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RÉSUMÉ

Les problèmes de planification d’horaires du personnel consistent à sélectionner un ensemble
de quarts de travail en respectant certaines règles, et à assigner un certain nombre d’employés
à chaque quart de travail, de sorte à satisfaire la demande de personnel. Ces problèmes sont
généralement classés en trois catégories: planification des quarts de travail, planification des
jours de repos et planification des patrons de travail. La première catégorie a pour but
d’assigner les périodes de travail et de repos aux quarts de travail, et à sélectionner un en-
semble de ces quarts de travail pour satisfaire les besoins en personnel. En planification
des quarts de travail, l’horizon de planification est en général d’une journée, divisée en péri-
odes de longueurs égales. La deuxième catégorie vise à sélectionner les jours de repos de
chaque employé sur un horizon de planification d’au moins une semaine. Cette sélection est
généralement contrainte par les préférences des employés ou par des conventions collectives.
La dernière catégorie comprend les problèmes qui découlent de l’intégration des problèmes
de planification des quarts de travail et de planification des jours de repos. Dans la version
continue du problème de planification des patrons de travail, les quarts de travail peuvent
s’étendre sur deux jours. Par contre, dans la version discontinue les quarts de travail doivent
couvrir une seule journée.

Différentes extensions du problème de planification d’horaires du personnel apparaissent
lorsque des applications réelles sont considérées. Par exemple, dans les problèmes de planifica-
tion des quarts multi-activités (MASSP) ou planification des patrons de travail multi-activités
(MATSP), en plus de la définition des périodes de travail et de repos, des activités de travail
différentes doivent être attribuées aux quarts de travail. Dans un contexte de multi-activités,
les caractéristiques spécifiques liées aux règles de travail, aux conventions collectives, aux
compétences des employés et à leurs préférences définissent un ensemble de règles à respecter
pour construire les horaires des employés.

D’autre part, le MASSP et le MATSP peuvent être soit personnalisés soit anonymes. Dans
le premier cas, les employés ont des compétences et des préférences différentes, alors qu’elles
sont identiques dans le second. Le problème peut également être stochastique, dans ce cas
les besoins en employés (la demande) est incertaine. Dans cette thèse, nous aborderons trois
catégories de MATSP : 1) MATSP discontinu, personnalisé, avec demande déterministe; 2)
MATSP discontinu, anonyme avec demande déterministe; 3) MATSP discontinu, anonyme,
avec demande stochastique. Pour résoudre ces problèmes, nous proposons différentes tech-
niques de modélisation et de résolution qui sont principalement basées sur les méthodes de



v

décomposition et les langages formels.

Notre première contribution réside dans la conception de deux méthodes de type branch-
and-price (B&P) pour aborder l’intégration de deux problèmes : le MASSP personnalisé et
le problème de planification des patrons de travail discontinu. Chaque algorithme B&P repose
sur une formulation mathématique différente. La première formulation (formulation basée sur
les jours) est une extension naturelle du MASSP personnalisé, ou les colonnes correspondent
aux quarts de travail multi-activités, et les patrons de travail sont assemblés dans le problème
maitre en utilisant des contraintes supplémentaires. Dans la seconde formulation (formulation
basée sur les patrons de travail), le sous-problèmes consistent à construire les quarts de travail
multi-activités ainsi qu’à choisir les jours de repos. Par conséquent, dans cette formulation, les
colonnes correspondent aux patrons de travail multi-activités. Dans les deux formulations,
l’utilisation de grammaires nous permet de modéliser toutes les règles de travail pour la
composition des quarts de travail, et de déduire des structures de graphes spéciales permettant
de trouver les quarts de travail avec un coût réduit négatif.

Une comparaison expérimentale et théorique de la qualité des bornes obtenues par la re-
laxation linéaire de chacune des formulations est réalisée. Les résultats montrent que la
formulation basée sur les patrons de travail est meilleure (relativement aux bornes obtenues
par la relaxation linéaire) que la formulation basée sur les jours. De plus, nos expériences
montrent d’une part que les approches de modélisation proposées peuvent traiter une grande
variété de règles sur les quarts de travail et sur les patrons de travail, et d’autre part que
les méthodes implémentées peuvent résoudre efficacement des versions réalistes du problème.
Les approches proposées sont clairement pertinentes en pratique, cependant des problèmes
liés à la taille du modèle apparaissent lorsque le nombre d’activités et d’employés augmentent.

La seconde contribution est une approche qui combine la décomposition de Benders et la
génération de colonnes pour résoudre le problème intégrant le MASSP anonyme et la plani-
fication des patrons de travail discontinue. Afin de résoudre les problèmes de croissance des
modèles et de symétrie associés aux nombres d’activités et d’employés, une autre façon de
modéliser le MATSP est présentée. Les quarts de travail multi-activités sont implicitement
générés par un modèle de programmation en nombres entiers basé sur une grammaire, alors
que les patrons de travail sont explicitement composés via la génération de colonnes.

Comme les sous-problèmes de l’approche de Benders sont des MIP qui n’ont pas la propriété
d’intégralité, nous présentons une stratégie qui combine la génération de coupes de Benders
classiques avec des coupes de Benders entières afin de garantir la convergence de la méthode.
Les résultats expérimentaux montrent : 1) la capacité de notre approche à résoudre des cas
pratiques impliquant un grand nombre d’employés et d’activités de travail; 2) que l’approche
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combinant la décomposition de Benders et la génération de colonnes à de meilleures perfor-
mances que la méthode B&P pour le MATSP discontinu anonyme.

Notre dernière contribution présente une approche de programmation stochastique en deux
étapes pour résoudre le MATSP stochastique, discontinu, et anonyme. Les décisions de
la première étape correspondent à l’affectation des employés aux patrons de travail. Les
décisions de la deuxième étape (actions de recours) sont associés à la répartition des activités
de travail et des pauses dans les quarts de travail. Une heuristique de type multi-cut L-shaped
est présentée. Les expériences montrent que les performances de la méthode dépendent du
profil de la demande, et que l’utilisation du modèle stochastique permet de réduire les coûts,
en comparaison avec l’espérance de la solution moyenne.
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ABSTRACT

Personnel scheduling problems consist in constructing a set of feasible shift schedules and
assigning them to the company staff to satisfy a given demand for staff requirements. These
problems are typically classified into three main categories: shift scheduling, days-off schedul-
ing and tour scheduling. The first category deals with the specification of work and rest pe-
riods to assign to shifts, as well as the selection of a set of those shifts to satisfy the demand
for staff requirements. In shift scheduling, the planning horizon is usually one day divided
into time periods of equal length. The second category involves the selection of days-off over
a planning horizon of at least one week. Such selection is usually restricted by employee
preferences or workplace agreements. The last category includes problems that arise from
the integration of shift scheduling and days-off scheduling. The continuous version of the
tour scheduling problem appears when shifts are allowed to span from one day to another.
The discontinuous version arises when shifts span only one working day.

Different extensions of classical personnel scheduling problems appear when real applications
are considered. For instance, when more than one work activity has to be scheduled, the
multi-activity shift scheduling (MASSP) and the multi-activity tour scheduling (MATSP)
problems appear. In both extensions not only the specification of work and rest periods is
necessary, but also the assignment of work activities to the shifts. In a multi-activity context,
specific characteristics related to work rules, workplace agreements, and employee skills and
preferences define the rules to build the schedule of employees.

The MASSP and the MATSP can further be distinguished as personalized and anonymous
problems. In the former, employee skills and preferences are different. In the latter, em-
ployee skills and preferences are identical. Additionally, if employee requirements (demand)
is uncertain, the stochastic version of the problems appears. In this thesis we address three
categories of the MATSP: 1) the discontinuous MATSP when employees have different skills
and demand is deterministic; 2) the discontinuous MATSP when employees are identical and
demand is deterministic; 3) the discontinuous MATSP when employees are identical and de-
mand is stochastic. To address these problems we propose different modeling approaches and
solution techniques which are mainly based on decomposition methods and formal languages.

Our first contribution lies in the proposal of two branch-and-price (B&P) methods to ad-
dress the integration of two problems: the personalized MASSP and the discontinuous tour
scheduling problem. Each B&P algorithm is based on a different mathematical formulation.
The first formulation (daily-based formulation) arises as a natural extension of the person-
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alized MASSP, where columns correspond to multi-activity shifts and tours are assembled
into the master problem by means of extra constraints. The second formulation (tour-based
formulation) aims to include, in the subproblem level, the construction of multi-activity shifts
and the assembling of days-off. Therefore, in this formulation the set of columns correspond
to multi-activity tours. In both formulations, the use of grammars allows us to model all the
work rules for the composition of shifts and to derive specialized graph structures used to
find the shifts with negative reduced cost.

An experimental and theoretical comparison on the quality of the LP relaxation bounds
achieved by each formulation is made. The results show that the tour-based formulation is
strong in terms of its LP relaxation bound, when compared with the daily-based formulation.
Additionally, computational experiments suggest that the modeling approaches proposed can
handle a wide variety of rules over shifts and tours and that the solution methods implemented
efficiently solve realistic versions of the problem. However, while the practical relevance of
the approaches is clear, convergence and scalability issues arise when the number of work
activities and employees increases.

As a second contribution we present an approach that combines Benders decomposition and
column generation to solve the integration of the anonymous MASSP and the discontinuous
tour scheduling problem. The aim of the approach is to present an alternative way to model
the MATSP in order to solve the scalability and symmetry issues associated with the number
of work activities and employees. While multi-activity daily shifts are implicitly generated
with a grammar-based integer programming model, tour patterns are explicitly composed
via column generation.

Because Benders subproblems are MIP programs that do not possess the integrality prop-
erty, we present an alternative algorithmic strategy that combines the generation of classical
Benders cuts with integer Benders cuts to guarantee the convergence of the method. Exper-
imental results show: 1) the capability of our approach to solve practical instances involving
a large number of employees and work activities; 2) the combined Benders decomposition
and column generation approach outperforms a B&P method that solves the anonymous
discontinuous MATSP.

Our last contribution consists in the introduction of a two-stage stochastic programming
approach to solve the discontinuous stochastic MATSP for employees with identical skills.
The problem is formulated as a two-stage stochastic programming model. First-stage de-
cisions correspond to the assignment of employees to weekly tours. Second-stage decisions
(recourse actions) are related to the allocation of work activities and breaks to daily shifts.
A heuristic multi-cut L-shaped method is presented as a solution approach. Computational
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results show that the performance of the method depends on the demand profile used and
that the use of the stochastic model helps to prevent additional costs, when compared with
the expected-value problem solutions.
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CHAPTER 1 INTRODUCTION

Personnel scheduling problems consist in constructing a set of feasible shift schedules and
assigning them to the company staff to satisfy a given demand for employee requirements.
These problems arise in diverse organizations such as hospitals, airline companies, retail
stores, call centers and banks, where they have become an important task, due to the necessity
to achieve a better level of service, to reduce staff costs and to increase employee satisfaction.

Realistic applications of personnel scheduling problems for companies that operate outside
the standard 8-hour shift, 5-days per week schedule and that face wide fluctuations on de-
mand for services become challenging due to several factors including union contracts, work
rules for the composition of the schedules, multiple work activities, employee preferences,
employee skills, stochastic nature of the demand, among others. When those factors are
considered simultaneously, the personnel scheduling becomes a complex large-scale problem
which requires a huge investment of time to solve. If the objective is to construct an optimal
or near-optimal schedule in a reasonable amount of time, it is almost impossible to do it by
hand, making necessary the use of mathematical models, specialized algorithms and different
solution techniques.

The structure of this chapter is as follows. Section 1.1 introduces the basic elements and
definitions of the problem addressed in the thesis. The problem statement is presented in
Section 1.2. Section 1.3 defines the objectives and contribution of the thesis. Finally, Section
1.4 outlines the chapters of the thesis.

1.1 Definitions and Basic Concepts

Some concepts and definitions will be introduced before stating the problem to be addressed
in the thesis. First, Section 1.1.1 gives an introduction on the different stages (problems) faced
in personnel scheduling. Then, Section 1.1.2 describes the specific characteristics regarding
the type of problem addressed in the thesis. Finally, Section 1.1.3 gives an introduction on
the use of grammars for multi-activity shift scheduling.

1.1.1 Categorization of Personnel Scheduling Problems

According to Baker [8], three main categories of problems can be distinguished in personnel
scheduling:
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• Shift scheduling problem (SSP): This category deals with the specification of work and
rest time periods to assign to shifts, as well as with the selection of a set of those shifts
to satisfy the demand for employee requirements. In the SSP, the planning horizon is
usually one day divided into time periods of equal length.

• Days-off scheduling: This category involves the selection of employee working days and
days-off over a planning horizon of at least one week.

• Tour scheduling problem: This category arises as an integration of days-off scheduling
and shift scheduling. The aim of the tour scheduling problem is to specify the time
periods of the day and the days of the week in which employees must work.

When more than one work activity has to be scheduled, the SSP and the tour scheduling
problem become the Multi-activity shift scheduling problem (MASSP) and the Multi-activity
tour scheduling problem (MATSP), respectively. In these problems not only the specification
of working days, work time and rest time is necessary, but also the allocation of work activities
to the shifts.

1.1.2 Specific Characteristics in Personnel Sheduling Problems

• Continuity and discontinuity: In a tour scheduling problem, continuity is present when
shifts are allowed to span from one day to another. On the contrary, when shifts must
cover exactly one working day, the discontinuous version of the problem appears.

• Different and identical skills: In a multi-activity environment, when employees have
different qualifications (skills), preferences and availabilities, the personalized version
of the MASSP and the MATSP appears. In the personalized problem, the shifts and
tours must be designed according to the skills of each employee. On the contrary, when
employees have identical skills the anonymous versions of the MASSP and the MATSP
arise. In the anonymous problem, the set of feasible shifts and tours are the same for
all the employees.

1.1.3 Grammars for Multi-activity Shift Scheduling

In shift scheduling, a context-free grammar (CFG) can be defined as a finite set of work
rules that are used to generate valid sequences of work for a given day d ∈ D in a multi-day
planning horizon. A CFG consists of a tuple Gd = 〈Σd, Nd, Sd, Pd〉, where:
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• Σd represents an alphabet of characters called the terminal symbols for day d, which
consists of work activities, breaks, lunch breaks, and rest. Terminal symbols will be
represented by lower case letters.

• Nd is a finite set of non-terminal symbols for day d. Non-terminal symbols will be
represented by upper case letters.

• Sd ∈ Nd is the starting symbol for day d.

• Pd is a set of productions for day d, represented as A → α, where A ∈ Nd is a non-
terminal symbol and α is a sequence of terminal and non-terminal symbols. The work
rules used to generate shifts are represented by the set of productions. The productions
of a grammar can be used to generate new symbol sequences until only terminal symbols
are part of the sequence.

A parse tree is a tree where each inner-node is labeled with a non-terminal symbol Nd and
each leaf is labeled with a terminal symbol Σd. A grammar recognizes a sequence if and only
if there exists a parse tree where the leaves, when listed from left to right, reproduce the
sequence.

A DAG Γd is a directed acyclic graph that embeds all parse trees associated with words,
including rest and work stretches, for day d of a given length n recognized by a grammar.
The DAG Γd has an and/or structure where the and-nodes represent productions (work rules)
from Pd and the or-nodes represent non-terminals from Nd and letters from Σd. An and-node
is true if all of its children are true. An or-node is true if one of its children is true. The root
node is true if the grammar accepts the sequence encoded by the leaves. In Γd, Oπ

dil denotes
the or-node associated with π ∈ Nd ∪ Σd, i.e., with non-terminals from Nd or letters from
Σd, that generates a subsequence at position i of length l for day d. Note that if π ∈ Σd,
the node is a leaf and l is equal to one. On the contrary, if π ∈ Nd, the node represents a
non-terminal symbol and l > 1. AΠ,k

dil is the kth and-node representing production Π ∈ Pd
that generates a subsequence from position i of length l at day d. There are as many AΠ,k

dil

nodes as there are ways of using Pd to generate a sequence of length l from position i. In
Γd, the root node is described by OS

d1n and its children by AΠ,k
d1n ∈ ch(OS

d1n). The children of
or-node Oπ

dil are represented by ch(Oπ
dil) and the parents by par(Oπ

dil). Similarly, the children
of and-node AΠ,k

dil are represented by ch(AΠ,k
dil ) and the parents by par(AΠ,k

dil ). The sets of
or-nodes, and-nodes and leaves in Γd are denoted by Od, Ad and Ld, respectively. The DAG
Γd is built by a procedure proposed in Quimper and Walsh [71].

Grammar G1 and Figure 1.1 present an example on the use of context-free grammars for
multi-activity shift scheduling. Two activities, w1 and w2, must be scheduled, shifts have
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a length of 4 time periods and should contain exactly one break, b, of one time period
that can be placed anywhere during the shift except at the first or the last time period.
For clarity, we do not include the subscript of the day in the notation of grammar G1

and nodes from Γ. The grammar that defines the set of feasible shifts on this example follows:

G1 = (Σ = (w1, w2, b), N = (S,X,W,B), P, S),
where productions P are: S → XW , X → WB, W → WW |w1|w2, B → b,
and symbol | specifies the choice of production.

In the previous example, productions W → w1, W → w2 and B → b generate the terminal
symbols associated with working on activity 1, working on activity 2, or having a break,
respectively. Production W → WW generates two non-terminal symbols, W , meaning that
the shift will include a working subsequence. Production X → WB means that the shift will
include working time and then it will be followed by a break. Finally, production S → XW

generates a sequence of length four (the daily shift), which includes working time followed
by a break to finish with more working time.

Figure 1.1 represents the DAG Γ associated with G1. Observe that there are 16 parse trees
(different shifts) embedded in Γ. As an illustration, we present a dotted-parse tree that
generates shift w1bw1w2, and a dashed-line parse tree that generates shift w2w2bw1.
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Figure 1.1 DAG Γ on words of length four and two work activities.

Note that the children of the root node ({AS→XW,114 , AS→XW,214 } ∈ ch(OS
1n)) can be seen as

shift “shells” because they do not consider the allocation of specific work activities to the
shifts, only the shift start time and its length. Hence, and-nodes AΠ,k

d1n are characterized by
their start time tΠ,kd1n, working length wΠ,k

d1n, and length including breaks lΠ,kd1n. In Γ1 and-node
AS→XW,114 generates shift wbww, while and-node AS→XW,214 generates shift wwbw. Both shifts
have a working length of three time periods, a total length of four time periods and both
start at time period one (i = 1).

The productions P of a grammar G can be enriched to include more constraints in the
composition of words and thus the construction of the associated DAG. These constraints
normally appear when there are restrictions on the minimum and maximum length of a
work activity and/or break inside of the shift, or when work activities and breaks must be
allocated within a time window. The notation A[tws,twe]

[lmin,lmax]
c→ α indicates that the subsequence

generated from production A should be spanned within the positions [tws, twe], has a length
between [lmin, lmax] and if it is used, has a cost of c.

The reader is referred to Sellmann [80] and Côté et al. [30] for a more extensive review on
context-free grammars.
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1.2 Problem Statement

This section presents the description of the elements that characterize the personnel schedul-
ing problems addressed in this thesis. Those elements include the definition of work rules for
the composition of daily shifts and tours, a discussion of the cost factors that might affect
the objective function and a description of the nature of employee requirements.

1.2.1 Work Rules for Daily Shift Definition

• Shift start times: Under the presence of shift start times, daily shifts can only begin in
a subset of time periods (start time band). This rule might be due to the existence of
work regulations or because the aim is to try to simplify the complexity of the problem.
On the other hand, when total flexibility is allowed, shifts can begin at any time of the
day allowing enough time to complete their duration.

• Number of work activities and breaks allocated per shift: These rules are present when
there is a minimum and a maximum number of activities and breaks that can be
scheduled per shift. Generally, the number of breaks that must be scheduled into the
shift depends on their type (meal break, rest break or breaks for the transition between
work activities).

• Shift, break and work activity length: In the case of shift length, these rules are present
when the length of the shift must fall between a minimum and a maximum number
of time periods. For instance, when overtime is not allowed employees must work a
maximum number of daily hours depending on workplace agreements. Similarly, the
rules related to break length restrict the number of time periods allocated for breaks
into the shift. The break length is typically associated with its type (i.e., a lunch
break is normally longer than a rest break). Finally, when multiple work activities are
considered, each activity has its own rules related to their length into the shift. In this
case, the activity length should fall between a minimum and a maximum number of
time periods into the shift.

• Position of breaks: These rules include the conditions to allocate breaks into the shifts.
As an illustration, shifts should not start or end with a rest break, and meal breaks
should not be scheduled before a minimum number of consecutive time periods.

• Transition between activities: These rules are useful to specify the allowed and forbidden
work activity changes into the shifts, as well as the conditions between those changes.
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For example, if there is a change from activity A to activity B, there must be a break
of one time period between the two activities.

1.2.2 Work Rules for Tour Definition

• Tour length: In the same way as for the shift length, these rules are included in the
problem when the length of the tour should fall between a minimum and a maximum
number of time periods. The tour length is typically restricted by workplace agreements
and employee regulations.

• Rest time between shift changes: These rules specify the number of rest time periods
that must be allocated between consecutive shifts. Normally, the length of the rest
time ranges between a minimum and a maximum number of time periods.

• Days-off : The rules for the allocation of days-off specify the required number of rest
days over a week and the consecutiveness of those days. For instance, an employee
must have, at each week, at least two days-off in a row.

• Early morning and night shifts: These rules are present when workplace agreements
and labor unions restrict the number of shifts that cover early morning and night hours.

1.2.3 Cost Factors in the Objective Function

• Total cost of the schedule: When each work schedule has an associated cost, the ob-
jective of the personnel scheduling problem might be to select a set of minimum-cost
schedules such as a given demand for employee requirements is guaranteed.

• Total number of employees required: In an anonymous context, the objective of the
personnel scheduling problem might be to minimize the total number of employees
required, as long as the demand for employee requirements is met.

• Penalty for undercovering and overcovering of demand: Undercovering occurs when
the number of employees scheduled at a given time period is less than the required
number of employees at that time period. On the contrary, overcovering occurs when
the number of employees scheduled at a given time period is larger than the required
number of employees at that time period. In personnel scheduling problems, a penalty
cost might be included in the objective function when undercovering and overcovering
take place in the schedule.
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• Penalty for transitions between work activities: In a multi-activity context, a penalty
might be added to the cost of the schedule when transitions between work activities
occur into the shifts.

1.2.4 Nature of Demand

• Deterministic and stochastic demand: Deterministic demand occurs when the number
of employees required at each time period of the planning horizon is fully known at
the time of planning. On the contrary, employee requirements are uncertain when the
quantity of employees required at each time period is a random variable.

1.3 Research Objectives

The primary objective of this thesis is to investigate the integration of the discontinuous
tour scheduling problem and the MASSP from a mathematical programming point of view.
In order to do that, a number of hybrid mathematical optimization models and specialized
solution methods will be developed and tested through extensive computational experiments
for large-scale instances. The secondary objective of the thesis is to propose an efficient
solution method to solve the integrated problem when employee requirements are uncertain.

The objective is to include as much flexibility as possible in the definition of the problem.
Such flexibility will be considered in the daily shift composition, in the tour construction, in
the objective function and in the nature of the demand. In the objective function we will
include several cost components as the cost of undercovering and overcovering of demand,
the cost for the transition between activities and the cost of allocation of work activities
to the employees. Stochasticity will be included considering the probability distribution of
the employee requirements. Regarding the daily shift construction, we will consider flexible
start times, flexible activity and break allocation and flexible activity, break and shift lengths.
Finally, for tour construction we will consider flexible assignment of days-off to the employees,
as well as the work rules to guarantee the feasibility of tours. Those rules include the
constraints for the tour length and for the minimum rest time between consecutive shifts.

1.4 Thesis Outline

The remain of the thesis is divided into seven chapters. Chapter 2 presents the literature
review on shift scheduling and tour scheduling problems, as well as the current work on multi-
activity shift scheduling and stochastic personnel scheduling problems. Chapter 3 introduces
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the general organization of the document. Chapters 4 - 6 present the main body of the
thesis composed by three articles submitted to peer review scientific journals. Specifically,
Chapter 4 describes a new approach to solve the personalized multi-activity tour scheduling
problem. Chapter 5 presents an efficient approach that allows to solve practical instances for
the anonymous discontinuous multi-activity tour scheduling problem. Chapter 6 addresses a
variant of the anonymous discontinuous multi-activity tour scheduling problem when demand
for services is uncertain. A general discussion of the work developed in the thesis in connec-
tion with the gaps found in the literature is presented in Chapter 7. Chapter 8 concludes
the thesis with an analysis of the results obtained and with a discussion on the limits and
recommendations regarding the work presented.
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CHAPTER 2 LITERATURE REVIEW

This chapter presents the literature review on the models and methods to solve the SSP,
the tour scheduling problem and the MASSP. Some key references on personnel scheduling
problems under stochastic demand are also presented.

2.1 Shift Scheduling

The SSP was first introduced by Edie [41] in the context of toll booth operators. Although
the author discusses the constraints related to the scheduling of employees, no mathematical
model was presented. Later, Dantzig [34] proposes the first integer programming model to
solve the SSP. The model is based on a set covering formulation where Ω and I represent the
sets of feasible shifts and time periods, respectively. Parameter δij takes the value of 1 if time
period i is a working period in shift j, and assumes value 0 otherwise. The labor requirements
at time period i and the labor cost of shift j are denoted by di and cj, respectively. Finally,
variable xj represents the number of employees assigned to shift j. The set covering model
for the SSP, denoted as (P1), is as follows:

(P1) min
∑
j ∈Ω

cjxj (2.1)

∑
j ∈Ω

δijxj ≥ di, ∀ i ∈ I, (2.2)

xj ≥ 0 and integer, ∀ j ∈ Ω. (2.3)

The objective of model (P1), (2.1), is to minimize the total labor cost. Constraints (2.2)
ensure that demand per time period i are met. Finally, constraints (2.3) define the non-
negativity and integrality of the decision variables xj.

In model (P1), it is assumed that the set of feasible shifts are previously enumerated and
that there is a different variable for each shift, even if their start and end times are the
same (explicit model). In (P1), the incorporation of flexibility (e.g., use of flexible break
assignments, different shift lengths or multiple shift start times) may increase the number of
variables required, making the complete enumeration of shifts and the solution of the problem
intractable. To circumvent this problem, Moondra [60] proposes a method to implicitly repre-
sent shifts. The model allows to reduce the number of variables, while considering flexibility
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related to multiple shift lengths and start times. Later, Bechtold and Jacobs [12] present an
implicit formulation (P2) that considers break flexibility in a SSP. In (P2), shifts are grouped
into shift types according to their start time, length and break window. The computational
experiments show that model (P2) has several advantages in terms of computational time
and memory requirements when compared with model (P1). The equivalence between (P1)
and (P2) was subsequently shown in Bechtold and Jacobs [13].

The formulation of the implicit model (P2) is as follows:

(P2) min
∑
j ∈Ω

cjxj (2.4)

∑
j ∈Ω

δijxj −
∑
k∈K

ρikbk ≥ di, ∀ i ∈ I, (2.5)

∑
j ∈Ω

xj −
∑
k∈K

bk = 0, (2.6)

∑
ks≤k′≤k

bk′ −
∑

j ∈Ω(ks,k)
xj ≥ 0, ∀ k ∈ Ke\{ke}, (2.7)

∑
k≤k′≤ke

bk′ −
∑

j ∈Ω(k,ke)
xj ≥ 0, ∀ k ∈ Ks\{ks}, (2.8)

xj ≥ 0 and integer, ∀ j ∈ Ω, (2.9)

bk ≥ 0 and integer, ∀ k ∈ K. (2.10)

Where Ω, I and K are the sets of shift types, time periods and break types, respectively.
Pj represents the break window of shift type j, j ∈ Ω(d, f) is the set of all shifts types such
that their corresponding break windows Pj are completely contained in [d, f ], and Ks, Ke are
subsets of K.

Ks =
⋃
j∈Ω
{min Pj},min Pj = min{k|k ∈ Pj}

Ke =
⋃
j∈Ω
{max Pj},max Pj = max{k|k ∈ Pj}

Parameter δij takes the value of 1 if time period i is covered by shift j, regardless if it is
a working period or a break period, and assumes value 0 otherwise. Parameter ρik takes
the value of 1 if break k is allocated in time period i, and assumes value 0 otherwise. The
labor requirements at time period i and the labor cost of shift j are denoted by di and cj,
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respectively. Finally, variables xj and bk represent the number of employees assigned to shift
j and break k, respectively.

Model (P2) assumes that every employee receives exactly one break and that the duration
of breaks is identical for all shifts. The model is also limited to the discontinuous case and
extraordinary overlap (EO) does not exist. EO occurs when there exist two shifts such
that the break window for one shift begins strictly earlier and ends strictly later than the
break window for the other shift. The objective of the model (P2), (2.4), is to minimize the
total labor cost. Constraints (2.5) ensure that labor requirements per time period are met.
Constraint (2.6) guarantees that every employee is assigned to exactly one break. Constraints
(2.7)-(2.8) are the forward and backward constraints, respectively, and they ensure that the
implicit shifts from (P2) are equivalent to the explicit shifts from formulation (P1). Finally,
constraints (2.9)-(2.10) set the non-negativity and integrality of variables xj and bk.

Thompson [81] combines the works of Moondra [60] and Bechtold and Jacobs [12] to implicitly
model meal breaks, but also to schedule rest breaks and allow the use of overtime. Aykin
[5] presents an extension of model (2.4)-(2.10) to address the SSP with multiple rests, meal
breaks and break windows. The model introduces a new set of integer variables that denote
the number of employees assigned to a shift and starting their breaks in different time periods.
Computational results show that including break flexibility helps to reduce the workforce
requirements. More recently, Aykin [6] compares his previous work with an extension of
model (P2). After running several computational experiments including different demand
patterns, cyclical and acyclical versions of the problem and different break windows, the
author shows that the percentage of problems solved to optimally with the extension of (P2)
is substantially higher than those solved with the original formulation (P2).

Addou and Soumis [1] present an approach to implicitly model the SSP without the hy-
pothesis of no extraordinary overlap. Although the model includes a minimal set of extra
constraints, computational results show that adding those constraints does not cause any
significant increase in the solution times of the model, when compared with (P2).

Rekik et al. [74] extend previous works on implicit modeling of break placement by propos-
ing two implicit models that match shifts with admissible breaks. The authors show that a
general reformulation of the forward and backward constraints helps to reduce the density
of the constraint matrix without increasing the number of constraints, when compared to
the classic forward and backward formulation. Computational experiments show that in-
cluding multiple breaks and work stretch durations, considerably reduces the workforce size
when compared with other formulations. In their following work, Rekik et al. [73] extend
the ideas presented in Rekik et al. [74] to consider a multi-day planning horizon. Two solu-
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tion approaches are presented: a local branching strategy and a time windowing approach.
Computational experiments show that although the local branching approach yields better
solutions on small instances, the windowing approach is more likely to find good feasible
solutions when more difficult instances are solved.

Because the incorporation of flexibility in the composition of shifts might cause a considerable
increase in the number of variables, column generation (CG) has been recently proposed as
an alternative to solve complex SSP. In this method, a reduced set of shifts (Ω̃ ⊆ Ω) is
introduced. Additionally, two different problems are defined: a restricted master problem
and a pricing subproblem. The restricted master problem is typically the linear relaxation of
problem (P1) over the reduce set of shifts j ∈ Ω̃. The pricing subproblem is responsible for
the generation of new columns (shifts). The formulation of the restricted master problem,
denoted as (RMP), is as follows:

(RMP ) min
∑
j ∈ Ω̃

cjxj (2.11)

∑
j ∈ Ω̃

δijxj ≥ di, ∀ i ∈ I, (2.12)

xj ≥ 0, ∀ j ∈ Ω̃. (2.13)

Given a primal x and a dual π solution of (RMP ), the reduced cost of any column δj is
given by:

c̄j = cj − π · δj (2.14)

The pricing subproblem is in charge of finding the column with the least reduced cost. If
c̄j is negative the new column deserves to enter into the RMP. If not, the solution x to the
RMP optimally solves the linear relaxation of (P1).

Two strategies can be adopted in order to reach integrality in the problem. The first strategy
is a heuristic approach where model (2.11)-(2.13) is solved by forcing the integrality con-
straints on x variables. The integer solution may not be optimal because only a reduced set
of shifts (Ω̃ ⊆ Ω) has been considered. On the other hand, if the objective is to obtain an
exact integer solution to the original problem (P1), the CG procedure should be embedded
into a branch-and-price (B&P) framework. In that vein, Mehrotra et al. [59] work with B&P
and exploit the advantages of the set covering formulation to solve the SSP with multiple
rest breaks, one meal break, and break windows. The authors incorporate upper and lower
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bounds on the number of employees needed at each time period and include restrictions
on number of employees who can be on a break at any time period. Specialized branching
rules are developed to demonstrate that the B&P method is not only superior in terms of
computation effort, but also very competitive with alternative methods for the SSP.

Recently, constraint programming (CP) is presented as a new alternative for modeling the
SSP where work rules involve non trivial relationships between variables. As an illustration,
Pesant [66] takes advantage of regular languages to introduce a new global constraint (regular-
constraint) that represents substructures commonly found in the SSP. In the approach, the
constraint is defined over a deterministic finite automaton (DFA), which helps to recognize
if the sequence of values taken by the variables belongs to the regular language.

In order to implicitly express a large set of rules and represent all possible patterns for
an employee timetabling problem, Côté et al. [29] develop a different version of the regular-
constraint by using a 0-1 mixed integer programming model. The approach is tested by using
work rules from a real-world timetabling problem. A significant decrease in computational
time is found when the model is compared with the classical mixed integer programming
(MIP) formulation for the given problem.

The reader is referred to Ernst et al. [43, 44] and Van den Bergh et al. [82] for a comprehensive
review and classification of more than 1000 papers about personnel scheduling and rostering.

