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RÉSUMÉ

Le contrôle de déformation est un problème émergent dans les micro structures intelli-
gentes. Une des applications type est le contrôle de la déformation de miroirs dans l’optique
adaptative dans laquelle on oriente la face du miroir selon une géométrie précise en utili-
sant une gamme de micro-vérins afin d’éliminer la distortion lumineuse. Dans cette thèse, le
problème de la conception du contrôle du suivi est considéré directement avec les modèles
décrits par des équations aux dérivées partielles définies dans l’espace de dimension infinie.
L’architecture du contrôleur proposée se base sur la stabilisation par retour des variables et
le suivi des trajectoires utilisant la théorie des systèmes différentiellement plats. La combi-
naison de la commande par rétroaction et la planification des trajectoires permet de réduire
la complexité de la structure du contrôleur pour que ce dernier puisse être implémentée dans
les microsystèmes avec les techniques disponibles de nos jours. Pour aboutir à une architec-
ture implémentable dans les applications en temps réel, la fonction de Green est considérée
comme une fonction de test pour concevoir le contrôleur et pour représenter les trajectoires
de référence dans la planification de mouvements.
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ABSTRACT

Deformation control is an emerging problem for micro-smart structures. One of its excit-
ing applications is the control of deformable mirrors in adaptive optics systems, in which the
mirror face-sheet is steered to a desired shape using an array of micro-actuators in order to
remove light distortions. This technology is an enabling key for the forthcoming extremely
large ground-based telescopes. Large-scale deformable mirrors typically exhibit complex dy-
namical behaviors mostly due to micro-actuators distributed in the domain of the system
which in particular complicates control design.

A model of this device may be described by a fourth-order in space/second-order in time
partial differential equation for the mirror face-sheet with Dirac delta functions located in
the domain of the system to represent the micro-actuators. Most of control design methods
dealing with partial differential equations are performed on lumped models, which often
leads to high-dimensional and complex feedback control structures. Furthermore, control
designs achieved based on partial differential equation models correspond to boundary control
problems.

In this thesis, a tracking control scheme is designed directly based on the infinite-dimensional
model of the system. The control scheme is introduced based on establishing a relationship
between the original nonhomogeneous model and a target system in a standard boundary
control form. Thereby, the existing boundary control methods may be applicable. For the
control design, we apply the tool of differential flatness to a partial differential equation sys-
tem controlled by multiple actuators, which is essentially a multiple-input multiple-output
partial differential equation problem. To avoid early lumping in the motion planning, we use
the properties of the Green’s function of the system to represent the reference trajectories.
A finite set of these functions is considered to establish a one-to-one map between the input
space and output space. This allows an implementable scheme for real-time applications.
Since pure feedforward control is only applicable for perfectly known, and stable systems,
feedback control is required to account for instability, model uncertainties, and disturbances.
Hence, a stabilizing feedback is designed to stabilize the system around the reference trajec-
tories. The combination of differential flatness for motion planning and stabilizing feedback
provides a systematic control scheme suitable for the real-time applications of large-scale
deformable mirrors.
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CHAPTER 1

INTRODUCTION

We begin this chapter by introducing the deformable mirrors in the context of adaptive
optics, AO, and the necessity to deal with the infinite-dimensional control of this device in
this context. In Section 1.3 we review the pertinent control methods in this realm. Sec-
tion 1.4 explains the challenges associated with partial differential equation, PDE, based
control designs for the deformable mirrors. Then, Section 1.5, and 1.6 outline the motiva-
tion, objectives, and our treatment strategy in this research work. The original contributions
of this work are also summarized in Section 1.6. We conclude this chapter by mentioning the
organization of this thesis in Section 1.7.

1.1 Deformable Mirrors in the Context of Adaptive Optics systems

Deformable mirrors are key elements for enhancing the performance of optical systems
and have been used in many different applications including: free space laser communications
[105], [100], retinal imaging [33], biological microscopy [96], and ground-based telescopes
[20, 31]. However, despite many similarities, each of these applications has unique features
which requires specific insights into the system and specialized techniques. In this research,
we mainly focus on the application of deformable mirrors in ground-based telescopes.

The deformable mirrors in this context are intended to remove the distortion of light due
to earth atmosphere turbulence. Because atmospheric turbulence is a dynamic phenomenon,
the adaptive optics system needs to be sufficiently fast. The sampling times in this application
can amount to 0.5 [ms]. Given this sampling time, the high frequency modes of the deformable
mirrors can be excited, and thus these devices cannot be considered as static systems [83, 44].
Hence, the control methods developed in other applications based on static models of a
deformable mirror, the so-called open-loop control, cannot meet this requirement [108, 98,
21, 85, 100, 36, 32].

On the other hand, the design methods for dynamic control of this device leading to
a control structure that requires a considerable number of on-chip sensors for the imple-
mentation of closed-loop control are not applicable to microsystems with currently available
technologies [44, 6, 59, 83, 77].

Another vital issue is the precision. The high resolution performance of an adaptive optics
system is strongly tied to the precise control of its deformable mirror. The displacement



2

range of a deformable mirrors surface is in micro-meters, and thus an acceptable tracking
error should be at least ten times smaller than this range. According to this level of precision,
the controller must be developed based on a very precise and a high resolution model [22,
23, 38, 86, 99, 107].

1.2 Finite- versus Infinite-Dimensional Model

Most ordinary differential equation systems describing physical phenomenon are finite-
dimensional approximations of distributed parameter systems. Hence, for very high resolution
control applications the study of distributed parameter systems, such as control of systems
governed by partial differential equations, are of intrinsic interest.

One of the major issues related to approximating a system in finite-dimensional space is
that the neglected dynamics might lead to unexpected excitation of truncated modes, and
conversely the truncated modes might undesirably contribute to feedback data. In either
case, the performance of the closed-loop system may be deteriorated, or, at some points, the
system may even be destabilized [14, 81]. Furthermore, the increase of modeling accuracy will
lead to high-dimensional and complex feedback control structures, requiring a considerable
number of on-chip sensors for the implementation. This raises serious technological challenges
for the design, fabrication, and operation of microsystems. Therefore, it is of great interest
to directly deal with the control of the exact PDE models.

However, even treatment of some very basic problems of partial differential equation sys-
tems, such as heat equations and wave equations, demands a rich background on mathemati-
cal foundations, such as functional analysis. For instance, a small alteration on the boundary
values could drastically alter the nature of the problem. As a result, the study of partial
differential equation systems in the context of infinite-dimensional space has been treated
differently on a case-by-case basis and remains an open field for engineering applications.

In this research, we consider the partial differential equation model of a deformable mirror
actuated with Microelectromechanical systems, MEMS. In this work, we refer to this device
as MEMS-actuated deformable mirror, or deformable mirror for short. In the model, the
dynamics of small transversal displacement of the membrane surface may be described by
a fourth-order in space and second-order in time partial differential equation, called Timo-
shenko thin plate equation [101, 106, 48]. The MEMS actuators are considered as pointwise
actuators represented by Dirac delta functions located in the domain of the system.

By exploiting the symmetry of the domain, the problem of a 2-dimensional plate equation
can be reduced to the Cartesian product of two decoupled 1-dimensional systems of Euler-
Bernoulli beam equations [16, 17]. Hence, the main focus of the control design will be on
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tracking control of an Euler-bernoulli PDE with in-domain Dirac delta functions as control
inputs.

1.3 PDE-Based Tracking Control of Euler-Bernoulli Beams

One of the most popular methods for the tracking control of PDEs is to approximate
the PDE by a system of lumped ordinary differential equations, ODE, through the spatial
discretization of differential operator [18, 15, 19, 24, 67, 66, 84]. Subsequently, various control
methods developed for ODE systems can be directly applied. The problems associated with
the approximation of the model mentioned earlier may arise in these methods. Regardless
of implementation aspects, we formally review the steps in designs based on a lumped ODE
model of a PDE system in Chapter 3.

Moreover, many methods originally developed for nonlinear control of finite-dimensional
systems are successfully generalized to control infinite-dimensional systems. This, for in-
stance, includes Lyapunov-based techniques, [71, 68, 5], backstepping [57, 56, 58, 55], and
differential flatness for inversion-based trajectory planning and feed-forward control [40, 82,
81, 97, 64]. Furthermore, tracking control is a result of combinations of these approaches
[78].

The feedback stabilization of an Euler- Bernoulli beam has been considered in many differ-
ent sources (see, e.g., [5, 26, 25]). For instance, feedback stabilization using a backstepping
approach is considered in [79, 56] which provides a systematic approach for the design of
exponentially stabilizing state feedback controllers. Stabilization by strain and shear force
boundary feedback using dissipative concepts is addressed in Chapter 4 of [71]. Stabilization
of Euler-Bernoulli beams using one in-domain point-wise feedback force has been examined
in [5, 4, 3, 25].

The problem of trajectory planning, i.e. the design of an open-loop control to real-
ize prescribed spatial-temporal output paths, using differential flatness which is originally
developed for the control of finite-dimensional nonlinear systems, [57, 41, 42, 97, 76, 64],
has further been successfully extended to a variety of infinite-dimensional systems (see e.g.,
[82, 79, 97, 76, 64, 65]).

Differential flatness implies that the system states and the control inputs can be parame-
terized in terms of a flat, or a so-called basic output, and its time-derivatives up to a certain
problem dependent order. By prescribing appropriate trajectories for the flat output, the
full-state and input trajectories can be directly evaluated without integration of any differen-
tial equation. This implies that a system is differentially flat if the flat output has the same
number of components as the number of system inputs, [42, 41, 39, 64, 65]. This is the key
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concept in generalizing differential flatness for multi-input multi-output PDEs.
The underlying idea of flatness, i.e. the existence of a one-to-one correspondence between

trajectories of systems, has also been adapted successfully to some PDE systems (see, e.g.,
[52, 65, 73, 79, 90, 94, 74]).

In differential flatness designs, the system states and system inputs can be parameterized
by the flat output in terms of infinite power series representations of the system. Then, series
coefficients can be obtained by solving recursive equations on time-derivatives of the basic
output, which has to be chosen from a certain smooth function, namely Gevrey function.
Recent works on the flatness concept has mainly dealt with its extension to trajectory plan-
ning for boundary controlled PDE systems in a single spatial coordinate [82, 80]. Tracking
control using a combination of flatness and backstepping for parabolic and bi-harmonic PDEs
with actuators located on the boundary to stabilize the system along prescribed trajectories
has been addressed in [78, 79]. It is, however, very challenging to apply this tool to systems
controlled by multiple in-domain actuators.

1.4 The Main Challenge in PDE-Based Deformation Control of Micro-Mirrors

In standard PDE systems, unbounded control operators are typically located on the
boundaries of the system, whereas in the PDE model of deformable mirrors the unbounded
control operators are distributed in the domain of the system. This makes PDE-based control
designs of deformable mirrors drastically different from the standard boundary controlled
PDE designs. Particularly, finding a one-to-one correspondence between the control space
and the system’s state space is not obvious since the dimension of the control space is finite,
while that of the state space is infinite.

1.5 Motivation and Objective

The main motivation of this work is to develop a high-precision and real-time applica-
ble control structure for large-scale deformable mirrors in order to reduce the complexity
introduced by closed-loop control at the level of every actuator.

To meet this end, the objective of this dissertation is to develop a control law directly
based on the partial differential equation model of the system to archive high-precision perfor-
mance. To mitigate the complexity of the controller, we consider a combination of feedback
stabilization and feed-forward motion planing controllers. Minimizing the requirement of
sensory data in order to steer the surface mirror asymptotically along reference trajectories
is also the other objective of this control design. To achieve real-time implementation, an
inversion-based trajectory planing is performed based on the Green’s functions of the system
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that can be calculated a priori.

1.6 Treatment Approach and the Contributions

The problem posed above will be tackled as follows. First, we introduce a dynamic model
for a MEMS-actuated deformable mirror described by a set of partial differential equations
with unbounded control operators in the domain of the system. Then, we introduce the
control scheme based on establishing a relationship between the original nonhomogeneous
model and a target system in a standard boundary control form. Then, an asymptotic
tracking control is achieved by combining feedback stabilization and feed-forward motion
planing allowing the system to follow prescribed output trajectories.

To facilitate the motion planing and real-time implementation of the scheme, the Green’s
functions of the system employed in the design. A finite set of these functions is considered
to establish a one-to-one map between the input space and output space.

The original contributions of the present work are as follows:
First, this work addresses a scheme for control of deformable mirrors that requires only

to close few feedback control loops, typically one for 1-dimensional devices. Consequently,
the implementation and operation of such devices will be drastically simplified.

Second, the design is directly preformed with the partial differential equation model of
the system. Hence, there are no neglected dynamics to sacrifice the performance. The only
truncation is required at the level of controller implementation.

Third, we extend the tool of flat systems for tracking control of a PDE system con-
trolled by multiple in-domain actuators, which is essentially a multiple-input multiple-output
(MIMO) problem. To the best of the author’s knowledge, design scheme without requiring
early truncations for tracking control of this type of PDE systems have not yet been reported
In the open literature.

Finally, to enable this extension, we introduce a Green’s function-based control design.
A finite set of Green’s functions of the system is used to establish a one-to-one map between
the input and the output of the system. Using the Green’s functions also enables a simple
and computationally tractable implementation of the proposed control scheme. As the static
Green’s function used in trajectory planning can be computed a priori, the developed scheme
facilitates real-time implementations. This will have an important impact on the operation
of large-scale deformable mirrors.

The other contributions of this research work are also reported in the following journal
and refereed conference papers:

The work reported in [13] explains the problem of dynamic control of a MEMS deformable
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mirror in the context of adaptive optics. This paper also demonstrates the essential steps for
PDE control designs based on the early lumped system.

The paper [8] deals with the application of differential flat systems on a simple model
of heat propagation along a bar, which is the same model used throughout Chapter 2 to
demonstrate the properties of infinite-dimensional linear systems.

The paper [7, 9, 10, 11, 12] address the tracking control design directly on in-domain
controlled Euler-Bernoulli beam equations, which form the main results of Chapter 4.

1.7 Dissertation Organization

The rest of this dissertation is organized as follow:
Chapter 2 outlines the required background on infinite-dimensional systems control the-

ory. Hence, we just refer to the theorems and definitions from this chapter in the design
represented in Chapter 4. Thus, the design chapter which explains the original work of this
thesis will be succinct.

Chapter 3 presents a background of adaptive optics systems and how the problem can
be posed as a tracking control problem. In this chapter, we also present a dynamic model of
the deformable mirror. At the end of this chapter, we carry out a case study to show typical
steps in the designs based on a finite-dimensional approximation of the model.

Chapter 4 presents the main results of this thesis: the control design based on an infinite-
dimensional model of the considered system. This chapter entails two designs. In the first
design, we formally establish a map between the in-domain controlled system and a boundary
controlled system. The developed map holds for some special test functions which means
the approach is valid in a very weak sense. To rectify this caveat, we solve the problem by
using the technique of lifting to transform the target system, which is controlled by boundary
actuators, to an inhomogeneous PDE driven by sufficiently smooth functions generated by
applying blob functions to approximate the delta functions.

Chapter 5 discusses the numerical implementation of the model and presents the simula-
tion results of the designs from Chapter 4.

We conclude this dissertation in Chapter 6 by providing a summary, drawing conclusions
based on the results, and suggestions for future developments.
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CHAPTER 2

A SYNOPSIS OF INFINITE-DIMENSIONAL LINEAR SYSTEMS
CONTROL THEORY

Many problems arising in control systems are described in infinite-dimensional spaces. For
example, systems governed by partial differential equations and delay systems are infinite-
dimensional. In this thesis, we are interested in tracking control of a partial differential
equation model of the system understudy directly in infinite-dimensional space. Hence, this
chapter is devoted to providing a background on infinite-dimensional systems.

In this chapter, we first introduce the concept of strongly continuous semigroup, or C0-
semigroup for short, the generators of a C0-semigroup, and the solution of PDEs. Then,
we introduce the prerequisites theorems for the stability, well-posedness, and controllability
analysis of PDE systems in an abstract form. In Section 2.9, we introduce the well-known
form of boundary control for PDE systems. Through an example on an Euler-Bernoulli beam
equation, we demonstrate the two concepts of boundary control and in-domain control can
be exchangeable by introducing a proper map. Our coverage in this chapter is driven not by
a desire to achieve generality, but rather to gather the prerequisites for the control design and
tools for theoretical studies of the system understudy presented in the following chapters.

2.1 Linear Systems on Infinite-dimensional Spaces

From the state space theory of linear time-invariant systems, we know that ordinary
differential equations can be written in the following abstract form:

ẋ(t) = Ax(t) +Bu(t), x(0) = x0 (2.1a)

y(t) = Cx(t), (2.1b)

where x(t) ∈ Rn is the system state, u(t) ∈ Rm is the input, and y ∈ Rp is the output. The
matrix A ∈ Rn×n is the system matrix, B ∈ Rm×n is the input operator, and C ∈ Rp×n is
the output operator. From the theory of ordinary differential equations, the state evolution
of this system can be represented as:

x(t) = eAtx0 +
∫ t

0
eA(t−τ)Bu(τ)dτ, t > 0, (2.2)
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where eAt is the matrix exponential defined as:

eAt =
∞∑
n=0

Antn

n! . (2.3)

However, there are many cases where the system is defined in infinite-dimensional spaces.
In this section, we show how systems described by partial differential equations can be writ-
ten in the same form by using the concept of operators in infinite-dimensional state spaces.
Nonetheless, “In contrast of finite-dimensional systems, presenting the properties of infinite-
dimensional systems such as well-posedness, controllability, stability, etc. in a general frame-
work of abstract form is far from being the end of the story,” as pointed out in [27].

Since the question of existence and uniqueness of solutions to partial differential equations
is more difficult than that for ordinary differential equations, we focus first on homogeneous
partial differential equations. Thus, we begin by introducing the solution operator, and then
we show how to rewrite a partial differential equation as an abstract differential equation in
the form of (2.1). Then, we present the notion of input-output map and stability analysis
for inhomogeneous systems. We conclude this chapter by introducing the well-known form
of boundary control PDEs, well-posedness, and controllability for PDE systems.

2.2 Strongly Continuous Semigroups

To show the importance of continuous semigroups for generalizing the concept of the
matrix exponential eAt and the concept of a solution on abstract spaces to infinite dimensional
equations, we start with the following example from [29].

Example 2.1 Consider a metal bar of length L with following initial conditions and bound-
ary values [29]:

∂w(x, t)
∂t

= ∂2w(x, t)
∂x2 (2.4a)

w(x, 0) = w0(x) (2.4b)
∂w(0, t)
∂x

= 0 = ∂w(L, t)
∂x

, (2.4c)

where w(x, t) represents the temperature at the position x ∈ [0, L] at time t ≥ 0 and w0(x)
represents the initial temperature profile. The boundary conditions state the isolated bar that
is no heat flow at the boundaries.

