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RÉSUMÉ 

 

Les dispositifs médicaux dédiés aux enregistrements des activités neuronales et à la stimulation 

de tissus nerveux sont  appelés interfaces cerveau-machines.  Ils offrent un potentiel important 

pour restaurer diverses fonctions neurologiques perdues. Un élément clé dans la mise en œuvre 

des dispositifs est le réseau de microélectrodes (MEAs pour MicroElectrode Arrays en anglais) 

servant d’interface avec les tissus nerveux. Les MEA jouent un rôle important dans les implants 

lors d’expérimentations chroniques, ils doivent être fiables, stables et efficaces pour 

l'enregistrement et la stimulation à long terme. Les propriétés électrochimiques et la 

compatibilité biologique des microélectrodes sont des facteurs essentiels qui doivent être prises 

en compte lors de leur conception et fabrication. 

La présente thèse traite de la conception et la fabrication de MEA en silicium micro-usiné à 

haute densité et en forme de pyramides qui sont destinés à l’enregistrement et la stimulation 

intracorticals 3D. Nous nous concentrons principalement sur les techniques de microfabrication 

des électrodes et le développement de procédure du revêtement de matériaux nécessaires pour la 

biocompatibilité et protection des dispositifs implantables. Nous élaborons des microélectrodes à 

hauteur variable pour enregistrer des signaux neuronaux, sans perdre la capacité de 

microstimulation et tout en maintenant des impédances de faibles valeurs. Cette caractéristique  

est obtenue en modifiant la géométrie et la composition de matériaux utilisés, ce qui facilite 

l'injection de charge et la résolution spatiale élevée.  

Nous présentons une nouvelle technique de micro-usinage 3D à nombre réduit de masques 

comparé aux techniques existantes. Nous décrivons la mise en œuvre d’un MEA à haute densité 

(25 électrodes / 1,96 mm2) et à différentes longueurs d’électrodes. En outre, une nouvelle 

technique de masquage à base de film sec a été développée pour obtenir de très petites surfaces 

actives pour les microélectrodes qui sont à hauteur variable. Nous avons réduit les étapes du 

procédé de masquage de 14 à 6 par rapport à la méthode classique de masquage utilisé dans la 

littérature. Nous avons ensuite effectué, pour la première fois, une croissance directe sélective de 

nanotubes de carbone sur les têtes de microélectrodes de longueurs variables en utilisant la 

technique du dépôt chimique en phase vapeur assisté par plasma (Plasma-Enhanced Chemical 

Vapor Deposition - PECVD).  Ce recouvrement a amélioré les propriétés électriques des 
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électrodes de façon significative. En effet, ce revêtement par des nanotubes de carbone a 

impliqué une diminution d’un facteur 5 de l'impédance et une augmentation de 600 fois le 

transfert de charges par rapport à une électrode de Platine. Enfin, nous avons mis en évidence par 

des tests de cellules de culture in vitro, l'importance de revêtement des MEA avec des molécules 

bioactives (Poly-D-lysine) et de polyéthylène glycol hydrogels pour minimiser la réponse 

immunitaire du tissu neuronal aux MEA implantés. 
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ABSTRACT 

Neuroprosthetic devices that can record neural activities and stimulate the central nervous system 

(CNS), called brain-machine interfaces (BMI), offer significant potential to restore various lost 

neurologic functions. A key element in functions restoration is Microelectrode arrays (MEAs) 

implanted in neural tissues. MEAs, which act as an interface between bioelectronic devices and 

neural tissues, play an important role in chronic implants and must be reliable, stable, and 

efficient for long-term recording and stimulation. Electrochemical properties and biological 

compatibility of chronic microelectrodes are essential factors that must be taken into account in 

their design and fabrication.  

The present thesis deals with the design and fabrication of silicon micromachined, high-density, 

pyramid-shaped neural MEAs for intracortical 3D recording and stimulation. The focused is 

mainly on the MEAs fabrication techniques and development of coating materials process 

required with implantable devices with an ultimate purpose: elaborate variable-height 

microelectrodes to obtain consistent recording signals from small groups of neurons without 

losing microstimulation capabilities, while maintaining low-impedance pathways for charge 

injection, high charge transfer, and high-spatial resolution by altering the geometries and 

material compositions of the array.     

In the first part of the thesis, we present a new 3D micromachining technique with a single 

masking step in a time and cost effective manner. A high density 25 electrodes/ 1.96 mm2 MEA 

with varying lengths electrodes to access neurons that are located in different depths of cortical 

tissue was designed and fabricated. Furthermore, a novel dry-film based masking technique for 

procuring extremely small active area for variable-height electrodes has been developed. With 

this technology, we have reduced the masking process steps from 14 to 6 compared to the 

conventional masking method. We have then reported for the first time a selective direct growth 

of carbon nanotubes (CNTs) on the tips of 3D MEAs using Plasma Enhanced Chemical Vapor 

Deposition (PECVD) that could enhance electrical properties of the electrodes significantly. The 

CNT coating led to a 5-fold decrease in impedance and a 600-fold increase in charge transfer 

compared with Pt electrode. Finally, we have highlighted the importance of the coating MEAs 

with bioactive molecules (Poly-D-lysine) and polyethylene glycol (PEG) hydrogels to minimize 

the immune response of the neural tissue to implanted MEAs by in vitro cell-culture tests.  
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CHAPTER 1      INTRODUCTION 

1.1 Scope of the thesis 

Neural microelectrode arrays (MEAs), which act as an interface between neural tissues and 

bioelectronic devices, play an important role in chronic implants and must be reliable, stable, and 

efficient for long-term recording and stimulation. Electrochemical properties and biological 

compatibility of chronic microelectrodes are essential factors that must be taken into account in 

their design and fabrication. This thesis brings aspects of these two factors together, exploiting 

the unique properties of new MEA to address challenges currently faced by neural implants.  

In this thesis, a new 3D micromachining technique along with organic coatings is proposed for 

the fabrication of high performance MEAs. All the process steps starting from substrate 

preparation, to coating procedures using metallic thin-films and organic materials, along with 

electrochemical characterization and biocompatibility tests are presented in details. The role of 

geometry and materials on MEAs performance is particularly discussed and clarified.  

In this chapter, we first summarize the current performance, limitations, and challenges of 

implantable microelectrodes. We then highlight the specification of new fabricated MEAs and 

explain how these can improve microelectrodes performance.      

1.2 The advent of penetrating Microelectrode arrays (MEA) 

Intracortical implants as a part of neuroprosthetic devices are in direct contact with the cerebral 

cortex of the brain. During the past four decades, the concept of interfacing with the brain cortex 

for both recording and stimulation the nervous system has rapidly evolved [35, 36]. Intracortical 

prosthesis that penetrates into the brain can stimulate an immediate area of the brain by directly 

interfacing the cortex depending on their design and placement [37, 38]. Besides, required 

electrical currents to stimulate neurons through penetrating electrodes are much smaller than 

those used to excite neurons through surface stimulation.  

Penetrating MEAs have been developed for vision, auditory, and cognitive implants. Visual 

implants can partially restore vision by directly stimulating the visual cortex and is still the only 

hope of providing vision for patients with pathologies when the optic nerve is disconnected from 
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retina to the vision center of the brain.  The first attempt to restore vision through cortical 

stimulation began in 1970 with Brindley and Dobelle [39-41]. Dobelle’s 64 channel surface 

electrode array was placed on the top of visual cortex which allowed blind patients to recognize 

shapes in slightly close distances. The challenges were a lack of control of the number of 

phosphenes, pain induced by the large current stimulation of large electrodes, and more 

importantly no access to inner neurons that is necessary to stimulate. Intracortical stimulation 

was introduced to overcome those problems. Penetrating MEAs provide high fidelity images 

with a lower energy leading to less damage to neural tissues. Moreover, these MEAs could 

produce a more localized stimulus with less current. Schmidt et al. [42] showed that phosphenes 

could be evoked with lower currents than surface stimulation current and simple patterned 

perceptions could be evoked by small groups of penetrating MEAs. Penetrating microelectrodes 

provide capability for simultaneous cortical and thalamic recording from auditory cortex [43]. 

They have also shown great promise for restoring neurological lost functions, stroke, or injury 

[23]. However, considerable obstacles have to be overcome for these cortical implants go from 

the lab-bench on to the commercial reality. 

1.3 Current challenges 

Perhaps the most significant obstacles to the MEAs technologies are low impedance pathway for 

higher charge transfer, high-spatial resolution, and biological compatibility of the 

microelectrodes. For electrical stimulation and recording, electrodes with multi-dimensional 

geometry, high selectivity and sensitivity are needed. The selectivity is defined as an ability to 

activate individual neurons without activating identical neighbors. In order to obtain high 

selectivity, electrodes must be in close contact with tissues and this can be achieved using a 3D 

high-density MEA with small surface area of active sites [44, 45]. 3D penetrating MEA where 

the active sites of the electrodes are not in a same plane offers the best spatial selectivity. 

However, when the area of electrode decreases, the electrode impedance increases, which affects 

the stimulating/ recording characteristics (sensitivity) [46]. Electrode performance is a 

compromise between high selectivity that can be obtained by using smaller electrodes and the 

resulting increase in impedance and lower sensitivity. An approach to lower the impedance of 

the electrodes is modifying the interface material, for example by using organic nanomaterials 

with large surface area [47, 48].  
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Another significant limitation of the MEAs technologies is biocompatibility of the electrodes 

which is an important issue that must also be addressed.  For clinical applications, MEAs must 

be reliable, stable, and efficient for long-term recording and stimulation [49]. When the MEA are 

inserted into brain tissue, numerous foreign body responses can occur, often resulting in a lack of 

biocompatibility of the implants. For example, if the electrodes are implanted for long periods of 

time, the formation of glial scar tissue can occur, which can encapsulate and isolate the 

electrodes from the neurons, resulting in a loss of electrical connectivity and increased 

impedance [50]. To avoid this problem, it is important to improve the biocompatibility of the 

electrodes. One of the strategies that can be used to minimize immune response to implanted 

electrodes is by coating them with bioactive molecules such as cell adhesion peptides or proteins. 

These peptides not only improve cell adhesion but also increase the cell proliferation [51].  

Brain implant surgical operations are extremely high-risk for patients, so electrodes safety and 

efficiency must be well examined and verified before implant. Neuroprostethic devices are 

susceptible to the tissue response that causes failure in implanted electrodes. Therefore, the 

impact of implant presence in vivo over extended periods of time must be monitored.  

Despite all the limitations and challenges, intracortical implants are the only way that have 

shown promise for restoring neurological functions lost to patients who have, for example in 

vision domain, a complex damaged retina, optic nerve, or lateral geniculate body [37].  

It is widely understood that the challenges faced by the MEAs technology is largely finding 

appropriate geometry and materials that enhance consistent long-term recording/stimulation of 

large neuronal populations and improve electrodes biocompatibility. In recent years, 

nanotechnology has increased enormously to provide novel fabrication methods and materials. 

Conducting polymers and carbon nanotubes (CNTs) have attracted much interest as suitable 

materials for coating the electrodes. CNTs possess the exceptional chemical stability, electrical 

transport and mechanical properties to ameliorate both recording and electrical stimulation 

from/of neurons [17]. Strength and stiffness of CNTs prevents the tips of the electrodes from 

being fractured. The molecular/cellular biology approach attempts to minimize the immune 

response to implanted electrodes by using bioactive molecules. Such an approach is focused on 
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coating electrodes with peptides or proteins [51]. Still the implant microelectrodes technology 

needs to truly improve the technology to the level of clinical implementation.  

1.4 Microelectrode arrays: a key element in neuroprosthetic devices 

The major goal of the emerging field of neurotechnology is restoration of nervous system 

disorders. Neuroprosthetic devices that can record neural activities and stimulate the central 

nervous system (CNS), called brain-machine interfaces (BMI), enable direct communication with 

still-functioning parts of the neural pathways and offer significant potential to restore various lost 

neurologic functions of patients with vision impairment, epilepsy, Parkinson's or depression [52]. 

A key element in functions restoration is MEA dedicated to interface neural tissues [53]. The 

ultimate role of the MEA is to provide precise measurement and provide safe electrical 

stimulation of neural activities when chronically implanted in the cortex.  

Remarkable progress has been reported at most bioelectronic levels of implantable BMI, but the 

electrode-tissue contacts (ETCs) remain one of the major obstacles. Contacts achieved using 

MEAs do not comply with the remaining parts of these BMIs due to the biological response to 

chronic implantation and to the electronic properties of MEAs. The success of these BMIs relies 

on electrodes which are in contact with the neural tissue. However, design and fabrication of an 

ideal interface with selectivity, good electric characteristics, sensitivity, biocompatibility, and 

long-term chemical and recording stability remain a tough challenge.  

To date, implantable MEAs have been fabricated by three common techniques:  microwire, 

micro-machined, and flexible arrays [1]. Microwires (made from tungsten or stainless steel) are 

used to focus on the individual neuron [54].One particular advantage of microwires is that they 

can be applied to access deep brain structures but the accurate location of the electrode tips 

relative to each other is not controllable because of the wire bending during implantation. Micro-

machined electrode arrays can be silicon- or metal-based. This technique provides a higher 

density of electrode-tissue interface which reduces tissue displacement compared to microwires 

and contains active electronics integrated into the arrays [3, 25, 55]. These electrodes are 

designed to be implanted in the cerebral cortex or peripheral nerves. Flexible multi-electrode 

array is another type of electrode that provide an advantage over the rigid electrode arrays 

because of the closer mechanical match with brain tissue; however, the flexible nature of these 

electrodes involves some difficulties during insertion [56].  
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In recent years, MEAs techniques have been developed to have a long-term and stable interface 

with the tissues with the brain. Several research groups try to obtain consistent recording signals 

from small groups of neurons without losing microstimulation capabilities while maintaining 

low-impedance pathways for higher charge injection and high-spatial resolution by altering the 

material compositions and geometries of the arrays [57]. So far, none of these attempts have lead 

to a major breakthrough.  

Our goal this thesis is to elaborate a biocompatible 3D MEA with high selectivity and sensitivity, 

good electrical conductivity, and high density of microelectrodes. 

1.5 Objectives of the present work 

The objectives we set out to accomplish at the beginning of this doctoral thesis project was 

design and fabrication of 3D, high-density, penetrating MEA for intracortical neural recording 

and stimulation. In particular, we wanted to improve the effectiveness of MEAs by a 3D 

structure when the needles have variable lengths such that the tips are no longer in the same 

plane, increase the density of the electrodes, decrease the impedance, and increase charge 

transfer. We also wanted to improve biocompatibility and durability of the electrodes for long 

term operation of the device implanted in neural tissue. The MEAs should cause minimum tissue 

response, i.e. encapsulation and inflammation. In addition, the ease of fabrication was important 

because when arrays become 3D, smaller, and higher in density, fabrication techniques are 

challenged to meet the dimensional and processing tolerances.   

The thesis project can be summarized by the following objectives: 

 

 Implement a novel micromachining technique to fabricate variable-height, penetrating, 

high-density neural MEAs that enable intracortical 3D recording and stimulation from/ of 

neural tissues 

 Novel dry-film based masking technology that enhances uniform tip-exposure for 

electrodes with variable-heights and improve the conventional process which is costly 

and time-consuming  

 Optimize the electrical properties of electrodes in order to achieve both the low impedance 

and high charge transfer by selective direct growth of CNTs on the tips of 3D MEAs  



6 
 

 Study the electrochemical behavior of MEAs as a function of frequency; electrochemical 

impedance spectroscopy (EIS), cyclic voltammetry (CV), and electrodes modeling 

 Evaluate the impact of parylene-C, polyethylene glycol (PEG) hydrogel, and poly-D-

lysine (PDL) on the biocompatibility of the MEAs while ensuring compatibility of the 

microelectrodes with neuroblast cells; cell culture and in vitro tests  

 

1.6 Specifications of projected MEAs 

The 3D MEAs, shown in Figure 1.1, provide a multichannel interfaces to the cerebral cortex. 

Micromachined electrode array is a 5×5 matrix of 1.65, 1.55, and 1.45 mm long electrodes in 

two perpendicular directions in order to create a pyramid-shaped array. The thickness of the 

electrodes is 200 μm at the base and about 2 μm at the tip with 100 μm spacing. Electrodes 

project out form a single block of a thin (2150±25 µm) p-type silicon (100) with a resistivity of 

0.0153-0.0158 Ωcm while electrically isolated one from each other with glass paste from the 

backside. To make electrical connection to each electrode, the backside of each pin is metalized. 

The entire upper surface of the MEA (i.e. excluding the tips) is insulated with parylene-C. The 

tips of the electrodes are sputter-coated with Pt and iridium oxide using a novel masking method 

that enhances uniform tip-exposure for variable-heights electrodes. The tips of other group of 

arrays are coated by selective direct growth of CNTs while the shanks are insulated with native 

SiO2. The variable-height penetrating MEAs presents a large surface area to the cortex and has 

the strong advantage that it floats in the cortical tissues. As the cortex moves the array moves 

with it, as a result producing little or no relative motion between the active sites and the neurons 

around it.   

In order to improve biocompatibility of the MEAs, the surface of the electrodes is coated with 

PEG hydrogel which is a biocompatible polymer. To improve neural-cell adhesion and 

proliferation and also prevent electrodes encapsulation when they are implanted in vivo, 

electrodes are coated with bioactive molecules (PDL). The novel architecture of this MEA makes 

it unique among the currently available micromachined electrode arrays, as it provides higher 

density contacts between the electrodes and targeted neural tissue facilitating stimulation or 

recording from different depths of the brain. 
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Figure 1.1. Schematic view of a silicon micromachined neural MEA with variable heights of 1.45, 

1.55, and 1.65 mm. The shank was covered with parylene-C (and PEG) and the active sites of 

each array were coated with Pt, sputtered iridium oxide (SIRO), or CNTs. The thickness of the 

electrodes was 200 μm at the base and about 2 μm at the tip with 100 μm spacing. 

1.7 Summary of contributions 

In this thesis, we have achieved 4 main contributions with respect to the improvement of the 

neural MEAs performance implanted in neural tissues.   

 Implement a novel pyramid-shaped, high-density, penetrating MEA: a 

micromachining technique was developed for building penetrating 3D MEA with a 

high electrode-density when the tips are no longer in the same plane in 2 

perpendicular directions. The issue with current available array is that it is 2D and 

provides recording data from a plane of the brain. Even the slanted one is quasi-3D 

instead of 3D [23]. Such 3D high electrode-density array (25 electrodes/1.96 mm2) is 

expected to record from different depths of the brain and provide more contacts 

between the electrodes and targeted neural tissue (greater access to neurons). The 

importance of such pyramid-shaped MEA has not been quantified but may have 

significance during injection electrodes inside the tissue. Variable-height electrodes 

may help to investigate more about neurons causal interactions (“effective 

connectivity”).  

