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RÉSUMÉ 

Le problème du transfert des signaux du domaine temporel au domaine fréquentiel d'une manière 

efficace, lorsque le contenu du spectre de fréquences a une faible densité, est le sujet de cette 

thèse. La technique bien connue de la transformée de Fourier rapide (FFT) est l'algorithme de 

traitement de signal privilégié pour observer le contenu fréquentiel des signaux entrants à des 

émetteurs-récepteurs de télécommunication, tels que la radio cognitive, ou la radio définie par 

logiciel qu‟on utilise habituellement pour l‟analyse du spectre dans une bande de fréquences. 

Cela peut représenter un lourd fardeau de calcul sur des processeurs lorsque la FFT ordinaire est 

mise en œuvre, ce qui peut impliquer une consommation d'énergie considérable. L'alimentation 

en énergie est une ressource limitée dans les appareils mobiles et, par conséquent, cette ressource  

peut être critique pour des dispositifs de télécommunications mobiles.  

Dans le but de développer un processeur économe en énergie pour les applications de 

transformation temps-fréquence, un algorithme de transformée de Fourier plus efficace, en 

termes du nombre de multiplications et d‟additions complexes, est sélectionné. En effet, la Split-

Radix Fast Fourier Transform (SRFFT) offre une performance meilleure que la FFT classique en 

termes de réduction du nombre de multiplications complexes nécessaires et elle peut donc 

conduire à une consommation d'énergie réduite.  

En appliquent le concept d‟élagage des calculs inutiles, c‟est-à-dire des multiplications 

complexes avec entrées ou sorties à zéro, tout au long de l'algorithme, on peut réduire la 

consommation d'énergie. 

Ainsi, une architecture matérielle énergétiquement efficace est développée pour le calcul de la 

SRFFT. Cette architecture est basée sur l'élagage des calculs inutiles. En fait, pour tirer parti du 

potentiel de la SRFFT, une nouvelle architecture d'un processeur de SRFFT configurable est 

d'abord conçue, puis l'architecture est développée afin d‟éliminer les calculs inutiles. Cela se fait 

par l‟utilisation appropriée d'une matrice d'élagage. Le processeur proposé peut trouver des 

applications dans le multiplexage orthogonal en fréquence (OFDM) dans des émetteurs-

récepteurs de communication, où les signaux transmis peuvent n‟occuper qu'une petite partie de 
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l'ensemble du spectre opérationnel. Le processeur est mis en œuvre sur un circuit programmable 

(FPGA) et sa fonctionnalité ainsi que sa performance sont validées par des simulations.  

En outre, la consommation de puissance des processeurs SRFFT avec ou sans moteur d‟élagage 

est analysée via le simulateur de puissance du simulateur. Prenant le processeur SRFFT sans 

élagage comme référence, les simulations de consommation d'énergie montrent que l'économie 

d'énergie maximale obtenue est de l'ordre de 20% lors de l'élagage d‟une FFT de 1024 points 

appliquée à des signaux de spectre très clairsemé. 
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ABSTRACT 

The problem of transferring a time domain signal into the frequency domain in an efficient 

manner, when the frequency contents are sparsely distributed, is the research topic covered in 

this thesis. The well-known Fast Fourier Transform (FFT) is the most common signal processing 

algorithm for observing the frequency contents of incoming signals in telecommunication 

transceivers. It is notably used in cognitive or software defined radio which usually demands for 

monitoring the spectrum in a wide frequency band. This may imply a heavy computation burden 

on processors when the ordinary FFT algorithm is implemented, and hence yield considerable 

power consumption. Power and energy supply is a limited resource in mobile devices and 

therefore, efficient execution of the Fourier transform has turned out to be critical for mobile 

telecommunication devices.  

With the purpose of developing a power-efficient processor for time-frequency transformation, 

the most computationally efficient Fourier transform algorithm is selected among the existing 

Fourier transform algorithms upon studying them in terms of required arithmetic operations, i.e. 

complex multiplications and additions. Indeed, the Split-Radix Fast Fourier Transform (SRFFT) 

offers a performance that is better than conventional FFT in terms of reduced number of complex 

multiplications and hence, can reduce power consumption. 

Appling the concept of pruning of the unnecessary computations, i.e. complex multiplications 

with either zero inputs or outputs, throughout the whole algorithm may reduce the power 

consumption even further. 

Thus, a power efficient hardware architecture implementing the SRFFT is developed through 

pruning unnecessary computations. In fact, leveraging the potential in SRFFT algorithm, a new 

architecture of a configurable SRFFT processor is first devised and then the architecture is 

developed further so that unnecessary computations, which yield zeros at the output, are pruned. 

This is done through stalling butterfly computations with appropriate use of a pruning matrix. 

The proposed processor may find applications in orthogonal frequency division multiplexing 

(OFDM) communication transceivers, where transmitted signals may occupy only a small 
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portion of the whole operational spectrum. The processor is implemented on a field-

programmable gate array (FPGA) and its performance is validated via simulations.  

 In addition, the power consumption analysis of the SRFFT processors with and without the 

pruning engine is performed using a power analysis simulation tool. 

Taking the SRFFT processor without pruning engine as a reference, the power consumption 

simulations show that a maximum power saving of around 20% is achieved when the pruning 

engine outputs are actively used in to the SRFFT processor computing the 1024-point Fourier 

Transform of signals with a very sparse spectrum. 
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CHAPTER 1 INTRODUCTION    

1.1 Background and motivation    

Along with the increasing demand for radio technology related services, the issue of developing 

techniques for utilizing available radio-frequency bands optimally is currently an important 

research topic. Furthermore, the techniques are being developed with the purpose of preventing 

interferences, which may reduce the data throughput and channel reliability in wireless networks 

[1, 2, 3, 4]. 

On the other hand, the licensed part of the radio spectrum is often poorly used and therefore 

practical means must be developed to improve spectrum utilization. Therefore, a growing 

attention has been given to configurable and multi-standard radios [5, 6].  Software defined 

radios (SDRs) that integrate various radio architectures in the back-end for different standards 

[5] or cognitive radios (CRs) that can reconfigure the architecture and optimize the operational 

parameters in a reconfigurable manner [6] are good examples of the recent developments in this 

regard.  

Spectrum sensing plays an important role nowadays in several wireless communication 

techniques such as backhaul small cell communication [7] or CR systems [4]. Cognitive radio is 

explored as a means to improve wireless communications and it could become a reliable solution 

to the spectrum underutilization problem. Furthermore, the ultimate objective of CR systems is 

to provide highly reliable and available communication means between all users and to also 

facilitate more efficient utilization of the radio spectrum. CRs are actually able to sense the 

spectrum in the environment and recognize unused frequency bands so that they can make best 

use of available resources. In CR, several unused frequency bands could be located in different 

segments of some reserved spectrum. Furthermore, spectrum allocation can be done while 

preventing interference with other frequency bands that are actively used. This technique is 

called spectrum pooling [8]. 
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Theoretically, an orthogonal frequency division multiplexing OFDM-based Cognitive Radio 

system can optimally approach the Shannon capacity in the segmented spectrum using adaptive 

resource allocation on each subcarrier. 

In these OFDM transceivers, the radio frequency (RF) signals may not include all subcarriers, 

implying that the transceivers in cognitive radio devices try to remain aware of the spectrum 

segments that are used and unused. A common technique for spectrum sensing is Digital Signal 

Processing (DSP), specifically the Fast Fourier Transform (FFT) algorithm. Indeed, OFDM 

transmits a large number of narrowband carriers, closely spaced in the frequency domain. In 

order to avoid a large number of modulators and filters at the transmitter and complementary 

filters and demodulators at the receiver, it is desirable to be able to use modern digital signal 

processing techniques, such as the FFT. Thus, one consequence of maintaining orthogonality is 

that the OFDM signal can be defined using Fourier transform procedures.  But, the FFT of the 

operational signal may yield many zero-valued frequency bins or bins that are “Don‟t Cares” for 

some applications. This means that a processor performing those calculations may carry out 

many unnecessary computations, which increase power consumption. Considering that mobile 

devices must minimize power consumption in order to ensure that the batteries of those devices 

will power the device for a sufficiently long period of time on a single charge, our goal is to 

propose means to minimize the number of computations performed. 

The rest of this thesis is organized as follows. In Chapter 2, the reported research in this area is 

reviewed with the purpose of contextualizing this thesis work. Subsequently, efficient fast 

Fourier transform algorithms are studied and compared in order to develop the most appropriate 

algorithm to be applied to sparse spectrum in Chapter 3. Then, the architecture of the proposed 

FFT processor is explained in detail in the following Chapter 4. Also, the pruning engine which 

is added on purpose is presented and finally, the overall power consumption of the proposed FFT 

core with and without the pruning engine is compared through power simulation analysis upon 

implementation on FPGA. A power savings on the order of around 20% is concluded in Chapter 

5. 

 



3 

 

 

CHAPTER 2 PREVIOUS CONTRIBUTIONS ON FAST FOURIER 

TRANSFORM PRUNING  

The considerable demand for computationally efficient FFT algorithms and processors in 

wireless technology, in particular for NC-OFDM transceivers, has driven a research in this 

direction [12, 17]. Furthermore, developing FFT algorithms with minimum number of 

computations when a significant number of zeros exist in either the input or the output of the 

FFT has been subjected to intensive research [13-25]. Reconfigurable algorithms that can adapt 

to the conditions at the input or output may be used to reduce power consumption. Because 

means of effectively computing the Fourier transform may find applications in today‟s mobile 

wireless communication devices, development and implementation of power efficient FFT cores 

have come highly relevant. In this chapter, the papers that are the basis of the current research in 

this area are categorized and briefly explained in order to contextualize this thesis work. 

Except for work by [12] on the development of low-power FFT architectures, which was 

achieved through optimization of an FFT core, the majority of the published research was 

pursuing a specific direction, i.e. omitting unnecessary computations. This concept, which is 

termed “pruning”, has been introduced to eliminate useless computations [13-17]. The idea of 

pruning was first suggested in [13] with the purpose of increasing the computational efficiency 

for the decimation-in-frequency (DIF) structured FFT performed on signals whose number of 

non-zeros is considerably less than the length of the FFT. The main objective was to increase the 

computational efficiency by decreasing the total number of arithmetic operations. The technique 

is proposed with the purpose of reducing the computation time. Indeed, all computational 

operations that yield zeros are not carried out.  

A very similar algorithm was developed [14] for computing the FFT of a decimated-in-time 

(DIT) signal. Like the pruning algorithm proposed by Markel, this allowed reducing the overall 

processing time. However, Skinner‟s pruning algorithm for DIT achieves a better reduction 

factor on the total number of multiplications. The major limitation of Markel‟s or Skinner‟s 

pruning algorithms is that they can only compute a contiguous series of output starting from the 

first one.  



4 

 

 

Therefore, a pruning technique was proposed that can prune an FFT according to zeros at either 

the input or output stages [19, 20]. Moreover, two efficient algorithms were proposed for 

simultaneous DIT and DIF, in [19] and [20] respectively. As a matter of fact, these methods 

combine Markel‟s pruning method to the output of Skinner‟s algorithm. 

Another pruning technique was proposed [15] by which a matrix could be established in order to 

determine whether a specific computation must be conducted or not. Furthermore, depending on 

where pruning is to be implemented (i.e. at input or output), two different matrices of size 

        are formed to specify which computations are useful. Input and output pruning 

matrices are obtained from the first and last column of the FFT computation diagram, 

respectively. In the pruning matrix, the non-zero terms at both input and output vectors are 

denoted by unity and the rest of the matrix is obtained from these vectors as the first or last 

column from the input or output pruning matrices, respectively. The main contribution of this 

algorithm is that the number of non-zero inputs or non-zero outputs as well as their location can 

be arbitrary. It also works equally well for both DIT and DIF architectures. 

In [16], a pruning algorithm is proposed, which is mostly built upon previous algorithms. A 

considerable reduction in computation time was reported by employing the proposed matrix. It is 

claimed that the algorithm can efficiently and quickly prune the FFT for NC-OFDM transceivers. 

Contrary to the general FFT pruning proposed by [15], it avoids using conditional terms and 

therefore brings a considerable reduction in computation time. Unlike previous work, the size of 

the pruning matrix proposed by [16] for an N-point FFT is    ⁄        , which is half of the 

size reported in [15].  

The main drawback of existing pruning algorithms is their high resources utilization, i.e. data 

memory for storage of the configuration matrix. In [17], FFT pruning for NC-OFDM 

transceivers is considered again with the purpose of reducing its inevitable resource requirements 

when implemented. Partial pruning allows the pruning of the input until a given depth in the FFT 

structure, which yields a reduction in memory requirements. Moreover, through partial pruning, 

a compromise is made between the computational time saved through pruning and the required 

size of the memory for data storage. Through the developed partial pruning algorithm, a time 

saving close to the full pruning algorithms was achieved after implementation while 20% less 
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memory was required in comparison to previously reported algorithms [15, 16]. This made the 

algorithm more suitable for embedded-system applications with limited memory resources. 

