
UNIVERSITÉ DE MONTRÉAL

IMPROVING BUG TRIAGING USING SOFTWARE ANALYTICS

LE AN
DÉPARTEMENT DE GÉNIE INFORMATIQUE ET GÉNIE LOGICIEL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

MÉMOIRE PRÉSENTÉ EN VUE DE L’OBTENTION
DU DIPLÔME DE MAÎTRISE ÈS SCIENCES APPLIQUÉES

(GÉNIE INFORMATIQUE)
AOÛT 2015

c© Le An, 2015.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by PolyPublie

https://core.ac.uk/display/213619759?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNIVERSITÉ DE MONTRÉAL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

Ce mémoire intitulé :

IMPROVING BUG TRIAGING USING SOFTWARE ANALYTICS

présenté par : AN Le
en vue de l’obtention du diplôme de : Maîtrise ès sciences appliquées
a été dûment accepté par le jury d’examen constitué de :

M. MERLO Ettore, Ph. D., président
M. KHOMH Foutse, Ph. D., membre et directeur de recherche
M. GUÉHÉNEUC Yann-Gaël, Doctorat, membre

iii

DEDICATION

To my family

iv

ACKNOWLEDGEMENTS

Firstly, I would like to express my deepest gratitude to my supervisor, Dr. Foutse Khomh, for
his great guidance, encouragement and patience that he provided along my master’s studies.

Secondly, I also would like to thank Dr. Bram Adams who gave me co-guidance to accomplish
my first conference paper, and all members (professors and students) in the software engi-
neering team of the Department of Computer Engineering. My studies would not have been
possible without their helps. Particularly, I am grateful to Dr. Yann-Gaël Guéhéneuc, who
organised and encouraged me to participate in inspirational discussions, weekly seminars,
and workshops.

In addition, I would like to thank my committee members, Dr. Ettore Merlo, Dr. Yann-Gaël
Guéhéneuc, and Dr. Foutse Khomh, for their valuable feedback on this thesis.

Finally, I would like to acknowledge my parents and my wife who are always supporting me
with their best wishes throughout my research.

v

RÉSUMÉ

La correction de bogues est une activité majeure pendant le développement et maintenance de
logiciels. Durant cette activité, le tri de bogues joue un rôle essentiel. Il aide les gestionnaires
à allouer leurs ressources limitées et permet aux développeurs de concentrer leurs efforts plus
efficacement sur les bogues à haute sévérité. Malheureusement, les techniques du tri de
bogues appliquées dans beaucoup d’entreprises ne sont pas toujours efficaces et conduisent
aux erreurs de classifications de bogues ou à des retards dans leurs résolutions, qui peuvent
mener à la dégradation de la qualité d’un logiciel et à la déception de ses utilisateurs. Une
stratégie de tri de bogues améliorée est nécessaire pour aider les gestionnaires à prendre de
meilleures décisions, par exemple en accordant des degrés de priorité et sévérité appropriés
aux bogues, ce qui permet aux développeurs de corriger les problèmes critiques le plus tôt
possible en ignorant les problèmes futiles.

Dans ce mémoire, nous utilisons les approches analytiques pour améliorer le tri de bogues.
Nous réalisons trois études empiriques. La première étude porte sur la relation entre les
corrections de bogues qui ont besoin d’autres corrections ultérieures (corrections supplémen-
taires) et les bogues qui ont été ouverts plus d’une fois (bogues ré-ouverts). Nous observons
que les bogues ré-ouverts occupent entre 21,6% et 33,8% de toutes les corrections supplémen-
taires. Un grand nombre de bogues ré-ouverts (de 33,0% à 57,5%) n’ont qu’une correction
préalable : les bogues originaux ont été fermés prématurément. La deuxième étude concerne
les bogues qui provoquent des plantages fréquents, affectant de nombreux utilisateurs. Nous
avons observé que ces bogues ne reçoivent pas toujours une attention adéquate même s’ils
peuvent sérieusement dégrader la qualité d’un logiciel et même la réputation de l’entreprise.
Notre troisième étude concerne les commits qui conduisent à des plantages. Nous avons
trouvé que ces commits sont souvent validés par des développeurs moins expérimentés et
qu’ils contiennent plus d’additions et de suppressions de lignes de code que les autre com-
mits.

Si les entreprises de logiciels pourraient détecter les problèmes susmentionnés pendant la
phase du tri de bogues, elles pourraient augmenter l’efficacité de leur correction de bogues
et la satisfaction de leurs utilisateurs, réduisant le coût de la maintenance de logiciels. En
utilisant plusieurs algorithmes de régression et d’apprentissage automatique, nous avons bâti
des modèles statistiques permettant de prédire respectivement des bogues ré-ouverts (avec
une précision atteignant 97,0% et un rappel atteignant 65,3%), des bogues affectant un
grand nombre d’utilisateurs (avec une précision atteignant 64,2% et un rappel atteignant

vi

98.3%) et des commits induisant des plantages (avec une précision atteignant 61,4% et un
rappel atteignant 95,0%). Les entreprises de logiciels peuvent appliquer nos modèles afin
d’améliorer leur stratégie de tri de bogues, éviter les erreurs de classification de bogues et
réduire la insatisfaction des utilisateurs due aux plantages.

vii

ABSTRACT

Bug fixing has become a major activity in software development and maintenance. In this
process, bug triaging plays an important role. It assists software managers in the alloca-
tion of their limited resources and allow developers to focus their efforts more efficiently to
solve defects with high severity. Current bug triaging techniques applied in many software
organisations may lead to misclassification of bugs, thus delay in bug resolution; resulting
in degradation of software quality and users’ frustration. An improved bug triaging strat-
egy would help software managers make better decisions by assigning the right priority and
severity to bugs, allowing developers to address critical bugs as soon as possible and ignore
the trivial ones.

In this thesis, we leverage analytic approaches to conduct three empirical studies aimed at
improving bug triaging techniques. The first study investigates the relation between bug fixes
that need supplementary fixes and bugs that have been re-opened. We found that re-opened
bugs account from 21.6% to 33.8% of all supplementary bug fixes. A considerable number
of re-opened bugs (from 33.0% to 57.5%) had only one commit associated: their original
bug reports were prematurely closed. The second study focuses on bugs that yield frequent
crashes and impact large numbers of users. We found that these bugs were not prioritised
by software managers albeit they can seriously decrease user-perceived quality and even the
reputation of a software organisation. Our third study examines commits that lead to crashes.
We found that these commits are often submitted by less experienced developers and that
they contain more addition and deletion of lines of code than other commits.

If software organisations can detect the aforementioned problems early on in the bug triaging
phase, they can effectively increase their development productivity and users’ satisfaction,
while decreasing software maintenance overhead. By using multiple regression and machine
learning algorithms, we built statistical models to predict re-opened bugs among bugs that
required supplementary bug fixes (with a precision up to 97.0% and a recall up to 65.3%),
bugs with high crashing impact (with a precision up to 64.2% and a recall up to 98.3%), and
commits inducing future crashes (with a precision up to 61.4% and a recall up to 95.0%).
Software organisations can apply our proposed models to improve their bug triaging strategy
by assigning bugs to the right developers, avoiding misclassification of bugs, reducing the
negative impact of crash-related bugs, and addressing fault-prone code early on before they
impact a large user base.

viii

CO-AUTHORSHIP

Earlier studies in the thesis were published/submitted as follows:

• Supplementary Bug Fixes vs. Re-opened Bugs
Le An, Foutse Khomh and Bram Adams, in Proceedings of the 14th IEEE Interna-
tional Working Conference on Software Code Analysis and Manipulation (SCAM), 28-
29 September, 2014.
My contribution: data mining and analysis, paper writing, and presentation at the
conference.

• Challenges and Issues of Mining Crash Reports
Le An and Foutse Khomh, in Proceedings of the 1st International Workshop on Software
Analytics (SWAN), 2 March, 2015.
My contribution: design of research plan, paper writing, and presentation at the
workshop.

• An Empirical Study of Highly-impactful Bugs in Mozilla Projects
Le An and Foutse Khomh, in Proceedings of the 2015 IEEE International Conference
on Software Quality, Reliability and Security (QRS), 3-5 August, 2015.
My contribution: data mining and analysis, paper writing, and presentation at the
conference.

• An Empirical Study of Crash-inducing Commits in Mozilla Firefox
Le An and Foutse Khomh, in Proceedings of the 11th International Conference on Pre-
dictive Models and Data Analytics in Software Engineering (PROMISE), 21 October,
2015.
My contribution: data mining and analysis, paper writing.

ix

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

RÉSUMÉ . v

ABSTRACT . vii

CO-AUTHORSHIP . viii

TABLE OF CONTENTS . ix

LIST OF TABLES . xi

LIST OF FIGURES . xiii

CHAPTER 1 INTRODUCTION . 1
1.1 Relation between Supplementary Fixes and Re-opened Bugs 1
1.2 Bugs that Crashed Frequently and Impact a Large User Base 2
1.3 Commits that Lead to Crashes . 3
1.4 Research Statement . 3
1.5 Thesis Overview . 3
1.6 Thesis Contribution . 4
1.7 Organisation of the Thesis . 4

CHAPTER 2 LITERATURE REVIEW . 6
2.1 Bug Triaging . 6
2.2 Supplementary Bug Fixes . 7
2.3 Bug Re-opening . 7
2.4 Crash Report Analysis . 8
2.5 Entropy Analysis . 9
2.6 Mining Software Repositories . 9
2.7 Defect Prediction . 10

2.7.1 Traditional Defect Prediction Techniques 10
2.7.2 Just-in-Time Defect Prediction Techniques 10

2.8 Chapter Summary . 11

x

CHAPTER 3 SUPPLEMENTARY BUG FIXES VS. RE-OPENED BUGS 12
3.1 Study Design . 14

3.1.1 Data Collection . 14
3.1.2 Data Processing . 14

3.2 Case Study Results . 17
3.3 Discussion . 25
3.4 Threats to Validity . 27
3.5 Chapter Summary . 28

CHAPTER 4 HIGHLY-IMPACTFUL BUGS . 30
4.1 Mozilla Crash and Bug Triaging Systems . 32
4.2 Identification of Highly-impactful Bugs . 32
4.3 Study Design . 36

4.3.1 Data Collection . 36
4.3.2 Data Processing . 37

4.4 Case Study Results . 38
4.5 Threats to Validity . 49
4.6 Chapter Summary . 51

CHAPTER 5 CRASH-INDUCING COMMITS . 52
5.1 Identification of Crash-inducing Commits . 53

5.1.1 Identification of Crash-related Bugs 54
5.1.2 Identification of Crash-inducing Commits 54

5.2 Case Study Design . 55
5.2.1 Data Collection . 55
5.2.2 Data Processing . 55

5.3 Case Study Results . 58
5.4 Threats to Validity . 65
5.5 Chapter Summary . 66

CHAPTER 6 CONCLUSION . 68
6.1 Summary . 68
6.2 Limitations of the proposed approaches . 70
6.3 Future work . 70

REFEFENCES . 71

xi

LIST OF TABLES

Table 3.1 Supplementary bug fixes of bug #462381 16
Table 3.2 Descriptive statistics of the subject systems 18
Table 3.3 Work habit dimension . 23
Table 3.4 Bug report dimension . 23
Table 3.5 Bug fix dimension . 23
Table 3.6 People dimension . 24
Table 3.7 Accuracy, precision, recall and F-measure (in %) obtained from GLM,

C5.0, ctree, cforest and randomForest 26
Table 3.8 Top and second attributes and their frequency in randomForest . . . 26
Table 4.1 Numbers of crash reports, extracted bugs, related releases, and de-

tected users in the studied systems 37
Table 4.2 Distribution of highly-impactful bugs, and other bugs in the subject

systems . 39
Table 4.3 Metrics used to compare the characteristics of highly-impactful bugs

and other bugs . 41
Table 4.4 Mean value of characteristic metrics for highly-impactful bugs and

other bugs, as well as the p-values of the Wilcoxon and Kruskal-Wallis
tests . 43

Table 4.5 Bug report metrics . 45
Table 4.6 Crash report metrics . 45
Table 4.7 Code complexity metrics . 46
Table 4.8 Code complexity metrics (other selected metrics share the rationale as

PageRank) . 46
Table 4.9 Accuracy, precision, recall and F-measure (in %) obtained from GLM,

C5.0, ctree, randomForest, and cforest to predict highly-impactful bugs
(the proportion of new bugs is > 35% (testing set)) 47

Table 4.10 Number of training/testing pairs, precision and recall (in %) of cforest
with different proportions of new bugs (testing sets) 47

Table 5.1 Changed types identified from Firefox’ source code 58
Table 5.2 Metrics used to compare the characteristics between crash-inducing

commits and crash-free commits . 60
Table 5.3 Median value of characteristic metrics for crash-inducing commits and

crash-free commits, as well as the p-value of the Wilcoxon rank sum test 61

xii

Table 5.4 Commit log metrics . 63
Table 5.5 Code complexity metrics . 63
Table 5.6 Social network analysis metrics (other metrics in this dimension share

the rationale as PageRank. We compute median value of each metric
for all classes in a commit.) . 64

Table 5.7 Changed type metrics . 64
Table 5.8 Accuracy, precision, recall, and F-measure (in %) obtained from GLM,

Naive Bayes, C5.0, and Random Forest to predict crash-inducing com-
mits and crash-free commits . 65

xiii

LIST OF FIGURES

Figure 3.1 Overview of our approach to study the relation between supplementary
fixes and re-opened bugs . 16

Figure 3.2 Number of fixes required for bugs as well as percentage of bugs that
are re-opened within 3 fixing attempts and with more than 3 attempts 19

Figure 3.3 Number of fixing days of bugs as well as percentage of re-opened bugs
that are fixed within 1 day and more than 1 day 19

Figure 3.4 Number of developers participating in fixing bugs as well as percentage
of re-opened bugs that are fixed by one developer and by multiple
developers . 20

Figure 3.5 Relationship between supplementary bugs and re-opened bugs 22
Figure 4.1 A sample crash report from Firefox 33
Figure 4.2 Mozilla crash triaging system . 33
Figure 4.3 Overview of our approach to identify highly-impactful bugs and extract

bug fixing metrics . 36
Figure 4.4 Distribution of bugs’ crashing entropy and frequency in the subject

systems . 39
Figure 5.1 Overview of our approach to identify crash-inducing commits and ex-

tract their characteristic metrics . 56
Figure 5.2 Proportion of crash-inducing commits and crash-free commits in Firefox 60

1

CHAPTER 1 INTRODUCTION

During software development and maintenance, debugging plays an important role, especially
after the first release of a software system. According to a report by the US Department of
Commerce [1], bug fixing activities account for up to 80% of software development overhead.
Bug fixing efficiency would decide the productivity and users’ satisfaction for a software
organisation. Among all of the detected defects, the most important ones will be filed into
bug tracking systems (e.g., Bugzilla1 and Jira2), where bugs will generally experience the
following statuses: opened, new, assigned, resolved, verified, and closed [2].

Bugs usually have different impacts on a software system and different fixing difficulties for
developers. When a bug is newly opened, software managers will prioritise the bug and
assign it to developers to fix. This process is called bug triaging, which can help develop-
ment teams focus their limited resources to resolve the most impactful defects and avoid
complaints from end users. In this thesis, we study bug triaging strategy from the follow-
ing three aspects: the relation between re-opened bugs and supplementary bug fixes, bugs
that lead to frequent crashes and impact a large number of users, and commits that induce
crashes. The study of each aspect would help software managers improve their bug triaging
strategy; increasing developers’ productivity and users’ satisfaction, while reducing software
maintenance overhead.

1.1 Relation between Supplementary Fixes and Re-opened Bugs

A typical bug fixing cycle involves the reporting of a bug, the triaging of the report, the
production and verification of a fix, and the closing of the bug. However, previous work
has studied two phenomena where more than one fix are associated with the same bug
report. The first one is the case where developers re-open a previously fixed bug in the
bug repository (sometimes even multiple times) to provide a new improved bug fix that
replace a previous fix, which is called a re-opened bug [2]. Shihab et al. [2] argued that
re-opened bugs increase maintenance overhead, degrade the overall user-perceived quality of
the software, and lead to repetitive work by already busy developers. The second one is the
case where multiple commits in the version control system contribute to the same bug report,
which is called supplementary bug fixes [3]. According to a manual investigation by Park et
al. [3], supplementary bug fixes may be due to missed porting changes, incorrect handling

1https://www.bugzilla.org
2https://www.atlassian.com/software/jira

2

of conditional statements, or incomplete refactorings. Even though both phenomena seem
related, they have never been studied together, i.e., are supplementary fixes a subset of re-
opened bugs or the other way around? In this research, we investigate the interplay between
both phenomena in five open-source software projects: Mozilla, Netbeans, Eclipse JDT Core,
Eclipse Platform SWT, and WebKit. We find that re-opened bugs account for between 21.6%
and 33.8% of all supplementary bug fixes. However, 33.0% to 57.5% of re-opened bugs had
only one commit associated; meaning that the original bug reports were prematurely closed
instead of being fixed correctly. We build predictive models for re-opened bugs using historical
information about supplementary bug fixes with a precision between 72.2% and 97.0%, as
well as a recall between 47.7% and 65.3%. Software organisations can use our proposed
models to improve their bug triaging strategy to reduce the misclassifications of bugs.

1.2 Bugs that Crashed Frequently and Impact a Large User Base

Nowadays, crash reporting tools are embedded in many software systems to collect infor-
mation about crashes in the field (i.e., when a program stops functioning properly in a user
environment). Crashes with the same crashing signature, the stack trace of the failing thread,
will be grouped automatically into a crash type. Usually, software quality managers prioritise
crash types by the number of crash occurrences, then file the top crash types into bug reports.
Crash reports provide useful reference to analyse and resolve the crashing bugs. They could
help software practitioners locate erroneous code, understand the impact of failures, and pri-
oritise crash-related bug reports. In a previous study, Khomh et al. [4] proposed an entropy-
based crash triaging approach that can help software organisations identify crash-types that
affect a large user base with high frequency. We refer to bugs associated to these crash-types
as highly-impactful bugs. The proposed triaging approach can identify highly-impactful bugs
only after they have led to crashes in the field for a period of time. Therefore, to reduce
the impact of highly-impactful bugs on user-perceived quality, an early identification of these
bugs is necessary. In this thesis, we examine the characteristics of highly-impactful bugs
in Mozilla Firefox and Fennec for Android and propose statistical models to help software
organisations predict them early on before they impact a large population of users. Results
show that our proposed prediction models can achieve a precision up to 64.2% (in Firefox)
and a recall up to 98.3% (in Fennec). We also evaluate the benefits of our proposed models
and found that, on average, they could help reduce 23.0% of Firefox’s crashes and 13.4% of
Fennec’s crashes, while reducing 28.6% of impacted machine profiles for Firefox and 49.4%
for Fennec. Software organisations could use our prediction models to catch highly-impactful
bugs early during the triaging process, preventing them from impacting a larger user base.

3

1.3 Commits that Lead to Crashes

Although the approaches focusing on triaging crash-related bugs can help software practition-
ers increase their debugging efficiency on crashes, these techniques can only be applied after
the crashes occurred and already affected a large population of users. To help software organ-
isations detect and address crash-prone code even earlier, we conduct another case study on
commits that would lead to crashes, called crash-inducing commits, in Mozilla Firefox. We
found that crash-inducing commits are often submitted by developers with less experience.
Also, developers perform more addition and deletion of lines of code in crash-inducing com-
mits. We built predictive models to help software organisations detect and fix crash-prone
bugs once a defective commit is integrated into the version control system. Our predictive
models achieve a precision of 61.4% and a recall of 95.0%. Software organisations can use our
proposed predictive models to track and fix crash-prone commits as soon as possible before
they negatively impact users; increasing bug fixing efficiency and user-perceived quality.

1.4 Research Statement

Prior research studied either supplementary bug fixes or re-opened bugs, but researchers have
never linked the two phenomena together. In addition, in current software organisations, most
crash collecting systems triage crashes and crash-related bugs merely by the corresponding
crash frequency. In this thesis, we study the relationship between supplementary bug fixes
and re-opened bugs and propose an entropy-based bug triaging approach as well as a crash-
prone commit detection approach to improve bug triaging techniques aimed at increasing
development efficiency and users’ satisfaction.

1.5 Thesis Overview

• Does every re-opened bug need supplementary fixes (Chapter 3)?
We extract bugs that have been re-opened and bugs that require multiple patches
from five open-source software systems to investigate their relationship. We propose
statistical models to predict bug re-opening in supplementary fixes to help software
practitioners avoid misclassification of bug reports.

• Were the bugs with high impact on end users prioritised (Chapter 4)?
We mine crash reports and bug reports of Mozilla Firefox and Fennec for Android and
found that the distribution of bugs in the user base has not been taken into account.
We propose statistical models to predict bugs with both high crash frequency and large

4

impact on users. In addition, we analyse the gain and loss that can be achieved by
applying our proposed models.

• How can we detect crash-prone commits (Chapter 5)?
We mine crash reports and commit logs of Mozilla Firefox to identify crash-inducing
commits. After investigating the characteristics of the crash-inducing commits, we
build statistical models to predict them.

1.6 Thesis Contribution

In this thesis, we carry out empirical studies on different aspects of bug triaging techniques.
Our contributions are as follows:

• We found nearly 50% of bugs that have been re-opened only have one related bug fix. It
implies that these bugs have been prematurely closed and that developers who closed
the bugs may have negative attitude towards them. We propose predictive models
to help software organisations prevent potential re-opened bugs in supplementary bug
fixes to increase their development productivity and the overall user-perceived quality.

• We propose an entropy-based bug triaging approach and predictive models to assist
software managers and practitioners detect bugs that may lead to high crash frequency
and affect a large user base early on during the triaging process to prevent them from
continuously impacting end users.

• We found that crash-inducing commits are often submitted by less experienced devel-
opers. They contain more addition and deletion of lines of code than other commits.
We propose statistical models to predict crash-inducing commits. These models can
help software managers identify crash-prone code before they cause negative impact to
the project and end users.