 Introduce a novel masking technology: to coat the 3D pyramid-shaped MEA, a novel 

masking method was developed that resulted uniform tip-exposure for variable-height 
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electrodes and improved process time and cost significantly. The new method needs 

single masking step and reduced the conventional masking process steps from 14 to 6. 

The new procedure has several advantages including simpler and easier fabrication 

process, reduced production time and cost, and more uniform tip-exposure. More 

importantly, the conventional masking methods may not be practical for 3D MEAs 

since they cannot follow 3D structures. 

 Optimize the electrical properties of MEAs: the impedance is one of the most 

important electrical properties for microelectrodes. In order to achieve both the low 

impedance and high charge transfer, the electrodes were coated with CNTs by 

selective direct growth on the tips of 3D MEAs for the first time using Plasma 

Enhanced Chemical Vapor Deposition (PECVD). The CNTs coating led to a 5-fold 

decrease in impedance and a 600-fold increase in charge transfer compared with Pt 

electrode. 

 Improve biocompatibility of the MEAs: electrodes were coated with PEG hydrogel 

(well-known biocompatible polymer) to improve biological compatibility of the 

electrodes. In the next step, electrodes were coated with bioactive molecule; PDL. An 

in vitro study was performed to test the capacity of PDL to improve neural-cell 

adhesion and proliferation. Increased proliferation of the neuroblast cells on the 

microelectrodes was observed in the presence of the PDL. The PDL coating increased 

cell adhesion by more than 50%. It is noteworthy that the arrays with CNT active 

sites had greater cell numbers than the electrodes with metallic tips, both before and 

after PDL deposition. These results show that the CNTs increased biocompatibility 

and enhanced cellular responsiveness by attracting more neural cells. 

 

 

1.8 Organization of the thesis 

This thesis is presented in 5 chapters. In chapter 2, we review and compare different MEAs 

technologies and their characteristics. A technical overview of recent advances in the field of 

microelectrodes fabrication, characterization, and modeling is given. Moreover, the effect of 

different coatings to improve electrical properties and biocompatibility of the electrodes is 

presented.  
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The main body of the thesis is presented in chapter 3 and 4. In chapter 3, the experimental 

procedures of MEAs fabrication are described in detail. This chapter provides in depth 

explanation to the experimental techniques and characterization tools that were used during the 

course of this work. Next, the experimental results of MEAs microfabrication process, novel 

masking technology, direct growth of CNTs at the tips of the 3D MEAs, and the influence of 

CNTs on the electrical properties of the electrodes are presented. Besides, electrical circuit 

model of microelectrodes is presented in this chapter.  In chapter 4, two different techniques to 

improve MEAs biocompatibility are presented. The role of biocompatible polymers and 

bioactive molecules to promote and stabilize cell attachment on the surface of the 

microelectrodes will evaluate by in vitro cell-culture tests.   

Finally, Chapter 5 provides a general discussion of the results that are presented in the thesis. We 

will discuss what implications our work will have in the future of intracortical MEAs. The 

document will end with general conclusions and possible future work on fabricated MEA. 
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CHAPTER 2      OVERVIEW OF IMPLANTABLE MICROELECTRODE ARRAYS 

 

This chapter will be devoted to a review of the microelectrode arrays (MEAs) which are using 

for stimulation and recording of/ from neural tissue. Both stimulation and recording 

microelectrodes use the same type of fabrication technologies. Next, the electrical and 

mechanical properties of the MEAs will be presented. Moreover, MEAs applications and variety 

of technologies that have been used to fabricate MEAs will be described and discussed. In 

addition, different methods to improve biocompatibility of the electrodes will be reviewed. 

Finally, an overview of recent advances in the field of implantable MEAs, equivalent circuit 

model, and perspective of this work will be given.       

 

2.1 Introduction to neural MEAs 

Neural MEAs are spatial arrangement of microelectrodes which serve as the first critical 

interface to the neural tissue for either signal recording or for tissue stimulation. Neural 

microelectrodes can be either penetrating or surface electrodes. The penetrating MEAs can 

measure small signals and require less power to stimulate neurons due to their high selectivity 

and sensitivity. Therefore, they are preferred for stimulate single units and fast recordings. The 

surface electrodes have low selectivity and sensitivity; however, they cause less tissue damage 

because they do not penetrate in neural tissue. In this thesis, our scope is penetrating MEAs. 

The first type of microelectrodes in neural investigations were metal wire electrodes to monitor 

the extracellular electrical activity in 1950s [31]. The rapid development in microfabrication 

technology accelerated the advent of silicon-based MEAs. In 1970s, Wise et al. reported the first 

micromachined silicon-based MEAs to interface neural tissues [58]. Since this pioneer work, 

silicon-based microfabrication techniques are among the dominant tools in fabrication of neural 

microelectrodes. Silicon MEMS (micro-electro-mechanical systems) technology including 

micromachining techniques, photolithography, and thin-film deposition provided well-defined 

size and spacing of recording sites, high accuracy, the repeatability, and low cost fabrication 

scheme [59]. Besides, silicon micromachining facilitate the direct integration of electronic 

circuitry on the backend of active microelectrodes [60-62]. Silicon-based MEAs have been 

shown promising results in terms of biocompatibility for chronic implant in vivo; however, to 

improve the signal quality and long-term reliability the issues including implantation method, 
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physical and chemical properties of coating materials have to be considered [63-66]. The 

progress in microfabrication techniques enhanced the combination of functional silicon and 

polymer parts to reduce the mechanical mismatch between the neural tissue and the implant [67, 

68]. Furthermore, 3D structure of the arrays has shown the potential for high-density recording 

and stimulation [69]. All the above results present the versatility of silicon MEAs technology for 

specific neural applications. The recent breakthroughs can conclude that there is still a lot of 

room to combine the state-of-the-art technology with that of silicon microtechnology for new 

possibilities to increase the resolution of stimulation and recording techniques [70]. 

Different types of MEAs are functionally similar in terms of recording or stimulation 

requirements, but the devices are different in depth including spatial arrangements and size of 

active sites, fabrication techniques, materials, and extensibility of advanced and organic 

materials. Critical parameters which affect the performance and effectiveness of the MEAs are: 

 The density of the electrodes which is the ability of an array for higher or lower spatial 

resolution during recording and stimulation. 

 The architecture of the MEAs as it can enhance the access to different depth of the brain 

and also to individual neurons. 

 The impedance of the electrodes that should be low to reduce the stimulation voltage 

and the power. The high electrode impedance limits the ability to resolve the relatively 

weak neural signals. 

 The mechanical compatibility of the electrodes (coating electrodes with polymers) with 

neural tissue that may minimize trauma to tissue during insertion. 

 The durability and reliability of the MEAs is important for long-term operation of the 

electrodes. 

 The biocompatibility of the electrodes must be taken into account to minimize the tissue 

response. 

 Ease of fabrication should be considered as MEAs become smaller and challenges will 

be increased. 
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2.2 Properties of MEAs 

The mechanical, electrical, and biological properties affecting the performance of the MEAs are 

discussed and reviewed in this section. 

Mechanical properties: the shape, architecture, and materials are some of the important factors 

that can affect the mechanical properties of the electrodes [71]. The MEAs should be 

architecturally compatible with the geometry of the targeted tissue. A fit match between the array 

and the neural tissue avoid gap between them resulting less fibrotic tissue developed between the 

array and the target area. The 3D structure of the array with high electrode density may excite 

more population of neurons. Furthermore, the array geometry plays an important role in the 

tissue damage during the insertion e.g. design very sharp electrodes can help to reduce tissue 

damage. The brain tissue to compare with the electrode materials is relatively soft. The Young’s 

module of the brain is between 15.9 Pa and 42.6 Pa [72]. To reduce reactive response, we have to 

choose the materials with Young’s modulus close to the brain tissue.  

Electrical properties: one of the most important electrical properties of the electrodes is 

impedance which is characterized as the magnitude of the impedance at 1 kHz; frequency that is 

used for neural electrodes since the center of energy of action potentials is about 1 kHz [73]. The 

impedance of the electrodes depends on the surface area (R = ρl/S) of the active site (tip 

exposure). To reduce tissue damage and increase the selectivity, smaller electrodes are desired 

and the result will be high impedance and less sensitivity. Using materials with intrinsically 

larger surface area not only decreases the impedance but also increases the charge transfer 

through electrodes to the targeted tissue. In order to have identical electrical properties of each 

electrode in an array and interpret recorded signals during physiological experiments reliably, tip 

exposures should be uniform.  

Biocompatibility: the implanted MEAs should not damage cells, tissue or enzymes, should not 

evoke a toxic, and should be stable in a long term without encapsulation. The most dominant 

reasons for short-term immune response are geometry (shape and size) [29], mechanical impact 

(design and implantation parameters) [74, 75], and surface properties [76]. Aforementioned 

parameters can efficiently contribute to delay or control immune response of the surrounding 

tissue in chronic implants. When the MEA are inserted into brain tissue, numerous foreign body 
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responses can occur. For example, if the electrodes are implanted for long periods of time, the 

formation of glial scar tissue can occur, which can encapsulate and isolate the electrodes from 

the neurons, resulting in a loss of electrical connectivity and increased impedance [50].   

2.3 Application of  penetrating MEAs  

Neural interfaces, which allow direct and selective stimulation and recording of/ from neural 

tissues, offer significant potential to understand neurophysiological processes of human 

functions and behavior.  They have also represented great promise restoring various neurological 

functions lost to disease, stroke or injury, control of assistive instrumentation for the patient with 

motor dysfunction, and neural prostheses to restore vision and auditory perception. In patients 

with neurological disorders, the communication between central or peripheral nervous system is 

damaged or disconnected that can cause full or partial paralysis of motor or sensory skills. The 

field of neuroprosthetic devices has been focused for many decades to improve the quality of life 

of paralyzed patients [77-80]. A part of goal of developing neural interfaces is to record neural 

signals. The firing pattern of neural signals, coming from the motor cortex, during a certain 

operation are recorded by implanted high-density MEAs then decoded and combined with 

behavioral changes to correlate the signals with certain “movement interactions”. Thereby, a 

neural interface can potentially allow a patient to control her prosthetic limbs using intuitive 

movement intentions.  

The design of neural interface devices depends on the application. Neural interface devices have 

been developed for application in the brain cortex, eye, ear, or around peripheral nerves [39, 81]. 

Over the past few years, an increasing number of studies have focused on MEAs that will 

interface to neurons of the visual cortex [12, 42] or to neurons of the retina [37, 82]. Neural 

interface devices are implanted chronically onto the visual cortex of a blind patient to electrical 

stimulation to restore the vision. Cochlear implant is the most successful biomimetic device 

which is already in commercial use [83]. The relative complexity of visual system and 

intracortical implant presents challenges to researchers attempting visual prostheses.    

Develop a chronically stable interface for exchange of information between implanted device 

and biological environment is essential for any neural prosthesis. The current neural interface 



15 
 

application is based on using metal-, silicon-, or polymer-based microelectrodes placed in 

proximity of the target neurons (Figure 2.1).   

 

Figure 2.1. Implanted microelectrode in the cortex. Neural stimulation occurs via current passes 

through the tip to the surrounding neurons. Reprinted with permission from Ref. [13]. 

 

2.4 Fabrication technologies of penetrating MEAs 

To this date, penetrating MEAs have been fabricated by a number of different techniques: 

microwires, micromachining, and flexible electrode approach. Since the fabrication technique 

affects the functionality of the microelectrodes some essentials should be taken into account in 

their design and fabrication such as 1) ease of fabrication to allow mass production, 2) ability to 

develop high-density sharp electrodes with various 3D architecture suitable for insertion into the 

cortex, and 3) compatible with IC manufacturing techniques. In terms of substrate material for 

the MEAs, silicon is still preferred material for fabrication and has been shown promising 

results; especially its chronic in vivo performance is quite remarkable also it can be shaped with 
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precision greater than perhaps any other material. Moreover, integrated electronic connect 

directly to the MEAs with using different packaging techniques.  

In this section, we will review and discuss aforementioned techniques and their advantages and 

drawbacks.   

2.4.1 Traditional Microelectrode arrays 

Metal-wire electrodes 

One of the traditional neural probes is single metal-wire electrode consist of a metal needle 

covered by insulation except at the tip. The tip of the wire is etched to form a sharp needle-

shaped electrode. The entire surface of the metal-wire (excluding the tips) is insulated with 

quarts glass, Teflon (trafluoroethylene- TFE), or polymer films such as parylene and polyimide. 

Different types of metals like stainless steel, tungsten, platinum, iridium, and titanium nitride are 

used as a wire (Figure 2.2). Although the metal-wire electrode has a very sharp tip it is difficult 

to control the position and size of the opening of the electrodes.   

 

Figure 2.2. Scanning electron microscopy (SEM) images of Glass insulation and the metal part 

(Pt) of the metal-wire electrode. Reprinted with permission from Ref. [14]. 
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Glass electrodes    

Another type of neural electrodes are micropipettes that penetrate to the cell membrane and are 

generally used for intracellular studies. The common technique in the fabrication of such 

micropipette electrodes involves a two-stage pulling process. Briefly, a thin walled glass 

capillary tube which is 1 to 2 mm in diameter is heated electrically along the two extremities. 

When some extension occurs at the softened glass then larger tension is applied to make sharp 

tips at the breaking point. The diameter of the tip and the shank can be controlled by changing 

the pulling force and the temperature. To form the conductive path to the tissue, the micropipette 

is filled with an electrolyte like KCl. Such micropipettes have a very thin cone at the tips which 

is very fragile and hard to fill with electrolyte. They have also very high electrical resistivity. 

These types of neural probes are limited by high impedance and making an array of electrodes 

[84]. Figure 2.3 shows scanning electron microscopy (SEM) images of pre-processed pipettes 

(top) and optical microscopy images of conventionally processed pipettes.   

 

Figure 2.3. SEM (top) and Optical microscopy images of pre-processed and conventionally 

processed glass pipettes. Reprinted with permission from Ref. [15]. 
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2.4.2 Microwires 

Microwires, made from tungsten or stainless steel, were the first implantable electrode arrays to 

record chronically from the brain. Their narrow structures let them be placed very close to single 

neurons in vivo. One advantage of microwires is that they can be applied to access deep brain 

structures [54]. Microwires typically consist of metal needles insulated with polymer film 

(parylene or polyimide) except at the tips. The tips of the metal wires are electrochemically 

etched to form a sharp tip.  The diameter of the wires is normally less than 100 µm. Electrodes 

are then micro-welded and glued to a laser-drilled ceramic substrate to make a multiple-electrode 

array (Figure 2.4) [85, 86].  

 

Figure 2.4. Microwires: (a) Wire microelectrodes embedded in ceramic substrate. The anchors 

ensure that the array stay in the brain, (b) Ceramic well-structure connected to parylene-C 

insulated gold wires. Electrodes are inserted perpendicular into the substrate, (c) SEM image of 

microwire insulated with 3 µm parylene-C except at the tip. Reprinted with permission from Ref. 

[16]. 

Metal microelectrodes are fabricated from different types of materials such as stainless steel, 

tungsten, platinum, iridium, or gold. Since stainless steel is fragile near the tips, tungsten was 

replaced due to the stiffness and rugged structure, and to provide very stable recordings; 
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however, tungsten is very noisy at low frequencies [87]. A platinum electrode plated with 

platinum black gives stable recordings, high signal-to-noise ratio (SNR), and creates a porous 

low-impedance structure, but it is mechanically fragile [88]. Iridium metal wire is extremely 

stiff, highly resistance to corrosion, and its surface is electrochemically activated, which causes it 

to increase the maximum charge density [89]. Microwires remain in use today and fabrication 

methods have not changed basically. They give long-lasting individual neurons recording, 

sometimes more than one year, so they allow neuroscientists to focus on individual neurons [86]. 

In all the above-cited cases, the final contact between electrodes and brain tissue is a metal.  

Recently, carbon nanotubes (CNTs) have been used to coat the tips of the metal wire electrodes. 

In 2008, a group of researchers in Texas coated the tips of conventional tungsten and stainless 

steel wire electrodes with CNTs using electrochemical deposition method (Figure 2.5). CNT-

coated electrodes not only provided an appropriate substrate for neural growth but also improved 

both the recording and stimulating characteristics of neural electrodes [17].  

       

Figure 2.5. SEM images of metal microelectrodes coated with CNTs: (a) CNTs covalently 

attached to the tungsten electrode, (b) CNTs were electrochemically deposited at the recording 

sites of the electrode. Reprinted with permission from Ref. [17]. 

One particular disadvantage of microwires is bending of the wires during implantation, so the 

accurate location of the electrode tips relative to each other is not controllable. The micro wire 

electrode arrays are also limited in their geometry and reproducibility, causing considerable 

insertion tissue damage, and they are not always compatible with silicon-based integrated 

circuits. 

(b) (a) 
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2.4.3 Micromachined MEAs 

Arrays of microelectrodes to record signals for a population of neurons or stimulate a network of 

neurons are necessary. Micromachined MEAs/ MEMS-based microelectrodes have advantages 

over other types of technologies including reproducibility, various architectures, high precision, 

and Complementary metal–oxide–semiconductor (CMOS)-technology compatible [44]. Silicon 

photolithography and micromachining techniques allow for exceptional control over electrode 

size, shape, spacing, and multiple active sites along the shank. Such a high level control on the 

structure of the MEAs enhances recording and/or stimulation from/of different depth of the 

brain. Furthermore, this technology provides the possibility to suit the geometry of the MEAs to 

the neural system under study. Finally, MEMS technology adds more possibilities, such as 

microfluidics for drug delivery and integrated micro actuators [90, 91]. The fabrication of 

micromachined electrodes mostly relies on two basic approaches; In-plane and out-of-plane 

penetrating MEAs. These types of microelectrodes will review and discussed in details in the 

following sections. 

     

2.4.3.1 In-plane microelectrodes 

Michigan Array 

One of the first architecture was developed at the University of Michigan and Stanford University. 

