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RÉSUMÉ

Les tests logiciels sont d’une importance capitale dans nos sociétés numériques. Le bon fonc-
tionnement de la plupart des activités et services dépendent presqu’entièrement de la disponi-
bilité et de la fiabilité des logiciels. Quoique coûteux, les tests logiciels demeurent le meilleur
moyen pour assurer la disponibilité et la fiabilité des logiciels. Mais Les caractéristiques du
paradigme orienté-objet—l’un des paradigmes les plus utilisés—complexifient les activités de
tests. Cette thèse est une contribution à l’effort considérable que les chercheurs ont investi
ces deux décennies afin de proposer des approches et des techniques qui réduisent les coûts
de test des programmes orientés-objet et aussi augmentent leur efficacité.

Notre première contribution est une étude empirique qui vise à évaluer l’impact des antipa-
trons sur le coût des tests unitaires orienté-objet. Les antipatrons sont des mauvaises solutions
à des problèmes récurrents de conception et d’implémentation. De nombreuses études empi-
riques ont montré l’impact négatif des antipatrons sur plusieurs attributs de qualité logicielle
notamment la compréhension et la maintenance des programmes. D’autres études ont égale-
ment révélé que les classes participant aux antipatrons sont plus sujettes aux changements et
aux fautes. Néanmoins, aucune étude ne s’est penchée sur l’impact que ces antipatrons pour-
raient avoir sur les tests logiciels. Les résultats de notre étude montrent que les antipatrons
ont également un effet négatif sur le coût des tests : les classes participants aux antipatrons
requièrent plus de cas de test que les autres classes. De plus, bien que le test des antipatrons
soit coûteux, l’étude révèle aussi que prioriser leur test contribuerait à détecter plutôt les
fautes.

Notre seconde contribution se base sur les résultats de la première et propose une nouvelle
approche au problème d’ordre d’intégration des classes. Ce problème est l’un des principaux
défis du test d’intégration des classes. Plusieurs approches ont été proposées pour résoudre ce
problème mais la plupart vise uniquement à réduire le coût des stubs quand l’approche que
nous proposons vise la réduction du coût des stubs et l’augmentation de la détection précoce
des fautes. Pour ce faire, nous priorisons les classes ayant une grande probabilité de défec-
tuosité, comme celles participant aux antipatrons. L’évaluation empirique des performances
de notre approche a montré son habilité à trouver des compromis entre les deux objectifs.
Comparée aux approches existantes, elle peut donc aider les testeurs à trouver des ordres
d’intégration qui augmentent la capacité de détection précoce des fautes tout en minimisant
le coût de stubs à développer.

Dans notre troisième contribution, nous proposons d’analyser et améliorer l’utilisabilité de
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Madum, une stratégie de test unitaire spécifique à l’orienté-objet. En effet, les caractéristiques
inhérentes à l’orienté-objet ont rendu insuffisants les stratégies de test traditionnelles telles
que les tests boîte blanche ou boîte noire. La stratégie Madum, l’une des stratégies proposées
pour pallier cette insuffisance, se présente comme une bonne candidate à l’automatisation
car elle ne requiert que le code source pour identifier les cas de tests. Automatiser Madum
pourrait donc contribuer à mieux tester les classes en général et celles participant aux antipa-
trons en particulier tout en réduisant les coûts d’un tel test. Cependant, la stratégie de test
Madum ne définit pas de critères de couverture. Les critères de couverture sont un préalable
à l’automatisation et aussi à la bonne utilisation de la stratégie de test. De plus, l’analyse des
fondements de cette stratégie nous montre que l’un des facteurs clés du coût des tests basés
sur Madum est le nombre de "transformateurs" (méthodes modifiant la valeur d’un attribut
donné). Pour réduire les coûts de tests et faciliter l’utilisation de Madum, nous proposons
des restructurations du code qui visent à réduire le nombre de transformateurs et aussi des
critères de couverture qui guideront l’identification des données nécessaires à l’utilisation de
cette stratégie de test.

Ainsi, partant de la connaissance de l’impact des antipatrons sur les tests orientés-objet, nous
contributions à réduire les côuts des tests unitaires et d’intégration.
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ABSTRACT

Our modern society is highly computer dependent. Thus, the availability and the reliability
of programs are crucial. Although expensive, software testing remains the primary means to
ensure software availability and reliability. Unfortunately, the main features of the object-
oriented paradigm (OO)—one of the most popular paradigms—complicate testing activities.
This thesis is a contribution to the global effort to reduce OO software testing cost and to
increase its reliability.

Our first contribution is an empirical study to gather evidence on the impact of antipatterns
on OO unit testing. Antipatterns are recurring and poor design or implementation choices.
Past and recent studies showed that antipatterns negatively impact many software quality
attributes, such as maintenability and understandability. Other studies also report that
antipatterns are more change- and defect-prone than other classes. However, our study is the
first regarding the impact of antipatterns on the cost of OO unit testing. The results show
that indeed antipatterns have a negative effect on OO unit testing cost: AP classes are in
general more expensive to test than other classes. They also reveal that testing AP classes
in priority may be cost-effective and may allow detecting most of the defects and early.

Our second contribution is a new approach to the problem of class integration test order
(CITO) with the goals of minimizing the cost related to the order and increasing early defect
detection. The CITO problem is one of the major problems when integrating classes in
OO programs. Indeed, the order in which classes are tested during integration determines
the cost (stubbing cost) but also the order on which defects are detected. Most approaches
proposed to solve the CITO problem focus on minimizing the cost of stubs. In addition to
this goal, our approach aims to increase early defect detection capability, which is one of the
most important objectives in testing. Early defect detection allows detecting defects early
and thus increases the cost-effectiveness of testing. An empirical study shows the superiority
of our approach over existing approaches to provide balanced orders: orders that minimize
stubbing cost while maximizing early defect detection.

In our third contribution, we analyze and improve the usability of Madum testing, one
of the unit testing strategies proposed to overcome the limitations of traditional testing
when testing OO programs. Opposite to other OO unit testing, Madum testing requires
only the source code to identify test cases. Madum testing is thus a good candidate for
automation, which is one of the best ways to reduce testing cost and increase reliability.
Automatizing Madum testing can help to test thoroughly AP classes while reducing the
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testing cost. However, Madum testing does not define coverage criteria that are a prerequisite
for using the strategy and also automatically generating test data. Moreover, one of the key
factors in the cost of using Madum testing is the number of transformers (methods that
modify a given attribute). To reduce testing cost and increase the easiness of using Madum
testing, we propose refactoring actions to reduce the number of transformers and formal
coverage criteria to guide in generating Madum test data. We also formulate the problem of
generating test data for Madum testing as a search-based problem.

Thus, based on the evidence we gathered from the impact of antipatterns on OO testing, we
reduce the cost of OO unit and integration testing.
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CHAPTER 1 INTRODUCTION

1.1 Context and Motivation

Software are prevalent in our daily life and their reliability is crucial. The proper functioning
of most of activities in our modern societies relies heavily on software availability and reli-
ability. Moreover, in many critical areas that use software, such as aviation and medicine,
software failures may cause economic loss and–or human casualties. Testing is to date the
primary and the most used means to ensure software availability and reliability. However,
software testing is an expensive and time consuming activity: literature reports that testing
activities cost up to 50% of software overall cost (Beizer, 1990; Ellims et al., 2006). Moreover,
testing activities have been complicated by object-oriented (OO) paradigm that is neverthe-
less the most popular software development paradigm.

First OO languages have been created in 70s but the paradigm has been widely accepted in
90s with the Smalltalk, C++, and Java languages. OO paradigm is a development paradigm
based on the encapsulation of state and behavior as opposite to procedural programming
that advocates a centralization with a functional decomposition (Riel, 1996). It has been
created to overcome the limitations of procedural programming languages when building
complex and large software. Although OO is no the silver bullet (Brooks, 1987), it improves
reusability, flexibility, and it facilitates building large and complex programs (Booch, 1991;
Binder, 1999).

However, OO does not only change the way of designing and developing programs, it impacts
and complicates the way of testing them (Binder, 1999; Bashir et Goel, 2000). Indeed, the
core features of OO—abstraction, encapsulation, visibility, inheritance, and polymorphism—
that are responsible for its success are the same that make difficult OO testing. For example,
encapsulation and visibility prevent to directly access the state of object during test and,
thus, force to find different ways to ascertain the state of the object: use of friend mechanism
in C++, use of accessors in Java, or reflection in both. Another example concerns the
shift of the unit from function in procedural programming to class in OO. This shift makes
traditional unit testing strategies, such as black box and white box, insufficient regarding
the test of OO (Binder, 1999; Bashir et Goel, 2000). Thus, testing a single method in terms
of inputs/outputs is no longer enough. OO unit testing requires to consider the state of
the object during the test and also interactions between methods (Bashir et Goel, 2000).
Because they are strongly structure dependant, unit testing and integration testing are the
most impacted testing levels by OO. Consequently, many research works have been carried
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out to meet the challenges of testing OO programs, reduce the cost, and increase the efficiency
of testing.

Researchers proposed various testing strategies and criteria that consider the particularities
of OO programs and overcome the limitations of traditional testing strategies (Binder, 1999;
Bashir et Goel, 2000; Briand et al., 2003b). They strived to find ways to promote OO
testing, automatically generate test data (Tonella, 2004; McMinn et Holcombe, 2005; Sakti
et al., 2015; Fraser et al., 2015) as well as to identify factors impairing OO testing cost and
effectiveness (Jungmayr, 2002; Bruntink et van Deursen, 2006; Badri et al., 2010). Indeed,
the knowledge about the factors that impede the cost of testing or its efficiency is essential to
take adequate actions and propose solutions to reduce that cost and increase the effectiveness.

Antipatterns (APs) are defined as recurring and poor design or implementation choices
(Brown et al., 1998). The time-to-market, lack of understanding, and misuse of OO con-
cepts are among the main factors that lead developers to introduce antipatterns in their
code. Many empirical studies have been performed to assess the impact of antipatterns on
software quality (Deligiannis et al., 2003; Du Bois et al., 2006; Khomh et al., 2012). The
results of these studies show that the presence of antipatterns in programs negatively im-
pact many software quality attributes, such as maintenability (Deligiannis et al., 2003) and
understandability (Abbes et al., 2011). Moreover, other studies reveal that classes involv-
ing antipatterns are more change- and defect-prone than other classes (Olbrich et al., 2009;
Khomh et al., 2012). Thus, it is important to investigate on the potential impact of an-
tipatterns on OO testing. The outcome of such a study can serve to propose approaches to
improve OO unit and integration testing and reduce their cost. However, to the best of our
knowledge, there is no empirical evidence about the potential impact of antipatterns on OO
testing.

1.2 Thesis Statement and Contributions

The considerations discussed in the previous section motivate us to formulate our thesis
statement as follows.
The cost of testing classes involving antipatterns is higher than that of other classes but
it is possible to offer techniques to reduce that cost during unit and integration testing.

In summary, to support our thesis, we first study the impact of APs on the cost of OO
unit (class) testing. Based on the results of this study, we propose a new approach to
the class integration test order (CITO) that balances the cost of stubs and early defect
detection. Besides reducing the stubbing cost as existing approaches to the CITO problem,
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the proposed approach aims also to increase early defect detection capability. Finally, we
analyze and improve the usability of Madum testing, a specific OO unit testing strategy
proposed to overcome the limitations of traditional unit testing when testing OO programs.
This investigation aims at contributing to the effort of finding suitable testing strategies to
test OO programs containing APs.

1.2.1 Contribution 1: Impact of Antipatterns on Class Testing

The literature reports numerous studies on the impact of antipatterns (APs) on many soft-
ware quality attributes. The results of these studies point out the negative impact of APs
on software quality: APs decrease software maintenability (Deligiannis et al., 2003) and un-
derstandability (Abbes et al., 2011) and thus increase software maintenance cost. Other
studies also showed that classes involving APs are less resilient to change and defect (Olbrich
et al., 2009; Khomh et al., 2012). Although testing is one of the most expensive activities,
to the best of our knowledge, there is no study that evaluates the potential impact of APs
on testing. These considerations motivate us to study and gather evidence on the impact of
APs on OO testing. Such evidence is important for researchers and practitioners. Evidence
on the negative impact of APs on testing will allow researchers to investigate new research
directions to improve OO testing when taking into account the presence of APs. Based on
this evidence, practitioners could take informed decisions about how to deal with APs in
their programs: they could knowingly choose to keep them, remove them, or refactor them.

To perform our study, we use as measure of testing cost the number of test cases required
by Madum testing, a unit testing strategy specific to OO programs. The results of the study
show that APs (and specially some APs, such as Blob, AntiSingleton, ComplexClass, or
SwissArmyKnife) impact negatively unit (class) testing. Indeed, classes participating to APs
require more test cases than other classes. The results also reveal that although APs testing
is expensive, its prioritization is cost-effective in the sense that it allows detecting most of
the defects and early.

1.2.2 Contribution 2: MITER (Minimizing Integration Testing EffoRt)

One of the main problems faced when testing OO programs during integration is the order
in which classes should be tested (Kung et al., 1995). Indeed, this order highly impacts the
cost of integration testing as it determines the number and–or the complexity of stubs to
be developed (Tai et Daniels, 1997). Each time a class not developed or not tested yet is
required to test another class, a stub should be developed to mimic its behavior during the
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test 1. As stated by Kung et al. (1995), the cost of stubs constitutes a major factor in the
overall cost of class integration testing: developing a stub to replace a class is more complex
and difficult than developing one to replace a function in procedural programming.

This problem, known as class integration test order (CITO) problem, has been widely in-
vestigated (Kung et al., 1995; Tai et Daniels, 1997; Traon et al., 2000; Briand et al., 2002b;
Abdurazik et Offutt, 2009) with the goal of reducing the stubbing cost. Besides the stubbing
cost, the order in which classes are tested defines also the order in which defects will be
detected. Thus, this order also impacts the defect detection of the testing activity. Early
defect detection is one of the major goals and most desirable properties of testing activities
and its economical value is recognized and documented in the literature (Boehm et Papaccio,
1988; Dabney et al., 2006; Peters et al., 2013). Early defect detection allows developers to
begin locating and correcting defects earlier. Thus, it makes the delivery of a release of better
quality on time. It can also ensure that a maximum number of defects have been discovered
even if testing gets stopped prematurely (Elbaum et al., 2000). Moreover, as shown by the
first contribution of this dissertation, although AP classes are expensive to test, prioritizing
their test allows detecting most of the defects and early.

We propose MITER (Minimizing Integration Testing EffoRt), a new approach to the CITO
problem, that seeks not only to minimize the stubbing cost but also to increase early de-
fect detection when testing OO classes during integration. This novel approach relies on a
Memetic Algorithm (MA) to compute class integration test orders. An evaluation of MITER
shows its superiority to foster early defect detection while keeping low stubbing cost compared
to existing approaches.

1.2.3 Contribution 3: Improvement of the Usability of Madum Testing

Previous studies show that AP classes are more defect-prone than other classes (Khomh
et al., 2012), advocating the need to test them thoroughly. However, our first study shows
that their test is expensive. Therefore, it is necessary to find means to reduce the cost of
testing AP classes.

Madum testing is one of the OO unit strategies proposed to address the limitations of tradi-
tional unit testing in the test of OO programs (Bashir et Goel, 2000). In contrast to other OO
unit testing strategies, such as state-based testing (Binder, 1999) and pre-and-post conditions
(Boyapati et al., 2002) that require specific inputs (respectively state charts or pre-and-post
conditions specifications), Madum testing relies only on source code syntax and the notions

1. This rule is called in this dissertation server-before-client (SBC) principle. It is defined in Section 2.1.4.
Consequently, we use stub and SBC violation interchangeably.
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of definition and use of attributes to identify test cases. Madum testing is thus a good can-
didate for automation which is one of the main means to reduce testing costs and increase
testing use and efficiency: The automation of testing activities significantly reduces testing
cost and helps also minimize human error and make regression testing easier (Ammann et
Offutt, 2008). Automatize Madum testing could thus help reduce the test of AP classes.
However, there is no formal criteria to guide in the use of this strategy and its automation
neither evidence about its effectiveness and usability in practice. Moreover, Madum testing
is based on the test of sequences of methods that modify values of attributes; these methods
are called transformers. The number of these methods is then a key factor in the cost of the
test. Therefore, our third contribution aims at addressing these issues. On a set of classes
exhibiting a high number of transformers, we show that specific refactoring actions can in-
deed reduce the number of transformers and thus the cost of using Madum testing. We also
propose formal criteria to guide in generating Madum test data. Finally, we formulate the
problem of generating test data for Madum testing as a search-based problem.

1.3 Publications

Part of this research work has been the object of the following publications:

Aminata Sabané, Giuliano Antoniol, Philippe Galinier, Yann-Gaël Guéhéneuc, Massimil-
iano Di Penta (2015). MITER: Minimizing Integration Testing Effort. Journal of Software
Maintenance and Evolution: Research and Practice (submitted).

Aminata Sabané, Giuliano Antoniol, Massimiliano Di Penta, Yann-Gaël Guéhéneuc (2013).
A Study on the Relation Between Antipatterns and the Cost of Class Unit Testing. Proceed-
ings of the 17th European Conference On Software Maintenance and Reengineering (CSMR).

Aminata Sabané (2010). Improving System Testability and Testing with Microarchitec-
tures. Proceedings of the 17th Working Conference on Reverse Engineering (WCRE).

1.4 Roadmap

The reminder of this dissertation is organized as follows:

Chapter 2 (p. 7): This chapter provides background materials to facilitate the understand-
ing of this dissertation. It is organized under the main topics related to our thesis statement:
testing in general and OO unit and integration testing in particular, antipatterns, search-
based techniques, defect prediction, and empirical studies.

Chapter 3 (p. 23): This chapter reports the main related work to this dissertation in-
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cluding antipatterns, their impact on software quality, and the main approaches to the class
integration test order problem.

Chapter 4 (p. 28): This chapter presents the study on the impact of antipatterns on the
cost of class testing.

Chapter 5 (p. 42): This chapter presents our new approach, MITER, to the problem of
class integration test order with the goals of minimizing stubbing cost and increasing early
defect detection. It also reports the experiment we performed to assess the performance of
MITER to find a trade-off between the two objectives.

Chapter 6 (p. 81): This chapter analyzes the usability of Madum testing. It proposes
specific refactoring actions to reduce the cost of using this strategy, defines formal coverage
criteria to guide in generating test data, and formulates the problem of generating Madum
test data as a search-based problem.

Chapter 7 (p. 91): This chapter summarizes the contributions of this thesis and outlines
possible future directions.

Appendix A (p. 104): This Appendix presents the source code of the class BankAccount
used to illustrate Madum testing.

Appendix B (p. 107): This Appendix presents an experiment performed to compare the
performance of genetic algorithm and memetic algorithm in finding close to optimal orders
when solving the problem of class integration test order.
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CHAPTER 2 BACKGROUND

As described in the previous chapter, the main topics addressed in our thesis work are testing,
antipatterns, search-based techniques, defect prediction, and empirical studies. To facilitate
the understanding of the following chapters, the present chapter defines the basic and main
concepts related to these topics. It also presents the main techniques and tools used in this
dissertation.

2.1 Concepts Related to Testing

Software testing consists in the dynamic verification that a program provides expected be-
haviors on a finite set of test cases, suitably selected from the generally infinite execution
domain (Bourque et Fairley, 2014). Glenford et al. (2004) highlight the primary purpose of
software testing: "software testing is a process of executing a program or application with
the intent of finding defects." Although testing cannot guarantee the absence of defects (Dahl
et al., 1972), testing is one of the best means to ensure software dependability. As mentioned
in the previous chapter, the OO paradigm affects testing process and strategies in particular
at unit and integration levels. In the following, we recall basic testing concepts based on
the book of Ammann et Offutt (2008). We also describe unit and integration testing in the
context of OO programs. Finally, we present a specific OO unit testing strategy used in this
dissertation namely Madum testing.

2.1.1 Basic Testing Concepts

Levels of Testing: Testing levels are defined based on traditional software process steps.
Thus, each development activity is associated to a level of testing leading to five main levels
of testing. A given testing level aims at discovering specific defects and usually defects
introduced in the corresponding development phase. The information used in a given testing
level is derived also from the output of the related development phase. This categorization
does not imply the use of a waterfall development process and can be used in any development
process. We briefly describe each testing level in the following.

– Unit Testing is associated with the implementation phase and is used to verify that each
unit works correctly in isolation. A unit is defined as a software component that cannot
be subdivided into other components. A unit is a function or procedure in procedural
programs whereas it is a class in OO programs.
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– Module Testing corresponds to the detailed design phase. It assesses individual modules
where a module represents a collection of related units.

– Integration Testing is associated to the subsystem design phase. It refers to testing activ-
ities used to evaluate the interactions between modules.

– System Testing is related to the architectural design phase and aims at determining if the
software works as a whole.

– Acceptance Testing corresponds to the requirements analysis phase. Its goal is to assess
whether the completed software meets the customers’ needs as specified in the require-
ments.

Test Requirements: A test requirement is a specific element of a program artefact that a
test case must satisfy or cover. All statements or all branches are examples of test require-
ments. It happens that some test requirements cannot be satisfied; those test requirements
are called infeasible test requirements.

Coverage Criterion: A coverage criterion is a rule or collection of rules that impose test
requirements on a test set. For example, the branch coverage criterion requires to cover all
branches in the program under test. Testing criteria are very important in testing: they
guide testers on what must be tested, provide measurements of test quality, and they are
also stopping criteria that determine whether sufficient testing has been done (Zhu et al.,
1997).

Coverage Level: Coverage level or simply coverage with respect to a given criterion is the
ratio of the number of test requirements satisfied out of the total number of test requirements
(Ammann et Offutt, 2008). Coverage level is one of the metrics used to assess the quality or
the degree of testing. Although, it has been shown to not directly impact testing effectiveness
(Briand et Pfahl, 1999; Inozemtseva et Holmes, 2014), it is a necessary condition for testing
effectiveness. Indeed, a tester cannot discover a defect if the test requirement that can reveal
that defect is not satisfied. For example, if a bloc contains a defect and is not executed,
the defect will not be discovered. Another example is the case where a test requirement
with a specific category of inputs in category partition testing leads to a failure. If any test
case is designed to test this category, the failure will not happen and the defect will not be
discovered.

Criteria Subsumption: Coverage criteria are often related to each other. This relation-
ship is expressed as the criteria subsumption: a coverage criterion C1 subsumes a coverage
criterion C2 if and only if satisfying C1 will guarantee that C2 is satisfied. For example,
branch coverage criterion subsumes statement coverage criterion.
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2.1.2 OO Unit Testing

Unit testing consists in the test of basic components of the program in isolation. It is the low-
est level in testing process. Encapsulation—one of the main features of OO programming—
changes the definition of a unit as known in procedural programming. This change represents
one of the major changes in OO testing concerns (Bashir et Goel, 2000). In OO programs, the
unit is no longer a function as in procedural programs but an object (instance) of the class
under test. An object encapsulates its state and its behavior (associated methods). There-
fore, the output of a method does not only depend on the inputs but also on the state of the
object on which it has been called. This change of the unit and the notion of object state
lead to the emergence of a new testing level and of new testing techniques and approaches
(Beizer, 1990; Bashir et Goel, 2000). OO unit testing involves the following steps (Ammann
et Offutt, 2008):

– Intramethod testing consists in the test of individual methods.
– Intermethod testing consists in the test of pairs of methods within a same class.
– Intraclass testing corresponds to the test of a class as unit and consists in the test of
sequences of methods of that class on some of its instances.