In [21], a pruning algorithm called input-zero-traced FFT pruning (IZTFFTP) was proposed. It is 

based on the Cooley-Tukey radix-2 FFT algorithm for the applications in NC-OFDM 

transceiver, where the number of non-zeros outnumbers the number of zeros at either the input or 

the output. Through C++ simulations, the performance of the algorithm was compared with the 

non-pruned FFT and the reduction in the overall arithmetic operations was reported in a table. 

For example, 5120 complex multiplication in ordinary 1024 point FFT was reduced down to 

2448 with the proposed pruned FFT with the same length. Throughout comparison of the 

execution time of operation of the proposed pruned FFT with the ordinary FFT, it was concluded 

that the computational complexity was reduced considerably.  

In [13, 22], Sorensen et al. proposed an efficient algorithm called transform decomposition. 

Transform decomposition can be seen as a modified Cooley-Tukey FFT where the DFT is 

decomposed into two smaller DFTs. Transform decomposition is more efficient and flexible than 

FFT pruning when it is applied on the SRFFT algorithm but it is less efficient when applied on 

the FFT algorithm. Note that no work was found in the literature about pruning the transform 

decomposition. 

Qiwei Zhang et al. developed a computationally efficient IFFT/FFT for OFDM-based cognitive 

radio on a reconfigurable architecture [23]. The proposed algorithm was based on transform 

decomposition [24].  

As already mentioned, the fundamental strategy to reduce both overall computational time and 

power is to perform as few multiplications as possible. Hence, the FFT algorithm with minimum 

number of arithmetic operations should be the optimum algorithm for hardware implementations. 

Therefore, the theoretical total number of required complex multiplications in different FFT 

formats is compared in Table 2-1, and the values are plotted in Figure  2-1 for an easier 

comparison for a typical 1024-point FFT. One can observe that, among several FFT formats, 

including the radix-2 and the split-radix (SR), the latter requires the smallest number of 

multiplications and additions.  Also, different formats of FFT pruning techniques are compared 

in accordance with the equations provided in Table 2-1. The superior performance of SRFFT 
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pruning in comparison to transform decomposition can be observed in Figure  2-1. Note that, 

unlike the Radix-2 diagram with in-place computation, the computations in the SRFFT are not 

carried out stage by stage, but its L-shaped butterfly advances with computations stage by stage 

at only its top half, while combining all computations of two subsequent stages at once in its 

lower half, much as in a radix-4 implementation [24]. Therefore, SRFFT is a promising form of 

FFT formulation, assuming the objective is to reduce power consumption with pruning.  

Table  2-1: Total number of complex multiplications in different FFT structures [25, 37] 

N is the length of FFT, L is the number of non-zeros and       

FFT Algorithms Complex Multiplication 

Radix-2 FFT N/2×log2(N) 

SRFFT N/3×log2(N)-8/9×(N-1) 

Markel‟s FFT pruning N/2×log2(L)+N-L 

Skinner‟s FFT pruning N/2×log2(L)+N-L 

Transform Decomposition Based on radix-2 N/2×log2(P)+L×(N/P-1) 

 Based on SRFFT N/3×log2(P)-8/9×N×(1-1/P)+L×(N/P-1) 

SRFFT pruning Continuous L N/18×(1/L+6×log2(L)-1)-L+1 

Where L<N, L is power of 4 

 Arbitrary L L/N×(N/3×log2(N)-8/9×(N-1)) 

Radix-4 FFT (3N/8)×log2(N) [37]  
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Figure  2-1: Total number of complex multiplications in different FFT architectures [25] 

  

In [17], an FFT core architecture is described. It comprises a pruning engine that helps reducing 

the power consumption. Their FFT core was implemented on a Field Programmable Gate Array 

(FPGA) and a saving of 10% in power consumption due to the pruning engine was reported. 

In [25], a binary pruning matrix similar to the one proposed in [15] for output pruning is applied 

to 64-point SRFFT architecture. However, no analysis is provided on power consumption and 

resource utilization.  

In this research work, a new architecture of a SRFFT core is developed that includes a pruning 

engine with the purpose of reducing power consumption. The combination of SRFFT with 

pruning has already been introduced. However, it has never been studied and analyzed for 

possible reduction in power consumption. Therefore, to the best of our knowledge, a power 

efficient SRFFT core with a pruning engine is developed and analyzed for the first time in this 

research.  



8 

 

 

CHAPTER 3 APPLICATION OF FFT IN WIRELESS 

COMMUNICATION TRANSCEIVERS 

In order to highlight the importance of power efficient FFT processor for OFDM-based wireless 

communication transceiver in the CR platform, a brief review of its fundamental architecture and 

operational principles is presented in this chapter. Subsequently, the FFT algorithm in its various 

formats including Radix-2, Radix-4 and SR-FFT is introduced. Finally, a study of pruning 

techniques is presented. 

3.1 OFDM transceivers  

As was already mentioned, spectrum sensing is the task of autonomous monitoring of the 

spectrum resources or sensing the radio spectrum in the local neighbourhood of the radio system. 

Thereby, spectrum holes or rather specifically those sub-bands of the radio spectrum that are 

underutilized at a particular instant of time and specific geographic location, may be detected and 

used efficiently. This may make more bandwidth available and consequently increase data 

throughput. A common part in many proposed techniques is the feature of real-time spectrum 

sensing or differently termed, spectrum sniffing. This allows finding available frequency bands 

and opportunistically use these bands for signals to be communicated in a fair and cost-effective 

manner. Spectrum sensing may be conducted through digital signal processing (DSP) [1, 2], 

radio meters [9] or, more recently, analog signal processing (ASP) [10, 11].  

Through DSP techniques, the received analog signals are converted to the digital domain using 

analog-to-digital converters (ADCs) and then further processed to transform them into the 

frequency domain to obtain their power spectral density (PSD). Fast Fourier Transform (FFT) is 

one of the most common algorithms for obtaining the PSD of the signals.  

Although DSP suffers fundamental drawbacks such as high-cost ADCs, high power consumption 

and poor performance at high frequencies, emphasis has recently been placed on further 

developments in this area. One important direction of research has been to reduce the 

computational burden and hence the DSP power consumption, especially for mobile devices with 

limited power sources.  
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ASP addresses some of the aforementioned challenges and is considered to be a reliable 

technique for signal processing at millimeter-wave frequencies for the near future [10].   

However, renewed interest in ASP is recent and it still needs improvements to be a viable 

solution.  

Nevertheless, FFT and IFFT are widely applied through digital signal processing algorithms in 

many communication transceivers, because, in essence, the modulation or demodulation 

techniques, applied to them, are based on the Fourier transform. For instance, orthogonal 

frequency division multiplexing (OFDM), in particular the non-contiguous OFDM (NC-OFDM), 

is a technology of this kind, through which modulated subcarriers may be distributed non-

uniformly so that maximum bandwidth might be used for data communication. Thus, NC-OFDM 

is a viable transmission technology for cognitive radio transceivers operating in Dynamic 

Spectrum Access (DSA) networks. 

As shown in Figure 3-1, in communication transceivers with OFDM modulation, the FFT and 

IFFT are fundamental blocks in receiver (Rx) and transmitter (Tx) modules, respectively. 

Furthermore, symbols are first computed using one of the desired modulation formats, i.e. 

quadrature amplitude modulation (QAM) or phase shift keying (PSK), and then the modulated 

data stream is split into N slower data streams using a serial-to-parallel (S/P) converter. 

Modulation basically happens via the IFFT of these symbols when they are mapped onto several 

subcarriers. Thus, each OFDM symbol contains all subcarriers, each carrying modulated symbol. 

In order to prevent inter-symbol interference (ISI), a few fixed subcarriers are located in the 

beginning of the OFDM symbols using cyclic prefix (CP) blocks. The subcarriers that transmit 

the modulated symbols are then summed through a parallel to serial (P/S) block and transmitted 

upon up-conversion to the Radio Frequency (RF) range [35]. 

On the other hand, in the Tx module, the incoming RF signal is first down converted to baseband 

and then sampled and converted to digital signal through analog to digital converters. 

Subsequently, the OFDM symbols are de-modulated through FFT and the symbols detected 

using an FFT of the received signal. NC-OFDM is a special format of OFDM modulation in 

which the subcarriers of the OFDM symbol may be used arbitrarily and in a non-contiguous 

shape.  
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Figure 3-1 shows the architecture of the NC-OFDM transceiver along with the spectrum 

utilization. The architecture remains the same as that of an OFDM transceiver, which is 

explained above, but the subcarrier utilization would be different. Indeed, some subcarriers may 

be nullified in the NC-OFDM transmitter in accordance with used or unused spectrum frequency 

bands. This information is obtained via spectrum sensing block in Tx and is applied when data 

symbols are mapped on subcarriers. Users in a CR network may determine their operational 

frequency bands in a frequency agile and non-contiguous manner. Furthermore, in NC-OFDM, 

all subcarriers do not need to be active as in OFDM system, and indeed active subcarriers are 

located in unoccupied bands.  

The information about occupied spectrum can be sent over the channel to the Rx. This 

information about the shape of occupied band may be used in Rx for pruning the FFT algorithm 

throughout demodulation and hence allow avoiding demodulation of zero subcarriers. Typical 

non-contiguous spectrum utilization is shown in Figure 3-1 (b). 

 
 

 

(a) NC-OFDM Transmitter (b) NC-OFDM Receiver 

 

(c) Spectrum utilization 

Figure  3-1: General  NC-OFDM Transceiver Architecture [16] 
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3.2 FFT formats 

3.2.1 Radix-2 FFT 

The radix-2 decimation-in-frequency (DIF) and decimation-in-time (DIT) FFT formats are the 

simplest FFT algorithms that basically compute the discrete Fourier transform (DFT) [30]: 

                                                         

   where   
      

   

 
 
 .  

The DIF radix-2 FFT computation is indeed a recursive combination of two distinct partitions of 

the DFT computation, which can each be computed by shorter-length DFTs of different 

combinations of input samples. The samples (X (k)) are separated into even-indexed (k = [0, 2, 

4,…,N - 2]) and odd-indexed (k = [1,3,5,…,N-1]) outputs.  

Considering only even indexed samples, we can reformulate the related part of the algorithm as 

follows: 

 

(3.2) 

                                                                        

 

which is basically the 
 

 
 point DFT of               

 

 
 . 

21 1
( )

0 0

( ) ( ) ( )

i nkN N
nkN

N

n n

x k x n e x n W

 


 

  

1
2

0

1 1
2 2

2 ( )2
2

0 0

1 1
2 2

2 2

0 0

1
2

0 2

X(2 ) ( ( ) W )

X(2 ) ( ( ) W ) ( ( ) )
2

X(2 ) ( ( ) W ) ( ( ) W )(1)
2

X(2 ) (( ( ) ( )) W )
2

N
rn

N

n

N N

N
r nrn

N N
n n

N N

rn rn
N N

n n

N

rn
N

n

r x n

N
r x n x n

N
r x n x n

N
r x n x n

w





 



 

 

 







  

  

  



 

 



           (3.1) 



12 

 

 

For the odd termed samples we have 

 

(3.3) 

which is basically the 
 

 
 point DFT of               

 

 
 .

 

 

The mathematical simplifications in (3.2) and (3.3) reveal that both the even-indexed and odd-

indexed frequency outputs X(k) can each be computed by a length-N/2  DFT. The inputs to these 

DFTs are sum or subtraction of the first and second halves of the input signal, respectively, 

where the input to the short DFT producing the odd-indexed frequencies is multiplied by a so-

called twiddle factor terms   
      

   

 
 
. This is called decimation in frequency because the 

frequency samples are computed separately in alternating groups, and a radix-2 algorithm 

because there are two groups. Figure  3-2 graphically illustrates this form of the DFT 

computation. This conversion of the full DFT into a series of shorter DFTs with a simple pre-

processing step gives the decimation-in-frequency FFT its computational savings. 
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Figure  3-2: Decimation in frequency of a length-N DFT into two length-  ⁄  DFTs preceded by 

a preprocessing stage [30]. 