1.7 Organisation of the Thesis

The rest of this thesis is organised as follows:

• Chapter 2 outlines literature review in the areas of bug triaging, supplementary bug
fixes, bug re-opening, crash report analysis, entropy analysis, mining software reposi-
tories, and fault prediction.

• Chapter 3 presents our empirical study on supplementary bug fixes and re-opened bugs,
as well as their relationship.

5

• Chapter 4 presents our empirical study on highly-impactful bugs, i.e., bugs that cause
a large number crash occurrences and affect a lot of users in a software system.

• Chapter 5 presents our empirical study on commits that will induce subsequent crashes.

• Chapter 6 summarises and conclude the thesis and discuss future work.

6

CHAPTER 2 LITERATURE REVIEW

2.1 Bug Triaging

Bug triaging is the process that consists in screening and prioritising bugs to allow software
organisations to focus their limited resources on bugs with high impact on software quality.
In many software organisations, quality managers use automatic bug triaging systems to
decide bugs’ priority and assign bugs to the appropriate debuggers. The accuracy of the bug
triaging systems will affect the debugging efficiency, the quality of the software, and even the
satisfaction of end users.

In previous studies, researchers proposed different defect triaging techniques to help software
organisations improve their triaging activities. Anvik et al. [5] introduced a semi-automated
approach to ease the assignment of bug reports to a developer. They applied a supervised
machine learning algorithm to learn the kinds of bug reports resolved by each developer in
the bug repository, then to suggest a small number of suitable developers to resolve each
new bug. Canfora and Cerulo [6] also proposed a semi-automatic approach to select the best
candidate set of developers to resolve new change requests. This approach identifies candidate
developers using the textual description of the change requests. Menzies and Marcus [7]
proposed an automated approach, SEVERIS, to help triage teams assign severity levels to
bug reports. Their approach is based on text mining and machine learning techniques applied
to existing sets of bug reports. Weiss et al. [8] proposed an approach to help triage teams
automatically predict the fixing effort (i.e., bug fixing time) of a bug based on the average
fixing time of its similar and earlier bugs. This approach allows for early effort estimation to
help triage teams better assign issues. Jeong et al. [9] studied bug tossing (i.e., reassignment
of bug reports) and found that tossing bugs lead to longer bug fixing time. They proposed a
tossing graph model, which captures past tossing history, to reduce tossing steps and improve
the accuracy of previous automatic bug assignment approaches. Khomh et al. [4] proposed an
entropy-based technique to triage crash-types in Firefox. Their proposed approach achieves
a better classification of crash-types than the current technique applied by Firefox teams.

In this research, we study bug triaging technique on three aspects: supplementary bug fixes
and re-opened bugs, crash-related bugs, and crash-inducing commits. We apply statistical
analyses to help software organisations improve their current bug triaging systems to augment
their development productivity and increase users’ satisfaction.

7

2.2 Supplementary Bug Fixes

Park et al. defined supplementary bugs fixes as “patches that were later applied to supplement
or correct initial fix attempts” [3]. They studied supplementary fixes on three open-source
systems by a manual inspection. They found that supplementary fixes may be caused by
several reasons, e.g., missed porting changes, incorrect handling of conditional statements,
incomplete refactorings, etc. Also, they discovered that only a very small portion of supple-
mentary fixes have a content similar to their initial bug fixes and that only 14% to 15% of
files in the studied supplementary fixes overlap with the initial fix locations nor had direct
structural dependencies on them.

Yin et al. [10] studied incorrect bug fixes in large operating systems. They found that 14.8%
to 24.4% of studied fixes for post-release bugs are incorrect and that concurrency bugs are
the most difficult to fix. Their results show that a considerable portion of bugs were fixed
more than once, i.e., they needed supplementary fixes.

By analysing small changes in Lucent 5ESS, Purushothaman et al. [11] found nearly 40% of
bug fixes having introduced other defects. In other words, these bug fixes need subsequent
fixes to address their defects.

2.3 Bug Re-opening

In a bug tracking system, a closed bug may be opened again by developers due to various
reasons, such as inefficiency of previous bug fixes or lack of clarity in the reproducibility of
the bug before closure. Researchers and software practitioners tend to consider re-opened
bugs primarily as a negative factor because repeated work increases maintenance overhead,
degrading the software quality.

Shihab et al. [2] discussed the risk of re-opened bugs and built prediction models to prevent
bug re-opening. Zimmermann et al. [12] characterised how bug reports are re-opened by
analysing the Microsoft Windows operating system project in an empirical study. They
used a mixed-methods approach, categorising the reasons for re-opening based on a survey
of 358 Microsoft employees, then running a quantitative study of Windows bug reports by
focusing on factors related to bug report edits and relationships between people involved in
handling the bugs. They built statistical models to describe the impact of various metrics
on re-opened bugs ranging from the reputation of the opener to how the bug was found.
Xia et al. [13] evaluate the effectiveness among 10 supervised learning algorithms to predict
the re-opening probability of a bug report. They found that Bagging and Decision Table
(IDTM) achieve the best performance. Gu et al. [14] studied bad fixes, namely bug fixes

8

failing to fix a bug or creating new bugs, in three open-source systems. They found that
38% to 50% of re-opened bugs are due to bad fixes, which block other bugs or are duplicated
by other bugs in Bugzilla. Non-reproducible decision is an important reason behind bug re-
opening. Joorabchi et al. [15] investigated one industrial and five open-source bug databases
and found that non-reproducible bug reports account for 17% of all bug reports and that
they remain active longer than other bugs. Those bugs can be mainly classified as “Interbug
Dependencies” and 66% of Fixed non-reproducible reports were actually reproduced and
fixed. In other words, these bug reports were misclassified. However, none of these studied
has considered the relation between supplementary bug fixes and bug re-openings, neither
have they tried to investigate whether all re-opened bugs need supplementary fixes.

2.4 Crash Report Analysis

Podgurski et al. [16] introduced an automated failure clustering approach for the classification
of crash reports to facilitate their prioritisation and the diagnostic of their root causes. By
mining crash reports in Mozilla Firefox, Khomh et al. [4] proposed an entropy-based approach
that can be used to identify crash types by their crashing frequency and their crashing
dispersion among users. Inspired by the work of Khomh et al., Wang et al. [17] analysed
crash information in Firefox and Eclipse and proposed an algorithm that can be used to
locate and rank buggy files as well as a method to identify duplicate and related bug reports.
Kim et al. [18] studied crash reports and impacted source files in Firefox and Thunderbird
to predict top crashes before a new release of a software system.

Most of these researchers used Mozilla Socorro crash reporting system [19] as a subject
system. Because, as of the writing of this thesis, only the Mozilla Foundation has opened its
crash reports to the public [17]. Though Wang et al. [17] studied another system, Eclipse,
they could obtain crash information only through the stack traces contained in the bug
reports (instead of using crash reports). However, stack trace information is not always
available in bug reports for the majority of software systems. Dang et al. [20] proposed a
method, ReBucket, to improve the current crash reports’ clustering technique based on call
stack matching. The subject crash collecting database, Microsoft’s Windows Error Reporting
(WER) system, is not accessible for every researcher.

In this thesis, we study crash reports from Mozilla Socorro system to investigate whether the
current crash-related bugs are accurately triaged and whether we can propose a better bug
triaging approach to software organisations.

9

2.5 Entropy Analysis

Entropy metrics capture the dispersion of information. Entropy analyses are extensively
applied in software engineering studies. Bianchi et al. [21] measured the entropy of a software
system to assess its degradation. They developed a tool based on software representation
models that can automatically compute entropy metrics before and after every maintenance
intervention. By treating a software system as an information source, Hafiz et al. [22] used
different entropy measures, Shannon, Hartley, and Renyi entropy, to extract different types of
information from the system. They found that files that are more functional and descriptive
provide a larger amount of entropy. Examining the complexity and chaos associated with the
development process, Hassan et al. [23] used the Shannon entropy to measure the complexity
of systems. They concluded that entropy reflects the code complexity and the possibility of
decay of a software system. Zaman et al. [24] also applied the normalised Shannon entropy to
compare security and performance bugs in terms of bug fixing patches to assess the complexity
of bug fixes. Kim et al. [25] introduced new software complexity metrics (i.e., class complexity
and inter-object complexity) for object-oriented software systems based on Shannon entropy.
Chapin et al. [26] analysed entropy metrics of software systems and concluded that software
practitioners can gather a good insight on how the maintenance of the software system should
be performed by observing any abrupt change in the entropy of a software system. Using
the Shannon entropy measure to quantify information content in databases, Unger et al. [27]
introduced a measure of the general vulnerability of databases based on entropy values and
proposed a technique based on entropy analysis. Khomh et al. [4] proposed an entropy-
based approach that can be used to identify crash-types with both high frequency and high
distribution in a users’ base. Although entropy helps determine which problems are more
frequently reported than others, it is always difficult to determine whether certain bugs are
redundant or affect the entire user population. Anvik et al. [28] provided an alternate way
to process an open bug repository and eliminating bugs that are duplicates or irrelevant.

In this research, we intend to study whether entropy can help software practitioners to
classify bug reports more accurately than their current techniques, and, if yes, to which
extent practitioners can save time and increase users’ satisfaction.

2.6 Mining Software Repositories

The study on mining software repositories (MSR) has become popular in the last decade. It
assists software researchers in discovering interesting and actionable information in software
systems [29, 30] by analysing data on a variety of software repositories, such as bug database

10

(e.g., Bugzilla or Jira) or version control systems (e.g., Git or Mercurial). Hassan [30] in-
dicated that “MSR researchers have proposed techniques that augment traditional software
engineering data, techniques and tools to solve important and challenging problems, such as
identifying bugs, and reusing code, which practitioners must face and solve on a daily basis”.
This technique will allow us better understand the reason of bugs in the subject systems
and propose improved bug triaging strategies to help software organisations augment their
development productivity and increase the user-perceived quality of their product.

2.7 Defect Prediction

Flaws are not favourable to software development. It is worth building predictive models to
understand the reasons of the faults and prevent potential faults early on before they appear
in the filed.

2.7.1 Traditional Defect Prediction Techniques

Traditional defect prediction techniques used coarse-grained metrics, such as bug report
metrics, to identify defect-prone modules or specific types of bugs. By using social factors,
technical factors, coordination factors, and prior-certifications factors, Hassan et al. [31]
created decision trees to predict ahead of time the certification result of a build for a large
software project at IBM Toronto Lab. Shihab et al. [2] extracted metrics from bug reports and
built models using C4.5, Zero-R, Naive Bayes, and Logistic Regression algorithms to predict
bug re-opening in three open-source projects. As a complementary work, Zimmermann et
al. [12] used Logistic Regression models to predict bug re-opening in Windows.

2.7.2 Just-in-Time Defect Prediction Techniques

Though traditional defect prediction techniques can help software organisations prevent de-
fects to some extent, developers can only identify error-prone modules responsible for these
defects after the defects have been filed into bug reports. During the period between the
integration of the defective code into the version control system and the opening of the bug
report, a defective commit could negatively impact a large user base.

Just-in-Time defect prediction techniques are designed to predict defects at commit level;
allowing developers to find and fix defects once a commit is submitted for integration in
version control systems. Kamei et al. [32] used a wide range of source code metrics to predict
defect-prone commits in six open-source systems and five commercial systems. Fukushima et
al. [33] applied Just-in-Time defect prediction techniques to cross-project defect predictions

11

and found it to be viable for projects with little historical data. Using a number of code and
process factors extracted at change level, Misirli et al. [34] built statistical models to predict
high impact fix-inducing changes.

In this work, we apply different machine learning algorithms to predict development faults,
such as bug re-opening in supplementary bug fixes, bugs that impact a large population
of users (traditional defect prediction techniques), as well as commits that induce future
crashes (Just-in-Time defect prediction techniques). By comparing the performance of these
predictive algorithms, we propose the best predictive models to allow software organisation
to classify bug reports more efficiently and prevent future flaws. Using the predictive models,
software practitioners can also understand which factors of their development process lead
to more faults. With the proposed prediction models, they can also focus on reviewing
fault-prone commits.

2.8 Chapter Summary

In this chapter, we briefly introduce the importance of bug triaging process and previous
studies in this field. In a bug database, there exist different types of bugs. We specially
review the related work on supplementary bug fixes, re-opened bugs, and crash-related bugs
by discussing the analytic approaches applied in previous studies, such as mining software
repositories, crash report analysis, entropy analysis, and fault prediction techniques.

In the following chapters, we describe our case studies on the aforementioned bug types to
assess current bug triaging techniques used in software organisations and propose improved
approaches to help software practitioners concentrate on the most important bugs to increase
development productivity and users’ satisfaction.

12

CHAPTER 3 SUPPLEMENTARY BUG FIXES VS. RE-OPENED BUGS

Bug fixing is a major activity during software development process. A typical bug fixing
cycle includes many different phases, performed by a variety of stakeholders: reporting of the
bug (users), production of a fix (developers), verification of the fix (testers), and closing of
the bug definitively (managers). For some bugs, developers have to try multiple times before
fixing a bug. As a result of these several attempts, bug reports are sometimes re-opened,
which may incur longer fixing time [2] and hence is likely to degrade users’ satisfaction and
decrease the productivity of development teams, as developers must rework the same bug
multiple times: re-analysing the context of the bug, reading previous discussions about the
bug and examining previous failed fixes (proposed for the bug). Thus, it is important to
identify flawed bug fixes early before they can crash in the field.

Work on failed bug fixes has focused on two areas, i.e., supplementary bug fixes and re-opened
bugs. Supplementary bug fixes correspond to multiple commits linked (via their commit log
message) to the same bug report. Park et al. [3] investigated supplementary fixes in three
open-source projects: Eclipse JDT core, Eclipse SWT, and Mozilla. They concluded that
supplementary fixes are typically caused by forgetting to port changes, by incorrect handling
of conditional statements, or by incomplete refactorings. Shihab et al. [2], Zimmermann et
al. [35], and Xia et al. [13] proposed models for the prediction of re-opened bugs. Although
both areas obviously are related and have spawned two active research communities, their
exact relation has never been studied: are re-opened bugs a subset of supplementary bug
fixes (or the other way around)?

This chapter analyses the relation between supplementary bug fixes and re-opened bugs by
studying the factors that indicate whether a bug fix will require supplementary fixes and–or
will be re-opened. Knowing the characteristics of fixes that require supplementary fixes will
help to better focus code review activities and prevent known bugs from re-appearing in the
field. Knowing the characteristics of bugs that must be re-opened will help to predict the
probability of bug re-opening to reduce the maintenance overhead and improve the overall
quality of software. Using bug fix and bug re-opening information from five open-source soft-
ware projects, Mozilla, Netbeans, Eclipse JDT Core, Eclipse Platform SWT, and WebKit,
we address the following three research questions:

RQ1: What is the proportion of bugs among all bug reports that require supplementary bug
fixes or are re-opened?

13

This research question replicates the work of Park et al. [3], who analysed Eclipse JDT
core, Eclipse SWT, and Mozilla and found that between 22.5% to 32.8% of resolved
bugs involved more than one fixing attempt. With this question, we want to verify
whether supplementary fixes are related to frequent failure and, hence, whether they
are worth investigating in details. We find that the proportion of bugs that required
supplementary bug fixes in Mozilla1, Netbeans2, Eclipse JDT Core3, Eclipse Platform
SWT4 and WebKit5 accounts for, respectively, 23.8%, 17.2%, 26.9%, 25.9% and 10.3%
of the total number of resolved bugs reports. Only the results for Webkit are not similar
to those of Park et al. We attribute the difference to the style of commit messages in
this project where many commits cannot be mapped to their corresponding bug reports.

RQ2: What is the relation between supplementary bug fixes and re-opened bugs?

We want to understand whether bug fix failures are caught early during reviews and
testing activities or whether they slip through these verification and validations steps
and crash in the field, prompting the re-opening of bug reports. According to our
results, between 21.6% and 33.8% of supplementary fixes have been re-opened at least
once. In addition, bug re-openings tend to coincide with multiple fixing attempts, long
fixing period, and multiple developers. Surprisingly, we also found that, contrary to
intuition, 33.0% to 57.5% of the re-opened bugs were not detected as supplementary
fixes, instead they are mostly due to premature closing of bugs.

RQ3: Can we predict the re-opening of supplementary bug fixes?

Re-opened bugs may increase maintenance costs, degrade the overall software quality,
and users’ satisfaction [2]. In this research question, we use GLM, C5.0, ctree, cforest,
and randomForest [36] algorithms with attributes about developers’ working habits,
commit logs, bug fix, and development teams’ dynamic to build models that can pre-
dict whether or not a bug that required supplementary fixes before initial closing of
its report will be re-opened. Our models can correctly predict whether or not a bug
requiring supplementary fixes will need to be re-opened, with a precision between 72.2%
and 97.0% and a recall between 47.7% and 65.3%. Software organisations could use
our proposed models to predict potential failures of their bug fixes and the re-opening
of bug reports, hence preventing these bugs from re-appearing in the field.

1http://www.mozilla.org/
2https://netbeans.org/
3http://www.eclipse.org/jdt/core/
4http://www.eclipse.org/swt/
5https://www.webkit.org

http://www.mozilla.org/
https://netbeans.org/
http://www.eclipse.org/jdt/core/
http://www.eclipse.org/swt/
https://www.webkit.org

14

Chapter Overview

Section 3.1 describes the design of our case study. Section 3.2 describes and discusses the
results of our three research questions. Section 3.3 discusses the results of our replication
study in the context of previous work. Section 3.4 discloses the threats to validity of our
study. Section 3.5 summarises this chapter.

3.1 Study Design

This section presents the design of our case study, which aims to address the following three
research questions:

RQ1: What is the proportion of bugs among all bug reports that require supplementary bug
fixes or are re-opened?

RQ2: What is the relation between supplementary bug fixes and re-opened bugs?

RQ3: Can we predict the re-opening of supplementary bug fixes?

3.1.1 Data Collection

Since our study replicates existing work on supplementary bug fixes [3] and re-opened bugs [2],
we selected the following five open-source software projects: Mozilla, Netbeans, Eclipse JDT
Core, Eclipse Platform SWT, and WebKit. Mozilla, which was also used by Park et al. [3],
is a Web project that includes several sub-products, such as the Firefox Internet browser
and the Thunderbird e-mail client. Eclipse, which was used by both Park et al. and Shihab
et al. [2], is an integrated development environment (IDE) supporting various programming
languages. In addition, to compare with the results in [2] and [3], we introduced two other
projects: Netbeans and WebKit. Similar to Eclipse, Netbeans is another commonly used
IDE. WebKit is a layout engine software component for rendering Web pages that powers
Apple’s safari browser.6

3.1.2 Data Processing

Figure 3.1 shows an overview of our analysis approach. First, we extract bug fix information
from version control systems (i.e., Mercurial and Git) and apply the algorithm of Park et al.
to identify supplementary bug fixes [3]. Then, we mine the bug repositories (i.e., Bugzilla)
of our five subject projects to identify re-opened bugs. Using these data, we compute several

6All our studied data repositories, and analysis scripts are available here:
https://github.com/anlepoly/supplementary_fixes

https://github.com/anlepoly/supplementary_fixes

15

metrics and build statistical models to predict the re-opening probability of bugs that require
supplementary fixes. The remainder of this section elaborates on each of these steps.

Identification of Bug Fixes

We extract the revision history of each subject project from the Mercurial (for Mozilla and
Netbeans) and Git (for Eclipse and WebKit) repositories. We obtained the data of the three
repositories Mozilla, Netbeans, and Eclipse from the MSR 2011 challenge, which respectively
cover the period from March 2007 to August 2010, from January 1999 to June 2010, and
from October 2001 to June 2010. The WebKit data cover the period from August 2001 to
June 2014.

Next, we parse the files’ revision logs to extract the following commit information: revision
numbers, committer names, commit dates, commit messages, number of changed files, and
number of inserted/deleted lines. We apply heuristics from Fischer et al. [37] to identify bug
fixing commits. More specifically, we apply the following regular expressions incrementally
to match bug report identifiers:

(bug|issue)[:#\s_]*[0-9]+

(b=|#)[0-9]+

[0-9]+\b

\b[0-9]+

Finally, we cross-check the bug IDs obtained from commit logs with the Bugzilla repository
to ensure that they represent actual bug reports, i.e., check whether the extracted bug IDs
exist in the corresponding Bugzilla repository.

Identification of Supplementary Bug Fixes

We apply the algorithm proposed by Park et al. [3] to track supplementary bug fixes. This
algorithm considers, as a supplementary bug fix, any fix where the commit message contains
the bug ID of a previous bug-fixing commit. Therefore, among all detected bug-fixing com-
mits, we search for revisions where the bug ID is repeated. During this process, we observed
that in some commit messages, committers just mentioned the revision number of a previous
bug fix instead of the bug ID. Hence, we enhance Park et al.’s heuristic by also matching
these revisions to the corresponding bugs.

Table 3.1 presents an example of supplementary bug fixes. In this table, there are three
revisions that mention the same bug ID #462381. Revision 21149 is the initial bug fix, while
revisions 34890 and 34902 are supplementary bug fixes.

16

Version Control
System

Extract commit
logs

Analyze Data

RQ1

RQ2

RQ3
Bug Repository Re-opened bugs

Supplementary
Bug Fixes

Commits with
Bug ID

Identification of
supplementary

bug fixes

Identification of
bug fixes

Identification of
re-opened bugs

Figure 3.1 Overview of our approach to study the relation between supplementary fixes and
re-opened bugs

Table 3.1 Supplementary bug fixes of bug #462381
changeset 21149:7aeaf064ad9f
date Fri Oct 31 09:07:15 2008 -0700
summary Bug 462381 - Build layout directories in parallel

r=ted sr=roc
churn 12 files changed, 16 insertions(+), 464 deletions(-)
... ...
changeset 34890:fae81b8a5648
date Fri Nov 13 14:40:00 2009 -0500
summary bug 462381 - sprinkle magic PARALLEL DIRS fairy

dust about the build system r=ted.mielczarek
churn 12 files changed, 191 insertions(+), 173 deletions(-)
... ...
changeset 34902:827d8651799e
date Mon Nov 16 07:57:15 2009 -0500
summary bustage fix from bug 462381
churn 1 files changed, 4 insertions(+), 2 deletions(-)

After the identification of supplementary bug fixes, we organise all bug fixes into two groups
(similarly to [3]):

- Type I bug fix - bug fixes that definitively solve the bug in the first attempt (i.e., no
supplementary fix is needed)

- Type II bug fix - bug fixes that require supplementary fixes before the bug can be solved.

