods, such as shown in Figure 1.6, requires

building relationships between each and every single element in the system. As the number of

elements in a system increases, the number of dependencies increases exponentially, and

31

managing these dependencies becomes costly and time consuming if not impossible, specially

when doing design modifications.

Instead of building relationships between all dependent elements, we propose the concept of

meta-dependencies such as shown in Figure 2.15, where a dependency is defined as a relationship

between an element (function, module, component, …) and a meta-dependency. Similarly to the

graphical dependency shown in Figure 1.6, the elements E1 and E2 in Figure 2.16 are considered

dependent and antecedent elements respectively and the potential relationship dependency

between them is shown in dashed lines.

Early in the design process, dependencies tend to be too abstract to be easily represented and their

existence is often uncertain. Since several elements share the same type of dependency, using a

meta-dependency modeling scheme allows grouping these related dependencies under the same

model. Therefore, this helps reduce the number of relationships to be created, and encourages

implicit acquisition of abstract information during design activities.

Figure 2.15 Meta-dependency modeling

Figure 2.16 Meta-dependency elements

32

2.2.2.2 Tagging elements with adverse effect dependencies

To use a meta-dependency modeling scheme, the dependency at hand should be shared among

several elements in the system. Adverse effects for example, are undesired effects such as heat,

vibration, and electromagnetic waves, that are generated by one element and affect the

functionality of other elements in the system. Adverse effects are one of many types of

dependencies that can be modeled using the meta-dependency modeling scheme and will be used

as an illustration in the rest of this research.

To reduce the graphical clutter and make the design process more dynamic, instead of building

relationships with a meta-dependency we propose to tag elements with adverse effects. Using

SysML’s customization mechanism two new property slots were added to the function

stereotype, affecter and affected as shown in Figure 2.17. These slots can take as values adverse

effects that are defined by the designer. When the slot affecter is tagged by an adverse effect, it

implies that the function can generate such an undesired effect and that it has an antecedent

relationship with this meta-dependency. When the slot affected is tagged, it implies that this

function’s performance can be hindered by this adverse effect and that it has a dependent

relationship with it.

Figure 2.17 Affecter and affected meta-dependency tagging slots

2.2.2.3 Automated Generation of the Dependency Matrix

As cited above, dependency structure matrices (DSMs) offer designers an overview of the system

at hand and the relationships between its elements but are quite complex and time consuming to

generate manually by engineers. By using the meta-dependency modeling scheme, DSMs can be

automatically generated, thus freeing designers from filling them which saves them time and

reduces possible human induced errors.

33

To achieve this, SysML’s customization mechanism, the functional reasoning expert system, and

the MagicDraw plug-in were used in this master thesis.

As shown in Figure 2.18, the dependency relationship in SysML was extended to create adverse

effects using a stereotype.

Figure 2.18 Adverse effect dependency stereotype bloc

Two multi-slots for the attributes Affecter and Affected were added to the function template in

the CLIPS knowledge base. Then new rules were developed and then embedded to create an

adverse effect dependency between functions that affect each other. An example of a rule is show

in Figure 2.19 and explained in italic below, more complex rules can be written to derive

dependencies by taking multiple factors into account and will be further discussed in the future

work section.

If Function1 is affected by AdverseEffectA

 & Function2 is an affecter of AdverseEffectA

 Then a Dependency of type AdverseEffectA will be created

 with dependent Function1 and antecedent Function2

34

Figure 2.19 createDependency CLIPS rule

The openAPI was then used to import the dependencies from the CLIPS generated file and create

adverse effect dependencies between the two functions in the SysML model; and then create a

DSM for each type of adverse effect to present them to the designer user. Section 4.1, Illustrating

the principle, shows a design process example where multiple DSMs are created.

35

2.2.3 Design Procedure summary

Figure 2.20 Design procedure flowchart

36

Figure 2.20 sums up the design procedure and methodology that should be followed while using

the developed design support tool in this master thesis. Engineering designers start the

conceptualization of a mechatronic product by gathering customer needs and deriving

requirements and then they proceed by translating these requirements into a functional model of

the product. Here designers are required to simultaneously identify adverse effects that can

possibly affect or be generated by the various functions and tag them appropriately.

To identify the product architecture, designers are required to use the assisted modularization to

help them apply the heuristics and identify modules. They should also inspect the automatically

generated dependency matrices to identify problematic functions or modules, identify important

dependencies that should be expressed in more detail or be added to the evaluation criteria of the

product.