In these MEAs, microelectrode contacts are patterned along the shanks. University of Michigan 

has designed a variety of penetrating microelectrodes including single-shaft, multi-shaft, and 3D 

structure of the shafts [58, 92-94]. Microelectrodes were fabricated using thin-film technology 

and micromachining techniques. Boron diffusion on silicon followed by wet etching defines the 

substrate shape of the electrode probes. The recording sites were located on the silicon substrate 

consisted of gold, Pt, or iridium. The conductors are insulated above and below by multilayers of 

dielectric materials such as silicon dioxide (SiO2) and silicon nitride (Si3N4) (Figure 2.6).        



21 
 

      

Figure 2.6. Michigan MEA: (a) Basic structure of a multisite microprobe presenting the 

substrate, insulation layers, and recording sites, (b) SEM image of the tip of neural 

microelectrode. Reprinted with permission from Ref. [18]. 

       

The silicon substrate shank is 15 μm thick, 3 mm long and 90 μm wide at the base, narrowing to 

20 μm at the tip. The surface area of the recording sites is between 100 to 400 μm2 (Figure 2.7). 

                             

 

Figure 2.7. Typical Michigan array: (a) A prototype of the array, consisting of 64 sites on 200 µm 

centers with 1640 µm width and 4 mm long shanks. The interface is shown with the 1 mm × 1 

mm × 0.5 mm base resting on a penny, (b) General schematic of the four-shank electrodes 

forming 16-channels probe. Reprinted with permission from Ref. [19]. 

(a) (b) 

(a) 
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The recording sites are typically made of iridium or gold. In order to improve long-term 

performance and electrical properties of the electrodes, recording sites were coated with 

conductive polymers such as polypyrrole (Ppy), poly (3, or 4- ethylenedioxythiophene-PEDOT), 

or CNTs. The results showed that CNTs incorporation by increasing the effective surface area 

could decrease site-tissue impedance [6, 95]. 

This kind of electrodes can easily merge with on-chip circuitry, signal processing, and wireless 

interfaces. Although these electrodes have been successfully used for a lot of application, there 

are few limitations of this technology. There is a minimum thickness limit for Michigan probes as 

wet etching process has been used for making sharp tips. The insertion of the probes need special 

guide. Thus, the shanks cause large tissue displacement and may damage significant number of 

neurons during insertion. These probes are fabricated through a process using several 

photolithography steps that is expensive and time consuming [96]. Thin silicon-film cable is easy 

to break and is not robust enough.  

 

Flexible array 

A variety of MEAs has been developed for recording and stimulation neural activities; however, 

most MEAs are based on a rigid substrate and cause neural damage and inflammation at the 

implant site for intracortical implant. Flexible arrays provide high mechanical flexibility, good 

biocompatibility, and high resistance to solvents [10]. Different polymers such as polyimide and 

parylene are used as a structural substrate. Polyimide-based intracortical MEAs are fabricated 

with standard planar photolithography CMOS compatible technique on silicon. In this technique, 

the electrode metal layer is sandwiched between two polyimide layers without using silicon 

structure. The 3D structure of the flexible probes are formed by bending the shanks out of the 2D 

plane (Figure 2.8) [20]. Polyimide also provides an ideal surface for the selective attachment of 

bioactive molecules onto the device which improve long-term reactions at the electrode-tissue 

interface [97].  
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Figure 2.8. Flexible multi-channel MEAs: (a) 3D flexible MEAs after folding, (b) Each probe 

with 3 recording sites. Reprinted with permission from Ref. [20].  

Growth CNTs on the recording sites of polyimide substrate could improve both the electrode 

impedance and the charge-transfer capacity (Figure 2.9) [21].  

 

Figure 2.9. Flexible MEA: (a) A magnified photo of the 4×4 electrode array, (b) SEM image of 

the grown CNTs, (c) High-resolution transmission electron microscopy (HRTEM) image of the 

grown CNTs. Reprinted with permission from Ref. [21]. 

 

A new parylene-based multi-sided MEA with electrode sites at the top-side, back-side, and edge 

has been presented for neural recording and passive drug delivery. This feature creates the 

smallest footprint (85 μm2) to date of a functional recording electrode [98]. 

The flexibility of polyimide may improve the mechanical mismatch between rigid electrodes and 

neural tissue but a major drawback to this technique is the microelectrodes are not enough stiff to 

insert into the brain on their own, so a stiff supporter is needed for the insertion. Moreover, 

polyimide-based MEAs are inclined to failure because of possible moisture absorption by 

(a) (b) (c) 
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polyimide. Polymers interconnect cables that are used for the interconnections, required different 

bonding methods to compare with silicon neural probes. 

Silicon on insulator (SOI) probes 

A new silicon-on-insulator (SOI)-based MEAs was developed in Caltech and Stanford using a 

plasma and wet etching process to define the probe outline and make sharp tips [99]. The method 

was improved using only deep reactive ion etching (DRIE) process on SOI substrate with SiO2 

layer acting as an etch stop. The array of iridium and gold electrodes were patterned on top of the 

shaft by E-beam evaporation (Figure 2.10) [22]. In some fabrication methods 

polydimethylsiloxane (PDMS) was used as an adhesion layer between electrodes and neural 

tissue. In this technology, the thickness of the probe is determined by the thickness of the SOI 

wafer as a result only one thickness of probe can be fabricated from the same wafer. Since the 

SOI wafers are expensive the fabrication process will be costly.    

 

 

Figure 2.10. SOI-based probe: (a) Schematic of the probe structure, (b) SEM image of a probe tip. 

The thickness of the interconnect lines is 1 µm, (c) SEM image of the 1 µm × 1 µm iridium 

recording site. Reprinted with permission from Ref. [22]. 
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2.4.3.2 Out-of-plane microelectrodes 

Utah electrode array 

Utah electrode array was invented by R. A. Normann at the University of Utah. Utah and Utah 

Slanted electrode arrays include sharpened silicon needles electrically isolated from each other. 

Electrodes are silicon-based and electrically separated from the backside using diamond saw and 

glass paste. Electrode columns are separated from the other side of the wafer by again sawing. 

Wet-etching process is used to transfer electrode columns to the needles. Parylene-C is used to 

insulate the body of the electrodes excluding the tips. The tip of the electrodes is coated with 

platinum or iridium oxide (Figure 2.11) [100]. The architecture of these electrodes enables single-

unit recording with high-spatial resolution, and excites the neurons by electrical stimulation. This 

type of electrodes is fabricated out-of-plane. Thus, the maximum length of the electrodes depends 

on the silicon wafers thickness. The longest Utah electrode is 1.5 mm and only one recording site 

can be made in each pin as a result the MEAs provides more selective stimulation/ recording 

of/from the neural tissue to compared with in-plane MEAs. Connectors are wire-bonded to the 

electrodes.   

 

Figure 2.11. Utah silicon-based MEAs: (a) 2D flat electrode array; (b) Slanted electrode array. 

Reprinted with permission from Ref. [23]. 

 

The drawback of this MEA architecture is that it is 2D which provides recording data only from a 

plane area of the brain. Even the Slanted Utah array is quasi-3D instead of 3D [101]. The vast 
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wire-bonding is used to connect the array to electronic circuitry which limits the productivity. 

Moreover, the stiffness of the wire bundle makes some limitation during implantation.  

Electrical discharge machining (EDM) 

The ultra-high aspect ratio metal-based MEAs were fabricated using Electrical discharge 

machining (EDM) technique associated with electrochemical steps [25]. Fabricate variable 

architectures are possible with this technique. The electrodes were made from stainless steel or 

titanium. Electrodes were insulated from each other by epoxy. After chemical etching to smooth 

the electrodes surface, electrodes are insulated with parylene-C excluding the tips. Pt is electro-

deposited at the tips to facilitate charge transfer from electrodes to the neural tissue (Figure 2.12). 

This MEA was developed to be assembled with integrated circuits on a thin substrate [24].  

 

Figure 2.12. Metal-based MEAs using EDM technique: (a) SEM image of a parylene-coated 

assembly, consisting of Pt-coated electrode tips, (b) Stainless steel electrode arrays after 

electrochemical polishing. Reprinted with permission from Ref. [24, 25]. 

  

2.4.4 Other approaches to MEAs fabrication 

 Patch clamp 

The patch clamp technique is used in the study of excitable cells such as neurons 

cardiomyocytes, muscle fibers, and pancreatic beta cells. This technique was developed in 1970s 

to record the current of single ion channel molecules for the first time, which improved 

https://en.wikipedia.org/wiki/Cardiomyocyte
https://en.wikipedia.org/wiki/Muscle_fiber
https://en.wikipedia.org/wiki/Pancreas
https://en.wikipedia.org/wiki/Beta_cell
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understanding of the role of channels in the fundamental cell processes such as action potential 

and nerve activity [71].  

The patch-clamp consists of an electrode inside a glass pipette. Depending on the experiment the 

pipette can be filled with a solution matching the ionic composition of the cell. The pipette is 

brought in contact with a very small area or patch of neural membrane. By applying gentle 

suction to the pipette a giga-seal is formed between the pipette and the cell membrane. An 

electrical seal (high resistance) between the cell membrane and the pipette results in electrical 

isolation. Applying suction breaks the patch of the cell membrane in contact with the pipette and 

the inside of the cell is accessible (Figure 2.13). The currents passing through the ion channels of 

the cell can measure with electrode while keeping the membrane voltage constant. The issue 

with patch clamp is that maintaining contact with the cell for a long time is difficult and may 

result in destruction of the cells. Another problem is we cannot have an array of patch clamp 

electrodes for recording.          

 

Figure 2.13. Patch clamp recording form the neuron cell. In the cell-attached configuration, the 

patch electrode is sealed to the surface of the intact cell allowing channel activity in the patch of 

membrane under the electrode tip. Reprinted with permission from Ref. [26].  

Silicon-wire array 

A micro silicon-wire penetrating MEA with on-chip circuits has been developed for 

neuroelectronic interface systems. The high-density and low-invasive silicon (Si) probe with a 

few microns in diameter was fabricated using selective vapor-liquid-solid (VLS) growth method 
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on Si (111) wafer in predetermined positions and probe sizes [27]. The diameter of the Si probes 

is controlled using patterned gold dots deposition while the probe length is controlled applying 

the growth rate of 0.5 µm/min. Silicon probes with the length of 160 µm and 3.5 µm diameter at 

tip, were obtained after 2 h growth at 700 ºC and the Si2H6 gas pressure of 3 × 10-3 Pa. Wring 

process for on-chip circuits on silicon wafer was performed prior to VLS growth. Si probes were 

grown perpendicular to the wafer surface. The greatest advantage of this fabrication technology 

is that the microelectrode array can be integrated with IC signal processors on the same substrate 

(Figure 2.14). Although the authors presented a novel fabrication method including of integration 

a probe with the IC; however, the performance of the IC in the in vivo has not been demonstrated 

yet.   

 

Figure 2.14. The silicon-wire probe on Si (111) with W wiring circuit: (a) SEM image of silicon-

wire probe combined with wring process for on-chip circuits on same a silicon wafer, (b) Silicon 

probe in 30 µm in length and 2 µm in diameter at a growth temperature of 600 ºC for 30 min, (c) 

2 × 2 array of selective silicon-wire probes with 160 µm in length and 3.5 µm diameter at tips. 

The VLS growth was performed at 700 ºC for 2 h. Reprinted with permission from Ref. [27]. 

Interfacing neurons and semiconductor chip    

Another approach is direct non-invasive interfacing of neurons and transistors. In this method, a 

semiconductor chip joins to the nerve cells. Fromherz has worked on electrical interfacing of 

individual neurons and silicon microstructures, as well as the assembly of hybrid systems made 

of neuronal networks and semiconductor microelectronics. Transistors are coupled to neurons for 
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recording without electrochemical processes. To couple electron-conducting semiconductor and 

the ion-conducting neurons, a close contact of cell membrane and oxidized silicon with a high 

resistance of the junction is required. Neuron excitations (action potentials) can be recorded by 

capacitive contacts and by transistors. This integrated system can be achieved by the outgrowth 

of neuronal networks on the surface of silicon chip and implementing electrical circuits on the 

chip [28]. Figure 2.15 is shown the combination of ion channels on a transistor when the cells 

were injected on the device using a glass capillary. 

 

Figure 2.15. Combination of ion-channel on a transistor: (a) HEK293 cells with a hSlo potassium 

channel on a silicon chip with a linear array of transistors. The cells appear in the color of the 

florescence of GFP, (b) Nerve cells from the leech on the open gate oxide of a field-effect 

transistor. The n-type silicon chip are shown in dark, the p-doped sources and drains are bright. 

The gates with the length of 1.8 µm and the width of 20 µm show no contract. The cell was 

injected using a glass capillary. Reprinted with permission from Ref. [28]. 

  

In order to stimulate the neurons and inject sufficient current into the junction, a high capacitance 

per unit area of the chip under the cells is required due to solid-electrolyte interface without 

Faradic current. Stimulation spots were fabricated efficiently by high local doping of silicon and 

insulation with a thin layer of silicon dioxide. 
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To interface a neuronal network with a semiconductor chip, a circular array of two-way contacts 

made of a capacitive stimulation spot and a transistor was fabricated. Individual neurons from 

the pond snail were placed on the chip and let the neurons join by random outgrowth in the 

central area. Around each two-way contact, pins of polyimide were fabricated using 

photolithography to immobilize the neurons. Figure 2.16 demonstrates neuronal network on 

silicon chip. Voltage pulses were applied to stimulate neurons and elicit an action potential in 

neurons. The signal was recorded by an adjacent transistor.    

 

Figure 2.16. Neuronal network on silicon chip: (a) SEM image of a two-way contact with the 

pins of polyimide. St (stimulator wings) and transistor (S: source, D: drain, G: gate), (b) SEM 

image of immobilized neurons form the pond snail after three days in culture, (c) SEM of a 

neuronal network with the cell bodies on a double circle of two-ways contacts after two days in 

culture. Reprinted with permission from Ref. [28]. 

2.5 Comparison of penetrating microelectrodes technologies 

Findings to date demonstrate different methods for recording and stimulating neuron activities; 

however, all these methods have some drawbacks. The following tables (Tables 2.1, 2.2, and 2.3) 

show a brief comparison of various techniques to fabricate penetrating MEAs. 
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Table 2.1. Advantages and drawbacks of MEAs fabrication methods [1-4] 

Method Advantages Drawbacks 

Microwires  

-Long-lasting and single-

neuron recording  

-Access to deep brain 

structures 

-Multi-neuronal recordings 

for simultaneous recording at 

the level of neural 

populations 

-Electrode tips location cannot be 

controlled (to bend during 

implantation) 

-No embedded microfluidic 

channel 

-Incompatible with electronic 

integrated circuits which are silicon 

based 

-Limited in their geometry and 

reproducibility 

 

 

 

Micromachined 

arrays 

In-plane 

-Spatial relation between the 

electrode sites remains fixed 

-Reproducible with high 

spatial resolution (thin-film 

technology) 

-Facilitates current source 

density analysis because of 

linear arrangement of 

recording sites along a single 

shank 

-More tissue displacement because 

of the shank  

-Dura mater should be removed for 

inserting the electrodes  

-More damages in the brain tissue 

due to large electronic structure  

-Rigid and may fracture 

-Several photolithography steps 

(expensive and time consuming) 

Out-of-

plane 

-High degree of selectivity in 

stimulation and recording 

-Ease of implantation 

-Compatible with IC 

manufacturing technique 

(silicon-based MEAs) 

-Rigid and may fracture 

-Lack of 3D structure 

- The vast wire-bonding limits the 

productivity 

 

 

 

Flexible arrays 

-Good electrical insulation 

and adhesion properties 

-Conformal coverage with 

the brain tissue surfaces 

-Reduces the chronic tissue 

inflammation response 

-Flexibility nature implies 

difficulty in insertion  

-Possible moisture absorption by 

polymers 
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Table 2.2. Characterization of MEAs technologies [5, 6] 

MEAs 

Recording 

sites 

Mean charge density 

(mC/cm2) Mean Z1kHz (kΩ) 

 

Silicon- 

based 

Utah array 
SIROF 96 2 6.1 ± 0.2 

Pt 96 0.3 125 ± 0.25 

Michigan 

array 

Ppy1 64 19.5 ± 2.1 184 ± 5.3 

PEDOT2 64 2.5 ± 1.4 392 ± 6.2 

TDT3 Microwires 48 5.10 ± 0.40 19.9 ± 0.82 

1Ppy: Polypyrrole 
2PEDOT: Poly (3, or 4- ethylenedioxythiophene 
3TDT: Tucker Davis Technologies. 

 

 

Table 2.3. Comparison of microelectrodes structure [7-10] 

MEAs Probe/ Site geometry Substrate material 
Recording site 

material 

Microwires 

 

Diameter: 50 μm 

Spacing: 400 µm 

Tip angle: 45° 

Tungsten, Stainless 

steel, Pt, Titanium 

Polyimide/ Parylene-C 

insulation 

Tungsten, Stainless 

steel, Pt, Titanium 

Silicon- 

based 

arrays 

 

Utah array 

 

Shank length: 1.5 mm 

Base: 1.6 mm2 

Spacing: 400 µm 

Boron doped Silicon 

Parylene-C insulation 
Pt, SIROF1, CNTs 

Michigan 

array 

Shank length: 3mm 

Probe thickness: 15 μm 

Probe width: 33-55 µm 

Spacing: 100 µm 

Silicon 

Silicon dioxide/ Silicon 

nitride/ Parylene-C 

insulation 

Gold, Iridium oxide, 

PEDOT, CNTs 

Flexible arrays Shank thickness: 15 µm 
Polyimide/  Parylene/ 

Benzocyclobutene 
Gold, Ppy, PEDOT 

1SIROF: Sputtered iridium oxide film 
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2.6  Planar microelectrode arrays (pMEA) 

Planar microelectrode arrays (pMEA) represent a unique device to monitor the activity of 

neuronal networks. The first pMEA recording obtained from cultures of neurons (ganglia form 

neonatal rats) by Pine in 1980 [102]. These devices are fabricated by standard photolithography 

techniques and are like a petri dish with electrodes embedded into the culture substrate and 

connected to the recording/ stimulation system. Highly sensitive sensors require a low limit of 

signal detection and a high signal-to-noise ratio. This can be achieved by increasing the 

electrochemical active surface area without increasing the overall geometric dimensions.  

Nanostructures such as gold nanowires, platinum nanowires, silicon nanowires, and CNTs are 

promising structures when they are integrated onto sensing microelectrodes due to their high 

surface-to-volume ratio. CNT offers very large surface area comparing with other 

nanostructures. CNTs can be synthesized in-situ, synthesized on a growth substrate then transfer 

to the main substrate, or grow directly on substrate by a chemical vapor deposition (CVD) 

technique. SEM images of planar microelectrode array combined with vertically aligned CNTs 

onto recording sites has been shown in Figure 2.17.  

