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RÉSUMÉ 

 

Malgré les progrès de la médecine moderne, les traitements anticancéreux actuels n’arrivent 

toujours pas à vaincre le cancer. Seulement une fraction des doses de médicaments administrées 

parvient à la tumeur en raison d’un ciblage non spécifique, de barrières physiologiques au niveau 

du système vasculaire ainsi que de l’élimination immédiate de médicaments par le système 

immunitaire. Des dosages fréquents de médicaments deviennent nécessaires afin de surmonter 

ces obstacles, entraînant une toxicité systémique, des effets secondaires et un échec 

thérapeutique. De plus, les systèmes actuels d’imagerie médicale sont incapables de produire des 

images de haute qualité des structures tumorales pour les diagnostiques et les traitements. Ceci 

est dû aux restrictions de la résolution spatiale et de l’incapacité des agents de contraste à 

pénétrer dans les zones tumorales afin de générer un signal suffisamment intense. Le 

développement de nouveaux agents thérapeutiques ainsi que de nouvelles techniques de ciblage 

thérapeutique sont donc requis afin d’améliorer l’efficacité des traitements actuels. 

Pour ce projet de recherche doctorale, l'attachement de charges utiles à la surface de bactéries 

magnétotactiques flagellées Magnetococcus Marinus MC-1 (BMT) a été mise en place pour 

transporter de façon ciblée une quantité optimale de médicaments profondément dans les zones 

tumorales. Ces bio-robots autopropulsés de dimensions adéquates sont équipés d’un système de 

propulsion dirigeable, d’un système de navigation, et de capacités sensorielles. Divers types de 

complexes BMT ont été fabriquées en attachant aux BMT (i) des liposomes vides (BMT-LP), (ii) 

des liposomes contenant un agent anticancéreux SN38 (BMT-LSC), et (iii) des nanoparticules 

superparamagnétiques de magnétite (BMT-S200). L’efficacité de l'attachement des charges et du 

comportement des bactéries soumises à un champ magnétique directionnel ont été étudiés. Par la 

suite, la capacité des complexes BMT à naviguer le long d’une trajectoire prédéterminée, à 

infiltrer profondément l'espace interstitiel, et à cibler des zones tumorales inaccessibles, ont été 

étudiés dans un modèle animal soumis à un champ magnétique externe. Pour parvenir à des 

complexes BMT aptes à transporter suffisamment de produits pharmaceutiques et de s’accumuler 

préférentiellement dans les régions affectées, il faut assurer un attachement solide et stable qui ne 

compromet pas la motilité des BMT. 
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Les BMT-LP ont été préparés par réaction carbodiimide (EDC/NHS) en formant des liaisons 

covalentes directes entre des liposomes fonctionnalisés et les groupes aminés présents à la surface 

des BMT. Cette technique permet à environ 70 liposomes (diamètre ~170 nm) d’être attachés à la 

surface de chaque cellule MC-1. Ceci a réduit de 60% la vitesse de nage, passant de 200 à 80 μm 

s
-1

. L’absorption cellulaire des BMT-LP a été testée sur différentes lignées cellulaires: cellules 

fibroblastes (NIH/3T3), macrophages (J774), et cellules d'adénocarcinome colorectal humain 

(Colo205). Les résultats in vitro démontrent que l'attachement ne perturbe en aucun cas la capture 

liposomique de ces lignées cellulaires. 

Les expériences de navigation in vivo ont été effectuées à l’aide des vecteurs optimisés BMT-LP, 

BMT-LSC et BMT-S200, injectés péritumoralement dans des tumeurs xénogreffées colorectales 

humaines HCT116, implantées dans le flanc de souris immunodéficientes (SCID)-beige. La 

livraison de BMT chargées ciblant les zones tumorales, tout en franchissant la limite de diffusion 

de molécules médicamenteuses, a été obtenue en exploitant le comportement magnéto-

aérotaxique. Lorsque les bactéries s’approchent de la zone tumorale ciblée par magnétotaxie, 

l’intensité du champ magnétique est réduite, permettant ainsi à la bactérie d’exploiter son 

comportement aérotaxique et de migrer en fonction de la concentration préférentielle en oxygène 

(< 0.7%) vers la zone de transition oxique/anoxique. Dans le contexte de cette thèse, la présence 

et répartition des BMT dans les tumeurs par coloration immunofluorescence (IF) à l’aide d’un 

anticorps anti-BMT ont démontré que la méthode d’attachement proposée n’a pas enlever la 

capacité de diriger les complexes BMT chargées sous l’influence d’un champ magnétique, et de 

les accumuler dans la zone nécrotique des tumeurs solides. L’analyse histologique et la 

quantification des BMT ont démontré que plus de 50% des bactéries (~20 µl de 2.92 × 10
7
 MTB 

ml
-1

 dans du PBS) sont parvenues à s’infiltrer et s’accumuler en plus grande concentration dans 

les régions hypoxiques et nécrotiques des tumeurs. L’efficacité du traitement a été évaluée en 

injectant des BMT-LSC péritumoralement avec une dose cumulative moyenne de 6.4 µg SN38. 

Les résultats ont montré une réduction statistiquement significative de la tumeur colorectale à la 

suite du traitement. 

Le BMT-S200 a été développé comme un agent de contraste d’imagerie par résonance 

magnétique (IRM) afin de visualiser les régions hypoxiques dans les xénogreffes HCT116. Pour 

la préparation des BMT-S200, les nanoparticules magnétiques ont d'abord été fonctionnalisées 

avec les anticorps contre une protéine de surface de la BMT par réaction carbodiimide. Ensuite, 
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la nanoparticule munie de l’anticorps a été conjuguée à la BMT. Les résultats in vitro démontrent 

que la décroissance de signal des images de relaxation longitudinale et transversale change de 

manière proportionnelle à la concentration des BMT. Les résultats in vivo indiquent que 

l’injection BMT-S200 (~200 μl de 5 × 10
9
 MTB ml

-1
, 3.6 × 10

-6
 de S200 (µg)/BMT) de façon 

péritumorale permet d’augmenter la diffusion des agents de contraste traditionnels et génère un 

artéfact en augmentant les distorsions du champ magnétique homogène de l’appareil de 

résonnance magnétique, causant une diminution du signal beaucoup plus important 

comparativement à leur taille réelle. En effet, les complexes BMT-S200 peuvent générer des 

images à haut contraste dans les relaxations T1- and T2/T2*, ce qui reflète l’emplacement de 

l’artéfact, corroborant ainsi la livraison à la tumeur, et permettant de visualiser le modèle de 

distribution dans les régions hypoxiques. Les données IF correspondantes et la coloration 

hémalun-phloxine-safran (HPS) ont corroboré les résultats d’IRM. Les résultats démontrent que 

le BMT-S200 a la capacité de suivre la structure de la tumeur et ces régions hypoxiques ainsi que 

d’exercer un contrôle de rétroaction dans la navigation du BMT. 

Dans l’ensemble, cette thèse propose méthodes d’attachement à des BMT chargées pour des fins 

de thérapie et d’imagerie dans le but d’atténuer la croissance tumorale ou de détecter et visualiser 

les régions hypoxiques, respectivement. 
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ABSTRACT 

 

Despite the substantial achievements of modern medicine, current medical therapies cannot 

eradicate cancer. Due to nonspecific targeting, the multiple physiological barriers that blood-

borne agents must encounter, and the rapid sequestration of drugs by the immune system, a 

suboptimal fraction of the total injected dose reaches the intended target. These obstacles 

necessitate frequent dosing to compensate therapeutic effects, resulting in systemic toxicity, 

undesirable side effects, and treatment failure. In addition, existing medical imaging modalities 

struggle to provide high quality clinical images of tumor structures for treatment purposes due to 

limitations in spatial resolution and lack of penetration of contrast agents into tumoral regions to 

induce sufficient signal intensity. To address these issues, the development of new therapeutic 

agents alongside improved strategies for targeting therapy with the ability to control their fate is 

required. 

The attachment of payloads to the flagellated Magnetococcus Marinus MC-1 magnetotactic 

bacteria (MTB) to directly transport optimal quantities of pharmaceutical agents to regions 

located deep in tumors is what has been proposed during the accomplishment of this PhD project. 

These engineered self-propelled bio-robots with an appropriate dimension are equipped with 

steerable propulsion, navigation system, and onboard sensory capabilities. MTB complexes were 

fabricated by attaching the MTB to (i) empty liposomes (MTB-LP), (ii) SN38 anticancer drug 

encapsulated in liposomes (MTB-LSC), and (iii) 200 nm superparamagnetic magnetite 

nanoparticles (MTB-S200). The attachment efficacy and magnetic response behavior from the 

influence of a directional magnetic field of loaded bacteria with therapeutic or imaging agents 

were studied. Subsequently, results showed that the attachment method was suitable to allow 

MC-1 MTB to transport therapeutic and imaging agents along a planned trajectory prior to 

penetrate deep through the interstitial space in order to reach the hypoxic regions of a tumor in an 

animal model. To achieve MTB complexes capable of carrying sufficient pharmaceutical agents 

and accumulating preferentially at disease sites, the attachment must be strong and stable without 

compromising the natural motility of MTB. 

The MTB-LP were prepared by direct covalent attachment of functionalized liposomes to the 

amine groups naturally presented on the surface of MTB using carbodiimide (EDC/NHS) 
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chemistry. Such a technique allows approximately 70 liposomes (~170 nm in diam.) to be 

attached on the surface of each MC-1 cells. The attachment resulted in ~60% reduction in 

swimming velocity from 200 to 80 μm s
-1

. Cellular uptake of MTB-LP was examined in different 

cell lines including fibroblast (NIH/3T3), macrophage (J774), and human colorectal 

adenocarcinoma (Colo205). The results demonstrated that the attachment does not interfere with 

liposomal uptake in vitro. 

The in vivo navigation experiments were conducted on the optimized MTB-LP, MTB-LSC and 

MTB-S200 injected peritumorally into the HCT116 human colorectal mouse tumor xenograft 

implanted in the flank of the severe combined immunodeficiency (SCID)-beige mice. Delivery of 

loaded MTB toward tumor-targeted regions while passing the diffusion limit of conventional 

drug molecules was achieved by exploiting natural magneto-aerotaxis behavior. As the bacteria 

approach the tumor targeted zone by magnetotaxis-based directional control, the intensity of the 

magnetic field is decreased, which allows bacteria to migrate toward preferred oxygen 

concentration (< 0.7%) at the oxic-anoxic transition zone (OATZ) in hypoxic regions by their 

natural aerotaxis behavior. In the context of this thesis, the presence and distribution pattern of 

the MTB inside the tumor by immunofluorescence (IF) staining using an antibody against MTB 

demonstrated that the attachment method was suitable to navigate the loaded MTB complexes 

using magnetic field and to accumulate them in the targeted necrotic zone of solid tumors. The 

analysis of histology slides and quantification of MTB showed that more than 50% of the 

injected bacteria (~20 µl of 2.92 × 10
7
 MTB ml

-1
 in PBS) were able to penetrate and accumulate 

with greater concentration in the hypoxic and necrotic areas of the tumor tissue. To study the 

treatment efficacy, MTB-LSC were peritumorally injected with a mean cumulative dose of 6.4 

µg SN38. The results showed statistically significant shrinkage of colorectal tumor xenograft 

upon treatment. 

The MTB-S200 was developed as a magnetic resonance imaging (MRI) contrast agent to 

visualize hypoxic areas in HCT116 xenografts. To prepare MTB-S200, the magnetic 

nanoparticles were first functionalized with an antibody against the MTB protein surface using 

carbodiimide chemistry. The antibody-grafted particles were then conjugated to the MTB. The in 

vitro results demonstrated that the signal decay in the T1- and T2-weighted images were changed 

proportionally to the concentration of MTB complexes. The in vivo studies indicated that 

peritumorally injected MTB-S200 (~200 μl of 5 × 10
9
 MTB ml

-1
, 3.6 × 10

-6
 of S200 (µg)/MTB) 

http://en.wikipedia.org/wiki/Immunofluorescence


xii 

 

enable the diffusion limits of conventional contrast agents to be bypassed and generates 

susceptibility artifact by local distortions of the homogeneous magnetic field of MR scanner, 

which caused the signal loss in a much larger scale than their actual size. Indeed, the MTB-S200 

complexes can generate a high contrast in both T1- and T2/T2*-weighted images, which reflecting 

the position of the artifact, confirming the delivery into the cancer tissue, and allowing 

visualization of the distribution pattern in well-penetrated tumor hypoxic regions. Corresponding 

IF and hematoxylin-phloxine-saffron (HPS) histology results confirmed the MRI data. The 

results demonstrated that the MTB-S200 agent provides the opportunity for monitoring of tumor 

structure and hypoxic regions as well as feedback control in MTB navigation operations. 

Overall, this thesis proposes attachment methods to load therapeutic and imaging agents on the 

MTB with the aims of attenuating tumor growth or visualization of tumor hypoxic regions, 

respectively.  
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 INTRODUCTION CHAPTER 1

 

Cancer is recognized as one of the major chronic diseases and a leading cause of death 

worldwide. Despite recent reductions in morbidity and mortality associated with cancer, it still 

accounts for roughly 30% of deaths and imposes a significant economic burden, with over $2.5 

trillion attributed to health care costs per year. In 2015, it is estimated that 196,900 Canadians 

will be diagnosed with cancer and 78,000 will die of cancer [1]. The clinical therapeutic 

strategies employed depend on the location, type, size, stage and cancer’s specific characteristics. 

Among the most common treatments available (surgery, radiation therapy, and etc.) for this 

disease, chemotherapy remains one of the widely used forms of treatment against advanced 

tumors and metastases. 

Upon systemic administration, pharmaceutical agents with short biological half-lives and 

relatively low therapeutic index lead to an increase in acute and cumulative toxicities (such as 

myelosuppression and cardiac toxicity). Frequently, dose-limiting toxicity for both chemotherapy 

and radiation therapy can directly impact survival. Moreover, physiological barriers exist at every 

level of drug targeting at the tumor site, which typically render most efficient theranostic agents 

clinically ineffective. For instance, systemic administration of agents causes rapid clearance by 

immune cells such as reticuloendothelial system of the liver and spleen [2]. The presence of 

intracellular tight junctions [3] and high cellular packing density (composed of collagen, 

glycosaminoglycans, and proteoglycans) [4, 5] are another impermeable barrier that impede 

cellular permeability and penetration of macromolecules or particles into tumor tissues [6, 7]. 

Drug encapsulation in PEGylated nanocarriers (e.g. liposomes, polymers, micelles) as long-

circulating pharmaceutical agents can improve targeting through enhanced permeation and 

retention (EPR) effect [8, 9] but still only a small fraction of nanocarriers enter tumors (~2% after 

4 h circulation) [10] with limited intratumoral penetration through the tumor extracellular matrix 

[6, 11, 12]. 

The hypoxic region as a tumoral barrier is often associated with an aggressive tumor behavior 

and driven malignant progression [13]. The tumor microenvironment is characterized by 

heterogeneous oxygen concentrations (approximately < 0.7% O2; < 10 mmHg partial pressure of 

oxygen) and is known to be resistant to both radiotherapy and chemotherapy due to 
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characteristics such as malformed angiogenesis capillaries, distance from blood vessels, and 

heterogeneous blood flow [14]. Moreover, the high tumor interstitial fluid pressure (TIFP) with 

an outward convective gradient (due to lack of lymphatic drainage and abnormal angiogenesis) as 

well as densely packed extracellular matrix creates obstacles to transcapillary transports the 

conventional pharmaceutical agents towards the hypoxic regions [12, 13]. There are some 

strategies to target hypoxic cells, improve uptake and result in homogenous distribution of active 

agents in the tumor tissue.  Examples are targeting associated endogenous markers [15], 

modifying the extracellular matrix to increase drug penetration [12], using the bio-reductive 

prodrugs [16, 17], reducing tumor pressure [18], and using a multistage nanoparticle delivery 

system [19]. However, systemic administration of these agents leads to low passive targeting 

efficacy. 

Direct transportation of therapeutic agents to the tumor site with high efficacy is still an unmet 

goal since the current strategies lack the important feature such as targeting and tracking. 

Magnetic targeting offers one the most plausible solution. However, the magnetic drug targeting 

(MDT) and magnetic resonance navigation (MRN) methods cannot be effectively applied in the 

tumoral microenvironments [20-22]. In depth-dependent MDT, the magnetic field rapidly 

decreases from the magnetic source, and very often is limited to treat cancers near the skin. In the 

case of depth-independent MRN, insufficient magnetic induction volume of the magnetic 

material at the capillary level prevents efficient direct delivery. Currently artificial bacteria are 

under investigation for delivering therapeutics [23, 24]. However, despite their enormous 

potential, the technology is not mature enough to be used in the context of targeted drug delivery 

due to their constraints such as non-autonomous characteristics and lack of precise navigation. 

Conversely natural aerotaxis or chemotaxis bacteria such as Clostridia [25, 26], Salmonella [27-

29], Bifidobacterium [30], and Escherichia coli [31] showed promising therapeutic potential due 

to the fact that they can preferentially accumulate in tumor tissues. However, their main 

limitation remains their incapacity to be navigated using computer-assisted magnetotaxis-based 

directional control in vivo. 

To address this issue, the MC-1 MTB [32, 33] was proposed for drug delivery applications. An 

external directional magnetic field causes magnetotaxis behavior of the bacteria by inducing a 

torque on the chain of membrane-based single-domain iron oxide magnetic nanoparticles that are 

naturally synthesized in the cells during cultivation, known as magnetosomes [34, 35]. Like a 
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compass needle, the swimming direction of the MTB is aligned along a small magnetic field (0.5-

100 Gauss), causing magnetotaxis behavior. Their ideal size of 1-2 µm (half of the diameter of 

the smallest human blood vessels) enables the MTB to navigate and pass through the smallest 

blood vessels, endothelial fenestrations and cellular interstitial spaces. The MTB cells possess 

two bundles of flagella at a single pole (they are said to be bilophotrichous), which generate a 

significant propulsive force of ~4.0-4.7 piconewtons (pN) (roughly a tenfold increase in power 

compared to the other well-known flagellated bacteria species) allowing them to penetrate deeply 

in tumors and pass the diffusion limit of typical large drug molecules. The flagella also enable the 

bacteria to reach an average swimming velocity of approximately 200 and up to 300 μm s
-1

 (100 

to 150 body (cell) lengths per second). In addition, these microaerophilic MTB with their 

embedded oxygen sensor are capable of detecting oxygen gradient for directional migration 

towards their preferred ~0.5% oxygen level, which generally corresponds to the oxygen level 

expected at the targeted hypoxic tumor regions. 

Improved intratumoral drug distribution within the tumor mass can be achieved by attaching 

pharmaceutical agents encapsulated within nanoscale particles to the surface of the self-propelled 

MTB [36]. Self-actuation, navigation and sensory capability of MC-1 MTB provide a sufficient 

propelling force to penetrate hypoxic regions leading to superior delivery ratios of active agents 

with minimized systemic circulation compared to all other known targeting modalities, such as 

drug-encapsulated micro/nanoparticles [37, 38], magnetic drug targeting [20-22], receptor–ligand 

targeting [39, 40], and previous bacterial therapies. 

Targeted delivery of therapeutic or imaging cargos to desired anatomical compartments using an 

external control system and flagellated propulsion of MTB exhibit many unique capabilities that 

are unattainable with existing clinical methods such as control over location, active penetration 

into inaccessible tissue, the bypass of the cellular barrier, controlled release of encapsulated 

substances proximal to the target, facilitated spatial distribution and cellular internalization, and 

non-invasive imaging and monitoring of treatment efficacy. Moreover, the maximum-tolerated 

doses to elicit the desired therapeutic response and counter the progression of the tumor can be 

improved and thereby to minimize adverse side effects [13]. Many different medical applications 

can be driven from this controllable MTB, such as delivering hydrophilic/hydrophobic anti-

cancer drugs, tumor markers, imaging agents, gene, vaccines, to name a few. 
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Therefore, for the first part of this project, we engineered the liposomal loaded MTB as a targeted 

delivery vehicle for anticancer drugs. In parallel, the ability to remotely navigate the loaded MTB 

in a three-dimensional manner and control their biodistribution in colorectal tumor model was 

studied in vivo. Finally, to provide the MTB complex system with the ability of the tracking, we 

were successful in developing MRI contrast agents loaded MTB to visualize the tumor structure 

in an in vivo animal model using a 3 Tesla MRI scanner. 

 

1.1  Contribution of Authors 

This thesis presents the data collected by the candidate throughout the document. It should be 

noted that this PhD work performed in the framework of a major research project funded by the 

Quebec Consortium for Drug Development (CQDM) and led by Dr. Sylvain Martel, where the 

aim was to develop a novel approach for cancer treatment using MTBs. To elucidate the work 

performed by the candidate within this collaborative effort, a description of the original 

contribution of the candidate is presented below: 

Chapter 3 gathers results of the work performed by the candidate on the development of the MTB 

liposomal-based delivery system. As part of this project, the candidate was mainly responsible 

for the design, preparation, characterization, and analysis of an innovative attachment technique 

to magnetotactic bacteria for carrying therapeutic and imaging agents for cancer therapy. The 

candidate wrote the published manuscript. 

Chapter 4 presents results on the attachment of a payload that led to the development of MTB-

magnetic particles complexes as navigable MRI contrast agents. The candidate performed the 

preparation, evaluation of the attachment efficacy, and characterization of magnetic properties of 

the complexes. More specifically, the candidate assessed if the motion behavior of the MTB 

based on magnetotaxis would be influenced by the attachment of a superparamagnetic 

nanoparticles in sufficiently large quantity to enable MRI contrast effect and as such could have a 

negative impact on the magnetotaxis directional control of the MTB. The candidate wrote the 

protocols and analyzed the in vivo data. Histology and animal studies were performed in 

collaboration with Dr. Louis Gaboury and Dr. Danuta Radzioch from the Histology and 

Molecular Pathology Research Unit of the Institute for Research in Immunology and Cancer 
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(IRIC) and also the animal facilities at McGill Centre for the Study of Host Resistance, 

respectively. Dr. Mahmood Mohammadi provided the bacteria. Dr. Nina Olamaei from 

NanoRobotics Laboratory provided the expertise for MR imaging. 

Chapter 5, Appendixes A and B gather results of a multidisciplinary work encompassing diverse 

disciplines (clinical oncologists, chemists, physicians, pathologists, and immunologists) along 

with using various research platforms (McGill University, Jewish General Hospital, IRIC, and 

University of Montreal) for in vivo experiments. In this collaborative effort, the candidate 

designed and performed the attachment of SN38-loaded liposomes to the MTB cells. In addition, 

the candidate was also involved in the in vivo experiments, including taking part in the writing of 

the related in vivo protocols, the daily batch preparation of MTB complexes for the injection, and 

the post-evaluation of the complexes using electron microscopy. The candidate also assisted in 

data analyses and evaluating the targeting capability of the complexes in tumor tissue through 

their counting and biodistribution visualization performed by fluorescence microscopic imaging 

of immunostained histological slides and tumor homogenization followed by optical microscopy. 

Dr. Ouajdi Felfoul designed the three-dimensional navigation magnetic platforms and the 

software control system and initially performed the magnetic navigation of the MTB. Mr. 

Dominic De Lanauze tested the magnetotactic control sequences and performed the magnetic 

navigation, which were executed by Mr. Dumitru Loghin. Dr. Mahmood Mohammadi provided 

the bacteria and acted as project manager. Dr. Louis Gaboury performed histopathological 

analyses. Liposome-SN38 was prepared by Dr. Sherief Essa working under supervision of Dr. 

Michel Lafleur and Dr. Maryam Tabrizian. Dr. Danuta Radzioch and Dr. Nicole Beauchemin 

were responsible for the implantations of tumor xenografts and performed animal studies. Mr. 

Daniel Houle performed the peritumoral injections in animals. Dr. Yong Zhong Xu implanted the 

xenografts and performed tumor measurements. All authors assisted in data analysis. 

Dr. Sylvain Martel as primary supervisor and Dr. Maryam Tabrizian as co-supervisor appear on 

the published and unpublished works to reflect their supervisory role throughout the execution of 

this thesis. 
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1.2 Thesis outline 

This thesis is organized into seven chapters. 

In Chapter 1, a general introduction and motivation behind this PhD thesis, specifically the 

requirement for developing a liposome-based system to encapsulate therapeutic agents, and the 

imaging application of MTB-magnetic particles in MRI to treat cancer are presented. This 

chapter also provides the contribution of the authors and the originality of this work. The research 

hypothesis and objectives of the thesis are also outlined in this chapter. 

Chapter 2 presents the background information and a comprehensive literature review required 

for the completion of this project. This chapter highlights current therapeutic technologies and 

tumor imaging modality approaches for cancer therapy. A primer on the role of bacterial-based 

system as a bio-carrier as well as their various pharmacological applications to treat cancer 

disease is also included in this chapter. An exhaustive review is dedicated to liposome technology 

as a drug carrier as well as the use of superparamagnetic nanoparticles in imaging applications. 

The knowledge gained from the literature review was crucial for establishing the research 

hypothesis and objectives of this PhD thesis towards the design of the bacteria-based targeted 

drug delivery systems. 

Chapter 3 contains the published article in American Chemical Society (ACS) Nano entitled 

“Covalent Binding of Nanoliposomes to the Surface of Magnetotactic Bacteria for the Synthesis 

of Self-Propelled Therapeutic Agents” where the development of MTB-LP complex and its 

characterization in terms of the attachment efficacy, swimming behavior, response to magnetic 

field, cytotoxicity and cellular uptake are presented. 

Chapter 4 presents the attachment of magnetic iron oxide nanoparticles to the MTB to form a 

navigable and trackable MRI contrast agent for tracking the loaded bacteria and visualization of 

tumor hypoxic regions in the colorectal mouse tumor xenograft. 

Chapter 5 highlights only the candidate contribution within a collaborative effort for the 

evaluation of in vivo tumor transportation and the attachment efficiency of MTB-LSC complex. 

The complete version of data produced for in vivo targeting evaluation is presented in Appendix 

A as a manuscript under revision by Nature Nanotechnology entitled “Non-Systemic Magneto-
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Aerotactic Bacteria-Mediated Delivery of Drug-Loaded Nanoliposomes in Tumor Hypoxic 

Regions”, where the candidate appears as co-first author. 

Chapter 6 presents the general discussion and highlights the main finding on this PhD project. 

Chapter 7 provides the general conclusion and overall outcomes of this PhD thesis followed by 

new avenues of research and recommendations for future works. 

1.3 Justification of originality 

The originality of this thesis lies in the development of bacteria-based complexes as a “living and 

self-propelled drugs” for transportation of therapeutic and imaging agents inside unattainable 

tumor regions with the aim of improving treatment of cancer diseases while reducing secondary 

toxicity. There are no reports on producing stable and straightforward bioconjugation of 

pharmaceutical agents including liposome-loaded anti-cancer drug (SN38 as a model) and 

contrast imaging agent (superparamagnetic iron oxide nanoparticles) to a micro-biorobot, and the 

assessment and validation of such an attachment approach during the targeting phase of solid 

tumors in animal models. The chemical coupling of liposomal nanoparticles to the MTB, by 

taking advantage of biologically inherent moieties presented on MTB cell membrane, is another 

novel aspect of this work. In the development of such MTB complexes, optimizing the number of 

liposomes or magnetic particles per MTB was a technological challenge in order to carry a 

sufficient concentration of pharmaceutical agents to induce therapeutic effects without affecting 

the natural motility or magnetic response of the loaded MTB. Such studies on the attachment of 

payload to the surface of the MC-1 cells enable targeted delivery using MTB as untethered 

microcarriers that can be employed in many areas such as drug delivery, gene, vaccine delivery, 

and real-time imaging, to name but a few examples. 

 

1.4 Thesis hypothesis and objectives 

1.4.1 Thesis hypothesis 

Attachment of particles to the surface of the self-propelled MTB can be prepared without 

compromising their magnetic response, motility, swimming behavior or cellular uptake. These 
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MTB-based complexes can be magnetically navigated to pass the cellular obstacle, target and 

accumulate in the hypoxic and necrotic regions and deliver an effective dose of pharmaceutical 

agents to the tumor. Integrating the superparamagnetic iron oxide nanoparticles as a navigable 

and trackable contrast agent with MTB will allow MRI visualization of the tumor 

microenvironment. 

1.4.2 Thesis objectives 

To confirm the aforementioned thesis hypothesis, the overall goal of this PhD work was to study 

and assess the attachment of therapeutic and imaging agents on the surface of the self-propelled 

MTB as a delivery vehicle to propel and transport such payloads directly to regions being located 

deep in solid tumors. To meet this goal the objectives of this thesis were set as follows: 

Objective 1: 

Develop methods and protocols for stable covalent bonding of liposome-based drug delivery 

system to the MTB and investigate the effect of the liposome attachment on viability, speed and 

sensitivity to the magnetic field, cytotoxicity, and in vitro cellular uptake of the MTB-LP 

complex (Chapter 3 (ACS paper)). 

Objective 2: 

Develop MTB-magnetic iron oxide nanoparticles complexes as navigable and trackable MRI-

contrast agents to visualize hypoxic regions of tumor xenograft model (Chapter 4). 

Objective 3: 

Within such multidisciplinary and collaborative project for the evaluation of in vivo targeting 

capabilities of the MTB complexes developed in objective 1, objective 3 consists of adopting the 

protocol developed during objective 1 for the attachment of SN38 encapsulated in liposomes on 

the MTB (MTB-LSC), preparations of the MTB-LSC for in vivo injection and investigate the 

attachment stability during navigation and distribution of MTB-LSC in tumor tissue (Chapter 5, 

an article under revision in Appendix A, and Appendix B). 
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 LITERATURE REVIEW AND BACKGROUND CHAPTER 2

 

The following chapter provides the comprehensive literature review and the fundamental 

contextual knowledge required to appropriately select materials and methods for this project. The 

first part of this literature review covers the current cancer therapy and characteristic of cancer 

microenvironment, as well as the physiological barriers that influence targeting efficacy. The 

second part discusses drug delivery approaches, namely magnetic drug targeting and magnetic 

resonance navigation using different nano/micro particles carriers. The third part presents the 

clinical applications of bacteria-based therapy and addresses the use of MC-1 magnetotactic 

bacteria as a new strategy to overcome the limitations of other types of bacteria in cancer 

treatment. The fourth part tackles SN38 as an anti-cancer drug and liposomes as a drug carrier. 

The fifth part describes the common bioconjugation techniques employed to attach nanoparticles 

to the surface of the MTB cells, in particular carbodiimide chemistry. Finally, the last part of this 

literature review discusses current clinical imaging modalities in resolving the tumor structure 

and the limitations of cancer visualization. The current contrast agents to improve the imaging 

outcomes and their drawbacks are introduced and also the motivation behind the use of 

superparamagnetic iron oxide nanoparticles in tumor imaging is highlighted. 

2.1 Therapeutic approaches for cancer therapy 

Despite the big strides in defeating many diseases, cancer is still the major cause of mortality 

worldwide [1]. Colorectal cancer that was our target disease in this study is the 3rd most 

prevalent diagnosed cancer and the 2nd leading cause of cancer-related mortality in Canada. An 

estimated incidence will be 25,100 (13% of all other cancer cases), and estimated deaths from 

colorectal cancer will be 9,300 (12% of all other cancer deaths) in 2015 [1].  

Current cancer treatments can be categorized into main strategies including surgery, radiation 

therapy, and chemotherapy. Surgery is an invasive curative treatment option that removes the 

tumor completely with part of the healthy tissue around it [41]. Complications are arising from 

the location or the size of the tumor, the potential risk of host-pathogen interactions, metastasis, 

and damage to the healthy tissue. Radiation therapy uses high dose of ionizing radiation and 

radioactive substances that can travel all over the body and cause severe side effects. Radiation 

http://www.cancer.ca/en/cancer-information/diagnosis-and-treatment/surgery/?region=on
http://www.cancer.ca/en/cancer-information/diagnosis-and-treatment/radiation-therapy/?region=on
http://www.cancer.ca/en/cancer-information/diagnosis-and-treatment/radiation-therapy/?region=on
http://www.cancer.ca/en/cancer-information/diagnosis-and-treatment/chemotherapy-and-other-drug-therapies/chemotherapy/?region=on
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beam lacks specificity and damaging all the normal and cancerous cells in its path. Moreover, 

cancer cells placed in hypoxic oxygen-deficient regions of a tumor are known to be resistant to 

both chemotherapy and radiotherapy [14, 42]. Chemotherapy suffers from non-specific 

distributions, unfavorable pharmacokinetic, and the systemic side effects that often narrows 

therapeutic indices. To reach an effective anti-cancer drug dose often requires dangerously high 

concentrations, which can lead to adverse side effects, organ failure, developed drug resistance, 

and unsustainable drug levels. Moreover, after extravasation from leaky tumor vessels, the drugs 

often get stuck to the cellular barriers and are unable to reach the inaccessible side of tumors. 

Therefore, quiescent cells in hypoxic regions located distantly far from the vasculature are hardly 

affected by chemotherapy [13]. In some cases, effective treatment requires integration of 

different methods to improve the therapeutic indices [43, 44]. Thus, the use of an active transport 

carrier to improve therapeutic benefits by delivering therapeutic agents directly to the tumor site, 

protecting the healthy cells from systemic drug exposure, as well as optimizing the required dose 

of therapeutic agents is beneficial. 

2.2 Tumor microenvironment and physiological barriers 

In order to provide a feel about the need for a sufficiently high binding force for the attachment 

approach being proposed and the obstacles that may put additional stress on the attachment 

method, knowledge about the physiological barriers that agents encounter as well as the 

microenvironment in which the carrier must operate is required. Several key differences exist 

between the microenvironment of tumors and that of normal tissues. The microenvironment in 

solid tumors is characterized by a highly defective leaky vascularized surface, hypoxic 

intermediate regions, and a necrotic core (Figure  2.1). Other characteristics include inadequate 

and heterogeneous perfusion, hyper-permeable and irregularly shaped angiogenesis capillaries, 

inhomogeneous and inefficient blood supply, acidic extracellular pH, increased interstitial 

pressure, and nutrient deprivation. Tumors are also notorious for their ability to evade immune 

system surveillance and destruction [45]. These sets of parameters affect the delivery and 

distribution of drugs inside the tumors, which serve as a backdrop for the various cancer 

treatment approaches. 
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2.2.1 Tumor angiogenesis 

The uncontrolled and inconsistent tumor angiogenesis are abnormal in form and architecture, 

lacking smooth muscle layer, possessing poorly-aligned defective endothelial cells with wide 

fenestrations, and produce an inefficient blood flow pattern (Figure  2.1). Thereby, tumor 

angiogenesis cannot prevent large particles in the blood from leaking out of the vessel. The pore 

cutoff size is observed to range from 0.38 to 2 µm in chaotic tumor vessel walls [46]. 

Accordingly, intravenously administered particles and macromolecules of certain sizes with 

molecular mass < 160,000 kDa [47] tend to extravasate the tumor vasculature and accumulate in 

tumor sites through the enhanced permeability and retention (EPR) effect [48]. Yuan et al. 

demonstrated the transvascular transport of fluorescent liposomes resulted in heterogeneous 

accumulation in the tumor regions [49]. Conventional chemotherapeutics affects only the cells in 

well-oxygenated regions (normoxia) near the blood vasculature while the effectiveness of 

conventional cancer therapies in hard-to-treat hypoxic regions is consequently limited [7, 12]. 

 

Figure  2.1: Cross-section of a solid tumor including the outer proliferating zone with the well-

developed vascular network and high oxygen level, the hypoxic area, and the necrotic region. 

Adapted from [50]. SEM images compare the regulated and homogenous normal vasculature (top 

left) with the irregular angiogenic tumor blood vessels (top right). Adapted from [51].  
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2.2.2 Intratumoral transportation in tumor 

The main physiological barriers that block the intratumoral diffusion of macromolecules after 

extravasation cross the vasculature and before reaching tumor cells are as below: 

 Tumor extracellular matrix (ECM) 2.2.2.1

The ECM in tumor tissue functions as a sink that decreases anti-cancer drug penetration and 

creates concentration gradients. This matrix contains a dense and thick network of collagen fibers 

(Figure  2.2), which imparts it more rigidity in comparison with normal loose connective tissue. 

Moreover, tumors exert greater tension between fibers due to an increased number of fibroblasts 

that connect to the collagen fibers in an integrin-dependent manner [12]. The tumor 

microenvironment is typically composed of vasculature, ECM, matrix-associated cells, signaling 

molecules, and tumor-infiltrating stromal cells (e.g. macrophages, cancer-associated fibroblasts, 

monocytes, neutrophils, dendritic cells, endothelial cells, platelets) [3, 44]. 

 

Figure  2.2: Schematic presenting the main microenvironments of a tumor. Diagram is showing 

the drug, oxygen, nutrients and energy concentration gradient in tumor. 
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53]. These junctions act as a barrier that restricts ions, particles and macromolecules with a 

molecular weight of > 400 Da from passing through the paracellular space [3, 52, 53]. Knowing 

that the most conventional chemotherapy drugs have a molecular weight of greater than 400 Da 

(e.g. Irinotecan and Paclitaxel have a molecular weight of 586.7 and 856.9 Da, respectively), it is 

not surprising to see the moderate outcomes of this treatment. Similarly, the commonly used 

nanoparticle-based chemotherapy drugs have a size of approximately larger than 100 nm, which 

hinder them to penetrate into tumor and accumulate around the leaky vessels [19]. For instance, 

albumin-paclitaxel (Abraxane) and liposome-doxorubicin (Doxil) as FDA-approved nanoparticle-

based drug delivery systems have an average diameter of 130 and 90 nm, respectively, which 

preferentially accumulate in solid tumors by the EPR effect without deep penetration [19]. 

 Tumor interstitial fluid pressure (TIFP) 2.2.2.3

Rapid tumor cell proliferation, lack of lymphatic drainage, abnormal capillaries, and increased 

number of inflammatory cells that enhances the release of cytokines and growth factors, cause 

inefficient removal of interstitial fluid and soluble proteins. This generates an increase in outward 

fluid pressure, resulting in TIFP enhancement [54]. Due to the high interstitial fluid gradient from 

the center of the tumor to the periphery, passive molecules and particles usually sit at the rim of 

the tumor without penetrating. Therefore, hypoxic and necrotic tissues are located in high-

pressure regions, which greatly minimizes chemotherapy and radiotherapy effects in those 

regions [42]. Jain et al. assessed the outward fluid velocity to be 0.1-0.2 μm s
-1

 at the periphery of 

1 cm of tissue-isolated tumor [55] in which the molecules need to overcome this outward fluid 

motion to be able to reach the tumor interior. 

2.2.3 Tumor hypoxia 

An important instigator of hypoxia is unregulated and leaky angiogenesis coupled with the 

ineffective delivery of oxygen and other nutrients to rapidly proliferating cells. Oxygen 

concentration which is maximal at the angiogenic zone decreases to less than 0.7% at the 

angiogenic-hypoxic transition zone, and declines gradually to around zero at the anoxic area 

beyond hypoxic-necrotic boundaries. The hypoxic-angiogenic transition zone shows low blood 

flow toward the center of the tumor caused by the TIFP. As presented in Figure  2.3, the hypoxic 

microenvironment of tumors is often associated with an aggressive tumor behavior and increased 

http://en.wikipedia.org/wiki/Lymphatic_system
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resistance to radiotherapy and chemotherapy compared to well-vascularized oxygenated regions 

[7, 13]. Main strategies to target and treat tumor hypoxia are including targeting endogenous 

associated hypoxia-related molecular markers (e.g. Hypoxia-inducible Factor 1 (HIF-1), 

Carbonic anhydrase IX, and osteopontin) [15, 56], modifying the extracellular matrix to increase 

drug penetration [12], reducing tumor pressure [18], increase drug penetration using a multistage 

nanoparticle delivery system [19], using the bio-reductive prodrugs [16, 17]. 

 

Figure  2.3: Diagram depiction of hypoxic tumor microenvironment linked to failure of cancer 

treatment and aggressive tumor behavior. 

 

2.3 Targeted cancer therapy strategies 

The efficiency of systemic therapies relies on transporting pharmaceutical agents to the tumor in 

sufficient quantity. For this purpose, the active agent has to reach the main blood vessels that feed 

the tumor, extravagate in the interstitial space, and then migrate into the tumor tissue in order to 

be in direct contact with the targeted cells [11]. Development of passive or active tumor targeting 

systems helps to enhance the efficacy of therapeutic or diagnostic agent’s delivery to cancer cells 

that can be achieved by particulate-based drug formulation (e.g. liposome, polymers, and 

dendrimer) [37, 38], by chemoembolization [57], or by magnetic navigation [58, 59]. 
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2.3.1 Passive targeting 

Many tumors have hyper permeable vasculature (pores size of 0.38 to 2 µm) [46, 60] that 

provides an effective means for passive targeting of particles or macromolecules to extravasate at 

tumor sites due to the EPR effect (Figure  2.4a). The drug could be released in the extracellular 

matrix and diffuse throughout the tissue [11, 49, 61]. The particle size, charge, and surface 

coating alter the passive targeting efficacy and also dictate their clearance rates [62]. For 

instance, particles larger than 2 µm are more likely to be phagocytosed by macrophages, while 

particles smaller than 6 nm are readily cleared by renal filtration [63]. 

2.3.2 Active targeting 

An interesting feature of the drug-loaded particles is the ability to decorate their surface with high 

affinity targeting moieties (such as peptides, antibodies, proteins) that selectively recognize and 

bind to the specific overexpressed receptor in cancer cells that are lacking in normal tissues [39, 

40]. As such, active targeting contributes to cellular internalization through receptor-mediated 

endocytosis, thereby can improve delivery efficiency of the agents to a specific location and 

achieve the desired therapeutic effects (Figure  2.4b). A major concern of active targeted therapy 

is that, upon arrival at tumor sites, the ligand conjugated particles tightly attach to the tumor cells 

receptors proximal to vessels, thus preventing drug penetration deep into the tissue, which is 

referred to as the binding-site barriers effect. 

 

Figure  2.4: Accumulation of nanocarriers in solid tumor by (a) passive and (b) active targeting. 

Both types of targeted and non-targeted particles reach cancer cell through the broken vessel, and 

preferentially extravasated through the EPR effect. Adapted from [39]. 
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2.3.3 Magnetic targeting 

To transport therapeutic agents to a target site, appropriate steering delivery systems is required 

that could be achieved with magnetic targeting methods including MDT and MRN [59, 64]. 

Current magnetic targeting consists of encapsulating therapeutic agents inside liposomes or 

polymeric-magnetic particles hybrids and guiding them to concentrate drugs at the tumor site 

using an external magnet [58, 59] or using the gradient coils of an MRI system [20, 65]. 

Implementation of MDT depends on external electro- or permanent magnets placed near the 

disease site, while a catheter is typically used to release the agents closer to the target 

(Figure  2.5). By using an external magnet, the magnetic field strength decays extensively with 

distance, yielding suboptimal performance when the tumor is located deeper in the body. Due to 

the higher magnetic gradient intensity towards the external magnet, targeting efficacy is higher 

for tumors within the vicinity of the magnet [32]. 

 

Figure  2.5: Schematic illustration of the principle of magnetic drug targeting. Magnetic 

nanoparticles loaded with pharmaceutical agents are delivered intra-arterially via a catheter into 

the arterial supply of the tumor. Applied external magnetic field accumulates and retains the 

particles at the targeted site. 

 

The depth independent MRN technique has been developed for navigation of an untethered 

device in tumors located deep in the body using an MRI for improving the targeting efficacy 
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therapeutics [66]. The MRN relies on an induced 3D directional magnetic propulsion force on a 

magnetic carrier, generated by three orthogonal gradient coils placed inside a conventional MRI 

scanner [67, 68]. The efficiency of magnetic targeting toward the tumor is limited due to the lack 

of navigational control over the pre-planned trajectory combined with architecture microvascular 

networks in the tumor, as well as the limitations that inducing sufficient force on smaller 

magnetic carriers capable of transiting past the arterioles to reach capillary level [20, 32]. Tamaz 

et al. (2008) showed the feasibility of the magnetic targeting technique in a living swine by 

releasing microparticles and applying steering gradients to navigate the carriers towards a certain 

capillary where the tumor was located [69]. Martel et al. (2009) reported on the use of MRN 

system for applying a magnetic force on magnetized magnetic microparticles in the presence of a 

magnetic gradient, and directed them in the main vascular system of a live pig [70]. MRN 

combined with chemoembolization represents a significant advance in MRI-based navigation of 

untethered micro devices to a targeted area [65]. Pouponneau et al. (2014) showed the 

simultaneous steering and real-time tracking of the doxorubicin and magnetic FeCo nanoparticle 

both embedded in polymeric microparticle of 50 μm through a single bifurcation of the hepatic 

artery to the pre-determined liver lobe in a rabbit model using a clinical MR scanner equipped 

with upgraded gradient coils of 400 mT m
-1

 [65, 71]. 