While generating modular concepts, designers should take account of all the problematic

dependencies. The easiest way to avoid some adverse effect dependencies is to choose

compatible components in a system, however sometimes they can be avoided by creating new

creative modules and changing the physical allocation of some components. If no solution can be

easily implemented sometimes it is better to derive a new functional model of the product.

The following section will illustrate how this design method and the support tool can be used in

two concrete examples.

37

CHAPTER 3 CASE STUDY

3.1 Illustrating the principle

In order to illustrate the developed design support tool, a small example of a design of a

mechatronic device that regulates the temperature of water by mixing a cold flow with a hot flow

will be used. Figure 3.1 shows a simplified functional diagram of the device, it is an abstract

model of the concept and can be transformed into various working physical models.

Figure 3.1 Temperature regulator functional model

 Many components, such as a proportional solenoid valve or a motorized valve, can fulfill the

function "regulate hot flow", It is up to the designer to decide which one suits the application

better. However, while one component might perform better than another, it might hinder the

overall performance of the device.

Functions are tagged by effects capable of impairing their intended behavior, as well as effects

they might generate. Dependencies between functions are then automatically generated by the

MagicDraw plug-in and presented in design structure matrices as shown in Figure 3.2.

38

Electric Fields DSM

Heat DSM

Figure 3.2 Electric field DSM and heat DSM of temperature regulator

Solenoid valves generate electric/magnetic fields when activated, and a lot of heat when

operating continuously, these two undesired adverse effects can cause other components such as

the temperature sensor and the control circuit to malfunction. This creates dependencies between

them. Requirements come into play when trying to find the best solution and the designer needs

to answer several questions such as:

 Is there a device size limit?

 How far from the valves can the temperature sensor be positioned?

 What's the required temperature accuracy?

 Can a less accurate sensor that is not affected by electric fields be used?

 For how long will the solenoids operate?

 Is heat management required?

 Is it enough to insulate the electric circuit?

 Or is a heat dissipation device required?

 Which one of these possible solutions is cheaper to produce?

 Etc.

All these questions were derived out of two adverse effect dependencies between three

components. If left unaddressed, they might reappear at some point during the detailed design

39

phase or cause functional problems after production, which will require costly design feedback

iterations in order to fix them.

However, one can argue that, for a simple system as the one presented above, one does not

necessarily need a design support since the adverse effects dependencies can be easily found by

the engineering designers. Therefore, in order to better illustrate the developed design support

tool, it will be applied to a more complex mechatronic system such as a quadrotor drone.

3.2 Quadrotor conceptual design

A quadrotor is a highly complex system to design, it involves various engineering domains that

affect each other such as aerodynamics, mechanics, control, and intelligence (Mohebbi, Achiche,

& Baron, 2015). Integrating various sensors, actuators, a power supply, and other components

into a lightweight flying system that can operate for a relatively long period is not an easy task

and requires a well-defined methodology.

In order to validate the conceptual design framework developed in chapter 3, it was applied on a

conceptual design task of a quadrotor while taking into account adverse effect of complex

dependencies. Nowadays, quadrotor drones are considered as mature products; their design went

through much iteration and has been largely optimised. The experience acquired over the time by

designers is very well documented in the literature, on online websites, and hobbyist forums

[1][2]. This well documented information was surveyed in this research to find the various

possible component alternatives that can fulfill the desired functionality of a quadrotor drone, and

to identify the typical design problems faced by engineers during development that are related to

adverse effect dependencies.

Figure 3.3 shows the developed functional model of the quadrotor, the structure is considered

rigid and symmetric, thus only one of the four symmetric ends of the quadrotor was modeled.

[1]http://copter.ardupilot.com/wiki/common-vibration-damping/

[2]http://dronespeak.com/article-topics/uas-potential-topics/electromagnetic-radio-frequency-emission-

interference-reduction/

http://copter.ardupilot.com/wiki/common-vibration-damping/

40

Figure 3.3 Partial Quadrotor drone functional model

41

The main flows that go in and out of the black box system representing the drone are:

- Energy in: Electrical, Weight

- Energy out: Weight

- Material in/out: Air

- Signals in: Position, Heading, Orientation, and Visual input

While developing the functional model, each function was tagged with possible adverse effects

that it can generate or that can hinder its functionality, regardless of the alternative chosen. At

this stage of design, these dependencies are still not very clear in the designer’s mind, and they

should only be implicitly captured in the form of tags to be examined closely later on.