The two first levels are similar to the unit and module testing in procedural programming
whereas the third one is specific to OO programming. In OO programs, defects may depend
on the behavior of particular methods when the class is in a certain state.The intraclass testing
has for goal to detect such defects by identifying the sequence of methods that will put an
object under test in an abnormal state (Bashir et Goel, 2000; Ammann et Offutt, 2008). As
pointed out by many authors (Binder, 1999; Bashir et Goel, 2000), the existing procedural
black-box and white box unit testing techniques are insufficient for intraclass testing. Indeed,
they are conceived to test functions as stand-alone and therefore could miss state-based errors
due to interactions between methods. To overcome this limitation, new techniques, such as
state-based testing (Binder, 1999), pre-and-post conditions testing (Boyapati et al., 2002),
and Madum testing (Bashir et Goel, 2000) have been proposed. Because the number of
sequences of methods grows exponentially with the number of methods within a class, testing
all possible sequences of methods is very expensive if not impossible (Bashir et Goel, 2000).
Indeed, the number of possible sequences in a class with five methods is 120 whereas it is
5,040 for seven methods and 3,628,800 for just 10 methods when considering sequences that
will contain each method once. OO unit testing strategies, based on specific criteria, help to
select only a subset of methods sequences to test; thus they reduce the number of sequences
to test within a class while keeping an acceptable degree of confidence in the test.
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2.1.3 Madum Testing

Madum testing, proposed by Bashir et Goel (2000), is one of the class testing strategies
designed to address the limitations of procedural unit testing strategies regarding OO unit
testing. Madum testing helps perform intraclass testing by focusing only on testing methods
that modify the state of the object. It thus reduces the number of possible sequences of
methods to test. The approach is based on data slices, defined as the set of methods that
access or modify a field (attribute). The correctness of a class is tested in terms of the
correctness of all its slices tested separately.

The identification of each slice is based on two key elements: the enhanced call-graph (ECG)
and the minimal data members usage matrix (Madum). An ECG represents the accesses
(usages or invocations) of members of a class by other members. The ECG of a class C can
be defined as: ECG(C) = (M(C), F (C), Emf , Emm), where:
– M(C) represents the set of methods of C;
– F (C) is the set of fields of C;
– Emf = {(mi, fj)} indicates that there is an edge between the method mi and the field fj,
i.e., mi accesses the field fj;

– and Emm = {(mi,mj)} indicates that there is an edge between the methods mi and mj,
i.e., mi invokes mj.

Madum testing uses a taxonomy that classifies methods into four categories:

– Constructors (c): class constructors;
– Transformers (t): methods that alter the state of one or more fields;
– Reporters (r): methods that return the value of a field;
– Others (o): methods that do not fit in the three first categories, e.g., methods that handle
special conditions/exceptional behavior.

We can consider a constructor as a specific transformer. It is a transformer because it
initializes therefore changes the value of attributes. It is specific because its position when
considering sequences of methods does not change, i.e, always first.

A Madum is an nf · nm matrix, where nf and nm are respectively the number of fields and
the number of methods of the class. Built based on the ECG of the class, each cell (i, j) of
the Madum is marked as follows:
– c if mj is a constructor that initializes fi;
– t if mj transforms fi;
– r if mj reports the state of fi;
– o if mj accesses to fi without being a constructor, a transformer, or a reporter.
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A method mj can access a field fi directly or indirectly through another method mk (transi-
tively) invoked by mj. However, if mj accesses fi only through mk, and mk has been tested
already in the fi slice, then according to the strategy, there is no need to also test mj in the
fi slice.

Madum testing works as follows. First, reporters are tested, followed by setters (if present)
and by constructors. Then, interactions among transformers are tested. These interactions
are based on the permutation of slice transformers for each constructor context. Let c be the
set of constructors and t be the set of transformers in a given slice. Then, to test sequences of
transformers in that slice, the tester must produce |c| · |t|! test cases, where |c| is the number
of constructors and |t| the number of transformers in the slice. Finally, the others (o) are
tested using traditional black or white-box testing strategies.

The process to test interactions among transformers implies that the number of sequences to
test in a slice will grow exponentially with its number of transformers.

An Example of Madum

We illustrate the different concepts of Madum testing using a class BankAccount in Ap-
pendix A as example. BankAccount is a simple class representing a checking account. It has
three private and non-static attributes (name, accountNumber, and balance), two constructors
(BankAccount(String) and BankAccount(String, double)), and seven public and non-static
methods (deposit(double), getAccountId(), getBalance(), getName() payInterest(), printAc-
count(), and withdraw(double)). Figures 2.1 and 2.2 represent respectively the ECG and the
Madum of the class BankAccount. The attribute balance has three transformers and the
other attributes do not have any. The method printAccount() is marked as other because it
only displays the attributes values. Because the constructor BankAccount(String) initializes
the attributes through the second constructor BankAccount(String, double), it does not need
to be tested and thus it does not appear in any slice.

2.1.4 OO Integration Testing

Integration testing consists in assessing interactions between two components that have al-
ready been tested in isolation during unit testing (Beizer, 1990). The main purpose of this
testing level is to ensure that components that work in isolation communicate correctly. In
OO programming, the components to integrate can be classes, aggregations of classes, or
subsystems.

To perform integration testing, one should answer two main questions (Briand et al., 2003b):
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Figure 2.1 BankAccount Enhanced Call-Graph.

Figure 2.2 BankAccount Minimal Data Members Usage Matrix.

– How to test the interactions between two components?
– In which order components should be integrated?
Many approaches have been proposed to answer the first question (Bashir et Goel, 2000;
Briand et al., 2003b). The second question which is of interest in this dissertation has also
been investigated through the well known class integration test order (CITO) problem when
the components to integrate are classes (Kung et al., 1995; Traon et al., 2000; Abdurazik et
Offutt, 2009). The CITO problem is defined as the problem of finding an order in which
classes can be integrated and tested with minimum cost. The cost is usually expressed as
the number and–or the complexity of stubs.

We present in the following the main concepts related to class integration test order.

Server and Client classes: A server class is a class that provides services to other classes
whereas a client class is a class that receives services from others. A class can play both roles
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and thus being a server class for certain classes and a client class for others.

Stubs: A stub is a dummy class used to simulate the behavior of a class that is not tested
or developed yet when testing one of its clients (Traon et al., 2000). We can distinguish two
types of stubs:
– A specific stub simulates the services for the use of a given client only. In that case, the
stub is specific to a particular client and as many specific stubs have to be created as there
are clients (Traon et al., 2000).

– A realistic stub simulates all services that the original class can provide. In that case, the
stub works whatever the client (Traon et al., 2000).

Server-before-client Principle: Most of the proposed approaches to the CITO problem
(Kung et al., 1995; Tai et Daniels, 1997; Traon et al., 2000; Briand et al., 2002b; Abdurazik
et Offutt, 2009) are based on the principle that a server class should be tested before its
clients to reduce integration testing effort. This principle is called server-before-client (SBC)
principle in this dissertation. In theory, each time a client is tested before its server classes,
there are SBC violations: stubs should be written to replace the server classes to avoid the
consequences of using untested classes to evaluate the correctness of other classes: risk of
defect propagation (Lloyd et Malloy, 2005) and increase of the effort required to locate a
bug.

2.2 Antipatterns

Antipatterns are recurring, poor design choices that negatively impact software quality (Deli-
giannis et al., 2004; Du Bois et al., 2006; Olbrich et al., 2009; Khomh et al., 2012). One of
the goals of this thesis is to study their impact on software testing. For that purpose, we
choose to analyse 13 antipatterns (Brown et al., 1998; Fowler, 1999). These antipatterns,
described in Table 2.1, have been studied in previous research work (Khomh et al., 2012;
Romano et al., 2012). They also appear frequently in the analyzed programs and they are
representative of design and implementation problems with data, complexity, size, and the
features provided by classes (Romano et al., 2012).

To detect the occurrences of antipatterns in the analyzed programs, we rely on DECOR
(Defect dEtection for CORrection) (Moha et al., 2010). DECOR is an approach based on
the automatic generation of detection algorithms from rule cards. It uses a domain-specific
language to describe antipatterns in the form of rule cards. Rule cards are then automatically
converted into detection algorithms through the framework DETEX.
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2.3 Search-Based Techniques

Search-Based Software Engineering (SBSE) is a software engineering research area in which
software engineering problems are reformulated as search-based problems and resolved using
metaheuristic techniques (Harman et al., 2012). Many problems in software engineering can
be formulated as search-based problems, making popular the use of metaheuristic techniques
in a wide range of software engineering problem domains, such as testing, design, require-
ments, project management, and refactoring (Harman et al., 2012). Resolving a search-based
problem results in writing a fitness function that will automatically guide a search in a large
search space to find an optimal or nearly optimal solution.

The sub-area of SBSE concerned with software testing problems is called Search-Based Soft-
ware Testing (SBST). SBST has attracted the interest of the testing community as shown by
the number of publications in that area: almost half of all publications in SBSE are in SBST
(Harman et al., 2015). Many surveys on SBST literature have also been published (McMinn,
2004; Ali et al., 2010; Yoo et Harman, 2012). Search-based techniques have been successfully
used in many testing problems, such as test cases prioritization, class integration test order-
ing, and test data generation (Harman et al., 2012). Search-based techniques, also called
metaheuristic-search techniques, are high-level frameworks. They utilize heuristics to find
solutions for combinatorial problems at a reasonable computational cost (McMinn, 2004).
They can be easily adapted to solve optimization problems and are suitable for problems
classified as NP or NP-hard. They are also useful to resolve problems for which a polynomial
time algorithm is known to exist but is not practical (Harman et al., 2012).

In the following, we define the concept of fitness function and its role in search-based tech-
niques and move to a brief description of search-based techniques used in this dissertation.

2.3.1 Fitness Function

Fitness function, also called the objective function, is one of the key elements of search-based
techniques, the other one being the representation of the problem (Harman et al., 2012).

A fitness function is a characterization of what is considered to be a good solution (Harman
et Jones, 2001). It guides the search by evaluating the quality of each candidate solution
with respect to the overall search goal (Harman et al., 2012).
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2.3.2 Random Search Algorithm

Random search is the simplest search-based algorithm. It is the only one that does not use
a fitness function (Harman et al., 2012). Although random search is simple to implement, it
often fails to find optimal solutions because it does not provide any guidance and the search
is totally blinded. Generally, random search algorithms are used to produce solutions that
serve as baselines to evaluate the performance of other search-based techniques.

2.3.3 Hill Climbing

Hill Climbing is a local search algorithm, one of the main families of search algorithms. With
hill climbing, the search starts with the selection of a random point in the search space. It then
examines the neighborhood of that point. The neighborhood is specific to the problem and
represents the candidate solutions that are close or are similar to the current point (Harman
et al., 2012). If the fitness of one of the neighbors is better than that of the current point, the
search moves to that point and the process is repeated until there is no candidate solution in
the neighborhood of the current candidate solution that improves the fitness. Such a solution
is said to be locally optimal and may not represent a globally optimal solution. To leave a
local optimal and improve the performance of the algorithm, the hill climbing procedure can
be restarted many times from different initial random points. The main elements in a hill
climbing algorithm are the fitness function to evaluate each candidate solution, the operator
(the move) used to identify the neighborhood, and the type of ascent strategy used to explore
the neighborhood. Types of ascent strategy include steepest ascent, with all neighbors are
evaluated and the move is performed towards the candidate solution that offers the greatest
improvement of the fitness value. Another type of ascent is the random or first ascent strategy
in which neighboring candidate solutions are evaluated at random and the first neighbor that
improves the fitness function is chosen for the move (Harman et al., 2012). Figure 1 shows a
pseudo-code of the hill climbing in the context of a minimization problem.

Algorithm 1 HC Pseudo-code — Adapted from (Harman et al., 2012).

Select randomly a starting point s in the search space S
Repeat
Select s′ ∈ N(s), neighborhood of s, such as fitness(s′) < fitness(s) according to the

ascent strategy
s < −s′

Until fitness(s′ ≥ fitness(s), ∀s′ ∈ N(s)
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2.3.4 Genetic Algorithm

Genetic algorithm (GA) is a evolutionary algorithm (EA) that applies biological principles
of evolution to artificial systems. To solve an optimization problem, a GA evolves iteratively
a set of potential solutions—referred to as population. A GA may be defined as an iterative
procedure that searches for the best solution of a given problem among a population. The
search starts from an initial population of individuals, often randomly generated. At each
evolutionary step, individuals are evaluated using the fitness function. The fittest individuals
will have the highest probability to reproduce. The evolution (i.e., the generation of a
new population) is performed using two operators: the crossover operator and the mutation
operator. The crossover operator takes two individuals (the parents) in the current generation
and recombines them to produce one or two new individuals (the offspring). The mutation
operator applies a perturbation to the offspring to prevent convergence to local optima and
to diversify the search into new areas of the search space. The iterative process stops when
the global optimal has been found or some stop criteria, often specified as a maximal number
of generations or a time limit, have been met. Many variants of GA exist depending on the
parents selection strategy, the replacement strategy, or the evolution of the population size.
The pseudo-code of the GA is given in Figure 2. Further details on GA can be found in a
book by (Goldberg, 1989).

Algorithm 2 GA Pseudo-code — Adapted from (Harman et al., 2012).

Randomly generate initial population P
Repeat
Evaluate fitness of each individual in P
Select parents according to selection mechanism
Apply crossover on parents to create new offspring O
Apply mutation on offspring in O
Generate new population P ′ from P and O
P < −P ′

Until Stopping Condition Reached
Return the best individual found

2.3.5 Memetic Algorithm

Memetic algorithms (MA), also a type of EA, are an enhancement of GAs. A Memetic
algorithm (MA) is a modification of a GA where a local search operator is used along with
crossover and (possibly) mutation (Moscato et al., 1989). This kind of hybridization has been
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proved to be powerful and makes MA as one of the most powerful existing meta-heuristics
(Moscato et al., 1989; Hoos et Sttzle, 2004). Many researchers in SBSE have also shown the
superiority of MA over GA (Arcuri et Yao, 2007; Fraser et al., 2015).

Algorithm 3 MA Pseudo-code.

Randomly generate initial population P

Apply local search on each individual of P
Repeat
Evaluate fitness of each individual in P
Select parents according to selection mechanism
Apply crossover on parents to create new offspring O
Apply mutation on offspring in O
Apply local search on offspring
Generate new population P ′ from P and O
P < −P ′

Until Stopping Condition Reached
Return the best individual found

2.4 Defect Prediction

Defect prediction models have been intensively studied in software engineering to help identify
defect-prone classes to guide quality assurance activities, such as tests or code reviews (Mende
et Koschke, 2010). Indeed, limited resources and complex and large programs make difficult
if not infeasible the test or review of the entire program. Prediction models are based on two
main elements: the predictors and the prediction method.

Predictors or independent variables are variables that can be related to a dependent variable,
such as defects. They constitute the inputs of prediction methods used to predict the depen-
dent variable. Predictors used in defect prediction models include code complexity measures,
complexity of code changes, object-oriented metrics, dependencies, process metrics, or orga-
nizational factors (Mende et Koschke, 2010).

A prediction method is a learning technique used to build a statistical model. Based on one
or more predictors, this statistical model predicts or estimates a dependent variable (James
et al., 2014). The multitude of prediction methods include among others: decision trees,
random forest, Bayesian networks, support vector machines, neural networks, and logistic
regression.
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2.4.1 Performance Measures

Various metrics have been proposed in the literature to assess the performance of prediction
models (Arisholm et al., 2007; Mende et Koschke, 2010). The following paragraphs describe
the ones used in this dissertation.

Confusion Matrix: The confusion matrix, also called contingency table, reports how the
model classified the different entities in defect categories compared to their actual classifica-
tion (i.e., predicted versus observed) (Bowes et al., 2012). There are four categories:

– True Positive (TP): A faulty entity is predicted as faulty.
– False Positive (FP): A non-faulty entity is predicted as faulty.
– True Negative (TN): A non-faulty entity is predicted as non-faulty.
– False Negative (FN): A faulty entity is predicted as non-faulty.

Table 2.2 presents the structure of a confusion matrix.

Traditional Measures: The main traditional measures to assess the performance of a
prediction model are precision, recall, and F-Measure.

Precision (P) indicates how reliable a prediction model is. It represents the proportion of
predicted faulty entities that are actually faulty (Equation 2.1).

precision = TP

TP + FP
(2.1)

Recall (R) represents the proportion of entities actually faulty and predicted as such (Equa-
tion 2.2).

recall = TP

TP + FN
(2.2)

F-measure combines precision and recall and represents their weighted harmonic mean (Equa-
tion 2.3).

f −measure = 2× precision× recall
precision+ recall

(2.3)

2.5 Empirical Studies

Empirical studies can be defined as a category of scientific methods used to compare what we
believe to what we observe. In the two last decades, there has been an increase interest and
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use of empirical techniques in software engineering research. Empirical studies are used to
compare techniques, evaluate new techniques, or to confirm or infirm perceptions and beliefs.
Empirical studies help improve the validity and the generalizability of research results. In
this dissertation, we use experimentations to assess the impact of antipatterns on OO unit
testing (cf. Chapter 4) and to show the cost-effectiveness of the approach we propose for
class integration test order problem (cf. Chapter 5). We follow in each of our experiments
the guidelines provided in (Wohlin et al., 2000) to plan and conduct a successful experiment.
According to these guidelines, we use statistical tests to support our findings and identify
and mitigate the threats that can impact the validity of our results.

2.5.1 Statistical Tests

Statistical tests are mathematical tools used to determine whether the differences observed
when comparing two or more items are due to chance. They are important to strengthen
studies conclusions. In the following, we describe the main statistical tests used in this
dissertation.

Fisher’s Exact Test: Fisher’s exact test (Sheskin, 2007) is a non-parametric statistical test
designed to determine whether two categorical variables are independent by comparing their
proportions.

Mann-Whitney U Test: Mann-Whitney U test, also known as the two-sample Wilcoxon
test, is a non-parametric test used as an alternative to the two-sample t-test when the data
is not normally distributed. Given two samples, Mann-Whitney test assesses whether they
come from the same distribution based on their ranks rather than the data.

Kruskal-Wallis Test: Kruskal-Wallis test is a non-parametric test for comparing multi-
ple medians. It is the non-parametric test equivalent to the one-way Analysis of Variance
(ANOVA) and an extension of the Mann-Whitney U Test.

Permutation Test: Permutation test (Baker, 1995) is a non-parametric statistical test
alternative to the two-way ANOVA. The general idea behind such a test is that data distri-
butions are built and compared by computing all possible values of the statistical test under
rearrangements of the labels (representing the various factors being considered) of the data
points.

Holm’s Correction: Holm’s correction (Holm, 1979) is used to adjust p-values in presence
of multiple comparisons. The procedure sorts the p-values resulting from n tests in ascending
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order of values. Then, to adjust the p-values, the first p-value (the smallest one) is multiplied
by n, the next one by n− 1, and so on. Any adjusted p-values less than α, the significance
level, are significant (i.e., that null hypothesis is rejected).

Odds Ratio: Odds ratio (OR) is defined as the ratio of the odds p of an event occurring in
one group to the odds q to it occurring in another group. OR is computed as follows:

OR = p/(1− p)
q/(1− q) (2.4)

OR = 1 indicates that the event is equally likely in both samples. OR > 1 indicates that
the event is more likely to occur in the first group while an OR < 1 indicates the opposite
(Sheskin, 2007).

Cliff’s d: Cliff’s d is a non-parametric effect size measure Cliff’s d (Grissom et Kim, 2005)
that indicates the magnitude of the effect size of the treatment on the dependent variable.
Cliff’s d is defined as:

d = #(yi > xj)−#(yi < xj)
ny.nx

=

∑
i

∑
j

dij

ny.nx

(2.5)

where dij = sign(yi − xj) and #(yi > xj) is the number of how many times yi > xj is true.
The effect size is small for 0.147 ≤ d < 0.33, medium for 0.33 ≤ d < 0.474, and large for
d ≥ 0.474 (Grissom et Kim, 2005).

2.5.2 Threats to Validity

The evaluation of the validity of an experiment aims at answering the question of how the
conclusions of the experiment might be wrong. Because generally the validity of experiments
is subject to threats, we should identify them and mitigate them as much as possible.

In the following, we describe four types of threats (Wohlin et al., 2000) originally introduced
by Cook et Campbell (1979).

Conclusion validity threats refer to the relation between the treatment and the outcome.

Internal validity threats concern any confounding factors that could have affect the dependent
variables and thus the results of the experiment.

Construct validity threats are about the relation between theory and observation.

External validity threats concern the possibility of generalizing our results.
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Yin (2008) defined another type of threats namely reliability threats. Threats to reliability
validity refer to the ability to replicate a study with the same data and to obtain the same
results.
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Table 2.1 Description of Antipatterns Analyzed in this Dissertation.

Antipattern Description
AntiSingleton (AS) A class that provides mutable class variables, which, consequently,

act as global variables.
BaseClassShouldBeAbstract
(BCSBA)

A base class that is never instantiated

Blob (B) A class that is too large and not cohesive enough. This class cen-
tralizes most of the processing, takes most of the decisions, and is
associated to data classes.

ClassDataShouldBePrivate
(CDSBP)

A class that exposes its fields, thus violating the principle of encap-
sulation.

ComplexClass (CC) A class that has (at least) one large and complex method, in terms
of cyclomatic complexity and LOCs.

LazyClass (LzC) A class that has few fields and methods (with little complexity).
LongMethod (LM) A class that has a method that is overly long, in term of LOCs.
LongParameterList (LPL) A class that has (at least) one method with a long list of parameters

with respect to the average number of parameters per methods in
the program.

MessageChain (MC) A class that uses a long chain of method invocations to implement
(at least) one of its functionalities.

RefusedParentBequest
(RPB)

A class that redefines inherited methods using empty bodies, thus
breaking polymorphism.

SpaghettiCode (SC) A class declaring long methods with no parameters and using global
variables. These methods interact too much using complex decision
algorithms. This class does not exploit and prevents the use of
polymorphism and inheritance.

SpeculativeGenerality (SG) A class that is defined as abstract but that has very few children.
Her children do use its methods.

SwissArmyKnife (SAK) A class whose methods can be divided in disjunct sets of many
methods, i.e., providing different, unrelated functionalities.

Table 2.2 Confusion Matrix.

Actual True Actual False
Predicted True TP FP
Predicted False FN TN
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CHAPTER 3 LITERATURE REVIEW

The present chapter describes previous works related to ours. It presents the state-of-the art
on antipatterns and their impact on software quality and the main approaches proposed to
solve the class integration test order problem.

3.1 Antipatterns and their Impact on Software Quality

This section summarizes related literature concerning antipatterns (APs), their definition,
their detection, and their impact on software quality.

3.1.1 Antipatterns: Definition and Detection

Many researchers and practitioners described APs and proposed solutions to refactor and–or
remove them. Webster (1995) first discussed about APs in the context of OO programming
in 1995. He described conceptual, implementation, and quality-assurance problems. (Riel,
1996) introduced 61 heuristics that allow developers to assess their programs manually and to
improve object-oriented program design and implementation. Brown et al. (1998) introduced
40 APs, including Blob and Spaghetti Code. For each of the described APs, they listed the
symptoms, the typical causes, and the consequences. They also proposed a solution that aims
to refactor the code and remove the AP. Fowler (1999) suggested refactorings for 22 code
smells. He described code smells in an informal way and provided a scenario to detect them
manually. These descriptions have been the basis of further works concerning APs including
their detection.