In order to find a solution to (2.4), we try out a solution of the form w(x, t) = f(t)g(x);
this method of solution is called separation of variables [63]. Substituting this form of solution
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in (2.4) and using the boundary conditions, we obtain:

f(t)g(x) = αne
(−n2π2t) cos(nπx), (2.5)

where αn ∈ R or C and n ∈ N. By the linearity of the PDE (2.4), we have:

wN(x, t) =
N∑
n=0

αne
(−n2π2t) cos(nπx). (2.6)

The function in (2.6) satisfies the PDE and the boundary conditions, but does not verify the
initial conditions.

The corresponding initial condition derived from (2.6) wN(x, 0) = ∑N
n=0 an cos(nπx) is a

Fourier polynomial. Note that every function q in L2(0, L), the space of square-integrable
functions in (0, L), can be represented by its Fourier series [29]:

q(ξ) =
∞∑
n=0

αncos(nπξ). (2.7)

This series converges in L2 for:
α0 =

∫ 1

0
q(ξ)dξ, (2.8)

and
αn = 2

∫ 1

0
q(ξ) cos(nπξ)dξ, n = 1, 2, · · · . (2.9)

If w0 ∈ L2(0, 1), then we can find αn as the corresponding Fourier coefficients and

wN(x, t) =
N∑
n=0

αne
(−n2φ2t) cos(nπx). (2.10)

The the solution to (2.4) w(·, t) is an element in L2(0, 1) since e−n2π2t ≤ 1 for t ≥ 0. It also
satisfies the initial conditions by construction. However, as interchanging infinite summation
and differentiation is not always possible, it is not clear whether this function satisfies the
PDE (2.4) in this example. Nevertheless, the mapping w0 7→ w(·, t) defines an operator,
which would assign to an initial condition its corresponding solution at time t, provided w is
the solution [29].

This example motivates the generalization of the concept of the matrix exponential eAt

on abstract space and show the necessity for clarifying the concept of solution to infinite-
dimensional equations on abstract spaces.
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We denote by X a real or complex separable Hilbert space, with inner product 〈·, ·〉X and
norm ‖ · ‖X =

√
〈·, ·〉X . By L(x) we denote the class of linear bounded operators from X to

X.

Definition 2.1 [29] Let X be a Hilbert space. S(t)t>0 is called a strongly continuous semi-
group, or for short C0-semigroup, if the following holds:

1. For all t ≥ 0, S(t)is a bounded linear operator on X, i.e., S(t) ∈ L(X);

2. S(0) = I;

3. S(t+ τ) = S(t)S(τ) for all t, τ > 0;

4. For all x0 ∈ X, we have that ‖S(t)x0 − x0‖X converges to zero, when t → 0, i.e.,
t 7→ S(t) is strongly continuous at zero.

X is called the state space, and the elements of X are called states. A trivial example
of a strongly continuous semigroup is the matrix exponential. That is, let A be an n × n

matrix, the matrix-valued function S(t) = eAt defines a C0-semigroup on the Hilbert space
Rn.

Example 2.2 [49] Let {φn, n ≥ 1} be an orthogonal basis of the separable Hilbert space X,
and let {λn, n ≥ 1} be a sequence of complex numbers. Then,

S(t)x =
∞∑
n=1

eλnt〈x, φn〉φn (2.11)

is a bounded linear operator if and only if {eRe(λn)t, n ≥ 1} is a bounded sequence in R.
Under this assumption, we have

‖S(t)‖ ≤ eωt, ω ∈ R. (2.12)

Furthermore,

S(t+ s)x =
∞∑
n=1

eλn(t+s)〈x, φn〉φn, (2.13)

which can be written as:

S(t)S(s)x =
∞∑
n=1

eλnt〈S(s)x, φn〉φn =
∞∑
n=1

eλnteλns〈S(s)x, φn〉φn = S(t+ s)x. (2.14)
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Clearly S(0) = I, and the strong continuity follows from the following calculation:

‖S(t)x− x‖2 =
∞∑
n=1
|eλnt − 1||〈x, φn〉|2 (2.15)

=
N∑
n=1
|eλnt − 1||〈x, φn〉|2 +

∞∑
n=N+1

|eλnt − 1||〈x, φn〉|2 (2.16)

≤ sup
1≤n≤N

|eλnt − 1|2
N∑
n=1
|〈x, φn〉|2 + k

∞∑
n=N+1

|〈x, φn〉|2. (2.17)

For any ε > 0 there exist an N ∈ R such that

∞∑
n=N+1

|〈x, φn〉|2 <
ε

2k , (2.18)

and we can choose t0 ≤ 1 such that sup1≤n≤N |eλnt0 − 1|2 ≤ ε
2‖x‖2 . Thus, for t ∈ [0, t0] we

have:
‖S(t)x− x‖2 ≤ ε

2‖x‖2

N∑
n=1
|〈x, φn〉|2 + k

ε

2k ≤ ε, (2.19)

which shows that S(t)t≥0 is strongly continuous. Thus, (2.11) defines a C0-semigroup if and
only if {eRe(λn)t, n ≥ 1} is a bounded sequence in R which is the case for t > 0 if and only if
supn≥1Reλn <∞.

As mentioned before, any exponential of a matrix defines a strong continuous semigroup.
In fact, semigroups share many properties with theses exponential functions.

Theorem 2.1 [29] A strongly continuous semigroup S(t)t≥0 on the Hilbert space X has the
following properties:

1. ‖ S(t) ‖ is bounded on every finite sub-interval of [0,∞);

2. The mapping t 7→ S(t) is strongly continuous on the interval [0,∞);

3. For all x ∈ X we have that 1
t

∫ t
0 S(s)xds→ x as t→ 0;

4. If ω0 = inft>0(1
t

log ‖ S(t) ‖), t→ 0 then ω0 <∞;

5. For every ω > ω0, there exists a constant Mω such that for every t ≤ 0 we have
‖ S(t) ‖≤Mωe

ωt.

The constant ω0 is called the growth bound of the semigroup.
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2.3 Infinitesimal Generators

If A is an n× n matrix, then the semigroup (eAt)t≥0 is directly linked to A via

A =
(
d

dt
eAt
)
|t=0. (2.20)

Next we associate in a similar way an operator A to a C0-semigroup S(t)t≥0.

Definition 2.2 [29] Let S(t)t≥0 be a C0-semigroup on Hilbert space X. If the following
limit exists

lim
t→0

S(t)x0 − x0

t
, (2.21)

then we say that x0 is an element of the domain of A, or x0 ∈ D(A), and we define Ax0 as

Ax0 = lim
t→0

S(t)x0 − x0

t
. (2.22)

We call A the infinitesimal generator of the strongly continuous semigroup S(t)t≥0.

The following theorem shows that for every x0 ∈ D(A) the function t 7→ S(t)x0 is differ-
entiable. In fact, this theorem link a strongly continuous semigroup uniquely to an abstract
differential equation.

Theorem 2.2 , [29], Let S(t)t≥0 be a strongly continuous semigroup on Hilbert space X with
infinitesimal generator A. Then, the following results hold:

1. For x0 ∈ D(A) and t ≥ 0 we have S(t)x0 ∈ D(A);

2. d
dt

(S(t)x0) = AS(t)x0 for x0 ∈ D(A), t ≥ 0;

3. dn

dtn
(S(t)x0) = AnS(t)x0 = S(t)Anx0 for x0 ∈ D(An), t ≥ 0;

4. S(t)x0 − x0 =
∫ t

0 S(s)Ax0ds for x0 ∈ D(A);

5.
∫ t

0 S(s)x0ds ∈ D(A) and A
∫ t

0 S(s)x0ds = S(t)x − x for all x ∈ X, and D(A) is dense
in X.

This theorem implies in particular that for every x0 ∈ D(A) the function x defined by
x(t) = S(t)x0 satisfies the abstract differential equation ẋ = Ax(t). It implies though that
every strongly continuous semigroup has a unique generator. It is not hard to show that
every generator belongs to a unique semigroup.
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2.4 Abstract Differential Equations

Theorem 2.2 shows that for x0 ∈ D(A) the function x(t) = S(t)x0 is a solution to the
abstract differential equation

ẋ(t) = Ax(t), x(0) = x0 (2.23)

Definition 2.3 [49] A differentiable function x : [0,∞) → X is called a classical solution
of (2.23) if for all t ≥ 0 we have x(t) ∈ D(A) and Equation (2.23) is satisfied.

It is not hard to show that the classic solution is uniquely determined for x0 ∈ D(A).

Definition 2.4 [49] A continuous function x : [0,∞)→ X is called a mild or weak solution
of (2.23) if

∫ t
0 x(s)ds ∈ D(A), x(0) = x0 and

x(t)− x(0) = A
∫ t

0
x(τ)dτ, for all t ≥ 0. (2.24)

Furthermore, the mild solution is also uniquely determined.
Finally, we return to the PDE of Example 2.1. We constructed a C0-semigroup and

showed that the semigroup solves an abstract differential equation. A natural question is
how this abstract differential equation is related to the PDE (2.4). The mild solution x

of (2.4) takes at every time t values in an Hilbert space X. For the PDE (2.4) we chose
X = L2(0, 1). Thus, x(t) is a function of ξ ∈ [0, 1]. Writing down the abstract differential
equation using both variables, we obtain:

∂w(x, t)
∂t

= Aw(x, t). (2.25)

Comparing this with (2.23) A must be equal to ∂2w(x,t)
∂x2 . Since for x0 ∈ D(A) the mild solution

is a classical solution, the boundary condition must be a part of the domain of A. Hence,
the operator A associated to the PDE (2.4) is given by:

Aw = d2w

dx2 , (2.26)

with

D(A) = {w ∈ L2(0, 1)|w, dw
dx

are absolutely continuous, (2.27)

d2w

dx2 ∈ L
2(0, 1) and dw(0, t)

dx
= 0 = dw(L, t)

dx
}.
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2.5 Contraction Semigroup

We realized from the previous sections that every C0-semigroup possesses an infinitesimal
generator. In this section, we are interested in other implication that is which operator A
generates a C0-semigroup. In physical problems, one usually does not start with a semigroup,
but with a PDE. This section answers the question how to get from a PDE to an operator
A and from the operator A to the semigroup.

The answer to this question is given by Hille-Yosida Theorem [19], which provides the
necessary and sufficient condition for A to be the infinitesimal generator of a semigroup.
However, in practice often an equivalent theorem which is called the Lumer-Phillips Theo-
rem is used [30, 71]. This theorem gives the answer in a special case, namely contraction
semigroups. Hence, we limit our investigation of which operator A generates a C0-semigroup
to this special case.

Definition 2.5 [29] Let (S(t))t≥0 be a C0-semigroup on the Hilbert space X. (S(t))t≥0 is
called contraction semigroup, if ‖S(t)z‖ ≤ ‖z‖ for every t ≥ 0.

Definition 2.6 [29] A linear operator A : D(A) ⊂ X 7→ X is called dissipative, if

Re〈Ax, x〉 ≤ 0, x ∈ D(A). (2.28)

Definition 2.7 [29] A linear operator A : D(A) ⊂ X 7→ X is called closed dissipative
operator, if the range of αI − A, ran(αI − A) is closed for all α > 0.

Theorem 2.3 (Lumer-Phillips’s Theorem) [29] Let A be a linear operator with domain D(A)
on a Hilbert space X. Then A is the infinitesimal generator of a contraction semigroup
(S(t)t≤0) on X if and only if A is dissipative and ran(I − A) = X.

The following theorem gives another simple characterization of generators of contraction
semigroups.

Theorem 2.4 [29] Let A be a linear, densely defined, and closed operator on a Hilbert space
X. Then A is the infinitesimal generator of a contraction semigroup (S(t)t≤0) on X if
and only if A and the adjoint of A, denoted by A∗ and defined later in Definition 2.8, are
dissipative.

Remark 2.1 Instead of assuming that A∗ is dissipative, it is sufficient to assume that A∗

has no eigenvalues on the positive real axis.

Next we apply this theorem to Example 2.1 [49].
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Example 2.3 For the heated bar in Example 2.1, We obtained the following operator:

Ah =∂
2h

∂2ξ
with, (2.29a)

D(A) =
{
h ∈ L2(0, 1), ∂

2h

∂2ξ
∈ L2(0, 1), ∂h

∂ξ
(0) = 0 = ∂h

∂ξ
(1)
}
. (2.29b)

Next we show that A generates a contraction semigroup on L2(0, 1). A is dissipative, as

〈h,Ah〉+ 〈h,Ah〉 =
∫ 1

0
h(ξ)∂

2h

∂2ξ
(ξ) + ∂2h

∂2ξ
(ξ)h(ξ)dξ

=
(
h(ξ)∂h

∂ξ
(ξ) + ∂h

∂ξ
(ξ)h(ξ)

)
|10 −2

∫ 1

0

∂h

∂ξ
(ξ)∂h

∂ξ
(ξ)

= 0− 2
∫ 1

0

∥∥∥∥∥∂h∂ξ (ξ)
∥∥∥∥∥

2

dξ ≤ 0, (2.30a)

where we have used the boundary conditions. It remains to show that the range of (I − A)
equals L2(0, 1), i.e., for every f ∈ L2(0, 1) we have to find an h ∈ D(A) such that (I−A)h =
f . Let f ∈ L2(0, 1) and define

h(ξ) = α cosh(ξ)−
∫ ξ

0
sinh(ξ − τ)f(τ)dτ, (2.31)

where
α = 1

sinh(1)

∫ 1

0
cosh(1− τ)f(τ)dτ. (2.32)

Now directly we can see that h is an element of L2(0, 1) and is absolutely continuous. Fur-
thermore, its derivative is given by

dh

dξ
= α sinh(ξ)−

∫ ξ

0
cosh(ξ − τ)f(τ)dτ. (2.33)

This function is also absolutely continuous and satisfies the boundary conditions. Further-
more,

d2h

dξ2 = α cosh(ξ)− f(ξ)−
∫ ξ

0
sinh(ξ − τ)f(τ)dτ = −f(ξ) + h(ξ). (2.34)

Thus h ∈ D(A) and (I − A)h = f . This proves that for every f ∈ L2(0, 1) there exists
an h ∈ D(A) such that (I − A)h = f . Thus, according to the Lumer-Phillips’s theorem, A
generates a contraction semigroup.

Now it remains to find out what is the form of this semigroup. There are two ways of
approaching this question. First, we can directly solve the PDE to which operator A is
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associated. For instance, in Example 2.1, we can directly solve the PDE, e.g., by using the
separation of variables method [63, 91].

Another way is starting from the operator A and solving the eigenfunction equation. For
instance in Example 2.1, we can solve the eigenfunction equation, Aφn = λnφn, which yields:

φn(x) =

 1, λ0 = 0;
√

2 cos(nπx), λn = −n2π2, n ∈ N.
(2.35)

Therefore, the solution to ż(t) = Az(t), with z(0) = φn, is given by:

z(t) = eλntφn, (2.36)

which must be equal to S(t)φn. Sine {φn, n ∈ N ∪ {0}} is an orthonormal basis, we know
that

z0 =
∞∑
n=0
〈z0, φn〉φn. (2.37)

Hence

S(t)z0 = S(t)
( ∞∑
n=0
〈z0, φn〉φn

)
=
∞∑
n=0
〈z0, φn〉S(t)φn =

∞∑
n=0
〈z0, φn〉eλntφn. (2.38)

Thus, we found that the semigroup evaluated at z0 is equal to this infinite sum.

Remark 2.2 (2.38) is a formal form of a semigroup. If we write down each elements such
that for the inner product and λ, the final equation becomes a tedious expression.

2.6 Semigroups and Solutions of PDEs

We have shown thus far that for any z0 ∈ D(A), the solution z(t) := S(t)z0 is the solution
to

ż(t) = Az(t), z(0) = z0. (2.39)

However, for a general z0, Az(t) has no meaning nor does ż(t). To generalize the definition
of a solution for a general z0, we have to first introduce the adjoint of A.

Definition 2.8 [49] Let A be a densely defined operator with domain D(A). The domain of
A∗, D(A∗), is defined as consisting of those w ∈ X for which there exists a z ∈ X such that

〈w,Az〉 = 〈v, z〉 ∀z ∈ D(A). (2.40)
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If w ∈ D(A∗), then A∗ is defined as
A∗w = v. (2.41)

A∗ is called the adjoint of A.

Definition 2.9 The operator A is called positive, if A is self-adjoint, A = A∗.

Now we can define the concept of weak solutions.

Proposition 1 [49] Let z0 ∈ X, and define z(t) = S(t)z0. Then for every w ∈ D(A∗), the
following holds

d

dt
〈w, z(t)〉 = 〈A∗w, z(t)〉. (2.42)

This implies that z(t) := S(t)z0 is a weak solution of ż(t) = Az(t), z(0) = z0.

This is exactly the concept of the weak or mild solution in PDEs.

2.7 Stability

One of the most important aspects of systems theory is the stability, which is strictly
related to the design of feedback controls. For infinite-dimensional systems there are different
notions of stability such as strong stability, polynomial stability, and exponential stability.
We restrict the discourse of this section to the exponential stability and show that the strong
stability is weaker than the exponential stability.

Definition 2.10 Exponential stability: [27] The C0-semigroup (S(t)t≥1) on the Hilbert space
X is exponentially stable if there exists positive constants M and α such that

‖ S(t) ‖≤Me−αt for t > 0. (2.43)

The constant α is called the decay rate, and the supremum over all possible values of α is the
stability margin of S(t); this is minus its growth bound as introduced in Theorem 2.1.

If S(t) is exponentially stable, then the solution to the abstract Cauchy problem

ẋ(t) = Ax(t), t ≥ 0, x(0) = x0, (2.44)

tends to zero exponentially.

Definition 2.11 Strong stability: [27] The C0-semigroup (S(t)t≥1) on the Hilbert space X is
strongly stable if for all z0 ∈ X

lim
t→+∞

S(t)z0 = 0. (2.45)
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It is evident that the exponential stability always implies the strong stability, but the
converse is not true.

The following theorem sorts conditions that guarantee the exponentially stability for
infinite-dimensional systems.

Theorem 2.5 [29] Suppose that A is the infinitesimal generator of the C0-semigroup S(t)
on the Hilbert space X. Then the following statements are equivalent

— S(t) is exponentially stable.
— For all z0 ∈ X we have that S(t)z0 ∈ L2((0,∞);X).
— There exists a positive operator P ∈ L(X), such that

〈Ax, Px〉+ 〈Px,Ax〉 ≤ −〈x, x〉, for all x ∈ D(A). (2.46)

Equation (2.46) is called a Lyapunov equation. This Lyapunov equation is being written
differently in different literature.

One of the important concepts in finite-dimensional system theory is the relationship
between the stability of the system and no poles in the right half plane. Indeed, for finite-
dimensional systems, one usually examines the exponential stability via the spectrum of the
operator. However, there are examples of unstable semigroups for which the infinitesimal
generator A has no spectrum in the set {s ∈ C | Re(s) ≥ 0}. Hence, in general, we cannot
conclude the stability by only looking at the spectrum of A.

