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RÉSUMÉ 

Le Capteur d'Image CMOS (CIS) est rapidement devenu la technologie dominante dans les 

marchés de l'imagerie. Il y a des avantages sur les technologies avec CCD tels que la faible 

consommation de puissance et les faibles coûts. . La technologie CMOS APS s’est améliorée au 

cours des dernières décennies et propose une alternative viable à la technologie CCD pour de 

nombreuses applications. Néanmoins, les capteurs d’image CMOS APS ont un niveau plus élevé 

de courant d'obscurité que les capteurs CCD. Plusieurs techniques ont été développées pour 

améliorer la performance du capteur d'image en termes de courant d'obscurité qui limite 

sévèrement la gamme dynamique et la sensibilité des capteurs d'image. 

Il existe différentes approches pour réduire le courant d'obscurité. L'approche idéale, mais 

coûteuse, consiste à modifier le procédé de fabrication par améliorant la photosensibilité du pixel 

ou de réduire le courant de fuite. Cependant, certaines architectures de circuits peuvent être 

utilisées pour réduire ou compenser le courant d'obscurité  sans modification de procédé, cette 

alternative fait l’objet de ce mémoire. 

Dans cette thèse, un circuit amplificateur différentiel multi-branche est proposé pour compenser 

l'effet de courant d'obscurité d’un capteurs d'image CMOS. Afin d'obtenir une application de 

détection à faible courant de noirceur, un interrupteur de type T avec un faible courant de fuite 

est utilisé. La nouvelle configuration de multiple-input multiple-output amplificateur différentiel 

présente l'avantage de réduire considérablement les courants d'obscurité femto-ampères des 

photodiodes. L'objectif étant d’améliorer la sensibilité et la gamme dynamique des pixels des 

capteurs d'image CMOS. Un prototype est conçu à partir du procédé de fabrication CMOS 

standard 0.18 µm  de TSMC. 
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ABSTRACT 

CMOS Image Sensor (CIS) rapidly became the dominant technology over Charge-Coupled-

Device (CCD) in imaging markets. It has many advantages over CCDs such as low power and 

low cost which is highly desirable for imaging-enabled mobile devices. CMOS Active Pixel 

Sensor (APS) technology has improved during the last decades and suggests a viable alternative 

for many applications with CCD technology. Nonetheless, CMOS APS image sensors have 

higher dark current level than CCD sensors.  Several techniques have been developed to improve 

the performance of image sensor in terms of dark current which severely limits the dynamic 

range and the sensitivity of image sensors.  

There are different approaches to reduce the dark current. The ideal but expensive approach is to 

modify the fabrication process by enhancing the photosensivity of the pixel or reducing the 

leakage current. However, some circuit and layout techniques reduce or compensate the dark 

current of standard CMOS processes which is the method considered in this work. 

In this thesis a multi-branch differential amplifier circuit is proposed to compensate the effect of 

dark current in CMOS image sensors. In order to obtain a low level sensing application, a T-type 

switch with low leakage current is used.  The new configuration of multiple-input multiple-

output differential amplifier has the advantage of compensating the femto-ampere dark currents 

of photodiodes.  The objective is to improve the sensitivity and the dynamic range of active pixel 

CMOS image sensors.  A prototype is designed and simulated in a standard CMOS 0.18 µm 

fabrication process from TSMC. 
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INTRODUCTION 

CMOS imaging sensors are taking over the imaging sensor market mainly due to their low cost 

and low power consumption and compactness [1]. Charged Coupled Device (CCD) imagers 

were the dominant technology in last two decades due to their image quality and flexibility. 

CCDs do not allow system on a chip with ancillary circuits such as signal processors, and 

analog-to-digital converters (ADCs) while CMOS imagers have provided system on a chip, low-

power, and cost effective imaging systems. Recent advances in CMOS imaging sensor 

fabrication process such as PIN photodiodes and backside illumination have considerably 

bridged the gap between CMOS and CCD sensors. 

Compared to CCD image sensors, CMOS image sensors have higher dark current and high level 

of fixed pattern noise [2]. The dark current is the leakage current of reverse-biased photodiode 

which destroys the imaging performance especially under low illumination [3]. A large dark 

current in the photodiode array of a CMOS imager limits the sensor’s dynamic range 

considerably by reducing the signal swing. The expected dynamic range value for CMOS image 

sensors is about 54dB which assesses the ability of a sensor to properly image both high lights 

and dark shadows in a scene. Also, the dark current prevents the sensor from taking images at 

low illumination levels. Several techniques have been proposed to reduce or compensate dark 

current. The differential dark current compensation technique cannot effectively reduce the dark 

current due to different reverse bias voltage on photodiodes in each pixel which leads to non-

uniformity in pixel array [3, 4]. Previous work has shown the significant effect of varying the 

reverse bias voltage across the photodiode [5]. In [6] multiple- input multiple-output differential 

amplifier with negative feedback integrator is implemented. The feedback on a differential 

architecture fixes the integrating nodes of photodiodes to a constant voltage which leads to a 

more uniform dark current within the pixel array [4]. Therefore, the uniform dark current can be 

cancelled by subtracting a dummy (dark) pixel output from an illuminated pixel. However, the 

multiple-input multiple-output differential technique proposed in [6] cannot sense low 

illumination levels which needs dark current compensation in the femto-ampere range.  
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Motivation 

The motivation of this work is to reduce the effect of dark current on CMOS image sensors. The 

implemented design should have the ability to manage and compensate for small values of dark 

current in the femto-ampere range. In order to reduce the effect of dark current which reduces the 

dynamic range of an image sensor, the new configuration of multiple-input multiple-output 

differential amplifier with advantage of managing the femto-ampere dark currents of photodiode 

is proposed in this work.   

 

Objective  

The main objective of this work is to design a circuit which compensates the effect of dark 

current in CMOS image sensors. Dark current severely limits the performance of image sensors 

in terms of dynamic range and sensitivity. In this work, a pixel architecture designed in a 

standard TSMC CMOS 0.18 µm process is designed and simulated at the post-layout level in 

order to prove its effectiveness in reducing the effect of dark current. 

 

Thesis Organization 

This master’s thesis is organized as follows: In Chapter one, a brief overview on CMOS image 

sensor and their dark current characteristics is presented. Then, MOS switches and their leakages 

are described. 

Chapter 2 is dedicated to the design of a pixel structure of a CMOS image sensor intended to 

eliminate the effect of dark current. The differential structure for compensating the dark current 

effect which was proposed in [6] is first introduced. Then, a new architecture for compensating 

the dark current effect with ability of sensing low illumination levels is proposed. 

Chapter 3 presents the pre-layout and post-layout simulation results using a row array of pixels. 

Finally, the thesis is concluded and future improvements are suggested. 
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CHAPTER 1     IMAGE SENSOR CHARACTERISTICS 

                 AND DARK CURRENT 

1.1 Image Sensors 

An image sensor comprises a two-dimensional array of pixels. Each pixel consists of a 

photodetector which converts incident light into photocurrent. The electrical circuits process and 

store the photocurrent into a readable electrical signal. The electrical signal is read out of the 

pixel array and digitized by an analog-to-digital converter (ADC). The Array size of a digital 

image sensor can be as large as tens of megapixels for high-end applications, while individual 

pixel sizes can be as small as 2 by 2 µm [7]. 

Solid-state image sensors are the main building blocks of digital imaging devices; they are well 

suited for low-cost, compact and digital video cameras due to their advantages, such as weight, 

size, cost and power consumption. 

Two main solid-state image sensor technologies are presented in this Chapter: CCD (Charged 

Coupled Devices) and CIS (CMOS Image Sensors). 

1.2 CMOS Image Sensors 

 Standard Complementary Metal-Oxide Semiconductor (CMOS) technologies have some 

advantages over CCD technology, such as low power and low cost, which is highly desirable for 

mobile devices. 

Figure 1.1.b shows the architecture of CMOS image sensor which consists of an array of pixels. 

By scanning vertically one row of the array can be addressed and by scanning horizontally, a 

single pixel out of the selected row can be addressed.  Therefore, an individual pixel can be 

selected randomly and sent to the output amplifier. The structure of this readout mechanism 

allows a random access to all individual pixels in the array which is similar to SRAM and 

DRAM memory structures [8].  

Three basic classifications of pixel structures in CMOS image sensors are: Passive pixel sensor 

(PPS), Active pixel sensor (APS) and Digital pixel sensor (DPS). 
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1.2.1 Passive Pixel Sensor (PPS) 

The simplest structure of CMOS image sensor is PPS which has only one transistor per pixel.   

The selected signals of columns by means of column decoder are transferred to the output 

amplifier. PPS has small pixel size and high fill factor but suffers from very poor signal to noise 

ratio (SNR) and low readout speed. The mismatch between small photodiode capacitor and large 

vertical and horizontal bus capacitors, add a large noise value to readout signal (poor SNR). To 

eliminate this noise effect, a column amplifier is added to the column lines of the array as shown 

in Figure 1.1.b. 

 

 

Figure 1.1.a pixel structure of PPS                                    Figure 1.1.b structure of CMOS PPS[8]  

1.2.2 Active pixel sensor (APS) 

Almost all CMOS designs today use active pixels sensor structure. Each pixel consists of three 

transistors (3T pixel) where one transistor works as buffer or amplifier. Complex CMOS pixel 

designs which include more transistors (4T and 5T) have been used to add noise reduction and 

shuttering functions [9]. The simpler structure with less number of transistors has a better fill 

factor. Although the fill factor of a CCD sensor remains much higher than the 3T CMOS sensor. 
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 In APS configuration only the mismatch effect of horizontal column capacitance has been 

removed but there is still noise in readout signal from large column capacitance which is 

connected to photodiode capacitor. In order to solve this problem every pixel gets its own 

amplifier as shown in Figure 1.2.b.  

 

 

 Figure 1.2.a pixel structure of APS                                  Figure 1.2.b structure of CMOS APS [8] 

              

1.2.3 Pinned Photodiode Active Pixel Sensor (APS) 

The most popular pixel sensor architecture is Pinned photodiode (PPD) APS. The idea is coming 

from buried channel CCD to increase the sensitivity and reduce the dark current. The schematic 

of PPD APS is shown in Figure 1.3.  
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Figure 1.3. Pixel structure of a Pinned Photodiode APS [9]  

The pinned photodiode pixel consists of a photo sensing element which is a pinned diode (p+-

n+-p), where the n+  region (floating diffusion) is pulled away from the silicon surface in order 

to reduce the surface defect noise such as dark current [10]. The pixel consists of four transistors 

(4T) including a transfer gate (TX), reset transistor (RST), source follower (SF), and row-select 

(RS) transistor. The transfer gate separates the floating diffusion (FD) from the photo sensing 

part. Timing diagram for pixel readout of the pinned photodiode APS is shown in Figure1.4. 