 

Figure 2.17. SEM images of planar microelectrode array with 60 individual CNT electrodes. 

Circuit paths are insulated with 100 nm silicon dioxide layer: (a) Top view of the planar 

microelectrode array showing the 60 individual electrodes, (b-d) Different magnification of 
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vertical CNT electrode network and a single CNT electrode. Reprinted with permission from 

Ref. [11]. 

To fabricate microelectrodes with vertically aligned nanotube networks, highly doped poly-

silicon is deposited onto a silicon dioxide substrate then structured by photolithography and dry-

etched by reactive ion etching. The resulting electrodes and circuit paths are insulated by an 

oxide layer. In the next step, resist is spin coated and structured by photolithography. Recording 

sites will be opened using hydrofluoric etching. The catalysts (Aluminum/ Iron) will deposit onto 

recording   

 

Figure 2.18. Process flow of microelectrodes fabrication with vertically aligned CNT networks: 

(a) Deposition of poly-silicon on silicon dioxide by photolithography and dry reactive ion 

etching, (b) Insulation electrodes and circuit path with a thermal oxide layer using dry thermal 

oxidation, (c) Resist spin coating and photolithography, (d) Hydrofluoric etching to open the 

electrode sites, (e) Aluminum and iron deposition that works as catalysts, (f) Remove the resist, 

(g) Direct CVD growth of vertically aligned CNTs. Reprinted with permission from Ref. [11]. 
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sites prior to CNTs deposition.  In the last step, vertical CNTs are grown using CVD technique 

(Figure 2.18) [11].  

For electrochemical characterization, microelectrodes were studied by electrochemical 

impedance spectroscopy and cyclic voltammetry. Phosphate-buffered saline was used as an 

electrolyte and Ag/AgCl electrode as a reference electrode. Results for a planar poly-silicon 

electrode (before CNTs deposition) and electrodes with short vertically aligned CNTs grown on 

poly-silicon electrodes with a height of 2 µm are shown in Table 2.4.   

Table 2.4. Impedance of the poly-silicon electrode before and after CNTs deposition [11] 

CNTs height (µm) Impedance at 1 kHz in kΩ 

0 1687 ± 243 

2 29.7 ± 7.5 

  

To deposit gold nanopillars instead of vertical CNT networks onto active sites of the 

microelectrodes, the track-etched polycarbonate nanopore membrane is used as template which 

is commercially available and provides the fabrication of one dimensional metallic nanomaterials 

on substrates. The height of the metallic structure is several micrometers. The process is 

integrated into the fabrication process and no transfer of nanostructures is required.  

The performance of nanopillar electrodes was investigated at 1 kHz frequency which is suited 

best to compare the performance of microelectrodes since the range of biological signals is 800-

3000 Hz. Results of impedance measurements has been shown in Table 2.5 for different 

naopillars height [12]. SEM images of processed microelectrode arrays are shown in Figure 2.19. 

In first two microscopic pictures (Figure 2.19 (a) & (b)), nanopillars are appear in dark spots. 

The nanostructure of the gold nanopillars are shown in Figure 2.19 (c) & (d). The diameter of the 

nanopillars is 200 nm and the height is varies between 4 to 22.5 µm.    
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Figure 2.19. SEM images of planar microelectrodes with gold nanopillars onto the recording 

sites: (a-c) Top-view of planar microelectrodes with different magnification. Gold nanopillars 

appear dark, (d) nanostructure of goldpillars with a diameter of 200 nm and the height of 22.5 

µm. Reprinted with permission from Ref. [12]. 

   

Table 2.5. Measured impedance of electrodes with diameter of 40 µm as a function of gold 

nanopillar height [12] 

Gold nanopillar height (µm) Impedance at 1 kHz in kΩ 

0 1172.3 ± 241.6 

4.8 362.3 ± 42.7 

8.5 196.2 ± 43.2 

12 103.62 ± 36.7 

16 55.3 ± 8.7 

19 26.1 ± 10.4 

22.5 ± 2.7 
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2.7 Improve biocompatibility of microelectrodes 

Chronically implanted electrodes have the potential to ameliorate the quality of life of patients 

suffering from neurological diseases. These arrays are implanted for a long-term into the 

patient’s cortical tissue to record extracellular potentials from neurons or stimulate nearby 

neurons. Intracortical microelectrodes often lose their functionality in chronic implants. A major 

failure mode of MEAs is tissue reaction against these implants (biocompatibility of the 

implants). In this section, we will present two different methods to improve the biocompatibility 

of the electrodes.     

2.7.1 Material science strategies 

Physical and mechanical properties of the electrodes such as electrodes size, shape, and cross-

sectional area should be considered to elicit the smallest possible tissue response [71, 97, 103]. 

Although some reports show the importance of the implant texture and shape on tissue response 

the other studies downplay the importance of electrode shape, size, texture, and tip geometry. 

The study that has been done with Szarowski et al. compared the immune response to silicon 

electrode implants of different size, shape, and surface characterization [29]. The study 

concluded that while different geometries of the electrodes may affect the initial wound healing 

response, glial  

 

Figure 2.20. Microelectrodes with different size, shape and cross-section that produced the same 

foreign body response and glial scar. SEM images of electrode prepared by (a) KOH etching, (b) 
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RIE, (c) Center for Neural Communication Technology (CNCT) device. Reprinted with 

permission from Ref. [29]. 

encapsulation was not affected. Such studies support the idea that may shift to the strategies with 

focus on the cellular biology of the immune response can improve the effectiveness of the 

microelectrodes. Figure 2.20 shows the comparison of the immune response to silicon implants 

of different sizes, surface characteristics, and insertion techniques. 

2.7.2 Bioactive molecule strategies 

A large amount of data on intracortical implant biocompatibility can be considered for designing 

optimum microelectrodes. The complex biological reaction against the implanted electrodes can 

be classified in two responses; early reactive response and prolonged reactive response. 

Microglia play a dominant role in response to the insertion trauma in 1-3 weeks after implant. 

The astrocytic response starts at the time of insertion and is completed developing an 

encapsulation glial scar by 6-8 weeks post-implantation. These two biological responses declined 

the viability of the neurons following device insertion. Figure 2.21 shows possible mechanisms 

of cellular responses to an implant.  

Neurons remain electrically active in the presence of foreign body and inflammation. Astrocutic 

scar separate neurons from the electrode and may increase the impedance of the electrodes which 

cause inconsistence performance of recording electrodes.  

 

Figure 2.21. Possible mechanisms of biological responses to an implant: (a) Early reactive 

response in 1-3 weeks, (b) Prolonged reactive response in 6-8 weeks post implantation. Neurons 
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are pink, astrocytes are red, microglial are blue, and vasculatures are purple. Reprinted with 

permission from Ref. [29]. 

Better understanding of fundamental biological processes will help to obtain several strategies to 

decrease the immune response. Some studies have been shown that it is possible to attract 

neuronal processes to the electrode site and maintaining the signal before astrocytic scar 

develops and encapsulate the electrode. To do so, conductive polymers and biomolecules were 

grown on the recording sites of the electrodes [104].        

One of the strategies that can be used to minimize immune response to implanted electrodes is by 

coating them with bioactive molecules such as cell adhesion peptides or proteins. These peptides 

not only improve cell adhesion but also increase the cell proliferation [51]. For example, peptides 

including Arg-Gly-Asp (RGD), Ile-Lys-Val-Ala-Val (IKVAV), lysine-histidine-isoleucine-

phenyla-lanine-serine-aspartate-aspartate-serine-serine-glutamate (KHIFS-DDSSE), Tyr-Ile-Gly-

Ser-Arg (YIGSR), Cys-Asp-Pro-Gly -YIGSR (CDPG-YIGSR), and poly-D-lysine (PDL) have 

been employed [105-109]. It is important to find biomolecules that facilitate neural adhesion 

onto the electrode devices, minimize astrogliosis and suppress chronic microglial activation. In 

that light, YIGSR and IKVAV polypeptide fragments [105, 106] and PDL [110] are promising 

candidates that are likely to modify neural cell behavior.  

In order to facilitate cell adhesion, proteins and peptides have been attached to solid substrates 

such as glass, silicon, and metals using various surface modification methods including 

electrochemical polymerization, covalent bonding, self-assembling monolayers, electron 

spinning, and peptide-polymer conjugation [111-116]. In a recent study, Sam et al. showed that 

GlyHisGlyHis could be attached to a silicon surface by electrochemical methods [117]. 

Conducting polymers such as Ppy and poly(3, 4-ethylenedioxythiophene) can be added to 

electrode surfaces, where they can easily incorporate bioactive molecules. For example, Cui et 

al. were able to combine YIGSR peptide fragments from laminin onto Ppy coated recording sites 

using electrochemical polymerization [118].  

Among the penetrating cortical electrode arrays, silicon micromachined electrodes have an 

excellent capacity to minimize reactions with foreign bodies due to their small size and high 

surficial density, allowing them to record/stimulate larger volumes of neural tissue. 
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2.8 Electrical circuit model of MEAs 

MEAs are widely used for measuring electrochemical reactions in solutions and cells/tissue 

stimulation. The impedance characteristics for the electrode-electrolyte interface play an 

important role for implantable devices. A low electrode-electrolyte impedance interface is 

critical in electrode design. During stimulation specific current density is required to excite the 

cells. High impedance would result in a high applied electrode voltage causing undesirable 

electrochemical reactions that might be harmful for the cells and tissue. On the recording 

applications, if the impedance of the electrodes is not low enough the neuron signals which are 

weak will be lost in the noisy ion-based electrolyte media. Therefore, if the interface impedance 

is understood well and specified correctly, then it helps to design optimum MEAs.  

Several equivalent circuit models have studied for the electrode-electrolyte interface [119-121]. 

In 1879 Helmholtz proposed a model of a double layer of charges at the interface. Warburg then 

proposed a circuit model for an infinity low current density in 1899. In Warburg model 

capacitance (Cw) was varied inversely with the square root of frequency and the phase angle was 

constant (Figure 2.22 (a)). Frick renewed the model of Warburg by changing the amount of 

phase (Figure 2.22 (b)). In 1947, Randles proposed a model consist of a double-layer 

polarization capacitance (Cp) in parallel with the series resistance (R) and capacitance (C) 

(Figure 2.22 (c)).  

A well-known circuit model of metal electrode proposed by Robinson in 1968 and it is made up 

of passive elements in the circuit (Figure 2.22 (d)). The most important parameter in circuit is Ce, 

the double layer capacitance in the electrolyte-electrode interface. Ce is a capacitance at the 

metal-electrolyte solution interface and is measured at frequency of 1 kHz. Re is the leakage 

resistance when charge carriers are crossing the double-layer. Rs and Rm are the resistance of the 

electrolyte solution and the resistance of the metallic portion of the microelectrode, respectively 

[31]. In 1994 Kovacs proposed a currently used equivalent circuit model, (Figure 2.22 (e)). In 

this model Cdl, Rct, Zw, and Rs are double layer capacitance, charge-transfer resistance, Warburg 

impedance, and solution resistance, respectively [30]. Warburg impedance is given by the 

following equation:  

𝑍𝜔 = (1 − 𝑗)/[𝑘. 𝜔0.5]                                                                                                              (2.1) 
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Currently, the constant phase element (CPE) has been replaced instead of Cdl in Figure 2.11 (e), 

because in electrochemical impedance spectroscopy (EIS) a capacitor does not behave ideally 

and act like a CPE [121]: 

𝑍𝐶𝑃𝐸 = 1/[𝐴. (𝑗𝜔)𝛼                                                                                                                   (2.2) 

When α = 1, above equation describes a capacitor and for the CPE α is smaller than 1. 

 

Figure 2.22. Equivalent circuit models of electrode-electrolyte interface: (a) Warburg model, (b) 

Fricke model, (c) Randles model, (d) Robinson model for metal electrode, (e) Kovacs model. 

Reprinted with permission from Ref. [30], © 2007, IEEE EMBS Conference on Neural 

Engineering and Ref. [31]. 

A following flow diagram shows a general measurement and characterization procedure of 

electrode-electrolyte interface (Figure 2.23) [32]. 
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Figure 2.23. A flow diagram for electrode-electrolyte interface measurement and 

characterization. Reprinted with permission from Ref. [32]. 

2.9 Perspective of the work in this thesis 

In recent years, MEAs emerging technologies have been developed to have a long-term and 

stable interface with the brain. Different research projects are conducted to obtain consistent 

recording signals from small groups of neurons without losing microstimulation capabilities, 

while maintaining low-impedance pathways for charge injection, high charge transfer, and high-

spatial resolution by altering the geometries and material compositions of the arrays. So far, none 

of these attempts have lead to a major breakthrough. The lack of such 3D high-density low 

impedance MEAs motivated us to design and fabricate a new MEA in order to increase the 

functionality and effectiveness of the microelectrodes. First and foremost, we developed a 3D 

fabrication technique in a time and cost effective manner would be suitable to industrial 

manufacturing standards. We tackled this strategically by using 3D micromachining techniques 
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and a new masking technology to coat variable-height electrodes that had remained as a big 

challenge to obtain identical tip-exposures.  

Later on, we developed a new selective direct growth of CNTs on the tips of 3D MEAs using Pt 

as a catalyst material that could enhance electrical properties of the electrodes significantly. To 

improve biocompatibility of the electrodes, they were coated with bioactive molecules. The 

results of these studies are detailed in chapters 3 and 4.   
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CHAPTER 3      EXPERIMENTAL PROCEDURES OF MEAs’ PREPARATION 

The achievements with implantable neural interfaces motivated us to develop a novel 

architecture of microelectrode arrays (MEAs) and improve the device performance. As discussed 

in previous chapters, a number of different techniques have been developed in order to fabricate 

an optimum MEAs; however, there are still some challenges to fulfill it. Although some of the 

MEAs have been commercialized and been used in research, the current process used to fabricate 

impose limitations in the electrode array geometry and uniformity. Moreover, existing 

fabrication costs have revealed the need to develop less costly but high precision fabrication 

process. In this chapter, a detailed description of the fabrication and characterization techniques 

that were used during the course of this research will be presented. All experimental procedures 

relating to MEAs device fabrication and testing will be presented, from the fabrication of 

microelectrodes structure to the coating process of electrodes.  

3.1 Design and fabrication of neural 3D MEAs using micromachining techniques 

The fabrication process of the proposed MEAs consists of two parts: The first one demonstrates 

the design and microfabrication of multi-electrode arrays; the second part covers various electrode 

coating techniques where several materials such as polymers, metals, and carbon nanotubes 

(CNTs) are investigated. Figure 3.1 presents the main steps of the process flow applied to 

construct a pyramid-shaped MEA. 

3.1.1 MEAs backside fabrication process 

The employed substrate representing the base for the probes is a 2150±25 µm thick p-type (100) 

100 mm-diameter single-side polished silicon wafer with a resistivity of 0.0153-0.0158 Ωcm. The 

silicon wafer was cut into 12 pieces of 2 × 2 cm2. To electrically isolate the electrodes one from 

each other, the polished side of the wafer was cut with an ADT 7100 dicing saw. 
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(a)                                            (b)                                              (c) 

                                          

          (d)                                         (e)          

Figure 3.1. Main silicon-based MEAs micromachining steps: (a) Backside dicing, (b) Backside 

glassing and polishing, (c) Backside metallization, (d) Frontside dicing, (e) Frontside wet-etching. 

 

The cutting process involved 6 cuts in two perpendicular directions with the pitch of 300 µm. 

Nine 5 × 5 matrices were created at the polished side of each square (Figure 3.2). A resin-bond 

blade (Dicing Blade Technology, B-004-4000J) was used to make the matrix. The depth of all the 

cuts is 500 µm (Figure 3.1(a)). After dicing the backside, the substrate was cleaned with acetone, 

isopropanol, and deionized (DI) water in ultrasonic bath in order to remove silicon residue.   

 

 

Figure 3.2. Schematic top-view of backside dicing including 9 collections of 5×5 matrix. 
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To insulate the electrodes one from each other, glass paste was used. First, glass powder with the 

mesh size of 44 µm (Corning 7070) was mixed with isopropanol and then flowed to the kerfs. The 

substrate was then put in a vacuum furnace at 60 °C for 15 min. This process was repeated 3 times 

until 3 layers were coated. The vacuum brings air bubbles of the glass paste to the surface which 

results uniform paste in the kerfs. The sample was then annealed in the furnace under the N2 

ambient at 1200 °C to melt the glass so that it penetrates completely to the kerfs  [122]. Figure 

3.1(b) shows the kerfs which have been filled with glass paste. To remove the excess glass from 

the surface of the silicon substrate, the dicing saw and polishing machine were used. The glass 

bulk was removed with a resin-bond blade (00777-8030-006-QKP). Silicon Carbide paper with 

grit size of 600 µm was used to remove the residue of the glass. At the end, the backside of the 

substrate was polished using 15, 6, and then 1 µm diamond suspensions on polishing cloth to 

achieve a completely smooth surface [123].  

To make electrical connection to each electrode, the backside of each pin was metalized, Figure 

3.1(c). To obtain the needed quality interconnects, the metal should make low ohmic contacts 

providing strong adhesion to the silicon substrate. Furthermore, the metalized surface should be 

appropriate for wire-bonding or flip-chip assembly processing. Pt was selected for ohmic contact, 

silicide formation, and wire-bonding. To metalize the backside, a bilayer of metals Ti/Pt was 

sputter-coated with thicknesses of 100 and 400 nm, respectively (Table 3.2) [124]. A lift-off 

process was used to create a 200 × 200 µm2 contact pad placed between the kerfs filled with glass. 

3.1.2 MEAs frontside fabrication process 

 

Frontside dicing 

To achieve electrodes with variable heights, the frontside (non-glassed side) of the substrate was 

cut with ADT 7100 dicing saw. To make 3D pyramid-shaped MEA, two dicing saw blades were 

used: resin-bond blade (Dicing Blade Technology, J-014-4000-J) and nickel alloy diamond blade 

(Disco, ZH05-SD2000-M-90). Three different electrode heights (1.45, 1.55, and 1.65 mm) were 

cut and separated with a depth of 1650 µm. This leaves a 5 × 5 matrix of rectangular columns 

with the above mentioned heights and 100 µm spacing (Figure 3.1(d)). The extra row of 

electrodes with the height of 1.35 mm was designed as a dummy row to protect electrodes in the 

arrays and improve the uniformity of the electrodes during etching process.  
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Wet-etching  

Chemical etching of silicon with hydrofluoric acid (HF) and nitric acid (HNO3) is widely used in 

semiconductor industry and in the production of solar cells. The etching process is employed to 

remove silicon from the planar wafer, removal of work damage or roughness (e.g. caused by 

sawing of wafers), or texturing of the surface. The mechanism of wet chemical etching of silicon 

in HF-HNO3 mixtures was described by Robbins and Schwartz for planar silicon surfaces [33]. 