However, most of the magnetic targeting techniques can only be advanced to the arterial level, 

while the tumor is located at the capillary level, which causes a significant portion of the injected 

drug to be released into the systemic circulation. The minimum diameter to induce a propelling 

force on magnetic therapeutic microcarriers using magnetic gradients for efficient navigation in 

the vascular network is limited technologically to 40 µm. The smaller particle size requires a 

higher gradient field. Therefore, the specifications of current MDT and MRN strategies are well 

beyond today’s technological limits. 
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2.4 Microrobotics 

Micro-robotics has found application in surgery, detection of cancer, and targeted drug delivery 

[36, 72]. Among them, self-propelled robotic devices that enable to penetrate into the tumor 

tissue are particularly of interest, since they can improve many medical tasks such as on-site 

delivery of imaging contrast agents [36, 73], highly localized drug delivery [74], or thermal 

treatment of the diseased tissues at selected sites. The major technological constraints for 

transportation and navigation of untethered carriers bearing therapeutic agents to reach the 

desired target at the capillary level and to penetrate inside tumors include a proper propulsion 

force and a steering system, a remotely directional control system, the miniaturization of robotic 

systems to the appropriate microscale size, an energy source, and their insertion in and removal 

from the human body [23, 24, 36]. Various ongoing research studies related to the development 

and application of microrobots are categorized into artificial or natural type. 

2.4.1 Artificial microrobots 

Kodati et al. (2007) attempted to reproduce the propulsion mechanism similar to aquatic species, 

called fish box, but the relatively large size (a few centimeters) of the device was the drawback of 

this approach [75]. Further, the administration of the microrobot into the body, recovery of 

device, the immune system response, and degradation of the robot were also the critical tasks that 

needed to be addressed. Moreover, a synthetic robot should not rely on an external power source 

to induce autonomy and propulsion force for in vivo applications. The approaches to compensate 

for their energy requirement consist of (i) miniaturizing the energy source in the form of an 

electric battery, (ii) incorporating the transducers for extracting energy from the environment 

(e.g. chemical energy, temperature differences, and vibrations) and then converting into electrical 

energy [76], and (iii) using an external energy source such as gradient magnetic fields to provide 

required power by magnetic induction [70] or optical source such as laser to control the direction 

of the device, which is depth-dependent with limited penetration into biological tissues [77]. 

However, these techniques are presently beyond the limit of current engineering knowledge and 

face many technological challenges, such as large size and/or non-autonomous characteristics 

that remain elusive. 
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2.4.2 Natural and artificial bacterial-based microrobots 

Over the last few years, microorganisms such as motile bacteria have been considered as micro-

actuators in engineered microdevices to overcome the scaling limitation and miniature source of 

power. Most biological microorganisms moving by the organelle called flagella that act as a 

nanomotor, have inspired many researchers to artificially design the propulsion mechanism and 

fabricate an artificial microrobot. Figure  2.6a shows an artificial bacterial flagellum (ABF) 

microrobot similar to the natural magnetic bacteria, which is composed of a helical tail 

(resembling a natural flagellum) responsible for the bacterial motion through its spinning and a 

soft-magnetic metal head [23]. The direction of helical motion and the velocity of the ABFs are 

controlled wirelessly using an external low-strength alternating magnetic field that induce a 

magnetic moment on a magnetized body and generates a torque on their magnetic head [23, 24]. 

Despite the enormous potential and development, the use of ABF devices for targeting and 

delivery applications is still at the theoretical stage and the technology is not mature enough due 

to their constraints such as non-autonomous characteristics and a lack of precise navigation. 

Several research groups have exploited naturally available bacteria to be used as a prefabricated 

microrobot. These investigations demonstrated that many types of bacteria have similar 

characteristics as a desirable microrobot in terms of appropriate size, self-propulsion (using 

flagella), self-powering, and ability to remotely control their directional movement due to their 

chemotaxis, magnetotaxis, aerotaxis, and phototaxis behavior [33, 36, 78]. The bacteria have 

been used for various applications such as magnetic separation of material in liquid environments 

[79], for cancer therapy application [27, 80], engineered micro-systems such as in micro-rotary 

motors [81], and propel or transport micro-objects (Figure  2.6b) [82, 83]. 

Figure  2.6c shows the microstructure of the flagella motor, which is driven by a rotary engine and 

powered by flow of hydrogen ions (protons) across the bacteria cell membrane. This self-

powered rotary engine is notably attractive in those applications where the availability of 

electrical power is restricted, as it is often the case for miniature untethered artificial robots. The 

molecular rotor embedded in flagella alone can operate at 6,000 to 17,000 rpm by crossing less 

than 300 hydrogen atoms. However, with the flagellar filament as a propeller attached to the 

rotor, the rotation usually reaches only 200 to 1000 rpm based on the type of the bacteria. 

https://en.wikipedia.org/wiki/Revolutions_per_minute
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Figure  2.6: (a) SEM micrograph of artificial bacteria with a diameter of 2.8 μm composed of a 

helical tail and the soft-magnetic head [23]. (b) A scheme of a hybrid system made of several 

bacteria using their flagella motors as actuators to propel synthetic materials [83]. (c) Structure 

and composition of flagellar motor. (d) Assembly of a microscopic pyramid using a swarm of 

magnetotactic bacteria working in union to transport microscopic bricks [84]. 

 

Even though natural organisms can react to different stimuli by chemotaxis, phototaxis, and 

aerotaxis, for precision applications such as targeting solid tumors, directional magnetotaxis 

control can be more advantageous [36]. Steager et al. (2007) proved that several flagellated 

bacteria can be used to move a larger microstructure using phototaxis [85]. However, the 

disadvantages of phototaxis for in vivo applications include limited penetration depth of light into 

the body and lack of formation and displacement control of an aggregate of bacteria within a 3D 

volume, which is critical in enhancing targeted drug delivery. On the other hand, chemotaxis as 

the most common directional system in microorganisms is not an appropriate steering control 

system for in vivo application either due to incompatibility of the technique with electronic 
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computers, as well as the instability of chemical environment variables, such as concentration of 

substances, pH, salt level, and etc. [78]. 

Flagellated magnetotactic bacteria with magnetotaxis system that can be controlled using external 

magnetic field are more efficient for computer-based navigation to operate in the angiogenesis 

networks and the tumor interstitial microenvironment [33, 36, 86]. Lee et al. (2004) demonstrated 

the controlled assembly of magnetic nanoparticles taken from magnetotactic bacteria in fluid 

using microelectromagnets. They showed that after lysis of the magnetically oriented bacteria, 

the chain of the aligned magnetic particles remained on the substrate [87]. Martel et al. (2006) 

reported the first bacterial transport application under magnetotaxis directional control along a 

planned trajectory [82, 88]. They also experimentally validated the ability to two-dimensionally 

control the Magnetococcus Marinus MC-1 magnetotactic bacteria. They used a single 

electromagnet positioned close to the bacterial solution to magnetically control a swarm of 

approximately 5000 MC-1 cells to assemble micro-bricks as a miniature replica of an Egyptian 

pyramid in less than 15 minutes (Figure  2.6d) [84, 89]. 

2.4.3 Bacteria in cancer therapy 

Coley in 1891 accidentally discovered bacterial cancer therapy [90] that inspired many 

researchers to investigate various strategies to improve treatments [27, 31, 91-94]. The key 

characteristics of bacteria to be used for cancer therapy include: (i) the ability to swim in low 

Reynolds number hydrodynamics as encountered in the tumor microenvironments and human 

capillaries, (ii) having self-propulsion and self-powered properties, (iii) specifically target, 

accumulate, and proliferate inside solid tumor regions, (iv) having sensory apparatus allowing 

them to respond to external signals and/or internal stimuli in the tumor microenvironment, (v) 

producing toxins that can lyse and destruct tumor tissue, and (vi) generating externally detectable 

signals [26, 27, 31, 92]. 

The Clostridia [25, 26], Salmonella [27-29] and Bifidobacterium [30] strains are the most 

commonly used bacteria that are considered as potential candidates to naturally penetrate deep 

region and accumulate preferentially in the hypoxic regions. Investigations on animal models 

showed that following intravenous administration, Salmonella can enter the tumor via broken 

vessels. Subsequently, due to an appropriate environment for their proliferation in the tumor 

transition zone, the Salmonella can colonize and induce apoptosis [27, 29]. The bacteria can be 
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used as carriers for gene therapy or genetically be modified to express certain genes that induce 

antitumor effects [25, 91, 94]. They can also act as a carrier to deliver therapeutic agents [26]. 

Figure  2.7 illustrates some strategies for fighting cancer using bacteria-based technology [95]. 

 

Figure  2.7: Schematic illustrating the strategies for bacterial-cancer therapy. (a) The aerotactic 

bacteria extravasate through leaky vessels, accumulate into the hypoxic/necrotic regions, and 

proliferate to kill the cancer cells. (b) The bacteria can be engineered as carrier for anti-cancer 

agents such as cytotoxic drugs, anti-angiogenic agents, cytokines, antibodies, enzymes. (c) After 

accumulation in hypoxic regions, the bacteria can multiply and act as oncolytic agents to cause 

rupture of cancer cells. Reproduced from [95]. 
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 Bacteria in combination with conventional cancer therapy techniques 2.4.3.1

Despite the tremendous research on the bacteria in cancer therapy, the technique still faces many 

drawbacks and unexplored challenges before it becomes clinically effective. For instance, a high 

dose is required to induce a significant therapeutic effect, which is often associated with the 

severe toxic side effects of bacteria. Moreover, the absence of hypoxic regions at an early tumor 

stage can significantly reduce the efficacy of intravenously injected anaerobic bacteria to target, 

colonize, and produce toxins in the central regions of solid tumors [94, 95]. For instance, phase I 

clinical trials using a genetically modified anaerobe Salmonella typhimurium (VNP20009) for 

targeting small tumors that lacked a necrotic zone, indicated that tumor colonization of bacteria 

can be achieved at very high dose but without providing any antitumor effects [96]. 

Anaerobic bacteria mostly accumulate and affect the hypoxic and necrotic cells while the living 

cancerous cells remain intact. On the other hand, chemotherapy and radiation therapy are limited 

to destroy the cells within hypoxic and necrotic regions. To improve the outcomes of such a 

treatment, a combination of bacterial therapy and conventional cancer treatment such as 

chemotherapy and radiotherapy, so-called “combination bacteriolytic therapy” (COBALT) was 

suggested [97]. For instance, C. novyi bacteria have been investigated in combination with 

radiotherapy agents [92]. Cheong et al. (2006) showed that the bacteria enhance the release of 

drugs-encapsulated liposome into the necrotic region of the tumor by cell membrane-disrupting 

properties of bacteria protein [98]. However, these types of bacteria can reach and accumulate in 

tumor lesions by means of chemotaxis or aerotaxis [27, 28] that are not compatible with 

computer-assisted navigation. Therefore, magnetotactic bacteria are proposed as potential 

remotely computer-controllable living microorganisms to transport drugs to solid tumors. 

2.4.4 Proper characteristics of magnetotactic bacteria for in vivo applications 

Since discovery of magnetotactic bacteria by Blackmore in 1975 [99], their utilization is 

continually increasing in numerous applications, such as MRI contrast agents [80] and drug-

targeting vehicles for cancer treatment [100]. The use of live magnetotactic bacteria as a 

controllable microdevice compared to isolated magnetosomes, self-propelled micro-jets and 

synthetic nanoparticles presents some important advantages [32, 101, 102]. Magnetotactic 

bacteria are flagellated microorganisms that optimizing their movements in their natural 

environment using the Earth's magnetic field due to the presence of an embedded chain of 
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magnetic nanoparticles, called magnetosomes, which are composed of iron oxide (Fe3O4) or iron 

sulfide (Fe3S4). Their swimming direction can be controlled through a computer interface using 

magnetic coils or magnets that forces the chain of magnetosomes to align along with applied 

external magnetic field. Despite the existence of various types of magnetotactic bacteria [33, 86], 

only a few of them are suitable for in vivo drug delivery application. Table  2.1 summarizes the 

characteristic of several morphotypes of magnetotactic bacteria with various dimensions, 

morphology, and swimming velocities [32]. High swimming velocity and small size are the key 

features of the appropriate magnetic bacteria for in vivo applications. The smaller size enable the 

bacteria to more easily navigate in the narrowest blood vessels and also penetrate deep in the 

tissue, but it may cost slower swimming speeds (e.g. MV-4, ~0.5 μm, ~30-80 μm s
-1

). Most of the 

magnetotactic spirilla show the slowest velocity of < 100 μm s
-1

. In general, a speed of > 100 μm 

s
-1

 (most of magnetotactic cocci) with a size of < 2 μm is preferred. Therefore, the polar MC-1 

MTB with the average size of 1-2 μm and the velocity of 200-300 μm s
-1

 appears to be a potential 

candidate for drug targeting applications to invade and access the tumor regions [32, 36, 103]. 

 

Table  2.1: Features of some of the magnetotactic bacteria. Reproduced from [32]. 

MTB Name Cell morphology 
Mean speed 

(µm s
-1

) 

Width 

(or diameter) (µm) 

Length 

(µm) 

MC-1 Spherical (Coccoid) 200 2 2 

MMP(many called 

magnetotactic bacteria)  

Sphere (a cluster of 

10-30 coccoid cells 
105 3-12 - 

Magnetospirillum 

gryphiswaldense  

Spirillum 

(Helical) 
50 0.2-0.7 1-20 

AMB-1 
Spirillum 

(Helical) 
49 0.5 3-10 

Magnetobacterium 

bavaricum 
Rod-shaped 40 1-1.5 6-9 

Magnetospirillum 

magnetotacticum 

(MS-1) 

Spirillum 

(Helical) 
40 0.5 5 

http://fr.wikipedia.org/wiki/Magnetospirillum_gryphiswaldense
http://fr.wikipedia.org/wiki/Magnetospirillum_gryphiswaldense
http://en.wikipedia.org/wiki/Spirillum
http://en.wikipedia.org/wiki/Spirillum
http://web.mst.edu/~microbio/BIO221_2010/M_bavaricum.html
http://web.mst.edu/~microbio/BIO221_2010/M_bavaricum.html
https://microbewiki.kenyon.edu/index.php/Magnetospirillum_magnetotacticum
https://microbewiki.kenyon.edu/index.php/Magnetospirillum_magnetotacticum
http://en.wikipedia.org/wiki/Spirillum
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2.4.5 Magnetococcus Marinus MC-1 magnetotactic bacteria 

As proposed by Martel et al. (2009), flagellated Magnetococcus Marinus MC-1 magnetotactic 

bacterium can provide the main characteristics required for delivery of therapeutic agents into 

inaccessible tumor regions [36]. As can be observed in Figure  2.8, the MC-1 MTB cells have a 

spherical shape 1-2 µm in diameter, which gives them the ability to extravasate through the leaky 

tumor blood vessels with pores size of 0.38 to 2 µm [46, 60]. Moreover, the appropriate size of 

the cells provides a maximum surface area with which to attach nanoscale components. The MC-

1 MTB cells can act as microrobots with a directional autonomous propulsion system which is 

produced by two bundles of nine flagella on one side (polar bacteria). The flagella provide a 

propelling force of ~4 pN that can be very effective when operating in low Reynolds number 

hydrodynamic conditions, such as in the smallest blood vessels and tumor microenvironment 

[104]. This value is relatively greater than most of the other flagellated bacteria with a typical 

thrust force in the range of 0.3-0.5 pN. The flagella provide the average swimming speed of 200 

μm s
-1

 at room temperature.  

 

Figure  2.8: (a) TEM [33] and (b) SEM photographs of a MC-1 MTB cell as a microrobot with 

the main sensor and actuator components required for carrying therapeutics deep inside solid 

tumors. The images show the two bundles of flagella as propulsion system (a, b) and the single 

chain of magnetosomes with the size ranging from 30 to 80 nm as steering system. 
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As shown in Figure  2.8a, the single magnetosome chain of MC-1 MTB cell is composed of 10-15 

membrane-based single domain magnetite (Fe3O4) nanoparticles ranging from 30 to 80 nm. From 

an engineering perspective, the MC-1 MTB cell can be considered as a microrobot due to the fact 

that it possesses an embedded remote control interface, an efficient molecular motor as well as, 

and sensory and actuation capabilities. 

As shown in Figure  2.9, once the MC-1 MTB cell is exposed to an external directional magnetic 

field slightly higher than the Earth’s geomagnetic field, the magnetized chain provides the 

magnetic dipole moment (m). The MC-1 MTB cells have the magnetic moment of approximately 

10
-15

 Am
2
 (or J T

-1
), which enables them to react to magnetic fields as low as 50 µT (5 × 10

-20
 J) 

[86]. The magnetic torque is exerted on the chain when there is an angle (θ) between the 

magnetic dipole of the chain and the applied magnetic field (B) [103, 105, 106]. The induced 

torque can result in the chain acting like a compass and aligns the MTB cells along the magnetic 

field through magnetotaxis [73, 88]. This magnetotaxis phenomenon allows the MTB cells to 

navigate efficiently while locating and maintaining an optimal position in chemical gradients 

(e.g., oxygen and nutrition) in its natural environment using the Earth’s geomagnetic field lines 

[33, 86].  

The sensitivity of a MTB cells to the applied magnetic field is influenced by their magnetic 

moment, which is in turn given by the properties of its magnetosomes chain, and more 

specifically, the number of nanoparticles and their size. The Fe3O4 nanoparticles inside the MTB 

are arranged in chain form in order to maximize the magnetic moment of the bacteria. Naturally, 

the MC-1 MTB move in response to the earth's magnetic field toward oxic-anoxic transition zone 

(OATZ) where oxygen concentrations is preferred by the MC-1 cells (~1-2% O2), which is called 

magneto-aerotaxis behavior [33]. These characteristics become very important for using MTB for 

control purposes for in vivo drug delivery into tumor microenvironments and hypoxic regions in 

which the overall swimming direction of the polar MC-1 MTB is influenced by magnetotaxis in 

conjunction with aerotaxis, and causes the bacteria react according to a balance of these stimuli. 
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Figure  2.9: Schematic illustration of the induced magnetic moment on magnetosome chain of the 

polar MC-1 MTB in a homogenous magnetic field. m represents the magnetic moment of a MTB, 

B represents the external field, and   is the angle between them [106]. 

 

 MC-1 MTB versus magnetic particle  2.4.5.1

From the microrobotic point-of-view, appropriate size, high velocity, and self-propulsion force 

are important factors for targeted delivery to tumor regions. In comparison with the small 

magnetic bacteria with high swimming velocity (e.g. MC-1, MV-1, MV-2 and MS-1), magnetite 

particles with the same size require a much higher magnetic field to reach the same 

magnetophoretic velocity. Directional control of the magnetic bacteria is possible using a weak 

directional magnetic field (slightly higher than the earth’s geomagnetic field) instead of tens to 

hundreds of thousands times higher field required for any other magnetic targeting methods. In 

addition, in MTBs, the propulsion force is provided by two bundles of flagella instead of an 

induced force generated from an external source. For instance, to make a comparison between the 

magnetic microcarriers and MC-1 MTB with the same size (2 µm) at the same velocity (200 µm 

s
-1

), bacteria are indeed subjected to a much weaker magnetic field (< 10 Gauss) than the 

magnetic carrier (7.6 × 10
3
 mT m

-1
) [32], which is well above the threshold for clinical practices 

[68]. 

Even though live MTB looks promising as a mean of enhancing tumor targeting efficacy and 

possibility to penetrate deep as compared to magnetic particles targeting using MDT and MRN 

B 

m
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techniques [20-22], but it still faces certain limitations when traveling through the blood stream. 

The maximum diameter of carrier should be approximately half of the diameter of the smallest 

capillaries (~4 µm, velocity of < 300 µm s
-1

) and reach a propelling force of at around 4 pN [32, 

36, 100]. Moreover, since the size of the openings in the leaky tumor vessels are typically < 2 µm 

[46, 60], it emphasizes the need to maintain the maximum diameter of navigable agent below 2 

µm. Although the molecular motor of MC-1 MTB is much more effective when operating in the 

microvasculature and in the tumors environment than any other known technologies [36, 107], 

they are far less efficient in larger blood vessels due to high blood flows. They cannot 

theoretically be controlled at turbulent motion of fluidic and become disoriented by flow. 

Therefore, an intravenous or intra-arterial administration as typically performed in chemotherapy 

is definitively not the best option for the MTB-based therapeutic interventions. For the flagellated 

bacteria using techniques such as embolization or balloon catheter to temporarily reduce the 

blood flow supplying the tumor may allow the navigation of the bacteria in larger blood vessels 

[32]. In contrast, magnetic microparticles with high saturation magnetization are more effective 

in larger vessels. In the case of larger magnetic particles, they must be submitted to a much lower 

magnetic gradient than a smaller particle (due to the volume of magnetic material) to reach the 

same magnetophoretic velocity. For instance, the particle with a size of 50 µm or higher needs 

only < 500 mT m
-1

 magnetic gradients, which is in acceptable range for targeting but not suitable 

for operating at the capillary level. 

 Magneto-aerotaxis system to navigate MC-1 MTB 2.4.5.2

Targeting the MTBs to a tumoral site to reach the dose of therapeutic agents as well as directional 

control of their movement requires forming a swarm aggregation of MTB within a three-

dimensional volume. Felfoul and De Lanauze designed three-dimensional magnetic navigation 

platforms, magnetic sequences, software control systems, and physic theories for MC-1 MTB 

accumulation in a specific region (Figure  2.10) [103, 105, 108]. Briefly, a magnetotaxis platform 

containing six electromagnets is constructed with a configuration of three-axis orthogonal pairs 

of independent magnetic gradient coils and special time-varying sequences capable of generating 

a 3D magnetic field. Electric coils positioned in a Maxwell configuration and carrying equal but 

opposite currents. Therefore, by independently current ratio variations between the electric coils 

of each pair in the magnetotaxis platform, it is possible to generate a MTB aggregation and 
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control its position at the center of the coils. Because the field used to generate magnetic field is 

DC, thus it does not cause overheat, nor radiation or any known side effects on the animals. 

Moreover, the magnetic fields for navigation of MTB is very weak at around 10-100 Gauss 

(0.001-0.1 Tesla). In general, when MTB cells are subjected to a magnetic field slightly higher 

than 0.5 Gauss (the earth’s magnetic field), the oxygen concentration appears to have no more 

influence on the swimming direction, and MTB direction is exclusively dependent on 

magnetotaxis, which is completely controllable by electronics and computers [36, 82]. 3D field 

can induce a torque and directional movement on the MTB to form an aggregate within a certain 

volume (referred to as the aggregation zone), and also to control its position and movement in a 

3D space using computer software [108, 109]. 

The basic operation of the magnetotaxis platform is depicted in Figure  2.10. The directional 

magnetic field strength decreases as the distance from the coils increases (blue arrows). The 

magnitudes of the electrical currents circulating in the coils are adjusted to reach the region that is 

the outer boundary of the aggregation zone. This location corresponds to the field intensity where 

insufficient directional torque is induced on the chain of magnetosomes and swimming direction 

of MTB is not affected by field any further. An aggregation of therapeutic agent-loaded MTB 

occurs since any MTB exiting this 3D volumetric aggregation zone is forced to come back within 

the zone. This is due to a sufficient directional torque that is being induced on the chain of 

magnetosomes outside this zone. Inside the aggregation zone, magnetotaxis directional control is 

no longer possible due to a very weak directional torque being induced on the magnetosomes. 

Indeed, when gathered in the aggregation zone the MTB follow a continuous free circular 

motion. In the tumor regions, subsequently aerotaxis takes an effect with displacements of the 

MTB being guided by their microaerophilic behavior seeking hard-to-treat hypoxic regions of 

solid tumors. 

It should be emphasized that for in vivo operations, unlike the artificial implementation or 

standard bacterial therapy approaches explained earlier, MC-1 MTB cannot survive or proliferate 

in the tumor. Their propelling force and swimming velocity decrease gradually when entering the 

physiological environment and they become non-motile after ~40 minutes due to the changes in 

their growth culture environment and higher temperature [36].Therefore, the entire in vivo 

procedure for targeting and navigation using MC-1 MTB is restricted to the short time frame in 

which the MTB remain active and alive. 
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Figure  2.10: Schematic illustrating basic operational principle of the magnetotaxis system 

composed of three independent magnetic gradient coils aimed at exploiting the capability of the 

MTB micro-actuator at delivering therapeutics in the hypoxic regions of tumors [109]. 

 

2.5 SN38 as an anticancer drugs 

A great numbers of efficacious drug such as cetuximab, bevacizumab, oxaliplatin, capecitabine, 

leucovorin, 5-fluorouracil (5-FU), and camptothecin (CPT) are available for treating colorectal 

cancer. A combination of 5-FU, family of irinotecan, and oxaliplatin [110] are more effective, 

since these drugs attack the different parts of cancer cells. Particularly, hydrophobic 

camptothecins such as irinotecan (CPT-11) and its active metabolite SN38 (7-Ethyl-10-

hydroxycamptothecin) have been widely used for treating various types of cancer such as lung, 

leukemia, pancreatic, ovarian, cervix, breast, lymphoma, stomach, and the treatment of colorectal 

cancer [111]. 

2.5.1 Mechanism of CPT-11 and SN38 

CPT-11 as a prodrug needs to be enzymatically hydrolyzed by hepatic and intestinal 

carboxylesterase to form the biologically active metabolite SN38 (Figure  2.11a). The 

transformation of CPT-11 yields less than 10% SN38, and extremely depends on the genetic 

inter-individual variability of carboxylesterase activity [112]. Variability and unpredictability 

metabolic conversion rates of the CPT-11 to SN38 pose significant life-threatening toxicity risks, 

limit the therapeutic potential of the drug, and complicate clinical management of patients. Also, 

SN38 in turn can be detoxified and inactivated primarily through hepatic UDP-
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glucuronosyltransferase 1A1 (UGT1A1)-catalyzed glucuronidation to form SN38-G [113, 114]. 

SN38-G can be converted to the active form of SN38 by intestinal bacterial β-glucoronidases, 

which induces sever intestinal toxicity [114]. SN38-G can also be easily excreted from the body, 

which may lead to poorly predicted toxicity from CPT-11. 

Studies demonstrated that the antitumor drug CPT and its analogues act as DNA Topoisomerase I 

Inhibitors [115]. This enzyme binds to DNA and relieves the torsional stress of supercoiled DNA 

by inducing single-strand breaks, thereby permitting cleaving and unwinding of DNA necessary 

for DNA replication, RNA transcription and DNA repair. Typically, in dividing tumor cells, CPT 

antitumor drugs and its analogues inhibit topoisomerase I activity by binding to the 

topoisomerase I-DNA complex (forming ternary complex) during DNA synthesis. In fact, the 

drug prevents topoisomerase I-mediated religation of the DNA strand and blocking the 

movement of the DNA polymerase along the DNA, which consequently result in double-strand 

DNA breakage causing in DNA damage (Figure  2.11b). Mammalian cells cannot efficiently 

repair these double-strand breaks, which lead to cell apoptosis [115, 116]. In non-dividing cells 

(such as kidney cells), the drug causes single-strand breaks in DNA, which are not lethal to the 

cell but lead to side effects and diseases such as systemic autoimmune [116]. 

2.5.2 Limitation of direct use of SN38 

Direct use of SN38 has the advantage of being active metabolite and up to 1000-fold more 

cytotoxic than the CPT-11 parent drug. Nonetheless, SN38 suffers from the limited direct clinical 

application due to the insolubility and shorter biological half-life compared to CPT-11 or 

Topotecan [117]. In fact, the SN38 is poorly soluble in aqueous solutions (solubility in water < 5 

μg ml
-1

) and it is practically insoluble in most pharmaceutically acceptable and physiologically 

compatible solvents such as ethanol, polysorbate, and cremophor [118]. For its clinical use, it is 

therefore essential to develop a soluble form of water-insoluble SN38. Furthermore, it is a pH-

sensitive drug that is rapidly converted from its active form (hydroxy lactone, closed-ring 

structure) to an inactive form (carboxylate, open-ring structure) at pH 7.4 and 37 °C [119]. 
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Figure  2.11: CPT-11 and SN38 activity and metabolic pathway. (a) CPT-11 is metabolized to the 

active SN38 compound by carboxylesterase in liver. UGT1A1 in the liver is associated with 

metabolic clearance and causes inactivation of SN38 by forming the SN38 glucuronide (SN38G). 

Intestinal bacteria transform SN38-G to SN38 and cause toxicity. (b) SN38 prevents DNA 

synthesis by inhibition of topoisomerase I activity and formation of double-strand DNA break, 

which induce DNA damage and apoptosis [116]. 
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An acidic pH promotes the formation of the lactone ring while in basic pH lactone ring 

hydrolyzes rapidly and opens to the inactive carboxylate form, which results in the complete loss 

of biological activity. The pH-dependent equilibrium of SN38 is shown in Figure  2.12. The 

lactone form is an essential structural requirement for successful drug interface with the 

Topoisomerase I target [120]. The half-life of this conversion is about 12 min, and within 2 h, 

99% of the active drug is converted to the inactive carboxylate form [121]. 

 

Figure  2.12: pH-dependent equilibrium of CPT-11 and SN38. An acidic pH promotes the active 

lactone ring while a more basic pH favors the inactive carboxylate formation [111]. 

 

To overcome the delivery concerns of SN38, two main approaches can be employed. The first 

method consists of a chemical modification of the SN38 structure by conjugating a cationic 
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conjugation or physical entrapment. Polymeric micelles [124], dendrimers [125], magnetic 

nanoparticles [126], liposomes [111, 127], and polymeric particles [128] have been used as 

carriers for delivery of SN38 into cancer cells and showed promising results in enhancing the 

solubility, protecting from rapid drug degradation, and increasing cytotoxicity against various 

tumor cells as compared to free SN38 [111]. Liposome holds notable promise for the delivery of 

active metabolite form of SN38. 

2.6 Liposomal-based formulation for drug delivery applications 

2.6.1 Liposome structure 

Liposomes are made out of phospholipids bilayer, which own the similarity to cell membrane 

with the advantage of being biodegradable, biocompatible, and flexible, thus being able to pass 

along the smallest vessels without causing clotting [129]. These artificial vesicles discovered by 

Bangham et al. in 1965 [130], are composed of an aqueous core surrounded by the lipid bilayer 

and are evaluated as drug nanocarriers for decades [131]. As shown in Figure  2.13, phospholipids 

are amphiphilic molecules that have a hydrophilic head (polar phosphate group) and a 

hydrophobic tail (non-polar glycerol bonded to two fatty acid chains) [131]. 

 

Figure  2.13: Schematic presents the structure of a liposomal lipid bilayer. (a) Liposome structure 

contains three distinct regions including the fully hydrated head groups, partial hydrated 

intermediate region, and the fully dehydrated alkane core. (b) Individual phospholipid (DSPC) 

molecules showing the hydrophobic nonpolar tail region and hydrophilic polar head group. 
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In the presence of water environment, the tails are repelled, and the heads are attracted to water to 

combine structure and form a membrane bilayer. According to their lipid composition, size, and 

lamellarity, liposome configurations can be classified as nanoscale small unilamellar vesicles 

(SUVs; below 400 nm), microscale large unilamellar vesicles (LUVs; 400 nm to several 

microns), giant unilamellar vesicles (GUV; 200 μm) and multilamellar vesicles (MLVs) 

consisting of a few concentric layers. 

2.6.2 Liposomes as drug delivery carriers 

Liposomes of various configuration and size were investigated extensively as versatile carriers 

for multitude application such as encapsulate cosmetics [132], imaging contrast agents [133, 

134], genetic material [135], enzyme [136], vaccine [137], and proteins to cellular sites [131] as 

well as for targeting anticancer drugs  [131, 138-141]. Liposomes can house more than one active 

agent and simultaneously loaded both hydrophilic chemicals (in the aqueous core) and lipophilic 

molecules (into the lipid bilayer domain) [40]. The possibility of modifying them physically or 

chemically confer liposomes with the ability to target the drug, alter the drug biodistribution 

[142], improve residence time, control drug release kinetic [143], enhance cellular uptake [144], 

shield the body from toxic side effects [145], and to have a control over pharmacokinetics [8]. 

Also, they can protect the active metabolite form of pH-sensitive drugs such as SN38 and 

improve drug solubility in acidic core under physiological conditions. However, like other 

delivery systems, liposomes are unable to pass through tissue destinations and mostly accumulate 

around broken vessels [12, 49]. 

2.6.3 Liposomes stability 

The physical, chemical, and biological stability of liposomes are the concerns for biological 

applications [146]. Physical stability of liposome can be influenced by size, coating, composition, 

surface charge, and the ratio of the lipid to the active substances. Induced charges on the surface 

of liposomes prevent aggregation through like charge repulsion. An alternative method of 

creating water-dispersible particles is to form a hydrophilic coating using hydroxylic polymers or 

polyethylene glycol (PEG). 

Chemical stability of liposomes is altered due to oxidation and hydrolysis of the lipids. This is 

affected by size distribution, pH and ionic strength of the solution, and the presence of 
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unsaturated lipid chains. To improve the stability and reduce the risk of hydrolysis, the use of 

lipids with high molecular weight, stable saturated bond, hydrophobic of ester bond, addition of 

antioxidants (e.g. butylated hydroxytoluene) and chelating agents to the liposome formulation are 

recommended. Sterols such as cholesterol are component that can affect membrane permeability 

and stability of liposome [147, 148]. 

Similarly, biological stability and circulation half-lives of liposomes also depend on their size, 

composition, and surface properties. Cationic liposomes aggregate in biological condition. Prior 

to the uptake of liposomes with circulating phagocytic cells, high-density lipoproteins (HDLs) in 

plasma are responsible for their destabilization of liposomes due to the lipid exchange between 

the liposomes and HDLs. Nanoliposomes with a size ranging from 10 to 100 nm are not 

immediately recognized by the immune system, and also they are big enough to evade renal 

filtration [149]. Common strategies for stabilizing, inhibit nonspecific adsorption of serum 

proteins and prolong retention time of the liposomes include surface ionization (e.g. citrate acid), 

grafting small molecules (e.g. alkanethiol), hydrophilic polymers (e.g. PEG derivates, co-block 

polymer) [140, 150, 151], and biomolecules (e.g. DNA, polypeptide) [152, 153]. For instance, 

many studies demonstrated an increased circulation lifespan and improved accumulation of drugs 

encapsulated within the PEGylated liposomes at the disease site, which result in effective tumor 

targeting and therapeutic efficacy [8, 151, 154]. 

2.6.4 Liposome manufacturing and synthesis techniques 

Bangham method [130], detergent-depletion [155], direct (ethanol/ether) injection [156], heating 

[157], reverse-phase evaporation/thin film hydration technique [158], electroformation [159], 

supercritical fluid techniques [160], high-pressure homogenization [161], dual asymmetric 

centrifugation [162], freeze drying [163], freeze-thawing [164], microfluidic method [165] are 

the techniques used for the preparation of liposomes. The general conventional procedure is first 

to dissolve the phospholipid in an organic solvent, dispersion of lipid mixture in an aqueous 

phase, and then the post-processing filtration of the liposomes (such as membrane extrusion, 

sonication, or freeze-thawing) to achieve desired sizes and configurations [166]. The proper 

choice of liposome preparation method relies on the physicochemical characteristics of the 

liposome compositions and those of the substance to be entrapped along with the nature of the 

medium in which the lipids are dispersed, the effective concentration of the entrapped 
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pharmaceutical agents and its potential toxicity, additional steps (e.g. functionalization) involved 

during preparation, reproducibility, and scaling up. 

Reverse-phase evaporation/thin film hydration method was employed in the current study 

(Figure  2.14). In this technique, the lipids are initially dissolved in an organic solvent such as 

chloroform–methanol mixture. Then, the solvent is evaporated using a rotary evaporator to form 

a thin film of phospholipids. The resulting dry lipid film is re-hydrated at a temperature above the 

transition temperature of the lipid with an appropriate buffer. The individual phospholipid 

molecules are aligned tail to tail (i.e. hydrophobic-end-to-hydrophobic-end) and formed 

phospholipid bilayer sheets. These bilayer conformations are highly unstable, and when reach a 

certain length by vigorous shaking, the sheets fold upon themselves and form the liquid-filled 

large multilamellar vesicles with various sizes [167]. To obtain SUVs, extrusion through 

polycarbonate membranes can be performed at around transition temperature of lipids to 

downsize the particles and yields homogeneous unilamellar vesicles [166]. 

 

Figure  2.14: Schematic illustrating the reverse-phase evaporation/thin film hydration technique 

for liposome manufacturing. Reproduced from [168]. 
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2.6.5 Liposome drug loading strategies 

Depending on the physico-chemical properties of the therapeutic agents such as solubility, 

stability, biocompatibility, and therapeutic application of the final product different encapsulation 

strategies can be employed [169]. 

 Passive encapsulation 2.6.5.1

In passive encapsulation method, the bioactive molecule is loaded into the internal aqueous core 

of liposome during the stages of vesicle formation without any external force. The most common 

method is the thin film hydration, in which the desired biomolecule is added during rehydration 

process. Highly water soluble hydrophilic drugs with small molecular weight can be encapsulated 

passively because they are not amenable to gradient-based drug loading methods due to their 

minimal membrane permeability [170]. Although this encapsulation method is simple, the 

encapsulation efficacy is quite low (drug-to-lipid molar ratio of 1:20–1:100) [170, 171]. For 

lipophilic drugs, both drug and lipid are co-dispersed in buffer resulting in entrapment of drug 

inside the bilayer of liposomes. Polyions substances (e.g. nucleic acid-based therapeutics and 

doxorubicin) can be complexed with oppositely charged lipids to improve trapping efficiencies 

and drug-to-lipid ratio [140, 170]. 

 Active encapsulation 2.6.5.2

The active encapsulation methods employ transmembrane gradient strategy to efficiently trap and 

stabilize the weakly basic and acidic amphipathic drugs into the pre-formed liposomal lumen 

[29]. These methods usually facilitate the drug permeation by the formation of a pre-established 

transmembrane gradient between the aqueous core and the external environment. This gradient 

can be generated either by (i) translocation of K
+
 ions, (ii) buffers exhibit substantial difference in 

pH (citrate buffer (pH = 4) inside and HBS buffer (pH = 7.5) outside), (iii) ((NH4)2SO4) and 

((NH4)2HPO4)-gradient, whereby one NH3 molecule moves out of core and leaves one H
+ 

behind, 

thus creating pH gradient [172, 173], and (iv) the ethylenediaminetetraacetic acid (EDTA) ion 

gradient method [174]. Briefly, prior to encapsulation, the drug molecule is uncharged and 

permeated across the lipid bilayer. Upon reaching low pH inside the intravesicular space, the 

drug undergoes a chemical transformation and becomes protonated. Since, charged molecules are 

less permeable, the encapsulated compound is effectively trapped inside the aqueous core of 

https://en.wikipedia.org/wiki/Ethylenediaminetetraacetic_acid
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liposomes [148]. Doxorubicin that contains ionizable amine group is an example of successfully 

formulated drug from this loading method [175]. 

2.6.6 Liposomal SN38 formulation 

Research studies demonstrated that incorporating water insoluble hydrophobic camptothecins 

such as CPT-11 and SN38 into a pharmaceutical formulation like liposomes can improve their 

solubility, stability, and activity profiles [111, 112, 127]. These drugs have a low affinity to lipid 

membranes and tend to precipitate into aqueous phase. Besides, the neutral form (lactone, the 

loadable form) has limited solubility in most of the compatible organic solvents. One of the 

current methods uses the high solubility of SN38 in dimethylsulfoxide (DMSO) to prepare SN38 

loaded liposomes [158]. However, one of the concerns is the DMSO toxicity to cells. 

Therefore, loading strategy and formulation of SN38 in pharmaceutical delivery systems for 

parenteral administration is very challenging to ensure the availability of the more-loadable 

lactone form during the encapsulation process with reduce toxic effects. Another solution is to 

dissolve the SN38 in an alkaline condition (e.g. pH = 11) in a buffer such as PBS, which is more 

compatible with cells and bacteria. Figure  2.15 shows a pH gradient strategy (pH inside = 4 and 

pH outside = 8) for the encapsulation of SN38 into liposome. The external pH is a compromise 

between a pH providing a reasonable solubility of the drug and a considerable proportion of its 

neutral form which resulting greater precipitation of SN38 into the liposome core. The inside pH 

can be generated by encapsulating a buffer such as ammonium sulfate ((NH4)2SO4) with an acidic 

pH in the liposome [111]. The water-soluble inactive carboxylate form of SN38 is transformed to 

the neutral active lactone form by reducing pH during transportation across the liposome wall 

[111]. At interior acidic pH, the SN38 is trapped in its active neutral lactone ring, likely forms 

insoluble crystals with ammonium sulfate and becomes almost impermeable, which allow it to 

remain inside the liposome until reaching the delivery site.  

http://www.thefreedictionary.com/ionizable
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Figure  2.15: pH gradient method to accommodate SN38 within the aqueous core of the liposome. 

At alkaline condition, SN38 exists as inactive hydrophilic charged carboxylate forms outside of 

the liposomes. In the acidic liposome interior, SN38 converts to the hydrophobic active closed 

lactone forms. 

 

2.6.7 Mechanism of drug release from liposome 

One of the critical challenges for drug delivery is to control spatially and temporally drug release 

after the localization at the target tissue. Extensive works with liposomal formulation of 

vincristine and doxorubicin as cell cycle-specific drugs [176, 177] with high drug-to-lipid ratios 

showed long-term drug release rates which could potentially affect many tumor cells at their 

vulnerable part of the cell cycle [176]. The physico-chemical characteristic of liposomes can be 

engineered and designed differently relative to the application, tissue environment, and specific 

drug release mechanism including temperature sensitive liposomes [139, 170], pH sensitive [139, 

170], enzymatic release [141, 178, 179], ultrasound sensitive [180], and photosensitive [170]. 

The lipid composition consisted of saturated long-chain lipid with incorporated cholesterol 

provide high retention, while using shorter and unsaturated acyl chains resulting in more leaky 

systems. For instance, the factors that influence the magnitude of drug release from the 

sonosensitive liposomes include lipid composition (e.g. grafted PEG group, unsaturation of acyl 

chain), amplitude of ultrasound, pulse or continuous irradiation, and exposure time [180]. Cavity 

formation and subsequently drug leakage can be induced by short-term exposure to low-
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frequency ultrasonic irradiation (~20 kHz, < 3 min) [181]. However, this method may not be 

possible for solid tumors located deep in the body. 

Enzyme-activated liposome for drug release in the solid tumor is a promising method in which 

the tumor microenvironment contributes to locally degrade the liposomal carrier through the 

release of enzymes (lipases) and oxidizing agents. Moreover, mildly acidic pH of the tumor can 

be used for the degradation of pH-sensitive liposomes without any external stimulation. Secretory 

phospholipase A2 (sPLA2) enzymes play a fundamental role in destabilization and cleavage of 

the lipid molecules leading to the generation of lysolipids and fatty acids [141, 178, 179]. The 

factors that influence the PLA2 activity include size, charge, lipid composition (e.g. acyl-chain 

length, polymer coverage, and length), and structural defects such as at domain boundaries. 

Incorporation of anionic PEGylated lipids such as DPPG can promote the PLA2-catalyzed 

degradation of the phospholipids membrane. However, the activity is diminished significantly in 

the presence of cholesterol, potentially limiting the range of drugs that can be delivered using this 

approach [179]. Elevated expression of PLA2 was shown in several human tumor types including 

breast, gastric, pancreatic, venom, prostate, small bowel, and colon. PLA2 is overexpressed in 65 

colon carcinomas (50% of colon cancers) and eight colorectal cancer cell lines [178]. 

2.6.8 Cellular uptake mechanism 

Successful drug targeting and delivery approaches rely on understanding of the cellular processes 

and underlying pathways that occur during delivery. Drugs and nanoparticles must be adequately 

taken up by target cells to exert their therapeutic effects. It is well known that cellular 

incorporation and clearance of particles are highly related to their physico-chemical properties 

such as the size, shape, charge, composition, coating, surface chemistry, and cell type [182, 183]. 

Figure  2.16 shows the effect of particle size in cellular uptake mechanisms and accumulation. 

The cell’s semi-permeable plasma membrane allows free diffusion of small and non-polar 

molecules. However, bigger substances are unable of crossing the membrane and require uptake 

mechanisms. The cellular uptake of the drug-delivering carriers can occur with an adsorption 

process on the negatively charged cell membrane followed by the internalization of nanoparticles 

by the specific pathways. Phagocyte cells could take up large particles, aggregates, opsonized 

particles, and ligand modified particles through phagocytosis. Nonphagocytic cells can uptake the 
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nanoparticle mainly through direct penetration or pinocytosis (e.g. nonspecific endocytosis, 

receptor-mediated endocytosis) (Figure  2.16b) [40, 183]. 