The butterfly operation is illustrated in Figure  3-3, which is basically the main computation 

block in the FFT. Each butterfly includes a complex addition and subtraction followed by one 

twiddle-factor multiplication by   
     

    

  on the lower output branch. There are N/2 

butterflies per stage. It is worthwhile to note that the length-2 FFT is just one butterfly block 

where the twiddle factor is 1. 
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Figure  3-3: The butterfly, a basic DIF computation unit 

 

3.2.2 Radix-4 FFT algorithm 

The butterfly of a radix-4 algorithm consists of four inputs and four outputs. The FFT length is 

  , where M is the number of stages. A stage has half the number of butterflies of a radix-2 FFT 

stage. The radix-4 DIF FFT divides an N-point discrete Fourier transform (DFT) into four N/4 -

point DFTs, then into 16 N/16-point DFTs, and so on. In the radix-2 DIF FFT, the DFT equation 

is expressed as the sum of two calculations: one for the first half and one for the second half of 

the input sequence. Similarly, the radix-4 DIF FFT expresses the DFT equation as four 

summations and then divides it into four equations, each of which computes every fourth output 

sample. The following equations illustrate radix-4 decimation in frequency [31].  
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The three twiddle factor coefficients can be expressed as follows: 
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To arrive at a four-point DFT decomposition, let     
      . Equation (3.9) can then be 

written as four N/4 point DFTs, or 

 

(3.10) 

 

For k= 0 to N/4 -1. 

     ,        ,         and         are   ⁄  point DFTs. Each of the their   ⁄  

points is a sum of four input samples     ,         ,          and          , each 

multiplied by either 1, -1, j or –j. The sum is multiplied by a twiddle factor 

(  
    

    
     

  ). The four N/4 point DFTs is divided into four    ⁄ -point DFT. Then, 

each of these N/16 point DFT is further divided into four N/64-point DFTs, and so on, until the 

final decimation produces four-point DFTs. The four-point DFT equation makes up the butterfly 

calculation of the radix-4 FFT. A radix-4 butterfly is shown graphically in Figure  3-4.  

 

Figure  3-4: Radix4 decimation in frequency FFT butterfly [31] 
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3.2.3  Split radix FFT (SRFFT) 

SRFFT was first introduced by Duhmel et al [27] and further developed by the same authors who 

presented an implementation [28]. The algorithm originates basically from the radix-2 algorithm 

diagram which is transformed quite straightforwardly into a radix-4 algorithm by changing the 

exponents of the twiddle factors. When doing so, it can be observed that a radix-4 is best for the 

odd terms of the DFT, while radix-2 is best for the even terms of the DFT in each stage of the 

diagram. Therefore, restricting the above-mentioned transformation locally to only the lower part 

of the diagram might improve the algorithm. This leads to a decomposition of the DFT into 

 
(3.11) 

We can see that the fundamental N-point DFT equation is decomposed into one length-N/2 DFT 

and two length-N/4 DFTs with twiddle factors.  

The first stage of a split-radix decimation in frequency decomposition then replaces a DFT of 

length N by one DFT of length N/2 and two DFTs of length N/4 at the cost of [(N/2) - 4] general 

complex multiplications (3 real multiplications + 3 additions), and 2 multiplications by the 

eighth root of unity (2 real multiplications + 2 additions). The N-point DFT is then obtained by 

successive use of such decompositions up to the last stage, where some usual radix-2 butterflies 

(without twiddle factors) are needed. 

The implementation of the algorithm is considerably simplified by noting that at each stage i of 

the algorithm, the butterflies are always applied in a repetitive manner to blocks of length    ⁄ . 

Then, only one test is needed to decide whether the butterflies are applied to the block or not (  

tests are needed at each stage i). 
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Some specific features SRFFT are listed and discussed in [27]. Within this thesis framework, the 

most interesting advantage of split radix FFT in comparison to other existing FFT techniques is 

the lowest number of required multiplications and additions. 

 

3.3 Pruning  

The primary pruning technique, proposed by [13], which is already introduced in Chapter 2 with 

the literature review, is briefly explained hereafter to provide insight on its principles. 

From Figure 3-5, it can be seen that there are 4 stages, 8 butterflies per stage and 3 operations per 

butterfly. The structure of a butterfly computation is depicted in Figure  3-6. In general, within 

the diagram of an M-stage FFT, N/2 butterflies are present in each stage and each butterfly 

includes 3 complex arithmetic operations; i.e. one addition, one subtraction, and one 

multiplication.  

Figure 3-7 shows a 16-point FFT with the DIF structure where the input contains only two non-

zeros. Comparing the FFT with the same structure but in a un-pruned implementation, one can 

observe that only the computational operations originating from these two non-zero inputs that 

yield non-zero values in every stage were computed. 
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Figure  3-5:FFT computed according to the DIF structure (no pruning) [13] 

                        

 

Figure  3-6: Representation of a single “butterfly”; the twiddle factors are defined by

. ( /16) exp( 2 /16)kW e k j k  
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                                 Figure  3-7: FFT pruning scheme proposed by Markel [13] 

 Figure  3-7 shows pruning in the FFT through which operations that do not contribute to the 

outputs are eliminated. Hence, only the data paths that affect the result at the output are kept. In 

fact, it shows graphically a pruned 16-point FFT where only two nonzero input points are present 

and all arithmetic operations originating from or yielding zero values are omitted. In this 

diagram, we can see that pruning is possible in only three stages and  pruning in the last stage is 

not feasible. 

Since there are  nonzero data points and zero value points, L=1 corresponds to the 

number of stages in which nothing can be pruned and M-L=3 corresponds to the number of 

stages in which pruning can be applied. More specifically, L is equal to the number of stages in 

which no pruning is allowable and thus M-L is equal to the number of stages in which pruning 

can be employed [13]. The implementation procedure uses careful inner-loop nesting. In essence, 

the algorithm is nothing more than a clever nesting of loops to provide proper indexing for the 

butterfly calculations. 

3.4 The efficient FFT algorithm  

Among the reported FFT pruning algorithms, the one proposed by Ranjbanshi et al [16] was 

proven to have superior performance in terms of the total processing time due to a lower number 

of arithmetic operations when a large number of data points at the input are zero. Moreover, the 

2L 2M L
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proposed algorithm works for any pattern of zeroes at the input.  Such algorithm can be used in 

the FFT or IFFT blocks in the NC-OFDM transceivers where a significant number of subcarriers 

remain null and the spectrum is sparsely utilized. Indeed, for highly sparse spectrum, the number 

of zero-valued inputs is quite large, and therefore considerable processing time can be saved 

through pruning the FFT algorithm. Therefore, the performance of this algorithm is studied as a 

possible candidate of further development for power saving purposes. The principles of this 

pruning algorithm are briefly explained next.  

Figure  3-8 shows the developed data flow FFT pruning architecture proposed by Ranjbanshi.  

 

Figure  3-8: The data flow FFT pruning architecture [16]   

In this 8-point FFT diagram, inputs with zero and non-zero value are denoted by 0 and x, 

respectively. In computing the butterflies, if both inputs are zero, they will be completely pruned. 

If one of the inputs is non-zero the corresponding butterfly is partially pruned while the whole 

computation in the corresponding node would be carried out if none of the data inputs were null. 
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3.5 Software implementation and analysis of FFT and pruned FFT 

In order to count and monitor the arithmetic operations throughout several FFT algorithms, we 

have implemented them with the C programming language. As a reference point, the ordinary 

FFT proposed by Cooley and Tukey [29] as well as the FFT pruning algorithm proposed by 

Ranjbanshi [16] were analyzed and implemented in C using Eclipse Helios [36].  

For code validation, a combination of single frequency sinusoidal signals, which are sampled 

with an appropriate sampling frequency, is used as input signals.  The sampled input test signal is 

a single frequency signal oscillating at frequency    and denoted by: 

 [ ]                   

 

Where    is the sampling period and is the inverse of sampling frequency, i.e.        . 

At the output of the FFT with  [ ] input data, a peak appears at the index    which corresponds 

to the frequency content    of the input signal, sampled at   , through  

        
  

 
    (3.13) 

The sampling frequency should be selected in a way that respects the Nyquist sampling period or 

more specifically speaking it should be at least twice as large as the largest frequency in the 

spectrum of the input signal.  

In order to validate the correctness of the programmed algorithms, a typical signal composed of 

three sinusoidal functions at three distinct frequencies is used as in: 

        [ ]                                                                                     (3.14) 

where       ,       ,       .  [ ] , which has a sampling frequency of 4 KHz, is 

plotted in Figure  3-9. 

(3.12) 
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Figure  3-9: Input signal 

The output signal, which is in the frequency domain, is plotted in Figure  3-10. This frequency 

domain plot shows the existence of three peaks that correspond to three frequency components. 

 

Figure  3-10: Result computed with the implemented software FFT 

In another test, the IFFT pruning code is assessed using a data input that is the frequency 

components or the subcarriers of the transmitting signal of an OFDM transmitter. This set of 

subcarriers is selected so that three quarter of them are null, i.e. the sparseness factor is 75%.  As 

shown in Figure  3-11, the subcarriers within the range of 256 to 511 are active, and the rest are 

zeros.  
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Figure  3-11: The input signal used to test the IFFT; 25% of the carriers are non-zero 

In order to compare the total number of multiplications required in the ordinary FFT (as 

originally proposed by Cooley and Tukey) with those required by the SRFFT, the number of 

multiplications and summations with various implementations of a 256-point FFT was profiled 

and the results are shown in Figure  3-12. One can observe that the number of multiplications and 

summations with the SRFFT is much less than that required with the Cooley-Tukey FFT when 

not using any pruning technique. 
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Figure  3-12: Comparison of the number of operations required, i.e. summations and 

multiplications, for a 256-point FFT computed using different algorithms  

As one may anticipate, the SRFFT with pruning requires fewer operations than others and hence 

it can complete the transform process within a shorter time. Obviously, if this algorithm was 

implemented in FPGA, it could consume much less power. Thus, SRFFT pruning, which 

theoretically completes the frequency transform with minimum arithmetic operations, was 

selected for hardware implementation. First, an implementation of the SRFFT processor 

targeting an FPGA was developed and then improved for minimizing the overall power 

consumption by adding the pruning engine. The architecture of this processor is explained in 

further details in the next chapter. 
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CHAPTER 4 STUDY AND DEVELOPMENT OF A POWER 

EFFICIENT SRFFT PROCESSOR  

SRFFT, which was proven to have less computation burden in comparison to other FFT 

algorithms, was selected for implementation in combination with the pruning technique. 

Therefore, a SRFFT processor is first developed and then a pruning engine is added with the 

purpose of increasing savings. In this chapter, the SRFFT processor as well as the pruning engine 

are explained in detail along with presenting the simulation results as a proof of their correct 

functionality. At the end, the performance of the processor with or without the pruning engine is 

assessed in terms of power consumption. 

4.1 Implementation of SRFFT processor 

4.1.1 Architecture of the proposed SRFFT processor  

Figure  4-1 shows the architecture of the generic SRFFT processor proposed in this thesis. This 

processor comprises a finite state machine (FSM) as a control unit, a butterfly engine, two pairs 

of RAMs with single address ports for real and imaginary components of the signal, a ROM for 

storing the twiddle factors and several interconnect units. The functions of each block are 

explained further in the following. 

4.1.2 L-shaped butterflies 

The main difference between FFT and SRFFT is the shape of butterflies and the number of 

butterflies that are calculated in each stage. In Radix-2 FFT in VHDL, only one butterfly with 2 

inputs is calculated while in SRFFT, 2 butterflies with 4 inputs and 1 butterfly with 2 inputs at the 

following stage are calculated in each round. Secondly, in the first two butterflies, we do not have 

multiplications with twiddle factors and thirdly, twiddle factors are arranged differently. The 

structure of the resulting L-shaped butterfly is sketched in Figure  4-2. 
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Figure  4-1: Architecture of the proposed SRFFT 

 

Figure  4-2: L shape butterfly 

Furthermore, in SRFFT, a combination of Radix-2 and Radix-4 index mapping is used for even 

and odd indexed data in each stage, respectively. This decomposition yields arithmetic 
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computations grouped in L-shape butterflies. Indeed, unlike the ordinary FFT in which 

computations are carried out stage by stage, those in SRFFT involve two adjacent stages. This 

adds to the complexity of control-signal generation and design. Figure  4-2 shows a typical L-

shaped butterfly needed in the SRFFT. This butterfly can be decomposed into three distinct 

blocks, and in our proposed architecture, each of these blocks carry out a portion of the 

computations as highlighted in Figure  4-3. 

 

 

                                                   Figure  4-3: Butterfly engine 

  

4.1.3  Control unit  

Figure  4-4 shows the diagram of a 16-point SRFFT and the forward flow of processing from the 

input stage until the output stage. Each L-shape section may contain at least one L-shape 

butterfly. The computation diagram of an N-point SRFFT contains      -1 L-shaped stages and 

one ordinary or non-L-shaped stage in the last one. In this diagram, one can see three L-shaped 

stages, which are numbered and may contain several L-shaped butterflies.  

In the proposed architecture of the SRFFT processor, a control unit, which is a finite state 

machine, is used to accomplish several main tasks, including 1) address generation, 2) control of 
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data and address paths, and 3) assignment of read and write operations for the RAMs at the 

appropriate time.   

