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RÉSUMÉ 

Les microstimulations de tissues nerveux du cerveau sont utilisés dans un grand nombre de 

prothèses sensorielles, de thérapies cliniques et autres activités de recherche se servant de la 

stimulation électrique. Actuellement, les paramètres de stimulation sont adaptés à chaque 

application via des tests itératifs. Les méthodes d'optimisation cherchent à améliorer les stimuli 

développés pour des objectifs spécifiques de stimulation, mais la compréhension fondamentale de 

la façon dont les paramètres de stimulation influencent les circuits neuronaux qu’ils activent reste 

largement incomplète. Ce déficit retarde l'optimisation de protocoles existants et rend le 

développement de nouvelles applications de stimulation difficile. À ce jour, un certain nombre de 

dispositifs prothétiques validés dès les années 1970 restent en développement, principalement en 

raison de l'incapacité de ces dispositifs à communiquer efficacement avec le cerveau. Pour 

utiliser la stimulation électrique afin de transmettre des messages au système nerveux central, une 

meilleure conception du patron du signal de stimulation est nécessaire. Dans cette thèse, nous 

étudions l'influence que chaque paramètre du signal (un courant constant, symétrique carré 

biphasique) exerce sur les réponses qu'il évoquées au travers des microstimulations de la zone 

intracorticale caudale du membre antérieur dans le cortex moteur chez le rat. Les paramètres de 

ce signal sont l'amplitude du courant, la fréquence et la durée d'impulsion, l’intervalle 

d'interphase et la durée du train. Leurs effets ont été évalués par un examen des réponses 

électromyographiques évoquées dans les muscles des membres antérieurs du rat en réponse à 

chaque stimulus.  Les principaux résultats décrivent comment chaque paramètre de stimulation 

influence l'amplitude, la latence d’apparition et la durée de la réponse. Une composante jusque-là 

inexplorée du signal de la réponse (que nous appelons 'activation résiduelle') est aussi analysée 

pour la première fois. Les théories quant à l'origine et le mécanisme neuronal sous-jacent de ce 

phénomène sont proposés et les paramètres de stimulation touchant son apparition, la prévalence 

et la durée sont décrits. La fiabilité des signaux de stimulation pour évoquer des réponses 

cohérentes est également évaluée par rapport aux variations de paramètres. Une méthodologie 

pour la conception optimisée des signaux de stimulation est proposée en utilisant un modèle de 

calcul simple, représentant les relations d'entrée-sortie entre les paramètres de stimulation et les 

réponses qu'ils évoquent. Ce modèle utilise une approche de réseau neuronal artificiel et peut être 

utilisé pour prédire les propriétés de la réponse lorsque les paramètres du stimulus sont connus. 

Compte tenu de la prévalence de la stimulation cérébrale dans les applications cliniques, de 
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recherche et thérapeutiques, les procédures méthodologiques et de modélisation proposées ont 

des implications importantes dans l'optimisation des paradigmes de stimulation actuels et le 

développement de protocoles de stimulation pour de nouvelles applications. 
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ABSTRACT 

Microstimulation of brain tissue plays a key role in a variety of sensory prosthetics, clinical 

therapies and research applications. At present, stimulus parameters are tailored to each 

application via iterative testing. Computational optimization methods seek to improve tried and 

tested waveforms developed for specific purposes, however the fundamental understanding of 

how stimulation parameters influence the neural circuits they activate remains widely unknown. 

This deficit hinders both the optimization of existing protocols and the development of new 

stimulation applications. To date, a number of prosthetic devices validated as early as the 1970’s 

linger in the development stages largely due to the inability to effectively interface these devices 

with the brain. In order to use electrical stimulation to convey messages to the central nervous 

system, a better understanding of stimulus signal design is required. In this thesis, I investigate 

the influence that each parameter of the constant-current, symmetric, biphasic square waveform 

exerts on the responses it evokes through intracortical microstimulation of the caudal forelimb 

area of the rat motor cortex. The parameters under investigation include the current amplitude, 

pulse frequency, pulse duration, interphase interval and train duration of the stimulus and effects 

were assessed by examining the electromyographic responses evoked in the rat forelimb muscles 

in response to each stimulus. The major findings describe how each parameter of the stimulus 

signal influences the magnitude, onset latency, and duration of the response. A previously 

unexplored component of the response signal (which we called ‘residual activation’) is analyzed 

for the first time. Hypotheses as to the origin and underlying neural mechanism of this 

phenomenon are proposed and the stimulus parameters affecting its occurrence, prevalence and 

duration are described. The reliability of stimulation signals for evoking consistent responses is 

also assessed with respect to parameter variations. A methodology for the informed design of 

stimulation signals is proposed and aided by the development of a simple computational model 

representing the input-output relationships between stimulation parameters and the responses 

they evoke. This model uses an artificial neural network approach and can be used to predict the 

properties of the response when the parameters of the stimulus are known. Given the prevalence 

of brain stimulation in clinical, research and therapeutic applications the proposed 

methodological and modeling procedures have important implications in the optimization of 

current stimulation paradigms and the development of stimulation protocols for new applications.  
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CHAPTER 1 INTRODUCTION 

Electrical stimulation of the brain serves as the foundation for a variety of clinical therapies, 

sensory prosthetics and research applications. In the clinical setting, brain stimulation is used to 

alleviate symptoms of Parkinson’s disease (Bronstein et al., 2011) and epilepsy (Fisher, 2012) 

and applications for  the treatment of Huntington’s disease, cluster headaches, Tourette’s 

syndrome, chronic pain, major depression, schizophrenia, obsessive compulsive disorder, 

multiple sclerosis, and Alzheimer’s disease are currently being explored (Lyons, 2011; Sironi, 

2011). 

Recently, sensory prosthetics have been developed to restore lost functioning or augment normal 

perception. Electrical stimulation of the somatosensory cortex produces tactile sensations which 

can restore a sense of touch to a prosthetic limb user (Berg et al., 2013; Kim, Callier, Tabot, 

Tenore, & Bensmaia, 2015; Tabot et al., 2013), and it has been postulated that this stimulation 

could also serve to extend the normal range of perception (Thomson, Carra, & Nicolelis, 2013). 

Similar efforts have been made to restore sight to the blind by applying electrical stimulation to 

the visual cortex (Bartlett et al., 2005; Brindley, 1973; Brindley, 1982; Brindley & Lewin, 1968; 

Dobelle & Mladejovsky, 1974; Penfield & Perot, 1963; Schmidt et al., 1996; Tehovnik, Slocum, 

Smirnakis, & Tolias, 2009). Stimulation of the visual cortex produces punctate visual percepts 

which can be activated in patterns to form a representation of the visual field similar to a 

scoreboard or highly pixelated image.  

Countless research applications involving many different regions of the brain use electrical 

stimulation to explore the function and connectivity of neural circuits or attempt to disrupt or 

augment normal brain processes. Stimulation delivered to middle temporal area (MT) of the 

visual cortex can be used to bias motion correlation detection (Murasugi, Salzman, & Newsome, 

1993; Salzman, Britten, & Newsome, 1990; Salzman, Murasugi, Britten, & Newsome, 1992) and 

stimulating the superior colliculus can bias or induce saccadic eye movements (Horwitz & 

Newsome, 2001; Schiller & Stryker, 1972). Electrical stimulation of the auditory cortex can 

induce the perception of tones (Otto, Rousche, & Kipke, 2005; Penfield & Perot, 1963), visual 

cortex stimulation produces visual percepts (Dobelle & Mladejovsky, 1974; Penfield & Perot, 

1963; Schmidt et al., 1996), and motor cortex stimulation can evoke muscle contractions or 

movements (Donoghue & Wise, 1982; Gioanni & Lamarche, 1985; Penfield & Boldrey, 1937).  
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Despite the prevalence and inherent value of brain stimulation as both a therapeutic method and 

research tool, little is known about how the electrical stimulus shapes the responses it evokes. 

Most applications are developed through trial and error and rely heavily on stimulation signals 

which have proved successful in previous experiments. The work contained in this thesis sought 

to address this knowledge deficit by exploring the manner in which the parameters of the 

electrical stimulation signal affect the responses they evoke. The research conducted in this thesis 

was part of a larger ongoing project of the Polystim Neurotechnologies research group at Ecole 

Polytechnique de Montreal led by Dr. Mohamad Sawan which seeks to develop an intracortical 

visual prosthetic device to restore functional vision to the blind. My work aimed to address the 

issue of interfacing a prosthetic device with the brain by determining how stimulation signals 

should be designed in order to support effective communication between the device and the brain. 

The expertise in neural systems and brain stimulation was provided through a collaborative effort 

with the laboratory of Dr. Numa Dancause of the Universite de Montreal’s Department of 

Neuroscience. The Dancause laboratory focuses in part on the study of primary motor control of 

movements in the rat model. This collaboration allowed me to study the influence that each 

parameter of an electrical stimulus exerts on the responses they evoke while working within a 

well-documented cortical circuit of moderate complexity.  

1.1 Objectives 

The main objectives of this thesis were to determine how a stimulation signal shapes the 

responses it evokes and to uncover the general relationships between stimulation inputs and 

response outputs for neural systems. This problem was approached by addressing the following 

specific objectives: 

a) Review past stimulation experiments to determine the most prevalent type of stimulus 

signals, the functional ranges of each signal parameter and previously identified 

parameter effects. 

b) Design experiments to systematically test the effects of each parameter of a stimulus 

signal on the evoked responses. 



3 

 

c) Propose a stimulus design methodology based on the parameter effects to aid in the 

optimization of existing stimulation paradigms and facilitate the development of new 

paradigms. 

d) Model the input-output relationship between stimulation parameters (input) and evoked 

responses (output) to provide a tool for the informed design of stimulation signals. 

1.2 Synthesis of content 

Chapter 2 of this thesis addresses objectives (a) and (b) through extensive review of past 

stimulation experiments conducted in a wide variety of species and brain areas for many different 

applications. Initially, the rat motor cortex system is discussed in terms of its suitability for 

conducting systematic tests of parameter effects. Once the choice of system and species has been 

justified, the most prevalent stimulation signals and choice of signal type are described. 

Following this, the broader technical considerations which must be taken into account when 

designing a stimulus are covered, then the known effects of stimulation parameters discovered in 

past studies involving intracortical microstimulation and macrostimulation are reviewed. To 

conclude chapter 2, a brief summary of the findings is presented to set the stage for the 

experimental work of the following chapters. 

Chapters 3-5 address objectives (b) and (c) through the experimental study of stimulus parameter 

influence on evoked response properties. Each parameter of the stimulation signal is described in 

terms of its ability to influence the evoked response’s magnitude, onset latency, duration, and 

reliability. In these chapters, the beginnings of a design methodology are proposed. 

Chapter 6 addresses objectives (c) and (d) through the development of a computational model 

describing the input-output relationship between stimulus parameters and the responses they 

evoke. The model describes the general relationships between the stimulus parameters and the 

evoked response metrics and can be used for both the optimization of existing paradigms and the 

development of new ones. The model serves to consolidate the work of chapters 3-5 and proposes 

an official methodology for the design of stimulation signals. 
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1.3 Contributions 

The main contributions of this thesis are reported in three articles submitted to peer-reviewed 

journals and one conference paper. A summary of the major contributions is as follows: 

1) Identification of the most commonly used brain stimulation signal parameters in a multitude 

of clinical and research applications. These parameter ranges were obtained from a 

comprehensive review of the literature and a subset of these values was selected for testing in 

the experimental work. 

2) Thorough documentation of the specific effects of stimulus parameters on the amplitude, 

onset latency, duration and reliability of the responses evoked by intracortical 

microstimulation of the rat motor cortex. This contribution required original research 

involving systematic experimental testing conducted in animal models and provided specific 

information about the effects of intracortical microstimulation in the rat motor cortex. These 

findings were also interpreted generally to describe the effect each stimulus parameter exerted 

on neural activation in general in order to be extended to other applications.  

3) Improved optimization of the standard motor cortex stimulus in the rat model. In the course 

of our studies we discovered that the commonly accepted signal for movement generation in 

the caudal forelimb region of the rat could be further optimized. 

4) Quantification and assessment of a previously undocumented component of the evoked 

response signal. We observed that certain stimuli produced responses with activity that 

persists after the termination of the main response component. We named this persistent 

activity “residual activation”, and to our knowledge, this component has not been 

systematically analyzed previously. We documented its characteristics and occurrence with 

respect to the stimulus parameters that induce it and provided possible interpretations of its 

origin and neural underpinnings. 

5) Methodology for stimulus design. We proposed a shift in the approach to stimulus design in 

which we seek to avoid conventional trial and error approaches and instead employ a two step 

process based on insights gained during experimentation pertaining to the general effects of 

stimulus parameters on neural activation. In this process we first consider the neural 
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activation required to achieve a specific goal of stimulation and then determine the 

stimulation parameters required to induce the necessary neural activation.  

6) Artificial neural network (ANN) model of the input-output relationships between stimulation 

parameters and the responses they evoke.  We provide a model for predicting the effects of 

stimulation parameters on evoked responses as a tool for designing stimulation signals. This 

model can be used directly in the rat motor cortex system and we also detail its extension to a 

number of applications. To our knowledge this is the first application of ANN modeling 

applied to the input-output relationships of brain stimulation. 
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CHAPTER 2 LITERATURE REVIEW 

This review contains a theoretical study of past brain stimulation experiments and was conducted 

for the purposes of developing a series of experiments to systematically test the effects of 

stimulus parameters on the responses they evoke. This survey led to the discovery of a number of 

discrepancies and knowledge deficits to be addressed in order to develop a methodology for 

stimulation design. To overcome these knowledge deficits it was deemed prudent to first 

establish the general effects of stimulation parameters using a neural circuit of moderate 

complexity in as low of a mammal species as possible. In this chapter, the neural system, species 

and stimulus signal selected for the series of experiments are described and their selection is 

justified. Following this, the broader technical considerations for stimulus signal design are 

outlined and the known effects of stimulation parameters in a variety of different applications, 

species and brain regions are reviewed. The outcomes of this survey are the identification of 

prevalent stimulation signals and the definition of ranges for each stimulus parameter 

encompassing the values used for a wide variety of stimulation applications.  

2.1 Rat motor cortex system 

One of the earliest and most documented uses of brain stimulation involves the activation of 

motor cortex regions to evoke muscle contractions or movements (Penfield & Boldrey, 1937; 

Penfield & Welch, 1951; Sironi, 2011). Stimulation applied to specific regions of the motor 

cortex has been shown to evoke movements in humans (Penfield & Welch, 1951), primates 

(Asanuma, Arnold, & Zarzecki, 1976), cats (Armstrong & Drew, 1984)  and rodents  (Donoghue 

& Wise, 1982; Sanderson, Welker, & Shambes, 1984). The motor cortex exhibits a somatotopic 

organization in which a specific cortical region corresponds to a specific area of the body. Much 

study has been devoted to mapping the correlation between regions of the motor cortex and the 

areas of the body they control (Gioanni & Lamarche, 1985; Neafsey et al., 1986; Penfield & 

Boldrey, 1937; Rouiller, Moret, & Liang, 1993; Schieber, 2001). Of the systems described, the 

rodent motor system has the simplest structure and the rat forelimb region in particular has been 

studied extensively to probe function, connectivity and motor deficits. 
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For the purposes of our study, a system was required that produced clearly defined and 

measurable outputs in response to stimulation in an extensively documented neural circuit that 

was responsive to the parameter ranges most commonly used in clinical and research 

applications. The rat forelimb system proved to be a system which met all of these requirements. 

When electrical stimulation is applied to the forelimb region of the rat motor cortex, it activates 

corticospinal neurons which project from the cortex to the spinal cord. Within the spinal cord 

these efferent neurons are indirectly connected to the motor neurons which innervate the forelimb 

muscle fibers. When these fibers are activated they produces muscle contractions or limb 

movements and the corresponding electromyographic (EMG) responses can be recorded directly 

from the muscles of the forelimb (Figure 2-1 parts (a) and (b)). Working within this system 

allowed me to deliver a variety of stimulation signals to the cortex and record the evoked EMG 

responses. Analysis of the properties of the EMG signals provided quantitative measurements of 

the influence that stimulation parameters exert on the responses they evoke. Figure 2-1c depicts 

basic examples of the EMG response variations that occurred for different stimulation signals. 

2.2 Stimulation signals 

Historically, two basic types of stimulation signal have been proven to stimulate the brain in a 

safe and efficacious manner (Hill, 1936; Lilly, 1961; Lilly, Hughes, Alvord, & Galkin, 1955; 

Merrill, Bikson, & Jefferys, 2005). These signals are all variations of the square pulse waveform 

and are depicted in Figure 2-2. The biphasic waveforms depicted in parts (a) and (b) are the most 

commonly used in clinical and therapeutic applications of intracortical microstimulation because 

they employ charge balancing to avoid damaging the tissues. The monophasic waveforms 

depicted in parts (c) and (d) are more prevalently used in research applications (particularly 

terminal acute experiments) in which tissue damage is not a primary concern since these signals 

are more effective at evoking responses (Merrill et al., 2005). The parameters of interest in these 

signals include pulse polarity (anodic, cathodic, anode-leading, cathode-leading), amplitude, 

frequency, duration and train duration, as well as the duration of the delay between pulses of 

opposite phases (interphase interval) in the case of biphasic stimulation.  
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Figure 2-1: Experimental design: rat motor cortex circuitry, system inputs and outputs. Part (a) 

depicts the experimental paradigm in which stimulation is applied to the forelimb region of the 

motor cortex producing muscle contractions from which the EMG responses are recorded. Part 

(b) details the transmission of the electrical stimulus from the cortex to the forelimb. Part (c) 

shows the variability in EMG responses that occur when the stimulation parameters are varied by 
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(i), increasing the pulse duration (ii), increasing the amplitude (iii) increasing the train duration, 

or (iv) reducing the frequency of the stimulus.  

 

Figure 2-2: Common stimulation signals. The four most common types of stimulation signals are 

depicted in parts (a)-(d) and their respective parameters are displayed. These signals can be 

employed with either current or voltage control. 

2.2.1 Current vs. voltage controlled waveforms 

The choice between current-controlled and voltage-controlled stimulation has long plagued 

microstimulation experiments and continues to be an issue in prosthetic devices currently 

undergoing clinical trials such as the retinal and deep brain stimulation (DBS) prosthetics. 

Current controlled stimulation is more commonly used in microstimulation experiments since it 

is less sensitive to variations in impedance and allows for greater control over the number of 

neurons activated. However it also produces long discharge transients after each pulse which 

exacerbates stimulus artifacts (Gerdle, Karlsson, Day, & Djupsjobacka, 1999). These artifacts 

prevent recording from the tissues surrounding the stimulating electrode, and most likely produce 

interference between electrodes in the case of multi-electrode stimulation. Provided that our goal 

is to optimize the stimulation signal, the issue of stimulation artifacts may not be crucial; 
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however the artifact implies some degree of abnormal neuronal activation.  Current clinical trials 

in DBS have failed to find any appreciable difference between the two modes of stimulation (Del 

Rio-Oliva et al., 2012) although some believe current-controlled stimulation minimizes the 

effects of impedance changes (Lempka, Johnson, Miocinovic, Vitek, & McIntyre, 2010).  A 

study conducted in dissociated cultures found cathode-leading biphasic voltage controlled pulses 

to be the most effective stimuli (Wagenaar, Pine, & Potter, 2004), however the applicability of 

these findings to in-vivo experiments remains uncertain. A number of modeling studies have 

recently been conducted to evaluate the performance differences between the two types of 

stimulation (Savage & Halpern, 2011; Stecker, 2004) however this remains an unresolved issue. 

In order to avoid sensitivity to the impedance variations which occur during repetitive stimulation 

and to ensure highly localized activation I chose to use current controlled waveforms. 

2.2.2 Pulse polarity 

Cathodal pulses have significantly lower thresholds for nerve excitation (Reilly, 2011b). They 

have been shown to be more effective than anodal pulses for producing phosphenes with 

microstimulation (Ranck, 1975; Schmidt et al., 1996), and are more effective for evoking 

forelimb movements in the rat (Nudo, Jenkins, & Merzenich, 1990). When negative current is 

injected into the tissue, the negative internal charge of the neuronal cell becomes positive in 

relation to its surroundings. This shift in membrane potential, known as depolarization, induces 

action potentials and allows for signal transmission. Anodal pulses are thought to be more 

effective for delivering surface stimulation (Ranck, 1975), despite inconclusive results (Dobelle 

& Mladejovsky, 1974). When positive current is injected into the tissue, the negative internal 

charge of the neuronal cell becomes more negative in relation to its surroundings. This shift in 

membrane potential, known as hyperpolarization, inhibits action potentials. Cathodal pulses 

however are known to produce a larger volume of exited tissue which is not always desirable 

(Reilly, 2011b). For the purposes of this study cathodal or cathode-leading signals were chosen 

due to their greater ability to evoke neural excitation at cortical depths. 

2.2.3 Monophasic vs. biphasic waveforms 

Monophasic stimulation (stimulation of only one pulse polarity)  has been shown to produce a 

charge buildup at the electrode/tissue interface leading to electrode corrosion, tissue damage and 
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eventually cortical lesions (Hanson, Fitzsimmons, & O’Doherty, 2008; Merrill et al., 2005). 

These effects can be avoided by using biphasic stimulation to prevent electrode polarization 

through charge balancing in order to avoid electrochemical reactions (Reilly, 2011a; Tehovnik, 

Slocum, Carvey, & Schiller, 2005). While the alternating polarity of the biphasic signal does 

avoid tissue and electrode damage it also impairs tissue excitation making stimulation less 

effective and tends to activate a greater volume of tissue (Kombos et al., 1999; Reilly, 2011a). 

Reduced excitation and larger current spread are both undesirable properties of biphasic 

stimulation; however these effects are preferable to the induction of tissue damage which occurs 

in the monophasic case. The most effective biphasic waveforms tend to use a cathodal pulse to 

evoke the desired excitation followed by an anodal pulse designed to reverse any Faradic 

processes occurring at the electrode tip by providing and equal and opposite charge (Lilly et al., 

1955; Merrill et al., 2005).  Leading with the more efficacious cathodal pulse helps to achieve the 

desired activation with lower amplitudes of stimulation, and the anodal counterpart serves to 

implement charge reversal. As our study was designed to explore the effects of stimulation 

parameters commonly used in clinical and therapeutic applications which require the use of 

biphasic waveforms to avoid tissue damage, the cathode-leading biphasic square waveform was 

chosen. 

2.2.4 Alternative waveforms 

Several studies have been conducted that explore modifications to the biphasic square waveform 

structure. The chopped pulse is a biphasic waveform which splits each phase into a series of 

smaller pulses. This waveform was previously investigated for stimulation of the auditory nerve 

(Shepherd & Javel, 1999) revealing much lower thresholds for chopped waveforms than their 

biphasic equivalents. Similarly, the triphasic pulse waveform is designed to have an extra phase 

which serves to produce an overall charge balance while reducing the negative effect of phase 

reversal. This approach has been examined for stimulation of the auditory nerve within a cochlear 

implant system (Bahmer & Baumann, 2012; Bahmer, Peter, & Baumann, 2010; Schoesser, H., 

Zierhofer, C., & Hochmair, E.S., 2001; Shepherd & Javel, 1999) and this configuration was 

shown to effectively reduce the stimulus artifact typically generated after electrical stimulation 

with a biphasic waveform. Asymmetric pulse waveforms maintain the biphasic shape while 

varying the duration and amplitude of each phase. The principal of operation is similar to the 
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triphasic in that the overall charge balance is maintained while mitigating the effect of phase 

reversal. Neural stimulation models (McIntyre & Grill, 2000, 2002), and cochlear implant 

research (Macherey, van Wieringen, Carlyon, Deeks, & Wouters, 2006; van Wieringen, 

Macherey, Carlyon, Deeks, & Wouters, 2008) have shown that asymmetric waveforms might 

serve to lower detection threshold levels. The effect of waveform asymmetry has also been 

explored in auditory cortex by varying the lead phase direction, level of asymmetry and phase 

duration while maintaining charge balance (Koivuniemi & Otto, 2011). Cathode phase duration 

was found to be the most important factor in predicting threshold level, and phase asymmetry did 

not have a significant effect.  

Several alternatives to the standard square waveform have been suggested in the literature but 

have not yet been thoroughly explored. These include triangular, sinusoidal, exponential, and 

energy efficient waveforms. A computer model of both intracellular and extracellular stimulation 

was developed to evaluate different types of waveforms for use in deep brain stimulation (Foutz 

& McIntyre, 2010). They compared a range of charge balanced biphasic waveforms with 

rectangular, exponential, triangular, Gaussian and sinusoidal stimulus pulse shapes and 

discovered that in some cases the triangular pulse decreases energy consumption, and pointed to 

the necessity of optimizing non-rectangular pulses. A similar study (Wongsarnpigoon & Grill, 

2010) used a genetic algorithm coupled to a computational model of extracellular stimulation of a 

mammalian myelinated axon to determine the energy-optimal waveform shape for neural 

stimulation. With no constraints, the algorithm produced waveforms resembling  truncated 

Gaussian curves. When evaluating the best shape of a monophasic cathodic waveform the 

algorithm suggested waves that were symmetric. When considering rectangular charge-balanced 

biphasic pulses, the order of occurrence of the pulses (cathode first/anode first) and sharpness of 

the cathodic peak varied according to the duration and timing of the anodic phase. While these 

alternative stimulation waveforms are valid and deserve further study, they are not suitable to the 

present study whose goals are to explore the general parameter effects of commonly used 

stimulation signals. 

2.2.5 Signal selected for present study 

Since very little work has been conducted to define the input-output relationships between 

stimulus parameters and the responses they evoke it was important to keep the complexity of the 
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signal to a minimum. For the purposes of this study the parameters of the cathode-leading, 

constant-current, symmetric biphasic square pulse waveform were examined. This signal is the 

most commonly used waveform in therapeutic and clinical applications and it is effective in the 

rat motor cortex system as well. The choice of current control avoids impedance variation 

sensitivity and ensures highly localized activation at the electrode site. The biphasic structure 

avoids tissue damage through charge balancing as is required for clinical applications, while the 

cathode-leading design ensures adequate activation and serves to lower the threshold levels. 

2.3 Technical considerations of stimulus design 

This section details a number of issues related to stimulation of the cortex which deserve special 

consideration during the process of stimulus design. These issues include: stimulation induced 

tissue damage, electrode interactions, electrode configuration and current spread. The various 

parameters which influence these factors are described. 