Identification of Re-opened Bugs

In Bugzilla, a re-opened bug may be marked “REOPENED” in two places: in the “status”
field, when it is currently re-opened and not yet solved and in its “history” list, if it was
once re-opened but afterwards the status had been changed to something else (e.g., again
“CLOSED”). Instead of just looking at the final status of a bug, we check the bug’s “history”
list and find whether there is at lease one “REOPENED” tag. In the case of Mozilla, Net-
beans, Eclipse JDT Core, and Eclipse Platform SWT, we extract this information directly
from the Bug SQL databases that were provided for MSR 2011 Mining Challenge. In the

17

case of WebKit, we concatenate the Bugzilla URL with each detected bug ID to download
the “history” page of the bug. Then, we check whether the tag “REOPENED” exists in the
bug’s history. For example, to check whether bug #32698 in WebKit was once re-opened,
we combine the history link of WebKit Bugzilla and the target bug ID as follows:

https://bugs.webkit.org/show_bug.cgi?id=32698

3.2 Case Study Results

This section presents and discusses the results of our three research questions.

RQ1: What is the proportion of bugs among all bug reports that require supple-
mentary bug fixes or are re-opened?

Motivation. This question is preliminary to the other questions. It provides quantitative
data on the proportion of bugs that required supplementary bug fixes and bugs that have
been re-opened in our five subject systems. In this research question, as in the study of Park
et al. [3], we determine whether bug fixes fail frequently, how fast the bugs are fixed for good,
and how many developers are needed to fix the bugs. These results will clarify the prevalence
(and hence importance) of supplementary bug fixes, and allow us to compare our findings
with those from [3].
Approach. We identify supplementary bug fixes by classifying bug fixes from the five
systems into two categories: Type I and Type II bug fixes, as discussed in Section 3.1.2. We
identify re-opened bugs following the heuristics described in Section 3.1.2, and compute the
proportion of bug reports that have been re-opened. For each bug report, we also compute
the number of fixing attempts required for the bug, the duration (in days) of the fixing period,
and the number of developers that contributed to finally fix the bug. Because Type II bugs
contain multiple fixes, we respectively calculate their number of bug fixes and number of bug
reports (i.e., all fixes corresponding to the same bug ID count for one).
Findings. Overall, in the five studied projects, Type II bug reports account for 10.3% to
26.9% of all the bug reports. Table 3.2 shows descriptive statistics about our subject systems.

Although Netbeans has the highest number of commits, it has the lowest percentage of
commits that fix bugs. Further manual analysis shows that more than 20% of the commit
messages only mentioned the product repository links instead of bug IDs (e.g., “Automated
merge with http://hg.netbeans.org/cnd-main/”). These commits cannot be identified as
fixing bugs. There are also many very short commit messages from which we can not extract
any useful information about bug with the heuristic introduced in Section 3.1.2. This result

https://bugs.webkit.org/show_bug.cgi?id=32698
http://hg.netbeans.org/cnd-main/

18

Table 3.2 Descriptive statistics of the subject systems
Mozilla Netbeans JDT Core Platform SWT WebKit

Studied period 3/2007 - 8/2010 1/1999 - 6/2010 10/2001 - 6/2010 10/2001 - 6/2010 8/2001 - 6/2014
commits 51500 173559 18099 20744 152296
detected bug fixing
commits

41227 53599 7744 8504 49388

Type II bug fixing
commits

20389 (49.5%) 19111 (35.7%) 3960 (51.1%) 4523 (53.2%) 10530 (21.3%)

bug reports 27349 41633 5176 5374 43326
Type I bug reports 20838 (76.2%) 34488 (82.8%) 3784 (73.1%) 3981 (74.1%) 38858 (89.7%)
Type II bug reports 6511 (23.8%) 7145 (17.2%) 1392 (26.9%) 1393 (25.9%) 4468 (10.3%)
re-opened bug reports 2876 (10.5%) 5681 (13.6%) 707 (13.7%) 653 (12.2%) 2311(5.3%)
Max # of fixing at-
tempts for a bug report

97 56 24 45 36

Max # of fixing days for
a bug report

1125 3781 1616 1947 889

Max # of involved devel-
opers for a bug report

6 7 14 12 6

reveals a limitation of the current identification algorithm for supplementary bug fixes.

On average, more than one tenth of bug fixes have been re-opened. Because our re-opened
bugs are detected from both VCS and bug repositories, we can guarantee that any bug fix
that has been re-opened can be identified. The proportion of re-opened bugs over all detected
bug fixes are similar between projects, i.e., from 5.3% to 13.7%.

Most bugs required only 1 to 2 fixing attempts and less than 24 hours to get fixed. Figure 3.2
shows the distribution of fixing attempts required for bugs. In the worst case, in Mozilla,
a bug can require up to 97 attempts before getting fixed. In other projects, we also found
bugs fixed with 24 to 56 attempts. To understand the period of time needed to make the
supplementary fixes, Figure 3.3 presents the distribution of fix duration required for bugs.
Overall, most bugs are solved within 24 hours (i.e., 1 day). The maximum time taken for
fixing bugs is 889 to 3,781 days. Some of those outliers (e.g., bug #3875 in Netbeans)
correspond to bugs where developers forgot to close a fixed bug report (this is a threat to
validity), whereas others (e.g., bug #55701 in Netbeans) really took such a long time to get
fixed.

In Mozilla, Netbeans, Eclipse JDT Core, and Eclipse SWT, the proportion of Type II bugs
is between 17.2% and 26.9%. This result is similar to the finding of Park et al. [3] in which
Type II bugs account for 22.5% to 32.8% of all detected bugs. In Webkit, Type II bugs only
account for 10.3% of all bugs. With a manual check, we found that Webkit allows developers
to use both SVN and Git clients to access the source code. As a result, many commit
messages mention an SVN style revision number instead of a Git revision number or a bug ID,
making it difficult to track all commits related to a bug. For example, the following message
could not be mapped to a bug report: “Rebaseline compositing/geometry/horizontal-scroll-

19

Netbeans

0%

18%

36%

54%

72%

90%

1 2 3 4 5 6
0.2%0.4%1.0%2.8%12.2%

82.8%

Mozilla

0%

16%

32%

48%

64%

80%

1 2 3 4 5 6

0.7%1.1%2.3%4.9%
13.6%

76.2%

Eclipse JDT Core

0%

16%

32%

48%

64%

80%

1 2 3 4 5 6

0.5%0.7%1.8%5.1%
18.0%

73.1%

Eclipse Platform SWT

0%

16%

32%

48%

64%

80%

1 2 3 4 5 6

0.6%0.8%1.7%4.6%
16.8%

74.1%

8.4%
reopened

48.8%
reopened

13.1%
reopened

38.6%
reopened

12.8%
reopened

37%
reopened

11.6%
reopened

23.6%
reopened

WebKit

0%

18%

36%

54%

72%

90%

1 2 3 4 5 6

0.1%0.1%0.4%1.5%8.2%

89.7% 5.2%
reopened

20.5%
reopened

attempts - all bugs

Figure 3.2 Number of fixes required for bugs as well as percentage of bugs that are re-opened
within 3 fixing attempts and with more than 3 attempts

Netbeans

0%

20%

40%

60%

80%

100%

1 2 3 4 5

0.5%0.6%0.8%1.4%

90.3%

Mozilla

0%

18%

36%

54%

72%

90%

1 2 3 4 5

0.7%0.8%1.0%1.6%

86.2%

Eclipse JDT Core

0%

20%

40%

60%

80%

100%

1 2 3 4 5

0.5%0.7%0.8%1.8%

90.1%

Eclipse Platform SWT

0%

18%

36%

54%

72%

90%

1 2 3 4 5

0.5%0.7%0.9%1.2%

90.0%

6%
reopened

38.8%
reopened

10%
reopened

47.6%
reopened

11.4%
reopened

34.7%
reopened

9.9%
reopened

32.7%
reopened

WebKit

0%

20%

40%

60%

80%

100%

1 2 3 4 5

0.2%0.3%0.4%0.7%

92.8%

3.6%
reopened

28.3%
reopened

days - all bugs

Figure 3.3 Number of fixing days of bugs as well as percentage of re-opened bugs that are
fixed within 1 day and more than 1 day

composited.html after r107389”. The latter number is an SVN style revision number.�
�

�
�

Overall, in our five studied projects, supplementary bug fixes account for 10.3% to 26.9%,
while re-opened bugs account for 5.3% to 13.7%.

20

Eclipse Platform SWT

0%

20%

40%

60%

80%

100%

1 2 3 4 5
0.04%0.04%0.56%3.74%

95.50%

Eclipse JDT Core

0%

20%

40%

60%

80%

100%

1 2 3 4 5

0.06%0.02%0.33%4.73%

94.76%

Mozilla

0%

20%

40%

60%

80%

100%

1 2 3 4 5

0.03%0.20%0.97%7.92%

90.86%

Netbeans

0%

20%

40%

60%

80%

100%

1 2 3 4 5

0.01%0.04%0.28%4.05%

95.61%

13%
reopened

25.5%
reopened

11.5%
reopened

26.4%
reopened

7.8%
reopened

37.9%
reopened

12.4%
reopened

40.3%
reopened

WebKit

0%

20%

40%

60%

80%

100%

1 2 3 4 5

0.02%0.07%0.59%4.94%

94.37%

4.9%
reopened

12.5%
reopened

developers - all bugs

Figure 3.4 Number of developers participating in fixing bugs as well as percentage of re-
opened bugs that are fixed by one developer and by multiple developers

RQ2: What is the relation between supplementary bug fixes and re-opened bugs?

Motivation. Many factors can explain the supplementary fixes found in our subject
systems. A first explanation could be agile development and continuous integration practices
that advocate for incremental development, in particular those that solved bugs within 24
hours, because developers may have just submitted their bug fixes incrementally (i.e., through
successive chunks of commits). A second explanation is suggested by the Type II bugs that
experienced multiple bug fixing attempts over long period of time (up to 3,781 days). It
is possible that long fixing period may increase the probability of bug re-opening. A third
explanation is that multiple failing attempts at fixing a bug (many supplementary bug fixes)
increases the odds that the bug will be re-opened in the future. A fourth explanation is
that a bug fixing process may involve multiple committers. These multiple reasons can
explain why different committers would contribute fixes for a same bug, such as the turnover
in development teams or the complexity of a bug that may require the collaboration of
several developers. To verify these hypotheses, this research question investigates the relation
between Type II bug fixes and re-opened bugs.
Approach. To verify the above mentioned hypotheses regarding the relation between
supplementary bug fixes and re-opened bugs, we split the results in Figure 3.2 and 3.3 in
two parts (by dashed lines) to distinguish bugs that required less than three fixing attempts,
and those that required more than three fixing attempts (respectively bugs fixed within 24

21

hours and those that required more than 24 hours). We choose these thresholds because they
correspond to the modes of the distributions of the number of fixing attempts (respectively
the number of fixing days). Also, bugs fixed by less than three successive commits, within 24
hours, are more likely to be linked to agile development rather than incorrect bug fixes. We
then calculate the percentage of bugs below and over the above thresholds (on the left and
right side of the dashed line), which are re-opened. The resulting percentages show where
re-opened bugs are concentrated the most.

Figure 3.4 shows the distribution of the numbers of developers involved in fixing each bug.
Dashed lines separate fixes by single developers and multiple developers. For each Type II
bug, we count all different names or emails that appeared in the same Type II bug fix group
(i.e., all the fixing commits of a Type II bug) to identify the number of developers involved
in fixing the bug. Because we extract this information from commit logs, it is possible that
these developers (i.e., the committers) are not the authors of the bug fixes but are instead
reviewers with commit privileges [38]. A re-opened bug may also be assigned to a different
(more experienced) developer in an attempt to avoid further fixing failures. To evaluate this
last hypothesis, we investigate the distribution of re-opened bugs among the groups of bugs
fixed by single versus multiple developers.

Figure 3.5 shows the relation between supplementary bug fixes and re-opened bugs. The
green circles represent Type II bugs, blue circles represent re-opened bugs, pink circles rep-
resent “invalid reports” (i.e., bug reports that have been closed by the following resolutions:
“invalid”, “wontfix”, “duplicate”, or “worksforme”, which have a strong probability of being
re-opened [2]). The overlapped parts are their intersection. For example, in Mozilla, there
are 6,511 Type II bug reports (4,583 + 1,757 + 171), from which 1,928 are also re-opened
bugs (1,757 + 171). Also, 171 of these re-opened bugs were “invalid reports” before being
re-opened. We also found 948 re-opened bugs (324+624) with only one commit, among which
324 were “invalid reports” before being re-opened.

Findings. Re-opened bugs are more concentrated respectively in the areas above 24 hours,
three fixing attempts, or by multiple developers. Overall, between 21.6% and 33.8% of Type
II bugs have been re-opened at least once. However, almost half of the re-opened bugs were
not detected as Type II bug fixes (i.e., we did not find more than one fix for these re-opened
bugs). This finding is quite a surprise because we expected re-opened bugs to be a subset of
supplementary fixes. At first sight, this finding could be explained by limitations in our data
set, such as developers forgetting to mention a bug ID in their commit message. However,
closer analysis shows that 22.8% to 49.1% of re-opened bugs with only one fix tend to be
linked with invalid reports, i.e., not all re-opened bugs address previously fixed bugs. This

22

1090 221 25281 153

Type II Reopened

Invalid

Eclipse JDT Core

1092 217 17984 173

Type II Reopened

Invalid

Eclipse Platform SWT

3125 1135 88208 880

Type II Reopened

Invalid

WebKit

4583 1757 624171 324

Type II Reopened

Invalid

Mozilla

4729 1922 1728494 1537

Type II Reopened

Invalid

Netbeans

Figure 3.5 Relationship between supplementary bugs and re-opened bugs

seems counterintuitive, but in many cases the original bug fix was prematurely closed because
developers considered that the problem described is not a bug (marked invalid in Bugzilla),
the bug do not need to be fixed (marked as wontfix), the problem is a duplicate of an
existing bug (marked as duplicate), or all attempts at reproducing this bug were unsuccessful
(marked as worksforme). To validate whether the invalid reports are significantly associated
with single re-opened bugs, we applied Chi-squared test and Fisher’s exact test to compare
the four types of invalid reports in re-opened bugs with only one commit and in those with
multiple commits. The result shows that in all studied systems, the p-value is less than 0.05,
i.e., invalid reports have a significant association with single re-opened bugs. This finding
also explains that not all bug re-openings have a negative impact on software development,
contrary to the conclusion of earlier work [2]. In our subject systems, 22.8% to 49.1% of
single re-opened bugs (i.e., re-opened bugs with only one commit associated) have at least
one of these invalid closed status. Those bugs have less impact on software quality than
the re-opened bugs previously closed by the “fixed” status. Therefore, instead of building
predictive models for bug re-opening over all bug fixes, like in [2], we only predict bug re-
opening for supplementary bug fixes.�

�

�

Between 21.6% and 33.8% of the studied Type II bugs have been re-opened, which tend
to be fixed during long period, with multiple attempts or with multiple developers. Coun-
terintuitively, almost half of the re-opened bugs have only one fixing attempt. 22.8% to
49.1% of these single re-opened bugs are due to prematurely closed reports.

RQ3: Can we predict the re-opening of supplementary bug fixes?

Motivation. In RQ1 and RQ2, we observed that between 10.3% and 26.9% of bugs
required at least one supplementary fix before they were resolved for good. Among these
bugs that required supplementary fixes, between 21.6% and 33.8% were re-opened. Bug fix
failures, and most of the re-opened bugs, are not desirable because they increase maintenance

23

Table 3.3 Work habit dimension
Attribute Explanation and Rationale
Hour Hour (0-24). Fix committed at certain hours may induce bug re-opening

(e.g., hours around quitting time).
Week day Day of week (from Mon to Sun). Fix committed on certain week days

may induce bug re-opening (e.g., Friday) [39, 40].
Month day Day in month (1-31). Fix committed on certain days may induce bug

re-opening (e.g., some dates before holidays).
Month Month of year (1-12). Fix committed in some months may induce bug

re-opening (e.g., December, when we have Chrismas)
Day of year* Day of year (1-366). Combining the rationales of month day and month.
Commit Size Words in commit message. Too short (due to hasty work) or too long

message (due to the difficulty) may lead to bug re-opening.
* this attribute was eliminated according to the VIF result

Table 3.4 Bug report dimension

Attribute Explanation and Rationale
Platform Platform (e.g., PC, Mac) on which the bug was reported. Bugs on some

platforms are difficult to be solved, which may induce bug re-opening.
Severity Severity of a bug report. Developers may mark a difficult bug as higher

severity.
Priority Priority of a bug report. Developers may mark a difficult bug as higher

priority.
CC Number Number of users who may not have a direct role to play on the bug, but

who are interested in its progress. Bugs followed by many people may
have a higher re-opening probability.

Description Size Words in bug description. Too short (due to hasty work) or too long
message (due to the difficulty) may lead to bug re-opening.

Invalid Status Boolean value, i.e., whether it exists an invalid status (see Section 3)
before a commit. Invalid status may be followed by bug re-opening.

Table 3.5 Bug fix dimension

Attribute Explanation and Rationale
Changed files Number of changed files in a commit. Large number of changed files

may increase the risk of bug re-opening.
Churn Total number of inserted and deleted lines. Large number of changed

LOC may increase the risk of bug re-opening.
Fixing time Time span since the first fix. Long fixing time may induce bug re-

opening.
Keywords Some keywords (e.g., crash, error, incorrect) in the commit message may

imply bug re-opening.

24

Table 3.6 People dimension

Attribute Explanation and Rationale
Reporter experi-
ence

The number of prior reported bugs. Inexperienced reporters are likely
to introduce buggy report.

Assignee experi-
ence

The number of prior assigned bugs. Inexperienced assignee are likely to
introduce buggy fixes.

Committer expe-
rience

The number of prior committed patches. Inexperienced committers are
likely to introduce buggy fixes.

costs, degrade software quality and users’ satisfaction [2]. For example, the average time from
bug report to bug closing in one of the Eclipse projects for re-opened bugs was found to be as
much as twice the average time to resolve a non-reopened bug [2]. In this research question,
we replicate the work of Shihab et al. [2] to explore statistical models to predict whether or
not a bug that required supplementary fixes will be re-opened. Using a prediction model,
development teams will be able to target faulty/incomplete bug fixes for more thorough
reviews, preventing re-opened bugs.

Approach. Based on the approach of Shihab et al. [2], we extract 19 attributes from
commit logs and bug repositories along the four dimensions shown in Table 3.3 to Table 3.6.

We choose several regression and classification algorithms in R to build predictive models:
General Linear Model (GLM), C5.0, ctree, cforest and randomForest. GLM is an extension of
multiple linear regression for a single dependent variable. It is extensively used in regression
analyses. The model C4.5 obtained a good prediction score in the work of Shihab et al. [2].
As a comparison, we use two Decision Tree models, C5.0 and ctree. C5.0 is an improved
version of C4.5. The two algorithms are respectively derived from R packages “C50” and
“party”. In addition, we apply two implementations of the Random Forest algorithm, i.e.,
randomForest from the R package “randomForest” and cforest from the R package “party”.
Random Forest was developed by Leo Breiman and Adele Cutler [36] and uses a majority
voting of decision trees to generate classification (predicting, often binary, class labels) or
regression (predicting numerical values) results. Random Forest offers good out-of-the-box
performance and has performed very well in different defect prediction benchmarks [41]. The
algorithm yields an ensemble that can achieve both low bias and low variance [42]. In our
configuration, we build 50 trees with five randomly selected attributes in each tree.

Before building our models, we use Variance Inflation Factor (VIF) analysis to remove cor-
related variables. We set the correlation threshold to 5. Variables with VIF result over the
threshold are considered as correlated, and hence are not included in our models. Among
the selected attributes, “day of year” was eliminated, because its VIF result is higher than

25

5. We do not use reporter and assignee names like in Shihab et al.’s work [2], because these
variables may lead to overfitted models.

To evaluate the importance of the different attributes (prediction variables), we applied the
MeanDecreaseGini criteria, in which a higher value represents higher importance.

We applied 10-fold cross validation [43] to calculate the accuracy as well as the precision,
recall, and F-measure for re-opened and non re-opened bugs. In the cross validation, each
data set is randomly split into ten folds. Nine folds are used as the training set, and the
remaining one fold is used as the testing set. We repeat the 10-fold cross validation for 10
times and report the average results obtained.

Findings. In all studied projects, randomForest outperforms C5.0 and other algorithms
in accuracy, re-opened F-measure and non re-opened F-measure. When predicting re-opened
bugs with randomForest, we can achieve an average accuracy of 84.0%, a precision of 83.6%,
and a recall of 57.9%. Table 3.7 presents accuracy, precision, recall, and F-measure results
for the five models predicting whether or not a bug that required supplementary fixes will
be re-opened. Table 3.8 shows the top and second important attributes as well as their
frequency in randomForest. As we executed 10 times the validation, the maximum frequency
is 10. Overall, assignee experience, commit month, churn, reporter experience and committer
experience are evaluated as the top or second attributes in different projects.�
�

�
�

Our predictive models for re-opened bugs can achieve a precision between 72.2% and 97.0%
and a recall between 47.7% and 65.3%. randomForest obtains the best prediction results.