The etching of silicon in HF-HNO3 mixtures is divided into two chemical processes: 

- Oxidation of silicon to SiO2 by HNO3 (Eq. 3.1) 

- Dissolution of the SiO2 by HF under release of a new silicon surface (Eq. 3.2). The overall 

etching reaction is given in Eq. 3.3. 

3Si + 4HNO3 ↔ 3SiO2 +4NO ↑ + 2H2O                                                                                   (3.1)  

SiO2 + 6HF ↔ H2SiF6 + 2H2O                                                                                                  (3.2) 

3Si + 4HNO3 + 18HF ↔ 3H2SiF6 + 4NO ↑ + 8H2O                                                                 (3.3) 

The critical step in these reactions is the oxidation of silicon by nitric acid. To convert columns 

of electrodes to the needle-shaped electrodes, two etching processes are involved; isotropic and 

anisotropic etching steps. For isotropic etching involving HF-HNO3, water or acetic acid 

(CH3COOH) are used as diluents. This etchant combination is known as HNA which is used to 

modify the reaction rate, finish of the etched surface, or cause preferential etching of specific 

crystallographic planes. HNA etch rates of silicon is presented as an isoetch curves for various 

weight percentages of the HF-HNO3 system [33].   

Figure 3.3 shows a HNA system etching characteristics. In the high HF concentration- region (I)- 

the contours are parallel to the constant HNO3 axis and the etch rate is HNO3 limited. Therefore, 

silicon dioxide is produced at a low rate and leaves quite rough surface. On the other hand, in 

HNO3 high concentration- region (II)- etch rates are HF limited, in which the etch rates are 

controlled by silicon dioxide dissolution by HF. The great amount of silicon dioxide forms a 

layer at the silicon surface and protects it from oxidation. As a result silicon in this region has a 

smooth surface. In region (III), the balanced HF-HNO3 etch rates are generally high because of 
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the high concentration of HF and HNO3. High concentration of HNO3 causes fast oxidation of 

silicon while high concentration of HF easily dissolves the silicon dioxide. However, in this 

region surface morphology is harder to control due to the aggressive etching and dissolution 

process. HNA etch rates of silicon plotted in isoetch contours and surface topography of etched 

silicon has been shown in Figure 3.3.   

 

Figure 3.3. Isoetch contours and surface topography of etched silicon for the HF-HNO3-acetic 

acid diluents [33]. Numbers in parentheses shows etch rates of silicon in µm/min. 

To convert rectangular columns of electrodes to sharp tip needle-shapes, a wet etching process 

composed of 49% HF and 69% HNO3 in a ratio of 1:19, was used. The etch rate of silicon in this 

mixture is a function of the stirring rate, temperature, and ratio of acids. To control the chemical 

etching process, it is important to identify the effect of variables involved in the planned reaction  

[125]. Etching microelectrodes has two steps including dynamic and static process. For the 

dynamic process, the sample was placed in a 2 × 2 cm custom Teflon holder, put into the acid 

upside down, and then the solution was rotated with a magnetic stirrer at 500 rpm for 5 min 

(Figure 3.4). This method is intended to increase the etching uniformity [126].  
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Figure 3.4. Experimental setup for dynamic etching process to round the side-walls of the square 

columns of the electrodes. 

For the following etching step (static etch), the sample was placed facing down in an etchant 

solution and N2 gas was applied to polish and sharpen the top of the columns until a complete 

needle shape was achieved. Etching time for this step was about 11 min (Figure 3.1(e)). Figure 

3.5 presents a photograph of the static etching setup. A custom designed Teflon holder was built 

to take the array upside down. The gas was applied from the bottom through the 6 rods that are 

connected to the compressed N2 cylinder. The static etching process etches the tops of the 

columns preferentially and sharpens the tips of the electrodes.  

      

Figure 3.5. Experimental setup for static etch process: (a,b) Photographs of the static etching 

process. In this step of etching, the tips are sharpened by applying the N2 gas from the bottom; 

(preferential etching).   
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3.1.3 Shank insulation 

In order to insulate the body of the electrodes, parylene-C has been used due to its 

biocompatibility, chemical inertness, and high stability in vivo [127]. However, some studies have 

been reported parylene delamination and cracking along the electrode shanks over time in 

biological environments [128]. In addition, high-temperature steam of sterilization makes 

parylene more brittle and predisposed to cracking [129]. SiO2 is a high-quality, biocompatible, 

stable, and chemical inert electrical insulator that can reduce biofouling in biological environment 

[130]. Moreover, the perfect adhesion of SiO2 to silicon may solve the delamination issue. 

A 2 µm thick parylene-C film was deposited on the frontside of the electrodes using a chemical 

vapor deposition (CVD) process whereas the backside of the electrodes was covered with a tape 

(Figure. 3.6 (a)) [131]. Parylene-C was deposited using Specialty Coating Systems (SCS) 

equipment. The deposition process was begun as the parylene-C dimer was vaporized under 

vacuum ( 10 mTorr) at 140°C. The dimerized gas was pyrolyzed at 670°C and deposited as a  

(a) (b) 

                   (c) 

(d) (e) 

 

Figure 3.6. Process flow of electrodes tips-coating: (a) Parylene-C deposition, (b) Cover with dry-

film photoresist, (c) Reactive Ion Etching, (d) Tip-metallization, (e) Lift-off in acetone. 
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conformal, pinhole-free transparent film. For the electrodes with CNT tips, native SiO2 was 

considered as an insulator instead of parylene- thermal C. 

3.1.4 Masking process to de-insulate active sites of the electrodes 

The tips of the electrodes need to be good conductor to facilitate the charge transfer from needles 

to the neural tissues. Conventional masking processes to coat the electrode tips are operator-

dependent, time-consuming, and may damage the electrodes during the process. To date, 

electrode tips are coated by of two conventional methods: poking the electrodes through an 

aluminum foil or using liquid photoresist as a mask. The first method—poking—is a time-

consuming process that may damage electrodes during the process, and is operator-dependent. 

The second method— liquid photoresist mask—also has some limitations. It is a long process 

with many steps such as resist coating, vacuum treatment, UV exposure and development, soft 

and hard bake. More importantly, both methods may not be practical for 3D electrode arrays since 

they cannot follow 3D structure and enhance uniform tip-exposure. The novel architecture of this 

MEA enables recording from multiple intracortical depths of the brain.  

To coat the 3D pyramid-shaped MEA, a novel masking technology was developed that only needs 

single masking step and reduces the conventional masking process steps from 14 to 6 ( Table 3.1). 

The proposed masking process has several advantages including simpler fabrication process, 

reduced production time and cost, and more uniform tip exposure for variable-height electrodes 

[132]. Figure 3.6 shows the process flow of masking and tip-coating. After electrode insulation, a 

layer of dry-film photoresist (DuPont, FX900) with the thickness of 30 µm was used as a mask to 

cover the array (Figure 3.6 (b)). Arrays were placed on a thick Al foil sheet then dry-film 

photoresist was applied on electrodes using tweezers. The film fixes arrays on the Al foil surface. 

The dry-film follows the 3D structure and results a uniform tip exposure for variable-height 

electrodes while traditional methods; poking electrodes in Al foil or liquid photoresist are not 

practical for masking such a pyramid-shaped array.  

Dry-film photoresist was chosen as a mask due to following reasons: 

Plasticity and flexibility: dry-film photoresist follows the 3D structure of the electrodes and 

results in full coverage of the array. A high flexibility is desired since this helps to cover variable-

height electrodes. 
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Adhesion: the mask must adhere sufficient well to the underlying substrate and it should not lift-

off during various steps. Moreover, photoresist is sensitive to the temperature and heating. In the 

proper temperature and duration, the adhesion of photoresist can increase. 

Plasma etching: dry-film photoresists are sensitive to plasma etch and will etch during oxygen 

plasma. The thickness of the resist at the sharp electrode tips is significantly thinner than the other 

parts so will be removed faster. This ability helps to remove photoresist from the tips. 

Plasma offers two main characteristics which is practical to remove photoresist and parylene-C 

from the electrode tips. First, it can reach to high temperature and energy densities. Second, 

plasma can produce energetic particles that can begin chemical reactions which is difficult or 

impossible with usual chemical mechanisms.   

Dry-film and parylene-C were removed from the tips using isotropic and anisotropic reactive-ion 

etching (RIE) process (Figure 3.6 (c)). Custom designed RIE machine was used to etch the films. 

In the first step, dry-film and parylene-C films were anisotropically etched by reactive-ion etching 

(RIE, RF source) from the top of the electrode tips at a power of 200 W and a chamber pressure of 

100 mTorr for 50 minutes. In the next step, both films were etched isotropically with plasma asher 

(microwave source) from the side-walls of the tips at a power of 150 W and a chamber pressure of 

400 mTorr for 10 min using PVA TePla system.  

3.1.5 Electrodes tip-coating  

Active sites of the electrodes are typically coated with platinum (Pt) or iridium oxide [133-135]. 

Although Pt has excellent electrochemical stability, corrosion resistance, and limited reactivity to 

biological environment [136, 137], it has a relatively modest charge injection limit (0.1 - 0.3 

mC/cm2) [138]. Iridium oxide is a highly conductive oxide with high-charge injection capacity.  

However, it has several shortcomings, including a deterioration of long term stability if used 

beyond their charge injection limits and a requirement for circuitry to apply an anodic bias 

during cathodic charge injection [139, 140].  

The remarkable structural, electrical and mechanical properties of CNTs such as intrinsically 

large-surface areas, biocompatibility, extremely high conductance and high aspect ratios have 

attracted much interest as a suitable electrode material for neural tissue. These characteristics of 

CNT enhance both recording and electrical stimulation of neural tissues [141, 142].  
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Table 3.1. Comparison of conventional and proposed masking processes 

Conventional method [123] This work 

First Masking process: 

- Photoresist coating 

- Vacuum degassing 30 min 

- Pre-baked 

- UV exposure  

- Developing 

- Hard-bake 7h 

- Tip-Metallization 

- Lift-off 

Second masking process: 

- Parylene-C deposition 

- Photoresist coating 

- Vacuum 30 min 

- Hard-bake 10h 

- Plasma etch 

- Lift-off 

Single masking process: 

- Parylene-C deposition 

- Dry-film deposition 

- Soft-bake 

- Plasma etch 

- Tip-Metallization 

- Lift-off 

 

3.1.6 Tip-metallization and lift-off 

To convert electrodes to the functional devices, the tips of the electrodes should be metalized. The 

tips of the electrodes were sputter-coated with Pt and iridium oxide (Figure 3.6 (d)). Deposition of 

a layer of metal at the electrodes tip not only decreases its impedance but also facilitates charge 

transfer from electrode to the neural tissues. To promote the adhesion of aforementioned metals at 

the surface of silicon, a thin layer of titanium (Ti) was deposited prior to the Pt and iridium oxide 

deposition. The sputter deposition parameters for different metals are listed in Table 3.2. The 

mask was removed with the lift-off process by ultrasonical cleaning in acetone, isopropanol, and 

DI water (Figure 3.6 (e)). 

 



54 
 

Table 3. 2. Sputtered deposition parameters for the electrodes’ tip-metallization 

Metal Ambient Gas flow rate 

(sccm)1   

Chamber pressure 

(mTorr) 

Power 

(W) 

Time 

(min) 

Thickness 

(nm) 

Ti Ar 10 10 90 11 100 ± 5 

Pt Ar 10 10 90 16 400 ± 10 

SIRO2 Ar/O2 25/25 10/10 100 33 200 ± 10 

2SIRO: Sputtered Iridium Oxide 

1sccm: standard cubic centimeter per minute  

 

In order to grow CNTs, the catalyst particles formed from the deposited Pt layer (catalyst film in 

general) must have a nanoscale size (typically < 200 nm). It has been previously demonstrated 

that a Pt film with the thickness of 8.5 nm was unsuccessful for Pt-CNT growth, perhaps because 

the resulting nanoparticles were too large to support CNT growth [143]. Therefore, a very thin 

layer of Pt (5-10nm) was evaporated at the tip of the electrodes prior to CNTs growth. A 2 nm Ti 

layer was evaporated prior to Pt deposition to improve Pt adhesion and to avoid the Pt diffusion 

in silicon during CNTs growth. Evaporation technique was used to control the more precise 

thickness.   

3.1.7 CNTs tip-coating 

Selective direct growth of CNTs on the tips of 3D MEAs using Plasma Enhanced Chemical 

Vapor Deposition (PECVD) 

Up to now, different procedures have been proposed to coat CNTs on neural interfaces such as 

electrochemical deposition, electrophoresis, layer-by-layer assembly and direct growth [144]. 

Among these techniques, selective direct growth appears to be the most suitable and robust 

fabrication process. By controlling growth parameters, one can obtain vertical orientation of 

CNTs with high density, and high reproducibility. The most important advantage of growing CNT 

directly on electrodes is the stability and reliability in time compared to CNTs films coated using 

other methods [145]. However, direct growth is a less commonly used process since it requires 

additional laborious steps. A standard Chemical Vapor Deposition (CVD) process was used by 
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Ansaldo et al. [145] to grow CNTs on single penetrating microelectrode tip of commercially 

available platinum-tungsten microwires capable of enduring high temperatures and electroplated 

with nickel as catalyst. So far, Pt which is a very common material for bio-medical devices has 

rarely been used in CNTs synthesis [146-149].  A standard growth requires depositing common 

catalyst metals such as nikle (Ni), cobalt (Co) or iron (Fe), which are not considered as 

biocompatible materials. Therefore, hard purification methods must be employed post-growth to 

remove the catalyst particles. According to Liu et al. [150]  even after post purification, CNTs 

preserve a significant amount of non‐encapsulated or bioavailable metal residue and impurities. 

We have carried out CNTs growth by using Plasma Enhanced Chemical Vapor Deposition 

(PECVD) which is a very relevant growth process for neural interfaces. In fact, instead of 

spaghetti-like structures usually obtained in CVD, plasma allows to grow well-aligned, 

individual and free-standing nanotubes with uniform diameters [151]. Such geometry increases 

the accessible surface area of CNTs leading to low impedance and it may also permit the direct 

excitation of a single neuron [152]. Furthermore, lower growth temperatures relative to CVD 

(<400°C) are possible since high-energy electrons present in the discharge plasma, supply the 

energy necessary for chemical reactions in the gas [153]. This allows a direct growth of CNTs on 

soft polymer substrates for example. Another advantage is that during the growth process, the 

plasma removes amorphous carbon which strongly affects the electrical properties of electrodes 

and may lead to an increase of impedance [148, 151].  

CNTs were grown in a gas mixture of acetylene (C2H2) and ammonia (NH3). The MEA is 

introduced into the furnace and pumped down to a base pressure of 10 mTorr using a mechanical 

pump. The temperature of the furnace is then ramped up to 700°C at a rate of 200°C/min in order 

to avoid the glass to be melted at the backside of electrodes. Before CNTs growth, we performed 

annealing procedures at 700°C under 20 Torr of hydrogen. This step allows the formation of 

catalyst islands from the Pt layer at the tips [151]. After a 10 minute annealing, the furnace is 

pumped down and NH3 is introduced at 3.5 Torr with the temperature held at 700°C. A DC 

discharge between the cathode-sample and the anode is initiated and kept at relatively low 

current (1mA), while C2H2 is introduced using a separate mass flow controller. The flow-rate 

ratio was maintained at 20% (C2H2/NH3, 40/200) which has been found as the optimum ratio to 

obtain clean CNTs [151]. The synthesis was carried out for 15 min in a stable discharge. 
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Single-wall carbon nanotubes (SWNTs) deposition using Coffee stains technique 

Coffee stains technique has been used for the fabrication of structurally organized single-wall 

carbon nanotubes (SWNTs) at the tips of the electrodes. The pinning of the gas-solid-liquid 

contact line and its stick-slip-type motion are essential key elements in the formation of coffee 

stains [34]. Aqueous colloidal suspensions of sodium dodecyl sulfate (SDS) and SWNTs 

(Raymor) were prepared by dispersing SDS and SWNTs in DI water through harsh sonification 

for 30 min. Figure 3.7 demonstrates structural phases observed during self-assembly of SWNT 

coffee stains. SEM images of SWNT films obtained for deposition from suspensions with 

different concentrations of SDS surfactant and SWNTs.  

There are four types of structures for various concentrations of SDS and SWNTs: (1) continuous 

films, (2) holey films, (3) striped films, and (4) spotty films. Continuous films are found in 

higher concentrations of SDS and SWNTs. SEM images of this zone also shows that films 

consist of an entangled network of ordered SWNTs.  

The tips of the electrodes were sputter-coated with Pt prior to CNTs deposition. To coat 

electrodes with SWNTs, the MEA was dipped in a solution of SWNTs, DI water, and SDS for 24 

h in a fix position. The concentrations of SDS and SWNTs were 0.2 wt% and 3 × 10-4 wt%, 

respectively.  As a result, solution was drawn by capillary flow to the contact line (the electrode 

tip) and swept suspended particles (SWNTs) with it, which then was deposited at the tips of the 

electrodes. The resulting crowding particles of CNTs at the meniscus enable film formation and 

result in the deposition of some or all suspended particles at the edge of the droplet in the form of 

coffee stains.    

3.2 Characterization of the neural MEAs 

In order to characterize neural MEAs various techniques have been used including SEM and 

Energy-dispersive X-ray spectroscopy (EDX) to verify the geometry (shape and size), coatings 

structure, and materials of microelectrodes. The electrochemical characterization of the 

electrodes was done using microprobe station coupled with a Biostat VMP-300 system. A novel 

microstimulator designed in Polystim laboratory has been used to apply current pulsing and 

measure the charge injection capacity of the electrodes.     
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Figure 3.7. Structural phases during self-assembly of SWNT coffee stains: (a) SEM images of 

continuous, holey, striped, and spotty phases, (b) Schematic structural diagram as a function of 

SWNT and SDS concentrations. Reprinted with permission from Ref. [34]. 