2.3.1 Stimulation induced tissue damage 

For a stimulation device to function properly we must preserve the integrity of the interfacing 

surfaces.  The electrode and its surrounding cortical tissue can be damaged by the reactions that 

occur at the electrode-electrolyte interface.  The saline environment of the brain has a corrosive 

effect on the electrode surface and the stimulation current can subject the electrode to further 

degradation through oxidation (Crist & Lebedev, 2008; McCarthy, Otto, & Rao, 2011).  These 

processes can increase the concentration of ions in the surrounding tissue which can be toxic to 

the tissue or affect the functional properties of the electrode in addition to shortening its lifespan  

(Neuman, 1998).  These reactions can exacerbate the immune response and promote the 

formation of a glial scar encapsulating the electrode (Polikov, Tresco, & Reichert, 2005). As 

such, we seek to use non-reactive materials such as noble metals, stainless steel, silicon and 

polymers as electrode materials to minimize these reactions and employ 

biocompatible/neurotrophic coatings (Crist & Lebedev, 2008; Hanson et al., 2008).  Bio-coatings 

and insulation in general serve to reduce the immune response and avoid encapsulation.  

A change of material is not always sufficient to avoid reactions that can lead to tissue damage. At 

the electrode tip, high current density can result in electrolysis which produces hydrogen or 

oxygen gas in the tissue environment inflicting damage by altering the pH (Neuman, 1998; 
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Tehovnik et al., 2005). Sharp tips easily puncture the cortex and reduce cortical depression during 

insertion (Hanson et al., 2008), however they reduce surface area at the tip. Reducing tip area 

reduces the amount of current needed to activate the tissue but also increases the current density 

at the tip which can lead to tissue damage. However, current density at the electrode tip is 

responsible for the activation of the neural elements we seek to stimulate and unexcitable neurons 

require fairly high densities for activation (Tehovnik et al., 2005), thus the effects of current 

density cannot be mediated by material and shape selection alone. 

Stimulation parameters heavily influence the effectiveness and longevity of an implanted 

electrode. The current threshold for detectable nerve damage was determined to depend on a 

number of stimulus factors Continuous stimulation of peroneal nerves in cats using 400 µA 

pulses delivered at 50 Hz caused irreversible neural damage after 48 hours of stimulation. The 

endoneurial edema resulting from the stimulation progressed to early axonal degeneration 1 week 

after stimulation. Neural damage could however be mitigated by reducing the duration of 

stimulation, the frequency of stimulation or using an intermittent duty cycle (Agnew, McCreery, 

Yuen, & Bullara, 1989).  

The threshold for neural injury was determined to result from the combined effects of charge 

density and charge per phase and work done in the cat parietal cortex determined these 

parameters interact over the range of 10 to 800 µC/cm
2
 and 0.05 to 5.0 µC respectively 

(McCreery, Agnew, Yuen, & Bullara, 1990). The threshold for nerve damage in the sciatic nerve 

of cats was found to be higher for stimuli with short pulse durations (50 µs) and interphase 

intervals (0 ms), than those with longer pulse durations (100 µs) and interphase intervals (400 µs) 

(McCreery, Agnew, Yuen, & Bullara, 1992). Further studies in the cat sciatic nerve demonstrated 

when stimulus frequency is raised from 50 Hz to 100 Hz, the relationship between early axonal 

degeneration and stimulus amplitude is exaggerated, and the threshold at which degeneration 

occurs is reduced. At low frequencies (20 Hz) there was no relationship between axonal 

degeneration which suggests that low frequencies may not induce damage even at high 

amplitudes (McCreery, Agnew, Yuen, & Bullara, 1995). 

Additionally, the length of stimulation time must be considered. Levels which do not produce 

damage in a single trial can begin to have effects with repeated stimulation at the same site. 

Despite careful design, parameters commonly used in neurophysiology and neuroprosthetics 
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research can still cause histological damage after many hours of stimulation, and can lead to cell 

death in as little as 250 trials of a stimulation experiment (Murasugi et al., 1993). If an implanted 

array is to survive the environment of the brain and effectively stimulate the tissue, both the 

physical electrode and stimulation it delivers must be designed in such a way as to reduce or 

avoid all sources of tissue damage. 

2.3.2 Electrode interactions 

Electrodes for cortical implants are typically arranged in an array format with equal spacing 

between electrodes. Standard commercially available devices can contain up to 96 electrodes 

with standard lengths varying from 0.5-1.5 mm and a standard electrode spacing of 400 µm 

(Rousche & Normann, 1999). Many applications require highly localized activation focused 

around the electrode site and spread of the stimulation signal is undesirable. In the case of visual 

prosthetic devices, each electrode is responsible for eliciting one phosphene, and separations 

greater than 0.5 mm evoke separate phosphenes when stimulating area V1 with currents less than 

30 µA (Schmidt et al., 1996).  Stimulation must be designed to ensure a phosphene is separate 

and distinct from those produced at neighbouring electrodes at close separations. The intention is 

to activate the neurons in a small area of cortex, particularly the dimensions of the V1 

hypercolumn (1 mm x 0.7 mm) which is thought to be the functional unit of phosphene induction 

(Tehovnik & Slocum, 2007). If the stimulation is stronger than dictated by electrode spacing and 

hypercolumn width, it will produce phosphenes which overlap causing the percepts to blend into 

one larger representation. In the case of motor cortex stimulation to evoke movements, if the 

stimulus signal causes significant spread of activation it can induce movements in multiple 

muscle groups, particularly if the signal spreads across the borders in the somatotopic 

representation. Stimulation signals can be designed to activate single muscles with highly 

localized stimulation (single forelimb muscle), groups of muscles with larger spreading activation 

(multiple forelimb muscles), and unrelated muscle groups if the stimulus spreads across 

representations (for example, simultaneous forelimb and whisker movements). 

2.3.3 Electrode configuration 

The spread of activation can also be controlled by the configuration of the electrodes delivering 

stimulation. Standard neural stimulation equipment employs monopolar or bipolar electrode 
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arrangements. The monopolar arrangement uses a stimulating electrode (of either polarity) and a 

distant reference electrode, whereas the bipolar configuration consists of two electrodes in close 

proximity of opposite polarity in an attempt to restrict the electric field produced by stimulation 

(Dokos, Suaning, & Lovell, 2005; Joarder, Dokos, Suaning, & Lovell, 2007). The arrangement 

focuses the electric field between the electrodes to limit the spatial extent of the activation; 

however the area of activation is effectively increased since the neurons contacting the return 

electrode are also stimulated (Lovell, Dokos, Cloherty, Preston, & Suaning, 2005). Auditory 

physiologists have found the field of activation around the electrode to be more focused going 

from monopolar to bipolar to tripolar stimulation (Bierer & Middlebrooks, 2002, 2004; Kral, 

Hartmann, Mortazavi, & Klinke, 1998; Snyder, Bierer, & Middlebrooks, 2004) however the 

lowest current threshold for neural excitation occurs with monopolar stimulation (Tehovnik & 

Slocum, 2007). 

Recent literature has proposed alternative electrode configurations. The hexpolar configuration 

surrounds the stimulating electrode with six “guard” electrodes arranged in a hexagonal shape 

which act as a combined return and localize the tissue activation by “guarding” the spread of 

current (Habib, Cameron, Suaning, Lovell, & Morley, 2012). The same lab has developed a 

quasi-monopolar stimulation strategy using this configuration to activate the hex-guard electrodes 

and the monopolar electrode simultaneously which serves to lower the activation threshold 

(Matteucci et al., 2012). They have also modeled the response of a retinal ganglion cell to 

stimulation in this configuration (Abramian, Lovell, Morley, Suaning, & Dokos, 2012). This 

configuration and its associated stimulation strategies deserve further investigation but will not be 

addressed here. 

2.3.4 Current spread 

Confining microstimulation to a specific region helps to focus its effects and limits disruptions to 

nearby cortical circuitry. When areas outside the region of interest are activated, the effect of the 

stimulation can be reduced or altered in an often unpredictable manner.  Extensive study in motor 

cortex has led to an equation to describe the relationship between the current required to activate 

a neuron (I) and the distance (r) between the neuron and the electrode: I=Kr
2
 , where K is a 

constant (Ranck, 1975; Stoney, Thompson, & Asanuma, 1968). This relationship can be used to 

predict the area activated by a specific current level, and suggests that confining activity to one 
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hypercolumn requires current amplitudes less than 100 µA (Hubel & Wiesel, 1977; LeVay, 

Connolly, Houde, & Van Essen, 1985).  

Neurophysiology experiments frequently design a microstimulation stimulus to match a visual 

stimulus. For example, the electrical stimulus equivalent of a random dot patch visual stimulus is 

the activation of a middle temporal area (MT) neuron whose preferred direction matches the 

direction of visual motion (Salzman et al., 1992). The parameters of stimulation are designed so 

that the behavioral response obtained with the electrical stimulation matches the behavioral 

response obtained with the visual stimulation. Despite this careful design, neurorecording 

experiments have shown that the activity produced by microstimulation is very different from 

that produced by an equivalent visual stimulus (Masse & Cook, 2009). The behavioural results of 

these experiments have revealed that microstimulation effects are longer lasting with the ability 

to affect perception for several hundred milliseconds after it stops. 

Multiple fMRI studies have shown the calculation of current spread to underestimate the volume 

of activated tissue for both visual and electrical stimulation; however the discrepancy is much 

greater for electrical stimulation (Logothetis et al., 2010; Sultan, Augath, & Logothetis, 2007; 

Tolias et al., 2005).  The difference between the calculated and experimental values may be due 

to the difference in stimulation parameters used defining each, which further emphasizes the need 

for a common methodology. However, the discrepancy between visual and electrical stimulation 

is thought to be partially due to the spatiotemporal properties of the stimulus. 

The greater variability consistent with visual stimuli is thought to result in asynchronous neural 

activation, whereas the uniformity of electrical stimulation leads to neural synchrony capable of 

producing larger responses (Sultan et al., 2007). Current spread may be in part due to the 

synchrony of activation provided by stimulation, however it is also likely to result from the 

interconnectivity of cortical tissue which allows for transynaptic activation of neurons nearby 

those directly stimulated (Tolias et al., 2005). Effective stimulation parameters are necessary to 

limit these effects and control both the spatial and temporal interference microstimulation 

imposes on the natural function of cortical circuitry. 
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2.4 Known effects of intracortical microstimulation parameters 

This section details the known effects of intracortical microstimulation parameters documented in 

past studies in order to gain insight on the general effects of stimulus parameters. To our 

knowledge, no studies exist which have systematically explored the general effects of stimulation 

parameters on the responses they evoke; however some efforts have been made to optimize the 

parameters of stimulation signals for their specific purposes. In the absence of systematic studies, 

it becomes necessary to review stimulation experiments designed for a variety of different 

species, systems and applications in order to gain insight pertaining to parameter effects. This 

review focuses on intracortical microstimulation (ICMS) experiments which use a small electrode 

(microelectrode) for stimulation of visual, auditory, somatosensory and motor cortical areas. The 

most commonly used signal is the constant-current, biphasic square waveform. The findings are 

discussed in terms of the parameters of this signal which include the pulse amplitude, frequency, 

and duration as well as the interphase interval and train duration. This section concludes with a 

table (Table 2-1) summarizing the ranges of stimulus parameters used in different regions of the 

brain for various applications. 

2.4.1 Visual cortex 

Very few studies have been conducted using intracortical microstimulation of the visual cortex in 

human subjects. During a brief experiment  performed while three awake human subjects were 

undergoing surgery, the ICMS thresholds for phosphene induction  were tested (Bak et al., 1990). 

Due to time constraints of the surgery, parameters were not examined systematically and these 

results pertain to a mixture of cathode-leading and anode-leading stimulations. Stimulation was 

delivered as a constant current, capacitor-coupled waveform of biphasic pulses with 0.2 ms phase 

duration, delivered at 100 pulses/second, for duration of 1s. Phosphene threshold current 

amplitudes ranged between 35-300 µA and phosphenes tended to become brighter and smaller as 

current amplitude increased.  

In one of the only long-term studies conducted in the visual cortex of a human subject, 38 

microelectrodes were implanted near the pole of the right occipital cortex of a blind woman with 

no light perception (Schmidt et al., 1996). Visually robust phosphenes were produced using 

cathodic-first, constant current, biphasic pulses of 200 µs duration delivered at 200 Hz for a total 
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duration of 125 ms.  In accordance with the subject’s feedback on the quality of the phosphene, 

these parameters were adjusted to 500 µs duration pulses delivered at 150 Hz for a total duration 

of 250 ms.  Amplitude: Of the 38 electrodes, 25 had thresholds <25 µA (lowest was 1.9 µA) 

while the other electrodes didn’t respond to currents up to 30 µA. Nine of these electrodes had a 

threshold of 40-77 µA with anode first stimulation. Increasing the current amplitude had mixed 

effects on size as it could produce no changes, an increase, a decrease or first increase then 

decreased in size. Current amplitude also affected phosphene colour. Near threshold stimulation 

typically produced coloured phosphenes, whereas phosphenes at amplitudes >12.5 µA were 

typically white, yellowish, or grayish. Frequency: Increasing the pulse frequency reduced the 

reaction time for both phosphene onset and offset which plateaued at 150 Hz and 250 Hz 

respectively. Increases in frequency were also found to increase phosphene brightness. Threshold 

currents were constant for frequencies between 150-200 Hz however increased by half when 

frequency was lowered to 75 Hz. Pulse Duration: Increasing pulse duration from 200 to 800 µs 

reduced the threshold from 19.4 µA to 11.7 µA and produced more substantial phosphenes. 

Increases in pulse duration were found to increase phosphene brightness. Interpulse Interval: 

Long interpulse intervals with short pulse durations reduced thresholds, and increasing the 

interval from 0 to 100 µs decreased the threshold by 5.4%.  Train Duration: The thresholds for 

250 ms duration trains were 20% lower than those of 125 ms trains, and longer durations 

produced more easily recognizable phosphenes. Longer train durations produced brighter 

phosphenes and increasing the train duration from 200-500 ms increased phosphene size. 

Multiple trains produced separate phosphenes if separated by more than 25 ms. Train durations 

longer than 250 ms produced an elongated sense of phosphene duration, whereas trains longer 

than 1000 ms caused the phosphene to extinguish before the stimulation ended.   

More extensive work has been conducted in the visual cortex of non-human primates using ICMS 

threshold detection experiments. In these studies the monkeys indicate the detection of visual 

percepts in a lever-press task (Bartlett et al., 2005). The stimulus waveform consisted of constant-

current, monophasic, cathodal pulses with  durations of 0.2 ms delivered at a frequency of 100 Hz 

in 1s trains. Amplitude: The average current threshold for detection ranged from 35-149 µA 

suggesting large variability among sites. Frequency: Fast reaction times were observed for 50-

100 Hz stimuli whereas reaction times for 1-10 Hz signals were slow. The detection threshold 

was found to decrease as frequency increased and these effects were more pronounced in the 
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range of 10-20 Hz. Pulse Duration: Detection threshold was found to decrease as pulse duration 

increases with the chronaxie (shortest duration of effective stimulation) determined to be 247 µs.  

In a similar study, monkeys were trained to perform a 2 choice direction discrimination task in 

response to stimulation of area MT (Murasugi et al., 1993; Salzman et al., 1990, 1992). The 

stimulation targeted neurons whose preferred direction was opposite to that of a presented visual 

motion stimulus with the goal of biasing the monkey’s choice of direction. The stimulus 

waveform consisted of biphasic, cathodal-leading, pulses of 0.2 ms duration with a 0.1 ms 

interphase interval between the cathodal and anodal pulses. Amplitude: While testing the effects 

of amplitude, the frequency was fixed at 200 Hz and the current values tested were 0, 5,10,20,40 

and 80 µA with the threshold identified as 5 µA. The ability to bias behavior improved as current 

amplitude increased up to 40 µA with large effects seen at 20 and 40 µA. At 80 µA, the monkey 

could no longer determine the direction of motion. The authors described these effects by stating 

that lower intensity stimulation added “signal” to the cortex, while higher intensities added 

“noise”. This noise was thought to be caused by the activation of many columns encoding 

different directions.  Frequency: While testing the effects of frequency, the amplitude was fixed 

at 10 µA and the frequency values tested were 0, 25, 50, 100, 200, 500 Hz, with the threshold 

identified at 25 Hz although weak effects were observed at 12.5 Hz. Variations in the frequency 

had very little effect on performance.  

2.4.2 Auditory cortex 

To assess the safety of the Utah Array and the stimulation it provides, a 100 electrode array  was 

implanted into the auditory cortex of three cats (Rousche & Normann, 1999). A two-alternative 

forced choice task was used to indicate the detection of the stimulus and general trends for 

parameter variations were examined. The standard stimulus used was a cathodic-leading, constant 

current signal of 100 µA biphasic pulses with a width of 150 µs and an interphase interval of 100 

µs. The stimulation lasted 0.6 s and the pulse pairs were delivered at 250 Hz. Charge/phase: 

With these parameters the charge/phase thresholds varied from 1.5-26 nC/ph. Frequency: 

Stimulus detection was reduced as stimulus frequency decreased. When the charge/phase was 

less than 1.5 times the threshold, frequencies ranging from 50-2000 Hz produced nearly 100% 

detection; however 25 Hz stimuli did not produce the same effect even with stimulation an order 

of magnitude higher than 1.5 times the threshold. Train Duration: When the charge per phase 
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was fixed at 1.5 times the threshold, stimulus detection was reduced to 50% for 0.1 s duration 

stimuli, whereas durations greater than 0.2 s produced nearly 100% detection. 

The effects of interpulse interval and frequency on threshold detection have also been examined 

in the rat auditory cortex (Koivuniemi, Regele, Brenner, & Otto, 2011).  The stimulus waveform 

was a constant current, biphasic square wave with 205 µs pulses delivered at 150 pulses per 

second with both cathode-leading and anode-leading stimulation. Interphase Interval: 

Threshold values were found to decrease as the interphase interval increased and anode-leading 

stimulation had higher thresholds than cathode-leading stimulation for interphase intervals less 

than 1 ms in duration. Frequency: The detection threshold amplitude decreased logarithmically 

as frequency increased from 16-84 pulses per second; however this trend plateaued between 84-

338 pulses per second. 

2.4.3 Somatosensory cortex 

The effect of stimulus intensity, frequency and duration on detection thresholds has also been 

explored in the somatosensory cortex of a head-restrained rat (Butovas & Schwarz, 2007). This 

study focused on the difference between single and repetitive stimuli.  A biphasic cathode-

leading, constant current square waveform was used in both single pulse and repetitive 

stimulation trials. Stimulation Intensity (amplitude x duration): Using single pulses, at 

intensities as low as 2 nC, detection probability rose above chance levels, and plateaued at ~80% 

detection at 4 nC.  Frequency: Detection threshold levels could be lowered by increasing the 

stimulus frequency. Pulse Duration: Repetitive pulses were found to decrease the detection 

threshold even when comparing only 2 pulses to a single pulse. Using just 2 pulses, the 

stimulation threshold could be significantly reduced by increasing the pulse frequency.  This 

effect was more pronounced for short inter-pulse intervals and for stimulations with 5-15 pulses. 

Additionally, repetitive stimuli boosted performance levels approaching 100% detection, and 2 

pulses were found to perform as well as longer trains of stimuli. 

In a similar experiment, the effects of stimulus amplitude, frequency and train duration were 

examined in the somatosensory cortex of an unrestrained rat (Semprini, Bennicelli, & Vato, 

2012). The standard stimulus waveform stimulus was 40 current-controlled, biphasic, cathode-

leading square pulses with a duration of 160 µs delivered at 200 Hz with an amplitude of 100 µA. 

Amplitude: Varying the amplitude between 5-100 µA with the frequency fixed at 200 Hz 
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revealed that the ability to detect stimulation at low amplitudes was at chance levels however 

performance improved greatly (>70% correctly detected) for amplitudes  above 60 µA. 

Frequency: Varying the frequency between 10-200 Hz  with amplitude fixed at 80 µA revealed 

that performance above chance levels was achieved with frequencies as low as 25-50 Hz. After 

this point performance plateaued at ~70% correct performance. Train Duration: Train duration 

was varied between 5-200 ms with amplitude fixed at 80 µA, and frequency fixed at 200 Hz. 

Under these conditions performance was above chance levels when duration was greater than 10 

ms after which point performance plateaued at ~70% correct.  

2.4.4 Motor cortex 

An experiment conducted in the rat and mouse motor cortex examined the effects of frequency 

and train duration on the threshold for producing forelimb movements (Young, Vuong, Flynn, & 

Teskey, 2011). The standard stimulation signal consisted of 13 monophasic cathodal pulses of 0.2 

ms duration delivered at 333 Hz, with trains repeating every second. Frequency: In rats, the 

lowest movement thresholds were found to occur for stimulus frequencies of 181-400 Hz and no 

difference in threshold was observed between 142- 400 Hz frequencies. In mice, no movements 

could be evoked using stimulus frequencies of 111, 125 and 500 Hz, however, 333 Hz was 

effective. Train Duration: In rats, movements could be evoked for all train durations longer than 

15 ms, and thresholds were not significantly different between durations of 15-60 ms. In mice, 

movements could be evoked for all train durations longer than 9 ms. Movement thresholds 

tended to decrease as train duration increased however there were no significant differences 

between thresholds of 12-39 ms trains.  

 

Table 2-1. List of parameter ranges used in a common brain stimulation applications. 

Parameter Phosphene 

Generation 

(Visual 

Cortex) 

Movement 

Evocation 

(Motor 

Cortex) 

Tone 

Generation 

(Auditory 

Cortex) 

  Tactile 

Sensation 

(Somatosensory 

Cortex) 

DBS 

(STN, GPi) 

Amplitude  (µA) 2-300  10-200 20-100 5-100 100-3000 

Frequency   (Hz) 25-5000 100-500 16-350 10-500 130-185 

Pulse Duration (ms)  0.01-1 0.1-0.6 0.08-0.5 0.1-0.6 0.06-0.21 

Interphase Interval (ms) 0-10 - 0-1 - - 

Train Duration  (ms) 80-1000 15-500 30-650 5-200 - 
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Table 2-1 summarizes the stimulus parameter ranges used in the applications discussed in section 

2.4 as well as the ranges used in deep brain stimulation therapies. This table emphasizes the wide 

variability in parameter values used within and between applications. Within an application, the 

variability is primarily due to the large range of parameter values which can be used to 

accomplish a specific stimulation goal, and is partially due to the comparison of studies 

conducted in a number of different species. The variability between applications suggests that 

task-specific optimization is valuable since certain parameter ranges appear more effective at 

accomplishing specific stimulation goals.  

The direct comparison of stimulus parameters used in different studies is often of limited value 

due to differences in the species, regions of the brain and stimulation goals under study. Direct 

comparison is best limited to studies conducted in the same species and region of the brain for the 

same purpose. However, even under these restrictions direct comparison may not be effective 

since different stimulus parameters can be altered to achieve the same effect, resulting in multiple 

parameter combinations which achieve the same goal. For example, increasing the amplitude or 

pulse duration of a stimulus signal can have the same effect on phosphene generation. If one 

study increases the amplitude of a stimulus while another increases the pulse duration they may 

achieve identical results with different stimuli. A direct comparison of these results may not be 

beneficial for optimizing an existing stimulus or developing new stimuli. 

The major goal of this thesis is to define the general effects exerted by each stimulus parameter 

on the responses they evoke. To achieve this goal we experimentally tested the effects of each 

stimulus parameter in a subset of their commonly used ranges.  The emphasis is placed on 

understanding the generalized influence of each parameter rather than focusing on the specific 

values. This knowledge can be used in the design of new stimulus waveforms and the 

optimization of existing signals for a specific task. It also provides a basis from which to make 

indirect comparisons, where we consider the waveform as the sum of the influence of its 

component parameters. The technical implementation of this approach is detailed in the model 

described in chapter 6. 
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3.1 Presentation of the article 

The results of the literature review were used to determine the parameter ranges to test 

experimentally. These ranges encompassed a wide variety of parameters that are commonly used 

in brain stimulation applications. A series of experiments (experimental blocks) were designed to 

systematically test the effects that stimulation parameters exert on the responses they evoke. Each 

experimental block tested one parameter of the stimulus. The following article describes the 

effects of stimulus parameters on the amplitude and onset latency of the evoked responses. This 

article (Watson, Dancause, & Sawan, 2015b) was submitted to the journal of Brain Stimulation 

on March 27th 2015 and the revised manuscript submitted July 31
st
 2015 is reproduced here.  

3.2 Abstract 

Background: Microstimulation of brain tissue plays a key role in a variety of sensory prosthetics, 

clinical therapies and research applications. However the effects of stimulation parameters on the 

responses they evoke remain widely unknown.  

Objective: We aimed to investigate the contribution of each stimulation parameter to the response 

and identify interactions existing between parameters. 

Methods: Parameters of the constant-current, biphasic square waveform were examined in acute 

terminal experiments under ketamine anaesthesia. The motor cortex of 7 Sprague-Dawley rats 
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was stimulated while recording motor evoked potentials (MEP) from the forelimb. Intracortical 

microstimulation (ICMS) parameters were systematically tested in a pair-wise fashion to observe 

the influence of each parameter on the amplitude and latency of the MEP. 

Results: The amplitude of the MEP increased continually with stimulus amplitude (p<0.001) and 

pulse duration (p=0.001) throughout the range tested. Increases were also observed when stimuli 

were raised from low to moderate values of frequency (p=0.022) and train duration (p=0.045), 

after which no further excitation occurs.  

The latency of MEP initiation decreased when stimulus amplitude (p=0.037) and frequency 

(p=0.001) were raised from low to moderate values, after which the responses plateaued.  MEP 

latencies were further reduced by increasing the pulse duration (p=0.011), but train duration had 

no effect. 

Conclusion(s): Our data indicate that MEP amplitude and onset latency can be modulated by 

alterations to a number of stimulus parameters even in restrictive paradigms and suggest that the 

parameters of the standard ICMS signal used for evoking movements from the motor cortex can 

be further optimized. 