2.2 Tour Scheduling

Since the introduction of Dantzig’s model [34] for the SSP, a large number of research have
been conducted in order to consider more realistic and complex versions of the problem.
One example of such extensions is the work of Morris and Showalter [61] who, based on
Dantzig’s set covering model, present the first integer programming formulation to solve
the tour scheduling problem over a one-week planning horizon. In their work, the authors
combine linear programming (LP) and heuristic methods to solve the tour scheduling problem
with a two-phase solution method. In the first phase, daily schedules are generated and sent
to the second phase, where weekly tours are composed.

Taking advantage of the discontinuity of the problem, Brusco and Johns [23] propose a
model based on a set covering formulation to solve the tour scheduling problem for full-
time and part-time employees. A sequential integer programming heuristic is developed in
order to solve several instances with different demand characteristics related to the mean and
smoothness. Computational results show that the model is able to find a higher percentage
of optimal solutions than other heuristic algorithms reported in the literature.
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Bard et al. [9] work with a pure integer programming (IP) model to solve the continuous
tour scheduling model for full-time and part-time postal service employees over a one-week
planning horizon. The model is divided into three components. The first component involves
shift scheduling, the second component includes the specification of days-off and the third
component allocates lunch breaks to the shifts. Real-world instances including several scenar-
ios with different allocation of days-off, different start times and changes in the ratio between
full-time and part-time employees are solved as part of the computational experiments.

Alfares [3] proposes an exact algorithm that uses LP and primal-dual relations to minimize
one of two criterias: the total number of employees or the total staffing cost. To assure
integer solutions efficiently, a set of lower bounds on the workforce size are introduced as
additional constraints in the model. Although model flexibility is introduced in terms of
days-off, weekly patterns are previously enumerated.

Trying to introduce flexibility without increasing dramatically the size of the problem, Bailey
[7] was the first to present a formulation to implicitly model the start time flexibility in a tour
scheduling problem. A construction heuristic is used to assign shifts under a limited staff
size constraint while a rounding heuristic is used to achieve integrality in variables. Although
the model requires few variables when compared to the set covering formulation, only 8-hour
shifts are allowed and no breaks are considered.

Based on the work presented in Bechtold and Jacobs [12], Jarrah et al. [50] propose an
implicit model to solve the discontinuous tour scheduling problem. The method starts with
an IP formulation to introduce a set of aggregate variables and related cuts. When variables
are aggregated, the problem decomposes into seven SSP. A transportation model and a post-
processor are used to assign breaks to shifts and shifts to tours, respectively. The method is
tested on a real-world problem with several scenarios including flexibility in the start times
and break allocation.

Jacobs and Brusco [49] present a compact implicit model that considers the suggestions of
Jarrah et al. [50] about start time bands. In order to demonstrate the importance of band-
width flexibility, the work is tested on a real-world problem in which toll both operators
are scheduled. The results show a significant reduction in the required workforce size when
compared with a method where the start times are fixed.

Attempting to develop more realistic models, Brusco and Jacobs [20] incorporate both start
time and meal break flexibility in an IP model to solve the continuous tour scheduling prob-
lem. Computational results on a real-world problem show that the effect of the scheduling
policies in the optimal workforce size can vary significantly depending on the level of other
policies. In a recent work, Brusco and Jacobs [21] develop a large experimental study to
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prove that only a small subset of start times is needed to find the optimal workforce size in
tour scheduling problems. The model used for the study is based on an implicit formulation
over a one-week planning horizon where breaks are not considered.

To solve the tour scheduling problem in a call center, Çezik et al. [26] propose a model with
two components: a daily shift generator and a days-off generator. In the former component,
seven daily shift schedules are generated through implicit modeling. In the latter component,
the weekly requirements are met via network flows. The model is able to solve the discon-
tinuous version of a tour scheduling problem when the start times of any two consecutive
shifts do not differ by more than a specified bound. Computational experiments show that
high-quality integer solutions are found when a heuristic branch-and-bound (B&B) is used
(the values of most of the variables are fixed before starting with enumeration).

CG and decomposition techniques have also been used to solve tour scheduling problems.
While CG is designed to solve problems in which there is a large number of variables, Benders
decomposition (BD) takes advantage of special block structures to decompose the problem
into smaller ones, easier to solve. Consider the following problem:

(P3) min cTx + fTy (2.15)

Ax + By = b, (2.16)

x ∈ Rn1
+ ,y ∈ Y ⊆ Rn2

+ . (2.17)

Where c ∈ Rn1, f ∈ Rn2, b ∈ Rm1, Y is a polyhedron, A ∈ Rn1xm1 and B ∈ Rn2xm1.
Suppose that y variables are complicating variables, in the sense that the problem becomes
significantly easier to solve if y variables are fixed. BD partitions problem (P3) into two
problems: 1) a Benders master problem and 2) a Benders subproblem. The Benders master
problem includes the complicating y variables, while the Benders subproblem contains the x
variables. Observe that problem (2.15)-(2.17) can be written in terms of the y variables as
follows:

min fTy +Q(y) (2.18)

y ∈ Y. (2.19)

Where Q(y) is defined to be the optimal value of:
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Q(y) = min cTx (2.20)

Ax = b−By, (2.21)

x ∈ Rn1
+ . (2.22)

Define Π = {π ∈ Rm1|ATπ ≤ c} and let Λ be the sets of extreme points associated with
Π and let Φ define the set of extreme rays of cone C = {π ∈ Rm1|ATπ ≤ 0}. Applying an
outer linearization to function Q(y) it is possible to reformulate the original problem as the
following equivalent Benders master problem:

min fTy + q (2.23)

(b−By)Tλ ≤ q ∀λ ∈ Λ, (2.24)

(b−By)Tφ ≤ 0 ∀φ ∈ Φ, (2.25)

y ∈ Y, q free. (2.26)

Constraints (2.24) are called optimality cuts since they define the objective value associated
with feasible values of y. Constraints (2.25) are called feasibility cuts since they eliminate
values of y for which function Q(y) is unbounded. Optimality cuts and feasibility cuts do not
have to be exhaustively enumerated, since only a subset of them will be active at the optimal
solution of the problem. Hence, an iterative algorithm [46] can be used to generate only the
subset of cuts that are sufficient to identify an optimal solution of the original problem.

An illustration on the use of BD to solve the tour scheduling problem is presented in Rekik
et al. [72]. The authors use BD to prove: 1) the correctness of the forward and backward
constraints introduced by Bechtold and Jacobs [12]; 2) in the presence of break window or
start time extraordinary overlap, forward and backward constraints are not sufficient, but
Benders decomposition can be used to solve the problem. After conducting an extensive
analysis, the authors conclude that the proposed model considerably decreases the number
of variables, at the cost of a small increase in the number of constraints.

Ni and Abeledo [62] present a CG approach to solve the continuous tour scheduling problem.
Two different pricing subproblems are considered: one in which weekly tours are decomposed
into daily shifts and another one in which weekly tours are decomposed by start times. To
solve the problem to optimality, new branching rules are implemented. Computational results
show that in comparison with an implicit model, the proposed CG method shows a better
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performance when evaluated on large-scale instances.

Because of achieving integrality for large-scale instances is a difficult task, Al-Yakoob and
Sherali [2] propose a heuristic CG to schedule, over a one week planning horizon, different
categories of employees. The model includes employee preferences for work centers (that can
be seen as work activities), for shift types and for the allocation of days-off. Although shift
types are previously enumerated, the method is able to generate, in a reasonable amount of
time, employee schedules for up to 90 work centers and 336 employees.

Combining implicit and explicit shift definitions and developing an exact B&P algorithm,
Brunner and Bard [17] solve a discontinuous tour scheduling problem over a one week planning
horizon for postal service employees that are divided into 2 groups: full-time and part-time
employees. A constrained-based formulation with shifts explicitly enumerated is used to solve
the problem for the full-time employees, while a constraint-based model that exploits the
idea of implicit shift construction, is used to solve the problem for the part-time employees.
The authors analyze the flexibility impact on workforce size, costs and utilization rate by
considering several scenarios in the computational experiments.

Brunner and Stolletz [18] present a stabilized B&P algorithm to solve a discontinuous tour
scheduling problem that includes flexibility regarding labor regulations and assignment of
lunch breaks. The master problem is based on a set covering formulation. Computational
experiments show that the convergence of the model is faster when the stabilization technique
is used.

Rather than focusing on traditional LP methods, some authors have developed different
approaches to handle the tour scheduling problem. In particular, Loucks and Jacobs [56]
formulate the weekly tour scheduling problem as an 0-1 integer goal programming model
where the primary objective is to minimize the overstaffing. Although flexibility in terms of
shift length is included in the model, meal breaks are not scheduled. A heuristic approach
composed by a construction phase and an improvement phase, is adopted as a solution
method. Computational results show that the approach is able to provide good solutions in
a reasonable amount of time.

In a recent work, Brusco and Johns [24] introduce an integrated approach to overcome the
lack of integration between start time selection and tour construction presented in Brusco
et al. [22] and Brusco and Jacobs [19]. While tabu search is used for the shift start time
selection, a cutting plane method is used for tour construction. Results on instances with
and without consistency in demand patterns show that the method has a good performance
in terms of computational time.
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The reader is referred to Alfares [4] for a complete revision, according to modeling and
solution techniques, of more than 100 papers about tour scheduling problems.

2.3 Multi-Activity Shift Scheduling

Although shift scheduling problems have been extensively studied in the literature, only
recently the problem in a multi-activity context has begun draw some attention. One of the
first attempts to solve the problem is presented in Ritzman et al. [78]. The authors develop
a heuristic approach as an integration of a construction method and a simulation component
to solve a multi-day, multi-activity SSP in a post office. Although the authors tackled the
multi-activity context, they do not consider breaks nor rules related to switching between
activities.

More recently, Demassey et al. [36] present a CG algorithm base on CP as a way to model
complex regulation constraints that are present in large-scale instances for the MASSP. The
authors introduce the cost-regular constraint to find shifts with negative reduced cost. Com-
putational experiments on several real-world instances from a retail store, allow to obtain
lower bounds that can be used as benchmarks for future work. The previous approach is
extended in Demassey et al. [37] with a method that is able to send to the restricted master
problem several shifts with negative reduced cost. The approach is tested on a complex
real-world instance for the anonymous MASSP as well as on generated benchmark instances.
Although the method is efficient to solve the LP relaxation of the problem, when integrality
constraints are imposed integer solutions are found only for small instances (less than three
work activities).

Quimper and Rousseau [69] solve the MASSP, by using specialized graph structures that
are derived from formal languages and solved via large neighborhood search. Computational
results show that the method achieves near-optimal solutions for instances with one work
activity and that it is able to scale well for instances with up to ten work activities.

Extending the ideas presented in their previous work [29], Côté et al. [28] suggest two ap-
proaches for the solution of the MASSP: the use of an automata to derive a network flow
model and the use of context-free grammars to obtain MIP models in which an and/or graph
structure is used. After running several instances, the results show that the new formulations
lead to faster computation times when compared to compact assignment MIP formulations.
Nevertheless, when all work rules are encoded in a complete grammar the computational
time tends to deteriorate because of symmetry issues.

Trying to solve the scalability issues of [29, 28] and using context-free grammars to model
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the work rules for the construction of shifts, Côté et al. [30] propose an implicit formulation
to solve the anonymous MASSP. The authors address model symmetry by using integer
variables which express variable sums (Orbital shrinking, Fischetti and Liberti [45]). Their
work is compared with other modeling approaches reported in the literature for mono-activity
and multi-activity instances. In the mono-activity case the authors show that solution times
of their model are comparable and sometimes superior to the ones reported in the literature.
In the multi-activity case they find that their model can solve to optimality instances with
up to ten work activities.

Côté et al. [31] present a grammar-based CG approach to solve the personalized version of
the problem introduced in [30]. A classical set covering formulation is used for the master
problem. The pricing subproblems are formulated using grammars and solved with a dynamic
programming algorithm. A B&P algorithm with different branching rules is presented. Com-
putational results show that: 1) the proposed algorithm exhibits superior performance on
some classes of instances, when compared with the approaches presented in Demassey et al.
[37], Côté et al. [28, 30] and Lequy et al. [55]; 2) although the expressiveness of grammars
enables to encode a large set of work rules over shifts, some limitations are present regarding
shift total length over long planning horizons (e.g., one week).

Boyer et al. [16] extends the work in Côté et al. [31], where besides considering multiple work
activities, it also includes multiple tasks. An activity can be interrupted and can be assigned
to several employees at the same time. On the contrary, tasks must be executed without
interruption by a fixed number of employees. An extensive study of branching strategies is
made, showing that the method is able to find, in a reasonable amount of time, the solution
for all test instances with an optimality gap lower than 5%.

Instead of working with explicit and implicit models or with CP, some authors have proposed
different methods based on heuristics or decomposition techniques to solve the MASSP. With
that intention, Detienne et al. [38] present three different methods to solve the personalized
version of the problem over a one week planning horizon: a Lagrangian lower bound, a heuris-
tic based on a cut generation process and an exact method based on BD. The models do not
consider work rules for the assignment of work activities to shifts and weekly patterns are pre-
viously defined. Computational experiments on several real-world and randomly generated
instances show that: 1) the quality of the bounds found with the Lagrangian method were
practically equal to the bounds of the theoretic continuous relaxation; 2) fast good-quality
solutions were found with the heuristic method; 3) the performance of the exact methods was
not the best in terms of computational time, when compared with the heuristic methods.

Restrepo et al. [77] develop a heuristic CG approach to solve the anonymous MASSP. The
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pricing subproblem is modeled as a shortest path problem with resource constraints, where
most of the work rules for shift composition are tackled while building the graph. The method
is able to find near-optimal solutions for large-scale real-world instances with up to 16 work
activities. Although a multi-day planning horizon was considered, the allocation of days-off
was not included in the formulation of the problem.

Dahmen and Rekik [33] propose a heuristic based on tabu search and B&B to solve the
personalized MASSP over a multiple-day planning horizon. Although the constraints related
to the minimum and maximum number of working hours per week are considered, days-off
are previously assigned to the employees.

When sequences of work, rest days, shift types, and breaks are already fixed, the MASSP
becomes an activity assignment problem where the objective is to assign work activities to
the shifts such that the demand of activities is satisfied over the planning horizon. In an
attempt to address this problem, Lequy et al. [55] present three integer programming models.
The first model is based on a multi-commodity network flow problem, the second model is
based on an integer block model, while the third model corresponds to a CG model. In
the method, shifts and breaks are fixed and previously assigned to the employees. After
developing different heuristic solution methods for solving instances with up to 100 shifts per
day and 15 work activities over a one week planning horizon, the authors conclude that the
heuristic CG method embedded into a rolling horizon procedure provides the best results in
general and that is able to find high-quality solutions in a reasonable time.

Finally, Elahipanah et al. [42] propose a two-phase heuristic model for the activity and task
assignment problem. The first-phase uses an approximate MIP model to set temporary shift
patterns and to allocate tasks. The second-phase uses a heuristic CG to fix the shifts and
to allocate the work activities to them. Flexibility options regarding the composition of
shifts are considered in the computational experiments. The authors test their method with
randomly generated instances with up to 6 work activities over a one week planning horizon,
finding good solutions in a reasonable amount of time.

2.4 Stochastic Personnel Scheduling Problems

Different models and solution approaches have been proposed in the literature to deal with
stochastic employee requirements in personnel scheduling problems. As an illustration, Eas-
ton and Rossin [40] and Easton and Mansour [39] develop heuristic methods that aim to
tackle problems where demand for employees is uncertain. Easton and Rossin [40] propose
a tabu search method to solve a stochastic goal programming model that integrates and
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optimizes labor requirements and employee scheduling. Easton and Mansour [39] present a
genetic algorithm to solve the SSP in which the recourse decisions are related to the under-
covering and overcovering of demand. Although both approaches aim to solve problems over
a one week planning horizon, employee patterns are previously defined and only a small set of
stochastic scenarios is considered. In a similar way, Bard et al. [10] propose a heuristic two-
stage model that addresses the tour scheduling problem over a one week planning horizon.
First-stage variables are related to the number of full-time and part-time employees hired,
while second-stage decisions correspond to the allocation of the employees to specific shifts
during the week. Computational experiments on real instances that consider three stochastic
scenarios (high, medium and low demand) show that significant savings are likely when the
recourse problem is used.

Some studies that use CG and decomposition approaches have been recently proposed as
alternatives to solve workforce planning problems when employee requirements are uncertain.
In his Ph.D. thesis, Wang [83] uses stochastic optimization models to solve two problems:
a generalized assignment problem with uncertain resource capacity and unknown processing
times, and a SSP with unknown demand. The SSP includes full-time and part-time employees
as well as overtime and temporary workers to recover feasibility when demand is higher than
expected. The author proposes a CG model embedded in a B&P procedure to solve the
corresponding stochastic integer programming models. Computational experiments show
that although the model fails to converge in several hours for large instances, the stochastic
model provides some advantages over its deterministic counterpart.

More recently, Pacqueau and Soumis [63] propose a heuristic two-stage stochastic program-
ming model to solve the SSP. The proposed model is based on a decomposition of Aykin’s
[5] implicit model, where first-stage variables are associated with the allocation of full-time
shifts to the employees and recourse decisions correspond to hiring part-time employees, using
overtime for full-time shifts, the allocation of breaks and the allowance of understaffing.

Punnakitikashem et al. [68] introduce a stochastic nurse scheduling problem that aims to
minimize staffing costs and excess workload. The authors present a Benders decomposition
approach, a Lagrangian relaxation with a Benders decomposition approach and a nested
Benders decomposition approach as solution methods. Computational results suggest that
simultaneously considering nurse staffing and assignment is more desirable than doing them
sequentially.

Kim and Mehrotra [53] present an integrated staffing and scheduling approach applied to
nurse management when demand is uncertain. In this method, the problem is formulated as
a two-stage stochastic integer program, where daily shifts and weekly patterns are previously
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enumerated. First-stage decisions correspond to the number of employees assigned to daily
shifts and to weekly patterns, while second-stage decisions correspond to: 1) the possibility
of adding or canceling daily shifts for every working pattern; 2) allowing undercovering or
overcovering of employee requirements. A set of valid mixed-integer rounding inequalities
that describe the convex hull of feasible solutions in the second-stage problem are included.
Consequently the integrality of the second-stage decision variables can be relaxed. Compu-
tational experiments show that the use of the stochastic model prevents the hospital from
being overstaffed.

An L-shaped method is presented in Robbins and Harrison [79] to solve a combined server-
sizing and staff scheduling problem for call centers in which a service level agreement must
be satisfied. First-stage decisions correspond to the employee staffing, while second-stage
decisions correspond to the computation of a telephone service shortfall. Computational
results show that ignoring variability is a costly decision, since the value of the stochastic
solution for the model is substantially high.

Very limited literature is available on stochastic workforce planning for employees that have
the skills to work in different work activities, different tasks or different unit departments.
Zhu and Sherali [85] address a workforce planning problem for employees with multiple
skills between service centers. A two-stage model under demand fluctuations is presented,
where first-stage decisions correspond to personnel recruiting and allocation of employees to
multiple locations, while second-stage decisions consists in reassigning the workforce among
the locations.

The scheduling of cross-trained workers in a multi-department service environment with
random demand is addressed in Campbell [25]. The author presents a two-stage model de-
composable by days and by scenarios, where first-stage decisions are related to the scheduling
of days-off and second-stage decisions correspond to the allocation of available employees at
the beginning of each day. In the approach, days-off are previously defined and only a small
number of scenarios is considered (10 in total).

Parisio and Jones [65] present a two-stage stochastic model for a multi-skill tour scheduling
problem in retail outlets where first-stage variables are associated with the assignment of em-
ployees to weekly schedules, while recourse decisions correspond to the allocation of overtime
and to the undercovering and overcovering of demand. Although multiple work activities are
included in the problem, the authors assume that employees can only work in one activity
per daily shift.

The reader is referred to Defraeye and Van Nieuwenhuyse [35] for a state-of-the-art literature
review on staffing and scheduling problems that account for nonstationary demand.



24

CHAPTER 3 GENERAL ORGANIZATION OF THE DOCUMENT

The literature review on personnel scheduling problems reveals that no method has been
proposed to integrate the tour scheduling and the multi-activity shift scheduling problems.
In particular, no rules for the allocation and transition between work activities and for the
composition of employee patterns were ever simultaneously taken into account in the existing
research. The literature review on multi-activity shift scheduling shows that some authors
have addressed these problems over planning horizons longer than one day, but only in
situations where either weekly patterns were previously defined or rules concerning total
tour length and days-off were not considered. The present thesis aims to address these gaps
by proposing models and methods that integrate the discontinuous tour scheduling problem
and the MASSP.

The thesis is divided into three parts corresponding to three different articles. Each arti-
cle integrates the development of new ideas with the use of previous material to solve the
MASSP. In particular, this work presents hybrid approaches that combine the use of formal
languages and decomposition methods to solve the large-scale discontinuous MATSP when
demand is deterministic and stochastic. Chapter 4 presents two B&P algorithms to solve
the personalized MATSP in a discontinuous environment. Because practical problems might
include a large number of employees, Chapter 5 presents an approach that aims to solve
the scalability and symmetry issues associated with the employee dimension. This approach
combines BD and CG to solve the discontinuous MATSP when employees have the same
skills. Chapter 6 presents an extension of the work from Chapter 5 that aims to address the
stochastic version of the MATSP. The three articles form a logical sequence because they
first propose and develop some ideas to solve the integration of the tour scheduling problem
with the MASSP. Then, those ideas are adapted and extended to more practical and realistic
contexts.

Chapter 7 presents a general discussion about the methodological aspects of the thesis and
its results, linked with the gaps found in the literature review from Chapter 2. Chapter 8 is
divided into three parts. The first part presents a discussion on the contributions achieved
by the thesis in the area of personnel scheduling problems. The second part presents an
analysis of the limitations and constraints of the work developed. The third part discusses
some recommendations and possible future work.
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CHAPTER 4 ARTICLE 1: BRANCH-AND-PRICE FOR PERSONALIZED
MULTI-ACTIVITY TOUR SCHEDULING

In this chapter of the thesis, we present an approach that integrates the discontinuous tour
scheduling problem with the MASSP for employees with different skills. We introduce two
formulations for the problem: the Daily-based formulation and the Tour-based formulation.
The Daily-based formulation is an extension of the work presented in Côté et al. [31], where
columns correspond to daily shifts and tours are assembled in the master problem by means
of extra constraints. In the Tour-based formulation columns correspond to employee tours.
We show that the Tour-based formulation is stronger in terms of its LP relaxation bound,
when compared with the Daily-based formulation.

We implemented a B&P algorithm for each formulation. In both approaches the master
problem is modeled as a generalized set partitioning problem. The columns for the Daily-
based formulation are modeled with context-free grammars. In particular, since the planning
horizon is at least one week and the personalized version of the problem is being considered,
we build a grammar for each employee and each day. The work rules for the composition
of shifts and the employee availability and skills are included in the construction of each
grammar. A directed acyclic graph (DAG) with an and/or structure is then derived from
each grammar. Additionally, each DAG contains all the possible shifts that a given employee
can perform at a given day. New columns (shifts) with negative reduced cost are found by
using a dynamic programming algorithm over each DAG. New columns (tours) for the Tour-
based formulation are found with an exact two-phase procedure. In the first phase, daily shifts
are composed in the same way as for the daily-shift formulation. In the second phase, daily
shifts are assembled into tours by first building a directed acyclic graph (Ge(N ,A)), where
the set of nodes correspond to daily shifts and the set of arcs represent feasible connections
between shifts (two shifts are connected if the rules for the allocation of days-off and the rules
for the rest time between shifts are met). Second, a label setting algorithm for the resource-
constrained shortest-path problem over graph Ge(N ,A) is used to find negative reduced cost
paths (columns). In order to find integer solutions for the problem, we propose a branching
rule that preserves the structure of the pricing subproblems.

Finally, we evaluate and compare the two methods on randomly generated instances for the
mono-activity and the multi-activity context. The comparison allows us to show that the
Daily-based formulation works better when fast-heuristic integer solutions are needed, but
when exact solutions are required, the Tour-based formulation exhibits a better performance.
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Additionally, we compared the Tour-based formulation on a mono-activity problem presented
in Brunner and Bard [17]. The experiments suggested that the solution times and quality
of our formulation are comparable with the solution times and quality reported by Brunner
and Bard [17].

The next article was accepted for publication in INFORMS Journal on Computing in October
2015.
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Abstract. This paper presents a branch-and-price approach to solve personalized tour
scheduling problems in a multi-activity context. Two formulations are considered. In the first
formulation, columns correspond to daily shifts that are modeled with context-free grammars
and tours are assembled in the master problem by means of extra constraints. In the second
formulation, columns correspond to tours that are built in a two-phase procedure. The first
phase involves the composition of daily shifts, while the second phase assembles those shifts
to generate tours using a shortest path problem with resource constraints. Both formulations
are flexible enough to allow different start times, lengths and days-off patterns, as well as
multiple breaks, continuity and discontinuity in labor requirements. We present computa-
tional experiments on problems dealing with up to five work activities and one week planning
horizon. The results show that the second formulation is stronger in terms of its lower bound
and that it is able to find high-quality solutions for all instances with an integrality gap lower
than 1%.

Keywords. Multi-activity tour scheduling problem, Branch-and-price, Context-free gram-
mars, Shortest path problem with resource constraints.
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4.1 Introduction

Personnel scheduling problems consist in constructing a set of feasible shift schedules and
assigning them to the company staff to satisfy a given demand for staff requirements. These
problems arise in diverse organizations such as hospitals, airline companies, retail stores, call
centers and banks, where they have become important tasks, due to the necessity to achieve
a better level of service, to reduce staff costs and to increase employee satisfaction.

According to Baker [8], three main categories of problems can be distinguished in personnel
scheduling: Shift scheduling (SSP), Days-off scheduling and Tour scheduling. The first cat-
egory deals with the specification of work and rest time periods to assign to shifts, as well
as the selection of a set of those shifts to satisfy the demand for staff requirements. In shift
scheduling, the planning horizon is usually one day divided into time periods of equal length.
The second category involves the selection of days-off over a planning horizon of at least one
week. Such selection is usually restricted by some employee preferences or workplace agree-
ments. The last category includes problems that arise from the integration of shift scheduling
and days-off scheduling; therefore, the aim of tour scheduling problems is to specify the time
periods of the day and the days of the week in which employees must work.

Complex extensions of classical personnel scheduling problems appear when real applica-
tions are considered. For instance, when more than one activity has to be scheduled, the
Multi-activity shift scheduling and the Multi-activity tour scheduling problems arise. In both
extensions not only the specification of work and rest time periods is necessary, but also
the assignment of activities to the shifts. In a multi-activity context, specific characteristics
related to work rules, workplace agreements, and employee skills and preferences define the
rules to build employee schedules.

The problem considered in this paper is the personalized multi-activity tour scheduling prob-
lem (MATSP). In the MATSP, a tour can be seen as a schedule over a planning horizon of
at least one week, where for every time period it must be specified if the employee is working
on an activity, having a break or resting. Aside from multiple activities, undercovering and
overcovering of demand are considered. The MATSP is flexible enough to be easily adapted
depending on different work rules and scenarios. The number of feasible tours grows fast
with the number of activities, the number of employees and the length of the time horizon,
making the complete enumeration of tours impractical. Therefore, we propose, to the best
of our knowledge, the first exact method to solve personalized multi-activity tour scheduling
problems. The approach is based on a column generation procedure embedded into a branch-
and-price (B&P) method. Two formulations for the MATSP are considered, each giving rise
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to a different B&P algorithm. First, the Daily-based formulation consists of an extension of
a multi-activity shift scheduling problem, where columns correspond to daily shifts and tours
are assembled in the master problem by means of extra constraints. Second, the Tour-based
formulation, where columns correspond to tours that are built in a two-phase procedure. The
first phase involves the composition of daily shifts, while the second phase assembles those
shifts to generate tours.

The outline of the paper is the following. Section 4.2 presents the literature review related
to personnel scheduling problems, as well as some background material. The definition of
the problem, the two formulations and some properties of them are presented in Section 4.3.
The B&P algorithms for the Daily-based formulation and the Tour-based formulation are
presented in Sections 4.4 and 4.5, respectively. Computational experiments are discussed in
Section 4.6. Finally, Section 4.7 presents the concluding remarks and future work.

4.2 Background and Related Research

In this section, we present a literature review on the models and methods proposed to solve
shift scheduling, multi-activity and tour scheduling problems. Then, we present an introduc-
tion on the use of grammars in the context of multi-activity shift scheduling.

4.2.1 Shift Scheduling

Two different modeling approaches can be distinguished in the literature on shift scheduling
problems: explicit and implicit models. Explicit models allow to consider flexibility in terms
of break placement, start times and shift length by representing each feasible shift with
a different variable. On the contrary, implicit models define one variable for every shift
and break type, seeking to reduce the number of decision variables by compromising model
flexibility.

Dantzig [34] was the first author to introduce an explicit model for the SSP. The model is
based on a set covering formulation in which the objective is to minimize the total labor cost,
ensuring that labor requirements at every time period are met. Trying to reduce the number
of variables, Moondra [60] proposes a method that implicitly represents shifts and considers
flexibility regarding multiple shift lengths and start times. Break flexibility is considered in
Bechtold and Jacobs [12] with an implicit formulation where shifts are grouped into shift
types according to their start time, length and break window.

Aykin [5] and Rekik et al. [74] present two extensions of Bechtold and Jacobs’ formulation.
In the first extension, the author tackles multiple rests, meal breaks and break windows by
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introducing integer variables for the number of employees assigned to a shift and starting their
breaks at different time periods. The second extension deals with two implicit models that
include a reformulation of forward and backward constraints and a transportation structure
to match shifts with admissible breaks.

Column generation (CG) and constraint programming (CP) have been recently proposed as
alternatives to solve complex shift scheduling problems. CG is used when the incorporation
of flexibility in the composition of shifts causes a considerable increase in the number of
variables. In this method, two strategies can be adopted to reach integrality in the problem:
a heuristic approach, where the master problem is solved by forcing the integrality constraints
on the decision variables, and an exact method, where the CG procedure is embedded into a
B&P algorithm. In that vein, Mehrotra et al. [59] use B&P and exploit the advantages of a set
covering formulation to solve a shift scheduling problem with multiple rest breaks, one meal
break and break windows. On the other hand, CP is used to model shift scheduling problems
where work rules involve non trivial relationships between variables. As an illustration, Côté
et al. [29] take advantage of the expressiveness of a Deterministic finite automaton (DFA)
that, used in a 0-1 mixed integer programming model, helps to implicitly express a large set
of rules and represent all possible patterns for an employee timetabling problem.

4.2.2 Multi-Activity Shift Scheduling

In one of the first attempts to solve multi-activity shift scheduling problems, Ritzman et al.
[78] develop a heuristic approach by integrating a construction method and a simulation com-
ponent to schedule employees in a post office over a planning horizon of one week. Although
the authors tackled the multi-activity context, they do not consider breaks nor rules related
to switching between activities.

A few decades later, the idea of using context-free grammars in the context of CP to solve
combinatorial problems was introduced in Pesant [66], Sellmann [80] and Quimper and Walsh
[70]. The first author [66] presents the Regular constraint that forces a sequence of characters
to belong to a regular language. The Grammar constraint is introduced in Sellmann [80] and
Quimper and Walsh [70]. This constraint forces a sequence of characters to belong to a
context-free language. Later, Kadioglu and Sellmann [51] and Kadioglu and Sellmann [52]
present and modify a memory- and time-efficient filtering algorithm for context-free grammars
under the absence and presence of a linear objective function.

The previous ideas have been applied in the context of multi-activity shift scheduling in De-
massey et al. [37], Quimper and Rousseau [69] and Côté et al. [28, 30]. In the first approach
[37], a CP-based column generation algorithm is presented as a way to model complex regula-



31

tion constraints to solve large instances of multi-activity shift scheduling problems. Quimper
and Rousseau [69] solve multi-activity shift scheduling problems with up to ten work ac-
tivities by using specialized graph structures that are derived from formal languages and
solved via Large neighborhood search. Côté et al. [28] propose two models: one that uses an
automaton to derive a network flow model, and another one that benefits from context-free
grammars to obtain a MIP model in which an and/or graph structure is used. Despite their
ability to easily handle complex rules, the models present some scalability issues when the
number of employees and the number of activities increase. Côté et al. [30] seek to solve the
scalability issues of their previous models by introducing an implicit formulation that encap-
sulates model symmetry by using integer variables. The authors show, based on the work of
Pesant et al. [67], that the proposed integer programming model has a LP relaxation bound
equivalent to that of the classical set covering model. Computational results suggest that, in
the mono-activity case, the solution times of the model are comparable and sometimes better
than the results presented in the literature and that, in the multi-activity case, the model is
able to solve to optimality instances with up to ten work activities.

To solve the personalized version of the problem introduced in Côté et al. [30], Côté et al.
[31] present a grammar-based column generation method where the pricing subproblems are
formulated using grammars and solved with a dynamic programming algorithm. Although
the expressiveness of grammars enables to encode a large set of work rules over shifts, some
limitations are present regarding shift total length over longer planning horizons (e.g., one
week). Boyer et al. [16] extends the previous work, where besides considering multiple ac-
tivities, it also includes multiple tasks. An extensive study of branching strategies is made,
showing that the method is able to find, in a reasonable amount of time, the solution for all
test instances with an integrality gap lower than 5%.

Instead of working with explicit and implicit models or with CP, some authors have proposed
different methods to tackle multi-activity shift scheduling problems. Some of them include
Tabu search [33], heuristic column generation [77], decomposition techniques [38], or a sim-
plification of the multi-activity shift scheduling problem [42, 55] by fixing sequences of work,
rest days, shift types and breaks.