The adverse effects related to the relevant functions in the system were documented in Table 3.1,

as well as the alternative components that can possibly fulfill them.

Table 3.1 Relevant Functions, Possible Adverse Effects, Alternative components

Relevant Function Possible adverse effects Alternative components

Store

Electricity

Affected: Heat

Affecter: Electric field, Heat

Lithium ion

Lithium polymer

Alkaline

Supply

Electricity

Affected: Heat

Affecter: Electric field, Heat

Power regulator

Battery eliminator circuit

42

Regulate

Electricity

Affected: Heat

Affecter: Electric field, Heat

Power transistors (some DC

motors)

Electronic Speed Controller (AC

motors)

Convert

Electricity

To

Rotational energy

Affected: Heat, Vibrations

Affecter: Electric field,

Vibrations, Heat, Noise

AC motors

• Brushed

• Brushless

DC motors

Sense

Rotational speed

Affecter:

Affected: Vibration, Electric

field, Heat

Encoder

Tachometer

Current sense

None (open loop)

Sense

Position, Heading,

Orientation

Affecter:

Affected: Electric field,

Vibrations

Accelerometer, Gyroscope,

Magnetometer, GPS

IMU

GPS + Compass

Sense

Visual input

Affecter:

Affected: Vibrations

Camera

 Table 3.1 (continued) Relevant Functions, Possible Adverse Effects, Alternative components

43

The MagicDraw plug-in was then used to assist in the modularization of the functional diagram.

Figure 3.4 shows the results displayed by the CLIPS rule-based expert system and Figure 3.5

shows these results displayed on the SysML functional diagram.

Figure 3.4 Chains of functions resulting from CLIPS

.

44

Figure 3.5 Chains of flows in SysML functional diagram

At this point in the design stage, by applying the heuristics presented in 2.2.1.3.3 and based on

the work in (Stone et al., 2000), a preliminary modularization is obtained and is illustrated in

Figure 3.6. Before starting to generate various modular concepts, the developed MagicDraw

plug-in is used to automatically create and display the DSMs of the various adverse effects

present in the system. These DSMs will be closely inspected to look for problematic

functions/modules, identify the dependencies that should be expressed in more detail and they

can even be added to the evaluation criteria of the product.

This information will be used to select components that are compatible, find solutions to

eliminate adverse effects, and to create a better modularization of the system. This would help us

achieve a modularization where not only aspects such as maintenance and ease of assembly are

taken into account, but also efficiency and functionality of the overall system.

45

Figure 3.6 Preliminary modularization

Figure 3.7, Figure 3.8, and Figure 3.9 show the automatically generated DSMs for vibration,

heat, and electric fields adverse effects, respectively. An arrow in the DSM means that a function

affects the function to which the arrow is pointing, an “X” in the DSM means both functions

affect each other. Problematic modules/functions were highlighted in each of the DSMs and some

possible solutions to avoid them were reported in Table 3.2.

46

Figure 3.7 Vibration DSM

Figure 3.8 Heat DSM

Motor Control

Motor assembly

Power supply

Camera

Motor assembly

Propeller

Encoder ?

Camera

47

Figure 3.9 Electric field DSM

Table 3.2 Modules, problematic Adverse Effects, Solutions

Component Problem Solution

Camera (Capture:

Sense)

Vibrations cause noise

(Jello effect)

Dampers on camera supports

Expensive optical stabilization

Software stabilization (not always effective)

Accelerometer (pho:

Sense)

Vibrations Dampers on circuit board support

Propellers

(generate_thrust:

transfer…)

Vibrations Take vibration into consideration during

selection (operating speed…) (unlike

helicopters, efficiency is often not taken into

account in quadrotors)

Magnetometer + GPS

(pho: Sense)

Electric Fields Physical allocation (keep away from sources)

Component selection (select components that

generate less electromagnetic noise)

Shield sources (if possible)

Encoder ?

Magnetometer

48

Battery (Elec: store)

Heat Heat dissipation should be taken into account

specially if Lithium Polymer batteries are

chosen.