Researchers have proposed a number of approaches to specify and detect code smells and
APs based on different techniques, ranging from manual inspection (Travassos et al., 1999)
to rule-based systems (Marinescu, 2004; Moha et al., 2010).

Travassos et al. (1999) introduced manual inspections and reading techniques to identify code
smells.

Marinescu (2004) presented a metric-based approach and a set of detection strategies to
identify and detect 10 types of antipatterns. The proposed approach captures deviations
from good design principles characterized by absolute and relative thresholds of different
metrics.

Moha et al. (2010) presented DECOR (Defect dEtection for CORrection), an approach based
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on rules cards that specify each antipattern. DECOR offers also a platform to automatically
convert each rule card into a detection algorithm. Moha et al. (2010) reported that DECOR
can achieve a recall of 100% and a precision between 41.1% and 87% for the following an-
tipatterns: Blob, Spaghetti Code, and Swiss Army Knife.

Researchers also investigated the use of machine learning techniques—see for example Khomh
et al. (2011) and Maiga et al. (2012) — to locate code smells and APs. Khomh et al. (2011)
presented an approach, BDTEX, based on Bayesian belief to detect APs networks and Maiga
et al. (2012) used support vector machines (SVM) to detect APs.

More recently, Palomba et al. (2015) proposed HIST, an approach based on change history
information, to detect occurrences of five kinds of APs: DivergentChange, ShotgunSurgery,
ParallelInheritance, Blob, and FeatureEnvy.

In the context of our studies, we analyze the impact of some of the APs described in these
works on the cost of object-oriented unit testing. We also make use of DECOR, one of the
state-of-the-art tools, to detect classes involving APs.

3.1.2 Impact of Antipatterns on Software Quality

The assessment of the impact of antipatterns on software quality attributes has been the
subject of many previous works. Most of the results suggest that code smells and APs
negatively impact software quality confirming somehow the common lore about them.

Deligiannis et al. (2004) conducted an empirical study to analyze the influence of God classes
on software understandability and maintainability. The findings of this experiment support
the claim that God classes have a negative impact on the evolution of design structures.

Du Bois et al. (2006) performed a controlled experiment with graduate students on the impact
of decomposition of Blobs (God classes) on understandability. Their finding show that the
decomposition of Blobs into a number of collaborating classes using well-known refactorings
can improve program comprehension.

Abbes et al. (2011) investigated the influence of Blob and Spaghetti Code on software un-
derstandability. Their results show that the presence of Blob or Spaghetti Code does not
negatively impact program understandability, but the combination of the two APs decrease
significantly this quality attribute. Yamashita et Moonen (2013) obtained similar results.
Indeed, the results of their empirical study show that the co-occurrence of antipatterns in a
same class impedes its maintenability.

(Olbrich et al., 2009) analysed the historical data of Lucene and Xerces over 6 years. They
discovered that classes involving Blob and Shotgun Surgery change more often than other
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classes. Khomh et al. (2012) also analyzed the change- and defect-proneness of APs in four
open source programs (ArgoUML, Eclipse, Mylyn, and Rhino). Their results reveal that
classes participating in APs are more change- and defect-prone than other classes. The
results indicate also that the size alone cannot explain the participation of classes to APs.

Chatzigeorgiou et Manakos (2010) studied the evolution of Long Method, Feature Envy, and
State Checking in 10 versions of JFlex and 14 versions of JFreeChart. They found that a
significant percentage of these APs are introduced by adding new methods to the programs
(Chatzigeorgiou et Manakos, 2010).

These studies provide evidence of the negative impact of APs on many software quality
attributes. However, to the best of our knowledge, no previous work investigated the impact
of APs on class testability and testing cost. We share with these studies the goal of analyzing
the impact of antipatterns on different attributes of software quality. Our goal is to analyze
the impact of APs on OO unit testing cost.

3.1.3 Antipatterns Refactoring

Because of the negative impact of APs on software quality attributes, researchers and prac-
titioners advise to refactor the code to remove APs (Brown et al., 1998; Khomh et al., 2012).
Program refactoring is a technique used to improve the internal structure of a program with-
out changing its external behaviour (Fowler, 1999). Program refactoring aims at increasing
program quality and hence reduce the time and costs of program maintenance and evolu-
tion (Fowler, 1999). Researchers proposed various refactoring techniques and describe the
circumstances of their applicability (Riel, 1996; Brown et al., 1998).

Du Bois et al. (2006) showed that applying refactoring techniques on a Blob can actually
improve understandability. Tsantalis et Chatzigeorgiou (2009) proposed a semi-automatic
approach for move-method refactoring with the aim of removing Feature Envy smells, while
Fokaefs et al. (2011) proposed JDeodorant, a tool for extract-class refactoring in presence of
God Classes.

In this dissertation, we suggest refactoring actions to reduce Madum testing cost. The
proposed refactoring are different from the ones proposed in the works described above and
can complement them to improve the overall quality of software.
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3.2 Class Integration Test Order

One of the main challenges in class integration test of any large OO program is to determine
the order in which classes should be tested. This order is critical since it impacts the cost of
the integration process and the order in which defects will be detected (Tai et Daniels, 1997).
Harrold et al. (1992) were the first to propose a class test order based on class inheritance in
which base class should be tested before a derived class. Kung et al. (1995), pioneer in solving
the class integration test order (CITO) problem, extended this precedence rule by taking into
account aggregation and association relations. Thus, when a class C depends on a class B
through a relation of inheritance, association, or aggregation, B should be tested before C.
In the work of Briand et al. (2003b), C and B are named client and server respectively. In
the present thesis, this rule is named server before client (SBC) principle.

Kung et al. (1995) presented an approach in the context of regression testing that computes
an order in which modified and impacted classes should be (re-)integrated and tested with
minimum cost. They introduced the concept of class firewall to find all affected classes after
changes in the program.

Following Kung et al. (1995), many researchers studied the problem of class integration test
order but in various developments contexts. The goal of the proposed approaches is to devise
an integration test order which minimizes SBC violations, and therefore the number and–or
complexity of stubs (SBC violations). When there is no dependency cycle between classes,
a simple reverse topological sort produces the optimal class integration test order (Kung
et al., 1995). However, in most of real object-oriented programs, there are dependency cycles
(Briand et al., 2002b). Testing classes involved in a dependency cycle requires to break the
cycle by removing one dependency and writing a stub to replace the target class of that
dependency. Stubs are also required when one needs to test a class that depends on classes
not already tested or unavailable. Since writing stubs is expensive and defect-prone (Briand
et al., 2001), the goal of the approaches proposed in literature is to find an order in which
classes can be integrated and tested with less stubs in presence of dependency cycles or
unavailable classes. CITO-solving approaches in presence of cycles can be divided into two
main categories: graph-based approaches and search-based approaches.

In the graph-based approaches, the program under test is represented by an object relation
diagrams (ORD) or a variant of ORD. The approaches in this category provide heuristics to
break dependency cycles to make the graph acyclic and apply a topological sort to derive
an integration test order. This category includes among other the approaches of Kung et al.
(1995), Tai et Daniels (1997), Traon et al. (2000), Hanh et al. (2001), Briand et al. (2001),
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Malloy et al. (2003), Mao et Lu (2005), and Abdurazik et Offutt (2009).

Differently from the graph-based approaches, the search-based approaches use search-based
algorithms to find orders near to the optimal that can minimize stubs cost. These approaches
benefit from the use of optimization techniques to overcome the limitation inherent to the
graph-based approaches: difficulty to use multiple or complex factors to estimate the cost of
stubs, solutions sometimes sub-optimal (Briand et al., 2002b). Hanh et al. (2001) and Briand
et al. (2002b) proposed the use of genetic algorithm to solve the CITO problem. Borner et
Paech (2009a) proposed a new approach to class integration test order that takes into account
defect-prone classes. The approach divides classes into two sets (i) the test focus set, i.e.,
classes that must be tested first, and (ii) all other classes. Recently, researchers proposed
multi-objectives optimization techniques to solve the CITO problem (Assunção et al., 2011,
2014; da Veiga Cabral et al., 2010; Vergilio et al., 2012), since the cost of stubs can be
composed of different elements such as attribute coupling and method coupling (Briand et al.,
2002b). da Veiga Cabral et al. (2010) first proposed the use of multi-objectives techniques
to solve the CITO problem. They implemented a Pareto ant colony (PACO) algorithm with
the goal of minimizing two objectives: the attribute and method couplings defined by Briand
et al. (2002b). The experiment results showed that the PACO algorithm found more non-
dominated solutions than the GA, thus giving a large variety of solutions to the tester. In
a recent comparative study on solving the CITO problem using multi-objectives techniques,
Assunção et al. (2014) showed that the Non-dominated Sorting Genetic Algorithm-II (NSGA-
II) is the most suitable algorithm in general, whereas the Pareto Archived Evolution Strategy
(PAES) is the best regarding complex systems.

A classification of the existing approaches based on the different cost objectives can be found
in (Wang et al., 2011).

Overall, in the best of our knowledge, except the approach proposed by Borner et Paech
(2009a), all approaches proposed to solve the CITO problem aim at minimizing the number
or complexity of stubs only. However the boolean classification used in (Borner et Paech,
2009a) impairs to create balanced orders able to promote early defect detection and minimize
SBC violations. We inspire from these works to build our approach to the CITO problem
that seeks to minimize stubs cost, i.e., SBC violations, and increase early defect detection
by prioritizing defect-prone classes, such as AP classes.
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CHAPTER 4 A STUDY ON THE RELATION BETWEEN
ANTIPATTERNS AND THE COST OF CLASS TESTING

4.1 Introduction

Antipatterns (APs) are defined as recurring and poor design choices (Brown et al., 1998). As
shown in the previous chapter, there is a large number of recent and past studies that show the
negative impact of antipatterns on software quality, in particular software comprehensibility,
understandability, and maintenability. These studies reveal also the low resilience to change
and defect of classes involving antipatterns. Despite the rich literature on the undesired side
effects of APs on software quality attributes (Du Bois et al., 2006; Abbes et al., 2011; Khomh
et al., 2012), to the best of our knowledge, there is no study aimed at answering the following
question:

What is the impact of APs on OO unit testing cost?

The aim of our first study in this dissertation is consequently to study and gather evidence on
the impact of APs on OO unit testing. We conjecture that, on the one hand, AP classes are
more difficult to test and that, on the other hand, they must be tested thoroughly because
they are more difficult to understand and maintain and also more defect-prone (Du Bois
et al., 2006; Abbes et al., 2011; Khomh et al., 2012).

Based on our conjectures, we investigate (i) whether the effort to perform class unit testing is
higher for classes participating in APs than in other classes and (ii) the cost-benefit achieved
when prioritizing testing of classes participating in APs compared to other classes. Following
Bache et Mullerburg (1990), we use as surrogate measure of testing cost the number of test
cases required to test a class.

There are many methods and adequacy criteria for class unit testing (Binder, 1999; Bashir et
Goel, 2000). Some of them, although powerful and easy to implement, require the availability
of appropriate documentation, such as state machines or dynamic diagrams (Binder, 1999).
This documentation being often missing, we rather use a testing strategy—named minimal
data members usage matrix, Madum testing (Bashir et Goel, 2000)—and described in Section
2.1.3. As mentioned in that section, Madum testing does not require sophisticated design
documentation to exist; it is based on the source code.

We compute the number of Madum test cases for classes of four Java open-source programs,
Ant 1.8.3, ArgoUML 0.20, CheckStyle 4.0, and JFreeChart 1.0.13. Then, we detect, using
the tool DECOR (Moha et al., 2010) (cf. Section 2.2), APs occurrences in these programs.
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To verify our first conjecture, we compared the number of Madum test cases required to test
AP classes to that of non-AP classes. To support our second conjecture, we assessed the
defect-proneness of AP classes and the benefit of prioritizing their test over non-AP classes.

Results of our study bring evidence that the unit testing of classes participating in APs—
in particular Blob, AntiSingleton and ComplexClass—require a higher number of test cases
than that of other classes. Results also show that AP classes are more defect-prone than
other classes, confirming the outcome of the experiment in (Khomh et al., 2012); thus they
should be carefully tested. Using a naïve testing order, we also show that prioritizing the
test of classes involving APs is cost-effective.

The rest of the chapter presents the design and the results of our empirical study.

4.2 Study Design

The goal of this study is to investigate the cost of unit testing for classes participating in APs,
as opposed to other classes, and the potential benefits obtained when prioritizing the test of
AP classes. The quality focus is the effort needed to produce test cases, and the extent to
which testing particular classes would help to reveal defects. The perspective is of researchers,
interested to understand the influence of APs on software quality from the point of view of
testing and to conduct more research in this direction. The results will also be useful for
practitioners to decide whether they should apply refactoring actions to classes participating
in APs, to improve software quality, e.g., to reduce change- and defect-proneness (Khomh
et al., 2009, 2012) and reduce the testing effort.

The context of this study consists of a class unit testing strategy—Madum testing—and one
release of four Java open-source programs. We have chosen Madum testing because it requires
information always available from the source code while other OO testing strategies—such as
those based on pre-and-post conditions (Boyapati et al., 2002) as well as state-based strategies
(Binder, 1999)—rely on documentation rarely available in practice.

We choose the four open-source programs according to different criteria: (i) programs be-
longing to different application domains, (ii) availability of bug-fixing data from versioning
and issue-tracking systems, and (iii) use in previous studies concerning APs and—-or testa-
bility (Abbes et al., 2011; Bruntink et van Deursen, 2006). Table 4.1 reports the number of
classes that participate in APs or not for the four programs 1. Apache Ant 2 is a built tool

1. The sum of classes participating in different kinds of APs can be greater than the number of classes
participating in at least one AP, because some classes participate in more than one AP.

2. http://ant.apache.org/
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Table 4.1 Number of classes participating in different kinds of APs.

Name (Abbr) Ant ArgoUML CheckStyle JFreeChart
AntiSingleton (AS) 2 257 15 20
BaseClassShouldBeAbstract (BCSBA) 20 20 3 14
Blob (B) 50 123 11 32
ClassDataShouldBePrivate (CDSBP) 84 44 4 20
ComplexClass (CC) 103 214 34 55
LazyClass (LzC( 46 60 4 21
LongMethod (LM) 178 267 69 102
LongParameterList (LPL) 34 237 8 50
MessageChains (MC) 186 145 7 56
RefusedParentBequest (RPB) 67 497 80 62
SpaghettiCode (SC) 1 45 1 0
SpeculativeGenerality (SG) 4 23 1 1
SwissArmyKnife (SAK) 1 4 0 14
Antipattern classes 452 901 161 245
No Antipattern (None) 297 376 99 233

for Java. Its release 1.8.3 has 209 KLOC for 767 classes. ArgoUML 3 is an open-source tool
for UML diagrams. We used its release 0.20, which consists of 1,277 classes for 196 KLOC.
CheckStyle 4 is a development tool for Java programs. It checks whether Java code adheres
to a specific coding standard chosen by the developers. Its release 4.0 has 261 classes for 56
KLOC. JFreeChart 5 is a Java class library to embed/generate charts in Java programs. Its
release 1.0.13 consists of 484 classes for 183 KLOC.

4.2.1 Research Questions

This study aims at addressing the general research question:

What is the impact of APs on OO unit testing cost?

We refine this research question in the following three specific research questions:

RQ1: How large is the Madum test suite for classes participating in APs compared to that of
other classes? This research question investigates whether classes participating in APs have
larger Madum test suites than other classes. Our intuition is that poor design and coding
practices have consequences on testing and thus can require a high number of test cases to
fulfill Madum testing, because APs make it more difficult to partition methods into data

3. http://argouml.tigris.org/
4. http://checkstyle.sourceforge.net/
5. http://www.jfree.org/jfreechart/
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slices, i.e., most of the methods belong to all slices.

RQ2: How does the size of the Madum test suite vary among classes participating in different
kinds of APs? This research question refines RQ1. Some APs can have a higher impact on
testing cost than others.

RQ3: What is the potential cost-benefit achieved when focusing testing on APs, as opposed
to other classes? Given the cost needed to test a class, we investigate what would be the
benefit, in terms of discovered defects, assuming that the Madum test suites can detect all
defects of the class under test.

4.2.2 Variables and Analysis Method

For RQ1, the dependent variable is the number of test cases required to test each class
using Madum testing. The independent variable is a boolean variable that indicates the
participation of classes in some APs. Such a boolean variable is true if a class participates
to at least one AP; false otherwise.

We statistically compare the number of test cases between AP and non-AP classes. Specifi-
cally, we test the following hypotheses H01:

There is no significant difference between the number of test cases of classes participating and
not in APs.

We test the hypothesis using a non-parametric test, the Mann-Whitney U test. Because we
do not know a priori whether the number of test cases will be higher for AP classes or non-AP
classes, we perform a two-tailed test. Besides testing the hypothesis, we also estimate the
magnitude of the differences of means between classes participating and not in APs using
the non-parametric effect size measure Cliff’s d (Grissom et Kim, 2005).

For RQ2, the dependent variable is also the number of Madum test cases. The independent
variable is a boolean variable for each kind of AP, indicating whether a class participates in
that kind of AP or not. We test the following null hypothesis:

H02: There is no significant difference between the number of test cases of classes participating
in different kinds of APs.

First, we test the hypothesis using the Kruskal-Wallis test. Then, we pairwise compare the
number of test cases for different kinds of APs using the Mann-Whitney test. Finally, we
correct the obtained p-values using the Holm’s correction (Holm, 1979).

For RQ3, we identify the number of post-release defects affecting each class for the analyzed
releases of the four programs. Then, we take the perspective of a “lazy” tester, who starts to
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test the classes in an increasing order of number of test cases regardless of other more sound
criteria, for example, the number of needed stubs or the different kinds of interactions with
other classes. We thus assume a simple and blind testing strategy as our goal is to verify the
potential increase in detected defects rather than using more sophisticated approaches, such
as the firewall strategy (Kung et al., 1995; Binder, 1999) or other strategies to determine
the integration testing order in OO programs (Briand et al., 2003a; Hanh et al., 2001). We
analyze the potential benefit achieved in terms of defects that can be discovered when the
number of test cases increases. We perform such an analysis by plotting cumulative curves of
number of test cases (independent variable) vs. number of defects that can be discovered if
properly testing these classes (dependent variable) for classes that participate in APs or not.

All statistics have been performed using the R statistical environment 6. For all statistical
tests, we assume a significance level of 5%.

4.2.3 Data Collection

To answer our RQs, we implement the algorithm to identify test cases required by Madum
testing and count the number of test cases as detailed in Section 2.1.3. This number is
computed from the Madum of the class. We build for each class its Madum using a static
analysis of the source code that allows identifying the slices of the class.

For what concerns the detection of APs, as in previous works (Abbes et al., 2011; Khomh
et al., 2012), we use DECOR described in Section 2.2.

Finally, we compute the number of post-release defects as follows:

1. We identify, from the commit notes of the versioning system of the analyzed programs,
changes related to bug-fixing, by matching issue tracking system IDs and keywords,
such as “bug” and “fixed” (Fischer et al., 2003). We limit our attention to the time
frame between the release date and the next release.

2. We check, by analyzing the information in the issue tracking system, whether the fix
concerns a corrective maintenance (defect fixing) or whether it is an implementation
feature-request/enhancement. Then, we discard the latter. Also, we restrict our atten-
tion to issues marked as “CLOSED” and “FIXED” in the issue tracking system.

3. Finally, for the remaining issues, we map the changes to the affected classes by analyzing
the changes that occurred. We count the number of defect-fixing changes that occurred
to each class.

6. http://www.r-project.org
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The number of defect-prone classes is, for Ant, 131 out of 767 (17%), and for ArgoUML, 190
out of 1284 (15%). CheckStyle and JFreeChart contain less defects with respectively, three
defect classes out of 261 (1%), and 16 defect classes out of 484 (3%).
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Figure 4.1 Number of test cases in the Madum test suite for classes participating (AP) and
not (NAP) in antipatterns.

4.3 Study Results

4.3.1 RQ1: How large is the Madum test suite for classes participating in APs
compared to that of other classes?

Fig. 4.1 shows the distribution of Madum test suite sizes for classes participating and not in
APs for the four analyzed programs. The figure clearly highlights how, with some exceptions
(CheckStyle in particular), the test suite sizes are larger for classes participating in APs than
for other classes.
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Table 4.2 Madum test suite size for classes participating and not to APs: Mann-Whitney
tests and Cliff’s d results.

program Mean TCs AP Mean TCs NAP p-Value Cliff’s d
Ant 18 9 < 0.01 0.23 (Small)

ArgoUML 10 3 < 0.01 0.35 (Medium)
CheckStyle 9 6 = 0.05 NA
JFreeChart 26 13 < 0.01 0.22 (Small)

Table 4.2 reports the Mann-Whitney test results and Cliff’s d effect size obtained when
comparing the number of Madum Test cases between classes that participate in APs or not.
Except for CheckStyle, results show statistically-significant differences. The Cliff’s d effect
size is small for Ant and JFreeChart, and medium for ArgoUML.

RQ1 Summary: We can reject the null hypothesis H01 for Ant, ArgoUML, and
JFreeChart. In these three programs, the number of test cases required for Madum
testing of AP classes are significantly higher than those of other classes. For Check-
Style, the difference is not statistically significant, therefore we cannot reject H01 for
this program. We can conclude that AP classes are less testable than non-AP classes.
If developers want to test AP classes thoroughly using Madum testing, they must write
more test cases leading to a higher testing cost.

4.3.2 RQ2: How does the size of the Madum test suite vary among classes
participating in different kinds of APs?

Fig. 4.2 shows boxplots of the number of test cases needed to test classes participating in
different kinds of APs.

For Ant, classes participating in Blob (B) require a significantly higher number of test cases
than classes participating in other APs (BCSBA, CSBP, LzC, LM, MC, RPB) and than
classes not participating in APs. A high number of test cases is also required for Complex-
Class (CC), and, specifically, significantly higher than CDSBP (ClassDataShouldBePrivate),
LzC (LazyClass), LM (LongMethod), MC (MessageChains), RPB (RefusedParentBequest),
and classes not participating in APs. In all cases, the Cliff’s delta effect size is high. Some
APs do not imply a high number of test cases: LzC or RPB.

We obtain similar results for ArgoUML, where Blob (B) require a significantly higher number
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Figure 4.2 Number of test cases in the Madum test suite for classes participating in different
kinds of APs.
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of test cases than LzC, LM, LPL, MC, RPB, BCSBA (high effect size), than CDSBP, SG, SC
(medium effect size), and classes not participating in APs (high effect size). Complex Classes
(CC) require a significantly higher number of test cases than (1) LzC, RPB, BCSBA (Base
Class Should Be Abstract) (high effect size), than (2) CSBLP, LM, LPL, MC (medium effect
size), and than (3) classes not participating in APs (high effect size). Also, Anti-Singleton
(AS) require more test cases than LzC, RPB, and no AP classes (high effect size in all cases),
and CDSBP require more test cases than LzC, RPB and no AP classes (high effect size).
We found no statistically significant differences for SwissArmyKnife (SAK) despite what the
boxplot shows because of the limited number of occurrences of this AP in the analyzed
release.