 

Key words: Intracortical microstimulation, stimulation parameters, motor evoked potentials 

3.3 Introduction 

Microstimulation of brain tissue has a wide range of applications including visual (Bradley et al., 

2005; Davis et al., 2012; Dobelle & Mladejovsky, 1974; Schmidt et al., 1996; Torab et al., 2011) 

and somatosensory (Berg et al., 2013; Tabot et al., 2013; Thomson et al., 2013) prosthetic 

devices, deep brain stimulation therapies for Parkinson’s (Anderson, Burchiel, Hogarth, Favre, & 

Hammerstad, 2005; Bronstein et al., 2011; Deuschl et al., 2006; Little et al., 2013; Weaver et al., 

2012), and epilepsy (Fisher et al., 2010; Kerrigan et al., 2004; Lee, Jang, & Shon, 2006; Morrell, 

2011) and countless research applications involving many different regions of the brain (Bartlett 

et al., 2005; Brecht, Schneider, Sakmann, & Margrie, 2004; Butovas, 2003; Butovas & Schwarz, 

2007; DeYoe, Lewine, & Doty, 2005; Marzullo, Lehmkuhle, Gage, & Kipke, 2010; Murphey & 

Maunsell, 2007; Salzman et al., 1992; Tehovnik et al., 2005). Although these applications may 
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involve different electrodes, target sites or specific goals they each seek to replace natural stimuli, 

correct problems in neural circuitry, or modify behavior using electrical stimulation.   

One of the earliest and most documented uses of brain stimulation involves the activation of 

motor cortex regions to evoke muscle contractions or movements (Penfield & Boldrey, 1937; 

Penfield & Welch, 1951; Sironi, 2011). Stimulation applied to specific regions of the motor 

cortex has been shown to evoke movements in humans (Penfield & Welch, 1951), primates 

(Asanuma et al., 1976), cats (Armstrong & Drew, 1984) and rodents (Donoghue & Wise, 1982; 

Sanderson, Welker, & Shambes, 1984). The motor cortex exhibits a somatotopic organization in 

which a specific cortical region corresponds to a specific area of the body. Much study has been 

devoted to mapping the correlation between regions of the motor cortex and the areas of the body 

they control (Gioanni & Lamarche, 1985; Neafsey et al., 1986; Penfield & Boldrey, 1937; 

Rouiller et al., 1993; Schieber, 2001).   

When electrical stimulation is applied to the forelimb region of the rat motor cortex, it activates 

corticospinal neurons which project from the cortex to the spinal cord. Within the spinal cord 

these efferent neurons are indirectly connected to the motor neurons which innervate the forelimb 

muscle fibers. When these fibers are activated they produces muscle contractions or limb 

movements and the corresponding activations can be recorded directly from the muscles of the 

forelimb.  

Short duration stimulus trains (<50 ms) are often used to elicit responses from the motor cortex in 

anaesthetized animals (Asanuma & Rosen, 1972; Donoghue & Wise, 1982; Gioanni & 

Lamarche, 1985; Neafsey et al., 1986; Nudo, Jenkins, & Merzenich, 1990; Sanderson et al., 

1984). The most commonly used stimulus signals for evoking movements in the rat consists of 13 

monophasic cathodal or biphasic cathode-leading pulses, each of 0.2 ms in duration delivered at 

333 Hz with trains repeating every second. Although these parameters were determined by trial 

and error, some general effects of stimulation parameters have been examined. Stimulus current 

thresholds for eliciting movements can be lowered by extending the train duration beyond 30 ms 

and increasing the pulse frequency above 300 Hz  (Asanuma & Arnold, 1975; Asanuma et al., 

1976). The lowest movement thresholds have been shown to occur when stimulating with 

frequencies between 181-400 Hz for durations of 15-33 ms, with the optimal values being 300 Hz 

and 39 ms (Young et al., 2011). Stimulus frequency can be used to limit the spread of current 
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within the cortex. Pulses delivered at frequencies less than 20 Hz localize the activation by 

preventing the summation of excitatory and inhibitory postsynaptic potentials (Cheney, Griffin, 

& Van Acker, 2013). While these parameter effects are valuable observations, much remains to 

be determined. 

To accomplish a stimulation goal it is necessary to design each stimulation signal to achieve a 

specific response. Externally, the response can be viewed as a desirable reaction such as the 

induction of a visual percept (Tehovnik & Slocum, 2007), the cessation of a tremor (Benabid, 

Chabardes, Mitrofanis, & Pollak, 2009) or seizure (Fisher, 2012), the generation of a limb 

movement (Asanuma & Rosen, 1972; Nudo, Jenkins, Merzenich, Prejean, & Grenda, 1992) or 

the facilitation of a response in a behavioral task (Murasugi et al., 1993; Tehovnik, Slocum, & 

Schiller, 2003). Internally, the response is characterized by the magnitude of the cortical 

activation, the speed at which the activation occurs, volume of tissue activated and the duration of 

this activation. These effects can be controlled by varying the parameters of the microstimulation 

signal. 

We consider one of the most prevalent microstimulation signals: the constant-current, cathode 

leading, biphasic square waveform, historically suggested to be safe and effective (Lilly et al., 

1955). This signal reduces the occurrence of tissue damage by alternating the polarity of the pulse 

phases to achieve charge balancing. The parameters of this signal include the current amplitude, 

pulse frequency, pulse duration, interphase interval and pulse train duration (figure 1a).  Some of 

these parameters are known to induce tissue damage within specific ranges (Agnew, McCreery, 

Yuen, & Bullara, 1989; Asanuma & Arnold, 1975; McCreery, Agnew, Yuen, & Bullara, 1995; 

McCreery, Pikov, & Troyk, 2010), and most applications have restrictive requirements of the 

stimulus. As such, many efforts have been made to optimize a signal for its specific purpose, by 

developing waveforms through iterative testing of parameter combinations shown to be 

successful from past experience (Koivuniemi & Otto, 2012; Koivuniemi et al., 2011; McIntyre, 

Frankenmolle, Wu, Noecker, & Alberts, 2009; Motamedi et al., 2002; Rajdev, Ward, & Irazoqui, 

2011; Van Acker et al., 2013; Young et al., 2011). 

This approach is valuable, yet time consuming and inevitably results in multiple signals 

addressing the same problem since many effective parameter combinations exist for each 

application.  Extensive variability within a field reduces the power of the collective body of 
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research and hinders comparisons when stimuli are slightly different, or entirely contradictory. 

We propose an alternative approach to stimulation design in which the parameters of a waveform 

are tailored to suit a specific purpose or target area by understanding how each parameter 

contributes to the response signal. To this end, we systematically explored the influence that 

parameters and their interactions have on the effectiveness of the biphasic waveform stimulation 

signal in terms of the amplitude and latency of the response.  

3.4 Methods 

3.4.1 Experimental design 

In many research applications, strong stimuli are used to ensure a response is produced; however 

this approach is largely unsuitable for clinical and prosthetic applications. We chose to examine 

parameter ranges typically employed for clinical applications; specifically those developed for 

visual prosthetic devices which have extremely restrictive stimulation paradigms (Schmidt et al., 

1996). These paradigms employ the principle of “minimum effective dose” where a stimulus is 

just strong enough to produce a visual percept (phosphene), but not strong enough to cause 

interactions between neighboring electrodes or tissue damage at the electrode interface. 

To explore parameters in this range we chose to work in the rat model, stimulating the caudal 

forelimb area of the primary motor cortex (M1); a region known to produce forelimb movements 

in anaesthetized animals (Donoghue & Wise, 1982; Gioanni & Lamarche, 1985; Neafsey et al., 

1986; Nudo et al., 1992; Sanderson et al., 1984). This model offered high-throughput capabilities 

and stimulation tasks sensitive to the parameter range of interest. The signal’s effectiveness was 

quantified by recording the response to stimulation in the form of motor evoked potentials (MEP) 

of forelimb muscles (figure 1b).  Using the MEP signal we were able to explore the amplitude of 

the response and the latency at which it occurred. 
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Figure 3-1: Parameters of the constant-current, biphasic square waveform (a), and a schematic 

representation of the experimental task (b). 

3.4.2 Stimulation protocol 

Five experiments were conducted to test the specific effects of each constant-current, biphasic 

square waveform parameter on the MEP signal. The waveform parameters and their ranges are 

specified in table 1.  Each experiment focused on one parameter, testing it against the other four 

parameters in a pair-wise fashion. Parameters not involved in the comparison were held at a 

control value derived from the standard stimulation signal proven to be effective in the rat motor 

cortex (Donoghue & Wise, 1982; Nudo et al., 1990; Young et al., 2011), and the control 

amplitude was set to 50 µA which was twice the threshold level (Brus-Ramer, Carmel, & Martin, 

2009; Chakrabarty, 2005; Marple-Horvat & Armstrong, 1999). The control amplitude level was 

selected according to the results of preliminary testing. We aimed to ensure the stimulus 

amplitude was sufficient to produce responses to the majority of stimulus conditions not 
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explicitly exploring amplitude effects while remaining low enough to avoid masking the 

influence of other parameters. 

In this pair wise testing arrangement, all amplitude levels were tested at 3 frequency levels (low, 

mid and high values found in the “test levels” column of table 1) with pulse duration, interphase 

interval and train duration held at the control values. When describing the level of the parameter 

in question throughout the text, we refer to the smallest value in the test range as “low or short”, 

the middle value as “mid”, and the largest value in the test range as “high or long”. For instance, 

in the case of frequency, the low, mid and high values are represented by the first, third and fifth 

entries of the “test levels” column of table 1, the values of which are 100,300 and 500 Hz 

respectively. In the case of train duration, the short, mid and long values correspond to 42, 172 

and 300 ms respectively. This testing procedure was then repeated until each parameter had been 

examined in this “pair-wise” arrangement resulting in a total of 300 independent conditions to 

test all parameters (5 parameters x 5 test values x 4 paired parameters x 3 levels). This 

arrangement results in identical conditions occurring within different experimental blocks which 

allows for further comparison. A complete list of all stimulus conditions can be found in the 

supplementary material. In addition to the parameter of the stimulus signal we also include the 

number of pulse pairs resulting from each combination of test parameters. The number of pulse 

pairs is included for instructive purposes only as it has conventionally been detailed in 

stimulation studies, it is however not an independent parameter of the stimulus but rather a 

function of the pulse duration, pulse frequency and train duration.  Each parameter was tested in a 

separate experimental block with ten trials for each condition and all trials were pseudo-

randomized with 1 second between trials. The maximum duration of MEP responses induced by 

our experimental conditions was 700 ms, thus a delay of 1 second between trials allowed the 

MEP response to return to baseline and placed a buffer between the end of the response and the 

beginning of the next trial.  All five blocks were tested in a randomized order at two different 

sites within the motor cortex of each rat (14 sites in total). 
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Table 3-1: Parameter test values 

Parameter Unit    Range Test Levels Control Pairings 

      

Amplitude (A) µA     30-65     30, 39, 48, 56, 65     50 AF, AP, AI, AT 

Frequency (F) Hz     100-500     100, 200, 300, 400, 500     303 FA, FP, FI, FT 

Pulse Duration (P)  ms 0.18-0.5  0.18, 0.26, 0.34, 0.42, 0.5       0.2 PA, PF, PI, PT 

Interphase Interval (I) ms 0.08-0.5 0.08, 0.19, 0.29, 0.40, 0.5 0 IA, IF, IP, IT 

Train Duration (T) ms     43-300      43, 107, 172, 236, 300     43 TA, TF, TI, TP 

      

     

3.4.3 Surgical procedures 

Seven female Sprague-Dawley rats (Charles River, QC, CA) weighing 273-450 g were used in 

terminal acute experiments. Anaesthesia was induced with intraperitoneal ketamine injection (80 

mg/kg) and maintained with isofluorane (~2% in 100% oxygen). Subcutaneous injection of 

mannitol (4 g/kg) and intramuscular injection of dexamethasone (1 mg/kg) were given prior to 

the craniotomy to prevent swelling and oedema inflammation. A self-regulating heating pad 

maintained body temperature which, along with pulse rate and oxygen saturation, was monitored 

continuously. Insulated, multi-stranded wires (Cooner Wire, Chatsworth CA, USA) were 

implanted in the extensor digitorum communis muscle of the forelimb contralateral to the 

stimulating electrode to record MEP signals.  

The animal was placed in a stereotaxic frame for both the surgical and stimulation procedures; 

positioned to allow free movement of the forelimb. A small craniotomy (8 mm x 5 mm) exposed 

the motor cortex (left hemisphere), the dura was removed and mineral oil applied to the cortex. 

Anaesthesia was switched to ketamine (~10 mg/kg/10 minutes) administered through 

intraperitoneal injections as needed for the duration of the stimulation procedure.   

Stimulation was delivered with a digital stimulator (TDT IZ2 Stimulator and RZ5 BioAmp 

processor), through a glass insulated tungsten microelectrode (FHC Bowdoin, ME USA, 

UEWSDESGBN4G, 110-175 kΩ) manipulated by a microdrive (David Kopf Instruments Model 

2662, Tujunga, CA). Appropriate sites were located using standard intracortical microstimulation 

(ICMS) trains: 13 monophasic, cathodic, square pulses of 0.2 ms duration with 3.3 ms between 

the pulses delivered at 1 Hz.  MEPs were monitored and recorded at 5 kHz (RZ5 BioAmp 

Processor).  Sites were chosen within the caudal forelimb region of the motor cortex which 

produced MEP responses as recorded from the extensor digitorum communisis muscle of the 
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forelimb. MEP threshold levels were determined by increasing the stimulus amplitude (up to 50 

µA) until a MEP response was observed. We then lowered the stimulus amplitude until the 

response disappeared. The lowest stimulus amplitude at which the MEP response could be 

evoked was defined as the threshold amplitude. We sought stimulation sites which had MEP 

threshold amplitudes of 25-35 µA. Electrode depth varied from 1534-2104 µm (mean 1792 µm) 

between sites within the caudal forelimb area (0-4 µm anterior, 2.0-3.7 µm lateral to bregma). 

When choosing a site, the response was first tested at 1500 µm targeting output layer V, which is 

known to contain pyramidal neurons which project to lower motor neurons to produce 

movements (Wang & Kurata, 1998). If a threshold MEP response was produced in the extensor 

digitorum communisis muscle this depth was selected, if not, the electrode was advanced to find 

a suitably responsive site and only one depth was used within an electrode tract. 

All experimental blocks were tested in 2 sites per rat. All procedures followed the guidelines of 

the Canadian Council on Animal Care and were approved by the Comité de Déontologie de 

l'Expérimentation sur les Animaux of the Université de Montréal. 

3.4.4 Statistical analysis 

A maximum of two trials per condition were excluded if they contained excessive equipment 

noise. The stimulus artifact was very small due to the low amplitudes of stimulation and was 

easily removed with a 5-point moving average filter. For each of the 14 stimulation sites, trials 

were averaged to produce a mean signal for each condition. The mean amplitude and onset 

latency were derived from these averages (figure 2). Response onset was computationally 

detected as the first instance where the response signal remained three standard deviations above 

baseline for more than ten sample points and all responses and onset times were visually 

inspected to confirm the accuracy of detection. Certain combinations of parameter pairs near the 

threshold amplitude did not cause sufficient excitation to evoke MEP responses and will be 

referred to as absent responses. Specifically, 30-39 µA stimuli delivered at 100 Hz, or 30 µA 

stimuli delivered by 43 ms duration trains were ineffective. A condition was included in the 

statistical analysis if responses were obtained from a minimum of 5 stimulation sites.  Conditions 

evoking a response from less than 5 sites will be referred to as infrequent responses and typically 

occurred for stimuli composed of low amplitude short pulses delivered at low frequencies. To 

differentiate between absent and infrequent responses, data obtained from infrequent responding 
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conditions (<5 sites) are included in graphical representations differentiated by marker type. 

Further detail on the absent and infrequent responses can be found in the rightmost column of the 

appended supplementary material.  

To evaluate the effects of each parameter on the response metrics we used a repeated measures 

linear mixed model, with random slope and intercept, followed by Bonferroni posthoc analyses to 

test the effects of main and paired parameters on outcomes. Main and paired parameters were 

entered as fixed factors, followed by the interaction between the two. The interaction term was 

significant only in the frequency and pulse duration pairings of the mean response (p=0.003). For 

all other outcomes, it was not significant (p=0.05 - p=0.99) and was trimmed from the model. 

Analyses were conducted with SPSS 22.0 (SPSS, Inc.) software using the mixed procedure with 

a factorial design and a significance level of α<0.05. We report only statistically significant 

findings. If a value is absent it indicates that the particular condition either did not produce 

significant trends or was excluded from the analysis due to infrequent responses (<5 sites).  In the 

text we indicate if a result is excluded due to infrequent responses, and the reader can also view 

the number of responding sites in the supplementary material as well. 

 

Figure 3-2: Illustration of performance measurements of the MEP signal. Onset latency is the 

delay between the onset of stimulation and the initiation of the MEP. Onset time is the first 

instance where the MEP signal remains above baseline levels for a minimum of 10 samples of the 

recorded voltage signal. 
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3.5 Results 

Four of the five experiments showed significant trends demonstrating the effects that the main 

and paired parameters exerted on the performance metrics as well as the influence of interactions 

between parameters. The interphase interval experiment however yielded no significant results 

and does not appear to have any influence over the MEP signal as both a main and a paired 

parameter in the range tested, therefore will not be described here however its lack of influence is 

depicted in figure 7. Parameter pairings will be denoted by abbreviations of table 1 in which the 

main parameter appears first and paired parameter second (e.g. AF represents amplitude paired 

with frequency). 

3.5.1 MEP response amplitude 

The mean amplitude of the MEP response increased with stimulus amplitude for all paired 

parameters (AF: p<0.001; AP: p<0.001; AT: p<0.001) as shown in figure 3.  As a paired 

parameter, increases in the stimulus amplitude could boost the response up to 43% when raised 

from low to mid levels (PA: 43% increase, p<0.001) and between 20-37% when raised from mid 

to high levels (FA: 34%, p<0.001; PA: 20%, p=0.011; TA: 37%, p<0.001). When high amplitude 

(56-65 µA) stimuli were delivered by mid/long duration trains or at high frequencies the response 

amplitude began to plateau suggesting an upper limit to these parameter pairings after which no 

further excitation can be induced. Conversely, the excitation induced by low amplitude stimuli 

can be effectively augmented by extending the duration of the stimulus pulse. At low amplitudes, 

the longest pulse durations produced larger responses than those of the longest train (36%) and 

highest frequency (76%) stimuli. 

The mean amplitude of the MEP increased with stimulus frequency between 100-200 Hz (FA: 

p=0.022; FP: p=0.014) as shown in figure 4. Above this frequency the response plateaued at a 

maximum whose magnitude was dictated by the paired parameter; pairwise comparisons of 

values at 200 Hz with higher frequencies were non-significant. Frequency did not exert a 

significant influence on mid and long train duration stimuli which achieved large responses at all 

frequencies. As such, extending the duration of the stimulus train may be the most effective 

method to boost low frequency stimulation. At low frequencies, the longest trains produced 

larger responses than those of the longest pulse (87%) and highest amplitude (70%) stimuli. 
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As a paired parameter, mid and high frequency stimuli induced similar responses but low 

frequency responses were smaller when paired with pulse duration (PF: 48% decrease, p<0.001).  

 

 

 

Figure 3-3: Representation of the MEP amplitude (mean ± SE) as a function of stimulus 

amplitude for all parameter pairings. Square symbols represent conditions with an insufficient 

number of responding sites (n<5) and were not included in statistical analysis. Circular symbols 

represent conditions with reliable responses (n=5-14). F=frequency, P=pulse duration, T=train 

duration, SE=standard error. 
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Figure 3-4: Representation of the MEP amplitude (mean ± SE) as a function of stimulus 

frequency for all parameter pairings.  Square symbols: infrequent responses n<5, circular 

symbols: reliable responses (n=5-14), A=amplitude, P=pulse duration, T=train duration, 

SE=standard error. 

The mean amplitude of the MEP increased with the pulse duration of the stimulus for all paired 

parameters (PA: p<0.001; PF: p<0.001; PT: p=0.001). As a paired parameter, the stimulus pulse 

duration boosted the response between 44-74% when raised from short to long duration pulses 

(AP: 74%, p<0.001; FP: 51%, p<0.001; TP: 44%, p<0.001). The response to short pulse stimuli 

was most effectively increased by raising the amplitude or extending the train duration. Using 

short pulses, the longest trains produced larger responses than those of the highest amplitude 

(22%) and frequency (68%) stimuli. 



37 

 

The mean amplitude of the MEP increased with stimulus train duration between 43-172 ms (TA: 

p=0.045). Above this duration the response plateaued at a maximum; pairwise comparisons of 

values at 172 ms with longer trains were all non-significant. As a paired parameter, responses to 

mid and long duration trains were similar, while responses to short duration trains were ~20-36% 

smaller (AT: 27%, p<0.001; FT: 36%, p<0.001; PT: 20-22%, p<0.021). These findings suggest 

the plateau occurring between short (43 ms) and mid duration trains (172 ms) is likely to occur 

between 107- 172 ms. Train duration did not exert a significant influence on mid and long pulse 

duration stimuli since large responses were achieved for all durations of train containing these 

pulse lengths. The increase in response amplitude between 43-172 ms did however exist to a 

lesser extent for short pulse duration stimuli and frequencies of all levels, however an insufficient 

number of sites responded to 43 ms train durations preventing their inclusion in the statistical 

analysis. The lack of response to short trains within the train duration experiment suggests an 

adaptation exists which renders short trains less effective when presented amidst long trains and 

is detailed in our previous work (Watson, Dancause, & Sawan, 2015a). The response to short 

train stimuli was most effectively increased by extending the pulse duration or raising the 

amplitude. Using short trains, the longest pulses produced larger responses than those of the 

highest amplitude (16%) and frequency (68%) stimuli. 

3.5.2 MEP onset latency 

The onset latency of the MEP decreased as stimulus amplitude increased from low to mid levels 

(AF: 39-48 µA, p=0.037; AT: 30-48 µA, p=0.037) as depicted in figure 5.  Above this amplitude, 

latency plateaued at a minimum whose magnitude was dictated by the paired parameter; pairwise 

comparisons of values at 48 µA with higher amplitudes were non-significant. Response latencies 

decreased continually as amplitude increased when paired with pulse duration (AP<0.001). As a 

paired parameter, stimulus amplitude increases could reduce the latencies up to 26% when raised 

from low to mid levels (PA: 26%, p=0.003) and 19-34% when raised from mid to high levels 

(FA: 29%, p<0.001; PA: 19%, p=0.007; TA: 34%, p<0.001). At low amplitudes of stimulation 

the response onset was most effectively expedited by increasing the duration of the stimulus 

pulse. At low amplitudes, the longest pulses produced faster responses than those of the highest 

frequency (37%) and longest train (49%) stimuli. 
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Figure 3-5: Representation of the MEP onset latency (mean ± SE) as a function of stimulus 

amplitude for all parameter pairings. Square symbols: infrequent responses n<5, circular 

symbols: reliable responses (n=5-14), F=frequency, P=pulse duration, T=train duration, 

SE=standard error. 

The response onset latency decreased as stimulus frequency was raised from 100-200 Hz when 

paired with amplitude (FA: p=0.001) and 100-300 Hz when paired with train duration (FT: 

p<0.001). Above these frequencies the response plateaued at a minimum; pairwise comparisons 

were not significant between higher frequencies and values of 200 Hz or 300 Hz as shown in 

figure 6.  Response speeds increased continually with frequency when paired with pulse duration 

(FP: p<0.001). As paired parameters, mid and high frequency stimuli had similar latencies, but 

latencies of low frequency stimuli were much longer (PF: 73-85%, p<0.001; TF: 82-105%, 

p<0.001). At low frequencies of stimulation the response onset was most effectively expedited by 

extending the duration of the stimulus pulse or increasing the stimulus amplitude. At low 

frequencies, the longest pulses produced faster responses than those of the highest amplitude 
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(11%) and longest train (62%) stimuli. The fastest response times were achieved with a 

combination of high frequency (400-500 Hz) and long pulse duration (0.5 ms) stimulation. 

Onset latency decreased as the duration of the stimulus pulse increased for all paired parameters 

(PA: p=0.001; PF: p=0.006; PT: p=0.011). As a paired parameter, pulse duration increases could 

reduce the latencies by up to 54% when raised from short to long duration pulses (AP: 24%, 

p=0.003; FP: 36%, p<0.001; TP: 54%, p<0.001).  Stimulus train duration had no effect on the 

response latency as a main or paired parameter. 

 

 

 

Figure 3-6: Representation of the MEP onset latency (mean ± SE) as a function of stimulus 

frequency for all parameter pairings. Square symbols: infrequent responses n<5, circular 

symbols: reliable responses (n=5-14), A=amplitude, P=pulse duration, T=train duration, 

SE=standard error. 
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Figure 3-7 Representation of the MEP onset latency (mean ± SE) as a function of interphase 

interval. The null effect of interphase interval is demonstrated for all parameter pairings.  Square 

symbols: infrequent responses n<5, circular symbols: reliable responses (n=5-14), A=amplitude, 

F=frequency, P=pulse duration, T=train duration, SE=standard error. 

3.6 Discussion 

This study demonstrated the general effect that each parameter exerted on the MEP signal and 

emphasized several major points. The mean amplitude of the MEP response increased with all 

stimulus parameters. The increase was continual for the parameters of stimulus amplitude and 

pulse duration however for stimulus frequency and train duration, no further increases were 

observed beyond the range of 100-200 Hz and 43-172 ms respectively. Previous studies reported 

no significant difference in movement thresholds for frequencies between 142-400 Hz (Young et 

al., 2011), which when combined with our findings suggests that the limit to the influence of 

frequency occurs in the range of 100-142 Hz.  

Studies exploring long duration stimulation (LD-ICMS) tend to use 500-2000 ms trains (Brown 

& Teskey, 2014; Graziano, Taylor, & Moore, 2002; Griffin, Hudson, Belhaj-Saïf, & Cheney, 

2014; Van Acker et al., 2013), however our findings suggest that the influence of train duration 

on MEP amplitude reaches its limit at much shorter durations (107-172 ms). The MEP 

amplitudes resulting from 172 ms trains and 300 ms trains are not significantly different which 
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suggests that the complex, multi-joint movements produced by very long duration stimuli (500-

2000 ms) do not rely on increased levels of activation for particular muscles. Long duration 

stimuli may result in greater spread of current within the cortex via multi-synaptic projection 

serving to innervate a larger number of muscle groups whose coordinated activation produces 

complex movements. The present study cannot however lend direct support to either theory 

regarding the functional organization of the motor cortex as either muscle-based (Andersen, 

Hagan, Phillips, & Powell, 1975; Asanuma & Rosen, 1972; Donoghue, Leibovic, & Sanes, 1992; 

Donoghue & Wise, 1982; Ebrahimi, Pochet, & Roger, 1992; Gioanni & Lamarche, 1985; Hall & 

Lindholm, 1974; Neafsey et al., 1986; Sanderson et al., 1984) , or movement-based (Bonazzi et 

al., 2013; Brown & Teskey, 2014; Gharbawie, Stepniewska, & Kaas, 2011; Graziano et al., 2002; 

Haiss & Schwarz, 2005).  