3.3 Discussion

This section discusses some of the key aspects of our study that differ from the works of Park
et al. and Shihab et al.
Identification of Supplementary Bug Fixes. During our data collection and pro-
cessing, we have uncovered some limitations of the algorithm proposed by Park et al. [3] to
track supplementary bug fixes. We have proposed an enhanced heuristic that can identify
supplementary fixes with higher precision. Indeed, the new heuristic can track bug IDs that
cannot be tracked by the algorithm proposed by Park et al. and it cross-checks all bug IDs
mentioned in commit logs with the Bugzilla repositories to eliminate false bug IDs. Com-
pared to the results of Park et al., the new heuristic have reported a higher percentage of
supplementary bug fixes in Eclipse Platform SWT (25.9% vs. 24.0%) and Eclipse JDT core
(26.9% vs. 22.5%), but a lower percentage in Mozilla (23.8% vs. 32.8%).
Prediction Models. In RQ2, we observed that almost half of the re-opened bugs are fixed

26

Table 3.7 Accuracy, precision, recall and F-measure (in %) obtained from GLM, C5.0, ctree,
cforest and randomForest

System Algo. Acc. Reop.
Pre.

Reop.
Rec.

Reop.
F-m.

Non Reop.
Pre.

Non Reop.
Rec.

Non Reop.
F-m.

Mozilla

GLM 64.2 69.6 6.6 12.0 64.0 98.3 77.5
C5.0 74.3 70.0 53.9 60.9 76.0 86.4 80.8
ctree 68.9 62.8 40.2 49.1 70.8 85.9 77.6
cforest 76.4 79.4 49.3 60.8 75.5 92.4 83.1

randomFor. 82.1 82.8 65.3 73.1 81.8 92.0 86.6

Netbeans

GLM 69.9 87.7 13.2 22.9 69.0 99.1 81.3
C5.0 74.4 67.9 46.2 55.0 76.3 88.8 82.1
ctree 71.0 75.0 21.8 33.8 70.6 96.3 81.5
cforest 74.1 82.8 29.9 44.0 72.9 96.8 83.2

randomFor. 78.3 80.2 47.7 59.8 77.8 94.0 85.1

JDT Core

GLM 77.5 76.6 15.1 25.3 77.5 98.4 86.7
C5.0 83.3 72.7 53.8 61.8 85.7 93.2 89.3
ctree 81.0 78.4 34.2 47.6 81.4 96.8 88.4
cforest 83.3 92.2 36.8 52.6 82.3 99.0 89.9

randomFor. 87.7 89.9 57.7 70.2 87.3 97.8 92.2

Plat. SWT

GLM 78.9 71.4 5.9 10.8 79.1 99.3 88.1
C5.0 88.0 80.9 58.9 68.1 89.3 96.1 92.6
ctree 82.2 73.0 29.3 41.8 83.1 97.0 89.5
cforest 86.2 97.0 37.8 54.4 85.2 99.7 91.8

randomFor. 91.6 95.4 64.4 76.9 90.9 99.1 94.8

WebKit

GLM 71.9 51.7 5.2 9.4 72.4 98.1 83.3
C50 76.6 62.0 44.0 51.5 80.2 89.4 84.6
ctree 74.9 58.4 38.5 46.4 78.7 89.2 83.6
cforest 77.8 72.2 34.7 46.9 78.7 94.7 86.0

randomFor. 80.5 69.8 54.4 61.1 83.5 90.8 87.0

Table 3.8 Top and second attributes and their frequency in randomForest

Project Top attribute Freq. Second attribute Freq.

Mozilla commit month 5 commit month 5
assignee exp. 5 assignee exp. 5

Netbeans
assignee exp. 10 reporter exp. 6

commit month 3
committer exp. 1

JDT assignee exp. 10 commit month 10
SWT assignee exp. 10 commit month 10

WebKit churn 10 assignee exp. 7
commit month 3

by only one commit. 22.8% to 49.1% of these single re-opened bugs were due to prematurely
closed reports. These prematurely closed bugs do not necessarily have a negative impact
on software development, because they are not related to failed bug fixes. For this reason,
we decided in this study to focus our prediction of bug re-openings on supplementary bug
fixes rather than on all bug reports as in the work of Shihab et al. [2]. Compared to their
results (although our prediction models have a different dependent variable), our prediction
models have a higher precision (72.2-97% vs. 52.1%-78.6%) and a lower recall (47.7%-65.3%
vs. 70.5%-94.1%).

27

3.4 Threats to Validity

This section discusses the threats to validity of our study following the guidelines for case
study research [44].

Construct validity threats concern the relation between theory and observation. We answered
RQ1, RQ2, and RQ3 by carefully choosing the experimental measures, i.e., identification
technique and prediction algorithms. Concerning the proportion of supplementary fixes in a
project, because our results for Webkit are different from those obtained by Park et al. [3],
we have manually verified 200 commit messages of each project to validate the correctness
of the results. Compared to Park et al., we enhanced the identification heuristic and cross-
checked all the bug IDs obtained from commit logs with Bugzilla repositories to ensure that
all detected bug IDs represent actual bug reports. In addition, we have the lowest Type
II bug reports percentage in Netbeans, because in this project, many report messages are
either non bug-fixing related or too brief, so it is difficult to map a fix to a certain bug ID. In
WebKit, the re-opened bugs only account for 5.3% of all bug reports. In this project, many
bug reports are only available to the internal staff (marked by “Access Denied”). Therefore,
we cannot judge whether these bugs have been re-opened.

Internal validity threats concern factors that may affect a dependent variable and were not
considered in the study. Theoretically, one would expect that all re-opened bugs are fixed
more than once (i.e., a fix before re-opening and other fixes afterwards), yet we obtained 33%
to 57.5% re-opened bugs in the Type I bug set. Although we found that a large part of these
bugs had been closed prematurely without any fix, another explanation could be a limitation
of the identification technique by regular expressions. Even though we used bug IDs to trace
a bug and revision numbers to map revisions and bug fixes. Some software organisations do
not explicitly mark bug IDs in the revision history (or at least do not enforce this). So, we
cannot track these bug fixes in VCS. In future work, we must explore novel identification
heuristics. Another threat is related to the computation of bug fixing time values. It is
possible that some developers forgot to close a fixed bug report.

Conclusion validity threats concern the relation between the treatment and the outcome. We
paid attention not to violate assumptions of the constructed statistical models. According
to the bug identification technique, we improved the existing heuristic, considered commits
referring to an earlier commit’s revision number, and compared the identified numbers with
bug repositories. We manually checked the number sequences that were not detected by
our mentioned regular expressions and found that none of those numbers were related to
bug IDs. In the prediction, our best model, randomForest, can achieve a precision between

28

69.8% and 95.4%, a recall between 47.7% and 65.3%. Due to the state of the art of the bug
identification technique from VCS, many bug fixes are not mapped to their corresponding
bug reports. This may affect the recall of the prediction for bug re-opening.

External validity threats concern the possibility to generalise our results. Besides the project
used by Park et al. [3] and Shihab et al. [2], we introduced two other projects in this study,
i.e., Netbeans and WebKit. They have a similar Type II bug percentage and a similar
prediction accuracy. In future work, we plan to expand this study by analysing other open-
source projects and applying novel identification techniques. For example, we could compare
the bug fix committed time with the time in the attachments of bug reports to map a bug fix
to its corresponding bug report. In addition, manual analysis of commit information and re-
opening distribution will help us to determine the failure-prone fixes over all supplementary
bug fixes. We provide our data and script in Github (https://github.com/anlepoly/
supplementary_fixes). Researchers and software practitioners can verify our results or
apply our approach to other projects.

3.5 Chapter Summary

In software development, bug fixing is a dominant activity for developers. A typical bug
fixing cycle includes the reporting of the bug, the production of a fix, the verification of the
fix, and the closing of the bug. However, sometimes, a closed bug later may be re-opened by
developers. Previous studies show that such bug re-opening can increase the maintenance
costs as well as degrade the software quality and the satisfaction of users. To discover the
relation between supplementary bug fixes and re-opened bugs, we investigate supplementary
bug fixes where more than one fix are associated with the same bug and re-opened bugs
in five open-source projects and found that supplementary bug fixes account for 10.3% to
26.9% of total bug reports. In addition, in the subject systems, a high percentage (i.e.,
from 21.6% to 33.8%) of the supplementary fixes have been re-opened. To help development
teams target faulty/incomplete bug fixes (for more thorough reviews) and prevent re-opened
bugs, we have explored the possibility of predicting bug re-openings over supplementary bug
fixes, using GLM, C5.0, ctree, cforest and randomForest models. Results show that these
models can achieve between 72.2% and 97.0% precision as well as between 47.7% and 65.3%
recall. Moreover, we found between 33.0% to 57.5% of re-opened bugs with only one commit
associated to them. These re-opened bugs have a strong association with invalid bug reports
in all our five studied systems. In fact, they were prematurely dismissed as “invalid” before
being re-opened. These bugs are not as risky as re-opened bugs with more than one commit
to the software development. In other words, contrary to claims by existing works on re-

https://github.com/anlepoly/supplementary_fixes
https://github.com/anlepoly/supplementary_fixes

29

opened bugs, they will not affect the quality of the software product. Future researchers and
practitioners who are mining data repositories can use our models to identify fault-prone bug
fixes.

30

CHAPTER 4 HIGHLY-IMPACTFUL BUGS

Today, many software organisations (e.g., Microsoft1 and Mozilla2) embed automatic crash
reporting tools in their software systems. Whenever the software crashes (i.e., terminates
unexpectedly in the user environment), the automatic crash reporting tool collects informa-
tion about the crash and sends a detailed crash report to the software vendor. A crash report
usually contains a signature, the stack trace of the failing thread, runtime information, such
as the crash time, and information about the user environment, e.g., the operating system,
the version, and the install age. Crashes with the same signature are grouped together and
filed in the same bug report. Software quality managers and developers usually judge the
priority and severity of a bug by looking at the frequency of its related crashes [18].

Indeed, crash frequency is an important factor to evaluate the severity of a bug, because a
high crashing frequency represents a high number of crash occurrences. However, frequency
alone does not show the full picture because the crashes due to a bug may be concentrated
on a limited user group, while the crashes due to another bug may affect most users of the
software system. If the two bugs have the same number of crash occurrences, the second bug
should be assigned a higher priority and severity because it impacts a larger user base.

Khomh et al. [4] have proposed an entropy metric to capture the distribution of crash oc-
currences among the users of a software system. They also proposed an entropy-based crash
triaging approach that assigns a high priority to the bugs related to crashes that occur
frequently (i.e., high frequency) and affect a large user base (i.e., high entropy).

In this work, we refer to crash-related bugs with both high crashing frequency and entropy
as highly-impactful bugs. Although the entropy-based crash triaging approach proposed by
Khomh et al. can successfully identify highly-impactful bugs, it takes a certain period of
time to assess which crashes occur frequently with high entropy; a period during which the
users of the system are negatively impacted by the crashes.

In this chapter, we investigate models to predict highly-impactful bugs early on before the
software is released. We propose models that software organisations can use to identify
highly-impactful bugs at an early stage of development, e.g., during alpha or beta-testing
phases. Such prediction models allow software organisations to focus on highly-impactful
bugs earlier and improve the overall quality of their software systems effectively. We analyse
the crash reports of Firefox and Fennec for Android (referred as Fennec in the rest of this

1http://www.microsoft.com/en-ca/default.aspx
2https://www.mozilla.org/en-US/

31

chapter) during the period of January 2012 to December 2012 and answer the following
research questions:

RQ1: What is the proportion of highly-impactful bugs?

We apply the algorithm proposed by Khomh et al. [4] to identify users by their machines’
configuration, i.e., CPU type, OS name, and OS version, and found that highly-impactful
bugs account for 42.3% of all bugs in Firefox and 37.9% in Fennec.

RQ2: Do highly-impactful bugs possess different characteristics than other bugs?

We study whether highly-impactful bugs possess different characteristics than other bugs
(i.e., bugs with low entropy and–or low frequency). Compared to other bugs, we observed
that highly-impactful bugs are often fixed by more experienced developers and they gen-
erate larger amounts of comments. However, the proportion of highly-impactful bugs
that are fixed and resolved is smaller in comparison to bugs with low entropy and–or low
frequency.

RQ3: Can we predict highly-impactful bugs?

We applied GLM, C5.0, ctree, randomForest, and cforest algorithms to predict whether
or not a bug will become highly-impactful, i.e., it will have both a high crashing frequency
and a high entropy. Our predictive models can achieve a precision up to 64.2% (in Firefox)
and a recall up to 98.3% (in Fennec). Software organisations can use our prediction models
in the early stage of their new releases to identify and fix bugs before they become highly-
impactful.

RQ4: Which benefits can be achieved by predicting highly-impactful bugs?

The identification and correction of highly-impactful bugs at an early stage of development
reduces the number of users impacted by these bugs; resulting in an improvement of the
user-perceived quality of the software system. We calculate the date Dpf at which a highly-
impactful bug, which is successfully predicted or transferred from a previous release, would
be potentially fixed as follows. We compute the median fixing duration Durationmed of
fixed bugs that were assigned with the highest priority in the previous release and add it
to the opening date (i.e., Do) of the highly-impactful bug, i.e., Dpf = Do + Durationmed.
All the crashes that occurred after Dpf can be avoided if developers fix the bug without
delay. Results show that some amounts of crash occurrences could be avoided with our
prediction models. For Firefox and Fennec, on average, crash occurrences can be reduced
by 23.0% and 13.4% respectively and the number of unique machine profiles that are
impacted by crashes can be reduced by 28.6% and 49.4%, respectively.

Chapter Overview

32

Section 4.1 provides background information on Mozilla crash and bug triaging systems.
Section 4.2 explains the identification of highly-impactful bugs. Section 4.3 presents our data
collection and processing. Section 4.4 describes and discusses the results of the four research
questions. Section 4.5 discusses threats to the validity. Section 4.6 summarises this chapter.

4.1 Mozilla Crash and Bug Triaging Systems

Mozilla ships software with a built-in automatic crash reporting tool, i.e., the Mozilla Crash
Reporter. When a Mozilla product crashes unexpectedly, the user receives a dialog box from
the Mozilla Crash Reporting tool that suggests to submit the crash report to developers for
improving the product’s quality. A crash event and a detailed crash report are generated and
sent to the Socorro server [19]. The crash report provides a stack trace for the failing thread
and other information about the user’s environment. A stack trace is an ordered set of frames
where each frame refers to a method signature and provides a link to the corresponding source
code. Figure 4.1 illustrates a sample crash report from Mozilla Firefox. Socorro collects crash
reports from end users, assigns a unique ID to each report and groups similar crash reports
together by the top method signatures of their stack trace. Such a group of crash reports in
which all the stack traces share a common top frame is called a crash-type.

The Socorro server is an open-source project and its data are also open. It provides a rich
Web interface for software practitioners to analyse crash-types. Developers can file bugs for
crash-types with high crash occurrences in Bugzilla. Multiple crash-types can be linked to
the same bug and multiple bugs can be linked to the same crash-type. In Soccoro, the list
of bugs filed in Bugzilla is provided for each crash report. The Socorro server and Bugzilla
are integrated, i.e., developers can directly navigate to the linked bugs (in Bugzilla) from a
crash-type summary in Socorro. Developers use the information contained in crash reports
to debug and fix bugs. Figure 4.2 shows a general view of the Firefox crash triaging system.

Mozilla quality assurance teams triage bug reports and assign severity levels to the bugs [5].
Developers often port patches to fix a bug. Once approved, the patches are integrated into
the source code.

4.2 Identification of Highly-impactful Bugs

We identify highly-impactful bugs following the approach proposed by Khomh et al. [4]. The
approach is composed of three parts. The first part consists in identifying the list of unique
user profiles that are impacted by each bug. The second part is the computation of the
entropy and frequency of the bugs. The third part is the classification of bugs based on

33

Crash Time - OCT 24, 2010 11:20:53
Firefox Install Time – SEP 22, 2010 10:20:15
System Uptime – 1125 seconds
Version- 3.6.13
OS – Windows NT 6.1 2600
CPU – x86
User Comment –
Stack Trace –

Crash Report – e1c1267874640-94324-32423

Frame
0
1
2
3
4
5
6
7

Module

User32.dll
User32.dll
User32.dll
XUI.dll
XUI.dll
Nspr4.dll
XUI.dll

Signature
@0x654789
UserCallWinProcCheckWow
DispatchMethod
DispatchMessage
ProcessNextNativeEvent
nsShell::OnProcess
mozilla::Pump
MessageLoop:Run

Source

Src/win/nsAppShell.cpp:179
Src/win/nsShell.cpp:77
Ipc/glue/MessagePump.cpp:134
Ipc/glue/MessageLoop.c:784

Each Crash Report is
assigned a unique ID

User Environment
Information

All crash Reports with top
signature as
“UserCallWinCheckWow” are
grouped together

Not all frames have Source
Information

Figure 4.1 A sample crash report from Firefox

Crash Type -MMM

Crash Type -2

Mozilla FireFox
+

Mozilla Crash Reporter

--

Signature – UserCallWin…
Bug IDs – 610103 …

Crash Type - 1

NNN
222Crash Report

1

Socorro - Crash Report Server

Bug Report -R-RR
Crash Type -2Crash Type -2

Bug ID – 610103
Submitter –
Status –
Open Date –
Last Modify Date –
Fix Information –

Bug Report -1

Bugzilla – Bug Tracking Server

Crash
Report

Crash Types
are linked with
Bugs

Firefox Submits a
Crash Report when a
Crash Occurs

Figure 4.2 Mozilla crash triaging system

entropy and frequency values. The following subsections elaborate on each of these parts.

Part 1: Identification of Unique User Profiles Impacted by Each Bug

Mozilla crash reports do not contain personal information to identify users reporting the
crashes for privacy reasons but we can identify user profiles with the following information
from crash reports:

- Crash signature: top method signature of a crash. Crashes with the same crash signa-
ture are grouped into one crash-type in Socorro [4].

- OS name: name of the operating system on which the crash occurred.

34

- OS version: version of the operating system on which the crash occurred.

- CPU type: family model of the CPU of the machine on which the crash occurred.

- Bug list: list of bugs related to the crash.

For each crash report, we combine the contained users’ environment information (i.e., OS
name, OS version, CPU type) to build a vector of unique profiles where each profile represents
a unique machine configuration. Identifying unique machine configurations is important to
compute the entropy of a bug. We associate each unique profile with the list of bugs for which
crash reports contain information corresponding to the profile. Some crashes occurred before
their corresponding bugs’ opening, we perform an indirect mapping from crashes to bugs
via crash-types: we map each bug to a set of crash-types (i.e., a group of crashes with the
same crash signature), then map each crash-type to a set of crash reports (each crash report
stands for a user occurrence). Concretely, we build two dictionaries, dictbug and dictcrash.
In dictbug, the key is a bug ID and the value is a set of crash signatures. In dictcrash, the
key is a crash signature and the value is a stack3 of crash reports. By associating the two
dictionaries, we can map a bug to a set of corresponding crash reports, even including those
lacking bug information (i.e., crashes reported before the creation of the bugs). Algorithm 1
and 2 show the pseudocode to link a bug to the machine profiles suffering its related crashes.

Part 2: Computation of the Entropy and Frequency of Bugs

We compute the entropy of a bug using the normalised Shannon’s entropy [45] defined in
Equation (5.1):

Hn(b) = −
n∑

i=1
pi × logn(pi) (4.1)

where b is a bug; pi is the probability of a specific machine profile i reporting the bug b

(pi ≥ 0, and ∑n
i=1 pi = 1); and n is the total number of unique machine profiles running the

software. For a bug b, where all the machine profiles have the same probability of reporting b,
the entropy is maximal (i.e., 1). On the contrary, if a bug b is reported by only one machine
profile i, the entropy of b is minimal (i.e., 0). Bugs with high entropy values are reported by
more unique machine profiles. Therefore, a high entropy value for a bug means that the bug
is experienced by a high percentage of users.

3Every new crash report / crash occurrence will be appended at the end of the structure.

35

Algorithm 1: Map different crashed users to a crash-type, and map different crash-
types to a bug
Input: signature, user, buglist

1 if signature in dictcrash then
2 stackuser ← dictcrash[signature]
3 add user to stackuser

4 else
5 stackuser ← new stack with user
6 dictcrash[signature]← stackuser

7 foreach bug in buglist do
8 if bug in bug_dict then
9 setsignature ← dictbug[bug]

10 add signature to setsignature

11 else
12 setsignature ← new Set with signature
13 dictbug[bug]← setsignature

Algorithm 2: Map crashed occurrences of machine profiles to their bugs
Input: dictbug

1 foreach bug in dictbug do
2 setsignature ← dictbug[bug]
3 foreach signature in setsignature do
4 stackuser ← dictcrash[signature]
5 concatenate stackuser to occuruser

We compute the frequency of a bug b following Equation (4.2).

Fq(b) = Ncr(b)
maxj∈B(Ncr(j)) (4.2)

where b is a bug; Ncr(j) is the number of crash reports linked to the bug j, and B is the
total number of bugs. We implement the entropy and frequency computation algorithm
in Python and share the code in the following repository: https://github.com/swatlab/
highly-impactful.

Part 3 : Classification of Bugs Based on Entropy and Frequency Values

Similar to Khomh et al [4], we use the median values of entropy and frequency to classify
bugs into the following four categories:

• Highly-impactful Bugs: bugs with frequency and entropy values above the median.

https://github.com/swatlab/highly-impactful
https://github.com/swatlab/highly-impactful

36

Crash Database
(Socorro)

Analyse Data

RQ1

RQ2

RQ3

Bug Repository
(Bugzilla)

Identification of
users

Extract bug fixing
metrics & code-
related metrics

Identification
of bugs

Bug reports

Calculation of
frequency &

entropy
Highly-impactful

bugsCrash reports

RQ4

Figure 4.3 Overview of our approach to identify highly-impactful bugs and extract bug fixing
metrics

These bugs impact a large proportion of users.