Example 2.4 Consider a n×n Jordan matrix with minus half on the diagonal and all ones
on the upper diagonal:

A =



−1/2 1 0 · · · 0
0 . . . . . . ...
... . . . 1
0 . . . 0 −1/2

 (2.47)

The exponential of this matrix is given by:

e−
t
2 te−

t
2 · · · tn−1

(n−1)!e
− t

2

0 . . . . . . ...
... . . . . . . te−

t
2

0 . . . 0 e−
t
2

 (2.48)

It clearly shows that all the eigenvalues of this operator are in the left hand-side.
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Applying a vector all consisting of one, the first row will be:

eAnt


1
...
1

 =


e−t/2(1 + t+ t2

2! + · · ·+ tn−1

(n−1)!)
0
...

 =


e−t/2et

0
...

 (2.49)

For a large value of n the series approximates the Taylor series of et. Hence, it is ex-
ponentially growing. This counter example shows that even though all the spectrums of this
semigroup are non-negative, the system may not be stable. Although this is not a rigorous
proof, it is one of the counter examples showing that the eigenvalues or the spectrums of A
do not determine the growth of the semigroup.

To determine the exponential stability of infinite-dimensional systems, we can resort to the
following theorem.

Theorem 2.6 [29] The semigroup S(t) is exponentially stable if and only if

sup
{s∈C|Re(s)>0}

‖ (sI − A)−1 ‖<∞. (2.50)

This theorem shows not only the resolvent should exist but also it should be bounded. This
theorem is the natural generalization of no poles in the right hand plane for finite-dimensional
systems.

2.8 Inhomogeneous Abstract Differential Equations and Stabilization

In the previous sections, we studied homogenous infinite-dimensional systems. However,
for control theoretical questions, it is important to add an input to the differential equation.
We add an input to the system and define input-output dynamics very similar to those exist
in finite-dimensional system theory in the state-space form :

ż(t) = Az(t) +Bu(t), z(0) = z0 (2.51a)

y(t) = Cz(t) +Du(t). (2.51b)

First we define what we mean by a solution to the dynamic system (2.51). We denote the
dynamic system (2.51a) by Σ(A,B), and assume that

— A generates a C0-semigroup (S(t))t≥0 on the Hilbert space X.
— B ∈ L(U,X).
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To find the form of the solution, we multiply the differential equation (2.51a) by S(t1 − t),
and bring z to the left-hand side to obtain:

S(t1 − t)ż(t)− S(t1 − t)Az(t) = S(t1 − t)Bu(t). (2.52)

The left-hand side equals

d

dt
[S(t1 − t)z(t)] = S(t1 − t)Bu(t). (2.53)

Hence, ∫ t1

0
S(t1 − t)Bu(t)dt = [S(t1 − t)z(t)]t10 = z(t1)− S(t1)z(0). (2.54)

The existence of the solution to (2.51a) in the form of (2.54) is given in the following theorem.

Theorem 2.7 [27] Consider the abstract differential equation

ż(t) = Az(t) +Bu(t), z(0) = z0 (2.55)

where A generates the C0-semigroup (S(t))t≥0 on Hilbert space X, let t ∈ [0, τ ] B ∈ L(U,X),
and u ∈ C1((0, τ);U). Then a (weak) solution to (2.55) is given by

z(t) = S(t)z0 +
∫ t

0
S(t− τ)Bu(τ)dτ. (2.56)

If u is continuously differentiable and z0 ∈ D(A), then it is the classical solution.

For an inhomogeneous system, the stabilization problem amounts to finding a feedback,
u = Fz which stabilizes the system Σ(A,B). In other words, the operator A+BF generates
a stable semigroup.

2.9 Boundary Controlled PDEs

Essentially, there exist two types of PDE control schemes depending on how the control
action is involved in the system: in-domain control with the actuators located in the interior
of the system, and boundary control with the actuators located only on the boundaries.
Boundary control of PDEs received more attention than the in-domain control [58]. In the
traditional developed area of PDEs, boundary control is considered to be more realistic.
For example, in case of fluid flow, actuation is normally expected at the walls of the flow.
Moreover, because the actuators and sensors are exercised at spatial points, the input and
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output operators are unbounded. As a result, considering unbounded operators in the domain
of the system may introduce severe mathematical difficulties. Therefore, boundary points
are much more suitable to place the actuators and sensors.

Nonetheless, evolution of micro-devices such as MEMS has brought about many realis-
tic applications for the in-domain PDE control. One of the best examples is the MEMS
deformable mirror control.

There is an extensive literature on boundary control of PDE [58, 19]. Typically one
can find a thorough chapter on boundary control in most of the books in the field of PDE
systems. In this section, we show that in a certain sense these two forms, namely boundary
and in-domain control, might be made interchangeable using a proper map.

First, we explain the idea behind this reformulation through an example from [26, 71].
This example shows that the problem of boundary control and interior control is nothing but
a matter of mathematical formulation. We construct our argument through the example of
a flexible arm with a revolute joint and strain force feedback as a single point input in the
domain of the system.

Example 2.5 Consider a simplified linear dynamic model for the transversal vibration of a
flexible arm given by, [26, 71, 72]:

ytt(x, t) + yxxxx(x, t) = −kxyxxt, x ∈ (0, 1), t > 0, (2.57a)

y(0, t) = yxx(0, t) = 0, (2.57b)

yxx(1, t) = yxxx(1, t) = 0, (2.57c)

y(x, 0) = y0(x), yt(x, 0) = y1(x), x ∈ (0, 1), (2.57d)

where y(x, t) denotes the transverse displacement of the arm at time t and position x along
the arm length direction. The feedback control yxxt is the velocity of the bending strain and
can be directly implemented using a motor driver of velocity reference type. This is a in-
domain control form in which the control is a singular point in the domain of the system. To
transfer this system to a standard boundary form, a new variable is introduced as follows:

y(x, t) = wxx(1− x, t). (2.58)

Using this change of variables, (2.57) can be transferred into the following boundary control
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form:

wtt(x, t) + wxxxx(x, t) = 0, x ∈ (0, 1), t > 0, (2.59a)

w(0, t) = wx(0, t) = 0, (2.59b)

wxx(1, t) = 0, (2.59c)

wxx(1, t) = kwt(t, 1), (2.59d)

Hence via a simple manipulation, we can reformulate this PDE with in-domain control into
a PDE with boundary control. However, the price to pay is that y has to be smooth, here at
least of C2. This issue illustrates an important aspect of working with PDEs that of defining
the proper space for the system.

Another example in this regards can be found in [19], Chapter 4, in which a general
Hyperbolic boundary PDE is transferred into a in-domain form, and the notion of space and
dual space for both system is explained.

2.10 Well-Posedness

A PDE is called well-posed, in the sense of Hadamard [27], if:
— a solution exists;
— the solution is unique;
— the solution depends continuously on the data, the initial conditions, and the boundary

conditions.
Existence and uniqueness involve boundary conditions. Hence, the study of well-posedness
varies from one PDE to the other. We just conclude this section with Theorem 2.8 which
is an essential theorem to prove the well-posedness of PDE systems with unbounded input
operators. Before that, we first introduce the definition of admissible control operators.

Definition 2.12 [27] The control operator B in abstract system (2.51a), Σ(A,B), is called
admissible for S(t) on X if ∀T > 0 and ∀z ∈ D(A∗), there exists a constant CT > 0 such
that ∫ T

0
‖B∗S(t)z(t)‖2

U dt ≤ CT ‖z‖2
X , (2.60)

where B∗ ∈ L(D(A∗);U) is the adjoint of B.

An operator B satisfying the admissibility condition defined above is also called regular
for S(t) on X.

Theorem 2.8 [27] The inhomogeneous abstract system (2.51a), Σ(A,B), is well-posed if A
is skew-adjoint, i.e. S∗ = −S, and B is admissible for the space.
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2.11 Controllability

In contrast to the case of linear finite-dimensional control systems, there are many types
of controllability for infinite-dimensional system. Four essential types of controllability in
this regards are: exact controllability, approximate controllability, trajectory controllability,
and null controllability [27].

We are interested in the exact controllability. The exact controllability property is the
possibility to steer the state of the system from any initial data to any target by choosing
the control as a function of time in an appropriate way. The exact controllability implies the
other types of controllability. However, the converse is not true in general.

There is no general framework for controllability assessment of infinite-dimensional sys-
tem. However, it should be noted that for linear system (2.51a) with bounded control operator
B in Hilbert spaces, many profound results are already known in earlier literatures [51, 50].

Theorem 4.15 of [29] states that if A generates a C0-semigroup in a Hilbert space and B is
a bounded operator and the control space is finite dimensional, then the linear system (2.51a)
is not exactly controllable in [0; t] for any finite t > 0. On the other hand, the following useful
theorem provides an essential property for systems in which B is unbounded:

Theorem 2.9 [50] System (2.51a) is exactly controllable in [0; t] for any finite t > 0 if A
generates a stable C0-semigroup and B is unbounded but admissible.

Hence, the controllability for the linear system Σ(A,B) with unbounded operator B can
be derived from well-posedness and stability analysis. We refer to [51] for recent consideration
on this respect, and [47, 46] for the controllability of Euler-Bernoulli beams with unbounded
input.
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CHAPTER 3

ADAPTIVE OPTICS SYSTEMS

3.1 Introduction

Adaptive Optics (AO) is a technology used in optic systems to correct wavefront aberra-
tions and the loss of image quality. One of the very exciting applications of this technology is
in extremely large ground-based telescopes that are currently under development in Europe
and North America [31]. The goal of this chapter is to present an overview of the AO tech-
nique in the context of ground-based telescopes, and then formulate the problem as a control
problem to be treated in the sequel. This chapter examines the following topics: the structure
of adaptive optics systems in ground-based telescopes; deformable mirrors modelling; and a
finite-dimensional approximation solution for deformation control of this device.

3.2 Adaptive Optics

The term adaptive optics (AO) refers to optical systems that adapt in real time to com-
pensate distortions of light introduced along the propagation path from the source point to
the receiver [36]. This definition opens up two fertile areas of research: first, identifying the
distortion and defining the reference shape; second, real time compensation for the distorting
effect. The present research is focused on investigating the latter problem as a real time
control problem.

Among the most important applications of AO we can find free space laser communi-
cations [105], [100], retinal imaging [33, 37], biological microscopy [96] , optical fabrication
[34], and ground-based telescopes [87]. However, despite many similarities, each particular
application has unique features which require its own insight to the system and special-
ized techniques. Hence, this research work is mainly focused on the application of AO in
ground-based telescopes.

In the context of ground-based telescopes, as shown in Fig 3.1, AO is used to correct
aberrations of celestial light due to turbulence of earth atmosphere to achive a crisp image
rather than a hazy one. Figure 3.2 shows a typical setup of AO in astronomical telescopes.
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Figure 3.1 A typical example of how AO systems can make very sharp images. Photo Credit:
Laird Close, CAAO, Steward Observatory (lclose@as.arizona.edu)

Figure 3.2 Illustration of AO principle in the context of astronomical telescope.
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Figure 3.3 Schematic representation of open-loop AO with closed-loop DM control.

3.3 Structure of Adaptive Optics Systems

A typical AO system consists of the following components: a deformable mirror to correct
the aberrated wavefronts; a wavefront sensor to measure the aberrations; a light source to
drive the sensor; and a wavefront reconstructor, which receives sensor measurements and
generates the reference shape for the deformable mirror. This structure is depicted in Fig 3.3.

The deformable mirror is the key element of this system. Thus, the high resolution
performance of an adaptive optics system highly depends on the precise control of this device.

One of the prerequisites towards a precise control of deformable mirrors is a very accurate
model of this device to describe the response of the mirror to the inputs. Moreover, since
atmospheric turbulence is a dynamic phenomenon, the compensation needs to be sufficiently
fast. Technically speaking, the expected closed-loop system bandwidth should be beyond 1
kHz. In view of such sampling frequencies, the deformable mirror can no longer be considered
as a static system, since high frequency resonance modes can be exited as well, see e.g. [45].
In the next section, we develop a dynamic model that describes both transient and steady
state behaviour of a typical deformable mirror actuated by microelectromechanical systems
(MEMS).

3.4 MEMS-Actuated Deformable Mirror Modelling

The current commercially available MEMS-based deformable mirrors consist of a thin
flexible membrane coated with highly reflective material. Actuators attached beneath the
mirror face-sheet steer the mirror from an initial state to a prescribed shape. Arguably, the
off-the-shelves DM for AO applications can be categorized based on two features: membrane
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mirror and technology of actuators.
In terms of membrane mirror, DMs are divided into two commonplace categories: continu-

ous face-sheet mirrors and segmented mirrors. Figure 3.4 shows the cross sectional schematics
of the main components of the continuous (left) and segmented (right) deformable mirror
from Boston Micro Machine (BMC).

Figure 3.4 Cross sectional schematics of the main components of BMC’s continuous (left) and
segmented (right) MEMS deformable mirrors. Picture courtesy of Michael Feinberg, BMM,
(mrf@bostonmicromachines.com).

Continuous membrane mirrors have optimal fill factor and no diffraction effects. Hence,
this type of mirrors are used when high power dissipation is an issue, e.g., laser micromachin-
ing, and when high-order corrections are needed, e.g., astronomy. However, they have limited
deformation range, are slower than segmented mirrors, and suffer from crosstalk [31, 36].
Therefore, more elaborated control algorithms are required to overcome these drawbacks.

In terms of actuators, two ubiquitous technologies are: piezo-stack DMs and Micro Electro
Mechanical System (MEMS) DMs. MEMS-DMs are the most popular one because of their
simple structural geometry, flexible operation, and easy fabrication from standard and well-
understood materials [54]. Electrostatic actuation is also the dominant scheme used for
MEMS deformable mirrors in adaptive optics applications [109, 32, 75, 111, 95].

In this work, we use a relatively simple model for MEMS-actuated continuous facesheet
DM displacement based on the thin plate theory [102]. Henceforward, we use the term DM
to refer to this type of deformable mirrors, unless otherwise mentioned.

The considered DM, as shown in Fig. 3.5, consists of two coupled mechanical subsystems:
a continuous flexible membrane facesheet and an array of N by N micro-actuators connected
to the facesheet via rigid posts, all integrated together on a common silicon substrate using
micro fabrication technology.

When the DM is in static equilibrium, forces due to the actuators acting on the mirror are
balanced by restoring forces due to flexure of the membrane. If the rigid posts are relatively
small, the membrane is of uniform thickness, and the displacement is small relatively to the
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thickness of membrane, then we may ignore longitudinal displacement, which yields:

D∇4w(x, y) =
nx∑
j=1

ny∑
i=1

pijδ((x, y)− (xi, yj)), (3.1)

where w(x, y) denotes the transversal displacement, or deflection, of the membrane mirror
at position (x, y) in the same direction of z (see Fig. 3.5), ∇4 =

(
∂w4

∂4x
+ 2 ∂w4

∂2x∂2y
+ ∂w4

∂4y

)
is

the 2-D biharmonic operator, or squared Laplacian operator, D denotes flexural rigidity of
the face-sheet, pij denotes the point load, force per unite area, on the facesheet due to the
actuator located at (xi, yj); δ((x, y)− (xi, yj)) denotes the Dirac Delta function concentrated
at (xi, yj) point; nx, and ny denote the number of actuators along x-axis and y-axis.

( , )w x y

z
x y

w
Figure 3.5 Schematic representation of the MEMS-DM. The downward displacement corre-
sponds to positive direction.

Equation (3.1) describes the steady-state behavior of the DM. In open loop DM con-
trol, the coefficient pij is computed by inverting the solution of this equation empirically or
theoretically, and is called the influence function [32, 107].

To deal with the dynamic control problem, we need to take into account the transient
behavior of the system as well. The transient behavior of the mirror can be captured in
the model by adding the second time derivatives of the displacement as in wave propagation
equations. Hence, the dynamic of the membrane mirror can be presented as follow:

σd
∂w2(x, y)

∂2t
+D∇4w(x, y) =

nx∑
i=1

ny∑
j=1

pijδ((x, y)− (xi, yj), (3.2)

where σ and d denote the mass density and the thickness of the plate, respectively.
For each actuators, we employ an algebraic model:

zij = f(pij, Vij), i = 1, · · · , nx, j = 1, · · · , ny, (3.3)

where zij denotes vertical deflection of the actuator at (xi, yj); pij as mentioned denotes the
load on the facesheet; Vij denotes the “command voltage“ applied to the actuator at (xi, yj),
and f is a function describing the relationship between the voltage and load of the MEMS
actuator to the vertical displacement and usually considered a nonlinear ordinary differential
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equation (see, e.g., [75, 111]). Since the actuators are firmly attached to the membrane
facesheet, coupling conditions will be:

w(xi, yj) = zij, i = 1, · · · , nx, j = 1, · · · , ny. (3.4)

As a result, the governing model for this device may be represented by the partial dif-
ferential equation (3.2) coupled with nx × ny nonlinear ordinary differential equations of the
MEMS actuators. This is not a easy model to start our control design. Hence, we address
some simplifying assumptions, in the following section, to reduce the complexity of the model.

3.5 Simplifying Assumptions on the Model

To reduce the complexity of the model, we start with the MEMS actuators of the system.
The dynamics of MEMS actuators which represent the relationship between input voltages
and vertical displacements as represented in (3.3) are highly nonlinear (see, e.g., [75, 111]).
However, if we assume that the actuators are operating in a stable domain [95], and also
their dynamics is sufficiently faster than that of the membrane mirror, then we can ignore
the nonlinear dynamics of the actuators. Furthermore, since the focus of this research work
is on the shape control of deformable mirrors, considering Dirac delta functions to describe
the behaviour of the actuators in the domain of the PDE system is a reasonable assumption.
This assumption is sufficient for our control development, especially because the dimension
of the rigid posts is much smaller than that of the membrane mirror. Hence, they can be
considered as point-wise actuators. As a result, the coupled PDE-ODE model of the device
can be reduced to a PDE system with in-domain point-wise control inputs represented by
Dirac delta functions.

Mathematically speaking, in order to have this model controllable, the system should
have a unique solution. To address this issue, we have to associate a set of proper boundary
conditions to the model. The boundary conditions have to describe the physical behaviour
of the structure. We assume the membrane mirror is suspended at two ends and supported
at two other ends. Note that this suspended-supported boundary conditions are standard
conditions for plate and beam equations that facilitate well-posedness and controllability
studies of the model and also describe well the structure of a large-scale deformable mirror.
These boundary conditions describe a rectangle segment of the membrane mirror which is
terminated with the frame at two sides, and two other sides are suspended on holding rigid
posts. We prove the well-posedness and the controllability of the model based on this set of
boundary conditions in Chapter 4.

Furthermore, DM deflection is typically measured relative to a “bias” deflection, obtained
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when a bias voltage is applied simultaneously to all the actuators. We take this physical
property into account by assigning initial conditions to the displacement and the rate of
displacement of membrane mirror.