First, the TX gate and RST switches are turned on at the same time, and floating diffusion node 

is reset to high voltage (VDD) and the pinned photodiode fully depletes the photodiode. By 

starting the integration after turning off the TX and RST, the photo generated electrons are stored 

in the n+ region of the device. During the pixel readout, the floating diffusion is first reset to 

VDD. The reset voltage may now be readout for true correlated double sampling. Then the 

transfer gate is turned on, and the whole generated charges from photosensing element are 

transferred to the floating diffusion node. Also this voltage is readout through correlated double 

sampling and decreases the noise. The Pinned photodiode APS has good sensitivity to the blue 

light and has low dark current.   
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Figure 1.4. Readout timing diagram of  PPD APS 

 

1.2.4 Digital Pixel Sensor (DPS) 

In DPS architecture each pixel has its own analog-to-digital converter (ADC) and the pixel 

output is a digital signal. Since ADCs are close to the generated signals of each pixel, it has 

higher SNR and faster read-out speed. Also the fill factor of DPS is significantly smaller than the 

traditional architecture. Existence of ADC in each pixel increases the fixe pattern noise of this 

structure which is caused by the mismatch between individual pixels [11]. 

 

 

      Figure 1.5.a pixel structure of DPS                             Figure 1.5.b structure of CMOS DPS [8]                 
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1.3 Image Sensor Characteristics 

Various parameters establish the advantages, disadvantages and performances of image sensors. 

Main characteristics of image sensors are defined in this chapter. 

1.3.1 Fill Factor  

Fill factor (FF) defines as the ratio of the light sensitive area of pixel to the pixel total area. 

 

                                 FF= ( Aact / Apix)×100%     (1.1)                                                          

where :      

Aact is the photodiode active area (light sensitive area) 

Apix is the total area of the pixel 

 

In order to increase the fill factor of image sensor, the circuitry in a pixel should take up as little 

space as possible and the photosensitive area should take maximum space as possible. Higher fill 

factor increases the dynamic range and the sensitivity of the pixel. 

By placing an array of microlenses on top of the sensor, the fill factor is improved. Furthermore, 

microlenses have a limited minimum size and can only be used in the visible part of the 

electromagnetic spectrum. The more effective way to increase the fill factor is by backside 

illuminating the sensor which improves the capture of incoming photons by 60% to over 90% 

[12, 13]. 

1.3.2 Quantum Efficiency 

The most important factor to define image sensor performance is Quantum efficiency (QE). QE 

is the ratio of the number of collected electron-hole pairs (EHP) to the number of incident 

photons. This parameter describes its response to different wavelengths of light. QE is the ratio 

of detected signal charge per pixel to the number of incident photons:  

QE(λ) = Ndet (λ) / Ninc (λ)      (1.2) 
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where: 

Ndet (λ) is detected signal charge per pixel of wavelength λ 

Ninc (λ) is number of incident photons of wavelength λ 

QE depends on the design, particularly on the pixel geometry and on the fill factor. 

1.3.3 Dynamic Range  

One of the major limitations on image sensor’s performance is dynamic range (DR) which is the 

ability of recording both bright and dark extremes. It's defined as the ratio of the maximum non-

saturating voltage signal (the light level just below the system saturation) to the smallest 

detectable input signal (the light level just above the dark noise) over the desired image capture-

time period. 

  Dynamic range expresses as: 

                                                           DR = 20 log
𝑉𝑚𝑎𝑥

𝑉𝑚𝑖𝑛
       (1.3) 

where: 

Vmax is the maximum non-saturating signal 

Vmin is the minimum detectable signal 

 

Increasing dynamic range by increasing the saturation level needs larger full well capacity. 

Increasing the full well capacity is rather difficult because of the restriction in the pixel size and 

reset voltage swing. Therefore, the most straightforward approach to increase the dynamic range 

is to decrease the dark noise level. There are also ways to control the saturation level by multi 

exposure or logarithmic pixel response [12, 14, 15]. 

The dynamic range of the human eye is around 90dB, high-end CCDs have a dynamic range of 

more than78dB and CMOS sensors have dynamic range of about 54dB [15]. In general, a CCD 

sensor has a better dynamic range than CMOS image sensor because CMOS imagers suffer from 

the high read-noise and non-uniformity.  
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1-4 Dark Current 

1-4-1 Dark Current in Image Sensors 

In low light conditions, dark current becomes a major part of the noise in image sensors. The 

total dark current in the pixel of image sensor depends on pixel type, pixel size and fabrication 

process. It also depends on the design and technology factors such as, silicon defect density, 

temperature and electric field of photo-sensing element.  

Generation rate of dark current in image sensors mainly depends on silicon surface and bulk 

defect density where they result from impurities in depleted bulk silicon or surface SiO-SiO2 

interface. These imperfections introduce a path which allows valance electrons to sneak to the 

conduction band adding to the signal measured in the pixel. These energy states which are 

located in forbidden gap are called dangling bonds.  The density of these surface states is 

determined by the quality of the fabrication process. The dark current generation due to surface 

impurities is more than the one generated by bulk defects. An efficient way to reduce the current 

density is to use low-temperature hydrogen annealing as proposed in [9, 14].  

1-4-2 Dark Current in P-N Junction Photodiode  

The major part of dark current in image sensors is coming primarily from the photodiode current 

in the absence of illumination.  

A photodiode can operate in two modes: photoconductive mode (reverse biased) or photovoltaic 

mode (zero biased). Dark current and the current due to the shunt resistance are two major 

currents in the photodiode. In photovoltaic mode, the dominant current which is diffusion current 

determines the shunt resistance. The shunt resistance may approximately double for every 6 ºC 

decrease in temperature which is the slope of current voltage curve of photo diode when V=0. 

An ideal photodiode has a shunt resistor of infinite while actual values are about 10 to 1000 MΩ. 

In photoconductive mode, the drift current becomes the dominant current which is known as 

dark current and approximately doubles for every 10 ºC increase in temperature [7, 11]. 

 Applying a higher reverse bias will decrease the junction capacitance and increase the amount of 

dark current. Also dark current is affected by the photodiode material and the size of the active 
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area. Therefore, the dark current depends on the device physics, the silicon process and it is a 

strong function of temperature. 

Total photodiode current which is composed of photo current and dark current: 

Itotal= Idark + IDue to Light         (1.4) 

Itotal= Io(𝑒
𝑉𝐷

𝑉𝑇
⁄

− 1) + IDue to Light       (1.5) 

where Idark is the photodiode current in the absence of illumination, IDue to Light  is the photo-

generated current, VD is the  bias voltage of the photodiode,  VT  is the thermal voltage and Io is 

the reverse saturation current. With large values of revered bias voltage, the dark current 

becomes reverse saturation current (Io). 

IDue to light   includes every electron-hole pair (EHP) created within the depletion region (W) and 

within a diffusion length away from the depletion region which are swept by the electric field 

[16]: 

IDue to light   = (-qA) (LN+LP+W) GL                                                                                     (1.6) 

Therefore:  

                            Itotal= Io(𝑒
𝑉𝐷

𝑉𝑇
⁄

− 1) + (-qA) (LN+LP+W) GL                                                                       (1.7) 

where q is the electrical charge, GL,  the generation rate per volume and time (EHP/cm-3-s) and, 

A, the cross sectional area of the device. LP and LN are the lengths of the n and p-type materials 

respectively within a diffusion length from the depletion region given by: 

                           LN,P = √2 𝐷𝑁,𝑃𝜏𝑁,𝑃                                                                (1.8) 

 W= √
2ԑ𝑠𝑉𝑏𝑖

𝑞𝑁𝑏
                                                                     (1.9)                                                            
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where Dn,p is the diffusion constant, τn,p is the life time of the minority-carriers, εs is the 

permittivity of the silicon, εs is the dielectric constant, Vbi is the built in potential (bias voltage) 

and Nb is the doping density (p or n depending on the dopant). 

The photodiode current is in opposite direction of the diffusion current. Therefore, as shown in 

Figure 1.6, illuminating the photodiode with optical radiation shifts the I-V curve to negative 

values by the amount of the photocurrent (IDue to light). 

 

Figure 1.6.  I-V Characteristic curves of a Photodiode under reverse bias – gray region (the upper 

curve is taken in the dark and the other curve is taken under illumination) 
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Figure 1.7. shows dark current generation mechanism in simple PN junction: 

 

       Figure1.7.Dark current generation mechanism in simple P+/N-well photodiode [13] 

 

Since the N-well is connected to VDD and P+ is considered as Vin node in Figure 1.7. , the P+/NW 

junction is the only active junction. More specifically, only carriers generated by P+/NW diode 

will be collected as useful information, while the other carriers gathered by the NW/P-sub diode 

would be swept to the power supplies. 

1-4-3 Dark Current Reduction in CMOS Image Sensor 

Since the dark current has bad effect on CMOS image sensors performances in the terms of 

sensitivity and dynamic range, many efforts have been done in order to reduce its effect. 

Considerable efforts have been made for reducing the dark current by physical modification of 

the photodetector, such as adding a photogate to the photodiode, adding an n+ reset ring structure 

[17], surrounding the pixel by a p-well [18] and burying the source follower transistor [19]. 

Shrinking the feature size technology increases the resolution of image sensors by decreasing the 

pixels size. Meanwhile, it brings new challenges where using shallow trench isolation (STI) 

beyond the 0.18um technology significantly and increases the dark current. In deep submicron 

technologies, STI is used to isolate pixels and components in the pixel from each other. The STI 

boundaries may have higher defect densities than the substrate, creating a higher density of 

energy states in forbidden gap between the STI boundaries and the silicon along the Si-SiO2 
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interface. In order to reduce the dark current due to STI effect, it is possible to increase the 

distance between photodiode and STI at the expense of losing the fill factor of pixel. The APS 

4T structure which includes pinned photodiode has less dark current than pixel with a p-n 

junction photodiode. In PPD structure, the heavily doped p+ pinning layer significantly reduces 

the dark current by completely shielding the depletion region of photodiode from touching the 

bar Si-SiO2 interface.  

The most effective way to reduce the dark current is to decrease the depletion width of the 

photodiode, but small depletion width leads to lower QE. PPD has high QE while having less 

significant dark current than p-n junction photodiode. However, the pinned photodiode (PPD) 

based 4-T pixel has some disadvantages, such as a low dynamic range associated with the small 

well capacity and requires modification of the typical CMOS fabrication process whit additional 

cost. 