Should system be waterproof? …

Power transistor

or

Electronic speed

controller (ESC)

(Elec: control)

Heat

Electric Fields

Heat dissipation

Physical allocation, position on lower side of

frame (shield if possible), away from center

(control circuits)

Voltage regulator

or

Battery eliminator

circuit (BEC)

(Elec: supply)

Heat

Electric fields

Heat dissipation

Physical allocation, position on lower side of

frame (shield if possible), away from center

(control circuits)

Motor (convert: elec to

rot)

Heat

Electric fields

Vibrations

Component selection

AC motors (more efficient, less heat, AC

electromagnetic fields can be shielded if

problematic)

Encoder?

Tachometer? Current

sense?

Electric fields

Vibrations

Heat

Component selection

Since AC motors are favorable, Effects of

vibrations and electromagnetic fields on

Encoders and Tachometers can be avoided by

choosing Electronic speed controllers that have

built in current sense and speed feedback.

 Table 3.2 (continued) Modules, problematic Adverse Effects, Solutions

49

After taking adverse effects into consideration and inspecting the DSMs the following design

decisions were taken:

Motor selection: Brushless AC motors: They are usually more expensive than other

alternatives but were chosen for the following reasons.

 High power to weight ratio

 Low power consumption

 AC vs DC electromagnetic noise can be easily shielded

 Availability of electronic speed controllers with feedback eliminates

the need for Encoders or tachometers.

 Some of these motors are available with high quality bearings to

withstand forces and vibrations. This allows direct assembly to

propellers.

Wiring: Keep high power DC wires as short as possible during physical allocation.

Long AC wires can be twisted and need to be shielded.

Battery: Weight, Heat, and Electromagnetic noise should be taken into account

when allocating space for batteries and choosing between Lithium ion and

Lithium Polymer.

Lithium ion batteries have a better power to weight ratio (or power density)

Lithium polymer batteries have a higher discharge rate (available power

when needed), however this generates a lot of electromagnetic noise and

heat (they can be hazardous)

Propellers: Take into account the vibrations at the operating motor speeds and sudden

load changes. Do ducted propellers reduce vibrations?

Creative modules:

- Split the inertia measurement unit (IMU +GPS) into two modules:

50

o Accelerometer + Gyroscope Module, placed on circuit board with dampers to

reduce vibrations (filtered frequencies to be determined in detailed design)

o GPS + Compass (magnetometer) Module, will be placed on case cover as far away

from electromagnetic noise (Battery, ESC, BEC, Motors)

- Remove the “Supply” function from the “power supply module” to “Power Control”

module as shown in Figure 3.10. These two functions fulfilled by the Electronic Speed

Control (ESC) and the Battery Eliminator Circuit which is needed to increase the voltage

provided by Lithium batteries. Each motor will have its own BEC which reduces heat

and electromagnetic noise concentration. BEC and ESC should be close to battery to

shorten DC wires and away from control circuit board and GPS + Compass.

Figure 3.10 Power supply and Power Control modules

The resulting rough geometric layout sketch is shown in Figure 3.11. To reduce effects of Heat

and Electromagnetic noise, the Battery, charger input, BEC, and ESC were positioned on the

lower side of the frame towards the back of the device. The frame should be made of light

material and act as a heat sink and insulator, and as a magnetic shield to protect the rest of the

electronic circuit which is placed on the upper part of the device. The frame should also be

designed to reduce vibrations with anti-resonant frequencies.

The center of gravity of a quadcopter should always be in the middle, the camera was positioned

towards the front to balance the weight of the power supply and power control modules. This also

allows to position the GPS + Compass module as far away from sources of electromagnetic noise

on the casing towards the front of the device.

51

Figure 3.11 Quadrotor layout: bottom, top, and side views

52

This case study shows that the functional reasoning framework allows designers to develop a

functional model of a product in a more dynamic way and makes the resulting diagrams more

consistent. Designers can easily apply changes to the diagram and they have to select predefined

functions and flows from the developed library and cannot do syntactic errors such as connecting

a flow to a port of a different type, etc... The functional reasoning framework also supports

designers during functional diagram modularisation, and as seen in the quadcopter example in

figure xx, it provides them with preliminary modules which speeds up the modularization

process. More importantly, the case study shows that if adverse effect dependencies abstractly

captured and taken into consideration during conceptual design, a lot of design iterations could

have been avoided by identifying incompatible components and finding solutions to product

related problems before passing into detailed design which reduces the project lead time. If the

design computational tool and dependency modeling scheme developed in this master thesis were

used, the final generated concept of the quadcopter would've been similar if not better than the

mature designs available nowadays in the market.