Moreover, by assuming a fully symmetric distribution of the actuators in x-y plane, the
plate equation of the large-scale deformable mirror model (3.1) can be reduced to the Carte-
sian product of two decoupled 1-dimensional systems of Euler-Bernoulli beam equations
[16, 17]. Hence, considering this assumption, we limit the control design to one row of actu-
ators located along the x-axis and suppose that the mass of the device is normalized to one
unit.

3.6 Lumped Model and Finite-Dimensional Control Design

In this section, we present a simple simulation study based on a finite-dimensional ap-
proximation of the model. In this study, a finite element approximation of the model is
considered on space which results in a set of lumped ordinary differential equations. Then,
a linear-quadratic tracking, LQT, scheme is applied to develop the control law for tracking
reference trajectories. This design formally shows the essential steps in control designs based
on lumped model. The results of this section has been published in [13].

3.6.1 Control Design of Lumped System

For this design, we consider the beam equation model of the system with one row of
actuators located along the x-axis as:

wtt(t, x) +Dwxxxx(t, x) = −
nx∑
i=1

piδ(x− xi). (3.5)

where wtt and wxxxx represent the second time derivatives and the fourth space derivatives
of w(x, t). The goal of the control design is to find pi to steer the beam along reference
trajectories. Note that the open-loop approaches for deformable mirrors aim at finding a
static pi, the so-called influence functions. However, in closed-loop control schemes, pi is
computed dynamically.

To carry out the control design, we discretize wxxxx on space. More specifically, we
approximate the fourth time space derivatives of w based on a linear combination of the
actuators as stencil points. Then, we may apply an optimal quadratic tracking control to
drive the quasi-ODE system resulting from space discretization. Assuming that w(t, x) is
sufficiently smooth in space, i.e., at least n times continuously differentiable, the Taylor
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series expansion of w at each point xi in the stencil about x̄ obtains as:

w(t, xi) = w(t, x̄) + (xi − x̄)w′(t, x̄) + · · ·+ (xi − x̄)k
k! w(k)(t, x̄) + · · · , i = 1, · · · , n. (3.6)

Our aim is to find a linear combination of stencil points that agree with wxxxx(t, x) up to
a certain order. Therefore, we write:

ci1w(t, x1) + ci2w(t, x2) + · · ·+ cinw(t, xn) = wxxxx(t, xi) +O(hp), (3.7)

where O(hp) is the error of the pth order approximation and h is the mesh width, equal to
the absolute distance between two adjacent actuators. The coefficients cij may be obtained
from the following algebraic equation [69]:

1
(i− 1)

nx∑
j=1

cij(xj − x̄)(i−1) =

1, if i− 1 = 4

0, othewise
i = 1, · · · , nx. (3.8)

For nx > 4, the bi-harmonic operator can be represented in the following matrix form:

Ad = [cij], i = 1, · · · , nx; j = 1, · · · , nx.

Substituting this matrix form in (3.5) leads to the following quasi-ODE form:

∂W 2(t)
∂2t

+DAdW (t) = F, (3.9)

where W (t) = [w1(t), w2(t), · · · , wnx(t)]T and F = [f1, f2, · · · , fnx ]T . F may be obtained
from controller synthesis part. Letting W and Wt be the state variables and denoting

XT = [W T W T
t ],

(3.9) can be written in state-space form as:

Ẋ = AX +BU,

Y = CX,
(3.10)

where A =
 0 Inx

−DA 0

, B =
 0
Inx

, and U = F . In these matrices, 0 is the null matrix

with appropriate dimension and Inx represents the identity matrix. Y is the measured output
which is defined as face-sheet displacement at actuators’ posts. Therefore, C = [Inx 0nx ].
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Now, we can apply LQT scheme to compute the state feedback control law. As our
objective is to bring the state X to approach a reference Xref , we impose a new variable
Z(t) = X(t) − Xref . The LQT problem amounts then to find a control U which would
minimize the cost function:

JLQR =
∫ ∞

0
(ZTQZ + ρUTRU)dt, (3.11)

subject to System (3.10), where Q is an 2nx × 2nx symmetric positive-semi-definite matrix,
R is an nx × nx symmetric positive-definite matrix, and ρ is a positive constant. The first
term in the integral corresponds to the energy of the controlled output and the second one
corresponds to the energy of the control signal. Decreasing the energy of the controlled output
will require a large control signal and a small control signal will lead to a large controlled
output. The role of the constant ρ is to establish a trade-off among these conflicting goals.
One static state feedback solution of the LQT problem is:

U = −KZ, (3.12)

where K is a nx × 2nx matrix given by:

K = ρR−1BTP, (3.13)

with P the unique positive-definite solution of the following equation

ATP + PA+Q− ρPBR−1BTP = 0,

known as the Algebraic Riccati Equation (ARE) [53]. In (3.12) the driving signal that
controls the deformation of the beam is computed by system state.

Note that this design requires the measurement of all the state variables. Even with an
output-feedback control scheme, a considerable number of measurements are still needed to
assure an adequate performance. This is one of the main limitations in the designs based on
the lumped model (see, e.g., [14, 81]).

3.6.2 Simulation Study

The simulation study is carried out in the COMSOL software by considering a deformable
Poly-Si beam with a length of 2.8 × 10−2m and thickness of 3µm. Consequently, D will be
3.78× 10−7 for this Poly-Si beam. 8 actuators are uniformly placed along the domain of the
system which means in the model we chose nx = 8. The system matrix A can be computed
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from (3.8). In order that A could meet the well-posed provision of the bi-harmonic operator,
we consider the following boundary conditions:

w(0) = 0, wx(0) = 0, w(L) = 0, wx(L) = 0.

This set of boundary conditions physically means a simply supported beam with slop and
deflection set to zero at both ends. Accordingly, we will have:

A =



1 0 0 0 0 0 0 0
250 −250 0 0 0 0 0 0
250 −1000 1500 −1000 250 0 0 0
0 2500 −1000 1500 −1000 250 0 0
0 0 250 −1000 1500 −1000 250 0
0 0 0 250 −1000 1500 −1000 250
0 0 0 0 0 0 250 250
0 0 0 0 0 0 0 1



.

Since the boundaries of the system are fixed, we do not have control over the two extreme
points at both ends. Therefore, we extract the skew part of A and denote it by

Ad =


1500 −1000 250 0
−1000 1500 −100 250
2500 −10000 15000 −10000

0 250 −1000 1500

 .

To design the controller, we chose Q = CT ×C, R = BT ×B, and ρ = 1. The LQT controller
gain, K, will be given by:

K =


3.79 1.55 0.08 −0.14 7.59 0.20 0.01 −0.02
1.55 4.28 1.53 0.08 0.20 7.65 0.20 0.01
0.08 1.53 4.28 1.55 0.01 0.20 7.65 0.20
−0.14 0.08 1.55 3.79 −0.02 0.01 0.20 7.59

 .

Note that the underlined entries indicate the self effect of the actuators. Obviously, every
actuator should have the most significant control on itself.

Figures 3.6 to 3.8 represent the simulation results of closed-loop deformation control. 1 In

1. Note that the simulation is preformed with a very beginning version of COMSOL software which just
provides outputs in JPEG format. The low quality of the depicted results is mainly due to converting this
JPEGs to PDF to be used in the LATEX file.
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simulation, The desired shape, as shown in Fig. 3.6, is described by W = −10−6 sin( 2π
2.8x)ex.

It can be seen that the system tracks the reference shape with an acceptable tracking error,
shown in Fig. 3.8, and the controller drives the beam to the steady-state mode within a
reasonable time (Fig. 3.6). It is worth noting that the simulation is carried out in a normalized
coordinate. Therefore, the time scale is also normalized. The maximum amplitude of the
control signal is approximately 8 × 10−6 ( Fig. 3.7) which is a affordable displacement for
a MEMS actuator to operate in a stable region. However, in order to avoid the undesired
overshot in actuation, one should consider more sophisticated control techniques, such as
constrained quadratic control.

3.6.3 Summary and Discussion

In this chapter, we presented the adaptive optics in the context of ground-based telescopes
and introduced a dynamic partial differential equation model for deformable mirrors. A
controller is designed based on a finite-dimension approximation of the PDE model. The
design formally presented the typical steps in control designs based on approximating PDE
models to ordinary differential equations. However, this approach requires at least as many
sensors as actuators to implement the closed-loop control which is not implementable with
the currently available fabrication technologies of DMs.

In addition, the neglected dynamics due to reducing the system to a finite-dimensional
model may deteriorate the performance or even destabilize the system, known as the spillover
effect in PDE control systems. Thus, a high order approximation is often required in the
design for assuring system stability, which in turn might lead to complex control structures.
These issues raise serious technological challenges in the design, fabrication, and operation
of microsystems. Therefore, it is of great interest to directly deal with the control of PDE
models from both theoretical and practical viewpoints.
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Figure 3.6 Two Snapshots of the beam from the initial state to steady-state; snapshots for
t ∈ [0 0.8] presented on the top figure, and for t ∈ [0.8 1] on the bottom.
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Figure 3.7 Control effort generated on each actuator points, two first and two last actuators
are fixed to comply with boundary condition.

Figure 3.8 The error between the desired and actual trajectory.
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CHAPTER 4

CONTROL DESIGN: FLATNESS-BASED DEFORMATION CONTROL OF
EULER-BERNOULLI BEAMS WITH IN-DOMAIN ACTUATION

This chapter addresses the main results of this research. In this chapter, we start by pre-
senting an Euler-Bernoulli model of the deformable beam described by a fourth-order partial
differential equation, and discussing the well-posedness and controllability of the model.
Then, in Section 4.2.3, we develop the Green’s function of the system which will be employed
later in the control algorithm design. We start the design in Section 4.3 by establishing a
formal map between the in-domain controlled system and a standard boundary-controlled
model. Based on this map, we develop a control strategy, which is a combination of feedback
stabilization and differential flatness-based feed-forward motion planing. This part formally
shows a way to deal with the tracking control problem of in-domain controlled PDE systems.
However, the map holds only for some special test functions. Thus, since we limit the test
functions to some convenient ones, the original PDE is satisfied in a very weak sense, but
not in the usual one. To cope with this problem, we develop another design in Section 4.4.
In this design instead of trying to establish such an equivalence, we approximate the solution
of the original system by that of a target system driven by regularized inputs in the steady
state. To do this, we use the technique of lifting to transform the target system, which is
controlled by boundary actuators, to an inhomogeneous PDE driven by sufficiently smooth
functions generated by applying blobs, used to approximate the Dirac delta functions. This
would allow establishing a relationship between the original system and the target system
in a usual weak sense. Theorem 4.6 entails this issue. Moreover, the transient behavior,
the stability of the closed-loop system, and the regulation error dynamics are addressed in
Theorem 4.8 and Corollary 1.

4.1 Notation

For the purpose of clarity, we recall the notations, most of which are defined in Chapter 2.
Let R be the field of all real numbers. For n ≥ 1, Rn denotes the n-dimensional Euclidean

space with norm ‖x‖ and inner product 〈x, y〉 for all x and y in Rn. Let Ω be a nonempty
open subset of Rn. Denoting by ∂Ω the boundary of Ω, then Ω̄ = Ω∪ ∂Ω is the closure of Ω.
Given a continuous linear map L between two Hilbert space and letting H be a Hilbert space,
Lp(Ω), p > 0, will be the normed linear space of all equivalent classes of Lebesgue-measurable



38

functions from Ω into H, which are p-integrable or essentially bounded if p =∞. Denote by
Cm(Ω) the space of m-times boundedly continuously differentiable function from Ω into H.
For m ≥ 1, Hm(Ω) denotes the Hilbert space of all real-valued functions in L2(Ω) of which
the first mth distributional derivatives belong to L2(Ω).

4.2 Basic Properties of the Considered System

4.2.1 System Modeling

In this subsection, we briefly recall the main results from Section 3.4 for a one-dimensional
deformable mirror.

As shown in Fig. 4.1, the considered device consists of a continuous flexible beam and
an array of N micro-actuators connected to the beam via rigid spots. As the dimension
of the spots connecting the actuators to the continuous surface is much smaller than the
extent of the beam, the effect of the force generated by actuators at rigid spots is considered
as a pointwise control, which can be represented by Dirac delta functions concentrating at
rigid spots. The displacement of the beam at the position x and the instant t is denoted by
w(x, t). For notational simplicity, we do not show all the variables of functions if there is no
ambiguity, e.g., w = w(x, t). The derivatives of w with respect to its variables are denoted by
wx and wt, respectively. The dynamic transversal displacement of the beam with constant
mass density ρ and flexural rigidity EI normalized to one and point actuators located at
{x1, x2, · · · , xN}, can be described by the following PDE [102, 25]:

wtt(x, t) + wxxxx(x, t) =
N∑
i=1

αi(t)δ(x− xi), x ∈ Ω, t > 0, (4.1a)

w(0, t) = wx(1, t) = wxx(0, t) = wxxx(1, t) = 0, (4.1b)

w(x, 0) = h0(x), wt(x, 0) = h1(x), x ∈ Ω, (4.1c)

Figure 4.1 Schematic of the deformable microbeam.
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where x is a normalized variable spanned over the domain Ω = (0, 1), δ(x − xi) is the
Dirac mass concentrated at the point xi ∈ Ω, denoting the actuation spots, and αi : t 7→ R,
i = 1, . . . , N , are the control signals. h0 and h1 represent the initial values of the displacement
and its time-derivative associated with the beam. The boundary condition (4.1b) means that
the beam is simply supported at x = 0 and the shear hinged at x = 1. Without loss of
generality, we assume that 0 < x1 < x2 < · · · < xN < 1.

Remark 4.1 The boundary conditions given in (4.1b) capture well the property of the struc-
ture that is suspended at the left end and supported by a vertically moving actuator at the
right end. Note that for other bending schemes, such as clamped-clamped and clamped-free
configurations, the boundary conditions are different, which may lead to different feedback
stabilization strategies [25]. Nevertheless, the system architecture and the procedure for feed-
forward control design remain the same.

Remark 4.2 The considered problem can also be modeled as a serially connected beam [25].
Indeed, these two models are equivalent in the sense that they lead to the same abstract linear
system in variational form (see, e.g., [92, 25, 60, 62, 61]).

Remark 4.3 Electrostatic actuation is one of the dominant schemes used for MEMS de-
formable mirrors [107, 32]. However, the dynamics of electrostatic MEMS are highly nonlin-
ear and performance enhancement of such devices is a challenging topic (see, e.g., [75, 111]).
In this research, we concentrate on shape control of deformable mirrors while ignoring the
dynamics of the actuators, which is supposed to be sufficiently faster than the dynamics of the
structure. Moreover, we suppose that the actuators are working in the stable operation range
[95]. In fact, considering the dynamics of the actuators will lead to a coupled PDE-ODE
control problem.

The control objective is to steer the beam displacement, w(x, t), to follow a desired form
described by wd(x, t) via in-domain pointwise actuation.

The model given in (4.1) is a nonstandard PDE due to the in-domain pointwise actuation,
represented by Dirac functions, on the right-hand side of (4.1a). Thus, the classical definition
of derivative cannot be applied. Therefore, we will invoke the weak derivative notion of a
solution to this model in the weak sense [89].

Specifically, (4.1) does not admit strong solutions in the classic sense for w ∈ C4([0 T ]×
Ω\{xi}1≤i≤N)⋂C3([0 T ]× Ω̄) because of the unbounded Delta dirac functions on the right-
hand-side of (4.1a). However, in practice, there exist functions that satisfy this differential
equation, except they are not sufficiently smooth. A typical example of this type of situations
is the impulse response of a (finite- or infinite-dimensional) system, which is indeed physically
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meaningful, although it is only differentiable up to a finite order. Such functions are called
weak or generalized solutions to the corresponding differential equation.

The weak solution of a PDE can be defined by means of weak derivative in the theory
of distributions [89]. To find the weak derivatives, the system is multiplied by a sufficiently
smooth function with a compact support, called test function. Then, integrating over the
domain results in a sufficiently smooth function coming from the rough distribution. Applying
integration by part and Green’s formula, up to a certain problem-dependent order, will
enable the definition of the derivatives of distributions. To this end, we start by defining the
convergence on C∞0 (Ω).

Definition 4.1 Let Ω be a domain in R(n ≥ 1). A sequence {ϕj} of functions belonging to
C∞0 (Ω) converges to ϕ ∈ C∞0 (Ω), if

(i) there exists K ⊂ Ω such that supp(ϕj − ϕ) ⊂ K for every j, and

(ii) limj→∞ ∂
αϕj(x) = ∂αϕ(x) uniformly on K for each multi-index α.

The linear space C∞0 (Ω) having the above properties is called fundamental space, denoted by
D(Ω). The space of all linear continuous functionals on D(Ω), denoted by D ′(Ω), is called
the space of (Schwartz) distributions on Ω, which is the dual of D(Ω) (see, e.g., Chapter 1
of [2] for more properties of D(Ω) and D ′(Ω)).

Denote the set Φ by

Φ =
{
φ ∈ H2(0, 1);φ(0) = φx(1) = 0

}
. (4.2)

In the following definition, we define a weak solution of (4.1).

Definition 4.2 Let T > 0 and αi ∈ L2(0, T ) for i = 1, 2, ..., N . Let h0 ∈ Φ, h1 ∈ L2(0, 1). A
weak solution to the Cauchy problem (4.1) is a function w ∈ C([0, T ]; Φ)∩C1([0, T ];L2(0, 1)),
satisfying

w(x, 0) = h0(x), x ∈ (0, 1),
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such that, for every v ∈ C1([0, T ]; Φ), one has for almost every τ ∈ [0, T ]
∫ 1

0
wt(x, τ)v(x, τ)dx−

∫ 1

0
h1(x)v(x, 0)dx

−
∫ τ

0

∫ 1

0
wt(x, t)vt(x, t)dxdt

+
∫ τ

0

∫ 1

0
wxx(x, t)vxx(x, t)dxdt

=
N∑
i=1

∫ τ

0

∫ 1

0
αi(t)δ(x− xi)v(x, t)dxdt. (4.3)

For every v ∈ C1([0, T ]; Φ), the function w(x, t) given by 4.3 is a weak solution for the
system. In the next section, we study the uniqueness of this solution through well-posedness
analysis of the model.

4.2.2 Well-Posedness and Controllability of the Model

In the investigation of the well-posedness of the considered system, we employ the formu-
lation of Cauchy problem for abstract linear control systems, which enables the application
of the framework of semigroup theory [27, 29, 104]. More specifically, in this framework the
assessment of well-posedness amounts to showing that if the system is defined on an appro-
priate Hilbert space, then by Riesz’ representation theorem there exists a unique solution to
the problem (see, e.g., Page 52 of [89] and Chapter 1 of Part II in [19]).

