
UNIVERSITÉ DE MONTRÉAL

NEAR DETERMINISTIC SIGNAL PROCESSING USING GPU, DPDK, AND MKL

ROYA ALIZADEH

DÉPARTEMENT DE GÉNIE ÉLECTRIQUE

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

MÉMOIRE PRÉSENTÉ EN VUE DE L’OBTENTION

DU DIPLÔME DE MAÎTRISE ÈS SCIENCES APPLIQUÉES

(GÉNIE ÉLECTRIQUE)

JUIN 2015

© Roya Alizadeh, 2015.



UNIVERSITÉ DE MONTRÉAL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

Ce mémoire intitulé :

NEAR DETERMINISTIC SIGNAL PROCESSING USING GPU, DPDK, AND MKL

présenté par : ALIZADEH Roya

en vue de l’obtention du diplôme de : Mâıtrise ès sciences appliquées

a été dûment accepté par le jury d’examen constitué de :

M. ZHU Guchuan, Doctorat, président

M. SAVARIA Yvon, Ph.D., membre et directeur de recherche

M. FRIGON Jean-François, Ph.D., membre



iii

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisor, Prof. Yvon Savaria for his

unwavering support and guidance. I appreciate his patience and positive attitude which has

helped me overcome difficult challenges during my studies. I thank him for providing me with

excellent conditions to do my master studies at Ecole Polytechnique of Montreal.

I must thank Dr. Normand Bélanger for his professional advice and feedback during my

research work. Our productive discussions helped me elevate the quality of my research work

and improve my writing skills. I should also thank him for helping me with French translations

in this thesis.

I owe a great debt of gratitude to Prof. Jean-François Frigon for his valuable comments for

the completion of this thesis. I would like to thank Prof. Guchuan Zhu for having productive

discussions during my research work. I must thank Prof. Michael Corinthios because of his

offering of graduate courses which helped me strengthen my academic skills.

I would like to thank all of my great friends in Montreal for accompanying me and

supporting me during my studies.

Last but not the least, my greatest and deepest gratitude goes to my family who have

made many sacrifices in their lives for me.



iv

RÉSUMÉ

En radio définie par logiciel, le traitement numérique du signal impose le traitement

en temps réel des donnés et des signaux. En outre, dans le développement de systèmes de

communication sans fil basés sur la norme dite Long Term Evolution (LTE), le temps réel et

une faible latence des processus de calcul sont essentiels pour obtenir une bonne expérience

utilisateur. De plus, la latence des calculs est une clé essentielle dans le traitement LTE, nous

voulons explorer si des unités de traitement graphique (GPU) peuvent être utilisées pour

accélérer le traitement LTE. Dans ce but, nous explorons la technologie GPU de NVIDIA

en utilisant le modèle de programmation Compute Unified Device Architecture (CUDA)

pour réduire le temps de calcul associé au traitement LTE. Nous présentons brièvement

l’architecture CUDA et le traitement parallèle avec GPU sous Matlab, puis nous comparons

les temps de calculs avec Matlab et CUDA. Nous concluons que CUDA et Matlab accélèrent

le temps de calcul des fonctions qui sont basées sur des algorithmes de traitement en parallèle

et qui ont le même type de données, mais que cette accélération est fortement variable en

fonction de l’algorithme implanté.

Intel a proposé une boite à outil pour le développement de plan de données (DPDK)

pour faciliter le développement des logiciels de haute performance pour le traitement des

fonctionnalités de télécommunication. Dans ce projet, nous explorons son utilisation ainsi que

celle de l’isolation du système d’exploitation pour réduire la variabilité des temps de calcul

des processus de LTE. Plus précisément, nous utilisons DPDK avec la Math Kernel Library

(MKL) pour calculer la transformée de Fourier rapide (FFT) associée avec le processus LTE

et nous mesurons leur temps de calcul. Nous évaluons quatre cas : 1) code FFT dans le cœur

esclave sans isolation du CPU, 2) code FFT dans le cœur esclave avec l’isolation du CPU,

3) code FFT utilisant MKL sans DPDK et 4) code FFT de base. Nous combinons DPDK et

MKL pour les cas 1 et 2 et évaluons quel cas est plus déterministe et réduit le plus la latence

des processus LTE. Nous montrons que le temps de calcul moyen pour la FFT de base est

environ 100 fois plus grand alors que l’écart-type est environ 20 fois plus élevé. On constate

que MKL offre d’excellentes performances, mais comme il n’est pas extensible par lui-même

dans le domaine infonuagique, le combiner avec DPDK est une alternative très prometteuse.

DPDK permet d’améliorer la performance, la gestion de la mémoire et rend MKL évolutif.



v

ABSTRACT

In software defined radio, digital signal processing requires strict real time processing of

data and signals. Specifically, in the development of the Long Term Evolution (LTE)

standard, real time and low latency of computation processes are essential to obtain good

user experience. As low latency computation is critical in real time processing of LTE, we

explore the possibility of using Graphics Processing Units (GPUs) to accelerate its

functions. As the first contribution of this thesis, we adopt NVIDIA GPU technology using

the Compute Unified Device Architecture (CUDA) programming model in order to reduce

the computation times of LTE. Furthermore, we investigate the efficiency of using

MATLAB for parallel computing on GPUs. This allows us to evaluate MATLAB and

CUDA programming paradigms and provide a comprehensive comparison between them for

parallel computing of LTE processes on GPUs. We conclude that CUDA and Matlab

accelerate processing of structured basic algorithms but that acceleration is variable and

depends which algorithm is involved.

Intel has proposed its Data Plane Development Kit (DPDK) as a tool to develop high

performance software for processing of telecommunication data. As the second contribution

of this thesis, we explore the possibility of using DPDK and isolation of operating system to

reduce the variability of the computation times of LTE processes. Specifically, we use

DPDK along with the Math Kernel Library (MKL) provided by Intel to calculate Fast

Fourier Transforms (FFT) associated with LTE processes and measure their computation

times. We study the computation times in different scenarios where FFT calculation is

done with and without the isolation of processing units along the use of DPDK. Our

experimental analysis shows that when DPDK and MKL are simultaneously used and the

processing units are isolated, the resulting processing times of FFT calculation are reduced

and have a near-deterministic characteristic. Explicitly, using DPDK and MKL along with

the isolation of processing units reduces the mean and standard deviation of processing

times for FFT calculation by 100 times and 20 times, respectively. Moreover, we conclude

that although MKL reduces the computation time of FFTs, it does not offer a scalable

solution but combining it with DPDK is a promising avenue.



vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

RÉSUMÉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF ACRONYMS AND ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . xiv

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

CHAPTER 2 LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Parallel processing to reduce computation time of LTE . . . . . . . . . . . . . 4

2.1.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Reducing computation time of LTE using DPDK . . . . . . . . . . . . . . . . 8

2.3 Summary on literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

CHAPTER 3 OVERVIEW OF LTE, GPU, DPDK . . . . . . . . . . . . . . . . . . . 9



vii

3.1 LTE overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1 Layers of LTE and their main functionalities . . . . . . . . . . . . . . . 12

3.1.2 OFDM in LTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.3 OFDM implementation using FFT and IFFT . . . . . . . . . . . . . . 16

3.1.4 Turbo decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.5 MIMO detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 A glance at literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 MIMO detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.2 Turbo decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.1 GPU programming model . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.2 Geforce GTX 660 Ti specifications . . . . . . . . . . . . . . . . . . . . 23

3.4 Intel Math Kernel Library (MKL) . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.5 DPDK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5.1 DPDK features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5.2 How to use DPDK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

CHAPTER 4 FFT, MATRIX INVERSION AND CONVOLUTION ALGORITHMS . 30

4.1 Fast Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1.1 Discrete Fourier Transform Radix-4 . . . . . . . . . . . . . . . . . . . . 31

4.1.2 Cooley-Tukey and Stockham formulation of the FFT algorithm . . . . 34

4.1.3 Summary on Fast Fourier Transform . . . . . . . . . . . . . . . . . . . 35

4.2 Matrix Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35



viii

4.2.1 Complexity of Gaussian Elimination algorithm . . . . . . . . . . . . . . 36

4.2.2 Summary on Matrix Inversion . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Convolution and Cross-Correlation . . . . . . . . . . . . . . . . . . . . . . . . 38

CHAPTER 5 HARDWARE ACCELERATION USING GPU . . . . . . . . . . . . . . 39

5.1 Implementation on GPU using CUDA . . . . . . . . . . . . . . . . . . . . . . 39

5.1.1 Matrix Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1.2 Fast Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.1.3 Matrix Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1.4 Convolution and Cross-Correlation . . . . . . . . . . . . . . . . . . . . 47

5.2 Implementation on GPU using Matlab . . . . . . . . . . . . . . . . . . . . . . 55

5.2.1 FFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2.2 Matrix Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2.3 Matrix Addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2.4 Matrix Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3 Summary on hardware acceleration using GPU . . . . . . . . . . . . . . . . . . 61

CHAPTER 6 COMPUTING FFT USING DPDK AND MKL ON CPU . . . . . . . . 63

6.1 Sources of non-determinism in data centers . . . . . . . . . . . . . . . . . . . . 63

6.2 DPDK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.2.1 Combining DPDK and MKL . . . . . . . . . . . . . . . . . . . . . . . . 68

6.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.4 Summary on Computing FFT using DPDK and MKL . . . . . . . . . . . . . . 72



ix

CHAPTER 7 CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . . . . 74

7.1 Summary, Contributions and Lessons Learned . . . . . . . . . . . . . . . . . . 74

7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.2.1 GPU work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.2.2 Exploring other capabilities of DPDK . . . . . . . . . . . . . . . . . . . 77

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79



x

LIST OF TABLES

Table 2.1 LTE time consuming tasks. . . . . . . . . . . . . . . . . . . . . . . . . 7

Table 3.1 Transmission bandwidth vs. FFT size . . . . . . . . . . . . . . . . . . . 16

Table 5.1 Computation time of FFT for different input sizes. . . . . . . . . . . . 43

Table 5.2 Computation times of matrix inversion for different matrix sizes. . . . . 47

Table 5.3 Conventional procedure for calculating convolution : Right shifted

vector a is multiplied by reversed vector b. Then, these

multiplications are added in each instant. . . . . . . . . . . . . . . . . . 49

Table 5.4 Convolution procedure using zero padding : After zero-padding, right-

shifted vector a is multiplied by reversed vector b. These products then

are added in each instant. . . . . . . . . . . . . . . . . . . . . . . . . . 49

Table 5.5 Computation times of convolution for three different scenarios : Naive

approach, zero-padding and zero padding with shared memory. . . . . . 53

Table 6.1 Computer architectural features which cause variable delay. . . . . . . 66

Table 6.2 Statistics of the processing time observed in the four scenarios. . . . . . 71



xi

LIST OF FIGURES

Figure 3.1 LTE system architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Figure 3.2 Dynamic nature of the LTE Radio. . . . . . . . . . . . . . . . . . . . . 12

Figure 3.3 LTE-EPC data plane protocol stack. . . . . . . . . . . . . . . . . . . . 13

Figure 3.4 LTE protocol architecture (downlink) [1]. . . . . . . . . . . . . . . . . . 14

Figure 3.5 LTE physical layer blocks. . . . . . . . . . . . . . . . . . . . . . . . . . 14

Figure 3.6 LTE OFDM modulation. . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 3.7 Structure of cell-specific reference signal within a pair of resource blocks. 15

Figure 3.8 OFDM modulation by IFFT processing. . . . . . . . . . . . . . . . . . 16

Figure 3.9 Overview of Turbo decoding. . . . . . . . . . . . . . . . . . . . . . . . . 18

Figure 3.10 Block diagram of a MIMO-BICM system. . . . . . . . . . . . . . . . . 19

Figure 3.11 Decoding tree of the FSD algorithm for a 4 × 4 MIMO system with

QPSK symbols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Figure 3.12 Handle the workload for N codewords by partitioning of threads. . . . . 20

Figure 3.13 CUDA Memory Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 3.14 Dual Channel DDR Memory. . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 3.15 Intel Data plane development kit (DPDK) architecture. . . . . . . . . . 27

Figure 3.16 EAL initialization in a Linux application environment. . . . . . . . . . 28

Figure 4.1 FFT factorization of DFT for N = 8. . . . . . . . . . . . . . . . . . . . 32

Figure 4.2 Dataflow for two DFT algorithms (Cooley-Tukey and Stockham). . . . 35



xii

Figure 5.1 Computation time of matrix multiplication vs the matrix size for GPU

(Geforce GTX 660 Ti)(with and without shared memory) and multi-

core (8-core CPU x86 64). GPU Clock rate and CPU Clock rate are

about 1 GHz and 3 GHz, respectively. . . . . . . . . . . . . . . . . . . 42

Figure 5.2 One step of a summation reduction based on the first approach :

Assuming 8 entries in cache variable, the variable i is 4. In this case, 4

threads are required to calculate the sum of the entries at the left side

with the corresponding ones at the right side. . . . . . . . . . . . . . . 51

Figure 5.3 Tree-based summation reduction : Entries are combined together based

on a tree structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Figure 5.4 CPU/GPU times for (a) GPUArray method (b) gather method in

computation of FFT using Matlab implementation on GPU. . . . . . . 56

Figure 5.5 Speedup vs matrix size for Matlab based computation of matrix

inversion on GPUs : (a) including the times of data transfer from

RAM to GPU memory and calculation of matrix inverse on GPU (b)

including the times of data transfer to and from GPU memory and

calculation of matrix inverse on GPU. . . . . . . . . . . . . . . . . . . . 58

Figure 5.6 Speedup vs matrix size for Matlab based computation of matrix

addition on GPUs : (a) including the times of data transfer from

RAM to GPU memory and calculation of matrix addition on GPU

(b) including the times of data transfer to and from GPU memory

and calculation of matrix addition on GPU. . . . . . . . . . . . . . . . 60

Figure 5.7 Speedup vs matrix size for Matlab based computation of matrix

multiplication (Y = A · X) on GPUs : (a) including the times of

data transfer from RAM to GPU memory and calculation of matrix

multiplication on GPU (b) including the times of data transfer to and

from GPU memory and calculation of matrix multiplication on GPU. . 61

Figure 6.1 Architecture of a data center. . . . . . . . . . . . . . . . . . . . . . . . 64

Figure 6.2 Computation times of FFT when running on slave core (a) MKL with

DPDK without core isolation (b) MKL with DPDK and core isolation

(c) MKL without DPDK (d) straight C implementation. . . . . . . . . 69



xiii

Figure 6.3 Histograms of computation times running on slave core (a) MKL with

DPDK without core isolation (b) MKL with DPDK and core isolation

(c) MKL without DPDK (d) straight C implementation. . . . . . . . . 70



xiv

LIST OF ACRONYMS AND ABBREVIATIONS

3GPP 3rd Generation Partnership Project

AM Acknowledged Mode

AS Access Stratum

DL Downlink

DPDK Data Plane Development Kit

FE Full Expansion

FEC Forward Error Correction

FPFSD Fixed-complexity sphere decoder

GPU Graphics processing unit

LLRs Log-likelihood ratios

LTE Long Term Evolution

MAC Media Access Control

MIMO Multiple Input Multiple Output

MKL Math Kernel Library

MPI Message Passing Interface

SDR Software Defined Radio

NMM Network-Integrated Multimedia Middleware

PDCP Packet Data Convergence Protocol

PDU Protocol Data Unit

PHY Physical layer

RLC Radio Link Control

RRC Radio Resource Control

SDU Service Data Unit

SE Single-path search

SNR Signal to Noise Ratio

SSFE Selective spanning with fast enumeration

TM Transparent Mode

UE User Equipment

UM Unacknowledged Mode

UP Uplink



1

CHAPTER 1

INTRODUCTION

Recent advances in information and communication technology have drawn attention

from the telecommunication industry to more efficient implementation of wireless standards.

Specifically, a great deal of attention is dedicated to develop a form of Software Defined

Radio (SDR) that performs different signal processing tasks over the telecommunication

cloud [2]. However, performing the needed complex operations involved in the modern cellular

technologies and meeting the real time constrains impose needs for extra computational

resources, which may not be available in current telecommunication infrastructure.

The most recently deployed cellular technology, the Long-Term Evolution (LTE) standard,

is an example of such complex systems. Real time and low latency computations are critical

aspects in cloud-based implementation of LTE, which involves many challenges in practice.