Dark current random noise of sensor is mainly reduced by replacing the standard surface mode 

transistor n-MOS amplifier in the pixel with buried channel source follower. Therefore, the 

sensor dark current noise in terms of 1/f noise will be reduced by burying the source follower 

transistor [14]. 

Reset noise is a dark current random noise which is coming from reset transistor and is modeled 

as a resistor with thermal noise in ON mode of the reset switch. This thermal noise is sampled 

and held in the photodiode capacitor after the transistor is OFF. In order to reduce the reset noise 

voltage, photodiode capacitance (CPD) should be as large as possible. Since the image 

performance is reduced by increasing the CPD value, mostly the image sensors suffer from the 

reset noise. Recent researches prove that by using the so called soft reset technique, reset noise of 

3T pixel could be reduced [20]. In 4T-PPD pixel, the reset noise also could be reduced by using a 

correlated double sampling CDS structure [14]. 

1-5 Noise Associate with Dark Current in CMOS Image Sensors 

Dark current generates two types of noise: dark current non-uniformity from pixel to pixel, Fixed 

Pattern Noise (FPN), and temporal noises (reset noise, flicker noise (1/f) and dark shot noise). 
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1-5-1 Fixed Pattern Noise (FPN) 

Two main sources of FPN are: dark current inside the pixel and mismatches due to in-pixel or 

column level transistors. Pixel-level FPN which is due to transistor parameters mismatches can 

be eliminated by Correlated Double sampling (CDS) circuits while the mismatch due to column 

transistors are eliminated in the digital domain during the image processing procedures [14]. 

 1-5-2 Dark Current Shot Noise 

Part of electron-hole generation of photo-sensing elements in the absence of illumination which 

depends on temperature is called dark current shot noise. Dark current shot noise is the dominant 

source of noise in low light illumination. 

                                                          VShot = 
√𝑞𝐼𝑑𝑎𝑟𝑘 𝑡𝑖𝑛𝑡

𝐶𝑃𝐷
                                                           (1.10) 

where Idark is the average of dark current. The term tint is the integration time. CPD is photodiode 

capacitance. 

The dark current shot noise can be reduced by lowering the temperature, careful pixel layout, a 

proper transistor size and bias setting [10]. 

1-5-3 Reset Noise 

This noise originates from thermal noise of the reset switch which is often implemented by an 

NMOS transistor and known as KTC, expressed by  

                                                          VRST= √
𝐾𝑇

𝐶𝑃𝐷
                                                                    (1.11) 

Where K is Boltzmann’s constant (k =1.38E-1023 J/K) and T is the temperature in Kelvin and 

CPD is photodiode capacitance. 

1-5-4 1/f Noise 
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1/f noise is due to lattice defects at the interface of the Si-SiO2 channel of MOS transistor which 

is mainly due to the source follower in CMOS image sensors pixel. This noise depends on the 

gate oxide capacitance, the width and the length of the transistor. Ways to reduce 1/f noise 

include increasing the size of transistor, reducing the power supply or burying the source 

follower transistor. 

1-6 Leakage in MOSFET 

In CMOS image sensor structure different MOS switches are used for different purposes which 

are described in this chapter. Leakage from switches can add large distortion effect in readout 

signal. First, different sources of leakage in MOSFET structure are reviewed then, switches and 

their leakages are presented. 

Over the past decades, MOSFET size has been scaled down continuously. Channel length of 

MOSFETs have been reduced from several micrometers to tens of nanometers in modern 

integrated circuits. Small size MOSFETs, below few tens of nanometers bring some problems. 

They need very low supply voltages and have poorer electrical properties like higher leakage 

currents, and lower output resistance. 

Non-ideal behavior of CMOS switches due to leakage current in OFF operation mode is 

described in this chapter. The main sources of MOSFET leakage currents in deep submicron 

(DSM) process circuits are: Sub-threshold conduction current (ISUB), gate direct tunneling 

current (IG), gate-induced drain leakage current (IGIDL) and reverse-biased junction leakage 

current (IREV) as shown in Fig. 1.8. Amongst all the leakage current components, sub-threshold 

leakage is the most dominant component [21, 22]. Various techniques have been developed for 

reducing the sub-threshold leakages in MOSFET transistors. 
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Figure 1.8. Leakage current components in an NMOS transistor [22] 

1-6-1 Reverse-biased junction leakage current (IREV) 

The leakage through the source or drain to substrate of the reverse-biased diodes when a 

transistor operates in OFF mode is called reversed-bias junction leakage. The magnitude of 

junction leakage depends on the area of the drain or the source diffusion and the density of 

leakage current is determined by the process technology [23]. 

1-6-2 Gate-Induced Drain Leakage (GIDL) 

Gate-induced drain leakage (GIDL) is caused by band to band-tunneling in the drain region 

underneath the gate which is very sensitive to the gate oxide thickness, the drain concentration, 

the lateral doping gradient, and the applied drain-to-gate voltage [22]. When the gate is at zero or 

negative voltage and the drain is at the supply voltage level, there can be a dramatic increase of 

avalanche multiplication and band-to-band tunneling. Minority carriers underneath the gate are 

swept to the substrate, creating GIDL current. GIDL is defined as: 

                                                 𝐼𝐺𝐼𝐷𝐿= AEs × 𝑒
−𝐵

𝐸𝑠
⁄

     (1-12) 

 

𝐴 =
𝑞2𝑚𝑟

1
2⁄

18.л.ℎ2𝐸𝑔𝑎𝑝
3

2⁄
      (1-13) 

𝐵 =
л 𝐸𝑔𝑎𝑝

3
2⁄  𝑚𝑟

1
2⁄

2√2.𝑞.ℎ
     (1-14) 
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Egap is the direct energy gap of silicon (∼1.12 eV), h is 1/2 π times the Planck’s constant, mr = 

0.2 m0 (a silicon effective mass), Es is the vertical electric field at the silicon surface, and q is the 

electronic charge which is equal to 1.6 E-19 C. Thinner oxide Tox and higher supply voltage Vdd 

increase GIDL. GIDL is also referred to as surface band-to-band tunneling leakage [23, 24]. 

1-6-3 Gate Direct Tunneling (IG) 

The gate direct tunneling leakage flows from the gate through the “leaky” oxide insulation to the 

substrate. The magnitude of IG decreases exponentially with the gate oxide thickness and the 

supply voltage. The high-K gate dielectric reduces direct tunneling current and is required to 

control this component of the leakage current for low standby power devices [25]. 

1-6-4 Sub-threshold Leakage (ISUB) 

Sub-threshold leakage is the current from source to drain when the MOSFET is in OFF mode 

and this current is due to diffusion of minority carriers in the MOSFET channel when the 𝑉𝑔𝑠is 

less than the threshold voltage [21]. 𝐼𝑆𝑈𝐵 is calculated using the following formula:  

𝐼𝑆𝑈𝐵= µ0𝐶𝑜𝑥(
𝑊

𝐿
) (𝑉𝑇)2 𝑒1.8 𝑒

𝑉𝑔𝑠−𝑉𝑡ℎ0
− ɳ𝑉𝑑𝑠−𝛶𝑉𝑠𝑏

𝑛𝑉𝑇  (1- 𝑒
−

|𝑉𝑑𝑠|
𝑉𝑇

⁄
)    (1.15) 

where W and L are the width and length of transistor, Cox is the gate oxide capacitance, µ is the 

carrier mobility, γ is the linearized body effect coefficient, η is the  is the drain-induced barrier 

lowering (DIBL) coefficient, VT is the thermal voltage and n is the sub-threshold swing 

coefficient. 

The magnitude of the sub-threshold current is a function of the temperature, supply voltage, 

device size, and the process parameters, such as threshold voltage (Vth) which plays the dominant 

role.  

By shrinking the size of the technology Vth of the transistor is decreased [26]. The threshold 

voltage depends on four parameters: VSB, doping, process and temperature.  

       𝑉𝑇𝑁 = 𝑉𝑇0 + 𝛶(√|𝑉𝑆𝐵 − 2𝜑𝐹| − √|2𝜑𝐹|)                                              (1.16) 

where VT0 is the threshold voltage for zero substrate bias, 2𝜑𝐹,  the surface potential, VSB, the 

source to body substrate bias. 
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In addition to parameters optimization, changes in circuit configuration were presented for 

reducing the sub-threshold leakage current, such as stack effect, dual and multi-threshold voltage 

techniques [27, 28]. 

From the above discussion, we see that ISUB, IREV and IGIDL increase with VDB. Since the transistor 

gate must be at a high potential with respect to the source and substrate for this current to flow, 

the IG is not a component of the OFF current. Among the three components of IOFF, ISUB is clearly 

the dominant component [29].  

 Figure 1.9 shows the leakage current contributions of OFF mode MOSFET in different deep 

submicron (DSM) technologies and it shows the dominant of sub-threshold leakage in larger 

technologies [30] 

 

                           Figure 1.9. Leakage in different bulk technologies [31] 

 

1-7 Summary 

This chapter presented a brief overview of CMOS image sensors. The important characteristics 

of image sensors, especially the dark current, have been described. Different technics of reducing 

the dark in CMOS image sensor were reviewed. At the end of the chapter leakage current in 

MOSFET has been explained. In the next chapter, the new CMOS image sensor structure will be 

proposed for compensating the dark current effect by considering the effect of MOSFET's 

leakage on operation of the proposed circuit. 
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CHAPTER 2         DESIGN OF AN IMAGE SENSOR PROTOTYPE 

 

In this chapter the leakage of MOSFET switches is thoroughly described by simulating and 

analyzing a sample-and-hold circuit. Then, the structure for compensating the effect of dark 

current in CMOS image sensors is presented. Afterward, optimization techniques for eliminating 

the leakage current effect of CMOS switches in the proposed design are described. At the end a 

subtractor circuit is introduced for subtracting the output of a dummy pixel form a pixel being 

readout to complete the dark current compensation circuit. 

2-1 MOS Switches 

2-1-1 Sample-and-Hold Circuit 

In this section, we compare and analyze the leakage sources in Transmission Gate (TG) switch 

by simulating a sample-and-hold circuit. 