In the case of liposomes, the structures and many physicochemical properties of lipid bilayers are 

similar to cell membranes. This similarity may increase the permeability and fusion of liposomes 

with cell membrane to deliver their contents into the cytosol. This method is mostly used for the 

DNA or drugs that would normally be unable to diffuse through the cell membrane and fusogenic 

liposome help to indiscriminately delivered past the lipid bilayer [184]. 

According to literature, the kinetic of uptake is size dependent and takes several hours to reach 

saturation (or equilibrium) [185]. For instance, the particles with the size of 50–100 nm, the 

saturation time is ~30 min while it is increased to several hours for 200 nm particles. It was 

established that particles carrying an overall positive charge can improve cellular uptake, most 

likely due to the electrostatic interaction with the net negative surface charge on the cells 

membrane [186]. For instance, to target phagocytic cells, particles can be made in a particular 

size range, positively charged, and decorated with opsonins that make them viable targets for 

natural macrophage phagocytosis. These particles may be digested in the macrophage's 

phagosome and releasing drug contents [182]. Many studies showed that the outer membrane of 

tumor cells typically carry a net negative surface charge due to an overexpression of sialic acid-

rich glycoproteins, phosphatidylserine (PS) residues, O-sialoglycoproteins, and heparan sulfate 

proteoglycans [187, 188]. In comparison, normal mammalian cell membranes have zwitterionic 

phospholipids (e.g. phosphatidylethanolamine (PE), phosphatidylcholine (PC), or sphingomyelin 

(SM)) in their membranes. As such, their membranes are less negative in net charge. 

The micron-size bacteria can be internalized by macropinocytosis and phagocytosis process in 

non-phagocytic and phagocytic cells, respectively. For macropinocytosis, the external stimulation 

is required to activate a signaling cascade to induce changes in the dynamics of the actin-

mediated membrane and triggering plasma membrane ruffling [189, 190]. The bacteria that die 

quickly in physiological condition such as MC-1 magnetotactic bacteria (40 minutes) [36] cannot 

take advantage of macropinocytosis. 

https://www.google.ca/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0CCMQFjABahUKEwjV_53P24_GAhULBpIKHcLmAAw&url=http%3A%2F%2Fwww.thefreedictionary.com%2Fzwitterionic&ei=sLp9VdXnHYuMyATCzYNg&usg=AFQjCNH0zu4dxQZSAsZdaqyMCXicUDMwng&bvm=bv.95515949,d.aWw
javascript:void(0);
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Figure  2.16: (a) The journey of nanoparticle carrying the drug from the injection site into the 

action site. (b) The various cellular uptake mechanisms of macromolecules and nanoparticles 

across the cellular membrane into the cells are indicated according to their size. Reprinted with 

permission from [183]. Copyright 2012, American Chemical Society.  
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2.7 Bioconjugation techniques 

Conjugation of biomolecules such as peptides and antibodies, nucleic acids, oligonucleotides, 

fluorescent dyes, polymers, drugs, markers, and various enzymes to nanoparticles creates hybrid 

materials that can alter their functionality, effectiveness, water-solubility, and stability in the 

physiological environment and allowing the nanoparticles interact specifically with biological 

systems. The strategies commonly used for bioconjugation consist of (i) non-covalent binding 

including physical adsorption (physisorption) and biological affinity-binding, (ii) covalent 

attachments (chemisorption) [152, 153]. Figure  2.17 presents some of the main chemistry 

available for coupling of biomolecules to the particles. The non-covalent interactions can be 

classified as electrostatic interactions (e.g. ionic, hydrogen, and halogen binding), Van der Waals 

forces (e.g. dipole-dipole and London), and hydrophobic interactions. Each technique has its 

benefits and drawbacks and is used in the context of specific application, reagent requirements, 

and timetable.  

2.7.1 Non-covalent binding 

 Physical adsorption 2.7.1.1

One of the simplest and straightforward noncovalent attachment methods is through the passive 

adsorption of molecules to particles without additional functionalization. The adsorption 

mechanism mostly occurs by electrostatic interaction between oppositely charged compounds. 

For instance, adsorption of negatively charged DNA onto non-functionalized positively charged 

gold nanoparticle [191] or adsorption of avidin to negatively charged nanoparticles [192]. 

Proteins, as zwitterionic molecules, are positively charged at pH values below their isoelectric 

point (pI) and negatively charged above it. Therefore, proteins can have different charges 

(natural, positive or negative) under physiochemical environment. The hydrophobic ligands (e.g. 

immunoglobulins) can be adsorbed onto the surface of the particles through the hydrophobic 

attraction. In the case of less hydrophobic ligands (e.g. human serum albumin and hemoglobin) 

and more hydrophilic particles (bearing -COOH groups), the attachment can take place via both 

hydrophobic and ionic interactions. For hydrophobic antibodies, their Fc portion is more 

hydrophobic than the Fab region, and therefore, the antibodies are more likely adsorbed in their 

most biologically active orientation by hydrophobic attraction [193]. The major drawbacks of the 
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physical adsorption method are the lacks of stability and specificity [194, 195]. The strength of 

the hydrophobic interaction is also sensitive to the environment properties such as ionic strength 

and pH changes. To overcome this problem, the pH of the adsorption buffer needs to be kept at or 

near the isoelectric point of the protein. 

 

Figure  2.17: Schematic illustrating of bioconjugation techniques based on the functional groups 

involved. Reproduced from [196]. 
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 Biological affinity-based binding 2.7.1.2

The application of non-covalent affinity-based receptor-ligand systems has been well-established 

for different biomolecules such as antibody-antigen interaction, receptor-target binding, and 

enzyme-substrate interaction. It is possible to use these high specific interactions for 

bioconjugation of biomolecules to micro/nanoparticles. For instance, oligo DNA-functionalized 

particles were used to target genetic materials, which is often a complementary base pair of 

nucleic acid [197]. Moreover, the immobilization of IgG antibody on the protein G functionalized 

particles for capturing staphylococcus bacteria [198]. 

One of the most well-known affinity bindings is the (strept)avidin–biotin system in which both 

particles and molecules are pre-coated with a generic binding proteins [199]. The dissociation 

constant of this noncovalent affinity bind is relatively high (Kdiss > 1.3 × 10
15

 M), which lead to 

an extremely robust bond, resistant to high temperature and harsh chemical conditions. Due to the 

strong bond and specificity of the biotin–avidin system, the method has been employed in a large 

number of biotechnology applications. Particles can be functionalized with (strept)avidin by 

either covalent coupling or electrostatic adsorption and then used to label biotinylated antibody, 

DNA oligomers, antibodies, peptides, and fluorescent dyes. Another well-known class of 

affinity-based system is polyhistidine tagged (His-tag) proteins or peptides that allow strong but 

reversible binding to the metal-ion-chelating particles such as Ni-nitrilotriacetic acid (Ni-NTA)-

coated magnetic nanoparticles [200]. The disadvantage of the technique is the need to modify 

both particles and biomolecules with an affinity pair. Moreover, the conjugation interference by 

other chemical groups available for adsorption within the biomolecule. 

2.7.2 Covalent coupling 

Among the various coupling strategies, covalent coupling is often employed for the 

immobilization of biomolecules when a specific and stable cross-linkage is required. Particle-

biomolecule conjugates prepared with this method are effectively bound, and do not desorb/leach 

for a long period of time if desired. Moreover, the ligands and binding moieties are favorably 

presented on the surface of the particle and are available for interaction with target [195]. 

Covalent binding by conjugation chemistry exploit functional groups on both biomolecules and 

particles such as carboxylic, amine, and thiol group (Figure  2.17). For instance, the preparation of 
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immunoliposomes, lipid derivatives incorporated into the bilayer construction must contain 

functional groups available for cross-linking. The PEGylated distearoyl phosphatidyl ethanol-

amine with a terminal carboxyl group (DSPE-PEG-COOH) [151, 195] or PEGylated dipalmitoyl 

phosphatidyl ethanol-amine with a terminal maleimide group (DPPE-PEG-Mal) [150] provide an 

ideal functional group for activation and subsequent bioconjugation. 

As shown in Figure  2.17, the thiol group (R–SH) can selectively react and couple with 

maleimides preferentially under pH 6.5-7.5 [195]. The amine-functionalized particles can be 

conjugated with various thiolated biomolecules such as thiol-peptide, residue thiol-DNA, and 

proteins and peptides with free or reduced cysteine, or vice versa. Disulfide bridges can be also 

used for reversible coupling of particles [201]. One-step click chemistry is another common 

approach for covalent bioconjugation, which involves coupling of alkyne to an azide (N3
-
) group 

and results in 1, 2, 3-triazole ring in presence of Cu (I) catalyst. However, the azide or alkyne-

functional bioactive species requires special preparations that decreases the products yield [202]. 

Covalent coupling via amine and/or carboxyl functional groups is one of the most commonly 

used conjugation strategy. Primary amine exists in various proteins (e. g. enzyme and antibodies) 

[203, 204] or amine-terminated nucleic acid [205] can react with carboxylic acid-functionalized 

particles to form a covalent amide bonds [206]. The linkage is usually mediated by zero-length 

carbodiimide agents. Moreover, due to the active nucleophilicity of amine group, they can react 

with other functional amine-containing groups, such as aldehydes, thiols, isocyanates, and 

epoxides. For instance, glutaraldehyde agents by bridging two amines from each species allow to 

conjugate enzymes to nanoparticle surface with a small space of the linkage (~0.7 nm) [207]. 

 Carbodiimide-mediated chemistry 2.7.2.1

There are currently several zero-length bioconjugation techniques including carbodiimide, 

Woodward’s Reagent K, N, N-carbonyldiimidazole, and Schiff base formation and reductive 

amination [195]. Carbodiimide dehydrated agents are the most prevalent type of smallest zero-

length crosslinker that often mediates the activation of carboxylic acid groups toward the 

formation of amide or ester linkage without introducing a spacer arm. One of the advantages of 

the technique is several types of amine-containing molecules such as antibodies, peptides, 

enzymes, and DNA that can be immobilized to the functionalized surface of the substrate without 

prior modification. Moreover, most of the biomolecules are soluble in aqueous buffer solutions. 
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The widely used carbodiimides activation agents include 1-ethyl-3-(3-dimethylaminopropyl) 

carbodiimide hydrochloride (EDC, EDAC or EDCI), 1-cyclohexyl-3-(2-

morpholinoethyl)carbodiimide (CMC), dicyclohexylcarbodiimide (DCC), diisopropyl 

carbodiimide (DIC)), Woodward’s reagent K (N-ethyl-3-phenylisoxazolium-3′-sulfonate), and 

N,N′-carbonyldiimidazole (CDI) [195]. These carbodiimides catalysts can be categorized into 

water-soluble and water-insoluble (soluble in organic solvents) types. The water-soluble agents 

are preferred for biochemical conjugations, which allows for direct reaction in physiologic 

solutions without prior organic solvent dissolution [203, 206]. 

The water-soluble EDC carbodiimide along with water-soluble N–hydroxysuccinimide (NHS) or 

its analog (sulfo-NHS) are successful way of creating zero-length crosslink [195, 208]. By far, 

the most common coupling strategy for direct coupling of negatively charged carboxylates (–

COOH) to primary amines (–NH2) containing molecules is through EDC-mediated process to 

mediate the formation of amide linkages without becoming part of the final crosslink between 

target molecules [151, 195, 203]. The method is highly efficient for crosslinking biological 

substances such as proteins or immobilizing proteins, forming amide bonds in peptide synthesis, 

attaching haptens to carrier proteins to form immunogens, and labeling nucleic acids.  

Figure  2.18 presents a generalized description of conjugation of an amine-containing molecule to 

a carboxylate molecule using carbodiimide coupling method. The technique usually involves a 

single step or two-step process. In a simple one-step procedure, the carboxyl-containing molecule 

is activated with EDC to form an active ester (O-acylisourea) intermediates. This active species 

can react with a nucleophile such as a primary amine to form an amide bond (Figure  2.18a). In 

aqueous solutions, the generated reactive ester complex is labile, gradually loss activity, and has 

slow reaction rate with amines. Hydrolysis is the major competing reaction cleaving off the 

activated ester intermediate, forming an isourea, and regenerating the carboxylate group 

(Figure  2.18b). To reach the desired coupling efficacy, the reaction needs to be carried out 

promptly to prevent hydrolysis of reactive ester before meeting the target amine. 

A two-step procedure (Figure  2.18c) results in better control of the reaction and the higher yield 

of amide bond formation. First, the carboxylate-containing compound can form an O-acylisourea 

intermediate reactive ester. To increase the stability of this active ester, NHS or sulfo-NHS can be 

used by forming a considerably more stable sulfo-NHS ester intermediate from the reaction of the 
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hydroxyl group of sulfo-NHS with the EDC active-ester complex. Sulfo-NHS esters are 

hydrophilic reactive groups that couple rapidly with amines nucleophiles on target molecules, 

which dramatically increase the resultant amide bond formation. An effective separation steps 

(e.g. gel filtration or dialysis) in a reasonable time frame are required to remove excess reactants 

and by-products of the reaction such as the water-soluble isourea. 

 

Figure  2.18: Reaction scheme describes the carbodiimide EDC/NHS crosslinking procedures. 

Molecules containing carboxylate groups can be activated by EDC and sulfo-NHS to create an 

active ester intermediate. By nucleophilic displacement, the activated particle can couple with 

amine-containing compounds to form amide bond linkages. Adapted from [195]. 

 

Although NHS or Sulfo-NHS are not necessary for carbodiimide reactions, their presence can 
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intermediate [209]. For example, an addition of 5 mM sulfo-NHS to the EDC for coupling of 

glycine to keyhole limpet hemocyanin increased the yield of derivatization about 20-fold as 

compared to using EDC alone [209]. Sulfo-NHS is more effective due to preserving or increasing 

water-solubility of the activated carboxylate molecule, longer-lived, and slow hydrolysis of 

formed ester intermediates. Moreover, the sulfo-NHS ester intermediate is negatively charged 

aiding to maintain the stability of particles due to repulsion between like-charged particles. 

Working with carbodiimide needs to balance out between activation efficiency, hydrolysis rates, 

and stability of the components involved in the reaction. Intermediates can be hydrolyzed within 

hours or minutes depending on water content and pH of the reaction solution. EDC hydrolysis 

occurs maximally at acidic pH with enhancing the stability of the carbodiimide in solution at or 

above pH 6.5 while the hydrolysis rate of the esters is greatly slower at slightly acid pH. As the 

pH becomes basic the hydrolysis kinetics of the Sulfo-NHS activated -COOH group increases. In 

general, NHS-esters have a half-life of 4-5 hours at pH 7, 1 hour at pH 8 and just 10 minutes at 

pH 8.6 [210]. On the other hand, the carboxylate activation occurs most efficiently with EDC at 

pH 3.5-4.5 while the highest yield of the amide bond formation is in the range of pH 4-6. When 

working with proteins and peptides, the amide bond formation effectively occurs between pH 

4.5-7.5. Beyond this range, the coupling reaction occurs with lower yields. Since the pI of IgG is 

in the range of 6.4 to 9.0, at pH less than pI, the amines on the protein will be protonated and thus 

be more reactive toward the sulfo-NHS esters. 

The activation rate and attachment efficiency are pH, particle size, incubation time, and 

concentration dependent. Overall, for best efficacy in two-step crosslinking reactions, it is 

recommended to perform the EDC and Sulfo-NHS activation in 0.1 M MES [2-(N-morpholino) 

ethane sulfonic acid] buffer for 30 min incubation time at room temperature at pH 4.5-6.0, which 

cause the most activation of EDC and less hydrolysis of intermediates. Then, raising the pH to 

neutral immediately prior to reaction to the biomolecule using suitable buffers devoid of 

extraneous amine- or carboxylate-containing molecules (e.g. phosphate buffers) will maximize 

the reaction of Sulfo-NHS activated molecules with primary amines [195]. 

The EDC-mediated crosslinking reaction may promote unwanted self-polymerization. For 

instance, the IgG antibody usually contains both accessible amine and carboxylate groups, which 

results in antibody polymerization among themselves and severe precipitation. The following 
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procedure could be performed to minimize the polymerization of proteins including (i) titration 

and scaling back the amount of EDC/NHS, (ii) performing reaction under mildly alkaline 

conditions, (iii) chemically quenching the unreacted EDC with 2-mercaptoethanol (2-ME) to 

form a stable complex with the remaining carbodiimide, (iv) removing the excess agents and 

terminating the activation (e.g. by dialysis, desalting using gel filtration or centrifugal spin 

columns), and (v) adjusting the reaction pH by buffer exchange with a desalting column. These 

operations should be done rapidly to minimize hydrolysis and undesirable crosslinking, and 

recover as much active ester functionality as possible [195, 208]. 

This chemistry has been used in various applications. Biosensor transducer surfaces have been 

functionalized with EDC chemistry for the detection of pathogenic bacteria [211]. Signal 

amplification of captured bacteria has also been performed using quantum dot nanoparticle 

bioconjugation based on carbodiimide chemistry [212]. Bacterial morphology has also been 

assessed through coupling substrates for microscopy to cell membranes through EDC/NHS 

interactions [213]. Furthermore, the detailed study of outer lipoproteins membrane has been 

investigated for their capacity to behave as cell surface receptors for cationic antimicrobial 

peptides through EDC/NHS bioconjugation [214]. In terms of biomolecule conjugation for 

targeted delivery applications, this chemistry has also been applied for the functionalization of a 

wide range of nanoparticles [215], superparamagnetic iron oxide nanoparticles [216], gold [217], 

and paramagnetic microparticles [218]. 

 Antibody immobilization on particles 2.7.2.2

Various direct and indirect techniques have been developed for the conjugation of antibodies to 

the surface of particles [195]. Functional groups available on the surface of an antibody include 

primary amines (-NH2), carboxyls (–COOH), sulfhydryl groups (–SH), and carbonyls (–CHO) 

(Figure  2.19) [219, 220]. Amine groups occur at the N-terminus of each polypeptide chain and in 

the side chain of lysine residues that are distributed over the entire antibody. Due to the positive 

charge of primary amines at physiologic conditions, they are usually outward-facing of proteins; 

therefore, they are typically accessible for the conjugation without denaturing protein structure. 

Carboxyls occur at the C-terminus of each polypeptide chain and in the side chains of aspartic 

acid and glutamic acid. Sulfhydryls appear in the side chain of cysteine residues that are joined 

via disulfide bonds (–S–S–) to stabilize the whole molecule structure. However, the sulfhydryls 
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must be reduced to become available for crosslinking. Carbohydrate (sugars) in the 

polysaccharide moieties can be oxidized with sodium metaperiodate to generate active ketone or 

aldehydes in glycoproteins for coupling. 

In the case of direct antibody conjugation, the activated particles with appropriate functional 

groups (such as carboxyl, azide, maleimide, thiol, aldehyde, and amine) specifically react with 

inherent reactive groups of antibodies (e.g. lysine, tyrosine, glutamate, aspartate, methionine, 

serine, histidine, and arginine) using appropriate crosslinker chelates (e.g. EDC, DIC, CMC, and 

DDC) [195, 219]. For the biological activation of biomolecules, antigen binding domain needs to 

be accessible and exposed with the appropriate orientation to maximize antibody functionality. 

For instance, lysine residues are relatively abundant on protein structure and can be considered as 

primary target sites for EDC conjugation. Bovine serum albumin (BSA) has 30 to 35 lysine 

groups available on its surface and IgG antibody molecule usually has about 90 lysine residues, 

of which 30 are potentially suitable for conjugation with particles. In the indirect bioconjugation 

technique, modified antibody with functional group (e.g. avidin, biotin, thiol, maleimide, 

aldehyde, and hydrazide) can attach to the functionalized particles (e.g. Biotin, avidin, PDP, 

maleimide, MBP, MCC, PDP, hydrazide, and aldehyde). 

 Quantification of antibody–particle coupling efficiency 2.7.2.3

One of the challenging issues of assessing antibody–particle coupling efficiency is the selection 

of an assay compatible with the final products. For instance, in the immunoliposomes samples, 

lipids strongly interfere with direct protein assays such as, bicinchoninic acid (BCA) or Lowry 

assay [203]. The most common techniques include centrifugation, magnetic separation, dialysis, 

column separations (e.g. size exclusion chromatography), and gel filtration separation. These 

techniques typically need to be combined with the protein assays such as Lowry, Bradford, or 

BCA assay, protein absorbance (at 280 nm), fluorescent assays, enzyme-linked immunosorbent 

assay (ELISA), and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)  

[203, 221]. Also, microscopic methods such as atomic force microscopy (AFM) [222] and 

transmission electron microscopy (TEM) can be employed to obtain additional information on 

the conjugation of antibody to particles. 

http://www.ruf.rice.edu/~bioslabs/methods/protein/bca.html
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Figure  2.19: Some strategies for attachment of an antibody onto functionalized magnetite 

nanoparticles. (a) A typical structure of an IgG antibody and its labeling sites. (b) Maleimide-

particle covalently linked with thiol (sulfhydryl) group of antibody and form thioether bond. (c, 

d) Carbodiimide chemistry that forms amide bond, (e) Hydrazide-particle attached to aldehyde 

group of antibody and form hydrazone linkage [195]. 

 

NH2

NH2

NH2

NH2

COOHHOOC

COOHHOOC

S     S

Antigen-

binding site

Fe3O4 S

Fe3O4
COOH

COOH
Fe3O4

CONH

Fe3O4 Fe3O4

S     S

CHO CHO

Fab

Fc

Heavy 

chain

Light 

chain

NH2NH2

Fe3O4

NH2

NH2

Fe3O4
HNOC

CONH
COOH

COOH CONH

O

O

N Fe3O4

O

O

N

b

c

d

e

NH2
N

H

O

N
N

H

O

S

CH

O

COOH

NH2

NH2

NH2

a



54 

2.8 Characterization of the tumor: tools and technologies 

The need to understand the tumor structure and microenvironment has led to the development of 

different imaging techniques to non-invasively visualize the three-dimensional tumor features as 

well as to quantify biological processes taking place within intact living subjects. Visualization of 

tumor microstructures including hypoxia and necrotic regions remain beyond the resolution 

capabilities of the current clinical imaging modalities and become an important issue to advance 

state-of-the-art medical imaging, diagnostics, and therapeutic interventions. Detailed knowledge 

of individual tumor microstructure and biologic characteristics are clinically crucial in oncology 

for tumor characterization, treatment planning, and evaluation of tumor response to a treatment. 

Various visualization technologies such as conventional X-ray computed tomography (CT) [223], 

positron emission tomography (PET) [224], ultrasonography [225], optical microscopy [226, 

227], and MRI [228, 229] have been developed to produce images of tumor microenvironment. 

Table  2.2 and Table  2.3 present some of imaging modalities with associated advantages and 

disadvantages in terms of methods for image generation, spatial resolution, depth penetration, 

acquisition time, and detection thresholds. The main limitation of these techniques is however 

poor spatial resolution and low penetration depth which are required to acquire accurate 

information regarding the tumor microstructures. 

2.8.1 Magnetic resonance imaging 

MRI as a non-invasive imaging technique is an essential part of modern clinical diagnostics. It 

offers many advantages over other imaging techniques such as lack of ionizing radiation 

exposure, relatively high spatial resolution, excellent soft tissue contrast, and nearly unlimited 

tissue penetration. These profits have turned the MRI to one of the most accessible modalities 

clinically compared to the other conventional clinical imaging techniques. MRI has a wide range 

of applications such as molecular and cellular imaging [230, 231], angiography using contrast 

agents [228, 232, 233], and real-time drug delivery to the tumor sites [65], and etc. 

MRI uses a strong magnetic field (B0) and radio frequency (RF) pulses to generate detailed cross 

sectional pictures of internal body structures. Upon exposure to magnetic field in the MRI tunnel, 

most abundant 
1
H proton atoms that naturally exist within the body (or other paramagnetic 

molecules 
13

C, 
17

O, 
19

F, 
23

Na, and 
31

P) are aligned with the direction of the field without causing 
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any chemical fluctuations in the tissues. Applied tuned radio frequency waves redirect alignment 

of hydrogen atoms. Upon removal of the radio wave, the protons return to their thermodynamic 

equilibrium alignment in a process called relaxation which is detected as a change in 

electromagnetic flux. The deterioration of signal is described in terms of two relaxation constants 

including the longitudinal (or spin-lattice) relaxation time T1 or the transverse (or spin-spin) 

relaxation time T2. The relaxations emit the energy according to the differences in proton content 

in body tissue. The changes in the induced electrical current in the receiver coil of MR scanner 

creates a picture of the tissues scanned. The spins reorientation which is the source of contrast in 

MRI mostly depend on the tissue type, density of proton spins, the magnetic environment of the 

tissues, the relaxation times of the nuclear magnetization, and the blood flow to the tissues. 

 

Table  2.2: Features of currently employed clinical imaging modalities. Adapted from [234]. 

Imaging 

Modality 

Image 

generation 

Spatial 

resolution 

Time 

scale 

Depth 

penetration 

Primary 

contrast 

X-ray computed 

tomography (CT) 

Ionizing 

radiation  

(X-ray) 

50-200 

µm 

Millisec to sec 

(X-ray ~10 

ms, 

CT ~0.5 s) 

No limit 

X-ray 

absorption by 

tissues 

 

Magnetic 

resonance 

imaging (MRI) 

Radiowaves 
~25-500 

µm 

Sec 

(~0.5 sec) 
No limit 

Tissues proton 

density 

Positron emission 

tomography 

(PET) 

Ionizing 

radiation 

(High energy 

γ-rays) 

1.5-4 mm  
Min 

(~5 min ) 
No limit 

Radiolabel 

atoms decay in 

tissues 

Single-photon 

emission 

computed 

tomography 

(SPECT) 

Ionizing 

radiation  

(Lower energy 

γ-rays) 

1-4 mm 
Min 

(~10 min) 
No limit 

Radiolabel 

atoms decay in 

tissues 

Ultrasound 

(US) 

Acoustic 

waves 
~50 µm 

Millisec 

(~40 ms) 
mm-cm 

Tissues 

impedance 

difference 

Optical coherence 

tomography 

(OCT) 

Long 

wavelength 

light 

(near-infrared) 

~10 µm sec to min ~1-3 mm 

Tissue’s 

characteristic in 

optical 

scattering light 

Optical Visible light 2-5 mm sec to min 1-2 cm 
Excitation and 

emission light 

https://en.wikipedia.org/wiki/Near-infrared
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Table  2.3: Advantages and disadvantages of different imaging modalities. Reproduced from 

[234]. 

Imaging 

modalities 
Advantages Disadvantages 

CT 

 Unlimited penetration depth 

 High spatial resolution 

 Whole body imaging  

 Short acquisition times (min) 

 Anatomical imaging 

 Differentiates osseous from soft tissue 

 Clinical translation 

 Poor soft tissue contrast 

 Contrast dye injection 

 Radiation exposure 

 Limited sensitivity 

 No quantification 

 Moderately expensive 

MRI 

 Unlimited penetration depth 

 High spatial resolution 

 Whole body imaging  

 Excellent soft tissue resolution 

 Anatomical imaging  

 Differentiate osseous from soft tissue 

 Non-ionizing radiation burden 

 Clinical translation 

 High cost 

 No quantification 

 Long acquisition times (min to 

h) 

 Limited sensitivity 

PET 

 Unlimited penetration depth 

 High sensitivity  

 Whole body imaging  

 Soft tissue imaging 

 Can be combined with CT  

 Clinical translation 

 Radiation exposure 

 Limited spatial resolution 

 Long acquisition times (min to 

h) 

 High cost 

 need cyclotron or generator  

SPECT 

 Unlimited penetration depth (< PET) 

 High sensitivity  

 Whole body imaging  

 Combined with CT for anatomical 

imaging 

 Distinguish between radionuclides, 

(simultaneously imaging of multiple 

processes) 

 Clinical translation 

 Radiation exposure 

 Limited spatial resolution 

 Long acquisition times (min to 

h) 

 High cost 

 

Ultrasound 

 Non-radiation 

 Non invasive 

 Inexpensive and available 

 Soft tissue imaging 

 Short acquisition times 

 Operator dependency 

 Low spatial resolution 

 limited in some parts of body 

 No morphological information 

Optical 

 Short acquisition times 

 Highly sensitive and quantitative 

 Whole body imaging of animal 

 Can be combined with CT for 

anatomical imaging of animals 

 Inexpensive 

 Limited depth penetration 

 Whole body imaging of 

humans not possible 
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The current clinical MR scanners are categorized into conventional (1-1.5 T), high-field (3-4 T) 

and ultra high-field (7-8 T), which depends on the intensity of the magnetic field. Conventional 

MR scanners provide a spatial resolution of ~0.8 mm which can be improved further to ~0.5 mm 

and ~0.1 mm for high field and ultra high-field scanners, respectively [235]. Higher field systems 

provide a higher signal to noise ratio and improve the imaging quality. However, availability of 

such high-field scanners for clinical applications is limited. 

 Magnetic particles as MRI contrast agents 2.8.1.1

MRI provides an excellent soft tissue contrast whereas its characteristic such as low sensitivity 

and limited resolution does not allow the visualization of the microstructures. To provide detailed 

physiological information and overcome insufficient contrast between certain diseased or 

abnormalities and normal tissues, the use of specific contrast agents is required. Contrast agents 

can improve the sensitivity and signal by accelerating proton relaxation and shortening the T1, T2 

and T2* relaxation times of the surrounding nuclei, producing increased signal intensity on T1-

weighted images or decreased signal intensity on T2-weighted images, or both. The T2* is the 

spin–spin relaxation time composed of differences from molecular interactions and intrinsic 

magnetic heterogeneities of tissues in the magnetic field. All the contrast agents produce changes 

in magnetic susceptibility by enhancing local magnetic field perturbation. This phenomenon 

enhances image resolution, reduces artifacts, and decreases scan time [45, 236]. The efficiency of 

a contrast agent is evaluated by the relaxivity including r1 = 1/T1, r2 = 1/T2, and r2* = 1/T2* (mM
-

1
 s

-1
). 

Most commonly used components for contrast enhancement can be classified based on their 

magnetic properties as paramagnetic (e.g. gadolinium-based agents (Gd
3+

) and manganese 

(Mn
2+

)) or superparamagnetic (e.g. iron oxide nanoparticles). Paramagnetic gadolinium ions 

produce positive contrast (brighter) and accelerating spin-lattice (T1) relaxation, while 

superparamagnetic iron oxide formulations lead negative contrast (darker) images by decreasing 

signal and affecting spin-spin (T2) relaxation. 

Susceptibility-based contrast in MRI provides a mean to amplify and visualize the effect of a 

magnetic particle, while its volume is greatly inferior to the spatial resolution of the system. In 

the presence of the MRI’s homogeneous high strength magnetic field, magnetic materials with 

high magnetic susceptibility become magnetized. As a result, the agents induce inhomogeneities 
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in the local magnetic field (B0) of the MRI to enlarge the effect of particles which is much larger 

than their actual size. If the degree of the distortion reaches the size of a typical MRI pixel (~0.5 

mm
2
), the inhomogeneity appears in the form of a signal loss artifact (hypo-intense signal) in the 

T2
*
-weighed gradient recalled echo (GRE) images. The susceptibility artifacts can serve as a 

source of contrast by showing the presence and the location of magnetic particles and cause the 

visualization of structures of tumor. The size, degree of the distortion, and intensity of the signal 

loss are directly proportional to the susceptibility of material, saturation magnetization, the total 

magnetic volume, the scan parameters (e.g. echo time (TE) and repetition time (TR)), and the 

scan sequence type (gradient-echo (GE) and spin-echo (SE) sequences) [237, 238].  

 Magnetic properties of magnetic particles 2.8.1.2

Magnetic nanoparticles have been widely used for biomedicine-based applications such as 

contrast agents in MRI and multimodality imaging, hyperthermia, targeted gene and drug 

delivery [231, 239-241]. In terms of magnetic susceptibility, most materials can be categorized as 

diamagnetic (non-magnetic materials), paramagnetic, ferromagnetic, and superparamagnetic. 

Paramagnetism is the characteristic of the materials that become magnetized in the presence of a 

magnetic field but their magnetism disappears when the field is removed. Atoms or ions of these 

materials have unpaired number of electrons in their outer shell. The individual atoms with 

random orientation have intrinsic magnetic dipole moments which make them as a permanent 

magnet even in the absence of an applied field. Upon removal of the externally applied magnetic 

field, the material does not retain any magnetization and all the individual atoms return to their 

original state. Even at the presence of magnetic field only a small fraction of the spins will be 

oriented by the field and induces small magnetization. This is due to the thermal motion that 

randomizes the spin orientation and causes the small fraction of unpaired atoms to be aligned 

with the magnetic field unless they are exposed to absolute zero temperatures (-273˚C). 

Ferromagnetic materials, as opposed to paramagnetic materials, exhibit a long-range ordering 

phenomenon at the atomic level which causes the unpaired electron spins to line up parallel with 

each other in a region called domain. Ferromagnetic materials are usually unmagnetized due to 

the multiple domains with random orientations with respect to one another. Once these materials 

subjected to an external magnetic field, all the individual magnetic domains are aligned with each 

other and orient parallel to the direction of the magnetic field. As a result, the material becomes 

http://hyperphysics.phy-astr.gsu.edu/hbase/solids/ferro.html#c2
http://hyperphysics.phy-astr.gsu.edu/hbase/solids/ferro.html#c4
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fully magnetized. Upon removal of the driving magnetic field, the individual domains keep their 

orientation parallel to the magnetic field and materials tend to retain the fraction of the saturation 

magnetization, this is called remanence magnetization (Mr) (Figure  2.20). The reason for this 

phenomenon is that parallel spin alignment is a preferred lowest-energy state and therefore some 

energy is required to demagnetize them. The tendency of ferromagnetic materials to remember 

their magnetic history is called hysteresis. The high magnetic susceptibility of these materials 

generates a high inhomogeneity in the magnetic field, and subsequently, they become suitably 

traceable in MR images. Adversely, the clinical applications of ferromagnetic materials with high 

magnetizations are limited due to their tendency to maintain a high Mr value. 

Superparamagnetism occurs when the size of the multi-domain particles decreases to a 

nanometer sized single magnetic domain particle. The magnetization (M) initially increases 

sharply when it is exposed to a magnetic field until it reaches the maximum value known as the 

saturation magnetization (MS). These materials will not retain any net magnetization property in 

the absence of an external magnetic field. The size of the individual magnetic domain is in the 

range of tens of nanometers and depends on the magnetic anisotropy. 

 Superparamagnetic iron oxide nanoparticles in MRI 2.8.1.3

Superparamagnetic iron oxide (SPIOs) nanoparticles contrast agents have been vastly 

investigated as MRI negative contrast agents for various biomedical applications such as 

angiogenesis imaging in tumors [242, 243] and molecular-cellular imaging and tracking [231, 

239, 244]. The parameters that affect the relaxometric behavior of these magnetic particles 

include size, structure, coating, and concentration of the particles within an imaging voxel. 

Figure  2.20a, b depicts the magnetization curve of iron oxide (Fe3O4) particles that are widely 

used as MRI contrast agents [245]. A transition from ferromagnetic multi-domain structure to 

superparamagnetic single-domain structure occurs with the reduction of the particles size to 

approximately 30 nm, which is accompanied by a decrease in the saturation magnetization 

(Figure  2.20a). Even though the superparamagnetic particles have smaller magnetization than 

ferromagnetic materials, lower aggregation formation in the absence of the magnetic field make 

them suitable options to be used as contrast agents in MRI for in vivo applications.  

http://hyperphysics.phy-astr.gsu.edu/hbase/solids/hyst.html#c1
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Figure  2.20: (a) Typical magnetization hysteresis loop of magnetic materials. (b) Transition from 

multi-domain to single-domain to superparamagnetic regimes of Fe3O4 and also their magnetic 

domain morphology [245]. 

 

SPIOs contrast agents are mostly in two main forms of magnetite (Fe3O4) and its oxidized form 

maghemite (γ-Fe2O3) [246] with a core diameter in the range of 4-12 nm. Both are water 

insoluble iron oxide crystals and require modifications, for instance, polymer coating [65] or 

encapsulation in liposomes [134]. Modified SPIOs have shown higher physico-chemical stability, 

lower aggregation, greater circulating half-life and biocompatibility [9, 247] compared to the Gd 

[231, 248-250]. For instance, conventional intravenously administration of Gd-chelates has a 

toxic effect that can be nephritic [248, 249]. To target a specific site in the body and induce a 

hyperintense signal in the vicinity of the targeted regions, ligands such as antibodies, peptides 

and aptamers could also be grafted onto the surface of the MRI contrast agents [251, 252]. 

Even though the SPIOs show higher saturation magnetization than Gd-based contrast agents, 

causing a higher sensitivity and enhancing proton relaxation in the field of MRI [243], SPIOs do 

not own the highest saturation magnetization among the magnetic materials. Iron-cobalt 

nanocrystals coated with graphitic carbon, as an alternative to SPIOs, have the highest 

magnetization among all magnetic materials and can lead to the visualization of smallest vessels 

in MR images [2]. However, drawbacks of using such a material are the easy oxidation and the 
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potential toxicity. These characteristics make the SPIOs as a promising contrast agent. Two 

example of SPIO-based contrast agents that are clinically approved include ferucarbotran 

(Resovist; 60 nm) [253] and ferumoxides (Feridex or Endorem; 120 to 180 nm) [254]. 

The MR imaging of SPIOs formulations is usually achieved by the T2/T2*-weighted imaging 

sequences and SPIOs are mostly effect on the shortening T2* relaxation time. The tissue signal 

loss (void) induced by magnetic field inhomogeneity is due to the susceptibility effects of the 

iron oxide core and is considered as an indication of the presence of the particles in the tissue 

[255]. The signal voids can also be caused by the presence of different sources of negative 

contrast. For instance, tissues with a low proton density result in an undesirable negative contrast 

and encumber the distinction of the negative contrast associated with the magnetic particles. 

Consequently, the magnetic particles cannot be distinguished from a void in the image. To 

overcome the problem, positive contrast images can be acquired through modifying sequences 

and employing T2-weighting for the tissues containing SPIOs [256, 257]. The T1-weighted 

images are not as sensitive as the T2-weighted counterparts in detecting SPIO nanoparticles, but 

still affected by such particles providing the T1-weighted imaging with a less pronounced positive 

T1-contrast effect [242, 258]. 

 Magnetic resonance imaging of MTB 2.8.1.4

The embedded magnetosomes inside the MTB are single domain superparamagnetic iron oxide 

nanoparticles (SPIONs). Similar to MRI contrast agent, when the MTB is exposed to the MR 

magnetic field, the magnetosomes become magnetized and cause a local distortion of the 

homogenous magnetic field inside the bore of a MRI scanner [36, 73, 80, 259]. The 

magnetosome chain in MC-1 MTB is consisted of 11 magnetosomes (~70 nm) aligned in chain 

and 20 nm distance between each of them.  

In the present of MTB, the T1 and T2 relaxation times are affected by the magnetic field 

perturbations. The relaxivities of contrast agents in MRI can be calculated by:  

     
 

    
     

                                  
(2.1) 

where     
  (r1, r2) are the relaxation rates without the presence of the contrast agent (medium), C 

is the concentration of the contrast agent ([MTB] ml
-1

), and α1,2 are the relaxivity constants (T1- 
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and T2-relaxivity) of the agent expressed in unit of mM
-1

 s
-1

. α1,2 is a property specific to the 

effect of MTB on the NMR signal [259]. Relaxation values are then estimated by fitting the data 

to a monoexponential decay curve.  

Felfoul et al. (2007) demonstrated that the presence of magnetosomes caused a local distortion of 

the homogenous magnetic field of MRI in vitro. The T1 and T2 relaxivities for different 

concentration of MTB ((6.7, 6.2, 4.8, 3.5, 2.2, and 0) × 10
7
 MTB ml

-1
) using 1.5 T MRI scanners 

was calculated [73, 259]. As shown in Figure  2.21a, MTB show slightly higher signal compared 

to the medium in T1-weighted images in which the signal intensity improvement is not 

significantly concentration-dependent. However, as shown in Figure  2.21b, T2-weighted images 

are more affected by MTB concentration. As the concentration of MTB enhances, the signal 

decay becomes more significant. In general, both T1 and T2 value decrease by presence of MTB 

in a manner inversely proportional to the concentration. However, due to the inherent 

characteristic of superparamagnetic MRI contrast agents the effect of magnetosome chain on T2 

is found to be more significant than on the T1. They also showed that the MTB at a concentration 

of 2.2 × 10
7
 MTB ml

-1
 can be detected in vitro using a clinical 1.5 T MRI scanner. For the 

concentration of < 10
6
 MTB no contrast was observed compared to the background and for the 

concentration more than 5 × 10
9
 signal was completely disappeared [259]. 

Benoit et al. (2009) demonstrated the visualization of the magnetotactic bacteria (AMB-1 strain) 

in mice tumor xenograft using MRI equipped with customized coils. They reported the possibility 

to generate either positive (T1-weighted) or negative (T2-weighted) MR contrast in vitro [80]. 

Moreover, positive contrast was obtained in mice tumor xenografts after direct intratumoral (i.t.) 

injection of approximately 5 × 10
8
 low-Fe AMB-1 cell (in 25 μl Magnetospirillum medium) 

containing 6.0 ultra-small superparamagnetic iron oxide particles with an average size of 25.3 nm 

(Figure  2.21c). Moreover, they examined the systemic injection of 1 × 10
9
 AMB-1 suspended in 

100 μl media via tail-vein (Figure  2.21d). Overall, their results demonstrated that the AMB-1 cells 

can produce positive contrast in tumor xenografts following i.t. and intravenous (i.v.) injection. 
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Figure  2.21: (a) T1-weighted images of MC-1 MTB at different concentration using SE sequence 

with TE = 11 ms, TR = 450/550/700 ms, slice thickness of 20 mm, and pixel spacing of 0.586 

mm. Insert numbers from 1 to 6 indicate increasing in the concentration. (b) T2-weighted images 

of several MC-1 MTB concentrations using fast spin echo sequence with TE = 96/125/135 ms, 

TR = 5096 ms, slice thickness of 20 mm, and pixel spacing of 0.293 mm. a and b reproduced 

form [259]. (c) T1-weighted MR images of AMB-1 cells show enhanced signal (positive contrast) 

in mouse tumors 1 day after i.t. injection (right) but not in the control tumor (injected with media) 

immediately post-injection (left). (d) T1-weighted images of tumor prior to i.v. injection of media 

(left) and 2 days post-injection of AMB-1 (right). c and d adapted from [80]. 

 

2.9  Tumor imaging modalities 

The structural and functional differences between normal tissues and tumors in overexpression of 

biomarkers (e.g. HIF-1) and enzymes (e.g. proteases), leaky angiogenesis, and acidic 

environment can be used for tumor diagnosis and therapeutic approaches. Currently, standard 

methods for tumor assessment are serial invasive biopsy sampling, monitoring the changes in 

tumor size by physical examinations, or biological- and anatomical-based imaging techniques. 

However, the reduction in tumor size is a relatively late consequence of effective therapy, which 

is the main drawback by physical examination. 

a b TE = 96 msTR = 450 ms TR = 550 ms TR = 700 ms TE = 125 ms TE = 135 ms

c d
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Biopsy sampling followed by histological analysis is a precise technique to assess the degree of 

response to treatment. The technique provides detailed information on cellular proliferation, 

tumor products, and expression of receptors. However, biopsy as an invasive technique has 

inadequate spatial sampling, needs multiple time point biopsies, and contains significant 

sampling error. 

The anatomically-based imaging methods for the characterization of tumors and their 

environment include MRI [228, 229], X-ray/CT scan [260], ultrasound [225], and optical 

imaging [226, 227]. These techniques offer regional information and can determine the extent of 

tumor and differentiate tumors from normal tissue based on tumor size, shape, density, 

vascularity, and relative fat/water content but provide limited information regarding the tumor 

biological/metabolic activities. 

The tumor biological/metabolism-based imaging technique can be beneficial to assess regional 

tumor biochemistry and for planning biologically directed treatments. This biological imaging 

technique may overcome the inherent limitations of serial biopsy and able to evaluate response to 

treatment at a much earlier time than anatomical-based methods. This can be performed by PET 

scan that employs different tracers to target the various areas of tumor and provides substantial 

information on regional biological properties such as hyper-glucose metabolism [261], tumor 

hypoxia [262], cellular proliferation [263], expression of particular tumor receptor, protein, and 

gene products. Limitations of PET arise from the short half-life radionuclides tracer, the risk of 

pharmacologic toxicity and radiation burden for the patient [264]. Although PET has a relatively 

high spatial resolution (1.5-4 mm), it provides limited anatomical information on the tumor, 

therefore requiring added-on physical imaging tools such as X-rays/CT scans and MRI. 

2.9.1 Tumor angiography imaging 

From the therapeutic perspective, visualization of angiogenesis network provides important 

information on the tumor microenvironment. It allows evaluating of the functional changes and 

the efficiency of applied treatments such as chemotherapy, radiotherapy or targeted therapy. 