Specifically, the design and implementation of real-time and low-latency wireless systems

aims at achieving two goals : first reducing the latency by recognizing its time consuming

parts ; second proposing solutions to reduce the variability (randomness) in the processing

times. In this thesis, we address the following objectives :

1. identifying computational bottlenecks in the LTE ;

2. reducing the computational latency to increase performance ;

3. implementing (near) real-time processing algorithms by reducing variability of

computation times ;

4. studying the computational performance of different modules of LTE when implemented

on graphics processing units ;

5. studying the computational performance of LTE modules for implementation on central

processing units using different implementation tools.

Academia and industry have shown interest in using Graphics Processing Units (GPUs)

for accelerated implementation of different applications. Essentially, GPUs are widely used

for accelerating computation times because they are offering large number of processing cores

and high memory bandwidth. For instance, Geforce GTX 660 Ti offers 7 multi-processors and

192 independent cores for each multi-processor. That is very promising and suggests possible

accelerations of 1000 times using GPU implementation. In spite of such large number of



2

available processing elements, we could never get acceleration larger than 10 and in many

case we got no acceleration at all. That is why we looked at other acceleration methods to

verify the efficiency. Moreover, Intel has also provided a Data Plane Development Kit (DPDK)

[3] and a Math Kernel Library (MKL) [4] for low latency processing of telecommunication

tasks over more conventional central processing units.

1.1 Contributions

In this thesis, we study different parts of the LTE standard and identify the time

consuming portion which may act as computational bottlenecks in an implementation.

Then, we propose different solutions for parallel computing of those computational

bottlenecks and discuss their performance. Specifically, we study the implementation of

different matrix and vector operations over graphical processing units and central

processing units. For each case, we propose different implementation approaches and

evaluate their efficiency by comparing their computation times. We use the fast Fourier

transform (FFT) as a benchmark for many of our analysis as it is found to be one of the

largest computational burdens for LTE. As it was discussed earlier, our primary goal is to

achieve near-deterministic and low latency processing times for LTE operations.

This thesis focus on studying different means of performing some complex parts of LTE

(specifically the FFT) and its main contributions can be summarized as follows :

– implementation of FFT, convolution, matrix multiplication and inversion using CUDA

on GPUs,

– implementation of FFT, matrix multiplication and inversion using MATLAB on GPUs,

– analysis of related results and suitability of CPUs for supporting LTE tasks,

– implementation of FFT using Intel MKL on CPUs,

– implementation of FFT using DPDK and MKL on CPUs with and without the aid of

isolation of processing units,

– comprehensive analysis of FFT implementation on CPUs in different scenarios.

1.2 Organization

This thesis is organized as follows. In Chapter 2, we present a comprehensive review of

the literature on parallel processing. Further, we review the related literature about DPDK

as a solution for parallel processing potentially useful in this thesis. In Chapter 3, we



3

provide a review of the LTE standard, discussing its different layers and its main functions.

Specifically, we describe the structure of orthogonal frequency division multiplexing

(OFDM) using FFT and inverse FFT operations. Turbo decoding and MIMO (multiple

input and multiple output) detection mechanisms are also described in Chapter 3. Further,

we describe the GPU programming model for parallel programming. Chapter 3 concludes

by introducing MKL and DPDK.

In Chapter 4, we discuss different algorithms for implementation of FFT (including

Cooley-Tukey and Stockham algorithms), matrix inversion, convolution and

cross-correlation. These algorithms are used in the following chapters for implementation on

the hardware devices.

In Chapter 5, we describe parallel implementations of different operations on GPUs. We

use MATLAB and CUDA for implementation of dense matrix multiplication, FFT, matrix

inversion, convolution and addition. Our experimental results for implementation of these

operations on GPUs are also presented in this chapter.

Although GPUs include large number of cores and computation elements, we could not

get high percentage of acceleration using them. For that reason, in Chapter 6, we study

the feasibility of using DPDK and MKL to achieve near deterministic computation for LTE

processes. Our experimental results show different performance in terms of the mean and

variance of the computation times when DPDK and MKL libraries are used for isolation of

the central processing unit. Our concluding remarks and future directions are presented in

Chapter 7.



4

CHAPTER 2

LITERATURE REVIEW

LTE supports and takes advantage of a new modulation technology based on Orthogonal

Frequency Division Multiplexing (OFDM) and Multiple Input Multiple Output (MIMO)

data transmission. The benefits of LTE come from increased data rates, improved spectrum

efficiency obtained by spatially multiplexing multiple data streams [5], improved coverage, and

reduced latency, which makes it efficient for current wireless telecommunication systems. Since

MIMO systems increase the complexity of the receiver module, high-throughput practical

implementations that are also scalable with the system size are necessary. To reach these

goals, we explore two solutions to overcome LTE computation latency, which are parallel

processing using GPU and DPDK.

2.1 Parallel processing to reduce computation time of LTE

GPUs have been recently used to develop reconfigurable software-defined-radio

platforms [6, 7], high-throughput MIMO detectors [8, 9], and fast low-density parity-check

decoders [10]. Although multicore central processing unit (CPU) implementations could

also replace traditional use of digital signal processors and field-programmable gate arrays

(FPGAs), this option would interfere with the execution of the tasks assigned to the CPU

of the computer, possibly causing speed decrease. Since GPUs are more rarely used than

CPUs in conventional applications, their use as coprocessors in signal-processing systems

needs to be explored. Therefore, systems formed by a multicore computer with one or more

GPUs are interesting in this context. In [11], the authors implement signal processing

algorithms suitable with parallel processing properties of GPUs to decrease computation

time of multiple-input–multiple-output (MIMO) systems. They develop a novel channel

matrix preprocessing stage for MIMO systems which is efficiently matched with the

multicore architecture.

Work is needed to decrease the run time for those configurations not attaining real-time

performance. The use of either more powerful GPUs or more than one GPU in

heterogeneous systems may be promising solutions for this purpose. Another interesting



5

topic for research is to analyze the amount of energy consumed by the proposed GPU

implementations. According to [11], channel Matrix preprocessing is well matched with

GPU architectures and it reduces the order of computational complexity. According to [12],

distributed Multimedia Middleware transparently combines processing components using

CPUs, as well as local and remote GPUs for distributed processing. This middleware uses

zero-copy to choose the best possible mechanism for exchanging data.

In [13], an effective and flexible N-way MIMO detector is implemented on GPU, two

important techniques are used (instead of Maximum likelihood detection) : depth-first

algorithms such as depth-first sphere detection and breadth-first algorithms such as the

K-best. In depth-first sphere detection algorithm, the number of tree nodes visited vary

with the signal to noise ratio (SNR). The K-best detection algorithm has a fixed

throughput because it searches a fixed number of tree nodes independent of SNR.

Compared to ASIC and FPGA, this implementation is attractive since it can support a

wide range of parameters such as modulation order and MIMO configuration. In the second

technique, selective spanning with fast enumeration (SSFE) and different permuted

antenna-detection order are used in order to be well suited for GPUs. Moreover, modified

Gram-Schmidt Orthogonalization to perform QR decomposition is implemented. This

implementation performs MIMO detection on many subcarriers in parallel using hundreds

of independent thread-blocks to achieve high performance by dividing the available

bandwidth into many orthogonal independent subcarriers.

In [14], a 2 × 2 MIMO system using a GPU cluster as the modem processor of an SDR

system is implemented for the purpose of exploiting additional parallel processing

capabilities over a single GPU system. Moreover, a 3-node GPU cluster using MPI-based

distributed signal processing is applied to some modules that need relatively large amounts

of computational capacity such as the frame synchronization module, the MIMO decoder,

and the Forward Error Correction (FEC) decoder (Viterbi algorithm). It is only applied to

WiMAX data. However, the clustered MPI-based signal processing efficiency achieved in

the WiMAX system would be applicable to LTE systems. In [14], a Software Defined Radio

Base Station (SDR BS) is implemented using two-level parallelism. One level of parallelism

is obtained by the distributed processing provided by MPI and the other level of parallelism

is the parallel processing performed at each node using a GPU.

Based on [15], it can be concluded that matrix inversion is a bottleneck if MMSE-based

MIMO detectors were to be implemented on GPUs. In [15], each matrix of size N × N is

mapped to N threads. In this approach, each thread reads N elements in a single matrix



6

from the shared memory, and N threads process a matrix inversion in parallel. In addition,

multiple matrices can be inverted simultaneously in a block. Finally in a grid which is

composed of several blocks, many matrices are processed, thus speeding up the algorithm.

In this paper, two kinds of data transfers (synchronous and asynchronous) are considered.

In the synchronous model, the kernel is executed after the data has been transferred

completely. This paper mentions that frame synchronization, MIMO decoding, and Forward

Error Correction (FEC) decoding are the most time consuming tasks of LTE. Another time

consuming part of frame synchronization is cross-correlation. Frame synchronization on

GPU has not been implemented yet. This work applied clustered MPI-based signal

processing to WiMAX not to LTE.

The authors in [15] present an MMSE-based MIMO detector on GPU. Optimization

strategies have been proposed to compute channel matrix inversion, which is the heaviest

computational load in the MMSE detector. A Gaussian elimination approach with complete

pivoting is employed to compute the matrix inversion. In [16] the authors mention that to

improve coverage and increase data rate, LTE requires a very short latency of less than 1

millisecond across the backhaul network.

The authors in [17] explain that the high data rates of LTE enable interactive

multimedia applications over networks. They investigated the performance of 2D and 3D

video transmission over LTE by combining bandwidth scalability and admission control

strategies in LTE networks.

In [18], the authors argue that minimizing the system and User Equipment (UE)

complexities are the main challenges of LTE. It allows flexible spectrum deployment in LTE

frequency spectrum as well as enabling co-existence with other 3GPP Radio Access

Technologies (RATs). Also, they mention that load imbalance reduces LTE network

performance because of non-uniform user deployment distribution. Load balancing

techniques are proposed in this paper to improve network performance.

The authors in [8] develop a 3GPP LTE compliant turbo decoder accelerator on GPU.

The challenge of implementing a turbo decoder is finding an efficient mapping of the

decoder algorithm on GPU, e.g. finding a good way to parallelize workload across cores that

allocates and uses fast on-die memory to improve throughput. This paper increases

throughput through 1) distributing the decoding workload for a codeword across multiple

cores, 2) decoding multiple codewords simultaneously to increase concurrency and 3)

employing memory optimization techniques to reduce memory bandwidth requirements. In



7

addition, it also analyzes how different MAP algorithm approximations affect both

throughput and bit error rate (BER) performance of decoders.

For simulation, the host computer first generates random 3GPP LTE Turbo codewords.

After BPSK modulation, input symbols are passed through the channel with additive white

Gaussian noise (AWGN), the host generates LLR values based on the received symbols

which are fed into the Turbo decoder kernel running on a GPU.

2.1.1 Summary

As this study shows, the LTE challenges are : 1) a latency requirements of less than 1ms

[16], 2) minimizing the system and User Equipment (UE) complexities, 3) allowing flexible

spectrum deployment, 4) increasing capacity, 5) improving QoS, 6) enabling co-existence with

other 3GPP Radio Access Technologies (RATs) [18], 7) scalability [17], and load balancing

[18]. Since, implementation of LTE functions in data centers requires computing resources in

wireless networks, it leads to more advanced algorithms and signal processing as well as load

balancing and multi-threading.

Centralized radio access network needs to leverage massive parallel computing in order to

increase data rate and decrease latency. Table 2.1 summarizes reported analysis and means

of dealing with LTE time consuming tasks, which include FFT/IFFT in OFDM [19], matrix

inversion in MIMO detection [15], convolution and cross correlation in channel model [19, 15].

Table 2.1 LTE time consuming tasks.

LTE time consuming tasks Matrix Computation Reference

OFDM FFT, IFFT [19]
MIMO detection Matrix Inversion [15]
Channel model, FEC and
Turbo Decoding, Frame
Synchronization

Convolution, Cross Correlation [19, 15]



8

2.2 Reducing computation time of LTE using DPDK

All literature on DPDK that was found, relates to packet forwarding in layers two and

three (L2 and L3). There is nothing related to computation and mathematical functions. In

[20], the authors apply a combination of programmable hardware, general purpose processors,

and Digital Signal Processors (DSPs) into a single die to improve the cost/performance trade

off. Authors in [21] suggest to use Cloud infrastructure Radio Access Network (C-RAN) in

two kinds of centralization (full and partial) to provide energy efficient wireless networks. The

major disadvantage of this architecture is the high bandwidth and low latency requirements

between the data center and the remote radio heads. Authors in [2] and [22] mention that

SDN requires specific levels of programmability in the data plane and the Intel DPDK is

a promising approach to improve performance in cloud computing applications. DPDK is

proposed to enhance operating systems running on General Purpose Processors (GPPs) that

already have some real-time capability.

Based on [2] DPDK proposes high performance packet processing. The authors in this

paper propose Open flow 1.3 to implement the data plane. The authors also mention that

the packet I/O overhead, buffering to DRAM, interrupt handling, memory copy and the

overhead of kernel structures cause extra costs and delays, while using DPDK overcomes

these bottlenecks. DPDK allows efficient transfer of packets between the I/O card and the

code running in the user space. Transferring packets directly to L3 cache prevents to use high

latency DRAMs. Thus DPDK increases performance.

2.3 Summary on literature review

The literature has shown ways to accelerate LTE with GPUs. It was reported that

FFT/IFFT is the main time consuming function of OFDM and matrix inversion is a time

consuming task associated with MIMO detection which can be possibly accelerated by GPU

parallel processing. In fact the size of matrices for matrix inversion in LTE is small. By

contrast, GPUs are more efficient for processing large number of data elements organized in

a regular structure. Moreover, DPDK has a high performance packet processing capability.

It helps implementing demanding applications on general purpose operating systems which

have real-time capabilities.



9

CHAPTER 3

OVERVIEW OF LTE, GPU, DPDK

In this chapter we explain what is LTE. We describe layers of LTE and their main

functionalities supported by the physical-layer processing blocks. As the main blocks of

LTE in physical layer, we present OFDM and its implementation using FFT and IFFT.

Also, we describe the Turbo decoder and MIMO detection. Since, GPUs are presented as a

solution to reduce LTE latency, we describe the GPU programming model, and Geforce

GTX 660 Ti specifications. MKL and DPDK features and usage are described as another

solution to decrease latency.

3.1 LTE overview

Long term evolution (LTE) is based on the 3GPP standard that provides a downlink

speed of up to 100 Mbps and an uplink speed of up to 50 Mbps. LTE brings many technical

benefits to cellular networks. Bandwidth is scalable from 1.25 MHz to 20 MHz. This can suit

the needs of different network operators that have different bandwidth allocations, and also

allows operators to provide different services based on spectrum. LTE is also expected to

improve spectral efficiency in 3G networks, allowing carriers to provide more data and voice

services over a given bandwidth [1].

The LTE system architecture is based on the classical open system interconnect layer

decomposition as shown in Fig. 3.3 (taken from [24]). Fig. 3.1 (taken from [23]) shows a

high-level view of the LTE architecture. E-UTRAN (Evolved Universal Terrestrial Radio

Access Network) and EPC (Evolved Packet Core) are two main components of LTE systems

[23]. E-UTRAN is responsible for management of radio access and provides user and control

plane support to the User Equipments (UEs). The user plane refers to a group of protocols

used to support user data transmission, while control plane refers to a group of protocols to

control user data transmission and managing the connection between the UE and networks

such as handover, service establishment, resource control, etc. The E-UTRAN consists of

only eNodeBs (eNBs) which provide user plane (PDCP/RLC/MAC/PHY) and control plane

(RRC) protocol terminations toward the user equipment (UE). The eNBs are interconnected



10

with each other by means of the X2 interface. The eNBs are also connected by means of the S1

interface to the Evolved Packet Core (EPC), more specifically to the Mobility Management

Entity (MME) by means of the S1-MME interface and to the Serving Gateway (SGW) by

means of the S1-U interface.