Let X = Φ × L2(0, 1), where Φ is defined in (4.2), be a Hilbert space equipped with
appropriate inner product and norm. We define the subspace D(A) ⊂ X by:

D(A) =
{

(w, v) ∈ [Φ ∩H4(0, 1)]× Φ | wxx(0, t) = wxxx(1, t) = 0
}

(4.4)

with the corresponding operator A : D(A)→ X defined as:

A

w
v

 =
 v

−wxxxx

 , (4.5)

where the derivative with respect to x are calculated in the dual space of D(A), denoted by
D′(A), with respect to the pivot space X.

Denoted by S(t), t ∈ [0,+∞), the semigroup generated by A and by S∗(t) the semigroup
generated by A∗, the adjoint of A. It can be shown that D′(A∗), the dual of D(A∗) with
respect to the space X, satisfies [104]

D(A∗) ⊂ X ⊂ D′(A∗). (4.6)
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Moreover, the control operator B : RN 7→ D′(A∗) is defined as:

Br =
 0∑N

i=1 riδ(x− xi)

 , ∀r ∈ RN . (4.7)

With the above notations we can translate System (4.1) into the equivalent Cauchy prob-
lem described by an abstract linear control system of the following form:

ẏ = Ay +Bu, y(0) = y0, (4.8)

where y =
(
w wt

)T
∈ X is the state vector, u : [0, T ] → U is the control signal, U = R is

the control space, and y0 =
(
h0 h1

)T
is the initial condition.

Note that the control operator B in (4.8) is not continuous nor bounded in classical sense.
Hence, we are interested in the set of operators for which all the weak solutions of System
(4.8) for u(t) given in L2((0, T );U) and y0 given in X are continuous X-valued functions, as
defined in Definition 2.12.

We start by giving a formal definition of a solution to (4.8). Let τ ∈ [0, T ] and ϕ : [0, τ ]→
X. We take the inner product in X of (4.8) with ϕ and perform integration on [0, τ ]. Using
integration by part together with (4.8), we obtain formally:

〈y(τ), ϕ(τ)〉X − 〈y0, ϕ(0)〉X =
∫ τ

0
〈y(t), ϕ̇+ A∗ϕ(t)〉Xdt+

∫ τ

0
〈u(t), B∗ϕ(t)〉Udt. (4.9)

Taking ϕ = S∗(τ − t)z(τ), for ∀z(τ) ∈ X, we have ϕ̇(t) + A∗ϕ(t) = 0, which leads to:

〈y(τ), z(τ)〉X − 〈y0, S∗(τ)z(τ)〉X =
∫ τ

0
〈u(t), B∗S∗(τ − t)z(τ)〉Udt, ∀τ ∈ [0, T ],∀z(τ) ∈ X.

(4.10)

Definition 4.3 Let T > 0, y0 ∈ X, and u ∈ L2((0, T );U). A weak solution to the Cauchy
problem (4.8) associated with (4.1) is defined by (4.10) with the regularity y ∈ C([0, T ];X).

Based on this definition of solutions, we introduce the following theorem for the well-
posedness of the Cauchy problem of abstract linear control systems of the form defined in
(4.8) (see Theorem 2.37 in [27], Page 53), and a proposition from [5] that we use later to
prove the uniqueness of the solution.

Theorem 4.1 Let T > 0. Then for every y0 ∈ X and every u ∈ L2((0, T );U), the Cauchy
problem (4.8) has a unique solution y if A is a generator of a strongly continuous semigroup
S(t) and B is admissible for S(t) on X.
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Theorem 4.2 (Proposition 2.1 [5]) If y0 = (w0, w1) ∈ X, then for the problem (4.8) we
have:

‖ ϕ(ξ, ·) ‖2
H1(0,T )≤ C

(
‖ w0 ‖2

H2(0,1) + ‖ w1 ‖2
L2(0,1)

)
, (4.11)

where C is a positive constant which depends only on ξ and T .

The following theorem states the well-posedness property of (4.1) presented in the abstract
form (4.8).

Theorem 4.3 Let T > 0 and denote α(t) = (αi(t), . . . , αN(t)). Then for every y0 =
(w0, w1) ∈ X and every u(t) = α(t) ∈ L2((0, T );U), the Cauchy problem (4.8) associated
to (4.1) has a unique solution y ∈ C([0, T ];X) defined by (4.10).

Proof. SinceA is skew-adjoint, by Stone’s theorem [27], it generates a strongly continuous
semigroup of isometries S(t) on X. Hence, based on Theorem 4.1, it is sufficient to show
that the control operator B expressed by (4.7) is admissible for S(t) on X.

According to (4.7), the operator B∗ : D(A∗) 7→ RN is given by:

B∗

w
v

 =
N∑
i=1

v(ξi), ∀
w
v

 ∈ D(A∗). (4.12)

This implies that

B∗S∗(t)
w0

w1

 =
N∑
i=1

ϕt(ξi), ∀
w0

w1

 ∈ D(A∗). (4.13)

According to Theorem 4.2 and Equation (4.13), we deduce that for all T > 0, there exists a
constant CT > 0 such that

∫ T

0

∥∥∥∥∥∥B∗S∗(t)
w0

w1

∥∥∥∥∥∥
2

dt ≤CT

∥∥∥∥∥∥
w0

w1

∥∥∥∥∥∥
2

X

, ∀

w0

w1

 ∈ D(A∗). (4.14)

This implies that the operator B is regular for S(t) on X. From Theorem 4.1, we can
conclude then on the existence and the uniqueness of the solution to the Cauchy problem (4.8)
associated to System (4.1). �

Remark 4.4 The well-posedness of a similar system with only one in-domain input has been
shown in [5] (Proposition 3.1). In such a case, B : R 7→ D′(A∗). Therefore, Theorem 4.3
can be seen as a direct extension of this result.

For the controllability of the system from Chapter 2, we have:
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Theorem 4.4 System (4.8) is exactly controllable in [0;T ] for any finite y0 ≥ 0 if A gener-
ates a stable C0-semigroup and B is unbounded but admissible.

Proof. The admissibility of the unbounded operators B is shown in the well-posedenss study.
Hence, showing the stability of C0-semigroup generator A will complete the proof. This issue
is addressed in Section 4.4.3. �

4.2.3 Green’s Functions for Euler-Bernoulli Beams

One of the main contribution of this work is to leverage the Green’s function in the
design. It is shown that a finite set of the Green’s functions of the system can be used to
approximate desired trajectories. Therefore, an exact invertible and finite-dimensional input
to output map can be obtained without invoking any truncations. It also facilitates the real
time implementation of the design since the decomposition of desired trajectories can be
assessed a priori.

This subsection recalls some basic notation, properties, and results related to the Green’s
function, which will be employed later in control algorithm development. The Green’s func-
tion is a basic tool in the study of PDEs and there exists a rich literature on this topic
(see e.g., [91]). In this research, we are particularly interested in the static Green’s function
corresponding to the steady-state beam equation, which will be used in our design.

Consider a generic form of steady-state equation corresponding to the beam equation
(4.1) with an arbitrary excitation function, f(x):

wxxxx(x) = f(x), x ∈ Ω, (4.15a)

w(0) = wx(1) = wxx(0) = wxxx(1) = 0. (4.15b)

For a point-wise actuation scheme described by System (4.1), the source term is of the form∑N
i=1 αiδ(x − xi), where αi, i = 1, · · · , N , represent the steady-state actuation signals. The

static Green’s function, or the Green’s function for short, corresponding to (4.15), denoted by
G(x, ξ), is the solution to such an equation for f(x) = δ(x− ξ), x, ξ ∈ Ω, with homogeneous
boundary conditions.

The Green’s function G(x, ξ) can be calculated by measuring the response of the system
at point x for the pressure applied at the point ξ. Therefore, it can be seen as the impulse
response of the system, which is an essential and important property for system analysis.
Based on the principle of superposition for linear systems, the solution to the steady-state
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beam equation (4.15) can be expressed in terms of the Green’s function as:

w(x) =
∫

Ω
G(x, ξ)f(ξ)dξ. (4.16)

Obviously, the domain of the Green’s function is determined by the original system.
When the actuator makes vertical movement at the point x = ξ, based on the continuity

condition, the displacement, the rotation, and the bending force from the left and right
side of this point are identical. That is G(x, ξ−) = G(x, ξ+), Gx(x, ξ−) = Gx(x, ξ+), and
Gxx(x, ξ−) = Gxx(x, ξ+). Meanwhile, this movement will generate a shear force, represented
by the jump Gxxx(x, ξ+) − Gxxx(x, ξ−) = 1 [25]. Solving (4.15a) and applying continuity,
jump, an boundary conditions (4.15b), we obtain the Green’s function for System (4.15),
which is given by

G(x, ξ) =



(
−x

3

6 + xξ

(
1− ξ

2

))
, 0 ≤ x < ξ;(

−ξ
3

6 + ξx
(

1− x

2

))
, ξ ≤ x ≤ 1.

(4.17)

The Green’s function is used for two different purposes in our design. First, this function
is used to construct test functions in the development of a map between the in-domain and
boundary data. Secondly, the property given in (4.16) is employed to generate reference
trajectories in motion planning. As shown latter in Section 4.3.3, motion planning for the
considered 4th-order beam equitation requires that the base functions must have a continuous
3th-order derivative on space at the actuation points (see (4.42d)). However, the Green’s
function given in (4.17) is only of H2 over Ω. A solution for overcoming this problem is the
use of regularized Green’s functions that are sufficiently smooth.

Different from the Green’s function that is the response to the Delta dirac input, a
regularized Green’s function, denoted by G̃, is generated by using a cutoff function, also
called blob, as the input to the system. Driving the steady state equation (4.15) by a blob of
the following form [28]:

ϕδ(x− ξ) = 3δ
4((x− ξ)2 + δ2)5/2 , (4.18)

where δ is a small scaling parameter, the corresponding regularized Green’s function is given
by:

G̃(x, ξ) = 1
12
(
(x− ξ)2 + δ2

)3/2
+ Ax3 +Bx2 + Cx+D, (4.19)



46

where

A =(2(ξ − 1)2 + 3δ2)(ξ − 1)
4((ξ − 1)2 + δ2)3/2 , (4.20a)

B =− (δ2 + 2ξ2)/(4(δ2 + ξ2)1/2), (4.20b)

C =(δ2 + 2ξ2)/(4(δ2 + ξ2)(1/2))− ((2(ξ − 1)2 + 2δ2)

× (ξ − 1) + δ2(ξ − 1))/(8((ξ − 1)2 + δ2)3/2)

+ (((ξ − 1)2 + δ2)1/2(ξ − 1))/4, (4.20c)

D =− (δ2 + ξ2)3/2/12. (4.20d)

Note that for ∀δ > 0, the blob given in (4.18) satisfies
∫ ∞
−∞

ϕδ(x)dx = 1. (4.21)

It can also be shown that the regularized Green’s function generated by the blob defined in
(4.18) gives an approximation of the Green’s function with O(δ2/x2) and G̃ converges to G
as δ → 0 [28].

4.3 The First Design: Mapping In-domain Actuation into Boundary Control

The control scheme presented in this section consists in first mapping the original nonho-
mogeneous model into a target system in a standard boundary control form. The system has
a finite number of actuators which means the control space is of finite dimensions whereas the
degree of freedom (DOF) of the system is of infinite dimensions. This underactuated property
of the system is solved by splitting reference trajectories into a finite set of sub-trajectories
based on an essential property of the Green’s functions. The technique of flatness-based
trajectory planning can then be readily applied to boundary controls introduced in the for-
mulation of the target system. A standard closed-loop feedback control is used to stabilize the
system around the desired trajectories. The combination of feedback stabilization and feed-
forward motion planning results in an asymptotic tracking control law allowing the system
to follow prescribed trajectories.

4.3.1 Mapping In-domain Actuation into Boundary Control

To circumvent the complexity introduced by unbounded in-domain actuators in the
model (4.1), we start by introducing a formal map that will transform this nonstandard
problem into a standard boundary control form to which existing stabilization and control
methods may be applied. To this end, we consider the following target system described by



47

a homogenous initial-boundary value PDE:

utt(x, t) + uxxxx(x, t) = 0, x ∈ Ω, t > 0, (4.22a)

u(0, t) = ux(1, t) = uxx(0, t) = 0, t > 0, (4.22b)

uxxx(1, t) = g(t), t > 0, (4.22c)

u(x, 0) = h0(x), ut(x, 0) = h1(x), x ∈ Ω, (4.22d)

where g(t) is the control placed on the boundary and the other variables are defined in (4.1).
Our aim is to find a relationship that maps the effect of the actuation signals appearing on
the right-hand side of (4.1a) to the boundary control g(t) in (4.22c), representing a shear
force. Note that (4.22) is an abstract mathematical model used in control design, which does
not describe the physical system operated by multiple interior actuators.

Our goal is to ensure that Systems (4.1) and (4.22) have an identical weak solution. The
weak solution to Systems (4.1) is introduced in Section 4.2. The weak solution to (4.22)
can be obtained by repeating the same procedure. We multiply (4.22) by a test function
v ∈ C1([0, T ]; Φ), where Φ is defined in (4.2). Then, the weak solution in integral form can
be derived by integration over [0, τ ] × Ω, with τ ∈ [0, T ]. We can then obtain the following
equations using integration by parts twice on the term wtt(x, t)v(x, t), and Green’s formula
[48] two times on the term wxxxx(x, t)v(x, t):

〈ut(x, t), vt(x, t)〉(τ,Ω) + 〈uxx(x, t), vxx(x, t)〉(τ,Ω)

−
∫

Ω
(h1(x)v(x, 0)− ut(x, τ)v(x, τ)

+u(x, τ)vt(x, τ)) dx+
∫ τ

0

∫
∂Ω
vx(x, t)uxxx(x, t)dωdt

−
∫ τ

0

∫
∂Ω
vxx(x, t)uxx(x, t)dωdt = 0, (4.23)

where
〈f(x, t), g(x, t)〉(τ,Ω) =

∫ τ

0

∫
Ω
f(x, t)g(x, t)dxdt (4.24)

denotes a spatio-temporal inner product, and dω denotes the integration variable on the
boundary where x = 0 and x = 1 are the boundary points for this system. By applying the
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boundary conditions given in (4.22c), and (4.22b), we have:

〈ut(x, t), vt(x, t)〉(τ,Ω) + 〈uxx(x, t), vxx(x, t)〉(τ,Ω)

−
∫

Ω
(h1(x)v(x, 0)− ut(x, τ)v(x, τ)

+u(x, τ)vt(x, τ)) dx+
∫ τ

0

∫
∂Ω
v(x, t)g(t)dωdt = 0. (4.25)

Finally, a sufficient condition for which Systems (4.1) and (4.61) have an identical weak
solution can be obtained by subtracting (4.25) from (4.3):

∫
∂Ω
v(x, t)g(t)dω −

N∑
i=1

∫
Ω
αi(t)v(x, t)δ(x− xi)dx = 0. (4.26)

To find a closed-form expression for g(t), we choose a test function of the form:

v(x) =
N∑
j=1

G(x, ξj), (4.27)

where G(x, ξj), j = 1, · · · , N , are computed from (4.17).
Note that a wide class of functions can be considered as a candidate for test functions, for

example a function formed by the eigenfunctions of the system. The reason that the Green’s
function is chosen as a test function comes primarily from the fact that it leads to a simple
solution while guaranteeing the solvability of the map between the boundary value and the
actual actuation signals, as shown below.

By substituting (4.27) into (4.26) and using the basic property of Dirac delta functions,
we can rearrange (4.26) in terms of g(t) as

g(t) =
N∑
j=1

∑N
i=1 αi(t)G(xi, ξj)

Γ(ξj)
, (4.28)

where
Γ =

N∑
m=1

∫
∂Ω
G(x, ξj)dω. (4.29)

Hence, the map between the in-domain control signals and the corresponding boundary
values can be expressed by:


G(x1, ξ1) . . . G(xN , ξ1)

... . . . ...
G(x1, ξN) . . . G(xN , ξN)



α1(t)
...

αN(t)

 = Γ


g1(t)
...

gN(t)

 , (4.30)
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with
g(t) =

N∑
j=1

gj(t) = 1
Γ

N∑
j=1

N∑
i=1

G(xi, ξj)αi(t). (4.31)

Clearly, (4.30) and (4.31) bridge the nonhomogeneous PDE system (4.1) with the standard
boundary control form (4.22). This will allow the use of existing methods to deal with the
PDE controlled on the boundary and then applying the results back to the original in-domain
actuation signals by inverting (4.30). Note that (4.30) is a static map whose invertibility can
be assessed a priori. This shows the simplicity of the proposed approach.

Theorem 4.5 The map given in (4.30) is invertible if the test functions as chosen v(x) =∑N
j=1G(x, ξj), ξj, j = 1, . . . , N , are all distinguished, and G(x, ξj) is of the form

G(x, ξj) =


−x

3

6 + xξj

(
1− ξj

2

)
, 0 ≤ x < ξj;

−
ξ3
j

6 + ξjx
(

1− x

2

)
, ξj ≤ x ≤ 1.

(4.32)

Note that G(x, ξj) given in (4.32) is the static Green’s function of the beam equation
parameterized by ξj. It is easy to check that G(x, ξj) is a positive, monotonically increasing
function and G(x, ξi) 6= G(x, ξj), ∀ξi 6= ξj and x ∈ (0, 1].

Proof. First, being the fundamental static solution of the beam equation (4.1) corre-
sponding to the input δ(x− ξj), G(x, ξj) is in Φ. We need then to proof that the matrix in
the left-hand-side of (4.30) formed by Green’s functions corresponding to distinguished ξjs,
denoted by [G(xi, ξj)]N×N , is invertible. If, otherwise, [G(xi, ξj)]N×N is not invertible, then it
is of rank less than N . Without loss of generality, assume that there exist N − 1 constants,
k1, k2, ..., kN−1, such that

G(x1, ξN) =
N−1∑
i=1

kiG(x1, ξi), (4.33a)

G(x2, ξN) =
N−1∑
i=1

kiG(x2, ξi), (4.33b)

... (4.33c)

G(xN , ξN) =
N−1∑
i=1

kiG(xN , ξi). (4.33d)

The above equations show that

G(x, ξN) =
N−1∑
i=1

kiG(x, ξi) (4.34)
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has N different positive solutions x1, x2, · · · xN , xi ∈ (0, 1), i = 1, . . . , N .
We consider two cases:

(i) If N > 3, since ξi, i = 1, . . . , N, are distinguished, G(x, ξj), i = 1, . . . , N, are all different
from each other. Hence

G(x, ξN) 6≡ k1G(x, ξ1) + k2G(x, ξ2) + · · ·+ kN−1G(x, ξN−1). (4.35)

Note that G(x, ξj), j = 1, . . . , N, are of order at most 3, then (4.34) has at most 3 different
solutions in R, which is a contradiction.
(ii) If N ≤ 3, it is easy to check that (4.34) has a solution x = 0, and a pair of solutions
x = x0 and x = −x0 near the origin 0. By the assumption, (4.34) has N different positive
solutions, then it must be N = 1, which leads to a contradiction with the non-invertible
property of G(x1, ξ1) 6= 0.