The onset latency of the MEP response decreased as the parameters of stimulus amplitude, 

frequency and pulse duration increased. The decrease was continual with increases in pulse 

duration, however for stimulus amplitude and frequency, no further decrease in onset latencies 

were observed beyond the ranges of 30-48 µA and 100-200 Hz respectively. Train duration 

exerted no influence on MEP onset latency. 

This study also identified parameter combinations which serve to overcome specific restrictions 

on the stimulus signal, and described how to modulate the MEP amplitude and onset latency by 

altering unrestricted stimulus parameters. Applications which must restrict the stimulus 

amplitude to low levels can increase the MEP amplitude by extending the duration of the 

stimulus pulse, which also serves to expedite the onset of the response in this condition. These 

findings are in agreement with threshold current studies which have previously demonstrated that 

extending stimulus pulse duration lowers threshold current levels (Bartlett et al., 2005; Schmidt 

et al., 1996). Applications which require low stimulus frequencies can increase the MEP response 

amplitude by extending the duration of the stimulus train, and response onset can be expedited by 

extending the duration of the stimulus pulse or increasing the stimulus amplitude. Similarly, 

raising the stimulus amplitude or extending the train duration serve to increase the amplitude of 

MEP responses produced by short pulse duration stimuli, whereas extending the pulse duration or 

raising the amplitude serve to increase the MEP response amplitudes produced by short stimulus 

trains. 
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We have used the MEP response metrics to quantify the influence exerted by each stimulus 

parameter on the motor system. The intensity of the muscle contraction reflects the relative 

quantity of innervating motor neurons activated by the stimulation and the number of action 

potentials they produce. This gives us an estimate of the volume of tissue activated and the level 

of activation achieved, whereas the onset speed measures how quickly this activation occurs. We 

propose that these physiological outcomes are common measures for all stimulation paradigms 

and should be the focus of a stimulation design methodology. 

At present, when a new stimulation therapy is developed, the waveform is typically based on the 

results of similar therapies or iterative testing is conducted for the first time until the desired 

outcome is achieved.  This task-specific optimization focuses on the external response only, 

while ignoring the cortical effects. Instead we propose the stimulus be designed considering the 

known effects that each stimulation parameter exerts on the tissue and the physiological goals of 

the particular application. 

For example, visual prosthetic devices aim to simulate vision by generating patterns with the 

visual percepts (phosphenes) that are produced by stimulating the visual cortex. Stimulation is 

typically delivered through an electrode array where the individual electrode pins are separated 

by 500 µm and each produce a separate phosphene. From a physiological stand point, the goal is 

to activate a very small region of the cortex and prevent neighbouring electrodes from interacting 

with each other.  Neighbouring pins do not necessarily produce neighbouring phosphenes due to 

the topographic organization of the visual cortex, and the spread of the signal between pins could 

produce oddly placed phosphenes disrupting the intended representation. Based on these 

restrictions, we might design a stimulus with very low amplitude and frequency to limit spread 

and extend either pulse or train duration to improve the strength of the signal. In practice, this 

combination was determined to be the most effective through iterative testing (Schmidt et al., 

1996). 

Stimulus parameter relationships can also be used to transform effective paradigms into 

optimized or energy efficient strategies. Often a range of stimulation paradigms are used to 

accomplish the same task which creates unnecessary variability. Identifying the functional 

limitations of each parameter in the range can help develop standardized stimulation protocols for 

each task. In the case of motor cortex stimulation to produce forelimb movements, we observed 
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that the effect of frequency plateaued at maximum after 200 Hz, however many stimulation 

experiments use a higher frequency. In our experience, higher frequencies did not prove to be 

more effective or more reliable which suggests that there is room for further optimization of the 

parameters within the paradigm.  

3.7 Conclusion 

Using standard ICMS procedures to evoke MEP responses from the rat motor system we found 

that response amplitude and onset latency can be modulated by altering stimulus waveform 

parameters. In particular, we described the role each stimulus parameter exerts on the MEP 

metrics and identified parameters which can be altered to overcome performance deficits 

introduced by restrictions placed on each parameter of the stimulus. Understanding how the 

parameters of electrical stimuli shape the responses they evoke has implications for the 

development and optimization of clinical and research applications of brain stimulation. We 

propose a shift away from iterative testing approaches, replacing them with a design 

methodology in which we consider the desired physiological response and the neural activations 

necessary to achieve it. Our future work aims to quantify the effects of stimulation parameters on 

the duration and spread of the response and provide a model of parameter interactions.  
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4.1 Presentation of the article 

The data obtained from the experiments described in chapter 3 also provided information 

pertaining to the influence of stimulation parameters on the duration of the responses they evoke. 

The following article describes how stimulus signals can be shaped to extend or shorten the 

duration of the response. This article (Watson, Sawan, & Dancause, 2015) was submitted to the 

Journal of Neurophysiology on June 18
th

 2015 and is reproduced here in an updated version.  

4.2 Abstract 

. Microstimulation of brain tissue plays a key role in a variety of sensory prosthetics, clinical 

therapies and research applications; however the effects of stimulation parameters on the 

responses they evoke remain widely unknown. We aimed to investigate the contribution of each 

stimulation parameter to the motor evoked potential (MEP) duration. Additionally we sought to 

address the previously unexplored phenomenon of residual activation, which we defined as 

activation that lingers after the main response ends. We used constant-current, biphasic square 

waveforms in acute terminal experiments under ketamine anaesthesia. Stimulation parameters 

were systematically tested in a pair-wise fashion in the motor cortex of 7 Sprague-Dawley rats 

while MEP recordings from the forelimb were used to quantify the influence of each parameter. 

Stimulus amplitude and train duration were shown to be the dominant parameters responsible for 

increasing the MEP main response and residual activation durations, and interphase interval had 

no effect. Increasing stimulus frequency from 100-200 Hz or pulse duration from 0.18-0.34 ms 

extended the duration of the main response. Moderate and long pulse and train duration stimuli 
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produced longer residual durations. Stimuli involving moderate and long trains produced the 

highest occurrence and widest range of residual responses. Stimuli involving low amplitudes, low 

frequencies, short pulse durations, short train durations were less likely to induce residual 

activations.  Our results show that the parameters of an ICMS stimulus exert significant influence 

on the spatial and temporal properties of the MEP responses they evoke, and as such can be tuned 

to modulate cortical activation. 

Key words: Intracortical microstimulation, stimulation parameters, neuroprostheses, rat, motor 

cortex, motor evoked potentials, EMG 

4.3 Introduction 

Since its advent in the early 19th century, stimulation of the brain has been used in a wide variety 

of clinical and therapeutic applications, many of which involve novel treatments for diseases and 

disorders such as visual (Dobelle, Mladejovsky, & Girvin, 1974; Schmidt et al., 1996; Tehovnik 

et al., 2009; Torab et al., 2011) and somatosensory (Berg et al., 2013; Tabot et al., 2013; 

Thomson et al., 2013) prosthetic devices,  and deep brain stimulation therapies for Parkinson’s 

Disease (Anderson et al., 2005; Deuschl et al., 2006; Little et al., 2013; Weaver et al., 2012) and 

epilepsy (Fisher et al., 2010; Lee et al., 2006; Morrell, 2011). These applications inject an 

electrical stimulus into neural circuitry in order to modify activity or produce sensations or 

behaviors. While brain stimulation plays a crucial role in countless therapies and research areas, 

little is known about how the parameters of the stimulation signal influence neural activity or 

how they shape the outputs produced.  

Many types of stimulation signal have been explored but the most prevalent is the constant-

current, cathode leading, biphasic square waveform  (Lilly et al., 1955).  The parameters of this 

signal include the current amplitude, pulse frequency, pulse duration, interphase interval and 

pulse train duration. Studies of the motor system have historically used short duration (<50 ms) 

stimulus trains composed of parameters proven to effectively elicit responses from the motor 

cortex (Asanuma et al., 1976). These high frequency short duration trains of intracortical 

microstimulation (HFSD-ICMS) are typically used to map motor areas of the brain by observing 

the brief movements or recording the evoked muscle activity they produce in anesthetized 
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animals (Asanuma & Rosen, 1972; Donoghue & Wise, 1982; Gioanni & Lamarche, 1985; 

Neafsey et al., 1986; Nudo et al., 1990; Sanderson et al., 1984).  

Some general effects of stimulation parameters have been explored using these short trains. 

Stimulus frequency and train duration exert a combined influence on threshold levels by 

facilitating muscle contractions when excitation is hindered by low current intensity. Thresholds 

can be lowered by extending the train duration beyond 30 ms and increasing the pulse frequency 

above 300 Hz (Asanuma & Arnold, 1975; Asanuma et al., 1976), and the lowest movement 

thresholds occur when stimulating with frequencies between 181-400 Hz for durations of 15-33 

ms (Young et al., 2011). Independently, the parameter of stimulus frequency can be used to limit 

the spread of the ICMS signal within the cortex. Pulses delivered at frequencies less than 20 Hz 

prevent the summation of excitatory and inhibitory postsynaptic potentials which localizes the 

activation (Cheney et al., 2013). Stimulus train duration is the dominant parameter influencing 

the accuracy of forelimb movement trajectories. Stimuli which last for 500-1000 ms are known to 

generate forelimb movements to stable, predictable end points regardless of initial limb position 

(Graziano et al., 2002).  

To better understand the mechanism of microstimulation, it is essential to determine the exact 

effect exerted by each stimulus parameter on the resulting cortical activation and consequently, 

the outputs driven by this activity. The study of corticomotoneuronal cell activity can be used to 

predict electromyographic (EMG) activity (Griffin, Hudson, Belhaj-Saïf, McKiernan, & Cheney, 

2008). Likewise, EMG activity recorded while stimulating the motor cortex provides insight into 

the relationship between the activity of cortical neurons and motor outputs (Hyland, 1998). Some 

studies have examined the effects of certain parameters on threshold levels (Koivuniemi & Otto, 

2011;  Koivuniemi & Otto, 2012; Murasugi, Salzman, & Newsome, 1993; Schiller, Slocum, 

Kwak, Kendall, & Tehovnik, 2011; Tehovnik & Slocum, 2007; Van Acker et al., 2013), however 

the duration of the EMG signal has been widely ignored. To our knowledge, these temporal 

components of the response have never been classified and independently assessed.  

Here we systematically explore the effect of each parameter of a stimulation signal on the 

duration of the motor evoked potentials (MEP) elicited by microstimulation of the caudal 

forelimb area (CFA) of the rat primary motor cortex (M1). We assess the duration of the response 

by separating it into two components: 1) the main response, consisting of the initial Gaussian 
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shaped curve containing the signal’s peak, and 2) the residual activation which we define as the 

activity which persists after the main response. We describe potential sources and interpretations 

of each component and discuss the implications of response duration as an assessment parameter. 

4.4 Methods 

4.4.1 Surgical procedures and data collection 

Seven female Sprague-Dawley rats (Charles River, QC, CA) weighing 273-450 g were used in 

terminal acute experiments. All procedures followed the guidelines of the Canadian Council on 

Animal Care and were approved by the Comité de Déontologie de l'Expérimentation sur les 

Animaux of the Université de Montréal.  

Anaesthesia was induced with intraperitoneal ketamine injection (80 mg/kg) and maintained with 

isofluorane (~2% in 100% oxygen). Subcutaneous injection of mannitol (4 g/kg) and 

intramuscular injection of dexamethasone (1 mg/kg) were given prior to the craniotomy to 

prevent swelling and oedema. A self-regulating heating pad maintained body temperature which, 

along with pulse rate and oxygen saturation, was monitored continuously throughout the surgery. 

Insulated, multi-stranded wires (Cooner Wire, Chatsworth CA, USA) were implanted in the 

extensor digitorum communis muscle of the forelimb contralateral to the stimulating electrode to 

detect MEP signals which were monitored and recorded at 5 kHz (RZ5 BioAmp Processor) and 

analyzed offline.   

The animal was placed in a stereotaxic frame for both the surgical and stimulation procedures; 

positioned to allow free movement of the forelimb. A small craniotomy (8 mm x 5 mm) exposed 

the motor cortex (left hemisphere), the dura was removed and mineral oil applied to protect the 

cortex. Anaesthesia was switched to ketamine (~10 mg/kg/10 minutes) administered through 

intraperitoneal injections as needed for the duration of the stimulation procedure.  

In order to control for the effects of stimulus current amplitude and ensure a consistent level of 

excitability across all test sites, we set selection criteria. Sites were chosen within the caudal 

forelimb region of the motor cortex which produced MEP responses as recorded from the 

extensor digitorum communisis muscle of the forelimb. MEP threshold levels were determined 

by increasing the stimulus amplitude (up to 50 µA) until a MEP response was observed. We then 
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lowered the stimulus amplitude until the response disappeared. The lowest stimulus amplitude at 

which the MEP response could be evoked was defined as the threshold amplitude. We sought 

stimulation sites which had MEP threshold amplitudes of 25-35 µA to ensure that all test sites 

had similar levels of excitability and to set a control value for amplitude within the stimulation 

protocol. The control value for amplitude (Table 1) was set to 50 µA in order to be twice as 

strong as the site’s threshold level.  

Sites within the CFA were tested for the selection criteria using a standard ICMS train: 13 

monophasic square pulses of 0.2 ms duration with 3.3 ms between the pulses delivered at 1 Hz 

(Donoghue & Wise, 1982; Nudo et al., 1990; Stowe et al., 2007; Touvykine et al., 2015). The 

response was first tested at 1500 µm targeting output layer V, which is known to contain 

pyramidal neurons which project to lower motor neurons to produce movements (Wang & 

Kurata, 1998). If a threshold MEP response was produced in the extensor digitorum communisis 

muscle this depth was selected, if not, the electrode was advanced to find a suitably responsive 

site. Electrode depth varied from 1534-2104 µm (mean 1792 µm) between sites and only one 

depth was used within an electrode tract. All experimental blocks were tested in 2 sites per rat. 

Stimulation was delivered with a digital stimulator (TDT IZ2 Stimulator and RZ5 BioAmp 

processor), through a glass insulated tungsten microelectrode (FHC Bowdoin, ME USA, 

UEWSDESGBN4G, 110-175 kΩ) manipulated by a microdrive (David Kopf Instruments Model 

2662, Tujunga, CA).  At the end of the data collection, the animal was euthanized with a lethal 

dose of sodium pentobarbital.  

4.4.2 Stimulation protocol 

We designed a stimulation protocol to systematically test the influence that each parameter of an 

ICMS signal exerted on the MEP it produced when delivered to the CFA of the rat motor cortex. 

The constant-current, cathode leading, biphasic square waveform was chosen since it is the most 

prevalent in both research and therapeutic applications of ICMS. The parameters of this signal 

include the current amplitude, pulse frequency, pulse duration, interphase interval and pulse train 

duration (Figure 1).  We selected the test ranges of each stimulation parameter so that they 

included the typical values used in common prosthetic devices and therapeutic applications of 

brain stimulation. In particular, the ranges reflect the most restrictive stimulation paradigm 

among the applications: visual prosthetic devices (Schmidt et al., 1996).  
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The test range of each parameter was divided evenly into five levels (low, low-mid, mid, mid-

high, and high) and a control value was set which was derived from the standard stimulation 

signal proven to be effective in the rat motor cortex (Donoghue & Wise, 1982; Nudo et al., 1990; 

Stowe et al., 2007; Touvykine et al., 2015). The control value for amplitude was set to 50 µA, 

which was twice the threshold level since all stimulation sites were deliberately chosen to have 

thresholds of approximately 25 µA. The ranges, levels and control values selected for each 

parameter can be found in Table 1. 

 

 

Figure 4-1: Parameters of the constant-current, biphasic square waveform. 

 

Table 4-1: Parameter test values. 

Parameter Unit    Range Test Levels   Control Parameter 

Pairs 

      

Amplitude (A) µA     30-65 30, 39, 48, 56, 65     50 AF, AP, AI, AT 

Frequency (F) Hz     100-500   100, 200, 300, 400, 500     303 FA, FP, FI, FT 

Pulse Duration (P)  ms 0.18-0.5  0.18, 0.26, 0.34, 0.42, 0.5       0.2 PA, PF, PI, PT 

Interphase Interval (I) ms 0.08-0.5 0.08, 0.19, 0.29, 0.40, 0.5 0 IA, IF, IP, IT 

Train Duration (T) ms     43-300 43, 107, 172, 236, 300     43 TA, TF, TI, TP 
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The stimulation protocol was composed of five experimental blocks designed to test the specific 

influence that each of the five parameters of the stimulation signal exerted on the MEP signal. 

Each block focused on one parameter, systematically testing it against the other four parameters 

in a pair-wise fashion. The parameter of focus was called the primary parameter and each 

parameter tested against it was referred to as the paired parameter. The primary parameter was 

tested at all five levels in the range (low, low-mid, mid, mid-high, and high) against three levels 

of a paired parameter (low, mid, high) while all other parameters were held at their control values 

(see Table 1). This allowed us to observe how the MEP signal changed in response to changes in 

the primary parameter and identified interactions occurring between the primary and paired 

parameters.  

To test the effects of current amplitude for example, all five values in the amplitude range (30, 

39, 48, 56, 65 µA)  were tested at 3 frequency levels (low-100 Hz, mid-300 Hz, and high-500 Hz) 

with pulse duration, interphase interval and train duration held at the control values (0.2 ms, 0 ms 

and 43 ms respectively). Similarly, all five values in the amplitude range (30, 39, 48, 56, 65 µA)  

were tested at 3 pulse duration levels (low-0.18 ms, mid-0.34 ms, and high-0.5 ms) with 

frequency, interphase interval and train duration held at the control values (303 ms, 0 ms and 43 

ms respectively). This procedure was then repeated until each parameter had been tested against 

amplitude in this “pair-wise” arrangement representing all the conditions contained in the 

amplitude test block. All “parameter pairs” are listed in the far right column of Table 1. 

Each pair-wise condition within a block was tested with ten trials, and all trials within a block 

were pseudo-randomized with 1 second between trials. The trial order within a block was 

preserved, however to ensure that there were no adverse effects of conducting the trials of a block 

in a fixed order we compared results from overlapping conditions between blocks. These 

comparisons were also used to determine if the primary parameter of the block had an overall 

effect on the MEP signals produced within it. The five experimental blocks resulted in a total of 

300 independent test conditions (5 parameters x 5 test levels x 4 paired parameters x 3 test 

levels). To control for fatigue of the preparation, all five blocks were tested in a randomized order 

at two different sites within the CFA of each rat for a total of 14 sites.  
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4.4.3 Classification of MEP response components 

We observed that many MEP responses consisted of two main components: an initial Gaussian 

shaped curve containing the signal’s peak and a secondary component of lesser amplitude which 

can take the shape of a Gaussian curve (Figure 2c,e,h, i), exponential decay (Figure 2f), or 

inverse exponential decay (Figure 2g). We labeled these two components the “main response” 

and “residual activation” respectively (Figure 2c). It is important to note that the residual 

activation is not present in all MEP responses and is largely dependent upon the parameters of the 

stimulation signal. While the majority of MEP responses are replicas of Figure 2c with a distinct 

baseline crossing, a wide variety of signal envelopes were encountered (Figure 2d-i), and the 

residual can be entirely absent (Figure 2d) or endure for hundreds of milliseconds. Despite these 

variations, the demarcation between the two regions of the response is always discernible both 

computationally and visually.  

From a computational standpoint, a number of criteria were developed to automate the 

designation between the main response and residual activation. The MEP response’s baseline was 

defined as the average of the recorded signal taken 10 ms prior to stimulation. Averaging the first 

50 sample points of the recording provided the baseline for each individual trial. The main 

response began shortly after the onset of stimulation, and was detected as the first instance where 

ten sequential sample points of the MEP signal remained above the trial’s baseline level. If 

residual activation occurred in a trial, it began at the offset of the main response and continued 

until the signal returned to baseline for 10 sample points.   

In the case of Gaussian shaped residuals, the main response offset was computed as the first 

instance after the main response peak in which the signal falls within 3 standard deviations of  

baseline for 10 sample points. If a baseline crossing was not achieved, the main response offset 

was taken as the point of lowest signal amplitude between the peaks of the main and residual 

responses. In the case of exponential decay and inverse exponential decay shaped residuals (i.e. 

no secondary peaks), the main response offset was taken as the first instance where the signal 

amplitude fell below 1/8th of the peak value. All responses were classified computationally and 

their accuracy was confirmed with visual inspection. 
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4.4.4 Statistical analysis 

A maximum of two trials per condition were excluded if they were contaminated by noise. The 

stimulus artifact was small due to the low amplitudes of stimulation and was removed with a 5-

point moving average filter. For each of the 14 stimulation sites, trials were averaged to produce 

a mean response for each condition. The means of the main response duration and residual 

activation duration were derived from these averages (Figure 2) and values are reported as mean 

± standard deviation. 

Certain combinations of parameter pairs using current amplitudes near threshold levels did not 

cause sufficient excitation to evoke any MEP responses. Specifically, 30-39 µA stimuli delivered 

at 100 Hz, or 30 µA stimuli delivered by 43 ms duration trains were ineffective. A condition was 

included in the statistical analysis if responses were obtained from a minimum of 5 stimulation 

sites.  Conditions evoking a response from less than 5 sites will be referred to as infrequent 

responses and typically occurred for stimuli composed of low amplitude short pulses delivered at 

low frequencies. To differentiate between absent and infrequent responses, data obtained from 

infrequent responding conditions (<5 sites) are included in graphical representations 

differentiated by marker type.  

To evaluate the effects of each parameter on the response metrics we used a repeated measures 

linear mixed model, with random slope and intercept, followed by Bonferroni posthoc analyses to 

test the effects of main and paired parameters on outcomes. Main and paired parameters were 

entered as fixed factors, followed by the interaction between the two. The interaction term was 

significant only when amplitude was the primary parameter paired with train duration, for all 

other outcomes it was not significant and was trimmed from the model. 

 Analyses were conducted with SPSS 22.0 (SPSS, Inc.) software using the mixed procedure with 

a factorial design and a significance level of α<0.05. We report only statistically significant 

findings. If a value is absent it indicates that the particular condition either did not produce 

significant trends or was excluded from the analysis due to infrequent responses (<5 sites).  In the 

text we indicate which results are excluded due to infrequent responses. Correlation analyses 

between the duration of the MEP and other characteristics of the response were conducted with 

Pearson’s correlations. A t statistic was used to establish if the correlation was statistically 
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significant. The residual activation occurred inconsistently, and as such was described in terms of 

its frequency of occurrence, mean and range of duration.  

 

 

Figure 4-2: Classification of MEP Signal Components. Each MEP response was separated into 

two components: 1) the main response, defined as the large component of the signal containing 

the MEP’s peak, and the 2) residual activation defined as the region of lesser activation which 

persisted after the main response (a-c). Components c-i depict the shape of a variety of signal 

envelopes and their respective component classifications. 
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4.5 Results 

Four of the five experimental blocks showed significant trends demonstrating the effects that 

each parameter exerted on the MEP response duration. The interphase interval parameter did not 

exert an influence on the MEP response duration within the range tested (0.08-0.5 ms). When 

describing the results, all parameter pairs will be denoted by abbreviations of Table 1 in which 

the primary parameter appears first and paired parameter second (ex. AF represents amplitude 

paired with frequency). 

4.5.1 MEP main response duration 

The MEP main response duration increased with stimulus amplitude for all parameter pairings 

(AF: p<0.001; AP: p<0.001; AT: p=0.004) as shown in Figure 3. As a paired parameter, 

increases in stimulus amplitude could extend the response duration up to 19% when its value was 

raised from its mid (48 µA) to high (65 µA) levels (FA: 19% increase, p=0.048; TA: 16% 

increase, p=0.003) and 33% when raised from low (30 µA) to high (65 µA) levels (PA: 33%, 

p=0.009). When high amplitude (48-65 µA) stimuli were delivered by long duration trains the 

main response duration plateaued suggesting an upper limit for this parameter pairing after which 

the duration of the main response cannot be extended.  Conversely, when low amplitude stimuli 

are used, the duration of main response is most effectively extended by increasing the stimulus 

pulse duration or train duration. Under these conditions, the responses evoked by the longest 

pulse durations (0.5 ms) were 41% longer than those evoked by the highest frequency (500 Hz) 

stimuli, however the longest train duration (300 ms) evoked responses 3.3 times longer yet still.  

The MEP’s main response duration increased with stimulus frequency for all parameter pairings 

(FA: p=0.046; FP: p=0.015; FT: p=0.005), most noticeably between 100-200 Hz (Figure 3a). 

When stimulating with frequencies above 200 Hz, the response plateaued at a maximum whose 

magnitude was dictated by the paired parameter.  Increasing the frequency from low (100 Hz) to 

high (500 Hz) levels could extend the main response duration (PF: 39%, p=0.02), however mid 

(300 Hz) and high (500 Hz) frequency stimuli evoked similar durations (AF: p=0.43; PF: p=0.49; 

TF: p=0.69). When stimulation frequency was low, extending the duration of the stimulus train 

was the most effective method of increasing the main response duration. Under these conditions, 
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the longest trains (300 ms) produced responses 4-4.2 times longer than those of the longest pulse 

(0.5 ms) and highest amplitude (65 µA) stimuli respectively.  

 

 

Figure 4-3: Representation of the MEP main response duration (mean ± SE) as a function of 

stimulus amplitude. The effects of amplitude paired with three frequency levels (a), pulse 

durations (b), interphase intervals (c) and train durations (d) are depicted. Note the difference in 

scale for trials involving train duration (part d).Square symbols represent conditions with an 

insufficient number of responding sites (n<5) and were not included in statistical analysis. 

Circular symbols represent conditions with reliable responses (n=5-14). Control values for each 

parameter were: A=50 µA, F=303 Hz, P=0.2 ms, I=0 ms, T=43 ms. F=frequency, P=pulse 

duration, I=interphase interval, T=train duration, SE=standard error. 
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Figure 4-4: Representation of the MEP main response duration (mean ± SE) as a function of 

stimulus train duration. The effects of train duration paired with three current amplitudes (a),  

frequencies (b), pulse durations (c) and interphase intervals (d) are depicted.  Square symbols 

represent conditions with an insufficient number of responding sites (n<5) and were not included 

in statistical analysis. Circular symbols represent conditions with reliable responses (n=5-14). 