 

 

 

Figure  4-4: 16-point SRFFT and processing progress [33] 
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Figure  4-5 shows the simulation results of the initial architecture of the SRFFT processor. The 

addresses generated for calling the data points from RAM for an 8 point SRFFT can be observed 

on the signals i0, i1, i2 and i3. Also, the signal “Kport” shows the forward progress in L-shaped 

stages. There are two L-shape butterflies in the first stage, i.e. the first two, while there is only 1 

L-shaped butterfly in the second stage. Furthermore, when the signal varies from 1 to 3. Two L-

shape butterflies with index values 1, 3, 5, 7 and 2, 4, 6, 8 take part in the first stage when 

“Kport” is 1. In the second stage, when “Kport” is 2, one L-shape butterfly operates with index 

values 1,2,3,4, and finally in the last stage, two ordinary butterflies with index values 5, 6 and 7, 

8 are carried out. In addition, address management to produce twiddle factors for 16 point 

SRFFT are shown in Figure  4-6. For each L-shape butterfly, two complex twiddle factors are 

sent to the multipliers in the butterfly units. Real and imaginary components with 16-bit-long 

twiddle factors are called “Wr1”, “Wr2”, “Wi1” and “Wi2” respectively. 

 

 

Figure  4-5: Addresses generated while computing an 8 point SRFFT 
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Figure  4-6: Addresses generated while processing a 16 point SRFFT 

4.1.4 RAMs and interconnects 

The SRFFT processor comprises two pairs of RAMs, which contain 16-bit words, taken from 

two memory blocks. They allow reading and writing the signal data in each stage. With the 

proposed butterfly engine, the conventional “ping-pong” style swapping between the RAMs for 

writing and reading the signals in each stage should not be employed in the usual manner, because 

all four outputs of the butterfly engine do not pertain to a single stage. For instance, the output of 

butterfly-3 in Figure  4-3 belongs to the second stage and in the proposed architecture, they must be 

rewritten in the same RAM from which the four input data of the butterfly engine were called.  

The L-shape butterfly requires four data points to appear at its input ports simultaneously. 

Therefore, four addresses should be generated in the control unit for reading four data words from 

memory. However, the RAMs that are employed in the memory units possess only one address 

port, which makes the concurrent reading of four data words unfeasible. The use of single port 

RAMs is done on purpose, which allows avoiding complex logic and making use of block RAMs 

in the FPGA. Hence, the data words should be read one by one and then rearranged so that they 

appear at the butterfly engine all at once. It should be mentioned that use of RAMs with four 
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address and input-output ports would of course be a better solution if they existed as block RAMs 

in FPGAs on which the processor is to be implemented.  

Figure  4-7 shows the address and data word management at the input and output of a memory. 

In the control unit, four address words are generated and then pipelined to appear at the address 

port of the RAM upon being multiplexed onto a single path. Then, the data words at the output of 

the RAM are de-multiplexed onto four separate signal paths and then pipelined to appear in 

parallel at the butterfly blocks. A similar structure is also used for writing the result of 

computations (by the butterfly engine) back into the memory. Thereby, single-address port 

memory blocks are used in order to reduce the complexity and area usage.  

 

Figure  4-7: The architecture of pipeline SRFFT 

As the data would appear at the output of the RAM with one clock cycle delay, these control 

signals should last for 2 clock periods. The data that goes through the block “Datapipe” will 

appear at the input of each butterfly at the same time.  

Figure 4-8 shows the behaviour of interconnect control signals, which control the parallel-to-

serial or serial-to-parallel units. These control signals have four states and therefore accept values 

0, 1, 2 and 3.  

Active low write-enable (we) and active-high Ram-Enable (en) signals handle read/write 

functions of the RAMs. There is one of each signal for each RAM (i.e. we1, en1, we2 and en2). 

Writing takes place before changing the addresses while the reading happens four clock-cycles 

after changes in addresses at the output of the FSM. The signals I0, I1, I2 and I3 are connected to 

the address pins of the control unit. More specifically, “Spipectrl” and “Spipedata” vary from 0 
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to 3 in order to map the appropriate signals at the address port of the RAM. The signal 

“Spipedata” helps mapping the data at the output of the RAM to the input ports of the butterfly. 

Both signals change simultaneously when the relevant enable signal (en) and write/read signal 

(wr) at any specific stage are active. The signal “SpipeResctrl” helps mapping the computation 

results onto the input port of the RAM where the computation results are to be written. The 

signal “Spipectrl” remaps the addresses again onto the address port.   

 

Figure  4-8: Address and control signals at the output of FSM block 

Figure  4-9 shows a snapshot of a simulation of the SRFFT when 4 data-points are read out of the 

RAM and then sorted so that they appear all in parallel at the input ports of butterfly engine, 

simultaneously. The four address signals addi0, addi1, addi2 and addi3 are generated at the same 

time by the control unit. Since the addresses appear at the port one by one, we had to keep it 

active as long as the four addresses are passing. The signal “adi” is connected to the address 

ports of both RAMS. We can see that after 4 clock cycles from the time of generation of new set 

of addresses, they appear on “adi” consecutively. The control signal of the multiplexer that 

switches the addresses on “adi” is named as “SAddCtrl”, which varies from 0 to 3 and, each 

time, it maps one address on the data path connected to the address port of the RAMs.  

At the time the first address appears at the address port of the RAMs, one pair of signals from the 

RAM-enable signals “Sen1”, “Sen2” and the write-enable signals “Swe1” and “Swe2” are 

activated simultaneously, so that the data are read out of the desired RAM. Note that the reading 

and writing  control signal are active-high for both RAMs.  
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As already mentioned, the data should be located at the input ports of the butterfly blocks at the 

same time, and this is actually made through de-multiplexing. Indeed, the control signal of 

“SDataCtrl” switches the data at the output of the RAMs and sorts them at four data paths in 

parallel. 

 

Figure  4-9: Reading 4 data points from RAM and sorting them at the input of butterfly engine 

Figure  4-10 shows the procedure through which the results of the butterfly engine are written to 

RAM. The butterfly blocks compute the results at different clock ticks, which makes data 

management complicated. This problem is resolved by appropriate pipelining at their outputs 

upon computations. Thereby, the computation results appear at the output port of the butterfly 

engine, i.e. “Outbut1x0”, “Outbut2x1”, “Outbut3x2”, “Outbut3x3”, consecutively. Then, they 

are sorted in series on the data path of the input port of the RAM, i.e. “XinRam1” and 

“XinRam2”, where the computation results should be stored. In fact, the control signal of 

“SResCtrl” which controls a de-multiplexer changes from 0 to 3 and thereby the computation 

results from butterfly engine are sorted in series on the input data port of both RAMs. In 

Figure  4-10, the computation results at the output of butterfly engine are highlighted with an 

inclined ellipse. It should be mentioned that the addresses are regenerated and then synchronized 

with the computation results when they arrive at the input data port of the RAM.  These changes 

are synchronized with the changes of the regenerated addresses on the input address port. During 

this data writing time, the write-enable signals are deactivated, while both RAM-enable signals, 
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namely “Sen1” and “Sen2”, are activated. Thus, the computation results are written in both 

RAMs.   

 

Figure  4-10: Writing the results into RAMs 

  

4.1.5  Twiddle factor ROM 

In all FFT architectures, multiplications take part at some fixed points with external parameters 

called twiddle factors. Depending on the size of the FFT or SRFFT, the number of twiddle 

factors and their value at each stage may vary. Usually, two different techniques are applied for 

generating and using the twiddle factors in FFT cores, i.e. twiddle factor bank or computing them 

during the FFT computations using a complex constant multiplication scheme [12] . 

In order to reduce the power consumption, the first approach is used in our SRFFT core. 

Therefore, a bank of twiddle factors is built up. That bank can be used for generic N-point 

SRFFT covering from 8 to 1024 points.  

Twiddle factors are complex numbers with a magnitude less or equal than unity. The size of the 

twiddle factor words chosen is 16 bits where the two most significant bits are assigned to sign 

and non-fractional value and the other 14 bits are assigned to fractional values. Figure  4-11 

shows the bit configuration of the twiddle factors.  
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Figure  4-11: Twiddle factor binary word configuration 

Table  4-1 shows examples of twiddle factors converted to binary and hexadecimal numbers.  

Table  4-1: Examples of bit configuration of twiddle factor 

Decimal Binary Hexadecimal 

0.707          00.10110101000001 X"2D41" 

1 01.00000000000000 X"4000" 

-1 11.00000000000000 X"C000" 

-0.707         11.01001010111111 X"D2BF" 

4.2 Butterfly engine structure 

The arithmetic operations within the butterfly 1 and 2 in the butterfly engine shown in                                           

Figure  4-12 can be expressed by the following equations, given the four inputs of D1, D2, D3 

and D4:       

                (4.1) 

                (4.2) 

                (4.3) 

                

In butterfly 1: 

(4.4) 

                  (4.5) 

                                                   (Imaginary) (4.6) 

                (4.7) 
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                                         (Imaginary) 

In butterfly 2: 

(4.8) 

                  (4.9) 

                                           (Imaginary) (4.10) 

               (4.11) 

                                (Imaginary)   (4.12) 

These equations are implemented with the structure shown in                                           

Figure  4-12. The architecture of both butterflies 1 and 2 are identical. 

 

                                          Figure  4-12: Pipelined butterfly 1 and 2 

The results of the first and second butterflies are used as input data for further processing within 

butterfly 3 through the following equations.  
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(Real part at Index=I3), which includes the operation of “multiplication by j” 

(4.13) 

         

- (Imaginary part) at Index=I2) 

(4.14) 

         

(Imaginary part at Index=I3) 

(4.15)                                                                                                                           

         

(Real part at Index=I2) 

(4.16)                                                                                                                           

The implementation architecture of this butterfly is shown in Figure  4-13.  

In the flow graph of the SRFFT, as it is shown in Figure  4-4 for length of 16 points, some 

frequency bins in the final stage are not part of the L-shape butterflies and they must be 

computed using conventional butterfly engines typically found in ordinary FFT hardware 

implementation. Therefore, the L-shape butterflies are stalled through gating when the 

computation reaches the last stage of the flow graph of our proposed SRFFT core. This allows 

reducing power consumption. These changes in the data path are depicted in Figure  4-14 where 

the final configuration of all butterfly blocks is depicted. We can see that the data flow 

throughout the butterfly blocks are managed using multiplexers and the computations at the final 

stage within the ordinary configuration of butterflies are carried out in the block “Butt Last”.    
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Figure  4-13: Pipelined butterfly 3 
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Figure  4-14: The modified butterfly engine  

4.2.1 Simulation results 

In order to validate the performance of the SRFFT processor, simulations were carried out and 

the output was compared with the FFT function in Matlab [32]. Three tests were done for SRFFT 

of sizes 8, 16 and 32. The input values used for the 8-point SRFFT were: 60, 23, 45, 90, 89, 87, 

22, and 65. The excellent agreement between Matlab and VHDL simulation results reported in 

Table 4-2 shows the correct functionality of the developed SRFFT processing engine. The small 

observed differences in the results are easily explained by the differences in accuracy of the 

floating representation used in Matlab versus the 16 bit fixed point representation used in VHDL. 

Table  4-2: The result of the 8-point SRFFT 

Results / Index X1 X5 X3 X7 X2 X6 X4 X8 

Matlab/ Real 481 -49 82 82 -91.9 33.93 33.93 -91 

Matlab/Imaginary 0 0 45 -45 4.5 -50 50.5 -4.5 

VHDL/ Real 481 -49 82 82 -92 34 33 -91 

VHDL / Imaginary 0 0 45 -45 4 -50 50 -4 
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Figure  4-15: Input of the SRFFT 

  

 

Figure  4-16: The result of the SRFFT 

To validate the 16-point SRFFT, the inputs were: 200, 400, 600, 700, 800, 0, 400, 200, 100, 700, 

600, 400, 300, 0, and 600. Again the results reported in Table 4-3 from our VHDL SRFFT 

processor operating with 16-bit words are in excellent agreement with the results from Matlab 

carried out on a PC in floating point. The outputs of the FFT in Table 4-3 are not sorted and are 

actually presented in the same order that appears in the last column of SRFFT computation 

diagram.  
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Table  4-3: Comparison between Matlab with proposed SRFFT 

Index Matlab/Real VHDL/Real Matlab/Imaginary VHDL/Imaginary 

1 6100 6100 0 0 

9 -1100 -1100 0 0 

5 300 300 800 800 

13 300 300 -800 -800 

3 -1507 -1508 -675 -676 

11 -92 -92 -1524 -1524 

7 -92.4 -93 1524 1524 

15 -1507 -1507 675 676 

2 -226 -228 511 513 

10 -398 -398 335 337 

6 -464 -464 -228 -229 

14 688 690 -795 -795 

4 688 688 795 794 

12 -464 -464 228 230 

8 -398 -398 -338 -336 

16 -226 -226 511 512 

A snapshot of simulation results for the test with 16 point SRFFT is shown in Figure  4-17 and 

Figure  4-18. The former shows the time when the input signal is being written in RAM before 

starting the computations, while the latter one shows the time when the SRFFT computation is 

done and the results are read out. Note that there is one clock cycle shift between the addresses 

and the corresponding stored results in RAM. It should be noted that the end of computations is 

signaled by activating the signal “FFTdone”. Note that the read address in Figure 4-18, i.e. 
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“addi0”, helps reading the RAM contents which are the unsorted SRFFT outputs. For a correct 

comparison with the results of the FFT from Matlab, we have to note the true index of the FFT 

output. Indeed, the indexes shown in Table 4-3 are the true indexes of the SRFFT outputs for our 

16-point SRFFT processor. 