Further, it provides information about blood vessel growth, blood flow and vascular permeability, 

cellular and molecular abnormalities in the blood vessel and vascular heterogeneity. Advanced 

imaging modalities for tumor angiogenesis are classified into (i) invasive microscopic optical 

imaging (fluorescence, bioluminescence) methods [61, 265] and (ii) clinical noninvasive imaging 

https://en.wikipedia.org/wiki/Radionuclides
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(MRI, CT, PET, ultrasound color flow Doppler imaging [266], and digital subtraction 

angiography (DSA)) techniques. Microscopic techniques provide high-resolution images 

(confocal microscopy (~100 nm), and electron microscopy (few nanometers)) while the clinical 

imaging methods provide the ability to visualize deep living tissues and larger arteries and veins. 

However, these techniques are unable to image the microvasculature due to low resolution (MRI 

and CT (100 to 500 μm), PET (1.5-4 mm), ultrasonography and optical imaging (few 

millimeters)), Doppler color flow (~200 μm), and DSA (~180-200 µm). These approaches are 

promising but rely on a systemic injection and sub-optimal transportation of the agents through 

the blood flow. 

 PET imaging of angiogenesis 2.9.1.1

Various PET contrast agents provide different functional information about the tumor [265, 267]. 

For instance, [
18

F]-2-fluoro-deoxy-D-glucose (
18

F-FDG), which mainly reflects tumor 

metabolism, can be used to localize primary tumors and metastases (Figure  2.22a, left). 
11

C-

carbon monoxide (CO) agent reflects blood volume within tumors. After inhalation, labeled CO 

irreversibly binds to erythrocytes and is distributed in accordance with vascular volume 

(Figure  2.22a, right) [265]. 

 MRI of angiogenesis 2.9.1.2

MR imaging of tumor angiogenesis can perform through accumulation of the contrast agents in 

any area that has increased blood flow and provide positive or negative contrast. The contrast 

agents with a longer half-life in the circulation, such as modified SPIONs and Gd protected with 

albumin, dendrimers, graft copolymer, and liposomes can improve visualization of angiogenesis 

architecture [228, 268]. Kobayashi et al. (2001) showed the tumor vascularity using Gd-

dendrimer. High molecular weight Gd-dendrimer (400 kDa) cannot extravasate the tumor vessels 

and remains intravascular, which changed local relaxivity and displayed larger tumor blood 

vessels (Figure  2.22b, bottom). They also showed that the lower molecular weight Gadolinium-

diethylenetriamine pentaacetic acid (Gd-DTPA) (547 Da) extravasated rapidly and created a 

uniform positive contrast in the tumor (Figure  2.22b, top) [268]. However, detailed 3D map of 

the microvessels is not possible using this technique. 
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 X-ray/CT imaging of angiogenesis 2.9.1.3

Figure  2.22c shows an example of the X-ray images after rapid intra-arterial infusion of an 

iodinated contrast agent [265]. The drawbacks of the technique consist of an insufficient 

resolution to resolve the microvasculature, exposure to ionizing radiation, and potential 

nephrotoxic of iodinated agents. Figure  2.22c (inset) shows the CT angiography with an 

intravascular latex contrast agent. Preclinical techniques suitable for scanning of small animals 

such as microMRI and microCT provide much high spatial resolution (~10-20 μm) but have poor 

temporal resolution [269, 270]. They have the high signal-to-noise ratio using a surface coil but a 

partial penetration depth and limited sensitive area. However, long scanning time in the microCT 

involves large radiation exposures that can reach the lethal dose limit in the small animals. 

 

Figure  2.22: In vivo angiography imaging of tumors. (a) PET images of a renal tumor showing a 

metastatic tumor (arrowheads) in the pelvis using 
18

F-FDG (left); 
11

C-CO reflects tumor blood 

volume (right). Adapted from [267]. (b) The MRI of the tumor of rapidly extravasated 547 Da 

Gd-DTPA (top) and 400 kDa Gd-dendrimer agent (bottom), which remains intravascular 

(arrowheads). Adapted from [268]. (c) CT angiogram of artery branches (arrows) in renal tumors. 

The incorporated image shows the angiographic image of renal vasculature after i.v. injection of 

latex. Adapted from [265]. (d) DSA images acquired from gastrointestinal stromal tumors. 

Adapted from [271]. Scale bar is 5 cm in a; 5 mm in b; 3 cm (inset 4 cm) in c. 

a

b

c

d
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 DSA imaging of angiogenesis 2.9.1.4

DSA considered as the reference imaging modality in the determination of the tumor location, 

identification of the bleeding, and visualization of vascular structure [272]. Figure  2.22d shows 

the DSA images from gastrointestinal stromal tumors [271]. The DSA images can be produced 

by exposing the region with time-controlled X-rays while injecting contrast medium into the 

blood vessels. The method is useful for the visualization of large arteries and veins but the 

visualization of microvasculatures less than 200 µm remains an issue. Other limitations involve 

invasive intra-arterial catheterization and using an iodinated contrast agent with potential 

nephrotoxic. Also, a rapid drop in the contrast level of i.v. injected iodine caused limited imaging 

time frame with the resultant 2D images [273]. 

2.9.2 Tumor hypoxia imaging 

The assessment of tumor hypoxia can provide information regarding the impact of treatment 

strategies, follow-up the response to a therapy after the onset of treatment, or predict the tumor 

resistance to chemotherapy or radiotherapy. Various invasive and noninvasive techniques are 

available to evaluate tumor hypoxia and its metabolism [13, 274]. According to their principles 

and ability to quantify tissue oxygenation, current clinical and preclinical techniques to assess 

hypoxia are categorized into (i) indirect measurements (e.g. histological staining) and (ii) direct 

measurements which consist of oxygen tension (pO2) polarographic needle electrode, optical 

imaging, radionuclide PET, SPECT, and MRI methods. 

 In vitro histological staining of tumor hypoxia 2.9.2.1

The histology staining can quantitatively assess the parameters associated with tumor 

oxygenation and its metabolism using exogenous hypoxia markers (e.g. nitroimidazole derivates 

such as misonidazole, pimonidazole, EF3, and EF5) and endogenous hypoxia-related proteins 

(e.g. HIF-1α, carbonic anhydrase IX, and osteopontin) on tumor biopsy samples [275, 276]. The 

exogenous markers typically form stable adducts with intracellular macromolecules when the 

oxygen pressure is less than 10 mmHg [276]. For IF staining, several antibodies have been 

developed against nitroimidazole, EF3, EF5, and pimonidazole biomarkers. Meijer et al. (2012) 

demonstrated the targeting of HIF-1 hypoxia biomarker by pimonidazole staining in head and 

neck tumor xenograft (Figure  2.23a). However, the technique suffers from relatively inadequate 
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sampling of the tumor, lack of spatial coverage, and the necessity of frequent sampling for the 

evaluation of treatment response.  

 Polarographic needle electrode 2.9.2.2

The direct measurement of oxygen tension (pO2) in hypoxic regions using invasive polarographic 

needle electrodes can predict treatment response and the metastatic potential of tumors but it is 

limited to easily accessible tumors such as head and neck cancer, cervical,  lung, and prostate 

[277]. Indeed, insertion of an electrode into the tumor requires a great expertise, disrupts tissues, 

and has difficulty to distinguish necrotic areas to differentiate the patterns of hypoxia. The studies 

confirmed that polarographic needle electrode is less sensitive than exogenous markers [278]. 

 Optical imaging of tumor hypoxia 2.9.2.3

The optical imaging of tumor microenvironment using bioluminescence, fluorescent, near-

infrared (NIR) [279], and phosphorescence probes plays a significant role in assessing the tumor 

hypoxia. The techniques are constructed based on the characteristic feature of hypoxia such as pH 

differences, overexpressed molecular markers (e.g. HIF-1), and enzymes (e.g. proteases) in the 

tumor microenvironment [226, 227] and are designed based on the shift of excitation and 

emission spectra of the probes when they are exposed to the tumor milieu. Bioluminescence 

imaging techniques are capable of measuring the products of tumor metabolism by highlighting 

the spatial distribution of high energy areas, high glucose and the waste products such as lactate 

generated by glycolysis [280]. Saha et al. (2011) showed the HIF-1α bioluminescence imaging of 

tumor hypoxia dynamic in the brain over the six weeks in vivo (Figure  2.23b) [280]. Due to the 

biological complication of tumor hypoxia, typically combinations of various markers have been 

used to create a hypoxia-prognostic profile [56]. One of the limitations of the techniques is the 

very low value expression of HIF-1α or other markers. In NIR spectroscopy spectral changes of 

excited light (650-900 nm) with transmitted or reflected light through tissue are recorded for the 

quantification of oxygen concentration in the tumor vasculature. The pO2 of the tumor vascular 

can also be evaluated by phosphorescence imaging following the injection of an albumin loaded 

with a metal porphyrin complex (Oxyphor) into the vasculature. The level of oxygen can be 

measured by oxygen-dependent quenching of phosphorescence [281]. However, clinical 

translation of optical imaging is limited due to the low spatial resolution, low sensitivity, limited 

path length, light scattering, and being affected by the environment. 
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Figure  2.23: Optical imaging of tumor hypoxia. (a) Immunofluorescence image of a human head 

and neck carcinoma xenograft displays expression of HIF-1α (red) in hypoxic regions as 

evaluated by pimonidazole staining (green). The white color indicates a blood vessel and N 

indicates necrotic cells. Scale bar represents 100 μm. Magnification 100×. Adapted from [282]. 

(b) In vivo HIF-1α bioluminescence assay showing a dynamic tumor hypoxia over the period of 6 

weeks in a breast cancer brain metastasis implanted in a nude mouse. Adapted from [280]. 

 

 MR imaging of tumor hypoxia 2.9.2.4

The MRI techniques to investigate tumor hypoxia and oxygenation of its environment include 

dynamic contrast-enhanced (DCE), blood oxygen level-dependent (BOLD)-MRI, tissue oxygen 

level-dependent (TOLD)-MRI, 
19

F MRI, and oxygen-enhanced MRI (OE-MRI). Jordan et al. 

(2013) developed MRI sequences that are sensitive to tumor oxygenation, which is called 

mapping of oxygen by imaging lipids relaxation enhancement (MOBILE) technique [283]. In this 

method, oxygen serves as paramagnetic endogenous contrast probes that by changing the 

relaxation time and susceptibility can help to distinguish diseased tissue from normal tissue. 

Crayton et al. (2011) showed that the metabolically directed pH-titratable SPIONs or glycol 

chitosan-SPIONs can penetrate and accumulate in acidic tumor environment following i.v. 

administration. They demonstrated that the presence of the probes in the tumor hypoxia can 

generate a signal loss in T2*-weighted images and reveal a hypointense heterogeneous region in 

the tumor [284]. 

DCE-MRI. This modality enables to analyze oxygen tension, tumor angiogenesis and their 

permeability, and decipher tumor heterogeneity. After i.v. injection of contrast agents, well-

vascularized/perfused regions are visualized by rapid contrast extravasation from the blood 

Weeks

5           6            7            8           9           10

p/s/cm2/sr

1.5

2

0.5

0

 105

1

a b



70 

 

vessels to the extracellular matrix followed by quick washout. Reduced vascularized hypoxic 

regions are recognized by delayed contrast signal buildup and the agents remain much longer in 

the tissue causing a decrease in relaxation time and higher contrast compared to normal tissue 

[285]. The necrotic areas exhibit quiet slow or no discernible contrast uptake. Stoyanova et al. 

(2012) studied the DCE-MRI using the Gd-DTPA in vivo to identify pattern of tumor 

microenvironment by measuring the signal buildup within the hypoxia [45]. 

BOLD and TOLD MRI. BOLD- and TOLD-MRI, as tumor vascular and tissue oxygenation, 

respectively, are involved in oxygen-induced MR effects in tumor hypoxia, [286]. The TOLD is 

associated with T1 relaxation time changes affected molecular O2 in tissues. The BOLD is 

developed to exploit the differences in T2 relaxation induced by regional changes in 

deoxygenated hemoglobin levels. In oxygen-deficient states, intravascular oxyhemoglobin 

(diamagnetic) is presented as deoxyhemoglobin (paramagnetic), which acts as image contrast that 

induces a reduction in MR signal and affect the T2/T2*relaxation rates [287]. These qualitative 

techniques have disadvantages of being easily affected by environment factors such as hematocrit 

concentration, flow effects, pH, and temperature [288]. Simultaneous use of TOLD and BOLD 

during a single dynamic MRI may provide complementary information [289]. 

19
F MRI. Fluorine (

19
F) MRI uses two types of markers as contrast agents including fluorinated 

nitroimidazoles and perfluorocarbons (PFCs). The 
19

F T1 relaxation rate of hydrophobic PFCs 

with high oxygen solubility varies linearly with the dissolved oxygen concentration, which 

allows to quantify the oxygenation levels in vivo [290]. However, the measurements are easily 

affected by the blood flow artifacts, dilution, pH, rapid clearance [291]. Fluorinated 

nitroimidazole have also shown good results in detecting hypoxia while the toxicity profile such 

as neuropathy and acute central nervous system (CNS) remain as a major drawback [279]. 

OE-MRI. OE-MRI is based on the effect of dissolved paramagnetic dioxygen (O2) molecules in 

blood and tissue interstitial fluid on the MRI signal that result in enhancing the T1 relaxation rate 

[292]. Linnik et al. (2014) employed the OE-MRI to evaluate the tumor vasculature, perfusion, 

and tumor oxygenation compared with DCE-MRI data and IF biomarkers in murine U87 glioma 

xenografts as well as in patients with glioblastoma [292]. 

https://en.wikipedia.org/wiki/Extra_cellular_matrix
http://www.ncbi.nlm.nih.gov/pubmed/?term=Stoyanova%20R%5Bauth%5D


71 

 

 PET imaging of hypoxia 2.9.2.5

Using noninvasive PET for assessing tumor hypoxia in vivo requires the administration of an 

positron-emitting radioisotope including 
124

I, 
18

F and 
60/64

Cu labeled with the hypoxia molecular 

biomarkers such as 2-nitroimidazoles derivates (e.g. fluoromisonidazole (FMISO) [293], EF5 

[294], and fluoroetanidazole (FETA) [295]), nucleoside conjugates (e.g. iodoazomycin 

arabinoside (IAZA)) [293], and Cu (II)-diacetyl-bis (N4-methylthiosemicarbazone) (Cu-ATSM) 

[296]. The significant hypoxia imaging agent uptake requires a hypoxic level of typically less 

than 10 mmHg [276, 297]. After uptake and retention of markers, the stable adducts formation 

between markers and hypoxic cells can be detected by exposing the patients to the ionizing 

radiation of PET scanner. The compound can be rapidly reoxidized and removed from the 

normoxic cells, and thus providing good differentiation between hypoxic and normal cells. 

 Combination of existing imaging methods 2.9.2.6

Co-injection of multiple tracers and the combination of different imaging techniques resulted in 

improvement of measurements. For instance, the coinjection of 
18

F-FAZA (hypoxia marker) and 

18
F-RGD (angiogenesis marker) allow hypoxia to be correlated with angiogenesis [298]. In 

another study, the combination of 
18

F-FDG (glycolysis marker) and 
18

F-FMISO (hypoxia marker) 

allow hypoxia to be corresponded with glycolysis [297]. Combination of DCE-MRI and PET 

imaging was used for noninvasive assessment of neck nodal tumor metastases [236, 285]. In 

PET/CT metabolic or biochemical activity can be correlated with anatomic imaging [224]. 

Cho et al. (2009) showed the spatial distribution of hypoxic regions in an animal model by 

combination of DCE-MRI (7 T) and PET using Gd-DTPA and 
18

F-FMISO, respectively [285]. 

They also studied the hematoxylin and eosin (H&E) staining and uptake of pimonidazole hypoxia 

marker (Figure  2.24a). They used the Akep values which defined as (kep = rate constant of 

movement of Gd-DTPA between the interstitial space and plasma and A = amplitude in the two-

compartment model) resulting from DCE-MRI studies indicated that tumor angiogenesis is a 

major determinant of early Gd-DTPA uptake. The correlation between DCE-MRI, DCE-Akep, 

H&E, and pimonidazole slices provided a powerful tool for imaging and characterizing the 

tumoral hypoxia, necrotic and well-oxygenated regions (Figure  2.24a). 
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Lewis et al. (2008) reported PET/CT imaging of uterine cervix cancer in which 
64

Cu-ATSM and 

18
F-FDG were served as a hypoxia radiopharmaceutical marker and metabolic marker, 

respectively (Figure  2.24b) [296]. 

 

 

Figure  2.24: (a) Imaging of hypoxic, necrotic, and perfused areas in the tumor. T2-weighted MR 

image using Gd-DTPA (a-1), corresponding pimonidazole-stained (PIMO) (a-2) and H&E-

stained tissue section (a-3), corresponding DCE Akep map (a-4) and the masked Akep values for 

the viable tumor (a-5), and necrotic areas (a-6). Reproduced from [285], with permission from the 

Neoplasia. (b) Transaxial PET/CT (b-1), 
18

F-FDG PET (b-2), and 
64

Cu-ATSM PET (b-3) images 

of pelvis demonstrate markedly uptake of ATSM (hypoxia marker) and FDG (metabolic marker) 

within cervical tumor at site of cervical mass at same level on CT. Reproduced from [296]. 
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Overall, although MRI, CT, and PET provide detailed information about size, angiogenesis, 

metabolism, and location of tumors, the sub-millimeter resolution of MRI and millimeter 

resolution of PET are insufficient to detect the microstructure of the tumors. The literature review 

of available imaging techniques revealed that currently there is no standard method in the clinical 

or pre-clinical setting to reliably image tumor microstructure and map the tumor hypoxia in vivo. 
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 ARTICLE 1: COVALENT BINDING OF CHAPTER 3

NANOLIPOSOMES TO THE SURFACE OF MAGNETOTACTIC 

BACTERIA FOR THE SYNTHESIS OF SELF-PROPELLED 

THERAPEUTIC AGENTS 

 

The following published journal article meets objective 1 of this thesis that is the formulation, 

functionalization, and conjugation of liposome nanoparticles on the surface of the MTB to be 

explored as a drug delivery system. To attain this objective, the bioconjugation was performed 

based on the carbodiimide chemistry, which resulted in the stable covalent bonding. The MTB-

LP complexes were characterized in terms of attachment efficacy, swimming behavior, magnetic 

response, cytotoxicity, and cellar uptake. The attachment efficacy was found to be related to the 

incubation time and the concentration of the components. A substantial number of nanoliposomes 

(~70) were efficiently attached to MTB without compromising swimming behavior and their 

magnetic response. The cytotoxicity and cellular uptake capabilities of the MTB-LP were 

assessed in cancerous and non-cancerous cell lines. It was demonstrated that MTB-LP could be 

used as a drug delivery vehicle, and the attachment does not inhibit the liposomal uptake. That 

was the first published article featuring the bacteria as a bio-carrier that can be used for the 

different applications such as drug, genes, imaging agents, and so on. 

 

The results of this study were published as a journal article entitled “Covalent Binding of 

Nanoliposomes to the Surface of Magnetotactic Bacteria for the Synthesis of Self-Propelled 

Therapeutic Agents” by the Journal of ACS Nano in 2014. 

 

Reprinted with permission from Taherkhani, S. et al., ACS Nano 2014, 8, 5049-5060. Copyright 

2015 American Chemical Society. 
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3.1 ABSTRACT 

The targeted and effective delivery of therapeutic agents remains an unmet goal in the field of 

controlled release systems. Magnetococcus Marinus MC-1 magnetotactic bacteria (MTB) are 

investigated as potential therapeutic carriers. By combining directional magnetotaxis–

microaerophilic control of these self-propelled agents, a larger amount of therapeutics can be 

delivered surpassing the diffusion limits of large drug molecules toward hard-to-treat hypoxic 

regions in solid tumors. The potential benefits of these carriers emphasize the need to develop an 

adequate method to attach therapeutic cargos, such as drug-loaded nanoliposomes, without 

substantially affecting the cell’s ability to act as delivery agents. In this study, we report on a 

strategy for the attachment of liposomes to MTB (MTB–LP) through carbodiimide chemistry. 

The attachment efficacy, motility, and magnetic response of the MTB–LP were investigated. 

Results confirm that a substantial number of nanoliposomes (~70) are efficiently linked with 

MTB without compromising functionality and motility. Cytotoxicity assays using three different 

cell types (J774, NIH/3T3, and Colo205) reveal that liposomal attachments to MTB formulation 

improve the biocompatibility of MTB, whereas attachment does not interfere with liposomal 

uptake. 

Keywords: magnetotactic bacteria; nanoliposome; bioconjugation; carbodiimide chemistry; self-

propelled targeted delivery; bio-microcarrier 

3.2 INTRODUCTION 

Over the past several decades, various systems for the delivery of therapeutic agents such as 

polymeric micro/nanoparticles [67], liposomes [145], and magnetic-based nanoparticles [134], 

relying on active or passive targeting mechanisms [299] of therapeutics, have been designed and 

evaluated in animal models as well as in clinical trials [2]. However, nonspecific distribution 

throughout the systemic circulation can still cause substantial toxicity and adverse side effects 

[300]. Among nanosized delivery systems, liposomes [145] are of particular interest, since they 

are biocompatible, exhibit low immunogenicity and high flexibility, protect the body from 

potentially toxic cargo, shield therapeutic agents from premature degradation, control release 

kinetics [8], and may concurrently encapsulate a multitude of hydrophilic and/or hydrophobic 

drug cargos, pharmaceutical ingredients, imaging agents [133], and genetic material by virtue of 

http://pubs.acs.org/action/doSearch?action=search&AllField=magnetotactic+bacteria&qsSearchArea=AllField
http://pubs.acs.org/action/doSearch?action=search&AllField=nanoliposome&qsSearchArea=AllField
http://pubs.acs.org/action/doSearch?action=search&AllField=bioconjugation&qsSearchArea=AllField
http://pubs.acs.org/action/doSearch?action=search&AllField=carbodiimide+chemistry&qsSearchArea=AllField
http://pubs.acs.org/action/doSearch?action=search&AllField=self-propelled+targeted+delivery&qsSearchArea=AllField
http://pubs.acs.org/action/doSearch?action=search&AllField=self-propelled+targeted+delivery&qsSearchArea=AllField
http://pubs.acs.org/action/doSearch?action=search&AllField=biomicrocarrier&qsSearchArea=AllField
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their aqueous interior and lipid exterior [40, 134]. Drawbacks of the systemic application of 

liposomes include poor pharmacokinetic profiles, incomplete local targeting, lack of deep tissue 

penetration, nonspecific biodistribution, and limited retention at sites of delivery [12]. The 

suboptimal concentration of such therapeutic agents reaching the region to be treated cannot 

generally diffuse deeper in the interstitial space due to a lack of flow caused by the Tumor 

Interstitial Fluid Pressure (TIFP) [54]. Therefore, conventional administration of such liposome-

based systems often requires sustained levels of drugs to achieve therapeutic efficacy. Further 

from the diffusion limit of larger drug molecules, hypoxic microenvironments of tumors with 

approximately < 0.7% O2, resulting from oxygen consumption caused by the rapid proliferation 

of cancer cells [13], are more resistant and highly difficult to treat. Such lacks of oxygenated 

regions not only impede radiotherapy treatments [301], but chemotherapy as well, since hypoxic 

cells are distant from blood vessels and beyond the diffusion limit of larger drug molecules [12, 

13]. One strategy to minimize adverse side effects and enhance the therapeutic index in hypoxic 

regions is the use of targeting agents with propelling capabilities that can counteract TIFP effects, 

following a directionally guided transit toward the tumor with the additional capability of the 

agent to seek the hypoxic regions prior to the release of the therapeutics [107]. Self-propelled 

agents capable of some autonomy in navigating pathways, such as flagellated bacteria, could be 

potential candidates for targeted delivery to deep tumors. To date, bacteria including Escherichia 

coli [31], Salmonella [29], and other genera have been shown to preferentially accumulate in 

tissues by aerotaxis or chemotaxis suggesting the potential application of bacterial-based 

therapeutics. Although these bacteria can be used as therapeutic agents, they are not compatible 

with computer-based navigation toward tumoral regions, which would most likely enhance 

targeting efficacy. 

In addition, to navigate and transport therapeutic agents within low Reynolds hydrodynamic 

conditions, such as the microvasculature (blood flow of few mm s
–1 

and diameter of 

approximately 4–8 μm) [104] and to reach deep inside tumors, a controllable propulsion and 

steering system with an appropriate size is required. Microcarriers should not exceed 2 μm in 

diameter [32, 36, 100]. Moreover, since the size of the openings in leaky tumor vessels are 

typically less than 2 μm in diameter between endothelial cells [60], the maximum diameter of 

each navigable microrobotic agent must remain below 2 μm if such openings are to be exploited 

to enhance targeting deeper within solid tumors. 
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To address this issue, flagellated Magnetococcus Marinus MC-1 magnetotactic bacteria (MTB) 

[33] with computer-based navigation compatibility along with appropriate steering and 

propulsion kinetics have been identified as such potential delivery agents with the 

aforementioned functionalities [36]. The combination of a flagella attached to a round cell body 

with a diameter around 1 to 2 μm is ideal for transiting effectively in the microvasculature, the 

angiogenesis network, and the interstitial space of solid tumors. Two bundles of flagella enable 

an average initial swimming velocity of approximately 200 μm s
–1

 (100–150 body (cell) lengths 

per second). Self-propulsion properties also enable the bacteria to penetrate regions that are 

inaccessible by passive therapies [36]. A chain of iron oxide nanoparticles, known as 

magnetosomes [34, 35], allows magnetotaxis control to entail such bacterial cells to aggregate in 

a specific region within 3D volume time-varying magnetic field sequences [108] prior to rely on 

the microaerophilic behavior of the MTB to target hypoxic regions. One of the many critical 

steps toward the potential use of such a carrier for delivering therapeutics is to develop a method 

of loading the bacteria while maintaining its capability for deep targeting of solid tumors. The 

approach presented herein relies on the fact that amine groups on the surface of gram-negative 

bacteria cells [302] such as MC-1 MTB enable them to covalently attach to various compounds, 

such as carboxylated liposomes, to allow design of the powerful targeted delivery systems. This 

is the grounding hypothesis of the work for developing a new drug delivery strategy using 

bacteria-conjugated nanoliposomes (MTB–LP) that can follow a navigation pattern, deeply 

penetrating tumors by propulsion from the flagella and external magnetic fields controls. A 

bioconjugation method based on a carbodiimide dehydrating agent [195, 303, 304] was 

developed for the covalent binding of amine containing molecules of bacteria to carboxylated 

liposomes. The MTB–LP complex was then thoroughly characterized for its structural properties, 

mobility in directional magnetic field, cellular uptake, and cytotoxicity in relevant cell models in 

order to demonstrate the feasibility of the proposed strategy for effective target drug delivery. 

3.3 RESULTS 

3.3.1  Characterization of the MTB–LP complex 

The colocalization of TRITC-labeled nanoliposomes with MTB at excitation/emission 

wavelengths of ∼555/580 nm indicate nanoliposome attachment on the surface of MTB and the 
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formation of the complex using confocal laser scanning microscopy (CLSM) (Figure  3.1a). To 

further confirm the successful formation of the complex, fluorescence-activated cell sorting 

(FACS) was performed. The density plots indicate that bare bacteria exhibit a higher forward 

scatter (FSC) and smaller amount of fluorescence than fluorescent nanoliposomes alone 

(Figure  3.1b, left). The MTB–LP plot combines the fluorescence intensity characteristic of 

nanoliposomes together with the forward scattering characteristics of bacteria cells, distinguished 

by a broad distribution of fluorescence intensity from that of bare bacteria. Considering that any 

fluorescent signal exclusively originates from attached liposomes, the percentage of the MTB–LP 

complex was determined by extracting its fluorescence intensity from controls. The events 

number and intensity distribution in four quadrants as a percentage of the total of 25,000 events 

are presented using FlowJo software. It can be concluded that more than 90% of the bacteria were 

associated with TRITC labeled nanoliposomes and considerable number of liposomes were 

attached homogeneously to bacteria. These results were also confirmed with the intensity 

distribution histograms of MTB–LP complexes (Figure  3.1b, right). Samples were characterized 

by comparing monomodal fluorescence intensities between each sample. Fluorescent 

nanoliposomes could clearly be differentiated from bacteria as the latter possess no or minimal 

background autofluorescence. In addition, the fluorescence intensity distributions of MTB–LP 

are broader and extend to higher intensities than those observed for bare bacteria indicating the 

successful bioconjugation between bacteria and nanoliposomes. The relative fluorescence 

intensity value of the fluorescent liposomes alone was approximately 160-fold higher than that of 

bacteria cells, while it was only 1.5-fold greater than MTB–LP. 

To confirm confocal and FACS analyses and quantify the number of attached nanoliposomes to 

each bacteria, field-emission scanning transmission electron microscopy (FE-STEM) analysis 

was carried out. A comparison between SEM images of MTB–LP after multiple washing steps 

and those of bare MTB confirmed stable attachment of nanoliposomes to the bacterial cell 

membrane (Figure  3.1c). 

The number of attached nanoliposomes to individual bacteria was dependent on concentration 

and incubation time (Figure  3.2). For a 1 h incubation time, the number of attached 

nanoliposomes increased gradually with liposome concentration from 0 to 400 μl of 15 mM 

liposomes. In the case of 2 h, results demonstrate that this number markedly increases with 

liposome concentrations from 0 to 100 μl. For a concentration of 4 × 10
7 

MTB cells (10
7
MTB ml

-
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1
), approximately ∼70 ± 5 nanoliposomes could attach when 100 μl of 15 mM liposomes (250 μg 

ml
–1

) were used. Further increasing the volume of liposomes up to 400 μl did not improve the 

efficiency of the attachment and it reached a plateau after a 250 μg ml
–1 

liposomal concentration. 

This concentration was therefore chosen for all further experiments and analyses. 

 

Figure  3.1: Characterization of nanoliposomes attached to the surface of MC-1 MTB. (a) 

Confocal microscopy images of TRITC labeled MTB–LP complexes. Photomicrographs show 

the phase contrast, fluorescence and overlay confocal images. Unlabeled bacteria were used as 

control. Scale bars show 5 μm at 60× magnification. (b) FACS density plots (left) and histograms 

(right) obtained from noncoated MC-1 bacteria, TRITC-labeled nanoliposomes, and MTB–LP 

complex show that bacteria are homogeneously coated with nanoliposomes and can be 

differentiated from bare bacteria by their fluorescence. Labeling efficacy was determined by 

dividing the percentage of labeled bacterial cells to total cells. (c) Field emission scanning 

electron microscopy images of bare MC-1 MTB and MTB–LP complex. The scale bar 

corresponds to 1 μm. All results are represented as the mean of five independent experiments. 
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Figure  3.2: Quantification of the number of nanoliposomes attached to MTB cells by FE-STEM 

as a function of nanoliposome concentrations in volumes of 0, 5, 25, 50, 75, 100, 150, 250, and 

400 μl (15 mM stock solution) for exposure times of 1 and 2 h. The results are presented as the 

mean number of attached nanoliposomes ± SD, n = 3. Results indicate that under 1 h incubation, 

the number of attached nanoliposomes gradually increases with liposome concentration. While 

after a 2 h incubation, bacterial surface saturates at volumes exceeding 100 μl. Statistical analysis 

was performed using two-way ANOVA. P-value < 0.001 marked with asterisk (***) is 

considered significantly different and P > 0.05 is not significant (NS). 

 

3.3.2 Monitoring the magnetic response and swimming behavior of MTB–LP 

complex 

To ascertain maximum loading of MTB while maintaining maximum velocity after the 

attachment of the nanoliposomes, the motility functions of MTB–LP such as swimming speed 

and response to applied magnetic fields were evaluated with a custom-made experimental 

magnetic component and an optical microscope (Figure  3.3a, b). The magnetic setup was 

composed of four permanent magnets facing each other two by two to generate a homogeneous 

two-dimensional magnetic gradient (Figure  3.3b). The magnetic gradient field direction was 

oriented toward the center with gradually decreasing magnitude to 0 G at the center. The magnet 
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position where a directional magnetic field of approximately 20 G resulted in straight swimming 

paths of the bacteria. 

 

Figure  3.3: Schematic representation of the experimental setup used to track and visualize MTB–

LP complex magnetotactic behavior. (a) Optical microscope. (b) Side view of the two-

dimensional magnetic navigational setup including four permanent magnets that generate a 

homogeneous magnetic field toward the center of the device. Arrows depict the direction of the 

magnetic field. (c) Motility track of MTB–LP complex under the influence of the magnetic field. 

Images were recorded by dark field optical microscopy using a 200 ms exposure time for the 

helical motion in response to 20 G magnetic field. Scale bar indicates 5 μm. (d) The average 

terminal swimming speeds of loaded and bare MTB (none preselected) versus the number of 

attached nanoliposomes in PBS at room temperature 0, 0.5, 1, and 2 h after washing. Results 

indicate a decrease of bacterial motility caused by bioconjugation of nanoliposomes to the cell 

membrane. Data are presented as mean ± SD, n = 3. Statistical analysis was performed using two-

way ANOVA. Significant difference was considered for *P < 0.05, **P < 0.01, ***P < 0.001 

and not significant (NS) for P > 0.05. 
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The helical motion and trail left of the MTB could therefore be evaluated by decreasing the 

shutter speed of the camera to 200 ms (Figure  3.3c). Results show that the terminal swimming 

velocity of MTB–LP complexes is dependent on the number of nanoliposomes attached to 

bacteria, since the increased number of attached nanoliposomes reduces the motility 

(Figure  3.3d). MTB–LP complexes carrying up to approximately 70 liposomes responded to a 

similar magnitude of the magnetic field as compared to bare bacteria prepared and tested in the 

same conditions. At early time points i.e., 30 min, the terminal velocity of these highly loaded 

complexes could reach around 80 μm s
–1

. Results also indicate that the residency time of MTB–

LP complexes in PBS has a major impact on the mobility of the bacteria. Long incubation times 

(more than 2 h) in buffer solution significantly decrease the motility of both MTB–LP and bare 

bacteria (Figure  3.3d). The motility of MTB–LP complexes with 70 nanoliposomes dropped to 

32 μm s
–1 

after 2 h suggesting that the complex should be used for self-propelled target delivery 

purposes within 30 min of the preparation. 

3.3.3 Biological characterization of MTB–LP complex 

Cell viability graphs are presented for different concentrations of MTB–LP complexes at 

different incubation times (3, 6, 12, 24, and 48 h) using WST-1 assay (Figure  3.4). The viability 

of all tested cell lines (NIH/3T3, J774, and Colo205) were time, MTB–LP, and MTB bacteria 

dose dependent. Maximum cytotoxic levels were observed at highest bacterial concentration 

(10
8
 MTB/well) after 48 h of incubation. No significant cell viability reduction could be observed 

between 24 and 48 h exposure times for NIH/3T3 and J774 (Figure  3.4a, b, d, e). Interestingly, 

the viability of MTB–LP was similar to bare nanoliposomes for Colo205 at MTB concentrations 

ranging from 2 × 10
5
 to 6 × 10

6
 (Figure  3.4h, i). In contrast, Colo205 cells demonstrated a 

significant increase in cytotoxicity for concentrations ranging from 6 × 10
6
 to 10

8
 MTB/well for 

both MTB–LP complex and bare MTB (Figure  3.4g, h). The MTB–LP exhibited a less cytotoxic 

effect on tested cell types at all concentrations compared to bare MTB (approximately 20–40%) 

indicating that the cell viability was improved through the attachment of nanoliposomes on the 

surface of bacteria. The free nanoliposomes in the experimental range of 0.07–40 μM did not 

induce significant cytotoxicity on tested cell types (Figure  3.4c, f, i).  
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Figure  3.4: Inhibitory effects of MTB formulation on viability of tested cell lines. Effect of 

incubation time and concentration of MTB–LP complex on viability of NIH/3T3 (a–c), J774 (d–

f), and Colo205 (g–i) cell lines as compared to bare MTB and bare nanoliposomes using the 

WST-1 assay. Cells were incubated for 3, 6, 12, 24, and 48 h at 37 °C with 2 × 10
5
 to 10

8
 

(MTB/well) for MTB/MTB–LP and 0.07–40 μM for bare nanoliposomes. Viability responses 

were found to be cell-type, dose, and time dependent. While the results show that cells survive 

long after exposure to bare nanoliposomes, the bacterial formulations reduced viability of the 

tested cell lines. Cancer cells were shown to be less vulnerable than normal cells. Results 

demonstrate that cell viability was greater for MTB–LP compared to bare MTB. Data were 

normalized to untreated cell lines (controls). Error bars, mean ± SD, n = 4. 
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The comparison of half maximal inhibitory concentration (IC50) values for MTB and MTB–LP in 

three tested cell lines indicates that a lower incubation time requires higher concentrations to 

reach the IC50 (Table  3.1). The rank order of IC50 associated with bare MTB and MTB–LP 

cytotoxicity was as follows: Colo205 > J774 > NIH/3T3. In addition, results reveal that the 

cytotoxicity is reduced when the biocompatible nanoliposomal moieties are attached to the 

bacteria. In this case, higher concentrations of MTB–LP complexes are needed to reach the 50% 

cell survival rates compared to bare MTB. 

 

Table  3.1: IC50 Values of the MTB and MTB–LP for the tested cell lines 
a
 

  
Incubation time 

Cell type Samples 3 h 6 h 12 h 24 h 48 h 

NIH/3T3 

Fibroblast 

MTB- LP 1.255 × 10
7
 1.042 × 10

7
 9.779 × 10

6
 6.286 × 10

6
 9.076 × 10

5
 

MTB 3.289 × 10
6
 3.149 × 10

6
 1.980 × 10

6
 1.172 × 10

6
 7.179 × 10

5
 

J774 

Macrophage 

MTB- LP 4.838 × 10
7
 2.727 × 10

7
 1.506 × 10

7
 9.639 × 10

6
 6.720 × 10

6
 

MTB 8.244 × 10
6
 7.050 × 10

6
 4.533 × 10

6
 2.722 × 10

6
 9.175 × 10

5
 

Colo205 

Cancer cells 

MTB- LP 1.945 × 10
8
 1.784 × 10

8
 8.164 × 10

7
 4.047 × 10

7
 1.284 × 10

7
 

MTB 9.721 × 10
7
 8.052 × 10

7
 4.219 × 10

7
 2.930 × 10

7
 8.321 × 10

6
 

a
 Data are presented as the numbers of MTB in each well. MTB has growth-suppressive effects 

comparable with those of MTB–LP in tested cell lines. Data were normalized to untreated cell 

lines (controls) n = 3. 

 

Incubation of fluorescent MTB–LP complexes with the cell lines and subsequent observation by 

confocal microscopy shows localization of complexes mainly in the cytoplasm and perinuclear 

region (Figure  3.5a). The same localization was also found for fluorescence bare liposomes used 

as control (Supporting information Figure S 3.8). Overall, the samples internalized and migrated 

in a time-dependent manner toward the nucleus of cells but did not enter the nucleus. Z-stack 

http://pubs.acs.org/doi/full/10.1021/nn5011304#t1fn1
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confocal images reconstructed using Imaris image analysis software (Bitplane AG) confirm that 

complexes are indeed internalized by the cells and not simply bound to their surface (data not 

shown). CellProfiler image analysis software was used to quantify the fluorescence signal 

intensity of uptaken nanoliposome alone and complexed. To derive an accurate quantification, 

the ratio of fluorescence intensity of internalized liposomes or MTB–LP relative to cell nuclei 

was calculated. As shown in Figure  3.5b, the MTB–LP uptake is cell-type dependent. J774 cells 

as a phagocytic cell model display the highest uptake capabilities for both free nanoliposomes 

and MTB–LP complexes compared to the two other nonphagocytic cells. Fluorescence signal 

related to MTB–LP uptake increased in nonphagocytic cell lines after a 6 h incubation. 

Moreover, the complex exhibits significantly enhanced translocation into the J774 and NIH/3T3 

cells as compared to Colo205 cancer cells. Interestingly, although free liposomes could generally 

be internalized faster relative to MTB–LP in nonphagocyte cells, the level of uptake is higher for 

the complex than for bare nanoliposomes, particularly by J774 cells. The fluorescent signal 

intensity increased gradually until 12 h incubation in J774 and NIH/3T3 cells and then reached a 

plateau suggesting that cells has reached their saturation capacity, while accumulation continued 

in cancer cells and significant uptake improvement was measured when the incubation time was 

extended to 24 h. 

3.4 DISCUSSION 

Despite advancements in targeted drug delivery, many relevant diagnostic and therapeutic 

products, including local and systemic administration by ligand-drug-conjugates [299, 305] or 

Magnetic Drug Targeting (MDT) [306, 307], have not been entirely effective, and clinical trials 

are still forthcoming. Various methods of MDT have investigated the applicability of 

superparamagnetic iron oxide nanoparticle (SPION) [307] and Fe–Co nanoparticles [67], as well 

as magnetosomes isolated from MTB [303, 308] for MR imaging, targeting, and drug delivery 

[307, 309]. To date, however, concerns regarding poor pharmacokinetic profiles, force limitations 

of small magnetic carriers in complex microvascular networks [68], lack of navigation to organs 

located deep in the body [32], poor depth penetration, and cytotoxicity remain barriers to clinical 

entry. The proposed MTB–LP complex combines several novel aspects that can overcome many 

of the aforementioned limitations relative to traditional polymeric and magneto-based platforms 

and render the system as a viable vehicle for target drug delivery. 

javascript:void(0);
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Figure  3.5: (a) Confocal microscopy images of time-dependent MTB–LP complex uptake by 

J774, NIH/3T3, and Colo205 cell lines at different incubation times. Fluorescently labeled 

nanoliposomes exhibit a very strong fluorescent signal. Actin filaments were visualized with 

Alexa Fluor 488 Phalloidin (green) and nuclei were stained with Hoechst 33342 (blue). The 

pictures were taken at the midsection of the cells. Bar indicates 30 μm. (b) The values reported 

are obtained by dividing the fluorescence intensity of bare liposomes or MTB–LP by that of 

nuclei in each fluorescence image over time. Values represent mean ± SD, n = 3. 
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The proposed route of injection for MTB–LP would be peritumoral (PT) injections for solid 

tumors that are accessible (e.g., colorectal, prostate), to avoid the vasculature where the blood 

flow (ranging from a few tens of centimeters per second) [310] could carry the agents away from 

the intended target. For PT-based interventions, drug-loaded MTB can be directly injected in the 

vicinity of the tumor and as close as possible to the angiogenic microenvironment without 

touching the tumor mass to take advantage of the directional blood flow toward the tumor with 

minimal flow rate and to reduce the risk of systemic toxicity. 

Bioconjugation was performed using a carbodiimide dehydrating agent [195, 303, 304] by taking 

advantage of terminal amine groups on the outer membrane of bacteria that are ideal docking 

sites for amide covalent attachment of carboxylated nanoliposomes to MTB cells. These 

functional amine groups are present as parts of organized phospholipids, lipopolysaccharides 

(LPS), lipoproteins and surface proteins assemblies such as lysine, D-alanine, or polypeptides 

[311, 312]. Carbodiimide cross-linking is a versatile technique used to prepare biomolecular 

probes, conjugate antibodies, peptides, proteins, and etc. onto nano/microparticle [313, 314], and 

immobilize macromolecules for use in numerous applications [213], demonstrating a stable 

chemical bond for in vitro and in vivo applications. The merits of the carbodiimide technique 

include the ease of sample preparation, high coupling efficiencies, reproducibility, reduced cost, 

and, most importantly, high strength bond. It should be noted that the enthalpies (ΔH°298) for 

amide bond formation using carbodiimide chemistry and bond dissociation enthalpies range from 

375–422 and 305–440 kJ mol
–1

, respectively [315]. The dissociation energy is much higher 

compared to other methods such as antibody–antigen affinity type bioconjugation including van 

der Waals forces, electrostatic forces, hydrogen bonds, and hydrophobic effects, which range 

from 4 to 30 kJ mol
–1

 [316]. Therefore, the covalent amide bonds are much stronger than affinity-

based antibody conjugation and require considerable energy to break. It is robust in an in vivo 

environment and also compatible with MTB compared to other bioconjugation techniques. For 

instance, passive adsorption through electrostatic or van der Waals type attractions [317] suffers 

from poor stability for in vivo applications. Noncovalent affinity based bonds such as biotin–

avidin [318] rely on manipulation of both bacteria and liposomes, which cause treated MTB to 

lose their functionality and viability due to the treatment processes and excessive use of chemical 

reagents. Antibody conjugation [319] for immunoliposome [203] preparation also has major 

drawbacks, specifically the cost involved in custom antibody production, especially for 
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monoclonal antibodies. The lack of specificity of polyclonal antibodies could result in targeting 

both the bacterial head and flagella, which can negatively affect the velocity and straight motility 

of the bacteria. 