• Skewed Bugs: bugs with a high frequency value (i.e., above the median) but a low
entropy (i.e., below or equal to the median). These bugs only seriously affect a small
proportion of users and are more likely to be specific to the users’ systems.

• Moderately-impactful Bugs: bugs that are highly-impactful among the users that
report them (i.e., entropy value above to the median) but do not occur very often to
the majority of users (i.e., frequency value below or equal to the median).

• Isolated Bugs: bugs with frequency and entropy values below or equal to the median.
These bugs cause crashes rarely and affect a small number of users.

4.3 Study Design

This section presents the data collection and data processing of our case study, which aims
to address the following four research questions:

1. What is the proportion of highly-impactful bugs?

2. Do highly-impactful bugs possess different characteristics than other bugs?

3. Can we predict highly-impactful bugs?

4. Which benefits can be achieved by predicting highly-impactful bugs?

4.3.1 Data Collection

We mine crash reports to compute the frequency and entropy of bugs as well as bug reports to
study the characteristics of highly-impactful bugs and to build predictive models. We select
the two following open-source software systems: Firefox and Fennec for Android. Firefox is a

37

popular Web browser developed by Mozilla Foundation. Fennec for Android is the codename
of Firefox for Android. We analyse crash reports in both systems from January 2012 to
December 2012 and the corresponding bug reports. These crashes and bugs are extracted
from copies of Socorro and Bugzilla databases obtained from Mozilla Foundation. Table 4.1
shows the numbers of crash reports, extracted bugs reports, related releases, and detected
users in the two subject systems.

Table 4.1 Numbers of crash reports, extracted bugs, related releases, and detected users in
the studied systems

System Crash reports Bug reports Releases* Machine profiles
Firefox 132,484,824 6,636 22 40,942
Fennec 6,239,077 2,565 8† 11,488
* We only count the number of official main releases, e.g., Firefox 10.0.1 and 10.0.2 are considered as
minor releases of Firefox 10.

† Mozilla did not release Fennec 11, 12, and 13. The next release of Fennec 10.0 is Fennec 14.0. We
consider all minor releases of Fennec 11, 12, and 13 as Fennec 10.

4.3.2 Data Processing

Figure 4.3 shows a general view of our data processing approach. First, we mine crash reports
to compute bug frequency and entropy values. Then, we mine bug reports to analyse the
characteristics of highly-impactful bugs and build statistical models for their prediction. The
remainder of this section elaborates more on these steps. All the data and scripts used in
this chapter are available at: https://github.com/swatlab/highly-impactful.

Mining Crash reports

We parse crash reports using a Python script and extract the following information: crash
signature, OS name, OS version, CPU type, bug list, and uptime. We use uptime as a
predictor to answer RQ3, while using the rest of information to identify the list of unique
machine profiles that are associated to each bug (see Section 4.2).

Mining Bug reports

Similar to crash reports, we parse bug reports using a Python script and extract information
about bug opening date, bug fixing date, bug assigned date, reporter name, assignee name,
involved fixer name(s), bug title, bug comments, and re-opened times. We also identify
patches from bugs’ attachments using the keyword “patch”, i.e., if the type of an attachment
is marked as “patch”, we consider it as a bug fixing patch.

https://github.com/swatlab/highly-impactful

38

Computing Code Complexity Metrics

We localise the faulty file(s) of each bug by analysing its crashing stack trace. In most
crash-related bug reports, the top crashing frames are provided in the comments. We parse
these crashing frames to extract crashed files or crashed method signatures, which are then
mapped to the corresponding files in the source code of a specific release on which the crashes
occurred. Using the SLOCCount tool [46], we found that, in both subject systems, C and
C++ code accounts for more than 90%. Hence, in this study, we only take C and C++ files
into account. We analyse every detected main source code release of Firefox and Fennec using
the Understand tool [47], which generates its results in an Understand database (UDB) and
provides a Python API for further analysis. We apply a Python script to extract five code
complexity metrics for each faulty file identified: lines of code, average cyclomatic complexity,
number of functions, maximum nesting, and ratio of comment lines over code lines. Detailed
characteristics of these metrics are described in Section 4.4.

Social Networking Analysis Metrics

From the Understand databases generated in Section 4.3.2, we extract all C and C++ files
and combine each .c or .cpp file with its corresponding .h file as a class node while merging
their dependencies. To represent the relationship among these nodes, we build an adjacency
matrix. Using this matrix and a Python script based on the network analysis package,
igraph [48], we compute the following social networking analysis (SNA) metrics for each class
node: PageRank, betweenness, closeness, indegree, and outdegree (detailed characteristics
of these metrics are described in Section 4.4). We map the SNA metric values of each class
node back to their corresponding bugs. Bugs that do not contain stack trace or could not be
mapped to any file in the source code (e.g., only crashed memory addresses are given in the
stack trace) are not mapped to any SNA or complexity metric value.

4.4 Case Study Results

This section presents and discusses the results of our four research questions. For each
question, we present the motivation, the approach followed to answer the questions, and the
findings.

39

RQ1: What is the proportion of highly-impactful bugs?

Motivation. This question is preliminary to the other questions. It provides quantitative
data on the proportion of highly-impactful bugs in our subject systems. This result will clarify
the prevalence of highly-impactful bugs in Mozilla Firefox and Fennec to help understand
the importance of their identification early on during the development process.

Approach. We identify highly-impactful bugs following the approach described in Sec-
tion 4.2 and compute their percentage over the total number of reported bugs.

Firefox Fennec

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Crash entropy

En
tro
py

Firefox Fennec

0.
00
0

0.
00
1

0.
00
2

0.
00
3

0.
00
4

Crash frequency

Fr
eq
ue
nc
y

Figure 4.4 Distribution of bugs’ crashing entropy and frequency in the subject systems

Table 4.2 Distribution of highly-impactful bugs, and other bugs in the subject systems

System Highly Skewed Moderately Isolated
Firefox 2806 (42.3%) 510 (7.7%) 512 (7.7%) 2808 (42.3%)
Fennec 972 (37.9%) 302 (11.8%) 301 (11.7%) 990 (38.6%)

Findings. Figure 4.4 shows the distribution of entropy and frequency values for all bugs in
our subject systems. Table 4.2 shows the detailed distribution of bugs in the four categories
presented in Section 5.�
�

�
�

Highly-impactful bugs account for respectively 42.3% and 37.9% of all crash related bugs
in the two studied systems.

By focusing their maintenance effort on highly-impactful bugs, software organisations will
significantly improve the user perceived quality of their software systems, i.e., it will reduce
the proportion of crash occurrences in the field.

40

RQ2: Do highly-impactful bugs possess different characteristics than other bugs?

Motivation. Highly-impactful bugs crash very frequently in the field and impact a large
proportion of users. Once such bugs are discovered, developers must fix them as soon as
possible, to reduce their negative impact. Khomh et al. [4] recommended assigning the
highest priority to these bugs. However, to effectively fix highly-impactful bugs quickly and
avoid them being tossed several times, i.e., passed around from one developer to another, it
is important to assign them to the right developers. Previous work [9] found that tossing
bugs results in longer bug fixing time. Highly-impactful bugs also must be fixed completely,
i.e., without any re-opening, because re-opened bugs negatively impact software quality [2].
In this research question, we study the bug fix characteristics of highly-impactful bugs and
compare them to non highly-impactful bugs (i.e., all other remaining bugs).

Approach. To answer this research question, we first apply the approach described in
Section 4.2 to classify bugs from our subject systems in four categories: Highly-impactful Bugs
(highly), Skewed Bugs (skewed), Moderately-impactful Bugs (moderately), and Isolated Bugs
(isolated). Next, for each bug, we parse the corresponding bug report using a Python script
available at https://github.com/swatlab/highly-impactful, and compute the metrics
shown in Table 4.3. Finally, we test the following 10 null hypotheses to compare the bug fix
characteristics of highly-impactful bugs and bugs from the other three categories.

Comparing the effort required to fix highly-impactful bugs vs. other bugs.

H1
01: the fixing time is the same for highly-impactful bugs and other bugs.

H2
01: the triaging time is the same for highly-impactful bugs and other bugs.

H3
01: the number of patches is the same for highly-impactful bugs and other bugs.

H4
01: the comment size is the same for highly-impactful bugs and other bugs.

H5
01: the re-opened frequency is the same for highly-impactful bugs and other bugs.

Comparing people involved in filing and fixing highly-impactful bugs vs. other
bugs

H1
02: reporters’ experience is the same for highly-impactful bugs and other bugs.

H2
02: assignees’ experience is the same for highly-impactful bugs and other bugs.

H3
02: the number of fixers is the same for highly-impactful bugs and other bugs.

H4
02: the number of developers interested in highly-impactful bugs is the same as other bugs.

Comparing the bug fix rate of highly-impactful bugs vs. other bugs

H1
03: the percentage of highly-impactful bugs that are closed is the same as other bugs.

https://github.com/swatlab/highly-impactful

41

Table 4.3 Metrics used to compare the characteristics of highly-impactful bugs and other
bugs

Metric Description and Rationale
Fixing time Duration (in seconds) of the period between the bug opening date and

the last modification date. We use the fixing time as a proxy for fixing
effort.

Triaging time Duration (in seconds) of the period between the bug opening date and
the first bug assignment date. Low triaging time may imply an efficient
work on bug classification.

Patch number Number of patches submitted to fix a bug. A high number of patches
means a high fixing effort (multiple attempts were made to fix the bug).

Comment size Number of words in the comments contained in a bug report. A high
number of words would mean that an intensive discussion took place.

Reporter experience The number of bugs filed by the reporter of a bug in the past. A reporter
who filed a high number of bugs is likely to gain recognition for the
relevance of her bug reports. Quality managers may decide to pay more
or less attention to her reported bugs.

Assignee experience The number of bugs fixed by the bug assignee in the past. Assignees
with a high experience are likely to fix the bug quickly.

Fixer number The number of unique developer names in the bug fixing history. A high
number of fixers means that the bug was tossed around or required the
participation of multiple developers.

CC number Number of developers who were interested in the bug. These developers
may not have played a direct role in fixing the bug. However, a high CC
number indicates a high interest in a bug.

Re-opened frequency Number of time that a bug is re-opened. Frequent bug re-openings
increase development costs and decrease users’ satisfaction [2].

Closed percentage Percentage of bugs from a category (i.e., highly, skewed, moderately,
or isolated) whose final status is “resolved” or “verified”. A high closed
percentage for a category may suggest a prioritisation of the bugs from
the category.

We apply the Wilcoxon rank sum test [49] to accept or reject the first 9 hypotheses. For H1
03,

we compare the values of closed percentage obtained for the four categories. The Wilcoxon
rank sum test is a non-parametric statistical test used for assessing whether two independent
distributions have equally large values. We use this test to compare the characteristics of
highly-impactful bugs with other bugs. We also apply the Kruskal-Wallis test [49] to compare
the characteristics of bugs from all the four categories (i.e., highly, skewed, moderately, and
isolated). The Kruskal-Wallis test is an extension of the Wilcoxon rank sum test. It is used
to assess whether two or more samples originate from the same distribution. It does not
assume a normal distribution since it is a non-parametric statistical test. For all statistical
tests, we use a 95% confidence level (i.e., p-value < 0.05) to decide whether to reject a null

42

hypothesis. As we are investigating 9 characteristics, we apply the Bonferroni correction [50]
which consists in dividing the threshold p-value by the number of tests (i.e., we consider that
there is a statistically significant difference only if the p-value < 0.05/9 = 0.0056).
Because highly-impactful bugs are defined using median (i.e., 50th percentile) values of en-
tropy and frequency (see Section 5), we perform a sensitivity analysis to assess the impact of
this chosen threshold on the results. Precisely, we repeat the identification of highly-impactful
bugs using the 70th, and 90th percentiles, and repeat testing the 10 null hypotheses men-
tioned above.

Findings. Table 4.4 shows the mean values of metrics described in Table 4.3, for highly-
impactful bugs and bugs from the other three categories (i.e., skewed, moderately, and iso-
lated), as well as the p-values for Wilcoxon and Kruskal-Wallis tests. Statistically significant
p-values are bolded in Table 4.3. On the one hand, the results of the Wilcoxon rank sum
test are statistically significant for comment size and reporter experience in both studied
systems. Therefore we reject H4

01 and H1
02. Although in general highly-impactful bugs have

longer comments and are reported by more experienced developers, in Firefox, their comment
size and developers’ experience are lower than those of skewed bugs. On the other hand, there
is no statistically significant difference between highly-impactful bugs and other bugs for the
fixing time, triaging time and the fixer number in both systems, hence we cannot reject H1

01,
H2

01 and H3
02. For H3

01, H5
01, H2

02, and H4
02 the results are system dependant. We discuss them

in detail in the following paragraphs.
Statistically significant differences: In Firefox, the number of patches proposed for
highly-impactful bugs is significantly lower than other bugs. The experience of developers
assigned to highly-impactful bugs and the number of developers indirectly involved (i.e., CC
number) in fixing highly-impactful bugs are significantly higher than other bugs. In Fen-
nec, the bug re-opening frequency of highly-impactful bugs is significantly higher than other
bugs. In both systems, the proportion of highly-impactful bugs that are closed is slightly
higher than the proportion of bugs from the skewed category, but significantly lower than the
proportion of bugs from moderately-impactful and isolated categories that are closed. This
result suggests that Mozilla developers do not necessarily prioritise highly-impactful bugs
during bug fixing activities. Our finding is consistent with previous result by Kim et al. [18],
which suggested that Mozilla developers judge the priority and severity of a bug mostly by
looking at the frequency of its related crashes. The sensitivity analysis confirms these findings
for highly-impactful bugs detected using the 70th percentile. However, if we identify highly-
impactful bugs using the 90th percentile, the differences between the reporter experience and
assignee experience of highly-impactful bugs and other bugs is not statistically significant in
Firefox. In Fennec, the difference between the reporter experience of highly-impactful bugs

43

Table 4.4 Mean value of characteristic metrics for highly-impactful bugs and other bugs, as
well as the p-values of the Wilcoxon and Kruskal-Wallis tests

System Metric Highly Skewed Moderately Isolated Wilcoxon Kruskal-W.

Firefox

Fixing time 1.22e+7 1.40e+7 1.52e+7 1.55e+7 0.126 0.031
Triaging time 4.51e+6 5.54e+6 7.37e+6 3.89e+6 0.212 0.028
Patch number 0.48 0.52 0.61 0.68 4.3e-14 <2.2e-16
Comment size 595.0 728.3 451.9 421.2 <2.2e-16 <2.2e-16
Reopened freq. 0.063 0.061 0.065 0.069 0.645 0.858
Reporter exp. 202.0 224.5 123.8 109.8 <2.2e-16 <2.2e-16
Assignee exp. 959.8 1238.4 747.6 776.9 5.0e-15 <2.2e-16
Fixer number 7.0 6.7 6.8 6.6 0.709 0.588
CC number 6.7 6.5 6.1 5.7 1.6e-5 1.0e-5
Closed % 59.2% 55.1% 73.5% 73.9% – –

Fennec

Fixing time 8.87e+6 6.63e+6 8.34e+6 1.33e+7 0.41 0.042
Triaging time 3.12e+6 5.86e+6 1.36e+6 6.63e+6 0.197 0.34
Patch number 0.59 0.43 0.80 0.68 0.066 2.0e-6
Comment size 585.7 538.2 484.3 428.6 7.4e-11 9.0e-11
Reopened freq. 0.122 0.08 0.070 0.066 9.7e-6 1.4e-4
Reporter exp. 152.3 149.1 97.8 97.0 1.7e-8 2.3e-13
Assignee exp. 341.7 459.4 276 284.1 0.036 4.8e-9
Fixer number 6.8 5.8 7.0 6.8 0.112 8.0e-4
CC number 6.5 6.0 6.4 6.2 0.174 0.25
Closed % 63.7% 53.3% 73.2% 74.8% – –

and other bugs is not statistically significant. We attribute this result to the low number of
highly-impactful bugs found in these systems when using the 90th percentile (i.e., 4.2% in
Firefox and 3% in Fennec).
Non statistically significant differences: The results from Table 4.4 show lower fix-
ing time values in Firefox for highly-impactful bugs in comparison to other bugs. However,
the Wilcoxon test was not statistically significant. In our previous work [4], we found that
highly-impactful crash-types required statistically longer fixing time. However, a crash-type
is often related to more than one bug (and vice-versa), which could explain the different
result obtained here. Also, we relied on machine profiles to identify highly-impactful bugs
instead of user profiles as in our previous work [4]. This choice was dictated by the data
provided to us by the Mozilla Foundation, which did not contained references to users (be-
cause of privacy restrictions). The result of the sensitivity analysis shows that the number
of developers involved in the correction of bugs (i.e., the fixer number) with frequency and
entropy values above the 70th percentile is statistically significantly higher than other bugs
in Fennec. If we identify highly-impactful bugs using the 90th percentile, their fixing time is
significantly higher than the fixing time of other bugs in Firefox. However, they are in small
number (i.e., 4.2% of total crash-related bugs).

44

�

�

�

All these results suggest that Mozilla quality assurance teams do not prioritise highly-
impactful bugs (a lower proportion of these bugs are fixed) albeit they impact a large user
base and do not seem to be more difficult to fix than other bugs. If developers could
predict these highly-impactful bugs early on and fix them, they would significantly reduce
their negative impact and improve the user-perceived quality of the system.

RQ3: Can we predict highly-impactful bugs?

Motivation. Khomh et al. [4] have proposed an entropy-based approach (described in
Section 4.2) that can be used to identify highly-impactful bugs. However, this approach
requires a certain period of time to assess which bug occurs frequently with high entropy.
Table 4.4 shows that the average triaging time for highly-impactful bugs in Firefox and Fennec
is respectively 52.2 days and 36.2 days. During those periods, the users of the systems
are impacted by crashes that can lead to data loss and–or frustration. In this research
question, we investigate strategies to predict highly-impactful bugs. Specifically, our goal is
to determine whether a bug is highly-impactful at the moment it is reported (i.e., once the
bug report is filed). Such a prediction can be applied by software organisations to identify
highly-impactful bugs at an early stage of development, e.g., during alpha or beta-testing
phases. This approach may allow developers to focus on highly-impactful bugs earlier and
improve the overall quality of the software more efficiently.

Approach. We mine bug reports and crash reports and compute the metrics described in
Table 4.5 to Table 4.8. We select these metrics because they have been successfully used in
bug prediction studies (e.g., Shihab et al. [2] used Week day, Month day, and Day of year
to predict re-opened bugs) and they are available once a bug is submitted. As in Chapter 3,
we choose several regression and classification algorithms in R to build predictive models:
General Linear Model (GLM), C5.0, ctree, randomForest, and cforest.

Before building our models, we use the Variance Inflation Factor (VIF) analysis to remove
correlated variables. We set the threshold to 5. Variables with VIF results over the threshold
are considered correlated. In Table 4.5 to Table 4.8, * indicates for the eliminated metrics in
Firefox while † indicates for the eliminated metrics in Fennec.

We cluster the extracted bugs of the different releases; grouping bugs from minor releases
into their main release (e.g., bugs from releases 10.0.1 and 10.0.2 are grouped with those of
the major release 10). We intended to use consecutive releases to test the performance of
our prediction models but observed that a high proportion of bugs is transferred across the
releases. In some releases, the “transferred bugs” account for more than 80% of all bugs. This
high bug transfer rate is due to Mozilla rapid release cycle, which it follows since 2011 [51].

45

Table 4.5 Bug report metrics

Metric Description and Rationale
Week day Day of week (from Mon to Sun). Bug reports created on certain week days

may be overlooked for fixing; resulting into large numbers of crashes. (e.g.,
Friday) [39, 40].

Month day Day in month (1-31). Bug reports created on certain days may be over-
looked for fixing; resulting into large numbers of crashes. (e.g., some dates
before holidays).

Month Month of year (1-12). Bug reports created in some seasons may be over-
looked for fixing; resulting into large numbers of crashes. (e.g., December,
during Chrismas holidays)

Day of year*† Day of year (1-366). Combined the rationales of month day and month.
Description Size Number of words in a bug description. A too short message (due to hasty

work) or too long message (due to the difficulty) may lead to fixing failure
and late resolution of the bug, which may lead to large numbers of crashes.

Component Component where a bug is located. Bugs occurring in complex or central
(i.e., highly coupled with other parts of the system) components may be
difficult to resolved, which may lead to large numbers of crashes.

Reporter experi-
ence

Number of bugs filed by the reporter of a bug in the past. A reporter who
filed a high number of bugs is likely to gain recognition for the relevance of
her bug reports. Quality managers may decide to pay more or less attention
to her reported bugs, which may result into large or low numbers of crashes.

Table 4.6 Crash report metrics

Metric Description and Rationale
Uptime Median uptime of crashes related to a bug. The uptime of a crash is the

duration (in seconds) of the period during which Firefox or Fennec was
running on a user’s machine before the occurrence of the crash. Bugs
related to low uptime values may cause large numbers of crashes (a user
may restart its system and–or the software multiple times in hope that a
rejuvenation will suppress the crash).

Pre-opening daily
crashes

Average daily crash occurrences for a bug before the bug report is filed
(data extracted from crash reports during the period of February 2010 to
December 2011). High pre-opening crash occurrences may imply high post-
opening crash occurrences.

Pre-opening daily
impacted users†

Average daily number of machine profiles impacted by a bug before the
bug report is filed (calculated from the same dataset as pre-opening daily
crashes). High pre-opening daily rate of impacted machine profiles is likely
to translate into high post-opening rate of impacted machine profiles.

46

Table 4.7 Code complexity metrics

Metric Description and Rationale
LOC Lines of code of the bug-related class. A large class may be hard to maintain

and prone to crashes.
of functions*† Number of functions in the bug-related class. Same rationale as LOC.
Cyclomatic com-
plexity

Average cyclomatic complexity of the functions in the bug-related class.
Complex code is hard to maintain and prone to crashes.