3.2.1 Scanning electron microscopy (SEM) imaging 

SEM imaging is particularly well-suited for characterization MEAs and is a powerful technique 

for assessing conducting and semiconducting materials. We used a Hitachi S-4700 field emission 

SEM in order to image microelectrodes and different coatings such as silicon, parylene-C, SiO2, 

metals, and CNTs. The accelerating voltage for silicon and metals was 10 V and the working 

distance was set to ~8-10 mm. The accelerating voltage for CNTs was 1 V and the working 

distance was set to ~3-5 mm. The microscope has been operated in its high resolution mode and 

only the top secondary electron detector was enabled.    

3.2.2 Energy-dispersive X-ray spectroscopy (EDX) analysis 

In order to analyze the microelectrode elements EDX system was used. EDX is an analytical 

technique used for the elemental analysis of a sample relies on an interaction of some source of 
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X-ray excitation and a sample. We used an Inca Energy 250 EDX and the accelerating voltage 

for each element was 2 times of its energy-level shells.    

 

3.2.3 Electrochemical characterization; Electrochemical impedance spectroscopy (EIS), 

Cyclic voltammetry (CV), and Charge injection capacity (Qinj) 

Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were performed 

using Biostat VMP-300 system. For all measurements gold probes having fine 5 µm diameter 

tips from CascadeMicrotech were used. The instrument was operated under the computer control 

with EC-Lab software. A solution of 0.9% phosphate-buffered saline (PBS) was used as the 

electrolyte in a three-electrode cell consisting of Ag/AgCl as a reference electrode, a large area Pt 

wire as a counter electrode, and electrodes of the array as working electrodes (Figure 3.8). The 

impedance was measured applying an AC sinusoid waveform with 10 mV of amplitude as the 

input signal with the DC potential set to 0 V through the working electrode. The value of 

impedance was measured in the frequency range of 40 Hz to 10 kHz since the center of energy of 

action potentials is about 1 kHz.  

CV was performed with the same instrument and the EC-Lab software. The setup of the 

electrodes (reference, working, and counting) was the same as the one used in the impedance 

measurement. The potential on the working electrode was swept between -0.6 and 0.8 V. The 

maximum cathodic (Emc) and anodic potentials on the electrode during electrical stimulation, 

should stay within the “water window” (-0.6 to 0.9 V versus Ag/AgCl in PBS) to prevent 

electrolysis of water [154, 155]. A scan rate of 50 mV/s was used. Figure 3.8 demonstrates a 

schematic of EIS measurement setup. 

To measure charge injection capacity (Qinj) of microelectrodes, we interfaced the MEAs with a 

novel microstimulator designed in our Laboratory [156, 157]. The MEA was immersed in 0.9% 

PBS solution then charge-balanced and biphasic constant current was applied to different pairs of 

microelectrodes. Stimulation current with the range of 10 to 110 µA were applied for pulse 

widths of 0.7, 0.8 and 1 ms. The stimulation frequencies were set to 500, 500 and 250 Hz 

respectively. 
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Figure 3.8. A schematic of electrochemical measurement setup. Ag/AgCl act as a reference 

electrode, large area Pt wire as a counter, and electrodes of the array as a working electrode.   

The resulting waveforms were measured across each pair of microelectrodes using digital 

oscilloscope. The area under each pulse was estimated for determining the total charge injected 

during any anodic or cathodic pulse and divided by the electrode surface tip area.  

3.3 Results and discussion 

 

3.3.1 Fabrication of 3D MEAs 

Figure 3.9 (a) and (b) show SEM images of backside dicing and glassing. The depth of the 

backside cut is 500 µm. A 7 × 7 matrix of rectangular columns with different heights of 1.65, 

1.55, 1.45, 1.35 mm has been created at the frontside of the substrate (Figure 3.9 (c)). The outer 

row of electrodes is for etching process uniformity and will remove after etching step. 

   

(a)                                                (b)                                                  (c) 

Figure 3.9. SEM images of electrodes backside: (a) Backside dicing, (b) Cross-section of the 

backside kerfs which have been filled with the glass paste, (c) 3D pyramid-shaped electrode 

array with three different heights. The outer row of electrodes is for etching process uniformity 

and will remove after etching step. 
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The rectangular columns of the electrodes were converted to sharp needle-shaped tips using a 

wet etching procedure (Figure 3.10 (a-f)). Etching duration causes significant change in the 

geometry of the electrodes. The thickness of the electrodes was 200 μm at the base and about 2 

μm at the tip with 100 μm spacing after etching step. 

                   

(a)                                                          (b) 

      

(c)                                                       (d)       

                    

                                    (e)                                                                 (f)  

Figure 3.10. SEM images of the electrode etching process: (a) Frontside cutting, (b) Rounding 

corners by stirring the etching solution,  (c-e) Polishing and sharpening the tips of electrodes by 

applying N2 gas from the bottom of the solution, (f) One 3D 7×7 MEA.  
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3.3.2 Masking process  

In order to encapsulate the shank of the electrodes, the entire upper surface of the electrodes was 

covered with 2 µm parylene-C (excluding electrodes for CNTs deposition). To remove parylene-

C from the tips of the electrodes, the 3D MEA was covered with dry-film photoresist.  In the next 

step, parylene-C and dry-film were etched from the tips of the electrodes using oxygen plasma in 

RIE and then in plasma asher. The mask was removed ultrasonically in acetone (Figure 3.11).   

As indicated above, the novel proposed method includes a single masking process and could 

significantly reduce the number of fabrication steps. In this method, instead of two 

photolithography steps which are time-consuming (total processing time: 24 h) there is only one 

etching step with the total processing time of 6 h. Besides, none of the conventional methods 

enhance the uniform tip-exposure for 3D structure of the MEA (Table 3.1). 

3.3.3 Tip-metal deposition 

The active sites of the electrodes were coated with Pt and sputtered iridium oxide (SIRO) to 

facilitate charge transfer from electrodes to the neural tissues, to reduce the impedance, and to 

increase charge injection capacity (Figure 3.12). The measured thickness of the sputtered metal 

layers on the test wafer is given in Table 3.2. A very thin layer of Ti/Pt was evaporated at the 

CNT-electrode tips. 

 

(a) 
 

(b) 

 

 (c) 

Figure 3.11. SEM images of masking process: (a) Electrode array covered with dry-film 

photoresist after RIE process. Dry-film photoresist follows the 3D structure of the electrodes, (b) 

Uniform tip-exposure of variable height electrodes after RIE and oxygen plasma etching process, 

(c) Electrode-tip after removing the mask.  
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The thickness of metals at the tips of the electrodes may differ from the wafer due to nonplanar 

shape of the electrodes.  

 

(a) 

 

(b) 
 (c) 

(d) 
 

(e) 

 

 (f) 

Figure 3.12. SEM images of microelectrodes after tip-metallization with Pt (a,b, c) and SIRO (d, 

e, f) at different magnification. The SIRO surface is rougher than Pt. SIRO has dendritic structure 

while Pt has granular morphology. 

 

3.3.4 Tip-CNTs Growth  

Figure 3.13 shows SEM images of MEA after CNTs growth. Zoom in on the electrode tips 

shows forest-like vertically aligned CNTs characterized by a typical length in the order of 600 

nm and diameter between 25 and 30nm. We can distinguish the presence of Pt particles at the 

end of CNTs (Figure 3.13(c)). It is noteworthy that the length of CNTs can be varied by tuning 

the growth conditions of PECVD such as temperature, pressure, time of growth, etc [151]. 

However, the short length of achieved CNTs appears more appropriate for neural interface 

applications. In fact, a recent research result showed that the neural tissue inflammatory response 

to the implantation of biostable high aspect-ratio nanoparticles and the loss of nearby neurons are 

strongly length dependent. The study has shown that after a year implantation time in the brain, 
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an inflammatory response occurs when the length of ZnO nanorods is equal to or larger than the 

size of immune cells of the brain tissue. A significant loss of neurons was observed adjacent to 

the 10 µm nanorods. Furthermore, 2 µm nanorods did cause neither significant inflammatory 

response nor significant loss of neurons nearby [158].  

 

            

(a)                                                                (b) 

 

 (c) 

Figure 3.13. SEM images of microelectrodes after tip-coating with CNTs: (a-b) At different 

magnification. The geometry of CNTs increased the accessible surface area, (c) Pt particles at the 

end of CNTs. 
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3.3.5 Tip-CNTs deposition (Coffee stains technique) 

The formation and structure of the SWNTs at the tips of the electrodes were studied with 

electron microscopy. Figure 3.14 demonstrates CNTs deposition at the tips of the electrodes. The 

tips of the electrodes were sputter-coated with Ti/Pt prior to CNTs deposition. The thickness of 

Ti/Pt layers was 100/400 nm. Same condition as section 3.2.1 has been used for sputtering 

process (Table 3.2).   

 

                                                                            (b) 

 

                                              (c)                                                               (d) 

Figure 3.14. SEM images of microelectrodes after tip-coating with CNTs using coffee stains 

technique: (a-d) At different magnification. Small white particles are SDS that were evaporated 

after heating the electrodes. 
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3.3.6 MEAs Electrical Properties 

The average impedance at the biologically relevant frequency of 1 kHz of bare silicon, Pt-, CNTs-

, and SIRO-coated electrodes was 850 ± 10, 70 ± 0.24, 14 ± 0.2, and 4 ± 0.2 kΩ, respectively 

(Figure 3.15, Table 3.3). On average CNTs coating lowered the impedance of Pt-coated 

electrodes by a factor of 5 at 1 kHz, and increased charge delivery capacity by a factor of 600. 

The CV of Pt and CNTs were illustrated in Figure 3.15 (c). The CV graph of CNTs and Pt has 

shown that the CNTs have a significant larger area than Pt electrodes indicating higher QCDC of 

CNTs MEA.  

Iridium oxide-coated electrodes were not considered for charge delivery capacity (QCDC) and 

charge injection capacity (Qinj) because of harmful pH-value changes during electrical 

stimulation [152]. 

In order to determine the QCDC, the electrodes were activated with a repetitive potential cycling at 

a scan rate of 50 mV/s in the potential range -0.6 to 0.8 V. The QCDC was calculated using 

following equation [159]: 

𝑄𝐶𝐷𝐶 =  
1

ν𝐴
∫ |𝑖|𝑑𝐸          (𝑚𝐶/𝑐𝑚2

𝐸2

𝐸1

)                                                                                                (3.4) 

where ν is the corresponding scan rate (mV/s), E is the electrode potential (V), E1 and E2 are the 

anodic and cathodic potential limits (V), A is the surface area of the electrode tip (cm2), and i is 

the measured current (A).  

SEM micrograph in Figure 3.13 demonstrates that CNTs increased the surface area significantly 

to compare with Pt and iridium oxide (Figure 3.12). Since the resistance is inversely proportional 

to the surface area, a larger surface area would result smaller resistance.  

Surface area of the electrodes active sites is difficult to measure due to roughness and porosity of 

the surface. Therefore, the geometrical surface area of the electrodes tip was used to determine the 

charge QCDC of the electrodes. 
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(a) 

 

(b) 

   

                                     (c)                                                                          (d) 

Figure 3.15. Impedance spectroscopy of Pt- and CNTs-coated electrodes: (a) Magnitude of 

impedance as a function of frequency, (b) Phase of the impedance as a function of frequency, (c) 

& (d) CV curves for CNTs- and Pt-coated electrodes of the MEA under similar condition, 

respectively. 
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Table 3.3. Average impedance of different electrode-tip coatings 

Tip Coating Bare Si Pt CNTs SIRO1 

Z (kΩ) at 1 kHz 850 ± 10 70 ± 0.24 14 ± 0.2 4 ± 0.2 

1SIRO: Sputtered Iridium Oxide 

 

The lateral surface area (LSA) of the active site with the tip-exposure of 50 µm was calculated by 

the following equation: 

𝐿𝑆𝐴 = 𝜋r √h2 + r2                                                                                                                                  (3.5) 

where r and h are the radius and height of the cone, respectively (Figure 3.16). These values were 

measured with SEM. The LSA of the electrode tips was calculated about 1.6 × 10-5 cm2 for the tip 

exposure (h) of 50 µm. 

 

Figure 3.16. Electrode tip dimensions; the height (h) and radius (r) of the tip.  

 

The average cathodic charge delivery capacity of Pt- and CNTs-coated MEAs were 21.7 ± 10.2 

and 13020.11 ± 6510.23 mC/cm2, respectively. Therefore, there is a significant improvement in 

QCDC when the electrode tips were coated with CNTs. 

The calculated average of Qinj for the Pt- and CNT-coated microelectrodes is 0.3 and 10 mC/cm2, 

respectively, for a stimulation current of 92 uA and pulse-width of 0.8 ms. 
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3.3.7 Equivalent circuit model 

The equivalent circuit model includes a constant phase element impedance (ZCPE) that represents 

the electrode capacitive impedance shunted by a charge transfer resistance RCT, both in series with 

the solution resistance Rs. Cs is all the shunt capacitance to the ground comprises the capacitance 

from the metal of the electrode to the solution through the insulation (Figure 3.17) [31, 160]. 

When the current is applied to the electrode-electrolyte interface, a double-layer of charges 

simulates a charged capacitor. The double layer capacitance occurs from the movement of charges 

and ions at the interface. Layers of charges are formed by two mechanisms; Faradic and non-

Faradic transfer. Non-Faradic charge transfer is a reversible process and is characterized by the 

motion of charges at the interface to form a charge separation region. The charging of the 

capacitor is referred to non-Faradic process. The later can be modeled as a parallel-plate capacitor 

whose capacitance given by:  

C = εε0S/d                                                                                                                                   (3.6) 

Where ε is the dielectric constant of the medium and ε0 is the dielectric permittivity of vacuum, S 

is the surface area, and d is the distance between charge layers. Non-faradic capacitance is 

empirically represented by a constant phase element (CPE). The CPE impedance is given by: 

𝑍𝐶𝑃𝐸 =
1

𝐴(𝑖𝜔)𝛼
 , 0 ≤ 𝛼 ≤ 1                                                                                                           (3.7) 

Where ω is the angular frequency (ω = 2πf) and A is the measure of the magnitude of ZCPE. CPE 

describes an ideal capacitor for α = 1 and ideal resistor for α = 0. The impedance is purely 

imaginary for a capacitor and real for a resistor. For a combination of a capacitor and a resistor, a 

large phase angle value indicates that the impedance is mainly capacitive and for the small phase 

angle values is a resistive [161]. 
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Figure 3.17. Electrochemical measurement setup: Equivalent circuit of the electrode-electrolyte 

interface. 

Increasing the roughness and surface area of the electrodes decreases α due to the increase of 

atomic scale heterogeneity on a rougher surface.  Faradic process involves transfer of electrons 

across the electrode-electrolyte interface and was modeled as an electrical resistor (RCT). The 

resistance is inversely proportional to the surface area (R = ρl/S), therefore larger S would result 

in smaller resistance. Micrographs in Figures 3.12 and 3.13 confirmed differences in surface 

roughness and clearly indicated that CNTs have a significantly larger surface area to compare 

with Pt and SIRO.  Fitting parameters are given in Table 3.4 while simulated plots using these 

parameters were shown in Figure 3.18.  

Table 3. 4. Fitting results from the EIS model 

Coating α A (F) RCT (kΩ) Cs (F) 

Pt 0.85 2.30 × 10-8 1900 9 × 10-11 

SIRO 0.80 2.10 × 10-7 400 2.70 × 10-8 

CNTs 0.77 7.20 × 10-6 24 8.60 × 10-9 

 

An equivalent circuit model has been used to describe the electrode-electrolyte interface 

impedance using electrochemical impedance spectroscopy. The electrolyte resistance for all the 

coatings was 2.2 kΩ. As it has been shown in table 3.3, Pt-coated MEAs are smoother (α) than 

CNTs-coated while the capacitance (A) is lower. The resistance (RCT) of CNTs is significantly 

smaller than Pt electrodes. The resistance and capacitance of these coatings could be related to the 

effective surface area. The double layer capacitance around the interface is proportional with the 
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active site surface area (equation 3.3). The large surface area would result in a higher capacitance 

as in the case of CNTs. The resistance is inversely proportional to the surface area so a larger 

surface area would result in a smaller resistance. A good match between the measurement results 

and the curves generated using the equivalent circuit model indicates that the appropriate model 

has been chosen. 

 

 

(a) 

 

(b) 
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(c) 

Figure 3.18. Simulation and experimental results of equivalent electrode-electrolyte interface: (a) 

Pt-tips, (b) SIRO tip, (c) CNT-tips. 

A comparison of electrochemical properties of currently available microelectrodes and this work 

has been listed in Table 3.5.  

Table 3. 5. Comparison of neural Microelectrode arrays 

MEAs 

Characteristics 

Geometry Tip-coating 
Z (kΩ) at  

1 kHz 

Qinj      

(mC/cm2) 

QCDC 

(mC/cm2) 

Density 

(Electrodes 

/1.96 mm2) 

(Negi 2010) 

(Parker 2012)  

2D 

Quasi-3D    

Pt, SIROF1, 

CNTs 

(Electrochemical 

deposition, not 

stable) 

Pt: 125 

SIROF: 6 

CNTs: 49.71 

Pt: 0.3 

SIROF: 2  

CNTs2  

Pt: 4.4  ± 3.1 

SIRO: 34.3 ± 21.7 

CNTs:     

1217.359 nC 

16 

(Ansaldo 2011) NA 

Pt/tungsten 

microwire (Wire 

diameter: 20 µm) 

CVD-CNT: 15    

PPy-CNT3: 7                 

Au-CNT: 50 

CVD-CNT: 4 

PPy-CNT3: 7       

Au-CNT: 0.8 

CVD-CNT:  

1743.4 ±161.7             

PPy-CNT:  

2920.3 ± 191.4 

Single 

probe 

This work 3D      

Pt,  

CNTs (Direct 

growth, stable & 

reliable) 

Pt: 70 

CVD-

CNTs:14 

Pt: 0.3 

CNTs: 10 

Pt: 21.7 ± 10.2 

CNTs: 

13020.1±6510.2   
25 

1SIROF: Sputtered Iridium Oxide Film 
2CNTs: Charge injection capacity is not reported. Cathodal charge storage capacity (QCCSC) is 1217.359 nC. 
3Ppy-CNT: Polypyrrole-CNT 
4Au-CNT: Gold-CNT 
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3.4 Discussions 

Comparing this microelectrode with currently available intracortical penetrating MEAs, presented 

MEA has provided 3D high electrode-density (25 electrodes/ 1.96 mm2), with lower impedance 

and higher charge injection capacity which are desired for neural stimulation. The importance of 

such pyramid-shaped MEA has not been quantified but may have significance during injection 

electrodes inside the tissue. A new fabrication technology has several advantages including 

different possible geometries (3D structure with variable-height electrodes) and ease of 

fabrication. The wet etching time were optimized by cutting the wafer to square pieces and 

applying the gas from the bottom in order to produce narrow and uniform pins. [126]. The usage 

of this masking method not only resulted in uniform tip-exposure for variable-height electrodes 

but also reduced the lead time and cost of fabrication significantly. It would take 6 h compared to 

24 h by the conventional masking method [123, 162].  