Control values for each parameter were: A=50 µA, F=303 Hz, P=0.2 ms, I=0 ms, T=43 ms. 

F=frequency, P=pulse duration, I=interphase interval, T=train duration, SE=standard error. 

The MEP main response duration increased with stimulus pulse duration only when paired with 

frequency (PA: p=0.085; PF: p=0.04; PT: p=0.06). Increasing stimulus pulse duration from short 

(0.18 ms) to mid (0.34 ms) levels extended the duration however pulses longer than 0.34 ms had 

no further effect. As a paired parameter, increasing the pulse duration from short (0.18 ms) to 

long (0.5 ms) could extend the main response duration between 20-32%  (AP: 20%, p=0.021; FP: 

24%, p=0.011; TP: 32%, p=0.001). When short pulse durations were used, the main response 
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duration was most effectively extended by increasing the train duration. Under these conditions, 

the longest trains (300 ms) evoked responses 4.25-4.45 times longer than highest amplitude (65 

µA) and frequency (500 Hz) stimuli respectively.  

The MEP main response duration increased with stimulus train duration for all parameter 

pairings (TA: p<0.001; TF: p<0.001; TP: p<0.001). These effects were less pronounced once the 

train duration reached 172 ms and do not observe a direct linear relation (Figure 4). As a paired 

parameter, increasing stimulus train length from short (43 ms) to mid (172 ms) durations could 

extend the response duration up to 3.81 times (AT: increase 3.81x, p<0.001; FT: increase 3.06x, 

p<0.001; PT: increase 3.19x, p<0.001). Similarly, increasing the train length from mid (172 ms) 

to long (300 ms) durations increased the response duration yet again  (AT: increase 1.49x, 

p<0.001; FT: increase 1.39x, p<0.001; PT: increase 1.51x, p<0.001). For all durations of the 

stimulus train, increasing the amplitude or pulse duration served to further extend the duration of 

the MEP’s main response however pulse duration had less effect on short duration trains (43 ms). 

4.5.2 MEP residual activation occurrence and duration 

Figure 5 shows how often residual activations occur (top panel) and demonstrates the mean and 

range of durations associated with them as a function of the stimulus parameters (bottom panel).  

We observed that the occurrence of residual activations increases with stimulus amplitude for all 

parameter pairings.  The stimuli involving moderate and long trains tended to produce the highest 

percentage of residual occurrences. These long trains produced residual activations in more than 

80 % of the trials representing these conditions and were also shown to produce substantial main 

response durations. 

Certain parameter ranges are less likely to induce residual activation, including low amplitudes, 

low frequencies, short pulse durations, short train durations and combinations thereof.  In 

particular, we observe the absence of residual responses when stimuli combine low amplitudes 

(30-39 µA) with low frequency (100 Hz), or short pulse duration (0.18 ms).  These conditions 

were also shown to produce short main response durations suggesting that these conditions 

evoked smaller levels of activity overall. 
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Figure 4-5: Comparison of MEP residual activation duration occurrence, mean and range as a 

function of stimulus amplitude.  The top panel shows how frequently a residual response was 

produced for a given stimulus condition. Percentage occurrence was calculated as the number of 

times a residual response occurred out of the total number of trials for the particular stimulus 

condition. The bottom panel shows the range in residual durations as well as the mean residual 

duration for a given stimulus condition. Residual duration ranges were determined as the 

maximum and minimum durations observed in trials which produced a residual response. The 

mean was calculated from the trials which produced a residual response per given stimulus 

condition and is represented by the white horizontal line within each range bar.  F=frequency, 

P=pulse duration, T=train duration. 

We observed that the mean value of the residual duration tended to increase with stimulus 

amplitude. Similarly, the long pulse durations and long train durations tended to produce higher 

mean values of residual duration.  The variability of the ranges appeared to be primarily tied to 

the influence of the paired parameter levels. These ranges tended to increase as the paired 

parameter’s value was increased, particularly for the parameter of train duration.  The long 

stimulus trains tended to produce a wider range of residual durations than their shorter 

counterparts. 
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4.5.3 Correlation between durations and other MEP parameters 

Certain metrics of the MEP response were valid predictors of the main response and residual 

activation durations.  A total of four metrics in addition to the main and residual durations served 

to quantify the MEP response.  Onset latency was defined as the delay between the onset of 

stimulation and the initiation of the MEP. The mean was computed as the average of the main 

response component, whereas peak amplitude was the signal’s maximum during the main 

response component. Peak time specifies the time instance of the peak amplitude occurrence.  

Pearson’s correlation coefficient was computed for each block of trials to provide a quantitative 

measure of the strength and direction of the relationships between the response metrics (Evans 

JD, 1996).  

The correlation with onset latency was negligible for the residual activation duration (r=-0.03, 

p=0.62) but was however correlated to the main response duration (r=0.15, p<0.01). Peak 

amplitude was strongly correlated with the main duration (r=0.36, p<0.001), and with the residual 

activation duration (r=0.58, p<0.001). Similarly, the mean amplitude was strongly correlated with 

the main duration (r=0.43, p<0.001) and with the residual activation duration (r=0.64, p<0.001). 

Peak was strongly correlated with both the main (r=0.70, p<0.001) and residual durations 

(r=0.55, p<0.001). Finally, as mentioned previously, the durations of the residual activation and 

main response are very strongly correlated (r=0.91, p<0.001). These findings suggest that stimuli 

that produce large or delayed peaks also result in longer main responses and residual activations. 

Similarly, responses that produce long main durations tend to produce longer residual activations. 

4.6 Discussion 

This study examined the factors influencing the duration of the MEP response, and for the first 

time, separated this signal into two key components. Until now, the residual activation 

component has largely been ignored, either excluded from the response entirely or lumped 

together with the main response.  Procedures for defining MEP offsets vary in their methodology, 

and common practices either place the offset at the time of baseline crossing or truncate the 

response at the time when the signal amplitude returns to a certain percentage of the peak. Our 

findings demonstrated that the shape of the MEP response signal envelope varies greatly and is 

heavily dependent on the stimulation parameters. As such, neither of the commonly used offset 
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definition procedures are adequate on their own as they do not independently account for 

variability in signal shape. Whether the residual takes the shape of a Gaussian, exponential decay 

or inverse exponential decay curve, this component is markedly different from the main response 

and deserves careful classification and demarcation from the main component. 

Certain temporal and spatial metrics of the MEP response could be used to predict the main and 

residual activation durations. Of the temporal metrics, peak time was strongly correlated to both 

response durations, whereas onset latency was only a predictor for the main response duration. 

The durations of the residual and main response are strongly correlated, and stimuli that induced 

long main durations also produced long residual activations. Of the spatial metrics, the peak and 

mean amplitudes were correlated to both main and residual response durations. These findings 

suggest that the spatial and temporal metrics of the MEP response are directly linked and their 

interactions must be considered when designing a stimulus signal. 

We demonstrated that the duration of the MEP response main and residual can be modulated 

through alterations to stimulation parameters. The MEP main response duration increased with 

all stimulus parameters and this increase was continual for the parameters of stimulus amplitude 

and train duration although the effects were less pronounced for trains longer than 172 ms.  

Notably, the MEP durations did not scale directly with the duration of the stimulus train and 

responses as short as 25 ms could be evoked with a 43 ms stimulus. For the parameters of 

frequency and pulse duration, no further increases in response duration were observed beyond the 

range of 100-200 Hz and 0.18-0.34 ms respectively.  

Previous studies reported the lowest movement thresholds to occur when stimulating with 

frequencies between 181-400 Hz, with no significant difference in thresholds for frequencies 

between 142-400 Hz (Young et al., 2011), and our previous work demonstrated the limit to 

frequency influence on MEP reliability to occur between 100-200 Hz (Watson et al., 2015a). 

Combined with our present results we suggest that the rat forelimb system is sensitive to 

frequencies below 142 Hz and no further excitation is produced by the higher frequency 

stimulation which is commonly used in this system. Similarly, studies exploring long duration 

stimulation (HFLD-ICMS) typically use 500 ms trains (Brown & Teskey, 2014; Graziano et al., 

2002; Griffin, Hudson, Belhaj-Saïf, & Cheney, 2014; Van Acker et al., 2013), which are nearly 3 

times the maximum level we observed to be effective at increasing response duration and nearly 
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5 times the level we observed to influence MEP reliability, amplitude and latency. These results 

could suggest that multi-synaptic projection induced by the current spread from these sustained 

stimuli may be responsible for producing the complex movements of HFLD-ICMS and that 

limited spread is observed within our parameter range. 

Microstimulation and natural stimulation have vastly different mechanisms of action and as such, 

produce vastly different responses within the cortex. The spike response to visual stimulation, for 

example involves a short delay period after the stimulus followed by a period of excitation lasting 

up to several hundred milliseconds (Wurtz & Mohler, 1976). The spike response to electrical 

stimulation however has an initial excitation component occurring shortly after the stimulus is 

applied, followed by a period of inhibition lasting up to 100 ms, which was sometimes followed 

by a rebound period of activation (Butovas, 2003). This rebound activation was described as 

intermittent in occurrence and as presenting a variety of shapes and durations. Although no firm 

conclusions can be drawn with the present data set, it is possible that the main duration is the 

physical manifestation of the initial excitation period, which falls to baseline during the inhibitory 

period only to return as the residual response during the rebound activation period.  Alternatively, 

the main response could reflect the direct activation of neurons surrounding the stimulation site, 

while the residual activation could reflect indirect activation at sites farther from the electrode 

caused by post-synaptic transmission. It is also possible that the residual activation is simply an 

after effect due to sustained activation of neurons in the cortex or the tissues they innervate in the 

forelimb.  

An inherent weakness of this study is that it was conducted under anaesthesia and at present we 

cannot ascertain the presence and shape of the residual in awake, behaving animals. We 

hypothesize that the factors which influenced the MEP durations will preserve their general 

trends; however different limits are likely to be observed specific to the species and muscle group 

under study. Additionally, our study addressed evoked movements only, and whether or not the 

residual component of the MEP response is present in volitional movements remains to be 

determined. 

To our knowledge, the phenomenon of residual activation has not been previously assessed; 

however it may have significant implications in the design of a stimulation signal.  In 

applications where a brief, localized stimulus is desired, the residual activation may not be 
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desirable. In these instances, stimuli involving combinations of low amplitude, low frequency, 

short pulse durations and short train durations could be used to limit both main and residual 

durations. Conversely, when restriction are placed on certain stimulus parameters and longer 

response durations are desired, both the main and residual durations can be increased  most 

effectively by extending the stimulus train duration and to a lesser extent by increasing the pulse 

duration and amplitude. In particular, residual activation was strongly linked to the stimulus 

amplitude and train duration suggesting that these parameters dominate its prevalence, duration 

and magnitude.  Similarly, if the residual activation component is determined to be absent from 

volitional movements it would suggest that this component is a by-product of stimulation. 

Properties of the evoked response can however be modulated via alterations to the stimulation 

signal parameters to evoke responses which mimic those produced naturally. 

4.7 Conclusion 

Despite some unresolved issues regarding the underlying mechanism of the main and residual 

response durations, our data shows that the traditional ICMS signal used for study of the motor 

cortex could be improved. Frequencies above 200 Hz do not improve the reliability or extend the 

duration of MEPs. Similarly, stimulating with trains longer than 172 ms does not substantially 

extend the response duration. Responses without residual activations may suggest more localized 

stimulation and can be achieved by limiting the parameters of a stimulus. As such, it is essential 

to consider the desired physiological response and appropriate parameter combinations necessary 

to achieve it when designing a stimulus, and both the properties and underlying cause of the 

response components (main and residual) deserve further study. 
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5.1 Presentation of the article 

In the preceding chapters, we have shown that stimulus parameters exert considerable influence 

on the properties of the responses they evoke. These parameters also determine the reliability of a 

stimulus signal and certain parameter combinations are more effective for response evocation. 

The following article describes which parameter combinations are most effective for eliciting 

responses and details strategies to boost reliability in the case of application-dependent 

restrictions on the stimulus signal.  This article (Watson, Dancause & Sawan 2015a) is 

reproduced here as it was published in the Proceedings of the 37th Annual International 

Conference of the IEEE Engineering in Medicine and Biology Society on August 28
th

, 2015.  

5.2 Abstract 

Microstimulation of brain tissue plays a key role in a variety of sensory prosthetics, clinical 

therapies and research applications. At present, tailoring the parameters of a stimulation signal to 

a specific goal relies heavily on parameters from literature.  Optimization methods seek to 

improve tried and tested waveforms developed for specific purposes, however the fundamental 

understanding of how stimulation parameters interact and the effects these interactions have on 

brain tissue remains widely unknown. This study explores the interactions between parameters of 

the constant-current, biphasic square waveform with the intention of developing a stimulation 

efficient strategy. We find that, the traditional premise of a waveform’s effectiveness being 

dominated by its amplitude does apply, however exceptions are noted which may be of essential 

importance to the development of electrical stimuli in restrictive paradigms.  

Index Terms—Microstimulation, neuroprosthesis, stimulation parameters 
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5.3 Introduction 

Microstimulation of brain tissues has a wide range of applications including visual (Dobelle & 

Mladejovsky, 1974; Schmidt et al., 1996) and somatosensory prosthetic devices (Thomson et al., 

2013), deep brain stimulation therapies for Parkinson’s disease (Anderson et al., 2005), and 

epilepsy (Lee et al., 2006; Morrell, 2011) and countless research applications involving many 

different regions of the brain. Despite the different purposes of the stimulation and variability in 

the type of electrodes used, the overall goal is to produce an effective stimulus. An effective 

stimulus is one which accomplishes the goal of the stimulation reliably and consistently without 

damaging the surrounding tissues or causing adverse effects.  

One of the most prevalent microstimulation signals is the constant-current, cathode leading, 

biphasic square waveform. This waveform is used extensively in clinical and research 

applications as it is historically suggested to be safe and effective (Lilly et al., 1955). The 

parameters of this signal include the current amplitude, pulse frequency, pulse duration, and train 

duration (Figure 5-1).  Some of these parameters are known to induce tissue damage within 

specific ranges (McCreery et al., 1995), and most applications have restrictive requirements of 

the stimulus. 

Many efforts have been made to optimize a signal for its specific purpose, by developing 

waveforms through modeling (McIntyre et al., 2009), or iterative testing (Koivuniemi & Otto, 

2012; Rajdev et al., 2011; Young et al., 2011) of parameter combinations shown to be successful 

from past experience. This approach inevitably results in multiple signals addressing the same 

problem since many effective parameter combinations exist for each application. Although many 

combinations can produce the desired outcomes, certain combinations are less reliable than others 

and this reliability should be considered in the stimulus design. To this end, we systematically 

explored the influence that signal parameters and their interactions have on the effectiveness of 

the biphasic waveform stimulation signal in terms of its ability to consistently evoke a response. 

Signals were classified based on their contribution to responsiveness, and parameters that can be 

used to improve responsiveness in restrictive paradigms were identified. 
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5.4 Methods 

In many sensory and motor research experiments, strong stimuli are used to ensure a response is 

produced, however this approach is largely unsuitable for clinical and prosthetic applications. We 

chose to examine clinically relevant parameter ranges; specifically those developed for visual 

prosthetic devices which have extremely restrictive stimulation paradigms (Schmidt et al., 1996). 

These paradigms employ the principle of “minimum effective dose” in which a stimulus is just 

strong enough to produce a visual percept (phosphene), but not strong enough to cause 

interactions between neighboring electrodes or tissue damage at the electrode interface. 

5.4.1 Experimental design 

We chose to work in the rat model, stimulating the caudal forelimb area of M1 in motor cortex; a 

region which is known to produce forelimb movements in anaesthetized animals (Donoghue & 

Wise, 1982). The signal’s reliability was quantified by recording the electromyographic (EMG) 

signals of forelimb muscles to determine if a response was produced. 

5.4.2 Stimulation protocol 

Four experiments were conducted to test the specific effects of each constant-current, biphasic 

square waveform parameter on the production of an EMG response. The waveform parameters 

and their ranges are specified in Table 5-1.  Each experiment focused on one parameter, testing it 

against all other parameters in a pair-wise fashion. Parameters not involved in the comparison 

were held at a control value derived from the standard stimulation signal proven to be effective in 

the rat motor cortex (Donoghue & Wise, 1982), and the control amplitude was set to 50 µA 

which was double the threshold level of each stimulation site. 

For example, all amplitude levels were tested at 3 frequency levels (low, mid and high) with 

pulse duration and train duration held at the control values. This procedure was then repeated 

until each parameter had been tested in this “pair-wise” arrangement resulting in a total of 180 

independent conditions to test all parameters (4 parameters x 5 test values x 3 paired parameters x 

3 levels). Each parameter was tested in a separate experimental block with ten trials for each 

condition and all trials were pseudo-randomized with 1 second between trials. The four 
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experiments were conducted in a randomized order at two different stimulation sites within the 

motor cortex of each rat (14 sites in total). 

 

 

Figure 5-1: Parameters of the constant-current, biphasic square waveform. 

 

Table 5-1: Parameter test values 

Parameter Unit Test Levels Control 

 

Amplitude (A) 

 

µA 

 

30, 39, 48, 56, 65 

 

50 

Frequency (F) Hz
  

100, 200, 300, 400, 500 303 

Pulse Duration (P) ms  0.18, 0.26, 0.34, 0.42, 0.5 0.2 

Train Duration (T) ms  43, 107, 172, 236, 300 43 
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5.4.3 Surgical procedures 

Seven female Sprague-Dawley rats (Charles River, QC, CA) weighing between 273-450 g were 

used in terminal acute experiments. Anaesthesia was induced with intraperitoneal ketamine 

injection (80 mg/kg) and maintained with isofluorane (~2% in 100% oxygen). Subcutaneous 

injection of mannitol (4 g/kg) and intramuscular injection of dexamethasone (1 mg/kg) were 

given prior to the craniotomy to prevent inflammation. A self-regulating heating pad maintained 

body temperature which, along with pulse rate and oxygen saturation, was monitored 

continuously. Insulated, multi-stranded wires (Cooner Wire, Chatsworth CA, USA) were 

implanted in the extensor digitorum communis muscle of the contralateral forelimb to record 

EMG signals.  

The animal was placed in a stereotaxic frame for both the surgical and stimulation procedures; 

positioned to allow free movement of the forelimb. A small craniotomy (8 mm x 5 mm) exposed 

the motor cortex (left hemisphere), the dura was removed and mineral oil applied to the cortex. 

Anaesthesia was switched to ketamine (~10 mg/kg/10 minutes) administered through 

intraperitoneal injections as needed for the duration of the stimulation procedure.   

Stimulation was delivered with a digitally based stimulator (TDT IZ2 Stimulator and RZ5 

BioAmp processor), through a glass insulated tungsten microelectrode (FHC Bowdoin, ME USA, 

UEWSDESGBN4G, 110-175 kΩ) manipulated by a microdrive (David Kopf Instruments Model 

2662, Tujunga, CA). Appropriate sites were located using a standard motor cortex activation 

signal: 13 monophasic, cathodic square pulses of 0.2 ms duration with 3.3 ms between the pulses 

delivered at 1 Hz (Donoghue & Wise, 1982).  EMG responses were monitored and recorded at 5 

kHz (RZ5 BioAmp Processor).  All procedures followed the guidelines of the Canadian Council 

on Animal Care and were approved by the Comité de Déontologie de l'Expérimentation sur les 

Animaux of the Université de Montréal. 

5.5 Results 

The reliability of a stimulus signal was based on the number of stimulation sites which responded 

to that particular signal. Response rates were pooled across all stimulation sites tested (n=14). 

This analysis allowed for the classification of stimulus parameter combinations as: 1) ineffective, 

2) inconsistent, or 3) reliable, based on their ability to produce a response. We also identified 
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parameters which can be adjusted to improve the reliability of a response, shedding light on the 

role each parameter plays when generating a response.   

5.5.1 Ineffective stimuli 

Certain combinations of parameter pairs were entirely unable to evoke EMG responses. Figure 5-

2 shows that 30-39 µA stimuli delivered at 100 Hz were incapable of producing a response due to 

insufficient levels of excitation. Stimulation at low amplitudes was however successful if the 

stimulus frequency was raised. Conversely, in the train duration experiment, 30 µA stimuli 

delivered by 43 ms trains were shown to be ineffective despite sufficiently high stimulation 

frequencies. This effect is likely due to an adaptation effect and will be detailed in section 5.5.6 

below. 

 

Figure 5-2: Influence of stimulus frequency and amplitude on signal reliability. Signals 

combining low amplitude and frequency were less effective at evoking responses.  Reliability 

improved when frequencies were raised from 100 to 300 Hz and could be boosted by raising 

stimulus amplitude. 
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5.5.2 Inconsistent stimuli 

Stimulus signals which elicited a response from less than 50% of the stimulation sites tested were 

classified as inconsistent. These stimuli typically involved low amplitudes (<48 µA), low 

frequencies (<200 Hz), short pulse durations (<0.2 ms) or combinations thereof. Short pulse 

durations were only problematic when paired with either low amplitude or low frequency 

parameters. 

Stimulus amplitudes at threshold levels (30 µA) produced inconsistent responses which could 

however, be boosted into reliable ranges (>80% of sites responding) when pulse duration was 

extended to a minimum of 0.34 ms (Figure 5-3). Increasing frequency or train duration were less 

effective means of boosting the signal, resulting in a maximum of 15% or 55% increase in 

responding sites respectively. 

Frequencies lower than 200 Hz were significantly detrimental (Figure 5-2); however these stimuli 

could be vastly improved by extending the train duration which placed them in reliable ranges. 

Longer pulse durations also provided substantial improvements (up to 85%), but raising the 

stimulus amplitude has only slight effects (up to 50%). 

 

 

Figure 5-3: Influence of stimulus pulse duration and amplitude on signal reliability. Signals 

combining low amplitude and short pulse durations were less effective at evoking responses.  

Reliability improved when pulses were extended from 0.18 to 0.34 ms and weak responses could 

be boosted by raising stimulus amplitude. 
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5.5.3 Reliable stimuli 

Stimulus signals which elicited a response from more than 80% of the sites tested were classified 

as reliable. Reliability improved with increases to the stimulus amplitude, frequency, pulse 

duration and train duration. In general, high levels of success were achieved with amplitudes of at 

least 48 µA (1.5 x threshold), frequencies at or above 200 Hz and pulse durations longer than 

0.18 ms for all train durations.  

5.5.4 Improving reliability in restrictive paradigms 

In many cases, particularly in the clinical setting, there are restrictions placed upon a stimulation 

signal. Particular therapies are most effective within certain parameter ranges or rely on the 

effects of specific parameters. Additionally, physiological constraints are imposed in order to 

avoid damage to the tissue especially in the case of long-term stimulation. It is necessary to 

understand the influence of each signal parameter on the responses they evoke in order to 

overcome these restrictions. For instance, deep brain stimulation therapies often use frequencies 

less than 200 Hz; a level described here as providing inconsistent or ineffective stimulation when 

applied to the cortex. Despite the differing stimulation target areas, it may be possible to improve 

the reliability of the signal while respecting the frequency limitation by increasing the train 

duration, pulse duration and/or amplitude. An intracortical visual prosthetic device requires low 

amplitudes of stimulation to prevent phosphenes from blurring together, however many signals 

with low amplitudes tested here were classified as ineffective. To improve reliability while 

respecting the amplitude limit we can extend the pulse duration, train duration and/or increase the 

frequency (Schmidt et al., 1996). 

5.5.5 Functional limits 

While many parameters can be used to augment a weak signal in order to improve its reliability, 

there appear to be functional limitations. Little difference is noted between the performance of 

300 and 500 Hz stimuli (Figure 5-2). Likewise, all amplitudes above 1.5 x threshold values (48 

µA) have similar performance. All pulse durations above 0.2 ms exhibit similar reliability levels 

(Figure 5-3), as do trains longer than 107 ms (Figure 5-4). These limitations suggest that each 

parameter has an upper limit after which increases provide no further excitation. This upper limit 

is likely specific to the application and species in question; however we expect the general effects  
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Figure 5-4: Influence of stimulus train duration and amplitude on signal reliability. Signals 

combining low amplitude and short train durations were less effective at evoking responses, 

likely due to adaptation effects. Reliability improved when pulses were extended from 43 to 172 

ms and weak responses could be boosted by raising stimulus amplitude. 

of each parameter to be preserved. In order to avoid adverse effects of stimulation, the signal 

should be designed to employ the lowest value of each parameter which achieves the highest 

reliability. This study identified specific parameter combinations which improve the reliability of 

the signal, suggesting that when designing a stimulus it is necessary to consider not only the 

independent effects of each component, but also their interactions. 

5.5.6 Parameters which cause neural adaptation 

When a system is presented with repetitive stimuli the responsiveness of the system can change. 

Stimuli which previously produced a specific response may elicit different responses over the 

course of time as a result of neural adaptation. Evidence of this phenomenon can be observed by 

comparing the responses from the train duration experiment to matching conditions within the 

amplitude, frequency and pulse duration experiments. When longer duration trains were more 

prevalent in an experimental session, responsiveness to short duration trains was reduced. The 

number of sites responding to short trains delivered with amplitudes of 48 µA was 64% lower for 

the train duration experiment than the amplitude experiment. Similarly, 77% fewer sites 

responded to short trains delivered at 500 Hz in the train duration experiment than under identical 

conditions in the frequency experiment. Finally, the number of sites responding to short trains 
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delivered with 0.18 ms pulses was 80% lower for the train duration experiment than the pulse 

duration experiment. 

A similar effect is observed in the amplitude experiment, where the number of sites responding to 

low amplitude stimuli can be up to 75% lower in the amplitude experiment than under identical 

conditions in the other experiments. 

These comparisons examine identical stimulus conditions occurring in separate experiments, and 

we would expect them to have similar results. We postulate that the results are influenced by the 

other trials occurring within each experiment. For example, the train duration experiment 

contains the largest number of long duration trains whose repeated application at the stimulation 

site appears to make the site less receptive to short train duration stimuli. Similarly, the amplitude 

experiment contains the largest number of high amplitude stimuli whose repeated application at 

the stimulation site appears to make the site less receptive to low amplitude stimuli.  These 

findings emphasize that it is necessary to not only consider the parameters of the current signal, 

but also those of the preceding stimulations when designing an effective stimulus. 