A simple sample-and-hold circuit is composed of a MOS switch and a hold capacitor. This 

circuit is suffering from some non-idealities behavior which makes the capacitor voltage to 

discharge during the hold mode due to MOSFET leakages, clock feedthrough and charge 

injection effects. As it is shown in Figure 2.1, the TG switch is used instead of a single MOS 

switch in order to reduce the effect of channel charge injection and clock feedthrough. 
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Figure 2.1 Sample-and-Hold circuit 

                                                                                                    

The leakage current of the switch discharges the capacitor to input signal Vin, VDD or VSS values 

during the hold mode of S/H operation. This distortion could be reduced by increasing the 

capacitor value or decreasing the sampling time of the switch. 

Figure 2.2 shows the distortion in the voltage of hold capacitor which is discharged during the 

hold mode due to different sources (Vin , VDD or VSS). Figure 2.2.b and c show the S/H output 

which has junction leakages respectively through VDD and VSS and Figure 2.2.d shows the S/H 

output which has the sub-threshold leakage and discharges the capacitor to Vin value during the 

hold mode.  
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Figure 2.2. Sample-and-Hold output with various leakages [32] 

As mentioned before, the dominant leakage of a switch is the sub-threshold current which 

discharges the capacitor to the input signal value [32]. We are going to show this fact by 

simulating the circuit of Figure 2.3. This circuit is simulated with an input sine wave (Amp= 0-1 

V, f=1 Hz) and hold capacitors in the atto, femto, pico and nano Farad ranges. 

Figure 2.4,5,6,7 show the distortion in the output of a sample-and-hold circuit due to the sub- 

threshold leakage current. By comparing the graphs in the Figures 2.4,5 and 2.6,7, we see that for 

femto and atto values of the hold capacitor the sub-threshold leakages current is significant but 

for larger values of the hold capacitor (pico and nano Farad) the sub-threshold leakage is 

negligible. 
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Figure 2.3. Simple-and-Hold circuit 

 

Figure 2.4. Sample-and-Hold output for Nano Farad hold capacitor.CH=1nF 
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Figure 2.5. Sample-and-Hold output for Pico Farad hold capacitor.CH=1pF 

 

 

                   Figure 2.6. Sample-and-Hold circuit for Femto Farad hold capacitor,CH=1fF 
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Figure 2.7. Sample-and-Hold circuit for Atto Farad hold capacitor, CH=1aF 

The clock feedthrough of S/H circuit which is shown in Figure 2.8 has been calculated according 

to equation (2.1). The equation shows that the value of the clock feedthrough depends on the 

clock amplitude and the hold capacitor values [33]. Clock feedthrough error appears as glitches 

at the edge of clock pulses. 

 

Figure 2.8.  Calculating feedthrough effect in simple Sample-and-Hold circuit (MOS Switch) 
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By comparing Figures 2.4,5,6. and 7, we find the small clock feedthrough effect by using  a TG 

switch. The output graphs show significant clock feedthrough effect on circuits with smaller hold 

capacitors. For example Figure 2.7. shows clock feedthrough errors due to using atto farad range 

while Figure 2.4 and 2.5 show negligible effect of clock feedthrough error for nano and pico 

farad range of hold capacitor. 

To analyze the operation of a S/H circuit, the switch is modeled as a high resistor in OFF mode 

and a low resistor in ON mode. It means that the sample-and-hold circuit could be modeled by a 

simple RC circuit as it is shown in Figure 2.9. 

 

 Figure 2.9. Simple RC circuit which models the S/H circuit 

The values of 𝑅𝑂𝑁 and 𝑅𝑂𝐹𝐹 of a simple TG switch is deduced by simulating the configurations 

below. 

 

 Figure 2.10.a. Configuration for calculating RON       Figure 2.10.b. Configuration for calculating 

                                                                                      ROFF 
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The 𝑅𝑂𝐹𝐹 of the TG switch is extracted from Figure 2.11. By sweeping the VTEST voltage 

source and measuring the current 𝐼𝐹, the value of about  0. 2TΩ is obtained for 𝑅𝑂𝐹𝐹.  

 

                                                         Figure 2.11. OFF resistor of TG 

As shown in Figure 2.6 and 2.7, in OFF mode the output of the switch tries to follow the input 

signal value. Since the 𝑅𝑂𝐹𝐹with the value of TΩ range makes the capacitor to charge with time 

constant which equals to 𝑅𝑂𝐹𝐹𝐶𝐻 (<1ms) and 1000 times less than hold time (1sec). Thus, the 

capacitor voltage is discharged by the input source (Vin) due to sub-threshold leakage of the 

switch during the hold time .For nano Farad values of the capacitor, the  constant time  is τ 

=RC>100s which is quite larger than the hold time. So there is no distortion in the output voltage 

during the hold time as it is shown in Figure 2.4.  Figure 2.5. shows a little effect of sub-

threshold leakage which affects the hold voltage mode of pico farad capacitor while it doesn’t 

have effect on nano Farad capacitors. Figure 2.12 shows this effect by scaling Figures 2.4 and 

2.5. Red circles in Figure 2.12 shows the effect of sub-threshold voltage on pico and nano Farad 

hold capacitors.  
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Figure 2.12 Comparison of the sub-threshold leakage effect of single MOS switch on Nano and 

Pico Farad hold capacitors 

The charge injection effect in the output could be reduced by decreasing the fall time and rise 

time of the clock pulse feeding MOSFETs’ gates.  

2-2 Proposed Circuit Reducing the Effect of Dark Current in CMOS Image Sensor 

In this section a circuit for compensating the effect of dark current in CMOS image sensor is 

proposed. Since differential architecture could not efficiently compensate the non-uniformity 

noise effects, a feedback configuration which fixes the integrating node of photodiodes and 

makes uniformity dark current noise is implemented. Pixel architecture is presented and 

optimized for low level sensing illuminations and number of pixels is expanded for a row of 

pixel array. 

2-2-1 Capacitive Transimpedance Amplfier (CTIA) 

 

A simple integrator circuit is shown in Figure 2.15. which is known as a Capacitive 

Transimpedance Amplfier (CTIA) [6, 34].  
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Figure 2.13. Capacitive Transimpedance Amplfier (CTIA) 

 

The circuit is used to convert the photodiode current to voltage. The integrator circuit consists of 

an amplifier, an integrating capacitor (Cr) located in the negative feedback loop and a reset 

switch transistor in parallel to the capacitor. Also a readout switch is shown in the figure which is 

connected to the bus line of the pixel array column. 

As mentioned in chapter one, a photodetector produces a current proportional to the amount of 

incident light which is modeled by a DC current source (IPD). The traditional P+/N-well 

photodiode is used. Also N-well/P-sub photodiodes could be used by switching to 

complementary configuration. The typical circuit model of a photodiode is shown in Figure 2.16.  
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Figure 2.14.  The PN junction:  A  junction capacitance (Cj) and a shunt resistance (RSh) are in 

parallel with the other components.  Series resistance (RS) is connected in series with all 

components in this model 

CTIA circuit is operating in “reset” and “integrating” modes. By closing the reset switch, the 

integrating capacitor is discharged and the op-amp acts as a buffer amplifier. As a result, the 

output will be equal to 𝑉𝑅𝐸𝐹value; the non-inverting and inverting input of the op-amp: 

                                                           𝑉𝑅𝐸𝐹 =𝑉+ =  𝑉−        (2.2) 

The integration phase starts after opening the reset switch. Constant current from the photodiode 

(𝐼𝑃𝐷) integrates across 𝐶𝑟. Due to feedback and the large amplifier gain, the integration node 

(inverting input) and the non-inverting input of the op-amp will remain equal to 𝑉𝑅𝐸𝐹. Equation 

(2.3) determines the total charge of the capacitor during the integration mode.  𝑡𝑖𝑛𝑡 is the elapsed 

time from the start of the integration phase. 

                                            Q = 𝐼𝑃𝐷 Δ t = 𝐶𝑟 (𝑉REF - 𝑉𝑂𝑢𝑡( 𝑡𝑖𝑛𝑡))      (2.3) 

Therefore the output voltage of the op-amp during the integration time can be given as 

                                                     𝑉𝑂𝑢𝑡( 𝑡𝑖𝑛𝑡)= 𝑉𝑅𝐸𝐹 −
𝐼𝑃𝐷× 𝑡𝑖𝑛𝑡

𝐶𝑟
       (2.4) 

So, the output voltage in the integrating time has a negative slope which depends on the intensity 

of the photodiode current. 

The output of the integrator circuit is shown in Figure 2.17.  
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Figure 2.15 Integrator circuit output [35] 

 

A circuit using two integrators and two photodiodes is shown in Fig. 2.18. One of the 

photodiodes is sensitive to the light and generates photo-current and dark-current. The other 

photodiode is shielded from the light and has only dark current at its output. The circuit is 

operating in “reset” and “integrating” modes as simple integrator circuit. The output voltage of 

each op-amp is equal to the simple integrator circuit described before: 

 

                                      𝑉𝑂𝑢𝑡1( 𝑡𝑖𝑛𝑡)=𝑉𝑅𝐸𝐹 −
(𝐼𝐷𝑎𝑟𝑘) 

𝐶𝑟
𝑡𝑖𝑛𝑡                                                      (2.5) 

                                 𝑉𝑂𝑢𝑡2( 𝑡𝑖𝑛𝑡)=𝑉𝑅𝐸𝐹 −
 (𝐼𝐷𝑎𝑟𝑘+𝐼𝑝ℎ𝑜𝑡𝑜) 

𝐶𝑟
 𝑡𝑖𝑛𝑡                                               (2.6) 
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                   Figure 2.16. CTIA interface [36] 

In order to decrease the number of transistors in each pixel so that the fill factor is increased, the 

structure of the two amplifiers in Figure 2.18. can be modified into the more compact amplifier 

presented in Figure 2.19. 
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Figure 2.17. Double-Input Double -Output CTIA 

The new amplifier has one non-inverting and two inverting inputs as well as two outputs. In 

Figure 2.19, Vout2 depends on the photo and dark current of the photodiode (IPD=IDark +IPhoto) 

while Vout1 depends only on the photodiode dark current (IPD=IDark). By subtracting Vout1 from 

Vout2 in the integrating phase, the output voltage becomes less dependent on the photodiode dark 

current: 

𝑉𝑂𝑢𝑡2( 𝑡𝑖𝑛𝑡) − 𝑉𝑂𝑢𝑡1( 𝑡𝑖𝑛𝑡)=
(𝐼𝐷𝑎𝑟𝑘+𝐼𝑝ℎ𝑜𝑡𝑜)− (𝐼𝐷𝑎𝑟𝑘) 

𝐶𝑟
 tint=

𝐼𝑝ℎ𝑜𝑡𝑜 

𝐶𝑟
 tint    (2.7) 

The number of integrators can be expanded to the number of pixels in a row and leads to a new 

configuration being a multiple input/output integrator circuit. The symbol of the multi-branch 

CTIA is shown in Figure 2.20. 
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Figure 2.18. Multi-Branch differential amplifier [6] 

 

2-2-2 Leakage Current Reduction of Reset Switch 

As explained in the first section of this chapter, leakage current from MOSFET switches could 

have distortion effect on the output of the circuit especially when the switches are in OFF mode. 