4.2.3 Tour Scheduling

Since the introduction of Dantzig’s model for shift scheduling [34], a lot of research has been
conducted to consider more realistic and complex versions of the problem. One example of
such extensions is the work of Morris and Showalter [61], which introduces the first integer
programming formulation to solve tour scheduling problems based on Dantzig’s set covering
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model. The authors combine LP and heuristic methods to solve a tour scheduling problem
with a two-phase solution method. In the first phase, daily schedules are generated and
sent to the second phase where weekly tours are constructed. Trying to introduce flexibility
without increasing dramatically the size of the problem, Bailey [7] presents a formulation to
implicitly model the start times in a tour scheduling problem. A construction heuristic is
used to assign shifts under a limited staff size constraint, while a rounding heuristic is used
to achieve integrality of the variables.

Jarrah et al. [50] propose an implicit model with aggregated variables that decomposes the
weekly tour scheduling problem into seven daily-shift scheduling subproblems. A transporta-
tion model and a post-processor are used to assign breaks to shifts and shifts to tours,
respectively. The authors test their method on a real-world application, running several sce-
narios including flexibility in start times and break allocation. Jacobs and Brusco [49] present
a compact implicit model to demonstrate the importance of start time bandwidth flexibility
in tour scheduling. Computational results suggest that allowing start-time flexibility reduces
significantly the required workforce size when compared with fixed start times.

Attempting to develop more realistic models, Brusco and Jacobs [20] consider both start time
and meal break flexibility in an implicit integer programming model to solve the continuous
tour scheduling problem. The authors evaluate their approach on a real-world application,
showing that the effect of the scheduling policies on the optimal workforce size can vary
significantly depending on the level of other policies.

In order to solve a discontinuous tour scheduling problem (shifts are allowed to overlap from
one day to the next) in a call center, Çezik et al. [26] propose a model with two components:
a daily-shift generator and a days-off generator. In the former, seven daily shift schedules are
generated through implicit modeling, while in the latter, weekly requirements are met via
network flows. The proposed model is able to solve half of the real instances to optimality
by using a heuristic B&P algorithm.

In a recent work, Brusco and Johns [24] introduce an integrated approach to overcome the lack
of integration between start time selection and tour construction by using Tabu search and
a cutting plane method. The former is useful for the start time selection, while the latter
handles tour construction. Computational experiments are conducted with and without
consistency in demand patterns. In both cases, the method has a good performance in terms
of computational time.

Decomposition techniques and column generation are also often used in the context of tour
scheduling problems. As an illustration, Rekik et al. [72] use Benders decomposition to solve a
continuous tour scheduling problem where the subproblems are modeled with a transportation
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structure, and the forward and backward constraints introduced by Bechtold and Jacobs [12]
are used as a set of initial feasibility cuts. After conducting an extensive analysis, the authors
conclude that the proposed model considerably decreases the number of variables at the cost
of a small increase in the number of constraints. Ni and Abeledo [62] present a B&P algorithm
to solve the continuous version of the problem where weekly tours are decomposed into daily
shifts and start-time patterns. Computational experiments show that for large-scale instances
where implicit methods often fail to find a feasible solution, the proposed method is able to
find near-optimal solutions.

Because achieving integrality for large-scale instances is a difficult task, Al-Yakoob and Sher-
ali [2] propose a heuristic column generation to schedule, over one week, different categories
of employees. Employee preferences for work centers, shift types and days-off are considered.
Given previously defined shift types, the method is able to generate, in a reasonable amount
of time, employee schedules for up to 90 stations and 336 employees.

Combining implicit and explicit shift definitions and developing an exact B&P algorithm,
Brunner and Bard [17] solve a discontinuous tour scheduling problem over a one-week plan-
ning horizon for postal service employees. The authors analyze the flexibility impact on
workforce size, costs and utilization rate by considering several scenarios in the computa-
tional experiments.

Brunner and Stolletz [18] present a stabilized B&P algorithm to solve a discontinuous tour
scheduling problem that includes flexibility regarding labor regulations and assignment of
lunch breaks. The master problem is based on a set covering formulation. Computational
experiments show that the model convergence is faster when the stabilization technique is
used.

The reader is referred to Van den Bergh et al. [82] for a comprehensive review of recent papers
on tour scheduling problems.

The literature review on tour scheduling problems reveals that no method has been proposed
to integrate tour scheduling and multi-activity shift scheduling problems. In particular, no
rules for the allocation and transition between activities were ever taken into account in the
existing research. The literature review on multi-activity shift scheduling problem (Section
4.2.2) shows that some authors have addressed these problems over planning horizons longer
than one day, but only in situations where either weekly patterns were previously defined
or rules concerning total tour length and days-off were not considered. Additionally, the
previous works on multi-activity shift scheduling show that although the expressiveness of
grammars enables to encode a large set of work rules over shifts, some limitations are present
regarding total shift length over longer planning horizons (e.g., one week).
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The present paper addresses these gaps in the literature by proposing models and methods
that integrate the tour scheduling and multi-activity shift scheduling problems. We include
ideas from previous works on multi-activity shift scheduling, specifically we make use of
context-free grammars to efficiently handle the multi-activity context, but we propose a new
approach to tackle longer planning horizons and include work rules and flexibility for the
composition of employee tours. The use of grammars in the context of shift scheduling is
reviewed next.

4.2.4 Grammars and Shift Scheduling Problems

We define a context-free grammar as a tuple G = 〈Σ, N, P, S〉 where Σ is an alphabet of
characters called the terminal symbols, N is a set of non-terminal symbols, S ∈ N is the
starting symbol and P is a set of productions represented as A→ w, where A ∈ N is a non-
terminal symbol and w is a sequence of terminal and non-terminal symbols. The productions
of a grammar can be used to generate new symbol sequences until only terminal symbols
are part of the sequence. A Context-free language is the set of sequences accepted by a
context-free grammar.

A parse tree is a tree where each leaf is labeled with a terminal and each inner-node is labeled
with a non-terminal. A grammar recognizes a sequence if and only if there exists a parse tree
where the leaves, when listed from left to right, reproduce the sequence. An and/or graph is
a graph where each leaf corresponds to an assignment that can either be true or false. An
and-node is true if all of its children are true. An or-node is true if one of its children is true.
The root is true if the grammar accepts the sequence encoded by the leaves. The and/or
graph embeds every possible parse tree of a grammar.

Finally, a DAG Γ is a directed acyclic graph that embeds all parse trees associated with words
of a given length n recognized by a grammar. The DAG Γ has an and/or structure where the
and-nodes represent productions from P and or-nodes represent non-terminals from N and
letters from Σ. The DAG Γ is built by a procedure proposed in Quimper and Walsh [71].

In the shift scheduling context, the use of grammars allows both to include work rules
regarding the definition of shifts and to handle the multi-activity context in an easy way.
Thus, feasible shifts can be represented as words in a context-free language. For example,
words rw1w1bw2 and w1bw2w1r are recognized as valid sequences in a two-activity shift
scheduling problem where letters w1, w2, b and r represent working on activity 1, working
on activity 2, break and rest periods, respectively. The time horizon consists of five time
periods, shifts have a length of four time periods and must contain exactly one break of
one time period that can be placed anywhere during the shift except at the first or the last
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period. The grammar that defines the shifts on this example follows:

G = (Σ = (w1, w2, b, r), N = (S, F,X,W,B,R), P, S),
where productions P are: S → RF |FR, F → XW , X → WB, W → WW |w1|w2, B → b,
R→ r, and symbol | specifies the choice of production.

In the previous example, productions W → w1, W → w2, B → b and R → r generate the
terminal symbols associated with working on activity 1, working on activity 2, having a break
or having a rest time period inside of the shift, respectively. ProductionW → WW generates
two non-terminal symbols, W , meaning that the shift will include a working subsequence.
Production X → WB means that the shift will include working time and then it will be
followed by a break. Production F → XW generates a subsequence of length four (the
daily shift), which includes working time followed by a break to finish with more working
time. Finally, the last two productions are S → RF and S → FR. The former generates a
sequence starting with a time period of rest followed by the daily shift. The latter generates
a sequence starting with the daily shift followed by a time period of rest.

Let Oπ
dil be the or-nodes associated with π ∈ N ∪Σ, i.e., with non-terminals from N or letters

from Σ, that generate a subsequence at day d, position i of length l. Note that if π ∈ Σ,
the node is a leaf and l is equal to one. On the contrary, if π ∈ N , the node represents a
non-terminal symbol and l > 1. AΠ,k

dil is the kth and-node representing productions Π ∈ P
generating a subsequence at day d, from position i of length l. There are as many AΠ,k

dil nodes
as there are ways of using P to generate a sequence of length l from position i during day
d. The sets of or-nodes and and-nodes from day d are denoted by Od and Ad, respectively.
The root node is described by OS

d1n and its children by AΠ,k
d1n. Figure 4.1 represents the DAG

Γ associated with the grammar of the example, where dashed-line or-nodes are part of the
parse trees associated with and-node AS→RF,115 , while continuous-line or-nodes are part of the
parse trees associated with and-node AS→FR,115 . For clarity, we did not include the subscript
of the day in the notation of the nodes.



36

O
S
15

A
S→RF ,1

15
A

S→FR,1

15

O
R
11

O
R
51

O
F
14

O
F
24

O
X
13

O
X
23

O
X
12

O
W
12

O
X
22

O
W
32

O
W
42

O
W
22

O
W
11

O
B
21

O
W
21

O
B
31

O
W
31

O
W
41

O
W
51

O
r
11 O

w1
11

O
w2
11

O
b
21

O
w1
21

O
w2
21

O
b
31

O
w1
31

O
w2
31

O
b
41

A
X→WB,1

23

A
B→b,1

41

O
B
41

O
w1
41

O
w2
41

O
w1
51

O
w2
51

O
r
51

A
F→XW ,1

14
A

F→XW ,1

24
A

F→XW ,2

14
A

F→XW ,2

24

A
X→WB,1

13

A
X→WB,1

12

A
W→WW ,1

12
A

W→WW ,1

22
A

X→WB,1

22
A

W→WW ,1

32
A

W→WW ,1

42

A
W→w1,1

11
A

R→r,1

11
A

W→w2,1

11
A

B→b,1

21
A

W→w1,1

21
A

W→w2,1

21
A

B→b,1

31
A

W→w1,1

31

A
W→w2,1

31

A
W→w1,1

41

A
W→w2,1

41

A
W→w1,1

51

A
W→w2,1

51
A

R→r,1

51

Figure 4.1 DAG Γ on words of length five and two work activities.

Figure 4.2 shows two of the 32 parse trees that are embedded into the DAG Γ presented in
Figure 4.1. Note that the leaves correspond to letters from Σ that form a word, in this case
of length five, when listed from left to right.
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Figure 4.2 Parse trees derived from DAG Γ on words of length five and two work activities.
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4.3 Problem Definition and Formulations

In this section, we first introduce the problem studied and its notation to later define the
mathematical models for the Daily-based and the Tour-based approaches. We then show
that the Tour-based formulation yields a better linear programming (LP) relaxation bound
than the Daily-based formulation.

4.3.1 Problem Definition and Notation

The problem addressed in this paper is a Tour scheduling problem in a multi-activity context
where the set of activities is denoted by J . The planning horizon is at least one week in
which each day d ∈ D = {1, ..., |D|} is divided into Id = {1, ..., |Id|} time periods of equal
length. Each employee e ∈ E has different skills, meaning that the personalized version of
the problem is considered. The set of feasible tours for each employee e is denoted by T e,
while the set of feasible shifts for each employee e at each day d is denoted by Sed. The
notation used in both formulations is as follows:

General parameters

bdij: staff requirements for day d, time period i and activity j;

cedij: cost of employee e working on day d, time period i and activity j;

ctr: transition cost between two work activities;

c+
dij, c−dij: overcovering and undercovering costs of employee requirements for day d, time
period i and activity j, respectively;

Jedi: set of work activities that employee e can perform at time period i of day d.

Daily shift parameters

ε: minimum rest time between two consecutive daily shifts;

Sedi(1): set of shifts that finish at time period i during day d for employee e;

Sedi(2): set of shifts whose start time period goes from 1 up to time period i + ε − |Id| at
day d for employee e (i > |Id| − ε);

δedijs: parameter that takes value 1 if shift s covers time period i and work activity j during
day d for employee e, and assumes value 0 otherwise;
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ceds: cost associated with shift s during day d for employee e (includes de working cost cedij
and the transition cost ctr)

Every daily shift s from day d has a set of attributes: its start time period tds, its length
lds (considering breaks), its working time wds, and its end time period fds = tds + lds − 1.

Tour parameters

∆l, ∆u: minimum and maximum number of working days in a tour, respectively;

Θl, Θu: minimum and maximum tour working length in time periods, respectively;

Φ = |D| −∆l: maximum number of days-off in a tour;

φedst: parameter that takes value 1 if tour t includes shift s at day d for employee e, and
assumes value 0 otherwise;

ρedijt: parameter that takes value 1 if tour t covers time period i and work activity j at day
d for employee e, and assumes value 0 otherwise (ρedijt = ∑

s∈Se
d

φedstδ
e
dijs);

cet : cost of tour t for employee e (cet = ∑
d∈D

∑
i∈ Id

∑
j ∈ Je

di

δedijtc
e
dij = ∑

d∈D

∑
s∈Se

d

φedstc
e
ds).

4.3.2 The Daily-Based Formulation

In order to solve the MATSP, we propose, as a first formulation, a natural extension of the
model presented in Côté et al. [31]. In this extension, daily shifts are linked into tours by
means of extra constraints that assure the minimum and maximum tour length, the mini-
mum and maximum number of working days per tour and the minimum rest time between
consecutive shifts. We define the following variables:

xeds: binary variable that takes value 1 if shift s on day d is assigned to employee e, and
assumes value 0 otherwise;
y+
dij, y−dij: slack variables representing overcovering and undercovering of employee require-
ments for day d, time period i and activity j, respectively.

The Daily-based formulation, denoted FS , is as follows:
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f(FS) = min
∑
e∈E

∑
d∈D

∑
s∈Se

d

cedsx
e
ds +

∑
d∈D

∑
i∈ Id

∑
j ∈ J

c+
dijy

+
dij +

∑
d∈D

∑
i∈ Id

∑
j ∈ J

c−dijy
−
dij (4.1)

∑
e∈E

∑
s∈Se

d

δedijsx
e
ds − y+

dij + y−dij = bdij, ∀ d ∈ D, i ∈ Id, j ∈ J, (4.2)

∑
s∈Se

d

xeds ≤ 1, ∀ e ∈ E, ∀ d ∈ D, (4.3)

∆l ≤
∑
d∈D

∑
s∈Se

d

xeds ≤ ∆u, ∀ e ∈ E, (4.4)

Θl ≤
∑
d∈D

∑
s∈Se

d

wdsx
e
ds ≤ Θu, ∀ e ∈ E, (4.5)

∑
s∈Se

di
(1)
xeds +

∑
s∈Se

d+1i(2)
xed+1s ≤ 1, ∀ e ∈ E, d ∈ D\{|D|}, i = |Id| − ε+ 1, ..., |Id|,

(4.6)

xeds ∈ {0, 1}, ∀ e ∈ E, d ∈ D, s ∈ Sed, (4.7)

y+
dij, y

−
dij ≥ 0, ∀ d ∈ D, i ∈ Id, j ∈ J. (4.8)

The objective of FS , (4.1), is to minimize the total staffing cost plus the penalization for
overcovering and undercovering of demand. Constraints (4.2) ensure that the total number
of employees working on day d ∈ D, time period i ∈ Id and work activity j ∈ J is equal
to the demand subject to some adjustments related to undercovering and undercovering.
Constraints (4.3) guarantee that every employee is assigned to at most one shift per day.
Constraints (4.4) and (4.5) enforce a minimum and maximum number of working days (∆l

and ∆u) and tour length (Θl and Θu), respectively. Constraints (4.6) ensure a minimum
rest time between consecutive shifts. Finally, constraints (4.7)-(4.8) set the binary nature of
variables xeds and the non-negativity of variables y+

dij, y
−
dij.

4.3.3 The Tour-Based Formulation

The Tour-based formulation makes use of slack variables as in the Daily-based formulation,
but also includes the following decision variables related to tours:

xet : binary variable that takes value 1 if tour t is assigned to employee e, and assumes value
0 otherwise.

Hence, the constraints related to the link between daily shifts and tours are considered in the
definition of feasible tours and not in the mathematical model. The Tour-based formulation,
denoted FT , is as follows:
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f(FT ) = min
∑
e∈E

∑
t∈T e

cetx
e
t +

∑
d∈D

∑
i∈ Id

∑
j ∈ J

c+
dijy

+
dij +

∑
d∈D

∑
i∈ Id

∑
j ∈ J

c−dijy
−
dij (4.9)

∑
e∈E

∑
t∈T e

ρedijtx
e
t − y+

dij + y−dij = bdij, ∀ d ∈ D, i ∈ Id, j ∈ J, (4.10)
∑
t∈T e

xet = 1, ∀ e ∈ E, (4.11)

xet ∈ {0, 1}, ∀ e ∈ E, t ∈ T e, (4.12)

y+
dij, y

−
dij ≥ 0, ∀ d ∈ D, i ∈ Id, j ∈ J. (4.13)

The objective of FT , (4.9), is to minimize the total staffing cost plus the penalization for
overcovering and undercovering of demand. Constraints (4.10) ensure that the total num-
ber of employees working on day d ∈ D, time period i ∈ Id and work activity j ∈ J is
equal to the demand subject to some adjustments related to undercovering and undercov-
ering. Constraints (4.11) guarantee that every employee is assigned to exactly one tour.
Finally, constraints (4.12)-(4.13) set the binary nature of variables xet and the non-negativity
of variables y+

dij, y
−
dij.

4.3.4 Comparison Between the Two Formulations

Let f(FS) and f(FT) be the LP relaxation bounds of the Daily-based formulation and the
Tour-based formulation, respectively, withFS andFT the corresponding LP relaxations.

Proposition 1: f(FS)≤ f(FT).

Proof: Consider the Daily-based formulation (4.1)-(4.8) to which we add the following re-
dundant constraints:

y+
dij, y

−
dij ≤ bdij, ∀ d ∈ D, i ∈ Id, j ∈ J. (4.14)

Note that the LP relaxation of the resulting model is equivalent to FS. Using the resulting
model, we dualize constraints (4.2) to obtain the following Lagrangian subproblem, denoted
by FS(β), where βdij are the Lagrange multipliers associated with constraints (4.2):
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f(FS(β)) =
∑
d∈D

∑
i∈ Id

∑
j ∈ J

βdijbdij+

min
∑
e∈E

∑
d∈D

∑
s∈Se

d

cedsx
e
ds −

∑
e∈E

∑
d∈D

∑
i∈ Id

∑
j ∈ J

∑
s∈Se

d

βdijδ
e
dijsx

e
ds

∑
d∈D

∑
i∈ Id

∑
j ∈ J

(c−dij − βdij)y−dij +
∑
d∈D

∑
i∈ Id

∑
j ∈ J

(c+
dij + βdij)y+

dij

subject to constraints (4.3)-(4.8) and (4.14).

Note that FS(β) decomposes into two subproblems: one expressed in terms of the x variables
only, with feasible set X, and the other involving only the y variables, with feasible set Y .
The subproblem that depends only on the x variables is defined by:

min
∑
e∈E

∑
d∈D

∑
s∈Se

d

ceds − ∑
i∈ Id

∑
j ∈ J

βdijδ
e
dijs

xeds
subject to constraints (4.3)-(4.7).

This subproblem can itself be decomposed by employee and its feasible set is defined as the
finite set of points X = Πe∈EX

e, where Xe corresponds to (4.3)-(4.7) for each employee e.
The subproblem involving only the y variables is defined by:

min
∑
d∈D

∑
i∈ Id

∑
j ∈ J

(c−dij − βdij)y−dij +
∑
d∈D

∑
i∈ Id

∑
j ∈ J

(c+
dij + βdij)y+

dij

subject to the non-negativity constraints (4.8) and the bound constraints (4.14).

Therefore, the feasible set X×Y of the Lagrangian subproblem FS(β) can be written as X×
Y = (Πe∈EX

e)×Y .The corresponding Lagrangian dual can be written as Z = maxβ f(FS(β)).
By Lagrangian duality theory [47], this Lagrangian dual is equivalent to the following LP
model:
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Z = min
∑
e∈E

∑
d∈D

∑
s∈Se

d

cedsx
e
ds +

∑
d∈D

∑
i∈ Id

∑
j ∈ J

c+
dijy

+
dij +

∑
d∈D

∑
i∈ Id

∑
j ∈ J

c−dijy
−
dij

∑
e∈E

∑
s∈Se

d

δedijsx
e
ds − y+

dij + y−dij = bdij, ∀ d ∈ D, i ∈ Id, j ∈ J,

(x, y) ∈ conv(X × Y ).

where conv(A) is the convex hull of any set A. Clearly, Z ≥ f(FS), since conv(X × Y ) is
contained in the feasible set ofFS.

Since X × Y = (Πe∈EX
e) × Y and Y is a bounded polyhedron, we have conv(X × Y ) =

(Πe∈Econv(Xe))×Y . Now, for any employee e ∈ E, every point xe in conv(Xe) can be written
as a convex combination of the extreme points of conv(Xe). Any such extreme point ξe(t)
corresponds to a tour T e for employee e. Thus, we can write xe = ∑

t∈T e µ
e(t)ξe(t), where

µe(t) is the convex combination weight associated to tour t ∈ T e, i.e., ∑
t∈T e

µe(t) = 1, ∀ e ∈ E
and µe(t) ≥ 0, ∀ t ∈ T e, e ∈ E. Thus, we have:

Z = min
∑
e∈E

∑
t∈T e

∑
d∈D

∑
s∈Se

d

cedsξ
e
ds(t)

µe(t) +
∑
d∈D

∑
i∈ Id

∑
j ∈ J

c+
dijy

+
dij +

∑
d∈D

∑
i∈ Id

∑
j ∈ J

c−dijy
−
dij

∑
e∈E

∑
t∈T e

 ∑
s∈Se

d

δedijsξ
e
ds(t)

µe(t)− y+
dij + y−dij = bdij, ∀ d ∈ D, i ∈ Id, j ∈ J,

∑
t∈T e

µe(t) = 1, ∀ e ∈ E,

µe(t) ≥ 0, ∀ t ∈ T e, e ∈ E,

0 ≤ y+
dij, y

−
dij ≤ bdij, ∀ d ∈ D, i ∈ Id, j ∈ J.

We remark that ξeds(t) = φedst, for any e ∈ E, d ∈ D,s ∈ Sed and t ∈ T e. If we let µe(t) = xet ,
for each t ∈ T e and e ∈ E, we obtain the LP relaxation model of the Tour-based formulation
(4.9)-(4.13) with the redundant constraints (4.14). Thus, f(FT) = Z ≥ f(FS). �.

Appendix A presents an example where a feasible solution ofFS is not feasible forFT, which
implies that, in this case, the optimal LP relaxation value of the Daily-based formulation is
lower than the optimal LP relaxation value of the Tour-based formulation.



43

4.4 B&P for the Daily-Based Formulation

In this section, we present a B&P algorithm for the Daily-based formulation. First, we intro-
duce the restricted master problem. Second, we describe the pricing subproblems. Finally,
we present the branching rule used to find near optimal integer solutions.

4.4.1 Restricted Master Problem

In practical scenarios, the complete enumeration of the set of feasible shifts Sed for every
employee e and every day d is intractable due to the incorporation of flexibility regarding shift
length, break placement, shift start times, among others. Therefore, we define a restricted
master problem FS̃ as the LP relaxation of problem (4.1)-(4.8) over restricted sets of shifts
S̃ed ⊆ Sed.

Let βdij, λed, δe, θe and αedi be the dual variables associated with constraints (4.2) to (4.6),
respectively. The reduced cost c̄eds of column (shift) s during day d for employee e is given
by:

c̄eds =
∑
i∈ Id

∑
j ∈ Je

di

(cedij − βdij)δedijs − λed − δe − wdsθe − αedfds −
|Id−1|∑

i=|Id−1|−ε+tds

αed−1i. (4.15)

The objective in the column generation procedure is to find, at every iteration, columns with
negative reduced cost, i.e., c̄eds < 0. Hence, (4.15) is used in the objective function of the
pricing subproblems for every employee and every day of the planning horizon. Under a
B&P algorithm, if no negative reduced cost columns can be generated, the solution to the
restricted master problem is optimal for the node under evaluation.

4.4.2 Pricing Subproblems for Daily Shift Generation

New columns are generated based on the work presented in Côté et al. [31] and the con-
cepts of Section 4.2.4. For each employee e and day d, a grammar Ge

d is generated. Such
grammar represents the possible shifts that an employee can perform during the day and
its generation is made by considering the employee skills, his preferences, availability, work
rules and regulations such as minimum and maximum shift length, start times, minimum
and maximum number of activities and breaks per shift, position of breaks and rules for the
transition between activities.
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From each grammar Ge
d, we generate a DAG Γed that is used to find negative reduced cost

shifts for every employee e and day d. In Γed each child of the root node Aπ,kd1n ∈ ch(OS
d1n)

represents a daily shift and its corresponding reduced cost is computed by using the dynamic
programming algorithm presented in Quimper and Rousseau [69]. The algorithm traverses
the DAG from the leaves to the root node by summing up the costs of the children of the
and-nodes and choosing the minimum cost child of the or-nodes. It should be noted that,
at every iteration of the column generation, the cost of every node in Γed has to be updated.
If the node is a leaf that corresponds to working on activity j at time period i during day
d, its cost is updated with cedij − βdij; if the node is an and-node Aπ,kd1n ∈ ch(OS

d1n) its cost is

updated with (−λed − δe − wdsγe − αedfds −
|Id−1|∑

i=|Id−1|−ε+tds
αed−1i); otherwise, the cost is zero.

4.4.3 Branching Rule

We use the branching rule suggested in Côté et al. [31], where at each node of the B&P
algorithm, we select the employee e′ such that one of its shift variables, xe′ds, holds the largest
fractional value in the optimal LP solution of the node under evaluation. For that employee,
we select two daily shifts on the same day d, se′d (1) and se′d (2), corresponding to the associated
variables with the largest fractional values. Then, we identify the first divergent time perido
i′ between se′d (1) and se′d (2), meaning that both shifts differ in their activities (work-activity,
rest or break). Let j(1) ∈ J and j(2) ∈ J be the assigned activities at time period i′ for shifts
se
′
d (1) and se′d (2), respectively. As mentioned before, Je′di′ is the set of activities (in this case
including also rests and breaks) that employee e′ can perform at time period i′ during day
d. A partition of Je′di′ into subsets Je′di′(1) and Je′di′(2) is created, such that j(l) ∈ Je′di′(l), for
l = 1, 2. The rest of the activities in Je′di′ are equally distributed between the two partitions.
After generating the partitions, two nodes are created. At each node l = 1, 2 it is ensured
that employee e′ does not perform the activities in Je′di′(l) at time period i′. The rule is easily
handled in the subproblem, since if an activity j is forbidden at time period i during day d,
the associated leaf Oj

di1 receives a large cost in the DAG Γed ensuring that tours containing
shifts with activity j at time period i for day d will not be generated. Therefore, the suggested
branching rule preserves the structure of the pricing subproblem.

4.5 B&P for the Tour-Based Formulation

In this section, we present a B&P algorithm for the Tour-based formulation. First, we
introduce the restricted master problem. Second, we describe a two-phase procedure to solve
the pricing subproblems. Finally, we present the branching rule used to identify integer
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solutions.

4.5.1 Restricted Master Problem

The complete enumeration of the set of feasible tours T e for every employee is intractable due
to the incorporation of shift and tour flexibility. Hence, we define a restricted master problem
FT̃ as the LP relaxation of problem (4.9)-(4.13) over restricted sets of tours T̃ e ⊆ T e.

Let βdij and σe be the dual variables associated with constraints (4.10) and (4.11), respec-
tively. The reduced cost of column (tour) t for employee e is given by:

c̄et =
∑
d∈D

∑
i∈ Id

∑
j ∈ Je

di

(cedij − βdij)ρedijt − σe. (4.16)

Expression (4.16) is used in the objective function of the pricing subproblems for every
employee. Under a B&P algorithm, if a new column with negative reduced cost is found, the
column is added to the restricted master problem FT̃ . If no negative reduced columns can
be generated, the solution of FT̃ is optimal for the node under evaluation.

4.5.2 Pricing Subproblems for Tour Generation

Tours are composed of a combination of daily shifts and days-off over a time horizon of at
least one week. Considering the above, the approach presented in this section seeks to build
tours with a two-phase process. In the first phase, daily shifts are generated with the same
procedure introduced in Section 4.4.2, except for a change in the cost of every node in Γed.
In this case, if the node is a leaf that corresponds to working on activity j at time period i
from day d, its cost is cedij−βdij, otherwise the cost corresponds to zero. In the second phase,
the proposed method assembles shifts into tours by considering the constraints related to the
tour length, the number of working days and the minimum rest time between consecutive
shifts. Thus, in this second phase of the subproblem, the multi-activity property does not
affect the assembling of feasible tours and the only attributes that must be considered are
the shift starting time and shift length. The two-phase procedure is exact because, as it will
be described further, at every iteration of the column generation, we include the shift with
the lowest reduced cost for every start time and length at each day in the planning horizon.

The objective in the second phase of the subproblem is to generate tours with negative
reduced cost for every employee. Taking this into consideration, let Ke = ⋃

d∈D
Aπ,kd1n ∈ ch(OS

d1n)
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be the union over the set of days of all the children of the root node OS
d1n of Γed. Therefore,

Ke can be seen as the set of shift “shells” containing all the possible combinations of shift
start times and lengths but without considering breaks and work activity allocation. Let
Ge(N ,A) be a directed acyclic graph with a set of nodes N = {vk | k ∈ Ke∪{vs, vf}}, where
vk corresponds to shift k for employee e, while vs and vf are the source and sink nodes,
respectively. The set of arcs A is divided into three types: arcs going from the source node
to a “shift” node A1 = {(vs, vk) | vk ∈ N , dk ≤ Φ + 1}; arcs connecting two “shift” nodes
A2 = {(vk, vk′ ) | vk, vk′ ∈ N , k 6= k

′
, tk′ − fk ≥ ε, dk′ − dk ≤ Φ + 1}; and arcs connecting a

“shift” node to the sink, A3 = {(vk, vf ) | vk ∈ N , dk ≥ ∆l}; dk is the corresponding day of
shift k.

Each node in graph Ge(N ,A) has, besides a list of immediate successors N (vk) = {vi ∈
N|(k, i) ∈ A}, a set of attributes (start time period tk, length lk, considering breaks, working
time wk, end time period fk = tk + lk − 1, and reduced cost c̄k) inherited from its corre-
sponding daily shift. The source node has a cost equal to zero, the sink node has a cost
equal to the negative of the dual variable σe and the remaining nodes have a cost equal to
c̄k. The list of successors of each node is generated according to the work rules for tour
composition, employee preferences and availability, as expressed in the arc types definition.
Thus, successors of source node vs are nodes that, depending on their start day, allow enough
time to meet the constraints related to the minimum number of working days required in a
tour. In the same way, sink node vf is a successor of node vk if the finish day of vk is greater
or equal to the minimum number of working days required in a tour. Finally, a node vk′ is a
successor of node vk if first, its start time allows to guarantee that there is a minimum rest
time between both shifts and secondly, if its start day allows to meet the constraints related
to the minimum and maximum number of days-off and their consecutiveness (i.e. two days
off in a row).

Tours are resource constrained paths along graph Ge(N ,A). In this case, if the cost of a tour
is negative, that means that a column with negative reduced cost was found and it deserves to
be sent to the restricted master problem. It should be noted that every feasible path should
meet the constraints related to the resources considered in the problem: the total tour length
and the number of working days. Furthermore, the method is optimal, since graph Ge(N ,A)
contains the shifts with the lowest reduced cost for all the possible shift structures.

Figure 4.3 presents an example of graph Ge(N ,A). In the graph, the number of days in
the planning horizon is 7, the minimum and maximum number of working days are 5 and 6,
respectively, the minimum and maximum tour length are 15 and 18, respectively, and shifts
are built with the DAG Γed presented in Figure 4.1. Nodes with an odd number represent
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shifts obtained from and-node AS→RF,1d15 that generates the structures rwbww, rwwbw, whereas
nodes with an even number represent shifts obtained from and-node AF→FR,1d15 with structures
wbwwr, wwbwr. In this case, for every and-node there are sixteen possible shifts, where
rw1bw1w1, rw1bw1w2,..., rw1w2bw2,...,rw2w2bw2 are some possible shifts for the first structure
and w1bw1w1r, w1bw1w2r,..., w1w2bw2r,...,w2w2bw2r are some possible shifts for the second.
The shift considered at every node is the one with the minimum reduced cost.

For clarity, Figure 4.3 does not include all the possible arcs, but three examples of paths
that consider every arc type are presented: a path with a total length of 18 working time
periods and one day-off (dashed path): s− 1− 3− 5− 8− 10− 12− e, a path with a total
length of 15 time periods and two days-off in a row (dotted path): s− 2− 4− 6− 8− 13− e
and path with a total length of 15 time periods and two nonconsecutive days-off (bold path):
s− 3− 7− 9− 11− 14− e.
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Figure 4.3 Ge(N ,A) over a planning horizon of seven days.

Two processes are considered in the solution method for the tour composition: a graph
preprocessing and the solution of a shortest path problem with resource constraints (SPPRC).
The aim of the graph preprocessing is to reduce the size of the tour graph Ge(N ,A) by
deleting nodes that are similar to each other. Therefore, a node vk ∈ N is deleted if it is
dominated by a node vk′ ∈ N , k

′ 6= k. Considering the above, vk′ dominates vk if both nodes
represent shifts starting the same day, if both cover the same number of time periods and if
the cost of vk′ is lower than the cost of vk. Note that the preprocessing step allows to solve
the pricing subproblems in a fast but heuristic way, since some nodes that could be in the
optimal solution of the SPPRC are deleted. Therefore, to guarantee the optimality of the
column generation approach, when no more columns with negative reduced cost can be found,
we call the pricing subproblems once again, this time without performing the preprocessing
step, and solve the SPPRC with the complete graph.
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To solve the shortest path problem with resource constraints, we implemented a label setting
algorithm where the total length of the tour and the number of working days are global
resources that are consumed by the labels while they are extended. In order to avoid exploring
paths that in some point will be infeasible or dominated, we included pruning strategies
related to bounds, the consumption of global resources and the dominance property between
labels. The pseudocode of the algorithm and its description are presented in Appendix B.