 

 

Figure  4-17: Inputs of the 16 point SRFFT  

 

Figure  4-18: Outputs of the 16 point SRFFT  

 

4.3 SRFFT pruning 

Figure 4-19 shows the diagram of an 8-point SRFFT computation. It exhibits the L-shape 

repetitive pattern of computations. It also shows the case where it is pruned when used to process 

a signal for which only the two first output frequency bins are nonzero, which are depicted by 
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solid circles at the output. Assuming that the presence of nonzero output frequency bins with 

their exact positions at the output is already known prior to computations, a matrix reflecting the 

necessity of arithmetic operations in each node can be obtained. This matrix, called the pruning 

matrix hereafter, has a size identical to the diagram, i.e.        , and comprises zeros and 

ones as its elements. In Figure  4-19, the solid circles are implemented as ones in the pruning 

matrix.    

 

                                               Figure  4-19: 8-point SRFFT diagram 

Generation of the pruning matrix begins from the last column and the rest of the matrix can be 

computed given the last column. Furthermore, the elements in the 3
rd

 column are obtained in 

groups of 2 from the corresponding elements in the 4
th

 column through OR-gating of the 

elements used by the relevant butterfly. For example, in the case shown in Figure  4-19, only the 

two first elements in the 3
rd

 column are non-zeros since the adjacent elements in the 4
th

 column 

are non-zeros. For the second column, the elements are determined in groups of 4 that are the 

results of OR-gating of 4 elements in the 3
rd

 column.       

In general, for generating the k
th

 column of the pruning matrix of an N-point SRFFT with 

m=      columns,      elements in (k+1)
th

 column are grouped and then OR gated. The main 
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reason is that the size of butterflies at the last stage is only 2, i.e. they process on only two data 

inputs, and this size increases by a factor of 2 as we recede back to the first stage.   

The result of this OR gating is then written in      elements of k
th

 column. This procedure 

continues until the first column of this matrix. 

           Figure  4-20 shows the pruning matrix for a 16-point SRFFT with an input data vector that 

contains only four non-zero frequency components. The position of non-zero frequency 

components at the output of SRFFT is shown to be the first 4 outputs. It is worthwhile to 

mention that the first column, which shows the position of data inputs in the SRFFT diagram, is 

not considered in this matrix, because no computation takes part at that column. Having a careful 

look at the SRFFT diagram, we can observe that it consists of        +1) columns where the 

first column shows the position of the data inputs and actually no computation takes place in that 

column. Hence, allocating a column in the pruning matrix for the data inputs is obviously 

pointless.  

Indeed, the last column of this matrix, which essentially corresponds to the FFT output, or the 

spectrum of the signal, should be known before commencing the FFT computations. Therefore, 

in FFT cores that are embedded on OFDM receivers, this matrix is first generated using a binary 

vector of length N that may be obtained from the signal provided by an additional circuitry in 

receiver block [25].   
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           Figure  4-20: Pruning matrix of 16 point SRFFT with a typical data input 

4.3.1 Matrix pruning generation 

As described in the previous section, a pruning matrix is employed to eliminate unnecessary 

computations. It is composed of binary elements. Each element of this matrix pertains to the 

corresponding arithmetic computations in the SRFFT diagram. Hence, using the matrix elements, 

we can decide whether a computation should be carried out or not. We do this through 

activating/deactivating the three distinct butterfly blocks in the L-shape butterfly engine using 

enable signals. As was already explained, in each butterfly, a pair of complex computation is 

done, hence two matrix elements correspond to each butterfly. If one of the computations in this 

pair is to be done, a decision would be made on activating the butterfly. In other words, if one 

corresponding element in the pruning matrix is non-zero, the butterfly remains active. 

Consequently, the enable signal can be obtained through OR-gating the matrix elements. For a L-

shape butterfly engine, we would consider 3 pairs of matrix elements.    
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A pruning engine to generate this matrix was added to the SRFFT core. This engine uses a 

RAM with a single address port for storing the matrix elements and an FSM for generating the 

pruning matrix from the spectrum vector. The size of the pruning RAM for an N-point SRFTT is 

        and addresses to access these elements must be generated individually, as one row 

and one column should be addressed.  However, viewing each row in this binary matrix as a 

      bit word may demand for only one address port. Thereby, the words that compose the 

matrix elements in one row can be addressed via one address port. Thus, the pruning RAM is 

composed of N      -bit words, which are stacked up. Once a word is read from the pruning 

matrix RAM, we can have access to each bit readily. Furthermore, the pruning RAM is indeed 

structured in the form of N m-bit words as opposed to m N-bit words, because, in each L-shape 

butterfly, two adjacent columns of the pruning matrix are involved and hence access to the 

corresponding bits in two adjacent columns is essential. The second column comes into play when 

the computation of the bottom half of the L-shaped butterfly is carried out. By structuring the 

pruning RAM the other way around, i.e. m N-bit Words, we would not be able to have access to 

the pruning bits which correspond to the output of the bottom half of the L-shape butterfly, unless 

two columns are read at the same time, which is not possible with our single output port RAM. 

Reading two columns (N-bit words) from the pruning RAM at different times, i.e. one after 

another, is possible. However, reading and saving them into registers demands large registers 

(signals) in order to use them in the SRFFT FSM, which may increase power consumption. Also, 

a separate address signal from SRFFT FSM should be allocated for reading the pruning words, 

while with the m-bit words pruning matrix RAM, the same address line of data RAM can be 

shared and used for reading the pruning words. 

Figure 4-22 shows the structure of the Split Radix pruning core that comprises one FSM for 

generating the pruning matrix and a RAM for storing the matrix elements. This FSM implements 

the algorithm explained in the previous section for computing the matrix elements. For any 

individual element of the matrix, the whole word is read out of RAM, modified and rewritten 

back in RAM. Once the matrix is completed, the address and the output ports of the RAM are 

given to the SRFFT FSM (control unit) to be used for pruning. 

During the implementation of the SRFFT, the four inputs of each L-shape butterfly are read in 

each round from RAMs. The addresses for reading these data from RAMs are generated in 
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control units. In order to take pruning into account, the main FSM (i.e. the FSM that implements 

the SRFFT) reads four rows (i.e. four words) of the pruning matrix in data memories.  Then, the 

control signals that activate or deactivate the butterfly blocks in the butterfly engine are 

determined using the corresponding pruning elements, i.e. the k
th

 bit of the read-out “m-bit 

Word” of the pruning matrix. Furthermore, if the K
th 

stage is computed, the K
th

 bits of two pairs 

of four different words are OR-gated and hence the resulting bits are the enable signals for 

butterflies in the butterfly engine. The pairs are selected from the addresses with the distance of 

   ⁄ .  

The pruning matrix of the case shown in Figure  4-19 that has only two non-zeros at the output 

consists of 8 3-bit Words in RAM that is shown in Figure  4-21  as an example.  In order to better 

explain its operation, the SRFFT diagram is shown again in Figure  4-21 as a reference. The gray 

box shows the corresponding nodes in the pruning matrix. The nodes indicate the position of 0s 

and 1s, indeed.. The pruning matrix (Pruning Table) is the same as the one shown in the diagram 

of figure 4-19. The diagram (with lines and dots) in this figure is just to show the existence of 

several L-shape butterflies in a stage. Also, it highlights that each L-shape butterfly has four 

inputs. In addition, it intuitively shows the distance between the four inputs of each butterfly. 

In every round of computation, four data points are read at four different addresses and denoted as 

XI0, XI1, XI2 and XI3. The words in the pruning matrix are also read at the same addresses. Each 

stage may contain several L-shape butterflies. In this example, the first stage includes two L-

shape butterflies, each with four inputs. Red and black nodes in the first and second half of the 

second stage denotes the computation results of two L-shaped butterflies in this stage. The red 

marked binary numbers in the pruning matrix shown in Figure  4-21 pertain to the red nodes in the 

diagram shown in the same figure. 

When the first L-shape butterfly (the one with red data nodes in Figure  4-21) in first stage is to be 

computed, four addresses indices of XI0 to XI3 help reading four words at the corresponding 

addresses. Pairs of data at addresses (XI0, XI2) and (XI1, XI3) are computed in butterflies 1 and 2 

respectively.  The two computed results at the bottom half of butterflies 1 and 2 make one pair for 

computing two other data points in the following stage (i.e. stage 2). The latter computations take 

part in butterfly 3.  
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In order to determine whether butterflies 1 and 2 within the L-shape butterfly should be computed 

or not, the first bit of the words in two pairs of addresses, i.e., (XI0 and XI2), and (XI1 and XI3) 

are OR-gated. The resulting two signals of OR gates are used as the control signal in these two 

butterfly blocks as shown in Figure  4-23. In the given example, both butterflies 1 and 2 should 

remain active because their control signals are 1 as a result of OR gating 1 and 0.  

For the second part of the L-shape butterfly, which is implemented in the butterfly 3 block, the 2
nd

 

bits of the Words in addresses of XI2 and XI3 in the pruning matrix should be used. They pertain 

to the second stage of the FFT diagram. In the example of Figure  4-21, the 2
nd

 bit of Words in 

addresses XI2 and XI3 are OR gated and used as the control signal of buttefly-3, and hence this 

butterfly should be deactivated as both of its outputs are zeros. The control signal for butterfly 3 is 

zero as a result of OR-gating 0 and 0. It should be noted as long as the whole butterfly (butterfly 1 

or 2 or 3) is controlled by only one control signal, partial pruning can be implemented and that is 

why the butterfly should remain active even with there is only one non-zero value at its output. 

 

 
 

(a) Pruning Matrix of (b) (b)  2 L shape butterflies in first stage of SRFFT diagram 

 Figure  4-21: Pruning matrix of the 8 point SRFFT with two non-zero values at the output; The 

matrix corresponds to the exemplary SRFFT diagram shown in Figure  4-19. The red and black 

circles in the SRFFT diagram on the right show two different L-shape butterflies (each with four 

data inputs) in the first stage.  
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In general, the butterflies are advancing in an L-shaped format. In fact, in SRFFT computations, 

each stage contains one complete column of butterflies that are computed in butterflies 1 and 2, 

and half of the subsequent column, which are computed in butterfly 3. Therefore, for controlling 

the butterfly-3 for pruning purposes, the         bits of each word from the pruning matrix are 

OR-gated as the control signal for butterfly-3 while, for butterflies 1 and 2, the K
th 

 bits of words 

in the pruning matrix are OR-gated and used as control signals. K is the stage number and, in the 

example of Figure 4-21, K equals 1. 

These signals are used for stalling the data and the twiddle factors at the input of butterflies, so 

that unnecessary arithmetic operations are pruned. The changes that are made to our processor by 

adding the pruning engine are shown in Figure 4-22 and Figure  4-23. In Figure 4-22, it is shown 

that the pruning matrix is stored in a RAM, which is labeled “RAM Matrix”. The address and data 

output ports of this RAM are shared between the control unit of the pruning matrix and the control 

unit of the SRFFT, using two distinct multiplexers. When the matrix is generated and is being 

used by the main control unit, the data outputs are sorted to appear in parallel at the input of the 

main control unit.  

 

 

                                Figure  4-22: The modified SRFFT architecture with pruning engine 
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Figure  4-23: Structure used for controlling the butterflies 

 

Figure  4-24: Structure used for butterfly stalling  

For stalling the butterfly engine when the corresponding control signal is „0‟, three strategic 

changes are made to the butterfly units: 1) Deactivate the DFFs at either input or output, 2) the 

computation results are AND-gated with the control signal and 3) the new incoming data is 

redirected at the input port of the butterfly unit and replaced with the last data, using a 

multiplexer at the input ports of the data path. These changes are shown in Figure  4-24. 
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4.4  Simulations 

In order to validate the correct functionality of the proposed SRFFT pruning engine, a set of 

simulations were carried out and the results are presented next. In Figure  4-25 and Figure  4-26, 

the procedure for generating the pruning matrix is shown in a short time snapshot. A typical “last 

column vector” is considered as can be seen by the signal “input”, which is connected to the 

RAM‟s input port, labeled “ramin”. The RAM enable signal, i.e. “enram”, is activated with the 

change of address in order to read data from RAM and also write the calculated element into the 

corresponding position in RAM. The changes in the signal “addcol” show the progress in 

computing the matrix elements from the last column (column 3) to the first column (column 1). 