Max nesting† Maximum level of nested functions. A high level of nesting increases the
conditional complexity and is likely to increase the crashing probability.

Comment ratio Ratio of the number of comments to the total lines of code in the bug-
related class. A code with few comments may not be easy to understand,
and may consequently lead to large numbers of crashes.

Table 4.8 Code complexity metrics (other selected metrics share the rationale as PageRank)

Metric Description and Rationale
PageRank*† Time fraction spent to “visit” the bug-related class in a random walk in the

call graph. If an SNA metric of a class is high, a bug in that class may be
triggered through multiple paths and the bug is likely to appear frequently,
because multiple paths lead to that class.

Betweenness In the call graph, number of classes passing through the bug-related class
among all shortest paths.

Closeness Sum of lengths of the shortest call paths between the bug-related class and
all other classes.

Indegree Numbers of callers of the bug-related class.
Outdegree Numbers of callees of the bug-related class.

With short release cycles, many bugs are transferred from an old release to new releases
before getting fixed. If only few new bugs are discovered in a new release there is no need
for a prediction model because developers could manually triage the bugs. Hence, to test
the performance of our proposed models, we consider releases with at least 25% of new bugs.
More specifically we test our models on releases of Firefox and Fennec containing respectively
25%, 30%, and 35% of new bugs (in fact, there are only two releases of Firefox in which new
bugs account for more than 40%). For each of these thresholds, we select Firefox and Fennec
releases with amounts of new bugs greater than the threshold. We use the new bugs to create
a testing set. We use the bugs from the preceding release to train the models. We measure
the accuracy, precision, recall and F-measure for each classification algorithms using only the
new bugs from the testing set (to avoid overfitting). We use the variable importance function
(e.g., varimp) in R to discover the top predictors for each of the algorithms.

Findings. Table 4.9 shows the average prediction accuracy, precision, recall, and F-measure

47

Table 4.9 Accuracy, precision, recall and F-measure (in %) obtained from GLM, C5.0, ctree,
randomForest, and cforest to predict highly-impactful bugs (the proportion of new bugs is >
35% (testing set))

System Metric GLM C5.0 ctree randomForest cforest

Firefox

Accuracy 40.2 64.2 66.2 64.9 63.1
precision 31.7 60.3 64.2 61.7 58.8
recall 23.2 70.6 64.0 66.9 71.8
F-measure 26.8 65.0 64.1 64.2 64.7

Fennec

Accuracy 52.2 45.2 46.2 47.3 45.4
precision 32.6 43.8 45.1 45.5 44.9
recall 6.6 80.1 94.9 91.7 98.3
F-measure 10.9 56.6 61.2 60.9 61.6

Table 4.10 Number of training/testing pairs, precision and recall (in %) of cforest with
different proportions of new bugs (testing sets)

New bugs Firefox Fennec
pairs Precision Recall # pairs Precision Recall

25% 66 49.4 84.5 21 42.3 97.2
30% 34 49.2 83.1 17 43.2 97.4
35% 12 65.6 71.8 12 44.9 98.3

for the five classification algorithms in Firefox and Fennec.�

�

	
cforest achieves the best recall when predicting highly-impactful bugs in both studied sys-
tems. In general, our predictive models can obtain a precision of 64.2% in Firefox and
45.4% in Fennec, as well as a recall of 71.8% in Firefox and 98.3% in Fennec.

Table 4.10 shows how the precision, recall, and F-measure of the cforest algorithm varies
with the size of the testing set (i.e., the amount of new bugs). Precision and recall increase
with the size of the testing set in Fennec; in Firefox, the precision increases while the recall
decreases.

The best results are obtained when the proportion of new bugs represents more than 35%
of all bugs. We computed the top predictors for the different models and found that pre-
opening daily impacted user number is the most important predictor for four
algorithms in Firefox; meaning that the pre-opening (i.e., before the bug report
is opened) impact of a bug on users is a good indicator of its future impact on
users (i.e., after bug opening), which is an expected result. In Fennec, component of
bug, bug opened month, and median crashing uptime are the top predictors for at lease two
algorithms. The best predictor is not obviously identified for this system. One explanation
may be the small size of Fennec.

48

RQ4: Which benefits can be achieved by predicting highly-impactful bugs?

Motivation. Results from RQ3 show that highly-impactful bugs can be predicted early
on before a new release, with a recall of 71.8% in Mozilla and 98.3% in Fennec. Therefore,
rather than waiting for a large number of crashes to occur, developers can identify and
address highly-impactful bugs without delay. To quantify the benefits that can be achieved
by predicting highly-impactful bugs, we simulate the application of our proposed cforest
model (the best predictive model of the case study presented in RQ3) to the 12 pairs of
releases that contain at least 35% of new bugs and assess the amount of crash occurrences
and unique machine profiles that can be avoided.

Approach. In the studied training releases, we compute the median fixing time (i.e., the
period between the bug opening date and the last modification date) of all resolved bugs
with the priority “P1”. Those bugs are assigned the highest priority and are expected to be
fixed earlier than other bugs. We refer to it as durationmed. For the bugs in the studied
testing releases, we apply our cforest model to predict their categories (i.e., highly, skewed,
moderately, or isolated). We use Equation (4.3) to compute the simulated fixed date of a
bug:

Dpf = Do + Durationmed (4.3)

where Dpf stands for the date at which a highly-impactful bug, which is successfully predicted
or transferred from a training release, would be potentially fixed; Do stands for the opened
date of the bug; and Durationmed stands for the median fixing duration of fixed bugs that
were assigned with the highest priority (i.e., P1). We consider all the crashes (related to the
predicted or transferred highly-impactful bug) that occurred after the simulated fixing date,
as crashes that can be avoided, if developers fix the bug without delay. We identify machine
profiles impacted by these crashes by applying the heuristic described in Section 4.2.

To calculate the proportion of crash occurrences that can be reduced, we sum the crashes
that can be avoided for all successfully predicted and transferred highly-impactful bugs in
each testing release, then divide this number by the total number of crashes in the release.
To calculate the proportion of unique machine profiles that can be reduced, for every testing
release, we subtract each successfully predicted or transferred bug’s related machine profiles
that are impacted before the simulated fixing date from the total unique machine profiles
impacted by this bug. We divide this number by the total number of machine profiles to
obtain the percentage of reduced machine profiles for the bug. Next, we compute the average
percentage of reduced machine profiles for all bugs in the testing release. Finally, we compute
the average percentage of crash occurrences and unique machine profiles that can be reduced
for Firefox and Fennec releases respectively.

49

Because developers’ time and resource is limited, we also compute the amount of time that
developers would spend fixing false positives (i.e., wrongly predicted highly-impactful bugs).
We divide the result by the total time spent on bug fixing activities to calculate the percentage
of time lost to false positives.

Finding. Some amounts of crash occurrences can be avoided by our “early triag-
ing technique”. On average, the numbers of crash reports can be reduced by
23.0% in Firefox and by 13.4% in Fennec. The numbers of unique machine pro-
files that are impacted by crashes can be reduced by 28.6% in Firefox and by
49.4% in Fennec. In addition, false positive highly-impactful bugs would consume on aver-
age 6.3% of the total bug fixing time in Firefox (respectively 29.6% in Fennec). We manually
investigated these false positive highly-impactful bugs and found that 96.4% of these bugs in
Firefox (respectively 95.5% in Fennec) are assigned a severity level of “blocker” or “critical”.
Also, 51.2% of them eventually get fixed in Firefox (respectively 41.8% in Fennec). This re-
sult suggests that even though these false positives are not highly-impactful bugs in the sense
that they do not have both high entropy and high frequency, they are nonetheless important
and should be fixed in priority. Therefore, the amount of time spent on these bugs is not
wasted.�

�

�

In conclusion, these results show that triaging and predicting highly-impactful bugs early
(before a new release of a software system) can help reduce a large amount of crashes
experienced by users, which could improve the overall quality of the software system in a
more cost-effective manner.

4.5 Threats to Validity

This section discusses the threats to validity of our study following the guidelines for case
study research [44].

Construct validity threats concern the relation between theory and observation. In this study,
the construct validity threats are mainly due to measurement errors. We parse crash and
bug reports from copies of Socorro and Bugzilla databases obtained from Mozilla Foundation.
Khomh et al. [4] found in a previous study that highly-impactful crash-types require longer
fixing time. However, our result in this study show that the fixing time of highly-impactful
bugs in Firefox is slightly lower in comparison to other bugs. We attribute this difference
to the fact that a crash-type is often related to more than one bug (and vice-versa). Also,
in this study, we rely on machine profiles to identify highly-impactful bugs instead of users’
profiles inferred from installation time as in Khomh et al.’s work [4]. This choice is dictated
by the data provided to us by Mozilla Foundation, which do not contain references to users.

50

In RQ4, we estimated the date at which a successfully predicted or transferred highly-
impactful bug is fixed by adding the median fixing duration of fixed bugs that are assigned
the highest priority in our training data set to the bug opening date. This estimation may
not be accurate. However, our goal in RQ4 is only to provide a simulation of the proportion
of crash occurrences that can be avoided.

Internal validity threats concern factors that may affect a dependent variable and were not
considered in the study. In RQ3, we imposed a minimum size to our testing sets, i.e., we
considered releases with at least 25% of new bugs. However, to avoid biasing our results with
this threshold, we performed additional evaluations of our proposed models using respectively
25%, 30%, and 35% of new bugs. In Bugzilla, all time stamps are reported in UTC timezone.
Therefore, reported week day, month day, and month might not precisely reflect developers’
local time. However, from all these metrics, only month contributed significantly to the
models (see the results about top predictors). This metric (i.e., month) is less likely to be
biased by time zone conversions.

Conclusion validity threats concern the relation between the treatment and the outcome. We
paid attention not to violate assumptions of the performed statistical tests. To determine the
cut-off of bugs with high crash entropy and high crash frequency, we conducted a sensitivity
analysis. We applied different threshold of 50%, 70%, and 90% of percentiles to verify
the characteristics of highly-impactful bugs. Results show that different percentiles do not
affect the conclusion. For any detail about the sensitivity analysis, please check our data
at: https://github.com/swatlab/highly-impactful. We used non-parametric tests that
do not require making assumptions about the data set distribution. In RQ2, we did not
investigate the characteristics of the four categories of bugs with respect to priority and
severity assigned in Bugzilla because, in our previous work [4], we found that the priority
and severity labels in Mozilla’s bug reports do not reflect the concrete levels of attention paid
by developers when fixing the bugs.

External validity threats concern the possibility to generalise our results. Although we only
conduct our case study with two Mozilla subsystems, because only the Mozilla Foundation
has opened their crash collecting database to the public [17] to date, most of our findings are
consistent with previous studies [4, 12]. We share our data and scripts at: https://github.
com/swatlab/highly-impactful. Further studies with different systems are required to
verify our results and make our findings more generic.

https://github.com/swatlab/highly-impactful
https://github.com/swatlab/highly-impactful
https://github.com/swatlab/highly-impactful

51

4.6 Chapter Summary

Bug triaging guides software practitioners to focus their effort to address bugs with high
priority when resources are limited. Current bug triaging approaches only take bugs’ crash
frequency into account while ignoring the impact on end users. Although previous studies
used entropy analysis to improve the current bug triaging approaches, these approaches were
applied only after end users have already suffered crashes for a certain period of time. In
this chapter, after examining the prevalence and characteristics of highly-impactful bugs,
i.e., bugs with high crashing frequency and entropy, in Mozilla Firefox and Fennec, we built
predictive models to help software organisations predict them early before they impact a
large population of users. Our proposed models can predict highly-impactful bugs with a
precision up to 64.2% (in Firefox) and a recall up to 98.3% (in Fennec). Using a simulation
to evaluate the benefit of our best predictive model, cforest, we found that, on average,
our early prediction technique can effectively prevent 23.0% of crash occurrences in Firefox
(respectively 13.4% in Fennec) and reduce 28.6% of unique machine profiles that are impacted
in Firefox (respectively 49.4% in Fennec). Software organisations could use our suggested
predictive models to identify highly-impactful bugs and improve the satisfaction of their
users. In the future, we plan to implement our approach in a tool and validate our results
on different software systems. We also appeal to other software organisations to share their
crash reports databases with the public to help generalise the results of our study.

52

CHAPTER 5 CRASH-INDUCING COMMITS

Software crashes are feared by software organisations and end users. In the previous chapter,
we built statistical models in Mozilla projects to predict crash-related bugs that lead to
frequent crashes, which impact a large user base. This improved approach can be applied at
an early stage of development to detect crash-related bugs with a serious negative impact on
users, but software development teams still have to wait for a certain period, during which
crashes are collected, triaged and filed into bug reports, before they can carry out their
bug fixing activities. If software organisations could detect crash-prone code even earlier, at
the time of commits, they could address the problems as soon as possible and prevent the
unpleasant experience of crashes to the users. This approach is referred to as “Just-in-Time
Quality Assurance” [32], which enables fine-grained defect predictions and allows quality
assurance teams to identify error-prone code early on. By identifying error-prone commits
early, quality assurance teams are also likely to make better decisions choosing developers to
fix a bug.

In this chapter, we investigate statistical models to predict commits that may introduce
crashes (referred as “crash-inducing commits”) in Mozilla Firefox. We are limited to Firefox
because, at the time of this writing, no other organisation provides access to its crash report-
ing system. Software organisations can apply our proposed approach to detect crash-prone
code early on before they affect a large number of users and address the defective code as soon
as possible. We study Mozilla Firefox’ crash reports between January 2012 and December
2012, as well as its commit logs from the beginning of the project until December 2012, and
answer the following research questions:

RQ1: What is the proportion of crash-inducing commits in Firefox?

We analyse Firefox’ crash reports and link them to the corresponding crash-related
bugs. We then use the SZZ algorithm [39] to map these bugs to their related commits
and identify the commits due to which the crash-related bugs occurred. We found that
crash-inducing commits account for 25.5% in the studied version control system.

RQ2: What characteristics do crash-inducing commits possess?

By investigating the characteristics of crash-inducing commits and other commits, we
found that, in general, crash-inducing commits are submitted by developers with less
experience and are more often committed by developers from Mozilla. Developers
change more files, add and delete more lines in crash-inducing commits. Compared to

53

other commits, more crash-inducing commits fix a previous bug, and often, they lead to
another bug. In terms of changed types, crash-inducing commits contain more unique
changed types and the changed statements tend to be scattered in more changed types,
while other commits tend to be changed on a specific changed type.

RQ3: How well can we predict crash-inducing commits?

Previous studies, which proposed statistical models to predict defects from bug reports,
could be effective to some extent. However, before a certain type of crashes is filed into
the crash collecting system, a large number of end users might have already suffered a
negative experience. Moreover, during this period, developers may become less familiar
with the code. In this case, they may spend more time identifying the erroneous lines
to fix the problems. Therefore, statistical models that can predict error-prone code
just-in-time are required to help software practitioners detect crash-inducing commits
and effectively fix them early. We use GLM, Naive Bayes, C5.0, and Random Forest
algorithms to predict whether or not a commit will induce future crashes. Our predictive
models can reach a precision of 61.4% and a recall of 95.0%. Software organisations
can apply our proposed technique to improve their defect triaging process and the
satisfaction of their users.

Chapter Overview

Section 5.1 explains the identification technique of crash-inducing commits. Section 5.2
describes data collection and processing for the empirical study. Section 5.3 presents and
discusses the results of the three research questions. Section 5.4 discusses threats to the
validity. Section 5.5 summarises this chapter.

5.1 Identification of Crash-inducing Commits

In this section, we describe the identification procedure for crash-inducing commits. All of
our data and analytic scripts are available at:
https://github.com/swatlab/crash-inducing.

Applying the SZZ algorithm [39], we identify crash-inducing commits in two steps: iden-
tification of crash-related bugs and identification of commits that induce those bugs. The
remainder of this section elaborates on each of these steps.

https://github.com/swatlab/crash-inducing

54

5.1.1 Identification of Crash-related Bugs

We extract the bug list from each of the studied crash reports. For each of the crash-related
bug, we use regular expressions to identify the crashed stack trace from the bug’s title and
comments, then extract crash-related files or methods from the stack trace. We record the
identified files or methods as defective locations of the crash-related bugs, which will be used
to identify crash-inducing commits in the next step. Each crash-related bug may be linked
to multiple crash occurrences. We sort these crashes by time and record the dates of the first
and the last crash occurrences before the bug was opened.

5.1.2 Identification of Crash-inducing Commits

Since Śliwerski et al. [39] introduced the SZZ algorithm, a plethora of studies (such as [52, 53,
54]) have leveraged this approach to identify the commits that induce subsequent commits,
especially bug fixes, in version control systems. In this paper, we use the SZZ algorithm to
identify the commits that lead to crash-related bugs as follows.

Extraction of Crash-related Changed Files

We use heuristics proposed by Fischer et al. [37] to map the crash-related bug IDs to their
corresponding bug fixes. We use regular expressions to detect bug IDs from the message
of each commit. We then manually eliminate the false positives from the results. Some
commits that fix previous bug fixes, i.e., supplementary bug fixes, may lack bug identifier in
the commit messages, where only a commit ID of a previous fix is provided. We track these
commit IDs back to their original commits and check whether these original commits could
be mapped to a bug report. Thus, we ensure that every crash-related bug can be map to all
possible corresponding commits. As Mozilla’s revision history is managed by Mercurial, for
each of the identified bug fixes, we run a Mercurial command to extract its modified files and
deleted files:

hg log --template {rev}, {file_mods}, {file_dels}

Here, we do not take added files into account, because only modified and deleted files could
be changed by preceding commits.

Identification of the Previous Commits of the Changed Files

The changed files identified in Section 5.1.2 (i.e., modified and deleted files) are considered as
files that address the crash-related bugs. For each of the changed files in a certain commit C to

55

the bug Bcrash, if its previous commit C ′ is dated before the bug’s first crash occurrence date,
C ′ would be considered as a “crash-inducing commit”. Concretely, to seek out the previous
commits of each changed file to a specific commit, we use Mercurial’s annotate command
to track the previous commit ID of each line in this file. Among the identified commit IDs,
we first remove those related to white spaces and comment lines. The remaining commit
IDs are candidates of crash-inducing commits. Then, for each of the IDs, we record its
committed date as Dcandidate. We find out the first crash date Dfirst of the bug Bcrash, which
is extracted in Section 5.1.1, and compare it with Dcandidate. If Dcandidate is earlier than Dfirst,
this candidate commit is identified as a “crash-inducing commit”. Otherwise, if Dcandidate is
later than Dfirst, but earlier than the last crash date Dlast before the opening of the bug, we
check whether this candidate commit contains any of the files appearing in the crashed stack
trace of Bcrash. If yes, we also include this commit into the set of crash-inducing commits.

All of the above steps have been implemented in Python scripts. Future researchers can use
our scripts to validate our data analysis process or conduct their replication studies.

5.2 Case Study Design

This section describe the data collection and processing for our case study, which aims to
address the following three research questions:

1. What is the proportion of crash-inducing commits in Firefox?

2. What characteristics do crash-inducing commits possess?

3. How well can we predict crash-inducing commits?

5.2.1 Data Collection

We analyse crash reports of Mozilla Firefox from January 2012 until December 2012. Since
a crash-inducing commit cannot be submitted later than any of its related crashes, we select
the revision history of Mozilla Firefox from the beginning of the project until December 2012.
In summary, there are in total 132,484,824 crash reports (grouped into 2,210,126 crash-types)
and 127,212 commits selected in this study.

5.2.2 Data Processing

Figure 5.1 shows an overview of our data processing steps for the case study. The correspond-
ing data and Python scripts are available at: https://github.com/swatlab/crash-inducing.

https://github.com/swatlab/crash-inducing

56

Crash Database
(Socorro)

Data analysis

RQ1

RQ2

RQ3Bug Repository
(Bugzilla)

Extraction of crashed
stack traces

Identification
of crash-related bugs

Version Control
System

(Mercurial)

Identification of
bug fixes

Extraction of commit
metrics & code-
related metricsIdentification of

crash-inducing
commits

Crash reports

Bug reports

Commit logs

Figure 5.1 Overview of our approach to identify crash-inducing commits and extract their
characteristic metrics

Mining Crash Reports

To identify crash-inducing commits and investigate the characteristics of these commits, we
extract the following metrics from each crash reports: bug list, crash date, and release number.
We use the bug IDs in the bug list to map a crash report to its bug reports. We then use
crash date to find the earliest and the latest crash occurrence date before opening of each
bug (see Section 5.1.1). We use the source code of all detected releases to compute code
complexity metrics and social network analysis metrics.

Computing Code Complexity Metrics

For each studied commit, we use the Mercurial log command to extract all of its changed files.
Then, as in Chapter 4, we apply the source code analysis tool Understand [47] to compute
the code related metrics of the analysed files and identify the relationship among these files.
We use a Python script to extract five metrics on code complexity for the files in each subject
commit: lines of code (LOC), average cyclomatic complexity, number of functions, maximum
nesting, and ratio of comment lines over all lines in a file. Because more than 90% of Firefox’
code is written in C or C++ (see Chapter 4), in this step, we only take C and C++ files into
consideration. Details of the selected code complexity metrics are discussed in Section 5.3.

Computing Social Network Analysis Metrics

From the the Understand database generated in Section 5.2.2, we identify the dependency
among different files in Firefox and compute Social Network Analysis (SNA) metrics for each
file. We compute the following social network analysis metrics: PageRank, betweenness,
closeness, indegree, and outdegree. Details of the selected SNA metrics are discussed in

57

Section 5.3.

In Section 5.2.2 and Section 5.2.2, we compute the code related metrics for each of the releases
detected from Section 5.2.2. For a given commit C whose committed date is Dc, we search
the latest release R whose release date Dr is satisfied: Dr < Dc. We map all the files in the
commit C to the release R and record the code complexity and SNA metrics for each of the
successfully mapped files.