�

Remark 4.5 Note that the map given in (4.30) holds only for some particular test functions.
Thus, since we limit the test functions to some convenient ones, the original PDE is satisfied
in a very weak sense, but not in the usual one. This caveat is addressed in the next design
presented in Section 4.4.

4.3.2 Feedback Stabilization

According to the method of energy multiplier, the target system (4.22) is exponentially
stable if the following condition holds on the boundary (see, e.g., [25] and Theorem 2.3 of
[5]):

g(t) = wxxx(1, t) = kgwt(1, t), (4.36)

where kg > 0 is a real-valued constant.
It can be seen from (4.31) that one of the in-domain control signal can be uniquely defined

by the stabilizing feedback (4.36) and the other gjs. For notational simplicity, we assign the
stabilizing feedback to gN and hence:

gN(t) = kgwt(1, t)−
N−1∑
j=1

gj(t). (4.37)

In fact, Equation (4.37) constrains the system trajectory to a stable region, yet the remaining
N − 1 degrees-of-freedom of the system can be used to implement feed-forward control for
tracking reference trajectories.
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4.3.3 Decomposition of Reference Trajectories and Formal Series-Based Motion
Planning

To design the feed-forward controls gj, j = 1, . . . , N − 1, we use the technique of motion
planning developed in [58]. In this technique the formal power series is used to parameterize
the system inputs and states by a so-called flat output and its time-derivatives.

Assume that the reference trajectory is of the following form:

wd(x, t) =
N−1∑
j=1

wjd(x, t) =
N−1∑
j=1

βjG̃(x, ξj)φj(t), (4.38)

where βj is a constant, G̃(x, ξj) is the regularized Green’s function of System (4.15), and φj(t)
is a smooth function evolving through time from zero to one. In order that the reference
trajectory given in (4.38) be feasible, φj(t) must respect the physical restrictions on control
authority, such as rising time.

The motivation of such a decomposition lies on the fact that the Green’s function intrin-
sically meets boundary conditions and the physical properties of the system. In addition,
this form of reference trajectory will not only allow achieving the solvability but also be
computationally traceable. The parameter βj can be derived from (4.38) as shown below.

Based on (4.38), the desired profile in steady-state can be expressed as

wd(x) =
N−1∑
j=1

βjG̃(x, ξj). (4.39)

Taking N − 1 distinguished points along wd(x) and arranging (4.39) in a matrix form, we
get:


β1
...

βN−1

 =


G̃(x1, ξ1) · · · G̃(xN−1, ξ1)

... . . . ...
G̃(x1, ξN−1) · · · G̃(xN−1, ξN−1)


−1

wd(x1)
...

wd(xN−1)

 . (4.40)

Similar to the map of (4.30), the invertibility of the square matrix in (4.40) can be verified
a priori.

Motion planing amounts then to taking wjd(xk, t) ∈ C∞ as the desired output of the
system at xk and to generating the full-state trajectory uj(x, t). The control signal can be
directly computed from the full-state trajectory, which should force the output uj(xk, t) to
track the reference output wjd(xk, t).

Consider a configuration in which the reference output and the actuator are co-located
at the same point xj, for j = 1, · · · , N − 1. The system dynamics corresponding to the input
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gj are then of the following form:

ujtt(x, t) + ujxxxx(x, t) = 0, (4.41a)

uj(0, t) = ujx(1, t) = ujxx(0, t) = 0, (4.41b)

ujxxx(1, t) = gj(t). (4.41c)

In the presence of stabilizing feedback loop, the motion planing design can be process
with zero-initial conditions. We are interested in finding the control signal gj(t) so that the
trajectory of the beam (4.41) at xj meets the following constrains:

uj(xj, t) = wjd(xj, t) = βjG̃(xj, ξj)φj(t), (4.42a)

ujx(xj, t) = wjd,x(xj, t) = βjG̃x(xj, ξj)φj(t), (4.42b)

ujxx(xj, t) = wjd,xx(xj, t) = βjG̃xx(xj, ξj)φj(t), (4.42c)

ujxxx(xj, t) = wjd,xxx(xj, t) = βjG̃xxx(xj, ξj)φj(t). (4.42d)

To solve this, we consider the method of formal power series [58]. By using the formal
power series to approximate the solution of the system for a excitation at point xj, the
full-state trajectory of the system can be expressed as:

uj(x, t) =
∞∑
k=0

ak(t)
(x− xj)k

k! , (4.43)

weighted by time varying coefficients ak(t). It can be shown by a direct computation that:

ak+4(t) = −äk(t), ∀k ≥ 0, (4.44)

with

a0(t) = P0(xj)φj(t), a1(t) = P1(xj)φj(t), (4.45)

a2(t) = P2(xj)φj(t), a3(t) = P3(xj)φj(t), (4.46)

where P0(xj), P1(xj), P2(xj), and P3(xj) computed from reference trajectory wdj (x, t) and its
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first, second, and third spatial derivatives are given by:

P0(xj) = δ3

12 + A(xj)
6 x3

j + B(xj)
2 x2

j + C(xj)xj +D(xj), (4.47a)

P1(xj) =A(xj)
2 x2

j +B(xj)xj + c(xj), (4.47b)

P2(xj) =δ

4 + A(xj)xj +B(xj), (4.47c)

P3(xj) =A(xj), (4.47d)

where A, B, C, and D are:

A =(2(ξ − 1)2 + 3δ2)(ξ − 1)
4((ξ − 1)2 + δ2)3/2 , (4.48a)

B =− (δ2 + 2ξ2)/(4(δ2 + ξ2)1/2), (4.48b)

C =(δ2 + 2ξ2)/(4(δ2 + ξ2)(1/2))− ((2(ξ − 1)2 + 2δ2)

× (ξ − 1) + δ2(ξ − 1))/(8((ξ − 1)2 + δ2)3/2)

+ (((ξ − 1)2 + δ2)1/2(ξ − 1))/4, (4.48c)

D =− (δ2 + ξ2)3/2/12. (4.48d)

Therefore,

a4k = (−1)ka(2k)
0 = (−1)kP0(xj)φ(2k)

j (t), (4.49a)

a4k+1 = (−1)kP1(xj)φ(2k)
j (t), (4.49b)

a4k+2 = (−1)kP2(xj)φ(2k)
j (t), (4.49c)

a4k+3 = (−1)kP3(xj)φ(2k)
j (t). (4.49d)

The full-state trajectory becomes:

uj(x, t) =
∞∑
k=0

3∑
n=0

(−1)kPn(x− xj)4k+n

(4k + n)! φ
(2k)
j (t). (4.50)
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The corresponding input can be computed from (4.41c), which is of the form:

gj(t) =
∞∑
k=0

3∑
n=0

(−1)kPn(4k + n)(4k + n− 1)(4k + n− 2)
(4k + n)!

× (1− xj)4k+n−3φ
(2k)
j (t)

= P3φj(t) +
∞∑
k=1

3∑
n=0

(−1)kPn(1− xj)4(k−1)+n+1

(4(k − 1) + n+ 1)! φ
(2k)
j (t)

= P3φj(t)−
∞∑
k=0

3∑
n=0

(−1)kPn(1− xj)4k+n+1

(4k + n+ 1)! φ
(2(k+1))
j (t). (4.51)

(4.50) and (4.51) show that the system trajectory uj(x, t) and the control input gj(t)
can be parameterized in terms of φj(t) and its time derivatives. Therefore, System (4.41) is
(differential) flat with φj(t) as basic output [94]. Hence, the system trajectory and the control
input can be directly derived from the prescribed flat output via pure algebraic operations.

To ensure the convergence of infinite series (4.50) and (4.51), we choose the following
smooth function [94]:

φj(t) =



0, if t ≤ 0∫ t

0
exp(−1/(τ(1− τ)))εdτ∫ T

0
exp(−1/(τ(1− τ)))εdτ

, if t ∈ (0, T )

1, if t ≥ T

(4.52)

which is known as Gevrey function of order σ = 1 + 1/ε, ε > 0 [70].

Proposition 2 If the basic outputs φj(t), j = 1, . . . , N − 1, are chosen as Gevrey functions
of order 1 < σ < 2, then the infinite series (4.50) and (4.51) are convergent.

Proof. We prove the convergence of the power series (4.50) using Cauchy-Hadamard
Theorem. The convergence of (4.51) then follows easily using the same argument.

Denote in (4.50):

bk =
3∑

n=0

Pn(x− xj)4k+n

(4k + n)! φ
(2k)
j (t). (4.53)

Then, (4.50) converges if lim supk→∞ k

√
|bk| < 1.

For a Gevrey function φj of order σ, we have [94]:

∃K,M > 0,∀k ∈ N,∀t ∈ [t0, t1],
∣∣∣φ(k+1)
j (t)

∣∣∣ ≤M
(k!)σ
Kk

. (4.54)
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Thus, for 0 < xj < 1 and x ∈ [0, 1], bk can be majorized as:

|bk| <
∣∣∣∣∣

3∑
n=0

Pn
(4k + n)!φ

(2k)
j (t)

∣∣∣∣∣
<

∣∣∣∣∣
3∑

n=0

Pn
(4k + n)!M

((2k)!)σ
K2k

∣∣∣∣∣ . (4.55)

Therefore:

lim sup
k→∞

k
√
bk = lim sup

k→∞

3∑
n=0

4
K2 (MPn)1/k ((2k)!)σ/k

((4k + n)!)1/k

< lim sup
k→∞

1
K2

(((2k)!)1/2k)2σ

(((4k)!)1/4k)4 . (4.56)

Applying Stirling’s formaula k
√
k! ' (k/e) yields:

lim sup
k→∞

k
√
bk ≤

4e4−2σ

K2 lim sup
k→∞

(2k)2σ

(4k)4 . (4.57)

Since

lim sup
k→∞

(2k)2σ

(4k)4 =


0, σ < 2;
1
16 , σ = 2;
∞, σ > 2,

(4.58)

we can conclude by Cauchy-Hadamard Theorem that the radius of convergence of (4.50) is
infinity for σ < 2 and 4K2 for σ = 2. The series (4.50) diverges if σ > 2.

�

Remark 4.6 In general, the Gevrey bounds are unknown, but can be estimated following
the way presented in [35]. Furthermore, a symmetric function in the transient phase can be
considered to improve convergency analysis [35].

Remark 4.7 For numerical implementations, (4.51) needs to be truncated to finite terms.
An upper bound on truncation errors can be directly computed using the property of Gevrey
function given in (4.52) [93].

Finally, substituting g1, . . . , gN−1 computed from (4.51) together with gN computed from
(4.37) into (4.30), the in-domain actuation signals αi, i = 1, · · · , N , can be uniquely deter-
mined by the pure algebraic solution of (4.30).
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4.4 The Second Control Design: In-domain Actuation Design via Boundary
Control Using Regularized Input Functions

In this section, we present another design by approximating the solution of the original
system by that of a target system in the steady state. Note that the map established in
the previous design holds only for some particular test functions. Thus, the original PDE
is satisfied in a very weak sense, which might not hold in the usual one, because the test
functions are limited to some convenient ones.

To rectify this caveat, in this new design instead of establishing such an equivalence,
we approximate the solution of the original system by that of a target system driven by
regularized inputs in the steady state. To this end, we use the technique of lifting to transform
the target system, which is controlled by boundary actuators, to an inhomogeneous PDE
driven by sufficiently smooth functions generated by applying blobs. Using blob functions to
approximate the delta functions would allow establishing a relationship between the original
system and the target system in a usual weak sense. This matter is entailed in Theorem 4.6.

Moreover, in order to show that the regulation error dynamics converge to zero, we re-
design the feedback controller. The stability of the closed-loop system and the convergence of
the regulation error dynamics are assessed in Section 4.4.3. Furthermore, transient behavior
and the stability of the closed-loop system and regulation error dynamics are addressed in
Theorem 4.8 and Collary 1. Note that for clarity of the notation we change the number of
in-domain actuators to N + 1 in the model. We use N actuators for feedforward motion
planning, and dedicate the (N + 1)th actuator to the feedback stabilization control of the
closed-loop system. Hence, the system model becomes:

wtt(x, t) + wxxxx(x, t) =
N+1∑
j=1

αj(t)δ(x− xj), x ∈ (0, 1), t > 0, (4.59a)

w(0, t) = wx(1, t) = wxx(0, t) = wxxx(1, t) = 0, t > 0, (4.59b)

w(x, 0) = h0(x), wt(x, 0) = h1(x), x ∈ (0, 1), (4.59c)

where all the variables are defined in (4.1).

Remark 4.8 A weak solution to(4.59) can be defined similar to Definition 4.2 by changing
N to N + 1.



57

4.4.1 Relating In-domain Actuation to Boundary Control

For the feedforward motion planning with N actuators located in the domain, we consider
the dynamics of the desired trajectory as follow:

wdtt(x, t) + wdxxxx(x, t) =
N∑
j=1

αj(t)δ(x− xj), x ∈ (0, 1), t > 0, (4.60a)

wd(0, t) = wdx(1, t) = wdxx(0, t) = wdxxx(1, t) = 0, t > 0, (4.60b)

wd(x, 0) = wdt (x, 0) = 0, x ∈ (0, 1). (4.60c)

The weak solution of (4.60) can be defined in a similar way as Definition 4.2. Note that it is
shown later that the initial conditions given in (4.1c) will be captured by the regulation error
dynamics. Therefore, feedforward control design can be carried out based on System (4.60)
with zero-initial conditions.

Due to the fact that the model given in (4.60) is driven by unbounded inputs, we will
apply a sequence of blobs ϕ(x − xj) to approximate δ(x − xj) in the sense of distributions.
We will then show that in steady state, wd can be approximated by a sufficiently smooth
function. More specifically, we consider first the following boundary controlled PDE:

utt(x, t) + uxxxx(x, t) = 0, x ∈ (0, 1), t > 0, (4.61a)

u(0, t) = ux(1, t) = uxx(0, t) = 0, t > 0, (4.61b)

uxxx(1, t) = g(t), t > 0, (4.61c)

u(x, 0) = ut(x, 0) = 0, x ∈ (0, 1), (4.61d)

where g(t) = ∑N
j=1 gj(t). Without special statements, we assume that gj(t) ∈ C3([0,+∞))

and gj(0) = ġj(0) = 0 for j = 1, 2, ..., N . Note that the motivation behind considering
(4.61) as a target system is that it allows leveraging the techniques of boundary control
for feedforward control design while avoiding early truncations of dynamic model and/or
controller structure.

Definition 4.4 Let T > 0. A weak solution to the Cauchy problem (4.61) is a function
u ∈ C([0, T ]; Φ) ∩ C1([0, T ];L2(0, 1)) satisfying

u(x, 0) = ut(x, 0) = 0, x ∈ (0, 1),
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such that, for every v ∈ C1([0, T ]; Φ), one has for almost every τ ∈ [0, T ]
∫ 1

0
ut(x, τ)v(x, τ)dx−

∫ τ

0

∫ 1

0
ut(x, t)vt(x, t)dxdt (4.62)

+
∫ τ

0
g(t)v(1, t)dt+

∫ τ

0

∫ 1

0
uxx(x, t)vxx(x, t)dxdt = 0.

Let ψ(x, t) = u(x, t) − ∑N
j=1 gj(t)Hj(x), where Hj(x), j = 1, 2, ..., N , are defined in [0, 1]

satisfying

Hjxxxx(x) = ϕ(x− xj), (4.63a)

Hj(0) = Hjx(1) = Hjxx(0) = 0, Hjxxx(1) = 1, (4.63b)

with ϕ(x) ∈ L2(R). Then by lifting, (4.61) can be transformed into the following one with
zero boundary conditions

ψtt(x, t) + ψxxxx(x, t) = −
N∑
j=1

g̈j(t)Hj(x)−
N∑
j=1

gj(t)Hjxxxx(x), x ∈ (0, 1), t > 0, (4.64a)

ψ(0, t) = ψx(1, t) = ψxx(0, t) = ψxxx(1, t) = 0, (4.64b)

ψ(x, 0) = ψt(x, 0) = 0, x ∈ (0, 1). (4.64c)

In order to relate (4.60) to (4.61), we first establish a relationship between (4.60) and (4.64),
especially in steady state. Let αj(t) = −gj(t) and suppose that limt→∞ αj(t) = αj and
limt→∞ gj(t) = gj for j = 1, . . . , N . We have then in steady state:

ψxxxx(x) = −
N∑
j=1

gjHjxxxx(x) =
N∑
j=1

αjϕ(x− xj), x ∈ (0, 1), t > 0, (4.65a)

ψ(0) = ψx(1) = ψxx(0) = ψxxx(1) = 0. (4.65b)

For j = 1, 2, ..., N , given a sequence of blobs {ϕm(x − xj)}, we seek a sequence of functions
{Hm

j (x)} such that
Hm
jxxxx(x) = ϕm(x− xj) (4.66)

withHm
j (x) satisfying (4.63b) and ϕm(x−xj)→ δ(x−xj) in D ′(0, 1) asm→ +∞. Therefore,

considering (4.65) and the steady-state model of (4.60), we have ψm → wd in C1([0, 1]) as
m → +∞ (see Theorem 4.6). Hence, to find the feedforward control law, we may consider
the systems (4.64) and (4.65).
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Lemma 1 [1] Let ϕm(x) ∈ L2(R) be defined by

ϕm(x) = 1
π

sinmx
x

. (4.67)

Then ϕm(x) has the following properties:

(i)
∫ +∞

−∞
ϕm(x)dx =

∫ +∞

−∞

1
π

sinmx
x

dx = 1.

(ii) ϕm(x)→ δ(x) in D ′(R) as m→∞.

By taking ϕm given in (4.67) as the input to (4.66), we get

Hm
j (x) =1

6x
3 − 1

2x+
∫ x

0

∫ z

1

∫ y

0

∫ t

1
ϕm(s− xj)dsdtdydz.

Theorem 4.6 Let ϕm(x) be defined as in Lemma 1. Assume that αj(t) = −gj(t) tends to
αj = −gj as t→∞ for all j = 1, 2, ..., N . Denote by ψmj and by wdj the steady-state solutions
of System (4.60) and System (4.64), respectively. Then ψmj → wdj in C1([0, 1]) as m→ +∞
for j = 1, 2, ..., N .

Proof. In the steady state, we have

ψ
m

jxxxx(x) = −gjHm
jxxxx(x) = αjϕm(x− xj), (4.68a)

ψ
m

j (0) = ψ
m

jx(1) = ψ
m

jxx(0) = ψ
m

jxxx(1) = 0, (4.68b)

and

wdjxxxx(x) = αjδ(x− xj), (4.69a)

wdj (0) = wdjx(1) = wdjxx(0) = wdjxxx(1) = 0. (4.69b)

Taking v(x) ∈ D(0, 1) as a test function and integrating by parts, we get
∫ 1

0

(
ψ
m

jx(x)− wdjx(x)
)
vxxx(x)dx = αj

∫ 1

0
(ϕm(x− xj)− δ(x− xj)) v(x)dx.