For CheckStyle, due to the limited number of AP occurrences, the only significant difference
found is for Anti-Singleton (AS) classes that require a significantly higher number of test
cases than LzC and RPB, with high effect size.

A similar situation occurs for JFreeChart, in which AS classes require a significantly higher
(with a high effect size) number of test cases than LzC and RPB.

Overall, the obtained results tell that different kinds of APs exhibit different testing cost.
Intrinsically, some APs are classes with more responsibility—see for example Blob, Complex-
Class, or AntiSingleton. The presence of these APs is also related with a higher number of
test cases. Other kinds of APs, such as LazyClass, RefusedParentBequest or Method Chains
are not really related to classes having too much responsibility, hence the presence of APs
does not imply having more test cases.

RQ2 Summary: Classes participating in APs, such as Blob, ComplexClass, AntiSin-
gleton, or SwissArmyKnife, require a significantly higher number of test cases than other
classes. On the contrary, APs, such as LazyClasses, MethodChains, or RefusedParent-
Bequest require a relatively small number of test cases.

4.3.3 RQ3: What is the potential cost-benefit achieved when focusing testing
on APs, as opposed to other classes?

The previous research questions have shown that, in general, classes participating in APs
are more expensive to test than other classes. Some specific kinds of APs are particularly
more expensive than others. We now investigate to what extent such additional cost makes
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worthwhile the test of APs. In other words, if the test of AP classes (more expensive to test
than other classes) also means potentially discovering more defects. In that case, such a cost
maybe cost-effective.

Table 4.3 reports results of the Fisher’s exact test, which statistically compares the proportion
of defect-prone classes between classes participating and not in APs and the corresponding
values of the odd ratio (replicating Khomh et al. (2012)). For Ant and ArgoUML, results
are statistically significant and classes participating in APs have 2.45 and 4.31 more time the
chance of exhibiting at least a post-release defect than other classes. As for CheckStyle and
JFreeChart, only AP classes exhibited post-release defects, therefore the Fisher’s exact test
OR is infinite. In summary classes participating in APs have higher chances of exhibiting
post-release defects than other classes in agreement with the findings of Khomh et al. (2012).

Fig. 4.3 shows what would be the cumulative number of defects found when testing only
classes participating in APs (red line) or only classes not participating in APs (black line).
We adopt a “lazy” ordering, testing classes in ascending order according to their number of
test cases, i.e., testing those with a lower number of test cases first. When interpreting such
results, it is important to point out that: (i) we are considering class unit testing therefore
we are not following any strategy for integration ordering (the next chapter will investigate
how such ordering would impact on testing cost-effectiveness) and (ii) we consider that, when
we test a class, all defects are discovered. We are aware this is not always true; however we
show is basically an upper bound of the number of defects discovered if testing such classes.

When considering the graphs representing the results of Ant and ArgoUML in Figure 4.3,
even when starting to test the first few classes, the number of defects that can be found for
classes participating in AP is substantially higher than that for other classes. In the graphs
of results for CheckStyle and JFreechart (cf. Figure 4.3), the non-AP line is flat because
there is no defects in these classes in these two programs.

Table 4.3 Results of Fisher’s exact test for defect-proneness of classes participating and not
in APs. (DP: Defect-prone).

program AP classes NAP classes p-value OR
DP Not DP DP Not DP

Ant 91 354 28 268 < 0.001 2.45
ArgoUML 167 726 19 357 < 0.001 4.31
CheckStyle 2 158 0 99 0.5259 Inf
JFreeChart 12 221 0 232 < 0.001 Inf
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(a) Ant

(b) ArgoUML

(c) CheckStyle

(d) JFreeChart

Figure 4.3 Testing cost-effectiveness for classes involving (red) and not (black/dashed) APs.
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RQ3 Summary: Classes participating in APs exhibit a significantly higher defect-
proneness than other classes. Despite the fact that their testing cost is higher, it is
cost-effective to analyze/test them with a higher priority than other classes.

In summary, this study has highlighted that APs increase the class unit test cost, although at
the same time such classes have to be properly tested because they contain a high proportion
of defects.

4.4 Threats to Validity

In this section, we discuss the main threats to validity that could affect our study.

Threats to construct validity of our study are mainly due to possible mistakes/imprecisions
in the AP detection, in the classification of defects used to address RQ3, and in the “lazy”
testing ordering considered in RQ3. Concerning AP detection, we relied on DECOR (Moha
et al., 2010). Although, DECOR is known to be accurate (Moha et al., 2010), there is no
guarantee that we detect all APs or that what we classified as APs are indeed true APs. We
mitigate this threat by making the list of detected APs available to other researchers.

A second threat to construct validity derives from the definition of defect, the content of bug
tracking systems and the way in which defects are assigned to classes. It is well-known that
issue tracking systems contain all sort of change requests (Antoniol et al., 2008). Thus, in
general, we cannot guarantee that all issue tracking entries are indeed related to fixing defects.
For two programs (Ant and ArgoUML), the issue tracking system uses a specific category to
classify corrective maintenance changes (“DEFECT”). For the two others (CheckStyle and
JFreeChart), we relied on information about fixed bugs available in the release notes. Last
but not least, although we used a widely-adopted approach to identify bug-fixing changes
and link them to issue reports (Fischer et al., 2003), such approach can miss some fixes not
explicitly mentioning the issue ID in the commit note (Bachmann et al., 2010).

Finally, the simplistic “lazy” integration strategy, has to be considered as a way of gauging
the maximum theoretical difference, if any, between defect detection obtained by prioritizing
AP classes testing over classes not participating in APs. We cannot claim that Madum test
cases will eventually detect all defects or what percentage of undetected defects exists. Also,
such a simplistic testing approach does not account for class interactions, nor it considers
the actual complexity of writing and running test cases. Class interaction affects the number
of needed stubs, and thus the programmer coding effort; writing and running the actual test
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cases impact coding as well as program understanding effort. In essence, we can only claim
that, no matter what the testing strategy or the testing order, developers should focus their
quality assurance efforts on classes participating in APs, and possibly remove APs as a first
step toward an improved design.

To mitigate the threats to conclusion validity to our study, we used proper tests and effect
size measures to address our research questions. In particular, we used non-parametric tests
(Mann-Whitney test and Fisher’s exact test) and effect size measures (Cliff’s delta and Odds
Ratio) that do not make any assumption about the underlying distributions of data. Finally,
we dealt with problems related to performing multiple Mann-Whitney tests using the Holm’s
correction procedure.

Regarding threats to external validity, although we analysed programs belonging to different
application domains and developed by different teams, the study needs to be replicated on
further programs to confirm or contradict our results.

4.5 Conclusion

This chapter investigated the effects of APs on the cost of unit testing in OO programs.
We detected APs using the tool DECOR (Moha et al., 2010) in four Java programs, namely
Ant 1.8.3, ArgoUML 0.20, Checkstyle 4.0, and JFreeChart 1.0.13. Then, we estimated the
number of test cases required to test each class using Madum testing (Bashir et Goel, 2000).
Finally, we compared the number of test cases required for classes that participate in APs or
not and related such a number with the number of post-release fixed defects of such classes.

Findings of the study strongly support the evidence that:

1. Classes participating in APs are, in general, more expensive to test than other classes.

2. Specifically, classes participating in some kinds of APs, such as Blob, AntiSingleton or
ComplexClass have a significantly higher testing cost than other classes, whereas some
other APs, such as MethodChain or LazyClass, do not strongly contribute to the cost
of testing.

3. Giving a higher priority to classes involving APs makes testing activities more cost-
effective by allowing to test classes with the highest proportion of defects first.

Although APs are expensive to test, prioritizing their test is cost-effective as shown in the
present chapter: prioritizing the test of AP classes allows detecting most of the defects and
early. However, the order used in this experiment is not realistic as it does not account other
cost related to class integration test order. The next chapter proposes a new approach to
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the class integration test order problem that includes the outcome of the present study. This
approach prioritizes defect-prone classes, such as AP classes, while minimizing cost related
to class integration test order.
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CHAPTER 5 MITER: MINIMIZING INTEGRATION TESTING EFFORT

5.1 Introduction

One key factor to be considered during integration testing is to determine the most suitable
test order. Indeed, the order in which classes are tested impacts the cost of integration testing
generally expressed in terms of cost of stubs to develop and the order in which defects are
discovered (Tai et Daniels, 1997).

Kung et al. (1995) defined a test order strategy according to which a server class (independent
class) should be tested before its client classes (dependent classes). They expressed the idea
as follows: if we can test classes using tested classes by following a proper test sequence,
then the test effort for constructing test stubs and test drivers can be reduced. If a tester
can test a server class before its client classes, then a stub for the server class for testing
the client classes is not needed. Thus, testing server classes before their client classes is the
principle of Kung’s strategy, underpinning also most of the approaches that followed (Tai et
Daniels, 1997; Traon et al., 2000; Briand et al., 2002b; Abdurazik et Offutt, 2009). The main
purpose of all these approaches is to reduce testing cost when testing modified programs or
performing class integration testing.

The experimental results of the previous chapter showed that while AP classes are more
expensive to test than other classes, prioritizing their testing allows detecting most of the
defects and early. However, the order used to perform this experiment is a "lazy" and naïve
order based on the ascendant ordering of the required number of test cases. The cost related
to this test order can be very high because it does not follow the SBC principle. Unfortunately,
while the issue of class integration test order (CITO) has been extensively investigated, to
the best of our knowledge, only the approach proposed by Borner et Paech (2009a,b) seeks
for testing effectiveness in terms of defect detection.

We propose in the present chapter a new approach to the problem of class integration test
order that extends the need of prioritizing AP classes to all defect-prone classes while fulfilling
the SBC principle. Named MITER (Minimizing Integration Testing EffoRt), our approach
enforces the SBC principle and is built on top of existing testing strategies and file-level
defect location approaches. MITER aims at determining class integration test orders with
the goals of (1) maximizing early defect detection i.e., test with high priority classes having
a high (estimated) defect-proneness, such as AP classes and (2) minimizing the cost of SBC
violations (stubs). Differently from the test focus approach (Borner et Paech, 2009a,b),



43

MITER uses a fine-grained prioritization instead of a Boolean classification of classes to test
(classes that must be tested first and (ii) all other classes). MITER’s underlying assumption
is that it is more realistic to avoid such a dichotomous distinction between classes and,
instead, assign a level of priority ranging from zero to one to classes to test. Following
the call-coupling coverage criterion proposed by Lin et Offutt (1998) for class integration
testing, MITER uses the number of call sites of classes to be tested as surrogate to measure
integration testing cost. Early defect detection is then measured with respect to that cost.

To compute a close to optimal or optimal testing order, MITER relies on a memetic algorithm
(MA), a meta-heuristic approach derived from genetic algorithm (GA), which has been proved
to be efficient in solving many search problem instances. MITER uses as fitness function a
cost function consisting in a linear combination of the normalization of two terms: a term
accounting for priorities (i.e., likelihood that a class is faulty) and a term quantifying the
number of SBC violations. The first term allows increasing early defect detection capability.
The higher the priority weight, the higher the risk of SBC violations while the lower the
priority weight, the lower the probability of observing a substantial early defect detection.

To verify the ability of MITER to promote early defect detection while minimizing SBC
violations, we perform an empirical evaluation using multiple releases of three Java open-
source programs: Ant, ArgoUML, and Xerces. Our evaluation answers the following general
question:

Can MITER provide balanced class integration orders that minimize server-before-client vio-
lations and maximize early defect detection capability?

We analyse MITER’s orders in terms of early defect detection and SBC violations for different
values of the priority weight. We also compare MITER to the test focus approach that uses
a prioritization based on the Boolean classification (Borner et Paech, 2009b).

Results of the study show that (1) the order plays a key role in early defect discovery and
that (2) a trade-off often exists between SBC violations and early defect detection capability.
Also, we find that, for a reasonably-good defect prediction, MITER performs better than a
random approach in increasing the early defect detection rate while generating substantially
less SBC violations. Furthermore, while increasing slightly the number of SBC violations
compared to that of orders generated by the traditional CITO approach—only with the
objective of minimizing SBC violations—, orders for moderate values of the priority weight
outperform orders without prioritization in terms of early defect detection. The empirical
study also shows that our approach leads to a better trade-off than the test focus approach.

In the following, we first recall the CITO problem and describe the test focus approach
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proposed by Borner et Paech (2009b). Then, we present our formalization of the problem as
well as the memetic algorithm that solves it. Finally, we present the design and the results
of the empirical study that we performed to evaluate MITER.

5.2 CITO Problem and Existing Approaches

The CITO problem deals with determining an optimal class integration test order, i.e., to
devise the order in which classes should be integrated and tested with minimum cost. The
cost is measured as the number and–or complexity of stubs to be developed (i.e., SBC
violations). As shown by Kung et al. (1995), when a class diagram does not contain cycles,
an optimal test order is computed with a sort algorithm. Yet, in general, any class diagram
of realistic size contains cycles (Briand et al., 2001). Thus, the problem becomes finding an
optimal way to eliminate cycles, which is the well-known Feedback Arc Set (FAS) problem.
It consists of transforming a Directed Graph (DG), containing cycles, into a Directed Acyclic
Graph (DAG) by removing edges to break the cycles while minimizing some cost measures
(Eades et al., 1993). The decision version of the FAS problem is one of the 21 NP-complete
(Karp, 1972). Therefore, the FAS problem is both NP-hard (Festa et al., 2009): There is no
polynomial algorithm to resolve them.

5.2.1 Traditional CITO Approaches

In Section 3.2, we showed that several approaches have been proposed to tackle the CITO
problem, some based on a FAS-like formalization (Briand et al., 2002b), some assuming the
dependencies among classes to form a DAG (Kung et al., 1995), other proposing a solution
more specific to the testing domain (Tai et Daniels, 1997; Hanh et al., 2001; Traon et al.,
2000; Abdurazik et Offutt, 2009).

In all these approaches, hereby referred to as traditional CITO approaches, the goal is to
minimize the number and–or complexity of SBC violations. While MITER is essentially
inspired by previous approaches, it aims at promoting early defect detection in addition to
the minimization of SBC violations.

5.2.2 Test Focus Approach

Recently Borner et Paech (2009a,b) proposed an approach to generate class integration test
orders with the goal of testing defect-prone classes first and reducing SBC violations. The
approach is based on a Boolean classification of classes to test into two sets: (i) the test
focus set, i.e., risky classes (defect-prone classes) that must be tested first and (ii) the other
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classes (non-test focus set). Then, existing algorithms to derive class integration test order
are applied independently on each set with the goal of minimizing SBC violations.

The approach proposed by Borner et Paech (2009a) identifies risky dependencies between
classes—hereby referred to as "test focus dependencies"—based on properties of dependencies
that correlate with defects occurred in the past. It then includes all classes involved in those
dependencies in the test focus set.

To the best of our knowledge, this approach is the only one that takes into account testing
effectiveness in terms of defect detection when dealing with the CITO problem. However,
the use of the boolean classification does not allow a compromise between the two objectives.
Moreover, because classes in the test focus do not have the same degree of defect-proneness,
we believe that using a fine-grained prioritization as MITER is more realistic and can lead
to better balanced orders.

5.3 Problem Formalization and Algorithm

5.3.1 Problem Formalization

Kung et al. (1995) argue that association is the weakest relationship compared to aggregation
or inheritance, which involve besides control coupling, code dependency and data coupling.
They demonstrate based on the semantics of each relationship that it exists at least one
association in each cycle in OO programs. Therefore, their approach allows SBC violations
only when the relationship between the client and the server is an association. Such violations
yield to build less complex stubs. Many other researchers adopt the same point of view (Tai
et Daniels, 1997; Briand et al., 2001) while others choose to not make any distinction between
the types of relationships (Traon et al., 2000; Hanh et al., 2001). Malloy et al. (2003) propose
a more flexible approach (also adopted by MITER) in which a coefficient is assigned to each
type of dependency to control whether testers prefer to avoid violations to a particular type
of dependency or another.

In the earlier works on the SBC violations, researchers mostly focused on the number of SBC
violations. However, this focus has serious limitations and may not be representative of the
cost to write stubs. In contrast, Briand et al. (2002b) proposed a complexity metric that
measures the complexity of the dependency between two classes based on the strength of the
coupling between them. MITER can use number or overall complexity of SBC violations,
through the parametrization of its cost function.

Let C be the set of classes to be tested. C can be all or part of a program or in the context
of software evolution, the change impact set.
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A solution Si =< ci,1, . . . , ci,N > to the problem is an ordered sequence of the N classes of C.

Let Pos(c, Si) be the rank of c in Si.

Let each class c ∈ C = {c1, . . . , cN} be associated with a priority Prio(c), i.e., a number
between zero and one quantifying the degree of defect-proneness of a class. This priority
indicates the desired position in which c should be tested: a class with test priority equals
to one means that this class is highly defect-prone and should be tested at the beginning of
the testing phase while a priority of zero indicates a class with a very low risk to be faulty
and thus testing it can be delayed.

To maximize early defect detection, MITER should minimize the following cost function:

Fp(Si) =
∑
c∈Si

Prio(c)× Pos(c, Si) (5.1)

A class c in C may act as a server for other classes in C and–or be a client of other classes in
C. Coupling between clients and servers may be due to use relationships (Us), associations
(As), aggregations (Ag), compositions (Cp), and–or Inheritances (I).

Let assume that the pair (X, Y ) represents the relation between classes X (server class) and
Y (client class). SBCSi

= {(X, Y )|(X, Y ) ∈ {Us,As,Ag, Cp, I} & Pos(X,Si) > Pos(Y, Si}
is then the set of pairs (X, Y ) of classes in Si where a SBC violation is observed.

We define the function Type(X, Y ) to return the type of the relationship between X and Y
and the function γ(Type(X, Y )) to impose a penalty, if needed, to favor violating a particular
type of relationship rather than another. For example, if γ(As) is set to 1 and γ(I) is set to
100, then testers favor violating associations rather than inheritances.

Let define Cpx(X, Y ) as the complexity measure for the relationship between X and Y .
When Cpx(X, Y ) is set to 1 for all dependencies, then the goal is to minimize the number of
SBC violations.

To minimize SBC violations, MITER should minimize the following cost function:

Fs(Si) =
∑

(X,Y )∈SBCSi

γ(Type(X, Y ))× Cpx(X, Y ) (5.2)

Let further assume that α and β are the weights of the testing class prioritization and the
respect of SBC principle, respectively. They model the testers’ preference for one objective
over the other.

Let assume that Norm is a function that normalizes, in the interval [0, 1], the term represent-
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ing the cost of each objective to avoid a dominance of one of the terms due to the possible
difference between the ranges of values. The function Norm is defined as Norm(Ci) =
1 − (1/1 + a × Ci), where Ci is the value to normalize and a is a coefficient that helps to
avoid the squeezing of values in the interval [0, 1].

Given the above definitions and considerations, in order to find balanced orders between the
two objectives, MITER aims at minimizing the following general cost function:

F (Si) = αNorm(Fp(Si)) + βNorm(Fs(Si)) (5.3)

F (Si) is a generalisation of the cost functions defined in previous works. Indeed, the four
cost functions proposed by Briand et al. (2002b) and used in other search-based approaches
(Borner et Paech, 2009b; da Veiga Cabral et al., 2010) can be represented using Equation
5.3 as follows:

– Number of broken dependencies (D): α = 0, γ(I) = γ(Ag) = +∞ 1, γ(As) = 1, Cpx(X, Y ) =
1 for all dependencies.

– Attribute Coupling (A): α = 0, γ(I) = γ(Ag) = +∞, γ(As) = 1, Cpx(X, Y ) returns only
the attribute coupling between X and Y.

– Method Coupling (A): α = 0, γ(I) = γ(Ag) = +∞, γ(As) = 1, Cpx(X, Y ) returns only
the method coupling between X and Y.

– Attribute and Method Coupling (Ocplx): α = 0, γ(I) = γ(Ag) = +∞, γ(As) = 1,
Cpx(X, Y ) returns weighted geometric average of attribute and method coupling.

In each adaptation of Equation 5.3 shown above, the function Norm(Ci) is the identity
function. To cope with other complexities metrics as the one defined in (Abdurazik et Offutt,
2009), it suffices to replace the function Cpx(X, Y ) by the right one.

In the following, β is equal to 1− α. We then use α to express the balance between the two
objectives.

5.3.2 MITER Memetic Algorithm

We propose to solve the problem formalized above using a memetic algorithm because:

1. The CITO problem is an instantiation of the SBC problem and can be modeled as
a feedback set problem (FAS). Finding a solution for the FAS problem is NP-hard,
therefore metaheuristics approaches may solve it.

1. We set the penalty coefficient higher than the worst possible number of violations.
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2. Along the same lines, a comparison of graph-based approaches to metaheuristics-based
approaches Briand et al. (2002b) showed that genetic algorithm outperforms graph-
based approaches in solving the CITO problem.

3. Finally, a preliminary study, presented in Appendix B, compares a memetic algorithm
to a genetic algorithm in solving the CITO problem. The results of this experiment
show the superiority of the memetic algorithm over the genetic algorithm. Thus, it
confirms the effectiveness of memetic algorithms as reported in the literature (Hoos et
Sttzle, 2004; Fraser et al., 2015).

In the following, we give an overview of our memetic algorithm and detail its operators.

Overview: A potential solution of the problem formalized above corresponds to an ordering
of classes of C that minimizes the cost function defined 5.3.

The proposed memetic algorithm has two parameters because there is no mutation and at
each generation, the crossover is applied to two parents only. These two parameters are the
size of the population (popSize) and the number of generations (nbGen). This minimum
number of parameters makes easy parameter tuning—considered as one of the hardest steps
in using evolutionary algorithms—without making the algorithm less powerful.

The algorithm starts with a random generation of the initial population. The local search
is applied to each individual in the initial population. At each generation, two parents are
selected according to a uniform probability. Then, the crossover is applied to the two parents
to produce one offspring. The local search (LS) operator is then applied to the offspring.
Finally, the offspring replaces the worst individual in the population. The algorithm stops
after nbGen of generations.

Crossover Operator: The crossover operator used in the memetic algorithm is the position-
based crossover proposed by Syswerda (1990) and used by Briand et al. (2002b). This oper-
ator first randomly selects N/2 classes. Each selected class is then copied in the offspring at
the same position that it occupied in the first parent. Then, all other classes are used to fill
the remaining empty positions in the offspring according to their order in the second parent.

Local Search Operator: The local search operator used in the memetic algorithm is an
iterative improvement heuristic also called descent algorithm. It performs repeatedly a move
that strictly decreases the cost of the solution and stops when no more improving move is
available, i.e., when a local optimum is reached. In our local search heuristic, a move consists
in moving the class ci from its current position i to a new position j (i 6= j): such a move
is represented by the couple < i, j >. Given an ordering c = (c1, c2, . . . , cn), the solution



49

c′ = c(+) < i, j > denotes the new ordering produced by applying the move < i, j > to c
and corresponds to:
– (c1, . . . , ci−1, ci+1, . . . , cj, ci, cj+1, . . . , cn), if i < j;
– (c1, . . . , cj−1, ci, cj, cj+1, . . . , ci−1, ci+1, . . . , cn), otherwise.