EPC is a mobile core network and its main responsibilities include mobility

management, policy management and security. The EPC consists of the Mobility

Management Entity (MME), the Serving Gateway (S-GW), and the Packet Data Network

Gateway (P-GW). The MME is the control node for the LTE access network. It is

responsible for user authentication and idle mode User Equipment (UE) paging and tagging

procedure including retransmissions. The functions of the S-GW is to establish bearers

based on the directives of the MME. The PGW provides Packet Data Network connectivity

to E-UTRAN capable UEs using E-UTRAN only over the S5 interface. Both E-UTRAN

and EPC are responsible for the quality-of-service (QoS) control in LTE. The x2 interface

provides communication among eNBs including handover information, measurement and

interface coordination reports, load measurements, eNB configuration setups and

forwarding of user data. S1 interface connects the eNBs to the EPC. The interface between

eNB and S-GW is called S1-U and is used to transfer user data. The interface between eNB

and MME is called S1-MME and is used to transfer control-plane information including

mobility support, paging data service management, location services and network

management. Home Subscriber Server (HSS) and the Policy Control and Charging Rules

Functions (PCRF) are considered to be parts of the LTE core network [23].

PCRF

UE UE

S-GW P-GWS5

MME

eNB eNB

S1
-U

S1-
U

S1-M
M
E

S1
-M

M
E InternetSGi

EPC

HSS

X2
E-UTRAN

Figure 3.1 LTE system architecture.



11

Fig. 3.2 (taken from [24]) shows a diagram of the E-UTRAN Protocol Stack. Physical

Layer carries all information from the MAC transport channels over the air interface. It

takes care of link adaptation (AMC), power control, cell search (for initial synchronization

and handover purposes) and other measurements (inside the LTE system and between

systems) for the RRC layer. The Media Access Control (MAC) layer is responsible for

mapping logical channels to transport channels. Also, it is resposible of Multiplexing the

MAC SDUs from one or different logical channels onto transport blocks (TBs) to be

delivered to the physical layer on transport channels. Demultiplexing of MAC SDUs from

one or different logical channels from transport blocks (TBs) delivered from the physical

layer on transport channels is another tasks performed by the MAC. Moreover, it schedules

information reporting, corrects error through HARQ, handles priority between UEs by

means of dynamic scheduling and between logical channels of one UE. The Radio Link

Control (RLC) layer operates in 3 modes of operation : Transparent Mode (TM),

Unacknowledged Mode (UM) 1, and Acknowledged Mode (AM) 2. It is responsible for

transfer of upper layer PDUs 3, error correction through ARQ (only for AM data transfer),

concatenation, segmentation and reassembly of RLC SDUs 4 (only for UM and AM data

transfer). RLC is also responsible for re-segmentation of RLC data PDUs (only for AM

data transfer), reordering of RLC data PDUs (only for UM and AM data transfer),

duplicate detection (only for UM and AM data transfer), RLC SDU discard (only for UM

and AM data transfer), RLC re-establishment, and protocol error detection (only for AM

data transfer). The main services and functions of the Radio Resource Control (RRC)

sublayer include broadcast of System Information related to the non-access stratum

(NAS) 5, broadcast of System Information related to the access stratum (AS) 6, paging 7,

establishment, maintenance and release of an RRC connection between the UE and

E-UTRAN, Security functions including key management, establishment, configuration,

maintenance and release of point to point Radio Bearers. NAS protocols support the

mobility of the UE and the session management procedures to establish and maintain IP

connectivity between the UE and a PDN GW [24].

1. It does not require any reception response from the other party.
2. It requires ACK/NACK from the other party.
3. Protocol Data Unit (PDU) is information that is delivered as a unit among peer entities of a network

and that may contain control information, such as address information, or user data.
4. Packets received by a layer are called Service Data Unit (SDU) while the packet output of a layer is

referred to by Protocol Data Unit (PDU).
5. NAS is a functional layer in LTE stacks between the core network and user equipment. This layer is

used to manage the establishment of communication sessions and for maintaining continuous communications
with the user equipment as it moves.

6. AS is a functional layer in LTE protocol stacks between radio network and user equipment. It is
responsible for transporting data over the wireless connection and managing radio resources.

7. The LTE network uses paging to notify UE in idle mode of an incoming connection requests.



12

Physical  Layer
(PHY)

Media Access Control
(MAC)

Radio Link Control
(RLC)

Radio Resource Control
(RRC)

Physical     Channels

Transport     Channels

Logical     Channels

C
o

n
tr

o
l a

n
d

 M
e

as
u

re
m

e
n

ts

Layer 2

Layer 3

Layer 1

Figure 3.2 Dynamic nature of the LTE Radio.

3.1.1 Layers of LTE and their main functionalities

Fig. 3.3 (taken from [24]) illustrates how the decomposition was done. The authors in [1]

describe LTE layers in more details.

Packet Data Convergence Protocol (PDCP) performs IP header compression to

minimize the number of bits to send over the radio channel. This compression is based on

Robust Header Compression (ROHC). PDCP is also responsible for ciphering and for the

control plane, integrity protection of the transmitted data, as well as in-sequence delivery

and duplicate removal for handover. At the receiver side, PDCP performs deciphering and

decompression operations.

Radio Link Control (RLC) performs segmentation/concatenation, retransmission

handling, duplicate detection, and in-sequence delivery to higher layers. The RLC provides

services to the PDCP in the form of radio bearers.

Media Access Control (MAC) is responsible for multiplexing of logical channels,

hybrid-ARQ retransmission, and uplink and downlink scheduling. The scheduling

functionality is located in the eNodeB for both uplink and downlink. The hybrid-ARQ

protocol is applied to both transmitting and receiving ends of the MAC protocol. The MAC

provides services to the RLC in the form of logical channels.

Physical Layer (PHY) is responsible for coding/decoding, modulation/demodulation,



13

Figure 3.3 LTE-EPC data plane protocol stack.

multi-antenna mapping, and other typical physical-layer functions. The physical layer offers

services to the MAC layer in the form of transport channels. Fig. 3.4 (taken from [1]) and

Fig. 3.5 illustrate these functionalities graphically. In this figure, in an antenna and resource

mapping block related to the physical layer, the antenna mapping module maps the output

of the DFT precoder to antenna ports for subsequent mapping to the physical resource (the

OFDM time-frequency module). Each resource block pair includes 14 OFDM symbols (one

subframe) in time which follows in OFDM in LTE section.

3.1.2 OFDM in LTE

OFDM transmission is a kind of multi-carrier modulation. The basic characteristics of

OFDM are : 1) the use of a very large number of narrowband subcarriers, 2) simple rectangular

pulse shaping, and 3) tight frequency domain packing of the subcarriers with a subcarrier

spacing 4f = 1/Tu. Where Tu is the per-subcarrier modulation symbol time. The subcarrier

spacing is thus equal to the per-subcarrier modulation rate 1/Tu. Fig. 3.6 (taken from [1])

illustrates a basic OFDM modulator. It consists of a bank of Nc complex modulators which

are transmitted in parallel, and each modulator corresponds to one OFDM subcarrier.

Figure 3.7 (taken from [1]) illustrates the physical layer frame structure in a frequency-

time grid. Time domain is divided into slots with duration of 0.5ms. Each sub-frame includes



14

Figure 3.4 LTE protocol architecture (downlink) [1].

Turbo
 Encoding

Scrambling Modulation FFT

IFFT Channel
Estimation

DFT
Demodulation

Turbo
 Decoding

eNodeB Downlink Tx Chain

eNodeB Uplink Rx Chain

IQ
Samples

IQ
Samples

Figure 3.5 LTE physical layer blocks.



15

tfj
cN

e
1

2




tfj
e 1

2 

tfj
e 0

2 

)(

1

m

N
c

a


)(

1

m
a

)(

0

m
a

)(
1

tx
c

N 

)(
1

tx

)(
0

tx

PS

)(

1

)(

1

)(

0
...

m

N

mm

c

aaa
 )( tx

Figure 3.6 LTE OFDM modulation.

Figure 3.7 Structure of cell-specific reference signal within a pair of resource blocks.

2 time slots. In fact, there are 2×7 symbols in each sub-frame and there are 10 sub-frames in

each frame. Frequency domain consists of sub-carriers. Each sub-carrier spans 15 KHz. There

are 12 sub-carriers in each sub-band. Thus, 12 sub-carriers are transmitted in each time slot.

An OFDM signal x(t) during the time interval mTu ≤ t < (m + 1)Tu can be expressed

as :

x(t) =
Nc−1∑
k=0

xk(t) =
Nc−1∑
k=0

a
(m)
k ej2πk4ft, (3.1)

where xk(t) is the kth modulated subcarrier with frequency fk = k 4 f and a
(m)
k is the

complex modulation symbol applied to the kth subcarrier during the mth OFDM symbol

interval [1].

According to [1] the OFDM symbol consists of two major components : the CP and an

FFT. As table 3.1 shows, LTE bandwidth varies from 1.25 MHz up to 20 MHz. In the case of

1.25 MHz transmission bandwidth, the FFT size is 128 and it is 2048 for 20MHz bandwidth.



16

Table 3.1 Transmission bandwidth vs. FFT size

Transmission bandwidth 1.25 MHz 2.5 MHz 5 MHz 10 MHz 15 MHz 20 MHz
FFT size 128 256 512 1024 1536 2048

3.1.3 OFDM implementation using FFT and IFFT

Fig. 3.6 illustrates, the basic principles of OFDM modulation. Choosing subcarrier spacing

4f equal to the per-subcarrier symbol rate 1/Tu, allows to implement an efficient FFT

processing. We assume sampling rate fs multiple of the subcarrier spacing 4f , fs = 1/Ts =

N4f , the parameter N should be chosen to fulfill the sampling theorem [1]. The discrete-time

OFDM signal can be expressed as :

xn = x(nTs) =
N−1∑
k=0

ake
j2πnk/N (3.2)

where

ak =

{
a
′

k 0 ≤ k < Nc

0 Nc ≤ k < N
, (3.3)

Thus, the sequence xn is Inverse Discrete Fourier Transform (IDFT) of modulation symbols

a0, a1, ..., aNc−1 extended with zeros to length N to have a fixed length. As a result, OFDM

modulation can be implemented by an IDFT of size N followed by digital to analog conversion

which is shown in Fig. 3.8 [1].

1
c

N
a

1
a

0
a

1N
x

0
x

PS
110

...


c
N

aaa

)( tx

Size-N
IDFT

(IFFT)

0

0

P S

1
x

D/A conversion

Figure 3.8 OFDM modulation by IFFT processing.



17

3.1.4 Turbo decoder

Turbo decoding as a forward error correction iterative algorithm achieves error

performance near to the channel capacity. A Turbo decoder consists of two component

decoders and two interleavers, which is shown in Fig. 3.9 (taken from [8]). It includes

multiple passes through the two component decoders. One iteration includes one pass

through both decoders. Despite the fact that both decoders perform the same sequence of

computations, the decoders produce different log-likelihood ratios (LLRs). The

de-interleaved LLRs of second decoder is the inputs of the first decoder and the interleaved

LLRs of first decoder and channel are inputs of the second decoder. Each decoder operates

a forward trellis traversal to decode a codeword with N information bits. Forward trellis

traversal is used to compute N sets of forward state metrics, one α set per trellis stage. It is

pursued by a backward trellis traversal which computes N sets of backward state metrics

and one β set per trellis stage. Finally, the forward and the backward metrics are combined

to compute the output LLRs [8]. Thus, turbo decoders, because of iterative decoding

process and bidirectional recursive computing, requires optimal parallelism implementation

to achieve high-data rates in telecommunication applications.

3.1.5 MIMO detection

Multiple-input multiple-output (MIMO) detection is the most time consuming task of LTE

[15]. Authors in this paper proposed a novel strategy to implement the minimum mean square

error for MIMO detection using OFDM. The key is using a massively parallel implementation

of the scalable matrix inversion on graphics processing units (GPUs). A MIMO-OFDM system

with M transmit antennae and N receive antennae can be expressed as

y = Hx+ w (3.4)

where y = [y0, y1, y2, ..., yN−1]
T is the N × 1 received data vector, H is the N ×M MIMO

channel matrix, x is the M × 1 transmitted data vector and w is an M × 1 white Gaussian

noise vector. MIMO detector estimate the transmitted data vector x̂ from the received noisy

data y.

x̂ = GMMSE y (3.5)



18

Decoder 0 Decoder 1 


 1


Le+Lch La+Lch

Le

La

Lc (Ys)

Lc (Yp0)

Lc (Yp1)

Figure 3.9 Overview of Turbo decoding.

Where MMSE minimize the mean square error of E{(x̂ − x)H(x̂ − x)} and E{.} is the

expectation of random variable. GMMSE is

GMMSE = (HHH + IM/ρ)−1HH = JHH (3.6)

where ρ is the signal to noise ratio [15]. As a result, matrix inversion is the bottleneck of this

algorithm.

3.2 A glance at literature review

In this section, we describe more about the contents of literature review. The goal is to

demonstrate graphically what the authors did in the literature review and to provide some

more descriptions.

3.2.1 MIMO detection

In the literature review chapter of 2, the authors report on how to implement MIMO

on GPUs to decrease computation time by developing a novel channel matrix preprocessing

stage that enables parallel processing. As Fig. 3.10 (taken from [11]) illustrates, MIMO with

bit-interleaved coded modulation (BICM) is applied to implement a fully parallel soft-output

fixed-complexity sphere decoder (FSD).

Fig. 3.10 and Fig. 3.11 (taken from [11]) depict how to compute parallel tree search

and soft information about the code bits in terms of log-likelihood ratios (LLRs). They



19

h1,1

hnR,nT

hnR,1

h1,nT

V1

Y1

VnR

YnR

D
e

m
o

d
u

la
to

r

M
U

X

Decoder Estimated bits

LLR

Receiver

D
EM

U
X

EncoderInput bits

Transmitter

MIMO channel

S1

SnR

Figure 3.10 Block diagram of a MIMO-BICM system.

also illustrate how a fully parallel fixed-complexity sphere decoder (FPFSD) method can

be implemented. The norms of the columns of the channel matrix are obtained (requiring

nT products, nT − 1 sums, and one squared root operation each) and sorted in ascending

order (n2
T floating point operations in the worst case). Thus, the complexity of this proposed

ordering is O(n2
T ). This can be computed considerably faster if the norms are processed in

parallel. Generally, this ordering leads to more reliable decisions than random ordering, since

symbols with the highest signal-to-noise ratio are detected before those with the lowest, thus

reducing error propagation.

00
01 10

11

SE

FE

Figure 3.11 Decoding tree of the FSD algorithm for a 4 × 4 MIMO system with QPSK
symbols.



20

3.2.2 Turbo decoder

We discussed in literature review that authors in [25] applied turbo decoder on GPU.

Their challenges were how to parallelize workload across cores. Fig. 3.12 (taken from [25])

shows how threads are partitioned to handle the workload for N codewords.

Figure 3.12 Handle the workload for N codewords by partitioning of threads.

The authors implemented a parallel Turbo decoder on GPU. As Fig. 3.12 depicts, instead

of creating one thread-block per codeword to perform decoding, a codeword is split into P

sub-blocks and decoded in parallel using multiple thread blocks. In this section, each thread-

block has 128 threads and handles 16 codeword sub-blocks [25].

3.3 GPU

Graphics Processing Units (GPUs) are a computing platform that has recently evolved

toward more general purpose computations. This section describes the GPU programming

model as viewed by the Nvidia company, which is based on the CUDA (Compute Unified

Device Architecture) programming language and SIMD (Single Instruction, Multiple Data)

architecture. the Geforce GTX 660 Ti will be used as an example as it was used in

experiments.



21

3.3.1 GPU programming model

GPUs include a massive parallel architecture. They work best when supporting a stream

programming model. Stream processing is the programming model used by standard graphics

APIs. Stream processing is basically on-the-fly processing, i.e. data is processed as soon as it

arrives. The results are sent as soon as they are ready. Thus, data and results are not stored

in global (slow) memory to save memory bandwidth. We keep temporary data and results in

local memory and registers. A stream is a set of data that require similar computations. Those

similar computations execute as kernels in the programming model for GPUs. Since, GPUs

can only process independent data elements, kernels are performed completely independently

on the data elements of input streams to produce an output stream. Because GPUs are

stream processors, processors can operate in parallel by running one kernel on many records

in a stream at once. In CUDA, threads are assembled in blocks. Multiple thread-blocks are

called a grid. A grid is organized as a 2D array of blocks, while each block is organized as

3D array of threads. At runtime, each grid is distributed over multiprocessors and executed

independently [26].