4.5.3 Branching Rule

Let e1 be the employee such that one of its variables xe1t holds the largest fractional value
in the optimal LP solution at the node under evaluation. Let e2 be the employee such that
one of its variables xe2t1 holds the the second largest fractional value, therefore xe1t ≥ xe2t1 .
Let xe2t2 be the variable holding the second largest fractional value for employee e2, hence
xe2t1 ≥ xe2t2 . The branching rule used for the Tour-based formulation is an aggressive variable
fixing strategy combined with the rule presented for the Daily-based formulation. At each
node of the B&P tree, we choose employees e1 and e2, fix to one variable xe1t for e1 and select
two tours, t1 and t2, for e2 corresponding to variables xe2t1 and xe2t2 to apply the branching rule
presented in Section 4.4.3.

4.6 Computational Experiments

In this section, we present the computational experiments to test the performance of the B&P
algorithms. First, we generate random instances to test and compare the algorithms. Second,
since no method has been proposed in the literature to solve personalized multi-activity
tour scheduling problems, we test the Tour-based B&P algorithm for the mono-activity tour
scheduling problem introduced by Brunner and Bard [17].

4.6.1 Results on Random Instances

We perform the computational experiments on several random instances that are generated
as follows. We start creating a set of feasible schedules for each employee to randomly choose
one. From these schedules, we derive the associated demand profile along the planning hori-
zon. Undercovering and overcovering of employee requirements are generated by randomly
adding or removing demand. All instances are defined over a one-week planning horizon
where days are divided into 96 time periods of 15 minutes and shifts are not allowed to span
from one day to another (discontinuous version of the problem). The number of working
days in the tour should fall between 5 and 6 and the tour length should fall between 35 and
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40 working hours per week. Activities have a minimum and a maximum length that range
between 2 and 24 time periods, depending on the instance. Each tour has an associated cost
corresponding to the sum of the costs of performing activity j at time period i plus the sum
of transition costs ctr between work activities. Instances are divided into three groups and
are labeled with the format E_J_D_V_G where E, J, D, V and G represent the number of em-
ployees, number of activities, length of the planning horizon in days, version of the instance
and group, respectively. The instances and the productions used in the grammars to create
the shifts are described as follows, where: sd and ed are the first and last time periods in day
d with demand greater than zero, respectively; al and au are the minimum and maximum
length of activity a, respectively; Ae is the set of skills of employee e, and artificial activity
r represents either a break or a rest time period.

G1: Instances with flexible start times and three types of shifts

In this group of instances, shifts may start at any time period of the day allowing enough
time to complete its length and three types of shifts are considered: 9-hour shifts with a
1-hour lunch break in the middle, 4-hour and 6-hour shifts without breaks.

S[sd,ed] → RPR |RFR |RQR | PR |RP | FR |RF |QR |RQ;
P[16,16]

ctr→ JjJj̄|Jj, ∀j ∈ Ae;
Q[24,24]

ctr→ JjJj̄|Jj, ∀j ∈ Ae;
F → PLP ;
Ja[al,au] → J

′
a, ∀a ∈ Ae;

J
′
a → a|aJ ′a, ∀a ∈ Ae;
Jj̄ → Jj′ , ∀j ∈ Ae, ∀j

′ ∈ Ae\{j};
Jj̄

ctr→ Jj′Jj̄′ , ∀j ∈ Ae, ∀j
′ ∈ Ae\{j};

R→ r|rR;
L[4,4] → r|rR.

G2: Instances with flexible start times and two types of shifts

In this group, we allow flexibility in terms of shift start time, meaning that shifts may start
at any time period of the day and two types of shifts are considered: 9-hour shifts with a
1-hour lunch break in the middle and 4-hour shifts without breaks.

S[sd,ed] → RPR |RFR | PR |RP | FR |RF ;
P[16,16]

ctr→ JjJj̄|Jj, ∀j ∈ Ae;
F → PLP ;
Ja[al,au] → J

′
a, ∀a ∈ Ae;
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J
′
a → a|aJ ′a, ∀a ∈ Ae;
Jj̄ → Jj′ , ∀j ∈ Ae, ∀j

′ ∈ Ae\{j};
Jj̄

ctr→ Jj′Jj̄′ , ∀j ∈ Ae, ∀j
′ ∈ Ae\{j};

R→ r|rR;
L[4,4] → r|rR.

G3: Instances with restricted start times and three types of shifts

In this third group of instances, shifts cannot start at any time period, therefore a set of start
times is considered. Three types of shifts are generated: 9-hour shifts with a 1-hour lunch
break in the middle, 4-hour and 6-hour shifts without breaks. The start times are 1, 17, 33,
49 and 61.

S[36,36] → PR |QR | F ;
P[16,16]

ctr→ JjJj̄|Jj, ∀j ∈ Ae;
Q[24,24]

ctr→ JjJj̄|Jj, ∀j ∈ Ae;
F → PLP ;
Ja[al,au] → J

′
a, ∀a ∈ Ae;

J
′
a → a|aJ ′a, ∀a ∈ Ae;
Jj̄ → Jj′ , ∀j ∈ Ae, ∀j

′ ∈ Ae\{j};
Jj̄

ctr→ Jj′Jj̄′ , ∀j ∈ Ae, ∀j
′ ∈ Ae\{j};

R→ r|rR;
L[4,4] → r|rR.

Since restricted start times are being considered, in this grammar sd = ed = 36 represents
the maximum allowed shift length (9-hour shifts) and not the first and last time period with
demand greater than zero. Observe that the same set of productions are used to generate
the shifts for each start time.

Table 4.1 presents the average size of the graphs for the instances with flexible and restricted
start times. The name of the instance is presented in Column 1. Column 2 shows the
average number of nodes in the DAG Γ for each employee at every day in the planning
horizon. Columns 3 and 4 present the average number of nodes and arcs in graph Ge(N ,A).
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Table 4.1 Average number of nodes and arcs in the graphs for instances with flexible and
restricted start times.

Instance Nodes DAG Γ Nodes G(N ,A) Arcs G(N ,A)
20_1_7_1_G1 6,980 998 291,606
20_1_7_2_G1 11,899 1,496 627,300
25_1_7_1_G1 7,006 1,001 292,689
25_1_7_2_G1 11,998 1,505 633,753
40_1_7_1_G1 7,006 1001 292,689
40_1_7_2_G1 11,998 1,505 633,753
20_3_7_1_G2 24,802 652 124,072
20_3_7_2_G2 19,420 983 270,476
20_3_7_3_G2 19,147 972 265,352
20_1_7_1_G3 300 63 1,215
20_1_7_2_G3 300 96 2,700
25_1_7_1_G3 300 63 1,215
25_1_7_2_G3 300 105 3,141
40_1_7_1_G3 300 63 1,215
40_1_7_2_G3 300 105 3,141
20_3_7_1_G3 3,918 63 1,215
20_3_7_2_G3 1,851 101 2,906
20_3_7_3_G3 1,851 99 2,802
20_5_7_1_G3 1,131 53 1,127
20_5_7_2_G3 1,154 51 1,007
20_5_7_3_G3 1,379 84 2,285

The computational experiments were performed on a 64-bit GNU/Linux operating system, 96
GB of RAM and 1 processor Intel R© Xeon R© X5675 running at 3.07GHz. The B&P algorithms
were implemented in C++ using the object-oriented branch-and-bound library (OOBB) de-
veloped by Crainic et al. [32]. The RMP was solved by using the barrier method of CPLEX
version 12.5.0.1.

Solution at the Root Node.

Tables 4.2 - 4.3 show the computational effort, at the root node, for the B&P algorithms for
the proposed formulations: the Daily-based formulation (FS̃) and the Tour-based formulation
(FT̃ ) for instances with flexible and restricted start times, respectively. We report the value
(LP val.) and the required time in seconds (CPU time), to solve the LP relaxation of
the RMP. The difference between the lower bound of FT̃ against the lower bound of FS̃ is
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presented in Column 6.

According to the results, FT̃ achieved better lower bounds for all the 21 instances when
compared with FS̃ . It is worth noting that the difference between lower bounds tends to
increase as the problem flexibility increases. This can be seen in the results where the average
LB difference for instances in G1-G2 (flexible start time) is 3.79%, while the average LB
difference for instances in G3 (restricted start time) is 1.77%. Regarding the computational
time to solve the LP relaxation at the root node, the Daily-based formulation shows a better
performance in 15 out of 21 instances and, as expected, results also show that the average
computational time of both formulations increases as the number of activities or employees
grow.

The reason for the differences in the time performance for both formulations is mainly due to
the structure of the pricing subproblems. Subproblems of FS̃ only deal with the composition
of daily shifts, while subproblems in FT̃ handle the composition of daily shifts and the
assembling of tours. However, as it will be shown in the computational results for the B&P,
it is worth to invest more time in the solution of the root node if the lower bounds obtained are
better, especially when the model exhibits symmetry that makes difficult to prove optimality
due to many equivalent solutions.

Table 4.2 Computational effort to solve the LP relaxation at the root node, for instances
with flexible start times.

Tour-based Daily-based
Instance LP val. CPU time LP val. CPU time LB Dif.
20_1_7_1_G1 52,080 21.02 50,080 24.72 3.84%
20_1_7_2_G1 49,440 30.84 47,440 18.20 4.05%
25_1_7_1_G1 60,560 16.10 58,060 33.47 4.13%
25_1_7_2_G1 72,660 6.03 70,160 32.51 3.44%
40_1_7_1_G1 100,410 10.52 96,410 52.64 3.98%
40_1_7_2_G1 98,390 89.17 94,390 52.95 4.07%
20_3_7_1_G2 55,270 185.11 53,195 70.20 3.75%
20_3_7_2_G2 60,120 133.69 58,045 54.36 3.45%
20_3_7_3_G2 60,450 97.80 58,375 51.51 3.43%
Average - 65.60 - 49.40 3.79%
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Table 4.3 Computational effort to solve the LP relaxation at the root node, for instances
with restricted start times.

Tour-based Daily-based
Instance LP val. CPU time LP val. CPU time LB Dif.
20_1_7_1_G3 82,825 3.59 82,145 0.68 0.82%
20_1_7_2_G3 64,675 4.4 63,775 1.79 1.39%
25_1_7_1_G3 99,995 2.83 98,732.5 0.91 1.26%
25_1_7_2_G3 72,660 1.31 70,160 3.03 3.44%
40_1_7_1_G3 202,050 1.35 198,050 1.99 1.98%
40_1_7_2_G3 117,677 9.49 116,280 6.84 1.19%
20_3_7_1_G3 73,440 61.05 71,440 7.69 2.72%
20_3_7_2_G3 61,655.5 130.6 59,635.6 17.32 3.28%
20_3_7_3_G3 63,575 86.61 61,560 15.89 3.17%
20_5_7_1_G3 95,078.3 509.53 94,865.6 8.44 0.22%
20_5_7_2_G3 93,962.2 156.92 93,280.1 10.25 0.73%
20_5_7_3_G3 131,824 126.63 130,432 12.22 1.06%
Average - 91.2 - 7.25 1.77%

We tested a heuristic approach in which the MIP version of the problem, including only the
set of generated columns at the root node, was solved by a state-of-the-art B&B code. Tables
4.4 - 4.5 present the best upper bound found (IP RMP) and the computational time required
(CPU time) to find it, for the Tour-based formulation and the Daily-based formulation on
instances with flexible start time and restricted start time, respectively. The value of the
integrality gap for both formulations is computed as: (IP RMP - LP val.)

IP RMP and reported in Columns
4 and 7. We set a time limit of 600 sec. or a relative MIP gap tolerance of less than 1% to
solve the problem when the integrality constraints are considered.
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Table 4.4 Computational effort to find an upper bound at the root node, for instances with
flexible start times.

Tour-based Daily-based
Instance IP RMP CPU time Gap IP RMP CPU time Gap
20_1_7_1_G1 52,080 0.29 0.00% 52,280 10.51 4.21%
20_1_7_2_G1 49,660 0.16 0.44% 49,640 100.77 4.43%
25_1_7_1_G1 60,560 0.59 0.00% 60,760 38.09 4.44%
25_1_7_2_G1 72,660 0.29 0.00% 73,100 27.36 4.02%
40_1_7_1_G1 100,850 0.25 0.44% 100,810 49.89 4.36%
40_1_7_2_G1 98,940 1.35 0.56% 98,990 551.02 4.65%
20_3_7_1_G2 57,625 600 4.09% 55,380 89.97 3.94%
20_3_7_2_G2 62,350 600 3.58% 60,450 264.32 3.98%
20_3_7_3_G2 62,050 600 2.58% 60,700 116.32 3.83%
Average - 200.33 1.30% - 138.69 4.21%

Table 4.5 Computational effort to find an upper bound at the root node, for instances with
restricted start times.

Tour-based Daily-based
Instance IP RMP CPU time Gap IP RMP CPU time Gap
20_1_7_1_G3 82,860 0.07 0.04% 83,280 0.65 1.36%
20_1_7_2_G3 65,280 1.51 0.93% 65,040 9.18 1.94%
25_1_7_1_G3 100,380 0.64 0.38% 100,650 3.46 1.90%
25_1_7_2_G3 73,100 0.3 0.60% 72,860 2.02 3.71%
40_1_7_1_G3 202,250 0.03 0.10% 203,450 1.45 2.65%
40_1_7_2_G3 118,170 0.97 0.42% 118,170 13.50 1.60%
20_3_7_1_G3 76,030 600 3.41% 74,070 7.16 3.55%
20_3_7_2_G3 65,445 600 5.79% 62,245 45.20 4.19%
20_3_7_3_G3 67,330 600 5.58% 64,285 59.45 4.24%
20_5_7_1_G3 102,170 600 6.94% 96,035 9.30 1.22%
20_5_7_2_G3 102,860 600 8.65% 94,690 11.40 1.49%
20_5_7_3_G3 137,135 600 3.87% 133,430 55.74 2.25%
Average - 300.29 3.06% - 18.21 2.51%

According to the results, the Tour-based formulation achieved better solution times for all
the 12 mono-activity instances when compared to the Daily-based formulation. On the other
hand, the Daily-based formulation had a better performance as the number of activities grow.
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Observe that if feasible integer solutions are required for multi-activity problems, avoiding
the B&P process and using only the variables generated at the root node with the Daily-
based formulation could be a good option. On the contrary, as shown by the results of the
next section, if the objective is to solve the problems to optimality, a B&P algorithm should
be used taking advantage of the formulation with the best lower bound, in this case the
Tour-based formulation.

Branch-and-Price.

Tables 4.6 - 4.7 show the results of the B&P algorithm for the instances with flexible start
time and restricted start time, respectively, with both formulations, the Tour-based formula-
tion and the Daily-based formulation. Columns 2 and 6 present the value of the best integer
solution found. Columns 3 and 7 report the total computational time required to find the
integer solutions, while Columns 4 and 8 contain the number of nodes explored in the B&P
trees. Finally, Columns 5 and 9 show the value of the integrality gap (defined as the percent-
age difference between the best upper bound minus the best lower bound). The algorithm
stops when the gap is less than 1% or when the total time reaches one hour. The search
strategy used was a depth-first search where the upper bound of the algorithm was initialized
with the heuristic integer solution found at the root node.

For the Tour-based formulation, our method was able to find high-quality integer solutions
for all the instances in the three groups. All the mono-activity instances were closed with the
heuristic at the root node in less than two minutes. On the contrary, for the multi-activity
instances, it was necessary to explore several nodes in the B&P tree to find integer solutions
with an integrality gap less than 1%. Note that, as can be seen in the results for instances
with five activities, the computational time and the number of nodes explored in the B&P
tree increase with the number of activities. The average integrality gap for instances in G3
is the highest among the three groups, with a value of 0.56%.

On the other hand, the B&P algorithm implemented for the Daily-based formulation did not
have a good performance when tested with the three groups of instances. The algorithm was
not able to improve, within one hour time limit, the integer solution found at the root node,
and when compared with the Tour-based formulation, it only achieved better integer solutions
in 2 out of 21 instances. As a result, if the objective is to find near optimal solutions, the Tour-
based formulation could be considered stronger because it exhibits a better LP relaxation
bound that makes easier to close the integrality gap.
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Table 4.6 Computational effort in the B&P algorithm for instances with flexible start times.

Tour-based Daily-based

Instance
IP CPU Nb.

Gap
IP CPU Nb.

Gap
val. time Nodes val. time Nodes

20_1_7_1_G1 52,080 21.31 1 0.00% 52,280 3,600 777 4.21%
20_1_7_2_G1 49,440 31 1 0.44% 49,640 3,600 229 4.43%
25_1_7_1_G1 60,560 16.69 1 0.00% 60,760 3,600 369 4.44%
25_1_7_2_G1 72,660 6.32 1 0.00% 73,100 3,600 545 4.02%
40_1_7_1_G1 100,520 10.77 1 0.44% 100,810 3,600 217 4.36%
40_1_7_2_G1 98,390 90.52 1 0.56% 98,990 3,600 57 4.65%
20_3_7_1_G2 55,380 2366.81 39 0.20% 55,380 3,600 51 3.95%
20_3_7_2_G2 60,120 1735.07 35 0.00% 60,450 3,600 159 3.98%
20_3_7_3_G2 60,780 1507.83 39 0.54% 60,700 3,600 33 3.83%
Average - 643 13 0.24% - 3,600 271 4.20%

Table 4.7 Computational effort in the B&P algorithm for instances with restricted start times.

Tour-based Daily-based

Instance
IP CPU Nb.

Gap
IP CPU Nb.

Gap
val. time Nodes val. time Nodes

20_1_7_1_G3 82,860 3.66 1 0.04% 83,280 3,600 615 1.36%
20_1_7_2_G3 64,730 5.91 1 0.93% 65,040 3,600 677 1.94%
25_1_7_1_G3 100,250 3.47 1 0.38% 100,650 3,600 703 1.9%
25_1_7_2_G3 72,660 1.61 1 0.6% 72,860 3,600 1055 3.71%
40_1_7_1_G3 202,050 1.38 1 0.1% 203,450 3,600 971 2.65%
40_1_7_2_G3 117,730 10.46 1 0.42% 118,170 3,600 1393 1.6%
20_3_7_1_G3 73,625 1,070.66 39 0.25% 74,070 3,600 1113 3.55%
20_3_7_2_G3 62,125 1,408.06 37 0.76% 62,245 3,600 405 4.19%
20_3_7_3_G3 63,950 1,370.42 37 0.59% 64,285 3,600 953 4.24%
20_5_7_1_G3 95,890 2,033.89 41 0.85% 96,035 3,600 465 1.22%
20_5_7_2_G3 94,800 2,256.76 127 0.88% 94,690 3,600 431 1.49%
20_5_7_3_G3 133,035 1,929.55 91 0.91% 133,430 3,600 410 2.25%
Average - 841.32 32 0.56% - 3,600 766 2.51%
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4.6.2 Results on Instances From Brunner and Bard [17]

This mono-activity problem consists of a discontinuous tour scheduling problem over one
week with two types of employees: full time workers (Reg) and part time workers (Flex). In
the problem, each day is divided into 48 time periods of 30 minutes each. Each Reg employee
must be given an 8.5-hour shift on each working day and the starting time of shifts can vary
by day (nine start times). In contrast, Flex employees can be assigned to one of five shift
types ranging from 4 to 8.5 hours, which can have different starting times (12 start times).
If an employee works 6 hours or more a day, its assigned shift must have a 0.5-hour lunch
break.

In Brunner and Bard [17], the master problem is based on a set covering model that seeks to
minimize the total cost of the tours plus the undercovering cost of employee requirements.
The model guarantees that the total number of employees that are on duty cover the require-
ments for each time period during the time horizon, and that the ratio between the number
of Reg employees and the number of Flex employees is at least a given value.

Table 4.8 presents the description of the eleven scenarios analyzed. Column 1 gives the name
of the instance. Column 2 presents the value of the ratio between Reg and Flex employees.
Columns 3 and 4 specify the types of employees having shifts with flexible length and flexible
start times, respectively. Column 5 shows if shifts have a break. Additionally, tours are not
forced to have two days off in a row. The full description of the parameters to build daily
shifts and weekly tours, as well as the employee requirements are presented in the appendix
of the work in Brunner and Bard [17].

Table 4.8 Description of Brunner and Bard [17] problem’s scenarios.

Instance Ratio Flex_length Flex_start Breaks
B1 4 Flex No Yes
B2 4 No Flex Yes
B3 4 Flex Flex Yes
B4 4 Flex Reg,Flex Yes
B5 4 No Flex No
B6 4 Flex Flex No
B7 4 Flex Reg,Flex No
B8 1 Flex Reg,Flex No
B9 2 Flex Reg,Flex No
B10 3 Flex Reg,Flex No
B11 5 Flex Reg,Flex No

Table 4.9 shows the output statistics for the Tour-based formulation and the model presented
in Brunner and Bard [17], now called Brunner’s model. Since the number of employees is not
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known, the Daily-based formulation cannot be used in the context of this problem because
tours are composed for each employee through constraints (4.3)-(4.6). In the same way,
the proposed B&P algorithm cannot be used in the context of this problem, because the
branching rule is based on employee branching. That is why we decided to solve the Tour-
based formulation with the root node heuristic presented in Section 4.6.1, where we observed
a good performance on mono-activity instances (average integrality gap of 0.33% in less than
2 sec. of computational time). Columns 2 and 4 present the IP value at the root node
for the eleven instances evaluated with the Tour-based formulation and Brunner’s model,
respectively. As it was done in Brunner and Bard [17] we set a time limit of 300 sec. to solve
the IP at the root node. Columns 3 and 5 show the total CPU time in sec. required to solve
the LP relaxation and to obtain the IP value for both formulations. Finally, the value of the
best IP solution found with the B&P algorithm presented in Brunner and Bard [17] and the
total computational time in seconds to obtain that value are reported in Columns 6 and 7,
respectively.

Table 4.9 Computational effort at the root node to solve the integer problem.

Tour-based Brunner’s model
Instance IP val. CPU time IP val. CPU time Best IP val. Total time
B1 95,944 303.95 95,864 488.06 95,640 2,882.39
B2 95,120? 304.34 95,640 496.62 95,120 5,743.36
B3 95,056? 331.24 95,832 492.20 95,120 14,428.84
B4 94,960? 341.52 95,920 406.75 95,456 6,293.98
B5 93,442.5 365.60 93,402.5 348.35 93,282.5 2,514.85
B6 93,290.5? 342.93 93,426.5 322.10 93,322.5 1,909.29
B7 93,266.5 304.50 93,298.5 322.93 93,178.5 1,871.9
B8 83,501? 323.80 84,421 331.44 84,061 1,853.11
B9 88,295? 340.10 88,727 342.46 88,439 1,919.47
B10 90,967.5? 344.34 91,135.5 335.27 90,999.5 1,891.51
B11 94,812.5 321.32 94,964.5 316.10 94,796.5 1,860.59
Average - 329.42 - 382.02 - 3,924.48

From Table 4.9, we can conclude that the Tour-based formulation shows competitive solution
times when compared with Brunner’s model. Regarding the quality of the solution (IP
value obtained) the star (?) in Column 2 means that our model was able to achieve, in less
than 6 minutes, the same or a better integer solution than the one reported as the best in
Brunner and Bard [17], where the computational time to find this value was more than 30
minutes for all the instances (values reported in Column 7). Regarding the problem difficulty,
Brunner and Bard [17] found that the instances with a lunch break were the most difficult
to solve (instances B1 to B4) and that the time tended to decrease when more flexibility was
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introduced in the model. On the contrary, we did not observe any significant change in the
execution time when considering either more flexibility or breaks.

4.7 Concluding Remarks

In this paper we introduced two B&P algorithms to solve the personalized multi-activity tour
scheduling problem. Two formulations were presented in which the master problem is mod-
eled as a generalized set partitioning problem. With respect to the pricing subproblems, in
the Daily-based formulation, columns (daily shifts) are modeled using context-free grammars.
In the Tour-based formulation, columns (tours) are built with an exact two-phase procedure.
In the first phase, daily shifts are modeled by using context-free grammars, where in the
second phase, the daily shifts are assembled into tours by using a shortest path algorithm
with resource constraints.

Although our computational experiments suggest that the Daily-based formulation finds
solutions for the LP relaxation at the root node in a shorter execution time when compared
with the Tour-based formulation, we show that the second formulation is stronger in terms
of its LP relaxation lower bound.

Two methods were tested to find integer solutions. A heuristic approach in which we impose
the integrality constraints at the root node and an exact approach corresponding to a B&P.
The Daily-based formulation exhibited better solution times than the Tour-based formula-
tion for the heuristic approach. On the other hand, the Tour-based formulation had a better
performance in the exact approach being able to find, within 1 hour, integer solutions for
all the instances with an integrality gap lower than 1%. We also tested the Tour-based for-
mulation on a mono-activity problem presented in Brunner and Bard [17]. The experiments
suggested that the solution times and quality of our formulation are comparable with the
solution times and quality reported by Brunner and Bard [17].

Despite the ability of our models to handle complex work rules, convergence and scalability
issues arise when the number of employees and activities increase. One solution to this prob-
lem could be to implement an implicit model in order to avoid the dimension associated with
the number of employees. Another option might be to implement new branching strategies
related to the shift length in order to reduce the number of nodes explored in the B&P tree
and reach integrality in a shorter time.
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CHAPTER 5 ARTICLE 2: COMBINING BENDERS DECOMPOSITION
AND COLUMN GENERATION FOR MULTI-ACTIVITY TOUR

SCHEDULING

Explicit approaches for the MATSP begin to suffer from scalability and symmetry issues
when the number of employees and work activities increase. In this chapter of the thesis,
we present an approach that combines BD and CG approaches to solve the anonymous
MATSP in a discontinuous environment. The model, decomposable by days, consists of
a Benders master problem and a set of Benders daily subproblems. The Benders master
problem includes the variables associated with employee tours and with daily shifts shells
(shifts without activity and break allocation). The Benders subproblems include the variables
related to the allocation of work activities and breaks to daily shifts and to the undercovering
and overcovering of employee requirements. Since the number of feasible tours might be too
large to be completely enumerated, we propose to solve the Benders master problem by CG.
New columns for the Benders master problem are generated with a label setting algorithm for
the resource-constrained shortest-path problem over a directed acyclic graph, where the set
of nodes correspond to daily shift shells and the set of arcs correspond to feasible connections
between shifts, made according to the rules for the allocation of days-off and to the rest time
between shifts. Since one of the goals of the method is to eliminate the problems related to
the employee dimension, the Benders subproblems were modeled with the implicit grammar-
based IP model presented in Côté et al. [30]. In the model, a grammar is built at each day
by including the work rules for the composition of shifts and the allocation of work activities
and breaks to the shifts. From each grammar, a directed acyclic graph (DAG), containing
all the possible set of shifts, is derived. Finally, the logical clauses associated with the DAG
are translated into linear constraints on integer variables.

Since Benders primal subproblems do not possess the integrality property, we propose a new
algorithmic strategy in which, in addition to the generation of classical Benders optimality
cuts, we generate a set of valid integer Benders cuts to guarantee the convergence of the
method. We test and compare the proposed approach on two set of instances: real-world
instances and randomly generated instances for the MATSP (one-week planning horizon)
and for the MASSP (one-day planning horizon). Results on weekly instances show that our
method exhibits faster solution times and provides better upper bounds when compared with
a B&P method. Results on daily instances show that the Benders decomposition approach is
able to solve to optimality instances with up to thirty work activities and when the method
is compared with the grammar-based IP approach presented in Côté et al. [30], it shows
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competitive and often better solution times.

The next article was submitted to Management Science in October 2015.
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Generation for Multi-Activity Tour Scheduling

María I. Restrepo
Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation, CIRRELT
Département de mathématiques et de génie industriel, Polytechnique Montréal, Montréal, Canada

Bernard Gendron
Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation, CIRRELT
Département d’informatique et de recherche opérationelle, Université de Montréal, Montréal, Canada

Louis-Martin Rousseau
Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation, CIRRELT
Département de mathématiques et de génie industriel, Polytechnique Montréal, Montréal, Canada

Abstract. This paper presents a method that combines Benders decomposition and column
generation to solve the multi-activity tour scheduling problem. The Benders decomposition
approach iterates between a master problem that links daily shifts with tour patterns and
a set of daily subproblems that assign work activities and breaks to the shifts. Due to its
structure, the master problem is solved by column generation. We exploit the expressive-
ness of context-free grammars to model and solve the Benders subproblems. Computational
results show that our method outperforms a branch-and-price approach and is able to find
high-quality solutions for weekly instances dealing with up to ten work activities. The adap-
tation of the method to the shift scheduling problem (the special case defined on a single
day) is also shown to outperform the solution of a grammar-based model by a state-of-the-art
mixed-integer programming solver on instances with up to 30 work activities.

Keywords. Multi-activity tour scheduling problem, Benders decomposition, Column gen-
eration, Context-free grammars.

5.1 Introduction

In this paper, we consider the multi-activity tour scheduling problem (MATSP), when em-
ployees have the same skills and shifts do not span over several days (the anonymous dis-
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continuous version of the problem). In the MATSP, tours (or working schedules) are defined
over a planning horizon of at least one week, where each day is divided into time periods
of equal length. For each time period, it must be specified if a work activity, a break or a
rest period is performed. Multi-activity daily shifts are characterized by their start time,
working length, break allocation and activity placement at any time period, while tours are
defined by their working length, number of working days and consecutiveness in the days-off.
The composition of daily shifts and tours is usually constrained by work rules and employee
agreements. The objective of the MATSP is to determine a minimum cost set of tours and
to assign them to each employee, so that staff requirements are guaranteed for each work
activity at each time period in the planning horizon.

Tour scheduling problems (including shift scheduling problems, their special cases defined
on a single day) have been typically modeled using two different approaches: explicit and
implicit models. In explicit models, each feasible working schedule is represented by an integer
variable. These models allow to consider a high degree of flexibility with the drawback that
the resulting problem is difficult to solve, due to the large number of variables involved in
the formulation. On the contrary, implicit models compromise model flexibility seeking to
reduce the size of the problem by defining variables that implicitly represent feasible working
schedules. In shift scheduling problems, implicit variables represent shift and break types.
In tour scheduling problems, implicit variables represent work and non-work days across the
planning horizon, daily start times, daily end times and breaks.

Both explicit and implicit models for tour scheduling problems become computationally elu-
sive as the problem size increases. Decomposition methods, in particular column generation
(CG) and Benders decomposition (BD), arise as interesting approaches to efficiently solve
tour scheduling problems. As we will see in Section 5.2, the literature shows examples of such
decomposition methods, but only for simplified versions of scheduling problems with multi-
ple activities, where flexibility regarding shift and tour composition is usually limited. Such
simplifications might lead to unrealistic versions of the problem. For instance, when days-off
are fixed, the problem simplifies to a multi-day problem, which is easier to solve, since some
of the constraints characterizing the feasibility of schedules over multiple days do not have
to be guaranteed. By considering flexibility regarding shift and tour composition, realistic,
but complex, problems arise. In particular, when there is a large number of employees or
activities, these problems do not scale well.

In this paper, we propose a BD method for the anonymous discontinuous MATSP, which
is particularly well-suited for solving large-scale instances arising from practical problems.
We take advantage of the block-angular structure of the problem, decomposable by days.
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The variables corresponding to tour patterns are represented in the Benders master problem
and linked with variables related to daily shifts. Due to its structure that involves a large
number of tour-based variables, the Benders master problem is solved by a CG method,
where flexibility regarding shift start time, shift length, tour length and days-off is included.
Regarding the Benders subproblems, we exploit the expressiveness of context-free grammars
and use an implicit mixed-integer programming (MIP) model that captures all the rules for
the composition of shifts in a compact way. The allocation of work activities and breaks to
daily shifts is handled at the subproblem level.

Our contributions are threefold:

• We propose a new model for the anonymous discontinuous MATSP that combines
an explicit tour scheduling modeling approach with an implicit grammar-based shift
scheduling formulation.

• We develop an innovative decomposition method that combines BD and CG. In par-
ticular, the Benders subproblems are MIP models that do not possess the integrality
property. Thus, in addition to classical Benders cuts [14], the method generates in-
teger Benders cuts to guarantee the convergence to an optimal solution under mild
conditions.

• By performing computational experiments on a large set of weekly instances with up
to ten work activities, we show that our method is able to find high-quality solutions
and outperforms a recently proposed branch-and-price (B&P) algorithm for the per-
sonalized (i.e., employees have different skills) discontinuous MATSP [76]. In addition,
the adaptation of the method to the multi-activity shift scheduling problem is shown
to outperform the solution of a grammar-based model [30] by a state-of-the-art MIP
solver on instances with up to 30 work activities.

The paper is organized as follows. In Section 5.2, we review the relevant literature on shift
and tour scheduling problems, and we give a short introduction on the use of grammars
for multi-activity shift scheduling problems. In Section 5.3, we present our model for the
anonymous discontinuous MATSP, which is derived from a grammar-based model for multi-
activity multi-day shift scheduling problems. In Section 5.4, we describe the decomposition
method that combines BD and CG. Computational experiments are presented and discussed
in Section 5.5. Concluding remarks follow in Section 5.6.
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5.2 Background Material

We first review the literature on shift and tour scheduling problems (Section 5.2.1), focusing
in particular on multi-activity versions of these problems (Section 5.2.2). Then, Section
5.2.3 presents some background material related to the use of context-free grammars for shift
scheduling.

5.2.1 Shift and Tour Scheduling

Shift and tour scheduling problems have been extensively studied during the last few decades.
Several modeling techniques and solution methods have been proposed to tackle the different
characteristics of the problems. Ernst et al. [43, 44], Alfares [4] and Van den Bergh et al. [82]
present comprehensive surveys in which more than a thousand papers are classified according
to the type of problem, the application area and the solution method.