5.4 Study Design

The goal of this study is to evaluate MITER with the purpose of assessing its ability to
support testers in finding a testing order that promotes early defect detection and limits
the number of SBC violations. The perspective is that of researchers interested to assess
the performance of MITER and understand whether it could constitute a valid support for
testers when performing class integration testing. Results of our study will also be useful to
practitioners interested in determining a cost-effective class integration test order.

The context of the study consists of six releases of three open-source programs: Ant, Ar-
goUML, and Xerces. We chose these programs because they have been the subjects of a
previous work in defect location (Bavota et al., 2012). Moreover, they are open-source and
they belong to different application domains.

Apache Ant 2 is a build tool for Java, ArgoUML 3 an open-source tool for UML diagrams, and
Apache Xerces for Java 4 a Java XML parser. The present experiment is performed in the
context of software evolution. The set C of classes to be tested are then the classes in the
change impact set CIS), i.e., new classes, the classes that have been modified, and also the
ones that are impacted by the modified classes.

Table B.1 summarizes information about the program releases considered in the study and,
specifically, the total number of classes, the number of new and modified classes 5 (NMC),
the size of the change impact set (CIS), the number of defects introduced since the previous
release and not fixed, the number of call sites to test, and the number of relations per
type. As in previous approaches (Kung et al., 1995; Briand et al., 2002b), we consider three
relationships: associations (As), aggregations (Ag), and inheritance (I). Associations include
use relationships and aggregations include compositions. For each analyzed program, changes
have been identified considering the previous release.

2. http://ant.apache.org/
3. http://argouml.tigris.org/
4. http://xerces.apache.org/xerces2-j/
5. This is a conservative estimate of changes not being detected by Java.
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Table 5.1 Study objects: detailed information of the analyzed releases.

Release Previous Classes NMC CIS Faulty Nb Call Sites As Ag I
Release Classes Defects

Ant 1.6.2 1.6.1 623 92 288 19 30 7, 373 2, 136 36 393
Ant 1.7.1 1.7.0 731 209 519 9 14 10 162 2, 719 43 481
ArgoUML 0.14.0 0.12.0 1, 187 802 1, 005 227 473 13, 222 3, 745 21 830
ArgoUML 0.22.0 0.20.0 1, 353 687 939 168 359 24, 973 4 858 25 885
Xerces 2.0.1 2.0.0 396 57 92 18 51 3, 774 1, 058 3 220
Xerces 2.6.2 2.6.1 466 57 89 13 28 4, 263 1, 430 5 268

5.4.1 Research Questions

To answer our main research question, the present study addresses the following two research
questions:

– RQ1:What is the effect of class test priority on early defect detection when varying its
importance in determining the test order? We evaluate the effect of class test prioritization
on early defect detection with respect to the number of call sites, when α varies from zero
(i.e., class priorities are disregarded) to one (i.e., SBC violations disregarded). We expect
a higher rate of early defect detection when α increases.

– RQ2: What is the effect of class test priority on the number of server-before-client viola-
tions when varying its importance in determining the test order? We evaluate the effect
of class test prioritization on the number of SBC violations when α varies from zero to
one. We expect a higher number of SBC violations when α increases. Indeed, if a class A
is not ranked in topmost positions when α = 0 (i.e., priorities are disregarded), this likely
means that A depends upon some server classes that must be tested before it. Therefore,
prioritizing A (i.e., moving A in the topmost order positions), may force to test A before
its server classes, and thus it increases SBC violations.

In each research question, we will also compare MITER ability against three baselines as
described in Section 5.4.2.

For this experiment, we set the parameters of the cost function of MITER (5.3) as follows.

– We favor the violation of associations over aggregations and favor the violation of aggre-
gations over inheritance: γ(As) = 1; γ(Ag) = 10;γ(I) = 100.

– The goal is the minimization of the number of SBC violations: Cpx(X, Y ) = 1 for all
dependencies.

– We set a, the coefficient of the normalization function Norm, to 0.001.
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We vary α as follows:

– α = 0, class prioritization is ignored and the search is only guided by the minimization of
the number of SBC violations;

– α ∈ {0.1, 0.25, 0.5, 0.75}, the two components are used to guide the search;
– α = 1, we consider class prioritization only to guide the search.

In RQ1, we assume that if a class is tested, then the defects will be eventually discovered
and fixed. This assumption may be invalid as defects may slip through testing. Thus, RQ1
actually quantifies the upper bound to defect detection; the actual defect detection depends
on many factors among which the quality of test data and the skills of the testers. All these
relevant factors are out of the scope of this chapter.

5.4.2 Baselines for Comparison

We will compare MITER against three baselines.

1. Random ordering (RndOrder): We compare MITER against a random class testing
ordering. Given C classes, we pick a random order and compute its number of SBC
violations and its early defect detection rate. If MITER does not perform better than
a random order, it would be pointless to adopt it.

2. Optimal ordering (OptOrder): We compare MITER against an “upper-bound”
ordering in which classes are ordered in the best possible order in terms of early defect
detection and based on a perfect knowledge of the location and the number of defects
in each class.

3. Test focus approach: We compare MITER against the test focus approach described
in Section 5.2.2.

5.4.3 Class Testing Priority

When prioritizing classes to be tested to maximize early defect detection, testers should know
to which extent each class is defect-prone. In practice, this information is not available but
it is possible to use defect prediction approaches to identify classes that are likely to exhibit
a higher number of defects than others (Gyimóthy et al., 2005; Zimmermann et Nagappan,
2008; D’Ambros et al., 2012).

MITER requires defect prediction data. As shown in a recent survey by D’Ambros et al.
(2012), several kinds of predictors exist based on product and–or process metrics. In this
chapter, we rely on a multivariate predictor using linear regression and combining some
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product metrics (Chidamber et Kemerer (1994) metrics and LOC) with one process metric
(the number of defects introduced in the class before the date of the previous release).

The choice of the product metrics is inspired from a work by Gyimóthy et al. (2005) whereas
the choice of the process metric is based on a work by Ostrand et al. (2005) who performed
defect prediction based on previous defects.

Table 5.3 describes the metrics used in our defect prediction model while Table 5.4 reports
the precision, recall, and F-measure of the defect predictor. We do not attempt to use the
best possible defect prediction approach. Rather, we want to show how MITER can rely
on a defect predictor to establish a suitable testing order. Therefore, the more close to the
truth is Prio(c), the more effective MITER order will be. Results reported in this chapter
can then be considered realistic as we used a well-known and easy to build defect predictor
and any improvement in the predictor will translate into a higher early defect detection.

The results of defect prediction are used in our formalization as class testing priorities. We
compute the priority value Prio(c) of a class c with the following formula:

Prio(c) = probability(c)
callsite(c) (5.4)

where probability(c) is the probability of c to be defective as returned by the defect predictor
and callsite(c) is the number of c call sites. Given two classes with the same defect probability,
this formula gives a higher priority to the smaller one in terms of call sites and, thus, increases
the cost-effectiveness: the order will rank first small (low number of call sites) highly defect-
prone classes.

Regarding the optimal ordering, we assign to each c in C its OptOrder priority as follows:

Prio(c) = nbDefects(c)
maxDefects× callsite(c) (5.5)

where nbDefects(c) is the number of defects in c and maxDefects is the maximum number
of defects in any given class under test. Thus, the OptOrder ranks in first positions classes
exhibiting the highest ratio of defects per call sites. It is important to underline that this
upper bound is not realistic as defects number and location are supposed in this case to be
known. Moreover, ordering classes just based on the number of defects per call site disregards
SBC violations and potentially leads to orders with extremely high numbers of SBC violations
and thus to an unacceptable number of stubs.

Following existing defect prediction approaches (Arisholm et al., 2010; Gyimóthy et al., 2005),
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we include in the test focus set each class whose probability to be faulty is equal to or
higher than 0.5. We choose to include all classes classified as defect-prone in the test focus
and not only classes involved in test focus dependencies because MITER assumes that unit
and integration testing activities are performed in parallel. Table 5.2 summarizes for each
analyzed release the size of the test focus set and the non-test focus set.

5.4.4 Data Collection

To compute C in this experiment, we identify relations between classes. To this aim, we use
two available tools: the Ptidej tools suite 6 and ChangeDistiller (Fluri et al., 2007).

The Ptidej tools suite extracts facts from Java bytecode or source code and creates PADL
models, which include relations between classes and also methods invocations. We use this
information to identify server and client classes.

ChangeDistiller detects fine-grained source code changes at the level of statements. We
choose among the 40 types of changes provided by Change Distiller, changes whose impact
is not detectable at compile time. We select classes with such changes and compute the
transitive closure using information about relations between classes and method invocations
provided by the PADL model to obtain the set of possibly impacted classes.

To associate defects to a particular release, we rely on the SZZ algorithm (Sliwerski et al.,
2005; Kim et al., 2006). Based on the blame/annotate feature of versioning systems and on
a set of heuristics to reduce the noise, SZZ identifies when (and by whom) lines changed in a
bug fix have been changed the last time before the fix. Although a bug fix can be performed
by modifying other lines in the code than those where the bug was introduced, SZZ provides
a reasonable estimate of the changes that induced a fix and, therefore, when a bug was likely
introduced. Therefore, we assume that a defect is associated to release Ri if the earliest fix-
inducing change identified by SZZ occurs between Ri−1 and Ri and the bug has been opened
after Ri. In this chapter, we use a data set of fix inducing changes already identified for a
previous paper (Bavota et al., 2012).

We rely on the tool POM 7 of the Ptidej tools suite to compute the metrics used to build
the defect predictor. POM is a framework that allows computing a wide range of software
metrics on PADL models.

6. http://www.ptidej.net/
7. http://wiki.ptidej.net/doku.php?id=pom
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Table 5.2 Size of Test Focus (TF) and Non-Test Focus (NTF) Sets.

Release TF NTF
Ant 1.6.2 20 278
Ant 1.7.1 8 511
ArgoUML 0.14.0 289 716
ArgoUML 0.22.0 195 744
Xerces 2.0.1 15 77
Xerces 2.6.2 15 74

Table 5.3 Description of the metrics used in the prediction model.

Metrics Description
CBO Coupling Between Objects classes
DIT Depth of Inheritance Tree of a class
LCOM2 Lack of Cohesion in Methods of a class
NOC Number of Children
RFC Response for a class
WMC Weighted Methods Per Class
LOC Numbers of lines of code
Past Bugs Number of bugs involving a class in the past

5.4.5 Study Settings

MA settings have been determined through a preliminary experiment. Depending on the size
(number of classes) in the set to analyze, we distinguish three groups: small sets of classes are
sets that contain at most 100 classes, medium sets are sets that contain more than 100 classes
and at most 500 classes. Large sets contain more than 500 classes. Table 5.5 summarizes the
different sets of parameters used in the present study for each group.

To account for the randomness of the MA, we execute MITER 20 times for each value of α.
We then record the average of the percentages of detected defects (if the classes were tested)
and SBC violations as function of the percentages of call sites i.e., for the i− th class in the
order, count of call sites for the first i classes.

For the random baseline, we assign the same amount of execution time as the MA to generate
C permutations; then out of the thousands of generated orders (C permutations) we select
the one with fewer SBC violations. We repeat this experiment 20 times.
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Table 5.4 Precision, recall and F-measure of logistic Predictors (for classes predicted as
defect-prone).

Release Precision Recall F-measure
Ant 1.6.2 30.00 33.33 31.58
Ant 1.7.1 25.00 25.00 25.00
ArgoUML 0.14.0 44.29 56.64 49.71
ArgoUML 0.22.0 47.69 55.69 51.38
Xerces 2.0.1 66.67 58.82 62.50
Xerces 2.6.2 60.00 75.00 66.67

Table 5.5 MA Parameters Settings.

program Type popSize nbGens
Small 30 100
Medium 100 5,000
Large 200 20,000

5.4.6 Analysis Method

To answer RQ1, we plot the percentages of detected defects of each order against the per-
centages of call sites needed to be covered (cost). Each curve plots average values across 20
MA executions (smoothed using Bezier interpolation).

To measure the early defect detection of each order, we adapt the APFD (Average Percentage
of Faults Detected) metric defined by Rothermel et al. (1999). In the context of test cases
prioritization, APFD is defined as the area under each curve and indicates how rapidly defects
are detected by the corresponding prioritized test suite. In other words, this area represents
the early defect detection rate of each test suite. In our case, we simply call this metric
EDDR (Early Defect Detection Rate). Thus, EDDR represents the early defect detection
rate of each test order with respect to the cost of testing measured here in terms of call sites.
Instead of using the x-axis as bound of the area under curve, we use the curve representing
the random order. As explained by Arisholm et al. (2010), this allows assessing the early
defect detection of a given order to that of the random order. We compute EDDR as follows:

EDDR(order)p = area(order)p − area(RndOrder)p (5.6)
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Figure 5.1 Areas Representing the Early Defect Detection Rate of a Given Order (ΛOrder)
and the OptOrder compared to RndOrder.

where area(x)p is the area under the curve x for a given p percentage of call sites (threshold
for the cost). A higher and positive EDDR indicates a better order in terms of early defect
detection. A negative EDDR actually points to a performance worse than the random order.

To allow a comparison across programs, we further use the normalized EDDR (NEDDR)
following the normalization proposed in (Arisholm et al., 2010) and adapted for our purpose
as follows:

NEDDR(order)p = area(order)p − area(RndOrder)p

area(OptOrder)p − area(RndOrder)p

(5.7)

where area(x)p is the area under the curve x for a given p percentage of call sites (threshold
for the cost), OptOrder and RndOrder indicate the optimal and random orders, respectively.
Because exhaustive testing is usually impossible, we evaluate the NEDDR(order) at different
call site coverage thresholds (testing budget), namely 20, 40, 60, 80, and 100.

We report the average NEDDR achieved by MITER for different weighting of the class
priorities, i.e., for different values of α as defined in 5.4.1, and at different call site coverage
thresholds.

In the context of RQ1, we compare nine types of orders: the six produced by MITER and
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corresponding to the different values of α, the test focus order, the random order (RndOrder),
and the optimal order (OptOrder).

RQ2 investigates the effect of priorities on the number of SBC violations. We collect, for
each computed solution, the number and type of SBC violations. Similarly to RQ1, we also
report the average numbers of SBC violations at different thresholds of call site coverage and
different values of α, and compare results with the baselines.

To study the statistical significance of the effect on the NEDDR and SBC violations of
different α values, of different threshold values, and of the program releases on which the study
was conducted, we use permutation tests on data of each run. We use an implementation
available in the lmPerm R package. We set the number of iterations of the permutation test
procedure to 500,000. Since the permutation test samples permutations of combinations of
factor levels, multiple runs of the test may produce different results, we choose a high number
of iterations such that results do not vary over multiple executions of the procedure.

Besides the above analysis, we study the statistical significance of the difference between
MITER orders (for different values of α and for different thresholds) and test focus order
using the Mann-Whitney two-tailed test in both research questions at different threshold of
coverage. We perform the test using the data of each run.

Our null hypotheses for RQ1 and RQ2 are respectively:
– H01: There is no significant difference between the NEDDR of MITER order (for a given
α) and test focus order.

– H02: There is no significant difference between the number of SBC violations of MITER
order (for a given α) and test focus order.

We also estimate, using the non-parametric Cliff’s d (Grissom et Kim, 2005) effect size
measure, the magnitude of the differences of means of NEDDR and number of SBC violations
between MITER order (for a given α) and the test focus order.

Because the above described analysis requires multiple comparisons, we adjust p-values using
Holm’s correction procedure (Holm, 1979).

5.5 Results and Discussion

This section reports the study results.



58

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

%
 D

e
te

c
te

d
 D

e
fe

c
ts

% Call Sites

% Def. OptOrder
% Def. α=1

% Def. α=0.75
% Def. α=0.50
% Def. α=0.25
% Def. α=0.1
% Def. α=0.0

% Def. RndOrder
% Def. TestFocus

(a) Ant 1.6.2

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

%
 D

e
te

c
te

d
 D

e
fe

c
ts

% Call Sites

% Def. OptOrder
% Def. α=1

% Def. α=0.75
% Def. α=0.50
% Def. α=0.25
% Def. α=0.1
% Def. α=0.0

% Def. RndOrder
% Def. TestFocus

(b) Ant 1.7.1

Figure 5.2 Defect Detection Rate Curves of MITER Orders, RndOrder, OptOrder, and Test
Focus Order.
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Figure 5.3 Defect Detection Rate Curves of MITER Orders, RndOrder, OptOrder, and Test
Focus Order.
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Figure 5.4 Defect Detection Rate Curves of MITER Orders, RndOrder, OptOrder, and Test
Focus Order.
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Table 5.6 Ant - Average NDDRE for Different α and Coverage Thresholds.

Call Sites (%) 20 40 60 80 100

α

0 0.31 0.32 0.32 0.32 0.31
0.1 0.53 0.62 0.71 0.75 0.76
0.25 0.53 0.63 0.71 0.75 0.76
0.5 0.52 0.61 0.69 0.74 0.75
0.75 0.52 0.63 0.71 0.75 0.75

1 0.49 0.65 0.73 0.78 0.78
TestFocus 0.25 0.35 0.37 0.38 0.39

RndOders (area) 174.62 841.28 1929.14 3389.82 5233.05
OptOrder (area) 1676.91 3692.37 5699.69 7669.04 9700.78

(a) Ant 1.6.2

Call Sites (%) 20 40 60 80 100

α

0 0.00 -0.04 -0.03 -0.03 -0.02
0.1 0.29 0.30 0.34 0.45 0.48
0.25 0.30 0.31 0.34 0.45 0.48
0.5 0.31 0.32 0.37 0.48 0.51
0.75 0.30 0.32 0.37 0.47 0.49

1 0.18 0.37 0.52 0.60 0.62
TestFocus 0.13 0.19 0.24 0.27 0.28

RndOrder (area) 188.13 759.82 1603.50 2812.26 4500.89
OptOrder (area) 1803.99 3823.28 5829.77 7799.86 9832.92

(b) Ant 1.7.1
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Table 5.7 ArgoUML - Average NDDRE for Different α and Coverage Thresholds.

Call Sites (%) 20 40 60 80 100

α

0 0.08 0.08 0.09 0.09 0.09
0.1 0.15 0.17 0.27 0.33 0.36
0.25 0.16 0.18 0.27 0.34 0.36
0.5 0.16 0.18 0.28 0.34 0.36
0.75 0.21 0.20 0.29 0.35 0.37

1 0.37 0.37 0.41 0.42 0.47
TestFocus 0.04 0.05 0.08 0.12 0.12

RndOrder (area) 205.84 834.65 1858.82 3275.83 5101.52
OptOrder (area) 1055.16 3027.33 5016.93 6994.69 9032.21

(a) ArgoUML 0.14.0

Call Sites (%) 20 40 60 80 100

α

0 0.01 0.01 0.03 0.05 0.05
0.1 0.19 0.25 0.25 0.28 0.29
0.25 0.20 0.25 0.26 0.28 0.29
0.5 0.21 0.26 0.26 0.28 0.30
0.75 0.25 0.28 0.28 0.30 0.32

1 0.25 0.27 0.25 0.29 0.33
TestFocus 0.06 0.13 0.15 0.16 0.17

RndOrder (area) 233.46 919.21 1986.50 3409.27 5224.92
OptOrder (area) 1241.75 2933.41 5167.88 7135.21 9172.61

(b) ArgoUML 0.22.0
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Table 5.8 Xerces - Average NDDRE for Different α and Coverage Thresholds.

Call Sites (%) 20 40 60 80 100

α

0 0.08 0.05 0.02 0.04 0.05
0.1 0.24 0.26 0.26 0.39 0.40
0.25 0.24 0.25 0.27 0.39 0.40
0.5 0.24 0.26 0.26 0.39 0.40
0.75 0.24 0.26 0.24 0.39 0.40

1 0.34 0.30 0.37 0.49 0.49
TestFocus 0.11 0.11 0.34 0.42 0.43

RndOrder (area) 170.99 807.62 1803.55 3196.25 5039.70
OptOrder (area) 936.13 2748.32 4693.21 6646.04 8792.30

(a) Xerces 2.0.1

Call Sites (%) 20 40 60 80 100

α

0 -0.04 -0.13 -0.13 -0.14 -0.17
0.1 0.07 0.08 0.20 0.32 0.34
0.25 0.07 0.08 0.20 0.32 0.34
0.5 0.07 0.08 0.20 0.32 0.34
0.75 0.15 0.09 0.27 0.32 0.37

1 0.50 0.53 0.57 0.69 0.71
TestFocus 0.13 0.14 0.32 0.40 0.43

RndOrder (area) 143.43 766.79 1648.39 2989.14 4830.28
OptOrder (area) 1009.31 3016.07 5075.65 7008.56 9082.22

(b) Xerces 2.6.2

Table 5.9 Ant 1.6.2 - Comparing NDDRE of MITER and Test Tocus: Mann-Whitney Test
Adjusted p-values (p), Cliff’s d Effect Size (d) and Magnitude (m) (L: Large, M: Medium,
S:Small, N: Negligible).
aaaaaaaaa
α

Call Sites (%) 20 40 60 80 100

d m p d m p d m p d m p d m p
0 0.33 M 0.07 -0.18 S 0.34 -0.26 S 0.17 -0.27 S 0.16 -0.31 S 0.10
0.1 0.95 L 0.00 0.94 L 0.00 0.95 L 0.00 0.95 L 0.00 0.95 L 0.00
0.25 0.95 L 0.00 0.94 L 0.00 0.95 L 0.00 0.95 L 0.00 0.95 L 0.00
0.5 0.94 L 0.00 0.93 L 0.00 0.95 L 0.00 0.95 L 0.00 0.95 L 0.00
0.75 0.94 L 0.00 0.94 L 0.00 0.95 L 0.00 0.95 L 0.00 0.95 L 0.00
1 0.93 L 0.00 0.95 L 0.00 0.95 L 0.00 0.95 L 0.00 0.95 L 0.00
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Table 5.10 Ant 1.7.1 - Comparing NDDRE of MITER and Test Focus: Mann-Whitney Test
Adjusted p-values (p), Cliff’s d Effect Size (d) and Magnitude (m) (L: Large, M: Medium,
S:Small, N: Negligible).
aaaaaaaaa
α

Call Sites (%) 20 40 60 80 100

d m p d m p d m p d m p d m p
0 -0.73 L 0.00 -0.69 L 0.00 -0.67 L 0.00 -0.66 L 0.00 -0.62 L 0.00
0.1 0.86 L 0.00 0.54 L 0.01 0.40 M 0.07 0.56 L 0.00 0.60 L 0.00
0.25 0.90 L 0.00 0.54 L 0.01 0.35 M 0.07 0.56 L 0.00 0.58 L 0.00
0.5 0.93 L 0.00 0.64 L 0.00 0.49 L 0.03 0.66 L 0.00 0.66 L 0.00
0.75 0.91 L 0.00 0.63 L 0.00 0.48 L 0.03 0.60 L 0.00 0.64 L 0.00
1 0.38 M 0.05 0.75 L 0.00 0.88 L 0.00 0.91 L 0.00 0.91 L 0.00

Table 5.11 ArgoUML 0.14.0 - Comparing NDDRE of MITER and Test Focus: Mann-Whitney
Test Adjusted p-values (p), Cliff’s d Effect Size (d) and Magnitude (m) (L: Large, M: Medium,
S:Small, N: Negligible).
aaaaaaaaa
α