In physiological conditions, amide bonds are not affected by medium conditions such as pH or 

ions and are quite resistant to imposed mechanical forces. Moreover, hydrolysis and enzymatic 

cleavage (by serum proteins/cellular secreted products) of amide bonds is highly dependent on 

the microenvironment condition and exposure time [320]. Considering that the bacteria can only 

survive for 40 min at body temperature due to their nonpathogenic nature [36], the in vivo 

navigation would be performed in under 30 min, in which the covalent bonds would likely 

remain stable. This bioconjugation technique provides a one size fits all approach matching the 

experimental conditions required for the MTB cell bioconjugation. 

Results from SEM, FACS, and confocal microscopy (Figure  3.1) reveal that the exogenous 

nanoliposomes are firmly linked to MTB cell membranes and remain on the bacterial cell surface, 

even after harsh washing conditions. Interestingly, as it can be observed on SEM images, most 

liposomes were localized on MTB main body, while a negligible number (less than 2%) were 

attached to the flagella. Optimizing the number of liposomes per bacteria was a key challenge in 

the development of the complex to carry sufficient concentrations of drug to exert therapeutic 

effects without compromising natural bacteria motility. Considering the surface area of a typical 

MTB (~1.5 μm in diameter), we found that coupling of up to 70 nanoliposomes with an average 

size of 170 nm to the surface of bacterial cells occludes only about 23% of the total cell surface 

without significantly altering MTB–LP mobility and responsiveness to the applied magnetic 

field. 

Indeed, the swimming speed of the complexes only decreased by approximately 27% (from 110 

down to approximately 80 μm s
–1

) when ~70 liposomes are attached to the surface (Figure  3.3d). 

However, it should be noted that the terminal velocity of MTB–LP was still higher than that of 

typical morphotypes of magnetotactic bacteria such as AMB-1 (49 μm s
–1

), MS-1 (40 μm s
–1

), 

etc., at the same magnitude of applied magnetic field [32] even after the bioconjugation process, 

weight of nanoliposomes, long-term exposure to PBS, and multiple turnovers of the culture 

environment. Moreover, the velocity of MTB–LP was greater than the linear swimming speed of 

some other non-magnetotactic flagellated bacteria strains such as Salmonella (20–50 μm s
–1

) or 
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E. coli (10–40 μm s
–1

), which can overcome diffusion resistances in solid tumors with this range 

of velocities [29, 31]. 

The uptake and internalization behaviors of free/attached liposomes were compared to those 

exhibited by macrophage, fibroblast, and colorectal cancer cells to assess whether tumor and 

nontumor cells exploit various uptake dynamics. The results show that the MTB–LP complex 

was rapidly internalized by J774 phagocytic cells, whereas the opposite was observed for 

nonphagocytic cells (NIH/3T3 and Colo205) (Figure  3.5; Supporting information Figure S 3.8). 

Moreover, the level of uptake of negatively charged liposomes and MTB–LP in cancer cells 

(Colo205) was lower than that in normal cells (NIH/3T3, J774). As reported in the literature, cell 

phenotype (cancerous vs normal cells) [186, 187],  the cell’s endocytic capacity (phagocytosis vs 

nonphagocytosis) [321], bacteria type (pathogenic vs nonpathogenic) [189, 190], and attachment 

bond, as well as liposomal size [322] and surface charge [321], determine the mode and capacity 

of cellular uptake. 

Negatively charged liposomes are believed to enter cells via nonspecific receptors present on a 

variety of cells, which in turn mediate particle recognition, adhesion, and the subsequent 

endocytotic-like internalization mechanisms [321, 323]. Conversely, cancer cell membranes 

possess an enhanced net negative surface charge compared to normal cells as a result of extensive 

sialylation [187], abundance of phosphatidylserine residues, heparan sulfate proteoglycans, and 

O-sialoglycoproteins [188]. This may lead to repulsion of negatively charged nanoparticles or 

complexes and reduced cellular uptake. Accordingly, the low MTB–LP uptake by Colo205 cell 

line can be explained by the presence of negatively charged nanoliposomes. 

Bacteria, in their turn, exploit different pathways for cellular uptake such as phagocytosis. 

However, the uptake process of both pathogenic and nonpathogenic bacteria in epithelial cells or 

fibroblasts, representing classical nonphagocytic cells, is through nonselective internalization 

mechanisms, such as macropinocytosis [189, 190], which depend on external stimuli to trigger a 

signaling cascade. Only metabolically active bacteria can undergo this process since heat-treated 

bacteria did not induce any fluid-phase uptake [189, 190]. In our case, MTB bacteria are affected 

by mammalian cell culture conditions, mainly the 37 °C temperature. At this temperature, they 

cannot proliferate and remain active only for 30–40 min [36]. Therefore, we cannot conclude that 

MTB take advantage of macropinocytosis. Future studies will investigate whether nanoliposomes 

undergo detachment from bacteria in the cellular environment or if MTB–LP complexes 
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themselves can be internalized by nonphagocytic cells. The particular mechanisms involved in 

the entry of MTB into nonphagocytic cells remain to be elucidated. However, the lack of 

fluorescence signal from complexes at the initial incubation time indicates that liposomes should 

remain attached to the bacterial surface, and regardless of the underlying internalization 

mechanism, nanoliposomes containing therapeutic agents could enter the cell effectively for 

intracellular drug delivery applications. 

Cell viability assays also support that MTB–LP show higher cell viability than MTB (Figure  3.4 

and Table  3.1) due to the incorporation of biocompatible nanoliposomes [140]. Nonetheless, it is 

important to note that substances produced by the bacteria, certain degradation products, or 

competition for nutrients in the in vitro environment may also affect cell viability and result in 

concentration dependent cytotoxicity. Ultimately, benign concentrations of bacteria should be 

determined for in vivo assays, high enough to deliver sufficient therapeutic payload but lower 

than the cytotoxicity threshold. 

3.5 CONCLUSION 

We developed a new-generation of therapeutic vector by introducing a direct, reproducible, and 

clinically applicable chemical coupling of carboxylated nanoliposomes to pre-existing reactive 

groups naturally present on the surface of transporter MC-1 MTB via carbodiimide cross-linking 

chemistry. This bioconjugation strategy and the number of attached liposomes do not alter 

intrinsic bacterial motility and their behavior under a controlled magnetic field. The attachment 

of nanoliposomes improves the cellular viability of the complexes and does not interfere with 

their uptake. Through the combination of their suitable magneto-aerotaxis behavior, improved 

systemic biocompatibility, native bacteria cytotoxicity at tumor sites, therapeutic or diagnostic 

agents transport, and cellular uptake, this engineered MTB–LP system offers opportunity for their 

application in cellular tracking, medical imaging, and the ability to actively target areas of 

interest while increasing the maximum-tolerated dose of pharmacytes for cancer therapy, gene or 

vaccine delivery. Taking into account the encapsulation efficacy of drug within liposomes, the 

average number of liposomes carried by each bacteria, and the number of injected bacteria, it is 

possible to estimate the deliverable dosage of drug that will be released at the tumor site. Our 

system can potentially overcome targeting and diffusion limits by actively penetrating hypoxic 
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regions of tumors currently unattainable with conventional cancer drugs and effectively deliver 

active substances to solid tumors. 

3.6 METHODS 

3.6.1 Reagents and chemicals 

The lipids distearoylphosphatidylcholine (DSPC), distearoylphosphatidylethanolamine 

derivatives of PEG with a terminal carboxyl group (DSPE-PEG2000-COOH) were purchased 

from Avanti Polar Lipids, Inc. (Alabaster, AL). Cholesterol, sulfo-N-hydroxysulfosuccinimide 

(sulfo-NHS), 1-ethyl-3-[3-(dimethylamino)propyl]-carbodiimide (EDC), 2-(N-

morpholino)ethanesulfonic acid (MES), sepharose CL-4B, glutaraldehyde, trypsin–EDTA 

solution, and phosphate-buffered saline (PBS) were all acquired from Sigma-Aldrich (St. Louis, 

MO). Poly-L-lysine was purchased from Electron Microscopy Sciences, Inc. Rare earth magnets 

were purchased from Indigo Instruments (Waterloo, Canada). N-(6-

Tetramethylrhodaminethiocarbamoyl)-1, 2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine, 

triethylammonium salt (TRITC DHPE), Lissamine Rhodamine B 1, 2-dihexadecanoyl-sn-

glycero-3-phosphoethanolamine, triethylammonium salt (Rhodamine DHPE), penicillin–

streptomycin, bovine calf serum (BCS), and fetal bovine serum (FBS) were obtained from 

Invitrogen (Burlington, CA). NIH/3T3 (ATCC CRL-1658) mouse embryonic fibroblast cells, 

J774A.1 (ATCC TIB-67) murine macrophage cell lines, Colo205 (ATCC CCL-222) human 

colorectal adenocarcinoma cell line, Dulbecco’s Modified Eagle’s Medium (DMEM) (ATCC30-

2002) and Roswell Park Memorial Institute 1640 medium (RPMI-1640) were purchased from 

American Type Culture Collection (Manassas, VA). 4-[3-(4-Iodophenyl)-2-(4-nitrophenyl)-2H-

5-tetrazolio]-1, 3-benzene disulfonate (WST-1) was purchased from BioVision, Inc. A Milli-Q 

water system (Millipore, Bedford, MA), supplied with distilled water, provided high purity water 

(18 MΩ) for these experiments. 

3.6.2 Culture growth conditions for MC-1 magnetotactic strain 

Magnetococcus Marinus MC-1 strain from our laboratory stock was cultured microaerobically in 

chemoheterolithotrophic medium at room temperature, as previously reported [324]. Bacterial 

cultures were incubated statically under an oxygen concentration gradient ([O2]-gradient) in an 

iron enrichment medium, which included 50 μM ferrous sulfate, FeSO4·7H2O (Sigma-Aldrich), 
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to allow the biomineralization of magnetic nanoparticles. The MC-1 culture was incubated for 48 

h without agitation at 25 °C in the dark. Bacterial cells were harvested during the stationary phase 

of growth and used for direct observation or conjugation with liposomes in this study. 

3.6.3 Fabrication and characterization of nanoliposomes 

See supporting information. 

3.6.4 Covalent coupling of carboxylated nanoliposomes to MTB cells using 

carbodiimide chemistry 

To stably couple nanoliposomes to the surface of magnetotactic bacteria cells, we exploited the 

fact that many cells have high levels of intrinsic amine groups on their surfaces. The most 

straightforward approach to immobilize and maintain functionalized liposomes with reactive 

carboxylic acid groups (−COOH) in the range of 170 nm to the surface of bacteria was to use 

direct covalent chemical conjugation. To avoid loss of bacteria viability, conventional 

bioconjugation methods based on zero-length carbodiimide chemistry (EDC/NHS) were carefully 

adapted as a robust and highly versatile methodology for introducing functional surface of 

component to cell membrane [195]. 

The MTB–LP complex was achieved by a two-step process (Supporting Information Figure 

S 3.7). First, the carboxylated nanoliposomes were activated using EDC/NHS chemistry by 

incubating 100 μl of a liposome solution (stock liposome solution; 15 mM) with the carbodiimide 

activating reagents EDC and sulfo-NHS (EDC/NHS/DSPE-PEG-COOH = 30:30:3, mol/mol) for 

20 min in MES buffer (pH = 5.5) at room temperature. A Sepharose CL-4B column was used to 

remove the excess activating reagents. The carbodiimide-based coupling reagent can react with 

the carboxylic acid groups of liposomes to provide a highly active ester (O-acylisourea) 

intermediate that could then react with a nucleophile, such as a primary amine, to form an amide 

bond [195] (Supporting Information Figure S 3.7). Subsequently, bioconjugation was achieved by 

incubating approximately 4 × 10
7
 (~10

7
 MTB ml

-1
) MTB bacteria cells with activated 

nanoliposomes. The mixture was then incubated for 1 or 2 h at 25 °C under gentle agitation to 

permit amide coupling. Attached liposomes were separated from unbound liposomes using a two-

dimensional magnetic field (Figure  3.3b) followed by three rinses with PBS. The sample was 

redispersed in PBS at pH 7.4. To develop an optimal protocol for MTB–LP complexes and 
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determine the maximum capacity for carrying liposomes, different liposome concentrations 

ranging from 0, 5, 25, 50, 75, 100, 150, 250, and 400 μl (15 mM) were added to an equal quantity 

of bacteria (4 ml of 10
7
 MTB ml

-1
) and incubated for 1 and 2 h at 25 °C with gentle mixing. 

3.6.5 Assessment of nanoparticle attachment to MC-1 MTB bacteria 

Construction and attachment efficacy of MTB–LP complexes were examined using confocal 

laser scanning microscopy (CLSM), scanning electron microscopy (SEM) and fluorescence 

activated cell sorting (FACS) flow cytometry techniques. All the experiments were performed in 

triplicate in order to ensure consistency and reproducibility through statistical significance. 

Fluorescence signals from MTB–LP were acquired using confocal laser scanning microscopy 

(CLSM: Carl Zeiss LSM 510-META with Axiovert inverted microscope, Jena, Germany). 

TRITC labeled liposomes were visualized with a He/Ne laser (543 nm excitation and a 560–615 

nm band-pass emission filter), while scattered incident light was simultaneously observed via the 

transmitted light detector. Images were obtained through a high numerical aperture (NA) 63.0× 

1.4 oil-immersion objective and Carl Zeiss LSM imaging software. 

In addition, fluorescence and scattering intensity distributions of bacteria treated with 

nanoliposomes were measured by TRITC tagged lipids using fluorescence activated cell sorting 

analysis (FACS: BD FACSCalibur; BD Biosciences) with a laser excitation wavelength of 543 

nm. Samples were diluted 1 in 10 in PBS and the measurement was carried out using forward 

scatter versus fluorescence (FSC/FL1) plots for 25000 events. Bare bacteria were used as a 

control. FACS data was analyzed by FlowJo software (Tree Star, Inc., Ashland, OR), using 

appropriate gates and controls to generate density plots and histograms of each sample. 

The number of liposomes attached to the MTB surface was assessed by FE-STEM. After each 

incubation time point, a suspension of MTB–LP was fixed with 3% glutaraldehyde (Sigma-

Aldrich, Oakville, Ontario) in 0.12 M PBS (pH 7.2) at 4 °C. A suspension of fixed samples (20 

μl) was placed onto a poly-L-lysine coated 12 mm glass slide and incubated for 30 min. The 

slides were then rinsed with ultrapure water. Samples were dehydrated in a series of 

ethanol/water solutions of increasing ethanol content from 30% to 100%. Dehydration was 

followed by critical point drying to remove ethanol from the sample (Leica Microsystems Critical 

Point Dryer Model CPD030). Samples were finally mounted on carbon tape and wafer sputtered 

with gold/palladium prior to imaging (Anatech Hummer VI sputtering coater, Arlington, VA). 
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High-resolution images were obtained using a Hitachi S-4700 FE-STEM at an accelerating 

voltage from 2 to 5 kV and working distances of < 5.3 mm. To determine the average number of 

attached liposomes to the surface, their number was counted on 100 bacterial cells at each 

concentration. 

3.6.6 Investigation of magnetotaxis behavior of MTB–LP complexes by 

optical microscopy 

The swimming velocity and magnetotaxis-based behavior of MTB–LP complexes at different 

number of attached liposomes per MTB (0, 10, 25, 40, 47, 70 and 74) after 0, 0.5, 1, and 2 h 

sample preparation were examined using a phase contrast microscope (AxioImager Z1, Imaging 

Solutions Carl ZEISS) with a resolution of 1388 × 1040 pixels and a dynamic range of 12-bits. 

Images were acquired by AxioCamMRm CCD camera (Zeiss) bearing a long distance objective 

Ediplan 50×, dark-field illumination in reflection-mode while applying 20 G external magnetic 

field. A gaussmeter probe (model 450, Lake Shore Cryotronics, Inc.) was used to quantify the 

magnetic field at this position. To obtain consistent results, the exposure time of the camera was 

set to 200 ms, allowing the visualization of the trail left by bacterial motion. All measurements 

were made using AxioVision v.4.6.0 software. As mentioned earlier, the initial swimming 

velocity of unloaded MC-1 bacteria in complete growth medium at room temperature can exceed 

200 μm s
–1

. However, bare MTB bacteria, washed three times in PBS-1× (pH = 7.4), showed 

velocity decrease to about 110 μm s
–1

 using 2D magnetic field. This was set as a reference 

velocity to compare the swimming speed of bare MTB and MTB–LP complexes from ∼500 non-

preselected bacteria images. 

3.6.7 Evaluation of cellular toxicity and uptake 

 Cell culture 3.6.7.1

The Colo205 was cultured in RPMI-1640 medium. J774A.1 and NIH/3T3 were grown in DMEM 

under recommended conditions. NIH/3T3 cells were supplemented with 10% BCS and 1% 

penicillin/streptomycin. Colo205 and J774A.1 cell lines were supplemented with 10% FBS and 

1% penicillin/streptomycin. All cells were cultured in an atmosphere of 5% CO2 at 37 °C in a 

fully humidified incubator. NIH/3T3 and Colo205 cells were harvested using commercial trypsin 
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(0.05% trypsin-EDTA; Gibco). J774.A cells were scraped and viable cell concentrations were 

determined by 0.4% Trypan blue staining. 

 WST-1 Based cell inhibition and cytotoxicity assays 3.6.7.2

The growth inhibitory effect of the MTB–LP complex was evaluated with a WST-1 colorimetric 

assay [325]. MTB alone and blank liposomes were used as control. First, J774, Colo205, and 

NIH/3T3 cells were seeded in growth medium at a density of 1 × 10
5
 cells/well into 96-well flat 

bottom plates (Costar, Corning, NY) in triplicates and incubated overnight to allow adhesion to 

plates. Non-adherent cells were removed by washing with media just before addition of the 

MTB–LP complex. Incubation time and concentration were considered as effective variables to 

determine cytotoxicity. Cytotoxicity on a panel of tumor and nontumor cells was determined by 

exposing cells to serial dilutions of liposomes (0.07–40 μM), MTB–LP (2 × 10
5
 to 10

8
; 0.022–

11.6 μM ((MTB/well); liposome) and MTB (2 × 10
5
 to 10

8
 MTB/well) from the stock in the 

appropriate growth medium (without penicillin). Cells were treated with the formulations for 

variable time periods 3, 6, 12, 24, and 48 h and incubated in a humidified incubator. Then, a 

WST-1 cytotoxicity assay (G-Biosciences) was performed according to the manufacturer’s 

instructions. Briefly, after the planned incubation time, 10 μl of cell viability proliferation reagent 

WST-1 (1:10 dilution) was added to each well and the sample was incubated for an additional 2 h 

at 37 °C under 5% CO2. Absorbance of formazan dye produced by viable cells was then 

measured in a microplate reader (Biotek μQuant Monochromatic Microplate Spectrophometer) at 

450 nm with a reference wavelength of 620 nm. Wells with cells alone (without bacteria and/or 

liposome) served as controls to determine the percentage of cytotoxicity in bacterial infected 

wells. The same amounts of culture medium and WST-1 reagent in empty wells were also 

included in every experiment as a blank control. The WST-1 reagent incubation time of 2 h was 

found to be optimum since the color intensity did not change after 2 h (data not shown), and this 

condition was used in all subsequent assays. Three independent experiments were performed, 

each in triplicate and viability values were expressed as a percentage of control and 

plotted versus concentration. Cell viability was calculated with respect to cells as control. A 

sigmoidal dose-response curve was fitted to the data and a half maximal inhibitory concentration 

(IC50) value was calculated for each replicate, using GraphPad Prism software (version 6.0). 
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 In vitro cell uptake study 3.6.7.3

To visualize and determine cellular uptake, the liposomes were fluorescently labeled by 

incorporating 1 mol% Rhodamine-DHPE (head groups marker) into the original formulation with 

excitation/emission maxima ~560/580 nm. To study the effect of attachment on the liposomal 

uptake, all viable cell lines were seeded in complete growth medium at a density of 1 × 10
4
 

cells/well in a poly-L-lysine coated 35 mm confocal glass bottom Petri dishes with a 14 mm 

cover glass center (Mattek Corp.). Cells were incubated overnight at 37 °C under 5% CO2 in a 

humidified incubator to allow for uniform cell attachment. Following incubation, the medium 

was then aspirated from the wells and replaced with the stock liposome suspension (200 nM) or 

MTB–LP complex (10
6
 MTB/Petri) in complete growth medium (without penicillin). The 

quantity of MTB–LP samples for the uptake study was selected based on the lowest IC50 

concentration measured among all three cell lines after 24 h incubation. Moreover, liposomes 

alone were used as control with the same concentration as attached liposomes to MTB. Cells 

incubated with plain growth medium served as controls. The cells and samples were then 

incubated for different time intervals (0.5, 1, 6, 12, and 24 h) to allow for sufficient uptake. 

 Assessment of cellular uptake by confocal imaging 3.6.7.4

Confocal microscopy on each cell monolayer from randomly selected areas was performed to 

investigate the internalization and intracellular distribution of the MTB–LP complex and 

liposomes alone. Following incubation of cells with each formulation, the medium was aspirated 

and cells were washed three times with cold phosphate buffered saline (PBS) to eliminate traces 

of liposomes and bacteria left in the wells. Cells were fixed with 10% formalin (Sigma-Aldrich, 

Oakville, Ontario) for 20 min and washed another three times with PBS. Cells were then 

permeabilized with 0.1% Triton-X (Invitrogen, Carlsbad, CA) for 5 min and stained with Hoechst 

33342 (Molecular Probes, Eugene, OR) and Alexa-488 conjugated Phalloidin (Molecular Probes 

R, Invitrogen) for nuclei and F-actin visualization, respectively. The cell-containing cover glass 

at the center of the confocal glass bottom dishes was then mounted with Clear-Mount mounting 

solution (Invitrogen, Carlsbad, CA). 

Microscopic observation of the fluorescent probes delivered to cells was performed with the 

previously mentioned confocal laser-scanning microscope. All images were acquired while 

maintaining a constant laser intensity and detector gain. Following image acquisition, the 
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composite images were assembled using ImageJ (MacBiophotonics) software (NIH, Bethesda, 

MD). The intensity of fluorescence was evaluated for uptaken liposomes and cell nuclei using 

CellProfiler image analysis software (Broad Institute, Cambridge, MA). The ratio of fluorescence 

intensity of uptaken vesicles relative to cell nuclei was then determined to give a quantitative 

analysis of cellular uptake. 

3.7 Statistical analysis 

Quantitative data are expressed as a mean ± standard deviation (SD) and the number of 

independent replicates is indicated in the figure legends. Statistical significance was evaluated 

with the use of a one- or two-way ANOVA as appropriate followed by a post-hoc Bonferroni test 

to compare individual means using GraphPad Prism version 6.0 software. The level of 

statistically significance was set at P-values of 0.05 or less for all of the tests. 
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3.9 SUPPORTING INFORMATION 

3.9.1 Preparation of fluorescently labeled carboxylated liposomes 

A well-established reverse phase evaporation (REV) method was used for the preparation of 

fluorescently labeled carboxylated liposomes composed of DSPC/CH (3:2, molar ratio) with 

distal terminal groups of DSPE-PEG-COOH (6 mol%). As a tracer, 1 mol% of a fluorescently 

labeled lipid TRITC-DHPE or Rhodamine-DHPE was included in the liposome formulation for 

flow cytometry and fluorescence microscopy experiments. First, lipids were dissolved in a round-

bottomed glass flask with 2 ml of a 4:1 (vol/vol) chloroform/methanol mixture. To produce a thin 

lipid film, the solvent was removed under vacuum by a rotary evaporator (Rotavapor; Büchi) at a 
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water bath temperature of 60 °C for 2 h, then overnight under high vacuum to eliminate any 

solvent traces. Dried lipid films were hydrated at a concentration of 15 mM phospholipid in MES 

buffer (100 mM; pH = 5.5) by heating in a 60 °C water bath with occasional gentle vortexing. 

Afterward, multilamellar liposomes were sequentially extruded 30 times using an extruder 

(Avanti Polar Lipids, AL) through a series of PTFE membranes with pore sizes ranging from 0.8 

μm to 0.2 μm. 

3.9.2 Physicochemical characterization of nanoliposomes 

The mean hydrodynamic diameter and size distribution of the nanoliposomes [polydispersity 

index; (PDI)] were ascertained by photon correlation spectroscopy (PCS) using the 90Plus 

multiangle particle sizer (Brookhaven Instruments Corp., Holtsville, NY) at room temperature. 

The PCS measurements were carried out using a solid state laser diode (15 mW) operating at 670 

nm as light source in a fixed scattering angle of 90 degrees. The real and imaginary refractive 

indexes were set at 1.59 and 0.0, respectively. Nanoliposomes were diluted 50-fold in distilled 

water to avoid multiscattering phenomena and to obtain appropriate viscosities. The resultant 

liposome size was 169.3 ± 1.31 nm with a polydispersity index of 0.12 ± 0.014 (Supporting 

Information Figure S 3.6a, b), which only increased slightly after three weeks confirming the 

stability of the nanoliposomes. 

The net surface charge was determined by zeta (ζ) potential analysis by laser Doppler 

anemometry and conducted using a ZetaPlus analyzer (Brookhaven Instruments Corp., 

Holtsville, NY) at 25 °C. Carboxylated nanoliposomes were diluted 50-fold in distilled water and 

zeta potentials were calculated for an average of ten measurements at the stationary level using 

the measured electrophoretic mobility distributions with the Smoluchowski equation. Obtained 

negative values of 34.3 ± 1.4 mV indicated that negatively charged carboxylic groups were 

successfully inserted into the outer monolayer of the nanoliposomes (Supporting Information 

Figure S 3.6a). 

The TEM micrograph of the nanoliposomes revealed a narrow size distribution as well as their 

characteristic spherical morphology (Supporting Information Figure S 3.6c). A 5 μl droplet of 

liposome suspension was placed onto a pretreated quantifoil R2/2 holey carbon coated on 400 

mesh copper grids (Quantifoil Micro Tools). Samples were kept in a controlled environment at 

FEI Vitrobot Grid Cryo-Plunging System (FEI Company, Hillsboro, OR) where humidity and 
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temperature were maintained at 100% and 4 °C, respectively, to allow the liposomes to be fixed 

on the grid. The excess solution was removed by blotting with paper filter and the vitrification 

was achieved by rapidly plunging the samples into liquid ethane which was kept in a liquid 

nitrogen container. Finally, the samples were transferred to a grid holder and kept frozen in liquid 

nitrogen until observation to prevent the formation of ice crystals and sample perturbation. Cryo-

TEM was performed with a FEI Tecnai G2 F20 (FEI Company, Hillsboro, OR) operating at 120 

kV acceleration voltages. Images were recorded with a Gatan Ultrascan 4000 (4k × 4k) CCD 

Camera System Model 895. 

 

a Day 1 Day 20 

Particle Size (nm) 169.3  5.31 169.2  7.43 

PDI 0.12  0.014 0.144  0.051 

Zeta Potential (mV) -34.3  1.4 -33.5  1.3 

 

Figure S 3.6: Physicochemical characterization of nanoliposomes. (a) Data presenting size, PDI 

and zeta potential of carboxylated nanoliposomes (mean ± SD, n = 10). (b) Size distribution of 

nanoliposomes (average size ~170 nm). (c) TEM photograph of nanoliposomes (bar = 100 nm). 
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Figure S 3.7: Schematic representation of carbodiimide-based conjugation of the nanoliposomes 

to MTB cells. First, EDC/NHS reacts with the available carboxyl groups on the nanoliposomes 

surface. The activated nanoliposomes that are highly reactive toward the amino groups can then 

covalently attach to the surface of the magnetic bacteria (bottom pathway). 
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Figure S 3.8: Confocal images of NIH/3T3, Colo205 and J774 cells showing uptake of 

Rhodamine labeled nanoliposomes. Nuclei were stained blue with Hoechst 33342, actin filaments 

were labeled green with Phalloidin-Alexa Fluor 488 and nanoliposomes were marked red by 

Rhodamine. Uptake of bare nanoliposomes was initiated rapidly within 30 min for J774 and 

NIH/3T3, which increased gradually with the incubation time. The uptakes of nanoliposomes 

were occurred after 1 h in Colo205 cells. Scale bars represent 30 µm. 
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 MAGNETIC RESONANCE IMAGING OF TUMOR CHAPTER 4

HYPOXIA USING COMPUTER-ASSISTED MAGNETO-AEROTACTIC 

BACTERIA-MEDIATED SUPERPARAMAGNETIC IRON-OXIDE 

NANOPARTICLES 

 

This chapter presents objective 2 that is the application of MC-1 MTB carrying MRI contrast 

agents for imaging the hypoxic regions of tumors. To validate the feasibility of this objective, an 

antibody-mediated attachment strategy was developed to conjugate the magnetite nanoparticles to 

the surface of the MTB to form a navigable contrast agent. The in vivo results obtained from the 

magnetic navigation of superparamagnetic attached to MTB in HCT116 colorectal tumor 

xenograft demonstrated that the attachment was reliable and the MTB complexes were capable of 

accumulating into the hypoxic regions causing the local field heterogeneity detectable by clinical 

MRI. Corresponding histopathology analyses such as IF and HPS confirmed the MRI results 

regarding the location of the loaded MTB in the tumor hypoxia. The MTB complexes offer an 

unprecedented approach for targeting and transporting the imaging agents to distal tumor regions 

in a more directed and controlled manner while providing the capability for tracking the loaded 

MTB inside the tumor. 

 

4.1 INTRODUCTION 

Tumor hypoxia has been recognized as a decisive factor in the impairment of tumor response to 

therapeutic and diagnostic schemes and yet, an efficient method to visualize hypoxic regions for 

in vivo diagnostics, drug delivery targeting assessment, or treatment efficacy monitoring, to name 

but a few applications, is still lacking. In vivo information gathering of the spatial structures of 

tumor microenvironments can not only prove to be a valuable tool to assess factors that influence 

responses to treatments but also in determining the appropriate dosage and the type of agents 

required to yield optimal therapeutic outcomes. Hypoxic tumors are generally associated with a 

more aggressive tumor phenotype and are known to promote angiogenesis and metastasize [13]. 
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They also significantly reduce tumor sensitivity to radiation and chemotherapy that very often 

ultimately lead to treatment failures [13]. Therefore, major determinants of individual tumor 

hypoxic structures can provide prognostic information for improving not only treatment planning 

for regimen of therapeutic agents but also intensity-modulated radiotherapy, to name but only 

two examples of commonly used interventional procedures. 

Current clinically invasive methods to measure hypoxia such as immunohistochemistry of 

exogenous markers or hypoxia-related proteins in tumor biopsy samples [13] and oxygen tension 

(pO2) electrode measurements [277] are restricted to easily accessible tumor sites and lack spatial 

coverage due to a limited number of samples. Considerable effort is being made to investigate the 

use of in vivo clinical imaging modalities to overcome the aforementioned limitations. For 

instance, MRI, PET, and CT scan are used to identify the location and volume of tumors and to 

evaluate the structure and different physiological processes of the tumor milieu [228, 229, 285]. 

Despite advances in medical imaging technologies, to date, the internal hypoxic tumor 

microenvironments still remain inaccessible to such clinical imaging modalities. 

For instance, MRI is currently under intense investigations as a robust technique with unlimited 

tissue penetration and a relatively high spatial resolution for determining the tumor location and 

size [326] or tumor angiogenesis [228, 232]. MRI contrast agents such as gadolinium derivatives 

[232] and magnetic nanoparticles (MNPs) [327], particularly superparamagnetic iron-oxide 

nanoparticles (SPIONs), are widely used in biological assays and have become an indispensable 

part of clinical MRI. Such contrast agents alter the MR signal due to the magnetic field 

perturbation, which affects T1- and T2-relaxation times that can be of assistance in distinguishing 

disease from normal tissue. Currently, contrast agents including SPIONs share the same 

limitations as for drug delivery where a suboptimal accumulation around the leaky tumor 

vasculature by EPR effect [61, 233] and limited intratumoral penetration through the tumor 

extracellular matrix [6, 11, 12], are observed. The prior systemic circulation, the tumor interstitial 

fluid pressure [54], the irregular and disorganized angiogenesis capillary networks [61], the 

heterogeneous blood flow, the relatively large distances between the tumor cells and the 

functional blood vessels , and the lack of an oxygen gradient-based targeting and retention 

capability are all major obstacles to the effective diffusion and high-specificity targeting of 

contrast and therapeutic agents towards the tumor hypoxic areas. Developing special micro-bio 

robots as carriers for targeting and delivering therapeutic payloads to a cancer mass with high 
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specificity and ability to penetrate into all tumor regions could be curative in many medical tasks 

such as delivery of MRI contrast agents, highly localized drug delivery for chemotherapy, and 

thermal treatment of tumors at selected sites. Previous studies on biological microorganisms such 

as bacteria have proven their potential to reach tumor region following a systemic injection and to 

proliferate in the solid tumors [29, 80]. However, to minimize systemic circulation of these 

bacteria and to guide their migration path for targeting interventions, no external computer-based 

control can be used. 

To overcome these obstacles, a new steerable carrier based on live Magnetococcus Marinus 

flagellated MC-1 magnetotactic bacteria was proposed with experimental results showing that 

large populations of MTB were able to migrate non-systematically in the tumor hypoxic regions 

when operating in an artificial environment enabling the exploitation of their magneto-aerotactic 

migration behavior (See Appendix A). MTB cells with intrinsic magneto-aerotactic behavior are 

promising candidate and efficient for computer-based navigation and have a potential to 

preferentially penetrate deep, accumulate and deliver medicine in hypoxic regions (< 0.7% O2) of 

the solid tumors [36, 109]. Despite the potential implementations of this bio-carrier, in situ 

targeting assessment of deeply penetrated MTB into the tumor tissue could not be achieved due 

to the absence of traceable agents being linked to such a carrier. To overcome the aforementioned 

problem as well as visualizing the tumor hypoxic areas, MTB-mediated contrast agents could 

prove to be a highly valuable imaging addition to the arsenal already available in clinical settings. 

In this respect, here we assess a suitable ~200 nm clusters of SPIONs loading capacity for such 

MTB carriers to yield contrast levels that are compatible with clinical MRI scanners while 

maintaining their capability to migrate effectively through the potential physiological routes 

leading towards the tumor hypoxic areas. Such new MRI contrast assemblies are acting as 

nanorobotic agents with self-propelling and magneto-aerotactic sensing capabilities. These MRI 

contrast assemblies enable non-systemic delivery of contrast agents to tumor hypoxic regions that 

were injected peritumorally into SCID-Beige mice bearing HCT116 colorectal tumor xenografts 

prior to conduct in vivo computer-assisted magnetotactic guidance followed by MTB-

autonomous aerotactic targeting of hypoxic regions. Hypoxic areas identified through T1- and 

T2
*
-weighted images were subsequently validated by in vitro studies featuring staining with 

immunofluorescence (IF) together with hematoxylin-phloxine-saffron (HPS) prior to being 

accurately registered to the corresponding MRI slices. Besides in vivo MRI-mapping of hypoxic 
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areas, opportunities also exist for other medical imaging modalities and the synthesis of new 

markers and theranostic agents. 

4.2 METHODS 

4.2.1 Culture growth conditions of MC-1 magnetotactic bacteria 

The Magnetococcus Marinus MTB MC-1 cells from our laboratory stock strain were cultured as 

previously reported [324]. This microorganism grows in a specific chemoheterolithotrophic 

liquid medium under microaerobic growth conditions. The MTB cells in culture medium were 

incubated statically without agitation in the dark, for 48 h at 25 °C and under an oxygen 

concentration gradient of 0.1-0.5%, a precise neutral pH at 7.0, and a controlled input of 7.5% 

CO2. The medium was also supplied with 50 μM of ferrous sulfate heptahydrate (FeSO4·7H2O) 

prior to inoculation to allow the synthesis of bacterial magnetosomes. All these parameters were 

controlled precisely to insure the high yield, high motility, and high magnetic sensitivity that are 

essential to using the MTB as biocarriers for drug delivery. The MTB typically are used at day 

seven, which corresponds to the end of their exponential growth phase. A typical successful MTB 

culture batch provides ~10
7
 MTB per ml that can be used for the preparation of polyclonal 

antibodies or bioconjugation with particles. Bacterial cell concentration was determined by 

counting under optical microscopy (AxioImager Z1, Imaging Solutions Carl ZEISS). 

4.2.2 Covalent immobilization of anti-MC-1 antibody on magnetic particles 

Four types of magnetic particles (MPs) with different sizes and magnetic properties including 

superparamagnetic 200 nm (S200), ferromagnetic 200 nm (F200), superparamagnetic 500 nm 

(S500), and ferromagnetic 500 nm (F500) particles (Chemicell GmbH, Germany) were utilized 

for their applicability as contrast agents as introduced in Table  4.1. All of the employed MPs 

including FluidMAG-ARA-COOH and SiMAG-COOH, are ferrofluids consisting of an aqueous 

dispersion of individual magnetic iron oxide particles (Fe3O4) embedded in a polysaccharide 

substrate (S200, F200) or silica matrix (S500, F500), respectively (Figure  4.1a). The MPs contain 

terminal carboxyl acids for covalent immobilization of biomolecules. The numbers of particles 

per mg are 2.2 × 10
14

 and 1.5 × 10
13

 for S200/F200 and S500/F500, respectively. 
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Covalent binding of the amino-group containing IgG antibody (AB) specific against MC-1 MTB 

to the distal terminal of carboxylated MPs by the carbodiimide chemistry method provides MP-

AB complexes (S200-AB, S500-AB, F200-AB, and F500-AB), as depicted in Figure  4.1b. The 

carboxyl sites of MPs were activated with EADC. EDAC coupling reagent in the presence of 

sulfo-NHS is commonly used to convert carboxyl groups to amine-reactive sulfo-NHS esters 

[195] for efficient AB attachment. In brief, 2 mg of particles were washed twice and resuspended 

in 2.5 ml of 2-(N-morpholino) ethanesulfonic acid (MES) buffer (50 mM, pH = 5.5; Sigma-

Aldrich). All the washing steps for the superparamagnetic particles were performed using a 

NdFeB magnetic separator (MagnetoPURE, Chemicell).  

Ferromagnetic particles were washed by centrifugation (5 min, 4000 rpm) to prevent aggregation 

caused by the magnetic interaction. That is due to the fact that, once ferromagnetic particles are 

magnetized, the particles behave like small permanent magnets, forming irreversible aggregates 

or lattices due to magnetic interactions. 4 mg of EDC (Sigma-Aldrich) and 6 mg of Sulfo-NHS 

(Sigma-Aldrich) were dispersed in 2.5 ml of MES buffer and mixed with resuspended MPs. The 

mixture was shaken at room temperature for 30 min. The particles were washed three times with 

MES buffer to remove any excess of activated agents. Then, the pH was raised to around 7 to 7.4 

to link functionalized particles to antibodies. In fact, the kinetics of the hydrolysis of the Sulfo-

NHS activated -COOH group increases at non-acidic pH. However, based on the isoelectric point 

of IgG antibody (7.3 ± 1.2) the pH needs to be increased to around 7-8 (not larger than 8.0) to 

avoid protein denaturation. Then, 50 µl of 2 mg ml
-1

 of AB (FITC-labeled or unlabeled) was 

added to the activated particles. The mixture was incubated for 4 hours at room temperature with 

gentle stirring. The unconjugated antibodies were separated from the conjugated ones as before. 

Finally, the MP-AB samples were dispersed in phosphate buffer saline (PBS, pH = 7.4) with the 

final concentration of 400 µg [MP] ml
-1

. The MP-AB was stored at 4 °C until use. 

4.2.3 MP-AB attachment to the MTB membrane to form MTB-MP complexes 

For preparation of the MTB-MP complexes (MTB-S200, MTB-S500, MTB-F200, and MTB-

F500), the 50 ml of 10
6
 MTB ml

-1
 was incubated with 2.8 ml of S200/F200-AB and 4.15 ml of 

S500/F500-AB at a concentration of 400 µg [MP] ml
-1

 for 2 h at 25 °C under gentle agitation. 
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Figure  4.1: Schematic representation of MTB-MP complexes preparation. (a) SiMAG (top) and 

FluidMAG magnetic particle (bottom) with terminal carboxyl groups. (b) Covalent coupling of 

amino group-containing AB to carboxylated MPs by the carbodiimide method. (c) Attachment of 

the MP-AB to MTB cell membrane. 

 

Subsequently, the complexes were washed three times with PBS (pH = 7.4) to remove non-

attached particles using a magnetic setup designed to generate a homogenous magnetic gradient 

in two-dimensional space (Figure  4.2a). The magnetic field direction was oriented towards the 

center of each petri dish by decreasing its magnitude from 60 Gauss at the edges to zero Gauss at 

the center where the swarm of MTB-MP complexes was to form. This magnetic field strength is 

sufficient to accumulate the magnetic bacteria; however, it does not result in the aggregate 

formation of any super/ferromagnetic particles. 
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4.2.4 Physicochemical characterization of MP, MP-AB, and MTB-MP 

The physical characteristics of MP and MP-AB were investigated using TEM, confocal 

microscopy, dynamic light scattering, and zeta potential. The chemical analysis of MP-AB was 

performed by FTIR. The MP-AB attachment to MTB (MTB-MP) complex was qualitatively 

analyzed using TEM and confocal microscopy. The specific affinity of MTB to MP-AB was 

investigated by μCP techniques. 

 Quantification of surface carboxyl groups of MPs using toluidine blue O 4.2.4.1

In this study, AB conjugation to the MP surface is mediated by COOH groups. The degree of 

carboxylation (in molarity per mg of MP) was measured using the toluidine blue O (TBO) 

(technical grade, Sigma–Aldrich, St. Louis, MO) assay. The cationic TBO blue dye derivative of 

phenothiazine (C12H9NS) [328] interacts with ionized, negatively-charged COOH functional 

groups via electrostatic interaction and shows an absorption peak at a wavelength of around 600-

630 nm. 

In the current study, two calibration curves at pH = 2 and 11 were prepared based on the TBO 

absorption at 630 nm using a microplate reader (SpectraMax i3, Molecular devices). In brief, dry 

TBO powder was dissolved into a reacting solution of 0.2 M NaCl (0.5 ml) at pH 2, and a 

reacting solution of 0.02 M NaCl (0.5 ml) at pH 11 to prepare two different TBO solutions at 

different concentrations. The pH of the reacting solutions was adjusted using hydrochloric acid 

(HCl) and sodium hydroxide (NaOH). Briefly, 0.6 mg MP was immersed into the freshly 

prepared TBO solution (2 mM in 0.02 M NaCl, pH 11) and followed by bath-sonication at room 

temperature for 1h, forcing TBO molecules to react with COOH groups by electrostatic 

interaction. The resultant MP-TBO complex was rinsed with 0.02 M NaCl (pH 11) and placed in 

the same solution for an extended time of 1 h, during which the unbound dye collected as a 

supernatant to measure. Subsequently, the MP-TBO complex was immersed in 0.5 ml of 0.2 M 

NaCl solution at pH 2 for 30 min under bath-sonication, promoting the release of TBO from the 

carboxyl groups into the solution, coloring it blue. Since the carboxyl groups of the MP could be 

ionized at pH 11 and protonated at pH 2, TBO molecules physically bind to ionized carboxyl 

groups (COO
-
) at a pH of 11 and are released when immersed in pH 2 condition. The molarity of 

the release dyes could be served as the molarity of the surface carboxyl groups. Here, the 

molarity of COOH groups was determined by measuring both the unbounded TBO as well as the 
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released TBO after immersion at pH 2 conditions. A best-fit polynomial equation rather than a 

linear equation was fitted to the standard curve. Each measurement was compared to the 

calibration curve in reference to the corresponding pH, and the average value of the three 

measurements was reported. 

 Particle size and zeta potential analysis 4.2.4.2

The average hydrodynamic diameter and size distribution (polydispersity index) of MPs before 

and after AB conjugation were determined by a size analyzer using dynamic light scatter (DLS, 

Brookhaven instrument Corporation, USA). The stock suspensions of MP and MP-AB were 

diluted with Milli-Q water at a concentration of 0.01 mg ml
-1

 to eliminate concentration-

dependent effects. Size measurements were recorded at a temperature of 25 ºC and a scattering 

angle of 90º. Size distribution data were obtained from the autocorrelation functions of the 

instrument. A ZetaPlus analyzer using laser Doppler anemometry (Brookhaven Instruments 

Corp., Holtsville, NY) was employed to determine the net zeta potential (ζ) in Milli-Q water at 25 

ºC. The electrophoretic mobility of the particles diluted to a concentration of 0.01 mg ml
-1

 was 

measured. Zeta potentials were then estimated at the stationary level using the Smoluchowski 

equation. All measurements were conducted in triplicate from ten independent experiments. 