Identifying Changed Types

In a commit, different types of changes affect a software system to different extents in terms
of crashes. For example, comment changes and refactoring would have little probability
to trigger subsequent crashes. Yet, if parameters or function calls are not appropriately
modified (or added/deleted) in a commit, crashes would probably happen when the commit
is integrated into the version control system. We use the source code analysis tool srcML [55]
to convert C or C++ code into XML files where each syntactic statement will be converted
into an XML node, in which an XML tag labels its type. For a given changed file F in a
certain commit C, we use the following Mercurial command to check it out:

hg cat -r C F

Then, we also check out the file with the same name F ′ in the previous commit C ′. After
converting F and F ′ into XML format, we use a Python script to recursively compare the
difference on each of the corresponding srcML tags1. As we detected more than 80 unique
srcML tags from the studied changed files, we group the srcML tags with similar semantic
functions into a “changed type”, while ignoring trivial srcML tags, such as “block” and
“@format”. Table 5.1 shows all of changed types and their corresponding srcML tags.

Besides counting the number of changed types in a commit, we also investigate the distribu-
tion of the changed types in the commit. We compute the value of the normalised Shannon
entropy [45], defined as:

Hn(C) = −
n∑

i=1
pi × logn(pi) (5.1)

where C is a commit; pi is the probability of C possessing a specific changed type CTi (pi ≥ 0,
and ∑n

i=1 pi = 1); n is the total number of unique changed types listed in Table 5.1. So, for a
commit, if all changed types have the same occurrences, i.e., the changed types are equally
distributed, the entropy is maximal (i.e., 1). If a commit only has one changed type, the
entropy is minimal (i.e., 0).

1For all srcML tags, please refer to:
http://www.srcml.org/doc/srcMLGrammar.html

http://www.srcml.org/doc/srcMLGrammar.html

58

Table 5.1 Changed types identified from Firefox’ source code

Changed type srcML tag(s)
Class class, class_decl, member_list
Comment comment
Constructor constructor, constructor_decl
Control flow while, do, if, else, break, goto, for, foreach, continue, then, switch, case,

return, condition, incr, default
Data structure enum, struct, struct_decl, typedef, union, union_decl
Declaration asm, decl, decl_stmt, using, namespace, range, specifier
Destructor destructor, destructor_decl
Function function, function_decl
Init init
Invocation call
Access modifier super, public, private, protected, extern
C++ feature template
Parameter param, parameter_list, argument, argument_list
Preprocessor cpp:define, cpp:elif, cpp:else, cpp:endif, cpp:error, cpp:file, cpp:if,

cpp:ifdef, cpp:ifndef, cpp:include, cpp:line, cpp:pragma, cpp:undef,
cpp:value, cpp:derective, macro

Refactoring name, typename, label
Variable Type type

5.3 Case Study Results

This section presents and discusses the results of our three research questions. For each
question, we discuss the motivation, the approach designed to answer the questions, and the
findings.

RQ1: What is the proportion of crash-inducing commits in Firefox?

Motivation. This question is preliminary to the other questions. It provides quantitative
data on the prevalence of commits that induce subsequent crashes in Mozilla Firefox. The
results of this question will help software managers realise the prevalence of the crash-inducing
commits and adjust their bug triaging strategy to focus the resources to resolve defects
causing the crashes as soon as possible.

Approach. We identify crash-inducing commits using the technique presented in Section 5.1,
then calculate their percentage over the total number of studied commits.

Finding. Among the 127,212 analysed commits, 32,463 are identified to result in future
crashes. Figure 5.2 illustrates the proportion of crash-inducing commits and other commits
(referred as crash-free commits hereafter).

59

�
�

�
�

Crash-inducing commits account for more than 25% of the total number of studied commits
in Firefox.

One out of every four commits would cause subsequence crashes, which are considered as
severe defects [56], because crashes can unexpectedly stop users’ running process, lead to
negative user experience and even decrease the reputation of a software organisation. There-
fore, software practitioners should capture crash-inducing commits quickly, i.e., when they
are submitted into the version control system to address them as soon as possible. In the rest
of this section, we will investigate the characteristics of crash-inducing commits and examine
how to effectively predict them early.

RQ2: What characteristics do crash-inducing commits possess?

Motivation. Crash-inducing commits lead to bad user experience. If such a problem
was not addressed promptly, developers would have to re-understand the code to locate
the erroneous lines. Understanding the characteristics of crash-inducing commits can help
software practitioners be aware of the factors that lead to crashes of a software system, and
build predictive models to prevent them just-in-time.

Approach. For each of the commits identified either as crash-inducing commit or crash-
free commit, we parse its commit log to extract the metrics presented in Table 5.2. We
test the following nine null hypotheses to statistically compare the characteristics between
crash-inducing commits and crash-free commits.

Comparing the extents of changes in crash-inducing vs. crash-free commits.

H1
01: the number of words is the same for crash-inducing and crash-free commits.

H2
01: the number of changed files is the same for crash-inducing and crash-free commits.

H3
01: the number of added lines is the same for crash-inducing and crash-free commits.

H4
01: the number of deleted lines is the same for crash-inducing and crash-free commits.

Comparing the changed types of crash-inducing vs. crash-free commits.

H1
02: the number of unique changed types is the same for crash-inducing and crash-free com-

mits.

H2
02: the entropy value of changed types is the same for crash-inducing and crash-free commits.

Comparing the people and bug related factors of crash-inducing vs. crash-free
commits.

H1
03: committers’ experience is the same for crash-inducing and crash-free commits.

60

74.5%

25.5%

Crash−free
Crash−inducing

Figure 5.2 Proportion of crash-inducing commits and crash-free commits in Firefox

Table 5.2 Metrics used to compare the characteristics between crash-inducing commits and
crash-free commits

Metric Description and rationale
Committer’s
experience

Number of prior submitted commits.

Message size Number of words in a commit message.
Changed files Number of changed files (including added, deleted, and modified files)

in a commit.
Added lines Number of added lines of code in a commit.
Deleted lines Number of deleted lines of code in a commit.
Number of
changed types

Number of unique changed types in a commit.

Entropy of
changed types

Measurement of the dispersion of different changed types in a commit
(see Section 5.2.2).

Using Mozilla
email

Whether a committer uses a Mozilla email address.

Is bug fix Whether a commit is aimed to fix a bug.

H2
03: the percentage of Mozilla committers is the same for crash-inducing and crash-free

commits.

H3
03: the percentage of bug fixing commits is the same for crash-inducing and crash-free

commits.

We use the Wilcoxon rank sum test [49] to accept or reject the 7 first null hypotheses. As for
H2

03 and H3
03, we simply compare the percentage values between crash-inducing commits and

crash-free commits. We use a 95% confidence level (i.e., p-value < 0.05) to decide whether
to reject a null hypothesis. Because we will conduct 7 null hypothesis tests, to counteract
the problem of multiple comparisons, we apply the Bonferroni correction [50] that consists in
dividing the threshold p-value by the number of tests. Thus, our threshold to decide whether
a result is statistically significant is p-value < 0.05/7 = 0.007.

61

Table 5.3 Median value of characteristic metrics for crash-inducing commits and crash-free
commits, as well as the p-value of the Wilcoxon rank sum test

Metric Crash-inducing Crash-free p-value
Committer’s experience 190 246 <2.2e-16
Message size 12 11 <2.2e-16
Changed files 3 2 <2.2e-16
Added lines 9 5 <2.2e-16
Deleted lines 34 13 <2.2e-16
Number of changed types 3 2 <2.2e-16
Entropy of changed types 0.339 0.23 <2.2e-16
Using Mozilla email 41.8% 36.7% –
Is bug fix 91.4% 83.5% –

Finding. Table 5.3 shows the median values of crash-inducing commits and crash-free
commits on the metrics listed in Table 5.2, as well as the p-value of the Wilcoxon rank sum
test. According to the results, crash-inducing commits are submitted by developers with less
experience, suggesting that novice developers tend to write error-prone code. The message
size of crash-inducing commits is significantly longer than crash-free commits. It is possible
that crash-inducing commits are more complex and hence developers need longer comments to
describe these changes. In crash-inducing commits, developers change significantly more files,
and add and delete more lines than crash-free commits. This result is consistent with previous
studies [57, 58] where researchers found that relative code churn measures can indicate defect
modules. In terms of changed types, crash-inducing commits possess more unique changed
types and their changed types’ entropy is higher than crash-free commits. The changed
statements are distributed in more changed types in crash-inducing commits than in crash-
free commits. This observation suggests that it is preferable to make semantically coherent
changes (i.e., changes of the same type) in commits. When developers modify the code with
a lot of changed types (with the modifications equally distributed across the changed types),
these modifications have a higher probability to induce crashes.

Another interesting finding is the fact that crash-inducing commits were mostly submitted
by developers using Mozilla email accounts. This situation may be due to the fact that
commits from outside contributors receive more scrutiny (through code review sessions) than
those from Mozilla developers. Finally, most of our studied commits (either crash-inducing
or crash-free) are bug fixing attempts. This finding confirms that bug fixing has become the
major activity in software development [1]. A higher proportion of crash-inducing commits
are aimed to fix bugs; meaning that modifying code to fix an existing bug is a risky task that
can induce other bugs; confirming arguments from previous studies, such as [59], that legacy

62

code becomes difficult to maintain.

In light of results from Table 5.3, we reject null hypotheses H1
01 ∼ H4

01, H1
02 ∼ H2

02, and
H1

03. In other words, for all metrics listed in Table 5.2, there exists a statistically significant
difference between crash-inducing commits and crash-free commits.�

�

�

�

In general, crash-inducing commits are submitted by less experienced developers. They
contain longer commit messages, more changed files and changed lines than crash-free
commits. Crash-inducing commits contain more changed types, their changed statements
tend to be scattered in different changed types. More crash-inducing commits are aimed
to fix previous bugs. And more crash-inducing commits are submitted by developers using
Mozilla email accounts (i.e., Mozilla developers).

RQ3: How well can we predict crash-inducing commits?

Motivation. Crash-inducing commits may negatively impact users’ experience, decrease
the overall software quality and even the reputation of the software organisation. If we can
predict these defective commits early on, we will increase users’ satisfaction and shorten the
period between the introduction of these crash-related bugs in the system and their detection
and correction. In fact, if the detection of a bug is done long time after its introduction in
the system, developers are likely to have a hard time identifying the root cause of the bug
because their knowledge of the code tends to decrease overtime. Hence, a delayed detection
of bugs is likely to augment maintenance overhead. In Chapter 4, we extracted metrics
from bug reports to predict highly impactful crash-related bugs. Although this approach can
shorten bug triaging time to some extent, developers still have to wait for a certain period,
during which crashes are collected, triaged and filed into bug reports, before they can carry
out their bug fixing activities. During this period, end users (possibly in large numbers) may
have suffered crashes of the software. A Just-in-Time detection of crash-inducing commits
will enable developers to act immediately on crash-prone commits before they can negatively
impact users.

Approach. We extract 24 metrics along four dimensions from respectively the studied
commit logs and the corresponding source code of Firefox. Table 5.4 to Table 5.7 show our
selected metrics (i.e., independent variables for the prediction models) and their rationales.

To predict whether or not a commit will cause subsequent crashes, we apply the four following
algorithms: General Linear Model (GLM), decision tree, Random Forest, and Naive Bayes.
The former three were used in previous chapters. Naive Bayes are a set of logistic regression
algorithms based on Bayes’ theorem with strong independence assumptions between the
features. Although independence is normally a poor assumption, in practice, this algorithm

63

Table 5.4 Commit log metrics

Attribute Explanation and Rationale
Hour Hour (0-24). Code committed at certain hours may lead to crashes (e.g., hours

around quitting time).
Week day Day of week (from Mon to Sun). Code committed on certain week days may

be less carefully written (e.g., Friday) [39, 40], and would lead to crashes.
Month day Day in month (1-31). Code committed on certain days may be less carefully

written (e.g., before and during public holidays); resulting into subsequent
crashes.

Month Month of year (1-12). Code committed in some seasons may be less carefully
written; resulting into crashes. (e.g., December, during Chrismas holidays).

Day of year* Day of year (1-366). Combined the rationales of month day and month.
Message Size Number of words in a commit message. In RQ2, we found that crash-inducing

commits are correlated with longer commit messages.
Experience Number of prior submitted commits. In RQ2, we found that crash-inducing

commits tend to be submitted by less experienced developers.
From Mozilla Whether a committer uses a Mozilla email address. In RQ2, we found that

crash-inducing commits are submitted often by Mozilla’s developers.
Number of
changed files

Number of changed files in a commit. In RQ2, we found that commits with
more changed files tend to cause subsequent crashes.

Is bug fix Whether a commit aimed to fix a bug. In RQ2, we found that crash-inducing
commits are correlated with bug fixing code.

Is supplemen-
tary fix

Whether a commit is to fix a prior fixed bug. Supplementary fixes may enhance
previous fixes and may be less likely to cause crashes.

Before crashed
files

Percentage of a commit’s files that caused crashes in prior commits. Crashed
code may be difficult to fix, and still lead to future crashes.

Table 5.5 Code complexity metrics

Attribute Explanation and Rationale
LOC Median lines of code in all classes in a commit. In RQ2, we found that crash-

inducing commits have higher code churn (i.e., added/deleted lines).
Number of
functions

Median number of classes’ functions in a commit. A huge class may be difficult
to understand or modify, and lead to crashes.

Cyclomatic
complexity

Median cyclomatic complexity of the functions in all classes in a commit.
Complex code is hard to maintain and may cause crashes.

Max nesting* Median maximum level of nested functions in all classes in a commit. A high
level of nesting increases the conditional complexity and may increase the
crashing probability.

Comment ra-
tio

Median ratio of the lines of comments over the total lines of code in all classes in
a commit. Codes with lower ratio of comments may not be easy to understand,
and may result in crashes.

often performs well [60]. In this chapter, to enhance the performance of Random Forest, we
build 100 trees, each of which are with 5 randomly selected metrics.

64

Table 5.6 Social network analysis metrics (other metrics in this dimension share the rationale
as PageRank. We compute median value of each metric for all classes in a commit.)

Attribute Explanation and Rationale
PageRank Time fraction spent to “visit” a class in a random walk in the call graph. If

an SNA metric of a class is high, this class may be triggered through multiple
paths. An inappropriate change to the class may lead to malfunctions in the
dependent classes; resulting into crashes.

Betweenness Number of classes passing through a class among all shortest paths.
Closeness Sum of lengths of the shortest call paths between a class and all other classes.
Indegree Numbers of callers of a class.
Outdegree Numbers of callees of a class.

Table 5.7 Changed type metrics

Attribute Explanation and Rationale
Number of
changed types

Number of unique changed types in a commit. In RQ2, we found that crash-
inducing commits tend to contain more changed types.

Entropy of
changed types

Distribution of changed types in a commit (see Section 5.2.2). In RQ2, we
found that crash-inducing commits tend to have higher entropy of changed
types.

To deal with collinearity in the data, before building the predictive models, we apply the
Variance Inflation Factor (VIF) analysis to eliminate correlated metrics. We set the threshold
to 5, i.e., metrics with VIF values over this threshold are considered as correlated and will be
removed from the predictive models. In Table 5.4 to Table 5.7, removed metrics are marked
with *.

We use ten-fold cross validation [43] to compute the accuracy, precision, recall, and F-measure
for crash-inducing commits and crash-free commits. Because crash-inducing commits and
crash-free commits are imbalanced in our data set, we under-sample the majority class in-
stances, i.e., we randomly deleted instances from the data set of crash-free commits to make
the data sets of crash-inducing commits and crash-free commits to have the same number of
instances. We do this under-sampling only during the training phase. We rank the impor-
tance of the independent variables (prediction metrics) to identify the top predictors for the
algorithm with the best prediction results.

Finding. Table 5.8 shows the median accuracy, precision, recall, and F-measure for the
four algorithms used to predict whether a commit will cause crashes in Firefox. According to
the results, our models can predict crash-inducing commits with a precision up to 61.4% and
a recall up to 95.0%. Random Forest is the best prediction algorithm, which obtains the best
F-measure when predicting either crash-inducing commits or crash-free commits. Among the

65

Table 5.8 Accuracy, precision, recall, and F-measure (in %) obtained from GLM, Naive Bayes,
C5.0, and Random Forest to predict crash-inducing commits and crash-free commits

Metric GLM Bayes C5.0 Random Forest
Accuracy 67.5 41.7 69.9 73.3
Crash-inducing precision 59.5 38.6 57.2 61.4
Crash-inducing recall 37.3 95.0 76.6 76.5
Crash-inducing F-measure 45.8 54.7 65.4 68.1
Crash-free precision 69.8 77.8 82.6 83.8
Crash-free recall 84.8 10.0 66.4 71.4
Crash-free F-measure 76.7 17.7 73.5 77.4

22 selected metrics, the SNA metric closeness is ranked as the most important predictor in
all the 10 phases of the cross validation. This metric evaluates the degree of centrality of a
class in the whole project. Our obtained result suggests that when many other classes depend
on a class, a change to this (central) class is likely to induce crashes. Moreover, message size,
number of changed files, outdegree, and percentage of before crashed files are ranked as the
second important predictors; meaning that the length of comments in a commit, the number
of changed files, the number of callees of classes modified by a commit, and the crashing
history of files modified in a commit are good indicators of the risk of crashes related to the
integration of a commit in the code repository.�

�

�

�

Our predictive models can achieve a precision of 61.4%, and a recall of 95.0%. The Ran-
dom Forest algorithm achieves the best prediction performance. Closeness is ranked as the
best predictor in this algorithm. Software organisations can make use of the proposed pre-
dictive models to track crash-prone commits as soon as they are submitted for integration
in the code repository, for example, during code review sessions.

5.4 Threats to Validity

In this section, we discuss the threats to validity of our study following the guidelines for
case study research [44].

Construct validity threats concern the relation between theory and observation. In this re-
search, the construct validity threats are mainly due to measurement errors. We used the
source code of the previous release to a commit to compute complexity and SNA metrics.
More specifically, for a given file F in a commit C, we found the previous release R of C,
and computed the code complexity and SNA metrics of F in the context of the release R.
Although the new commit C could slightly affect the values of these metrics, we observed
that in most commits there is no noticeable change. Also, computing the metrics every time

66

a new commit is submitted would delay the detection of the crash-inducing commits (because
the computation of the metrics takes some time). In this study, as a compromise, we use
the files in the previous release to estimate a current commit’s code complexity and SNA
metrics. In the future, we will experiment with parallel algorithms to compute these metrics
in real time.

Internal validity threats concern factors that may affect a dependent variable and were not
considered in the study. In Section 5.1.2, although we removed all candidates of crash-
inducing commits that only changed comments and–or white space lines, our “crash-inducing
commits” may still contain some false positives. Concretely, in a fix of a crash-related bug,
not all of the changes are aimed to address defects. Some lines may be added because of
a refactoring or an addition of a new feature. These changes are hard to identify with an
automatic approach. In our future work, we plan to manually examine a sample of the
identified crash-inducing commits, and report its precision and recall.

Conclusion validity threats concern the relation between the treatment and the outcome.
We paid attention not to violate the assumptions of the constructed statistical models. In
RQ2, we used non-parametric tests, which do not require making assumptions about the
distribution of the data set. When mapping crash-related bugs to their bug fixes, we manually
checked false positives from the results. In addition, we manually grouped different srcML
tags into changed types as shown in Table 5.1.

External validity threats concern the possibility to generalise our results. In this chapter,
we analysed only Mozilla Firefox. Although many software organisations are using crash
collecting systems, to the best of our knowledge, only Mozilla Foundation has shared its
crash reports to the public [17]. In Chapter 4, we used another Mozilla project, Fennec
for Android, as a subject system to study crash-related bugs. However, the code of Firefox
and Fennec are both managed by a Mercurial release branch, in which, the two sub-systems
share some common components; making it hard to separate the two systems at the level of
commits. We look forward to generalise our proposed approach to more software systems. We
share our data and scripts at https://github.com/swatlab/crash-inducing. Researchers
and software practitioners can use these data and scripts to validate our results and replicate
our technique to other systems.

5.5 Chapter Summary

Crashes, which are unexpected interruptions of a software system, are one of the major source
of frustration for users. Frequent crashes of a software system can significantly decrease

https://github.com/swatlab/crash-inducing

67

user-perceived quality and even affect the overall reputation of a software organisation. To
help software practitioners identify crash-prone code early on, we conduct a study of crash-
inducing commits in Mozilla Firefox. We found that crash-inducing commits account for
more than 25% of all studied commits. We also found that, compared to other commits,
crash-inducing commits are often submitted by developers with less experience and that
they contain longer comments, more changed files and changed lines, as well as more changed
types.

To help software practitioners track and fix crash-inducing commits as soon as possible, we
built predictive models using various regression and machine learning algorithms. These
predictive models achieved a precision up to 61.4% and a recall up to 95.0%.

Software organisations can use our proposed predictive models to detect crash-prone code as
soon as they are submitted for integration in the source code repository. They could then
correct the code quickly to avoid users from experiencing the crashes. In the future, we plan
to generalise our approach to other software systems and implement it into tools for different
programming languages.

68

CHAPTER 6 CONCLUSION

In this chapter, we conclude the thesis and summarise our findings. In addition, we will
discuss the limitations of our proposed approaches and the directions for future work.

6.1 Summary

Bugs are hated by users and software organisations. However, during software development
and usages, software practitioners and end users always suffer from them. Today, software
organisations make great efforts on bug fixing when they maintain software systems. To some
extent, debugging strategies and techniques would decide the productivity of a development
team and the overall user-perceived quality of the product. Bug tracking systems are now
used by most software organisations, which archive the important defects detected from their
software systems. Developers can discuss on the bugs and review the patches (bug fixes)
through the bug tracking systems. Because bugs have different impacts on a software system
and end users, software managers ought to assess the severity of the bugs and prioritise them
to focus their limited time and resources to the most serious ones.