Threads within a thread-block execute in blocks of 32 threads. When 32 threads share

the same set of operations, they are assembled in what is called a warp and are processed

in parallel in a SIMD fashion. If threads do not share the same instruction, the threads

are executed serially [26]. Multiprocessor has control unit and it starts and stops threads

on compute engines. Control unit can select which threads run as a warp. Control unit can

schedule blocks on the compute engines. The number of threads is higher than the number

of compute engines to allow multitasking to improve performance. When we do not have

enough threads, we do not have a good occupancy. The occupancy is the time which takes

to pass data through the slowest component in the communication path. If we choose proper

number of threads per block, we balance processing time with the memory bandwidth.

Fig. 3.13 (taken from [27]) illustrates CUDA memory model. As it shows, it consists

of registers, local memory, shared memory, global memory, constant memory, and texture

memory with the following descriptions.

Scalar variables that are declared in the scope of a kernel function and are not decorated

with any attribute are stored in register memory by default. Access of register memory is very

fast, but the number of registers that are available per block is limited. Any variable that

can’t fit into the register space allowed for the kernel will spill-over into local memory. Shared

memory increases computational throughput by keeping data on-chip. It must be declared



22

GPU Grid

Block (0,0)

Shared Memory

Registers Registers

Thread (0,0) Thread (1,0)

Local 
Memory

Local 
Memory

Global 
Memory

Constant
 Memory

Texture
 Memory

Block (1,0)

Shared Memory

Registers Registers

Thread (0,0) Thread (1,0)

Local 
Memory

Local 
Memory

CPU

Figure 3.13 CUDA Memory Model.

within the scope of the kernel function. When execution of kernel is finished, the shared

memory in the kernel cannot be accessed. Global memory is declared outside of the scope

of the kernel function. The access latency to global memory is very high (100 times slower

than shared memory) but there is much more global memory than shared memory. Constant

memory is used for data that will not change over the course of a kernel execution and it is

cached on chip. Texture memory is read only has an L1 cache optimized for 2D spatial access

pattern. In some situations it will provide higher effective bandwidth by reducing memory

requests to off-chip DRAM. It is designed for graphics applications where memory access

patterns exhibit a great deal of spatial locality [26].



23

3.3.2 Geforce GTX 660 Ti specifications

Geforce GTX 660 Ti GPU includes 7 multiprocessors, 192 CUDA cores per multiprocessor

(compute capability), SIMDWidth (threads per warp) equals to 32, 2G bytes global memory,

1024 Max threads per block, (1024×1024×64) Max thread dimensions, (2G×65536×65536)

Max Grid dimensions and Clock rate is about 1GHz. The number of shared memory per

multiprocessor is 49152 while the number of registers per multiprocessor is 65536 [27].

3.4 Intel Math Kernel Library (MKL)

Intel Math Kernel Library (MKL) is a highly optimized Math library. It uses for

applications that require maximum performance. Intel MKL can be called from applications

written in either C/C++, or in any other language that can reference a C interface. It

includes 1) BLAS and LAPACK linear algebra libraries for vector, vector-matrix, and

matrix-matrix operations, 2) ScaLAPACK distributed processing linear algebra libraries for

Linux and Windows operating systems, as well as the Basic Linear Algebra

Communications Subprograms (BLACS) and the Parallel Basic Linear Algebra

Subprograms (PBLAS), 3) the PARDISO direct sparse solver, 4) FFT functions in 1D, 2D

or 3D, 5) Vector Math Library (VML) routines for optimized mathematical operations on

vectors, 6) Vector Statistical Library (VSL) routines, which offer high-performance

vectorized random number generators (RNG) for several probability distributions,

convolution and correlation routines, and summary statistics functions, 7) Data Fitting

Library, which provides capabilities for spline-based approximation of functions, derivatives

and integrals of functions, and search, and 8) Extended Eigen solver and a shared memory

programming (SMP) version of an eigen solver. For details see the Intel MKL Reference

Manual. In this thesis, MKL is used to compute FFT. The results are shown in Chapter 6.

Algorithm 3.1 describes the implementation of FFT by MKL.

In this algorithm, lines 6 and 7 allocates the descriptor data structure and initializes

it with default configuration values. Line 8 performs all initialization for the actual FFT

computation. The DftiComputeForward function accepts the descriptor handle parameter

and one or more data parameters. Given a successfully configured and committed descriptor,

this function computes the forward FFT. Line 10 frees the memory allocated for a descriptor

[28]. Note that we must add 3 libraries (mkl intel ilp64, mkl core and mkl sequential) for

compilation.



24

Algorithm 3.1 Float Complex FFT using MKL[28]

1: #include ”mkl dfti.h”
2: float Complex x[N ];
3: DFTI DESCRIPTOR HANDLE my desc1 handle;
4: MKL LONG status;
5: //...put input data into x[0], ..., x[N − 1];
6: status = DftiCreateDescriptor
7: (&my desc1 handle,DFTI SINGLE,DFTI COMPLEX, 1, N);
8: status = DftiCommitDescriptor(my desc1 handle);
9: status = DftiComputeForward(my desc1 handle, x);

10: status = DftiFreeDescriptor(&my desc1 handle);
11: / ∗ result is x[0], ..., x[N ] ∗ /

3.5 DPDK

DPDK is an optimized data plane software solution developed by Intel for its multi-core

processors. It includes high performance packet processing software that combines application

processing, control processing, data plane processing, and signal processing tasks onto a single

platform. DPDK has a low level layer to improve performance. It has memory management

functions, network interface support and libraries for packet classifications.

3.5.1 DPDK features

DPDK is a core application that includes optimized software libraries and Network

Interface Card (NIC) drivers to improve packet processing performance by up to ten times

on x86 platforms [3]. On the Hardware side, DPDK has the capabilities to support high

speed pipelining, low latency transmission, exceptional QoS, determinism, Real time I/O

switching. Intel Xeon series with an integrated DDR3 memory controller and an integrated

PCI Express controller lead to lower memory latency.

DPDK features are : 1) It does some of the management tasks that are normally done

by the operating system (it does those tasks with low overhead), 2) DPDK uses a run-to-

completion model and a parallel computation model which runs one lcore followed by another

lcore for next processing step, 3) DPDK uses Poll mode (i.e. it does not support interrupts)

which is simpler than interrupts, thus it has lower overhead, 4) DPDK allocates memory

from kernel at startup. 5) DPDK is pthread based but abstracts the pthread create, join, and

provides a wrapper for the worker threads, and 6) DPDK supports Linux Multi-process.



25

As Fig. 3.14 (taken from [29]) illustrates, Dual Channel DDR memory uses two funnels

(and thus two pipes) to feed data to the processor. Thus, it delivers twice the data of the

single funnel. To prevent the funnel from being over-filled with data or to reverse the flow

of data through the funnel, there is a traffic controller or memory controller that handles all

data transfers involving the memory modules and the processor [29].

Figure 3.14 Dual Channel DDR Memory.

Thread is a procedure that runs independently from its main program. Pthread comes

from IEEE POSIX 1003.1c standard. In fact it is Posix thread. It is one kind of thread.

It is a software which a core executes. Pthread is light weight thread. Managing threads

requires fewer system resources than managing processes. The most important functions of

Pthread library are pthread create and pthread join. Pthread create is a function to create

a new thread. Since, we need to manually terminate all threads before the main thread ends,

pthread join does this task. When a parent thread (main thread) creates a child thread, it

meets pthread join waits until the child thread’s execution finishes, and safely terminates the

child thread.

Moreover, standard Linux operating system can also help to reduce overhead. In

particular, using core affinity, disabling interrupts generated by packet I/O, using cache

alignment, implementing huge pages to reduce translation look aside buffer (TLB) misses,

prefetching, and new instructions save time.

On the computing side, DPDK includes dynamic resource sharing, workload migration,

security, OpenAPIs, a developer community, virtualization and power management.

Moreover, DPDK uses threads to perform zero-copy packet processing in parallel in order to

reach high efficiency. Additionally, in its Buffer Manager, each core is provided a dedicated

buffer cache to the memory pools which provides a fast and efficient method for quick

access and release of buffers without lock. Fig. 3.15 illustrates Intel’s DPDK architecture. A



26

Buffer/Memory pool manager in DPDK provides NUMA (Non Uniform Memory Access)

pools of objects in memory. Each pool utilizes the huge page table support of modern

processors to decrease Translation Lookaside Buffer (TLB) misses and uses a ring (a

circular buffer) to store free objects. The memory manager also guarantees that accesses to

the objects are distributed across all memory channels. So, DPDK memory management

includes NUMA awareness, alignment, and huge page table support which means that the

CPU allocates RAM by large chunks. The chunks are pages. Less pages you have, less time

it takes to find where the memory is mapped.

DPDK allows user applications to run without interrupts that would prevent deterministic

processing. The queue manager uses lockless queues in order to allow different modules to

process packets with no waiting times. Flow classification leverages the Intel Streaming SIMD

Extensions (SSE) in order to improve efficiency. Also, Intel DPDK includes NIC Poll Mode

drivers and libraries for 1 GbE and 10 GbE Ethernet controllers to work with no interrupts,

which provides guaranteed performance in pipeline packet processing. DPDK’s Environment

Abstraction Layer (EAL) contains the run-time libraries that support DPDK threads [30].

3.5.2 How to use DPDK

To install DPDK, it is important to have kernel version >= 2.6.33. The kernel version

can be checked using the command of ”uname − r”. There is an installation guide for

DPDK in [31]. To start using DPDK, in example directory of DPDK, there are sample

codes such as helloworld and codes for packet forwarding L2 and L3. These codes are

explained in [32]. Thus, it is important to know how to run helloworld file of DPDK. As it

is in the DPDK documents in [31], to compile the application, you should go to your

directory and configure two environmental variables of RTE SDK and RTE TARGET

before compiling the application. The following commands show how those two variables

can be set :

cd examples/helloworld

Set the path :

export RTE SDK=$HOME/DPDK

Set the target :

export RTE TARGET=x86 64-default-linuxapp-gcc

Build the application by :

make

To run the application in linux application environment, run the following command [32] :



27

Figure 3.15 Intel Data plane development kit (DPDK) architecture.

./build/hellowworld -c f -n 4

I used the following command to run my application (I put MKL FFT function, which I

explained it MKL section, in helloworld file) :

./build/helloworld -c 5 -n 1 –no-huge

Where -c is COREMASK. It is an hexadecimal bit mask of the cores to run on. Core

numbering can change between platforms and should be determined beforehand. You can

monitor your PC cores by system monitor in linux.

-n NUM is number of memory channels per processor socket.

and –no-huge means to use no huge page.

Based on DPDK documents, there are the list of options that can be given to the EAL :

./rte-app -c COREMASK -n NUM [-b <domain :bus :devid.func>] [–socket-mem=MB,...]

[-m MB] [-r NUM] [-v] [–file-prefix] [–proc-type <primary|secondary|auto>] [–xen-dom0].

As Fig. 3.16 (taken from [33]) depicts, the first step to write a code using DPDK is to

initialize the Environment Abstraction Layer (EAL). It creates worker threads and launch

commands to main. This function is rte eal init() in the master lcore. Indeed, Master lcore

runs the main function. This function is illustrated in algorithm 3.2. This algorithm finishes



28

Master lcore

rte_eal_init()

rte_eal_memory_init()
rte_eal_logs_init()
rte_eal_pci_init()

...

main ()

pthread_create(1)

pthread_create(2)

wait all threads

other inits (libs, drivers)

rte_eal_remote_lauch()

rte_eal_mp_wait_lcore()

rte_eal_remote_lauch(app)

application
...

lcore1 lcore2

per-thread init

wait per-thread init

wait

waitwait

application
...

application
...

per_lcore_
app_init()

per_lcore_
app_init()

Figure 3.16 EAL initialization in a Linux application environment.

the initialization steps. Then, it is time to launch a function on an lcore.

An lcore is an abstract view of a core. It corresponds to either the full hardware core when

hyper threading is not implemented, or it is hardware thread of a core that has hyper

threading. In algorithm 3.3 and 3.4 lcore hello() is called on every available lcore and the

code that launches the function on each lcore is demonstrated, respectively.

Algorithm 3.2 EAL Initialization [32]

1: int main(intargc, char ∗ ∗ argv)
2: {
3: ret = rte eal init(argc, argv);
4: if ret < 0 then
5: rte panic(”Can not init EAL”);
6: end if



29

Algorithm 3.3 Definition of function to call lcore

1: static int lcore hello( attribute ((unused)) void ∗ arg)
2: {
3: unsigned lcore id;
4: lcore id = rte lcore id();
5: printf(”hello from core %u”, lcore id);
6: return 0;
7: }

Algorithm 3.4 Launch the function on each lcore

1: / ∗ call lcore hello() on every slave lcore ∗ /
2: RTE LCORE FOREACH SLAV E(lcore id)
3: {
4: rte eal remote launch(lcore hello, NULL, lcore id);
5: }
6: / ∗ call it on master lcore too ∗ /
7: lcore hello(NULL);

Those algorithms exist in Helloworld example. To explain it clearly, I divided that code to

several parts. Then I put my FFT MKL function (in MKL section) in that code. Replace your

function with lcore hello function. The function of lcore hello just write hello at the output.

A function of rte eal remote launch() sends a message to each thread telling what function to

run. Rte eal mp wait lcore() waits for thread functions to complete and rte lcore id() returns

core id. Pthread create is a function to create a new thread. Wait all treads means to wait all

threads finish their tasks. More explanations are in [32]. In chapter 6, we explain the usage

of MKL and further discuss its advantages. To do isolcpus, modify grub file such as below (it

depends on the operating system).

GRUB CMDLINE LINUX=”isolcpus = 4,5,6,7” in /etc/default/grub file.

Perform grub-mkconfig -o /boot/grub/grub.cfg.

Reboot your system and see system monitor to see the core isolation.



30

CHAPTER 4

FFT, MATRIX INVERSION AND CONVOLUTION ALGORITHMS

Since Fast Fourier Transform (FFT), matrix inversion and convolution are our benchmark

in this thesis, the aim of this chapter is to describe in more details their algorithms in

order to know if they have a potential for parallel implementation. We explain FFT and

Discrete Fourier Transform (DFT) Radix-4. Then we perform radix-4 FFT using Matlab.

Also, we present FFT Cooley-Tukey and Stockham algorithms to be familiar with different

FFT algorithms. Finally, we show Gaussian Elimination algorithm for matrix inversion as

well as introducing convolution and cross-correlation. We describe computational complexity

order of all these functions. In the next chapter we will see how to accelerate the computation

of these algorithms.

4.1 Fast Fourier Transform

This section describes DFT, that is, a Fourier transform as applied to a discrete complex

valued series. For a continuous function of one variable x(t), the Fourier Transform X(f) is

defined as :

X(f) =

∫ ∞
−∞

x(t)e−j2πftdt (4.1)

and the inverse transform as

x(t) =

∫ ∞
−∞

X(f)ej2πftdf (4.2)

where j is the square root of −1. Consider a complex series x(k) with N samples x0, x1, x2, · · ·
, xN−1. Where x is a complex number. Further, assume that the series outside the range 0,

N −1 is extended N -periodic. So that xk = xk+N for all k. The following equation represents

the DFT in matrix form with input vector x with dimension of N and output vector X[k]

(see[34]).

X[k] =
N−1∑
n=0

x[n]e−j2πnk/N (4.3)



31

where n ∈ [0;N − 1] and k ∈ [0;N − 1]. The sequence x[n] is referred to as the time domain

and X[k] as the frequency domain. The DFT can be written in the matrix form as X = FNx

where FN is an N ×N matrix given by

[FN ]rs = wrs (4.4)

where

w = e−j2π/N . (4.5)

The inverse equation is given by :

x =
1

N
F ∗N X. (4.6)

Where ∗ means complex conjugate. Figure 4.1 (taken from [34]) illustrates FFT computation

for N = 8 graphically. The output of this figure is the vector X in reverse bit order. As

this figure shows, there is a potential to perform parallelism in this algorithm. In the next

chapter, we show how to leverage parallelism to reduce computational time of FFT. For a

value N = 2n, the FFT factorization includes log2N = n iterations, each containing N/2

operations for a total of (N/2)log2N operations. This factorization is a base-2 factorization

applicable if N = 2n.