The direct growth of CNTs on electrodes led to stable, reliable, and high-density coverage 

compared to CNT films coated using electrochemical deposition. The impedance of CNT 

electrodes was significantly lower than Pt but still not as low as iridium oxide [5]. Iridium oxide-

coated electrodes were not considered because of deterioration of long term stability if used 

beyond their charge injection limits [152].  

EIS measurements have been done in vitro to characterize the quality of the microelectrodes 

coated with Pt and CNTs. Pt electrodes have lower impedance compared with currently available 

microelectrodes. The measured impedance of Pt-coated microelectrodes was 70 kΩ at 1 kHz.  

CNT-electrodes exhibited better electrochemical properties compared to Pt. The impedance of 

CNT-electrodes at 1 kHz was 5 times smaller than Pt, while CNT was 600 times higher than that 

of Pt. More importantly, CNT Qinj is thirty three times higher than that of Pt. Iridium oxide-

electrodes were not considered because of harmful pH-value changes during electrical 

stimulation[5, 25].  

Ansaldo et al have studied electrical properties of three different coatings on sharp Pt/tungsten 

wire microelectrodes including CVD growth of CNT, polypyrrole-CNT (PPy-CNT) and gold-

CNT (Au-CNT) composites by electrochemical co-deposition method (Ansaldo, Castagnola et al. 

2011). The authors have shown that the PPy-CNT improved the QCDC and lowered impedance 
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compared with CVD-CNT electrodes; however, PPy-CNT’s electrical properties degrade with 

time (Table 3.4).  

Abidian et al deposited PEDOT nanotubes on planar neural electrodes and have measured the 

charge capacity density (QCCD) and impedance which were about 110 mC/cm2 and 10 kΩ at 1 

kHz, respectively (Abidian and Martin 2009). The authors have later shown that the combination 

of PEDOT nanotubes with PEDOT and hydrogel improved the QCCD to 220 mC/cm2 and lowered 

impedance to about 2.5 kΩ at 1 kHz. The impedance of PEDOT + PEDOT nanotubes + hydrogel 

is less than CVD-CNT; however, the coating process of PEDOT with different combinations is 

more complicated compared with CVD-CNT.  

Direct growth of CNTs at the tips of presented microelectrodes could increase the QCDC 5 times 

more than PPY-CNT electrodes. The QCDC of this MEA is even higher than electrodes coated with 

polymers and hydrogels which involve the hydrophilicity.   

Another parameter which is important to compare the MEAs materials for neural devices is Qinj. 

The QCDC of materials can be increased by increasing the surface area but it may not increase the 

charge injection capacity [163, 164]. As mentioned above the QCSC of CVD-CNT electrode was 

56.9 ± 0.8 mC/cm2 while the Qinj is only 4 mC/cm2. As shown by Abidian et al the QCSC of large 

surface area PEDOT was 220 m/cm2 while Nyberg et al demonstrated 3.6 mC/cm2 for PEDOT- 

poly styrenesulfonate electrodes [164]. As mentioned above the QCDC of direct growth of CNT-

electrodes is 13020.1±6510.2 mC/cm2 while the Qinj is only 10 mC/cm2. The Qinj of presented 

MEA is higher than PPY-CNT electrodes.  

In order to minimize the immune response of the neural tissue to implanted MEAs, the surface of 

the electrodes could be coated with polymers and bioactive molecules such as polyethylene 

glycol (PEG) and peptides. These materials not only improve the biological compatibility of the 

electrodes but also can be absorbed to the CNTs surface through noncovalent interactions. CNT 

has inherently large surface area but most of its large surface area is inaccessible in electrolyte 

aqueous solution and cannot contribute to charge injection. Various surface modification 

techniques exist to enhance the hydrophilicity of the CNTs electrodes. One of the techniques to 

modify CNTs is coating electrodes with peptides. The peptide binds strongly to the nanotube 

side wall via van der Waals and hydrophobic interactions, while the PEG chain extend into 

water. As a result, the CNT-coated microelectrodes turned more hydrophilic (Wang, Fishman et 

al. 2006). Another hydrophobic to hydrophilic transition happens during incubating electrodes 
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with cell culture medium. Wang et al has showed that functionalized hydrophilic CNT 

microelectrodes could increase effective surface area about 300 times and enhance high charge 

injection during stimulation [138].  

3.5 Conclusion      

A novel, high-density, penetrating, pyramid-shaped microelectrode array for recording and 

stimulation neurons was designed and implemented. Due to its geometry, the proposed 3D MEA 

provides higher contact density than available electrode arrays and allows recording from 

different depths of the cortex. The fabrication technology, described in this work, is simpler and 

faster than currently available techniques. Besides, the novel masking technology provides a 

uniform tip exposure for 3D structures. In addition, selective direct growth of CNTs on the tips of 

3D MEAs using Pt as a catalyst material has been done. On average CNT coating lowered the 

impedance of Pt-coated electrodes by a factor of 5 at 1 kHz and increased charge transfer by a 

factor of 600. The next step will be coating MEAs with biocompatible polymers and biomolecules 

to improve biocompatibility of these electrodes, create a biologically active electrode-tissue 

interface, and improve the charge injection capacity of the electrodes by hydrophilizing CNT-

electrodes. In vitro cell culture tests will be performed to evaluate the growth of cells in presence 

of the electrodes.     
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CHAPTER 4      BIOCOMPATIBILITY OF MEAs 

4.1 Bioactive molecule deposition 

As we mentioned before one of the strategies that can be used to minimize immune response to 

implanted electrodes is by coating them with bioactive molecules such as cell adhesion peptides 

or proteins. These peptides not only improve cell adhesion but also increase the cell proliferation 

[51]. Among the biomolecules,  Tyr-Ile-Gly-Ser-Ar (YIGSR), Ile-Lys-Val-Ala-Val (IKVAV) 

polypeptide fragments [105, 106], and poly-D-lysine  (PDL) [110] are promising candidates that 

are likely to modify neural cell behavior, facilitate neural adhesion onto the electrode devices, 

minimize astrogliosis, and suppress chronic microglial activation. PDL is a widely used synthetic 

peptide can improve neural-cell adhesion, spreading and growth, especially on metallic surfaces. 

Due to its positive charge, it attracts (negatively charged) neurons primarily due to electrostatic 

interactions [110, 165, 166].     

The peptide-polymer conjugation method [112] has a number of advantages over other methods 

including electrochemical polymerization, covalent bonding, self-assembling monolayers, and 

electron spinning when used to cover silicon micromachined electrodes that have been coated 

with polymers and metals. For example, this method can be used on electrically conductive and 

insulating surfaces in order to cover both electrode sites and nonfunctional areas of the device. 

Furthermore, the peptide-polymer conjugation method is simpler to employ when compared with 

other peptide deposition methods.  Furthermore, the peptide-polymer conjugation method is 

simpler to employ when compared with other peptide deposition methods.  

In this part of the project, microelectrode arrays (MEAs) with various tip-coatings of platinum 

(Pt), gold (Au), molybdenum (Mo), sputtered iridium oxide (SIRO), and carbon nanotubes 

(CNTs) have been used when their shank was covered with parylene-C and polyethylene 

glycol (PEG) (excluding CNT-MEAs that covered with SiO2 and PEG), in order to reduce 

responses to foreign bodies and decrease the mechanical mismatch between metals and tissue 

[167]. Hydrogels are excellent scaffolding materials for repairing and regenerating a variety of 

tissues due to their highly swollen 3D structure similar to soft tissues [168]. PEG hydrogel and 

parylene-C are biocompatible polymers that are widely used for coating MEAs in both in vitro 
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and in vivo studies [131, 169-171]. Mo and molybdenum oxide thin films are highly conductive, 

resistance to corrosion, and biocompatible [172, 173].   

The goal of this study is to evaluate the role of PDL for promoting and stabilizing cell 

attachment on the surface of unique microelectrode arrays. The impedance of the electrodes was 

measured before and after PDL deposition. In vitro cell culture tests were performed to evaluate 

the growth of neuroblast cells on the PDL-coated electrodes [174]. A significant advantage of in 

vitro study is that the cells response and health can be observed over time. Optical microscopy 

and scanning electron microscopy (SEM) were used to evaluate the biological compatibility of 

the electrodes.  

4.1.1 MEAs preparation 

In order to insulate the shank and improve the biocompatibility of the electrodes, the entire upper 

surface of some of the electrodes (i.e. excluding the CNT-MEAs) was covered with parylene-C 

using a chemical vapor deposition (CVD) process. Parylene-C films were deposited using a SCS 

Labcoter (PDS 2010). Parylene-C dimer was vaporized under vacuum ( 10 mTorr) at 140°C. 

The dimerized gas was pyrolyzed at 670°C and deposited as a conformal, pinhole-free 

transparent film. For the electrodes with CNT tips, native SiO2 was considered as an insulator 

instead of parylene-C.  

A novel masking technology was developed to coat the active sites of the 3D MEAs. Following 

insulation of the electrodes, a layer of dry-film photoresist (DuPont, FX900) was used as a mask 

on the array. The dry-film follows the 3D structure and enhances the uniform tip exposure. 

Dry-film and parylene-C were removed from the tips using reactive ion etching techniques. 

Custom designed reactive-ion-etching (RIE) and plasma-asher machines were used to etch the 

films. In the first step, dry-film and parylene-C films were anisotropically etched by reactive-ion 

etching (RIE, RF source) from the top of the electrode tips at a power of 200 W and a chamber 

pressure of 100 mTorr for 50 minutes. In the next step, both films were etched isotropically with 

plasma asher (microwave source) from the side-walls of the tips at a power of 150 W and a 

chamber pressure of 400 mTorr for 10 min using PVA TePla system.  

The tips of each MEA were separately sputter-coated with Pt, SIRO, Au, and Mo. All the metals 

were deposited in a custom designed multi-cathode sputtering system. Ti was used as an 

adhesion layer for Pt, Au, and iridium oxide. The Ti layer was sputtered in Ar ambient at the 



77 
 

chamber pressure of 10 mTorr and gas flow rate of 10 sccm (standard cubic centimeter per 

minute) at the power of 90 W, for 11 min. The thickness of Ti was 100 nm. Pt and Au were 

sputter-deposited at the tips of 12 MEAs.  Pt and Au puttering were done in a chamber pressure 

of 10 mTorr with Ar flow rate of 10 sccm at the power of 90 W, for 16 and 13 min, respectively. 

Sputtered iridium oxide (SIRO) was deposited at the tips of 6 MEAs in Ar and O2 plasma with 

both gases flow rate at 25 sccm. The power was 100 W with the deposition pressure of 5 mTorr, 

for 33 min. Mo was sputter-deposited on the tips of 6 MEAs at the pressure of 10 mTorr with Ar 

flow rate of 10 sccm. The power was 200 W, for 16 min. The thickness of Pt, Au, and Mo was 

400 nm and the thickness of SIRO was 200 nm (Table 4.1). The mask was removed with the lift-

off process and ultrasonically cleaned in acetone, isopropanol, and DI water. 

For 6 MEAs, electrode sites were coated with carbon nanotubes (CNTs) using direct growth and 

the coffee stain methods. We have carried out CNTs growth by using Plasma Enhanced 

Chemical Vapor Deposition (PECVD) (section 4.4.2).  In coffee stain method, MEAs were 

dipped in a solution of single-walled CNTs, deionized water, and sodium dodecyl sulfate (SDS) 

as a surfactant for 24 h in a fix position.   

Forty-five pyramid-shaped MEAs were fabricated to verify the biocompatibility of the electrodes 

and in vitro test. 

 

Table 4. 1. Sputtered deposition parameters for the electrodes’ tip-metallization 

Metal Ambient Gas flow rate 

(sccm)1  

Chamber pressure 

(mTorr) 

Power 

(W) 

Time 

(min) 

Thickness 

(nm) 

Ti Ar2 10 10 90 11 100 ± 5 

Pt Ar 10 10 90 16 400 ± 10 

SIRO Ar/O2 25/25 5 100 33 200 ± 10 

Au Ar 10 10 90 13 400 ± 10 

Mo Ar 10 10 200 16 400 ± 10 

2Ar: Argon 

1Sccm: standard cubic centimeter per minute 
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4.1.2 Coating of the MEAs with polyethylene glycol (PEG) 

The PEG coating was added to the MEA by incubating them for 24 h (4 °C) in a solution of 10 

mg/mL PEG in Phosphate-buffered saline (PBS) at pH=7.2 [131, 175]. Twenty-four arrays were 

coated with parylene-C whereas 3 MEAs were covered with the PEG hydrogel. Six uncoated 

samples were used as controls. Figure 4.1 shows a schematic image of the 3D MEAs.  

 

 

Figure 4.1. Schematic view of a silicon micromachined neural MEA with variable heights of 1.45, 

1.55, and 1.65 mm. The shank was covered with parylene-C (or PEG) and the recording sites of 

each array were coated with Pt, Mo, Au, SIRO, or CNTs. The thickness of the electrodes was 200 

μm at the base and less than 2 μm at the tip with 100 μm spacing. 

 

4.1.3 Conjugation of peptide (poly-D-lysine) to the MEAs  

The conjugation of peptides to the MEAs was carried out according to the protocol described by 

Smith et al. [112]. Electrodes with different coatings were rinsed with acetone, isopropanol 

alcohol and deionized (DI) water then soaked in DI water for 24 h. After the cleaning process, 

three arrays of each tip-coating and three parylene-C-coated MEAs with no metal in the tips 

were immersed in 0.1 M phosphate buffered saline (PBS) at pH 7.4. All reactions were 

performed at 4°C using a solution of 0.1 mg/mL PDL. The solutions, including electrodes, were 

magnetically stirred at 100 rpm for 24 h. 
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4.1.4 Fourier transform infrared spectroscopy (FTIR) analysis 

Fourier transform infrared spectroscopy (FTIR) was performed in order to characterize the 

chemical composition of the parylene-C/PDL coatings [171, 176]. A Thermo Scientific model 

Nicolet 6700 spectrometer, with a SMART iTR attenuated total reflectance probe, was used to 

record spectra in the 500-4000 cm-1 range, using a 4 cm-1 resolution. Sixteen scans were 

combined in order to improve the signal-to-noise. Spectra were smoothed using Qtiplot software.  

4.2 Cell cultures and in vitro cell test 

4.2.1 Culture neuroblast cell line (CCL-131) 

After deposition of the PDL, electrodes were placed in culture dishes and sterilized by ultraviolet 

light in a laminar flow hood. A neuroblast cell line (CCL-131), isolated from mouse muscles and 

obtained from American Type Culture Collection (ATCC), was used. Cells were cultured in 

Eagle's minimal essential medium (EMEM), supplemented with 10% fetal bovine serum (FBS) 

and 1% penicillin/streptomycin. They were maintained at 37°C in a humidified incubator with 

5% CO2 until they were seeded into 24-well plates.  

4.2.2 Cell-counting  

Knowing the number of input and output cells per each well is important for measuring the 

impact of the experiments. To calculate cell proliferation, the number of the cells for each well 

was determined with 2 different methods; capturing several images for each sample and manual 

counting of cells using hemocytometer  (Figure 4.2). In the first method the total cells and the 

cells within each circle with radius of 150 µm around each electrode tip were counted. The 

number of cells per each well has been counted before placing MEAs in their own wells and 

after 24 h. In the second method to assure that no cells were washed away after imaging, the cell 

cultures were incubated directly in trypsin. When all cells were detached, cell culture medium 

was added and the cells were counted.  
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Figure 4.2. A schematic view of hemocytometer as seen from the microscope. The cells marked 

as a circle in sections 1, 2, 3, and 4 was counted. 

 

4.2.3 Cell incubation with the electrodes before and after PDL coating 

Peptide-coated and uncoated MEA were placed in their own specified wells for cell attachment 

and proliferation monitoring over 4 days. A Zeiss microscope (Primo Vert) was used to image 

cells on the electrode arrays after 6, 12, 24, 48 h, and 4 days. All experiments were carried out 

three times, using triplicate measurements.  

4.2.4 Statistical analysis 

Data has been reported as the mean ± standard deviation of the mean. Cell attachment, before 

and after PDL deposition, was compared for statistical significance using a t-Test at a 

significance level of p = 0.05. Standard deviation calculations have been used. For the cell 

proliferation studies at least 20 images per sample were captured. All experiments were repeated 

3 times with triplicate samples.   

4.3 Results  

4.3.1 Conjugation of PDL and PEG to the MEAs 

The PDL and PEG coatings could be observed by SEM (Figure 4.3).   Furthermore FTIR 

spectroscopy was used to analyze the chemical composition of the electrodes.   

 

 

 

 



81 
 

 

(a) 

 

                              (b) 

                                                

(c) 

 

                              (d) 

Figure 4.3. SEM images of microelectrodes: (a) Silicon-based microelectrode before coating with 

parylene-C and PEG, (b) Microelectrode coated with parylene-C, (c) Microelectrode covered 

with PDL, (d) Microelectrode covered with PEG. 

 

4.3.2 Conjugation of peptides to MEAs 

SEM images of electrode tips were acquired before and after PDL deposition followed by rinsing 

of the surfaces. The micrographs suggested that there was an excellent adhesion of the peptides 

onto the electrode surface. The morphology of the surface bound peptide appeared to be very 

different than the parylene-C coating. A nodular fractal structure of PDL, forming finger-like 

patterns on the surface of the electrode was observed (Figure 4.4).  
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(a) 

 

 (b) 

 

 (c) 

 

 (d) 

 

(e) 

 

(f) 

Figure 4.4. SEM images of the MEA surfaces coated with: (a) and (b) Pt, (c) and (d) Au, (e) and 

(f) SIRO before and after coating with the PDL, respectively.  