Call Sites (%) 20 40 60 80 100

d m p d m p d m p d m p d m p
0 0.46 M 0.02 0.49 L 0.01 0.20 S 0.29 -0.30 S 0.10 -0.35 M 0.06
0.1 0.87 L 0.00 1.02 L 0.00 0.95 L 0.00 0.95 L 0.00 0.95 L 0.00
0.25 0.97 L 0.00 0.90 L 0.00 0.95 L 0.00 0.95 L 0.00 0.95 L 0.00
0.5 0.89 L 0.00 0.92 L 0.00 0.95 L 0.00 0.95 L 0.00 0.95 L 0.00
0.75 0.94 L 0.00 0.94 L 0.00 0.95 L 0.00 0.95 L 0.00 0.95 L 0.00
1 0.95 L 0.00 0.95 L 0.00 0.95 L 0.00 0.95 L 0.00 0.95 L 0.00

Table 5.12 ArgoUML 0.22.0 - Comparing NDDRE of MITER and Test Focus: Mann-Whitney
Test Adjusted p-values (p), Cliff’s d Effect Size (d) and Magnitude (m) (L: Large, M: Medium,
S:Small, N: Negligible).
aaaaaaaaa
α

Call Sites (%) 20 40 60 80 100

d m p d m p d m p d m p d m p
0 -0.54 L 0.00 -0.88 L 0.00 -0.99 L 0.00 -0.89 L 0.00 -0.83 L 0.00
0.1 0.90 L 0.00 1.00 L 0.00 0.88 L 0.00 0.87 L 0.00 0.98 L 0.00
0.25 0.90 L 0.00 1.00 L 0.00 0.98 L 0.00 0.88 L 0.00 0.97 L 0.00
0.5 0.94 L 0.00 0.93 L 0.00 0.93 L 0.00 0.90 L 0.00 1.00 L 0.00
0.75 0.95 L 0.00 0.94 L 0.00 1.02 L 0.00 1.02 L 0.00 1.02 L 0.00
1 0.95 L 0.00 0.93 L 0.00 1.01 L 0.00 0.91 L 0.00 0.94 L 0.00
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Table 5.13 Xerces 2.0.1 - Comparing NDDRE of MITER and Test Focus: Mann-Whitney
Test Adjusted p-values (p), Cliff’s d Effect Size (d) and Magnitude (m) (L: Large, M: Medium,
S:Small, N: Negligible).
aaaaaaaaa
α

Call Sites (%) 20 40 60 80 100

d m p d m p d m p d m p d m p
0 -0.19 S 0.31 -0.33 M 0.10 -0.90 L 0.00 -0.84 L 0.00 -0.85 L 0.00
0.1 0.57 L 0.01 0.43 M 0.10 -0.43 M 0.10 -0.06 N 1.00 -0.18 S 1.00
0.25 0.57 L 0.01 0.43 M 0.10 -0.39 M 0.11 -0.09 N 1.00 -0.18 S 1.00
0.5 0.57 L 0.01 0.43 M 0.10 -0.39 M 0.11 -0.07 N 1.00 -0.18 S 1.00
0.75 0.57 L 0.01 0.43 M 0.10 -0.42 M 0.10 -0.06 N 1.00 -0.18 S 1.00
1 0.91 L 0.00 0.59 L 0.01 0.24 S 0.19 0.14 N 1.00 0.24 S 1.00

Table 5.14 Xerces 2.6.2 - Comparing NDDRE of MITER and Test Focus: Mann-Whitney
Test Adjusted p-values (p), Cliff’s d Effect Size (d) and Magnitude (m) (L: Large, M: Medium,
S:Small, N: Negligible).
aaaaaaaaa
α

Call Sites (%) 20 40 60 80 100

d m p d m p d m p d m p d m p
0 -0.36 M 0.25 -0.55 L 0.01 -0.89 L 0.00 -0.92 L 0.00 -0.92 L 0.00
0.1 -0.05 N 1.00 -0.09 N 1.00 -0.43 M 0.07 -0.27 S 0.63 -0.34 M 0.27
0.25 -0.05 N 1.00 -0.09 N 1.00 -0.43 M 0.07 -0.27 S 0.63 -0.34 M 0.27
0.5 -0.05 N 1.00 -0.09 N 1.00 -0.43 M 0.07 -0.27 S 0.63 -0.34 M 0.27
0.75 0.23 S 0.88 -0.07 N 1.00 -0.35 M 0.07 -0.21 S 0.63 -0.26 S 0.27
1 0.91 L 0.00 0.94 L 0.00 0.83 L 0.00 0.85 L 0.00 0.90 L 0.00
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Table 5.15 Permutation Test on NDDRE.

Df R Sum Sq R Mean Sq Pr(Prob)
program 5 71.16 14.23 0.00
th 1 11.50 11.50 0.00
program:coverage 5 1.28 0.26 0.00
approach 5 63.05 12.61 0.00
program:approach 25 13.15 0.53 0.00
coverage:approach 5 3.41 0.68 0.00
program:coverage:approach 25 1.87 0.07 0.00
Residuals 3,528 86.23 0.02

Table 5.16 Classes with Non-Null Priority.

Release Classes Classes
(Prio(c) > 0)

Ant 1.6.2 288 92
Ant 1.7.1 519 209
ArgoUML 0.14 1,005 802
ArgoUML 0.22 939 687
Xerces 2.0.1 92 57
Xerces 2.6.2 89 57

5.5.1 RQ1: What is the effect of class test priority on early defect detection
when varying its importance in determining the test order?

Figures 5.2 to 5.4 report the defect detection curves for MITER (different α values), test
focus, random, and optimal for the analyzed programs.

The graphs show the proportion of defects potentially detected (y-axis) as function of call sites
coverage (x-axis) if testing classes in the order represented by the curve. The two extremes
are represented by RndOrder, the random order of classes (45% line, i.e., no prioritization
and no minimization of SBC violations) and by OptOrder, the optimal upper bound in terms
of early defect detection. In all programs, MITER is always better than a random ordering.
For moderately high values of α, MITER is equal to or better than the test focus. The
behavior is however different: while in Ant, there is a step increase at the beginning of the
testing activity followed by a more slow defect discovery rate, in the other analyzed programs
the trend is almost reversed.

We can explain the reasons of this difference by the low proportion of faulty classes in Ant.
Indeed, only about 7% of classes are faulty in Ant 1.6.2 and about 2% in Ant 1.7.1 while the
proportion of faulty classes range between 14% and 23% in the other programs.
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Therefore, the percentage of call sites (cost) to test all faulty classes is reduced in Ant: 11%
in Ant 1.6.2 and 7% in Ant 1.7.1 while it is about 40% in the other programs. In Ant, all
defects are detected before 15% of call sites while it is around 40% in the other programs
(see Figs. 5.3–5.4). Moreover, in Ant, at least 20% of faulty classes have 0 or 1 dependency:
those classes are ranked in the top classes, leading to a high defect detection rate (at least
20%) at the very beginning of the testing activity.

Tables 5.6–5.8 summarize the normalized early defect detection rate (NEDDR) for each type
of order at different coverage thresholds for all analyzed programs. Tables 5.6–5.8 are divided
in two parts: the upper parts report NEDDR values for various configurations; the lower parts
(OptOrder and RndOrder) report the area used in the calculation of the top part values via
Equation 5.7. NEDDR values show that it is important to account for the probability of a
class to be faulty. Even for moderately high values of α, MITER outperforms the test focus
approach as well as the traditional CITO approach, i.e., α = 0, see below.

Table 5.15 reports the permutation test results of the effect of different α values, threshold
values, and program releases on NEDDR values. The results of the Mann-Whitney and Cliff’s
d tests, which compute the differences between MITER and test focus orders, are summarized
in Tables 5.9–5.14. Statistically significant p-values (i.e., p < 0.05) are reported in bold face.
As shown by Table 5.15, there are interactions between the program, the call site coverage
(i.e., coverage) and the type of order (i.e., approach) with a very strong significance level.
Therefore, we expect that results vary when varying the program, the required coverage, and
the type of order.

Traditional CITO Approach (MITER results without prioritization, α = 0): With-
out prioritization, MITER results are close to the 45% line and are, in most releases, slightly
above the random order except for three program: Ant 1.7.1 and Xerces 2.6.2, where they
are below, and Ant 1.6.2, where the MITER curve stays well above. The NEDDR values
support these observations: except in Ant 1.6.2, where the NEDDR is always greater than
0.30 for the different thresholds of coverage, it is less than 0.1 in all the analyzed releases
and even negative for Ant 1.7.1 and Xerces 2.6.2. Those results show that traditional CITO
approach does not help improve early defect detection.

MITER results with prioritization (0 < α <= 1): In all the analyzed releases, MITER
orders with α > 0 perform better than random orders: the NEDDR values are all positive.
As shown in Figures 5.2 to 5.4, when we consider a very small increase of α, in all the
analyzed releases at 20% of coverage, there is an increase of the early defect detection rate
of at least 10% for MITER orders compared to that of MITER orders without prioritization.
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The corresponding NEDDR values increase by at least 0.15 compared to the case of α = 0
in most releases except ArgoUML 0.14.0 and Xerces 2.6.2. For example, in Ant 1.7.1, the
NEDDR value at 20% of coverage is 29 while it is zero for the order without prioritization.
This translates into 50% against 15% in terms of defect detection rates.

Surprisingly, when α varies from 0.1 to 0.75, the NEDDR values for a given coverage threshold
are very close to each other: the corresponding curves in the graphs are almost confounded.
For example, the NEDDR values are between 52 and 53 at 20% of coverage in Ant 1.6.2.
This observation suggests a small contribution of the maximization of early defect detection
in the overall cost. However, when checking the specific orders for the different values of α, we
observe that the orders are different. They show an effective contribution of the maximization
of early defect detection in the overall cost. Indeed, the more α grows, more classes with a
high priority are pushed into the top ranks. This trend is not visible in the NEDDR values
or on the curves (or very slightly) because of the quality of the predictor.

Among classes with high priority, there are some non-faulty classes that are pushed in the top
ranks when α grows and, therefore, the early defect detection does not increase as expected
and can even decrease. For example, Table 5.17 describes for each release the distribution
of faulty and non-faulty classes based on priority values. We can see in this table that the
number of non-faulty classes in ArgoUML 0.14.0 with a priority higher than the third quartile
is 156, while the number of actual faulty classes for that quartile is only 45. Moreover, there
are also faulty classes with null or very low priority that will not be ranked earlier. As we
can see in Table 5.17, there are two faulty classes in ArgoUML with a null priority and one
third of the faulty classes in Ant 1.6.2 has a priority lower than the first quartile.

The same explanation holds when α = 1, i.e., the search is only guided by class prioritization.
the NEDDR is not that much higher than the cases where α < 1. Another interesting
observation is that, sometimes, orders with higher values of α perform less well than orders
with lower values of α. In Ant 1.7.1 between 0% and 20% of coverage where the NEDDR
of orders with α between 0.1 and 0.75 are significantly higher than that of the order with
α = 1 (the curves of orders with α between 0.1 and 0.75 are above that of MITER order with
α = 1 in Figure 5.2b). We can also explain this situation by the quality of the predictor.
Indeed, when α grows, class prioritization gains more and more importance in the overall
cost, forcing MITER to rank classes with the highest priority values in the top. Consequently,
false positive defect-prone classes are also ranked in the top. When α = 1, the search is only
guided by class prioritization, thus MITER will rank all classes with non-null priority in the
top ranks. These results suggest that MITER results highly depend on the quality of the
predictor used to assign priorities to classes. Thus, the better the predictor the more MITER
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will improve early defect detection and produce orders that will be close to the optimal when
α grows.

In most releases, the NEDDR increases even slightly with the coverage showing that the
performances of MITER orders increase with coverage in comparison to random orders.
Thus, the NEDDR at 40% is generally higher than that at 20%. For example, in ArgoUML
0.22.0, the NEDDR at 20% of coverage is 0.15 while at 40% of coverage, it is 0.19.

Overall, these results show that taking into account class prioritization (even with a very
small weight, for example, α = 0.1) can considerably increase the early defect detection rate
compared to that of MITER orders without prioritization and random orders. However, the
effect of class prioritization on early defect detection is influenced by several factors including
the quality of the defect predictor, the number of faulty classes, and the number of defects
and their distribution across the program.

Comparison between MITER and Test Focus Orders: Test focus orders perform
better than random orders: as Tables 5.6–5.9b show, their NEDDR values are always greater
than zero. Tables 5.9–5.12 show that in most analyzed releases, MITER outperforms the test
focus approach with a large effect size. No matter the value of α between 0.1 and 0.75 in Ant
and ArgoUML (and for different coverage thresholds), MITER achieves much better results
than test focus. For example, in Ant 1.6.2, the NEDDR values achieved by the test focus
range between 0.25 and 0.39, while for MITER they range between 0.53 and 0.78. However,
on Xerces, the test focus performs slightly better than MITER except before 40% in Xerces
2.0.1 where MITER orders are better (cf. Table 5.9a) but the differences are not statistically
significant. In all analyzed releases, except in Ant 1.6,2, test focus allows discovering defects
earlier, i.e., performs better than traditional CITO (MITER with α = 0) orders, as expressed
by the negative values of the effect size.

The reason why in general test focus performs less well than MITER with α > 0 is related to
the sets focus that contain only classes with a faulty probability equal to or greater than 0.5.
The number of classes in the test focus sets are close to the number of actual faulty classes.
When analyzing these classes in ArgoUML and Ant releases, we observe that most of them
are false positives. For example, in Ant 1.6.2, 70% of classes in the test focus set are false
positives (see Table 5.18). Thus, since the test focus approach does not make any difference
between classes in the test focus in terms of probability of being faulty, it ranks them just
based on the SBC violations minimization. As a result, the early defect detection rate is
then highly deteriorated by those false positives. If classes with defect probability equal to
or greater than 0.5 are mostly true positives as in Xerces releases (for example, in Xerces
2.6.2, two third of the classes are true positives), the test focus performs better. Thus, the
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test focus approach seems to be more influenced by the quality of the predictor. Nonetheless,
in all studied releases, MITER with α = 1 performs better than test focus at all coverage
thresholds (except in Xerces 2.0.1 after 40% of coverage). The differences are significant with
large magnitude of the effect size.

RQ1 Summary: MITER is effective to support early defect detection through testing, even
if the weight given to class priority (α) is small. MITER with α > 0 significantly outperforms
test focus.

5.5.2 RQ2: What is the effect of class test priority on the number of server-
before-client violations when varying its importance in determining the
test order?

MITER strives to promote early defect detection keeping low the number of SBC violations.
Tables 5.19 to 5.21 report, for the different coverage thresholds and for each type of order
(MITER, test focus, random, and optimal) the average number of SBC violations. The types
of violations are summarized in Table 5.29 while the statistical comparisons between MITER
orders and test focus orders are reported in Tables 5.22–5.27.

Traditional CITO approach (MITER results without prioritization, α = 0):

Traditional CITO approach has the lowest number of SBC violations when 100% of coverage
is achieved; It is then the reference for comparisons with other orders. It may happen that
for values of coverage lower than 100%, Traditional CITO orders with α = 0 have not the
lowest possible number of SBC violations.
The interplay between defect probability and SBC lead to situations where, with α > 0 and
with a partial coverage, MITER finds orders with a lower number of SBC violations.

As shown in the tables, the number of violations for the two extreme orders, optimal and
random, are very high for all analyzed releases and for all coverage thresholds. In Ant 1.6.2,
the average number of SBC violations varies from 152 to 400 for random order, and from

Table 5.17 Distribution of Faulty (F) and Non-Faulty (NF) Classes Based on Priorities Values
Quartiles (Q).

Release Prio(c) = 0 0 < Prio(c) <= 1stQ 1stQ < Prio(c) <= 2ndQ 2ndQ < Prio(c) <= 3rdQ Prio(c) > 3rdQ
F NF F NF F NF F NF F NF

Ant 1.6.2 0 196 6 17 5 18 3 20 5 18
Ant 1.7.1 0 310 4 49 2 50 1 51 2 50
ArgoUML 0.14.0 0 203 82 119 37 163 63 137 45 156
ArgoUML 0.22.0 2 252 71 101 36 136 30 141 31 141
Xerces 2.0.1 0 35 1 14 2 12 6 8 9 5
Xerces 2.6.2 0 32 6 9 5 9 2 12 0 14
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Table 5.18 True (T) and False (F) Positive Classes in Test Focus Set.

Release T F
Ant 1.6.2 6 14
Ant 1.7.1 2 6
ArgoUML 0.14.0 129 160
ArgoUML 0.22.0 94 101
Xerces 2.0.1 11 4
Xerces 2.6.2 10 5

Table 5.19 Average SBC Violations for Different Coverage in Ant Versions.

Call Sites (%) 20 40 60 80 100

α

0 21.90 25.20 27.15 27.90 28.00
0.1 23.00 23.00 25.35 27.35 28.00
0.25 23.00 23.45 25.55 27.15 28.00
0.5 26.00 26.00 28.50 30.10 31.00
0.75 35.00 35.65 37.35 39.35 40.00

1 166.00 225.45 305.45 346.85 361.50
TestFocus 114.35 119.90 122.80 123.65 124.00
RndOrder 152.40 269.15 342.65 385.50 400.75
OptOrder 166.00 324.00 421.00 464.00 471.00

(a) Ant 1.6.2

Call Sites (%) 20 40 60 80 100

α

0 43.80 45.80 47.40 48.55 49.20
0.1 35.90 44.80 48.45 50.70 51.75
0.25 37.95 45.95 49.50 51.25 52.80
0.5 44.55 53.90 57.45 59.40 60.90
0.75 77.85 88.85 93.60 99.55 100.85

1 393.30 594.75 744.55 896.90 946.10
TestFocus 130.20 137.20 138.85 139.80 140.35
RndOrder 393.20 685.95 862.55 960.15 992.90
OptOrder 417.00 761.00 917.00 1003.00 1037.00

(b) Ant 1.7.1
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Table 5.20 Average SBC Violations for Different Coverage in ArgoUML Versions.

Call Sites (%) 20 40 60 80 100

α

0 82.90 91.75 97.15 97.65 98.70
0.1 95.40 102.90 104.85 106.55 108.70
0.25 95.55 103.00 105.00 106.50 109.00
0.5 97.20 104.95 107.05 108.65 111.05
0.75 105.55 115.35 117.30 119.30 121.30

1 872.45 1305.70 1596.00 1681.85 1789.55
TestFocus 277.05 580.65 870.70 874.35 876.65
RndOrder 650.65 1132.85 1457.60 1640.60 1697.85
OptOrder 726.00 1071.00 1435.00 1693.00 1812.00

(a) ArgoUML 0.14.0

Call Sites (%) 20 40 60 80 100

α

0 62.75 85.50 98.70 105.25 106.90
0.1 89.80 99.50 108.95 113.90 118.00
0.25 90.60 100.00 109.55 114.25 118.75
0.5 100.10 107.85 117.75 122.55 127.05
0.75 122.85 133.60 144.65 148.25 152.45

1 1039.55 1442.30 1609.10 1676.30 1731.80
TestFocus 393.15 797.15 1036.30 1047.50 1051.15
RndOrder 688.70 1167.05 1474.35 1659.30 1725.50
OptOrder 701.00 915.00 1467.00 1853.00 2061.00

(b) ArgoUML 0.22.0
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Table 5.21 Average SBC Violations for Different Coverage in Xerces Versions.

Call Sites (%) 20 40 60 80 100

α

0 8.10 17.30 22.55 25.30 26.00
0.1 8.00 24.00 26.00 26.00 26.00
0.25 8.00 24.00 26.00 26.00 26.00
0.5 8.00 24.00 26.00 26.00 26.00
0.75 8.00 24.00 26.00 26.00 26.00

1 40.00 94.00 147.00 161.90 164.55
TestFocus 26.35 54.40 67.65 69.45 71.00
RndOrder 40.55 75.95 99.75 118.35 124.75
OptOrder 48.00 71.00 116.00 130.00 133.00

(a) Xerces 2.0.1

Call Sites (%) 20 40 60 80 100

α

0 11.65 17.10 25.75 31.40 32.00
0.1 15.00 20.00 20.00 32.00 32.00
0.25 15.00 20.00 20.00 32.00 32.00
0.5 15.00 20.00 20.00 32.00 32.00
0.75 18.00 23.00 27.00 35.25 35.25

1 35.00 51.00 65.00 73.35 80.30
TestFocus 24.40 40.95 52.30 56.65 58.00
RndOrder 31.85 59.70 79.90 92.05 95.65
OptOrder 38.00 57.00 103.00 115.00 119.00

(b) Xerces 2.6.2

Table 5.22 Ant 1.6.2 - Mann-Whitney Test on SBC Violations for MITER Orders vs Test
Focus Order.
aaaaaaaaa
α

Call Sites (%) 20 40 60 80 100

d m p d m p d m p d m p d m p
0 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00
0.1 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00
0.25 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00
0.5 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00
0.75 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00
1 0.95 L 0.00 0.95 L 0.00 0.95 L 0.00 0.95 L 0.00 0.95 L 0.00
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Table 5.23 Ant 1.7.1 - Mann-Whitney Test on SBC Violations for MITER Orders vs Test
Focus Order.
aaaaaaaaa
α

Call Sites (%) 20 40 60 80 100

d m p d m p d m p d m p d m p
0 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00
0.1 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00
0.25 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00
0.5 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00
0.75 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00
1 0.95 L 0.00 0.95 L 0.00 0.95 L 0.00 0.95 L 0.00 0.95 L 0.00

Table 5.24 ArgoUML 0.14.0 - Mann-Whitney Test on SBC Violations for MITER Orders vs
Test Focus Order.
aaaaaaaaa
α

Call Sites (%) 20 40 60 80 100

d m p d m p d m p d m p d m p
0 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00
0.1 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00
0.25 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00
0.5 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00
0.75 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00
1 0.95 L 0.00 0.95 L 0.00 0.95 L 0.00 0.95 L 0.00 0.95 L 0.00

Table 5.25 ArgoUML 0.22.0 - Mann-Whitney Test on SBC Violations for MITER Orders vs
Test Focus Order.
aaaaaaaaa
α

Call Sites (%) 20 40 60 80 100

d m p d m p d m p d m p d m p
0 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00
0.1 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00
0.25 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00
0.5 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00
0.75 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00
1 0.95 L 0.00 0.95 L 0.00 0.95 L 0.00 0.95 L 0.00 0.95 L 0.00
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Table 5.26 Xerces 2.0.1 - Mann-Whitney Test on SBC Violations for MITER Orders vs Test
Focus Order.
aaaaaaaaa
α

Call Sites (%) 20 40 60 80 100

d m p d m p d m p d m p d m p
0 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00
0.1 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00
0.25 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00
0.5 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00
0.75 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00
1 0.80 L 0.00 0.95 L 0.00 0.95 L 0.00 0.95 L 0.00 0.95 L 0.00

Table 5.27 Xerces 2.6.2 - Mann-Whitney Test on SBC Violations for MITER Orders vs Test
Focus Order.
aaaaaaaaa
α

Call Sites (%) 20 40 60 80 100

d m p d m p d m p d m p d m p
0 -0.90 L 0.00 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00
0.1 -0.80 L 0.00 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00
0.25 -0.80 L 0.00 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00
0.5 -0.80 L 0.00 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00
0.75 -0.45 M 0.01 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00 -1.00 L 0.00
1 0.95 L 0.00 0.95 L 0.00 0.95 L 0.00 0.95 L 0.00 0.95 L 0.00
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Table 5.28 Permutation Test on SBC Violations.