5.6 Conclusion 

This study identified a number of parameter combinations which serve to overcome specific 

restrictions on the stimulus signal and demonstrated the general role that each parameter played 

in evoking a response. Additionally, we provided evidence in support of considering the effects 

of the preceding stimulation on the reliability of the current stimulus. Our future work aims to 

quantify the effects of stimulation parameters on the amplitude, latency, duration and spread of 

the response and provide a model of parameter interactions. This approach will not only allow for 

the optimization of existing paradigms but will facilitate the developments of new applications. 
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6.1 Presentation of the article 

In the preceding chapters, we have shown that stimulus parameters can be used to shape the 

responses they evoke. The following article presents a methodology for the design of stimulation 

signals and provides a model of the input-output relationship between stimulus parameters and 

the responses they evoke. This methodology can be used to aid in the optimization of existing 

stimuli as well as the design of new stimulation applications. The model proposed here can be 

used to predict properties of the responses evoked by stimulation and to computationally explore 

parameter effects. This article (Watson, Dancause, & Sawan, 2015c) was submitted to the Journal 

of Neural Engineering on June 18
th

 2015 and is reproduced here in an updated version.  

6.2 Abstract 

Objective. Microstimulation of the brain has a wide variety of clinical and research applications 

which employ an extensive range of stimulation parameters. The manner in which the parameters 

of a stimulus influence the responses they evoke is not always known and as such, most 

stimulation paradigms are determined by trial-and-error approaches. Our goal was to provide a 

simple method for modeling the input-output relationship between stimulation parameters and the 

responses they evoke. Approach. A two layer feed-forward artificial neural network was 

implemented to model the relationship between the parameters of an intracortical 

microstimulation signal delivered to the rat motor cortex and the EMG responses they evoked. 

The parameters of the constant-current, biphasic square waveform (amplitude, frequency, pulse 
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duration, and train duration) were examined in relation to their influence on the EMG metrics 

(onset latency, peak amplitude, peak time, mean amplitude, main response duration, and residual 

activation duration).Main results. Single target neural networks were able to accurately predict 

the EMG response metrics and were an effective method of modeling the input-output 

relationships between the parameters of a stimulation signal and the metrics of the evoked EMG 

responses. Significance.  In addition to providing a directly applicable model for EMG prediction 

in rat motor cortex studies, we also describe the extension of this approach to other applications. 

Our findings suggest this approach may be essential to both the development of new stimulation 

protocols and the optimization of existing paradigms.  

Key words: Intracortical microstimulation, stimulation parameters, neuroprostheses 

6.3 Introduction 

Electrical stimulation of the brain has a number of applications including visual  (Bradley et al., 

2005; Davis et al., 2012; Dobelle & Mladejovsky, 1974; Schmidt et al., 1996; Torab et al., 2011) 

and somatosensory (Berg et al., 2013; Tabot et al., 2013; Thomson et al., 2013) prosthetic 

devices, deep brain stimulation therapies for Parkinson’s (Anderson et al., 2005; Bronstein et al., 

2011; Deuschl et al., 2006; Little et al., 2013; Weaver et al., 2012) and epilepsy (Fisher et al., 

2010; Kerrigan et al., 2004; Lee et al., 2006; Morrell, 2011) and countless research applications 

involving many different regions of the brain (Bartlett et al., 2005; Brecht et al., 2004; Butovas, 

2003; Butovas & Schwarz, 2007; Dancause, Barbay, Frost, Mahnken, & Nudo, 2007; DeYoe et 

al., 2005; Marzullo et al., 2010; Murphey & Maunsell, 2007; Salzman et al., 1992; Tehovnik et 

al., 2005; Touvykine et al., 2015). These applications use a wide variety of stimulation signals, 

the parameters of which are most commonly determined by trial and error or based on successful 

studies found in the literature. Alternatively, efforts have been made to model the effects of 

stimulation on the brain (Foutz & McIntyre, 2010; Joucla, Branchereau, Cattaert, & Yvert, 2012; 

Joucla & Yvert, 2009; McIntyre et al., 2009; McIntyre & Grill, 2001; Overstreet, Klein, & Helms 

Tillery, 2013; Reich et al., 2015). While these approaches have been effective, there is room for 

improvement in terms of efficiency particularly for optimizing existing protocols and developing 

new ones.  Recently, considerable effort has been focused on optimizing existing protocols for 

both clinical (Birdno et al., 2012; Birdno, Cooper, Rezai, & Grill, 2007; Foutz & McIntyre, 2010; 

Rajdev et al., 2011; Reich et al., 2015; Shigeto et al., 2013; Van Nieuwenhuyse et al., 2015) and 



75 

 

research applications (Koivuniemi & Otto, 2011, 2012; Murasugi et al., 1993; Schiller et al., 

2011; Tehovnik & Slocum, 2007; Van Acker et al., 2013). While these approaches are valuable 

and have made many improvements, they are time consuming and do not aid the development of 

protocols for new applications. 

We propose a shift away from the conventional trial and error development of stimulus protocols, 

towards the development of a design methodology. In order to determine a set of rules or 

guidelines for the design of stimulation signals we must first understand the influence that each 

signal parameter exerts on the responses they evoke. Since the brain is an incredibly complex 

system, a bottom-up approach in which we determine the complete functioning from cell to 

system is unreasonable at present. Instead, we favor a top-down design in which we formulate an 

overview of a complete system containing three components: the stimulation signal, the brain it is 

applied to and the response evoked by the stimulus. Since two of the three components are 

known and measurable, we are able to take a “black box” approach to model the unknown 

component. The stimulation signal is used as the input, while the brain is treated as the black box, 

and the evoked response is used as the output. The functionality of the black box can then be 

simulated by an artificial neural network. 

Our approach was inspired by recent novel applications of input-output modeling to neural 

systems using artificial neural networks.  This type of modeling has been used to predict neural 

responses to auditory stimuli by training a network with neural spike responses of frequency 

modulation-sensitive neurons in the auditory midbrain when exposed to different tones (Chang, 

Chiu, Sun, & Poon, 2012). Artificial neural networks have also been used in computational 

models of brain stimulation, particularly to model the spread of activation evoked around a deep 

brain stimulation probe. These ANN models predicted the volume of tissue activated by deep 

brain stimulation based on the parameters of stimulation signals and the configuration of the 

electrodes delivering the stimulation (Chaturvedi, Luján, & McIntyre, 2013). ANN models have 

also successfully predicted nonlinear responses from the primary visual cortex resulting from 

exposure to visual stimuli (Lau, Stanley, & Dan, 2002; Prenger, Wu, David, & Gallant, 2004). 

Similarly, the parameters of optic nerve stimulation have been linked to features of the visual 

percepts they induced (Archambeau, Delbeke, Veraart, & Verleysen, 2004). 
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Here we describe the use of an artificial neural network to model the input-output relationship 

between electrical stimuli applied to the brain and the responses they evoke. Our data set was 

derived from work in the rat model, where we applied intracortical microstimulation (ICMS) to 

the caudal forelimb area of the motor cortex and recorded the electromyographic (EMG) signals 

evoked in the forelimb muscles.  The model takes the parameters of the stimulus waveform as 

inputs and metrics of the recorded EMG signals as outputs (or model targets). The artificial 

neural network was trained, validated and tested on this data set and can be used as a tool for 

predicting various metrics of the response signal. The intention behind this implementation is 

twofold. It may be used directly as a tool for researchers studying the motor cortex as they design 

their stimulation protocols. In this way, parameters of the stimulus can be varied and the response 

metrics simulated to avoid trial and error testing within an experiment. More importantly 

however, this model provides a template that can be easily modified and applied to other 

protocols. Both applications of the model will be detailed in the discussion and a tutorial 

including MATLAB code and the data set described in this study are appended as supplementary 

material (Appendices a and b).  

6.4 Materials and methods 

 This model is implemented using a data set collected in the rat model which examined the 

specific effect of each parameter of a stimulus on the responses they evoked. The data collection 

procedures, methods and results of this study are detailed extensively in our forthcoming works 

(Watson et al., 2015a, 2015b; Watson et al., 2015). The present work provides a brief description 

of the experiment, data collection procedures and analysis while greater emphasis is placed on the 

implementation of the model and application of the model to future studies. 

6.4.1 Surgical procedures and data collection 

Experiments were conducted using seven female Sprague-Dawley rats (Charles River, QC, CA) 

weighing 273-450 g. Anaesthesia was induced with intraperitoneal ketamine injection (80 mg/kg) 

and maintained with isofluorane (~2% in 100% oxygen) throughout the surgical procedure. 

Injections of mannitol (4 g/kg subcutaneously) and dexamethasone (1 mg/kg intramuscularly) 

were given before the craniotomy and temperature was maintained with a self-regulating heating 

pad. The rat’s pulse rate, oxygen saturation, and temperature were monitored continuously. To 



77 

 

record EMG signals, insulated multi-stranded wires (Cooner Wire, Chatsworth CA, USA) were 

implanted in the extensor digitorum communis muscle of the forelimb contralateral to the 

stimulating electrode, and recordings were sampled at 5 kHz (RZ5 BioAmp Processor) for offline 

analysis. All further procedures were conducted with the animal in a stereotaxic frame. A small 

craniotomy (8 mm x 5 mm) exposed the motor cortex (left hemisphere), the dura was removed 

and mineral oil was then applied to protect the cortex.  For the stimulation procedure, anaesthesia 

was switched to ketamine (~10 mg/kg/10 minutes) administered through intraperitoneal 

injections as needed for the duration of the experiment. 

All stimulation signals were tested in two separate sites of the caudal forelimb area (CFA) in the 

motor cortex of each rat specifically: 0-4 µm anterior and 2.0-3.7 µm lateral to bregma at 

electrode depths of 1534-2104 µm (mean 1792 µm). To locate suitable stimulation sites, we 

delivered a standard ICMS train: 13 monophasic square pulses of 0.2 ms duration with 3.3 ms 

between the pulses delivered at 1 Hz which has been shown to be effective in the motor cortex 

(Donoghue & Wise, 1982; Nudo et al., 1990; Stowe et al., 2007; Touvykine et al., 2015). Sites 

were selected based on their ability to produce threshold responses to stimulation current 

amplitudes of 25-35 µA.  Choosing sites with a specific threshold level ensured that all test sites 

had similar levels of excitability and allowed us to set the control value for amplitude within the 

stimulation protocol. The control value for amplitude (Table 6-1) was set to be twice as strong 

(50 µA) as the threshold level (25-35 µA). 

The stimulation protocol was run sequentially in two different sites within the CFA of each rat. 

Stimulation was delivered with a digital stimulator (TDT IZ2 Stimulator and RZ5 BioAmp 

processor), through a glass insulated tungsten microelectrode (FHC Bowdoin, ME USA, 

UEWSDESGBN4G, 110-175 kΩ) manipulated by a microdrive (David Kopf Instruments Model 

2662, Tujunga, CA).  Data was collected from a total of 14 sites (2 sites per rat). At the end of the 

data collection, the animal was euthanized with a lethal dose of sodium pentobarbital. All 

procedures followed the guidelines of the Canadian Council on Animal Care and were approved 

by the Comité de Déontologie de l'Expérimentation sur les Animaux of the Université de 

Montréal. 
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6.4.2 Stimulation protocol  

The stimulation protocol was designed to systematically test the influence that each parameter of 

a microstimulation signal exerted on the EMG response it evoked when delivered to the rat motor 

cortex. All stimuli were variants of the constant-current, cathode leading, biphasic square 

waveform known for its prevalence in both research and therapeutic applications of ICMS. The 

parameters of this waveform include the current amplitude, pulse frequency, pulse duration and 

train duration (Figure 1b).  The ranges of each parameter were chosen to include typical values 

used in prosthetic devices and therapeutic applications of brain stimulation. In particular, the 

ranges reflect the most restrictive stimulation paradigm among the applications: visual prosthetic 

devices (Schmidt et al., 1996). The test range of each parameter was divided evenly into five 

levels (low, low-mid, mid, mid-high, and high) and a control value was derived from the standard 

stimulation signal proven to be effective in the rat motor cortex (Donoghue & Wise, 1982; Nudo 

et al., 1990; Stowe et al., 2007; Touvykine et al., 2015). The control value for amplitude was set 

to 50 µA, which was twice the threshold level of each site. The ranges, levels and control values 

selected for each parameter can be found in Table 6-1. 

The stimulation protocol was conducted in four experimental blocks each designed to test the 

influence of one stimulus parameter against the other three parameters in a pair-wise fashion. 

Each parameter was tested at all five levels in the range (low, low-mid, mid, mid-high, and high) 

against three levels (low, mid, high) of a paired parameter while all other parameters were held at 

their control values (see Table 6-1).  Ten trials of each condition were conducted within each 

experimental block and were pseudo randomized with 1 second between trials. This arrangement 

resulted in a total of 180 independent test conditions (4 parameters x 5 test levels x 3 paired 

parameters x 3 test levels) that were tested in a total of 14 sites (2 per rat). 

For example, to test the effects of current amplitude, all five values in the amplitude range (30, 

39, 48, 56, 65 µA)  were tested at 3 frequency levels (low-100 Hz, mid-300 Hz, and high-500 Hz) 

with pulse and train duration held at the control values (0.2 ms and 43 ms respectively). 

Similarly, all five values in the amplitude range (30, 39, 48, 56, 65 µA)  were tested at 3 pulse 

duration levels (low-0.18 ms, mid-0.34 ms, and high-0.5 ms) with frequency, and train duration 

held at the control values (303 ms and 43 ms respectively). Finally, all five values in the 

amplitude range (30, 39, 48, 56, 65 µA)  were tested at 3 train duration levels (low-43 ms, mid-
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172 ms, and high-300 ms) with frequency, and pulse duration held at the control values (303 ms 

and 0.2 ms respectively). This procedure was then repeated for frequency, pulse duration and 

train duration until each parameter had been tested against amplitude in this “pair-wise” 

arrangement.   

6.4.3 Response metrics 

For each of the stimulation sites, trials were averaged to produce a mean response for each 

condition. In order to quantify the effects of a stimulus parameter on the evoked responses, six 

features were extracted from each mean EMG signal and classified as response metrics (Table 6-

1).  For the purposes of this model, the response metrics obtained for each condition were 

averaged across all 14 sites producing a mean data set. 

The signal features chosen to describe the response include: 1) onset latency, 2) mean amplitude, 

3) peak amplitude, 4) peak time, 5) main response duration and 6) residual activation duration.  

The onset latency was defined as the time delay between the onset of the stimulus signal and the 

initiation of the EMG response (Figure 6-1b right). The mean amplitude was taken as the average 

of the signal during the component extending from EMG onset to the return of the signal to 

baseline (denoted as the main response). The peak amplitude was defined as the maximum value 

of the response and the timing of this occurrence was called the peak time. The main response 

was defined as the larger component of the signal which contains the EMG’s peak, and the 

residual activation was defined as the intermittently present region of lesser activation which 

persisted after the main response (Figure 6-1b right). The parameters of main response duration 

and residual activation duration provide the timescale of these two components.  The residual 

activation is a newly classified phenomenon detailed in our forthcoming work (Watson et al. 

2015). It is not present in all EMG responses and is largely dependent upon the parameters of the 

stimulation signal. These residuals take many shapes, and can be entirely absent or endure for 

hundreds of milliseconds.   
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Table 6-1: ANN model input-output parameters 

ANN Inputs 

 

Input Parameters 

 

 

Unit 

 

 

Test Range  

 

 

Control 

ANN Outputs 

 

Output Parameters 

     

Amplitude (A) µA 30, 39, 48, 56, 65          50 Onset Latency 

Frequency (F) Hz   100, 200, 300, 400, 500          303 Mean Response 

Pulse Duration (P)    ms  0.18, 0.26, 0.34, 0.42, 0.5   0.2 Peak Response 

Train Duration (T) ms 43, 107, 172, 236, 300          43 Peak Time 

Main Response Duration 

Residual Activation Duration 
     

    

6.4.4 Artificial neural networks 

Artificial neural networks are statistical learning models which can be used to approximate 

functions and perform computational processes. They are designed to mimic biological neural 

networks in the sense that they are composed of systems of interconnected components (known 

as nodes or neurons) which relay signals.  An artificial neural network is not intended to be a 

model which firmly represents a system’s performance in the way that a look up table or an 

equation would. Rather it learns the statistical model of the process generating the data through a 

training process which makes it able to adapt to new inputs. The network generates weights and 

biases used to describe the relationship between all connected components and tunes them 

continually during training to render the network adaptive to new inputs as a form of machine 

learning. The artificial neural network (ANN) approach allows us to simulate metrics of the EMG 

responses evoked by stimulation using a black box model (Figure 6-1a). The input is the set of 

stimulation parameters, and the output is one of the EMG metrics. We represent the motor cortex 

by the black box, whose response to stimulation is simulated by the ANN (Figure 6-1b).   

Neural networks can be implemented with countless topologies in which the connection methods, 

number of neurons, number of layers, and types of transfer functions are varied; however they 

can be divided into two broad classifications. Feed-forward neural networks (FNN) have a one 

directional flow of data and are the simplest to implement. They are typically used for function 

approximation and nonlinear regression to generalize the relationships between the inputs and 

outputs of a system or for pattern recognition and classification. Recurrent neural networks 

(RNN) have feedback pathways which accommodate dynamic temporal behavior and are 
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inherently more complicated to implement. These networks are better suited to uses involving 

time series or sequential data. To model our input-output data set, we chose the simplest network 

architecture possible and all implementation choices were kept as close to the standard guidelines 

for basic implementation of ANN models. 

Our implementation is a 2 layer feed-forward neural network composed of a hidden layer, and an 

output layer (Figure 6-1c). Our network takes four inputs to accommodate the number of 

stimulus parameters of interest, which are fed into a hidden layer consisting of 20 hidden neurons 

(Figure 6-2). A connection exists between each hidden unit and output unit, and the strength of 

the connection is represented by the weights. If one unit exerts a large influence on another, the 

weight describing their connection will be large. The nature of the relationship 

(inhibitory/excitatory) is indicated by the sign of the weight (negative/positive). The inputs are 

first adjusted by the input weights (IW) and then summed with the input bias weights (b1) 

generated during training. Before exiting the hidden layer, the resulting sum is scaled by the 

hyperbolic tangent activation function (implemented via MATLAB’s tansig function). The output 

of the hidden layer is passed through an output layer containing one neuron and is adjusted by 

output layer weights (LW) before being summed with output bias weights. Before exiting the 

output layer, the resulting sum is scaled by a linear activation function (implemented via 

MATLAB’s purelin function). The resulting output represents the ANN’s response to the 

particular set of inputs. This process is schematically detailed in Figure 6-2 and is represented by 

the following equation: 

 

where, y represents the network output in response to input vector x. Variables b2 and b1 

represent the output and input bias weights respectively, while variables LW and IW represent 

the layer weight and input weight matrices of the network. 

 

(6-1) 
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Figure 6-1: ANN model design. Part (a) describes the black box approach to modeling the input-

output relationship between intracortical microstimulation signals delivered to the motor cortex 

and the EMG responses they produced. Part (b) shows the parameters of the constant-current, 

biphasic square waveform stimulus and the EMG response metrics. Part (c) depicts the ANN 

structure which simulates the function of the motor cortex. A separate two layer feed-forward 

network was implemented to simulate a single EMG metric. The system takes four inputs 

representing the stimulus signal and produces one of six outputs representing EMG metrics. 

Note: the diagram shows only 2 neurons in the hidden layer for simplicity however 20 are 

implemented. 

6.4.5 ANN simulation in MATLAB 

The ANN model was implemented in MATLAB using the Neural Network Toolbox (Mathworks, 

Natick, MA, USA). For the purpose of simplicity and to demonstrate the ease of reproducibility, 

the model was developed using the standard (default) settings recommended in this toolbox. No 

outlier removal was performed and the network was trained only once (no retraining).   Data was 

arranged into an input vector containing the four parameters of each stimulus condition, and a 

target vector containing the six metrics of the EMG response produced by the stimulus condition.  
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Both the input and target vectors were preprocessed to scale them for the chosen activation 

functions and to make them relative to one another via normalization. 

Fitting data with the artificial neural network was a three step process involving training, 

validation and testing.  These procedures were implemented following the recommended 

guidelines found in MATLAB’s Neural Network Toolbox. The entire data set was randomly 

divided into three components allocated to one of the three processes.  In this model, 70% of the 

data (126 trials) was used to train the network which is an iterative process in which the system 

automatically estimates the weights and biases of possible designs. The training algorithm 

employed was the Levenberg-Marquardt which is a damped least-squares method for least 

squares curve fitting.  Once the system identifies possible designs, a different 15% of the data (27 

trials) was used to iteratively validate the performance error of these designs. When the error 

ceased to improve, validation process ended and the final 15% of the data was used one time only 

to test the design with the best performance obtaining an unbiased estimate for the predicted error 

when the system is exposed to new inputs. 

 

Figure 6-2: Computational implementation of ANN model. A two layer feed forward neural 

network composed of a hidden layer with 20 hidden neurons and an output layer with one neuron 

was implemented to model the input-output relationships corresponding to 4 inputs (stimulus 

parameters) and 6 outputs (EMG metrics). Inputs are adjusted by the input weights (IW) then 

summed with the input bias weights (b1) and the result is scaled by the hyperbolic tangent 

activation function (tansig) of the hidden layer. Once the result is transmitted to the output layer 

it is adjusted by output layer weights (LW) before being summed with output bias weights and 

the resulting sum is scaled by a linear activation function (purelin). 
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6.5 Results 

A separate model was implemented to simulate each metric of the output EMG signal in a single-

target prediction approach. This approach was taken to ensure model simplicity and to avoid 

assumptions about target dependency. Dependency between targets is typically not known prior 

to simulation and is learned from the data set. Since dependency is inherent to the data set and 

derived through training it can be argued that exploiting the relationships between targets 

provides no additional information at a greater computational expense. In the discussion, we 

address the possibility of implementing a multi-target prediction approach and its implications. 

The single-target simulations yielded satisfactory results using the default parameters of the 

MATLAB Neural Network Toolbox. These findings suggest that ANN implementations may be 

a simple yet effective approach for modeling input-output data of this type. The model was 

assessed in terms of its network performance error and goodness of fit and was determined to 

effectively map the nonlinear relationship between the input stimulation and output EMG 

metrics. 

6.5.1 Network performance 

Figure 6-3 quantifies the performance of the network by examining the mean squared error 

(MSE) representing the difference between the model outputs and targets at each iteration 

(epoch) in the training, validation and testing phases. Error values close to zero indicate that the 

ANN estimator predicts outputs which match the targets very closely. The best performance 

occurs where the horizontal and vertical dotted lines intersect and is highlighted with a green 

circle. All of the networks perform well, as the validation and testing curves are very similar and 

no performance issues were identified. There are no indications of under or overtraining in any of 

the networks.  The network simulating onset latency performed best after 4 epochs (MSE=0.03), 

as did the network simulating mean amplitude (MSE=0.12).  The network predicting peak 

amplitude needed 5 epoch to reach its best performance (MSE=0.11), as did the network 

simulating the main response duration (MSE=0.07). The peak time network however required 

only 2 epochs (MSE=0.03), while the residual activation duration network performed best after 3 

(MSE=0.05). 
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Figure 6-3: Network performance. Each EMG metric was simulated by an independent neural 

network. The mean square error of the network at each iteration (epoch) is shown with the best 

performance occurring where the horizontal and vertical dotted lines intersect as highlighted by 

the green circle. Performance is detailed for the training (blue), validation (green) and testing 

(red) phases of model implementation. 

6.5.2 Goodness of fit 

Figure 6-4 quantifies the goodness of fit between the network outputs and target values using the 

best fit linear regression between the two parameters. The graph allows you to compare the 

perfect condition in which the outputs match the targets and the correlation coefficient has a 

value of 1 (dotted line) and the results of the model simulations (in blue).  All of the networks 

perform well, and exhibit a high degree of correlation between the network outputs and target 

vectors despite the presence of several outlier data points. The network simulating response 

durations had the best performance (main response duration: r=0.95; residual activation duration: 

r=0.94), as did the networks for other temporal parameters (onset latency: r=0.90; peak time: 

r=0.91). However the fit of the networks responsible for predicting the spatial parameters was 

slightly lower than desirable (mean amplitude: r=0.88; peak amplitude: r=0.89) but was still 
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acceptable. Options for improving performance will be detailed in the discussion.  Figure 6-5 

depicts the goodness of fit between the targets and ANN outputs as error histograms for each 

network with a bin size of 20. Each network histogram exhibits a roughly Gaussian shape; 

however the distribution does show evidence of outlying data points particularly in the spatial 

outputs (mean and peak amplitude). 

 

 

Figure 6-4: Network fit-correlation analysis. Each EMG metric was simulated by an independent 

neural network. The goodness of fit between the network outputs and target values is indicated 

with the best fit linear regression between the two parameters (blue), along with their correlation 

coefficients. Ideal conditions are represented by the dotted line. 
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Figure 6-5: Network fit-error analysis.  Discrepancies between targets and ANN outputs are 

depicted as error histograms for each network with 20 bins. 

6.6 Discussion 

A thorough understanding of input-output relationships in stimulation paradigms is not only 

essential to designing effective protocols but also provides insight into neural processes. Our goal 

was to provide a simple method for modeling the relationship between stimulation parameters 

and the responses they evoke.  We chose to test this model  on input-output data obtained from 

the rat motor system due to its simplicity and the abundance of knowledge pertaining to the 

structure and function of this particular system. We demonstrated that a two layer feed-forward 

ANN implemented with default settings using MATLAB’s Neural Network Toolbox was capable 

of effectively simulating the EMG response metrics induced by stimulation.  Here we discuss 

alternative implementation structures for the model, methods to improve performance, 

implications of this modeling technique, and provide detailed instruction for using this specific 

model or extending its principles to other applications. 
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6.6.1 Single vs. multi-target prediction structures 

The process we modeled had four input variables (stimulation parameters: amplitude, frequency, 

pulse duration, train duration) and produced six outputs (EMG metrics: onset latency, peak 

amplitude, peak time, mean amplitude, main response duration, residual activation duration). We 

chose to employ target-wise decomposition of this multiple-input, multiple-output system and 

implemented six separate networks to predict each of the six outputs independently. This 

approach was taken since the relationship between the outputs is not often known prior to 

simulation, and is derived from the dataset during the training process. As such, we feel it does 

not add any inherent value to the model as it provides no additional information to the network. 