The effect of this leakage is seen during the charge of the hold capacitor in the sample-and-hold 

circuit. In the proposed circuit, off transistor leakage of MOSFET has an effect on the 

accumulated charge in the capacitor of the integrator circuit.  

When using a single MOS or CMOS transmission gate (TG) as the reset switch in the 

integrator circuit, the small dark current of the photodetector cannot build any voltage across the 

capacitor. This is because often the leakage current of the OFF reset switch exceeds the dark 

current value of the photodiode. When the capacitor starts charging during the integration mode, 

the built up voltage on the capacitor increases the VDS voltage of OFF Switch which creates the 

leakage current in OFF reset switch during the integration time. This leakage is trying to 

discharge the capacitor. . The discharge happens in a smaller time constant than the time needed 

for the capacitor to charge with the dark current of the photodiode. 

As mentioned before, the sub-threshold leakage is the dominant leakage current contribution in 

MOSFETs which is a current flowing from drain to source when the MOSFET is in OFF mode. 

The leakage current and photodiode dark current directions are shown in Figure 2.21. 



35 
 

 

 

Figure 2.19. Leakage of CTIA circuit with NMOS reset switch 

Various techniques have been presented to reduce sub-threshold leakages in MOSFET 

transistors. In the integrator circuit, a T-type circuit is used as a reset switch for reducing the sub-

threshold leakage current of the switch by putting the Vds of the MOS to zero [35]. As shown in 

Fig. 2.22, in the T-type switch configuration, the single NMOS switch is replaced by two NMOS 

switches in series and one NMOS switch connected between a Vb voltage source and the node 

between NM1 and NM3. Voltage Vb is set close to the integrating node voltage, VREF value. 

During the integration mode where NM1 and NM3 switches are OFF and NM2 is ON, the node 

between NM1 and NM3 switches is pulled to Vb through the ON resistor of NM2 transistor. 

Since the drain of NM1 is connected to Vb, drain-source voltage of NM1 is close to zero and the 

leakage of NM1 approaches zero. Therefore, the leakage current of the T-type switch is greatly 

reduced. 

A                                                                                              
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Figure 2.20. CTIA circuit with T-type reset switch 

During the circuit reset mode, NM1, NM3 are ON and NM2 is OFF. By using the TG switches 

instead of NM1 and NM3 in the T-type configuration, the channel feed through effect of the 

switch could be reduced. Also stacking NM1 and NM3 by putting few transistors in series with 

NM1 and NM3 leads to a smaller drain source voltage for the transistors. Therefore, according to 

(1.15), with a smaller Vds, the sub-threshold leakage flowing through the stacked-series 

transistors will be reduced [37]. Since the design aims at reducing the number of transistors in a 

pixel, the simple configuration of the T-type switch with three transistors was considered.  

The leakage current of the single MOS switch is in the range of  pico-amperes while the leakage 

current of the T-type switch can be below 1 fA [35, 37-39]. 

2-3 Actual Implementation  

 

The multi-branch differential amplifier for compensating the effect of dark current in CMOS 

image sensors is presented in [6]. The dummy pixel and the non-shielded pixel of the multi-

branch amplifier are shown in Fig. 2.23. In the dummy pixel of the circuit, the capacitor cannot 

be charged using the small dark current value of the photodetector during the integration time 

(when the TG switch is OFF) because the time constant responsible for charging the capacitor 



37 
 

 

through the OFF switch of path 2 is smaller than the time needed to charge the capacitor via the 

photodiode dark current. Also in the non-shielded pixel of Fig. 2.23, the capacitor is discharged 

through the OFF resistor of the TG switch (through path 1) while being charged by the 

photodiode current. In the proposed architecture, the TG switch in the non-shielded pixel is 

replaced by a T-type switch with a smaller leakage current. The replaced switch doesn’t prevent 

the capacitor from being charged by the photodiode dark current since the switch leakage is less 

than the photo diode dark current. However, replacing the TG switch by the T-type switch in the 

dummy pixel cannot solve the switch’s leakage problem because in this configuration, the drain-

source voltage of the transistors in the T-type switch is not equal to zero during the integrating 

mode of the circuit. From Fig. 2.22, we found that an effective low-leakage T-type switch can be 

implemented only when it is placed in the feedback path of the circuit. Therefore, the 

configuration of the shielded dummy pixel should be modified to a new structure with feedback. 

 

Figure 2.21. Dark current compensation circuit of [6] 

Changing the configuration of the circuit in [6] leads to a new structure of multiple-input 

multiple-output integrator which is shown in Fig. 2.24. In proposed design, one dummy pixel is 

shared with an entire row of pixels and its dark current is subtracted from the output voltage of 

each pixel in a row. Therefore, the subtractor circuit gives an output voltage where the 
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contribution of the photodiode dark current has been greatly reduced. The subtractor circuit is 

implemented in a column amplifier at the bottom of the pixel array. Implementing a complete 

differential amplifier in each pixel reduces the fill factor and increases power consumption. The 

proposed solution is achieved by implementing multiple-input multiple-output differential 

amplifier; the amplifiers would have one non-inverting and a several inverting inputs as shown 

Fig. 2.24. The number of inverting inputs is equal to the number of pixels in a row plus a dummy 

pixel. Unlike the previous configuration, the new setting provides constant voltages across the 

reset T-type switch. 

Since the photodiode has fixed depletion region width due to the feedback configuration, 

photodiode capacitance (CPD) has a constant value. Each photodiode is modeled with a current 

source in parallel with a constant photodiode capacitor.  

 

 

Figure 2.22. Multiple-Input Multiple-Output Differential Capacitive Transimpedance Amplifier. 
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Table 2.1. Parameter values of the circuit of Figure 2.24. 

Parameters Value 

(W/L)N (0.5 µm /0.18 µm) 

(W/L)P (0.5 µm /0.18 µm) 

(W/L)T (0.5 µm /0.18 µm) 

(W/L)s (0.5µm/0.18 µm) 

IDark  0.5fA 

IPD1  15fA 

IPD2  50fA 

VDD 3.3V 

Vbias 2.3V 

VREF 2 V 

Vb 1.915 V 

Cr 30 Ff 

Clk 0-3.3V (PW=30 ms, T=40 ms) 

 

 

2-4 Subtractor Circuit 

Subtractor circuit is used for subtracting non-dummy pixels’ output from dummy pixel. The 

schematic of a subtractor circuit is shown in Fig 2.25 which has a symmetrical structure [40]. 

The bias current of the circuit is obtained by M1 and M2 which operate as a current mirror 

source. The subtractor circuit has three inputs and one output. The three inputs are VBG1, VBG2 

and Vx. Since M1 and M2 operate as current mirror source, I1 and I2 are equal. M3 and M4 are 

driven by the constant current I1 while M5 and M6 are driven by the constant current I2. The 

gates of M3 and M4 are connected to VBG1 and VBG2 respectively. VBG1 is chosen to be larger than 

VBG2. The gate of MOS transistor M6 connects to the constant voltage which keeps M6 in 

saturation region. The drain of MOS transistor M5 is the output of the subtraction circuit. Since 

M8 and M9 forms the current mirror circuit, ID4=ID5. From I1=I2, we get ID3=ID6. Based on the 
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relationships between the gate to source voltages and the drain currents, we can easily find that 

the output voltage of the subtraction circuit is given by the following equeation:  

                                      Vsub= Vx-(VBG1-VBG2)                                                  (2.8) 

 

 

Figure2.23 Subtractor circuit [40] 
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Table 2.2 shows the parameter values of subtractor circuit: 

Table 2.2 Parameter values of subtractor circuit: 

(W/L)(7,8,9,10) (0.6µm/0.18µm) 

(W/L)(1,23,4,5,6) (0.5µm/0.18µm) 

VDD 3.3V 

Vx  2V 

 

 

2-5 Summary 

In the chapter a new architecture for compensating the effect of dark current in CMOS image 

sensors has been proposed. The proposed design which is presented in Figure 2.24 has the ability 

to sense low level illuminations by compensating dark current. It employs T-type switches which 

have reduced OFF transistor leakage current than regular MOS or TG switches. 
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CHAPTER 3          POST-LAYOUT SIMULATIONS AND RESULTS  

                         

In this chapter layout and post-layout simulation of designed structure is presented. Also Monte 

Carlo simulation has been done in order to analyze the effect of manufacturing process on the 

proposed design. 

 

3-1 Simulation Results 

3-1-1 Simulation result with three pixels 

Simulation results of the circuit in Fig. 2.24, are presented in Fig. 3.1. According to equation 

(2.5), the graph shows that during the integration time the output voltage of each pixel has a 

slope which depends on the total photodiode current (IPD=IDark +IPhoto). During the reset mode, 

the output is forced to 𝑉𝑅𝐸𝐹 because of the differential amplifier configuration. The integration 

and reset times are both selected to be 30ms and 10ms respectively. 

All photodetectors in Fig. 2.24 are modeled by constant current sources [6, 15]. In this 

simulation, the current of the dummy pixel is set to IDark =0.5 fA (Table 3.1) and the photodiode 

current of the other pixels are chosen to be IPD1 =15 fA and IPD2 =50 fA. The integrating 

capacitor (Cr) is chosen to be 30fF.  
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Figure 3.1. Pixels’ output for Idark=0.5fA, IPD=15fA and IPD=50 fA 

Vbias and VREF values in the circuit of Figure 2.24 are set to 2.3V and 2V to keep all transistors in 

the active region. Vb is set to 1.915V in order to minimize the leakage current of reset switch. The 

supply voltage of the circuit is VDD=3.3V.  

By increasing the number of pixels in a row, the bias voltage of the current source transistor (MS) 

should be decreased in order to feed the current to all branches in multi-branch differential 

amplifier.   

By subtracting the output voltage of dummy pixel from the output voltage of each pixel, the 

output dependency on the photodiode dark current is greatly reduced as demonstrated by (2.7). 

The voltage subtracting circuit is implemented in column amplifier level.  

3-1-2 Estimating the precision of the subtractor circuit  

The subtractor circuit in Figure 2.25 is used to subtract the output voltage of two pixels.Figure 

3.2 shows the output of dummy pixel and the output of pixel 2 with a photodiode current of 30fA 
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of Figure 2.24.  Also the output of the subtractor circuit which subtracts the output of two pixels 

is shown in Figure 3.2. 