4.1.1 Discrete Fourier Transform Radix-4

In this section we show that how to compute Discrete Fourier Transform Radix-4 and

how the computational load of radix-4 is lower. The sth sample of time series calculated by

sampling of f(t) in a duration T . DFT of N samples is derived by [35]

Fr =
1

N

N−1∑
s=0

ej2πrs/Nfs (4.7)

where Fr is the rth Fourier coefficient and j =
√
−1. We define TN as :

(TN)rs = ej2πrs/N (4.8)

= wrs (4.9)



32

x 0

x 1

x 2

x 3

x 4

x 5

x 6

x 7 X 7

X 3

X 5

X 1

X 6

X 2

X 4

X 0

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-
+

-

+

-

+

-

+

-

v0

v1

v2

v3

v4

v5

v6

v7l7

l6

l5

l4

l3

l2

l1

l0

W 2

W 2

W 2

W 3

W 1

W 0

h0

h1

h2

h3

h7

g2

g1

g0

g7

Figure 4.1 FFT factorization of DFT for N = 8.

where

w = ej2π/N (4.10)

Equation (4.7) can be written in the form of

F = (1/N)TNf. (4.11)

If N = rn, n is integer and r is basis, we can write

TN = P
(r)
N T

′

N (4.12)

T
′

N = P
′(r)
N TN (4.13)

and

P
′(r)
N = {P (r)

N }
−1 (4.14)

Where P
(r)
N is a permutation matrix specific to the basis r. Thus Equation (4.12) expressed

that we can show matrix TN based on its transpose matrix T
′
N using permutation matrix P

(r)
N .

Matrix T
′
N is partitioned into r × r square sub-matrices with dimension of N/r ×N/r. TN/r

is expressed in terms of TN/r2 . This process is iteratively applied. The symbol × is Kronecker

product of matrices. The ith iteration is represented as :

TN/k = P r
N/k(TN/rk × Ir)D

(r)
N/k(IN/rk × Tr) (4.15)



33

where

D
(r)
N/k = quasi− diag(IN/rk, Kk, K2k, K3k, ..., K(r−1)k) (4.16)

Where quasi-diag means to have values of K instead of zeros in Identity matrix of I.

Km = diag0,m, 2m, 3m, ..., (N/rk − 1)m (4.17)

For any m as an integer we have

Tr =


0 0 0 0 ... 0

0 N/r 2N/r 3N/r ... (r − 1)N/r

0 2N/r 4N/r 6N/r ... 2(r − 1)N/r

. . . . ... .

0 (r − 1)N/r . . ... (r − 1)2N/r

 (4.18)

For simplicity, we express k instead of wk. Ik is the unit matrix of dimension k. By partitioning

the matrix TN/k and using the following equation

(ABC...)× I = (A× I)(B × I)(C × I)... (4.19)

where A,B,C, ..., I are square matrices with the same size, we derive radix-r fast Fourier

transform.

TN = P r
N(P r

N/r × Ir)...(P r
N/k × Ik)...(P r

r2 × IN/r2)

. (Tr × IN/r)(Dr2 × (IN/r2)(Ir × Tr × (IN/r2)...

. (Dr
N/k × Ik)(IN/rk × Tr × Ik)...

. (Dr
N/r × Ir)(IN/r2 × Tr × Ir)Dr

N(IN/r × Tr). (4.20)

Considering

S(r) = (IN/r × Tr) (4.21)

and applying the property of the powers of shuffle operators,

{P (r)
N }

−i S
(r)
N {P

(r)
N }

i = IN/ri+1 × Tr × Iri (4.22)

we obtain

TN =
n∏

m=1

(P (r)
m µ(r)

m S(r)) (4.23)



34

where

µ
(r)
i = Irn−i ×D(r)

ri
(4.24)

and P (r) represents the permutation matrix P
(r)
N . For N = 256 and base 4 (r = 4)

TN=256 = p1µ1sp2µ2sp3µ3sp4µ4s (4.25)

s is obtained from equation (4.21) where

T4 =


1 1 1 1

1 −j −1 j

1 −1 1 −1

1 j −1 −j

 (4.26)

µ
(r)
m is obtained from equation (4.24)

p1 = µ1 = IN (4.27)

and

p
(r)
i = Irn−i × P (r)

ri
(4.28)

P
(r)
K . col(x0, x1, x2, ..., xK−1)

= col(x0, xp, x2p, x3p..., x1, xp+1, x2p+1, x3p+1, ..., x2, xp+2, x2p+2, ..., xK−1). (4.29)

where K/r = p. In Chapter 5 we implement this algorithm on CPU to see its speed of

computation.

4.1.2 Cooley-Tukey and Stockham formulation of the FFT algorithm

Fig. 4.2 (taken from [36]) illustrates Cooley-Tukey and Stockham algorithms. These two

algorithms merge pairs of smaller FFTs into larger ones. Each box depicts the FFT of the

listed sequence elements. Based on these algorithms, Cooley-Tukey algorithm requires an

initial bit-reversal step, while Stockham algorithm does not. The initial bit-reversal

permutation in Cooley-Tukey algorithm can cause delay. Because the memory accesses are

unstructured. While radix-2 Stockham FFT algorithm eliminates the bit-reversal necessity



35

0 1 2 3 7654

0 4 2 6 7351 0 1 2 3 7654

{0,4} {1,5} {2,6} {3,7}{0,4} {1,5}{2,6} {3,7}

{0,2,4,6} {1,3,5,7}{0,2,4,6} {1,3,5,7}

{0,1,2,3,4,5,6,7}{0,1,2,3,4,5,6,7}

Cooley-Tukey Stockham

input

it=1, Ns=2

it=2, Ns=4

it=3, Ns=8

Figure 4.2 Dataflow for two DFT algorithms (Cooley-Tukey and Stockham).

by reordering the dataflow [37].

4.1.3 Summary on Fast Fourier Transform

As Fig. 4.1 illustrates and equation (4.23) represents, DFT needs parallelism to speed up

computation. If the number of points N satisfies N = rn where r, called the radix or base, is

an integer, then the FFT reduces the number of complex multiplications needed to evaluate

the DFT from N2 to (N/r)logrN . For smaller N, the number of computation is NlogN .

FFT Stockham algorithm compared to Cooley-Tukey algorithm requires twice more memory

because it does not perform the FFT in-place and there is no simultaneous read and write

access [37]. To reduce more the computation time of Radix-4, based on equation (4.23) which

is multiplication of three matrices, we can do these matrix multiplication in parallel. In the

next chapter we describe how to do matrix multiplication in parallel.

4.2 Matrix Inversion

As we saw in the literature review, channel matrix inversion is proposed for MIMO

detection. For this purpose, we introduce Gaussian Elimination algorithm which is a

numerical method. This method is implemented in parallel to accelerate computation of

matrix inversion. In fact, it solves linear system AX = B where A is an square n × n

matrix, X and B are both n × 1 vectors. Gaussian Elimination algorithm reduces AX = B



36

system to an upper triangular system UX = Y which is solved through backward

substitution. In the numerical program, vector B is stored as the (n+ 1)th column of matrix

A. In this algorithm, we consider loop k controls the elimination step, loop i controls to

access the ith row and loop j controls access of jth column. The following pseudo code

(algorithms 4.1 and 4.2) describe Gaussian Elimination. In backward substitution, xi is

stored in the space of ai,n+1. To perform Parallel Gaussian Elimination in forward

elimination section, the following task can be parallelized for k = 0 to k = n− 1.

aik = aik/akk;

for j = k + 1 to n− 1

aij = aij − aik · akj;
end for

In backward substitution, the following part is performed in parallel :

for j = i+ 1 to n− 1

xi = xi − aij · akj;
end for

xi = xi/aii

Algorithm 4.1 Forward Elimination [38]

1: for k = 0 to n− 1 do
2: for i = k + 1 to n− 1 do
3: aik = aik/akk; /* divided by pivot element */
4: for j = k + 1 to n− 1 do /* for all rows below the pivot row */
5: aij = aij − aik · akj;
6: end for
7: end for
8: end for

Algorithm 4.2 Backward substitution [38]

1: for i = n to 1 do
2: for j = i+ 1 to n− 1 do
3: xi = xi − aij · akj;
4: end for
5: xi = xi/aii
6: end for

4.2.1 Complexity of Gaussian Elimination algorithm

Complexity of Gaussian Elimination algorithm means that in the worst case how many

steps it requires to compute this algorithm. Addition and multiplication are the main



37

functions of Gaussian Elimination. Based on the experimental result in the next chapter

which is hardware acceleration using GPU, the computation time for multiplication is much

longer than the computation time for addition. If we consider to compute the inversion of

matrix Am×m, we have m + 1 columns. There are m + 1 multiplications for row i

(Ri → cRi). In the next step, each m + 1 elements in row j needs multiplication and then

addition to the relevant element in row i. Therefore, in this step, there are m + 1

multiplications and m+ 1 additions (Ri → Ri + cRi). With a rough calculation we can say

that Gaussian Elimination has order n3 (O(n3)). These steps are illustrated by the

following example.

.143x1 + .357x2 + 2.01x3 = −5.17

−1.31x1 + .911x2 + 1.99x3 = −5.46

11.2x1 − 4.30x2 − .605x3 = 4.42 .143 .357 2.01 −5.17

−1.31 .911 1.99 −5.46

11.2 −4.30 −.605 4.42


 1.00 2.50 14.1 −36.2

−1.31 .911 1.99 −5.46

11.2 −4.30 −.605 4.42

⇐=

Dividing the first row in parallel

by 0.143 (A0,0) to produce a new

first row (divide by Pivot element)

Ak,j = Ak,j/Ak,k ; 1.00 2.50 14.1 −36.2

0.00 4.19 20.5 −52.9

11.2 −4.30 −.605 4.42

⇐=

Adding 1.31 A1,0 times the first

row to the second row in parallel to

produce a new second row Ai,j =

Ai,j − Ai,k × Ak,j ; 1.00 2.50 14.1 −36.2

0.00 4.19 20.5 −52.9

0.00 −32.3 −159 409

⇐=

Adding -11.2 A2,0 times the first

row to the third row in parallel to

produce a new third row ; 1.00 2.50 14.1 −36.2

0.00 1.00 4.89 −12.6

0.00 −32.3 −159 409

⇐=

Dividing the second row by 4.19

A2,1 in parallel to produce a new

second row ; 1.00 2.50 14.1 −36.2

0.00 1.00 4.89 −12.6

0.00 0.00 −1.00 2.00

⇐=

Adding 32.3 A3,1 times the second

row to the third row in parallel to

produce a new third row ;



38

 1.00 2.50 14.1 −36.2

0.00 1.00 4.89 −12.6

0.00 0.00 1.00 −2.00

⇐=

Multiplying the third row by -1

in parallel to produce a new third

row.

4.2.2 Summary on Matrix Inversion

Matrix Inversion is an important element of matrix computation. Gaussian Elimination

algorithm makes compute matrix inversion in parallel which includes addition and

multiplication in a parallel way. It has the complexity order of n3 (O(n3)).

4.3 Convolution and Cross-Correlation

As wee saw in literature review, convolution and cross-correlation is required for Turbo

decoding. In this section we give the equations to compute convolution and cross-correlation

considering the fact that multiplication in time domain is convolution in frequency domain

and vice versa. The discrete convolution of two sequences v[n] and x[n] is obtained by y[n]

y[n] =
∞∑

m=−∞

v[m]x[n−m]. (4.30)

The discrete cross-correlation rvx[n] for two sequences v[n] and x[n] is

rvx[n] =
∞∑

m=−∞

v[n+m]x[m], n = 0, ±1, ±2, ... (4.31)

where n is integer between−∞ and∞. The convolution has the complexity order ofO(n×m).

The auto-correlation rxx[n] has the same expression such as cross-correlation rvx[n] with v

replaced by x. And cross-correlation is written as a convolution by the following equation :

rvx[n] = v[n] ∗ x[−n] (4.32)

Convolution is one of the main functions in signal processing. The importance of

convolution is such as the importance of multiplication. Convolution in time domain is the

multiplication in frequency domain and visa versa. It has complexity order of O(n×m).



39

CHAPTER 5

HARDWARE ACCELERATION USING GPU

In chapter 4, we discussed parallel implementation of different operations, including FFT,

matrix inversion and convolution. In this chapter, we discuss parallel implementation of those

operations using CUDA and Matlab on GPUs. We will evaluate the performance of parallel

processing of the operations on GPUs. This allows us to explain the advantages of GPU

computing using Matlab.

5.1 Implementation on GPU using CUDA

We implement algorithms on GPU using CUDA, the Compute Unified Device

Architecture. CUDA is a C/C++ based platform for development of parallel computing

modules, invented by NVIDIA. It enables dramatic increase in computing performance by

harnessing the power of the GPU. CUDA programs include two pieces : a host code on the

CPU which interfaces to the GPU and a kernel code which runs on the GPU. The host level

code is in charge of memory allocation on the graphic card and data transfer to and from

the device memory. In this section, FFT, matrix inversion, matrix multiplication, and

convolution are used for demonstration and benchmarking.

5.1.1 Matrix Multiplication

In this section, we describe the implementation of matrix multiplication as the

fundamental block in many algebraic operations. Specifically, we consider the matrix

multiplication of the form,

AN×N ·BN×1 = CN×1, (5.1)

implying :

{C}i,j =
∑
k

{A}i,k{B}k,j. (5.2)

We will assign the calculation of each element of C, {C}i,j, to one independent thread of

GPU.



40

As we discussed in Chapter 3, we should compute the number of blocks per grid to match

our data and simultaneously maximize occupancy, that is, how many threads are active at one

time. Thread block size should always be a multiple of 32 ; i.e. 32, 64, 128, . . .. Because kernels

issue instructions in warps (32 threads). For example, if there is a block size of 50 threads,

the GPU will still issue commands to 64 threads and some threads are wasted. Moreover,

better performance is expected when blocks are dimensioned based on the maximum numbers

of threads and blocks supported in agreement with the compute capability of the card. For

example, if there are N data elements, only N threads are needed in order to perform our

computation. So in this case, the number of threads should be set to the smallest value that

is a multiple of the the number of threads per block and that is greater than or equal to N.

Therefore, the total number of blocks is

total number of threads + threads per block-1

threads per block
, (5.3)

where the total number of threads is equal to the number of rows of the matrix (in the range

between 10 and 20000).

The occupancy is the time required for the passing of data through the slowest

component in the communication path [38]. The occupancy limits the speed (frequency) of

initializing the communication operations. Specifically, each data transfer has to wait until

the critical resource is no longer occupied by the previous procedure. The theoretical

occupancy is 25% when there are 32 individual threads per block with no shared memory.

Since thread instructions are executed sequentially, executing other warps is the only way

to hide latency and keep the hardware busy.

Kernel Implementation

Our implementation of the kernel for matrix multiplication on GPU is presented in

Algorithm 5.1. A kernel code is executed on the GPU and requires to specify the grid and

block dimensions, discussed in chapter 3. The kernel functions are specified by declaring

them as global in the code.

In Algorithm 5.1, the first line includes the global void mutrixmul() which shows that

it is a function for running on the GPU device. The integer variable tmp accumulates the

product of row and column entries. The next line helps the thread to discover its row and

column within the matrix. The if statement prevents the thread from falling outside the



41

Algorithm 5.1 Kernel code for Matrix Multiplication.

1: global void mutrixmul(int ∗ a, int ∗ b, int ∗ c)
2: {
3: shared int b s [N ];
4: int tmp = 0;
5: int x = blockIdx.x · blockDim.x+ threadIdx.x;
6: b s[x] = b[x];
7: if x < N then
8: for int i = 0; i < N ; i+ + do
9: tmp + = a[N · x+ i] · b s[i];

10: end for
11: c[x] = tmp;
12: tmp = 0;
13: end if
14: }

bounds of the matrix. Finally, the for loop computes the product of row and column of the

matrix and the sum of these products are stored in tmp.

Experimental Results

Fig. 5.1 shows experimental results for the matrix multiplication with different (square)

matrix sizes (ranging between 10 and 19 × 103) with non-zero entries. Our experiments are

done on GPU Geforce GTX 660 Ti and multi-core devices. Further, we compare the results

in case of using GPU with shared memory and global memory (without shared memory) and

using multiple-cores in a CPU.

In this figure, the horizontal axis represents the size (number of rows) of the square matrix

and the vertical axis is an execution computation time in micro seconds. This figure represents

the three cases of computation time of matrix multiplication 1) using shared memory of GPU,

2) using global memory of GPU (without shared memory) and 3) the case of using multiple-

cores for calculations.

In summary, using shared memory makes the computation times around 1.5 times faster

for array size of 1000 or more. On the contrary, using multiple-cores (8 threads) makes the

computations up to 2 times and 30 times slower for small and large matrices, respectively.