Arguably however, a model which performs multi-target prediction could be seen as simpler and 

preferable to the end user of the model. Multi-target prediction approaches will however, 

typically require more sophisticated implementation approaches and more extensive network 

training in order to produce adequate performance. Since both approaches are feasible and valid, 

the user must choose the structure of the model based on their goals. 

6.6.2 Improving ANN performance 

For the purpose of simplicity, our model was developed using standard procedures and design 

recommendations. For this particular dataset, this approach proved satisfactory; however this will 

not always be the case. To improve the performance, the user can modify the parameters of the 

network and different training algorithms can be selected. Similarly, removing outliers prior to 

training, retraining the network, adding more hidden layer neurons, or using additional training 

data can improve the performance. These approaches are conveniently detailed in MATLAB’s 

help files for artificial neural networks. 

6.6.3 Implications of the model 

Recently, much effort has been devoted to optimizing a number of existing stimulation protocols 

for their specific purposes in clinical (Birdno et al., 2012; Foutz & McIntyre, 2010; Pulliam et al., 

2015; Rajdev et al., 2011; Reich et al., 2015; Shigeto et al., 2013; Van Nieuwenhuyse et al., 

2015) and research applications (Koivuniemi & Otto, 2011, 2012; Murasugi et al., 1993; Schiller 

et al., 2011; Tehovnik & Slocum, 2007; Van Acker et al., 2013). While these attempts are 

valuable and provide a wealth of knowledge, they do not facilitate the development of new 
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paradigms or explain the influence of stimulation parameters on neural activation in general. We 

propose a shift away from task-specific optimization and towards a black-box approach in which 

we define the generalized input-output relationship between the stimulation parameters and the 

effects they produce. The ANN modeling approach provides a simple implementation for 

simulating the effects of stimulation and as such is a valuable tool for developing and optimizing 

stimulation protocols, particularly those with known restrictions on the stimulus parameters.  

Visual prosthetic devices seek to simulate vision by generating patterns with the visual percepts 

(phosphenes) produced by stimulation the visual cortex (Dobelle & Mladejovsky, 1974; Schmidt 

et al., 1996; Tehovnik & Slocum, 2007). The timing of this stimulation is essential to providing a 

real-time representation of the visual field. If the chosen stimulus induces long lasting activations 

the phosphenes it evokes will remain visible for longer than intended. Similarly, if the stimulus 

amplitude is too large the activation will spread within the cortex, producing phosphenes which 

blur together disrupting the intended spatial pattern. The ANN approach could be used design the 

ideal stimulus by simulating the effects of stimulus parameters on phosphene metrics such as 

size, duration, and brightness. In this case, the stimulation parameters would be taken as the input 

to the ANN, the ANN itself would model the response of the visual cortex to electrical 

stimulation, and the model outputs could be the qualitative phosphene metrics such as size, 

duration and brightness. 

Applications which use deep brain stimulation for the treatment of epilepsy (Rajdev et al., 2011; 

Shigeto et al., 2013; Wyckhuys, Raedt, Vonck, Wadman, & Boon, 2010) may benefit from 

stimulation waveforms which produce responses with short onset latencies for seizure 

interruption applications or short duration responses to avoid kindling effects in sustained 

stimulation of target structures or epileptic focii. The ANN model approach can simulate the 

effects of stimulus parameters on the seizure metrics such the frequency or amplitude of 

interictal, kindling, and seizure-like events recorded intracranially or via electroencephalogram 

(EEG).  In the case of seizure interruption applications, the parameters of the stimulus which 

interrupts the seizure activity is taken as the input to the ANN model. The ANN itself would 

model the effect of this electrical stimulus on the seizure activity, and the model outputs could be 

the duration for which the seizure activity persisted after stimulation, or the relative reduction in 

amplitude of seizure-like spiking activity occurring after the delivery of the interruption stimulus. 

In the case of seizure prevention through sustained stimulation of target structures or epileptic 
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foci, the seizure prevention stimulus would serve as the input to the ANN model. The ANN itself 

would model the ability of this particular stimulus to prevent the occurrence of seizure-like 

activity. The model outputs could be the frequency of occurrence of interictal spiking, preictal 

abnormalities or seizure-like events in a given time period. 

Similarly, applications of deep brain stimulation for the treatment of Parkinson’s (Benabid et al., 

2009) may benefit from stimulation waveforms which produce long lasting responses in order to 

achieve the desired sustained effects with fewer stimulations. These applications are also known 

to have optimally effective frequencies. In the case of Parkinson’s treatment, the ANN approach 

could be to simulate the influence of stimulation parameters on Parkinsonian symptom metrics 

such as tremor reduction or gait initiation. In this case, the parameters of the stimulus delivered 

by DBS would be taken as the input to the ANN model. The ANN itself would model the effect 

of this electrical stimulus on the Parkinsonian symptoms. The model outputs could be qualitative 

measures of tremor, bradykinesia or movement initiation times obtained with rating scales such 

as the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS), or quantitative measures 

obtained with motion sensors (Das et al., 2011; Pulliam et al., 2015). Using this modeling 

approach could improve DBS programming practices and reduce the time and expense of trial 

and error optimization approaches. 

6.6.4 Using the model 

Our forthcoming works detail the general effects of stimulation parameters on the responses they 

evoke (Watson et al., 2015a, 2015b; Watson et al., 2015), and this model provides a simple 

method for simulating these effects and exploring stimulus parameter combinations. We have 

included as supplementary material the complete input-output dataset for the rat motor cortex 

ANN simulation described in this work (Appendix A). We also provided a tutorial detailing its 

usage in an m-file format which includes sample code to run the simulation (Appendix B). This 

model can be used directly to design or optimize stimulus signals for use in rat motor cortex 

stimulation experiments. The user must simply load the appended data set, and follow the 

instructions in the appended tutorial. The user can either simulate the EMG responses to 

stimulation parameters which are fixed due to restrictions of their paradigm or they may use the 

model to select the stimulus parameters which produce the EMG metrics they wish to obtain (fast 

onset, long duration etc).  Users with stimulus restrictions can achieve their desired EMG metrics 
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by varying the non-fixed parameters of their stimulus signal to compensate for the effects of a 

fixed parameter. Further details on the general relationships between stimulation inputs and the 

responses they evoke and methods for overcoming parameter restrictions can be found in our 

forthcoming works (Watson et al., 2015a, 2015b; Watson et al., 2015).  

6.6.5 Extending the model principles to other applications 

The ANN approach is a simple yet effective tool for modeling any input-output relationship. 

Detailed in the included tutorial are the steps required to modify this implementation for other 

uses including instructions for modifying the sample code. These modifications allow the user to 

implement the model on their own input-output data sets. 

6.7 Conclusions 

Since our knowledge of the brain is constantly evolving and new applications continue to be 

developed, more focus must be placed on developing methodologies to guide the design of new 

stimulation signals. These methodologies rely on an in-depth understanding of the influence that 

each parameter of a stimulation signal exerts on the brain. We propose a shift away from iterative 

testing approaches, replacing them with a design methodology in which we consider the desired 

physiological response and the neural activations necessary to achieve it. Understanding the role 

each stimulus parameter plays in neural activation is essential to this approach. The model 

presented here provides the framework for using artificial neural network models to simulate the 

input-output relationship between stimulation parameters and desired outcomes. This 

methodological approach not only allows for the optimization of existing paradigms but is an 

essential tool for the development of new applications. 
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CHAPTER 7 GENERAL DISCUSSION 

In the preceding chapters, we have demonstrated that the parameters of a stimulation signal 

greatly influence the responses they evoke and described the extent and nature of specific 

parameter effects. Electrical stimulation of the brain is the foundation of a number of state of the 

art technologies and the future of development in these fields relies heavily on the ability to 

design effective stimulation signals. The optimization of a signal for a specific goal can 

sometimes be achieved using iterative trial and error or computational methods; however these 

approaches have many limitations. We propose a shift in design principles in which the 

stimulation signal is crafted by first considering the neural activation necessary to achieve the 

stimulation goal and then determining the stimulation parameters required to induce the desired 

neural activation.   This approach makes use of our knowledge of general parameter effects on 

neural circuits to provide a sound methodology for stimulus design.  The computational model of 

input-output relationships developed in this work provides a tool to aid in the implementation of 

the proposed stimulus design methodology. 

In this thesis, we tackled the issue of developing effective stimulus design principles. These 

principles are based on the knowledge of the input–output relationships between stimulus signals 

and the responses they evoke. In chapter 2, the review of the literature demonstrated that there are 

no precedents for this work as methodologies for informed stimulus design have not been 

developed previously.  A few studies have explored the effects of some stimulus parameters 

through experimental testing (Dobelle & Mladejovsky, 1974; Koivuniemi & Otto, 2012; 

Koivuniemi & Otto, 2011; Schmidt et al., 1996; Semprini, Bennicelli, & Vato, 2012; Young, 

Vuong, Flynn, & Teskey, 2011) however these studies were not systematic and explored very 

limited parameter ranges. In this work we uncovered a number of parameter effects and 

relationships that only emerge in certain circumstances such as limits to the effects of certain 

parameters or the neural adaptation effects of stimulus train duration and amplitude which occur 

when certain stimuli are prevalent in an experimental session. The systematic approach to testing 

and the cross-comparisons we conducted were essential to these discoveries.  

The design of our experiments relied heavily on insight derived from our review of many 

different stimulation studies conducted for vastly different purposes whose results were 

represented by various qualitative and quantitative measures. The comparison of the results was 
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however extremely difficult in the absence of standardized measurements.  It is unrealistic to 

expect broad standards to be applied across such highly variable applications; however an 

improved method of comparison is required. The input-output model we implemented with an 

artificial network is a tool which allows for the comparison of results obtained in different 

studies, species, and applications. This approach uses the model to represent the cause and effect 

relationships between stimuli and the responses they evoke instead of focusing on the absolute 

values resulting from a particular study. When the focus is shifted to the relationships, we are 

able to make comparisons between studies conducted in different modalities. 

 For example, inducing a visual percept by stimulating the visual cortex surface with a 

macroelectrode uses different stimulus parameters than would be used to stimulate the input 

layers of the visual cortex with a microelectrode.  Identical visual percepts can be produced by 

both modalities; however they will use different stimulation parameters in accordance with the 

differences in stimulation site and electrode size (Dobelle & Mladejovsky, 1974; Schmidt et al., 

1996).  Although the absolute values of the stimulus parameters vary between modalities, the 

relationships between the stimulus inputs and response outputs remain the same. In both systems, 

a brighter larger phosphene is produced by increasing the stimulus amplitude.  Similarly, 

experiments conducted in different species tend to produce different absolute values of responses, 

similar to inter-subject variability. The current amplitude required to produce threshold forelimb 

movements in mice is smaller than that required for rats (Young et al., 2011), however the input-

output relationships between stimulus parameters and evoked response metrics are preserved. 

When systems are modeled with this approach, the comparison between studies, subjects, species 

and modalities simply becomes a matter of data normalization.  

With this approach, we could ensure that the vast supply of knowledge produced across the 

disciplines is accessible and readily comparable. Despite the identical goals and site of 

stimulation used for phosphene generation, the macrostimulation and microstimulation 

approaches were developed and validated independently. Similarly, the results of a study 

conducted in one animal model are not directly applicable to an identical study conducted in a 

different animal model.  If the focus of data representation were to shift from absolute values to 

relationships then principles of one application could be more easily applied to another, and 

comparison between species could be facilitated.   



94 

 

Using this design approach, the principles of one application can be extended to others. This 

would be a particularly promising development in the field of visual prosthetics.  The retinal 

approach to simulating vision has long surpassed the intracortical approach. Extensive testing has 

been conducted in both research and clinical trials (Horsager, Boynton, Greenberg, & Fine, 2011; 

Horsager, Greenberg, & Fine, 2010; Jepson et al., 2013; Nanduri et al., 2012; Savage, Grayden, 

Meffin, & Burkitt, 2013; Stronks, Barry, & Dagnelie, 2013; Weitz et al., 2014; Yanai et al., 

2007) and truly remarkable modelling approaches (Jacobs et al., 2009; Joarder et al., 2007; 

Nirenberg & Pandarinath, 2012) have been taken to address the issue of stimulus design within 

the retinal prosthetic. If even some of the developments in retinal prosthetics could be interpreted 

and applied to intracortical prosthetics progress could be accelerated significantly. 

Returning to the concept of stimulus design, we previously suggested that design be approached 

by a two step process: 1) the consideration of the neural activity required to achieve a stimulation 

goal, followed by 2) the consideration of the stimulus parameters required to induce the required 

neural activation. This approach requires an understanding of both the system in question and the 

general role of stimulation parameters in the excitation of tissue. For example, in the case of 

phosphene generation through visual cortex stimulation, the stimulation goal is to produce a 

small, punctate visual percept. The neural activation required to achieve this goal is the highly 

localized activation of a small region (hypercolumn) surrounding the electrode tip with minimal 

signal spread. The stimulus parameters required to achieve this activation consist of low 

amplitude, low frequency signals to limit the spread with extended pulse or train durations to 

improve the visibility of the percept. Although this approach is straightforward, it does require an 

extensive knowledge of the system in question as well as an understanding of the influence 

stimulus parameters exert on tissue excitation. The potential power behind this approach is 

however undeniable particularly for the development of new stimulation applications. Armed 

with an understanding of the neural circuitry in question and the goal of the stimulation an 

appropriate stimulus can be analytically designed. When combined with computational 

simulation methods, stimulus signals can be tested prior to validation with electrophysiology 

which could expedite the optimization process. 

Recently, more studies are emerging seeking to optimize stimulation paradigms (Koivuniemi & 

Otto, 2012; Semprini et al., 2012; Young et al., 2011) or model stimulation effects on systems 

(Birdno et al., 2012; Birdno, Cooper, Rezai, & Grill, 2007; Chaturvedi, Luján, & McIntyre, 2013; 



95 

 

Foutz & McIntyre, 2010; Lempka et al., 2011; Lempka, Johnson, Miocinovic, Vitek, & 

McIntyre, 2010; McIntyre & Grill, 2001; McIntyre & Grill, 2002; McIntyre, Frankenmolle, Wu, 

Noecker, & Alberts, 2009; McIntyre & Grill, 2000; Reich et al., 2015) or neurons (Danziger & 

Grill, 2015; Joucla et al., 2012; Joucla & Yvert, 2009; Wongsarnpigoon & Grill, 2010). Some of 

these approaches are purely computational; however many choose to combine computational 

modeling with physiological data. We believe this combination is essential to producing truly 

beneficial works. Computational approaches must remain grounded in experimental data. Just as 

a prosthetic device requires the harmonious cooperation between engineering and neuroscience 

principles, so too does the model require a balance of computation and experimental data. Models 

based on theoretical principles which are not validated with physiological data are of limited 

value. Similarly, a model of exceeding complexity may be a marvel in its own right; however it is 

not accessible to the user. The model structure we have proposed here is an example of a simple 

yet powerful tool that can easily be used directly by physiologists studying the rat motor cortex or 

simply modified to represent any other input-output system.  The resurgence of optimization and 

modeling studies in the field of electrophysiology could indicate discontent with current 

paradigms and optimization methods which could perhaps be mitigated with the use of the 

stimulus design methodology and modeling tools developed in this thesis.  

The work presented in this thesis outlined the general effects of stimulus parameters on the 

responses they evoke in the rat motor system. We discovered that the standard ICMS signal used 

to evoke movements is currently not optimized and we outline changes which can be made to 

improve it.  In the course of this study, we also identified a previously unexplored characteristic 

of the motor evoked potential response which we named “residual activation”. This activation 

can linger for extended durations after the stimulus and main response offsets and its 

characteristics are highly dependent on the parameters of stimulation.  This component should be 

considered when designing stimulation protocols particularly when selecting adequate delays 

between trials, and it may be partially responsible for the influence of preceding trials which we 

describe in chapters 4 and 5. The model developed in this work can be used directly to design 

stimulus waveforms in the rat motor system to produce the desired response metrics as detailed in 

chapter 6. More importantly however, this model can be easily modified to represent other input-

output data sets and could play a crucial role in the development of stimulation signals when 

restrictions are placed on certain stimulus parameter values. The model and methodology 
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together provide a sound framework for future research and their inherent structure facilitates the 

comparison of results derived from different subjects, species, systems and applications. 
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CHAPTER 8 CONCLUSION AND RECOMMENDATIONS 

Effective signals are essential to all applications of stimulation, from probing neural function and 

connectivity to implementing a therapeutic treatment. Understanding the role each stimulus 

parameter plays in neural activation is essential to the design of effective stimulation signals. 

This approach not only allows for the optimization of existing paradigms but also facilitates the 

developments of new applications. The experiments conducted in this thesis used a simple circuit 

to demonstrate a powerful principle. The general effects of stimulus parameters on the responses 

they evoke were described and modelled computationally using an artificial neural network 

representing the input-output relationships of the system. A stimulus design methodology was 

proposed in which we first consider the neural activity required to achieve a stimulation goal and 

then determine the stimulus parameters required to induce the required neural activation. The 

stimulus design methodology and modelling approach developed in this work can easily be 

extended to other systems. To our knowledge, this thesis contains one of the first documented 

applications of input-output modeling applied to the relationships in intracortical 

microstimulation systems. 

This thesis proposes several topics which should be addressed in future research.  The standard 

ICMS signal for the rat motor cortex is not currently optimized and potential improvements are 

detailed in chapters 3-5. The neural mechanism and stimulus parameters responsible for 

producing residual activation require further study. Similarly, the influence of the residual 

activation and stimulus parameter effects on subsequent trials should be examined in more detail. 

The computational model described here is only capable of predicting responses to parameters 

within the test range of the data set, and the scope of the model could be extended by adding data 

outside this range. The model structure itself could be improved as described in chapter 6.  It 

would also be beneficial to conduct more systematic studies such as those detailed in chapters 3-5 

for different cortical areas, species and applications. It would also be beneficial to implement the 

input-output model for existing data sets and perhaps conduct meta-analysis to compare the 

effects across multiple studies. Of particular importance is the development of normalization 

procedures in order to improve ability to compare results between subjects, species, studies, and 

applications. The normalization procedure should preserve the general relationships between 

signal parameters and the response metrics while eliminating or controlling for the influence 

characteristics inherent to the data such as the influence of electrode size. 
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APPENDIX A – INPUT OUTPUT DATA ANN MODEL 

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% 

%~~~~~~~~~~~~~~~~~~~~~~~~~~~DATA ORGANIZATION~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% 

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% 

 

%load the workspace "inputsOutputsANN.mat" or run "InputOutputANN.m" 

%contains two variables: 1)input, 2)output 

 

%Inputs: each row contains one parameter of the stimulation signal (A,F,P,or T) 

%        each column contains one complete stimulus (A,F,P,T combination) 

%        parameters: A=amplitude,F=frequency,P=pulse duration, T=train duration 

%        input organization: A(1,:), F(2,:), P(3,:), T(4,:) 

 

 

%Outputs: each row contains one metric of the response signal 

%         parameters: 1)onset latency, 2)mean, 3)peak, 4)peak time, 

%                     5)main response duration, 6)residual activation duration 

%         output organization: onset latency(1,:), mean(2,:),  peak(3,:), peak time(4,:), 

%                             main response duration(5,:), residual activation duration(6,:) 

 

input=[30,30,30,39,39,39,48,48,48,56,56,56,65,65,65,30,30,30,39,39,39,... 

    48,48,48,56,56,56,65,65,65,30,30,30,39,39,39,48,48,48,56,56,56,65,... 

    65,65,30,48,65,30,48,65,30,48,65,30,48,65,30,48,65,50,50,50,50,50,... 

    50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,... 

    50,50,50,30,48,65,30,48,65,30,48,65,30,48,65,30,48,65,50,50,50,50,... 

    50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,... 

    50,50,50,50,30,48,65,30,48,65,30,48,65,30,48,65,30,48,65,50,50,50,... 

    50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,50,... 

    50,50,50,50,50;100,300,500,100,300,500,100,300,500,100,300,500,100,... 

    300,500,303,303,303,303,303,303,303,303,303,303,303,303,303,303,303,... 

    303,303,303,303,303,303,303,303,303,303,303,303,303,303,303,100,100,... 

    100,200,200,200,300,300,300,400,400,400,500,500,500,100,100,100,200,... 

    200,200,300,300,300,400,400,400,500,500,500,100,100,100,200,200,200,... 

    300,300,300,400,400,400,500,500,500,303,303,303,303,303,303,303,303,... 

    303,303,303,303,303,303,303,100,300,500,100,300,500,100,300,500,100,... 

    300,500,100,300,500,303,303,303,303,303,303,303,303,303,303,303,303,... 

    303,303,303,303,303,303,303,303,303,303,303,303,303,303,303,303,303,... 

    303,100,300,500,100,300,500,100,300,500,100,300,500,100,300,500,303,... 

    303,303,303,303,303,303,303,303,303,303,303,303,303,303;0.20,0.20,... 

    0.20,0.20,0.20,0.20,0.20,0.20,0.20,0.20,0.20,0.20,0.20,0.20,0.20,... 

    0.18,0.34,0.50,0.18,0.34,0.50,0.18,0.34,0.50,0.18,0.34,0.50,0.18,... 

    0.34,0.50,0.20,0.20,0.20,0.20,0.20,0.20,0.20,0.20,0.20,0.20,0.20,... 

    0.20,0.20,0.20,0.20,0.20,0.20,0.20,0.20,0.20,0.20,0.20,0.20,0.20,... 

    0.20,0.20,0.20,0.20,0.20,0.20,0.18,0.34,0.50,0.18,0.34,0.50,0.18,... 

    0.34,0.50,0.18,0.34,0.50,0.18,0.34,0.50,0.20,0.20,0.20,0.20,0.20,... 

    0.20,0.20,0.20,0.20,0.20,0.20,0.20,0.20,0.20,0.20,0.18,0.18,0.18,... 

    0.26,0.26,0.26,0.34,0.34,0.34,0.42,0.42,0.42,0.50,0.50,0.50,0.18,... 

    0.18,0.18,0.26,0.26,0.26,0.34,0.34,0.34,0.42,0.42,0.42,0.50,0.50,... 

    0.50,0.18,0.18,0.18,0.26,0.26,0.26,0.34,0.34,0.34,0.42,0.42,0.42,... 

    0.50,0.50,0.50,0.20,0.20,0.20,0.20,0.20,0.20,0.20,0.20,0.20,0.20,... 

    0.20,0.20,0.20,0.20,0.20,0.20,0.20,0.20,0.20,0.20,0.20,0.20,0.20,... 
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    0.20,0.20,0.20,0.20,0.20,0.20,0.20,0.18,0.34,0.50,0.18,0.34,0.50,... 

    0.18,0.34,0.50,0.18,0.34,0.50,0.18,0.34,0.50;43,43,43,43,43,43,43,... 

    43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,... 

    43,43,172,300,43,172,300,43,172,300,43,172,300,43,172,300,43,43,43,... 

    43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,... 

    43,43,43,43,43,43,172,300,43,172,300,43,172,300,43,172,300,43,172,... 

    300,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,43,... 

    43,43,43,43,43,43,43,43,43,43,172,300,43,172,300,43,172,300,43,172,... 

    300,43,172,300,43,43,43,107,107,107,172,172,172,236,236,236,300,300,... 

    300,43,43,43,107,107,107,172,172,172,236,236,236,300,300,300,43,43,... 

    43,107,107,107,172,172,172,236,236,236,300,300,300]; 

 

 

output=[NaN,44.4416000000000,29.5936000000000,NaN,33.5127272727273,... 

    35.1641600000000,40.5504000000000,26.5609846153846,24.8180363636364,... 

    39.4240000000000,23.6544000000000,20.0118857142857,38.1440000000000,... 

    19.5584000000000,17.5274666666667,31.4368000000000,26.9482666666667,... 

    28.0733538461538,32.5888000000000,23.9323428571429,22.1915428571429,... 

    25.6512000000000,21.0944000000000,19.6900571428571,26.7027692307692,... 

    19.2658285714286,17.4237538461538,18.0224000000000,16.4864000000000,... 

    13.8386285714286,NaN,47.0016000000000,61.1181714285714,26.6922666666667,... 

    46.2116571428571,43.4176000000000,28.7744000000000,24.9563428571429,... 

    24.8393142857143,24.5602461538462,26.1120000000000,24.0201142857143,... 

    21.5917714285714,21.4162285714286,18.9203692307692,NaN,46.4896,... 

    38.9412571428571,37.5808000000000,31.5733333333333,21.4601142857143,... 

    27.3066666666667,26.1851428571429,19.1049142857143,27.4432000000000,... 

    25.3321846153846,18.4027428571429,30.4128000000000,25.3805714285714,... 

    19.0610285714286,34.0650666666667,33.7042285714286,34.6624000000000,... 

    30.0869818181818,23.9323428571429,23.1266461538462,27.3846857142857,... 

    20.0265142857143,18.3149714285714,24.3273142857143,18.7785846153846,... 

    11.7028571428571,25.2849230769231,18.2442666666667,14.6825846153846,... 

    45.4656000000000,73.9958153846154,90.4045714285714,27.9722666666667,... 

    32.1220923076923,30.6907428571429,21.6502857142857,25.3366857142857,... 

    22.6450285714286,20.8164571428571,25.8486857142857,25.5122285714286,... 

    24.1821538461538,25.5842461538462,23.5958857142857,14.9504000000000,... 

    27.4432000000000,23.0478769230769,20.2342400000000,26.1986461538462,... 

    17.8491076923077,31.1296000000000,22.9668571428571,16.2230857142857,... 

    25.7675636363636,18.5197714285714,16.9196307692308,29.1446153846154,... 

    17.7152000000000,16.5595428571429,26.8288000000000,28.1879272727273,... 

    23.4154666666667,42.1888000000000,23.6544000000000,22.0745142857143,... 

    33.4848000000000,20.6116571428571,20.9683692307692,38.7527111111111,... 

    19.5291428571429,19.2219428571429,34.4064000000000,20.3093333333333,... 

    17.5689142857143,27.0336000000000,25.1392000000000,27.8528000000000,... 

    22.5910153846154,23.4349714285714,21.4893714285714,21.1090285714286,... 

    18.3588571428571,20.9042285714286,20.9683692307692,19.8802285714286,... 

    19.2984615384615,19.8948571428571,19.9241142857143,20.0704000000000,... 

    NaN,37.4374400000000,25.4829714285714,37.4784000000000,42.80320,... 

    24.1664000000000,45.5680000000000,34.9420307692308,24.3712000000000,... 