The first author to introduce an explicit model for shift scheduling problems is Dantzig [34].
The model is based on a set covering formulation in which the objective is to minimize the
total labor cost, ensuring that staff requirements at every time period are met. Later, in one
of the first attempts to solve shift scheduling problems with an implicit model, Moondra [60]
proposes a method for banking operations that includes shift flexibility regarding multiple
shift lengths and start times. Meal-break placement flexibility is considered in Bechtold and
Jacobs [12], with an implicit formulation where shifts are grouped into shift types according
to their start time, length and break window. Thompson [81] combines the work of Moondra
[60] and Bechtold and Jacobs [12] to implicitly model meal breaks, but also to schedule rest
breaks and to allow the use of overtime. Aykin [5] presents an extension of Bechtold and
Jacobs’ formulation that considers multiple rest breaks, meal breaks and break windows by
introducing integer variables for the number of employees assigned to a shift and starting
their breaks at different time periods.

Jarrah et al. [50] propose an implicit model to solve a discontinuous weekly tour scheduling
problem, which is decomposed into seven daily shift scheduling subproblems. A transporta-
tion component and a post-processor are used to assign breaks to shifts and shifts to tours,
respectively. Jacobs and Brusco [49] present an implicit model that allows start time flexibil-
ity within continuous (e.g., shifts can span over multiple days) and discontinuous employee
tours, but that does not consider meal breaks. Brusco and Jacobs [20] integrate the work
of Bechtold and Jacobs [12] and Jacobs and Brusco [49] in an implicit integer programming
model that considers both start time and meal break flexibility to solve continuous tour
scheduling problems. More recently, Brunner and Bard [17] take advantage of implicit and
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explicit shift definitions to solve, with a B&P algorithm, a discontinuous tour scheduling
problem over one-week planning horizons.

CG is presented as an interesting method when the introduction of flexibility in the composi-
tion of shifts and tours is handled by explicit models that cause a considerable increase in the
number of variables (see, e.g., Mehrotra et al. [59], Ni and Abeledo [62], Brunner and Stol-
letz [18]). Although BD appears to be an appropriate method to solve large problems that
feature a special block structure, few papers addressing shift and tour scheduling problems
with this technique have appeared. Rekik et al. [72] use BD in a continuous tour scheduling
problem to prove that the forward and backward constraints introduced by Bechtold and
Jacobs [12] are valid, but do not suffice to model break-window or start time extraordinary
overlap. After conducting an extensive analysis, the authors conclude that the model derived
from BD considerably decreases the number of variables, at the cost of a small increase in
the number of constraints.

5.2.2 Multi-Activity Shift and Tour Scheduling

Implicit modeling has also been used in the context of multi-activity shift scheduling. In
particular, for the anonymous version of the problem, Côté et al. [30] propose to solve the
scalability issues identified in Côté et al. [28] by taking advantage of context-free grammars
to model the rules for the composition of daily shifts and to derive an implicit model that
addresses symmetry by using general integer variables. Computational results show that, in
the monoactivity case, solving the model with a state-of-the-art MIP solver is comparable and
sometimes superior to the results presented in the literature and that, in the multi-activity
case, this approach is able to solve to optimality instances with up to ten work activities.

Methods involving CG, BD, constraint programming (CP), formal languages, branch-and-
bound (B&B), and heuristics have also been proposed in order to solve both the multi-activity
shift scheduling problem (MASSP) and the MATSP. Demassey et al. [37] present a CP-based
column generation algorithm as a way to model complex regulation constraints to solve large
MASSP instances. Quimper and Rousseau [69] introduce a model that uses formal languages
to derive specialized graph structures that are handled via large neighborhood search for
solving the MASSP. Côté et al. [31] attempt to solve the personalized version of the MASSP
with a B&P method that uses grammars to formulate the pricing subproblems. Although
the expressiveness of grammars enables to encode a large set of work rules over shifts, some
limitations are present regarding shift total length over long planning horizons (e.g., one
week). Restrepo et al. [76] attempt to overcome these limitations by proposing two B&P
approaches that address the personalized MATSP. In the first approach, columns correspond
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to daily shifts, while in the second approach, columns correspond to tours. Although the
authors show that the second formulation is stronger in terms of its LP relaxation bound,
both formulations suffer from scalability issues when the number of employees, the number of
work activities and the flexibility increase. Dahmen and Rekik [33] propose a heuristic based
on tabu search and B&B to solve the personalized MASSP over multiple days. Although
some constraints related to the composition of feasible tours are included (e.g., minimum
and maximum number of working hours per week), days-off are previously assigned to the
employees. Detienne et al. [38] solve an employee timetabling problem, where besides using
Lagrangian relaxation and a heuristic based on a cut generation process, a BD method is
also proposed. In their work, the multi-activity case is considered, but tour patterns over
the time horizon are previously defined. Computational results suggest that the BD method
is computationally more expensive when compared with the cut generation based heuristic,
because of the large amount of time invested in solving the master problem.

The following section presents some basic concepts on the use of context-free grammars for
shift scheduling. For a more extensive review on the subject, the reader is referred to Côté
et al. [30].

5.2.3 Grammars

In a multi-day planning horizon, where D represents the set of days and d the subscript for
a given day, a context-free grammar is a tuple Gd = 〈Σd, Nd, Sd, Pd〉 where Σd is an alphabet
of characters called the terminal symbols, Nd is a set of non-terminal symbols, Sd ∈ Nd is
the starting symbol, and Pd is a set of productions represented as A → α, where A ∈ Nd

is a non-terminal symbol and α is a sequence of terminal and non-terminal symbols. The
productions of a grammar can be used to generate new symbol sequences until only terminal
symbols are part of the sequence. A context-free language is the set of sequences accepted
by a context-free grammar.

A parse tree is a tree where each inner-node is labeled with a non-terminal symbol and each
leaf is labeled with a terminal symbol. A grammar recognizes a sequence if and only if there
exists a parse tree where the leaves, when listed from left to right, reproduce the sequence.
An and/or graph is a graph where each leaf corresponds to an assignment that can either be
true or false. An and-node is true if all of its children are true. An or-node is true if one of
its children is true. The root node is true if the grammar accepts the sequence encoded by
the leaves. The and/or graph embeds every possible parse tree of a grammar.

A DAG Γd is a directed acyclic graph that embeds all parse trees associated with words of a
given length n recognized by a grammar. The DAG Γd has an and/or structure where the
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and-nodes represent productions from Pd and or-nodes represent non-terminals from Nd and
letters from Σd. The DAG Γd is built by a procedure proposed in Quimper and Walsh [71].

In the MASSP, the use of grammars allows to include work rules regarding the definition of
shifts and to handle the allocation of multiple work activities to the shifts in an easy way.
Thus, feasible shifts can be represented as words in a context-free language. For example,
words rw1w1bw2 and w1bw2w1r are recognized as valid shifts in a two-activity shift scheduling
problem where letters w1, w2, b and r represent working on activity 1, working on activity
2, break and rest periods, respectively. The time horizon consists of five time periods, shifts
have a length of four periods and must contain exactly one break of one period that can
be placed anywhere during the shift except at the first or the last period. We remove the
subscript d, since there is only one day in the planning horizon. The grammar that defines
the multi-activity shifts on this example follows:

G = (Σ = (w1, w2, b, r), N = (S, F,X,W,B,R), S, P ),
where productions P are: S → RF |FR, F → XW , X → WB, W → WW |w1|w2, B → b,
R→ r and symbol | specifies the choice of production.

In the previous example, productions W → w1, W → w2, B → b and R → r generate the
terminal symbols associated with working on activity 1, working on activity 2, having a break
or having a rest period inside of the shift, respectively. Production W → WW generates
two non-terminal symbols, W , meaning that the shift will include a working subsequence.
Production X → WB means that the shift will include working time followed by a break.
Production F → XW generates a subsequence of length four (the daily shift), which includes
working time followed by a break to finish with more working time. Finally, the last two
productions are S → RF and S → FR. The former generates a sequence starting with a
period of rest followed by the daily shift. The latter generates a sequence starting with the
daily shift followed by a period of rest.

Let Oπ
dil be the or-nodes associated with π ∈ Nd ∪ Σd, i.e., with non-terminals from Nd or

letters from Σd, that generate a subsequence at day d, from position i of length l. Note
that if π ∈ Σd, the node is a leaf and l is equal to one. On the contrary, if π ∈ Nd, the
node represents a non-terminal symbol and l > 1. AΠ,k

dil is the kth and-node representing
production Π ∈ Pd generating a subsequence at day d, from position i of length l. There are
as many AΠ,k

dil nodes as there are ways of using Pd to generate a sequence of length l from
position i during day d. The sets of or-nodes, and-nodes and leaves of day d are denoted by
Od, Ad and Ld, respectively. The root node is described by OS

d1n and its children by AΠ,k
d1n. The

children of or-node Oπ
dil are represented by ch(Oπ

dil) and its parents by par(Oπ
dil). Similarly,

the children of and-node AΠ,k
dil are represented by ch(AΠ,k

dil ) and its parents by par(AΠ,k
dil ).
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Figure 5.1 represents the DAG Γ associated with the grammar of the example (we do not
include the subscript of the day in the notation of the nodes). Dashed-line or-nodes are part
of the parse trees associated with and-node AS→RF,115 . Continuous-line or-nodes are part of
the parse trees associated with and-node AS→FR,115 .

Note that the children of the root node ch(OS
15) = {AS→RF,115 , AS→FR,115 } can be seen as shift

“shells” because they do not consider the allocation of specific work activities and breaks to
the shifts, only the shift starting time and its length. Hence, and-nodes AΠ,k

d1n are characterized
by their starting time tΠ,kd1n, working length wΠ,k

d1n, length including breaks lΠ,kd1n and finish time
fΠ,k
d1n = tΠ,kd1n + lΠ,kd1n − 1. In DAG Γ, and-node AS→RF,115 generates shifts rwbww and rwwbw,
while and-node AS→FR,115 generates shifts wbwwr and wwbwr.

5.3 Grammar-Based Model

The work of Côté et al. [30] on the anonymous MASSP is one example of the use of context-
free grammars to represent the work rules involved in the composition of shifts. The authors
present an implicit grammar-based integer programming model where the word length n

corresponds to the number of periods in the planning horizon, the set of work activities
corresponds to letters in the alphabet Σd and each employee e ∈ E is allowed to work at
any activity. In the model, the logical clauses associated with Γd are translated into linear
constraints on integer variables. Each and-node Ad and each leaf Ld in Γd are represented
by an integer variable denoting the number of employees assigned to a specific subsequence
of work.

In this section, we first present a straightforward extension of this grammar-based integer pro-
gramming model that addresses a discontinuous multi-day MASSP. This formulation is then
used as a basis for a new grammar-based model for the anonymous discontinuous MATSP.
The set of work activities is denoted by J . The planning horizon is at least one week, where
each day d ∈ D is divided into Id time periods of equal length. The notation used for the
formulation of the discontinuous multi-day MASSP is as follows:

Parameters:

bdij: staff requirements for day d, time period i and activity j;

cdij: nonnegative cost associated with one employee working on activity j, at time period
i, at day d;

c+
dij, c−dij: nonnegative overcovering and undercovering costs of staff requirements for day
d, time period i and work activity j, respectively.
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Figure 5.1 DAG Γ on words of length five and two work activities

Decision variables:

vΠ,k
dil : variable that denotes the number of employees assigned to the kth and-node, repre-
senting production Π from Γd producing a sequence from i of length l at day d;

ydij: variable that denotes the number of employees assigned to leaf Oj
di1, that represents

working on activity j, at time period i, at day d;

s+
dij and s−dij: slack variables that denote overcovering and undercovering of staff require-
ments of work activity j, at time period i, for day d, respectively.

The grammar-based formulation of the discontinuous multi-day MASSP, denoted as GS , is
as follows:
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Z(GS) = min
∑
d∈D

∑
i∈ Id

∑
j ∈ J

cdijydij +
∑
d∈D

∑
i∈ Id

∑
j ∈ J

(c+
dijs

+
dij + c−dijs

−
dij) (5.1)

ydij − s+
dij + s−dij = bdij, ∀ d ∈ D, i ∈ Id, j ∈ J, (5.2)∑

AΠ,k
dil
∈ ch(Oπ

dil
)

vΠ,k
dil =

∑
AΠ,k
dil
∈ par(Oπ

dil
)

vΠ,k
dil , ∀ d ∈ D, Oπ

dil ∈ Od \ {OS
d1n ∪ Ld},

(5.3)

ydij =
∑

AΠ,1
di1 ∈ par(O

j
di1)

vΠ,1
di1 , ∀ d ∈ D, i ∈ Id, j ∈ J, (5.4)

∑
AΠ,k
d1n ∈ ch(OS

d1n)

vΠ,k
d1n ≤ |E|, ∀ d ∈ D, (5.5)

vΠ,k
dil ≥ 0, ∀ d ∈ D, AΠ,k

dil ∈ Ad, (5.6)

s+
dij, s

−
dij ≥ 0, ∀ d ∈ D, i ∈ Id, j ∈ J, (5.7)

ydij ≥ 0 and integer, ∀ d ∈ D, i ∈ Id, j ∈ J. (5.8)

The objective of GS , (5.1), is to minimize the total staffing cost plus the penalization for
overcovering and undercovering of staff requirements. Constraints (5.2) ensure that the
total number of employees working on day d ∈ D, time period i ∈ Id and work activity
j ∈ J is equal to the demand subject to some adjustments related to undercovering and
undercovering. Constraints (5.3) guarantee, for every or-node in Γd, d ∈ D, excluding the
root node OS

d1n and the leaves Ld, that the summation of the value of its children is the same
as the summation of the value of its parents. Constraints (5.4) set the value of variables ydij
as the summation of the value of the parents of leaf nodes Oj

di1. Constraints (5.5) guarantee
that at most |E| employees are assigned to the daily shift shells (children of the root node)
at each day d. Constraints (5.6)-(5.8) set the non-negativity of variables vΠ,k

dil , s+
dij, s

−
dij and

the non-negativity and integrality of variables ydij.

The solution obtained from model (5.1)-(5.8) is implicit. As a result, a post-processing
algorithm should be used to build the individual schedules. This algorithm traverses Γd, d ∈
D, from the root node to the leaves, visiting the nodes with value greater than zero. Once a
node is visited, its value is decreased by one, and, when a leaf is reached, its value is inserted
to the current schedule at the right position (for instance, if leaf O2

151 is reached, it means
that activity 2 should be inserted at position 5 in the schedule of day 1).

Observe that model (5.1)-(5.8) does not account for the constraints characterizing the feasibil-
ity of tour patterns, namely: minimum and maximum tour length, minimum and maximum
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working days, minimum rest time between consecutive shifts and consecutiveness in the days-
off. To circumvent this issue, we define a set T containing all the feasible tour patterns that
can be built given the work rules for tour composition. In this context, we define a tour as
a combination of days-off and daily shift shells (children of root nodes OS

d1n) over the set of
days in the planning horizon. Figure 5.2 presents an example of three tours composed with
the shift shells presented in Figure 5.1. In this example, we assume that the DAG Γd for
each day d ∈ D is the same and corresponds to Γ. The planning horizon consists of seven
days, the working length should fall between 15 and 18 time periods, the number of working
days must fall between 5 and 6 and there are no rules for the allocation of days-off and for
the rest time between consecutive shifts. Additionally, S1 corresponds to and-node AS→RF,1d15

generating shifts {rwbww, rwwbw}, S2 corresponds to and-node AS→FR,1d15 generating shifts
{wbwwr,wwbwr} and Do corresponds to allocating a day-off.

Model (5.1)-(5.8) should be modified to solve the discontinuous MATSP. To this end, we
define δΠ,k

dt as a parameter that takes value 1, if tour t includes the kth children of the root
node OS

d1n built with production Π for day d, and assumes value 0 otherwise. We generate
a set of decision variables xt denoting the number of employees assigned to tour t ∈ T .
Constraints (5.9) set the link between these variables and shift shell variables vΠ,k

dil , A
Π,k
dil ∈

ch(OS
d1n). Constraints (5.5) are replaced by constraint (5.10), which guarantees that exactly

|E| employees are assigned to the set of tours T . Constraints (5.11) set the non-negativity
and integrality of tour-based variables xt.

vΠ,k
d1n =

∑
t∈T

δΠ,k
dt xt, ∀ d ∈ D, AΠ,k

d1n ∈ ch(OS
d1n), (5.9)

∑
t∈T

xt = |E|, (5.10)

xt ≥ 0 and integer, ∀ t ∈ T . (5.11)

The grammar-based model for the anonymous discontinuous MATSP, denoted as GT , is as
follows:

Z(GT ) = min
∑
d∈D

∑
i∈ Id

∑
j ∈ J

cdijydij +
∑
d∈D

∑
i∈ Id

∑
j ∈ J

(c+
dijs

+
dij + c−dijs

−
dij)

subject to (5.2)− (5.4) and (5.6)− (5.11).
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Figure 5.2 Weekly tours composed of and-nodes (shift shells) from Γ

When the number of work activities and days grow and when the problem accounts for a large
number of work rules for the composition of shifts and tours, solving GT becomes a difficult
task because of the large number of constraints and variables involved in the formulation.
Next, we present the decomposition method we propose to solve large instances of model GT .

5.4 Benders Decomposition/Column Generation Algorithm

Two ideas can be exploited in order to efficiently solve model GT . First, note that if tour-
based variables are fixed to particular values xt, t ∈ T , model GT can be decomposed by days
due to its particular block structure. The BD approach that exploits this idea is presented
in Section 5.4.1. Second, observe that tour-based variables xt do not need to be exhaustively
enumerated, since only a small subset of them will be present in an optimal solution. Section
5.4.2 describes the CG method that results from this idea. By combining these two ideas,
we obtain an exact algorithm, which is presented and analyzed in Section 5.4.3.

5.4.1 Benders Decomposition

The structure of model GT suggests to partition the set of vΠ,k
dil variables into two sets. Indeed,

due to the linking constraints (5.9), when variables xt, t ∈ T , are fixed and satisfy constraints
(5.10)-(5.11), variables vΠ,k

d1nA
Π,k
d1n ∈ ch(OS

d1n), associated with the shift shells (children of root
node OS

d1n) are also fixed. Thus, the first set contains these variables, while the second set
contains the other variables, corresponding to the and-nodes that generate a subsequence of
work from time period i, at day d of length l < n, denoted as vΠ,k

dil , A
Π,k
dil ∈ Ad \ ch(OS

d1n).
This partition of the variables of model GT is the basic idea of the proposed BD approach.
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Benders Daily Subproblems

After fixing tour-based variables to particular values xt, t ∈ T , the resulting model decom-
poses into |D| independent Benders subproblems, one for each day in the planning horizon.
Each subproblem includes the variables associated with the and-nodes in Γd and with the
allocation of work activities and breaks to the shift shells. The formulation of the Benders
primal subproblem, denoted as Q(vd) for a given day d, is as follows:

Z(Q(vd)) = min
∑
i∈ Id

∑
j ∈ J

cdijydij +
∑
i∈ Id

∑
j ∈ J

(c+
dijs

+
dij + c−dijs

−
dij) (5.12)

ydij − s+
dij + s−dij = bdij, ∀ i ∈ Id, j ∈ J, (5.13)∑

AΠ,k
dil
∈ ch(Oπ

dil
)

vΠ,k
dil =

∑
AΠ,k
dil
∈ par(Oπ

dil
)

vΠ,k
d1n , ∀Oπ

dil ∈ ch(AΠ,k
d1n) \ Ld, (5.14)

∑
AΠ,t
dil
∈ ch(Oπ

dil
)

vΠ,k
dil =

∑
AΠ,k
dil
∈ par(Oπ

dil
)

vΠ,k
dil , ∀Oπ

dil ∈ Od \ {OS
d1n ∪ Ld ∪ ch(AΠ,k

d1n)},

(5.15)

ydij =
∑

AΠ,k
di1 ∈ par(O

j
di1)

vΠ,1
di1 , ∀ i ∈ Id, j ∈ J, (5.16)

vΠ,k
dil ≥ 0, ∀ AΠ,k

dil ∈ Ad \ ch(OS
d1n), (5.17)

s+
dij, s

−
dij ≥ 0, ∀ i ∈ Id, j ∈ J, (5.18)

ydij ≥ 0 and integer, ∀ i ∈ Id, j ∈ J. (5.19)

For a given number of employees assigned to each shift shell (fixed variables vΠ,k
d1n), the ob-

jective, (5.12), of Q(vd) is to assign work activities to these shifts in order to minimize the
staffing cost plus the undercovering and overcovering of staff requirements. Constraints (5.13)
guarantee that staff requirements are met. Constraints (5.14)-(5.16) ensure that certain work
rules are guaranteed for the composition of shifts and the allocation of work activities and
breaks to the shifts. Constraints (5.17)-(5.19) set the non-negativity of variables vΠ,k

dil , s+
dij,

s−dij and the non-negativity and integrality of variables ydij.

Since variables ydij are required to be integer and Benders primal subproblems (5.12)-(5.19)
do not possess the integrality property, the classical BD approach needs to be modified to
ensure convergence to an optimal solution. First, we will generate classical Benders cuts by
relaxing the integrality constraints (5.19) on variables ydij. Second, we will generate integer
Benders cuts to guarantee the convergence of the method to an optimal solution.
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Classical Benders Cuts

Let Q(vd) denote the LP relaxation of model (5.12)-(5.19). Observe that, due to the al-
lowance of undercovering and overcovering of staff requirements, Q(vd) is always feasible.
The polyhedra that define the Benders dual subproblems are thus bounded and contain no
ray. Therefore, when Q(vd) is solved to obtain classical Benders cuts, no feasibility cuts will
be generated.

To define optimality cuts, we introduce the following notation for each day d ∈ D. Let
ρdij, γπdil be the dual variables associated with constraints (5.13) and (5.14) from Q(vd),
respectively. Let ∆d be the polyhedron obtained from the projection, over the space of
variables ρdij and γπdil, of the set of feasible solutions to the dual of model Q(vd). Let E∆d

be
the set of extreme points of ∆d. Let θd be a nonnegative variable that represents the value
of the objective of Q(vd). The Benders optimality cuts are then defined as follows:

θd ≥
∑
i∈ Id

∑
j ∈ J

ρdijbdij +
∑

Oπ
dil
∈ ch(AΠ,k

d1n)

γπdil
∑

AΠ,k
d1n∈ par(O

π
dil

)

vΠ,k
d1n, ∀ d ∈ D, (ρd, γd) ∈ E∆d

(5.20)

Optimality cuts ensure that the value of each variable θd is larger than or equal to the LP
relaxation value of its corresponding Benders daily subproblem. To derive these cuts, we
have assumed that Benders subproblems are linear programs, i.e., the integrality of variables
ydij is relaxed. The relaxation of model GT obtained by relaxing the integrality of variables
ydij can thus be reformulated as the following master problem, denoted as BT :

Z(BT ) = min
∑
d∈D

θd

subject to (5.20), (5.9)− (5.11) and

vΠ,k
d1n ≥ 0, ∀ d ∈ D, AΠ,k

d1n ∈ ch(OS
d1n).

Optimality cuts (5.20) do not need to be exhaustively generated since only a subset of them
will be active in an optimal solution. An iterative cutting plane algorithm can thus be used
to generate only the subset of cuts that will yield an optimal solution of BT . Because Benders
subproblems (5.12)-(5.19) are MIP models that do not possess the integrality property, this
cutting plane algorithm will not, in general, identify a feasible solution of GT . Therefore, a
more complex algorithmic strategy must be adopted, which is presented next.



76

Algorithmic Strategy

Consider an iterative BD approach to generate optimality cuts (5.20) where l ≥ 1 is the
index of each iteration. Let θd(l) denote the optimal values of variables θd at iteration l.
Note that ZL(l) = ∑

d∈D θd(l) is a lower bound on Z(GT ) at iteration l. Let sd(l) be the
optimal value of Benders subproblem (5.12)-(5.19) for day d at iteration l when integrality
constraints on variables ydij are relaxed. Note that ZU(l) = ∑

d∈D sd(l) is an upper bound on
Z(BT ) ≤ Z(GT ) at iteration l, which we call the approximate upper bound. Finally, let vΠ,k

d1n(l)
denote the values of the shift shell variables vΠ,k

d1n used to solve the Benders daily subproblems
corresponding to the approximate upper bound at iteration l.

The proposed algorithmic strategy iterates between three steps. In the first step, we solve
relaxation BT of GT through a classical BD method obtained by relaxing the integrality
constraints on variables ydij. When a solution of BT is found, a feasibility check (second
step) is performed in order to verify if the approximate upper bound ZU(l) is a valid upper
bound on Z(GT ). If it is the case, we stop the computations. Otherwise, the third step
will generate cuts (the integer Benders cuts to be described below) that tend to eliminate
solution vΠ,k

d1n(l) from the master problem, unless it is part of an optimal solution of GT . The
three steps are described as follows.

• First step: In this step, we solve model BT (when integrality constraints on variables ydij
are relaxed) through a classical BD approach. In particular, a classical Benders optimality
cut (5.20) is generated for each day d at each iteration l until the difference between the
approximate upper bound ZU(l) and the lower bound ZL(l) is small enough. A solution
of BT , (θd(l), sd(l), vΠ,k

d1n(l)), d ∈ D, is recovered at the end of this step.

• Feasibility check: The objective of this step is to verify if ZU(l) represents a valid upper
bound for the original problem. In particular, since integrality constraints on variables
ydij were relaxed in the first step, it might happen that the approximate upper bound
ZU(l) obtained at the end of the classical BD approach underestimates the optimal value
of the original problem, even if the first step is solved to optimality, i.e., ZU(l) = ZL(l).
Clearly, if all Benders daily subproblems corresponding to the approximate upper bound
ZU(l) have an optimal solution for which all variables ydij take integer values, then ZU(l)
is an upper bound on Z(GT ) and the computations are stopped. If this case does not
happen, we solve the MIP of each Benders daily subproblem (5.12)-(5.19) by using the
values vΠ,k

d1n(l) obtained at the end of the first step. Then, the optimal value sd(l) of each
Benders daily subproblem (5.12)-(5.19) is computed and compared with sd(l) for each day
d ∈ D. If sd(l) < sd(l) for at least one day d ∈ D, the value of ZU(l) does not represent
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a valid upper bound for the original problem and the solution vΠ,k
d1n(l) must be eliminated

from the Benders master problem BT , unless it can be shown that it is part of an optimal
solution of GT . Otherwise, if sd(l) = sd(l) for each d ∈ D, the approximate upper bound
is valid and the computations are stopped.

• Third step: This step adds an integer Benders cut to the master problem BT for each day
d ∈ D such that sd(l) < sd(l). Integer Benders cuts tend to eliminate the solution vΠ,k

d1n(l)
from model BT by changing at least one employee from its assigned shift shell to another.
The three steps are then repeated until ZU(l) is a valid upper bound on Z(GT ). The
detailed algorithm, along with its convergence analysis, are presented in Section 5.4.3.

Integer Benders Cuts

Constraints (5.5) state that the total number of employees assigned at each day d ∈ D to the
shift shells is lower than or equal to the total number of employees |E|. The slack variables in
constraints (5.5) represent the number of employees having a day-off on day d. If we denote
these variables as vRd , we have

∑
AΠ,k
d1n ∈ ch(OS

d1n)

vΠ,k
d1n + vRd = |E|, ∀ d ∈ D.

To simplify the presentation, we define a set Sd, d ∈ D, composed by the children of the root
node OS

d1n plus an element corresponding to a day-off. Variables vΠ,k
d1n, A

Π,k
d1n ∈ ch(OS

d1n), and
vRd are then rewritten as zdi, denoting the number of employees allocated to i ∈ Sd during
day d. Therefore, we have, corresponding to constraints (5.5)-(5.6), a set of feasible solutions
described by the following relations:

∑
i∈Sd

zdi = |E|, ∀ d ∈ D,

zdi ≥ 0 and integer, ∀ d ∈ D, i ∈ Sd.

In order to derive an integer Benders cut for the problem, we express each variable zdi with
|E| binary variables zedi, which take value 1 if employee e ∈ E is assigned to i ∈ Sd at day
d ∈ D, and assume value 0 otherwise. We assume that employees are ordered arbitrarily
such that E = {1, ..., |E|}. The binary variables are then defined as follows:
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∑
e∈E

zedi = zdi, ∀d ∈ D, i ∈ Sd, (5.21)

ze+1
di ≤ zedi, ∀d ∈ D, i ∈ Sd, e ∈ E \ {|E|}, (5.22)

zedi ∈ {0, 1}, ∀ d ∈ D, i ∈ Sd, e ∈ E.

Equations (5.21) guarantee, for every day d ∈ D, that the sum of the binary variables zedi is
equal to the number of employees assigned to i ∈ Sd, while (5.22) are symmetry breaking
constraints. Due to these constraints, each integer variable zdi has a unique representation
in terms of the binary variables: if zdi = m, then zedi = 1 for e ≤ m and zedi = 0 for e > m.
As a consequence, any solution representing an assignment of shifts (work or rest) on day d
to |E| employees is represented uniquely with the binary variables zedi.

Let zedi(l) be the value of variable zedi corresponding to the current solution vΠ,k
d1n(l) for day

d and Bd(l) = {(i, e) ∈ Sd × E | zedi(l) = 1}. Since the objective is to eliminate the current
solution vπ,kd1nl by swapping at least one employee from its assigned shift (work or rest) to a
different one, the integer Benders cut for a given day d, is as follows:

θd ≥ sd(l)

1 +
∑

(i,e)∈Bd(l)

zedi − |E|

 . (5.23)

Because the value of θd is to be minimized, this constraint tends to eliminate the current
shift shell assignment on day d, since the value of the right-hand side is then maximized
and is equal to sd(l), the value of the Benders daily subproblem Q(vd). For any other
shift shell assignment on day d, this constraint is trivially valid, since the right-hand side
is then nonpositive. This optimality cut exploits the fact that exactly |E| binary variables
take value 1 and is similar to other types of cuts based on 0-1 variables used in variants
of Benders decomposition, such as integer L-shaped [54], logic-based Benders decomposition
[48] and combinatorial Benders decomposition [27].

5.4.2 Column Generation

In model BT , it is assumed that the complete set of tours T is known. However, with the
incorporation of shift and tour flexibility, the complete enumeration of the set of feasible tours
might be intractable. Therefore, we propose a CG method in which the master problem is
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defined as the LP relaxation of model BT over a restricted set of tours T̃ ⊆ T . The CG
method alternates between this master problem and a pricing subproblem. The variables are
generated iteratively by the pricing subproblem according to their reduced cost.

Pricing Subproblem for Tour Generation

Let λΠ,k
d1n and σ be the dual variables associated with constraints (5.9) and (5.10), respectively.

The reduced cost ct of column (tour) t is given by:

ct =
( ∑
d∈D

∑
AΠ,k
d1n ∈ ch(OS

d1n)

λΠ,k
d1nδ

Π,k
dt

)
− σ. (5.24)

Expression (5.24) corresponds to the objective function to be minimized in the pricing sub-
problem, whose goal is to build tours that meet the work rules related to the minimum and
maximum number of working days in a tour (Λl and Λu, respectively); the minimum and
maximum working tour length in time periods (Θl and Θu, respectively); the maximum num-
ber of days-off in a tour (Φ = |D|−Λl); and the minimum rest time between two consecutive
daily shifts (β). To find these tours, we define the set S = ⋃

d∈D ch(OS
d1n) as the union, over

the set of days in the planning horizon, of all the children of root node OS
d1n, d ∈ D. Shift

shell s ∈ S inherits a set of attributes from its corresponding and-node: start period (ts),
working time (ws), length considering breaks (ls), end period (fs = ts + ls − 1) and day
(ds). In addition, we define a directed acyclic graph G(N ,A), composed by a set of nodes
N = {vs | s ∈ S ∪ {vb, ve}}, where vs corresponds to shift shell s and vb, ve are the source
and sink nodes, respectively. The set of arcs A, is divided into three types: arcs going from
the source node to a shift shell node A1 = {(vb, vs) | vs ∈ N , ds ≤ Φ + 1}; arcs connecting
two shift shell nodes A2 = {(vs, vs′ ) | vs, vs′ ∈ N , s 6= s

′
, ts′ − fs ≥ β, ds′ − ds ≤ Φ + 1}; and

arcs connecting a shift shell node to the sink, A3 = {(vs, ve) | vs ∈ N , ds ≥ Λl}.

Each node in graph G(N ,A) has, besides a list of immediate successors N (vs) = {vi ∈
N|(s, i) ∈ A}, a cost that represents its contribution to the reduced cost of the column. The
source node has a cost equal to zero, the sink node has a cost equal to the negative of dual
variable σ and the remaining nodes have a cost given by the corresponding value of their dual
variables λΠ,k

d1n. The list of successors of each node is generated according to the work rules for
tour composition, as expressed in the arc types definition. Thus, successors of source node
vb are nodes that, depending on their start day, allow enough time to meet the constraints
related to the minimum number of working days required in a tour. In the same way, sink
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node ve is a successor of node vs if the day associated with vs is greater than or equal to the
minimum number of working days required in a tour. Finally, a node vs′ is a successor of
node vs if its start time guarantees that there is a minimum rest time between both shifts,
and if its start day meets the constraints related to the minimum and maximum number of
days-off and their consecutiveness.

New variables (tours) for the master problem are generated by using a label setting algorithm
for the resource-constrained shortest-path problem over the directed acyclic graph G(N ,A).
In the algorithm, the total length of the tour and the number of working days, represent global
resources that are consumed by the labels while they are extended. If a column with negative
reduced cost is found, the column is sent to the master problem, which is re-optimized to
start a new iteration. The CG method stops when it is not possible to find any column t

with ct < 0.

Branch-and-Price Algorithm

The CG method solves the LP relaxation of BT , with some classical and integer Benders
cuts added. However, step 1 of the algorithmic strategy of Section 5.4.1 requires solving BT
with all the integer tour-based variables. That is why we embedded the CG method within
a B&P algorithm, where integrality is obtained by branching.