 Transmission electron microscopy (TEM) observation and image analysis 4.2.4.3

The morphology characteristics and size of the MP-AB, bare MTB, MPs alone, and MTB-MP 

complex were determined by TEM. The MTB-MP complexes or bare MTB suspensions were 

fixed with 2.5% glutaraldehyde in 0.1 M phosphate buffer solution pH 7.4 (Electron Microscopy 

Sciences). Formvar/carbon-coated copper grid (200 mesh, SPI Supplies) was ionized by argon 

plasma discharge. A 5 µl drop of the fixed suspension was then deposited on a grid and allowed 

to adhere for 10 min at room temperature. When some of the cells adhered to the grid, the excess 

liquid was blotted with filter paper. The grids were washed with water three times. Then, as 

before, the excess liquid was removed, and the grids were allowed to dry slowly. In the case of 

MP-AB and MP alone, 10 µl of samples (400 µg ml
-1

) in Milli-Q water were placed on carbon-

coated copper grid and dried at room temperature. Observations were carried out using an FEI 

Tecnai 12 BioTwin TEM (AMT XR80C CCD camera system) operated at 120 kV. Images were 

captured with a Gatan Ultrascan (2k × 2k) digital camera. 
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 Confocal laser scanning microscopy and image acquisition 4.2.4.4

The success of MTB-MP complex formation and also the efficiency of FITC-AB conjugation to 

the fluorescent-MP surface were further confirmed by observation under confocal laser scanning 

microscopy (CLSM: Carl Zeiss LSM 628 510-META with Axiovert inverted microscope, Jena, 

Germany). FITC-AB (ex/em: 495/525 nm), Lumogen-S200/F200 (ex/em: 578/613 nm) and 

Rhodamine B-S500/F500 (ex/em: 540/625 nm) were visualized upon excitation with Ar-ion laser 

and He-Ne laser, respectively. Images were acquired using a 63× magnification with 1.4 

numerical aperture (NA) oil-immersion objective and Carl Zeiss LSM imaging software. 

 Fourier transform infrared spectroscopy (FTIR) 4.2.4.5

Characterization of the MP-AB conjugation was performed using FTIR spectrophotometer 

(Spectrum two, Perkin Elmer, UK) equipped with the attenuated total reflection (ATR) cell. 

Approximately 10 mg of lyophilized samples were introduced onto the ATR crystal followed by 

an acquisition of spectra in the range of 400-4000 cm
-1

 at a resolution of 4 cm
-1

. Background 

measurements were carried on before the analysis of each sample. 

 Microcontact printing (μCP) 4.2.4.6

Soft lithographic approaches, such as μCP, have been explored to identify the selective binding of 

MTB to substrate-immobilized MP-AB. The mold for soft lithography was fabricated by curing 

negative photoresist SU-8 2025 (Microchem Corp, Boston, MA) on a silicon wafer [329]. 

Standard photolithography was performed on the wafer using the design printed on a chrome 

mask. This patterned master was then used to fabricate the poly (dimethylsiloxane) (PDMS; 

Essex Chemical, Boston, MA) elastomer stamps. After curing, the PDMS elastomer was peeled 

off from the master and cut to 1 cm
2
. The resulting PDMS stamps had a line shape pattern of 25 

µm wide bars and 40 µm wide gaps that extended the length of each stamp. The PDMS stamp 

was first plasma treated in an O2 plasma for 1 min (200 mTorr O2, 200 W) to increase in 

hydrophilicity and antibody adsorption. Subsequently, it was covered with 20 µl (400 µg ml
-1

) of 

anti-MC1 MTB antibodies attached to particles (S200-AB) for 10 min at 25 °C. To avoid 

evaporation of the solution, a coverslip was placed on the stamp. After rinsing with PBS and 

drying under N2 gas for 30 s, the stamp was gently brought into contact with the plasma treated 

glass surface. After 1 min, the PDMS stamp was removed carefully, while the S200-AB samples 
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remained on the substrate. After patterning of fluorescence-labeled S200-AB onto substrates, the 

resulting micropattern was visualized using confocal microscopy. In order to reduce the 

nonspecific binding of bacteria to the bare silicon spaces between the sample-stamped lines, the 

surface was blocked using 2 ml blocking buffer (i.e., BSA, PLLA-PEG, goat serum) for 30 min. 

After washing with PBS, 2 ml of MTB (5 × 10
6
 MTB ml

-1
) was allowed to bind for 1 h. Then, the 

surface was washed to remove non-attached bacteria and visualized under a microscope. 

 Fluorescence spectroscopy analysis of MP-AB and MTB-MP complex 4.2.4.7

Coupling efficacy of AB to MP was assessed using fluorescence-based characterization 

techniques, including fluorescence-UV/Vis spectroscopy and fluorescamine (FL-amine) protein 

detection assay. Fluorescence spectroscopy was utilized for quantification of fluorescein 

isothiocyanate (FITC) labeled AB raised against MC-1 MTB (GenScript Inc., Piscataway, NJ, 

USA) covalently coupled to the surface of fluorescent MPs. Nano-screenMAG/R-ARA (200 nm), 

Nano-screenMAG/MP/R-ARA (200 nm), screenMAG/RR-carboxyl (500 nm), and 

screenMAG/MP/RR-Carboxyl (500 nm) particles (Chemicell, Germany) were used. The iron 

oxide cores are covered by the fluorescence dye Lumogen/F Red 300 (ex/em: 578/613 nm) and 

Rhodamine B (ex/em: 540/625) for nano-screenMAG and screenMAG, respectively. Considering 

the initial concentration of AB (20 µg ml
-1

) used for attachment, the calibration curve was 

constructed by preparing a serial dilution of FITC-AB in PBS (1-50 µg ml
-1

). The samples were 

excited at 495 nm while fluorescent emission was recorded at 525 nm using a Multi-Mode 

Microplate Reader (SpectraMax i3, Molecular devices). Different fractions of MP-AB and non-

covalently coupled AB were collected and analyzed for protein content. The amount of ABs 

covalently coupled to the MP was determined by comparing the fluorescent intensity of MP-AB 

sample to the prepared calibration curve. The amount of unbounded antibody was also 

determined by subtracting the calculated amount of covalently coupled AB to MP from the initial 

amount of AB that was added to the MP solution during preparation. 

FL-amine protein assay was also utilized for quantification of attached AB to the surface of MP. 

FL-amine, a heterocyclic Dione, is a sensitive fluorescence-based colorimetric assay used to 

detect primary amine functional groups and measure protein concentrations. Non-fluorescent FL-

amine dye reacts rapidly with primary amines of ABs to form a fluorescent product, which emits 

strongly at around 480 nm under excitation at 400 nm [330]. The fluorescence of MP-AB 
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samples plus FL-amine is proportional to the quantity of AB conjugated to MP. A standard curve 

was plotted based on reaction of different AB concentrations (1-50 µg ml
-1

) in phosphate buffer 

(100 µl, pH 7.4) with 32 µl of freshly prepared FL-amine solutions (3 mg ml
-1

) (Sigma) in 

acetonitrile. For MP-AB samples, 20 µl of sample solution (400 µg ml
-1

) was diluted in 80 µl of 

PBS followed by the addition of 32 µl of FL-amine solution. Fluorescence emission was recorded 

rapidly after adding the FL-amine reagent to the sample using microplate reader. To quantify the 

AB concentration per mg of MP, the recorded values were compared to the calibration curve. 

Beside TEM observation, for quantification analysis of MTB-MP bio-complexes, the 

fluorescence spectroscopy was used. The MP-AB was synthesized using the fluorescent MPs and 

FITC-AB according to the procedure described previously. A standard curve for various 

concentrations of MP-AB (20-400 µg ml
-1

) was plotted against fluorescent values recorded at 

ex/em peak at 578/613 nm for Lumogen, 540/625 nm for Rhodamine B, and 495/525 nm for 

FITC. After MTB-MP formation, the complexes were washed three times with PBS and 

subsequently concentrated 50 times. 100 µl of the complex was loaded into a 96-well plate, and 

the emission was recorded using a microplate reader at the same wavelengths as used for 

fluorescent-MP and FITC-AB. The concentration of MP and AB in the complex was estimated 

based on the obtained value compared to the standard curve. 

 Magnetic properties of MP, MP-AB, and MTB 4.2.4.8

Magnetic characterization of the MTB cells,  MPs (S200, S500, F200, F500) and MP-ABs (S200-

AB, S500-AB, F200-AB, F500-AB) was performed using a vibrating sample magnetometer 

(VSM: Microsense EV9). 40 µl (10 mg ml
-1

) of each MP sample and MP-AB diluted in PBS 

were measured in a glass container at room temperature. The magnetic moment, saturation 

magnetization and coercive field strength were measured for whole particle mass by applying 

field ranging from -20 to 20 kOe at a precision of about 10
-7

 emu. 

The amount, size, and a number of magnetic materials in the magnetosome chain of MTB are 

important factors that influence the relaxivity of MRI. To quantify the amount of magnetic 

material in each MTB, direct magnetic measurement using VSM as well as theoretical 

calculations based on magnetosome properties was performed. The magnetic moment per 

bacterium can be calculated knowing that magnetosomes of MC-1 MTB are composed of 

magnetite (Fe3O4) with a magnetic moment per unit volume (Mv) of 480 emu ml
-1 

and density of 
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5.2 g ml
-1

 [80]. To measure the magnetic moment of the MTB using VSM, the cells were washed 

three times using a two-dimensional magnetic field and resuspended in PBS. Then, 40 µl of MTB 

(~4.2 × 10
7
 MTB) were placed in a glass container and measured at 6.82 × 10

-5 
emu (~1.62 × 10

-

12 
emu per MTB). The magnetic moment was then converted into mass magnetization σM (emu g

-

1
). Dividing the magnetic moment values by the known magnetic moment of magnetite and 

multiplying by magnetite density provided the amount of magnetite per bacteria. Iron content is 

the molar ratio (168/232) of iron in magnetite. 

To confirm the VSM results, TEM images were obtained from MTB and their magnetosome. The 

average diameter and size distributions of magnetosomes were determined from multiple TEM 

images (approximately 1500 particles) using ImageJ software (National Institutes of Health, 

Bethesda, MD, USA). The magnetosomes were considered as a chain of single domain magnetite 

spheres with an average number of 15 ± 5 magnetosomes per chain, and an average radius of 34 

± 13 nm (68 nm in diameter). Therefore, for a single particle of volume 1.64 × 10
-16 

cm
3
, the 

magnetic moment is obtained at around 7.89 × 10
-14

 emu. For an MTB containing an average of 

15 particles, the total magnetic moment per bacterium is calculated about 1.184 × 10
-12 

emu. 

Using the same formulation, the amount of magnetite per bacteria is estimated at around 1.28 ± 

0.7 × 10
-14

 g per MTB, which is close to the VSM measurement. 

4.2.5 Tumor model 

For in vivo studies, human colorectal tumors implanted into the flank of SCID-beige mice 

(Charles Rivers) were established as xenograft models. HCT116 (CCL-247) parental mammary 

colorectal carcinoma cells (ATCC; Manassas, VA) were maintained at 37 °C, 5% CO2 in 

McCoy's 5A medium (MULTICELL) with 10% fetal bovine serum (FBS). Trypsinized cells 

(0.25% (w/v) Trypsin-0.53 mM EDTA) were resuspended in PBS at a final concentration of 5 × 

10
7
 cells per ml immediately prior to use. Two mice were used for each experimental arm, in two 

independent experiments. Experimental procedure and animal care were conducted in accordance 

with the Canadian Council on Animal Care guidelines and with the approval of the Animal Care 

Committee of the McGill University Health Center. All the animals were pathogen-, murine 

virus-, helicobacter-, and parasite-free. At 8 weeks of age and around 25 g of body weight, SCID 

mice received 100 µl of 5 × 10
7
 tumor cells per ml subcutaneously in the flank resulting in 

tumors with sizes of approximately 700–800 mm
3
 within 4 weeks. During the 30 days of tumor 
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growth, the animal weight and volume of the tumor were assessed. Tumor volume was estimated 

with measurements obtained from an electronic caliper using the following formula [331]: 

[(length) × (width)
 2

 × 0.5]. 

4.2.6 In vivo magnetically targeting of MTB-S200 complex 

Each MTB sample injection was prepared from an initial quantity of 200 ml of MTB (5 × 10
6
 

MTB ml
-1

) suspended in the culture medium. MTB and MTB-MPs were concentrated using the 

two-dimensional magnetic setup, causing a swarm of bacteria to appear in the center of petri 

dishes after a few minutes (Figure  4.2a, b). The culture medium surrounding the cluster was then 

gently removed, and the samples were washed three times with PBS. Finally, samples were 

concentrated to maximize the number of injected bacteria. Prior to injection, a homogeneous 

sample of the final solution was collected, and the exact concentration of injected bacteria into 

each mouse was quantified by counting under optical microscopy (Carl ZEISS). Fifteen minutes 

before the sample injection and prior to the actual magnetic navigation process, each animal was 

anesthetized with an intraperitoneal (i.p.) injection of Xylazine/Ketamine at the appropriate dose 

based on their individual weight. A 200 µl of 5 × 10
9
 MTB ml

-1
 in PBS of freshly concentrated 

MTB-S200 were injected peritumorally (p.t.) in one side of the tumor. 

Using three-dimensional magnetic fields generated by a pair of orthogonal magnetic coils, the 

MTBs were magnetically navigated for 1 hour towards the center of the tumor. The magnetic set-

up was designed and built especially for the in vivo experiments to accumulate the bacteria in the 

tumor (Figure  4.2d). The motion guidance of MTB was obtained using custom-designed 

computer software to control the amplitude of the electrical current delivered by GPIB power 

supplies to the coils. Bare MTB and MPs alone were used as a control with the quantity adjusted 

on the basis of MTB-S200 equivalents. At the end of the navigation, animals were euthanized 

with CO2 overdose and tumors were harvested immediately from the sacrificed animals. The 

marker served as a reference to properly orient the immunofluorescence tumor sections with 

respect to the MR image slices. Tumors were washed once with PBS to remove any unbound 

samples and then fixed in 10% neutral buffered formalin for MRI and histology studies. 
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Figure  4.2: Schematic illustrating magnetically navigation process of MTB-MP complex in tumor 

xenograft. (a) Two-dimensional magnetic setup to accumulate and wash the MTB and their 

complexes. (b) An enlarged picture of the swarm of MTB-MP. (c) Photographs of mice with 

xenografts receiving MP-loaded MTB. (d) Side view of the home built three–dimensional 

magnetic navigation system and animal placement. 

 

4.2.7 Relaxivity measurement 

T1 and T2 relaxivities were measured at 3 Tesla on a clinical MR scanner (Siemens Skyra) at 

room temperature using a 32-channel head coil. For in vitro phantom studies, several 

concentrations of MTB-MP (MTB-S200 and MTB-S500) were prepared ranging from (10
8
, 5 × 

10
7
, 2.5 × 10

7
,
 
1.25 × 10

7
, 6.25 × 10

6
, and 3.12 × 10

6
 MTB ml

-1
). Bare MTB and MP alone with 

the equal concentration corresponding to the MTB-MP samples were used as a control. 

Concentration of the MTB samples was determined by direct counting under optical microscopy. 

Each 500 µl of concentrated sample was inserted into a 1 ml microtube. The phantoms were 

aligned inside a container, which was subsequently filled with gel and solidified at 4 °C to 

maintain a homogenous cellular distribution. For T1 measurements, an inversion-recovery fast-
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spin echo sequence was performed with inversion times (TI) of 50, 100, 150, 200, 400, 800, 

1500, 2500, and 4000 ms and the following imaging parameter: TR/TE = 10000/8.6, flip angle = 

150°, bandwidth = 245 Hz/pixel, voxel size = 0.46 × 0.46 × 3 mm, imaging matrix = 256 × 256. 

T1 values were estimated using a non-linear function least-square curve fitting according to the 

following equation: 

 (  )             ( 
  

  
)  

(4.1) 

where  (  ) is the MRI signal intensity at inversion time TI, and    is the MRI signal magnitude 

at equilibrium. 

T2 maps were calculated using a fast spin-echo sequence at various echo times (TE) of 10, 20, 30, 

40, 60, 100, 150 and 180 ms and the following imaging parameters TR = 10000, flip angle = 

150°, bandwidth = 260 Hz/pixel, voxel size = 0.46 × 0.46 × 3 mm, imaging matrix = 256 × 256. 

T2 values were estimated using a non-linear function least-square curve fitting according to the 

following equation: 

 (  )         ( 
  

  
)  

(4.2) 

where  (  ) is the MRI signal intensity at which TE is used. The signal intensity for each 

sample was averaged over multiple cross-sectional slices, which were acquired along the height 

of each sample. Relaxation rates (r1 = 1/T1 and r2 = 1/T2) were plotted against the concentration 

of the solutions, and then the slopes were used to determine the relaxivities. 

4.2.8 Ex vivo MRI 

The ex vivo MR imaging of the formalin-fixed tumors was acquired to confirm the magnetically 

targeting and distribution pattern of the MTB-S200 complex inside the human colorectal mouse 

tumor xenografts. Bare MTB, S200 alone, and tumors without injection were served as control. 

Fixed tumors were put in a gelatin solution and solidified at 4 °C. MR imaging of the tumors was 

performed on a 3 Tesla MAGNETOM Skyra scanner (Siemens, Erlangen, Germany) equipped 

with self-shielded gradient coils (45 mT/m@200 T/m/s). Coronal and axial images were acquired 

from xenografts using a typical 16-channel hand/wrist coil and a spoiled gradient echo sequence 

(FLASH). The imaging parameters were set to TR/TE = 250/4.73, flip angle = 70°, bandwidth = 
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220 Hz/pixel, voxel size = 0.25 × 0.25 × 2 mm and imaging matrix = 320 × 320 to obtain T1-

weighted contrast and to TR/TE = 700/10, flip angle = 25°, bandwidth = 210 Hz/pixel, voxel size 

= 0.20 × 0.20 × 1.5 mm and imaging matrix = 384 × 384 to acquire T2
*
-weighted contrast. 

4.2.9 Histology analysis 

For histology analysis, fixed tumors were sectioned into longitudinal slices following navigation 

trajectory to view possible MTB migration inside tumor tissue. Oriented paraffin embedded 

tissues, which are corresponding to slices of the MRI were cut using microtome (Leica RM2255) 

into 4 μm thick sections. The sections from each block were subsequently layered on two slides, 

which each was stained with HPS or submitted to immunofluorescence for further assessment of 

the presence of MTB. For immunofluorescence studies, representative sections were submitted to 

automated immunostainer (Discovery XT system, Ventana Medical Systems, Roche group, 

Tucson, AZ) following fluorescence in situ hybridization (FISH) procedure and manual titrations 

by using proprietary reagents ready to use from Ventana Medical Systems. After 

deparaffinization and rehydration of the sections, antigen recovery was conducted using heat 

retrieval and cell conditioning 1 (CC1) standard option, in Tris/EDTA buffer (pH = 9) for 30 min 

in a bath at 95 °C. Then, rabbit anti-MC1 antibody (2 mg ml
-1

, GenScript Inc.) with 1:300 

dilutions in PBS was applied on every slide for 60 min at room temperature. Afterward, the slides 

were incubated with an FITC-labelled secondary anti-rabbit antibody for 32 minutes to visualize 

MC1 receptors in green. Finally, sections were washed and mounted using ProLong® Gold 

Antifade Reagent with DAPI (Invitrogen). Images were obtained using a digital camera (DP71) 

mounted on an Olympus BX61 microscope. The other tissue sections were stained with HPS. 

Immunostained and HPS slides were scanned using the NanoZoomer Digital Pathology system 

(Hamamatsu, Bridgewater, NJ). 

4.3 RESULTS AND DISCUSSION 

4.3.1 Physicochemical characterization of the MRI contrast agents 

Magnetite (Fe3O4) nanoparticles with ferromagnetic or superparamagnetic property with each 

MNP being embedded in a polymeric matrix and clustered as larger MPs with diameter of 

approximately 200 nm and 500 nm (designated S200, S500, F200, and F500 for 200 nm and 500 
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nm superparamagnetic and ferromagnetic MPs, respectively) with functional carboxyl groups 

were used as MRI contrast agents. Covalent conjugation of IgG antibody to the surface of each 

MP provides excellent MP-AB bio-complexes for specific attachments to the surface of the MC-

1 MTB cells. Although a number of conjugation methods have been developed for covalent 

coupling amine- containing molecules to carboxylate particles [195], in the current study, the 

carbodiimide EDAC/NHS [332, 333] was used as an aqueous dehydrating agents to preserves 

optimal activity and significant immobilization while guaranteeing reproducibility to prepare 

MTB-MP-AB complex into desirable configurations for the proposed application.  

Prior to conjugation of biomolecules, quantification of surface functional groups on nanoparticles 

that are responsible for covalent attachment can provide good insight into designing the reaction 

conditions. The carboxylation degree of MPs was measured by a colorimetric assay based on 

quantification of the amount of toluidine blue O molecules bonded to the carboxyl groups 

(Table  4.1). The carboxylation degree was ~583 µmol [COOH] g
-1

 particle for Fluid-MAG (200 

nm) and ~850 µmol g
-1

 particle for Si-MAG (500 nm). As shown in Table  4.1, the degree of 

carboxylation is dependent on the type of particle coating and size, while it is independent of the 

magnetic property (ferromagnetic or superparamagnetic). A greater number of carboxylic groups 

are presented on the larger particles, offering a higher level of surface functionalization degree. 

Fourier transform infrared spectroscopy, transmission electron microscopy, dynamic light 

scattering, zeta potential, confocal microscopy, as well as quantitative spectroscopy data 

confirmed the successful formation of MP-AB with high dispersity and stability (Figure  4.3, 

Table  4.1). 

The covalent chemical attachment of AB to MPs using carbodiimide chemistry was assessed by 

FTIR spectroscopy. The results provide evidence of successful MP-AB conjugations with the 

presence of peaks assigned to amide bond formations within the amines and carboxyl acid during 

the reaction (Figure  4.3a). The spectrum of MP with carboxyl acid displays significant rise of the 

characteristic peak owing to the free COOH (C=O) stretching vibration with strong intensity at 

1749 cm
-1

, the presence of O–H at 3386 cm
-1

, and C–O at 1150 cm
-1

. Furthermore, the MP 

characteristic peak of the Fe–O bond is observed at 556 cm
−1 

as well as distinct Fe–OH stretching 

(960 cm
-1

) and bending (864 cm
-1

) vibrations. A weak peak of 1380 cm
-1

 is also observed and 

corresponds to aromatic ether groups introduced by glucuronic acid coating on the surface of the 
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MPs. After AB conjugation, the disappearance of characteristic peaks of oxide groups in MP 

surface (1749 cm
-1

) indicates that COOH groups were bonded to the ABs. In a more specific 

approach, the FTIR spectrum of MP-AB exhibits AB absorption features located in the zone 

related to amide (–CONH–) that corresponds to the N–H stretching (νN–H at 3331 cm
-1

) and 

C=O (νC=O at 1658 cm
-1

) [334]. Compared to pure particles and antibodies, the intensity of the 

N–H bending band of an amide at 1690 cm
-1

 increases remarkably. Indeed, the primary amines 

specific peaks of AB (1550 cm
-1

) vanish after conjugation to surface carboxyl groups. The 

obtained results confirm that the AB is covalently grafted to the MP surface through an amide 

bridge. 

 

Table  4.1: Physicochemical characterization of MP-AB and MTB-MP complexes. Size 

distribution, zeta potential, carboxylation degree, and saturation magnetization (Ms) of MPs after 

AB attachment are shown. Moreover, quantification of AB conjugated to MP and MP-AB 

attached to MTB (MTB-MP) are also presented. 

Magnetic particle 

 types 

S200 F200 S500 F500 

FluidMAG-

ARA 

FluidMAG/MP

-ARA 

SiMAG-

carboxyl 

SiMAG/MP-

carboxyl 

Superpara 

magnetic 
Ferromagnetic 

Superpara 

magnetic 
Ferromagnetic 

Size (nm) 
MP 203 ± 11 507 ± 18 

MP-AB 267 ± 15 596 ± 32 

Zeta potential 

(mV) 

MP -34 ± 2.94 -41 ± 4.15 

MP-AB -18 ± 3.87 -23 ± 2.09 

Degree of 

carboxylation 

[COOH (µmol)/MP(g)] 

MP 583 850 

Ms (emu/g) MP-AB 46.73 73.41 30.45 51.77 

AB(µg)/MP(µg) 
 

0.0027 0.0015 0.0086 0.0024 

MP(µg)/MTB 3.6 × 10
-6

  4.8 × 10
-6

 5.5 × 10
-6

 11.6 × 10
-6
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Figure  4.3: Characterization of the MP-ABs. (a) Comparison of FTIR spectra of the S200-AB, 

S200, and AB. For S200-AB, the peaks at 1658, 1690, and 3331 cm
–1

 represent C=O, N-H 

bending, and N-H stretching bonds of the amide group, respectively. For S200, the acid peaks 

appear at 1749 and 3386 cm
-1

 that shows the C=O and O-H bond, respectively, hence confirming 

the functionalization of the particles. In the AB graph, the peak at 1550 cm
–1

 shows the amine of 

non-attached antibodies. (b) TEM images of S200-AB, S500-AB, F200-AB, and F500-AB are 

depicted. The MPs are comprised of individual magnetite particle cores embedded in a matrix. 

Scale bar 100 nm. (c) Confocal microscopy images of Lumogen-S200/F200 and Rhodamine-

S500/F500 MPs (red) with conjugated FITC-labelled AB (green). Scale bar 2 µm. (d) Magnetic 

hysteresis curves (M-H) of MP-AB at 25 °C. The hysteresis loop indicates nearly zero value for 

coercivity (Hc) and magnetic remanence (Mr) for S200 and S500 while hysteresis is presented for 

the F200, F500. 

 

The mean sizes of different MPs including S200, F200, S500, and F500 particles before and after 

AB attachment are presented in Table  4.1. As depicted, the results indicated that the AB 

conjugation causes slight increases of the size of the MPs. The mean size of S200-AB and F200-

AB particles were around 267 ± 15 nm from 203 nm in average with a polydispersity index of 
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0.14. The average diameter of S500-AB and F500-AB were approximately 596 ± 32 nm from 

507 nm with a polydispersity index of 0.25, indicating successful conjugation and minimal 

aggregation. To assess the surface charge as it plays an important role in determining the 

colloidal stability of the particles, zeta-potential measurements (before and after attachment) were 

performed. The negative zeta potential values displayed by particles can be explained by the 

potential ionization of the COOH groups, leading to a negative surface charge. It can be seen 

from Table  4.1 that the zeta potential values of S200 and F200 after AB attachment was raised 

from -34 to -18 mV, while S500 and F500 was altered from -41 to -23 mV. The absolute zeta 

potential for MP-AB resulted in less negative values than those without AB on the surface that 

correlated with an increase in size while the MP-ABs still having a low tendency to aggregate. 

This reduction in negative surface charge is due to the attachment of IgG ABs carrying a net 

positive charge at neutral pH as well as a decrease in MP surface carboxyl groups due to 

amidation reaction. 

The TEM was performed to observe the structure and size distribution of MP-AB particles 

(Figure  4.3b). The obtained TEM images confirmed that the MPs consisted of a cluster of 

polymer coated superparamagnetic or ferromagnetic nanoparticles and displayed a diameter of 

approximately 200 and 500 nm for S200/F200-AB and S500/F500-AB, respectively, confirming 

the dynamic light scattering data. For the S200-AB and S500-AB, the core diameters of the 

MNPs in each cluster vary in a narrow size distribution ranging between 12-15 nm. The 

individual particles were visible, whereas the shell did not provide sufficient contrast. Confocal 

microscopy visualization of the coated FITC-labelled anti-MC1 AB (FITC-AB) on the surface of 

Lumogen-labelled S200/F200 and Rhodamine-labelled S500/F500 MPs was also performed and 

depicted in the Figure  4.3c. The results indicate that the particles are coated with antibodies. 

The Ms values were measured by vibrating sample magnetometer (VSM) and are presented in 

Table  4.1. The relationship between magnetization (M) and the applied magnetic field (H) is 

expressed in the M-H curve depicted in Figure  4.3d. The Ms was measured at 46.73 and 30.45 

emu g
-1

 for S200 and S500, respectively, and through the hysteresis curve it was confirmed that 

the particles will be saturated at 3T MR scanner. Magnetite particles can act both as a 

ferromagnetic and superparamagnetic material depending on the particle’s size [335]. 

Ferromagnetic crystals are composed of magnetized domains. Superparamagnetism occurs when 

the size of particle is smaller than the ferromagnetic domain (~30 nm). The lack of magnetic 
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hysteresis loops confirms the superparamagnetic behavior of the particles. Therefore, in the 

absence of an external magnetic field these particles have zero magnetization and fewer 

tendencies to agglomerate, which is a key factor for in vivo applications. Ferromagnetic particles 

show Ms values of 73.41 and 51.77 emu g
-1

 for F200 and F500, respectively, somewhat lower 

than the magnetite bulk value (~92 emu g
-1

). The recorded hysteresis loops show that these 

ferromagnetic particles have a remanent magnetization, which may lead to unwanted 

aggregations after removal of the applied magnetic field. The results indicate that the 

magnetization measurements of MPs after functionalization with the ABs show negligible 

changes in the magnetic properties (around 2-4%). 

To quantify the amount of AB conjugated to two different sizes of MPs with superparamagnetic 

or ferromagnetic properties, different fluorescent-based techniques were employed (Table  4.1). 

Fluorescent spectroscopy results confirm that the attachment method can provide enough ligands 

to interact with the MTB specific receptors. More than 60-70% FITC-AB coupling efficiency is 

observed for various MP-AB formulations. The FL-amine assay was also used to measure the 

amount of AB (non-fluorescent) per mg of MPs. The FL-amine reagent reacts rapidly with 

primary amines of ABs and makes fluorescent molecules emit strongly around 480 nm under 

excitation of 400 nm. Compared to the AB calibration curve, ABs are successfully conjugated to 

the MP surface. This result is in accordance with estimated fluorescence AB attachments 

measured by fluorescent spectroscopy. The effect of the particle size on AB binding at equal 

solid mass is presented in Table  4.1. The density of carboxyl group for different-sized particles 

was not the same as determined by TBO assay. Considering that the degree of carboxylation was 

850 and 583 µmol g
-1

 for 500 and 200 nm MPs, respectively, the amounts of attached ABs were 

greater for larger MPs. Moreover, the superparamagnetic particles show higher attachment 

efficacy compared to ferromagnetic particles. In fact, S200 and S500 allow for almost 1.8-fold 

and 3.5-fold higher AB attachment than F200 and F500, respectively. This difference could be 

due to the easy resuspension, the slow sedimentation, and the uniform distribution of 

superparamagnetic particles during the attachment process. 

4.3.2 Characterization of the MTB-MP complexes 

As shown in Figure  4.4 and Table  4.1, qualitative and quantitative analyzes demonstrate the 

successful and specific attachment of MP-AB to the surface of the MTB cells. TEM and confocal 
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images provide evidence for AB-functionalized MP attachment to MTB after 2h incubation as 

depicted in Figure  4.4a, b. The images show that the conjugated ABs are preserving their specific 

activity and availability for binding to MTB antigens, which results in overlapping of MP-AB 

particles with MTB in the confocal images. 

 

Figure  4.4: Characterization of MTB-MP complexes. (a) TEM images of MTB-MPs and bare 

MTB. Scale bar 0.5 µm. (b) Confocal microscopy images of FITC-AB conjugated Lumogen-

S200/F200 or Rhodamine-S500/F500 attached to MTB. MTB-S200 and MTB-S500 show the 

uniform distribution while aggregation was observed in MTB-F200 and MTB-F500. Bare MTB 

was used as a control. Scale bar 10 µm. 60× magnification. (c) Fluorescence photomicrograph of 

patterning MTB-S200 to the surface. Photomicrographs depict the FITC-AB stamped surface 

(top), Lumogen-labelled S200 particles stamped the surface (middle top), patterned MTB-S200 

complex (middle bottom), and non-patterned MTB as control (bottom). Scale bar 40 µm. 
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Microcontact printing of MTB-S200 was performed to generate patterns of MTB by binding on 

patterned FITC-AB attached to Lumogen-S200 (Figure  4.4c). Due to a specific interaction 

between AB and MTB’s antigen, the bacteria follow the bait redistribution on the patterned 

surface. Phase and fluorescence images clearly show that the MTBs bind specifically and only on 

the stamped MP-AB regions. In the control, where an equivalent number of bacteria were 

incubated with non-treated surfaces, MTBs did not form a pattern on the surface (Figure  4.4c). 

Fluorometric assay was used for quantifying the attachment efficacy. As presented in Table  4.1, 

the amounts of MP attached to MTB were approximately 3.6 × 10
-6

, 4.8 × 10
-6

, 5.5 × 10
-6

, and 

11.6 × 10
-6

 µg per each MTB for MTB-S200, MTB-F200, MTB-S500, and MTB-F500, 

respectively. The amount of attached MPs per each MTB for the MTB-F200 was slightly higher 

than that of MTB-S200 (~1.33-fold) while it was ~2-fold greater for MTB-F500 compared to 

MTB-S500. Even though the results indicate that the attachment efficacy was greater for 

ferromagnetic particles compared to SPIONs, TEM and confocal images showed the 

aggregations following conjugation to MTB with this type of particles. Considering that the 

MTB-MP complexes must transit through the tumor tissue followed by the penetration through 

cellular barriers and the effective distribution in the extracellular matrix, they should remain as an 

individual magnetic carrier system prior the navigation procedure. 

In addition, while higher concentration of the MPs may result in higher MRI contrast ability, the 

loading capacity and overall sizes of the MPs per bacteria is however limited not only by the 

transport capacity of the cell itself but also by the overall diameters of the physiological routes 

and openings that must be transited to target effectively the hypoxic areas. Therefore, in addition 

to the contrast ability, the quantity and the overall sizes of the MPs attached per MC-1 cell need 

to be adjusted appropriately. 

Further, ferromagnetic iron oxide particles are composed of magnetized domains with a very 

large magnetic susceptibility, which persists upon removal of the external magnetic field of MRI. 

In some studies, the application of ferromagnetic particles as MRI contrast agents for blood pool, 

liver and spleen imaging [336], and cell labeling have been suggested [337]. Despite the strong 

magnetic properties and higher Ms values of ferromagnetic particles compared to SPIONs 

(Table  4.1), the clinical application of such particles as MRI contrast agents is limited due to their 

remanent magnetization. Our experimental results indicate that the aggregates formation of 
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ferromagnetic particles after attachment to the MTB leads to a considerable reduction of MTB 

motility. In contrast, SPIONs present many advantageous properties over ferromagnetic particles 

such as a slow sedimentation and a uniform particle distribution before and after attachment, 

which provides the ability for the loaded MTB to achieve the appropriate penetration and 

distribution in the tumor milieu. In addition, they lose their magnetization in the absence of an 

external field while responding quickly to an external magnetic field and also exhibiting 

relatively high saturation magnetization [338, 339]. A cluster of SPIONs can be used to enhance 

the contrast in MR images for several biomedical applications such as cell labeling, drug 

delivery, MRI, and hyperthermia [67, 340, 341]. 

When addressing the possible in vivo application of MPs, it is important to consider their fate 

after target delivery. Further issues arise when evaluating the degradation products and clearance 

of MPs from the tissues [342]. While aggregates of ferromagnetic particles may take longer to be 

washed away, demagnetized SPIONs could re-disperse into individual particles and be cleared 

from the circulatory system [250]. Collectively, these results demonstrate that SPIONs with their 

superior contrast properties have great potential to meet the main criteria for in vivo applications 

as a compromise between the desire to achieve good magnetization and the need to avoid particle 

aggregations after the attachment procedure to the MTB cells. 

4.3.3 MRI contrast properties of MTB-MP complexes 

Longitudinal (T1)- and transversal (T2)-relaxation rates at different TI and TE values, 

respectively, were studied to validate the possibility of detecting MTB-MP complexes with a 

clinical MRI scanner. The effects of MTB-S200 and MTB-S500 on the MR signal at different 

concentrations in vitro are presented in Figure  4.5. The SPIONs attached to MTB cause a 

perturbation of the homogenous MRI’s magnetic field and amplification in the signal intensity. 

Even though the samples cause a decrease in both T1 and T2 values in a manner inversely 

proportional to their concentration, T2-relaxation is more affected than T1-relaxation rate as it is 

the case with superparamagnetic MRI contrast agents [343]. 

As depicted in Figure  4.5a, the relaxivities were determined to be r1 = 96.2 and r2 = 198.6 ms
-1
μg

-

1
ml for MTB-S200, and r1 = 59.8 and r2 = 154.4 ms

-1
μg

-1
ml for MTB-S500, while it was found to 

be r1 = 47.2 and r2 = 144.9 ms
-1
μg

-1
ml for the S200 (Figure  4.5a). A 37.8% and 22.25% 

improvement in r1 and r2 relaxivity of MTB-S200, respectively, is found when compared to the 
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MTB-S500. As mentioned in Table  4.1, magnetic property measurements indicate an 

enhancement in the Ms value with a reduction of the particle size ranging from 500 to 200 nm, 

which may be due to a higher amount of iron in the S200 samples. 

On the other hand, MTB-S200 shows an increase of ~50.93% in r1 relaxivity and 27.03% in r2 

relaxivity compared with S200 alone for the same quantity of nanoparticles. Moreover, as 

depicted in Figure  4.5b, the signal intensity of the MTB-S200 was slightly higher on the T1- and 

T2-weighted images compared to the same concentration of S200, which could be due to the 

bacterial iron content present in the tested samples. Each MC-1 MTB cell possesses a Fe3O4 

content of approximately 1.76 ± 0.4 × 10
-14

 g per MTB as determined by magnetic moment 

measurements using VSM. Therefore, the bare MTB with the maximum used concentration of 

10
8
 MTB ml

-1
 contained ~1.26 µg ml

-1
 of iron. 

 

 

Figure  4.5: (a) r2 (left) and r1 (right) relaxation rates of MTB-S500, MTB-S200 and S200 

solutions as a function of Fe concentration (µg ml
-1

). (b) T2– (top) (TR/TE = 10000/150 ms) and 

T1–weighted (bottom) (TR/TI/TE = 10000/2500/8.6 ms) MR images of MTB-S500, MTB-S200 

and S200 solutions at various concentrations. The amount of the susceptibility artifact was found 

to be related to the scan parameters and the concentration of samples. 
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A concentration of MTB at this scale does not produce a signal loss in the MR signal detectable 

in the images, which was confirmed by our data and previous studies [73]. The MTB-S200 

complexes produced a distinct contrast at the total iron concentrations range of 65.11 to 8.13 µg 

ml
-1

, which corresponds to 2.5 × 10
7
 to 3.12 × 10

6 
MTB ml

-1
, respectively. Studies conducted on 

the effect of particle sizes on the MR signal in vitro helped to choose the most appropriate 

particles for in vivo evaluation. T1 and T2 MRI contrast properties of navigable MTB-S200 

demonstrated their potential as contrast agents for MR imaging with high r1- and r2-relaxivity 

rates. 

4.3.4 Visualization of MTB-S200 complex in tumor xenografts 

In the current study, MTB-S200 complex was developed as navigable and controllable contrast 

agents to transport the S200 particles toward the center of the tumor along with a 3T clinical MRI 

scanner as a non-invasive tool for therapeutic aspects and visualization of hypoxic regions. 

Targeting of non-systemic peritumorally injected MC-1 MTBs toward the center of the tumor 

could initially be achieved with magnetotaxis-based navigation. Subsequently, the poorly 

oxygenated hypoxic regions (< 0.7% O2) provide a privileged environment for directional 

aerotaxis to dominate and incite microaerophilic MTBs with their embedded oxygen sensor to 

detect oxygen gradient and migrate toward the oxic-anoxic transition zone (OATZ) [33]. 

Ex vivo MR images of MTB-S200 complexes with the corresponding immunofluorescence and 

HPS stained tissue sections are presented in Figure  4.6. Bare MTB were used as a control. 

Figure  4.6a presents the T2
*
-weighted images of the tumor lesions to visualize the tumor structure 

through the p.t. injection of MTB-S200 complexes (~200 µl of 5 × 10
9
 MTB ml

-1
). The 

implications of the MRI data suggest that the accumulated MTB-S200 complexes in tumor affect 

the relaxation times by locally altering the magnetic field during MR imaging and can generate 

contrast. On the contrary, the tumors remain largely unaffected by bare MTB and do not show 

any sign of signal improvement in hypoxic regions (Figure  4.6d). Even though the MTB possess 

embedded magnetosomes, the concentration of distributed MTB inside the tumor does not 

provide sufficient contrast to be detected by MRI. Therefore, the MR signal needs to be improved 

by attaching contrast agents to the surface of the MTB. A previous study showed that the MR 

signal intensity would not be affected by fixation [344], therefore, the obtained ex vivo MR 

results could be achievable for in vivo experiments. 
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Figure  4.6: Tumor mapping using navigable MTB-S200 contrast agent in HCT116 colorectal 

tumor xenografts. (a, d) T2
*
-weighted MR imaging of MTB-S200 (a) and bare MTB (d) are 

presented. The locations of the intense signal indicate the injection site (arrowheads). MR images 

for MTB-S200 are evidence of the presence of contrast agents within the tumor while the 

hypointense signal was not observed in bare MTB images. (b, e) immunofluorescence assessment 

of longitudinal tumor sections for the MTB-S200 (b) and MTB (e) injected tumor. Green 
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fluorescent dots represent the bacteria inside the tumor at 10× and 20× magnifications. (c, f) 

Histological examinations of an adjusted serial section of HCT116 tumor xenografts using HPS 

staining reveal islands of well oxygenated viable tumor cells (O) sprinkled within hypoxic 

regions (H) and necrotic regions (N). n = 2 animals in each arm, in two independent experiments. 

Extensive penetrations of MTB-S200 into the tumor are evident in both MRI and 

immunofluorescence images. 

 

Our MRI approach, beyond its translatability into the clinic, promises many advantages from 

providing high quality images with decipherable tumor heterogeneity patterns to eliminating the 

need for systemic exposure to toxic agents (e.g. radioactive tracers in PET or gadolinium in MRI 

[345]) or invasive biopsy procedures lacking inadequate spatial sampling. The current 

microscopic invasive techniques such as immunofluorescence and HPS entail major 

disadvantages because of their complexity, their non-real-time monitoring, and their requirement 

of time-consuming tissue processing procedures. 

The MR imaging results were validated by staining the tumor tissue sections of the corresponding 

MRI slices with HPS and immunofluorescence (using a fluorescent-labeled antibody against 

MTB). As presented in Figure  4.6b, e, immunofluorescence tumor sections provide detailed 

information about locations of loaded and unloaded MTB (stained green) and facilitate the 

interpretation of the MRI data. Analyzes of immunofluorescence images demonstrated the ability 

to magnetically navigate significant numbers of MTB and their particle complexes from the 

injection site toward the center of tumor xenografts. The results also provide evidence of the 

aerotactic behavior of the MTB, which led to their accumulation in hypoxic regions. 

Negative controls including tumors without injected MTB confirmed staining is specificity for 

MTBs (Figure  4.7). 
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Figure  4.7: (a, b) Immunofluorescence images of tumor xenografts injected with S200 alone (a) 

and tumor without any injection (b). 

 

Figure  4.6c, f shows representative sections of tumors from each group stained with HPS as a 

technique of marking tissues to discriminate between viable, hypoxic and necrotic tissue and to 

demonstrate the heterogeneous pattern of tumor structure. All tested xenografts, grown to a 

volume of around 700–800 mm
3
, consisted of poorly differentiated tumor cells, hypoxic and 

necrotic regions. Nuclear changes that sometimes extended to the periphery of the tumor were 

observed in the images. Higher fluorescence signal and MR hypointensity were apparent in tissue 

sections corresponding to hypoxic areas. On the other hand, dark areas in immunofluorescence 

images and hyperintensity signal in the MR images matched with the viable tumor regions, as 

shown on corresponding HPS stained slices. 

It should be emphasized that most of the tumor cells such as HCT116 colorectal cancer cells used 

in this study are originated from epithelial cells. A key feature of epithelial cells is the presence 

of intracellular junctions [3], which act as a virtually impermeable barrier to control cellular 

permeability and prevent penetration of foreign agents or large particles into living tissues [7]. 

These type of cancer cells are also known to have a high level of cellular adhesion to matrix 

proteins, stabilized β-catenin and E-cadherin localization at cell–cell junctions [346], an 

increased cellular packing density, enhanced TIFP, vascular disorganization and aberrant or lack 

of lymphatic system [6, 7]. According to our results, self-propelled flagellated MC-1 MTB with 
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thrust force could overcome the aforementioned obstacles and penetrate deep into the tissue. As 

shown in Figure  4.6, immunofluorescence and corresponding HPS results clearly demonstrate 

that the MC-1 MTB accumulated within the tumor interstitial fluid at the hypoxic regions 

between the well-oxygenated angiogenic network (oxic) and the tumor necrotic (anoxic) zones. 