 

Figure 3.2 Subtractor circuit output, subtracting the dummy pixel output with IDark=0.5 fA from 

the output of pixel 2 with IPD=30 fA. 

 In Figure 3.3, the output of the subtractor circuit in Figure 3.2 is compared to the output of a 

mathematical subtraction performed by Cadence graphic tools in order to estimate the precision 

of the subtractor circuit. 
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Figure 3.3 Comparing the output of the subtracting with Cadence graphic tools with the output of 

the subtractor circuit, (subtracting the dummy pixel output with Idark=0.5 fA from the output of 

the pixel 2 with IPD=30 fA). 

As shown in this figure, the output using Cadence calculator and the output of the subtractor are 

nearly the same (The difference between the slopes of two outputs is about 2.14%). 

3-2 Comparing the results of different switches 

The circuit in Figure 2.24 is simulated to compare the results of three types of switches: TG, 

ideal switch and T-type switch. As shown in Figure 3.4, the output with TG (or single MOS 

switch) during the integrating time is not linear with a negative slope while the outputs with a T-

type switch and the ideal switch have negative slopes which follow equation (2.5). 

The TG switch as mentioned above destroys the output voltage considerably since the leakage 

current of the reset switch exceeds the dark current of photodiode. The leakage current of the TG 

switch is in the range of pico-ampere. This is larger than the photodiode dark current value 
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which is in femto-ampere range. Simulating the circuit with a T-type switch compared to an ideal 

switch leads to an error of less than 0.4% at the output.  

 

 

 

    Figure 3.4. Output of a pixel with IPD =50 fA for the three types of switch 

 

3-3 Dynamic Range  

The dynamic range (DR) is the ratio of the maximum non-saturating voltage signal (the light 

level just below the system saturation) to the smallest detectable input signal (the light level just 

above the dark noise) in given image capture-time period. 

The maximum non-saturated signal is measured by varying a current source as a photodiode 

current from femto- to pico-ampere range until the output saturation is obtained. In this 
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condition, the measured output swing is 1.903V for photodiode current of 2.5 pA according to 

Figure 3.5.   

 

Figure 3.5  Maximum non-saturated output voltage of the pixel 

Minimum output signal is evaluated considering the noise floor which is composed of the shot 

noise generated by the dark current, the flicker noise of the input transistor and the reset noise 

which is known as KTC noise. 

Total rms noise value is calculated by using the following equation: 

〈𝑉𝑟𝑚𝑠−𝑡𝑜𝑡𝑎𝑙〉 = √𝑉𝑠ℎ𝑜𝑡
2 + 𝑉1/𝑓

2 + 𝑉𝐾𝑇𝐶
2                                                  (3.1) 
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Flicker noise is caused by traps near Si/SiO2 interface that randomly capture and release carriers. 

The typical value of the flicker noise for PMOS transistors is equal to 2.28 e-28 c2/m2 which is 

negligible compared to other noise components [41]. 

During the integration phase, the dominant noise is the shot noise due to the dark current and the 

photocurrent. Assuming that the photodiode capacitance is constant over the integration period, 

with a PSD (Power Spectral Density) of shot noise given by 

                                             SIn(f)=q (iphoto+iDark) A2/Hz                                                (3.2) 

If photodiode shot noise is modeled as a white Gaussian noise process, by integrating the 

photodiode current in CPD, the following equation for the noise voltage of CPD can be obtained 

[42, 43]:  

                                                   
𝑑(𝑣𝐶𝑛)

𝑑𝑡
=−

𝐼𝑛(𝑡)

𝐶𝑃𝐷
                                              (3.3)            

𝑣Cn(𝑡𝑖𝑛𝑡)=−
∫ 𝐼𝑛(𝜏)𝑑𝜏

𝑡𝑖𝑛𝑡
0

𝐶𝑃𝐷
 → 𝑣𝑐𝑛

2 (𝑡𝑖𝑛𝑡)= 
∫ 𝐼𝑛

2(𝜏)𝑑𝜏
𝑡𝑖𝑛𝑡

0

𝐶𝑃𝐷
2                                    (3.4)  

                           𝑣𝑐𝑛
2 (𝑡𝑖𝑛𝑡)=

𝑞 (𝑖𝑑𝑎𝑟𝑘+𝑖𝑝ℎ𝑜𝑡𝑜)

𝐶𝑃𝐷
2 𝑡𝑖𝑛𝑡          (3.5)                                        

where In is the current shot noise, CPD is the photodiode capacitor which is typically equal to 

27fF, 𝑣cn is CPD noise voltage, q is the electronic charge which is equal to 1.6 E-19 C, tint is the 

integration time which is 30ms and 𝑖𝑑𝑎𝑟𝑘 is equal to 0.5fA (Table 3.1). 

where : 

                𝑉𝑆ℎ𝑜𝑡 = √𝑣𝑐𝑛
2 (𝑡𝑖𝑛𝑡) = = √𝑉𝑑𝑎𝑟𝑘

2 + 𝑉𝑝ℎ𝑜𝑡𝑜
2                                        (3.6)           

                   𝑉𝑆ℎ𝑜𝑡_𝑑𝑎𝑟𝑘 = √𝑉𝑑𝑎𝑟𝑘
2 =

√𝑞𝐼𝑑𝑎𝑟𝑘 𝑡𝑖𝑛𝑡

𝐶𝑃𝐷
 = 0.57 e-4V                                  (3.7) 

In is also integrated trough the Cr (integrating capacitor of Figure 2.4) which has negligible 

output noise voltage compared to the output noise voltage due to integrating of In trough the CPD. 

The value of KTC at T= 300K noise is equal to:   
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                                                       𝑉𝐾𝑇𝐶=√𝐾𝑇/𝐶𝑟 = 3.69 e-4V                                           (3.8) 

where Cr is the integrating capacitor in Figure 2.24 which is equal to 30fF, K is Boltzmann 

constant and T is the temperature in Kelvin. 

The value of the dark current shot noise is equal to: 

                                              〈𝑉𝑟𝑚𝑠〉 = √𝑉𝑠ℎ𝑜𝑡
2 + 𝑉𝐾𝑇𝐶

2   = 3.72e-4V                                        (3.9) 

                          

The DC Gain of the differential amplifier is about 24dB as shown in Figure 3.6. 

 

                                                 Figure 3.6 Differential amplifier gain 
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Therefore the value of the output noise voltage due to the input noise with amplifier gain of 24db 

is equal to:   

VN_out= VN_in × DCgain=3.72e-4 × 10(24/20)=0.004173V                         (3.10) 

Therefore the value of the dynamic range is equal to:  

                                      20log 
𝑉𝑚𝑎𝑥

𝑉𝑚𝑖𝑛
= 20log 

1.903

0.004173
= 53.17dB                                             (3.11) 

3-4 Layout Design 

The fill factor and pixel size are the most important factors in designing the pixel of image 

sensors. Dedicating a small pixel area to the circuit part leads to a smaller pixel size and a higher 

fill factor while the remaining area of the pixel is occupied by the photo sensing element. 

The smallest size transistors have been chosen in order to decrease the pixel size. Capacitor as a 

circuit element is an important component to optimize in the layout design in order to reduce the 

pixel size. Finally, the photodiode area size is chosen to get a reasonable fill factor above 50%.  

3-4-1 Capacitor 

In CMOS technologies, several different types of capacitors are available: MIM capacitors, p-n 

junction capacitors, Polysilicon-Insulator-Gate capacitors, transistors connected in a capacitor 

configuration, etc. Newer technologies with smaller feature sizes and a greater number of metal 

layers allow for greater capacitance densities [44]. Polysilicon capacitors were ignored because 

of the already existing polysilicon gated transistors in the pixel. A transistor in a capacitor 

configuration (source and drain shorted) gives a good capacitance per area ratio but gives a non-

linear output since Cgs varies depending on the region of operation of the transistor and the 

temperature fluctuation. Capacitors that utilize the MOSFET gate oxide have the highest 

capacitance density that can exceed 6fF/µm2 with recent technologies. For a pn junction 

capacitor, the process variations can cause a device mismatch generated by the fluctuations of 

the doping concentration and the doping profile [44]. MIM cap technology offers a capacitance 

density of around 1fF/µm2 which is much less than MOS capacitor but it has a good linear 

response.  Insertion transistors underneath a MIM cap are forbidden following the design rules 

especially for high frequency applications [Appendix A]. So using a transistor capacitor can save 
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more area. Besides, the linear response of the MIM caps with respect to temperature variation 

makes them more useful than transistor capacitors. 

3-4-2 Metal-Insulator-Metal Capacitor (MIM Cap)   

MIM cap is formed by two parallel metal plates in square shape. The top metal, CTM, forms the 

upper electrode and metal 5 forms the lower electrode. M6 is used to connect the CTM layer to 

the circuit. By using CTM as the top plate of the capacitor the thickness of the dielectric layer 

between the two electrodes is reduced in comparison with using M6 as a top plate layer. This 

helps to increase the total capacitance. The effective capacitance per unit area of the MIM cap is 

around lfF/µm2 for the TSMC 180 nm technology [45].  

 

Figure 3.7. Cross section view of a MIM Cap [46] 

 

The capacitance value of a MIM capacitor CM1M can be computed by (3.13) 

 

                                                                   CMIM = 
𝐴𝑃ԑ0ԑ𝐼

𝑡𝑖
                                             (3.12) 

where Ap is the area of one of the plates, ԑ0 is the permittivity in vacuum, ԑi and ti are the relative 

permittivity and thickness of the dielectric, respectively.  
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Equation (3.13) expresses the ideal value of CM1M. Although, some of the electric fields called  

fringing fields go through the air instead of the dielectric and increases the apparent area of the 

plates which is proportional to the thickness of the dielectric. Since for a MIM capacitor, a thin 

oxide is used as its dielectric, it makes vertical dimension to be much less than the dimensions of 

its plates, this problem is usually neglected [47].  

Figure 3.8 shows the equivalent circuit model of a MIM capacitor between Port 1 and Port 2 

used in the Spectre simulator for TSMC 180 nm CMOS technology. In this model, RM1M,s and 

LM1M,s are the parasitic resistance and inductance in the electrodes, CMIM,ox is the oxide 

capacitance between the bottom plate of the MIM capacitor and the substrate, and RMIM.sub and 

CMIM.sub are the silicon substrate resistance and capacitance, respectively [46]. 