Indeed, for square matrix size of 100 or less, the GPU is up to two times faster than the

multiple-core CPU. For square matrix size between 100 and 1000, the GPU is just a little

bit faster. For the largest considered matrices, the GPU is up to 30 times faster. The bigger

the matrix size, the more speed up is obtained with the GPU. As shown in this figure, the



42

101 102 103 104 105
101

102

103

104

105

106

Matrix Size

M
at

rix
 M

ul
tip

lic
at

io
n 

co
m

pu
ta

tio
n 

tim
e 

[u
se

c]

 

 

GPU using shared memory
GPU without shared memory
Multicore (8 threads)

Figure 5.1 Computation time of matrix multiplication vs the matrix size for GPU (Geforce
GTX 660 Ti)(with and without shared memory) and multi-core (8-core CPU x86 64). GPU
Clock rate and CPU Clock rate are about 1 GHz and 3 GHz, respectively.

computation times decrease when we use the GPU with shared memory. The advantage of

shared memory is to reuse the data and have an efficient computation process. All of these

results show that GPU is a suitable option for the computations of matrix multiplication as

it scales much less than the complexity order of vector-matrix multiplications, O(N2) (there

are N times N multiplications and (N − 1) sums).

5.1.2 Fast Fourier Transform

Fast Fourier Transform (FFT) is used in a vast variety of signal and image processing

applications. This makes its fast and efficient implementation a vital need for many

applications. In this section, we describe our implementation of FFT using CUDA.

NVIDIA’s CUDA provides an interface, called CuFFT, for fast computing of FFT on

NVIDIA GPUs. An NVIDIA GPU has hundreds of processor cores which can accelerate

FFT computations up to 10 times [39]. CUDA helps in efficient computation of discrete

Fourier transforms of complex and real-valued data sets. CuFFT provides a floating point



43

performance for GPUs.

Furthermore, CuFFT uses a combination of GPUs and CPUs to carry out parallel

computations. Specifically, CPUs are used to handle irregular and serial operations,

resulting in a faster mathematical functionality. Although some other libraries implement

radix-2 FFT, CuFFT has the following features which makes it a better alternative than

other libraries :

– 1D, 2D, and 3D transforms of complex and real valued data,

– batch execution for doing multiple transforms of any dimension in parallel,

– 2D and 3D FFT transform with sizes in the range of between 2 and 16384,

– 1D transform sizes of up to 8 million elements,

– in-place and out-of-place transforms for real and complex data,

– double precision transforms on compatible hardware (e.g. GT200 and later GPUs),

– support for streamed execution, which enables simultaneous computation along with

data movement.

Implementation and Experimental Results

In Algorithm 5.2, we present an example code for performing forward and inverse FFT

computations using CuFFT library [39]. In Algorithm 5.2, the function in line 5 allocates size

bytes of linear memory on the device and returns in devPtr, a pointer to the allocated memory.

The function in line 7 creates a 1D FFT plan configuration for a specified signal size and

data type. The batch input parameter specifies how many one-dimensional transforms CuFFT

needs to configure. Finally, the function in line 9 and 11 execute a CuFFT single precision

complex to complex transform plan as specified by direction. The CuFFT implementation

uses the GPU memory, pointed to by data parameter, as its input [39].

Table 5.1 Computation time of FFT for different input sizes.

Input Vector Size Computation Time of FFT [msec]
2560 173.2
25600 326.6
256000 997.7

In Table 5.1, we depict the FFT computation times using CuFFT library versus the size

of input vectors. The input vector sizes for FFT are 2560, 25600 and 256000. The entries of

the input vectors are randomly and uniformly generated complex float numbers. Moreover,



44

Algorithm 5.2 1D Complex-to-Complex FFT/IFFT Transforms using CUDA[39].

1: #define NX N
2: #define BATCH M
3: cufftHandle plan;
4: cufftComplex ∗ data;
5: cudaMalloc((void ∗ ∗)&data, sizeof(cufftComplex) ∗NX ∗BATCH);
6: / ∗ Create a 1D FFT plan. ∗ /
7: cufftP lan1d(&plan, NX, CuFFT C2C, BATCH);
8: / ∗ Use the CuFFT plan to transform the signal in place. ∗ /
9: cufftExecC2C(plan, data, data, CuFFT FORWARD);

10: / ∗ Inverse transform the signal in place. ∗ /
11: cufftExecC2C(plan, data, data, CuFFT INV ERSE);
12: / ∗Note :
13: (1) Divide by number of elements in data set to get back original data
14: (2) Identical pointers to input and output arrays implies in− place transformation
15: / ∗ Destroy the CuFFT plan. ∗ /
16: cufftDestroy(plan);
17: cudaFree(data);

our implementation is done on Geforce GTX 660 Ti GPUs. As it is shown in this table, the

computation time of FFT increases as the size of input vector is increased. The computational

complexity of FFT operation (with no parallel computing) is in the order of Nlog(N) where N

is vector size. Our experimental results have shown that the computation time of calculating

FFT using CuFFT has a smaller order than Nlog(N). For instance, if the input size N

scales up 10 times, the computation time using CuFFT does not scale up 10 time because

of increasing in resource utilization. This shows that CuFFT is an appropriate choice for

implementation of FFT on GPUs.

Matlab implementation of Radix-4 FFT implementation on CPU

In chapter 4, we described the architecture of radix-4 FFT, as characterized by the

equation (4.25). Specifically, one has to implement p, µ and s matrices. In our

implementations, we consider N = 256 and choose f(n) as a specific input such that :

f(n) = sin(βn+ π/4)RN(n), (5.4)

where

β = 7.5
2π

N
, (5.5)

RN = u(n)− u(n−N), (5.6)



45

and u(n) is the discrete-variable step function :

u(n) =

{
0 n < 0

1 n > 0
. (5.7)

The pseudocode for implementation of radix-4 FFT of the signal f(n) is presented in

Algorithm 5.3. In this code, kron(a, b) is the Kronecker product of matrix a and b. Further,

eye(n) is an identity matrix of size n × n. Based on equation (4.25), we need to calculate

matrices p, µ and s. Meanwhile, calculating µ requires the calculation of matrix D which

is done in the first inner loop (lines 9-13) from the equation (4.16). The second inner loop

(lines 18-32) calculates matrix p from the equations (4.28) and (4.29). This will allow us to

calculate µ (line 30) and s (line 40) using the (4.24) and (4.21), respectively. Finally, the FFT

values are obtained by using equation (4.25) (line 46).

Using tic/toc instruction in Matlab, we measure the elapsed times for calculation of

FFT. The elapsed time for calculating radix-4 FFT of the signal f(n) with N = 256 on

CPU is 104 milliseconds. In the case where CuFFT was used for calculating FFT on GPU,

the computation time was 173.2 milliseconds for N = 2560. The complexity order of FFT is

Nlog(N). Thus, for N = 256 we expect that to have computation time of about

17 milliseconds. In radix-4 FFT implementation on CPU, the computation time is about

6 times bigger (17ms × 6 = 102ms), while in CUDA small vector size is not efficient to be

implement by GPU. Because the computation time for small vector size is mostly

initialization time and communication time. Further, we know that Matlab has its own

overhead. As a result, Radix-4 Fast Fourier Transform will have much less computation

time in case of being implemented on GPU.

5.1.3 Matrix Inversion

We used Gaussian elimination algorithm to compute matrix inversion in parallel. As it

was described in chapter 4, Gaussian elimination is a method for solving linear equations of

the form

AN×N ·XN×1 = BN×1.

In each iteration of this method, a pivot column is used to reduce the rows where the process

of row reduction is divided in two steps. The first step is forward elimination which reduces

a matrix to row echelon form. In the second step is back substitution which is applied to find



46

Algorithm 5.3 Radix-4 Fast Fourier Transform

1: w = exp(−2π sqrt(−1)/N);
2: for i1 = 1 to r do
3: N1 = ri1;
4: b = 0 : rr−i1 : ((N1/r)− 1)rr−i1

5: K1 = zeros(N1/r,N1/r, (r − 1));
6: DNk = zeros(N1, N1);
7: DNk(1 : N1/r, 1 : N1/r) = eye(N1/r);
8: / ∗ Constructing D ∗ /
9: for i1 = 1 to (r − 1) do

10: wp = b. ∗ i;
11: K1(:, :, i) = diag(w.(wp.×(−1)));
12: DNk((i×N1/r) + 1 : (i+ 1)×N1/r, (i×N1/r) + 1 : (i+ 1)×N1/r) = K1(:, :, i);
13: end for
14: / ∗ Constructing P ∗ /
15: P1 = zeros(N1);
16: col = 1;
17: m2 = 1;
18: for i2 = 1 to N1 do
19: if col 6 N1 then
20: P1(i2, col) = 1;
21: col = col +N1/r;
22: else
23: m2 = m2 + 1;
24: col = m2;
25: P1(i2, col) = 1;
26: col = col +N1/r;
27: end if
28: end for
29: / ∗ µ /∗
30: u(:, :, r + 1− i1) = kron(DNk, eye(r

(r−i1)));
31: / ∗ p /∗
32: P (:, :, r + 1− i1) = kron(P1, eye(r(r−i1)));
33: end for
34: for i1 = 1 to r do
35: for j1 = 1 to r do
36: Tr(i1, j1) = w(−N×(i1−1)×(j1−1)/r);
37: end for
38: end for
39: / ∗ Constructing S ∗ /
40: S = kron(Tr, eye(N/r));
41: / ∗ Computing FFT radix− 4 ∗ /
42: / ∗ n = 4 r = 4 N = 256 ∗ /
43: / ∗ TN = P1 u1 S P2 u2 S P3 u3 S P4 u4 S ∗ /
44: TN = S P (:, :, 3) u(:, :, 3) S P (:, :, 2) u(:, :, 2) S P (:, :, 1) u(:, :, 1) S;
45: / ∗ F : FFT ; f : input ∗ /
46: F = (1/N) TN f ;
47: / ∗ Computing IFFT radix− 4 ∗ /
48: f = inv(TN) F ;



47

the solution. In fact, the unknown coefficients in the equation are represented as matrix A.

Explicitly, this matrix is converted to an upper triangular matrix and then back substitution

is applied on the result. The pivot element is the diagonal element for a specific iteration of

the k loop, and its row is known as the pivot row.

Experimental Results

The computation time of matrix inversion using CUDA implementation is presented in

Table 5.2 for different matrix sizes. As it is expected, the computation time increases when

the size of matrix is increased. However, the computation times do not increase proportionally

with the size of the matrix. As we discussed in Chapter 4, matrix inversion has a complexity

order of N3. The results in Table 5.2 show that the computation time of matrix inversion

using CUDA scales with N3, when using sufficiently large matrices, 500 and 1000 in this

context. However, this does not hold for smaller matrices, for example, matrix size 500 is

faster than matrix size 200. This is an odd behavior. Since it is running a function from a

library, maybe it is because of wasting threads. While, it should be fully utilized warp which

include 32 threads. The result shows that case of 200 wastes threads more than case of 500.

This shows that CUDA is a good choice for implementing matrix inversion on GPUs for large

matrices.

Table 5.2 Computation times of matrix inversion for different matrix sizes.

Matrix Size Computation Time [msec]
50× 50 445

200× 200 4541
500× 500 1500

1000× 1000 11000

5.1.4 Convolution and Cross-Correlation

As it was discussed in chapter 4, convolution in time domain can be implemented by using

multiplication in the frequency domain. In this section, we introduce different approaches

for calculating convolution and discuss their computational times. Although the procedure

looks very simple, its efficient implementation is challenging and needs careful design and

allocation of hardware resources. In the following, we describe our proposed implementation



48

of the convolution by using zero padding and shared memory in order to leverage memory

and take advantage of memory management.

Kernel Implementation

As an example, consider the convolution of vectors a and b, c = a ∗ b, where

a = [1, 2, 3, 4, 5], (5.8)

b = [6, 7]. (5.9)

In Table 5.3, we illustrate the procedure for calculating this convolution. As it is shown in

this table, vector a is right-shifted in this case. Then, it is multiplied by reversed vector b.

Finally, these multiplications are added in each instant.

Algorithm 5.4 shows part of kernel code to compute convolution in this naive approach. To

compute the convolution, the elements of two (shifted and reversed) vectors are multiplied

together and then the results are added to obtain the value of convolution at a point (a

specific shift). As it is shown in Algorithm 5.4, it is necessary to verify the size of vectors

with the if statement (line 6 of the algorithm).

Conventional (Naive) Approach

Using global memory is the most trivial and naive approach for sending data to device

and memory in the process of calculating convolution. To obtain the lower performance limit

on the computation of convolution, we implement it using global memory in this subsection.

Explicitly, we do not use any of the techniques use in the next sections (zero padding, shared

memory) for reducing the computation times. For this basic approach, we do not use any

thread of GPU which results in an implementation only on the CPU. Further, we do not use

any special technique for improving the computational efficiency of verification of boundary

conditions (i.e. if statement in the kernel in Algorithm 5.4) in the kernel.

Zero padding

In order to improve the computation time of convolution, we proposed to use zero padding.

The if statement in the kernel code (see line 6 in Algorithm 5.4) decreases the efficiency in



49

Table 5.3 Conventional procedure for calculating convolution : Right shifted vector a is
multiplied by reversed vector b. Then, these multiplications are added in each instant.

shift by 1 shift by 2 ... shift by 6(size a+ size b− 1)

reverse of vector b [ 7,6 ] [ 7,6 ] . . . [7,6 ]
vector a [1,2,3,4,5 ] [1,2,3,4,5 ] . . . [ 1,2,3,4,5]

Partial result 7× 5 6× 5 + 7× 4 . . . 6× 1
c(�) 35 58 . . . 6

Algorithm 5.4 Part of kernel code for calculating convolution using the naive approach.

1: ...
2: for int i = 0; i < convolution length; i+ + do
3: k = i;
4: tmp = 0;
5: for int j = 0; j < B vector length; j + + do
6: if k ≥ 0 && k < A vector length then
7: tmp = tmp+ (A[k] ·B[j]);
8: k = k − 1;
9: C[i] = tmp;

10: end if
11: end for
12: end for
13: ...

parallel computing. Specifically, in parallel computing, all parts should work similarly to

achieve near-optimal efficiency. Checking some conditions (i.e. the if statement in our case)

results in loosing unique parallel computing structure. Using zero padding allows us to remove

the if statement and achieve a unique structure for our parallel computing which can also

takes care of verifying the boundary condition.

Table 5.4 Convolution procedure using zero padding : After zero-padding, right-shifted vector
a is multiplied by reversed vector b. These products then are added in each instant.

shift by 1 shift by 2 ... shift by 6

reverse of vector b [0,0,0,0,7,6,0,0,0,0] [0,0,0,0,7,6,0,0,0,0] . . . [0,0,0,0,7,6,0,0,0,0]
vector a [1,2,3,4,5,0,0,0,0,0] [0,1,2,3,4,5,0,0,0,0] . . . [0,0,0,0,0,1,2,3,4,5]

Partial result 7× 5 6× 5 + 7× 4 . . . 6× 1
c(�) 35 58 . . . 6

The procedure of calculating convolution with zero padding is illustrated in Table 5.4.

In this case, the right shift and rotation are both applied to vector a. In fact, after doing

rotational right shift on vector a, both vector a and reversed vector b are multiplied with



50

each other without checking the size of vectors.

Zero padding, Shared Memory

As a second contribution for computing convolution, we used zero padding along with

shared memory to achieve a better computational efficiency. Using zero padding allowed us

to remove the if statement and have a kernel code which results in a good parallel computing

structure. On top of zero padding, we proposed to use the shared memory to be able to reuse

data between different threads.

Shared memory is located on the chip (see Fig. 3.13) and therefore it is much faster than

the local and global memories. Explicitly, in the case of using fully utilized threads and warps,

shared memory latency is around 100 times less than the latency of un-cached global memory

latency. As it is shown in Fig. 3.13, shared memory is assigned for each thread block and all

of the threads in the block have access to the same shared memory. This capability results

in high performance parallel algorithm.

Summation Reduction

As it is shown in Algorithm 5.4 (see line 7), summation is a main part of computations

in calculating the convolution. In the following, we adopt summation reduction instead of

simple addition (sum) as a further improvement on top of discussed techniques (i.e. on top

of zero padding and shared memory). The adopted summation reduction technique has low

arithmetic intensity and uses memory bandwidth in an efficient way.