53

CHAPTER 4 CONCLUSION

In this master thesis, a functional reasoning framework was developed to allow engineering

designers to abstractly model a mechatronic product during conceptual stage using a formal

functional modeling language, the functional basis for design, which allows the use of

computational power to support the design activity. The functional reasoning framework was

achieved by customizing the SysML language and developing a plug-in in the modeling tool

MagicDraw, the plug-in integrates the rule-based expert system CLIPS that allows encapsulating

engineering knowledge in the form of rules to analyze and perform tasks on the functional

diagrams. For example, heuristics were coded as rules in CLIPS to assist engineering designers

and speed up the modularization of functional diagrams.

A new methodical acquisition method and representation scheme of dependencies was proposed.

The concept of “meta-dependency” was introduced to model dependencies that are shared by a

large amount of elements in a system. Compared to available methods of managing

dependencies, where designers have to model each dependency as a single relationship between

two elements, the proposed method allows engineering designers to efficiently and abstractly

capture dependencies early in the deign process by modeling them as a relationship between an

element and a meta-dependency. To prove the efficacy of the proposed modeling method,

adverse effects, a type of dependency, were used and integrated into the functional reasoning

framework, which was programmed to automatically generate a Design Structure Matrix for each

type of dependency and present them to the engineering designers.

Two case studies were carried-out where mechatronic products were modeled using the

functional reasoning framework while taking adverse-effect dependencies into account. First, a

simple device that regulates the temperature of water was used to illustrate the principle. Then,

the functional model of a quadrotor drone was designed. The resulting modularization and rough

geometric layout of the quadrotor were presented, as well as a list of design problems that were

avoided.

The functional reasoning design framework in conjunction with the meta-dependency modeling

method proposed and developed in this research thesis proved to be a dynamic modeling tool that

is flexible and allows changes to be made in the design with little effort from the engineering

designer. Tagging functions with adverse effects proved to be an efficient and effective method

54

of acquiring information on this type of dependencies and managing them. It is an intuitive way

of handling and capturing abstract dependencies early in the design process without shifting the

designer’s focus away from solution finding. By using assisted modularization and by inspecting

the automatically generated Design Structure Matrices, collaboration between various disciplines

is increased. Additionally, important questions that need to be asked by engineering designers to

experts are pinpointed and narrowed down. This leads to the modularization of the product to be

allowed early its development stages in a more efficient, effective way. Also, most importantly,

the development time is reduced, and the activity streamlined through better integration of

multidisciplinary design and by avoiding costly design loop backs.

55

BIBLIOGRAPHY

Achiche, S., Appio, F. P., McAloone, T. C., & Di Minin, A. (2012). Fuzzy decision support for

tools selection in the core front end activities of new product development. Research in

Engineering Design, 1-18.

Achiche, S., Baron, L., Balazinski, M., & Benaoudia, M. (2007). Online prediction of pulp

brightness using fuzzy logic models. Engineering Applications of Artificial Intelligence,

20(1), 25-36.

Albers, A., Braun, A., Sadowski, E., Wynn, D. C., Wyatt, D. F., & Clarkson, P. J. (2011). System

architecture modeling in a software tool based on the contact and channel approach

(C&C-A). Journal of Mechanical Design, 133(10), 101006.

Alciatore, D. G., Histand, M. B., & Alciatore, D. G. (2007). Introduction to mechatronics and

measurement systems: Tata McGraw-Hill Education.

Altshuller, G. S. (1984). Creativity as an exact science: Gordon and Breach.

Behbahani, S., & De Silva, C. W. (2007). Mechatronic design quotient as the basis of a new

multicriteria mechatronic design methodology. Mechatronics, IEEE/ASME Transactions

on, 12(2), 227-232.

Blessing, L. T., & Chakrabarti, A. (2009). DRM: A Design Reseach Methodology: Springer.

Braha, D. (2002). Partitioning tasks to product development teams. Paper presented at the ASME

2002 International Design Engineering Technical Conferences and Computers and

Information in Engineering Conference.

BusinessDictionary.com. What is dependency? definition and meaning. Retrieved from

http://www.businessdictionary.com/definition/dependency.html

Chandrasekaran, B. (1994). Functional representation and causal processes. Advances in

computers, 38(73-143).

http://www.businessdictionary.com/definition/dependency.html

56

Cox, L., Delugach, H. S., & Skipper, D. (2001). Dependency analysis using conceptual graphs.