At any node of the B&P tree, we denote by x∗t the optimal LP relaxation value of xt. Two
cases are considered. In the first case, we search for a tour variable with a fractional value x∗t
greater than one. If such a variable exists, we create two nodes. In the left node, we impose
the constraint xt ≤ bx∗t c, while in the right node, we impose the constraint xt ≥ dx∗t e. The
second case occurs when all the fractional variables have a value lower than one. In this
situation, we cannot impose the constraint xt = 0 because it would result in the same tour
being generated again by the subproblem, unless a specialized algorithm for the resource-
constrained shortest-path problem is used. Henceforth, a different branching rule should be
applied to the problem, which is an adaptation of existing rules (see, e.g., Barnhart et al.
[11], Côté et al. [31]). We select two tours, xt(1) and xt(2), corresponding to the associated
variables with the largest fractional values. Then, we identify the first divergent day d′

between xt(1) and xt(2), meaning that both tours differ in their shift shells. Let s(1) ∈ Sd′

and s(2) ∈ Sd′ be the assigned shift shells at day d′ for tours xt(1) and xt(2), respectively. A
partition of Sd′ into subsets Sd′(1) and Sd′(2) is created, such that s(l) ∈ Sd′(l), for l = 1, 2.
The rest of the shift shells in Sd′ are equally distributed between the two partitions. After
generating the partitions, two nodes are created. At each node l = 1, 2 it is ensured that
the tour generated will not include the shift shells in Sd′(l) at day d′. The rule is easily
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handled in the subproblem, since if a shift shell s is forbidden at day d, the associated node
vs receives a large cost in graph G(N ,A). Therefore, the suggested branching rule preserves
the structure of the pricing subproblem.

At each node of the B&P algorithm, we perform the CG method until ct ≥ 0 for each t ∈ T .
At the root node, a lower bound ζL on Z(GT ) is thus obtained and the MIP of the master
problem including only the current set of generated columns is solved by a state-of-the-art
B&B code until the gap between the lower and upper bounds is small enough. In particular,
the upper bound ζU found by the B&B code corresponds to a feasible solution of BT . This
solution might not be optimal for BT , since only a reduced set of tours T̃ ⊆ T has been
considered. However, the quality of this solution can be measured against the lower bound
ζL. The bounds computed at the root are then improved by branching and as soon as the
gap between them is small enough, the B&P algorithm is stopped (this might happen at the
root node, even before any branching is performed). Note that the B&P algorithm always
produces at least one integer solution (in variables xt), which corresponds to the upper bound
ζU .

5.4.3 Overall Algorithm

The core of the BD/CG algorithm corresponds to the three-step algorithmic strategy pre-
sented in Section 5.4.1, but some modifications and refinements are included to enhance its
performance. The pseudocode of the algorithm is presented in Algorithm 1, where l is the
iteration counter, ZL(l) is the best lower bound, ZU(l) is the best approximate upper bound
and ZU(l) is the best upper bound on Z(GT ).

The algorithm consists in two phases. In the first phase, the algorithm solves the LP re-
laxation of model BT , following McDaniel and Devine [58]. This is achieved by alternating
between the CG method (without B&P) and the generation of classical Benders cuts (5.20)
until no more cuts can be found or the gap between the approximate upper bound ZU(l) and
the lower bound ZL(l) is small enough. The generation of classical Benders cuts is improved
by adopting the method presented in Papadakos [64], which is an alternative to solving the
extra auxiliary subproblem introduced in Magnanti and Wong [57]. The algorithm then en-
ters the second phase, where it seeks integer solutions by performing B&P. In this phase, the
algorithm alternates between the B&P algorithm and the generation of classical Benders cuts
(5.20), but when no more of these cuts can be generated, the algorithm solves the MIPs of the
Benders subproblems. Then, a feasible solution is computed and integer Benders cuts (5.23)
are generated, if needed, in which case the algorithm restarts with the cycle B&P/classical
BD.
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In the algorithm, we denote by B+
T , with optimal value Z(B+

T ), the master problem corre-
sponding to model BT , to which we add integer Benders cuts (5.23). Note that B+

T plays the
role of the BD master problem, where both classical and integer Benders cuts are gradually
added, but also acts as the CG master problem, where tour-based variables are gradually
generated.

The algorithm uses the following Boolean variables: Int indicates if the algorithm is in the
first (Int=false) or in the second (Int=true) phase and Cut indicates if some cuts, classical or
integer, have been generated (Cut=true) or not (Cut=false). In addition, vd(l) is the primal
solution (in variables vΠ,k

d1n) obtained by performing the CG method (when Int=false) or the
B&P algorithm (when Int=true). Since the B&P method can be stopped before optimality
is proven, we need to distinguish the values of variables θd that correspond to the lower (ζL)
and upper (ζU) bounds computed by the B&P algorithm: θd(l) are the values of θd for the
relaxed solution (ζL = ∑

d∈D θd(l)) and θd(l) are the values of θd for the best feasible solution
(ζU = ∑

d∈D θd(l)). To simplify the algorithm description, we use the same notation when
the CG method is used in the first phase, even though in that case, we have θd(l) = θd(l) for
each d ∈ D, since the CG algorithm is performed until all columns have nonnegative reduced
costs.

The algorithm uses five parameters εi ∈ [0, 1], i = 1, ..., 5, which represent thresholds on
different relative gaps: ε1 is used to stop the algorithm when the relative gap between ZU(l)
and ZL(l) is small enough; ε2 is used to stop the B&P algorithm when the relative gap
between the upper bound ζUand the lower bound ζL computed by the B&P method is small
enough; ε3 controls the generation of classical Benders cuts in case the relative gap between
θd(l) and the upper bound associated with the LP relaxation of the Benders subproblem
Q(vd(l)) is large enough; ε4 controls when the first phase (solving the LP relaxation of BT )
is stopped using the relative gap between ZU(l) and ZL(l), which has to be small enough;
ε5 controls the generation of integer Benders cuts in case the relative gap between the MIP
and the LP relaxation bounds of the Benders subproblem Q(vd(l)) is small enough.

The next two propositions state that the algorithm, independently of the values of the tol-
erance parameters εi, delivers at least one feasible solution when it terminates and that it
computes a lower bound on Z(GT ) at every iteration. Then, we show that the algorithm
converges to optimal solutions of GT and its LP relaxation, when the appropriate tolerance
parameters are set to 0.

Proposition 1. The algorithm terminates with a feasible solution of GT in a finite number
of iterations.
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Algorithm 1 BD/CG algorithm for the MATSP

l = 0, ZL(l) = −∞, ZU (l) =∞, ZU (l) =∞, Int = false, Cut = true
while ((ZU (l)− ZL(l))/ZU (l) > ε1) and (Cut==true) do

l = l + 1
if Int==false then

Perform CG until ct ≥ 0,∀t ∈ T (solve LP relaxation of B+
T ), return θd(l), θd(l),vd(l), d ∈ D

else
Perform B&P until (ζU − ζL)/ζU ≤ ε2 (solve B+

T ), return θd(l), θd(l),vd(l), d ∈ D
ZL(l) =

∑
d∈D θd(l)

Cut = false
for d ∈ D do

Solve the LP relaxation of the Benders subproblem Q(vd(l)), return sd(l)
if (sd(l)− θd(l))/sd(l) > ε3 then

Add classical Benders cut (5.20) to B+
T , Cut = true

if Int==false then
ZU (l) = min{ZU (l),

∑
d∈D sd(l)}

if (ZU (l)− ZL(l))/ZU (l) ≤ ε4 or (Cut==false) then
Int=true, Cut=true

if Cut==false then
for d ∈ D do

Solve the MIP of the Benders subproblem Q(vd(l)), return sd(l)
if (sd(l)− sd(l))/sd(l) > ε5 then

Add integer Benders cut (5.23) to B+
T , Cut=true

ZU (l) = min{ZU (l),
∑

d∈D sd(l)}
if ZU (l) =

∑
d∈D sd(l) then

vd = vd(l)
Use vd to find the working schedule for each employee

Proof. Because the maximum number of classical Benders cuts (5.20) is bounded by the
number of extreme points of |D| polyhedra, the first phase (when Int=false) ends in a finite
number of iterations. During the second phase (when Int=true), the B&P algorithm always
generates an integer solution (in variables xt). Since the number of classical Benders cuts
is finite, the algorithm solves the MIP of each Benders subproblem Q(vd) at least one time,
identifying then a feasible solution of GT . Finally, because the number of classical and integer
Benders cuts is finite, the algorithm terminates in a finite number of iterations. �

Proposition 2. At every iteration l, the algorithm computes a lower bound ZL(l) on Z(GT ).

Proof. As long as Int=false, the algorithm computes, at every iteration l, a lower bound on
the LP relaxation of BT , which is itself a relaxation of GT . After the algorithm has entered
the second phase (Int=true), every iteration l performed until Cut=false computes a lower
bound on the MIP relaxation of BT where variables xt take integer values, but variables ydij
might assume fractional values (again, a relaxation of GT ). When Int=true and Cut=false
for the first time, say at iteration l′, either the algorithm terminates immediately or integer
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Benders cuts are generated for each d ∈ D such that (sd(l′) − sd(l′))/sd(l′) > ε5. Let us
assume this last case happens. As shown in Section 5.4.1, each integer Benders cut for day
d is valid, i.e., no feasible solution of GT is removed by the addition of such cut to B+

T .
Moreover, after adding an integer Benders cut for day d, variable θd always represents a
lower bound on the optimal value of the corresponding daily Benders subproblem, since in
case that cut becomes active at an optimal solution of GT , θd is then exactly equal to the
optimal value of the Benders subproblem for day d (otherwise, θd is not influenced by that
cut). This implies that, at the next iteration l′ + 1, we have ZL(l′ + 1) ≤ Z(GT ). At any
subsequent iteration l, the same arguments as above show that the lower bound ZL(l) on
Z(B+

T ) is also a lower bound on Z(GT ). �

Proposition 3. If ε3 = ε4 = 0, the algorithm converges to an optimal solution of the LP
relaxation of GT in a finite number of iterations of the first phase (when Int=false).

Proof. Since the number of classical Benders cuts (5.20) is finite, the first phase (when
Int=false) terminates in a finite number of iterations. The CG algorithm is stopped only
when the LP relaxation of BT has been solved, which implies θd(l) = θd(l) for each d ∈ D.
Since ε4 = 0, the first phase cannot stop prematurely and necessarily ends with ZU(l) ≤ ZL(l)
or Cut=false. In fact, these two conditions are equivalent when ε3 = 0, since Cut=false if
sd(l) ≤ θd(l) for each d ∈ D, which implies that ZU(l) ≤ ∑

d∈D sd(l) ≤
∑
d∈D θd(l) =∑

d∈D θd(l) = ZL(l). Because ZU(l) ≥ ZL(l), the first phase ends with ZU(l) = ZL(l),
meaning that the LP relaxation of BT (hence, of GT ) is solved. �

Proposition 4. If ε1 = ε2 = ε3 = ε5 = 0, the algorithm converges to an optimal solution of
GT in a finite number of iterations.

Proof. Since the number of classical and integer Benders cuts is finite, the algorithm ter-
minates in a finite number of iterations. Because ε1 = 0, the algorithm cannot stop pre-
maturely and necessarily ends when ZU(l) ≤ ZL(l) or Cut = false (we show below that
these two conditions are equivalent under the assumption that ε2 = ε3 = ε5 = 0). Since
ε2 = 0, the B&P algorithm is exact and always produces an optimal solution (in vari-
ables xt) to the current master problem, which implies θd(l) = θd(l) for each d ∈ D. Be-
cause ε3 = 0, we have, when Cut=false, sd(l) ≤ θd(l) for each d ∈ D, which implies that∑
d∈D sd(l) ≤

∑
d∈D θd(l) = ∑

d∈D θd(l) = ZL(l). At the last iteration l, no integer Benders
cut is generated (Cut=false) and, since ε5=0, we have sd(l) ≤ sd(l) for each d ∈ D, which
implies that ∑d∈D sd(l) ≤

∑
d∈D sd(l) ≤ ZL(l). By definition of ZU(l) and using Proposition

2, we have ∑d∈D sd(l) ≥ ZU(l) ≥ Z(GT ) ≥ ZL(l) ≥ ∑d∈D sd(l), from which we conclude that
ZL(l) = ZU(l) = Z(GT ). �
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5.5 Computational Experiments

In this section, we present the computational experiments we have performed on our imple-
mentation of the BD/CG method. The computing environment used for the tests consists of
a 1-processor Intel Xeon X5675 with 96 GB of RAM running at 3.07GHz and operating on
a 64-bit GNU/Linux operating system. The BD/CG algorithm was implemented in C++.
Both the LP relaxation of the master problem and the LP relaxation of the Benders sub-
problems were solved by using the barrier method of CPLEX version 12.5.0.1. A relative
gap tolerance of 0.01 was set as a stopping criterion for solving the MIPs with CPLEX B&B.
We used the following values for the tolerance parameters: ε1 = ε3 = ε5 = 0.00001 and
ε2 = ε4 = 0.01.

In Section 5.5.1, we show the results obtained on MATSP instances defined over a one-week
planning horizon, which are compared with the ones obtained when using the B&P approach
presented in Restrepo et al. [76] for the personalized variant of the problem. In Section 5.5.2,
we show the results obtained on MASSP instances, the special case of MATSP defined over
a single day, which are compared with the ones obtained when using the grammar-based
integer programming approach presented in Côté et al. [30].

5.5.1 Results on MATSP Instances

In this section, we present results on MATSP instances. First, we introduce the definition
of the problem and the grammar used to create the daily shifts. Then, we present the set of
instances used in the experiments. Finally, we present and analyze the computational results.

Problem Definition and Grammar

Tour generation

1. The planning horizon is seven days, where each day is divided into 96 time periods of
15 minutes.

2. Shifts are not allowed to span from one day to another (discontinuous problem).
3. The tour working length should fall between 35 and 40 hours per week.
4. The number of working days in the tour should fall between five and six.
5. There must be a minimum rest time of twelve hours between consecutive shifts.

Daily shift generation

1. Shifts can start at any time period during any day d, allowing enough time to complete
their duration in day d.
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2. Three types of shifts are considered: 8-hour shifts with 1-hour lunch break in the middle
and two 15-minute breaks. 6-hour shifts with one 15-minute break and no lunch, and
4-hour shifts with one 15-minute break and no lunch.

3. If performed, the duration of a work activity is at least one hour and at most five hours.
4. A break (or lunch) is necessary between two different work activities.
5. Work activities must be inserted between breaks, lunch and rest stretches.
6. A fixed number of employees |E| is given, therefore undercovering and overcovering of

staff requirements is allowed.

Let aj be a terminal symbol that defines a time period of work activity j ∈ J . Let b, l
and r be the terminal symbols that represent break, lunch and rest periods, respectively. In
productions Π ∈ P, Π→[min, max] restricts the subsequences generated by a given production
to a length between a minimum and maximum number of time periods. The grammar and
the productions that define the anonymous discontinuous MATSP are as follows:

G =(Σ = (aj ∀j ∈ J, b, l, r),

N = (S, F,Q,N,W,Aj ∀j ∈ J,B, L,R), P, S),

S → RFR|FR|RF |RQR|QR|RQ|RNR|NR|RN, B → b, L→ llll,

F →[38,38] NLN, Q→[25,25] WBW,

N →[17,17] WBW, R→ Rr|r,

W →[4,20] Aj ∀j ∈ J, Aj → Ajaj|aj ∀j ∈ J.

Instances

Instances are divided into two groups according to the shape of the demand profile: smooth
demand behaviour and erratic demand behaviour. Instances with smooth demand behaviour
correspond to real data from a small retail store, where the staff requirements for up to
ten work activities vary slightly from one day to the next. Instances with erratic demand
behaviour show significant variations in the staff requirements for up to five work activi-
ties. These instances were randomly generated in the following way. Given a fixed number
of employees |E|, we start creating a set of feasible schedules (multi-activity tours), then
randomly choose one schedule per employee e ∈ E. From these schedules, we derive the
associated demand profile along the planning horizon. The demand profile represents the
required number of employees for each work activity at each time period in the planning
horizon. Undercovering and overcovering of staff requirements are generated by randomly
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adding or removing demand.

Table 5.1 shows the size of the instances, divided into two groups: G1 includes instances
with a smooth demand profile, while G2 includes randomly generated instances with an
erratic demand profile. Ten different staff requirements were generated for each instance. For
each set of instances, we present the number of activities (Nb.Act), the average number of
employees (Nb.Emp) and several grammar-related statistics: the average number of children
of the root node (Nb.ChRoot), the average number of and-nodes (Nb.AndNodes) without
including the children of the root node, the average number of or-nodes (Nb.OrNodes) without
including the leaves, and the average number of leaves (Nb.Leaves) of DAG Γd. We also
present the average number of nodes in the directed acyclic graph from the pricing subproblem
and the average number of arcs denoted by Nd. G(N ,A) and Arcs G(N ,A), respectively.
Observe that the number of variables in the master problem is equal to Nd. G(N ,A) +
number of columns generated.

Table 5.1 Size of MATSP instances

Group Nb.Act Nb.Emp Nb.ChRoot Nb.AndNodes Nb.OrNodes Nb.Leaves Nd. G(N ,A) Arcs G(N ,A)

G1

1 8 106 4,997 4,044 202 744 166,184
2 9 104 6,773 4,994 260 731 160,567
3 11 107 8,808 6,138 325 749 166,933
4 19 107 10,724 7,190 388 751 168,430
5 24 109 12,843 8,379 455 768 175,379
6 28 114 15,206 9,722 530 797 188,923
7 32 112 17,057 10,721 590 789 185,010
8 40 113 19,062 11,822 655 792 186,374
9 37 111 20,830 12,772 713 782 182,525
10 36 114 23,180 14,088 787 800 189,741

G2

1 18 139 6,535 5,320 246 973 275,745
2 22 139 8,819 6,567 318 973 275,745
3 29 139 11,103 7,814 390 973 275,745
4 37 139 13,387 9,061 462 973 275,745
5 43 139 15,671 10,308 534 973 275,745

Results

Tables 5.2 and 5.3 present the computational results on the smooth demand and the er-
ratic demand instances, respectively, for the BD/CG algorithm (BD/CG) and for the B&P
approach (B&P). We set a 2-hour time limit to solve the instances with up to five work
activities and a 3-hour time limit to solve the instances with more than five work activities.
For the BD/CG algorithm, we present the average of the total CPU time in seconds to solve
the problem (T. time). The total CPU time is decomposed into four parts: the time spent
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solving the MIP of the master problem (T. MIP), the time spent in the CG approach (T.
CG) (time to solve the pricing subproblems + time to solve the LP relaxation of the prob-
lem when the method adds new columns), the time used to solve the LP relaxation of the
Benders subproblems (T. LR BSP) and the time spent to solve the MIP of the Benders sub-
problems (T. MIP BSP). We also present the total number of integer Benders cuts generated
over the total number of problems that required these cuts (IBC/Nb.P ), the average gap
(in %) between the upper bound (ZU) and the lower bound (ZL) of the problem computed
as: Gap = 100 × (ZU − ZL)/ZU , and the number of instances solved to optimality (Opt.).
The solution of an instance is considered to be optimal if no more Benders cuts (classical
and integer) need to be added when the algorithm stops. Results for the B&P approach
are presented in the rows labeled B&P. The average CPU time in seconds to solve the LP
relaxation of the problem at the root node is presented in T. root. T. time shows the average
total time to solve the problem (LP relaxation at the root node + branching). Gap presents
the integrality gap between the best upper bound (ZU) and best lower bound (ZL). Gap is
defined in a similar fashion as for the BD/CG algorithm. Opt. shows the number of instances
solved to optimality. In this case, the solution of an instance is considered to be optimal if
the integrality gap is less than or equal to 1%. Results for instances with an erratic demand
profile, as well as results for the smooth demand profile with more than four work activities
are not reported for the B&P approach, because the method exhibited convergence issues for
these instances.

Table 5.2 Results on MATSP instances with smooth demand shape

Nb.Act 1 2 3 4 5 6 7 8 9 10
BD/CG
T.time 198.95 127.83 254.67 1,363.31 1,464.55 1,745.39 2,418.80 1,324.42 1,526.01 7,767.48
T. MIP 10.28 92.97 186.93 1,207.38 1,295.90 1,516.43 1,638.96 1,016.45 1,128.59 5,411.78
T. CG 9.62 13.86 18.01 71.23 35.29 47.08 547.57 32.97 36.72 594.98
T. LR BSP 7.99 20.22 48.37 81.69 127.85 170.93 221.45 200.20 309.60 635.41
T.MIP BSP 0.22 0.44 0.81 1.98 4.29 9.48 8.30 73.78 49.52 1,124.75
IBC/Nb. P 0/0 0/0 1/1 3/3 2/1 17/3 1/1 3/3 3/2 3/2
Gap 0.51% 0.62% 0.41% 0.56% 0.35% 0.67% 1.24% 0.53% 0.68% 2.25%
Opt. 10 10 10 10 10 9 6 9 9 6

B&P
T. root 20.13 243.08 598.49 2,008.12 - - - - - -
T. time 245.94 6,619.27 7,884.65 7,251.86 - - - - - -
Gap 0.44% 8.15% 37.32% 56.69% - - - - - -
Opt. 10 2 0 0 - - - - - -



89

Table 5.3 Results on MATSP instances with erratic demand shape

Nb.Act 1 2 3 4 5
BD/CG
T.time 333.65 2,571.05 1,382.79 3,354.43 4,574.66
T. MIP 223.47 2,342.27 1,158.34 1,848.66 2,124.39
T. CG 85.83 115.06 61.11 357.87 473.70
T. LR BSP 23.25 81.96 159.84 258.55 428.85
T.MIP BSP 0.29 30.50 2.74 887.91 1,549.62
IBC/Nb. P 0/0 2/2 0/0 6/3 4/2
Gap 0.84% 1.02% 0.94% 2.50% 2.74%
Opt. 10 9 9 6 4

From Tables 5.2 and 5.3, one can observe that the time to solve the master problem is the
highest among the four components. Solving the LP relaxation of the master problem does
not require too much time, but when the algorithm switches to the integer version of the
master problem and more optimality cuts are added, the time to solve the master problem
increases with each iteration. The time spent to find new columns, as well as the time to
solve the LP relaxation of the Benders subproblems, represent small portions of the total
time.

Note that the BD/CG algorithm is able to find high-quality integer solutions for almost all
instances with smooth demand behaviour and, when optimality is not reached within the time
limit, the value of Gap is most often within 1% and does not exceed 2.25%. For instances with
erratic demand behaviour, computational times and solution quality are worse than those
reported in Table 5.2. However, one can observe that even if the instances are not solved
to optimality, the value of Gap does not exceed 2.75%. We found that the instances that
have more quantity of overcovering than undercovering are easier to solve than the instances
that have a similar quantity of undercovering and overcovering. Observe that few instances
required the generation of integer Benders cuts and, among these instances, the majority
required just one or two cuts (only one instance in the group of 6 activities needed 10 integer
Benders cuts).

The comparison between the proposed method and the B&P approach developed for the
personalized variant of the problem suggests that the BD/CG algorithm is a better alternative
when employees have the same skills. Notably, in almost all the instances, the average total
CPU time to solve the instances when using the BD/CG algorithm is smaller than the average
time to solve the LP relaxation at the root node when the B&P approach is used. This can be
mostly attributed to the symmetry issues exhibited by the B&P method when all employees
have the same skills.
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5.5.2 Results on MASSP Instances

In this section, we present computational results on MASSP instances. In this case, some
modifications have been done to the proposed approach in order to solve daily problems.
First, it is not necessary to generate columns, since the master problem only includes variables
related to shift shells. Thus, the B&P method used to solve the master problem is replaced
by a call to a state-of-the-art B&B code (we use CPLEX). Second, constraints (5.9)-(5.10)
in the master problem are replaced by ∑AΠ,k

d1n∈ch(OS
d1n) v

Π,k
d1n = |E|. Third, the integer Benders

cuts do not include the variables related to employee days-off. Observe that the Benders
subproblem has the same structure, but that only one Benders subproblem is solved per
iteration. The detailed definition of the problem and the grammar used to compose shifts
are presented in Section 5.2 of Côté et al. [30]. Before analyzing the results, we first present
the instances used in our tests.

Instances

Instances are divided into two groups. The first group, G1, contains smooth demand profile
instances from a small retail store, allowing up to ten work activities. The second group, G2,
consists of instances with a demand profile that follows a normal distribution, allowing from
eleven up to thirty work activities. The shape of the demand profile was generated based on
the number of employees |E|, the number of activities |J |, a random standard deviation and
a total demand to distribute along the planning horizon. The characteristics and size of the
instances are summarized in Table 5.4. The notation used in this table is the same as the
one used in Table 5.1. Ten different staff requirements were generated for each instance.

Problems dealing with up to 30 work activities (and often more) are typically found in call
centers, retail stores and industries where employees can move from one work station to
another (i.e.: parking companies).
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Table 5.4 Size of MASSP instances

Group Nb.Act Nb.Emp Nb.ChRoot Nb.AndNodes Nb.OrNodes Nb.Leaves

G1

1 5 119 33,879 8,229 229
2 7 119 35,365 9,227 288
3 9 119 37,649 10,415 351
4 18 120 39,965 11,621 415
5 22 121 42,308 12,842 480
6 28 124 46,064 14,473 556
7 36 123 47,562 15,477 616
8 38 123 49,521 16,611 679
9 38 123 51,479 17,745 742
10 37 124 53,957 19,044 811

G2

11 42 143 68,409 23,295 1,006
12 41 143 70,730 24,562 1,079
13 41 143 73,051 25,829 1,152
14 42 143 75,372 27,096 1,225
15 44 143 77,693 28,363 1,298
16 45 143 80,014 29,630 1,371
17 49 143 82,335 30,897 1,444
18 48 143 84,656 32,164 1,517
19 53 143 86,977 33,431 1,590
20 55 143 89,298 34,698 1,663
30 137 143 112,508 47,368 2,393

Results

Table 5.5 presents the computational results on instances dealing with up to 30 work activi-
ties for the anonymous MASSP. We set a 2-hour time limit to solve these instances. For the
Benders decomposition approach (BD), we present the average total CPU time in seconds
to solve the problem (Tot. time). This time is divided into three parts: the time required to
solve both the LP relaxation and the MIP of the master problem (T. BMP), the time spent
to solve the LP relaxation of the Benders subproblem (T. LR BSP) and the time required to
solve the MIP of the Benders subproblem (T. MIP BSP). We also present the total number
of integer Benders cuts generated over the total number of problems that required those cuts
(IBC/Nb.P ), the average gap between the upper bound (ZU) and the lower bound (ZL) of
the problem (Gap = 100× (ZU − ZL)/ZU), and the number of instances solved to optimal-
ity (Opt.), which corresponds to the number of instances for which no additional Benders
cuts could be generated. Results for the grammar-based integer programming approach are
presented in the columns labeled GB, where T. time presents the average CPU time to find
an integer solution with a relative MIP gap tolerance lower than 1%, Gap shows the average
relative MIP gap between the best upper bound (ZU) and the best lower bound (ZL), where
Gap = 100 × (ZU − ZL)/ZL. The number of instances solved to optimality is presented in
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the column labeled Opt.

Table 5.5 Results on MASSP instances

BD GB
Nb.Act Tot. time T. BMP T. LR BSP T. MIP BSP IBC/Nb.P Gap Opt. Tot. time Gap Opt.
1 199.53 0.47 85.87 0.61 6/2 0.05% 10 272.19 0.09% 10
2 192.41 0.54 141.67 1.33 15/2 0.29% 10 241.15 0.17% 10
3 227.19 1.34 222.79 1.14 4/3 0.41% 10 1,159.92 0.25% 10
4 279.79 0.86 275.92 2.13 2/1 0.43% 10 178.69 0.25% 10
5 413.51 2.07 402.80 1.85 8/3 0.31% 10 367.62 0.05% 10
6 472.95 2.01 463.70 4.34 5/5 0.43% 10 351.04 0.05% 10
7 666.59 3.74 653.06 4.57 5/5 0.65% 10 438.28 0.17% 10
8 617.21 3.72 580.09 5.52 9/6 0.68% 10 428.83 0.08% 10
9 485.77 0.91 476.83 7.46 3/3 0.52% 10 588.02 0.14% 10
10 618.89 1.78 589.91 10.03 6/4 0.71% 10 772.57 0.12% 10
11 700.65 0.48 657.85 41.82 1/1 0.64% 10 3,096.72 0.04% 10
12 924.81 0.69 685.80 103.09 7/4 0.69% 10 3,680.88 0.00% 10
13 647.74 0.36 617.45 29.35 0/0 0.66% 10 3,013.46 0.06% 10
14 855.55 0.53 763.39 61.14 2/2 0.57% 10 3,453.49 2.69% 9
15 915.54 0.72 885.93 28.02 1/1 0.66% 10 2,724.59 0.08% 10
16 1,121.04 0.97 1,073.41 37.51 2/2 0.54% 10 3,120.24 0.05% 10
17 915.31 0.59 868.85 43.08 3/2 0.61% 10 2,976.84 0.26% 10
18 1,201.08 1.99 1,131.84 30.78 3/3 0.59% 10 3,685.44 0.87% 9
19 1,389.34 3.19 1,355.90 28.53 1/1 0.52% 10 3,380.61 0.18% 10
20 1,274.71 2.50 1,215.68 32.80 4/4 0.59% 10 3,416.84 0.00% 10
30 3,636.53 0.81 3,179.98 454.41 3/3 0.80% 10 6,130.31 7.16% 4

From Table 5.5, we can conclude that the BD approach succeeds to find, within the com-
putational time limit, high-quality solutions, within 1% of optimality, for all the instances
tested. When the proposed approach is compared with the grammar-based integer program-
ming approach, results show that BD presents a better average total CPU time for 16 out
of 21 instances, and that, in the best case, the method is five times faster (instances with 3
and 13 work activities). The difference in performance of the two methods can be attributed
to the fact that solving the problem with a B&B method requires more effort than solving
the problem by adding Benders cuts. The proposed BD approach takes advantage of the
structure of the problem by fixing the shift shell variables to efficiently solve the Benders
subproblem (which is the part that requires more time).

Regarding CPU times, note that, contrary to what we observed for the MATSP instances,
the most time-consuming component is related to the LP solution of the Benders primal
subproblem, for which CPU times increase with the number of activities. Solving the master
problem (both LP relaxation and MIP) was the part that required the least effort. This can
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be attributed to the fact that allocating the work activities and the breaks to the shifts in
order to minimize undercovering and overcovering is more difficult than assigning daily shifts
to employees. Finally, observe that in only 57 out of 210 instances, the generation of integer
Benders cuts was needed.

5.6 Concluding Remarks

In this paper, we presented a combined Benders decomposition and column generation ap-
proach to solve the MATSP. Due to its structure, the master problem is solved by column
generation. Benders subproblems were modelled with context-free grammars to implicitly
tackle all the work rules for the composition of shifts and to allocate work activities and
breaks to the shifts. Although the Benders primal subproblems do not possess the integral-
ity property, we showed that the generation of integer Benders cuts, in addition to classical
Benders cuts, guarantees the convergence of the method under mild assumptions.

The proposed approach was tested on real-world instances and randomly generated instances
of the MATSP (one-week planning horizon) and the MASSP (one-day planning horizon).
Results on MATSP instances showed that our method was able to find high-quality integer
solutions for instances dealing with up to ten work activities. When compared with a B&P
approach, our method exhibited faster solution times and provided better upper bounds for
the most difficult instances. Regarding the MASSP, the Benders decomposition approach
was able to solve, within 1% of optimality, instances with up to 30 work activities. When
the method was compared with the grammar-based integer approach presented in Côté et al.
[30], our approach presented competitive and often better solution times.



94

CHAPTER 6 ARTICLE 3: A TWO-STAGE STOCHASTIC
PROGRAMMING APPROACH FOR MULTI-ACTIVITY TOUR

SCHEDULING

Companies that operate outside the standard 8-hours shift, 5-days per week schedule and that
face wide fluctuations in demand for services continuously struggle to optimize the allocation
and composition of their workforce. Recent research has shown that alternative personnel
scheduling approaches that take demand uncertainty into account can lead to significant
reductions in labor costs [10].

In this chapter of the thesis we address the stochastic extension of the discontinuous anony-
mous MATSP presented in Chapter 5. We formulate the problem as a two-stage stochastic
programming model decomposable by days and by scenarios, where the random vector repre-
senting stochastic perturbations of demand is assumed to be non-negative and to have finite
support. The two-stage stochastic programming model allows to make a decision on the
employee schedule (tours and daily shift shells) before a realization of the daily demand is
known. Then, after demand becomes known, a recourse action is implemented to compensate
deficiencies in the previously made schedules (e.g., allocation of work activities and breaks
to daily shifts, undercovering and overcovering of demand).

As a solution approach, we implemented a heuristic multi-cut L-shaped method. The first-
stage problem is solved by a heuristic CG approach. The second-stage problems are modeled
with context-free grammars, as explained in Chapter 5. Computational experiments on real
and randomly generated instances allow to conclude that that the use of the stochastic model
prevents to incur additional staffing costs, when compared with the expected value problem.

The next article was submitted to European Journal of Operations Research in October 2015.
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Abstract.

This paper addresses a discontinuous multi-activity tour scheduling problem under demand
uncertainty and when employees have identical skills. The problem is formulated as a two-
stage stochastic programming model, where first-stage decisions correspond to the assignment
of employees to weekly tours, while second-stage decisions are related to the allocation of
work activities and breaks to daily shifts. A multi-cut L-shaped method is presented as a
solution approach. Computational results on real and randomly generated instances show
that the use of the stochastic model helps to prevent additional costs, when compared with
the expected-value problem solutions.

Keywords. Stochastic multi-activity tour scheduling problem, Two-stage stochastic pro-
gramming model, L-shaped method, Column generation, Context-free grammars.