Simple sum is done using only one thread which take time proportional with the length of

the array. However, since we have hundreds of threads available for computing, we can design

a new sum algorithm which takes advantage of parallel computing over multiple threads. In

the following, we present two different approaches for calculating the sum in a parallel way.

The first approach is called parallel reduction with sequential addressing, and is illustrated

in Fig. 5.2. As it is shown in this figure, each thread is in charge of adding two values and

storing the result. This will combine two entries into one and reduce the number of additions

in the next step. This reduction is repeated in the next step to the remaining entries. As

shown in Fig. 5.2, at each step, the number of additions of two values is reduced by half.



51

Figure 5.2 One step of a summation reduction based on the first approach : Assuming 8
entries in cache variable, the variable i is 4. In this case, 4 threads are required to calculate
the sum of the entries at the left side with the corresponding ones at the right side.

Algorithm 5.5 Summation reduction using first approach [40].

// for summation reductions, threadsPerBlock must be a power of 2
int i = blockDim.x/2;
while i 6= 0 do

if cacheIndex < i then
cache[cacheIndex] + = cache[cacheIndex+ i];
syncthreads()
i/ = 2;

end if
end while

Algorithm 5.5 demonstrates summation reduction using the first approach. The first step

of algorithm starts with variable i as half of the number of threadsPerBlock. The threads

with indices less than this value i are used for computing while the rest are left un-used.

Specifically, the two entries of cache variable are added if the thread’s index is less than i.

This addition is protected with using an if statement : if(cacheIndex < i).

Each thread will take the entry at its index in cache variable and adds it to the

corresponding entry in the other half. The result is then stored at the entry with the same

index as the thread index. For example, assume that there are 8 entries in cache variable

and, hence, variable i is 4. As shown in Fig. 5.2, in this case, 4 threads are required to

calculate the sum of the entries at the left side with the corresponding ones at the right

side.

In our second approach, we combine the arrays in a different way than in the first approach.

Specifically, the entries are combined together based on a tree structure, as shown in Fig. 5.3.



52

Figure 5.3 Tree-based summation reduction : Entries are combined together based on a tree
structure.

The first approach is more suitable for parallel processing because of having consecutive

indexing.

In the first approach, parallel reduction with sequential addressing, there are a total

number of log(N) steps of calculating. In each step, k, there are N/2k independent operations

which are done in parallel (using multiple threads). As a result, the total number of operations

is in the order O
(
log(N)

)
.

In the second tree-based approach, with N = 2K , there is a total of

K∑
k=1

2K−k = N − 1 (5.10)

operations which has a higher order of computational complexity than the first approach. As

a result, it is more efficient to use parallel reduction with sequential addressing than the tree-

based reduction. Further, the advantage of reduction is in efficient use of memory bandwidth

which makes the arithmetic intensity very low. In the following, we use parallel reduction

with sequential addressing for computation of sum (referred to as summation reduction) in

the convolution.

Experimental Results

We have run our experiments to calculate the computation time of convolution using

different approaches. For each approach, we used different vector sizes and measured the

corresponding computation times, as presented in Table 5.5. In the following, we discuss our

results obtained for each approach :

Conventional (Naive) Approach : By measuring the initialization time for



53

Table 5.5 Computation times of convolution for three different scenarios : Naive approach,
zero-padding and zero padding with shared memory.

A vector size B vector size
Computation Times [sec]
Naive
Approach

Zero Padding Zero Padding,
Shared Memory
and Summation
Reduction

5 2 8.6× 10−5 2.54× 10−4 2.2× 10−4

16 8 6.5× 10−4 2.6× 10−3 2.6× 10−4

32 16 2.5× 10−3 1.04× 10−2 2.89× 10−4

64 32 9.7× 10−3 4.18× 10−2 1× 10−4

128 64 3.8× 10−2 1.64× 10−1 1.3× 10−5

256 128 .15 .6 3.6× 10−5

512 256 .55 2.189 5× 10−5

1024 512 2.04 8.569 7.6× 10−5

2048 1024 7.95 34.348 8× 10−5

computation of different vector sizes, we conclude that the computation time is mostly due

to the initialization time, especially for small vectors. Further, comparing the computation

times for the last two entries of the table shows that the computation times of the

convolution are from the order N2. This was verified in Chapter 4 where we analyzed the

complexity order of convolution. However, for smaller vector sizes (first few entries of the

table), the computation times do not have a second order relation with the size of input

vectors. This fact is resulting from the initialization time (of memory) which is not

negligible (compared to other factors) in the cases with small vector sizes.

Zero padding : The computation time is mostly the initialization time for the first two

cases. For the rest, as the sizes of a and b double, the computation time becomes 4 times.

This can also be concluded from the complexity order, discussed in Chapter 4. Compared to

naive approach, zero padding is slower. Because in this case we have more computations and

we retrieve more data because of zero padding. Moreover, it does not have shared memory.

Zero padding is only interesting when using shared memory. Vectors with smaller size need

few processors to be computed while vectors with bigger size need more processors. Using

shared memory allows us to read 1 data and send it everywhere, while in case of zero padding

we can not do that.

Zero padding, Shared Memory, Summation Reduction : Our results for the last

scenario in Table 5.5 show that for vector sizes smaller than 32 the computation times are

greater than those for bigger vector sizes. Although this may seem to be invalid, it can be



54

justifies by understanding the computation mechanism in GPUs (as discussed in Chapter 4).

CUDA implementation combines every 32 threads as instructions are issued per warp. As a

result, CUDA implementation reaches its maximum computation efficiency when 32 threads

per warp are fully utilized. High computation times for vector sizes smaller than 32 is resulting

from the overhead involved in the processing of small vector sizes.

The results in Table 5.5 show that using shared memory makes computation much faster.

Further, the results imply that computation time does not scale with the size of input vectors

(i.e. N ×M where N and M are sizes of A and B vectors).

The computational complexity of convolution is proportional to the number of required

memory accesses. However, data re-using with the aid of shared memory results in

computation time of convolution not to scale with the size of input vectors N ·M (where N

and M are the sizes of A and B vectors). In fact, we are able to carry out the computation

of convolution using M warps, each performing N computation, as opposed to N · M
individual computations when shared memory is not used.

Each thread is considered a compute engine where every 32 threads compose one warp.

Since there are 192 CUDA cores on our GPUs, we have a total of around 6000 compute

engines. Therefore, performing 1000 or 2000 (our maximum vector size based on Table 5.5)

multiplications will not saturate the bandwidth of memory. This makes GPU with shared

memory implementation a good choice for performing convolution.

Our experimental results shows that memory management obtained by deleting the if

statement in the kernel code improves the computational efficiency. Such a structure is

sometimes referred to as Single Instruction and Multiple Data (SIMD structure) where

multiple data are executed with the same operation at the same time. Moreover, we

observed that the occupancy varies by the size of input vectors. Specifically, bigger vector

sizes uses warps fully which increases the computational efficiency.

For the last entry in Table 5.5, there are a total of 1024 × 2048 multiplications and

1023× 2048 additions. This results in a total of about 222 ' 4× 106 operations. Now, using

a clock frequency of 1 GHz for compute engines, it takes

t =
4× 106operation

109operations/second
= 4× 10−3(second)

to do the computations. As the computation time for that entry is 8×10−5 second, 50 compute

engines have been used for the computation (4 × 10−3/8 × 10−5 = 50). Further, since every



55

32 compute engines form a warp, a total of 2 warps are used for the computation. Moreover,

two warps use one shared memory for the computations (see Fig. 3.13). Therefore, two warps

with one shared memory can be used for performing the summation reduction. This allows

us not to need extra communications for performing the summation reductions. In the case

with big input vectors (vector sizes of 2048 and 1024) only 2 warps are required while in

other cases, only one warp is used. In the cases with small vector sizes, only a tiny portion

of the warp is used for computations.

5.2 Implementation on GPU using Matlab

Matlab parallel computing toolbox provides embedded implementation of data-intensive

signal processing algorithms for multi-core processors, GPUs and computer clusters. Matlab

built-in parallel computing features have been shown to be efficiently implemented. However,

one has to maintain the transfer of data between the GPU and CPU. In this section, we

discuss the implementation of different signal processing operations using MATLAB and

evaluate their computational efficiency.

Before discussing GPU implementation of different operations using MATLAB, we

mention the main functions required for GPU parallel computing. Some of these functions

are listed in below :

– GPUDevice shows GPU devices attached to the computer and lists their properties,

– GPUArray transfers an array from Matlab workspace 1 to the GPU device,

– gather retries data from the GPU to the Matlab workspace (computer memory). In

fact, this function transfers the results from GPU memory to the computer memory

(RAM).

5.2.1 FFT

The process of calculating FFT using MATLAB implementation for GPU follows three

consecutive steps. First, gpuArray() function is executed to transfer the data from Matlab

workspace (computer memory ; i.e. RAM) to the memory of GPU device. Then, FFT

operation is executed on the GPU device and the result is stored on the memory of the

GPU. Finally, gather function transfers the results from the memory of GPU to the

computer RAM (Matlab workspace). This process is shown in Algorithm 5.6.

1. Matlab workspace is an environment to keep the numerical data and program.



56

Algorithm 5.6 FFT GPU Computing in MATLAB

1: A = gpuArray(rand(M, 1));
2: B = fft(A);
3: C = gather(B);

(a) GPUArray

(b) gather

Figure 5.4 CPU/GPU times for (a) GPUArray method (b) gather method in computation
of FFT using Matlab implementation on GPU.

Fig. 5.4 shows the resulting cpu-time/gpu-time versus input array size. Specifically, the

vertical axis represents the speedup as the ratio of the computation time on CPU to the

computation time on GPU. The input vectors used for our experiments are floating point

numbers with double precision. We vary the size of vectors from 60 to 106.

In Fig. 5.4(a), the computation time of GPU corresponds to the transfer of data from

the computer CPU to the GPU memory and the calculation of FFT on GPU. Our goal is

to show the speedup of FFT computation on GPU compared to FFT computation on CPU.

As it is shown in this figure, computation using GPU takes less time (about 10 times faster)

than computing on CPU, especially for array sizes greater than 100. For smaller array sizes,



57

overhead takes more time compared to the computation time of FFT. This fact is because

memory bandwidth on GPU is greater than memory bandwidth on CPU.

In Fig. 5.4(b), the computation time of GPU includes the transfer of data from computer

memory to GPU, calculating the FFT on GPU, and transferring the result from GPU to

the computer memory. This will allow us to compare the overall computation time using

GPU compared to the case where they are done on the CPU. Our experimental results in

Fig. 5.4(b) shows that using GPU is still a faster approach than using CPU. Explicitly, it

achieves a speedup of around 10 and 100 for array sizes around 400 and 4× 106.

5.2.2 Matrix Inversion

Similar to the procedure for calculating FFT, Matlab-based matrix inversion on GPU

requires three consecutive steps. First, we use gpuArray(MatrixA) function to transfer data

from the Matlab workspace (computer RAM) to the memory of GPU device. This will

configure the next function to be executed on the GPU. Specifically, by executing inv

function, Matlab implementation of matrix inversion on GPU is done. Similar to the FFT

calculation steps, the results in this case are stored on the memory of GPU. Executing

gather function will return the results back to the computer memory where we would have

access to (via Matlab workspace). Algorithm 5.7 summarizes these steps in the calculation

of matrix inversion on GPU.

Algorithm 5.7 Matrix inversion GPU Computing in Matlab

1: A = gpuArray(MatrixA);
2: B = inv(A);
3: C = gather(B);

In Fig. 5.5, the speedup of computing matrix inverse is depicted versus the size of input

matrices. The vertical axis represent the speedup which is the ratio of the computing time on

CPU to the computation time using GPU. The input matrices are square and their entries are

floating point numbers with double precision. We change the size of input matrices between

60× 60 and 4000× 4000 and measure the computation times in each case.

The curve in Fig. 5.5(a) shows the speedup versus the input matrix size. For this figure,

the computation time on GPU is the sum of times required to transfer input data from



58

101 102 103 104

100

Running on GPU by GPUArray

N*N Matrix Size

S
pe

ed
 U

p:
 c

pu
T

im
e/

gp
uT

im
e

(a)

101 102 103 104

100

data transfer by gathering on CPU

N*N Matrix Size

S
pe

ed
 U

p:
 c

pu
T

im
e/

gp
uT

im
e

(b)

Figure 5.5 Speedup vs matrix size for Matlab based computation of matrix inversion on
GPUs : (a) including the times of data transfer from RAM to GPU memory and calculation
of matrix inverse on GPU (b) including the times of data transfer to and from GPU memory
and calculation of matrix inverse on GPU.

computer memory to the GPU memory and calculate the matrix inverse 2. We have taken

into account all of the elapsed times (data transfer from computer memory to GPU memory,

calculating the inverse on GPU, and transferring the result back to the computer memory)

for computing the matrix inverse in the curve of Fig. 5.5(b). This curve will show us if there is

any overall benefit by using GPU for computing when the data is originally on the computer

memory and the result is needed on the computer memory.

In this figure, the maximum speedup is around 2 which happens for a matrix size of

1000 × 1000. Similar to the computation of FFT, the minimum speedup happens when the

size of input matrix is small (130×130). The gain of using GPU for computing matrix inverse

is significant when the size of input matrix is bigger than 300×300. However, as the maximum

speedup (in Fig. 5.5) is around 2, using Matlab for computing matrix inverse may not be a

good alternative for using CUDA (or even computation using CPU).

5.2.3 Matrix Addition

Similar to the previous cases, the procedure for adding two matrices on GPU using Matlab

implementation needs transfer of input matrices to the memory of GPU, performing addition,

2. It does not include the time required for transferring the data back to the computer memory. This will
allow us to understand the performance in case all of the other (remaining) computations are done on the
GPU.



59

and then returning the result back to the computer memory. This is shown in Algorithm 5.8

where gpuArray(MatrixA) and gpuArray(MatrixB) transfers the input data to the memory

of GPU and gather(C) returns the result to the Matlab workspace.

Algorithm 5.8 Summation GPU Computing in Matlab

1: A = gpuArray(MatrixA);
2: B = gpuArray(MatrixB);
3: C = A+B;
4: D = gather(C);

The computational advantage of using a GPU instead of a CPU for computing matrix

additions is shown in Fig. 5.6. Similar to the curves in Fig. 5.5, the vertical axis represents

the speedup and the horizontal axis is the number of elements of input matrices. We have

used square matrices of size N ×N as our input matrices where their entries (elements) are

floating point numbers with double precision.

In Fig. 5.6(a), the GPU time includes the time required for transfer of data from computer

memory to the GPU memory and computing the addition on the GPU. However, the GPU

time for Fig. 5.6(b) also includes the time required for the transfer of result from the GPU

memory to the computer memory.

As it is shown in Fig. 5.6(a), the speedup increases dramatically when the matrix size

increases. Further, when the matrix size is bigger than 350×350, there is a steady increasing

trend in the changes of speedup. This steady increase reaches a gain of 100 for using GPU

when the size of matrices are such that : N · N = 4000. However, for small matrices, the

communication overhead results in a poor performance compared to the computation on

CPU.

By studying the curve in Fig. 5.6(b) and comparing it with Fig. 5.6(a), one may notice

that the overhead time for transferring data to computer memory (from GPU memory) is

more than the time of adding two matrices on GPU. In other words, computing matrix

addition on GPU is beneficial when the result is used for other operations on GPU and the

communication overhead is negligible considering all of the operations done on the GPU.



60

101 102 103 104
10−4

10−3

10−2

10−1

100

101

102 Running on GPU by GPUArray

N*N Matrix Size

S
pe

ed
 U

p:
 c

pu
T

im
e/

gp
uT

im
e

(a)

101 102 103 104
10−2

10−1

100 data transfer by gathering on CPU

N*N Matrix Size

S
pe

ed
 U

p:
 c

pu
T

im
e/

gp
uT

im
e

(b)

Figure 5.6 Speedup vs matrix size for Matlab based computation of matrix addition on
GPUs : (a) including the times of data transfer from RAM to GPU memory and calculation
of matrix addition on GPU (b) including the times of data transfer to and from GPU memory
and calculation of matrix addition on GPU.

5.2.4 Matrix Multiplication

In this section, we study the efficiency of using Matlab implementation for computing

matrix multiplication on GPUs. As it is presented in Algorithm 5.9, the computation on

GPU is done by transferring the input matrices from the computer memory to the GPU

memory. Then, matrix multiplication is done on GPU and the result is transferred back to

the computer memory.