The presence of vasculogenic mimicry in tumors [233] could also provide routes for MTB to 

penetrate and distribute in the tumor’s interstitial space. 

SPIONs offer several advantages by providing high signal contrast in T2/T2
*
-weighted imaging, 

biodegradability, and non-toxicity [347, 348]. The T2
*
-based contrast mechanism is used in 

several MRI applications such as functional imaging, MR perfusion imaging and contrast-

enhanced imaging using SPIONs [349]. The principal effect of the SPIONs is on T2
*
 relaxation 

time and as such T2
*
-weighted sequences can be used with SPIONs to depict their accumulation 

sites in a tissue. The imaging sequences that exploit T2
*
 contrast are faster and more sensitive to 

the presence of SPIONs compared with those that use T2 contrast. A major challenge in T2
*
 

imaging is the need to distinguish regions of signal void due to SPIONs from other sources of 

signal loss such as susceptibility artifacts, imperfect shimming or chemical shift. Several 

techniques have been developed to generate hyperintensities in the vicinity of SPION [256], 

which provide a more accurate estimation of SPIONs concentration. Enhancement on T1-

weighted images can also be observed with SPIONs to a lesser degree compared to T2
*
-weighted 

ones. However, T1 contrast provides a hyperintense signal of the tumor lesion and as such, a 

higher contrast to noise ratio in the presence of SPIONs can be achieved, and also tumor margins 

within a tissue are more clearly demonstrated. A combination of MR imaging technique using T1- 

and T2
*
 imaging criteria appears to provide clinically more useful patterns of SPIONs signal 

enhancement in a tumor lesion. Therefore, to verify the effectiveness of the MTB-S200 for in 

vivo applications, T1- and T2
*
-weighted images were obtained (Figure  4.8). 

Controls including bare MTB, particles alone and tumors without any injection were examined. 

We found that MTB-S200 complexes affect both the T1- and T2- relaxation rates (Figure  4.8a). 

As shown in Figure  4.8c, no magnetosome-induced signal is observed when bare MTBs are 

applied due to an insufficient amount of distributed MTBs in the tumor to induce a detectable 

distortion in the MRI’s magnetic field. However, the injection sites show high signal intensity 

around the tumor rim, due to the accumulation of highly concentrated and non-fully penetrated 

MTBs during the injection and navigation procedure. As reported by our group, the mean 
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magnetic targeting ratio of detected MTB to injected MTB in the tumor was estimated at around 

50% (See Appendix A and Chapter 5). 

 

Figure  4.8: MR images of MTB-S200 complexes in HCT116 tumor xenografts. T1/T2
*
 weighted 

coronal MR imaging (Siemens, Skyra, 3T) of MTB-S200 (a), S200 (b), MTB (c), and control 

without an injection (d) are shown. T1-weighted images acquired with 2D-FLASH sequence 

(TR/TE, 250/4.73; flip angle, 70°; bandwidth, 220 Hz/pixel; voxel size, 0.25 × 0.25 × 2 mm; 

imaging matrix, 320 × 320; number of averages [NA], 3) and T2
*
-weighted images acquired with 

2D-FLASH pulse sequence (TR/TE, 700/10; flip angle, 25°; bandwidth, 210 Hz/pixel; voxel size, 

0.20 × 0.20 × 1.5 mm; imaging matrix, 384 × 384, NA, 1). MR signals clearly demonstrate 

penetration of the MTB-S200 into the tumor, whereas S200 remains at the rim of the injection 

site. No pronounced contrast in the images of MTB or the non-treated xenograft is observed. 

 

In the case of S200 particles alone, no signal changes are observed inside the tumor (Figure  4.8b). 

The TIFP pressure and lack of propulsion system prevent the particles alone from penetrating 
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deep into the tissue during the time course of the magnetic navigation, which causing them only 

to reside around the injection site. 

In routine clinical treatment, after intravenous injection of pharmaceutical agents with long 

circulating properties (PEGylation) [10], very limited accumulation (less than 2%) occurs at the 

tumor site [10]. These agents have been shown to concentrate around the broken blood vessels by 

EPR effect [8, 9] with limited tissue penetration [6, 11, 12]. Encapsulated conventional cancer 

therapies in particles greater than 100 nm are mostly trapped within physiological barriers such as 

dense interstitial matrix (composed of collagen, glycosaminoglycans, and proteoglycans) [4, 5]. 

Aforementioned barriers lead to an impeded delivery of the pharmaceutical agents in an optimal 

concentration to the entire tumor [19], which renders most efficient theranostic agents clinically 

ineffective. Loading particles on self-propelled bio-carriers is a promising approach to improve 

the penetration of therapeutic and imaging agents into an inaccessible site within a tumor. 

4.4 CONCLUSION 

Advances in targeted delivery and deep penetration of pharmaceutical agents allow improved 

assessment of tumor microenvironment. As validated in this work through the experiments, the 

SPIONs delivered by MTB can serve as a source of contrast to allow visualization the tumor 

regions in implanted mouse tumor xenografts below the spatial resolution of medical imaging 

modalities using a 3T clinical MRI scanner and a commercial receiver coils. Indeed, for in vivo 

drug delivery into tumor microenvironment and hypoxic regions, the overall swimming direction 

of the polar MC-1 MTB is influenced by magnetotaxis in conjunction with aerotaxis and caused 

the bacteria reacts according to a balance of these stimuli. The results indicate that these trackable 

bacteria can readily penetrate into the tumor’s interstitial space toward hypoxic regions and alter 

the accumulation rate and distribution pattern of imaging agents in tumor regions. 

It was observed that aggregations were more pronounced for MTB-F200/F500 complexes than 

for MTB-S200/S500. The attachment of the 200 nm SPIONs as contrast agents to the surface of 

MTB gave the sufficient magnetic properties for MR imaging without compromising bacterial 

motility or migration. Moreover, the superparamagnetism behavior is well adapted to the 

conjugation technique, which resulting in uniform and disperses bio-complexes. The MTB-S200 
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complexes can generate a high contrast in both T1- and T2/T2
*
-weighted images, enhancing their 

visualization pattern in tumor hypoxic regions. 

Considering the multiple physiological barriers that pharmaceutical agents must encounter, MTB 

as a sophisticated cargo carrier loaded with pharmaceutical agents could provide tenability in 

spatial control for targeted delivery for various biomedical applications. This approach can be 

further extended by incorporating a therapeutic to our developed imaging agent to enhance the 

effect of treatment by facilitating the delivery and tracking of the therapeutics to inaccessible 

sites of solid tumors in vivo. Such an advanced system can not only improve the efficacy of 

current cancer therapies by overcoming current limitations but also make theranostic agents that 

have been abandoned due to delivery problems clinically practical. The developed technique 

offers several possibilities as a non-invasive tool to provide clinical spatial images of hypoxic and 

quiescence areas of tumors, tracking anatomical changes during a treatment, obtain prognostic 

information about tumor progression in response to a treatment, and allowing image-guided 

therapy plan to be made in radiation therapy or numerous medical theranostic applications such 

as gene and vaccine delivery, drug targeting, PET, and MRI. 
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 DRUG-LOADED NANOLIPOSOMES ATTACHED TO CHAPTER 5

MAGNETO-AEROTACTIC BACTERIA FOR TARGETED DELIVERY 

IN TUMOR XENOGRAFT 

 

The following chapter deliberates the objective 3 of this thesis that was to develop drug-loaded 

liposomes covalently attached to the surface of the MC-1 MTB (MTB-LSC) using carbodiimide 

chemistry and also to assess the attachment stability during targeting in the tumor 

microenvironment. After physico-chemical characterization, the optimized MTB-LSC were 

targeted in HCT116 colorectal tumor xenograft model. The deeply penetrated MTB complexes 

were visualized by immunofluorescence staining. The results demonstrated that the therapeutic 

payloads can overcome the diffusion limits in tumor microenvironment through the stable 

attachment on the MTB and can be delivered in the hard-to-treat tumor hypoxic regions. 

 

This chapter is devoted to elaborate the specific contribution of the candidate in multidisciplinary 

in vivo experiment. The full-length article entitled “Non-Systemic Magneto-Aerotactic Bacteria-

Mediated Delivery of Drug-Loaded Nanoliposomes in Tumor Hypoxic Regions” under revision 

by the journal of Nature Nanotechnology as a result of teamwork is presented in Appendix A. 

The details of contributions of authors are described in section 1.1. 

 

5.1 INTRODUCTION 

Effective delivery of nanocarriers in regions leading to optimized therapeutic outcomes such as 

within tumoral hypoxic regions remains unmet. With a low therapeutic index and increased 

systemic toxicity, nanocarriers could greatly benefit from the actuation-navigation-sensory 

capability envisioned for futuristic nanorobots to enhance distribution in hard-to-reach tumoral 

regions following transports through the most direct physiological routes. 

Hypoxia facilitates the survival of tumor cells and is a cause of malignant transformation. It is the 

consequence of oxygen consumption by the rapid proliferation of tumor cells which results in 

approximately < 0.7% O2 in highly difficult treatable hypoxic regions [350]. Such hypoxic 
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environments negatively impact treatments based on radiotherapy [14, 351, 352] while for 

chemotherapy, larger drug molecules including nanocarriers cannot generally target and diffuse 

effectively [54, 353] towards the hypoxic cells within the absence of flow caused by the tumor 

interstitial fluid pressure [354]. The resulting limited drug and macromolecule distribution within 

tumors significantly reduces the therapeutic index [12]. 

The two main approaches to the selective killing of hypoxic cells in tumors [13, 355], the bio-

reductive prodrugs [16, 17] and small molecule inhibitors against molecular targets involved in 

the survival of hypoxic cells [355, 356], need to overcome the problem of drug-loaded 

nanocarriers penetration through poorly perfused hypoxic tissue [357]. While reducing the TIFP 

is known to enhance the uptake and homogeneous distribution of many therapeutic compounds, 

available pharmacologic and physical therapies used to reduce tumor pressure have their side 

effects and their application in clinical practice is not yet validated [18] while suffering from the 

low targeting efficacy when using the systemic routes. Indeed, currently used pharmaceutical 

nanocarriers such as liposomes, micelles, polymeric nanoparticles and many others, result in very 

low tumor site accumulation. Combining the EPR effect of nanocarriers with the longer systemic 

circulation properties that are achieved following PEGylation has increased the targeting ratio but 

still result in a very limited fraction of nanocarriers entering tumors. This is due to the facts that 

usually only about 5% of the administered nanocarriers remain in the systemic circulation after 

12 h with 90% of these PEGylated nanocarriers being removed from the systemic circulation 

within several hours, resulting to only ~2% of the total administered dose being deposited in the 

tumor after 4 h of circulation [10]. 

But since the overall maximum size of nanocarriers is an obstacle to the integration of advanced 

functionalities that would correct for such deficiencies, the overall sizes of intercellular openings 

responsible for the leakiness of tumor vessels provide sufficient spaces for such nanocarriers to 

be transported by larger and more capable self-propelled carriers. The development of a common 

carrier capable of transporting such therapeutic nanocarriers to the most effective site of 

treatment with embedded functionalities that would enhance the targeting capability beyond what 

is possible using existing nanocarriers alone is the focus of this study. Such functionalities would 

include navigation capability towards the sites of treatment in order to avoid systemic circulation, 

self-actuation providing a propelling force sufficient to penetrate the tumor volume beyond the 

diffusion limits of nanocarriers and larger drug molecules, and sensory capability to target 
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regions such as the hypoxic zones that would lead to the best treatment outcomes. Although these 

are functionalities generally used in robotics, implementing them at the scale required to transit 

through the physiological environments to reach deep inside a tumor is well beyond what is 

technically feasible for the implementation of an artificial nanorobotic agent, but possible with 

the use of a natural agent. 

For instance, the MC-1 MTB [324, 358] contains a chain of magnetosomes acting like a nano-

compass needle entails the bacteria to swim persistently along local magnetic field lines in a 

preferred direction [99, 359]. In their natural environment, such direction corresponds to a 

downward migration along geomagnetic field lines in conjunction with aerotaxis to efficiently 

migrate to and maintain position at their preferred low oxygen concentrations. Such 

magnetically-assisted aerotaxis known as magneto- aerotaxis [33] results in the formation of 

microaerophilic bands of MC-1 cells at O2 concentrations equivalent to the ones observed in the 

hypoxic regions of solid tumors. Most microaerophilic bacteria form aerotactic bands using a 

temporal sensory mechanism [360] that samples the environment as they swim while comparing 

the present O2 level with the O2 level of the previous sample. Unlike M. magnetotacticum which 

is consistent with such temporal sensory mechanism, the aerotactic behavior of MC-1 cells is 

based on a two-state aerotactic sensory system in which the O2 concentration determines the 

sense of flagellar rotation and hence the swimming direction along the geomagnetic field lines. 

Such polar magneto-aerotaxis accounts for the ability of the MC-1 bacteria to migrate and to 

maintain position at the preferred O2 concentration at the oxic-anoxic transition zone in 

chemically-stratified, semi-anaerobic basins [33]. 

Our hypothesis was that a similar OATZ present in the fluid interstitial regions (tumor 

interstitium) between the angiogenic network (oxic) and the tumor necrotic (anoxic) zones could 

be exploited to enhance drug targeting in hypoxic regions using live MC-1 cells after being 

guided toward the site of treatment by an external magnetic source. Indeed, unlike previous 

bacterial therapies [93], minimizing systemic circulation of drug-loaded MC-1 cells was achieved 

by initially guiding their migration path towards such OATZ where an oxygen gradient was 

present and could be detected by the bacteria. Unlike hypoxic zones, since the location of the 

tumoral volume can generally be precisely determined, magnetotaxis was first prioritized over 

aerotaxis considering that the latter could not initially benefit from such spatial information. 
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The targeting procedure consisted of an assisted magnetotactic directional navigation [108] using 

a magnetic field sensibly higher than the geomagnetic field to induce a stronger directional torque 

on the chain of magnetosomes towards the tumor when in the peritumoral regions, followed by a 

MTB-autonomous aerotactic directional phase in the absence of a sufficient level of interactive 

magnetic energy required for prioritizing magnetotactic directional control when in the 

predefined targeted tumoral volume. Since the physiological environments encountered by the 

MTB during travel would be different from the ones found along their natural migrating paths, 

the experiments were aimed at assessing the ability of the MTB and MTB-LSC to migrate 

effectively towards the hypoxic zones following peritumoral injection. More specifically, to 

examine whether a large ratio of injected MTB spherical cells whose diameter ranges between 1-

2 μm would be able to migrate through physiological routes such as the interstitial spaces, and the 

intercellular openings of typically less than 2 μm in diameter between endothelial cells [60] 

responsible for much of the vessel leakiness in solid tumors. 

5.2 METHODS 

5.2.1 Covalent attachment of liposome-SN38 to the surface of MTB cells 

The direct chemical conjugation strategy presented in Chapter 3 was optimized for the covalent 

attachment of SN38 encapsulated into functionalized liposomes (LP-SN38) on the MTB cell 

membrane. 

To obtain high attachment efficacy and also prevent the leakage of encapsulated SN38 during the 

attachment procedure, the chemical environments such as the pH, type of buffer, and quantity of 

reagents were adjusted for the LP-SN38 system compared to the liposomes alone. The LP-SN38 

was prepared using pH gradient method at pH = 8 outside and pH = 4 inside. It should be noted 

that EDC and NHS crosslinking agents are more efficient in acidic conditions (pH = 5.5-6.7, 20 

°C) using MES buffer as a suitable carbodiimide reaction buffer. However, decreasing the 

outside pH of LP-SN38 to 5.5 reduces the pH gradient of liposomes and may leads to the leakage 

of the drug. On the other hand, for preparation of a saturated solution of SN38 for encapsulation 

steps a high pH is required (pH ~11), which is not possible with MES buffer (pKa = 6.16). To 

address these issues, PBS was used as a compatible coupling buffer with the reaction chemistry, 

albeit with lower efficiency. Increasing the amount of EDC in a reaction solution in combination 
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with NHS or Sulfo-NHS can compensate for the reduced efficiency. In fact, PBS with pH 11 and 

8 was used for SN38-LP preparation and then at crosslinking steps the pH was adjusted to 6-6.5 

to avoid hydrolysis and EDC deactivation and also minimize the drug leakage. Briefly, 

dehydrated agents such as EDC and Sulfo-NHS were added to 3 ml of 0.5 mM liposomes 

suspension (EDC: NHS: DSPE-PEG-COOH = 35: 35: 3, molar ratio) in PBS buffer (pH 6.5). The 

mixture was incubated at room temperature for 20 min. The free activating reagents were 

removed using Sephadex G-50 column. Then, activated liposomes were added to 4 × 10
7
 MTB 

(~10
7
 MTB ml

-1
) and incubated for 2 h at room temperature, under gentle mixing. MTB-LSC 

were separated from non-attached liposomes by applying a 2D magnetic field. The sample was 

washed three times with PBS and finally resuspended in PBS (pH = 7.4). The MTB-LSC samples 

were prepared in daily batches and separately for each animal injection. 

5.2.2  In vivo navigation of MTB-LSC 

In vivo experiments were conducted by implantation of HCT116 colorectal xenografts in SCID-

Beige mice. Approximately, 2.9 × 10
7
 MTB-LSC in 20 μl PBS were injected peritumorally. MTB 

with the same quantity were also used a control. After injection, the animals were placed in the 

center of a tridimensional magnetotaxis platform designed by Dr. Felfoul [103]. After magnetic 

navigation, the tumors were extracted and fixed in 10% neutral buffer formalin. After fixation, 

paraffin embedded tissue section were stained with FITC- or Texas red-labeled antibody to 

visualize MC-1 in green or red, respectively. 

5.2.3  MTB-LSC count in tumor 

To visualize the variation in distribution of the injected MTB complexes within the tumor and 

estimate the relative amounts of MTB complexes present in each histological section sampled 

from each tumor, images of each section were acquired using a fluorescence optical microscope 

equipped with a 40× magnification objective lens. The acquired images were then processed 

using automated software to count the number of stained MTB in each histological section (See 

more details in Appendix A). 
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5.3 RESULTS AND DISCUSSION 

5.3.1 Navigation, assessment the stability, and targeting ratio of MTB-LSC in 

tumor xenograft 

Figure  5.1 shows the MTB-LSC as a drug delivery biocarrier. In vivo experiments were 

conducted in HCT116 tumoral tissue to evaluate the mean targeting ratio of MTB-LSC and to 

obtain statistical data of the quantity of MTB-LSC versus the total amount injected peritumorally. 

Among all potential nanocarriers, liposomes were initially selected as a first proof-of-concept 

because they are biocompatible, exhibit low immunogenicity and high flexibility, protect the 

body from potential toxic cargo, shield therapeutic agents from premature degradation, control 

release kinetics, and may concurrently encapsulate a multitude of hydrophilic and/or hydrophobic 

drug cargos, pharmaceutical ingredients, imaging agents, and genetic material by virtue of their 

aqueous interior and lipid exterior [37, 131, 139, 145]. The diameter of each liposome was set to 

the maximum possible synthesized value of ~170 nm to maximize the quantity of drug-cargo 

being transported per MTB. The amount of bacteria intended for injection was predetermined 

prior to the experiments. The dosage of the delivered active agents can be controlled by the 

encapsulation efficacy of drug within liposomes, the average number of liposomes carried by 

each bacterium, and the number of injected bacteria. 

 

Figure  5.1: Unloaded MTB (left) and MTB-LSC (right) with ~70 SN38-loaded liposomes 

attached to the surface of each MC-1 MTB cell. 

MTB

Liposome
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To assess magnetically-guided live MC-1 MTB and MTB-LSC targeting profile in HCT116 

xenograft, the peritumoral injections of ~2.92 × 10
7
 bacteria in 20 μl PBS for a total of 10 mice 

were performed. Relatively large populations of MTB in the middle section of the tumor were 

observed after the mice exposed to a directional magnetic field toward the center of the xenograft 

for a period of 30 min. When the MTB come close enough to the target to be influenced by 

decreasing oxygen gradients, aerotactic directional motion toward the hypoxic regions takes 

effect. Figure  5.2 shows the penetration and distribution of MTB and MTB-LSC in the tumor. 

The live MTB alone appear to swim and move effectively through necrotic tissues as assessed by 

the observation of several adjacent histology slides (4 μm apart), one stained with green FITC-

secondary antibody immunofluorescence targeting a specific protein at the MTB membrane 

(Figure  5.2a) and the second stained with HPS (Figure  5.2b). 

  

Figure  5.2: Penetration of live MTB-LSC in HCT116 xenografts following a peritumoral 

injection after a directional magnetic field targeting toward the center of the tumor. (a, b) An 

immunohistology analysis of the middle section of the tumors reveals the presence of MTB, as 

green FITC fluorescent dots (top), in uniformly distributed within the vicinity of the same regions 

recognized to be necrotic with the HPS stain necrotic region (bottom). (c) Transverse tumor 

sections of MTB-LSC (group MBC-8) after targeting. Insert graph shows the MTB-LSC 

distribution inside the tumor. 
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Histological sections of the magnetotactic bacterial count (MBC) samples also revealed that the 

large populations of MTB-LSC were distributed throughout the xenografts (Figure  5.2c) mainly 

where necrosis and hypoxic were more predominant. 

Since some of the bacteria injected peritumorally might not have ended up inside the tumor, an 

exact percentage of bacteria which actually could be found in the excised tumors were estimated. 

At that point, some of the injected bacteria might have been dead and/or partly cleared from the 

tumor tissue, so obtained counts represent only estimates performed for comparative purposes. 

Two different approaches for bacteria counting were investigated to validate and confirm the 

navigation capabilities of MTB in a colorectal tumor model. The tissue homogenization was 

performed as a rapid approach followed by optical microscopy for bacteria counting 

(Figure  5.3a). Also, some tumors were cut in seven fragments, and all fragments were paraffin-

embedded, sectioned, stained, and then histology slides were evaluated using fluorescence 

microscopy (Figure  5.3b). Similar to the results achieved with the unloaded MTB, high targeting 

ratios of MTB-LSC were obtained. The mean tumor targeting ratio (~50%) estimated from the 

MBC samples by image processing techniques (See details in Appendix A) allowing to assess the 

distribution of the MTB-LSC complexes in the HCT116 xenografts which was coherent with the 

mean targeting tumor ratio (~59%) obtained by homogenization extracted after experiments 

performed under similar conditions. 

5.3.2 Tumor penetration of active MTB versus passive marker 

Although the preceding section showed that in general the combination of magnetic and 

aerotactic guidance leads to much superior targeting ratios in hypoxic regions of tumor 

xenografts, the targeting profile needs to be compared with passive agents, i.e. agents lacking the 

three functionalities mentioned earlier namely, navigation such as magnetotactic guidance, 

propelling force, and sensory-based displacement such as aerotactic motion behavior.  

As such, the peritumoral injections of a mixture consisting of live MTB and passive marker 

(polymer microspheres (PS)) was performed to be more confident on the concluding results. The 

simultaneous injection of MTB and passive marker was to compare their ability to diffuse and 

remain inside the tumor within the same experimental conditions using the same injection site 

and the same injection rate. 
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Figure  5.3: Targeting ratios of MTB-LSC (MBC-groups) in HCT116 xenografts. (a) Ratios of 

MTB-LSC in the tumoral tissue obtained by homogenization followed by counting using optical 

microscopy. (b) Estimated mean ratios of MTB-LSC found in each histological section sampled 

from each tumor using a fluorescent optical microscope. 

 

20 μl of Dragon green fluorescent PS (ex/em: 480/520) 1.9 μm polymer microspheres, similar in 

size to the MC-1 spherical cells, and 20 μl of live MTB were injected, which in term of numbers 

consisted of ~2.92 × 10
7
 bacteria and ~1.35 × 10

7
 beads, followed by 30 min magnetic guidance. 

The targeted MC-1 MTB were stained with Texas-red secondary antibody (ex/em: 595/613) 

making the MTB red on the histological slides with the beads alone showing in green. The active 

directional motility through magnetotaxis and aerotaxis of the MTB resulted in superior 

penetration depths in HCT116 xenografts compared to passive marker as depicted by the 

polymeric beads (Figure  5.4). Figure  5.4 shows a substantial decrease in the number of 

microspheres as moved deeper into the tumor while the number of MTB increased significantly. 

In fact, when such passive marker is injected in the peritumoral region, it exhibits a limited 

diffusion due to the tumor interstitial fluid pressure. 
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Figure  5.4: Penetration of live MC-1 cells over the passive diffusion of polymeric beads in 

HCT116 xenografts. (a) 20× images of MTB and fluorescent beads at different tumoral depths. 

(b) Quantity of fluorescent microspheres vs. MTB at various tumoral depths. (c) 20× images of 

MTB and fluorescent beads at 1, 3, and 6 mm inside the HCT116 xenograft. 

 

5.4 CONCLUSION 

The results demonstrated that magneto-aerotactic MC-1 MTB covalently attached to ~70 170 nm 

SN38-encapsulated nanoliposomes are capable of being magnetically navigated toward the center 

of the tumor. The experiments performed in HCT116 colorectal tumor xenograft implanted in 

SCID-Beige mice resulted in a ~50% mean targeting ratio of the ~2 × 10
7
 peritumorally injected 

MTB-LSC in hypoxic regions. These initial findings based on the stably attached cargos on the 

MTB cells may influence medical interventional methods and provide opportunities for the 

synthesis of new navigable therapeutic and imaging agents to achieve maximum effectiveness of 

treatment for various diseases. 
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 GENERAL DISCUSSION CHAPTER 6

 

The overall aim of this thesis was to develop MC-1 MTB-based complexes with targeting and 

tracking abilities for potential applications in cancer treatment. To this end, the achievements of 

this thesis include: (i) development of bioconjugation technique for the attachment of liposomes 

to the surface of the MC-1 MTB, (ii) development of MTB-S200 as a navigable MRI contrast 

agent for visualizing the tumor hypoxic regions as well as using its tracking capability for 

feedback control of complex location in tumor microenvironment, and (iii) development of MTB-

LSC and assessment the attachment stability during targeting in the tumor milieu. In following 

sections, main results related to each objective obtained during this PhD work, are presented. 

6.1 Development, physico-chemical characterization, uptake and cytotoxicity 

assessment of MTB-LP delivery system 

The most suitable attachment strategy for the MTB-LP complex was covalent binding of 

negatively charged carboxylated liposomes to the pre-existing amine reactive groups naturally 

present on the surface of MTB through direct carbodiimide (EDC/NHS) chemistry to form 

amide-linkage [195, 303, 304]. The terminal amine functional groups are as a part of 

phospholipids (e.g. phosphatidylserine), lipopolysaccharides, lipoproteins and surface proteins 

assemblies that abundantly and seamlessly incorporate into the outer membrane of gram-negative 

bacteria [311, 312]. 

The rationale behind using the liposome as a drug carrier system was due to their 

biocompatibility, biodegradability, versatility, low immunogenicity, and controlled release [37, 

139, 145]. Furthermore, in our particular context, liposomes can be engineered to provide surface 

functionality for attachment (for instance by incorporation of DSPE-PEG-COOH groups) and, 

also is very suitable for encapsulation of the active metabolite form of pH sensitive SN38 within 

its acidic core by a pH-gradient technique [111, 112, 127]. Even though the liposome-based 

vehicles are being extensively used for the delivery of pharmaceutical agents, their 

bioconjugation as a drug-loading moiety to live bio-carrier such as magnetic bacteria was not 

reported in the literature. 
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Various bioconjugation methods were examined prior to the demonstration of carbodiimide 

chemistry as a suitable technique for the attachment of liposomes to MTB cells. Although 

oppositely charged particles may spontaneously adsorb on the abundantly charged sites on the 

surface of MTB cells [317], the physically adsorbed particles showed a lack of stability and 

detached during washing steps which were not suitable for in vivo conditions. In other 

conjugation technique, functional groups were grafted on the surface of MTB (e.g. biotin-avidin 

[361] or maleimide-thiol interaction). This approach affected the MTB cells viability due to 

extensive manipulation of the bacteria and also due to their exposure to chemicals needed for 

conjugation. In general, like all other biological cell types, changes in pH, osmolarity, exposure 

of bacterial cells to organic solvents, and excessive agitation have profound effects on MTB cell 

movement, as well as on their response to magnetic field and viability. 

Carbodiimide crosslinking is a versatile chemistry for various in vitro and in vivo applications 

such as bioconjugation of antibody, peptide, and protein to nano/micro particle [313, 314] and 

immobilization of other biomacromolecules [213]. This technique induces the formation of the 

covalent amide bond (-NH-CO-) without producing any byproduct that may interfere with 

viability and motility of bacteria after the attachment. The relatively high bond dissociation 

enthalpies (      
 ) of the amide bond which is ~305-440 kJ mol

-1
, results in a strong and robust 

covalent bond [315, 362] enable to remain stable in biological conditions [315, 320]. In a 

physiological environment, the hydrolysis mechanism for degradation of amide bonds is very 

slow [320] and the bond is not affected by environment conditions such as pH or ionic strength. 

Moreover, hydrolysis and enzymatic cleavage of amide bonds by serum proteins/cellular secreted 

products (such as proteases) are highly dependent on the microenvironment condition and 

typically requires a long exposure time [320]. These characteristics insure the liposomes to 

remain attached covalently on the surface of MTB until reaching the site of interest. 

Our results demonstrated that the attachment of 70 liposomes having an average diameter of 

~170 nm to the MTB does not significantly affect the desired MTB functions such as mobility, 

viability, swimming speeds, and response to the magnetic field. However, this “optimized 

number” of attached liposomes on the MTB led to ~60% reduction in swimming velocity of 

MTB-LP from 200 to 80 μm s
-1

 as a result of bacteria exposure to the non-origin culture media 

and also repeated washing steps during the attachment process. It should be noted that this 

number of liposomal attachment was considered optimal, since the swimming velocity of MTB-
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LP was still greater than that of some of the other magnetic bacteria MS-1 (40 μm s
–1

) and AMB-1 

(49 μm s
–1

) [32] or that of non-magnetic bacteria used in cancer therapy such as E. coli (10-40 

μm s
–1

) or Salmonella (20-50 μm s
–1

) having the capacity to overcome the tumor barriers [29, 31]. 

The cellular uptake and cytotoxicity of MTB-LP delivery system was investigated in different 

cell lines including Colo205 colorectal cancer cells and non-cancerous NIH/3T3 fibroblast and 

J774 macrophages cells. The effect of concentration and incubation time on uptake and toxicity 

were investigated on the MTB-LP, liposome alone, and bare MTB. The uptake results showed 

intact internalization of fluorescent liposomes, which were mainly localized in the cytoplasm and 

perinuclear region following incubation in both phagocytic cells (J774) and non-phagocytic cells 

(NIH/3T3 and Colo205). The uptake rate was lower in cancer cells as compared to the non-

cancerous cells. This might be explained by literature finding that states extensive sialylation 

[187], heparan sulfate proteoglycans, abundance of phosphatidylserine residues, and O-

sialoglycoproteins [188] enhance net negative surface charge on the cancerous cell, thereby 

induce a repulsive force towards the negatively charged liposome. The uptake of liposomes 

occurs via endocytotic-like mechanisms [321, 323]. The studies showed that live bacteria can 

stimulate and enter the nonphagocytic cells through macropinocytosis [189, 190]. Since the MC-

1 MTB will only survive for 40 min at 37 °C [36], the uptake mechanism of MTB-LP needs to be 

further investigated. However, we showed that the attachment does not interfere with the 

liposome internalization and MTB-LP upon arrival to the tumor regions can deliver their drug 

content intracellularly. The in vitro cytotoxicity results revealed that the incorporation of 

liposomes on the MTB surface improved the biocompatibility of the MTB-LP complex compared 

to MTB alone in the examined cell types. The concentration-dependent cytotoxicity can be 

originated from substances produced by the bacteria, certain degradation products, and their 

competition for nutrients. 

6.2 Development of MTB-magnetic particles as MRI contrast agents to track 

loaded MTB and visualize hypoxic regions of tumor xenograft 

The absence of tracking feedback control during the in vivo targeting process of the bacteria is 

one of the major limitations of using MTB-LP for targeting. Currently, to confirm the presence 

and distribution of MTB-LP inside the target site, the tumor needs to proceed with invasive and 

prolonged histopathology analyses. Moreover, current noninvasive in vivo tumor imaging 
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modalities (e.g. MRI, PET, CT) [229, 285, 292] do not provide all required criteria for imaging 

due to the lack of spatial resolution, systemic side effects, and limited penetration of imaging 

agents toward tumor hypoxic regions [249, 250, 260]. Therefore, during this PhD thesis we 

aimed at developing a straightforward strategy for tracking the imaging agents-loaded MTB to 

address some of these limitations. 

Iron oxide particles with the different particle sizes (200 and 500 nm) and magnetic properties 

(SPIONs and ferromagnetic) were used as MRI contrast agents to prepare the MTB-MP 

complexes. TEM images showed that the MPs consisted of a sub-particle cluster embedded in a 

polymeric matrix. Unlike MTB-LP, the direct attachment method for MTB-MP samples resulted 

in low attachment efficiency. This is may be due to the fact that COOH-functional groups at the 

terminal ending of irregularly shaped magnetic particles were sterically less accessible for direct 

binding. Therefore, for the preparation of MTB-MPs, two step bioconjugation procedures were 

developed. First IgG AB was grafted to the surface of the MPs using carbodiimide chemistry to 

covalently bind carboxyl groups to amine groups to form amide bonds [332, 333], and then the 

MP-AB were attached to the MTB through affinity binding. This attachment technique has been 

used vastly in many in vitro and in vivo applications [195, 213, 313]. The results demonstrated 

that the incorporating a spacer such as antibody compensates for the low attachment efficiency by 

providing the particles with higher chemical reactivity towards MTB. 

The samples were further characterized by confocal microscopy, dynamic light scattering, zeta 

potential, fluorescence-based spectroscopy, FTIR, VSM, and MRI. For in vitro MR contrast 

characterization of MTB-MPs, T1 and T2-relaxation rates at different TI and TE values were 

performed and results validated the possibility of detecting MTB-S200/S500/F200/F500 

complexes in the GRE images of a 3T clinical MR scanner. All four types of MTB-magnetic 

particles lead to shortening both T1 and T2 values in a manner inversely proportional to their 

concentration. The results indicated that T1-relaxation is less affected than T2-relaxation rate as is 

the case with superparamagnetic MRI contrast agents [343]. MTB-S200 showed higher relaxivity 

compared to MTB-S500, which corresponds well with VSM results showing higher saturation 

magnetization of S200 particles. Also, MTB-S200 showed higher signal intensity and relaxivities 

compared to S200 alone. This signal enhancement is due to the influence of the MTB iron 

content (1.76 ± 0.4 × 10
-14

 g per MTB) that was determined by VSM. Moreover, MTB alone at 

the maximum tested concentration (10
8
 MTB ml

-1
) was contained ~1.26 µg ml

-1
 of iron and did 
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not generate a detectable signal loss in MR images. This result was in concordance with previous 

literature finding on bare MTB imaging [73]. MTB-S200 with the 3.6 × 10
-6

 µg (S200) per each 

MTB can generate appropriate magnetic properties (46.73 emu g
-1

) with high relaxivity rates (r1 

= 96.2 and r2 = 198.6 (ms
-1
μg

-1
ml)). 

Despite high magnetic susceptibility, F200 and F500 showed high remanent magnetization that 

also led to the formation of aggregates during MR imaging. The previous studies demonstrated 

that these aggregates have a limited clearance from the body [59, 336]. Moreover, the F200 and 

F500 tended to form aggregates during bioconjugation to the MTB, which significantly affected 

their swimming behavior. Conversely, unlike ferromagnetic agents, S200 and S500 did not retain 

any significant amount of coercivity and remanent magnetization. Most importantly, they did not 

aggregate after the attachment process and the MTB-S200 complexes remained dispersed as 

individual magnetic carriers, making them more suitable for navigation into the tumor tissue. In 

addition, literature reports on SPIONs high biodegradability, low toxicity [347, 348], easy 

clearance from the body [250], and high signal contrast in T2/T2
*
-weighted images [239, 247]. 

All these properties make SPIONs promising as an MRI contrast agents for various applications 

such as visualization of tumor location or angiogenesis [242, 244]. These are the reasons why 

MTB-200 complex was chosen for further in vivo investigation. 

The tracking and imaging ability of the MTB-S200 complexes were performed in HCT116 

human colorectal mouse tumor xenograft implanted into SCID-beige mice using 3T MRI’s 

magnetic field and commercial receiver coils. The attachment of IgG antibody and MTB’s 

antigen performed through affinity and non-covalent binding [363]. The results demonstrated that 

the bond remained stable through penetrating of MTB complexes in tumor tissue.  

For MR image acquisition and improve the signal-to-noise ratio, the optimal concentration of 

MTB-S200 needs to be accumulated at the tumor site [70, 101]. Based on the initial 

concentration of injected MTB-S200 (200 μl of 5 × 10
9
 MTB ml

-1
 in PBS) and the experimental 

results that showed around 50% of injected bacteria can reach the target side (Chapter 5 and 

Appendix A), it was concluded that 5 × 10
8
 MTB-S200 (~1.8 mg Fe3O4) of distributed sample 

was visible in 3T MRI. In fact, the attached SPIONs were found to have a strong effect on the 

proton’s relaxation time which resulted in susceptibility artifact by distortions of homogenous 

magnetic field and caused signal loss in a much greater scale than their actual size [244, 255]. 
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According to the literature, T2*-weighted GRE acquisitions provide the greatest sensitivity to the 

SPIONs as well as other sources of susceptibility (e.g. hemorrhage), shimming artifact, or 

chemical shift that make them less specific in the detection of SPIONs [230, 349]. On the other 

hand, the T1-weighted imaging is less sensitive but more specific in detection of SPIONs and can 

provide greater signal-to-noise ratio in the presence of SPIONs and generate a hyperintense 

signal of the tumor [364]. Detection of MTB-S200 in hypoxic regions was successfully achieved 

through the combination of T1- and T2*-weighted images in ex vivo experiments to take 

advantage of the sensitivity of T2*-weighted and specificity of T1-weighted images to the 

presence of the SPIONs. The IF images were also addressed crucial information about the 

success of targeting, the state of localization and the accumulation of MTB inside the tumor, 

which correlates well with MR images. 

To demonstrate the synergic effect of S200 particles once attached to MTB, the MRI was 

performed on the S200 particles alone. No signal improvement of tumor was observed and S200 

particles were accumulated at the rim of the tissue and exhibited a limited diffusion ability due to 

the tumor interstitial fluid pressure and lack of propulsion force to overcome this barrier. This 

result was in concordance with previous studies that showed particles > 100 nm typically could 

be remained trapped in the extracellular matrix [4, 5]. Interestingly, our results demonstrated that 

MC-1 MTB could potentially be detected at the tumor site by MRI if a sufficient quantity of the 

magnetic materials attaches to their surface. In fact, no magnetosome-induced signal and 

detectable distortion in the MRI’s magnetic field was observed for the bare MTBs due to the 

inadequate amount of iron content in the chains of magnetosomes. As depicted in TEM images, 

the magnetosome chain embedded in MC-1 MTB consists of 10-15 magnetosomes with a mean 

diameter of 70 nm, which provides quite a small volume of magnetic material for the population 

density of used MTB. 

6.3 Development of the MTB-LSC complex and investigation of its stability 

during navigation in tumor xenograft 

To prevent drug leakage during the attachment process, chemical environments such as the pH 

and type of reagents were adjusted to the pH-gradient liposome-SN38 formulation during the 

preparation of MTB-LSC for in vivo assays. The stability of the attachment during targeting was 

then examined within the HCT116 mouse tumor xenografts. The results from the IF combined 
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with HPS staining showed the penetration capability of MTB-LSC and their accumulation in 

hypoxic and necrotic regions. Two detection methods were validated for quantification of MTB 

complexes in tissue samples: (i) the rapid homogenization technique followed by optical 

microscopy observation and (ii) immunofluorescence staining technique. Both techniques were 

coherent for the ratio of injected bacteria to detected MTB in tumor tissue (~59% for 

homogenization compared to ~50% for the image-processing technique of fluorescence images). 

These convincing results validated that approximately half of the peritumorally injected MTB-

LSC can be penetrated through the cellular barriers of the tumor xenografts such as extracellular 

matrix (composed of collagen, glycosaminoglycans, and proteoglycans) [12, 44] and tight 

junctions [52], and overcome the tumor interstitial fluid pressure [54, 365] while carrying their 

therapeutic payloads. 

The MTB-LSC system showed promising potential to overcome the delivery concerns and 

improve therapeutic effects of SN38 by delivering the active lactone form through enhancing 

SN38 solubility and its encapsulation in the acidic core of liposome [111, 112, 127] using pH 

gradient method [111, 127] (See Appendix B). The results demonstrated that multiple dose 

injections of MTB-LSC with the final cumulative dose of ~6.4 µg SN38 have the therapeutic 

effect on tumor growth, and also produce a statistically significant reduction in tumor size 

compared to all controls (MTB, LP-SN38, LP, CPT-11, and PBS). Observing the therapeutic 

effectiveness of the drug evidenced that the LP-SN38 remained attached during the navigation 

process. The plausible mechanism of drug release from the liposomes in the tumor environment 

can be degradation-dependent drug release (e.g. hydrolysis or enzymatically [141, 178, 179]) or 

drug diffusion from liposomes, which should be further explored in future work. The overall 

results suggest that the MTB-LSC system enhances therapeutic index with the possibility to 

reduce systemic circulation by direct targeting of unattainable sites of tumors and is more 

effective as compared to currently used passive and active targeting methods [366] as well as 

compared to more recent finding with MDT [306, 307] and MRN [20] delivery methods. 
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 CONCLUSION AND RECOMMENDATIONS CHAPTER 7

 

A novel MTB-based navigable targeted delivery system was introduced as a viable therapeutic 

and imaging modality to transport payloads into distal tumor regions for treating purposes and 

visualization of tumor structure. We demonstrated that peritumorally administered magneto-

aerotactic MTB associated drug or contrast agents can profoundly navigate toward the center of 

the tumor, pass the cellular barrier, penetrate deeply into the tumors xenograft, alter 

biodistribution and accumulate in hypoxic and necrotic zone. The attached therapeutic and 

contrast agent through both direct covalent amide bonds in MTB-LSC and antibody affinity bond 

in MTB-S200 were stable during the navigation in tumor environment and did not cause any 

adverse effect on migration of the MTB into the tissue. Indeed, high targeting ratios (~50-59%) 

were obtained for both loaded and unloaded MTB.  

We confirmed that the pairing of MTB carrier with 200 nm SPIONs is a promising candidate for 

tracking and tumor microstructure imaging by the production of susceptibility artifact inside the 

tumor hypoxic regions using a 3T clinical MRI scanner. SPIONs are more suitable for attachment 

due to the better magnetic characteristics, generating a high contrast in both T1- and T2/T2
*
-

weighted images, and fewer tendencies to cause agglomerate formation with MTB during 

attachment process, which are crucial for the performance of the navigable agents in vivo. The 

versatility of MTB bio-carrier combined with suitable attached agents is a significant 

breakthrough in the field of microrobotics and targeting delivery systems in medical interventions 

for oncological care or other different types of diseases. 

Recommendations and future perspectives 

The purpose of this thesis was to establish the foundation for the application of magnetic 

bacteria-based system with targeting and tracking capabilities as viable navigable drug delivery 

systems. Through an innovative design and straightforward chemistry, we prepared the bacterial 

complexes and successfully showed the feasibility of this approach. Given the wealth of this 

sophisticated carrier, attached cargos to MTB can be extended far beyond the liposome and 

magnetic nanoparticle illustrated here. The MTB-based technology may open further 

opportunities for delivering a vast variety of therapeutics (e.g. drugs, genes, vaccines, and 
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markers) or imaging agents (e.g. magnetic materials, gold, fluorescence, radiosensitizers). Some 

examples of the future directions along with the limitation of this study are presented below: 

 Labeling the MTB with the trackable chemicals gives the opportunity for in vivo image-guided 

therapy plan for the inaccessible disease sites as well as noninvasive tracking for feedback 

control of the position of drug-loaded MTB. 

 The MTB-based drug delivery system presented here was either featured for targeting or 

tracking. Future work can envision attaching and incorporating therapeutic and imaging 

modalities into the same MTB biocarriers to increase the potential application of the complex as 

multifunctional theranostic agents with the ability to simultaneously target, track, and treat the 

diseased tissue in vivo. 

 The optimizations of experiments are required to further investigate the therapeutic dose of 

drug, its mechanism of release and pharmacokinetics. This should be also accompanied with a 

better characterization of MTB complexes in vivo and its biodistribution after reaching the 

targets. 

 Future plan can also include loading a combination of chemotherapy compounds with 

radiosensitizers such as gold nanoparticles on same MTB to take advantage of magneto-aerotaxis 

platform along with external beam radiation therapy to improve the therapeutic index of cancer 

therapy. 