    92.0576000000000,41.7004307692308,25.4098285714286,68.6080000000000,... 

    39.2270769230769,25.9364571428571,23.8592000000000,34.7136000000000,... 

    29.0816000000000,68.9356800000000,36.6299428571429,35.2628363636364,... 

    60.0994909090909,29.0343384615385,38.7686400000000,81.1566545454545,... 

    36.5961846153846,49.6810666666667,76.5952000000000,36.4071384615385,... 
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    31.6322909090909,20.9920000000000,23.2999384615385,23.2684307692308,... 

    42.8819692307692,27.5017142857143,20.7725714285714,42.5984000000000,... 

    23.0107428571429,16.5741714285714,53.8065454545455,27.0043428571429,... 

    22.3524571428571,44.7658666666667,24.8539428571429,20.9334857142857;... 

    NaN,2.61274044532911,4.00316559989733,NaN,5.68997463481289,5.8809100,... 

    2.86457589027123,7.15978719129523,7.25671903777626,4.13278416999674,... 

    8.62738199560097,9.49309466185306,4.89650437884848,10.6314282999977,... 

    10.1942184431079,4.58008048553893,6.10550269660356,7.23701966113107,... 

    4.92105723992609,8.61742302861655,10.3748994726110,6.46834428152943,... 

    10.4286373893306,12.6762297765838,8.20563747895774,11.2142254887918,... 

    13.0712414504939,9.21539419453309,12.9383267254265,14.7131779613119,... 

    NaN,5.04608379969795,5.35767289225727,5.60758490387848,7.857914267,... 

    7.63221721302086,6.94454398139247,11.5161410576548,11.4798347437630,... 

    9.25697034810063,13.7596085940978,14.4181802690062,10.2767617136124,... 

    14.4582368843008,14.7978561082190,NaN,5.07992422171810,6.672050964,... 

    5.87084794322436,7.59498509716165,11.3588698237290,4.48313244094121,... 

    7.40284997325632,11.0238689660203,5.75945452292217,8.59169661026473,... 

    11.4153543008537,5.64820051132604,8.14930847253085,11.1433589042717,... 

    4.17201426895917,6.32815128977693,6.05678177459655,6.64031964597355,... 

    10.7782812491246,11.6938170761548,7.78187693635326,11.8042063114075,... 

    13.5812525647655,8.03916689172911,12.6124079303575,13.1682033737244,... 

    8.23634265741982,12.5653959120536,13.4059118976708,4.55578325745106,... 

    10.3855301450396,11.3265190756772,7.80892277936315,13.9022072839143,... 

    15.0725554960560,8.38849472272809,14.4521937880636,15.1863401415924,... 

    9.07047929087795,14.6931448640140,14.2570618632640,9.50997210656143,... 

    13.2126177506912,14.1844380242047,6.09413862228394,7.76439100713348,... 

    10.8208782266343,7.29566612543422,10.0586686037236,12.8760626657812,... 

    7.45372008502891,11.9114847926186,13.7613384120445,8.67114862483206,... 

    13.1456916060789,13.8489129810769,9.00977793488150,13.2459414824324,... 

    14.4319399329314,7.11127612966811,8.30824586578555,7.84117879934918,... 

    5.28164695355517,11.2739889792158,10.9757089887841,6.67835673034036,... 

    11.8043307034927,12.7771388555827,6.51931393098494,12.3517864396376,... 

    13.7721935091000,6.63354982528027,13.3088080466613,14.3241071017879,... 

    8.14343951399364,12.7838088408439,13.1914750317340,10.8614475642210,... 

    14.1662448262754,14.4275560729667,12.2200126662439,15.3798350850910,... 

    14.9308369656834,13.3787060549803,15.2623423237487,15.1456260663607,... 

    13.6567547479603,15.1517496736446,14.5636187219726,NaN,5.049934679,... 

    8.46707845474677,5.27185238752281,7.62913373364427,11.2962133178891,... 

    5.53566201233480,7.90678229979956,10.8627768245892,4.47615889243025,... 

    8.16516281842129,10.7889504761260,5.04296872350096,7.98155532230829,... 

    10.6682776147084,4.87117154079897,6.10705876624706,5.82257446997877,... 

    6.84384158375906,8.36186758793441,7.63314776784021,8.18714405878299,... 

    8.66753522971591,7.06277726294502,8.44637849116804,8.21402828968041,... 

    7.16026969863985,8.49700827529887,8.17024199652503,7.33376985160496,... 

    6.13704628449341,9.50266327820897,9.78550250303150,7.01766437207250,... 

    11.4047331538001,11.7206956734403,8.00045937956803,11.9736500242392,... 

    11.0885239662041,7.56314868037104,11.1922241298349,11.0259439419938,... 

    7.66912762628635,10.7727872611057,10.3286101875710;NaN,1.992306579,... 

    3.12564986870711,NaN,4.56287356924308,6.24334058391634,4.663762410,... 

    10.0146474393953,9.79366586761898,6.77849925523333,14.5650139659535,... 

    17.4773416412271,7.98806195234647,21.1762055317065,16.7673278416000,... 

    5.12729752699670,6.27013764642470,11.8508457295060,4.16434082239903,... 

    13.7839201345612,19.4075735830016,8.65017671003443,19.7397645089430,... 
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    24.4649375937505,13.5339095257742,22.5262732718485,26.4954725415529,... 

    15.8268333052547,26.0441954326650,31.2763386643512,NaN,4.36878153,... 

    4.21541228336407,5.94396778473715,13.2107401051534,11.8714230958566,... 

    9.04123453437933,21.0547362777496,21.6525149231269,15.2195523891610,... 

    27.0142846992323,27.9314712575537,18.1198344892307,29.1558956502870,... 

    30.4041976570651,NaN,9.13853682504850,9.21049049511410,9.931687209,... 

    9.35892031383022,24.6477413887603,6.32104076480997,10.7196870507386,... 

    24.9502776251507,7.21283511870570,12.8892628831756,23.4370374927010,... 

    5.63471494510304,11.8694345846452,21.3931392846696,5.50392364248789,... 

    8.89950959869852,9.26494519392266,8.79692493933059,20.7914871340555,... 

    28.2451014629457,12.5798591861489,25.3839829074859,28.8782090838441,... 

    12.1190294688048,30.5370084583410,30.3032975144452,14.5728646540790,... 

    26.4438253992370,28.6735007081131,8.17679903873553,21.3360159119564,... 

    24.0422595320519,12.5433111034193,27.8622933898109,27.7309652892540,... 

    14.0191563584667,26.4521449865840,30.5525190222002,16.5213075362429,... 

    27.9852868578455,26.8677479172599,15.7516768705225,25.8010435338905,... 

    25.9005595136384,7.90739059448242,10.2783975206973,22.2814184365603,... 

    7.88894415222458,19.1378505056616,27.1538689315868,10.4945260452645,... 

    25.5313910025870,31.6402317554125,17.6864107989161,31.1843685478421,... 

    29.3159238749234,15.8393064951222,30.2249153950418,30.9017428785820,... 

    10.1243897802051,15.0381855704763,13.2383971961367,7.14552579895244,... 

    23.0333425881919,22.0450601826721,9.54116668608913,26.1696748978596,... 

    29.1943649511917,8.28243626865959,26.3924824947525,30.6598843025567,... 

    8.51416793097289,27.6436966447966,31.8328842832998,12.1276249949720,... 

    24.5069801993265,24.1048624087394,20.9136161496549,27.2525124364641,... 

    30.0487874021388,27.6908394570720,30.1306422441599,32.1958296047732,... 

    28.7511036822980,33.0759195201515,33.9027434389074,30.2222815420287,... 

    34.2451594839388,31.4144066656965,NaN,5.16494628755027,12.72488967,... 

    7.16785416443599,10.2903518950370,20.2973116886694,5.16772865921666,... 

    11.9602783832726,20.3062770651741,4.30974603204959,13.4921870609945,... 

    23.9306115677859,6.15436647422030,13.0341995477815,21.7131731525504,... 

    4.37262610830658,7.04063518242037,5.27567294739129,9.54272552462498,... 

    12.8227111417800,11.3005555704149,12.6958819402551,14.3452649144120,... 

    9.38855666845484,11.8206124749453,13.4770500433381,9.85906876849185,... 

    14.3820129096639,13.6409120246893,9.57786164690333,6.73273098072968,... 

    15.8912976425759,16.0998269750832,8.79183940364433,19.4710560858117,... 

    22.2106622719106,11.6330984383239,22.1613686984970,21.3002710032535,... 

    10.6961144676158,22.6776142621280,21.3149445309162,11.1833536493577,... 

    23.1584632664245,20.9869029796599;NaN,102.809600000000,96.66560000,... 

    NaN,101.785600000000,104.224581818182,106.291200000000,98.79236923,... 

    100.793107692308,105.369600000000,99.6644571428571,98.3186285714286,... 

    108.441600000000,95.8171428571429,98.0553142857143,90.5216000000000,... 

    101.393066666667,100.308114285714,100.684800000000,101.361371428571,... 

    101.361371428571,100.676266666667,97.9675428571429,98.4795428571429,... 

    98.6989714285714,94.9540571428571,96.2706285714286,99.2548571428572,... 

    96.7680000000000,95.7001142857143,NaN,160.512000000000,154.18514285,... 

    98.9411555555556,148.904228571429,158.866285714286,100.469028571429,... 

    148.406857142857,164.439771428571,101.419885714286,133.295542857143,... 

    119.954285714286,96.0365714285714,131.218285714286,156.203885714286,... 

    NaN,106.905600000000,110.913828571429,102.400000000000,105.318400,... 

    99.0793142857143,102.468266666667,99.3280000000000,96.6656000000000,... 

    97.9968000000000,101.405257142857,98.4941714285714,100.078933333333,... 

    98.1723428571429,95.8610285714286,107.724800000000,105.501257142857,... 
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    106.274133333333,101.478400000000,102.765714285714,101.288228571429,... 

    105.252571428571,98.8745142857143,99.6937142857143,100.688457142857,... 

    98.2601142857143,94.2957714285714,99.6790857142857,99.3718857142857,... 

    93.5350857142857,107.929600000000,198.073107692308,266.459428571429,... 

    103.680000000000,156.789028571429,194.369828571429,100.454400000000,... 

    140.858514285714,133.163885714286,102.078171428571,138.898285714286,... 

    144.281600000000,96.7533714285714,136.309028571429,154.521600000000,... 

    80.4864000000000,101.085866666667,95.6123428571428,101.867520000000,... 

    96.7972571428571,95.7732571428572,96.0307200000000,95.8610285714286,... 

    98.3917714285714,101.673890909091,96.3291428571428,94.0324571428571,... 

    99.2334769230769,95.0857142857143,97.9529142857143,105.062400000000,... 

    97.5965090909091,98.6348307692308,110.510080000000,96.7826285714286,... 

    99.3572571428571,110.080000000000,99.6498285714286,96.3437714285714,... 

    108.157155555556,97.4555428571429,95.3782857142857,107.337955555556,... 

    97.0313142857143,98.2747428571428,98.3970909090909,131.686400000000,... 

    132.206276923077,96.1457230769231,123.801600000000,132.783542857143,... 

    100.117942857143,120.597942857143,121.548800000000,98.5380571428572,... 

    122.221714285714,136.294400000000,96.7387428571429,114.863542857143,... 

    115.068342857143,NaN,103.792640000000,103.306971428571,161.79200000,... 

    143.462400000000,128.424228571429,200.396800000000,147.408738461538,... 

    131.291428571429,180.428800000000,147.219692307692,140.112457142857,... 

    267.673600000000,152.891076923077,135.021714285714,90.5216000000000,... 

    102.912000000000,108.270933333333,162.017280000000,140.960914285714,... 

    136.992581818182,186.014254545455,158.152861538462,156.078080000000,... 

    229.711127272727,147.566276923077,157.440000000000,209.285120000000,... 

    152.481476923077,138.928872727273,103.628800000000,102.006153846154,... 

    97.0898285714286,136.318030769231,126.127542857143,111.659885714286,... 

    148.590276923077,120.861257142857,113.854171428571,151.705600000000,... 

    121.168457142857,114.527085714286,157.661866666667,124.138057142857,... 

    113.532342857143;NaN,33.5872000000000,44.1344000000000,NaN,45.8193,... 

    49.4796800000000,36.2496000000000,62.3222153846154,62.9666909090909,... 

    27.3408000000000,64.4388571428571,68.0082285714286,44.6976000000000,... 

    72.6454857142857,75.3493333333333,40.8576000000000,52.1386666666667,... 

    62.5427692307692,44.2624000000000,64.5705142857143,66.8525714285714,... 

    61.2181333333333,70.1203692307692,71.0802285714286,58.9036307692308,... 

    73.8011428571429,72.4046769230769,70.4658285714286,75.3078857142857,... 

    77.3412571428572,NaN,150.835200000000,209.042285714286,41.2103111,... 

    167.599542857143,260.637257142857,59.8601142857143,207.345371428571,... 

    328.089600000000,59.0454153846154,228.761600000000,343.493485714286,... 

    68.1106285714286,246.842514285714,353.185476923077,NaN,24.8832000,... 

    61.8788571428571,66.6624000000000,50.4320000000000,70.4950857142857,... 

    61.4400000000000,64.0877714285714,75.8930285714286,63.1808000000000,... 

    62.9523692307692,78.1750857142857,63.6928000000000,70.0269714285714,... 

    75.0592000000000,32.6314666666667,63.3124571428572,61.9349333333333,... 

    56.2082909090909,70.7145142857143,74.4211692307692,66.3552000000000,... 

    76.0246857142857,76.7707428571429,70.3195428571429,80.6754461538462,... 

    85.2553142857143,62.6688000000000,78.3018666666667,84.7872000000000,... 

    45.3973333333333,139.295507692308,245.920914285714,63.2490666666667,... 

    202.688984615385,300.163657142857,68.9737142857143,217.936457142857,... 

    287.963428571429,72.2212571428571,210.139428571429,300.544000000000,... 

    62.5112615384615,222.286769230769,277.577142857143,100.556800000000,... 

    56.1834666666667,64.6852923076923,75.0387200000000,59.6598153846154,... 

    77.6664615384615,49.9916800000000,62.6102857142857,74.5764571428572,... 
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    77.8240000000000,73.7133714285714,75.2403692307692,54.7761230769231,... 

    74.6203428571429,75.0592000000000,70.2464000000000,53.6576000000000,... 

    66.7648000000000,56.0332800000000,62.5078857142857,61.4400000000000,... 

    66.5941333333333,68.4909714285714,73.9643076923077,49.6981333333333,... 

    73.4208000000000,78.1458285714286,53.1797333333333,67.8400000000000,... 

    77.9410285714286,51.3024000000000,201.489066666667,289.776246153846,... 

    62.3537230769231,204.741485714286,328.996571428571,66.8525714285714,... 

    202.766628571429,300.119771428571,70.1833846153846,218.521600000000,... 

    332.012307692308,69.8221714285714,205.604571428571,333.677714285714,... 

    NaN,51.2000000000000,59.8016000000000,144.588800000000,100.6762666,... 

    131.145142857143,153.600000000000,155.584984615385,191.566769230769,... 

    107.929600000000,191.992123076923,239.235657142857,359.116800000000,... 

    188.794092307692,270.321371428571,38.6048000000000,57.4464000000000,... 

    69.0176000000000,81.2032000000000,108.295314285714,103.684654545455,... 

    143.136581818182,168.203815384615,127.139840000000,180.577745454545,... 

    211.747446153846,173.038933333333,231.731200000000,192.653784615385,... 

    238.945745454545,90.7264000000000,62.2119384615385,77.8240000000000,... 

    90.1750153846154,127.458742857143,134.509714285714,150.827323076923,... 

    179.097600000000,198.524342857143,182.234763636364,220.160000000000,... 

    238.431085714286,201.352533333333,260.988342857143,281.921828571429;... 

    NaN,0,0,NaN,35.9889454545455,43.6019200000000,0,51.5938461538462,... 

    60.8442181818182,16.2816000000000,87.1424000000000,93.4180571428571,... 

    23.8592000000000,109.070628571429,138.274133333333,0,36.5568000000000,... 

    67.3634461538462,0,61.4692571428571,80.7497142857143,46.8480000000000,... 

    116.956553846154,113.356800000000,46.2690461538462,113.459200000000,... 

    121.950523076923,98.6258285714286,101.844114285714,134.758400000000,... 

    NaN,94.3616000000000,190.581028571429,52.4743111111111,197.617371428571,... 

    238.299428571429,58.4557714285714,272.106057142857,275.031771428571,... 

    67.1744000000000,252.328228571429,273.963885714286,111.455085714286,... 

    242.146742857143,297.369600000000,NaN,33.5872000000000,58.9824000000000,... 

    75.4688000000000,52.4629333333333,86.2939428571429,56.9344000000000,... 

    50.9805714285714,93.8276571428571,0,82.4556307692308,123.904000000000,... 

    16.7594666666667,56.7588571428571,94.5298285714286,0,37.5661714285714,... 

    25.4293333333333,51.4420363636364,111.381942857143,83.5111384615385,... 

    70.0854857142857,114.600228571429,114.848914285714,68.0228571428571,... 

    103.187692307692,122.645942857143,90.5058461538462,143.155200000000,... 

    171.764184615385,0,155.506215384615,236.397714285714,69.4954666666667,... 

    278.827323076923,348.657371428571,92.4233142857143,288.256000000000,... 

    350.281142857143,80.8667428571429,304.303542857143,339.017142857143,... 

    85.5433846153846,319.251692307692,389.105371428571,129.843200000000,... 

    66.4746666666667,89.4976000000000,63.4880000000000,92.8531692307692,... 

    141.233230769231,43.9500800000000,84.9334857142857,149.357714285714,... 

    47.4391272727273,122.806857142857,157.995323076923,53.2795076923077,... 

    131.130514285714,160.358400000000,99.5328000000000,59.6712727272727,... 

    64.5632000000000,57.9993600000000,94.9540571428571,96.0950857142857,... 

    78.0629333333333,111.162514285714,132.600123076923,40.0497777777778,... 

    126.902857142857,126.946742857143,59.6423111111111,119.876266666667,... 

    158.281142857143,45.5065600000000,302.882133333333,339.999507692308,... 

    90.7579076923077,278.966857142857,328.265142857143,113.269028571429,... 

    321.799314285714,349.447314285714,125.243076923077,289.557942857143,... 

    363.330953846154,115.463314285714,297.047771428571,341.708800000000,... 

    NaN,41.0828800000000,80.9252571428572,169.984000000000,80.1621333333333,... 

    195.627885714286,139.161600000000,195.993600000000,197.679261538462,... 
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    181.452800000000,204.768492307692,249.812114285714,109.260800000000,... 

    239.300923076923,290.962285714286,37.4784000000000,51.8656000000000,... 

    0,65.9251200000000,110.533485714286,124.146036363636,133.995054545455,... 

    178.191753846154,136.908800000000,179.330327272727,246.232615384615,... 

    195.635200000000,244.224000000000,239.663261538462,222.561745454545,... 

    0,51.2000000000000,61.9283692307692,69.6320000000000,192.541257142857,... 

    193.536000000000,152.276676923077,220.350171428571,272.661942857143,... 

    183.389090909091,281.790171428571,270.613942857143,249.992533333333,... 

    339.090285714286,276.567771428571]; 

Published with MATLAB® R2015a 
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APPENDIX B – ANN MATLAB TUTORIAL  

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% 

%~~~~~~~~~~~~~~~~~~~~~~~~~1)DATA ORGANIZATION~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% 

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% 

 

%load the workspace "inputsOutputsANN.mat" 

%contains two variables: 1)input, 2)output 

 

%Inputs: each row contains one parameter of the stimulation signal (A,F,P,or T) 

%        each column contains one complete stimulus (A,F,P,T combination) 

%        parameters: A=amplitude,F=frequency,P=pulse duration, T=train duration 

%        input organization: A(1,:), F(2,:), P(3,:), T(4,:) 

 

 

%Outputs: each row contains one metric of the response signal 

%         parameters: 1)onset latency, 2)mean, 3)peak, 4)peak time, 

%                     5)main response duration, 6)residual activation duration 

%         output organization: onset latency(1,:), mean(2,:),  peak(3,:), peak time(4,:), 

%                             main response duration(5,:), residual activation duration(6,:) 

 

%Use: this ANN takes 4 input parameters (A,F,P,T) and one output metric(ex. mean) 

%     look for "USER ACTION REQUIRED" (section 2 & 3)and make changes based on your goals 

 

%Nomenclature: input=stimulus parameters, input to ANN 

%              output=response metrics, target for ANN 

%              y=ANN output from simulating trained network(scaled (-1,1)) 

%              yF=ANN output (y) converted back to units of original data 

%              PS=process settings scale units between (-1,1) 

%              TS=process settings to convert ANN results to units of original data 

 

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% 

%~~~~~~~~~~~~~~~~~~~~~~~~~~~2)PREPROCESS DATA~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% 

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% 

 

%data must be preprocessed to suit the functions used within the ANN 

%function used in ANN hidden layer (tansig) requires inputs between (-1,1) 

%mapminmax function converts data into distribution between (-1,1) 

 

 

%preprocess ANN inputs 

[PNin,PSin]=mapminmax(input,-1,1); 

 

%USER ACTION REQUIRED: uncomment whichever output you are interested in 

%choose one row of "output" to address one metric at a time in the ANN 

 

%preprocess ANN output targets 

[TNout1,TSout1]=mapminmax(output(1,:),-1,1);   %onset latency 

%[TNout2,TSout2]=mapminmax(output(2,:),-1,1);   %mean 

%[TNout3,TSout3]=mapminmax(output(3,:),-1,1);   %peak 

%[TNout4,TSout4]=mapminmax(output(4,:),-1,1);   %peak time 

%[TNout5,TSout5]=mapminmax(output(5,:),-1,1);   %main response duration 
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%[TNout6,TSout6]=mapminmax(output(6,:),-1,1);   %residual activation duration 

 

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% 

%~~~~~~~~~~~~~~~~~~~~~~~~~~3)TRAIN, VALIDATE ANN~~~~~~~~~~~~~~~~~~~~~~~~~~% 

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% 

 

%1)Define preprocessed input and output(target) variables for ANN 

x=PNin; 

PS=PSin; 

%USER ACTION REQUIRED: change number to match output choice in section 2 

t=TNout1; 

TS=TSout1; 

 

%2) Choose training function 

trainFcn='trainlm';  % Levenberg-Marquardt backpropagation. 

 

%3) Create a Fitting Network 

hiddenLayerSize=20; 

net=fitnet(hiddenLayerSize,trainFcn); 

 

%4)Setup Division of Data for Training, Validation, Testing 

net.divideParam.trainRatio=70/100; 

net.divideParam.valRatio=15/100; 

net.divideParam.testRatio=15/100; 

 

%5)Train the Network 

[net,tr]=train(net,x,t); 

 

%6)Test the Network 

y=net(x); %simulates the network 

e=gsubtract(t,y); 

performance=perform(net,t,y) 

 

%7)Visualize Performance 

view(net) 

figure, plotperform(tr) 

figure, ploterrhist(e) 

figure, plotregression(t,y) %use button on nftool to get all plots 

 

%8)Convert ANN output "y" to original data scale (undo -1,1 scaling) 

yF=mapminmax('reverse',y,TS); 

 

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% 

%~~~~~~~~~~~~~~~~~~~~~~~~4)TEST NEW DATA USING ANN~~~~~~~~~~~~~~~~~~~~~~~~% 

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% 

%Use the ANN established in section 3 to test new data inputs (predict outputs) 

 

%1)format a test input by choosing values between the range restrictions 

%Range restrictions for this ANN: A:30-65,F:100-500,P:0.18-0.5,T:43-300 

 

test=[45;350;0.3;200]; %sample test data 

 

%2)preprocess test input 
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%you **MUST** use the process settings structure "PS" that were developed 

%when the original ANN inputs were preprocessed 

 

PNinTest=mapminmax('apply',test,PS); 

 

%3)simulate the network using the test data 

z=sim(net,PNinTest); 

 

%4)convert simulation output from -1 to 1 scale into original data units 

%you **MUST** use the process settings structure "TS" that were developed 

%when the original ANN output(targets) were preprocessed 

zF=mapminmax('reverse',z,TS); 

 

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% 

%~~~~~~~~~~~~~~~~~~~~~~~~HELP WITH NEURAL NETWORKS~~~~~~~~~~~~~~~~~~~~~~~~% 

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% 

% MATLAB help documentation under Neural Network Toolbox-->Neural Network 

% Toolbox Examples-->Function Fitting and Approximation see the "House 

% Price Estimation" example 

 

%If you are uncomfortable with MATLAB programming, begin by explore the 

%house fitting example in the built-in GUI application nftool 

%1)type "nftool" in the command window 

%2)use the GUI to "load example data set" choosing "house fitting" 

%3)follow default settings and prompts to train, simulate and view the ANN 

 

%Once comfortable with the GUI, choose the option to produce an m file 

%based on work done in the GUI. Compare it with this m file to further your 

%undertanding of ANN implementation 

 

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% 

%~~~~~~~~~~~~~~~~~~USING THE ANN TO TEST YOUR OWN DATA~~~~~~~~~~~~~~~~~~~~% 

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% 

 

%1)look for USER ACTION REQUIRED sections and make changed appropriate to 

%your goals 

 

%2)follow instructions of section 4 above 

 

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% 

%~~~~~~~~~~~~~~~~HOW TO MODIFY FOR YOUR OWN INPUTS AND OUTPUTS~~~~~~~~~~~~% 

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% 

 

%create variables "input" and "output" following the same organization 

%principles demonstrated here: 

 

%1)each row of "input" represents one stimulus parameter, 

 

%2)each row of "output" represents one response metric 

 

%3)trials are organized into columns 

%each column of input represents one stimulus, each column of output 

%represents one complete set of metrics for the response signal evoked by 
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%the stimulus during the trial represented by that column 

 

 

%If building your own ANN from your own data set, learn how to process your 

%data, which is generally done with the function "mapminmax". Understand 

%the help documentation for how to implement this function for the 

%following processes: 

%1)preprocess inputs and outputs(targets) fed to the ANN 

%2)convert ANN output "y" from scaled (-1,1) to original data type 

%3)use settings obtained by mapmaxmin "PS" to preprocess new test inputs 

%4)use settings obtained by mapmaxmin "TS" to convert ANN test results 

 

%to improve performance of ANN 

%1)increase number of nodes 

%2)change distribution of training, validation and test data 

%3)retrain network (available in nftool) 
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