Df R Sum Sq R Mean Sq Pr(Prob)
program 5 76319520.54 15263904.11 0.00
coverage 1 7225105.07 7225105.07 0.00
program:coverage 5 4204922.54 840984.51 0.00
approach 7 327305333.35 46757904.76 0.00
program:approach 35 242766373.93 6936182.11 0.00
coverage:approach 7 22277413.78 3182487.68 0.00
program:coverage:approach 35 14701826.65 420052.19 0.00
Residuals 4,134 10109829.79 2445.53

Table 5.29 Average SBC Violations per Type.

α = 1 TestFocus RndOrder OptOrder
As Ag I As Ag I As Ag I As Ag I

Ant 1.6.2 269.20 7.80 84.50 113.00 1.00 10.00 366.70 12.10 21.95 323.00 12.00 136.00
Ant 1.7.1 732.55 13.40 200.15 135.35 1.00 4.00 910.55 18.80 63.55 860.00 15.00 162.00
ArgoUML 0.14.0 1,530.85 5.50 253.20 818.65 5.00 53.00 1,531.50 6.30 160.05 1,597.00 8.00 207.00
ArgoUML 0.22.0 1,534.05 9.00 188.75 999.15 10.00 42.00 1,583.20 7.35 134.95 1,833.00 14.00 214.00
Xerces 2.0.1 156.70 0.00 7.85 69.00 0.00 2.00 123.50 0.00 1.25 122.00 0.00 11.00
Xerces 2.6.2 70.85 0.00 9.45 56.00 0.00 2.00 91.80 0.00 3.85 105.00 0.00 14.00

166 to 471 for the optimal order, while it ranges between 22 and 28 for MITER orders with
α = 0, representing an increase of at least 70%. Similar results are also observed in the other
releases. The low performance of random orders in terms of early defect detection and their
high number of SBC violations confirm that testers should avoid random orders.

Besides the fact that, we cannot build in practice optimal orders as defect locations are not
known, optimal order are impracticable regrading the number of violated SBC. Moreover, in
both optimal and random orders, inheritance and aggregation SBC are always violated (see
Table 5.29). Indeed, as explained in Section 5.2, violating SBC principle when a method call
is involved (association SBC) may not be as critical as when an aggregation or inheritance
is part of the coupling.

MITER results with prioritization (0 < α <= 1):. Surprisingly, when α = 0.1, the
number of SBC violations is always very close (or equal) to that of α = 0. The slight
increase in the number of SBC violations is highly counterbalanced by an improvement in
terms of early defect detection. Tables 5.20a, 5.20b, and 5.22b show that increasing α to 0.1
causes an increase less than 10% of numbers of SBC violations but a NEDDR more than
doubled (Tables 5.7a, 5.7b and 5.9b). There are orders promoting early defect detection with
the same (or similar) number of SBC violations than those produced by traditional CITO
approach (MITER without prioritization). However, it is difficult or impossible to find these
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orders when the search is only guided by the minimization of SBC violations, i.e., when
α = 0. Thus, once class prioritization is accounted for with a relatively low weight, the
search will continue to be mainly guided by the minimization of SBC violations; however all
classes with no dependency among them will be ranked according to their contribution in
the maximization of early defect detection, increasing the early defect detection rate.

The number of SBC violations grows with α in all the analyzed releases except in Xerces
releases, for which there is almost no variation in the number of SBC violations (cf. Table
5.21) when α varies from 0.1 to 0.75. This increase of the number SBC violations confirms
the contribution of class prioritization in the overall search: more α grows, more MITER
violates SBC principle to satisfy class prioritization. MITER behavior on Xerces releases is
impacted by two factors. First, the defect predictor has a better quality. Second, Xerces is
small regarding the number of classes to test. Moreover, the density of relationships among
classes of Xerces is less strong than that of the other programs.

For α less or equal to 0.75, MITER always finds solutions with no SBC violations involving
aggregation or inheritance except in ArgoUML, where some solutions contain one violated
inheritance or aggregation. However, when α = 1, i.e., when the search is only guided by
class prioritization, in all programs, the number of violations is very high and close to the
number of violations in optimal orders. Finally, when α = 1, all solutions found by MITER
contain SBC violations involving aggregation and inheritance (see Table 5.29); these orders
should be avoided.

Comparison between MITER and test focus: As shown in Tables 5.19–5.21, the number
of SBC violations for test focus—in all programs, for all coverage thresholds, and for α ranging
from 0.1 to 0.75—is significantly greater than that obtained with MITER. The number of SBC
violations for test focus is at least twice as big than that obtained with MITER. For example,
in ArgoUML 0.22.0, the number of SBC violations is between 393 and 1,052 for test focus
while it is between 89 and 153 for MITER. The Mann-Whitney and the Cliff’s d tests show
that the differences are all significant with a large magnitude except in one program where
the magnitude is medium (cf. Tables 5.22–5.27). Moreover, in all the analyzed programs, the
violated SBC in test focus orders involve inheritances and–or aggregations. All dependencies
between classes in the test focus set and other classes are systematically violated no matter
the type of dependency resulting into a high number of (possibly complex) SBC violations.

When α = 1, the test focus has significantly smaller number of violations (with a large effect
size) because in that situation, the goal of minimizing SBC violations is discarded and the
search is only driven by the maximization of early defect detection.
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RQ2 Summary: When both early defect detection and SBC violations are taken into account
(0 < α < 1), MITER yields to a number of SBC violations significantly smaller than test
focus. If the SBC objective is discarded (α = 1), test focus performs significantly better.

Overall Summary: Based on the results of the two RQs, we can answer positively our
main research question: Can MITER provide balanced class integration orders that minimize
server-before-client violations and maximize early defect detection capability? The region
where we can find a compromise is the one where α < 0.5. Indeed, in general, when α moves
slightly away from zero, the defect detection rate considerably increases while the number
of SBC violations remains the same or close to the lower bound found for α = 0. We thus
conclude that MITER can be useful to support testers in finding a good compromise between
early defect detection capability and the minimization of SBC violations.

5.6 Threats to Validity

This section discusses the threats to the validity of our study.

To ensure the construct validity of our study, we did our best to make sure only reliable
information was used when evaluating MITER, however, there are several points that can be
further discussed.

A concern for our study is defect attribution i.e., how we assign a defect to a release. As
explained in Section 5.4.4, we rely on data from a previous work (Bavota et al., 2012) based
on the SZZ algorithm (Sliwerski et al., 2005; Kim et al., 2006). SZZ is not guaranteed to be
100% accurate, therefore a bug can be attributed to a wrong release. However, it is beyond
the scope of this study to have a 100% accurate set of release-related defects. Instead, the goal
is to show the performances of MITER in finding orders that promote early defect detection.

A different concern is related to the set of classes to be tested and thus the elements in-
cluded in C. To this aim we relied on changes and dependencies identified respectively by
ChangeDistiller (Fluri et al., 2007) and the Ptidej suite 8. However, we cannot be sure that all
valid changed and impacted classes are included in C. Also we selected as coverage criterion
of the integration testing, the call sites coverage criterion which is the weakest integration
test criterion (Lin et Offutt, 1998). We measured this coverage as the number of call sites
encountered in each class. We cannot exclude that counting caller–callee relations or using
a different coverage criterion will produce different results.

The aim of MITER is to determine a test order, and not to impose any testing criteria nor
to generate test data. Therefore, while in our study, the rate of defect detection is an upper

8. http://www.ptidej.net
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bound to the defects that can be found. The actual defect detection rate depends on the test
strategy followed and the actual test data generated.

The internal validity of our study is threatened by the intrinsic randomness of MA. We dealt
with that by running the algorithms 20 times and reporting descriptive statistics and–or
performing statistical tests where appropriate. Another internal validity threat is related to
the particular choice of the analyzed releases. We tried to mitigate it by performing our
study using different programs and different releases.

In order to mitigate the threats to conclusion validity, wherever appropriate, we used statis-
tical procedures and effect size measures to support our claims. Specifically, we use Mann-
Whitney test to check the presence of significant differences between MITER (under various
values of α and coverage thresholds) and the test focus approach (Borner et Paech, 2009a).
Also, we complement statistical tests with non-parametric effect size measures (Cliff’s d) to
evaluate the magnitude of the observed differences.

External validity threats to our study are mainly due to the limited number of analyzed
releases. Although we expect that similar change impact sets, defect data, types and distri-
bution of dependencies can occur with other programs and thus similar results can be found,
further studies need to be conducted to verify such a conjecture.

5.7 Conclusion

This chapter proposes MITER (Minimizing Integration Testing EffoRt), a formalization of
the class integration test order problem and an approach. MITER aims at (1) maximizing
early defect detection i.e., test with high priority classes having a high (estimated) defect-
proneness, such as AP classes, and (2) minimizing the number or overall complexity of
violations of the server-before-client principle. MITER uses class test priorities, assigned by
experts or computed by defect prediction tools, to define a class testing order promoting
early defect detection while minimizing the cost of SBC violations.

MITER uses a memetic algorithm, i.e., a meta-heuristic optimization approach, to calculate a
test order based on the new model. We empirically analyzed MITER’s ability to produce test
orders that promote early defect detection while keeping low the number of SBC violations
on multiple releases of three Java programs: Ant, ArgoUML, and Xerces. We compared
MITER orders against an optimal order (upper bound), a random ordering (lower bound),
and a Boolean classification order based on the approach of Borner et Paech (2009a). The
results of the study allowed us to positively answer our high-level research question:

Can MITER provide balanced class integration orders that minimize server-before-client vio-
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lations and maximize early defect detection capability?

Because the model underlying MITER integrates both assigned priorities and SBC violations,
we found that the higher the importance assigned to the testing priority, the higher the
number of SBC violations. However, orders generated with a small value of the testing
priority weight can significantly increase the early defect detection rate with no or little
increase of SBC violations compared to orders computed without prioritization. Thus, testers
can obtain a compromise between these two objectives.

As a general guideline, the value of α should be set low, likely around 0.1. With this value of
α, MITER can find orders with the same cost of SBC violations as the ones when α = 0 but
with a substantial improvement in the early defect detection rate. Then, testers can increase
the value of α according to their needs in terms of class prioritization and budget.

We observed that the compromise depends also on the program complexity, the types and
the density of relationships among classes, and the quality of the defect prediction.

We also showed that the fine-grained prioritization used in MITER leads to better balanced
orders than a Boolean classification as proposed by Borner et Paech (2009a).

We summarize the main outcomes of our empirical study as follows:
– Balanced orders between early defect detection and SBC violations exist and MITER can
find them using values of testing priority weight, α, smaller than 0.5.

– In agreement with the general consensus, random orders are not suitable to perform cost-
effective class integration testing activities: such orders are not efficient for early defect
detection and yield to high numbers of SBC violations including aggregations and inheri-
tances.

– Orders with extreme values of α, i.e., α = 0 and α = 1, should be avoided because they
do not produce a compromise between early defect detection and SBC violations.

– Fine-grained prioritization used in MITER is better in promoting balanced orders between
early defect detection and SBC violations than the Boolean classification-based prioritiza-
tion (Borner et Paech, 2009b).

MITER can then help prioritize defect-prone classes in general and AP classes in particular
without a high extra cost regarding the SBC principle. Thus, it can make the test of AP
classes more cost-effective.

In the next chapter, along with our goal to aid to a better test of programs containing AP
classes, we analyze the usability of Madum testing. We also propose means to improve and
reduce the cost of using this testing strategy.
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CHAPTER 6 IMPROVING THE USABILITY OF MADUM

In the previous chapter, we proposed MITER, an approach to solve the problem of class
integration test order. MITER prioritizes defect-prone classes, such as AP classes, while
minimizing the cost of SBC violations. It contributes to our goal of improving the test of
OO programs containing APs by making the test of AP classes cost-effective and increasing
early defect detection capability.

As shown in chapter 4, testing classes involving APs is expensive but necessary. Indeed, AP
classes are more defect-prone than other classes. The present chapter aims at analyzing and
improving the usability of Madum testing, a specific object-oriented unit testing. Improving
the usability of Madum testing could help reduce testing cost of OO programs containing
APs.

State-based testing is a model-based testing strategy because we must provide the state chart
of a class to derive sequences of methods to test. Pre-and-post conditions testing requires also
defining pre-and-post conditions for each method before identifying sequences of methods to
test. However, state charts and pre-and-post conditions are hard to derive automatically
because they are based on the semantic of the program. This fact makes the automation
of these testing strategies difficult. In contrast to these techniques, Madum relies only on
source code analyzis to identify sequences of methods to test. Madum testing appears then
as a good candidate for the automation which is one of the main means to reduce testing
cost and increase testing use and efficiency (Ammann et Offutt, 2008).

Although Madum testing is a good candidate for automation, the authors of this strategy
did not provide formal coverage criteria neither any strategy to generate test data to exercise
the identified sequences. Formal criteria are important for an adequate use of the testing
strategy and its automation. Moreover, if this testing strategy sounds theoretically useful, we
do not have any evidence of its efficiency or usability in practice. Another concern is related
to the number of transformers that can highly increase the cost of using Madum testing.

In this chapter, we first propose refactoring actions to reduce the number of transformers
and thus the cost of using Madum testing. We define formal criteria to guide in generating
Madum test data and help for its automation. Our focus is only on Madum sequences as
for the other steps in Madum testing, traditional testing strategies and criteria can be used.
Finally, to help automate Madum testing, we formulate the problem of generating test data
for Madum as a search-based problem.
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6.1 Refactoring for Reducing Madum Testing Cost

Table 6.1 Impact of the reduction of the number of transformers (TRS) on the number of
test cases (TC).

Before After
refactoring refactoring

Class (program) Type TRS TCs TRS TCs
TokenFilter (Ant) CDSBP 5 263 2 27
PropPanel (ArgoUML) Blob 5 271 3 43
BooleanExpressionComplexityCheck

(Checkstyle) LPL 6 732 5 132
AxisState (JFreeChart) NAP 5 248 1 11
DynamicTimeSeriesCollection (JFreeChart) Blob 4 208 2 122

According to Madum testing described in 2.1.3, the number of transformers and the number
of constructors in each data slice can dramatically increase the number of test cases. Table
6.1 reports data about cases in which specific refactoring activities, discussed below, can be
used to reduce the number of transformers in the data slices of such classes. These classes are
from the programs used in the experiment of Chapter 4. The proposed refactoring activities
do not remove APs, i.e., they are complementary or sometimes in opposition with “tradi-
tional” refactorings that one often performs with the aim of increasing comprehensibility and
maintainability.

A typical situation that we found in most of the classes reported in Table 6.1 is related to
source code fragments that transform the same fields cloned in multiple methods. These
cloned statements contribute to increase the number of transformers per slice and conse-
quently the number of test cases. We reduce testing cost by performing an extract method
refactoring.

For example, in the class PropPanel of ArgoUML, we found a sequence of statements that
transforms the field listenerList and that is repeated in four methods with a slight variation.
These repeated sequences increase the number of transformers for the slice of listenerList field
and, consequently, the number of test cases required to test that class according to Madum
testing. We extract those statements and create a new method that is then called by the
old ones. With this refactoring action, the number of transformers for the field listenerList
becomes 3 instead of 5 and the number of test cases of the new class is 43 instead of 271.
This refactoring reduces the number of transformers of this class and then the number of test
cases required to test it according to Madum testing.

Another case concerns multiple methods having a very similar code structure and behavior
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while having a different name. This is possibly meant to make the source code easier to
understand. Those methods transform the same field(s). An example of this case is found
in the class AxisState of JFreeChart. In this class, we have four methods, namely cursorUp,
cursorDown, cursorLeft, and cursorRight that increment (cursorDown and cursorRight) or
decrement (cursorUp and cursorLeft) the field cursor by a given value passed as argument.
We can reduce the number of test cases by replacing the four methods by a new one, namely
moveCursor. Then, we replace the call of the old methods by the new one and adjust the
argument: a positive argument is passed instead of calling cursorDown or cursorRight and
a negative argument is passed instead of calling cursorUp and cursorLeft. This refactoring
helps to reduce the number of transformers from 5 to 1 and, consequently, the number of
test cases. However, this refactoring could negatively affect code understandability. Indeed,
the old methods had more appropriate and straightforward names than the new one. As an
alternative, it is possible to use the old methods as simple wrappers directly calling the new
method moveCursor. Thus, the old methods are still used. The code is actually refactored
into moveCursor and only moveCursor must be tested achieving thereby the double goal of
not affecting understandability while reducing the number of test cases. This example shows
that refactoring performed for the sake of reducing testing cost must be carefully chosen to
avoid decreasing other quality attributes, such as understandability.

In summary, the examples reported in Table 6.1 show that there are opportunities for refac-
toring that can reduce testing cost. All classes reported in our examples except the class
AxisState participate in APs and thus their test require a high number of test cases. We
suggest that APs refactoring should not only consider actions to improve cohesion, reduce
coupling, and in general address all maintainability issues. It should also consider specific
refactoring activities, as those described above, aimed at reducing the number of transformers
per data slice and thus the number of test cases. Such refactorings can be worthwhile also
for some classes that do not participate in APs and that, however, have a high number of
transformers, e.g., class AxisState of JFreeChart. The examples above show also that, when
applying refactoring actions to classes with the purpose of reducing testing costs, we must
be aware of the possible impact on other quality attributes and find the best trade-off, e.g.,
between testability and comprehensibility/maintainability.

6.2 Madum Sequences Coverage Criteria Test

To tackle the problem of sequences of methods to test within a class, Madum testing proposes
to test only sequences of transformers. We call these sequences of transformers thereafter
Madum sequences. The rational behind this strategy is that only transformers change the
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value of attributes and therefore the state of the object under test. Thus, only a call to a
transformer can put the object in a state that contradicts its axioms. The goal of focusing only
on the test of sequences of transformers is to reduce the total number of possible sequences
to test without undermining the effectiveness of the test. However, Madum testing does not
define the way to generate test data. It is the task of a tester to find meaningful inputs for
the different Madum sequences. To make the test of a Madum sequence meaningful, inputs
should trigger the execution of the test through the statements that modify the attribute of
the slice under testing. Testing a Madum sequence means then finding an execution path
that will traverse, in each transformer of a sequence, at least one statement that modifies
the attribute. We call these statements slice attribute transforming statements (SATS). In
the following, we describe the different coverage criteria that we propose to test Madum
sequences based on SATS.

6.2.1 Notation

Let first define some notations used to formalize the criteria that we propose.

We denote a slice by Sai
=< ai,Mai

> where ai is the attribute of the slice andMai
the set of

methods that access ai. Mai
in turn consists of four subsets: Cai

the set of constructors that
initialize ai, Rai

the set of reporters of ai, Tai
the set of transformers of ai, and Oai

the set of
other methods that access ai. A Madum sequence corresponds then to a sequel of methods in
Tai

appended to one constructor from Cai
. For Cai

= {c1, c2, . . . , cp} and Tai
= {t1, t2, ..., tn},

the set of Madum sequences for Sai
and denoted SEQai

is as follows:

SEQai
= {seq =< cj, tk, tf , . . . , tl > | j ∈ [[1; p]] and k, f, . . . , l ∈ [[1;n]]}.

Let The kth SATS be denoted by ∆c
ik in the constructor ci and by ∆t

ik in the transformer ti.

6.2.2 Simple Madum Sequence Coverage (SMSC)

The first Madum sequences coverage criterion that we propose is the simplest one and is
defined as follows:

Simple Madum Sequence Coverage (SMSC): the test requirements set TRSMSC contains at
least one sequence of slice attribute transforming statements for each Madum sequence of
each slice.

More formally,

∀X ∈ SEQai
: X =< cj, tk, tf , . . . , tl >,∃ tr ∈ TRSMSC | tr =< ∆c

je,∆t
kq,∆t

fs, . . . ,∆t
lv >.

The SMSC requires that at least one sequence of SATS be covered for each Madum sequence
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of each slice. The minimal number of sequences of SATS to cover if we assume that all
sequences are feasible is then the total number of Madum sequences.

6.2.3 Complete Madum Sequence Coverage (CMSC)

A transformer may contain more than one SATS and those SATS can be in different paths
of execution. As suggested by Bashir et Goel (2000), each of these paths should be exercised
during the test to cover all SATS. We thus define the second Madum Sequence coverage
criterion as follows:

Complete Madum Sequence Coverage (CMSC): The set of test requirements TRCMSC con-
tains all the sequences of SATS of each Madum sequence. CMSC is formalized as follows:

∀X ∈ SEQai
: X =< cj, tk, tf , . . . , tl >, ∀e ∈ [[1;Ne]], q ∈ [[1;Nq]], s ∈ [[1;Ns]], . . . , and v ∈

[[1;Nv]], ∃ tr ∈ TRSMSC | tr =< ∆c
je,∆t

kq,∆t
fs, . . . ,∆t

lv >,

with Ne, Nq, Ns, . . . , and Nv the number of SATS in cj, tk, tf , . . . , and tl.

The CMSC requires that all sequences of SATS be covered for each Madum sequence of each
slice.

When in a bloc, there are more than one statement that modify the same attribute, we take
into consideration only the first one as the other will be executed as soon as the first one is.

6.2.4 Intermediate Madum Sequence Coverage (IMSC)

Because CMSC can require a big set of test cases in presence of many transformers and
many SATS per transformer located in different execution paths, we propose an intermediate
coverage criterion defined as follows.

Intermediate Madum Sequence Coverage (IMSC): the test requirements set TRIMSC satisfies
SMSC and contains all SATS of all transformers of each slice at least once. More formally,

∀X ∈ SEQai
: X =< cj, tk, tf , . . . , tl >, TRIMSC ⇒ TRSMSC & ∀∆c|t

ki ,∃ tr ∈ TRIMSC |∆c|t
ki ∈

tr.

6.2.5 All Madum Paths Coverage (AMPC)

In the three proposed criteria, there is no constraints on the path between the different SATS;
therefore these criteria can then be categorized as node–node-oriented criteria (McMinn,
2004). The test requirement is then a sequence of nodes, each node representing a SATS
from different transformers. However, more than one subpath can traverse a given sequence
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of SATS and each of them can impact the output. We define another coverage criterion that
integrates this aspect.

All Madum Paths Coverage (AMPC): For each sequence of SATS, the test requirements set
TR contains all simple paths that traverse those SATS.

Thus, AMPC will require at least as many test cases as CMSC.

6.2.6 Subsumption Relations among Madum Sequences Coverage Criteria and
Infeasibility

From the definition of each coverage criterion, we can deduce the following subsumption
relations among Madum sequences coverage criteria:

(1) TRIMSC subsumes TRSMSC ;

(2) TRCMSC subsumes TRIMSC ;

(3) TRAMP C subsumes TRCMSC .

In summary, SMSC is the weakest coverage criterion whereas AMPC is the strongest one.
AMPC subsumes CMSC that in turn subsumes IMSC.

Some sequences of SATS or even some Madum sequences may not be feasible. As the problem
of detecting infeasible paths is undecidable, we will consider the set of test requirements of
each criterion as an upper bound of possible sequences fo SATS to test.