 

Figure 3.8. Equivalent circuit model of a MIM capacitor between Port 1 and Port 2 used in the 

Spectre simulator for the TSMC 0.18 um CMOS technology [46]  

 

In order to decrease the pixel size and consequently increase the fill factor, MIM cap is put on 

top of the circuit part of a pixel. As mentioned in the design rules of TSMC 180nm, metal 

routing under the CTM layer is allowed since the application of image sensor is not a high 

frequency application and it does not require a high frequency signal isolation metal layer under 

the capacitor bottom metal layer. 
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3-4-3 Photodiode 

P+/N-well photodiode has been used in this design. To prevent the photodiode from latch up 

effect, a substrate layer around the photodiode could be used. Since surrounding the photodiode 

with a p-substrate layer increases the pixel size, in this design, a common substrate between the 

photodiode and NMOS transistors is considered. 

Dark Current and capacitor values of the photodiode are calculated using model parameter 

values of P+/N-Well in TSMC 180nm process. 

                      Table 3.1. TSMC 0.18μm CMOS model parameters of the photodiode 

 

             Parameter Name 

 

Parameter Value 

 

Area 

 

Perimeter 

Junction Capacitance, CD  

1.000266× 10-3 F/m2 

 

2.0402547× 10-10 F/m 

Dark Current, Is  

8.38 × 10-6 A/m2 

 

1.24 × 10-11 A/m 

 

Since the square area and perimeter area of the photodiode are equal to AD = 27.70 μm2 and PD = 

21.6 μm, the junction capacitance and dark current of the photodiode are calculated as below: 

 

CD= AD × (1.000266× 10-3 )+PD × (2.0402547× 10-10)= 32.12495238 fF                 (3.13) 

            Is= AD × (8.38 × 10-6)+PD × (1.24 × 10-11)= 0.5 fA                                       (3.14) 

Therefore, the total dark current value of the P+/N-well photodiode with a chosen area size in the 

layout design (28.14µm2) is in the range of 0.5fA. 
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3-5 Pixel Layout  

Figure 3.9 shows the pixel layout and an addition part circuit which is needed for dummy pixel. 

The capacitor is put in top of the non- photosensing part of the pixel and the size of each pixel is 

9×9µm2
. 
 

 

Figure 3.9 Pixel layout 

Table 3.2 Characteristics of the pixel circuit 

Number of transistors per pixel 

 

5 

Photo sensing Area 

 

28.14 µm2 

Active Pixel Size 

 

81 µm2 

Fill Factor 

 

34.7% 

 Minimum transistor channel Length 

 

0.18 µm 
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                               Table 3.2 Characteristics of the pixel circuit (Continue) 

Minimum transistor channel 

Width 

 

0.15 µm 

 

N-well or P-substrate guard ring could also be used around the whole circuit of each transistor in 

the design in order to prevent the latch up effect.  

3-6- Shift Register 

The implementation of the readout control signals is explained is this section. Row selection or 

column selection control signals are done using shift registers or decoders. In this design a 

column shift register is used to readout the signals of a row in the pixel array.  

 

 

Figure 3.10. Structure of a CMOS Image Sensor 
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3-7 Circuit Simulation with Ten Pixels Including the Shift Register 

The readout circuit symbol of ten pixels in a row is shown in Figure 3.11. 

 

 

Figure 3.11. Layout schematic symbol of 10 pixels out of a row of 100 pixels with readout 

circuit 

 

By increasing the number of pixels in a row, the gate biased of the current source transistor (MS) 

should be decreased in order to feed the current to all branches in multi-branch differential 

amplifier.   
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Table 3.3 Parameters of the circuit in Figure 3.11 

 

VDD 

 

 

3.3 V 

 

V pulse= V pulse_bar 

 

0-3.3V (PW=30ms, T=40ms) 

 

V pulseSR= V pulseSR_bar 

 

 

0-3.3V (PW=1ms, T=2ms) 

IN 0-3.3V (PW=20ms, 

T=20.5ms) 

 

Vbias 

 

 

1.85 V 

 

Vb 

 

 

1.783 V 

 

VREF 

 

 

1.9 V 

 

ID3,33,73   

 

50Fa 

 

ID2,32,72 

 

15Fa 

 

ID1,31,71 

 

0.5fA 

 

The post layout simulation of Figure 3.12 is given in the following section. The slopes of readout 

signal of 9 pixels out of 100 pixels show the output of pixels with a specific value of a 

photodiode current. 

Slopes around 0.17, 0.57 and 1.6 V/S respectively represent the output of the pixels with 

photodiode currents of ID1,31,71 = 0.5fA, ID2,32,72 = 15fA and ID3,33,73 = 50fA.  
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3.8 Analysis of the Parasitic Effect  

By increasing the design size and decreasing the technology size, the impact of parasitic 

elements becomes more important.  

In this design, pixels with more distance from the dummy pixel could be affected by parasitic 

elements such as added capacitance and resistance due to circuit interconnections. In order to see 

these effects, the simulation of a row of 100 pixels was performed by assuming the same 

photodiode current in each pixel.  

Figure 3.12 shows post-layout simulation results of the output of the farthest and the closest pixel 

from the dummy for the same photodiode current. It demonstrates that there is no effect of 

parasitic elements in this design.  

 

Figure 3.12 Comparison the output of the first and 80th pixel out of 100 pixels for IPD value of 

15fA 

3-9- Switch Leakage  

The leakage current of the reset switch has been decreased by using the T-type switch 

configuration. However, there is still a leakage current contribution from the T-switch which 
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could have some effect at the amplifier output. To evaluate the value of the T-switch leakage, the 

output of the circuit is measured without the photodiode. As shown in Figure 3.13, the value of 

the leakage current is in the range of 2.01fA which is calculated by (3.16). 

                                     ILeak= 
(𝑉𝑂𝑢𝑡( 𝑡2)−𝑉𝑂𝑢𝑡( 𝑡1))×𝐶𝑟

𝑡2−𝑡1
= 

(1.8403−1.847)×30𝑓𝐹

100𝑚𝑆
=  2.01fA           (3.15) 

 

The output of the pixel with photodiode currents of 1fA and 10fA is also shown in order to 

compare the slopes. The value of the T-switch leakage is however compensated by the dummy 

pixel since the dummy pixel has the same T–switch configuration. 

 

Figure 3-13  Measurement of  the T-Switch leakage current 

 

Figure 3.14 shows the pixel output after a long exposure time. By increasing the VDS value of 

NM3 in Figure 2.22 due to the capacitor charging by photodiode current or the leakage current of 

NM3, the leakage current of NM3 is increased and leads to capacitor charging in opposite 

direction. Therefore, the output saturation voltage level depends on the photodiode current value.  
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Figure 3.14 Output of Pixels in long exposure time 

 

3-10- Monte Carlo Simulation 

In this part, two different sources of variation are distinguished and analyzed:  process variations 

and temperature variations. The process variations are due to variations in manufacture 

conditions. The most effective parameters of transistors which affect the circuit operation are Vth, 

W and L. Temperature variations affect the behavior of the circuit due to MOSFET parameters 

change such as Vth. 

3-10-1 Process Variation 

The physical deviation of the manufacturing processes such as the implantation dose and the 

energy can generate variations in the device structure and the doping profile. These variations 

together with the temperature drift affect the electrical behavior of the devices in a circuit. 
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Devices and interconnects have variations in film thicknesses, lateral dimensions, and doping 

concentrations [48]. The parameters of individual transistors are classified as inter-die and intra-

die variations. 

Table 3.4 shows the MOSFET parameters and relevant process steps that directly influence each 

of those parameters [49].  

 

            Table 3.4  MOSFET parameters and their relevant process steps 

Device Parameter Relevant Process Step 

µ Ion implantation, diffusion, annealing, stress 

Cox Gate Oxide Formation 

W,L Etching, lithography 

Vth Ion implantation, gate oxidation, 

annealing, etching, lithography 

 

3-10-2 Analyzing the Effect of Process Variations in the Designed Structure 

The effect of process analysis of Monte Carlo simulation in the leakage current of the reset 

switch is described in this part. As discussed before, the subthreshold leakage current of the 

MOSFET in the OFF mode is calculating using the equation: 

             𝐼𝑆𝑈𝐵= µ0𝐶𝑜𝑥(
𝑊

𝐿
) (𝑉𝑇)2 𝑒1.8 𝑒

𝑉𝑔𝑠−𝑉𝑡ℎ0
− ɳ𝑉𝑑𝑠−𝛶𝑉𝑠𝑏

𝑛𝑉𝑇  (1 - 𝑒
−|𝑉𝑑𝑠|

𝑉𝑇
⁄

)                       (3.16) 

Three different process parameter distributions are supported by Spectre: Gaussian, uniform and 

Lognormal. Gaussian distribution is used since it's defined in the design library kits of TSMC 

180nm CMOS process for MOSFET parameters variation.  

Due to variation of β = µ0𝐶𝑜𝑥(
𝑊

𝐿
)  and Vth parameters of the current source MOSFET (Ms in 

Figure. 2.24) in each iteration, the current of Ms is changed according to (3.17). Therefore, the 

current of all branches of the differential amplifier which are fed by the current source transistor 
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will be changed. . In order to keep all the MOSFETs in the saturation region and ensure the same 

current in each branch, all voltages of all nodes in the circuit vary at each iteration.  

Figure 3.15 shows the output voltage of a pixel with IPD=30fA in Figure 2.24 for 10 iterations in 

the process variations analysis: 

 

Figure 3.15  Output of a pixel of Figure 2.24 for 10 iterations 

As seen, different slopes exist due to different values of Vds of MT2 in Figure 2.24. The 

differences between the drain (Vp) and the source (Vx) voltages of MT2 are presented in Figure 

3.16 for each iteration (all simulations were done for a pixel current of IPD=30 fA). 
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Figure 3.16 Vds values of MT2 for 10 iterations 

 

With higher values of Vds for MT2, the leakage current of the reset switch is increased. Therefore, 

the output slope is higher due to the integration of both the leakage current of the reset switch 

and the dark current of the photodiode. As shown in Figure 3.16, in iteration 6, Vp is more than 

Vx, therefore Vds has negative value. In this iteration since the Vds value is negative, the leakage 

current of MT2 is in reverse direction of the photodiode current and makes smaller slope than 

iteration 1 with the same |Vds | value. 