 Future studies can explore targeting magnetic nanoparticle-loaded MTB (MTB-MP) for 

localized hyperthermia. The hyperthermia could heat up the targeted MTB-MP and raise the 

temperature by a few degrees at the cellular level in the vicinity of a region needs to be treated to 

minimize overheating of the surrounding healthy tissues. For instance, targeted MTB-MP in 

brain’s vessels offer the possibility for reversible and transient disruption of the blood-brain 

barrier via localized hyperthermia to allow delivery of brain chemotherapy drugs. The heat-

triggered release of drug embedded hydrogel attached to the MTB-MP is just another example of 

the many possible applications. 

 The targeting and tracking ability of the MTB complexes should be validated for application 

in a human for its clinical translation. An enormous scale-up is needed to adapt the magnetic 

navigation protocol platform as well as the effective drug dosage. 

 The applications of developed MTB systems are limited to localized therapy and only 

applicable for accessible solid tumors such as colorectal and prostate by peritumorally injection 
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of MTB complexes closest to the microvessels and bypassing the artery and larger vessels. This 

is due to the fact that bacteria cannot be controlled in the bloodstream due to the high blood 

velocity. For the diseases that are not accessible, the targeted delivery needs to be done through 

the bloodstream. Therefore, encapsulation of MTB loaded with both magnetic particles and drugs 

in the larger hollow carriers (~50 µm) could be designed as MRI-navigable complex. The 

complexes should be released via a catheter closest to the microvasculature feeding the tissue and 

then be followed by magnetic guidance. When it reaches the desired site, magnetotaxis platform 

can take place and navigate the bacteria to the site of interest. However, the aerotactic behavior 

depends on the type of the disease that present appropriate level of oxygen for MTB to penetrate. 

 As a potential for clinical application, in-depth investigations of the safety assessment and 

inflammatory responses of the MTB complexes, bacteria residual, and all free compounds need 

be conducted. Specifically, an experiment quantifying hematology and biochemistry biomarkers, 

immunotoxicity, toxicokinetic, carcinogenicity, and genotoxicity need to be undertaken to 

achieve a detailed understanding of effects of MTB system on safety. 

Social and economic impact 

The developed technology can provide tremendous potential and holds substantial promise to 

improve the efficacy of therapy in patients suffering from cancer. Effective pathways can be 

developed to transfer the results and outputs of this technology to the potential end-users in a 

timely manner. Successful accomplishment and pharmacoeconomics effects of developed drug 

targeting approach using MTB will result in: 

 An augmentation of the efficacy of established chemotherapy and imaging compounds by 

targeting them directly in the tumor; 

 An increase in the accumulation and diffusion of drugs in the tumor site;  

 The enabling of safe and repeated administration of doses higher than the other MTD or 

unencapsulated drug, while simultaneously the decrease of adverse side-effects; 

 The reduction of the risk of tumor reformation or metastases to other organs of the body;  

 The decrease of costs incurred by the patients and the taxpayer; 

 The massive impacts and concomitant benefits on life expectancy and survival of the patients 

fighting cancer while improving their life quality during the treatment. 
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Contributions for Appendix A and Appendix B 

Appendix A and Appendix B gather the results of a multidisciplinary teamwork in vivo 

experiments in which the contribution of the candidate was determined to be 20%. Appendix A 

presents the non-systemic magneto-aerotactic bacteria-mediated delivery of drug-loaded 

nanoliposomes in tumor hypoxic regions. Appendix B describes the preliminary investigation on 

the therapeutic effect of MTB-LSC system on tumor. The experiments were conducted with 

different collaborators from various disciplines including clinical oncologists, chemists, 

physicians, pathologists, and immunologists from different institutional research priorities 

(McGill University, Jewish General Hospital, Institute for Research in Immunology and Cancer, 

and University de Montréal). 

In this multidisciplinary project, the contributions of the candidate consisted of design and 

attachment of SN38-loaded liposomes to the MTB cells supervised by Dr. Maryam Tabrizian. In 

addition, the candidate was also involved to perform the in vivo experiments including writing 

the related in vivo protocols, the daily batch preparation of MTB complexes for the injection, 

post-evaluation of the complexes using electron microscopy, and also assisting to evaluate the 

targeting, counting, and biodistribution capabilities of the complexes in tumor tissue by 

performing fluorescence microscopic imaging for immunostained histological slides, tumor 

homogenization followed by optical microscopy, and data analyses. Dr. Sylvain Martel acted as 

principal investigator and developed the general principles and methods. The three-dimensional 

navigation magnetic platforms and the software control system was designed and performed by 

Dr. Ouajdi Felfoul. The magnetotactic control sequences was tested by Mr. Dominic De Lanauze 

and executed by Mr. Dumitru Loghin. The bacteria were provided by Dr. Mahmood 

Mohammadi. The histopathological analyses were performed by Dr. Louis Gaboury. Liposome-

SN38 was prepared by Dr. Sherief Essa working under supervision of Dr. Michel Lafleur and Dr. 

Maryam Tabrizian. Dr. Danuta Radzioch did preliminary analyses on cytotoxicity and immune 

system responses and help in the coordination for the in vivo tests. Dr. Nicole Beauchemin 

coordinated the implantations of tumor xenografts. The peritumoral injections in animals were 

performed by Mr. Daniel Houle. Dr. Yong Zhong Xu implanted the xenografts and performed 

tumor measurements. Dr. Neila Kaou, Mr. Michael Atkin, and Dr. Mahmood Mohammadi acted 

as project managers. Dr. Té Vuong and Dr. Gerald Batist provided clinical insights. 
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APPENDIX A – NON-SYSTEMIC MAGNETO-AEROTACTIC BACTERIA-

MEDIATED DELIVERY OF DRUG-LOADED NANOLIPOSOMES IN 

TUMOR HYPOXIC REGIONS 

 

 

Effective delivery of nanocarriers in regions leading to optimized therapeutic outcomes such as 

within tumoral hypoxic regions remains unmet. With a low therapeutic index and increased 

systemic toxicity, nanocarriers could greatly benefit from the actuation-navigation-sensory 

capability envisioned for futuristic nanorobots to enhance distribution in hard-to-reach tumoral 

regions following transports through the most direct physiological routes. Here we report that 

large populations of MC-1 magnetotactic bacteria (MTB) directionally-guided using their 

intracellular chain of iron-oxide nanoparticles, were able to mimic swarms of such futuristic 

transporters when operating in a computer-controlled artificial environment enabling the 

exploitation of their magneto-aerotactic migration behavior. Experiments conducted with SCID 

Beige mice resulted in a > 50% mean targeting ratio of the ~2 × 10
7
 peritumorally injected drug-

loaded nanoliposomal MTB-complexes (MTB-LP) in hypoxic regions of HCT116 colorectal 

xenografts. The results obtained with ~70 170 nm SN38 loaded nanoliposomes being attached 

per MTB suggest that harnessing microorganisms exhibiting magneto-aerotactic behavior can 

improve significantly the therapeutic index to tumor hypoxic regions for a variety of 

nanocarriers. 

 

A.1 INTRODUCTION 

Hypoxia facilitates the survival of tumor cells and is a cause of malignant transformation. It is the 

consequence of oxygen consumption by the rapid proliferation of tumor cells which results in 

approximately < 0.7% O2 in highly difficult treatable hypoxic regions [350]. Such hypoxic 

environments negatively impact treatments based on radiotherapy [14, 351, 352] while for 

chemotherapy, larger drug molecules including nanocarriers cannot generally target and diffuse 

effectively [54, 353] towards the hypoxic cells within the absence of flow caused by the tumor 
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interstitial fluid pressure (TIFP) [354]. The resulting limited drug and macromolecule distribution 

within tumors significantly reduces the therapeutic index [12]. 

The two main approaches to the selective killing of hypoxic cells in tumors [13, 355], the bio-

reductive prodrugs [16, 17] and small molecule inhibitors against molecular targets involved in 

the survival of hypoxic cells [355, 356], need to overcome the problem of drug-loaded 

nanocarriers penetration through poorly perfused hypoxic tissue [357]. While reducing the TIFP 

is known to enhance the uptake and homogeneous distribution of many therapeutic compounds, 

available pharmacologic and physical therapies used to reduce tumor pressure have their side 

effects and their application in clinical practice is not yet validated [18] while suffering from the 

low targeting efficacy when using the systemic routes. Indeed, currently used pharmaceutical 

nanocarriers such as liposomes, micelles, polymeric nanoparticles and many others, result in very 

low tumor site accumulation. Combining the enhanced permeability and retention (EPR) effect of 

nanocarriers with the longer systemic circulation properties that are achieved following 

PEGylation has increased the targeting ratio but still result in a very limited fraction of 

nanocarriers entering tumors. This is due to the facts that usually only about 5% of the 

administered nanocarriers remain in the systemic circulation after 12 h with 90% of these 

PEGylated nanocarriers being removed from the systemic circulation within several hours, 

resulting to only ~2% of the total administered dose being deposited in the tumor [10]. 

But since the overall maximum size of nanocarriers is an obstacle to the integration of advanced 

functionalities that would correct for such deficiencies, the overall sizes of intercellular openings 

responsible for the leakiness of tumor vessels provide sufficient spaces for such nanocarriers to 

be transported by larger and more capable self-propelled carriers. The development of a common 

carrier capable of transporting such therapeutic nanocarriers to the most effective site of 

treatment with embedded functionalities that would enhance the targeting capability beyond what 

is possible using existing nanocarriers alone is the focus of this study. Such functionalities would 

include navigation capability towards the sites of treatment in order to avoid systemic circulation, 

self-actuation providing a propelling force sufficient to penetrate the tumor volume beyond the 

diffusion limits of nanocarriers and larger drug molecules, and sensory capability to target 

regions such as the hypoxic zones that would lead to the best treatment outcomes. Although these 

are functionalities generally used in robotics, implementing them at the scale required to transit 

through the physiological environments to reach deep inside a tumor is well beyond what is 
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technically feasible for the implementation of an artificial nanorobotic agent, but possible with 

the use of a natural agent. 

For instance, the MC-1 strain Magnetococcus Marinus [324, 358] contains a chain of magnetic 

iron-oxide (Fe3O4) nano-crystals enclosed in membranes known as magnetosomes [359]. Such 

chain of magnetosomes acting like a nano-compass needle entails the bacteria to swim 

persistently along local magnetic field lines in a preferred direction [99]. In their natural 

environment, such direction corresponds to a downward migration along geomagnetic field lines 

in conjunction with aerotaxis to efficiently migrate to and maintain position at their preferred low 

oxygen concentrations. Such magnetically-assisted aerotaxis known as magneto- aerotaxis [33] 

results in the formation of microaerophilic bands of MC-1 cells at O2 concentrations equivalent to 

the ones observed in the hypoxic regions of solid tumors. Most microaerophilic bacteria form 

aerotactic bands using a temporal sensory mechanism [360] that samples the environment as they 

swim while comparing the present O2 level with the O2 level of the previous sample. Unlike M. 

magnetotacticum which is consistent with such temporal sensory mechanism, the aerotactic 

behavior of MC-1 cells is based on a two-state aerotactic sensory system in which the O2 

concentration determines the sense of flagellar rotation and hence the swimming direction along 

the geomagnetic field lines. Such polar magneto-aerotaxis accounts for the ability of the MC-1 

bacteria to migrate and to maintain position at the preferred O2 concentration at the oxic-anoxic 

transition zone (OATZ) in chemically-stratified, semi-anaerobic basins [33]. 

Our hypothesis was that a similar OATZ present in the fluid interstitial regions (tumor 

interstitium) between the angiogenic network (oxic) and the tumor necrotic (anoxic) zones could 

be exploited to enhance drug targeting in hypoxic regions using live MC-1 cells after being 

guided toward the site of treatment by an external magnetic source. Indeed, unlike previous 

bacterial therapies [93], minimizing systemic circulation of drug-loaded MC-1 cells was achieved 

by initially guiding their migration path towards such OATZ where an oxygen gradient was 

present and could be detected by the bacteria. Unlike hypoxic zones, since the location of the 

tumoral volume can generally be precisely determined, magnetotaxis was first prioritized over 

aerotaxis considering that the latter could not initially benefit from such spatial information. 

Based on the Langevin function, the level of magnetotactic directional control characterized by 

the alignment of the chain of single magnetic domain nanoparticles (magnetosomes) in the MC-1 
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cells in the applied directional magnetic field would be determined by the ratio of the interactive 

magnetic energy with the applied field to the thermal energy. Such thermal energy in the form of 

thermal forces associated with Brownian motions would tend to randomize the cell orientation 

after a sufficient reduction of the magnetotactic component unless in this particular case, another 

taxis-compatible directional source such as an oxygen gradient in the tumor interstitium would be 

detected by the bacteria. Following such a concept, the targeting procedure consisted of an 

assisted magnetotactic directional control phase [108] using a magnetic field sensibly higher than 

the geomagnetic field to induce a stronger directional torque on the chain of magnetosomes 

towards the tumor when in the peritumoral regions, followed by a MTB-autonomous aerotactic 

directional phase in the absence of a sufficient level of interactive magnetic energy required for 

prioritizing magnetotactic directional control when in the predefined targeted tumoral volume. 

Since the physiological environments encountered by the MTB during travel would be different 

from the ones found along their natural migrating paths, the experiments were aimed at assessing 

the ability of the MC-1 cells to migrate effectively towards the hypoxic zones following 

peritumoral injection. More specifically, we questioned whether a large ratio of injected MC-1 

spherical cells whose diameter ranges between 1 and 2 μm would be able to migrate through 

physiological routes such as the irregular and disorganized angiogenic network, the interstitial 

spaces, and the intercellular openings of typically less than 2 μm in diameter between endothelial 

cells [60] responsible for much of the vessel leakiness in solid tumors. 

 

A.2 RESULTS AND DISCUSSION 

In order to assess magnetically-guided live MC-1 MTB targeting profile in HCT116 xenograft, 

we performed peritumoral injections of ~2.92 × 10
7
 bacteria in 20 μl PBS solution for a total of 8 

mice. Depending on whether or not a magnetic field was applied to guide the bacteria, two 

groups were discerned namely, an experimental group (MS1 to 4) with a 30 minutes applied 

magnetic field targeting the center of the tumor following the MC-1 injection; and a control 

group (MS5 to 8) that was not exposed to the magnetic field. A color map graph showing the 

distribution of the MC-1 cells in the xenograft for mice MS1 to 8 is depicted in Figure A.1a, b 

while an approximate MTB count for each tumor’s section is shown in Figure A.1e. 
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We notice a higher population of MC-1 cells in the middle section of the tumor for the group 

exposed to the magnetic field for 3 out of 4 mice. The lack of targeting level in one mouse may 

be due to experimental errors such as a magnetic pole position being set outside of the tumor 

volume. With nonmagnetically guided bacteria, only 1 of 4 mice showed a high penetration ratio 

for the control group. This high ratio for one mouse may be due to a relatively large population of 

bacteria to come close enough to the target to be influenced by decreasing oxygen gradients, 

resulting in aerotactic directional motion toward the hypoxic regions. But also of interest in the 

fact that when guided appropriately, the MTB appear to swim and move effectively through 

necrotic tissues as assessed by the observation of several adjacent histology slides (4 μm apart), 

one stained with hematoxylin phloxine saffron (HPS) (Figure A.1c) and the second stained with 

green FITC-secondary antibody immunofluorescence targeting a specific protein at the MC-1 cell 

membrane (Figure A.1d). 

Although the preceding section showed that in general the combination of magnetic and 

aerotactic guidance leads to much superior targeting ratios in hypoxic regions of tumor 

xenografts, the targeting profile needs to be compared with passive agents, i.e. agents lacking the 

three functionalities mentioned earlier namely, navigation such as magnetotactic guidance, 

propelling force, and sensory-based displacement such as aerotactic motion behavior. As such, 

we performed peritumoral injections of a mixture consisting of live MTB and two types of 

passive markers to be more confident on the concluding results. 
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Figure A.1: Penetration of live MC-1 cells with and without magnetic field exposure in HCT116 

xenografts following a peritumoral injection. (a) Mice labeled as MS1 to 4 were exposed to 30 

minutes of a directional magnetic field targeting the center of the tumor. An immunohistology 

analysis of the middle section of these tumors reveals the presence of MTB in the vicinity of the 

necrotic region and in high number in 3 out of 4 mice. (b) Mice labeled as MS5 to 8 were not 

exposed to a magnetic field following peritumoral injection. Immunohistology analysis of the 

middle section of these tumors shows limited MTB penetration in 3 out of 4 mice. (c) HPS stain 

of a tumor section showing necrotic zones. (d) Adjacent section to C showing the MTB, as green 

FITC fluorescent dots, uniformly distributed within the same regions recognized to be necrotic 

with the HPS stain. (e) Total MC-1 MTB count for the middle section of MS1 to 8. 
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Figure A.2: Penetration of live MC-1 cells over passive diffusion in HCT116 xenografts. (a) 20× 

images of MTB and fluorescent beads at different tumoral depths. (b) Quantity of fluorescent 

microspheres vs. MTB at various tumoral depths. (c) 20× images of MTB and fluorescent at 1, 3, 

and 6 mm inside the HCT116 xenograft. (d) 20× images of live and dead MTB at different 

tumoral depths. (e) Co-localization of MTB-bead complexes at a tumoral depth of 4 mm. 

 

When such passive markers are injected in the peritumoral region, they exhibit a limited diffusion 

due to the tumor interstitial fluid pressure. The simultaneous injection of live MTB and passive 

markers was to compare their ability to diffuse and remain inside the tumor within the same 

experimental conditions using the same injection site and the same injection rate. The first marker 

consists of polymer microspheres (PS) and the second marker consists of dead MC-1 cells that 

have undergone prior staining with a fluorescent cell penetrating peptide (CellTrace, CFSE Cell 

Proliferation Kit). 20 μl of Dragon green fluorescent PS (480, 520) 1.9 μm polymer microspheres, 

similar in size to the MC-1 spherical cells, and 20 μl of live MTB were injected, which in term of 

numbers consisted of ~2.92 × 10
7
 bacteria and ~1.35 × 10

7
 beads, followed by 30 min. magnetic 

guidance. In a separate set of experiments, 20 μl of dead MTB were used instead of the polymer 
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microspheres. Texas-red secondary antibody was coupled to MC-1 MTB making the live MTB 

red on the histological slides with the beads alone showing in green. The dead MTB appear 

yellow. The active directional motility through magnetotaxis and aerotaxis of the MTB resulted 

in superior penetration depths in HCT116 xenografts compared to passive markers as depicted by 

the dead MTB and the polymeric beads (Figure A.2a-d). We observed a substantial decrease in 

the number of microspheres as we move deeper into the tumor, while the number of MTB 

increased significantly (Figure A.2b). The co-localization of MTB-bead complexes (Figure A.2e) 

that occurred from the surface interaction of some beads with MTB suggests the potential for 

each MTB to carry a large load deeply inside tumoral tissues. Similarly, live MTB outnumber 

dead MTB as we move far from the injection site. The injection site exhibited a strong passive 

diffusion of the CellTrace making the background fluorescent in which mostly dead MTB 

(yellow dots) and few live MTB (red dots) are found. Deeper, mostly live bacteria were found 

and shown to compete in penetration with the diffusion of the CellTrace. 

To evaluate the mean targeting ratio of MTB-LP (Figure A.3a) with covalently-attached SN38 

drug-loaded liposomes to the cell surface through carbodiimide chemistry [367], we conducted 

additional in vivo experiments in SCID Beige mice to obtain statistical data of the quantity of 

MTB-LP in HCT116 tumoral tissue versus the total amount injected peritumorally. Among all 

potential nanocarriers, liposomes were initially selected as a first-proof-of-concept because they 

are biocompatible, exhibit low immunogenicity and high flexibility, protect the body from 

potential toxic cargo, shield therapeutic agents from premature degradation, control release 

kinetics, and may concurrently encapsulate a multitude of hydrophilic and/or hydrophobic drug 

cargos, pharmaceutical ingredients, imaging agents, and genetic material by virtue of their 

aqueous interior and lipid exterior. Furthermore, cytotoxicity assays reveal that liposomal 

attachments to the MC-1 MTB formulation improve the biocompatibility of the MTB, whereas 

attachment does not interfere with liposomal uptake [367]. The diameter of each liposome was 

set to the maximum possible synthesized value of ~170 nm to maximize the quantity of drug-

cargo being transported per MTB. 

The amount of bacteria intended for injection was predetermined prior to the experiments. Since 

some of the bacteria injected peritumorally might not have ended up inside the tumor, we also 

estimated an exact percentage of bacteria which actually could be found in the excised tumors. At 

that point, some of the injected bacteria might have been dead and/or partly cleared from the 
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tumor tissue, so obtained counts represent only estimates performed for comparative purposes. 

Some tumors were used for a separate analysis to assess apoptotic and necrotic markers. The 

remaining tumors were cut in seven fragments and all fragments were paraffin-embedded and 

sectioned. 

 

Figure A.3: Targeting ratios of MTB-LP in HCT116 xenografts. (a) Unloaded MTB vs. MTB-LP 

(right) with ~70 SN38 loaded liposomes (diam. ~170 nm) attached to the surface of each cell. (b) 

Ratios of MTB-LP in the tumoral tissue obtained by homogenization. (c) Estimated mean ratios 

of MTB-LP (MBC-groups) found in the tumor. (d) Transverse tumor sections of group MBC-8 

MTB-LP after targeting. (e) MTB-LP distribution of the MBC7-10 groups inside the tumor. 

 

Similar to the results achieved with the unloaded MC-1 MTB, high targeting ratios of MTB-LP 
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samples also revealed that the MTB-LP were distributed throughout the xenografts (Figure A.3d, 

e) mainly in the neighborhoods of necrotic areas and in large numbers in the center of the tumor 

where necrosis was more predominant. The mean tumor targeting ratio (~50%) estimated from 

the MBC samples by image processing techniques allowing to assess the distribution of the 

MTB-LP complexes in the HCT116 xenografts was coherent with the mean targeting tumor ratio 

(~59%) obtained by HCT116 xenograft homogenization (Figure A.3b) extracted after 

experiments performed under similar conditions. 

In this initial study, we demonstrated that live MC-1 cells potentially safe for use in humans (see 

methods: mice and rats cytotoxicity) and acting under magnetotactic directional control can be 

used as direct targeting systems to enhance the therapeutic index while reducing systemic 

exposure in currently used passive and active targeting methods [366]. Since magnetotaxis relies 

on a magnetically-induced directional torque, the magnetic energy required for such self-

propelled agents to achieve direct targeting especially in deep tissues is significantly less than the 

induction of magnetic pulling forces [21, 22] used to displace agents such as magnetic 

nanoparticles (MNP) where the rapid decay of the magnetic field from the magnetic source 

generally limits targeting to regions only near the skin. The more recent depth independent direct 

delivery method known as Magnetic Resonance Navigation (MRN) [20] cannot be effectively 

applied in the tumoral microenvironments due to the insufficient magnetic induction volume of 

the agents. Although microscopic artificial swimmers [368] could be envisioned as an alternative 

to the use of natural microorganisms, embedding an equivalent level of functionality in artificial 

agents to compete against such natural microorganisms in delivering therapeutics through 

complex vascular and interstitial networks, may prove to be a far-reaching concept. 

Indeed, we showed that harnessing sufficiently small microorganisms exhibiting a magneto-

aerotactic behavior such as the MC-1 cells that could be described as an agent with onboard 

oxygen gradient detectors connected to a low Reynolds hydrodynamic propelling system through 

some sort of embedded computation or intelligence, all in < 2 μm self-powered body capable of 

being directionally guided from an external source, can represent a suitable alternative to emulate 

artificial nanorobotic agents that need characteristics and functionalities well beyond actual 

technological feasibility. Furthermore, such approach could also benefits from the fact that 

bacteria-mediated delivery of nanoparticles and cargo into cells for various applications has 

already shown to be feasible [369]. Besides potential future efforts towards genetically modified 
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transporters [370], these initial findings may influence not only specific engineering concepts and 

medical interventional methods, but it also opens opportunities for the synthesis of new target 

therapeutic, imaging, and diagnostic agents while providing further opportunities in enhancing 

the delivery and therapeutic efficacy of existing nanocarriers. 

 

A.3 METHODS 

Magnetotaxis directional control. The animals were placed in the center of a platform 

consisting of three orthogonal pairs of electric coils positioned in a Maxwell configuration. Two 

main approaches were investigated, referred to here as spatial targeting and time-based targeting. 

For spatial targeting, a volumetric targeting zone referred to as the aggregation zone was created 

using a time varying magnetic field sequence while being positioned at the location of the 

xenograft. As such, the electrical currents circulating in the coils were adjusted accordingly. Such 

configuration forced the MTB to accumulate in the aggregation zone since the magnitude of the 

magnetic field outside the aggregation zone induced a directional torque on the chain of 

magnetosomes sufficient to force their migration towards the aggregation zone. Once in the 

aggregation zone, the magnetic directional field was sufficiently low to allow the swimming 

direction of the MC-1 cells to be influenced by aerotaxis. For time-based targeting, a directional 

magnetic field was applied toward the xenograft for a predetermined period of time before being 

switched off to allow aerotaxis to take effect. Both methods proved to be successful. Although 

spatial targeting has the advantage of being able to constrain the aggregation of the MTB to a 

specific targeted volume which proves useful in deeply located tumoral lesions, the results 

presented here were obtained with the time-based targeting method for simplicity since the MTB 

could not swim passed the outer limit of the external implanted xenograft while providing an 

adequate distribution profile across the tumoral tissue. During magnetotaxis control, a 

modulation of the directional field (approx. 4 Gauss) using small angular variations was also 

applied to enhance the capability of the MC-1 cells to swim around physiological obstacles. 

Magnetotactic bacteria count. To visualize and estimate the relative amounts of MTB present 

in each histological section sampled from each tumor, images of each section were acquired 

using a fluorescence optical microscope equipped with a 40× magnification objective lens. The 

acquired images were then processed using an automated software algorithm to evaluate the 
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number of MTB in each histological section. This algorithm performed graphical enhancements 

on each image to count the number of MTB. First, a morphological erosion and dilation using a 

large disk shaped structural element was performed to remove noise resulting from non-uniform 

lighting in the setup and subtracting the result of this operation from the original image. The 

contrast of the images was then enhanced and converted to gray scale images by keeping only the 

green component (since green fluorescence was used to label the MTB) of the RGB image. The 

number of MTB was then counted by binarizing the resulting images and considering each 

connected regions as an individual bacterium. The number of MTB counted using this algorithm 

was then plotted against the depth at which the sample was taken in the tumor. The amount of 

MTB in each tumor was estimated by adding together the number of MTB corresponding to 

every sample taken at a certain depth inside the tumor with a step of 2 mm between each value of 

depth from the first histological section’s position to the last position. The curve’s data for each 2 

mm step were calculated using the equations found by the linear interpolation between each 

adjacent and actual data points. While the number of MTB counted using this technique 

represents only an approximate number of MTB located in the tumors, it allows us to visualize 

the variation in distribution of the injected MTB within the tumor. 

Immunohistology staining. Samples were fixed in 10% neutral buffer formalin and embedded in 

paraffin and cut at 4 μm thickness. Tissue sections were incubated inside an immunostainer 

(Discovery XT, Ventana Medical Systems, Roche Group) following FISH procedure and manual 

titrations and by using proprietary reagents. The following antibodies were applied: Polyclonal 

Rabbit anti-MC1 receptor (GenScript #153335-1, dilution 1/300 for 1 hour at room temperature). 

Afterwards, the slides were incubated with a FITC-labelled secondary anti-rabbit antibody to 

visualize MC1 receptor in green, TEXRed-labelled secondary anti-rabbit antibody was used to 

visualize MC1 receptor in red. The slides were finally washed and mounted using ProLong® 

Gold Antifade Reagent with DAPI (Invitrogen). 

Live/dead mixture preparation. A cell pellet of live MTB was obtained by magnetically 

concentrate 50 ml of an MTB solution. The pellet was suspended in PBS containing the probe 

prepared as suggested by the manufacturer for 15 min at room temperature. The MTB was 

magnetically concentrated to re-form the pellet and incubated for another 30 min at 42 °C at 

which the MTB becomes inactive, which is assessed by microscope observation. After heat 
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treatment, the MTB do not recover motility and cell division, also assessed by microscope 

observation over the duration of the experiment. 

Liposome attachment. The attachment relies on direct chemical conjugation of liposomes 

functionalized with reactive groups (–COOH) which covalently bond to a primary amino groups 

(–NH2) intrinsic to bacteria cell membrane proteins. Carboxylated liposomes were conjugated to 

MTB by carbodiimide chemistry. Dehydrated agents such as EDC and Sulfo-NHS were added to 

3 ml of 0.5 mM liposomes suspension (EDC: NHS: DSPE-PEG-COOH = 35: 35: 3, molar ratio) 

in PBS buffer (pH 6.5). The mixture was incubated at room temperature for 20 min. The free 

activating reagents were removed using Sephadex G-50 column. Then, activated liposomes were 

added to 4 × 10
7
 MTB (~10

7
 MTB ml

-1
) and incubated for 2 h at room temperature, under gentle 

mixing. Liposomes attached to MTB were separated from non-attached liposomes by applying a 

2D magnetic field. The sample was washed three times in PBS and finally resuspended in PBS 

(pH = 7.4). 

Determination of MTB-LP in hypoxic areas. MTB-LP distribution in HCT116 xenografts was 

predominantly found in regions of the tumors where oxygen concentration was sufficiently low 

to induce morphological signs of ischemic necrosis. Notably, those areas exhibited a specific 

immunohistochemical profile consisting of a lack of expression of proliferation markers (Ki-67 

and survivin) and a concomitant increased in the expression of the apoptotic marker Caspase-3. 

Mice and rats cytotoxicity. Systemic response to MC-1 cells: No significant difference in the 

expression of inflammatory cytokines between PBS and MTB injections both in A/J and in 

C57BL6 mice in the blood was observed. P.aeruginosa used as a positive control without MTB 

injection induced inflammatory cytokines, IL-6 induced at the highest level at 6h. 

Immunogenicity and organ toxicity assessment: Assessment of several immunological parameter 

of inflammation have been completed -Immunogenicity studies has been completed using various 

doses of MTB and harvesting blood as well as organs at various time points post i.v. infusion of 

MTB bacteria into two different strains of mice A/J and C57BL/6 strain. Following i.v. injection 

with P.aeruginosa, blood plasma displayed the highest levels of inflammatory cytokines 

compared to liver, spleen, and lungs. MTB did not induced significant increase in inflammatory 

cytokines levels in the liver, spleen, lungs as well as in the plasma. Rats were injected with 10
8
 

MTB intravenously and the complete biochemical and hematological assessment was performed 
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after 6, 24, and 72 h. Our preliminary results demonstrated that the injection of MTB did not lead 

to inflammation, no hematological distortions were detected and biochemical parameters were 

within normal range. 
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APPENDIX B – THERAPEUTIC EFFECT OF LIPOSOMAL SN38 

TRANSPORTED BY MAGNETOTACTIC BACTERIA TO TUMOR 

HYPOXIC REGIONS: A PROOF OF CONCEPT STUDY 

 

This chapter presents the experimental team works, developed methodologies, and the therapeutic 

achievements of the proposed MTB-based drug targeted delivery system. The aim was to explore 

an entirely novel therapeutic modality to demonstrate an incremental therapeutic benefit and the 

biological efficiency of the SN38 (anti-cancer drug) encapsulated in liposome attached to MTB 

cellular envelope for therapy of localized cancer. The MTB-LSC as an efficient self-propelled 

microcarrier exhibits delivery and diffusion of the drug to the inaccessible site of the solid 

tumors. 

 

B.1 EXPERIMENT PROCEDURE 

B.1.1 Tumor model 

The experimental procedures were conducted on 72 SCID-beige with HCT116 human colorectal 

tumor cells implanted in their flank. The tumor size of each experimental group was meticulously 

assessed and verified statistically not to have any significant difference between the assigned 

groups at the initiation of the experimental treatment. Once the size of tumor xenografts were 

reached 80-100 mm
3
, each mouse was received the multiple treatments every other day from day 

0 to day 18 with the total of ten injections. The experiments were performed peritumorally by 

injection of therapeutic-loaded MTB into the tumor xenograft. By the peritumoral-based 

interventions, drug-loaded MTB can be directly injected into regions located adjacent to the 

tumor mass to take advantage of the directional blood flow towards the tumor and bypass 

entering the larger vasculature. The tumor growth rate was estimated by a direct measure of the 

tumor size every second day using an electronic caliper. The tumor volume was then calculated 

using the following formula [331]: [(length) × (width) 
2
 × 0.5]. The animals were sacrificed 2 

days after the 10th injections, which commenced on day 20 after the first treatment. Table B.1 

describes the experimental procedure and applied conditions. 
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B.1.2 MTB-LSC group 

For preparation of MTB-LSC, (15 ml of 0.5 mM) functionalized liposome-SN38 was incubated 

with 50 ml of MTB in culture medium with an initial concentration of ~2 × 10
6
 MTB ml

-1
 in the 

exponential growth phase. To control the drug dosage delivered to the tumor, the chemical 

environment and the carbodiimide attachment technique were adjusted to prevent the release of 

the drug during the attachment and navigation process. After a 2 h incubation period, the MTB-

LSC was washed twice using a magnetic field and resuspended in 100 µl PBS with a final 

concentration of 10
9
 MTB ml

-1
. The magnetic purification helps to remove non-attached 

liposomes concentrating the MTB-LSC in injectable volume, and replacing bacteria culture 

media with a physiological solution like PBS. It was adjusted to inject ~500 ng SN38 per each 

injection with the cumulative dose of ~5 µg at the end of the experiment. Therefore, 60 µl 

aliquots of the complex were considered for peritumoral injection and 20 µl aliquots were 

reserved for subsequent analysis using high-performance liquid chromatography (HPLC). 

Another 20 µl aliquot from each purified batch was used for counting the exact number of 

bacteria present in the aliquot of injected MTB-LSC, using optical microscopy. Once the 

injection was performed, the considered mouse that was needed to be magnetically targeted was 

immediately positioned inside the 3D magnetic field navigation system for a defined period of 30 

minutes. The ability to remotely control migration of MTB-LSC as well as their penetration and 

distribution following multiple injections inside the tumor were evaluated using histopathological 

analysis. As validated in Appendix A, the magnetically navigated MTB-LSC preferentially 

selects the low oxygen regions and readily accumulates into the hypoxic and necrotic areas. 

B.1.3 LP-SN38 and LP groups 

This group of mice received LP-SN38 alone to assess any potential treatment effect. Each 60 µl 

aliquots of LP-SN38 was contained of 500 ng SN38. The SN38 as an active metabolite form of 

CPT-11 showed to be ineffective in controlling tumor growth. Empty liposome group was also 

served as a control to verify the effect of empty liposomes. 

B.1.4 MTB alone group 

The MTB alone with or without magnetic targeting were examined as a control. Animals were 

treated with the equivalent dose of bacteria as used in MTB-LSC samples to evaluate for possible 

contribution of MTB alone to prevent tumor growth. A 50 ml of 2 × 10
6
 MTB ml

-1
 was 
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concentrated and then resuspended in 100 µl of a PBS solution. 60 µl aliquots of MTB were 

injected peritumorally in both MTB groups. In the 9 mice, 30 min magnetic navigation was 

applied to target the tumor. 

B.1.5 CPT-11 group 

The irinotecan known as CPT-11 was chosen as the pro-drug of SN38 and served as positive 

control for the treatment modality. The effective dose of CPT-11 in reducing tumor growth was 

reported 40 and 60 mg/kg/dose for a multiple and single administration, respectively, in SCID 

mice [371]. Since mice can efficiently convert CPT-11 to SN38, the CPT-11 dosage was adjusted 

on the basis of SN38 equivalents. Robert et al. (2012) reported the SN38 mole equivalents are 

based on 60% of CPT-11 mass [372]. Each mouse in this group was injected with 50 µl of 16.67 

ng μl
-1

 CPT-11 in dextrose per injection, which gives a cumulative dose of CPT-11 8.33 µg per 

mouse. According to the calculation, the injected cumulative dose of CPT-11 was approximately 

equivalent to 5 µg of SN38 dose delivered by the MTB-LSC group. Two different routes of 

injection were examined for CPT-11 including peritumorally (p.t.) and systemic intraperitoneal 

(i.p.) every second day. None of the CPT-11 groups were successful in preventing tumor growth. 

 

Table B.1: Description of the treatment groups. 

Groups Composition 
Means of 

injection 

Volume of 

injection (µl) 

Magnetic 

targeting 

Number 

of mice 

Number of 

injections 

MTB-LSC 
MTB-

Liposome-SN38 
p.t. 60 30 min 9 10 

LP-SN38 Liposome-SN38 p.t. 60 No 9 10 

LP 
Empty 

Liposome 
p.t. 60 No 9 10 

MTB 

MTB 

alone 
p.t. 60 30 min 9 10 

MTB 

alone 
p.t. 60 No 9 10 

CPT-S 
Irinotecan 

(CPT-11) 
i.p.(systemic) 50 No 9 10 

CPT-P 
Irinotecan 

(CPT-11) 
p.t. 50 No 9 10 

PBS PBS p.t. 60 No 9 10 
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B.2 RESULTS 

B.2.1 Analytical assessment of SN38 content 

The HPLC was used to precisely determine the quantity of SN38 present in MTB-LSC 

formulation. The HPLC results demonstrated that the cumulative dose of SN38 delivered by 

MTB-LSC to each mouse was to be determined ~6.4 µg for a total of 10 injections (Table B.2). 

 

Table B.2: Cumulative dose of SN38 per mouse treated with MTB-LSC. 

Individual mice 

treated with  

MTB-LSC 

M-1 M-2 M-3 M-4 M-5 M-6 M-7 M-8 M-9 
Mean 

cumulative 

dose (µg) 

Minimal cumulative 

dose which shows the 

significant effect 

after 7 injections (μg) 

4.3 4.9 4.7 4.9 4 4.5 4.4 4.7 3.8 4.5 

Cumulative dose 

received by each 

mouse after 10 

injections (µg) 

6.1 7.2 6 7.1 6.1 5.9 6.3 6.8 5.9 6.4 

 

B.2.2 Tumor growth rate and tumor weight 

The comparative kinetic of tumor growth and efficacy of MTB-LSC versus all controls during 

the course of the treatment are presented in Figure B.1a. None of the control injections at 

different time points induced any significant inhibition of tumor growth (P > 0.05). In sharp 

contrast animals treated with the MTB-LSC groups were demonstrated a statistically significant 

therapeutic effect and decrease in tumor volume. From day 0 through day 12 no significant 

differences were observed between groups. Beginning on day 8 a distinct change in the slope of 

tumor growth was observed for the complex group compared to all controls. Tumor growth is 

stabilized on day 14 with the cumulative dose of ~4.5 μg (after seven injections) while all other 

groups were continued to grow at a rapid pace. These differences and reduction in tumor size 

were statistically significant versus all other groups from day 14 to day 20. Tumor growth is 

eradicated completely to day 20. The change in tumor volume following treatment with MTB-

LSC demonstrated that the cumulative dose of delivered SN38 (~6.4 µg per mice) was sufficient 
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to induce biological effect and make significant impact on tumor volume by multiple dosing with 

complex. The size of tumors was homogeneous in each group, which producing tight error bars. 

Control groups including animals treated with an equivalent dose of CPT-11 and SN38 

encapsulated into liposomes without magnetic guidance showed no comparable control of tumor 

growth. It was observed that the LP-SN38 group presents a slightly slower growth rate than 

empty liposomes and PBS (negative controls) even the differences are not significant (P > 0.05). 

MTB alone with the equivalent amount as therapeutically effective MTB complexes did not show 

significant contribution to prevent tumor growth. As shown in Figure B.1b, no significant 

changes in mice body weights were observed in any treated groups during the course of the 

treatment. 

B.2.3 Tumor volume and weight on day 20th of treatment 

As shown in Figure B.2a, b , the results confirmed the statistically significant reduction (P-value 

< 0.001) in tumor size and weight in the group treated with the MTB-LSC compared to tumor-

bearing animals treated with the equivalent dose of MTB or SN38 either systemically or 

peritumorally at day 20th. For the MTB alone compared to PBS, the significant inhibition of 

tumor growth and the decrease in tumor volume were reached only for the last time point of 10th 

injections (day 20th). However, the tumor did not disappear as observed in the case of treatment 

with MTB-LSC containing the same amount of MTB. Figure B.2c presents tumor photographs of 

all the groups at day 20th. All the control groups appear to develop and maintain large pendulous 

subcutaneous tumors at the end of the experiment, which their size exceeded 2 cm in diameter. 

On the contrary, animals that were treated with the MTB-LSC had either a very significant tumor 

regression with barely visible bumps under the skin at the site of injection or nearly complete 

tumor lysis. Of note, pendulous tumor masses were never observed in any of the MTB-LSC 

treated animals. 

B.3 STATISTICAL ANALYSIS 

Quantitative data are presented as a mean ± standard error. Statistical significance was assessed 

with the use of a two-way ANOVA followed by a posthoc Bonferroni test to compare individual 

means using GraphPad Prism software. The level of statistical significance was established at P-

values less or equal to 0.05. P-value more than 0.05 is considered as not significant. 
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Figure B.1: (a) Comparison of therapeutic efficacy of MTB-LSC vs. controls during the course of 

the treatment. Statistically significant tumor inhibition growth was observed for MTB-LSC 

groups vs. controls from day 14 to 20 in which *P-value < 0.05, **P < 0.01, ***P < 0.001 are 

considered as significantly different (n = 9). Statistical analysis was performed using two-way 

ANOVA. (b) The weight of treated animals during the course of the experiment. No statistically 

significant difference was observed between groups (P > 0.005). 
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Figure B.2: (a) Tumor volume, (b) tumor weight, and (c) representative tumor photographs of 

MTB-LSC (M-3 and M-4 as an examples) and the control groups at the end of treatment (day 

20th). The results demonstrated that 10 injections of MTB-LSC with a cumulative dose of ~6.4 

μg of SN38 significantly impact on tumor growth. 
***

P-value < 0.001 is considered as 

significantly different (n = 9). 
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B.4 DISCUSSION 

Hypoxic environments in solid tumors that are distant from the blood vessels lead to a negative 

impact on treatments based on radiotherapy and chemotherapy [13, 351, 355]. Current cancer 

therapies fail to provide all the fundamental capabilities necessary to efficiently target these 

hypoxic regions within solid tumors. The studies showed that the clinical application of SN38 an 

anti-cancer drug is not possible to date due to poor solubility and inactivity at physiological 

condition [111, 119, 371]. The liposomal formulation of SN38 can enhance solubility, and 

favorably alter the pharmacokinetics [111, 127] but still the liposomal drug cannot passively 

access to the unattainable hypoxic regions due to increased TIFP and high packing density of 

extracellular matrix constitute a barrier to transport of therapeutic agents towards these regions 

[12, 42, 54, 55, 365]. The critical factors for determining the drug dose delivered to the tumor are 

consist of (i) the trapping efficiency of drug in each liposome, ii) the number of liposomes 

attached to bacteria, and (iii) targeting ratio (delivered/injected) of MTB-LSC found in the tumor. 

The promising obtained in vivo results demonstrated that multiple peritumoral dosing of MTB-

LSC in the cumulative effective therapeutic dose of ~6.4 μg SN38 delivered deep into the 

hypoxic and necrotic regions resulted in a dramatic improvement in therapeutic effect and 

statistically significant inhibition of tumor growth in a HCT116 tumor xenograft. There exists a 

correlation between better therapeutic efficacy and amount of SN38 in the MTB-LSC treated 

group. Therapeutic effects of MTB-LSC was significantly different compared to all controls 

including animals treated with an equivalent dose of CPT-11 and LP-SN38 that showed no 

control of tumor growth. MTB alone demonstrated a decrease in tumor volume only at the last 

time point (10th injections).  

The previous studies showed that the CPT-11 effective dose for reducing tumor growth was 

reported 40 and 60 mg/kg/dose for a multiple and single administration, respectively, in SCID 

mice [371]. Also, tumor-bearing mice multiple dosed i.v. for 5 days with liposomal SN38 at 5.5 

or 8 mg/kg/day inhibited 98% and 100% tumor growth respectively, in a pancreatic tumor model 

[373]. Our results demonstrated that the therapeutic effect of multiple-dose p.t. injections (10 

times, every other day) with MTB-LSC (~0.03 mg/kg/day) in SCID mice to produce a 

statistically significant reduction in tumor size was found to be ~91.6-fold less than liposomal 

SN38 and ~133.3-fold lower than i.v. injection of CPT-11. Overall, the results translate the 
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formulated MTB-LSC into a higher therapeutic index for SN38 as a relatively insoluble and 

physiologically inactive drug compared to conventional chemotherapy. 
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