6.1 Introduction

The multi-activity tour scheduling problem (MATSP) is the integration of two problems, the
multi-activity shift scheduling problem (MASSP) and the days-off scheduling problem. In the
MASSP, the planning horizon is usually one day divided into time periods of equal length.
Since employees can perform different work activities during the same shift, the MASSP
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is concerned with choosing the work activities and the rest periods to assign to shifts to
respond to a demand for service, that is translated into a demand for the number of employees
required for each work activity and time period. The days-off scheduling problem deals with
the selection of employee working days and days-off over a planning horizon of at least one
week. In the MATSP, the constraints characterizing the feasibility of daily shifts and weekly
tours, as well as the work rules for the allocation of work activities and rest breaks to the
shifts, are usually defined by employee regulations and workplace agreements. The MATSP
can be categorized into different variants depending on the characteristics considered. For
instance, the personalized version of the MATSP appears when employees have individual
preferences and skills. The anonymous version of the MATSP corresponds to the case when
employees have identical skills. When shifts are allowed to span from one day to another, the
continuous version of the MATSP arises; otherwise, we have the discontinuous version of the
problem. In this paper, we consider the discontinuous anonymous version of the MATSP.

Realistic applications of the MATSP for companies that operate outside the standard 8-
hours shift, 5-days per week schedule and that face wide fluctuations in demand become
challenging due to several factors. First, complex large-scale models result as a consequence
of considering multiple work activities and flexibility in the composition of daily shifts and
weekly tours. Second, since demand is typically unknown when scheduling decisions needs
to be taken, specialized solution techniques that allow to include this variability should be
developed. Specifically, such techniques allow to make a decision on the employee schedule
before a realization of the demand is known. Then, after demand becomes known, a recourse
action should be implemented to compensate deficiencies in the previously made schedules
(e.g., undercovering and overcovering of demand).

In this paper, we address the discontinuous stochastic multi-activity tour scheduling problem
(SMATSP) for employees with identical skills. In this problem, a long-term staffing decision
needs to be made while hedging for the short-term demand uncertainty. The problem is
formulated as a two-stage stochastic programming model, decomposable by days and by
scenarios, in which first-stage decisions correspond to the assignment of employees to weekly
tours, while second-stage decisions (recourse actions) are related to the allocation of work
activities and breaks to daily shifts. The contribution of this paper lies in the proposal of
an approach to efficiently solve practical instances of the problem. A heuristic multi-cut
L-shaped method is implemented as a solution approach. Because the complete enumeration
of weekly tours makes the problem intractable, the first-stage problem is solved via column
generation. Additionally, the second-stage problems benefit from the use of context-free
grammars to include work rules regarding the definition of shifts and to efficiently handle the
multi-activity context.
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The paper is organized as follows. In Section 6.2, we review the relevant literature on shift
scheduling and tour scheduling problems with multiple work activities and stochastic demand.
Then, we present some background material related to the use of grammars for multi-activity
shift scheduling problems. In Section 6.3, we describe the two-stage model for the SMATSP.
In Section 6.4, we introduce the solution approach to solve the problem. Computational
experiments are presented and discussed in Section 6.5. The concluding remarks are presented
in Section 6.6.

6.2 Background Material

In this section, we review some literature on the models and methods to solve the MASSP
and the MATSP. We also present some references on workforce problems under stochastic
demand. Then, we finish with an introduction on the use of grammars for the MASSP.

6.2.1 Literature Review on Multi-Activity Shift and Tour Scheduling

Although mono-activity shift scheduling and tour scheduling problems have been extensively
studied in the literature during the last few decades [4, 43, 44, 82], only recently some
attention has been given to the problem that deals with multiple work activities. Ritzman
et al. [78] propose one of the first approaches to solve the MATSP. The method is based
on a heuristic solution approach that integrates a construction method with a simulation
component. Although employees are assigned to specific operations, breaks and rules related
to switching between work activities are not considered. Heuristic approaches that use column
generation (CG) [77] and tabu search [33] are also proposed to solve multi-activity shift
scheduling problems over multiple days. Even though both approaches tackle long time
horizons, the constraints characterizing the feasibility of weekly tours (e.g., total tour length)
are not included in the formulation of the problem. In a similar way, Detienne et al. [38] and
Lequy et al. [55] solve a multi-activity assignment problem by using decomposition techniques
and heuristics based on CG and branch-and-bound (B&B) as solution methods.

Fixing the sequences of work, rest days, shift types and breaks, might reduce the complexity
of personnel scheduling problems, but it can also lead to sub-optimal solutions. Constraint
programming (CP) techniques aim to solve that difficulty by offering modeling languages
to handle complex optimization problems. Demassey et al. [37] present a CP-based CG
algorithm to model complex regulation constraints in a real-world MASSP. Quimper and
Rousseau [69] use formal languages to model the work rules related to the composition of shifts
in a multi-activity context. Côté et al. [28] propose two approaches for the MASSP: the first
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one uses an automaton to derive a network flow model, while the second one takes advantage
of context-free grammars to obtain a MIP model in which an and/or graph structure is used.
Côté et al. [30] present an implicit grammar-based model for the MASSP that addresses
symmetry issues by using general integer variables. Computational results show that, in the
mono-activity case, the solution times of the model are comparable and sometimes superior
to the results presented in the literature and that, in the multi-activity case, the model is
able to solve to optimality instances with up to ten work activities. Côté et al. [31] and
Boyer et al. [16] present grammar-based CG methods to solve the personalized MASSP
and the personalized multi-activity multi-task shift scheduling problem, respectively. Both
approaches use formal languages and dynamic programming to efficiently formulate and solve
the pricing subproblems, but some limitations regarding long time horizons (e.g., one week)
are present. To overcome these issues, Restrepo et al. [76] and Restrepo et al. [75] present
approaches based on branch-and-price (B&P) and Benders decomposition (BD), respectively.
In the former approach [76], two B&P algorithms are presented for the personalized MATSP.
In the latter approach [75], a combined BD and CG method is introduced for the anonymous
MATSP. In both approaches, the work rules for the composition of multi-activity shifts are
expressed with context-free grammars, while some constraints that guarantee the feasibility
of weekly tours are embedded into a directed acyclic graph.

6.2.2 Literature Review on Stochastic Shift and Tour Scheduling

Different models and solution approaches have been proposed in the literature to deal with
stochastic demand in personnel scheduling problems. As an illustration, Easton and Rossin
[40] and Easton and Mansour [39] develop heuristic methods that aim at tackling problems
where demand is uncertain. Easton and Rossin [40] propose a tabu search method to solve a
stochastic goal programming model that integrates and optimizes labor demand and employee
scheduling. Easton and Mansour [39] present a genetic algorithm to solve shift scheduling
problems in which the recourse decisions are related to the undercovering and overcovering of
demand. Although both approaches aim to solve problems over a one-week planning horizon,
employee patterns are previously defined and only a small set of stochastic scenarios is con-
sidered. Bard et al. [10] propose a heuristic two-stage model that addresses tour scheduling
problems over a one-week planning horizon. First-stage variables are related to the number
of full-time and part-time employees hired, while second-stage decisions correspond to the
allocation of employees to specific shifts during the week. Computational experiments on
real instances that consider three stochastic scenarios (high, medium and low demand) show
that significant savings are likely when the recourse problem is used.
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Some studies that use decomposition approaches have been recently proposed as alterna-
tives to solve workforce planning problems when demand is uncertain. Pacqueau and Soumis
[63] propose a heuristic two-stage model to solve a shift scheduling problem. The proposed
model is based on a decomposition of Aykin’s [5] implicit model, where first-stage variables
are associated with the allocation of full-time shifts to the employees and recourse decisions
correspond to hiring part-time employees, using overtime for full-time shifts, the allocation of
breaks and the allowance of understaffing. Punnakitikashem et al. [68] introduce a stochastic
nurse scheduling problem that aims to minimize staffing costs and excess workload. The au-
thors present a BD approach, a Lagrangian relaxation with a BD approach and a nested BD
approach as solution methods. Computational results suggest that simultaneously consider-
ing nurse staffing and assignment is more desirable than doing them sequentially. Similarly,
Kim and Mehrotra [53] present an integrated staffing and scheduling approach applied to
nurse management when demand is uncertain. The problem is formulated as a two-stage
stochastic integer program, where daily shifts and weekly patterns are previously enumer-
ated. First-stage decisions correspond to the number of employees assigned to daily shifts and
to weekly patterns, while second-stage decisions correspond to: 1) the possibility of adding
or canceling daily shifts for every working pattern; 2) allowing undercovering or overcovering
of demand. A set of valid mixed-integer rounding inequalities that describe the convex hull
of feasible solutions in the second-stage problem are included. Consequently, the integrality
of the second-stage decision variables can be relaxed. Computational experiments show that
the use of the stochastic model prevents the hospital from being overstaffed. An L-shaped
method is presented in Robbins and Harrison [79] to solve a combined server-sizing and staff
scheduling problem for call centers in which a service level agreement must be satisfied. First-
stage decisions correspond to the employee staffing, while second-stage decisions correspond
to the computation of a telephone service shortfall. Computational results show that ignor-
ing variability is a costly decision, since the value of the stochastic solution for the model is
substantially high.

Very limited literature is available on stochastic workforce planning for employees who have
various skills to work on different activities, tasks or unit departments. Zhu and Sherali
[85] address a workforce planning problem for employees with multiple skills between service
centers. A two-stage model under demand fluctuations is presented, where first-stage deci-
sions correspond to personnel recruiting and allocation of employees to multiple locations,
while second-stage decisions consists in reassigning the workforce among the locations. The
scheduling of cross-trained workers in a multi-department service environment with random
demand is addressed in Campbell [25]. The author presents a two-stage model decomposable
by days and by scenarios, where first-stage decisions are related to the scheduling of days-off
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and second-stage decisions correspond to the allocation of available employees at the begin-
ning of each day. In the approach, days-off are previously defined and only a small number
of scenarios is considered (10 in total). Parisio and Jones [65] present a two-stage stochastic
model for a multi-skill tour scheduling problem in retail outlets, where first-stage variables
are associated with the assignment of employees to weekly schedules, while recourse deci-
sions correspond to the allocation of overtime and to the undercovering and overcovering of
demand. Although multiple work activities are included in the problem, the authors assume
employees are allowed to work in only one activity per shift.

Even though some authors have tried to tackle personnel scheduling problems under stochas-
tic demand, none of the previous studies consider the integration of days-off scheduling with
shift scheduling in a multi-activity context. The method proposed in this paper addresses the
discontinuous MATSP when demand is uncertain and employee skills are identical. Unlike
the previous approaches, employee patterns and daily shifts are not previously fixed and a
high degree of flexibility is included in their composition. Additionally, the multi-activity
context is efficiently handled with context-free grammars, which are reviewed next.

6.2.3 Grammars for Multi-activity Shift Scheduling

In shift scheduling, a context-free grammar (CFG) can be defined as a finite set of work
rules that are used to generate valid sequences of work (shifts) for a given day d ∈ D,
where |D| denotes the number of days in the planning horizon. A CFG consists of a tuple
Gd = 〈Σd, Nd, Sd, Pd〉, where:

• Σd represents an alphabet of characters called the terminal symbols for day d, which
consists of work activities, breaks, lunch breaks, and rest stretches.

• Nd is a finite set of non-terminal symbols for day d.

• Sd ∈ Nd is the starting symbol for day d.

• Pd is a set of productions for day d, represented as A → α, where A ∈ Nd is a non-
terminal symbol and α is a sequence of terminal and non-terminal symbols. The work
rules used to generate shifts are represented by the set of productions. The productions
of a grammar can be used to generate new symbol sequences until only terminal symbols
are part of the sequence.

A parse tree is a tree where each inner-node is labeled with a non-terminal symbol Nd and
each leaf is labeled with a terminal symbol Σd. A grammar recognizes a sequence if and only
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if there exists a parse tree where the leaves, when listed from left to right, reproduce the
sequence.

A DAG Γd is a directed acyclic graph that embeds all parse trees associated with words
(shifts) for day d of a given length n recognized by a grammar. The DAG Γd has an and/or
structure where the and-nodes represent productions (work rules) from Pd and the or-nodes
represent non-terminals from Nd and letters from Σd. An and-node is true if all of its children
are true. An or-node is true if one of its children is true. The root node is true if the grammar
accepts the sequence encoded by the leaves. In Γd, Oπ

dil denotes the or-node associated with
π ∈ Nd∪Σd, i.e., with non-terminals from Nd or letters from Σd, that generates a subsequence
at position i of length l for day d. Note that if π ∈ Σd, the node is a leaf and l is equal to one.
On the contrary, if π ∈ Nd, the node represents a non-terminal symbol and l > 1. AΠ,k

dil is the
kth and-node representing production Π ∈ Pd that generates a subsequence from position i
of length l at day d. There are as many AΠ,k

dil nodes as there are ways of using Pd to generate
a sequence of length l from position i. In Γd, the root node is described by OS

d1n and its
children by AΠ,k

d1n ∈ ch(OS
d1n). The children of or-node Oπ

dil are represented by ch(Oπ
dil) and its

parents by par(Oπ
dil). Similarly, the children of and-node AΠ,k

dil are represented by ch(AΠ,k
dil )

and its parents by par(AΠ,k
dil ). The sets of or-nodes, and-nodes and leaves in Γd are denoted

by Od, Ad and Ld, respectively. The DAG Γd is built by a procedure proposed in Quimper
and Walsh [71].

Grammar G1 presents an example on the use of context-free grammars for multi-activity
shift scheduling. Two activities, w1 and w2, must be scheduled, shifts have a length of n = 4
time periods and should contain exactly one break, b, of one time period that can be placed
anywhere during the shift except at the first or the last time period. For clarity, we do not
include the subscript of the day in the notation of grammar G1 and nodes from Γ1. The
grammar that defines the set of feasible shifts on this example follows:

G1 = (Σ = (w1, w2, b), N = (S,X,W,B), S, P ),
where productions P are: S → XW , X → WB, W → WW |w1|w2, B → b,
and symbol | specifies the choice of production.

In the previous example, productions W → w1, W → w2 and B → b generate the terminal
symbols associated with working on activity 1, working on activity 2, or having a break,
respectively. Production W → WW generates two non-terminal symbols, W , meaning that
the shift will include a working subsequence. Production X → WB means that the shift
will include working time followed by a break. Finally, production S → XW generates a
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sequence of length four (the daily shift), which includes working time followed by a break to
finish with more working time.

Figure 6.1 represents the DAG Γ1 associated with G1. Observe that there are 16 parse trees
(different shifts) embedded in Γ1. As an illustration, we present a dotted-parse tree that
generates shift w1bw1w2, and a dashed-line parse tree that generates shift w2w2bw1.
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Figure 6.1 DAG Γ1 on words of length four and two work activities.

Note that the children of the root node ({AS→XW,114 , AS→XW,214 } ∈ ch(OS
14)) can be seen as shift

“shells” because they do not consider the allocation of specific work activities to the shifts,
only the shift starting time and its length. Hence, and-nodes AΠ,k

d1n are characterized by their
starting time tΠ,kd1n, working length wΠ,k

d1n, and length including breaks lΠ,kd1n. In Γ1, and-node
AS→XW,114 generates shift wbww, while and-node AS→XW,214 generates shift wwbw. Both shifts
have a working length of three time periods, a total length of four time periods and both
start at time period one (i = 1).

Although the expressiveness of grammars allow to encode a large number of work rules for the
composition of daily shifts, some limitations regarding shift total length are present when
long planning horizons are included in the problem (e.g., one week). To circumvent this
problem, Restrepo et al. [75] present an approach that combines BD and CG to solve the
deterministic discontinuous MATSP for employees with identical skills. The model combines
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an explicit definition of weekly tours with the implicit definition of daily shifts from Côté
et al. [30]. Since the model presents a nice block structure decomposable by days, it is used
in the formulation of the two-stage stochastic problem, presented next.

6.3 Two-Stage Stochastic Problem

Stochastic shift and tour scheduling formulations extend and adapt deterministic models to
allow schedule modifications at a time closer to the actual demand realization. Two-stage
stochastic programming models give an example of such extensions. In these models, some
decisions must be made in the first-stage before values of random variables are observed.
Then, in the second-stage, a recourse action can be adopted after observing the actual values
of the random variables to adjust any bad decision previously taken. In the model proposed,
first-stage decisions correspond to the number of employees assigned to each tour and to each
daily shift shell, while second-stage decisions (recourse actions) correspond to the allocation
of breaks and work activities to daily shifts and to the undercovering or overcovering of
demand.

The second-stage problem is formulated with the implicit model proposed in Côté et al.
[30]. In this approach, the authors translate the logical clauses associated with Γd, d ∈ D,
into linear constraints on integer variables, where the number of employees assigned to each
and-node (Ad), each or-node (Od) and each leaf (Ld) in Γd are represented by an integer
variable.

In the first-stage problem, we define a feasible tour as the integration of daily shift shells
(children of root nodes OS

d1n, d ∈ D) and days-off, over the set of days in the planning horizon.
Tours must meet the work rules related to the total working length, to the number of working
days, to the rest time between consecutive shifts and to the allocation of days-off. Figure 6.2
presents an example of three tours composed with the shifts presented in Γ1. In this example,
we assume that the DAG Γd for each day d ∈ D is the same. Additionally, the planning
horizon corresponds to seven days, the working length should fall between 15 and 18 time
periods, the number of working days must fall between 5 and 6, and there are no rules for
the allocation of days-off and for the rest time between shifts. Finally, S1 corresponds to
AS→XW,1d14 → wbww, S2 corresponds to AS→XW,2d14 → wwbw and DO corresponds to a day-off.
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Days
1 2 3 4 5 6 7

T
o
u
rs

1

2

3

S1 DO DO S1 S2 S1 S2

S1 S1 S2 S2 S2 DO S2

DO S1 S2 S2 DO S2 S1

Figure 6.2 Weekly tours composed of shifts from Γ1.

In defining a model for the discontinuous SMATSP, we assume that, at the moment we can act
on second-stage variables, the scenario for day d ∈ D is fully known. Hence, staffing decisions
(allocation of tours and daily shifts to employees) that are feasible to schedule without
knowing in advance the demand, will be generated well ahead in time, while adjustments
(allocation of work activities, position of breaks, overcovering and undercovering of demand)
are made once improved (daily) demand information is available. We also assume that the
random vector ξ representing the stochastic perturbations of demands has a finite support.
Henceforth, we define Ω as the set of its possible realizations and p(w) > 0 as the probability
of occurrence of scenario w ∈ Ω with ∑w∈Ω p

(w) = 1. The notation for the stochastic model
follows.

Sets

J : set of work activities;

D: set of days in the planning horizon;

Id: set of time periods at day d ∈ D;

E: set of employees;

T : set of feasible tours.

First-stage problem
Parameter

δΠ,k
dt : parameter that takes value 1, if tour t includes the kth shift shell built with production

Π for day d (variable vΠ,k
d1n), and assumes value 0 otherwise.

Decision variables

xt: integer variable that represents the number of employees assigned to tour t;
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vΠ,k
d1n: variable that represents the number of employees assigned to the kth and-node built
with production Π (children of the root node OS

d1n from Γd).

Second-stage problem
Parameters

bdij: deterministic demand for day d, time period i and activity j;

ξ
(w)
dij : stochastic perturbation of demand for day d, time period i and activity j for scenario
w;

b
(w)
dij : stochastic demand for day d, time period i and activity j for scenario w, b(w)

dij =
bdij + ξ

(w)
dij ;

cdij: nonnegative cost associated with one employee working on activity j, at time period
i, at day d;

c+
dij, c−dij: demand overcovering and undercovering nonnegative costs for day d, time period
i and activity j, respectively.

Decision variables

y
(w)
dij : variable that denotes the number of employees assigned to activity j, at time period
i, for day d under scenario w;

v
Π,k,(w)
dil : variable that denotes the number of employees assigned to the kth and-node,
representing production Π from Γd and that generates a sequence from i of length l < n,
under scenario w (this set of variables excludes the children of the root node OS

d1n);

s
+(w)
dij , s−(w)

dij : slack variables representing overcovering and undercovering of demand of
activity j, at time period i, for day d under scenario w, respectively.

Additionally, let V denote the set of variables corresponding to the union, over the set of
days d ∈ D, of variables vΠ,k

d1n. Given that notation, the formulation for the first-stage model,
denoted GT , is as follows.
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f(GT ) = min Q(V) (6.1)

vΠ,k
d1n =

∑
t∈T

δΠ,k
dt xt, ∀ d ∈ D, AΠ,k

d1n ∈ ch(OS
d1n), (6.2)

∑
t∈T

xt = |E|, (6.3)

xt ≥ 0 and integer, ∀ t ∈ T , (6.4)

vΠ,k
d1n ≥ 0, ∀ d ∈ D, AΠ,k

d1n ∈ ch(OS
d1n). (6.5)

The objective of GT , (6.1), is to minimize the expected recourse cost Q(V). Constraints
(6.2) represent the link between daily shifts (children of root nodes OS

d1n in Γd, d ∈ D) and
tours. Since a fixed number of employees is given and all the employees have the same skills,
constraint (6.3) guarantees that exactly |E| employees are assigned to the tours. Finally,
constraints (6.4)-(6.5) set the non-negativity and integrality of variables xt and the non-
negativity of variables vΠ,k

d1n.

The expected recourse function is denoted by Q(V) ≡ Eξ[Q(V , ξ)]. The recourse function
Q(V , ξ(w)), for a given realization w of ξ, is represented by:

Q(V , ξ(w)) = min
∑
d∈D

∑
i∈ Id

∑
j ∈ J

cdijy
(w)
dij +

∑
d∈D

∑
i∈ Id

∑
j ∈ J

(c+
dijs

+(w)
dij + c−dijs

−(w)
dij ) (6.6)

y
(w)
dij − s

+(w)
dij + s

−(w)
dij = b

(w)
dij , ∀d ∈ D, i ∈ Id, j ∈ J, (6.7)∑

AΠ,k
dil
∈ ch(Oπ

dil
)

v
Π,k,(w)
dil =

∑
AΠ,k
dil
∈ par(Oπ

dil
)

vΠ,k
d1n,

∀d ∈ D,Oπ
dil ∈ ch(Aπ,kd1n) \ Ld, (6.8)∑

AΠ,t
dil
∈ ch(Oπ

dil
)

v
Π,k,(w)
dil =

∑
AΠ,k
dil
∈ par(Oπ

dil
)

v
Π,k,(w)
dil ,

∀d ∈ D,Oπ
dil ∈ Od \ {OS

d1n ∪ Ld ∪ ch(Aπ,kd1n)}, (6.9)

y
(w)
dij =

∑
AΠ,k
di1 ∈ par(O

j
di1)

v
Π,1,(w)
di1 , ∀d ∈ D, i ∈ Id, j ∈ J, (6.10)

v
Π,k,(w)
dil ≥ 0, ∀ d ∈ D,AΠ,k

dil ∈ Ad \ ch(OS
d1n), (6.11)

s
+(w)
dij , s

−(w)
dij ≥ 0, ∀d ∈ D, i ∈ Id, j ∈ J, (6.12)

y
(w)
dij ≥ 0 and integer, ∀d ∈ D, i ∈ Id, j ∈ J. (6.13)
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Constraints (5.2)

Problem (6.6)-(6.13) is based on the implicit model presented in Côté et al. [30]. The objec-
tive, (6.6), is to assign work activities to daily shifts in order to minimize the staffing cost
plus the undercovering and overcovering of demand. Constraints (6.7) ensure that the total
number of employees working on day d ∈ D, time period i ∈ Id and work activity j ∈ J

is equal to the demand realization w subject to some adjustments related to undercovering
and undercovering. Due to the structure of Γd, d ∈ D, constraints (6.8)-(6.9) guarantee for
every or-node Oπ

dil, excluding the root node OS
d1n and the leaves Ld, that the summation of

the value of its children, ch(Oπ
dil), is the same as the summation of the value of its parents,

par(Oπ
dil). Constraints (6.10) set the value of variables y(w)

dij equal to the summation of the
value of the parents of leaf nodes Oj

di1. Constraints (6.11)-(6.13) set the non-negativity of
variables vΠ,k,(w)

dil , s+(w)
dij , s

−(w)
dij and the non-negativity and integrality of variables y(w)

dij .

Observe that problem (6.1)-(6.5) (first-stage problem) has complete recourse because for any
realization of the random vector ξ and value of variables vΠ,k

d1n, problem (6.6)-(6.13) (second-
stage problem) is always feasible due to the allowance of undercovering and overcovering of
demand. Additionally, note that since we assumed that at the moment we can act on second-
stage variables the scenario for day d ∈ D is fully known and since problem Q(V , ξ(w)) is
decomposable by days due to its particular block structure, V , Ω and p(w) > 0 can also be
decomposed by days: Vd, Ωd, p(w)

d > 0, d ∈ D and the expected recourse function Q(V) can
be represented as:

Q(V) ≡ Eξ[
∑
d∈D
Q(Vd, ξd)] ≡

∑
d∈D

Eξ[Q(Vd, ξd)] (6.14)

In the following, we present the solution method proposed to solve the SMATSP.

6.4 Heuristic Multi-cut L-shaped Method

The basic idea behind the L-shaped method is to approximate the nonlinear term, Q(V), in
the objective function of the two-stage stochastic problem (6.1)-(6.5). In particular, since
the expected recourse function involves solving all second-stage recourse problems, the main
principle of the L-shaped method is to avoid numerous function evaluations by using an
outer linearization of Q(V), as in BD. Since ξd follows a non-negative distribution with a
finite support, with Ωd as the set of its possible realizations for each day d ∈ D, and p(w)

d > 0
as the probability of occurrence of scenario w ∈ Ωd (∑d∈D

∑
w∈Ωd p

(w)
d = 1), Q(V) can be
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expressed as Q(V) = ∑
d∈D

∑
w∈Ωd p

(w)
d Q(Vd, ξd(w)). By defining θ(w)

d as an additional set
of free variables, the two-stage stochastic problem GT can be reformulated as the following
model, denoted as BT .

f(BT ) = min
∑
d∈D

∑
w∈Ωd

θ
(w)
d (6.15)

vΠ,k
d1n =

∑
t∈T

δΠ,k
dt xt, ∀ d ∈ D, AΠ,k

d1n ∈ ch(OS
d1n), (6.16)

θ
(w)
d ≥ p

(w)
d Q(Vd, ξd(w)), ∀ d ∈ D, w ∈ Ωd, (6.17)∑

t∈T
xt = |E|, (6.18)

xt ≥ 0 and integer, ∀ t ∈ T , (6.19)

vΠ,k
d1n ≥ 0, ∀ d ∈ D, AΠ,k

d1n ∈ ch(OS
d1n). (6.20)

Optimality cuts (6.17) ensure that the value of each variable θ(w)
d is larger than or equal to

the optimal value of its corresponding second-stage problem for each day d ∈ D and each
scenario w ∈ Ωd. Observe that the structure of problem (6.15)-(6.20) allows the L-shaped
method to be extended to include multiple cuts at each iteration, i.e., one per day and per
scenario, instead of adding one aggregated cut. Birge and Louveaux [15] showed that in an
iterative algorithm, adding multiple cuts at the same iteration may speed up convergence
and reduce the number of iterations.

Since the second-stage problems (6.6)-(6.13) are MILP models that do not possess the inte-
grality property, we relax integrality constraints (6.13) on variables y(w)

dij because 1) the dual
to the LP relaxation of each second-stage problem will produce a cut that forces θ(w)

d to be
at least as great as the objective value of the relaxation, which is a valid lower bound for
the actual recourse function value; 2) Restrepo et al. [75] showed that, in practice, problems
(6.6)-(6.13) do not exhibit a large integrality gap and that optimal or near-optimal solutions
can be found by solving the LP relaxation of the second-stage problems.

LetQ(Vd, ξd(w)) denote the LP relaxation of problem Q(Vd, ξd(w)). Let ρ(w)
dij , γ

π,(w)
dil be the

dual variables associated with constraints (6.7) and (6.8) fromQ(Vd, ξd(w)), respectively. Let
∆(w)

d be the projection over the space of variables ρ(w)
dij , γ

π,(w)
dil of the polyhedron defined by

the constraints associated with the dual of model Q (Vd, ξd(w)). Note that ∆(w)
d is itself a

polyhedron [84]. Let E∆(w)
d

be the set of extreme points of ∆(w)
d . Inequalities (6.17) in model

BT are replaced by the following ones, defining formulation B′T :
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θ
(w)
d ≥ p

(w)
d

( ∑
i∈ Id

∑
j ∈ J

b
(w)
dij ρ

(w)
dij +

∑
Oπ
dil
∈ ch(Aπ,k

d1n)\Ld

γ
π,(w)
dil

∑
AΠ,k
d1n∈ par(O

π
dil

)

vΠ,k
d1n

)
,

∀ d ∈ D, w ∈ Ωd, (ρd, γd) ∈ E∆(w)
d

. (6.21)

Since these new optimality cuts are using linear approximations of Q(Vd, ξd(w)), model B′T
is a MILP relaxation of BT i.e., f(BT ) ≥ f(B′T ). Optimality cuts (6.21) do not need to be
exhaustively generated, since only a subset of them are active in the optimal solution of the
problem. Hence, an iterative algorithm can be used to generate only the subset of cuts that
will represent the optimal solution.

The algorithm consists in a multi-cut version of the L-shaped method where, at each iteration
l ≥ 1, a relaxation of the first-stage problem is solved. Such relaxation is obtained by
replacing the set of extreme points at each day d ∈ D and each scenario w ∈ Ωd, by subsets
El

∆(w)
d

⊆ E∆(w)
d

. Note that in the first-stage model, B′T , it is assumed that the complete
set of tours T is known. However, with the incorporation of shift and tour flexibility, the
complete enumeration of the set of feasible tours might be intractable. To address this issue,
we propose a heuristic CG approach in which a master problem BLP

T̃
, is defined as the LP

relaxation of B′T over a restricted set of tours T̃ ⊆ T . We also define the MILP associated
with BLP

T̃
as BMILP

T̃
, where for a given subset of columns T̃ ⊆ T , the integrality constraints

on xt variables are imposed to obtain a heuristic integer solution (i.e., BMILP
T̃

is solved by a
state-of-the-art B&B method, using only the columns corresponding to T̃ ). The algorithm
for the L-shaped method is then divided into two parts: multi-cut generation and CG.

Two algorithm enhancements were implemented to speed-up the convergence of the multi-cut
L-shaped method. First, we adopted the strategy proposed in McDaniel and Devine [58],
which consists in initially solving the LP relaxation of the first-stage problem to generate, in
a fast way, a number of valid cuts. Then, when some criterion is met (i.e., the relative gap
between the upper bound and the lower bound of the problem is smaller than a certain value),
the method then solves the MILP of the first-stage problem. Second, we implemented the
method presented in Papadakos [64] for the generation of strong optimality cuts. The author
proposes an alternative to eliminate the necessity of solving the extra auxiliary subproblem
introduced in Magnanti and Wong [57]. Additionally, since finding a core point for the
problem is a difficult task, the author suggests to use an approximation of the core point
that consists of a convex linear combination of the previously generated core point and the
current solution for the first-stage problem.
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Let ε1 be the tolerance that defines if an optimality cut is added or not to the first-stage
problem and let ε2 be the tolerance we used to stop solving BLP

T̃
, i.e., stop the McDaniel

and Devine [58] strategy. Let Int be a boolean variable that indicates whether the MILP
(BMILP
T̃

) of the first-stage problem is solved (Int=true) or not (Int=false). Let θ(w)
dl

∗
denote

the optimal value of variables θ(w)
d from BLP

T̃
, at iteration l. Note that θl = ∑

d∈D
∑
w∈Ωd θ

(w)
dl

∗

denotes a lower bound on f(GT ) at iteration l. Since we are using a heuristic approach to
find integer solutions for the first-stage model, we also denote θdl

(w)∗ as the optimal values of
variables θ(w)

d when BMILP
T̃

is solved at iteration l. To simplify the algorithm description, we
use the same notation when solving BLP

T̃
, even though in that case, we have θ(w)

dl

∗
= θdl

(w)∗

for each d ∈ D,w ∈ Ωd, since the CG algorithm is performed until all columns have non-
negative reduced costs. Let s(w)

dl

∗
, sdl(w)∗ be the optimal value of second-stage problem (6.6)-

(6.13) for day d, under scenario w at iteration l, when integrality constraints on variables
y

(w)
dij are imposed and relaxed, respectively. Note that θ̄l = ∑

d∈D
∑
w∈Ωd p

(w)
d s

(w)
dl

∗
is an upper

bound on f(GT ) at iteration l. Similarly, θ̃l = ∑
d∈D

∑
w∈Ωd p

(w)
d sdl

(w)∗ is an upper bound
on f(B′T ) ≤ f(GT ) at iteration l, which we call the approximated upper bound. Let vπ,kd1nl

∗,
vπ,kd1nl

0 denote an optimal solution and the core point approximation, respectively of first-stage
variables vπ,kd1n from model B′T at iteration l. The flow diagram of the algorithm is presented
in Figure 6.3. The description of the multi-cut L-shaped method follows.
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Figure 6.3 Flow chart for the multi-cut L-shaped method.

• Initialization: The multi-cut L-shaped algorithm starts with an empty set of optimality
cuts, El

∆(w)
d

= ∅, d ∈ D,w ∈ Ωd. In this step, the number of iterations l is set to zero,
the lower and upper bounds of the problem are initialized as θ̄l =∞, θ̃l =∞, θl = −∞,
the Boolean variable Int is set to false, and an initial set of columns, generated with
the procedure shown in the Column generation step, is added to BLP

T̃
.

• Int=true?: In this step of the algorithm, we verify if the Boolean variable Int is true
or false. If Int = false, we continue with the step Get primal sol. from BLP

T̃
. If

Int = true we continue with the step Solve BMILP
T̃

get primal sol. The value of Int is
changed from false to true when (θ̃l − θl)/θ̃l < ε2 and Int = false.