In this thesis, we used data analytics to study bug triaging techniques on three aspects:
the relationship between supplementary bug fixes and re-opened bugs, an entropy-based bug
triaging technique on crash-related bugs, and a Just-in-Time defect triaging technique on
crash-inducing commits. We investigated the characteristics of different kinds of bugs and
propose predictive models to help software organisations prevent them early on before they
cause negative impact on their software and end users.

Relationship between Supplementary Bug Fixes and Re-opened Bugs

Previous studies show that bug re-opening can increase the maintenance costs as well as
degrade the software quality and the satisfaction of users. To discover the relation be-
tween supplementary bug fixes and re-opened bugs, we investigate supplementary bug fixes
where more than one fix are associated with the same bug and re-opened bugs in five open-
source projects, and found that supplementary bug fixes account for 10.3% to 26.9% of total
bug reports. In addition, in the subject systems, a high percentage (i.e., from 21.6% to
33.8%) of the supplementary fixes have been re-opened. To help development teams target
faulty/incomplete bug fixes (for more thorough reviews) and prevent re-opened bugs, we
have explored the possibility of predicting bug re-openings over supplementary bug fixes,
using GLM, C5.0, ctree, cforest and randomForest models. Results show that these models

69

can achieve between 72.2% and 97% precision as well as between 47.7% and 65.3% recall.
Moreover, we found between 33.0% to 57.5% of re-opened bugs with only one commit as-
sociated to them. These re-opened bugs have a strong association with invalid bug reports
in all our five studied systems. In fact, they were prematurely dismissed as “invalid” before
being re-opened. These bugs are not as risky as re-opened bugs with more than one commit
to the software development. In other words, contrary to claims by previous works on re-
opened bugs, their impact to software quality is likely limited. The misclassification of these
bugs reports may be due to developers’ negative attitudes towards the bugs. Later, when
developers are aware of the severity of these bugs, they must re-opened them again. Our
proposed predictive models can help software managers improve their bug triaging process
to prevent the misclassifications and the subsequent postponement of the software releases.
Future researchers and practitioners mining data repositories can also use our models to
identify fault-prone bug fixes.

Entropy-based Bug Triaging Technique on Crash-related Bugs

Bug triaging guides software practitioners to focus their effort to address bugs with high
priority when resources are limited. Current bug triaging approaches only take bugs’ crash
frequency into account while ignoring the impact of bugs on end users. Although previous
studies used entropy analyses to improve the current bug triaging approaches, these ap-
proaches were applied only after end users have already suffered crashes for a certain period
of time. In this thesis, after examining the prevalence and characteristics of highly-impactful
bugs, i.e., bugs with high crashing frequency and entropy, in Mozilla Firefox and Fennec,
we built predictive models to help software organisations predict them early before they im-
pact a large population of users. Our proposed models can predict highly-impactful bugs
with a precision up to 64.2% (in Firefox) and a recall up to 98.3% (in Fennec). Using a
simulation to evaluate the benefit of our best predictive model, cforest, we found that, on
average, our early prediction technique can effectively prevent 23.0% of crash occurrences in
Firefox (respectively 13.4% in Fennec) and reduce 28.6% of unique machine profiles that are
impacted in Firefox (respectively 49.4% in Fennec). Software organisations could use our
suggested predictive models to identify highly-impactful bugs and improve the satisfaction
of their users.

Just-in-Time Defect Triaging Technique on Crash-inducing Commits

To assist software organisations detect crashes even earlier, we studied crash-inducing com-
mits in Mozilla Firefox. We found that one out of every four commits will induce future
crashes. They are often committed by novice developers and contain longer comments, more
changed files and changed lines, and more changed types. We built statistical models to pre-

70

dict crash-prone code at the level of commits to help software organisations fix the defective
codes as soon as possible before they negatively impact end users. Our predictive models
can achieve a precision of 61.4% and a recall of 95.0%. To enhance their bug triaging tech-
nique, software organisations could use our suggested models to capture crash-prone code
just-in-time; preventing latent complaints from users.

6.2 Limitations of the proposed approaches

• We used a heuristic to automatically link a bug report to a commit where the bug’s ID
is detected. In certain bugs, developers may omit to write any bug identity in a bug
fixing commit. On the other hand, a potential number series found in a commit may
not correspond to a bug report, even though there exists a bug report identified by this
number. We must eliminate false positives and false negatives by a manual analysis,
which can help better understand the reasons of the supplementary fixes.

• In Chapter 4 and Chapter 5, we studied crash-related bugs merely on Mozilla projects.
At the time of writing this thesis, too few software organisations have shared their crash
collecting databases to the public. Although Mozilla Socorro is the only source that we
can explore for a pertinent case study [17], replication studies on other subject software
systems are required to validate our results and generalise our analytic techniques.

6.3 Future work

In the future, we plan to extend our study in the following directions:

• We will study the characteristics of invalid bug reports, i.e., bugs that have been closed
with the resolutions as invalid, wontfix, duplicate, and worksforme. Developers may
prematurely close a serious bugs with these resolutions. To prevent the future re-
opening of the misclassified bugs reports, we will build predictive models on the invalid
bug reports.

• We will generalise our entropy-based bug triaging technique and Just-in-Time crash
detection technique on other software systems. We have contacted some software or-
ganisations to ask their crash reports for the future research. In addition, we also intend
to implement our approach in a tool and validate our results on different software sys-
tems.

71

REFEFENCES

[1] N. I. of Standards & Technology, “The economic impacts of inadequate infrastructure
for software testing,” May 2002, uS Dept of Commerce.

[2] E. Shihab, A. Ihara, Y. Kamei, W. M. Ibrahim, M. Ohira, B. Adams, A. E. Hassan,
and K.-i. Matsumoto, “Studying re-opened bugs in open source software,” Empirical
Software Engineering, vol. 18, no. 5, pp. 1005–1042, 2013.

[3] J. Park, M. Kim, B. Ray, and D.-H. Bae, “An empirical study of supplementary bug
fixes,” in Mining Software Repositories (MSR), 2012 9th IEEE Working Conference on.
IEEE, 2012, pp. 40–49.

[4] F. Khomh, B. Chan, Y. Zou, and A. E. Hassan, “An entropy evaluation approach for
triaging field crashes: A case study of mozilla firefox,” in Reverse Engineering (WCRE),
2011 18th Working Conference on. IEEE, 2011, pp. 261–270.

[5] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?” in
Proceedings of the 28th international conference on Software engineering, ser.
ICSE ’06. New York, NY, USA: ACM, 2006, pp. 361–370. [Online]. Available:
http://doi.acm.org/10.1145/1134285.1134336

[6] G. Canfora and L. Cerulo, “Supporting change request assignment in open source
development,” in Proceedings of the 2006 ACM symposium on Applied computing, ser.
SAC ’06. New York, NY, USA: ACM, 2006, pp. 1767–1772. [Online]. Available:
http://doi.acm.org/10.1145/1141277.1141693

[7] T. Menzies and A. Marcus, “Automated severity assessment of software defect reports,”
in Software Maintenance, 2008. ICSM 2008. IEEE International Conference on, 28
2008-oct. 4 2008, pp. 346 –355.

[8] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller, “How long will it take to fix
this bug?” in Proceedings of the Fourth International Workshop on Mining Software
Repositories, ser. MSR ’07. Washington, DC, USA: IEEE Computer Society, 2007,
pp. 1–. [Online]. Available: http://dx.doi.org/10.1109/MSR.2007.13

[9] G. Jeong, S. Kim, and T. Zimmermann, “Improving bug triage with bug tossing
graphs,” in Proceedings of the the 7th joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on The foundations of software
engineering, ser. ESEC/FSE ’09. New York, NY, USA: ACM, 2009, pp. 111–120.
[Online]. Available: http://doi.acm.org/10.1145/1595696.1595715

http://doi.acm.org/10.1145/1134285.1134336
http://doi.acm.org/10.1145/1141277.1141693
http://dx.doi.org/10.1109/MSR.2007.13
http://doi.acm.org/10.1145/1595696.1595715

72

[10] Z. Yin, D. Yuan, Y. Zhou, S. Pasupathy, and L. Bairavasundaram, “How do fixes become
bugs?” in Proceedings of the 19th ACM SIGSOFT symposium and the 13th European
conference on Foundations of software engineering. ACM, 2011, pp. 26–36.

[11] R. Purushothaman and D. E. Perry, “Toward understanding the rhetoric of small source
code changes,” Software Engineering, IEEE Transactions on, vol. 31, no. 6, pp. 511–526,
2005.

[12] T. Zimmermann, N. Nagappan, P. J. Guo, and B. Murphy, “Characterizing and predict-
ing which bugs get reopened,” in Software Engineering (ICSE), 2012 34th International
Conference on. IEEE, 2012, pp. 1074–1083.

[13] X. Xia, D. Lo, X. Wang, X. Yang, S. Li, and J. Sun, “A comparative study of super-
vised learning algorithms for re-opened bug prediction,” in Software Maintenance and
Reengineering (CSMR), 2013 17th European Conference on, March 2013, pp. 331–334.

[14] Z. Gu, E. T. Barr, D. J. Hamilton, and Z. Su, “Has the bug really been fixed?” in Soft-
ware Engineering, 2010 ACM/IEEE 32nd International Conference on, vol. 1. IEEE,
2010, pp. 55–64.

[15] M. Erfani Joorabchi, M. Mirzaaghaei, and A. Mesbah, “Works for me! characterizing
non-reproducible bug reports,” in Proceedings of the 11th Working Conference on Mining
Software Repositories. ACM, 2014, pp. 62–71.

[16] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch, J. Sun, and B. Wang, “Auto-
mated support for classifying software failure reports,” in Software Engineering, 2003.
Proceedings. 25th International Conference on. IEEE, 2003, pp. 465–475.

[17] S. Wang, F. Khomh, and Y. Zou, “Improving bug management using correlations in
crash reports,” Empirical Software Engineering, pp. 1–31, 2014.

[18] D. Kim, X. Wang, S. Kim, A. Zeller, S.-C. Cheung, and S. Park, “Which crashes should
I fix first?: Predicting top crashes at an early stage to prioritize debugging efforts,”
Software Engineering, IEEE Transactions on, vol. 37, no. 3, pp. 430–447, 2011.

[19] “Socorro: Mozilla’s crash reporting system,” https://crash-stats.mozilla.com/home/
products/Firefox, 2015, online; accessed June 13th, 2015.

[20] Y. Dang, R. Wu, H. Zhang, D. Zhang, and P. Nobel, “Rebucket: A method for clus-
tering duplicate crash reports based on call stack similarity,” in Proceedings of the 2012
International Conference on Software Engineering. IEEE Press, 2012, pp. 1084–1093.

[21] A. Bianchi, D. Caivano, F. Lanubile, and G. Visaggio, “Evaluating software degrada-
tion through entropy,” in IN ELEVENTH INTERNATIONAL SOFTWARE METRICS

https://crash-stats.mozilla.com/home/products/Firefox
https://crash-stats.mozilla.com/home/products/Firefox

73

SYMPOSIUM, 2001, pp. 210–219.

[22] S. K. Abd-El-Hafiz, “Entropies as measures of software information,” in Proceedings of
the IEEE International Conference on Software Maintenance (ICSM’01), ser. ICSM ’01.
Washington, DC, USA: IEEE Computer Society, 2001, pp. 110–. [Online]. Available:
http://portal.acm.org/citation.cfm?id=846228.848671

[23] A. E. Hassan and R. C. Holt, “The chaos of software development,” in
Proceedings of the 6th International Workshop on Principles of Software Evolution.
Washington, DC, USA: IEEE Computer Society, 2003, pp. 84–. [Online]. Available:
http://portal.acm.org/citation.cfm?id=942803.943729

[24] S. Zaman, B. Adams, and A. E. Hassan, “Security versus performance bugs: A case
study on firefox,” in Proceedings of the 8th Working Conference on Mining Software
Repositories, ser. MSR ’11. IEEE Computer Society, 2011, pp. 93–102.

[25] K. Kim, Y. Shin, and C. Wu, “Complexity measures for object-oriented program
based on the entropy,” in Proceedings of the Second Asia Pacific Software Engineering
Conference, ser. APSEC ’95. Washington, DC, USA: IEEE Computer Society, 1995,
pp. 127–. [Online]. Available: http://portal.acm.org/citation.cfm?id=785406.785448

[26] N. Chapin, “An entropy metric for software maintainability,” Twenty-Second Annual
Hawaii International Conference on System Sciences, Software Track, pp. 522–523, Jan-
uary 1995.

[27] E. Unger, L. Harn, and V. Kumar, “Entropy as a measure of database information,”
Proceedings of the Sixth Annual Computer Security ApplicationsConference, pp. 80–87,
December 1990.

[28] J. Anvik, L. Hiew, and G. C. Murphy, “Coping with an open bug repository,” in
Proceedings of the 2005 OOPSLA workshop on Eclipse technology eXchange, ser.
eclipse ’05. New York, NY, USA: ACM, 2005, pp. 35–39. [Online]. Available:
http://doi.acm.org/10.1145/1117696.1117704

[29] A. E. Hassan, “Mining software repositories to assist developers and support man-
agers,” in Software Maintenance, 2006. ICSM’06. 22nd IEEE International Conference
on. IEEE, 2006, pp. 339–342.

[30] ——, “The road ahead for mining software repositories,” in Frontiers of Software Main-
tenance, 2008. FoSM 2008. IEEE, 2008, pp. 48–57.

[31] A. E. Hassan and K. Zhang, “Using decision trees to predict the certification result of
a build,” in Automated Software Engineering, 2006. ASE’06. 21st IEEE/ACM Interna-

http://portal.acm.org/citation.cfm?id=846228.848671
http://portal.acm.org/citation.cfm?id=942803.943729
http://portal.acm.org/citation.cfm?id=785406.785448
http://doi.acm.org/10.1145/1117696.1117704

74

tional Conference on. IEEE, 2006, pp. 189–198.

[32] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha, and N. Ubayashi,
“A large-scale empirical study of just-in-time quality assurance,” Software Engineering,
IEEE Transactions on, vol. 39, no. 6, pp. 757–773, 2013.

[33] T. Fukushima, Y. Kamei, S. McIntosh, K. Yamashita, and N. Ubayashi, “An empirical
study of just-in-time defect prediction using cross-project models,” in Proceedings of the
11th Working Conference on Mining Software Repositories. ACM, 2014, pp. 172–181.

[34] A. T. Misirli, E. Shihab, and Y. Kamei, “Studying high impact fix-inducing changes,”
Empirical Software Engineering, pp. 1–37, 2015.

[35] T. Zimmermann, N. Nagappan, P. J. Guo, and B. Murphy, “Characterizing and
predicting which bugs get reopened,” in Proceedings of the 2012 International Conference
on Software Engineering, ser. ICSE 2012. Piscataway, NJ, USA: IEEE Press, 2012, pp.
1074–1083. [Online]. Available: http://dl.acm.org/citation.cfm?id=2337223.2337363

[36] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32, 2001.

[37] M. Fischer, M. Pinzger, and H. Gall, “Populating a release history database from ver-
sion control and bug tracking systems,” in Software Maintenance, 2003. ICSM 2003.
Proceedings. International Conference on. IEEE, 2003, pp. 23–32.

[38] C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M. German, and P. Devanbu,
“The promises and perils of mining git,” in Proceedings of the 2009 6th IEEE
International Working Conference on Mining Software Repositories, ser. MSR ’09.
Washington, DC, USA: IEEE Computer Society, 2009, pp. 1–10. [Online]. Available:
http://dx.doi.org/10.1109/MSR.2009.5069475

[39] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes induce fixes?” in ACM
sigsoft software engineering notes, vol. 30, no. 4. ACM, 2005, pp. 1–5.

[40] P. Anbalagan and M. Vouk, “Days of the week effect in predicting the time taken to fix
defects,” in Proceedings of the 2nd International Workshop on Defects in Large Software
Systems: Held in conjunction with the ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA 2009). ACM, 2009, pp. 29–30.

[41] T. Mende and R. Koschke, “Effort-aware defect prediction models,” in Software Main-
tenance and Reengineering (CSMR), 2010 14th European Conference on. IEEE, 2010,
pp. 107–116.

[42] R. Díaz-Uriarte and S. A. De Andres, “Gene selection and classification of microarray
data using random forest,” BMC bioinformatics, vol. 7, no. 1, p. 3, 2006.

http://dl.acm.org/citation.cfm?id=2337223.2337363
http://dx.doi.org/10.1109/MSR.2009.5069475

75

[43] B. Efron, “Estimating the error rate of a prediction rule: improvement on cross-
validation,” Journal of the American Statistical Association, vol. 78, no. 382, pp. 316–
331, 1983.

[44] R. K. Yin, Case Study Research: Design and Methods - Third Edition, 3rd ed. SAGE
Publications, 2002.

[45] C. E. Shannon, “A mathematical theory of communication,” SIGMOBILE Mob.
Comput. Commun. Rev., vol. 5, pp. 3–55, January 2001. [Online]. Available:
http://doi.acm.org/10.1145/584091.584093

[46] “SLOCCount,” http://www.dwheeler.com/sloccount/, 2015, online; accessed June 13th,
2015.

[47] “Understand tool,” https://scitools.com, 2015, online; accessed June 13th, 2015.

[48] “igraph,” http://igraph.org/redirect.html, 2015, online; accessed June 13th, 2015.

[49] M. Hollander, D. A. Wolfe, and E. Chicken, Nonparametric statistical methods, 3rd ed.
John Wiley & Sons, 2013.

[50] A. Dmitrienko, G. Molenberghs, C. Chuang-Stein, and W. Offen, Analysis of Clinical
Trials Using SAS: A Practical Guide. SAS Institute, 2005. [Online]. Available:
http://www.google.ca/books?id=G5ElnZDDm8gC

[51] F. Khomh, B. Adams, T. Dhaliwal, and Y. Zou, “Understanding the impact of rapid
releases on software quality,” Empirical Software Engineering, pp. 1–38, 2014.

[52] S. Kim, T. Zimmermann, K. Pan, and E. J. Whitehead Jr, “Automatic identification
of bug-introducing changes,” in Automated Software Engineering, 2006. ASE’06. 21st
IEEE/ACM International Conference on. IEEE, 2006, pp. 81–90.

[53] B. A. Romo, A. Capiluppi, and T. Hall, “Filling the gaps of development logs and
bug issue data,” in Proceedings of The International Symposium on Open Collaboration.
ACM, 2014, p. 8.

[54] C. Williams and J. Spacco, “SZZ revisited: verifying when changes induce fixes,” in
Proceedings of the 2008 workshop on Defects in large software systems. ACM, 2008,
pp. 32–36.

[55] “srcML,” http://www.srcml.org, 2015, online; accessed June 13th, 2015.

[56] R. Wu, “Diagnose crashing faults on production software,” in Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software Engineering.
ACM, 2014, pp. 771–774.

http://doi.acm.org/10.1145/584091.584093
http://www.dwheeler.com/sloccount/
https://scitools.com
http://igraph.org/redirect.html
http://www.google.ca/books?id=G5ElnZDDm8gC
http://www.srcml.org

76

[57] R. Moser, W. Pedrycz, and G. Succi, “A comparative analysis of the efficiency of change
metrics and static code attributes for defect prediction,” in Software Engineering, 2008.
ICSE’08. ACM/IEEE 30th International Conference on. IEEE, 2008, pp. 181–190.

[58] N. Nagappan and T. Ball, “Use of relative code churn measures to predict system defect
density,” in Software Engineering, 2005. ICSE 2005. Proceedings. 27th International
Conference on. IEEE, 2005, pp. 284–292.

[59] D. L. Parnas, “Software aging,” in Proceedings of the 16th international conference on
Software engineering. IEEE Computer Society Press, 1994, pp. 279–287.

[60] I. Rish, “An empirical study of the naive bayes classifier,” in IJCAI 2001 workshop on
empirical methods in artificial intelligence, vol. 3, no. 22. IBM New York, 2001, pp.
41–46.

	DEDICATION
	ACKNOWLEDGEMENTS
	RÉSUMÉ
	ABSTRACT
	CO-AUTHORSHIP
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	1 INTRODUCTION
	1.1 Relation between Supplementary Fixes and Re-opened Bugs
	1.2 Bugs that Crashed Frequently and Impact a Large User Base
	1.3 Commits that Lead to Crashes
	1.4 Research Statement
	1.5 Thesis Overview
	1.6 Thesis Contribution
	1.7 Organisation of the Thesis

	2 LITERATURE REVIEW
	2.1 Bug Triaging
	2.2 Supplementary Bug Fixes
	2.3 Bug Re-opening
	2.4 Crash Report Analysis
	2.5 Entropy Analysis
	2.6 Mining Software Repositories
	2.7 Defect Prediction
	2.7.1 Traditional Defect Prediction Techniques
	2.7.2 Just-in-Time Defect Prediction Techniques

	2.8 Chapter Summary

	3 SUPPLEMENTARY BUG FIXES VS. RE-OPENED BUGS
	3.1 Study Design
	3.1.1 Data Collection
	3.1.2 Data Processing

	3.2 Case Study Results
	3.3 Discussion
	3.4 Threats to Validity
	3.5 Chapter Summary

	4 HIGHLY-IMPACTFUL BUGS
	4.1 Mozilla Crash and Bug Triaging Systems
	4.2 Identification of Highly-impactful Bugs
	4.3 Study Design
	4.3.1 Data Collection
	4.3.2 Data Processing

	4.4 Case Study Results
	4.5 Threats to Validity
	4.6 Chapter Summary

	5 CRASH-INDUCING COMMITS
	5.1 Identification of Crash-inducing Commits
	5.1.1 Identification of Crash-related Bugs
	5.1.2 Identification of Crash-inducing Commits

	5.2 Case Study Design
	5.2.1 Data Collection
	5.2.2 Data Processing

	5.3 Case Study Results
	5.4 Threats to Validity
	5.5 Chapter Summary

	6 CONCLUSION
	6.1 Summary
	6.2 Limitations of the proposed approaches
	6.3 Future work

	REFEFENCES