4.3.3 FTIR analysis 

The attachment of PDL to the silicon MEA, insulated with parylene-C and different tip-coatings 

was observed by FTIR. The spectra, in the range of 600 cm-1 to 4000 cm-1, are shown for the Mo 

and Pt tip-coatings before and after PDL coating (Figure 4.5). CH2 groups of lysyl residue side 



83 
 

chains of PDL and those of parylene-C, in the range of 3200 to 2850 cm-1, were masked by a 

broad band corresponding to the hydrogen bonding of the hydration water. The vibrational 

stretches of C-H at approximately 3032 cm-1 (again superimposed with the broad band due to 

hydrogen bonding), aromatic C-C stretches at 1500 cm-1, aromatic C=C at 1450 cm-1 as well as 

the vibrational stretches of C-Cl at 1055 cm-1 could also be unambiguously attributed to the 

parylene-C coating of the microelectrode [171]. When PDL was added to the surfaces, N-H 

stretching of amide groups in the range of 3100-3400 cm-1 and carbonyl groups in the range of 

1650-1690 cm-1, were also observed [176]. The conjugation of the PDL to the MEA with the Au, 

SIRO, and CNTs tips was also confirmed by FTIR spectroscopy (Figure 4.6). 

 

Figure 4.5. FTIR spectrum of silicon MEA insulated with parylene-C and tip coated with PDL: 

(a) and (b) Mo tip-coating before and after coating with the PDL, respectively. (c) and (d) Pt tip-

coating before and after coating with the PDL, respectively. 
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Figure 4.6. FTIR spectrum of silicon MEA insulated with parylene-C and tip coated with PDL: 

(a) and (b) Au tip-coating before and after coating with the PDL, respectively. (c) and (d) SIRO 

tip-coating before and after coating with the PDL, respectively. (e) and (f) CNTs tip-coating 

before and after coating with the PDL, respectively. These measurements have been done using 

Perkin Elmer spectrum with a 65 FTIR spectrometer. 
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4.3.4 Effect of polymer coating on the cell size, morphology, and proliferation 

Cells continued to grow and proliferate when incubated with the electrodes coated with parylene-

C and PEG. The results confirmed that the electrodes and coatings were not harmful to the cells 

in vitro. When compared to the control electrodes (without coating), the size and morphology of 

the cells and the cell numbers were not significantly affected by the addition of the two polymers 

(Figures 4.7 and 4.8). 

      

(a)                                                                (b) 

 

 (c) 

Figure 4.7. Optical microscopy of the electrode tips incubated with neuroblast cells: (a) Before 

coating with polymers, (b) Following coating with parylene-C, (c) Following coating with PEG 

hydrogel.   
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Figure 4.8. Total cell number before and after parylene-C and PEG deposition, (N=6).  

 

4.3.5 Cell proliferation on the peptide-conjugated MEAs 

Peptide-coated and uncoated MEA were cultured with mouse neuroblast cells for 4 days and 

monitored after 6, 12, 24, 48 h, and 4 days. In the optical images (Figure 4.9), the black spots 

correspond to the electrode tips surrounded by the cells. An increased cell proliferation due to the 

PDL-conjugation of the samples was clearly observed by optical microscopy. Cells grew and 

proliferated normally in the presence of polymer, metal, and CNT coated electrodes. Indeed, the 

number of the cells that were quantified on the PDL-coated electrodes (five different active sites) 

was significantly (One-tailed t-Test, p = 0.0016) greater than the cell numbers on the uncoated 

electrodes (Table 4.2, Figure 4.10). The PDL coating increased cell adhesion by more than 50%. 

Figure 4.11 shows growth curve for neuroblast cells via manual count using hemocytometer after 

6, 12, 24, and 48 h. It is noteworthy that the electrodes with CNT active sites had greater cell 

numbers than the electrodes with metallic tips, both before and after PDL deposition. These 

results show that the CNTs increased biocompatibility and enhanced cellular responsiveness by 

attracting more neural cells, in agreement with previous work [177]. 
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(a) 
 

(b) 

(c) (d) 

 

(e) 

 

(f) 
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(g) 

 

(h) 

 

(i) 

 

 (j) 

Figure 4.9. Optical microscopy of the MEAs incubated with neuroblast cells: (a) and (b) Pt, (c) 

and (d) Au, (e) and (f) SIRO, (g) and (h) Mo, (i) and (j) CNTs tips before and after PDL coating, 

respectively. Significantly more cells were attached to the PDL-coated electrodes than the 

uncoated ones (Table 4.2). 

 

Table 4. 2. The number of cells per electrode site for each tip coating before and after PDL 

coating. 

 Electrode tip-

coating 

Cell number per electrode before 

PDL-coating 

Cell number per electrode after 

PDL-coating 

Pt 20.4 ± 1.13 81.33 ± 2.34 

Au 25.1 ± 1.69 83.55 ± 2.69 

SIRO 17.22 ± 1.71 69.33 ± 2.64 

Mo 15.11 ± 1.36 57 ± 1.32 

CNTs 24.55 ± 2.12 115.66 ± 2.23 
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(a) 

 

 (b) 

Figure 4.10. Cell proliferation before and after PDL coating: (a) Total cell number of each tip-

coating before and after peptide deposition. (b) Cell proliferation per electrode site for each tip-

coating before and after peptide deposition (N = 9). The cell proliferation has increased in the 

presence of the electrodes conjugated with PDL.  
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Figure 4.11. Growth curve for neuroblast cells via manual count using hemocytometer after 6, 

12, 24, and 48 h. The lines present a mean value of four points obtained in three separate 

experiments. Standard deviations have been indicated. 

4.4 Discussion 

The peptide-polymer conjugation method not only enhanced biomolecule deposition at the 

surface of the microelectrodes but also controlled the distribution of the cells with a high spatial 

resolution. More importantly, cells were attracted to coated electrode sites, which may improve 

the communication between the cells and stimulation/recording systems. Given that the 

experiments were performed in parallel, these results can be directly related to differences in the 

tip chemical compositions or the differences in the amount of PDL attached to the tips. To 

improve biocompatibility of the MEAs, the surface of the electrodes were covered with PEG 

hydrogel and parylene-C, which are biocompatible polymers. Parylene-C plays a significant role 

as a biocompatible polymer in implantable biomedical devices due to its unique mechanical 

properties and inertness. In addition, parylene-C has demonstrated high stability in in vitro and in 

vivo studies [127, 171]. PEG-based hydrogels are promising materials for working with the 

central nervous system because they are nonionic and relatively resistant to protein adsorption. 

More importantly, in culture, neuro cells that are encapsulated in PEG-based hydrogels can 

survive indicating that the PEG hydrogels are not cytotoxic [178]. Cells grew and proliferated in 

the presence of the electrodes coated with both PEG and parylene-C.  
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In this study, the effect of PDL on the proliferation of neuroblast cells was determined. 

Therefore, we just verified their size, morphology and proliferation. The results have shown that 

cells grew and proliferated normally in the presence of the electrodes and peptides. Teppola et al 

optimized cell growth on MEA plates coating them with PDL, poly-L-lysine, and 

polyethyleneimine (PEI). Neuroblastoma cells were cultured on MEA plates before and after 

coating. The results showed that the MEA coating agents had a strong impact on cell 

morphology, growth, and viability [179]. 

The cytotoxicity effects include the effects of external biomaterials on the cells, whereas the 

biocompatibility study is not only on their cytotoxicity, but also on the effects of cells on these 

materials. A potential mechanism of cytotoxicity includes the formation of reactive oxygen 

species (ROS) such as hydrogen peroxide (H2O2), hydroxyl radical (OH·), hydroperoxyl radical 

(HO2·), and superoxide onion (O2
-) [180]. Cell-based cytotoxicity tests of implantable MEAs 

ensure that the material used in the devices is biocompatible [181]. The dynamic replacement of 

proteins with the bigger ones on the bio-hardware interface (including neural MEAs) results in 

undesired layer instabilities that are difficult to control (Vroman effect) [182, 183].Therefore, 

surface modification of the MEAs including polymerization and bioactive molecule-coating 

significantly improves the biocompatibility of neural implants in the vicinity of tissues and cells. 

More investigation is needed to quantify the ROS produced in neuroblast cells cultured with 

MEAs and corona proteins on the surface of these implants. 

4.5 Conclusion 

A novel, high-density, penetrating, pyramid-shaped MEA for recording and stimulation from/ of 

neurons was designed and implemented. Due to its geometry, a high-density 3D electrode array 

provides more contacts between the electrodes and targeted neural tissue, which may cause more 

recording from different depths of the brain. The deposition of PDL on the electrodes was 

performed and created biologically active electrode-tissue interface. More important, PDL 

improved cell-adhesion and proliferation. Cells are significantly attracted to the electrode sites 

coated with peptides in vitro.  After in vitro test, the electrodes can be implanted into the living 

system to act as an interface between electronics and neural tissue. Further investigation is 
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needed to determine the biocompatibility of the MEAs on neuroblast cells. The next step will be 

chronic implantation of MEAs to validate long-lasting functional devices.  
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CHAPTER 5      CONCLUSION, GENERAL DISCUSSION, AND PERSPECTIVES 

5.1 Summary of the results and contributions 

We have made in the present thesis significant contributions towards the advancement of the 

process technology and fabrication of the neural microelectrode arrays (MEAs). The geometrical 

and electrical characteristics of the MEAs has made it unique among the currently available 

micromachined electrode arrays, as it has provided low-impedance pathway for higher charge 

injection with higher density contacts between the electrodes and targeted neural tissue facilitating 

stimulation and/or recording from different depths of the brain. Our findings point toward the 

necessity to consider a fabrication technology that is simple, flexible, and robust in order to 

produce variable-height electrodes with uniform exposed tip sizes of the same order of neurons 

magnitude.  

The primary objective of this thesis was design and implementation of a high performance 

biocompatible 3D MEA with high selectivity and sensitivity and high electrode-density. A novel 

masking technology resulted in uniform tip-exposure for variable-height electrodes and improved 

process time and cost significantly. We have reported for the first time a selective direct growth of 

carbon nanotubes (CNTs) on the tips of 3D MEAs using the coated Pt as a catalyst material that 

could enhance both the impedance and charge transfer significantly. Biocompatibility of the 

electrodes was improved by coating them with hydrogels and bioactive molecules. The detailed 

conclusions can be summarized as follows: 

Implement a novel pyramid-shaped, high-density, penetrating MEA 

We have developed a micromachining technique for the fabrication of penetrating 3D MEAs with 

a high electrode-density when the tips are no longer in the same plane. The issue with current 

available array is that it is 2D and provides recording data from a plane of the brain. Even the 

slanted one is quasi-3D instead of 3D. Furthermore, such 3D high electrode-density array (25 

electrodes/1.96 mm2) can record or stimulate from/of different depths of the brain and provide 

more contacts between the electrodes and targeted neural tissue (greater access to neurons).  A 

unique combination of variable depth dicing and isotropic wet-etching was employed to fabricate 

novel geometry of pyramid-shaped MEAs. The wet-etching process were optimized by cutting 

the wafer to square pieces and applying the gas from the bottom in order to produce narrow and 
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uniform pins. The etching method offers some advantages including reduction in the processing 

time and higher throughput. The importance of such pyramid-shaped MEA has not been 

quantified but may have significance during injection electrodes inside the tissue. Variable-

height electrodes may help to investigate about neurons causal interactions (“effective 

connectivity”).  

Novel masking technique for tip-coating of variable-height microelectrodes 

A novel masking technology for tip-coating of variable-height electrodes was developed that uses 

dry-film photoresist instead of liquid ones. In this technique the dry-film follows the 3D structure 

and there is no need to control the tip exposure by varying the speed spin of the liquid photoresist, 

degassing, soft and hard backing, and UV exposure. The usage of this masking method not only 

resulted in uniform tip-exposure for variable-height electrodes but also leads to reduction in 

processing time and cost significantly. This technique needs single masking step and reduced the 

conventional masking process steps from 14 to 6. A comparison between the new method and 

conventional masking process shows that the new procedure has several advantages including 

simpler and easier fabrication process, reduced production time and cost, and more uniform tip-

exposure. More importantly, the conventional masking methods may not be practical for 3D 

MEAs since they cannot follow 3D structures.  

This technique results in production of highly controlled tip exposure and allows better control in 

the electrical properties (impedance) of the MEAs. The uniform electrode impedance would 

reduce variability in stimulation and recording characteristics. 

Selective direct growth of CNTs on the tips of 3D MEAs  

To optimize the electrical properties of MEAs, for the first time the tips of the electrodes were 

coated with CNTs by selective direct growth using Plasma Enhanced Chemical Vapor Deposition 

(PECVD) which is a very relevant growth process for neural interfaces. Forest-like vertically 

aligned CNTs with uniform diameters between 25 and 30nm and a typical length in the order of 

600 nm have been grown. It is noteworthy that the length of CNTs can be varied by tuning the 

growth conditions of PECVD such as temperature, pressure, time of growth and plasma. 

However, the short length of achieved CNTs appears more appropriate for neural interface 

applications and may cause less inflammatory response. Such geometry increased the accessible 
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surface area of active sites leading to low impedance and high charge transfer. The average 

impedance of CNT-coated electrodes at 1 kHz was 14 kΩ. The CNT coating led to a 5-fold 

decrease in impedance and a 600-fold increase in charge transfer compared with Pt electrode. 

Low impedance, high charge transfer, and stability have made CNT a promising stimulation 

and/or recording material for neural prosthetic devices.  

Improve biocompatibility of the MEAs  

In order to minimize the immune response of the neural tissue to implanted MEAs, the surface of 

the electrodes were coated with polyethylene glycol (PEG) and poly-D-lysine (PDL). These 

materials not only improved the biological compatibility of the electrodes but also increased cell 

adhesion and proliferation. An in vitro study was performed to test the capacity of PDL to 

improve neural-cell adhesion and proliferation. A significant advantage of in vitro study is that 

the cells response and health can be observed over time. Increased proliferation of the neuroblast 

cells on the microelectrodes was observed in the presence of the PDL. The presence of the 

peptide on the electrode surface was confirmed using Fourier transform infrared spectroscopy 

(FTIR) and scanning electron microscopy (SEM). Peptide-coated and uncoated MEA were 

cultured with mouse neuroblast cells for 4 days and monitored after 6, 12, 24, 48 h, and 4 days. 

An increased cell proliferation due to the PDL-conjugation of the samples was clearly observed 

by optical microscopy. Cells grew and proliferated normally in the presence of polymer, metal, 

and CNT coated electrodes. Indeed, the number of the cells that were quantified on the PDL-

coated electrodes (five different active sites) was significantly (t-Test, p = 0.0016) greater than 

the cell numbers on the uncoated electrodes. The PDL coating increased cell adhesion by more 

than 50%. More importantly, cells were attracted to coated electrode sites, which may improve 

the communication between the cells and stimulation/ recording systems. It is noteworthy that 

the electrodes with CNT active sites had greater cell numbers than the electrodes with metallic 

tips, both before and after PDL deposition. These results show that the CNTs increased 

biocompatibility and enhanced cellular responsiveness by attracting more neural cells, in 

agreement with previous work.  
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5.2 Perspectives for future work 

 

Micromachining techniques turn out to be a privilege viable approach for fabrication of 

microelectrode arrays. The scientific understanding of the electrical stimulation of neural tissue, 

recording of neural electrical activity, and functional/ structural neuron’s behavior is critical for 

the future design of neural MEAs. Design an appropriate MEA which is compatible with both 

brain function and structure and electrical circuitry is crucial to the quality optimization and the 

cost reduction in the future MEAs manufacturing. In particular the architecture, materials, 

electrochemical and biological behavior of the electrodes should be taken into account as 

primary concerns in device design. This thesis work opens a number of interesting possibilities 

that I believe can have considerable impact for different reasons. In the following, we discuss 

several avenues and possibilities for research in this field based on the studies that we have 

conducted during these years. 

Improve electrical properties of CNTs-MEAs 

The immediate contribution of this thesis, as mentioned in chapter 4, is investigation of 

conductive polymer deposition on CNTs. Many studies have shown that CNTs can be used as 

electrochemical supercapacitors. However, due to its high aspect ratio, nanotubes are not stable 

and stick together to form microbundles when they are exposed to liquids. Therefore, large 

surface area of CNTs is inaccessible in electrolyte aqueous solution and cannot contribute to 

charge injection. A uniform free standing of nanotubes are desired as an electrical-neural 

interface. This can be achieved by depositing a conformal layer of conductive polymers such as 

polypyrrole (Ppy) around the CNTs [152].  

Another strategy to increase the accessible area of CNTs is incubation CNTs-MEAs with the 

polyethylene glycol-lipid conjugates (PEG-PL). PEG-LP binds strongly to the nanotube side wall 

via van der Waals and hydrophobic interactions, while the PEG chain extends into water [138]. 

As a result, the CNTs-coated microelectrodes turned more hydrophilic and conduct to higher 

charge injection. A similar hydrophobic-to-hydrophilic process for CNTs is incubation of CNTs-

MEAs with cell culture medium. In this method, the proteins in cell medium will absorb to the 

nanotube surface.  
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Although high-temperature PECVD method allows growing well-aligned, individual and free-

standing nanotubes with uniform diameters, using soft polymer substrates in electrodes structure 

continue to be challenging. Lower growth temperatures relative to CVD (<400°C) are possible 

since high-energy electrons present in the discharge plasma, supply the energy necessary for 

chemical reactions in the gas [153]. Another advantage is that during the growth process, the 

plasma removes amorphous carbon which strongly affects the electrical properties of electrodes 

and may lead to an increase of impedance.  

Select an appropriate insulator 

One of the major failure modes of implant MEAs is material failures including broken electrode 

tips, insulation leakage, or insulator cracks and delamination. To choose an appropriate insulator 

we should consider two main aspects:   

 The material properties of the insulator such as hydration, fraction strength, tensile 

strength, and biocompatibility  

 Adhesion to the substrate which is critical to prevent delamination 

In order to insulate electrodes with CNTs tip-coating, we need materials with conformal 

coverage and thermal stability. Some of the experiments that need to be undertaken in order to 

improve the insulation layer are:  

 Deposit high quality SiO2 using Low Pressure Chemical Vapor Deposition (LPECVD) 

technique for Hot Filament Chemical Vapor Deposition (HFCVD) CNTs growth    

 Wet silanization process prior to parylene-C deposition in order to promote the adhesion 

of parylene to the silicon for low temperature PECVD CNTs growth 

MEAs in vivo test 

MEAs have been tested in vitro successfully. Cells grew and proliferated normally in the 

presence of polymer, metal, and CNT coated electrodes.  After in vitro test, the electrode arrays 

should be implanted into the living system (in vivo) and evaluated both in terms of electrical 

performance (impedance as a preliminary marker) and mechanical stability. Electrode recording 

sites of chronically implanted arrays can be influenced by physical changes in the electrodes 

(corrosion, damage insulation, and change in tip surface area) or by immune response of the 
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brain (inflammatory response, astrogliosis, disruption of blood-brain barrier, and glial 

encapsulation).  
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