6.2.7 Example

This section illustrates the proposed coverage criteria through an example. Let Sa2 be a
slice under test. Sa2 contains one constructor (Ca2 = {c1}) and three transformers (Ta2 =
{t1, t2, t3}). The set of Madum sequences of Sa2 is then:

SEQa2 = {seq1 =< c1, t1, t2, t3 >, seq2 =< c1, t1, t3, t2 >, seq3 =< c1, t2, t1, t3 >, seq4 =<
c1, t2, t3, t1 >, seq5 =< c1, t3, t1, t2 >, seq6 =< c1, t3, t2, t1 >}

Let us further assume the following statements:
– c1 contains one SATS (∆c

11);
– t1 contains two SATS (∆t

11,∆t
12) in different paths of execution;

– t2 contains three SATS (∆t
21,∆t

22,∆t
23) in different paths of execution;

– t3 contains two SATS (∆t
31,∆t

32) in different paths of execution.
Figure 6.1 depicts a graph that represents all sequences of SATS for the first sequence of Sa2 :
seq1 =< c1, t1, t2, t3 >. Each node in the graph corresponds to a SATS and each path to a



87

Figure 6.1 Graph representing sequences of SATS in a Madum sequence.

sequence of SATS. This graph helps derive the different sets of test requirements for each
criterion for this specific sequence. Another sequence will lead to another graph.

SMSC requires that at least one SATS of each transformer including the constructor be
covered. Thus, each path of the graph satisfies this criterion. For example, the path
p1 =< ∆c

11,∆t
11,∆t

21,∆t
31 > fulfils the requirement as one SATS of the constructor and

each transformer is traversed by the path.

To satisfy IMSC, the set of tests should satisfy SMSC but also include all SATS of seq1.
Because of the second condition of this requirement, there is no single path that satisfies this
criterion. The minimum number of paths that fulfils the requirement is equal to the maximum
SATS contained in a transformer. In this example, the criterion will then require at least
three paths. An example of set of paths that fulfils the requirement is the set {p1, p2, p3} with
p1 =< ∆c

11,∆t
11,∆t

21,∆t
31 >, p2 =< ∆c

11,∆t
12,∆t

22,∆t
31 >, and p3 =< ∆c

11,∆t
11,∆t

23,∆t
32 >.

To satisfy CMSC, one should exert all paths of the graph as the criterion requires that all
sequences of SATS to be covered. Thus, the number of test cases for the CMSC is 12.

For the last criterion (AMPC), all possible paths of the code that traverse all paths of the
graph should be covered.
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The rest of this chapter will deal with the three first criteria; the last one will be considered
in future research.

6.3 Towards Madum Testing Automation

In this section, we take the first steps to automate Madum testing based on the coverage
criteria that we proposed in the previous section. Search-based techniques have been proved
to be efficient in test data generation (McMinn, 2004). Consequently, we formulate the
problem of generating Madum test data as a search-based problem by defining in the following
the two key elements of such a formulation: the representation of the problem and the fitness
function (Harman et al., 2012).

6.3.1 Problem Formulation

Testing Madum sequences consists in covering at least one sequence of SATS or at most all
sequences of SATS. The goal is then to find a set of parameters that triggers the execution
of the Madum sequence through the paths that traverse the SATS of those sequences.

In most of the search-based techniques proposed to generate OO unit test data, white box
testing in particular (Tonella, 2004; Fraser et Arcuri, 2013; Panichella et al., 2015), a candi-
date solution is either a test case (Tonella, 2004; Panichella et al., 2015) or a test suite (Fraser
et Arcuri, 2013). A test case is defined as a sequence of statements of a certain length and
a test suite as a set of test cases (Fraser et Arcuri, 2013). Things are slightly different when
generating test data for Madum sequences. Indeed, the sequence of methods to call on the
object under test is known. What is unknown is the arguments to invoke the constructor and
the transformers of the sequence. For the sake of simplicity, we consider a candidate solution
as an input vector of objects and–or primitives that map the parameters of the methods in
the sequence. The final test case will consist of statements required to create the different
objects, the calls to the constructor and the methods in the Madum sequence, and assert
statements to check the state of the object under test.

Let seqi be the Madum sequence to test and tri the sequence of SATS of seqi to cover.
seqi = {cj(Pcj

), tk(Ptk
), tf (Ptf

), . . . , tl(Ptl
)}, where Pm = (pm1 , pm2 , . . . , pmn) represents the

list of parameters of method m.

A configuration (potential solution) of the search problem is any vector

V = {Vcj
, Vtk

, Vtf
, . . . , Vtl

} where Vm = (vm1 , vm2 , . . . , vmn) is a list of arguments to invoke
method m.
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V will be a solution of the search if and only if the execution path of the sequence of
transformers seqi when using arguments in V contains the sequence of SATS tri.

6.3.2 Fitness Function

As mentioned in Section 6.2.5, the three first Madum sequences coverage criteria are node-
to-node oriented criteria. Fitness function for such criteria is a cumulative node-oriented
strategy (McMinn, 2004). Thus, as mentioned in (McMinn, 2004), the fitness value of a
given configuration to cover a sequence of SATS is a cumulative of fitness values of that
configuration to reach each SATS.

Let tri =< ∆c
je,∆t

kq,∆t
fs, . . . ,∆t

lv > be the target of the search.

The fitness function that evaluates the cost to reach the SATS ∆s in tri corresponds to the
node oriented fitness function defined as:

F (∆s) = level_distance(∆s) +Norm(branch_distance(∆s)) (6.1)

where level_distance(∆s) is the approach level of the node, branch_distance(∆s) its branch
distance, and Norm a normalization function that prevents the branch_distance value dom-
inating the level_distance value. F (∆s) = 0 indicates that the statement has been reached.

The approach level is a metric that describes the distance (number of branching nodes) be-
tween the branching node of interest and the branching node where the execution diverges.
The branch distance is a metric that indicates how close the predicate of the analyzed branch-
ing node is to being true (McMinn, 2004).

The fitness function that will guide the search towards the target tri is defined as:

F (Si) =
p∑

i=1
Norm(F (∆s)) (6.2)

where F (∆s) is the fitness value of the SATS ∆s and Norm a normalization function that
prevents the fitness value of one of the SATS dominating the others.

6.4 Conclusion

This chapter analyzed and proposed means to improve the usability of Madum testing. We
first showed on a set of classes how specific refactoring actions could possibly contribute to
reduce the cost of testing classes in general and classes involving APs in particular when
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using Madum testing. These kinds of refactoring are different, complementary, and in some
cases can pursue conflictual objectives with respect to traditional refactoring actions aimed
at improving comprehensibility and maintainability.

We also proposed formal coverage criteria to facilitate the use of Madum testing and guide
in generating test data.

Finally, we formulated the problem of generating test data for Madum as a search-based
problem in accordance with the proposed coverage criteria. This formulation is the first step
towards the automation of Madum testing.
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CHAPTER 7 CONCLUSION

This chapter summarizes the results and conclusions of our thesis. It also presents possible
future directions.

7.1 Contributions

Our modern society is highly computerized. Therefore, testing is paramount of importance.
Although expensive, software testing remains the primary means to ensure software depend-
ability. Unfortunately, the main features of object-oriented (OO) paradigm—one of the most
popular development paradigms—complicate testing activities. Our thesis statement was:
The cost of testing classes involving antipatterns is higher than that of other classes but it is
possible to offer techniques to reduce that cost during unit and integration testing. This thesis
is a contribution to the global effort of researchers over the two past decades to reduce OO
programs testing cost. The study of factors that could impair OO programs testing is one
of the main investigated research directions. Indeed, the knowledge of factors that impede
testing cost or its effectiveness could help to propose adequate solutions and approaches.
However, to the best of our knowledge, our study is the first study regarding the potential
negative impact of antipatterns on OO testing.

Antipatterns are defined as recurring and poor design or implementation choices (Brown
et al., 1998). Past and recent studies show that antipatterns negatively impact many software
quality attributes, such as maintenability (Deligiannis et al., 2003) and understandability
(Abbes et al., 2011). Other studies also report their low resilience to change and defect
(Olbrich et al., 2009; Khomh et al., 2012). We performed an empirical study to assess the
impact of antipatterns on the cost of unit testing of OO programs. Using DECOR (Moha
et al., 2010), we identified AP occurrences in four open-source java programs: Ant 1.8.3,
ArgoUML 0.20, Checkstyle 4.0, and JFreeChart 1.0.13. We quantified class testing cost
using the number of test cases required to test each class with Madum testing (Bashir et
Goel, 2000). The results showed that indeed antipatterns negatively impact class testing
cost: AP classes are in general more expensive to test than other classes. This impact
varies depending on the kind of APs: classes involving some kinds of APs, such as Blob,
AntiSingleton or ComplexClass, require a higher number of test cases whereas some other
APs, such as MethodChains or LazyClass, do not strongly contribute to the class testing cost.
In this empirical study, we also analysed the cost-effectiveness of prioritizing the test of AP
classes. The results showed that prioritizing the test of APs may be worthwhile. Although
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expensive, the test of APs may allow detecting most of the defects and early.

Then, we proposed MITER (Minimizing Integration Testing EffoRt), a new formalization
and approach to the class integration test order (CITO) problem. The CITO problem is one
of the major problems when integrating classes in OO programs. This problem concerns the
minimization of the cost related to the order in which classes should be integrated and tested.
This cost is usually measured in terms of violations of the server-before-client principle (i.e.,
stubs). Contrary to most of existing approaches to solve the CITO problem, MITER aims
to minimize SBC violations and maximize early defect detection. Indeed, as shown in our
first contribution, prioritizing defect-prone classes, such as AP classes, could increase early
defect detection. Thus, MITER proposes to test first classes having a high (estimated)
defect-proneness, such as AP classes.

MITER relies on experts or defect prediction tools to assign test priorities to classes. MITER
uses a memetic algorithm, i.e., a meta-heuristic optimization approach, to generate an in-
tegration test order promoting early defect detection while minimizing the number of SBC
violations. We conducted an empirical study to evaluate the ability of MITER to produce
balanced test orders between the two objectives. We used in this study multiple releases of
three Java programs: Ant, ArgoUML, and Xerces. We compared MITER orders against an
optimal order (upper bound), a random ordering (lower bound), and a Boolean classification
approach(Borner et Paech, 2009a). Results of the study report that: (i) MITER outperforms
random ordering, (ii) MITER can generate balanced test orders between SBC violations and
early defect detection, and (iii) the fine-grained class prioritization used by MITER is bet-
ter than a Boolean classification. MITER can then help prioritizing defect-prone classes in
general and AP classes in particular without a high extra cost regarding the SBC principle.
It can thus be useful to support testers in finding a trade-off between early defect detection
capability and the minimization of SBC violations.

As shown in our first contribution, AP classes are expensive to test but because they are more
defect-prone (Khomh et al., 2012), they must be thoroughly tested. In our third contribution,
we analyzed and improved the usability of Madum testing, a specific OO unit testing strategy
to help in the test of AP classes. Madum testing is one of the testing strategies proposed to
overcome the limitations of traditional unit testing strategies in the test of OO programs. The
main advantage of Madum testing compared to other OO unit testing strategies—state-based
testing and pre-and-post conditions—is that it does not require other specific documentation
to identify test cases; it relies only on the source code.

Madum testing is then a good candidate for automation which is one of the best ways to
reduce testing cost and increase testing reliability (Ammann et Offutt, 2008). Moreover, the
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analysis of the fundamentals of Madum testing shows that the number of methods of a class
that modify a given attribute (transformers) is a key factor in the cost of the test.

Therefore, we proposed specific refactoring actions to reduce this cost and thus reduce the
cost of testing classes in general and AP classes in particular. Indeed, most of the classes with
a high number of transformers involve APs. Applying these refactorings on a set of classes
showed that they reduce the number of transformers and thus testing cost. The proposed
refactoring are different, complementary, and in some circumstances, can pursue conflictual
objectives with respect to traditional refactoring actions aimed at improving understandabil-
ity and maintainability. To address the lack of specific coverage criteria for Madum testing,
we proposed formal coverage criteria to guide in generating test data and automating Madum
testing. Finally, we formulated the problem of generating test data for Madum testing as a
search-based problem according to the proposed coverage criteria.

The results of our contributions prove our thesis: we bring evidence that APs negatively
impact OO testing cost but because of their defect-proneness, focusing on their test could
be cost-effective. Using this evidence, we propose MITER to improve class integration
testing by providing class integration test orders that minimize SBC violations and
increase early defect detection capability. Because AP classes are expensive to test but
need to be tested, we proposed refactoring actions to reduce the cost of using Madum
testing, a specific OO unit testing. We also define formal coverage criteria to guide in
identifying test data for Madum testing. Finally, we proposed a search-based formulation
of the problem of automatically generating test data for Madum testing.

7.2 Future Work

We proved our thesis through the different contributions but we also opened opportunities for
future research directions. One of these opportunities is to study the effectiveness of Madum
testing. In this thesis, we take the first steps towards the automation of this testing strategy.
There is a need to finalize this automation and analyze to what extent Madum testing can
complement traditional testing strategies in the test of OO programs.

Another study in that direction concerns the effectiveness of Madum testing compared to
other OO unit testing strategies, such as state-based testing and pre-and-post conditions
testing. An experiment with subjects that will manually write test cases for the different
strategies can help address this question. The strategies can then be compared to each other
in terms of effectiveness but also in terms of the effort they require.

It will also be interesting to compare the different Madum testing coverage criteria proposed
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in the present dissertation in terms of efficiency.

Replicate our study using more Java programs as well programs developed in other languages
could help generalize our findings regarding the impact of APs on OO unit testing. Along
the same lines, using different OO unit testing strategies as well as traditional unit testing
strategies could also be interesting.

As shown by the refactoring we proposed, a high number of transformers can be a refactoring
opportunity to reduce the cost of using Madum testing. Another research direction is to
investigate the feasibility of automatic or semi-automatic approaches to perform these kinds
of refactoring and promote refactoring driven-testability. It will also be interesting to analyze
the impact of such refactoring on the cost of other OO unit testing strategies, such as state-
based testing. Indeed, transformers are the methods that can lead to a change of state.
Having less transformers can reduce the state chart and thus the cost of state-based testing.

The results of the experiment on the performance of MITER suggest that the quality of
the predictors could have an impact on the quality of orders generated by MITER. Future
work will verify this conjecture by evaluating the impact of the quality of defect predictors
on MITER’s performance. Implementing MITER model using multi-objectives optimization
techniques could also be an interesting future work. Such techniques will provide the set
of possible non-dominant orders: orders maximizing early defect detection and minimizing
SBC violations but also orders favoring more or less one of the objectives. Thus, testers could
choose in that set the order that meets their needs without having to perform multiple trials
or setting the parameters of the current formalization.
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APPENDIX A BankAccount SOURCE CODE

This Appendix presents the source code of the class BankAcoount used to illustrate Madum
testing stategy.

Listing A.1 BankAccount Class Source Code.
public class BankAccount{

private stat ic i n t e r e s tRa t e =0;

private long accountNumber ;
private f ina l St r ing name ;
private double balance ;

public BankAccount ( S t r ing aName){
this (aName , 0 ) ;

}

public BankAccount ( S t r ing aName , double i n i t i a l B a l a n c e ){
this . accountNumber=

AccountNumberGenerator . generateAccountNumber ( ) ;
this . name=aName ;
this . ba lance = i n i t i a l B a l a n c e ;

}

public double getBalance ( ) {
return this . ba lance ;

}

public St r ing getName ( ) {
return this . name ;

}

public long getAccountId ( ) {
return this . name ;
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}

public void pay In t e r e s t ( ) {
this . ba lance=this . ba lance ∗(1+ in t e r e s tRa t e ) ;

}

public boolean depos i t (double amount ){

boolean depo s i tSucc e s s=fa l se ;

i f ( amount >= 0){
depo s i tSucc e s s=true ;
this . ba lance += amount ;

} else {
System . out . p r i n t l n ( "Your␣ depo s i t ␣has␣ to ␣be␣>=␣0 " ) ;

}
return depo s i tSucc e s s ;

}

public boolean withdraw (double amount ){

boolean withdrawSuccess=fa l se ;

i f ( amount <= 0){
System . out . p r i n t l n ( "Withdrawal␣must␣be␣>␣0 " ) ;

} else i f ( amount > this . ba lance ){

System . out . p r i n t l n ( " I n s u f f i c i e n t ␣ funds ! " ) ;

} else {

this . balance−=amount ;
withdrawSuccess=true ;

}
return withdrawSuccess ;

}
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public void printAccount ( ){

St r ing d e s c r i p t i o n="Account : ␣ " this . accountNumber+" \n " ;
d e s c r i p t i o n=" Account␣Owner : ␣ " this . name+" \n " ;
d e s c r i p t i o n=" Account␣Balance : ␣ " this . ba lance " \n " ;
System . out . p r i n t l n ( d e s c r i p t i o n ) ;

}

public stat ic double ge t In t e r e s tRa t e ( ) {
return this . i n t e r e s tRa t e ;

}

public stat ic void changeIntere s tRate (double newRate ) {
BankAccount . i n t e r e s tRa t e = newRate ;

}

}
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APPENDIX B SOLVING THE CITO PROBLEM: EFFECTIVENESS OF
MA AND GA

Briand et al. (2002b) presented a genetic algorithm (GA) to solve the class integration test
order (CITO) problem. The results of the experiment show that the proposed genetic algo-
rithm performs at least as better as the existing graph-based approaches. The size of the
systems used in the experiment goes from 19 classes to 61 classes. The authors justify the
use of such small systems by the fact that the integration testing is a wise-step process and
thus, classes will be tested and integrated to form subsystems and then subsystems will be
at the next step integrated in more important subsystems and so on till the integration of
the whole system. Although, the justification is reasonable, it is surprising that on such
small systems the genetic algorithm fails to reach always the best known solutions. We then
decide to propose a memetic algorithm (MA), known to be more efficient than traditional
genetic algorithms (Hoos et Sttzle, 2004). We also proposed a genetic algorithm used in a
preliminary experiment to assess the efficiency of the proposed memetic algorithm and verify
a need of using a more sophisticated algorithm to solve the CITO problem. We choose to
propose another GA, an incremental GA instead of re-implementing the one proposed by
Briand et al. (2002b) because, (i) the incremental GA is simpler to parametrize without lost
of performance, and (ii) the GA proposed by Briand et al. (2002b) has been implemented
through a commercial framework and we could not be sure that our re-implementation will
faithfully represent theirs for a fair comparison. The details of the preliminary experiment
and the results are detailed below after a brief description of the proposed incremental GA.

Proposed Genetic Algorithm

The proposed genetic algorithm is obtained by removing the local search operator in the
memetic algorithm 5.3.2 and by adding a mutation operator. The mutation operator consists
of a maximum of muMvts moves performed randomly, the same move as in the local search
heuristic described above. Therefore, the genetic algorithm has one more parameter: the
intensity of the mutation muMvts.

Preliminary Experiment

Briand et al. (2002b) proposed a GA to solve the traditional CITO with the goal to mini-
mize the stubbing cost. They defined in their experiment four cost functions to express the
complexity of stubs to minimize: number of stubs (i.e., number of broken dependencies),
attribute coupling (AC), method coupling (MC), and weighted geometric average of both
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attribute and method coupling (AMC) Briand et al. (2002b,a). We apply our algorithms
using each of those cost functions on the five systems used in the experiment of Briand
et al. (2002b) and also in two larger systems namely Ant 1.6.2 and Xerces 2.6.2. Table B.1
describes the systems used in this preliminary experiment giving the number of classes, as-
sociations, aggregations, inheritances, and cycles in their class diagrams, and the total lines
of code (LOC) of the system. Table B.2 summarizes the parameters used for each algorithm
in the experiment and the number of runs (nbRuns) performed in the experiment. Those
parameters have been chosen after preliminary tests with different sets of parameters. We
compare the results obtained by the two algorithms, the memetic algorithm (MA) and the
genetic algorithm (IncGA) and refer also to the results obtained by the genetic algorithm
(GA) proposed in (Briand et al., 2002a) when it is possible. We summarize in Table B.3 the
results obtained only with the cost function number of stubs.

On the small systems used in (Briand et al., 2002b,a), MA and IncGA have the same per-
formance in terms of best solutions found: both always reach the best known solution for all
the five systems excepted IncGA once for Bcel 5.0. Results also show that MA and IncGA
perform at least as better as the GA on those small systems but outperform the latter in
many cases. Indeed, the GA proposed in (Briand et al., 2002a) failed to find the best known
solution for Bcel 5.0 and could not always find it for Ant and SPM. On the two larger sys-
tems, MA outperforms the IncGA that failed to reach the best known solution. Regarding
the execution time to reach the best solution, Table B.3 shows that the IncGA requires in
average much more time to reach the best solution than the MA. For example, MA requires
in average 174 milliseconds to reach the best solution for Bcel 5.0 while IncGA requires 2,723
milliseconds. Unfortunately, we do not have the execution time of the algorithm proposed by
Briand et al. (2002b) to make a fair comparison. However, the execution times required by
IncGA and MA on the small systems is very negligible. Those results confirm the reported
performance of MA over GA in the literature (Hoos et Sttzle, 2004; Moscato et al., 2004).
We observe similar trends with the other cost functions. We can then conclude that on small
systems, the genetic algorithm is sufficient to find near to optimal solutions but on larger
systems, a more powerful as the memetic algorithm is required. Our findings confirmed what
is known in the search-based community (Hoos et Sttzle, 2004; Moscato et al., 2004) as well
in the software search-based community (Arcuri et Yao, 2007; Fraser et al., 2015): i.e., MA
consistently performs better (i.e., smaller result variability and faster convergence to a lower
fitness value) with respect to GA.
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Table B.1 Detailed Information of Analyzed Systems.

Class
es

Assoc
iation

s
Aggr

egati
ons

Inher
itanc

es
Cycle

s
Loc

Systems in Briand et al. (2002a)
ATM: an automated teller machine simulation

21 48 15 4 30 1390
Ant: a built tool for Java applications

25 58 10 4 1178 1198
Dnsjava: an implementation of DNS in Java

61 234 12 30 16 6710
Bcel: a library to analyze, create, and manipulate (binary) Java class
45 244 4 46 416091 3033

SPM: a system for security zones and patrols monitoring
19 70 2 11 654 4093

Large Systems
Ant 1.6.2: a built tool for Java applications

623 2136 36 393 x 178035
Xerces 2.0.1: A Java XML parser

396 1058 3 220 x 120892

Table B.2 Parameters of Algorithms.

Small Systems Large Systems
Parameter IncGA MA IncGA MA
popSize 100 50 200 100
nbGens 250000 100 20000000 20000
muMvts 1 - 1 -
nbRuns 100 20

Table B.3 Performance of MA, IncGa, and GA, avg [min,max].

System MA IncGA GA
Best Cost Best Time(ms) Best Cost Best Time(ms) Best Cost Best Time(ms)

Small Systems in (Briand et al., 2002b,a)
Ant 0.0 10 [10, 10] 35 [33, 38] 10 [10, 10] 679 [270, 3000] 11 [10, 13] NA
Atm 0.0 7 [7, 7] 27 [23, 38] 7 [7, 7] 170 [107, 289] 7 [7, 7] NA
Bcel 5.0 60 [60, 60] 174 [162, 302] 60.03 [60, 63] 2723 [568, 15447] 65.53 [63, 70] NA
Dnsjava 1.2 6 [6, 6] 249 [231, 354] 6 [6, 6] 858 [556, 1683] 6 [6, 6] NA
Spm 0.0 16 [16, 16] 27 [23, 28] 16 [16, 16] 87 [58, 174] 16,76 [16, 20] NA

Large Systems
Ant 1.6.2 x x x x NA NA
Xerces x x x x NA NA
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