Paper presented at the Proceedings of the 9th international conference on conceptual

structures, ICCS.

Crilly, N. (2010). The roles that artefacts play: technical, social and aesthetic functions. Design

Studies, 31(4), 311-344.

Danilovic, M., & Browning, T. R. (2007). Managing complex product development projects with

design structure matrices and domain mapping matrices. International journal of project

management, 25(3), 300-314.

Eisenbart, B., Blessing, L., & Gericke, K. (2012). Functional modelling perspectives across

disciplines: a literature review. Paper presented at the Proceedings of 12th international

design conference, design.

Erden, M. S., Komoto, H., van Beek, T. J., D'Amelio, V., Echavarria, E., & Tomiyama, T.

(2008). A review of function modeling: approaches and applications. Artificial

Intelligence for Engineering Design, Analysis and Manufacturing, 22(02), 147-169.

Far, B. H., & Elamy, A. H. (2005). Functional reasoning theories: problems and perspectives.

AIE EDAM, 19(02), 75-88.

Friedenthal, S., Moore, A., & Steiner, R. (2014). A practical guide to SysML: the systems

modeling language: Morgan Kaufmann.

Gausemeier, J., Frank, U., Donoth, J., & Kahl, S. (2009). Specification technique for the

description of self-optimizing mechatronic systems. Research in Engineering Design,

20(4), 201-223.

Gausemeier, J., & Moehringer, S. (2003). NEW GUIDELINE VDI 2206-A FLEXIBLE

PROCEDURE MODEL FOR THE DESIGN OF MECHATRONIC SYSTEMS. Paper

presented at the DS 31: Proceedings of ICED 03, the 14th International Conference on

Engineering Design, Stockholm.

Gorbea, C., Spielmannleitner, T., Lindemann, U., & Fricke, E. (2008). Analysis of hybrid vehicle

architectures using multiple domain matrices. Paper presented at the DSM 2008:

Proceedings of the 10th International DSM Conference, Stockholm, Sweden, 11.-12.11.

2008.

57

Gruber, T. R. (1993). A translation approach to portable ontology specifications. Knowledge

acquisition, 5(2), 199-220.

Helms, B., & Shea, K. (2012). Computational Synthesis of Product Concepts Based on

Generalized Graph Grammars. ASME J. Mech. Des, 134(2), 021008.

Hirtz, J., Stone, R. B., McAdams, D. A., Szykman, S., & Wood, K. L. (2002). A functional basis

for engineering design: reconciling and evolving previous efforts. Research in

Engineering Design, 13(2), 65-82.

Hölttä-Otto, K., Tang, V., & Otto, K. (2008). Analyzing module commonality for platform

design using dendrograms. Research in Engineering Design, 19(2-3), 127-141.

http://www.plattformstrategie.de/. ÄnderungAuswirkungsanalyse. Retrieved from

http://www.plattformstrategie.de/methoden.php

Keller, A., Blumenthal, U., & Kar, G. (2000). Classification and computation of dependencies for

distributed management. Paper presented at the Computers and Communications, 2000.

Proceedings. ISCC 2000. Fifth IEEE Symposium on.

Kitamura, Y., Ikeda, M., & Mizoguchi, R. (1997). A causal time ontology for qualitative

reasoning. Paper presented at the IJCAI (1).

Komoto, H., & Tomiyama, T. (2012). A framework for computer-aided conceptual design and its

application to system architecting of mechatronics products. Computer-Aided Design,

44(10), 931-946.

Kortler, S., & Lindemann, U. (2011). A Meta Model of the Innovation Process to Support the

Decision Making Process Using Structural Complexity Management. Paper presented at

the DS 68-4: Proceedings of the 18th International Conference on Engineering Design

(ICED 11), Impacting Society through Engineering Design, Vol. 4: Product and Systems

Design, Lyngby/Copenhagen, Denmark, 15.-19.08. 2011.

Lindemann, U., Maurer, M., & Braun, T. (2008). Structural complexity management: an

approach for the field of product design: Springer Science & Business Media.

http://www.plattformstrategie.de/
http://www.plattformstrategie.de/methoden.php

58

Mohebbi, A., Achiche, S., & Baron, L. (2015). Integrated Design of A Vision-Guided Quadrotor

UAV: A Mechatronics Approach. Paper presented at the 2015 CCToMM Symposium on

Mechanisms, Machines, and Mechatronics.