In this configuration of the pruning matrix, the corresponding algorithm, explained in Section 

4.3, is implemented. For example, two elements of the last column (3
rd

 column of pruning 

matrix) in RAM are called and then the result of OR gating is written back into the RAM in its 

previous column (2
nd

 column of pruning matrix shown by signal “addcol”) at the same row 

address (“addrow”). The variation in the signal “we1” from “1” to “0” determines the time when 

the matrix elements are called and processed and then written back into the RAM.   

 

 

Figure  4-25: 16-point SRFFT pruning; matrix pruning generation for a typical last column input, 

Part I 
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Figure  4-26:  16-point SRFFT pruning; matrix pruning generation for a typical last column input- 

Part II 

The pruning engine is then added to the main SRFFT core and the functionality of both units are 

evaluated when cooperating. A typical test is carried out for a 16-point SRFFT with a data input 

that contains only four non-zero frequencies. This data with known frequency contents is formed 

using the “IFFT” function in Matlab and then used as input data.  The input to the “IFFT” 

function in Matlab was the array [1000, 0, 0, 0, 1000, 0, 0, 0, 1000, 0, 0, 0, 1000, 0, 0, 0]. The 

corresponding input to a FFT processor that yields this array is [250, 0, 0, 0, 250, 0, 0, 0, 250, 0, 

0, 0, 250, 0, 0, 0]. Figure  4-27 shows the last column vector labeled “spectrum”, which is active 

for the four first points, implying that only the first four elements at the output of SRFFT should 

be nonzero. We should note that the indices at the output of SRFFT diagram are not sorted, 

hence the first four points at the non-sorted FFT output are not the first four frequency bins of the 

input signal but other frequency indices. The result of computation is read out of RAM and 

shown with addresses in Figure  4-28. Note that there is one clock cycle shift between the 

addresses and the SRFFT indices with respect to the data output. For example, “1000” is aligned 

to the input of address 2 and continues to the end of address 5, but they belong to address 1 to 4.  

Table  4-4 compares the result of FFT computation from Matlab and our pruned SRFFT core and 

confirms the excellent agreement between them.  
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Figure  4-27: Validation test of the pruned split radix FFT; data input and the spectrum vector 

 

Figure  4-28:Results of the computation 

Another test was also carried out for the 16-point FFT but with different frequency contents. 

Using Matlab, this data set is selected to have four non-zero frequency contents as in the array of 

[0, 0, 0, 0, 1000, 1000, 1000, 1000, 0, 0, 0, 0, 0, 0, 0, 0]. The result of computations, which is 

expected to be the unsorted input array of the “IFFT” function in MATLAB, is listed and 

compared with the true value in Table  4-5. The snapshot of the simulation results showing both 

inputs and outputs are demonstrated in Figure  4-29 and Figure  4-30. Good agreement between 

the computations with the pruned SRFFT core and the Matlab function validates the correct 

functionality of our processor. 
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Table  4-4: Results of pruned SRFFT computations 

FFT                                

Index 
Matlab/Real VHDL/Real Matlab/Imaginary VHDL/Imaginary 

1 1000 1000 0 0 

9 1000 1000 0 0 

5 1000 1000 0 0 

13 1000 1000 0 0 

3 0 0                 0 0 

11 0 0 0 0 

7 0 0 0               0 

15 0 0 0               0 

2 0 0 0 0 

10 0 0 0 0 

6 0 0 0 0 

14 0 0 0 0 

4            0 0 0 0 

12 0 0 0               0 

8 0 0 0 0 

16 0          0 0 0 

 

Figure  4-29: split radix pruning with 16-point inputs 
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Figure  4-30: Results of a 16 point SRFFT with pruning 

Table  4-5: Comparison of the computed results 

FFT Index Matlab/Real VHDL/Real Matlab/Image VHDL/Image 

1 0         -4 0 0 

9 0 0 0 0 

5 1000 1004 0 0 

13 0 0 0 0 

3 0 0             0 0 

11 0 1 0 0 

7 1000      1000 0            0 

15 0 3 0            0 

2 0 0 0 0 

10 0 0 0 0 

6 1000 998 0 0 

14 0 0 0 0 

4            0 -1 0 0 

12 0 3 0           0 

8 1000 998 0 0 

16 0          0 0 0 
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4.5 Synthesis and assessment of power consumption   

In order to estimate the power savings, the SRFFT core was used to implement two different FFT 

lengths, 1024 and 512, on a Xilinx Virtex-6 FPGA. According to the synthesis report of the core 

targeting an FPGA implementation, presented in Appendix A, the critical delay path of 3.74 ns 

imposes a maximum operating clock frequency of 268 MHz. The performance of core in terms of 

power consumption is assessed using the Xpower Analyzer available in Xilinx ISE. When the 

pruning engine is not actively working, it consumes power for the task of pruning matrix 

generation. For instance, for 1024-point FFT, the dynamic power consumption for the SRFFT 

core without a pruning engine and with an inactive one (outputs not used; computations are carried out 

for power characterisation) is 39.6 mW and 46.0 mW, respectively. The analysis reports are presented 

in the Appendices E and F. This implies an overhead of around 15% in power consumption when 

the pruning engine is not actively used. Nevertheless, the active pruning engine can save a 

considerable amount of overall power in comparison to the SRFFT without a pruning engine. 

Table 2-1 shows the power analysis result for two different cases when the core operates with a 

clock frequency of 100 MHz. The comparison is made between the power consumption of an 

SRFFT core with active pruning engine with reference to a SRFFT core without pruning engine. 

Furthermore, the reference for comparison is indeed an SRFFT core without any additional logic 

unit for pruning or disabling the butterflies. The inputs are identical for both cores and for the 

pruning-SRFFT core, the last column of pruning matrix is provided to be used for generating the  

pruning matrix in the pruning engine prior to SRFFT computation. One can see that using the 

pruning engine in maximum sparseness scenarios, i.e. when only four nonzero frequency bins 

exist, helped reducing the power consumption by 20%. It should be mentioned that in the case of 

256 non-zero elements reported in Table 2-1, the non-zero elements are located at the first quarter 

of the spectrum. Having a closer look at the power simulation results reported in Table 4-7, we 

can conclude that maximum reduction in power consumption is limited to around 20%. In the 

second test, when the number of non-zero elements is changed to 256, which is 25% and 50% of 

non-zero elements for 1024 and 512 point SRFFT, the amount of saving reaches 14% on average. 

For the latter case, this saving is slightly better than the former one, even though the number of 

non-zeros is 25% more. This is due to the fact that there is a nonlinear relationship between 

number of complex multiplications and the power consumption. Indeed, the total power 
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consumption also depends on the number of signals, the size of the RAMs, the number of I/Os 

and so on. This implies a complicated relationship that explains the nonlinear behaviour with 

respect to the amount of energy consumption reduction along with the increase in the number of 

non-zeros with different FFT lengths. Thus, a large reduction in the number of complex 

multiplications reported in Figure 2-1 does not guarantee the same amount of power saving. Even 

with the previously reported works on FFT pruning, a difference can be seen from the achieved 

power saving [17] compared to what can seemingly be expected from Figure 2-1. Thus, with 

reference to previously reported work, our analysis proves a considerable reduction in power 

consumption through pruning technique with the SRFFT algorithm. 

Table  4-6: Power analysis of SRFFT with pruning engine 

Number of nonzero 

Power Saving (%) 

1024 512 

4 20.46 20.87 

256 13.62 15.86 

The synthesis and also place & route reports of the developed SRFFT core with and without 

pruning engine are reported in Appendices I to III. 

4.5.1 Discussion 

In [34], power savings around 11.2% with non-pruned SRFFT over their previous work on 

ordinary FFT was reported. As already mentioned, around 10% saving on power consumption 

was achieved through applying pruning technique on ordinary FFT [17]. We should note these 

works are done on the classic FFT algorithm, which is not optimum as even a non-pruned 

SRFFT outperforms the pruned FFT in terms of computational complexity, and hence power 

consumption.  To the best of our knowledge, this is the first time that a SRFFT architecture that 

includes a pruning engine is proposed and its performance is analyzed in terms of power 

consumption. Comparing the results of this research with the literature, the 20% power 

consumption saving that was obtained appears to be a significant improvement. 
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CHAPTER 5 CONCLUSIONS AND FUTURE WORK 

In this thesis, an architecture implementing an FFT engine implementing the SRFFT algorithm 

and including a pruning engine is described. 

A SRFFT core is first developed, simulated and synthesized in FPGA and then a pruning engine 

is added in order to reduce the power consumption. Upon validation of the functionality of the 

developed core, the performance of the processor is assessed in terms of power consumption. In 

order to see the amount of reduction in power consumption, the SRFFT core with and without a 

pruning engine are compared.   

In comparison to an SRFFT reference core, the pruning engine can reduce power consumption by 

more than 20% when the spectrum of the signal is very sparse.  This makes the proposed scheme 

interesting for future communication systems, in particular the cognitive radios based on OFDM. 

For further improvements of the current achievements, the authors would like to propose the 

following options as possible directions of future research: 

1) The matrix generation engine consumes a considerable amount of power that yields 15% 

overhead. Thus, removing this generation step and replacing it with a RAM where the 

pruning matrix can be stored and ready to use may improve savings on power 

consumption.  

2) Improve the pruning matrix and the algorithm for its generation. Indeed, the current 

pruning matrix is not able to control each part of a butterfly block and the decision on 

operation of a butterfly block is made based on the existence of at least one non-zero value 

at the output of the butterfly. All matrix elements could be considered individually, thus 

providing a more precise control on the unnecessary computations.  

3) Improve the pruning engine so that it consumes less power for matrix pruning generation. 

Moreover, if the power overhead that exists due to the pruning engine is reduced, more 

power savings may be anticipated. 
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APPENDIX A SRFFT SYNTHESIS REPORT 

Report of the SRFFT   

Device utilization summary: 

--------------------------- 

Selected Device : 6vlx75tff484-3  

Slice Logic Utilization:  

Number of Slice Registers:            2113  out of  93120     2%   

Number of Slice LUTs:                 1804  out of  46560     3%   

Number used as Logic:              1604  out of  46560     3%   

Number used as Memory:              200  out of  16720     1%   

Number used as SRL:              200 

Slice Logic Distribution:  

Number of LUT Flip Flop pairs used:   2686 

Number with an unused Flip Flop:     573  out of   2686    21%   

Number with an unused LUT:           882  out of   2686    32%   

Number of fully used LUT-FF pairs:  1231  out of   2686    45%   

Number of unique control sets:        22 

IO Utilization:  

Number of IOs:                          66 

Number of bonded IOBs:                  66  out of    240    27%   

Specific Feature Utilization: 

Number of Block RAM/FIFO:                5  out of    156     3%   

Number using Block RAM only:          5 

Number of BUFG/BUFGCTRLs:                1  out of     32     3%   

Number of DSP48E1s:                      8  out of    288     2%   

Timing Summary: 

--------------- 

Speed Grade: -3 

Minimum period: 3.738ns (Maximum Frequency: 267.551MHz) 

Minimum input arrival time before clock: 2.717ns 

Maximum output required time after clock: 1.892ns 

Maximum combinational path delay: No path found 

Timing Details: 

Timing constraint: Default period analysis for Clock 'clk' 

Clock period: 3.738ns (frequency: 267.551MHz) 

Total number of paths / destination ports: 42325 / 2665 

------------------------------------------------------------------------- 

Delay:               3.738ns (Levels of Logic = 1) 

Source:            Inst_butterfly3/sum1_0 (FF) 

Destination:       Inst_butterfly3/hi2_r_0 (FF) 

Source Clock:      clk rising 

Destination Clock: clk rising 
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Data Path: Inst_butterfly3/sum1_0 to Inst_butterfly3/hi2_r_0 

        Gate     Net 

Cell:in->out      fanout   Delay   Delay  Logical Name (Net Name) 

----------------------------------------  ------------ 

 FDC:C->Q             13   0.280   0.335  Inst_butterfly3/sum1_0 (Inst_butterfly3/sum1_0) 

DSP48E1:A15->P29      1   2.843   0.279  

Inst_butterfly3/Mmult_wi1_r2[0]_sum2[0]_MuLt_16_OUT 

(Inst_butterfly3/wi1_r2[0]_sum2[0]_MuLt_16_OUT<29>) 

     FDC:D                    -0.012          Inst_butterfly3/hi2_r_29 

    ---------------------------------------- 

    Total                      3.738ns (3.123ns logic, 0.615ns route) 

                                       (83.6% logic, 16.4% route) 
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APPENDIX B SRFFT PLACE & ROUTE REPORT 

 

Device Utilization Summary: 

Slice Logic Utilization: 