Since ϕm(x− xj)→ δ(x− xj) in the sense of distributions as m→ +∞ and vxxx ∈ D(0, 1),
it follows that ψmjx → wdjx in the sense of distributions as m → +∞ for j = 1, 2, ..., N .
Furthermore, as ψmjx ∈ L1(0, 1) and wdjx ∈ L1(0, 1), we have ψmjx → wdjx a.e. in (0, 1) (see
Lemma 3.31 of [2], page 74). Then by the continuity of ψmjx and wdjx, we conclude that ψ

m

jx →
wdjx pointwisely in (0, 1). Therefore ψmj → wdj in C1([0, 1]) as m→ +∞ for j = 1, 2, ..., N . �
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4.4.2 Well-posedness of Cauchy Problems

Well-posedness analysis is essential to the approach developed in this work. In this
subsection, we establish the existence and the uniqueness of weak solutions of equations
(4.60), (4.61) and (4.64).

Theorem 4.7 The following statements hold true:

(i) Assume αj ∈ L2(0, T ) for j = 1, 2, ..., N + 1. Let h0 ∈ Φ, h1 ∈ L2(0, 1), and T > 0.
Then System (4.60) and System (4.61) has a unique weak solution w ∈ C([0, T ]; Φ) ∩
C1([0, T ];L2(0, 1)) and wd ∈ C([0, T ]; Φ) ∩ C1([0, T ];L2(0, 1)), respectively.

(ii) Let T > 0 and g ∈ C2([0, T ]). Then System (4.61) has a unique weak solution
u ∈ C([0, T ]; Φ) ∩ C1([0, T ];L2(0, 1)). Furthermore, if g ∈ C3([0, T ]) and Hm

j (x),
j = 1, 2, ..., N , is defined as in (4.63b), then System (4.64) has a unique solution
ψm ∈ C([0, T ]; Φ) ∩ C1([0, T ];L2(0, 1)).

Proof. The proof of (i) can be proceeded step by step as in Proposition 3.1 of [5]. We prove
the first result of (ii) and the second part can be proceeded in the same way. We assume
firstly g(t) ∈ C3([0, T ]) and consider the following system:

νtt(x, t) + νxxxx(x, t) =
(1

2x−
1
6x

3
)
g̈(t), x ∈ Ω, t > 0, (4.70a)

ν(0, t) = νx(1, t) = νxx(0, t) = νxxx(1, t) = 0, (4.70b)

ν(x, 0) = 0, νt(x, 0) = 0, x ∈ Ω. (4.70c)

Let X = Φ× L2(0, 1) and H4
(0)(0, 1) = {u ∈ H4(0, 1);u(0) = ux(1) = uxx(0) = uxxx(1) = 0}.

Define the inner product on X by 〈(u1, v1), (u2, v2)〉X =
∫ 1
0 (u1xxu2xx + v1v2)dx. Define the

subspace D(A) ⊂ X by D(A) = {(u, v); (u, v) ∈ H4
(0)(0, 1) × Φ}, with the corresponding

operator A : D(A)→ X defined as:

A

(
u

v

)
=
(

v

−uxxxx

)
.

One may easily check that D(A) is dense in X, A is closed, A∗ = −A, and 〈Az, z〉X = 0.
Thus, by Stone’s theorem, A generates a semigroup of isometries on X. Based on a classical
result on perturbations of linear evolution equations (see, e.g., Theorem 1.5, Chapter 6,
page 187, [88]) there exists uniquely z = (z1, z2) ∈ C1([0, T ];X) ∩ C([0, T ];D(A)), such that

dz
dt = Az +

 0(1
2x−

1
6x

3
)
g̈(t)

 , z(·, 0) = (0, 0),



61

which implies that (4.70) has a unique solution ν = z1 ∈ C([0, T ];H4
(0)(0, 1)) ∩ C1([0, T ]; Φ)

in the usual sense. Particularly, ν ∈ C([0, T ]; Φ) ∩ C1([0, T ];L2(0, 1)) is a weak solution. A
direct computation shows that u = ν −

(
1
2x−

1
6x

3
)
g(t) is a solution of (4.61) in the usual

sense and, in particular, it is a weak solution.
Now for g ∈ C1([0, T ]), let gn ∈ C3([0, T ]) such that gn → g in C1([0, T ]). Consider

un = νn −
(

1
2x−

1
6x

3
)
gn(t), where νn is the solution of (4.70) corresponding to the data

gn(t). Then arguing as above and taking limit as in Chapter 2 of [? ], we may obtain the
existence and the uniqueness of a weak solution of (4.64). �

4.4.3 Feedback Control and Stability of the Inhomogeneous System

The validity of the proposed scheme requires a suitable closed-loop control that guarantees
the stability of the original inhomogeneous system. As the (N + 1)th actuator is dedicated
to stabilizing control, (4.59) can be written as

wtt(x, t) + wxxxx(x, t)− αN+1(t)δ(x− xN+1) =
N∑
j=1

αj(t)δ(x− xj), x ∈ (0, 1), t > 0. (4.71)

Suppose further that the feedback control is taken as [5, 25]

αN+1(t) = −kwt (xN+1, t) , (4.72)

where k is a positive-valued constant. Then in closed-loop, (4.71) becomes

wtt(x, t) + wxxxx(x, t) + kwt (x, t) δ(x− xN+1) =
N∑
j=1

αj(t)δ(x− xj), x ∈ (0, 1), t > 0.

(4.73)

Let D(A) = {(w, v); (w, v) ∈ [H2(0, 1) ∩ (H4(0, x1) ∪ H4(x1, x2) ∪ · · · ∪ H4(xN , xN+1) ∪
H4(xN+1, 1))] × H2(0, 1), w(0) = wx(1) = wxx(0) = wxxx(1) = 0, v(0) = vx(1) = 0} and X

be defined as in the proof of Theorem 4.8. Let T > 0 and αj ∈ L2(0, T ) for j = 1, ..., N .
Assume (h0, h1) ∈ X. To address the stability of System (4.73) with the boundary conditions
(4.1b) and initial conditions (4.1c), we consider the corresponding linear control system under
abstract form:

ż = Az +Bα, t > 0, (4.74a)

z(0) = z0 = (h0, h1)T , (4.74b)
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where z = (w, v)T , α = (α1, · · · , αN)T , A : D(A)→ X is defined as:

A

(
w

v

)
=
(

v

−wxxxx − kvδ(x− xN+1)

)
, (4.75)

with v = wt, and B : RN → D′(A∗) is defined as:

(Bα)y =
(

0∑N
j=1 αjδ(x− xj)

)T
y, ∀ y ∈ D(A∗), (4.76)

where A∗ is the adjoint of A. It can be directly verified that A is dissipative [5].
Thus, A generates a strongly continuous semigroup S(t) on X. The semigroup S∗(t),

generated by A∗, equals to S(t). Note that B∗ : D(A∗)→ RN is defined by

B∗y = (y2(x1), . . . , y2(xN))T ,∀y =
(
y1

y2

)
∈ D(A∗). (4.77)

Let U = RN . Then, the solution of the Cauchy problem (4.74) can be defined as follows (see
[? ], Definition 2.36, p53):

〈z(τ), yτ 〉X = 〈z0, S∗(τ)yτ 〉X +
∫ τ

0
〈α(t), B∗S∗(τ − t)yτ 〉Udt, ∀ τ ∈[0, T ],∀ yτ∈X. (4.78)

One may verify, as in Chapter 2 of [? ], that the solution defined by (4.78) is also a weak
solution of (4.73) under the form given in Definition 4.2.

Theorem 4.8 Assume αj ∈ L∞(0,+∞), j = 1, . . . , N . For xN+1 = 1, there exist positive
constants C1, C2, and λ such that for any t ≥ 0, there holds:

‖z(t)‖X ≤ C1e
−λt‖z0‖X + C2 max

j
‖αj‖L∞(0,+∞). (4.79)

Proof. The proof generalization of Theorem 2.37 in [? ] for multiple-output system. First,
the admissible property of B can be obtained from the proof of Theorem 4.1. Moreover, S(t)
generated by A defined in (4.75) is an exponentially stable C0-semigroup onX if xN+1 ∈ (0, 1)
is a rational number with coprime factorization, in particular for xN+1 = 1 (see, e.g., [5, 25]),
i.e. there exist two positive constants C1 and λ, such that

‖S(t)‖ ≤ C1e
−λt, ∀ t ≥ 0.

As S(t) = S∗(t), then using the same arguments as in the proof of Theorem 2.37 in [? ],
we can conclude that all the constants in (4.79) are independent of t. �
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Now consider the regulation error defined as e(x, t) = w(x, t)−wd(x). Denoting ∆αj(x, t) =
αj(x, t)−αj(x), j = 1, . . . , N , then from (4.73), (4.59b), (4.59c), and the steady-state model
of (4.60), the regulation error dynamics satisfy

ett(x, t) + exxxx(x, t) + ket (x, t) δ(x− xN+1) =
N∑
j=1

∆αj(t)δ(x− xj), x ∈ (0, 1), t > 0,

(4.80a)

e(0, t) = ex(1, t) = exx(0, t) = exxx(1, t) = 0, t > 0, (4.80b)

e(x, 0) = e0(x) = h0(x)− wd(x),

et(x, 0) = e1(x) = h1(x), x ∈ (0, 1). (4.80c)

Obviously, the regulation error dynamics are in an identical form as (4.73) with the same
type of boundary conditions. We can then consider the solution of System (4.80) defined in
the same form given by (4.78) with ze = (e, et) and z0

e = (e0, e1).

Corollary 1 Assume that all the conditions in Theorem 4.8 are fulfilled and z0
e ∈ X. Then

there exist positive constants C1, C2, and λ, independent of t, such that for any t ≥ 0, there
holds:

‖ze(t)‖X ≤ C1e
−λt‖z0

e‖X + C2 max
j
‖∆αj‖L∞(0,+∞). (4.81)

Moreover, if limt→∞∆αj = 0 for all j = 1, . . . , N , then limt→∞ e(x, t) = 0, ∀x ∈ (0, 1).

Remark 4.9 This stabilization feedback also complete the proof of Theorem 4.4.

The feedforward control satisfying the conditions for closed-loop stability and regulation
error convergence can be obtained through motion planning, as presented in the next section.

4.4.4 Motion Planning and Feedforward Control

According to the principle of superposition for linear systems, we consider in feedforward
control design the dynamics of System (4.61) corresponding to the input gj(t), which are of
the following form:

ujtt(x, t) + ujxxxx(x, t) = 0, (4.82a)

uj(0, t) = ujx(1, t) = ujxx(0, t) = 0, (4.82b)

ujxxx(1, t) = gj(t), (4.82c)

uj(x, 0) = ujt(x, 0) = 0. (4.82d)
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The required control signal gj(t) should be designed so that the output of System (4.82)
follows a prescribed function udj (xj, t) and that the conditions in Theorem 4.8 and Corollary 1
are fulfilled.

Motion planning becomes then to take udj (xj, t) as the desired output and to generate
the full-state trajectory of the subsystem uj(x, t), which is carried out in this work using
flatness-based motion planning (see, e.g., [43, 78, 79, 81, 94]). To solve this problem, we
apply a standard Laplace transform-based procedure. Henceforth, we denote by f̂(x, s) the
Laplace transform of a function f(x, t) with respect to time variable. Then, in the Laplace
domain, the transformed equations are given by

ûjxxxx(x, s)− q4(s)ûj(x, s) = 0, (4.83a)

ûj(0, s) = ûjx(1, s) = ûjxx(0, s) = 0, (4.83b)

ûj(xj, s) = ûdj (xj, s), (4.83c)

where q4(s) = −s2. The general solution of (4.83a) can be expressed as

ûj(x, s) = aj(s)Ĉ1(x, s) + bj(s)Ŝ1(x, s) + cj(s)Ĉ2(x, s) + dj(s)Ŝ2(x, s), (4.84)

where

Ĉ1(x, s) = (cosh(q(s)x) + cos(q(s)x))/2, (4.85a)

Ĉ2(x, s) = (cosh(q(s)x)− cos(q(s)x))/2q2(s), (4.85b)

Ŝ1(x, s) = (sinh(q(s)x) + sin(q(s)x))/2q(s), (4.85c)

Ŝ2(x, s) = (sinh(q(s)x)− sin(q(s)x))/2q3(s) (4.85d)

are the basic solutions to (4.83a).
To determine the coefficients aj(s), bj(s), cj(s), and dj(s), we use the property Ĉ1x =

q4(s)Ŝ2, Ĉ2x = Ŝ1, Ŝ1x = Ĉ1, Ŝ2x = Ĉ2, and apply the boundary values given in (4.83b) and
ûj(xj, s) = ûdj (xj, s). We obtain:

aj = cj = 0,

bj(s)Ŝ1(xj, s) + dj(s)Ŝ2(xj, s) = ûdj (xj, s),

ûjx(1, s) = bj(s)Ĉ1(1, s) + dj(s)Ĉ2(1, s) = 0.

We can write then

R̂(s)
bj
dj

 =
ûdj (xj, s)

0

 ,
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where

R̂(s) =
Ŝ1(xj, s) Ŝ2(xj, s)
Ĉ1(1, s) Ĉ2(1, s)

 .
Now bj and dj can be computed as

bj
dj

 = R̂−1(s)
ûdj (xj, s)

0

 = adj(R̂(s))
det(R̂(s))

ûdj (xj, s)
0

 .
Letting

ûdj (xj, s) = det
(
R̂(s)

)
ŷj(s), (4.86)

it follows that
ûj(x, s) = (Ĉ2(1, s)Ŝ1(x, s)− Ĉ1(1, s)Ŝ2(x, s))ŷj(s). (4.87)

Note that ŷj(s)↔ yj(t) is the so-called basic output, or flat output. In order to transfer the
full-state trajectory and the control input from frequency domain to time domain, we use the
Taylor expansion of trigonometric and hyperbolic functions in (4.85a)-(4.85d) with respect
to x. The full-state trajectory ûj(x, s) in (4.87) can be written in the form

ûj(x, s) =
(1

2x−
1
6x

3
)
ŷj(s) (4.88)

+
∞∑
n=1

(
n∑
k=0

x4k+1

(4k + 1)!(4(n−k) + 2)! −
n∑
k=0

x4k+3

(4k + 3)!(4(n−k))!

)
q4n(s)ŷj(s).

Thus, in time domain the full-state trajectory with zero initial values is given by

uj(x, t) =
(1

2x−
1
6x

3
)
yj(t) (4.89)

+
∞∑
n=1

(
n∑
k=0

x4k+1

(4k + 1)!(4(n−k) + 2)! −
n∑
k=0

x4k+3

(4k + 3)!(4(n−k))!

)
(−1)ny(2n)

j (t).

Now let yj(t) = yjφj(t), where φj(t) is a smooth function evolving from 0 to 1. Then,
Equation (4.89) becomes

uj(x, t) =yj
(1

2x−
1
6x

3
)
φj(t) (4.90)

+ yj

∞∑
n=1

(
n∑
k=0

x4k+1

(4k + 1)!(4(n−k) + 2)! −
n∑
k=0

x4k+3

(4k + 3)!(4(n−k))!

)
(−1)nφ(2n)

j (t).



66

The corresponding input can be computed from (4.82c), which is of the form

gj(t) = −yjφj(t) + yj

∞∑
n=1

(
n∑
k=1

1
(4k − 2)!(4(n−k) + 2)! −

n∑
k=0

1
(4k)!(4(n−k))!

)
(−1)nφ(2n)

j (t).

(4.91)

For set-point control, we need an appropriate class of trajectories enabling a rest-to-
rest evolution of the system. A convenient choice for this purpose is Gevrey functions as
introduced in (4.52)

For the convergence of (4.90) and (4.91), we have

Proposition 3 If φj(t) in the basic output yj(t) = yjφj(t) is chosen as a Gevrey function of
order 1 < σ < 2, then the infinite series (4.90) and (4.91) are convergent.

Proof. Denote in (4.89):

bn =
(

n∑
k=0

x4k+1

(4k + 1)!(4(n−k) + 2)!

−
n∑
k=0

x4k+3

(4k + 3)!(4(n−k))!

)
(−1)nφ(2n)

j (t). (4.92)

Then, (4.90) converges if lim supn→∞ n

√
|bn| < 1. The proof can be proceed similarly to that

of Proposition 2.
The convergence of (4.91) then follows easily using the same argument. �

Now let

Pj(x) =1
2x−

1
6x

3, (4.93a)

Ij,m(x) =
∫ x

0

∫ z

1

∫ y

0

∫ t

1
ϕm(s− xj)dsdtdydz, (4.93b)

Φj,n(x) =
(

n∑
k=0

x4k+1

(4k + 1)!(4(n−k) + 2)! −
x4k+3

(4k + 3)!(4(n−k))!

)
(−1)n, (4.93c)

Ψj,n(1) =
(

n∑
k=1

1
(4k − 2)!(4(n−k) + 2)! −

n∑
k=0

1
(4k)!(4(n−k))!

)
(−1)n. (4.93d)

Set ∑N
j=1 ψ

m
j (x, t) = ψm(x, t),m > 0. By the definition of ψ(x, t), we obtain

ψmj (x, t) = yjIj,m(x)φj(t) + yj

∞∑
n=1

(
Φj,n(x) + Ψj,n(1)Pj(x)−Ψj,n(1)Ij,m(x)

)
φ

(2n)
j (t). (4.94)
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To compute Ij,m(x), we note that

ϕm(x− xj) = 1
π

∞∑
k=1

(−1)k+1m2k−1

(2k − 1)! (x− xj)2k−2.

Therefore,

Ij,m(x) = 1
π

∞∑
k=1

(−1)k+1m2k−1

(2k − 1)

(
(x− xj)2k+2

(2k + 2)!

− (1− xj)2k−1x3

6((2k − 1)!) −
x2k
j x

2

2(2k)! −
(1− xj)2k+1x

(2k + 1)!

+
x2k
j x

(2k)! + (1− xj)2k−1x

2(2k − 1)! −
x2k+2
j

(2k + 2)!

)
. (4.95)

Claim 1 Ij,m(x) given in (4.95) is convergent for all x, xj ∈ (0, 1) with respect to any fixed
m.

Proof. Consider the first series in (4.95). Fixingm > 0, for x, xj ∈ (0, 1), j = 1, 2, . . . , N ,
we have ∣∣∣∣∣(−1)k+1m2k−1

(2k − 1)
(x− xj)2k+2

(2k + 2)!

∣∣∣∣∣ ≤ m2k−1

(2k − 1)! .

Since limn→∞
1

n√
n! = 0, it follows that for any a > 0

lim
n→∞

n

√
an

n! = a lim
n→∞

1
n
√
n!

= 0.

Thus ∑∞k=0
m2k−1

(2k−1)! is convergent. We conclude that the first series in (4.95) is uniformly
convergent. The convergence of the other terms in (4.95) can be proved in the same way.