• Get primal sol. from BLP
T̃

: In this step of the algorithm, we get the primal solution
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vπ,kd1nl
∗, θ(w)

dl

∗
from BLP

T̃
. Then, we calculate the approximation of the core point as:

vπ,kd1nl
0 = 1

2v
π,k
d1n l−1

0 + 1
2v

π,k
d1nl
∗
, ∀d ∈ D, AΠ,k

d1n ∈ ch(OS
d1n) and we update the lower bound

of the problem as: θl = ∑
d∈D

∑
w∈Ωd θ

(w)
dl

∗
. The values of vπ,kd1nl

∗, vπ,kd1nl
0 are sent to the

second-stage problems.

• Solve BMILP
T̃

get primal sol.: In this step of the algorithm, we get the primal solution
θ

(w)
dl

∗
from BLP

T̃
to update the lower bound of the problem as: θl = ∑

d∈D
∑
w∈Ωd θ

(w)
dl

∗
.

Then we solve BMILP
T̃

to get the primal solution θdl
(w)∗

, vπ,kd1nl
∗ and to calculate the

approximation of the core point as: vπ,kd1nl
0 = 1

2v
π,k
d1n l−1

0 + 1
2v

π,k
d1nl
∗
, ∀ d ∈ D, AΠ,k

d1n ∈
ch(OS

d1n). The values of vπ,kd1nl
∗, vπ,kd1nl

0 are sent to the second-stage problems.

• Multi-cut generation: The objective of the multi-cut step is to generate optimality
cuts (6.21) in order to approximate the recourse function Q(V , ξ). The procedure to
generate and to add new optimality cuts to the first-stage problem follows.

– Solve LP rel. second-stage prob.: In this step of the algorithm, we solve the LP
relaxation of the second-stage problems twice. First, we fix variables vπ,kd1n with the
value of core point vπ,kd1nl

0 to get a dual solution (ρd, γd). Second, we fix variables
vπ,kd1n with the value of point vπ,kd1nl

∗ to recover the real objective value of the second-
stage problems and to update the approximated upper bound of the problem as:
θ̃l = min{θ̃l,

∑
d∈D

∑
w∈Ωd p

(w)
d sdl

(w)∗}.

– Opt. cuts? and add opt. cuts: In order to add optimality cuts to the first-stage
problem, we verify if (sdl(w)∗ −θdl

(w)∗)/sdl(w)∗ > ε1, in which case a new optimality
cut is added for scenario w and day d. After adding the optimality cuts, we
increase by one the number of iterations l.

• Column generation: The CG method consists of a master problem BLP
T̃

and a pricing
subproblem. The former problem, as mentioned before, is the LP relaxation of model
B
′
T over a reduced set of tours T̃ ⊆ T . The latter problem is responsible for finding

tours with negative reduced cost that will be added to BLP
T̃

in an iterative way.
Let λΠ,k

d1n and δ be the dual variables associated with the constraints (6.16) and (6.18)
from BLP

T̃
, respectively. Let S = ⋃

d∈D ch(OS
d1n) be a set of shift shells, defined as the

union, over the set of days in the planning horizon, of all the children of root nodes
OS
d1n, d ∈ D. Let G(N ,A) be a directed acyclic graph, composed of a set of nodes
N = {vs | s ∈ S ∪ {vb, ve}}, where vs corresponds to shift s and vb, ve are the source
and sink nodes, respectively. Each shift s ∈ S holds, besides a set of attributes inherited
from its corresponding and-node (start time period, working time, and length including
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breaks), a “reduced cost contribution” corresponding to value of the dual variable λΠ,k
d1n.

The set of arcs A represents the connection between nodes depending on the work rules
for the allocation of days-off and rest time between consecutive shifts.
New columns for BLP

T̃
correspond to resource-constrained shortest paths over G(N ,A).

More specifically, each feasible tour t ∈ T̃ must meet the work rules related to the min-
imum and maximum number of working days in a tour, to the minimum and maximum
tour length in time periods, to the maximum number of days-off, and to the minimum
rest time between two consecutive daily shifts. Additionally, the reduced cost c̄t of tour
t is given by

c̄t =
( ∑
d∈D

∑
AΠ,k
d1n ∈ ch(OS

d1n)

λΠ,k
d1nδ

Π,k
dt

)
− σ. (6.22)

The procedure to generate and add new columns for BLP
T̃

is as follows:

– Solve BLP
T̃

, get dual sol.: In this step of the algorithm, we solve problem BLP
T̃

to
get the dual solution (λ, σ) that will be sent to the pricing subproblem.

– Solve pricing subp.: New variables (tours) for the BLP
T̃

are generated by using
a label setting algorithm for the resource-constrained shortest-path problem over
graph G(N ,A). In the algorithm, the total length of the tour and the number
of working days represent global resources that are consumed by the labels while
they are extended.

– c̄t < 0? and add columns to BLP
T̃

: In this step of the algorithm we evaluate if
negative reduced cost columns were found by the pricing subproblem. If yes, such
columns are sent to BLP

T̃
which is re-optimized to start a new iteration.

• Solve MILP second-stage prob.: In this step of the algorithm, we solve the MILP of the
second-stage problems when vπ,kd1n variables are fixed with the value of vπ,kd1nl

∗. In this
step, we also compute the value of the upper bound as θ̄l = ∑

w∈Ω
∑
d∈D p

(w)
d s

(w)
dl

∗
and

the gap with respect to the approximated upper bound: 100 × (θ̄l − θ̃l)/θ̄l. This gap
helps to measure the quality of the solution obtained when the integrality constraints
on second-stage variables y(w)

dij are relaxed.

• Compute the value of the stochastic sol.: The multi-cut L-shaped algorithm ends with
the computation of the value of the stochastic solution (VSS) which is defined as V SS =
EEV − HN . HN corresponds to the value of the two-stage stochastic programming
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problem and EEV corresponds to the expected value of the expected-value problem
(EV). Recall that, since second-stage problems are MILP models that do not possess
the integrality property, the final (heuristic) solution of the two-stage stochastic problem
might not be optimal and HN = θ̄l ≥ θ̃l.

6.5 Computational Experiments

In this section, we test the proposed multi-cut L-shaped method on real and randomly
generated instances of the SMATSP. First, we describe the generation and the characteristics
of the set of instances used. Second, we present the problem definition and the grammar built
for the composition of daily shifts. Third, we report and analyze the computational results.

The computational experiments were performed on a 64-bit GNU/Linux operating system, 96
GB of RAM and 1 processor Intel Xeon X5675 running at 3.07GHz. The multi-cut L-shaped
algorithm was implemented in C++. The LP relaxation of both the first-stage problem
and the second-stage problems was solved by using the barrier method of CPLEX version
12.5.0.1. We set a time limit of 3 hours to solve each instance. Additionally, a relative gap
tolerance of 0.01 was set as a stopping criterion for solving the MILPs with CPLEX. The
value of tolerances ε1, ε2 were set to 0.0001 and 0.01, respectively.

6.5.1 Instances Generation

The set of instances used to test our method is divided into two groups: randomly generated
instances and real instances from a small retail shop. The deterministic demand profiles for
the set of random instances were generated such that they follow a unimodal behavior. The
deterministic demand profiles for the real instances are presented in Côté et al. [30]. These
demand profiles present a constant (uniform) demand across hours (level behavior). Figure
6.4 shows an illustration, over two days, of the demand profiles used for the computational
experiments.

Stochastic instances were created by adding to the deterministic demand profile, a random
perturbation that follows a discrete uniform distribution. We created instances with 11, 49,
81 and 125 scenarios. Their description follows.

• Instances with 11 scenarios: In this group of instances, one large perturbation is gener-
ated for the complete week. Such perturbation follows a discrete uniform distribution
between -5 and 5.

• Instances with 49 scenarios: In this group of instances, two perturbations that follow
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Figure 6.4 Deterministic demand profiles.

a discrete uniform distribution between -3 and 3 are generated. The first perturbation
will affect the first 12 hours of each day during the week, while the second perturbation
will affect the last 12 hours of each day during the week.

• Instances with 81 scenarios: In this group of instances, we generate perturbations for
each day of the week every two hours between 10am and 6pm. Such perturbations
follow a discrete uniform distribution between -1 and 1.

• Instances with 125 scenarios: In this group of instances, we generate perturbations for
each day of the week every two hours between 11am and 5pm. The perturbations follow
a discrete uniform distribution between -2 and 2.

It is important to highlight that the demand is not perturbed when b(w)
dij = bdij + ξ

(w)
dij ≤ 0.

However, this case only applies when bdij = 0 because when the demand takes a positive
value, this value is always higher than the value of the lower realization of the stochastic
perturbation ξ(w)

dij .
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6.5.2 Problem Definition and Grammar

The work rules for shift and tour generation, as well as the grammar used in the problem are
as follows.

Tour generation

1. The planning horizon is seven days, where each day is divided into 96 time periods of
15 minutes.

2. Shifts are not allowed to span from one day to another (discontinuous problem).
3. The tour working length should fall between 35 and 40 hours per week.
4. The number of working days in the tour should fall between five and six.
5. There must be a minimum rest time of twelve hours between consecutive shifts.

Daily shift generation

1. Shifts can start at any time period during any day d, allowing enough time to complete
their duration in day d.

2. Three types of shifts are considered: 8-hour shifts with 1-hour lunch break in the middle
and two 15-minute breaks. 6-hour shifts with one 15-minute break and no lunch, and
4-hour shifts with one 15-minute break and no lunch.

3. If performed, the duration of a work activity is at least one hour and at most five hours.
4. A break (or lunch) is necessary between two different work activities.
5. Work activities must be inserted between breaks, lunch and rest stretches.
6. A fixed number of employees |E| is given, therefore undercovering and overcovering of

demand is allowed.

Let aj be a terminal symbol that defines a time period of work activity j ∈ J . Let b, l
and r be the terminal symbols that represent break, lunch and rest periods, respectively. In
productions Π ∈ P, Π→[min, max] restricts the subsequences generated by a given production
to a length between a minimum and maximum number of time periods. The grammar and
the productions that define the multi-activity shifts are as follows:
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G =(Σ = (aj ∀j ∈ J, b, l, r),

N = (S, F,Q,N,W,Aj ∀j ∈ J,B, L,R), P, S),

S → RFR|FR|RF |RQR|QR|RQ|RNR|NR|RN, B → b, L→ llll,

F →[38,38] NLN, Q→[25,25] WBW,

N →[17,17] WBW, R→ Rr|r,

W →[4,20] Aj ∀j ∈ J, Aj → Ajaj|aj ∀j ∈ J.

6.5.3 Computational Results

Tables 6.1 - 6.2 present the computational results on stochastic weekly instances dealing
with up to five work activities. Ten different demands were tested for each activity (Nb.Act)
and for each version on the number of scenarios (Scen.). We present the average CPU
time in seconds to solve the problem (T. time), the average CPU time spent in the CG
approach (Time CG), which includes the time to solve the pricing subproblems and the time
to solve the LP relaxation when new columns are added, the average CPU time to solve
the first-stage problem (Time F-S), and the average CPU time to solve the second-stage
problems (Time S-S). The average gap between the best upper bound and best lower bound
is presented in Gap1. This gap is computed as: Gap1= 100 × (θ̄ − θ)/θ̄. Since the second-
stage problems are MILPs that do not possess the integrality property and we are relaxing
integrality constraints on variables y(w)

dij , we also calculate the average gap between the upper
bound θ̄ and the approximated upper bound θ̃: Gap2= 100× (θ̄ − θ̃)/θ̄. Conv. presents the
number of instances that converged to a near-optimal solution, i.e., the algorithm stopped
when no more optimality cuts are added to the first-stage model. The average value of
the stochastic solution (VSS), in percentage, is presented in the last column. This value is
computed as: V SS = 100× (EEV −HN)/EEV and it is only calculated for instances that
converged (Conv.=1).
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Table 6.1 Results on stochastic weekly instances with unimodal demand shape.

Scen. Nb. Act T. time Time CG Time F-S Time S-S Gap1 Gap2 Conv. VSS

11

1 242.75 23.04 11.14 185.99 1.01% 0.00% 10 5.40%
2 1,587.45 97.11 188.8 1,123.27 0.91% 0.00% 10 9.05%
3 2,114.18 94.6 200.1 1,655.17 0.85% 0.00% 10 8.63%
4 2,602.97 101.37 133.23 2,227.37 0.87% 0.00% 10 8.97%
5 3,502.28 117.21 134.1 3,092.78 1.09% 0.02% 10 7.69%

49

1 990.11 47.96 41.04 872.56 0.66% 0.00% 10 2.70%
2 4,344.01 126.26 144.8 4,001.32 0.88% 0.00% 10 5.48%
3 8,069.22 568.29 544.45 6,390.64 0.95% 0.00% 7 8.01%
4 8,463.06 385.56 386.02 7,226.97 1.14% 0.01% 6 8.08%
5 10,664.8 647.37 488.32 8,632.84 11.85% 0.02% 0 -

81

1 2,171.04 221.63 163.12 1,671.75 0.76% 0.00% 10 0.29%
2 8,577.45 669.39 661.43 7,023.38 0.86% 0.00% 8 0.92%
3 9,603.11 292.43 285.7 8,909.98 0.82% 0.01% 7 1.54%
4 10,537.88 267.65 250.83 9,927.05 1.34% 0.01% 2 1.61%

125

1 2,189.07 212.81 237.51 1,630.95 0.89% 0.00% 10 1.51%
2 9,415.76 635.78 726.83 7,826.62 0.84% 0.00% 10 2.07%
3 10,321.03 371.64 419.09 9,409.37 0.74% 0.01% 6 2.78%
4 10,619.85 192.11 197.47 10,144.59 3.23% 0.01% 2 3.17%

Table 6.2 Results on stochastic weekly instances with level demand shape.

Scen. Nb. Act T. time Time CG Time F-S Time S-S Gap1 Gap2 Conv. VSS

11

1 152 18.02 5.34 81.44 0.56% 0.00% 10 1.96%
2 279.16 14.31 7.78 203.67 0.46% 0.02% 10 0.87%
3 616.06 27.13 30.33 452.17 0.72% 0.02% 10 0.81%
4 607.65 20.78 11.56 504.91 0.50% 0.02% 10 1.55%
5 962.64 31.6 22.07 763.5 0.54% 0.03% 10 1.27%

49

1 575.32 59.7 25.18 387.53 0.60% 0.00% 10 0.00%
2 1,451.61 75.4 42.33 10,59.27 0.56% 0.01% 10 0.43%
3 2,838.99 87.35 153.01 2,123.57 0.83% 0.02% 10 0.42%
4 3,166.09 93.83 78.68 2,625.82 0.54% 0.01% 10 1.11%
5 4,557.47 94.44 127.76 3,813.78 0.59% 0.02% 10 0.95%

81

1 1301.52 224.75 81.07 694.34 0.66% 0.00% 10 -0.75%
2 2,812.83 269.58 117.27 1,804.07 0.65% 0.01% 10 -0.77%
3 6,177.93 298.59 611.18 4,174.32 0.80% 0.03% 9 0.01%
4 6,261.87 486.49 169.65 4,719.92 0.53% 0.01% 10 -0.03%
5 9,766.28 263.26 535.85 7,452.06 0.72% 0.01% 9 0.14%

125

1 1,842.3 368.16 155.31 877.35 0.69% 0.00% 10 -0.47%
2 4,322.38 597.87 283.89 2,376.46 0.58% 0.02% 10 -0.06%
3 7,510.87 513.18 436.21 4,891.14 0.64% 0.03% 10 0.37%
4 8,129.87 607.49 324.75 5,912.99 0.51% 0.01% 10 1.53%
5 10,818.7 371.01 388.89 7,572.3 22.19% 0.01% 0 -

From Table 6.1, we can conclude that the proposed approach was able to find high quality
solutions for most of the instances with up to 125 demand scenarios and three work activities.
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Our method was not able to find solutions that converged for any of the instances with five
activities when evaluated on 49 stochastic scenarios, providing solutions with 11.85% average
optimality gap. However, for most of the other instances, the final gap is, on average, less
than 1.15%. From Table 6.2, we can conclude that our method was able to find near-optimal
solutions for almost all the instances with up to five work activities when evaluated on 11, 49
and 81 demand scenarios and with up to four work activities when evaluated on 125 demand
scenarios. Regarding the CPU time, we observe that the most time-consuming component
is related to the LP solution of the second-stage problems, which increases significantly with
the numbers of activities and scenarios.

Although integrality constraints on second-stage variables were relaxed, we can conclude that
in most cases, the approximated upper bound θ̃ was the same as or very close to the real
upper bound θ̄. The above can be observed from the average values of Gap2, which are at
most 0.03%.

We observe some negative values for the VSS since the algorithm is heuristic. These cases
are rare, however: they are observed only on the instances with level demand shape and
when the stochastic perturbations of demand do not exhibit a lot of variability (81 and 125
scenarios). The values of the stochastic solution (V SS) depend on the demand profile used.
When a unimodal demand profile is tested, the stochastic model prevents the occurrence of
additional staffing costs associated with the undercovering and overcovering of demand when
compared with the expected value problem. On the contrary, when a level demand profile
is used, a deterministic approach based on the expected demand appears to be sufficient,
especially when 81 and 125 scenarios are used and not a lot of variability is included in the
stochastic perturbation of demand.

6.6 Concluding Remarks

In this paper, we presented a two-stage stochastic programming approach to solve the dis-
continuous multi-activity tour scheduling problem when demand is uncertain and employees
have identical skills. In the model, first-stage decisions correspond to the allocation of em-
ployees to weekly tours and to daily shifts, while second-stage decisions correspond to the
allocation of work activities and breaks to shifts and to the undercovering and overcovering
of demand. Since the number of tours becomes large with an increase in shift and tour
flexibility, the first-stage problem was solved via CG. Second-stage problems were modeled
with context-free grammars in order to efficiently handle the work rules for the composition
of the shifts and the allocation of work activities to the shifts.
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A heuristic multi-cut L-shaped method was implemented as a solution approach. Two algo-
rithmic refinements were used to enhance the performance of the method. First, we adopted
the strategy of McDaniel and Devine [58] in order to generate an initial set of valid cuts in a
fast way. Second, we implemented the idea of Papadakos [64] to generate strong optimality
cuts. Additionally, we showed that, although second-stage problems are MILP models that
do not possess the integrality property, high-quality solutions can be achieved by relaxing
the integrality constraints to generate optimality cuts.

Computational results suggest that the performance of the method depends on the distribu-
tion of the demand profile, as well as on the number of scenarios and work activities included.
Specifically, the multi-cut L-shaped method exhibited a better performance, in terms of CPU
time, when evaluated on instances with a level demand behavior than when evaluated on in-
stances with a unimodal behavior. However, we observed that the use of the stochastic
model has a larger impact on instances with unimodal demand behavior, since it prevents
the occurrence of additional staffing costs when compared with the expected value problem.
On the contrary, since the value of the stochastic solution is close to zero, a deterministic
approach based on the expected demand often appears to be sufficient for instances with a
level demand behavior.
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CHAPTER 7 GENERAL DISCUSSION

In the articles presented in Chapters 4, 5, and 6 we introduced different modeling approaches
that rely on the combination of decomposition methods with context-free grammars to solve
the integration of the discontinuous tour scheduling problem with the multi-activity shift
scheduling problem. In Chapters 4 and 5 we presented two exact methods for the personalized
and the anonymous version of the problem, respectively. Then, an extension of the method
presented in Chapter 5 was used to solve the multi-activity tour scheduling problem under
stochastic demand. With these contributions we intended to address three different variants
of the problem that, to the best of our knowledge, have not yet been studied in the literature.

In Chapters 4 and 5 we showed that the integration of previous work on multi-activity shift
scheduling (the use of context-free grammars to efficiently handle the multi-activity context)
with the development of new ideas for the composition of the tours, helps to overcome the
limitations found in the literature regarding the composition of shifts over long time horizons
(e.g., one week) and the introduction of flexibility and specific work rules for the tour and
shift composition.

The theoretical comparison and experimental evaluation of the models and solution ap-
proaches presented in the thesis, allowed us to determine the characteristics and limitations
of each one of them. First, the comparison of the two formulations presented in Chapter 4
allowed us to conclude that a Tour-based formulation in which columns correspond to tours
is more suitable when exact solutions are required, but when fast-heuristic integer solutions
are needed, a Daily-based formulation in which columns correspond to daily shifts works
better. Second we found that, for the anonymous problem, the model presented in Chapter 5
is a better alternative than the Tour-based branch-and-price approach from Chapter 4, since
the combination of an explicit tour scheduling modeling approach with an implicit grammar-
based shift scheduling formulation allows to solve the scalability and symmetry issues arising
with an increase in the numbers of employees and work activities.

The models and solution methods presented in the thesis were also adapted in order to
compare them against some methods presented in the literature. First, since no method
has been proposed in the literature to solve the personalized multi-activity tour scheduling
problem, the Tour-based formulation from Chapter 4 was tested on a mono-activity problem
presented in Brunner and Bard [17]. Second, the method presented in Chapter 5 was adapted
to the multi-activity shift scheduling problem presented in Côté et al. [30]. The experimental
results allowed us to conclude that our models are flexible enough to be easily adapted
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depending on the characteristics of the problem and that they exhibited, in most of the
cases, competitive and often better solution times.



123

CHAPTER 8 CONCLUSION

In the present thesis we have proposed different hybrid approaches that combine decompo-
sition methods and formal languages to address the integration of two complex large-scale
problems: the discontinuous tour scheduling and the multi-activity shift scheduling. In the
following, we present a summary of the contributions achieved by the thesis in the area of
personnel scheduling problems, then we discuss the limits of the approaches proposed, to
finish with a presentation of future improvements and possible future work.

8.1 Advancement of Knowledge

To address the integration of the discontinuous tour scheduling problem with the MASSP,
we proposed different modeling approaches based on decomposition methods and formal
languages. While the use of formal languages (context-free grammars) allows to define the
work rules for the composition of shifts and the allocation of work activities and breaks to
shifts in an efficient way, the use of decomposition methods (CG and BD) allows to decompose
the problem into smaller ones, easier to solve.

In Chapter 4 we introduced two B&P algorithms to solve the personalized MATSP in a
discontinuous environment. Two formulations were presented: a Daily-based formulation
and a Tour-based formulation in which columns correspond to shifts and tours, respectively.
In the pricing subproblems for the Daily-based formulation, columns (shifts) are modeled
using context-free grammars. In the Tour-based formulation, columns (tours) are composed
with an exact two-phase procedure. In the first phase, daily shifts are modeled with context-
free grammars. In the second phase, the daily shifts are assembled into tours by using a label
setting algorithm for the resource-constrained shortest-path problem. The master problem
of both formulations is based on a generalized set partitioning problem. We formally showed
that the Tour-based formulation was stronger in terms of its LP relaxation lower bound when
compared with the Daily-based formulation.

We tested and compared the two approaches on randomly generated instances for the mono-
activity and multi-activity tour scheduling problem over a one week planning horizon. Two
methods were tested to find integer solutions. A heuristic approach in which the MIP version
of the problem including only the set of generated columns at the root node was solved by
a state-of-the-art B&B code and an exact approach corresponding to a B&P where the
branching rule was designed to preserve the structure of the pricing subproblems. The
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Daily-based formulation exhibited better solution times than the Tour-based formulation
for the heuristic approach. On the other hand, the Tour-based formulation had a better
performance in the exact approach, being able to find integer solutions for all the instances
with an optimality gap lower than 1%.

The Tour-based formulation was also tested on a mono-activity problem presented in Brunner
and Bard [17]. The experiments suggested that the solution times and quality of our formu-
lation are comparable with the solution times and quality reported by Brunner and Bard [17].

Since scalability issues arise as the number of employees becomes large, in Chapter 5, we
presented an approach that combines BD and CG to solve the anonymous MATSP in a
discontinuous environment. We took advantage of the special block structure of the problem
to decompose it into smaller problems, easier to solve. Therefore, the model consists of a
master problem and a set of Benders daily subproblems. The master problem links the tours
with daily shift shells, while the Benders subproblems assign work activities and breaks to
daily shifts. Due to its structure, the master problem is solved by CG. Additionally, the
Benders subproblems are modeled with context-free grammars to implicitly tackle all the
work rules for the composition of shifts and to efficiently allocate work activities and breaks
to them. Although Benders primal subproblems do not possess the integrality property, we
showed that adopting an alternative algorithmic strategy that combines the generation of
integer Benders cuts with classical Benders cuts, guarantees the convergence of the method,
to an optimal solution to the original problem.

The combined BD and CG approach was tested on real-world instances and randomly
generated instances for the discontinuous anonymous MATSP (one-week planning horizon)
and for the anonymous MASSP (one-day planning horizon). Results on weekly instances
suggest that our method is able to find high quality integer solutions for instances dealing
with up to ten work activities. When compared with a B&P approach, our method exhibited
faster solution times and provided better upper bounds for the most difficult instances.
Regarding the MASSP, the BD approach was able to solve to optimality instances with up
to thirty work activities. When the method was compared with the grammar-based integer
programming approach presented in Côté et al. [30], our method presented competitive and
often better solution times.

Because alternative personnel scheduling approaches that include demand uncertainty can
lead to significant reductions in labor costs, in Chapter 6 we presented a two-stage stochastic
programming approach to solve the anonymous MATSP when demand is uncertain. The
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method is an extension of the combined BD and CG approach presented in Chapter 5.
Therefore, the first-stage problem is in charge of the decisions corresponding to the allocation
of employees to weekly tours and to daily shifts, while the second-stage problems are in
charge of the decisions related to the allocation of work activities and breaks to shifts and
to the undercovering and overcovering of employee requirements (recourse actions). Since
the number of tours becomes large with an increase in shift and tour flexibility, the first-
stage problem was solved with a heuristic CG method. On the other hand, the second-stage
problems are modeled with the grammar-based integer programming model presented in Côté
et al. [30].

A multi-cut L-shaped method was implemented as a solution approach. The method was
evaluated on instances with different demand profiles. The results suggest that the perfor-
mance of the method depends on the distribution of the demand, as well as on the numbers
of scenarios and work activities included. Specifically, the multi-cut L-shaped method exhib-
ited a better performance, in terms of CPU time, when evaluated on instances with a level
demand behavior than when evaluated on instances with a unimodal behavior. However, we
observed that the use of the stochastic model has a larger impact on instances with unimodal
demand behavior since it prevents the occurrence of additional staffing costs when compared
with the expected value problem. On the contrary, since the value of the stochastic solution
is close to zero, a deterministic approach based on the expected demand often appears to be
sufficient for instances with a level demand behavior.

8.2 Limits and Constraints

The models and solution approaches proposed in this thesis present two types of limitations:
practical and size-related limitations. First, the practical applications of our methods might
be reduced specially for companies that operate 24-hours per day, 7-days per week, because
the main assumption adopted in all the approaches was to suppose that the problem is
discontinuous (shifts are not allowed to span from one day to another). Second, some size-
related limitations of our approaches might arise with an increase in the numbers of work
activities, days in the planning horizon, stochastic scenarios and flexibility. Specifically, the
DAGs used for shift and tour generation in the CG approaches will probably become large and
the dynamic programming algorithms might become slow to solve. Similarly, the grammar-
based integer programming models used as subproblems in the methods from Chapters 5-6,
might become difficult to solve with a state-of-the-art mathematical programming solver, as
the number of variables and constraints might also become large.
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8.3 Recommendations

In order to solve practical instances for the MATSP arising from continuous environments, it
would be interesting to extend the proposed approaches to the case in which the problem is
not decomposable by days. Therefore, in the B&P methods it would be a good idea to divide
the planning horizon by pairs of days e.g., Monday and Tuesday, Tuesday and Wednesday,...,
Sunday and Monday. In that way, the problem would still be decomposable and the B&P
approaches proposed in this thesis would still apply to solve the problem. More in detail, if
the day is divided into 24 time periods and shifts are allowed to span a maximum number
of 8 time periods, the pair of days Monday and Tuesday will include the 24 time periods of
Monday and the first 7 time periods of Tuesday. Additionally, at each pair of days, shifts can
only start during the first day (i.e. in the pair of days Monday and Tuesday, shifts can only
start on Monday). Regarding the approach that combines BD and CG, continuity can be
included by assuming that the problem cannot be decomposed by days. Therefore, it would
be necessary to define one large DAG (in the Benders subproblem) representing all possible
shifts for the complete planning horizon. Note that in both approaches it would be necessary
to modify the label setting algorithm for the resource-constrained shortest-path problem to
guarantee the cyclical nature of the schedules. Additionally, the size of the DAG derived
from the grammars, as well as the graph used to build the tours, would be larger than in
the discontinuous case, since it would be necessary to (almost) duplicate the number of time
periods and the possible number of shifts considered in the problem.

The B&P approaches presented in Chapter 5 can be integrated with the problem presented
in Boyer et al. [16], where in addition to the allocation of work activities to the shifts it would
also be necessary to include the allocation of uninterrupted tasks. In this case, the grammars
and the DAGs should be modified to include the productions associated with the allocation
of tasks to shifts, as well as the master problems to account for the precedence constraints
between the tasks.

Since the computational complexity for solving the two-stage stochastic programming model
presented in Chapter 6 gets worse with an increase in the number of demand scenarios, it
would be interesting to use an algorithm for scenario reduction that will compute the (nearly)
best approximation of the discrete probability distribution for employee requirements by a
measure with fewer scenarios (smaller support).
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APPENDIX A EXAMPLE FOR THE COMPARISON BETWEEN THE
TWO FORMULATIONS

The problem is a mono-activity tour scheduling with a three-day time horizon; each day is
divided into four time periods; the total tour length ranges between 4 and 6 time periods; the
minimum and maximum number of days are 1 and 2, respectively; there are no constraints
for the minimum rest time; and the total number of employees is 1. The grammar used to
compose the daily shifts is as follows:

G = (Σ = (w, b), N = (S,X,W,B), P, S),
where productions P are: S → XW , X → WB, W → WW |w, B[2,2] → b

Daily shifts have a working length of 3 time periods and must have one break allocated in their
second time period (production B[2,2] → b). Table A.1 presents the employee requirements
and the structure of the feasible shifts and tours. The cost of the activity per time period at
each day is 1 and the costs of overcovering and undercovering of employee requirements are
1 and 2, respectively.

Table A.1 Employee requirements, shifts and tours structures.

Day (d) 1 2 3
Time period (i) 1 2 3 4 1 2 3 4 1 2 3 4
Empl. req. (bdij) 1 1 0 0 1 1 0 0 1 1 0 0
Shift1 (x11) 1 0 1 1 - - - - - - - -
Shift2 (x21) - - - - 1 0 1 1 - - - -
Shift3 (x31) - - - - - - - - 1 0 1 1
Tour1 (x1) 1 0 1 1 1 0 1 1 0 0 0 0
Tour2 (x2) 1 0 1 1 0 0 0 0 1 0 1 1
Tour3 (x3) 0 0 0 0 1 0 1 1 1 0 1 1

For the Daily-based formulation, since all the shifts have the same working length (3 time
periods) it is easy to show that the constraint for the minimum and maximum number of
working days (4.4) is redundant and that the summation of the value of the three decision
variables (x11, x21, x31) have to fall inside the interval [4/3, 6/3] because of constraints (4.5).
Now, since all the shifts have the same structure and the employee requirements are the same
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at each day, we can conclude that the value of f(FS) is the same when we evaluate the point
(1,1,0) or the point (2/3, 2/3, 2/3). Therefore, we can evaluate the value of f(FS) when all
the variables fall, with the same value, inside the interval [4/9, 6/9]. Figure A.1 presents
the value of the objective function for the evaluated points, as well as the optimal solution
f(F ?

S) = 16 with x?11 = x?21 = x?31 = 4/9.
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Figure A.1 Optimal solution for the LP relaxation of the example using the Daily-based
formulation.

The solution of the problem with the Daily-based formulation is not feasible for the Tour-
based formulation, since all possible tours must have a length of 6 time periods and must
include 2 working days. As mentioned before, since the employee requirements and the shifts
are the same for every day, the value of f(FT) is the same when we evaluate all the points
where x1 + x2 + x3 = 1. In this case the optimal value of f(F ?

T) is 18. Hence f(F ?
S) < f(F ?

T).
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APPENDIX B LABEL SETTING ALGORITHM TO SOLVE THE SPPRC

Let Q be the set of labels. Each label l ∈ Q has an associated path P(l) and a set of
attributes: its resident node v(l), its predecessor node p(l), its cost c(l), its distance t(l) and
its number of working days d(l) accumulated along P(l).

Algorithm 2 presents the pseudocode of the labeling algorithm. The inputs are the tour
graph Ge(N ,A) and the maximum number of tours α to generate per iteration. The output
corresponds to a vector of paths ~Pe with negative reduced cost. Line 1 returns an initial
set of labels (partial paths from vs to all its successors). Line 2 selects the first label to be
processed according to its cost. Line 4 searches to prune by bound the current label before
extending it. This pruning is done by calculating an optimistic prediction of the total cost
of the path that might be generated by the current label. If such cost is negative, the label
is not pruned, otherwise the label is removed from list Q without being processed. Line 5
seeks to extend label l1 to all of its successors. A new label l2 is created and stored in Q
(Line 9) if it is feasible (Line 6), non-dominated (Line 7) and its resident node is different
than the sink node vf . If the resident node is vf and the cost of label l2 is negative, a new
path is stored in ~Pe (Line 11). The feasibility function checks if the label to be created can
reach the minimum number of working days and tour length and, at the same time, if it does
not exceed the maximum number of working days and tour length. The dominance function
compares certain attributes of the label to be created with the rest of the labels in Q. Hence,
if the resident node, accumulated time and number of working days are the same for both
labels and if the cost of label l′ is lower or equal than the cost of label l, l′ dominates l. The
algorithm stops when either set Q is empty or the number of tours t generated is greater
than or equal to α.
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Algorithm 2 Label setting algorithm to solve the SPPRC

Input Ge(N ,A), α
Output ~Pe

1: initialization
2: selectLabel
3: while Q 6= ∅ ∧ t < α do
4: if pruneByBound (l1)= false then
5: for vi ∈ N (vk) do
6: if pruneByFeasibility (l1, vi)= false then
7: if dominance (l2)= false then
8: if vi 6= vf then
9: Q ← l2

10: else
11: ~P ← P, t = t+ 1
12: remove l1 from Q
13: selectLabel
14: return ~Pe
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