Number of Slice Registers:                      2,113 out of  93,120    2% 

Number used as Flip Flops:                    2,113 

Number used as Latches:                          0 

Number used as Latch-thrus:                  0 

Number used as AND/OR logics:                0 

Number of Slice LUTs:                      1,641 out of  46,560    3% 

Number used as logic:                    1,288 out of  46,560    2% 

Number using O6 output only:             941 

Number using O5 output only:              10 

Number using O5 and O6:                  337 

Number used as ROM:                        0 

Number used as Memory:                     200 out of  16,720    1% 

Number used as Dual Port RAM:              0 

Number used as Single Port RAM:            0 

Number used as Shift Register:           200 

Number using O6 output only:           200 

Number using O5 output only:             0 

Number using O5 and O6:                  0 

Number used exclusively as route-thrus:    153 

Number with same-slice register load:    148 

Number with same-slice carry load:         5 

Number with other load:                    0 

 

Slice Logic Distribution: 

Number of occupied Slices:                   466 out of  11,640    4% 

Number of LUT Flip Flop pairs used:        1,757 

Number with an unused Flip Flop:           258 out of   1,757   14% 

Number with an unused LUT:                 116 out of   1,757    6% 

Number of fully used LUT-FF pairs:       1,383 out of   1,757   78% 

Number of slice register sites lost 

to control set restrictions:               0 out of  93,120    0% 

 

 

IO Utilization: 

  Number of bonded IOBs:                        66 out of     240   27% 

 

+---------------------+--------------+------+------+------------+-------------+ 

|        Clock Net    |   Resource   |Locked|Fanout|Net Skew(ns)|Max Delay(ns)| 

+---------------------+--------------+------+------+------------+-------------+ 

|           clk_BUFGP | BUFGCTRL_X0Y0| No   |  425 |  0.127     |  1.486      | 
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+---------------------+--------------+------+------+------------+-------------+ 

 

Timing Score: 0 (Setup: 0, Hold: 0, Component Switching Limit: 0) 

 

---------------------------------------------------------------------------------------------------------- 

  Constraint                                |    Check    | Worst Case |  Best Case | Timing |   Timing    

                                            |             |    Slack   | Achievable | Errors |    Score    

---------------------------------------------------------------------------------------------------------- 

  TS_clk = PERIOD TIMEGRP "clk" 20 ns HIGH  | SETUP       |    15.036ns|     4.964ns|       0|           

0 

  50%                                       | HOLD        |     0.092ns|            |       0|           0 

---------------------------------------------------------------------------------------------------------- 
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    APPENDIX C SRFFT PRUNING SYNTHESIS REPORT 

Device utilization summary: 

--------------------------- 

 

Selected Device : 6vlx75tff484-3  

 

 

Slice Logic Utilization: 

Number of Slice Registers:               2360  out of  93120     2% 

Number of Slice LUTs:                 2291  out of  46560     4% 

Number used as Logic:              2095  out of  46560     4% 

Number used as Memory:              196  out of  16720     1% 

Number used as SRL:              196 

 

Slice Logic Distribution: 

Number of LUT Flip Flop pairs used:   3208 

Number with an unused Flip Flop:     848  out of   3208    26% 

Number with an unused LUT:           917  out of   3208    28% 

Number of fully used LUT-FF pairs:  1443  out of   3208    44% 

Number of unique control sets:        40 

 

IO Utilization: 

Number of IOs:                          66 

Number of bonded IOBs:                  66  out of    240    27% 

 

Specific Feature Utilization: 

Number of Block RAM/FIFO:                6  out of    156     3% 

Number using Block RAM only:          6 

Number of BUFG/BUFGCTRLs:                1  out of     32     3% 

Number of DSP48E1s:                      8  out of    288     2% 

 

--------------------------- 

 

-----------------------------------+------------------------+-------+ 

Clock Signal                       | Clock buffer(FF name)  | Load  | 

-----------------------------------+------------------------+-------+ 

clk                                | BUFGP                  | 2567  | 

-----------------------------------+------------------------+-------+ 

 

Asynchronous Control Signals Information: 

---------------------------------------- 

-----------------------------------+-----------------------------------------+-------+ 

Control Signal                     | Buffer(FF name)                         | Load  | 
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-----------------------------------+-----------------------------------------+-------+ 

write_ctrl(write_ctrl_INV_0:O)     | NONE(Inst_mamory1_Imag/Mram_ram_11)     | 8     | 

write_ctrl2(write_ctrl2_INV_0:O)   | NONE(Inst_memory2/Mram_ram_11)          | 8     | 

write_ctrl1(write_ctrl1_INV_0:O)   | NONE(Inst_Ram_matrixpruning/Mram_ram_12)| 4     | 

-----------------------------------+-----------------------------------------+-------+ 

 

Timing Summary: 

--------------- 

Speed Grade: -3 

 

Minimum period: 3.738ns (Maximum Frequency: 267.551MHz) 

Minimum input arrival time before clock: 1.943ns 

Maximum output required time after clock: 1.892ns 

Maximum combinational path delay: No path found 

 

Timing Details: 

--------------- 

All values displayed in nanoseconds (ns) 

 

=====================================================================

==== 

Timing constraint: Default period analysis for Clock 'clk' 

Clock period: 3.738ns (frequency: 267.551MHz) 

Total number of paths / destination ports: 70991 / 4318 

------------------------------------------------------------------------- 

Delay:               3.738ns (Levels of Logic = 1) 

Source:            Inst_butterfly3/sum1_0 (FF) 

Destination:       Inst_butterfly3/hi2_r_29 (FF) 

Source Clock:      clk rising 

Destination Clock: clk rising 

 

Data Path: Inst_butterfly3/sum1_0 to Inst_butterfly3/hi2_r_29 

Gate     Net 

Cell:in->out      fanout   Delay   Delay  Logical Name (Net Name) 

----------------------------------------  ------------ 

FDCE:C->Q            13   0.280   0.335  Inst_butterfly3/sum1_0 (Inst_butterfly3/sum1_0) 

DSP48E1:A15->P29      1   2.843   0.279  

Inst_butterfly3/Mmult_wi1_r2[0]_sum2[0]_MuLt_16_OUT 

(Inst_butterfly3/wi1_r2[0]_sum2[0]_MuLt_16_OUT<29>) 

FDCE:D                   -0.012          Inst_butterfly3/hi2_r_29 

---------------------------------------- 

Total                      3.738ns (3.123ns logic, 0.615ns route) 

                                       (83.6% logic, 16.4% route) 
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=====================================================================

==== 

Timing constraint: Default OFFSET IN BEFORE for Clock 'clk' 

Total number of paths / destination ports: 2204 / 2198 

------------------------------------------------------------------------- 

Offset:              1.943ns (Levels of Logic = 4) 

Source:            rst (PAD) 

Destination:       Inst_statemachine_Mram__n33331 (RAM) 

Destination Clock: clk rising 

 

Data Path: rst to Inst_statemachine_Mram__n33331 

Gate     Net 

Cell:in->out      fanout   Delay   Delay  Logical Name (Net Name) 

----------------------------------------  ------------ 

IBUF:I->O          1967   0.003   0.581  rst_IBUF (rst_IBUF) 

LUT3:I1->O            4   0.053   0.310  Inst_statemachine/_n198821 (Inst_statemachine/_n19882) 

LUT5:I4->O            1   0.053   0.279  Inst_statemachine/_n29361 (Inst_statemachine/_n2936) 

INV:I->O              2   0.070   0.284  Inst_statemachine__n2936_inv_INV_0 

(Inst_statemachine__n2936_inv) 

RAMB36E1:ENARDEN          0.310          Inst_statemachine_Mram__n33331 

---------------------------------------- 

Total                      1.943ns (0.489ns logic, 1.454ns route) 

(25.2% logic, 74.8% route) 

 

=====================================================================

==== 

Timing constraint: Default OFFSET OUT AFTER for Clock 'clk' 

Total number of paths / destination ports: 64 / 32 

------------------------------------------------------------------------- 

Offset:              1.892ns (Levels of Logic = 1) 

Source:            Inst_mamory1/Mram_ram_12 (RAM) 

Destination:       in_ram1_r<0> (PAD) 

Source Clock:      clk rising 

 

Data Path: Inst_mamory1/Mram_ram_12 to in_ram1_r<0> 

Gate     Net 

Cell:in->out      fanout   Delay   Delay  Logical Name (Net Name) 

----------------------------------------  ------------ 

RAMB18E1:CLKARDCLK->DOADO7    5   1.591   0.298  Inst_mamory1/Mram_ram_12 

(sigz1DATAr<0>) 

OBUFT:I->O                0.003          in_ram1_r_0_OBUFT (in_ram1_r<0>) 

---------------------------------------- 

Total                      1.892ns (1.594ns logic, 0.298ns route) 

(84.2% logic, 15.8% route) 
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===================================================================== 

 

Cross Clock Domains Report: 

-------------------------- 

 

Clock to Setup on destination clock clk 

---------------+---------+---------+---------+---------+ 

               | Src:Rise| Src:Fall| Src:Rise| Src:Fall| 

Source Clock   |Dest:Rise|Dest:Rise|Dest:Fall|Dest:Fall| 

---------------+---------+---------+---------+---------+ 

clk            |    3.738|         |         |         | 

---------------+---------+---------+---------+---------+ 

 

===================================================================== 

 

 

Total REAL time to Xst completion: 36.00 secs 

Total CPU time to Xst completion: 36.97 secs 

  

-->  

 

Total memory usage is 331572 kilobytes 

 

Number of errors   :    0 (   0 filtered) 

Number of warnings :  305 (   0 filtered) 

Number of infos    :   62 (   0 filtered) 
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APPENDIX D SRFFT PRUNING PLACE & ROUTE REPORT 

 

Device Utilization Summary: 

 

Slice Logic Utilization: 

Number of Slice Registers:                 2,360 out of  93,120    2% 

Number used as Flip Flops:               2,360 

Number used as Latches:                      0 

Number used as Latch-thrus:                  0 

Number used as AND/OR logics:                0 

Number of Slice LUTs:                      2,050 out of  46,560    4% 

Number used as logic:                    1,660 out of  46,560    3% 

Number using O6 output only:           1,121 

Number using O5 output only:              33 

Number using O5 and O6:                  506 

Number used as ROM:                        0 

Number used as Memory:                     196 out of  16,720    1% 

Number used as Dual Port RAM:              0 

Number used as Single Port RAM:            0 

Number used as Shift Register:           196 

Number using O6 output only:           196 

Number using O5 output only:             0 

Number using O5 and O6:                  0 

Number used exclusively as route-thrus:    194 

Number with same-slice register load:    187 

Number with same-slice carry load:         7 

Number with other load:                    0 

 

Slice Logic Distribution: 

Number of occupied Slices:                   667 out of  11,640    5% 

Number of LUT Flip Flop pairs used:        2,393 

Number with an unused Flip Flop:           520 out of   2,393   21% 

Number with an unused LUT:                 343 out of   2,393   14% 

Number of fully used LUT-FF pairs:       1,530 out of   2,393   63% 

Number of slice register sites lost 

to control set restrictions:               0 out of  93,120    0% 

 

 

IO Utilization: 

Number of bonded IOBs:                        66 out of     240   27% 

 

Specific Feature Utilization: 

Number of RAMB36E1/FIFO36E1s:                  1 out of     156    1% 

Number using RAMB36E1 only:                  1 
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Number using FIFO36E1 only:                  0 

Number of RAMB18E1/FIFO18E1s:                 10 out of     312    3% 

Number using RAMB18E1 only:                 10 

Number using FIFO18E1 only:                  0 

Number of BUFG/BUFGCTRLs:                      1 out of      32    3% 

Number used as BUFGs:                        1 

Number used as BUFGCTRLs:                    0 

Number of ILOGICE1/ISERDESE1s:                 0 out of     360    0% 

Number of OLOGICE1/OSERDESE1s:                 0 out of     360    0% 

Number of BSCANs:                              0 out of       4    0% 

Number of BUFHCEs:                             0 out of      72    0% 

Number of BUFOs:                               0 out of      18    0% 

Number of BUFIODQSs:                           0 out of      36    0% 

Number of BUFRs:                               0 out of      18    0% 

Number of CAPTUREs:                            0 out of       1    0% 

Number of DSP48E1s:                            8 out of     288    2% 

Number of EFUSE_USRs:                          0 out of       1    0% 

Number of FRAME_ECCs:                          0 out of       1    0% 

Number of GTXE1s:                              0 out of       8    0% 

Number of IBUFDS_GTXE1s:                       0 out of       6    0% 

Number of ICAPs:                               0 out of       2    0% 

Number of IDELAYCTRLs:                         0 out of       9    0% 

Number of IODELAYE1s:                          0 out of     360    0% 

Number of MMCM_ADVs:                           0 out of       6    0% 

Number of PCIE_2_0s:                           0 out of       1    0% 

Number of STARTUPs:                            1 out of       1  100% 

Number of SYSMONs:                             0 out of       1    0% 

Number of TEMAC_SINGLEs:                       0 out of       4    0% 

 