�

Based on Claim 1, the series in the right hand side of (4.94) are convergent and ψmj (x, t)
can be expanded by (4.94) and (4.95). Moreover, for gj(t) given in (4.91), ψmj (x, t) tends to
ψ
m

j (x) = yjIj,m(x) as t→∞. Note that for fixed x, the radius of convergence of ψj,m on m
is ∞. Thus, we can let m→ +∞.

To complete the control design, we need to determine the amplitude of flat outputs yj,
j = 1, . . . , N , from the desired shape w̃d(x) that may not necessarily be a solution of the
steady-state beam equation (4.69). To that end, we use the Green’s functions, G(x, ξ), of
(4.69), as denoted in (4.17).
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Due to the principle of superposition for linear systems, the solution to (4.69), wd(x), can
be expressed as

wd(x) =
∫ 1

0

N∑
j=1

G(x, ξ)αjδ(x− ξj)dξ =
N∑
j=1

G(x, ξj)αj.

Now taking N points on w̃d(x) and letting wd(xj) = w̃d(xi = j), j = 1, . . . , N , yield

G(x1, ξ1) . . . G(xN , ξ1)

... . . . ...
G(x1, ξN) . . . G(xN , ξN)



α1
...
αN

 =


w̃d(x1)

...
w̃d(xN)

 , (4.96)

which represents a steady-state input to output map. Based on Theorem 4.5, the map given
in (4.96) is invertible for all xj, ξj ∈ (0, 1), j = 1, . . . , N , and xi 6= xj, ξi 6= ξj, if i 6= j.

As αj = −gj and limt→∞ gj(t) = gj = −yj for all j = 1, . . . , N , we obtain from (4.96)
that 

y1
...
yN

 =


G(x1, ξ1) . . . G(xN , ξ1)

... . . . ...
G(x1, ξN) . . . G(xN , ξN)


−1

w̃d(x1)
...

w̃d(xN)

 . (4.97)

4.5 Summary

In this chapter, we presented two control designs for an Euler-Bernoulli model of the
deformable beam.

In the first design, we formally established a map between the in-domain controlled model
of the system and a standard boundary-controlled PDE model. Based on that map, we
developed a control strategy, which is a combination of feedback stabilization and differential
flatness-based feed-forward motion planing. However, since the map holds only for some
particular test functions, the original PDE is satisfied in a very weak sense.

To cope with this problem in the second design, we approximate the solution of the original
system by that of a target system in the steady state. To do this, we use the technique of
lifting to transform the target system to an inhomogeneous PDE driven by sufficiently smooth
functions generated by applying blobs. This would allow establishing a relationship between
the original system and the target system in a usual weak sense.

In the next chapter, we verify the validity of both designs through numerical simulation
studies.
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CHAPTER 5

SIMULATION STUDIES OF IN-DOMAIN CONTROLLED
EULER-BERNOULLI BEAMS

This chapter presents the simulation results of the designs presented in the previous
chapter. We begin the chapter by explaining the numerical implementation and the numerical
stability of the simulated model Section 5.1. Then, in Section 5.2, Section 5.3, we present
the simulation results for the first and the second design. We conclude the chapter with
discussion on results in Section 5.4.

As we will show in the simulation study if the desired curve is not a solution of the
corresponding static beam equation, the regulation error with respect to this curve will in
general not identically vanish. Therefore, to make the performance evaluation meaningful,
we propose in the second set of simulation study to first interpolate the desired curve by the
Green’s functions of the static beam equation and then to evaluate the regulation error of
the controller with respect to the corresponding steady-state solution of the beam.

In the evaluation of interpolation accuracy, we consider 3 setups with different number
of actuators and use the L1−norm as a measure of interpolation errors. We also show the
control effort corresponding to different setups to provide a better characterization of the
micro-beam efficiency.

5.1 Numerical implementation

In this section, we expain how a beam equation described by a fourth-order in space
and second-order in time partial differential equation can be numerically implemented in
MATLAB. It is worth mentioning that the unstable dynamics of this equation is one of the
most challenging parts in performing the numerical implementation.

We explain the numerical implementation in three folds: first, the approximation of the
second-order time derivative operator; then the numerical approximation of the forth-order
spatial differentiation operator, or the bi-harmonic operator; and eventually the integration
of the nonstandard boundary conditions to the numerical approximation of the bi-harmonic
operator.

For the time evolution, we convert the second-order-in-time system in (4.1) into a first-
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order-in-time system by introducing a dummy variable, u(x, t), as:

wt(x, t) = u(x, t), (5.1a)

ut(x, t) = wxxxx(x, t) + f(x, t). (5.1b)

We use a general notation in this part. For instance, we use f(x, t) for inputs instead of
showing the exact term. Then, we can rewrite the system in the following matrix form:

Ẋ = AX + Pn (5.2)

where A =
 0 Inx

−DA 0

, Pn =
 0
Fnx

, and Fnx is nonzero on the location of the point-wise

actuators of the system. In these matrices, 0 is the null matrix with appropriate dimension,
Inx represents the identity matrix, and DA is the approximation of biharmonic operator.

Now we are dealing with a first-order in time system. Hence, we can use the the leap frog
formula for computing time derivative. As stated in Chapter 10 of [103], leap frog approxi-
mation of time evolution is numerically stable for first-order in time systems. A method is
called numerically unstable in the sense that small errors are amplified unboundedly, in fact,
exponentially.

In matrix A, the term DA is the approximation of bi-harmonic operator with associated
boundary conditions. For this approximation, we use Chebyshev spectral differentiation [103]
to approximate the fourth-order-spatial derivatives of bi-harmonic operator.

The Chebyshev spectral function uses Fast Fourier Transform (FFT) to approximate
the derivatives. For the boundary conditions, interpolant method is used. In this method,
the additional equations are augmented to the system to enforce the nonstandard boundary
conditions. For instance, the term (1−x3) can be multiplied to enforce the condition uxxx(1) =
0, please see Chapter 14 of [103] for more details.

The convergence of the numerical method is checked by varying the time step ∆t in the
interval [10−3, 10−6] and the mesh-density M for Chebyshev approximation between 40 and
80.

Note that the dynamics of this system are inherently unstable because there is no damp-
ening term in the Euler-Bernoulli PDE equation. Therefore, regardless of numerical stability,
one may find the numerical results are growing on time. To harvest the best result, we run
the system with stabilizing feedback together.

We first start by implementing System (4.1) with 3 actuators in the domain located at
x = {0.25, 0.5, 0.75} with initial conditions h0(x, 0) = −3×10−3e−400(x−0.8)2 and h1(x, 0) = 0.
To comply with the limitation of micro-actuators, we assume downward displacement for the
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system. Moreover, for the validation of the linear model of the beam, the displacement is
at the order of micro meter for a beam length of a few centimeter. The deflection and the
length of the beam, as well as the time, are all represented in normalized coordinates.

As an undamped beam is unstable in open-loop, the controller tuning is started by deter-
mining a suitable value of the closed-loop control gain k. Figure 5.1 shows the stabilization
of the beam by applying the feedback control derived from (4.37) to g1 at x = 0.25 while
g2 and g3 are set to 0. As illustrated in Fig. 5.1, the stabilizing feedback damped the beam
rapidly.

Figure 5.1 Stabilized System.

Then, to try the trajectory tracking behavior, we chose the basic outputs φj(t) as Gevrey
functions of the same order. The desired reference trajectory generated from (4.38) is depicted
in Fig. 5.2(a). Note that to meet the convergence condition given in Proposition 2, the order
is set to σ = 1.11. g1, g2, and g3 are computed from (4.51) and (4.37), respectively. α1,
α2, and α3 are then computed from (4.30) and are illustrated in Fig. 5.3(a). As shown in
Fig. 5.2(b), the system is smoothly transferred from the initial profile to the desired one.
The error between the system output and the reference trajectory is depicted in Fig. 5.2(c).
Figure 5.3(b) shows system outputs at x = 0.5 and x = 0.75.

The simulation results though far shows the proper numerical implementation. The sys-
tem stabilized well around the reference trajectories. The numerical computation also shows
stable implementation despite initial values and in-domain inputs.

5.2 Numerical Results of the First Design

In this section, we examine the simulation result of the first control scheme presented in
Section 4.3.3. The static Green’s functions of the system are used for spacial decomposing
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Figure 5.2 Deformation control: (a) reference trajectory; (b) beam deflection; (c) tracking
error.
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Figure 5.3 Simulation results: (a) control signals α1, α2, and α3; (b) transversal deflection of
the beam at x = 0.5 and x = 0.75.
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of the reference trajectories. Figure 5.4 shows the Green’s function G(x, ξ) for ξ = {0.1,
0.2, · · · , 0.9} as a basis to decompose the given reference trajectories. The lowest curve is
the Green’s function for ξ = 0.1 and the others correspond to ξ in increasing order.

We considered a system with 10 actuators uniformly distributed in the domain.
In the simulation study, we consider the deformation control in which the desired shape

is given by

wd(x, t) = −10−3φ(t)
(
e−100(x−0.4)2

+ 2e−100(x−0.6)2
+ 3e−400(x−0.7)2)

, x ∈ (0, 1), (5.3)

where φj(t) is the Gevrey function of order σ = 1.11 as derived from the convergence study
of the controller. The desired shape is depicted in Fig. 5.5(a).

The feedforward controls are computed from (4.51) and the feedback law is given in (4.37).
Accordingly, the in-domain control signals, α1, · · · , α10, are derived from (4.30), illustrated
in Fig. 5.6(a) and Fig. 5.6(b). As shown in Fig. 5.5(b) and Fig. 5.5(c), these control signals
steer the deflection of the beam along the given reference trajectory with reasonable tracking
errors. Nevertheless, we can observe that the steady-state error in the interval [0.5, 0.7]
is significantly bigger than that of the other positions. The reason is that the reference
trajectory has an important peak at the position 0.8 that draws the beam downward. This
is due to the physical constraint of the device and indicates that for improving the overall
tracking accuracy, more actuators are desirable.
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x
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 ..
. ,

 G
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,ξ
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Figure 5.4 Green’s function of the beam for ξ = {0.1, 0.2, · · · , 0.9}.

5.3 Simulation Results for the Second Design

In this section we evaluate the performance of the second design from Section 4.4.
In this study, we consider the deformation control in which the desired shape is given in
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Figure 5.5 Deformation control for time-domain design with Green’s function decomposition:
(a) desired shape; (b) beam deflection; (c) tracking error;
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Figure 5.6 Control signals: (a) α1-α5; (b) α6-α10.
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steady-state form by:

w̃d(x) = −10−3
(
e−100(x−0.4)2

+ 2e−100(x−0.6)2
+ 3e−400(x−0.7)2)

, x ∈ (0, 1), (5.4)

as shown in Fig. 5.7(a).
In order to obtain an exponential closed-loop convergence, the actuator for feedback

stabilization is located at the position xN+1 = 1. To evaluate the effect of the number of
actuators to interpolation accuracy, measured by ‖w̃d(x) − wd(x)‖L1(0,1), and control effort,
we considered 3 setups with, respectively, 8, 12, and 16 actuators evenly distributed in the
domain. It can be seen from Fig. 5.7 that the setup with 8 actuators exhibits an important
interpolation error and the one with 16 actuators requires a high control effort in spite of a
high interpolation accuracy. The setup with 12 actuators provides an appropriate trade-off
between the interpolation accuracy and the required control effort, which is used in control
algorithm validation.

For this simulation study, we use a MATLAB Toolbox for dynamic Euler-Bernoulli beams
simulation provided in Chapter 14 of [110]. With this Toolbox, the simulation accuracy can
be adjusted by choosing the number of modes used in implementation. In the simulation,
we implement System (4.59) The corresponding feedforward control signals with α1, . . . , α12,
that steer the beam to deform are illustrated in Fig. 5.8. The evolution of beam shapes and
the regulation error are depicted in Fig. 5.9. It can be seen that the beam is deformed to the
desired shape and the regulation error vanishes along the whole beam, which confirms the
expected performance of the developed control scheme.

5.4 Discussion

The simulation results demonstrate the validity of the designs. In both designs, the
controller was able to steer the system along prescribed trajectories with a feasible control
effort for the MEMS actuators and with a acceptable range of tracking errors. However, since
the first design is valid in a very weak sense, in real implementation the outcome might not
match that of the simulation study. Nonetheless, this caveat is rectified in the second design.

As we realized from simulation study, if the desired curve is not a solution of the corre-
sponding static beam equation, the regulation error with respect to this curve will in general
not identically vanish. Therefore, to make the performance evaluation meaningful, we have
proposed in the second set of simulation study to first interpolate the desired curve by the
Green’s functions of the static beam equation and then to evaluate the regulation error of
the controller with respect to the corresponding steady-state solution of the beam.

In the evaluation of interpolation accuracy, we have considered 3 setups with different
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Figure 5.7 Effect of number of actuators: (a) interpolation accuracy (w̃d(x): desired shape;
wdn(x): solution of the steady-state beam equation with n =8, 12, and 16 in-domain actua-
tors); (b) amplitude of steady-state control signals for different setups.
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Figure 5.8 Feedforward control signals: α1, . . . , α12.

number of actuators and have adopted the L1−norm of interpolation errors. We also have
shown the control effort corresponding to different setups to provide a better characterization
of the micro-beam efficiency.

Eventually, using the Green’s function not only makes the algorithm computationally
traceable but also is a very promising choice for real time implementation. As the static
Green’s function used in trajectory planning can be computed off-line, the developed scheme
facilitates real-time implementations. As a result, the basic flat output for differential flatness
method can be computed directly by an inverse static matrix calculation. This complexity
reduction will have an important impact on the real time implementation for large scale
deformable mirrors.
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Figure 5.9 Set-point control: (b) system response; (c) regulation error.
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CHAPTER 6

CONCLUSION AND RECOMMENDATION

High precision and real time control of deformable mirrors is an enabling key of forth-
coming extremely large ground-based telescopes. In this regards, this thesis addressed a
systematic deformation control scheme for MEMS-actuated deformable mirrors in the con-
text of astronomical telescopes.

To meet the high precision requirement, the design is directly carried out using the partial
differential equation model of the system. To avoid early lumping in the motion planning,
we use the properties of the Green’s function of the system to represent the reference tra-
jectories. A finite set of these functions is considered to establish a one-to-one map between
the input space and output space. This allows an implementable scheme for real-time ap-
plications. The only truncation is at the level of implementation of the controller. As a
result, there are no neglected dynamics to compromise the performance of the controller.
To account for instability, model uncertainties, and disturbances, a stabilizing feedback is
designed to stabilize the system around the reference trajectories. The presented control
scheme is a combination of differential flatness for feedforward motion planning and stabi-
lizing feedback controllers, leading to a simple structure requiring only one measurement
point on the boundary. Nonetheless, the feedforward control is inherently unrobust due the
method of open-loop trajectory planning, which depends heavily on the model. Adding more
sensors is a way to improve the robustness. However, this is not a viable option for current
state-of-the-art microsystems.

The presented scheme is particularly suitable for micro-systems for which the design, fab-
rication, and operation with a high number of on-chip sensors represent a serious technological
challenge.

Below, we summarize the main contributions of this work.

6.1 Main Contributions

The objective of this dissertation was to develop a high-precision and real-time imple-
mentable control structure in order to mitigate the complexity introduced by closed-loop
control at the level of every actuator in MEMS deformable mirrors.

We approached the problem as follow: first, we introduced the dynamics of a MEMS-
actuated deformable mirror described by a set of partial differential equations with un-



82

bounded control operators in the domain of the system. Then, for the deformation control
of this device we developed two control designs. In the first design, we established a map
between the in-domain controlled system and a standard boundary controlled model. Based
on that, we developed a control strategy, which is a combination of feedback stabilization
and differential flatness-based feed-forward motion planing. This scheme shows a way to
deal with the tracking control problem of in-domain PDE systems. However, the map holds
only for some particular test functions. Thus, the original PDE is satisfied in a very weak
sense. To cope with this caveat, in the second design instead of trying to establish such an
equivalence, we approximated the solution of the original system by that of a target system
in the steady-state mode. To this end, we used the technique of lifting to transform the
target system, which is controlled by boundary actuators, to an inhomogeneous PDE driven
by sufficiently smooth functions generated by applying blobs. This would allow establishing
a relationship between the original system and the target system in a usual weak sense.

The control schemes developed in this work require just one displacement feedback data
from a boundary point for one-row-actuator mirror. The feedback loop can be directly
provided using an interferometer sensor on an inactive actuator of the mirror.

The benefits of this approach can be listed as:
First, this work addresses a systematic scheme for the control of deformable mirrors. That

is the scheme can be directly generalized for different boundary condition configurations of the
system. The system architecture and the procedure for feed-forward control design remain
the same, but only the feedback stabilization law should be reconsidered according to new
boundary conditions.

Second, the proposed control scheme requires only to close few feedback control loops,
typically one for 1D devices. Consequently, the implementation and operation of such devices
will be drastically simplified.

Third, the design is directly performed with the partial differential equation model of
the system. Hence, there is no neglected dynamics to sacrifice the performance. The only
truncation requires at the level of the controller implementation.

Fourth, the presented scheme can be considered as an extension of the flat systems to a
system controlled by multiple actuators, which is essentially a multiple-input multiple-output
(MIMO) problem. To the best of the author’s knowledge, a treatment without requiring early
truncations for tracking control of this type of PDE systems has not yet been reported In
the context of PDE-based control designs.

Finally, we introduced a Green’s function-based decomposition scheme that enables a
simple and computationally tractable implementation of the proposed control. As the static
Green’s function used in trajectory planning can be computed offline, the developed scheme
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facilitates real-time implementations. This will have an important impact on the operation
of large-scale deformable mirrors.

6.2 Recommendations and Future Work

The next step of this research work may be to examine the performance of the purposed
method on a physical set-up. A simple way of testing the approach is to use a segmented
deformable mirror between a light source and a continuous deformable mirror to introduce
a distortion. Then, using a wavefront sensor, e.g. Shack-Hartmann sensor, one is able
to validate the performance of the control scheme on the continuous mirror to correct the
distortion.

The mentioned devices are all tested individually in the laboratory of Adaptive Optics
during this PhD research. The remaining part is to establish the adaptive optic loop as
explained in Chapter 2. A real time communication protocol such as TCP/IP requires to
establish the realtime data exchange in electronic loop. For the optic loop, identifying the
feasible distance between the devices requires an optics expert’s insight.

Further perspectives of the theory presented in this work is to extend this control scheme
to a plate equation, or in other words to a case of more than one row of actuators. One may
consider this extension, similarly to Chapter 9 of [17], by decomposing the plate into two
different beam equations. Then, for each set of equations the proposed control scheme may
be applicable.

Deformation control of deformable mirrors has many different applications and a list of
those applications is provided in the introduction of this manuscript. Since the proposed
control is a systematic design, it can directly be exploited for other applications with a good
insight to requirements associated to that particular application.

The proposed control scheme may concern other in-domain controlled PDE systems. For
instance, one initial generalization example could be the well-known case of heating up and
cooling down certain materials along a specific profile that requires multiple actuators acting
in different temperatures at different instance of time.
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