Mohebbi, A., Achiche, S., Baron, L., & Birglen, L. (2014). Trends in concurrent, multi-criteria

and optimal design of mechatronic systems: A review. Paper presented at the Innovative

Design and Manufacturing (ICIDM), Proceedings of the 2014 International Conference

on.

Pimmler, T. U., & Eppinger, S. D. (1994). Integration analysis of product decompositions.

Qamar, A., Paredis, C. J., Wikander, J., & During, C. (2012). Dependency modeling and model

management in mechatronic design. Journal of Computing and Information Science in

Engineering, 12(4), 041009.

Ren, Q., Balazinski, M., Jemielniak, K., Baron, L., & Achiche, S. (2013). Experimental and

fuzzy modelling analysis on dynamic cutting force in micro milling. Soft Computing, 1-

11.

Rzevski, G. (2003). On conceptual design of intelligent mechatronic systems. Mechatronics,

13(10), 1029-1044.

Salminen, V., & Verho, A. (1989). Multi-disciplinary design problems in mechatronics and some

suggestions to its methodical solution in conceptual design phase. Paper presented at the

International Conference on Engineering Design (ICED89).

Shah, A. A., Kerzhner, A. A., Schaefer, D., & Paredis, C. J. (2010). Multi-view modeling to

support embedded systems engineering in SysML Graph transformations and model-

driven engineering (pp. 580-601): Springer.

Starling, A. C., & Shea, K. (2005). Virtual synthesisers for mechanical gear systems.

Stone, R. B., Wood, K. L., & Crawford, R. H. (2000). A heuristic method for identifying modules

for product architectures. Design Studies, 21(1), 5-31.

Studer, R., Benjamins, V. R., & Fensel, D. (1998). Knowledge engineering: principles and

methods. Data & knowledge engineering, 25(1), 161-197.

59

Szykman, S., Racz, J. W., & Sriram, R. D. (1999). The representation of function in computer-

based design. Paper presented at the Proceedings of the 1999 ASME design engineering

technical conferences (11th international conference on design theory and methodology).

Tomiyama, T., D’Amelio, V., Urbanic, J., & ElMaraghy, W. (2007). Complexity of multi-

disciplinary design. CIRP Annals-Manufacturing Technology, 56(1), 185-188.

Torry-Smith, J. M., Mortensen, N. H., & Achiche, S. (2014). A proposal for a classification of

product-related dependencies in development of mechatronic products. Research in

Engineering Design, 25(1), 53-74.

Torry-Smith, J. M., Mortensen, N. H., Ploug, O., & Achiche, S. (2015). INDUSTRIAL

APPLICATION OF A MECHATRONIC FRAMEWORK. Paper presented at the DS 80-7

Proceedings of the 20th International Conference on Engineering Design (ICED 15) Vol

7: Product Modularisation, Product Architecture, systems Engineering, Product Service

Systems, Milan, Italy, 27-30.07. 15.

Torry-Smith, J. M. r., Achiche, S., Mortensen, N. H., Qamar, A., Wikander, J., & During, C.

(2011). Mechatronic Design-Still a Considerable Challenge. Paper presented at the

ASME 2011 International Design Engineering Technical Conferences and Computers and

Information in Engineering Conference.

Umeda, Y., Tomiyama, T., & Yoshikawa, H. (1995). FBS modeling: modeling scheme of

function for conceptual design. Paper presented at the Proc. of the 9th Int. Workshop on

Qualitative Reasoning.

Van Beek, T. J., Erden, M. S., & Tomiyama, T. (2010). Modular design of mechatronic systems

with function modeling. Mechatronics, 20(8), 850-863.

Wang, L., Shen, W., Xie, H., Neelamkavil, J., & Pardasani, A. (2002). Collaborative conceptual

design—state of the art and future trends. Computer-Aided Design, 34(13), 981-996.

Wikander, J., Törngren, M., & Hanson, M. (2001). The science and education of mechatronics

engineering. Robotics & Automation Magazine, IEEE, 8(2), 20-26.

Wölkl, S., & Shea, K. (2009). A computational product model for conceptual design using

SysML. Paper presented at the ASME 2009 International Design Engineering Technical

Conferences and Computers and Information in Engineering Conference.

60

Zakarian, A. (2008). A new nonbinary matrix clustering algorithm for development of system

architectures. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE

Transactions on, 38(1), 135-141.