+---------------------+--------------+------+------+------------+-------------+ 

|        Clock Net    |   Resource   |Locked|Fanout|Net Skew(ns)|Max Delay(ns)| 

+---------------------+--------------+------+------+------------+-------------+ 

|           clk_BUFGP | BUFGCTRL_X0Y0| No   |  549 |  0.215     |  1.570      | 

+---------------------+--------------+------+------+------------+-------------+ 

 

 

---------------------------------------------------------------------------------------------------------- 

  Constraint                                |    Check    | Worst Case |  Best Case | Timing |   Timing    

                                            |             |    Slack   | Achievable | Errors |    Score    

---------------------------------------------------------------------------------------------------------- 

  TS_clk = PERIOD TIMEGRP "clk" 5 ns HIGH 5 | SETUP       |     0.247ns|     4.753ns|       0|           

0 

  0%                                        | HOLD        |     0.088ns|            |       0|           0 
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APPENDIX E POWER REPORT FOR SRFFT WITHOUT PRUNING 

ENGINE FOR 1024 

 

 

Release                | 13.1 - O.40d (nt64)                     | 

| Command Line           | Generated from Graphical User Interface | 

-------------------------------------------------------------------- 

 

-------------------------------- 

|      Table of Contents       | 

-------------------------------- 

| 1.  Settings                 | 

| 1.1.  Project                | 

| 1.2.  Device                 | 

| 1.3.  Environment            | 

| 1.4.  Default Activity Rates | 

| 2.  Summary                  | 

| 2.1.  On-Chip Power Summary  | 

| 2.2.  Thermal Summary        | 

| 2.3.  Power Supply Summary   | 

| 2.4.  Confidence Level       | 

| 3.  Detailed Reports         | 

| 3.1.  By Hierarchy           | 

| 3.2.  By Clock Domain        | 

| 3.3.  By Resource Type       | 

| 3.3.1.  Core Dynamic         | 

| 3.3.1.1.  Logic              | 

| 3.3.1.2.  Signals            | 

| 3.3.1.3.  BRAM               | 

| 3.3.1.4.  DSP                | 

| 3.3.2.  IO                   | 

-------------------------------- 

 

1.  Settings 

1.1.  Project 

------------------------------------------- 

|                 Project                 | 

------------------------------------------- 

| Design File               | portmap.ncd | 

| Settings File             | NA          | 

| Physical Constraints File | portmap.pcf | 

| Simulation Activity File  | NA          | 

| Design Nets Matched       | NA          | 
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| Simulation Nets Matched   | NA          | 

------------------------------------------- 

 

1.2.  Device 

------------------------------------------------- 

|                    Device                     | 

------------------------------------------------- 

| Family           | Virtex6                    | 

| Part             | xc6vlx75t                  | 

| Package          | ff484                      | 

| Grade            | C-Grade                    | 

| Process          | Typical                    | 

| Speed Grade      | -3                         | 

| Characterization | Production,v1.2,2010-12-16 | 

------------------------------------------------- 

 

1.3.  Environment 

-------------------------------------------- 

|               Environment                | 

-------------------------------------------- 

| Ambient Temp (C)      | 50.0             | 

| Use custom TJA?       | No               | 

| Custom TJA (C/W)      | NA               | 

| Airflow (LFM)         | 250              | 

| Heat Sink             | None             | 

| Custom TSA (C/W)      | NA               | 

| Board Selection       | Medium (10"x10") | 

| # of Board Layers     | 12 to 15         | 

| Custom TJB (C/W)      | NA               | 

| Board Temperature (C) | NA               | 

-------------------------------------------- 

 

1.4.  Default Activity Rates 

---------------------------------- 

|     Default Activity Rates     | 

---------------------------------- 

| FF Toggle Rate (%)     | 12.5  | 

| I/O Toggle Rate (%)    | 12.5  | 

| Output Load (pF)       | 5.0   | 

| I/O Enable Rate (%)    | 100.0 | 

| BRAM Write Rate (%)    | 50.0  | 

| BRAM Enable Rate (%)   | 25.0  | 

| DSP Toggle Rate (%)    | 12.5  | 

---------------------------------- 
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2.  Summary 

2.1.  On-Chip Power Summary 

----------------------------------------------------------------------------- 

|                           On-Chip Power Summary                           | 

----------------------------------------------------------------------------- 

|        On-Chip        | Power (mW) |  Used  | Available | Utilization (%) | 

----------------------------------------------------------------------------- 

| Clocks                |      16.54 |      1 |    ---    |       ---       | 

| Logic                 |       1.47 |   1641 |     46560 |               4 | 

| Signals               |       2.73 |   3016 |    ---    |       ---       | 

| IOs                   |      14.17 |     66 |       240 |              28 | 

| BlockRAM/FIFO         |       4.45 |  ---   |    ---    |       ---       | 

|   18K BlockRAM        |       4.35 |      8 |       312 |               3 | 

|   36K BlockRAM        |       0.11 |      1 |       156 |               1 | 

| DSPs                  |       0.23 |      8 |       288 |               3 | 

| Quiescent             |    1326.06 |        |           |                 | 

| Total                 |    1365.65 |        |           |                 | 

----------------------------------------------------------------------------- 

 

2.2.  Thermal Summary 

------------------------------ 

|      Thermal Summary       | 

------------------------------ 

| Effective TJA (C/W) | 5.6  | 

| Max Ambient (C)     | 77.4 | 

| Junction Temp (C)   | 57.6 | 

------------------------------ 

 

2.3.  Power Supply Summary 

-------------------------------------------------------- 

|                 Power Supply Summary                 | 

-------------------------------------------------------- 

|                      |  Total  | Dynamic | Quiescent | 

-------------------------------------------------------- 

| Supply Power (mW)    | 1365.65 | 39.60   | 1326.06   | 

-------------------------------------------------------- 

 

--------------------------------------------------------------------------------------------------------------- 

|                                            Power Supply Currents                                            | 

--------------------------------------------------------------------------------------------------------------- 

|     Supply Source     | Supply Voltage | Total Current (mA) | Dynamic Current (mA) | Quiescent 

Current (mA) | 

--------------------------------------------------------------------------------------------------------------- 

| Vccint                |          1.000 |             678.97 |                26.67 |                 652.30 | 

| Vccaux                |          2.500 |              45.27 |                 0.27 |                  45.00 | 
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| Vcco25                |          2.500 |               5.90 |                 4.90 |                   1.00 | 

| MGTAVcc               |          1.000 |             303.43 |                 0.00 |                 303.43 | 

| MGTAVtt               |          1.200 |             212.78 |                 0.00 |                 212.78 | 

--------------------------------------------------------------------------------------------------------------- 

 

2.4.  Confidence Level 

---------------------------------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------- 

|                                                                                                Confidence Level                                                                                                

| 
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APPENDIX F POWER REPORT WITH PRUNING FOR 1024 NON-ZERO 

 

 

                     Xilinx XPower Analyzer                      | 

-------------------------------------------------------------------- 

| Release                | 13.1 - O.40d (nt64)                     | 

| Command Line           | Generated from Graphical User Interface | 

-------------------------------------------------------------------- 

 

-------------------------------- 

|      Table of Contents       | 

-------------------------------- 

| 1.  Settings                 | 

| 1.1.  Project                | 

| 1.2.  Device                 | 

| 1.3.  Environment            | 

| 1.4.  Default Activity Rates | 

| 2.  Summary                  | 

| 2.1.  On-Chip Power Summary  | 

| 2.2.  Thermal Summary        | 

| 2.3.  Power Supply Summary   | 

| 2.4.  Confidence Level       | 

| 3.  Detailed Reports         | 

| 3.1.  By Hierarchy           | 

| 3.2.  By Clock Domain        | 

| 3.3.  By Resource Type       | 

| 3.3.1.  Core Dynamic         | 

| 3.3.1.1.  Logic              | 

| 3.3.1.2.  Signals            | 

| 3.3.1.3.  BRAM               | 

| 3.3.1.4.  DSP                | 

| 3.3.2.  IO                   | 

-------------------------------- 

 

1.  Settings 

1.1.  Project 

------------------------------------------- 

|                 Project                 | 

------------------------------------------- 

| Design File               | portmap.ncd | 

| Settings File             | NA          | 

| Physical Constraints File | portmap.pcf | 

| Simulation Activity File  | NA          | 

| Design Nets Matched       | NA          | 
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| Simulation Nets Matched   | NA          | 

------------------------------------------- 

 

1.2.  Device 

------------------------------------------------- 

|                    Device                     | 

------------------------------------------------- 

| Family           | Virtex6                    | 

| Part             | xc6vlx75t                  | 

| Package          | ff484                      | 

| Grade            | C-Grade                    | 

| Process          | Typical                    | 

| Speed Grade      | -3                         | 

| Characterization | Production,v1.2,2010-12-16 | 

------------------------------------------------- 

 

1.3.  Environment 

-------------------------------------------- 

|               Environment                | 

-------------------------------------------- 

| Ambient Temp (C)      | 50.0             | 

| Use custom TJA?       | No               | 

| Custom TJA (C/W)      | NA               | 

| Airflow (LFM)         | 250              | 

| Heat Sink             | None             | 

| Custom TSA (C/W)      | NA               | 

| Board Selection       | Medium (10"x10") | 

| # of Board Layers     | 12 to 15         | 

| Custom TJB (C/W)      | NA               | 

| Board Temperature (C) | NA               | 

-------------------------------------------- 

 

1.4.  Default Activity Rates 

---------------------------------- 

|     Default Activity Rates     | 

---------------------------------- 

| FF Toggle Rate (%)     | 12.5  | 

| I/O Toggle Rate (%)    | 12.5  | 

| Output Load (pF)       | 5.0   | 

| I/O Enable Rate (%)    | 100.0 | 

| BRAM Write Rate (%)    | 50.0  | 

| BRAM Enable Rate (%)   | 25.0  | 

| DSP Toggle Rate (%)    | 12.5  | 

---------------------------------- 
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2.  Summary 

2.1.  On-Chip Power Summary 

----------------------------------------------------------------------------- 

|                           On-Chip Power Summary                           | 

----------------------------------------------------------------------------- 

|        On-Chip        | Power (mW) |  Used  | Available | Utilization (%) | 

----------------------------------------------------------------------------- 

| Clocks                |      19.64 |      1 |    ---    |       ---       | 

| Logic                 |       1.60 |   1977 |     46560 |               4 | 

| Signals               |       2.75 |   3571 |    ---    |       ---       | 

| IOs                   |      16.16 |     66 |       240 |              28 | 

| BlockRAM/FIFO         |       5.61 |  ---   |    ---    |       ---       | 

|   18K BlockRAM        |       5.59 |     10 |       312 |               3 | 

|   36K BlockRAM        |       0.01 |      1 |       156 |               1 | 

| DSPs                  |       0.23 |      8 |       288 |               3 | 

| Quiescent             |    1326.37 |        |           |                 | 

| Total                 |    1372.37 |        |           |                 | 

----------------------------------------------------------------------------- 

 

2.2.  Thermal Summary 

------------------------------ 

|      Thermal Summary       | 

------------------------------ 

| Effective TJA (C/W) | 5.6  | 

| Max Ambient (C)     | 77.4 | 

| Junction Temp (C)   | 57.6 | 

------------------------------ 

 

2.3.  Power Supply Summary 

-------------------------------------------------------- 

|                 Power Supply Summary                 | 

-------------------------------------------------------- 

|                      |  Total  | Dynamic | Quiescent | 

-------------------------------------------------------- 

| Supply Power (mW)    | 1372.37 | 45.99   | 1326.37   | 

-------------------------------------------------------- 
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APPENDIX G FOR VALIDATING THE SRFFT PERFORMANCE 

Inputs: 100, 200, 400, 600, 700, 800, 0, 400, 200, 100, 700, 600, 400, 300, 0, 600, 100, 200, 400, 

600, 700, 800, 0, 400, 200, 100, 700, 600, 400, 300, 0, 600. 

Table 1: The comparison between Matlab and proposed SRFFT 

Matlab/Real VHDL/Real Matlab/Image VHDL/Image 

12200 12200 0 0 

-2200 -2200 0 0 

600 600 1600 1600 

600 600 -1600 -1600 

-3014 -3015 -1351 -1352 

-186 -185 -3049 -3048 

-186 -186 3049 -3048 

-3014 -3014 1351 1352 

-453 -454 1023 -1024 

79.64 -796 672 672 

-929 -929 -457 -467 

1378 1379 -1592 -1591 

1378 1377 1592 1590 

-929 -929 457 458 

-796 -796 -672 -671 

-453 -452 1023 1023 

0 0 0 0 

0 0 0 0 

0 0 0 0 
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0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

 

 

 

 

Input of the 32 point SRFFT 
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Rest of the 32 point input SRFFT 

 

Output of the 32 point 
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