Figure 3.17 a,b shows Vth and  β values for each iteration for NMOS and PMOS transistors in the 

circuit. 
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Figure 3.17.a Vth and β variation in 10 iterations for PMOSs 
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Figure 3.17.b. Vth and β variation in 10 iterations for NMOSs 

 

Since MS in Figure 2.24 has a constant value of VSG, variation of Vth and β parameters gives 

different values of the bias current for each iteration. With higher value of β×(Vsg-Vth) for MS, 

the bias current gets larger.  Iteration 5 has the highest bias current value while iteration 6 has the 

minimum bias current as shown in Figure 3.18. Also Figure 3.18 shows the current of MS, MP1 

and Mp4 of Figure 2.24. It shows how the current of MS is divided between MP1 and Mp4 which 

exist in two different branches of differential amplifier. Since the gate voltage of MP1 is 2V and 

gate of MP4 is less than 2V due to offset effect of differential amplifier, Current of MP1 is smaller 

than MP4 with smaller VSG voltage value. 

 



66 
 

 

 

Figure 3.18 Bias current of Ms and branches of differential amplifier (Mp1 and Mp4) 

 

Since in each iteration, branches get different values of bias current, MP1 with constant gate 

voltage tries to justify its source voltage by following (3.17). Due to different values of Vth and β 

for Mp1 and bias current of MOSFET, the source voltage of Mp1 and Mp4 get different values in 

each iteration. Also the gate voltage of Mp4 gets different values in each iteration. This voltage 

affects Vds value of MT2 and changes the leakage current value of reset switch in each iteration. 
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Table 3-5  β, Vth of MOSFETs and slope value of a pixel output with IPD=30fA for 10 iterations. 

    Iteration  1 2 3 4 5 6 7 8 9 10 

  

P

M

O

S 

 β 

(Vcm-1) 

2.055E-4 2.085E-4 2.421E-4 2.25E-4 2.292E-4 1.968E-4 2.426E-4 2.141E-4 2.242E-4 2.357E-4 

  

Vth(V) 

-0.6937 -0.6527 -0.6603 -0.6246 -0.6575 -0.6684 -0.6324 -.6416 -0.6628 -0.6356 

 

N

M

O

S 

β 

(Vcm-

1) 

1.725E-3 1.494E-3 1.694E-3 1.6E-3 1.804E-3 1.345E-3 1.825E-3 1499E-3 1.542E-3 1.605E-3 

  

Vth(V) 

0.5057 0.5327 0.5584 0.5026 0.4911 0.5648 0.4875 0.5283 0.5630 0.5411 

 Slope 

(V/mS) 

0.001132 0.000933 

 

0.001709 

 

0.00120 0.00148 

 

0.000782 0.00161  0.001 

 

0.000955 

 

0.001132 

 

The following histogram shows the distribution of leakage current for many iterations by 

displaying the slope value of the subtractor output for 75 iterations. 

 

Figure 3.19 Slopes of subtractor output which subtract the output of dummy pixel from the pixel 

with IPD=30fA  for 70 iterations 
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The values are compared with the slope of 0.0008666 V/mS which is the output slope of the 

subtractor that subtracts dummy pixel output with Idark=0.5fA from the pixel output with 

IPD=30fA for the designed pixel with minimum MOSFET size.  

The standard deviation (STD) and the mean value of the histogram are 1.2604e-05 V/mS and 

8.4275e-04 V/mS respectively. The mean value of histogram is near to the output slope of Figure 

3.3. 

3-10-3 Operating Temperature  

By sweeping the temperature from -40 Celsius to 60 Celsius, the leakage current of reset switch 

is increased as shown in Figure 3.20.  

 

Figure 3.20. Pixel output with IPD=30fA for different temperatures 
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     Table 3-6 Output slope of a pixel with IPD=30fA of Figure 2.24 for different temperatures 

T (o K)      233      253      273     293       313      333 

Slope 

(V/mS) 

0.000978 0.0010103

33 

0.0010266 0.00103766

66 

0.0010453

33 

0.0010306

66 

  

Also the voltage of drain (Vx) and source (Vp)  of MT2 is shown in Figure 3.21 for different 

temperatures: 

 

 

Figure 3.21 Estimating Vds value of MT2 for different temperatures 

 

As shown in the figure, the value of Vds increases 0.0002V per 20 Kelvin increasing in the 

temperature. 
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3-11 Summary 

In this chapter, post layout simulation of the implemented circuit for dark current compensation 

has been presented. Also the operation of the proposed circuit with different switches has been 

analyzed. The structure with reset switch with leakage current value of less than 2fA is 

implemented. The output of 100 pixels in a row for analyzing the effect of parasitic elements in 

the large design has been compared. Finally, Monte Carlo and temperatures variations 

simulations have been performed in order to see their effect on our design especially on the 

leakage current of the reset switches. The results show process variation doesn't have much 

negative effect in the circuit operation while temperature has more effect in the circuit operation 

which increases Vds value by 0.0002V per 20 Kelvin. 
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CONCLUSION AND FUTURE WORK 

CMOS image sensors have the ability of on-chip signal processing, low cost and low power 

consumption. However, CMOS imagers have higher dark current when compared to CCDs 

which prevents it from being a prevailing technology for high-end applications. It is well known 

that the dark current is mainly generated from the interface defects that are located in the vicinity 

of the shallow trench isolation (STI) and in the depletion region of the photodiode at the Si/SiO2 

interface. There have been many efforts to reduce the dark current of CIS pixels. Some methods 

are implemented by process modification such as pinned photodiode and others reduce the dark 

effect without any process modification such as using n+ ring reset.  In this thesis we proposed 

an Active Pixel Sensor (APS) architecture without any process modification which compensates 

the effect of the dark current. The proposed technique enables a low-level sensing application for 

image sensor, by increasing the dynamic range and improving the linearity. Desired dynamic 

range which is achieved by this structure is 53dB.  

In this dissertation several new ideas/contributions have been proposed: 

 - A new multi input/output differential amplifier structure has been proposed in order to 

compensate the dark current effect in CMOS image sensors. The goal is to design a pixel 

circuitry having a small footprint to keep a reasonable fill factor for a small pixel size. 

- T-type switch has been used as a reset switch of the APS structure in order to reduce the 

leakage current. Therefore, the new configuration of multiple-input multiple-output 

differential amplifier has the advantage of carefully managing the femto-ampere dark 

currents of photodiode.   

- The leakage current of different types of switches has been compared and measured by 

simulating the proposed configuration with a sample and hold circuit structure. 

-The design has been optimized and extended for a large number of pixels in a row.  

-All simulations have been verified by post-layout simulation which considers the effect 

of parasitic capacitors and resistors. Also the post-layout simulation for 100 numbers of 
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pixels in a row shows that parasitic elements don't have effect even on the operation of 

the pixel which has the farthest distance from the dummy pixel. 

-Process and temperature variation has been done which is related to manufacturing and 

environment effects. As shown in the results, process variation doesn't have much 

negative effect in the circuit operation while temperature has more effect in the circuit 

operation. 

 

Future work could be achieved in following areas: 

       - In small technologies (130nm) gate leakage of MOSFET is the main leakage which 

is larger than the dark current value of the photodiode current and destroys the operation 

of the circuit. Different circuit architectures will be required. 

        -T-switch configuration does not work for smaller technologies. Since T-switch 

configuration could reduce the leakage current of reset switch by few hundred of femto-

amperes, it could not eliminate the whole leakage current for smaller technologies which 

also includes leakage current from the gate of MOSFET. Also proposed structure with 

0.18um CMOS could not eliminate the whole leakage current of reset switch. The 

leakage current of reset switch of proposed configuration is calculated in Figure 3.13. 
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APPENDIX A-DESIGN RULES OF MIM CAPACITOR TOP METAL [46] 

 

CTM.I.3  

No ViaTPO_1 under CTM region are allowed. 

Suggestion: 

Metal routing under MIM is allowed. Nonetheless, to place routing metal under MIM, it is 

strongly recommended to add a high frequency signal isolation metal layer under CBM. 

Customer should refer to TSMC PDK for better accuracy. 

 

CTM.I.4  

Recommended: Designer needs to take care of the impact of the noise coupling if any circuit or 

routing is put under MIM. 
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APPENDIX B-CODE FOR HISTOGRAM GRAPH 

% 
% 
% Histogram for Estimating slopes Distribution of a pixel for 70 iteration of 

Monte Carlo Process Simulation in Cadence 
% 
clear all 
clc 

  
slopes = [ 

  
0.0007810666 0.00081491 0.00082633 0.0008333 0.00083066 0.0008316 0.0008393 

0.000825 0.00084166 0.00083366 0.000832 0.000835 0.000838 0.00084033 0.000848 

0.0008383 0.00082733 0.0008506 0.00084833 0.000858 0.000848 0.0008496 

0.0008496 0.000851 0.0008507 0.0008508 0.0008512 0.000839 0.000838 0.000842 

0.000845 0.000847 0.000846 0.000843 0.000846 0.0008533 0.0008543 0.0008503 

0.000864 0.000850 0.000857 0.000844 0.000857 0.0008282 0.000816233 0.0008223 

0.00084533 0.00083666 0.00083433 0.0008426666 0.000844 0.00084433 0.000854 

0.0008416 0.000846666 0.000836666 0.000854 0.000861 0.000831 0.000833 

0.0008476 0.000856333 0.000852 0.000844 0.000849 0.000852 0.000844 0.000851 

0.00085133 0.000852 0.00083866 0.000857 0.000854 
]’; 

  

         

  
 stdv= std (slopes); 

 mn=mean(slopes); 
figure(1) 
% nbins = ; 
xvalues1_5 = 0.1e-03 : 0.007e-3 : 1e-3; 
%subplot(2,1,1) 
hist(slopes,xvalues1_5) 
legend('Simulation') 
title(' Slopes Distribution of subtractor output between the pixel with 

IPD=30fA and pixel with IDark=0.5fA for 70 iteration 
 ') 
xlabel('Slopes (V/mSec)') 
ylabel('Number of iterations') 
axis([0.8e-3 0.9e-3 0  30]) 
h = findobj(gca,'Type','patch'); 
display(h) 
set(h(1),'FaceColor','g','EdgeColor','k'); 
datacursormode on 
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                         APPENDIX C-DESIGN SUBMISSION PROCESS 

 

I had plan to submit my design for fabrication through CMC (Canadian Microelectronics 

Corporation) on August 2014, but CMC announced that the run has been postponed to 

November since they didn’t have enough numbers of applicants for the run. Also the run of 

November has been postponed in two times and they are still waiting for more applicants to go 

for fabrication for TSMC 180 nm technology. The following email shows that my design has 

been accepted by CMC for fabrication. 
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This email is the discussion that I have with CMC after postponing the run: 
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Here is the list of postponed Runs which has been announced by CMC (August which is also 

differed Run is not shown in the figure): 
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