Algorithm 5.9 Matrix Multiplication GPU Computing in Matlab

1: A = gpuArray(V ectorA);
2: B = gpuArray(MatrixB);
3: C = A ·B;
4: D = gather(C);

In Fig. 5.7, we have shown the speedup of using GPU over using CPU for computing

matrix multiplication. The input matrices and the times included in calculating the GPU

computing time are similar to those for Fig. 5.6.

As it is shown in Fig. 5.7(b) and Fig. 5.7(a), the speedup of matrix multiplication increases

as the size of input matrices increases. For small matrices, the overhead involved in the

transfer of data between computer memory and GPU memory makes GPU not a suitable



61

(a) (b)

Figure 5.7 Speedup vs matrix size for Matlab based computation of matrix multiplication
(Y = A ·X) on GPUs : (a) including the times of data transfer from RAM to GPU memory
and calculation of matrix multiplication on GPU (b) including the times of data transfer to
and from GPU memory and calculation of matrix multiplication on GPU.

choice. However, using GPU for computing of multiplication is a good alternative for using

CPU when the multiplication result is not needed to be sent to the computer memory.

Essentially, GPU is a better alternative than CPU for computing when a number of different

operations are performed on it such that the overhead of data transfers is negligible.

5.3 Summary on hardware acceleration using GPU

In this chapter, we discussed parallel computing of different matrix operations on GPU

devices using CUDA and Matlab implementations. We have described our methods for

increasing the computational efficiency of implementations by using shared memory in

different situations. Our experimental results provided an understanding of the performance

of each computational operation using different implementation strategies.

Our experimental results showed that parallel computing using CUDA improves the

computational efficiency for the calculation of FFT, matrix inversion, matrix convolution

and matrix multiplication, compared to the computation on CPU. Shared memory allows

us to achieve higher bandwidth to accelerate processing 3 on top of the speedup obtained by

using threads and a unified memory model.

Matlab has some built-in functions which are optimized for parallel computation of

3. via re-using data



62

matrices and vectors on GPU devices, attached to the computer. However, one needs to

transfer data from the computer memory to the memory of GPU and then transfer the

results back to the computer memory. In cases where this communication overhead is

negligible compared to the total computation time of all operations, Matlab implementation

on GPU is a good alternative for conventional (serial) computing on CPU. Our

experimental results showed that Matlab based parallel computing for calculation of FFT,

matrix multiplication and matrix addition on GPUs can outperform computing on CPUs. It

was also shown that Matlab implementation for calculation of matrix inverse may not

achieve a better computational efficiency than computing on CPU, due to the associated

communication overheads.



63

CHAPTER 6

COMPUTING FFT USING DPDK AND MKL ON CPU

In chapter 5, we discussed parallel computing using GPUs as a solution for acceleration

of some key operations in the process of telecommunication standards (especially LTE). In

this chapter, we study the computational efficiency of implementing some of those operations

on multiple central processing units (CPU). Specifically, we study the sources of randomness

of the computation times in a data processing center. Moreover, we propose to use DPDK

and MKL as two important tools for control and isolation of computational loads on multiple

computing cores. As we will discuss in this chapter, DPDK and MKL will allow us to achieve

a near real time computational performance for our operations which is desired in large scale

systems.

6.1 Sources of non-determinism in data centers

Data centers are one of the building blocks of a cloud based computing system.

Specifically, each data center provides a large amount of computing and storage devices. In

current generation of systems, all of the computations needed for serving a request is

handled at a data center. As a result, providing low latency and real time response is a vital

requirement for each data center. In this section, we study and discuss some of the main

sources (reasons) of randomness which may cause unacceptable computational performance

in a data center.

A high level overview of the architecture of a data center is shown in Fig. 6.1. Each

data center is composed of a number of racks of servers, also referred to as blade servers.

A blade server is a computer board with high computational capabilities with an optimized

design to reduce the maintenance costs. Usually, a server has a few processors and memory

units (DRAM 1). Each processor is composed of some cores and level-three (L3) cache where

each processor consists of one CPU, one level-one (L1) cache and one level-two (L2) cache.

Different modules of a server are connected together via Quick Path Interconnect (QPI) links

in all levels of hierarchy. However, different blades and racks are connected together via a

1. Dynamic Random Access Memory



64

Network
Collision

L3 : Miss Rate

DRAM: Refresh

CPU: TLB
Multiple 

Tasks

L1: Miss Rate

CPU

L1

L2

QPI

Core Core

Q
P

I

Q
P

I

Processor

QPI

Board

N
I:

M
P

L2: Miss Rate

Collision

Collision

C
o

lli
si

o
n

Rack

Data Center

Fiber 
Optic

Fiber Optic

Figure 6.1 Architecture of a data center.

high speed fiber optic connection.

Generally, having multiple parallel running tasks where they are competing for

computational and memory resources causes some complications. The random nature of

these tasks (both in terms of submission time and the time needed for processing) creates a

scenario where deterministic computation times are almost not achievable. TLB misses,

concurrency issues and cache miss rates are some of the reasons for having random

computation times.

In the following, we discuss some specific sources of non-determinism in the computation

times :

– TLB miss is the translation lookaside buffer which is in charge of translating the virtual

data addresses to the corresponding physical addresses. In fact, it is a cache of recent

virtual to physical address mappings.



65

– Cache is a high speed memory which is intended to store the data from frequently used

memory addresses. In some cases, CPU needs to recover a data from (or store to) the

cache and it can not be found there. Therefore, the data has to be loaded from (or

stored to) the memory (DRAM). This is referred to as cache miss and may be the

cause of non-determinism in the handling of a request in some cases.

– DRAM refresh is done because of the dynamic nature of DRAMs which needs the

memory be refreshed periodically in order to prevent the memory cells from loosing

their contents.

– Since, there are several cores on a board, they compete to access QPI between boards

which is used for fast communication between the processors on a board. This

Competition for QPI is the source of uncertainty in the time required for handling a

request and may cause high latency for some requests.

– The communication between different server blades is done through their network

interfaces. As in other networking scenarios, collision and congestion are the main

sources of randomness in responding to a request made through a network connection.

– The interrupts may cause a processor core to suspend its normal processing tasks to

carry out a special request with higher priority. Depending on the architecture of the

server and the operating system (or firmware), this may result in high computation

times. Management of threads and isolation of cores lead to handle of the interrupts in

a multi-core system.

In Table 6.1, we present a summary of different sources of variability in the computation

times.

As it is mentioned in Table 6.1, cache miss, TLB miss and ECC (Error-correcting code)

memory are the sources of variability in the fetch instruction and execute. ECC is a protocol

that can detect and correct the most common kinds of internal data corruption. Cache locking

techniques are proposed as a solution to overcome these issues. As another recent solution,

DPDK provides huge page sizes to reduce the TLB misses. Using DPDK buffers may also

help us in improving the cache misses.

Multi-core architecture of servers allow us to increase the computational capacity by

parallel processing over multiple number of cores. However, task switching 2, task migration 3

and interrupts can potentially result in a temporary performance drop. Isolcpus is a boot

parameter which allows us to isolate CPUs from scheduler algorithms and overcome the

2. Refers to operating systems or operating environments that enable you to switch from one program to
another without losing your spot in the first program.

3. Task migration is the process of moving from the use of one operating environment to another operating
environment



66

Table 6.1 Computer architectural features which cause variable delay.

Category Source of variability Possible solutions

Fetch
Instruction and
Execute

Cache miss
TLB miss Cache locking
ECC

Multi-Tasking
Task switching Isolcpus (Isolated CPUs)
Interrupts assign Interrupts to specific

cores
(task migration) Interrupt routing (thread

affinity)

Memory Sharing
Cache coherency Avoid sharing by using message
serialization passing or DPDK buffers

Communications
(between
threads)

Memory to memory copy
data size
distance (number of hops) DPDK using thread placement
collisions and types and migration
location in memory
hierarchy

System
Management
Features

DRAM refresh Do everything in cache -
memory scrubbing (cache locking)
hot swaps disable DRAM Scrubbing
Clock frequency
management

fast switching protocol

GP-
Communications

– DPDK

issues involved in the conventional task switching and task migration. Further, DPDK has

the ability to control the interrupts and prevent task switching by assigning the interrupts

to specific codes and reducing the computation time of processes (applications).

Interrupt routing determines how incoming interrupts are directed to the CPU interrupt

request numbers. One issue of multi-tasking and multi-core environment is to assign

processors and cores to specific tasks. For example, one processor or core handles the GUI,

another handles the database and the others handle the real time functions. This is done

through the magic of thread affinity, the ability to associate certain programs (or even

threads within programs) with a particular processor or processors or cores. In fact, thread

affinity allows software threads to be executed within the scope of specific processing

resources.

DPDK can also provide the ability of memory sharing by using buffer management instead



67

of message passing. This will prevent cache coherency and serialization. Cache coherency is

the consistency of data stored in local caches of a shared resource. To reduce the serialization

of processes caused by mutual exclusion (waiting to enter critical sections) or dependencies,

we propose to use DPDK buffers.

Communication issues can also be handled by using thread placement and migration

capabilities of DPDK. It will also provide management tools for general purpose

communications.

Removing sources of randomness in the computation times is a very challenging task. In

general, it is almost impossible to remove all sources of randomness and have a deterministic

computation time on servers. However, it is possible to reduce the randomness by using the

solutions that we discussed earlier in this section. Specifically, in the following sections, we

discuss the computational performance of such servers when DPDK is used for improvement.

As we will see, it provides a level of control over the hardware which was not available by

using conventional operating systems and software.

6.2 DPDK

Exploding demand for network bandwidth has drawn attention to Intel DPDK as an

enabling solution for high performance packet processing to accelerate signal processing in

telecommunication systems. Essentially, DPDK accelerates the delivery of packets from the

network interface card to the application layer. The set of optimized libraries and drivers,

available in DPDK (described in Chapter 3) enable fast packet processing based on Intel

architecture. It supports Intel processors in 32-bit or 64-bit mode from Intel Atom to Intel

Xeon generation.

DPDK is compatible with Linux operating system and implements a run-to-completion

model for packet processing (running as an execution units on logical processing cores). In

this model, each task runs until it is finished (with no interrupt). Further, all of the computing

and storage resources are allocated before calling data plane applications. This model does

not support a scheduler, and all devices are accessed by polling, which reduces the overhead

produced by the interrupt processing in high speed applications [33].

As it was shown in Fig. 3.15 in Chapter 3, Intel DPDK libraries are executed in userspace

by creating the Environment Abstraction Layer (EAL). The EAL provides an interface for

the interaction with the application. Queue functions, buffer and memory pool management



68

functions are other capabilities of DPDK. Further, it has functions to classify packet flows

and to pass the packets from the network interface card to the application. However, DPDK

lacks a sophisticated mathematical library for complex signal processing applications. To

address this issue, we proposed to use Intel MKL library within DPDK for such operations,

as described in the following.

6.2.1 Combining DPDK and MKL

Intel has developed MKL as a mean to effectively leverage its processors for intensive

signal processing and mathematical applications [41]. It is probably the fastest library for

Intel processors as it provides support for threads and vectors using features that are not

easily accessible via other software. Our initial experiments showed that they are not directly

compatible and one has to follow specific steps in order to get them working together (as

explained in Chapter 3). These steps include making changes to enable MKL in combination

with DPDK.

In order to use MKL along with DPDK, initially one has to modify the DPDK makefile

to add the following line into CFLAGS :

−I/opt/intel/composer xe 2013 sp1.0.080/mkl/include.

Further, the following has to be added to section # default path for libs of file rte.app.mk :

– LDLIBS+ = −L/opt/intel/composer xe 2013 sp1.0.080/mkl/lib/intel64

– LDLIBS+ = −lmkl intel ilp64

– LDLIBS+ = −lmkl core

– LDLIBS+ = −lmkl sequential

Then, it is important to export the MKL library path before compiling, as follows : export

LD LIBRARY PATH = $LD LIBRARY PATH :/opt/intel/composer xe 2013 sp1.0.080/mkl/lib/intel64.

In [41] and [4], the authors illustrate an implementation of FFT using MKL. This is also

presented in Algorithm 3.1 in Chapter 3.

6.3 Experimental Results

In order to estimate by how much the variability of processing time can be reduced, we

ran FFT computations using MKL under DPDK performed on input vectors of complex



69

(a) Slave core without core isolation. (b) Slave core with core isolation.

(c) MKL without DPDK. (d) Straight C implementation.

Figure 6.2 Computation times of FFT when running on slave core (a) MKL with DPDK
without core isolation (b) MKL with DPDK and core isolation (c) MKL without DPDK (d)
straight C implementation.

(float) numbers of size 1024. We changed DPDK parameters in order to see if and by how

much they could help to reduce this variability.

In each experiment, 500000 FFTs are performed and time stamps are taken just before

and after each FFT to compute time. In the first experiment, the computations are done on

a DPDK slave core with MKL, but without isolating it from the OS. The second experiment

is also run on a slave core but with isolation from the OS. The third experiment consists of

running the computations with MKL without DPDK. Finally, as a basis for comparison, a

straight C implementation of the FFT is also performed 500000 times.

In each experiment, the first iteration takes much more time due to some initializations



70

(a) Slave core without core isolation. (b) Slave core with core isolation.

(c) MKL without DPDK. (d) Straight C implementation.

Figure 6.3 Histograms of computation times running on slave core (a) MKL with DPDK
without core isolation (b) MKL with DPDK and core isolation (c) MKL without DPDK (d)
straight C implementation.

and this result is not included as it could be hidden in the real application and would thus be

insignificant. That very large first run time would also mask the latency jitter that we wish

to characterize.

Fig. 6.2 shows the FFT computation run time for each of the four experiments. In this

case, X axis shows the FFT computation time. The FFT computation time in these figures

is reported as the logarithm (base 10) of the FFT computation time in nano seconds. Thus,

3 in the Y-axis means 1000 nano secondes. As Fig. 6.2(a) depicts, in case of using slave core

without core isolation, most FFT computation times are about 3 (1µ seconds) or a little bit

less. They are between 2.98 and 3. Since Y axis has a logarithmic scale, it means they are

between 955 and 1000 nano seconds. Fig. 6.2(b) is related to FFT computation run time in

slave core with core isolation and most FFT computation times are between 2.95 and 2.975

(between 891 and 944 nano seconds). As a result, using core isolation in slave core is faster



71

Table 6.2 Statistics of the processing time observed in the four scenarios.

Scenario Mean (ns) Std Deviation

Slave Core 1.005× 103 2.99× 102

Isolated Slave Core 9.176× 102 2.6× 102

MKL without DPDK 1.019× 103 2.62× 102

Straight FFT 9.61× 104 5.36× 103

than using slave core without core isolation. Since the computation time in core isolation case

is lower, this case has higher performance. Fig. 6.2(c) presents FFT computation in case of

applying MKL without using DPDK. In this case, most FFT computation times are between

2.99 and 3.1 (between 977 and 1259 nano seconds). Therefore, it is not as fast as using

slave core with core isolation. But it is more efficient compared to the first case. Fig. 6.2(d)

illustrates FFT computation run time using straight C implementation of the FFT. Based

on this figure, FFT computation time is between 4.97 and 5 (between 93325 nano seconds

and 100 micro seconds) which means it is the slowest case.

Fig. 6.3 shows the histograms of the same experiments which is another way to analyze

the same results. Fig. 6.3(a) depicts histogram of slave core without core isolation. Similar

to Fig. 6.2(a) most FFT computation times are between 2.98 and 3 (between 955 and 1000

nano seconds). Fig. 6.3(b) is related to histogram of FFT computation run time in slave core

with core isolation and like Fig. 6.2(b), most FFT computation times are between 2.95 and

2.975 (between 891 and 944 nano seconds) near to Y axis. Again, as a result shows, using core

isolation in slave core is faster and more efficient than using slave core without core isolation.

Fig. 6.3(c) presents histogram of FFT computation in case of applying MKL without using

DPDK. In this case, most FFT computation times are between 2.99 and 3.1 (between 977

and 1259 nano seconds). It confirms the obtained conclusion from Fig. 6.2(c). Fig. 6.3(d)

illustrates histogram of FFT computation run time using straight C implementation of the

FFT. In this case FFT computation time is scattered between 4.97 and 5 (between 93.3 micro

seconds and 100 micro seconds) which means it is the slowest case. It looks like to have the

first, the second and the third harmonics. On the other hands, in this case, there are more

bins and less histogram compared to the other cases.

Table 6.2 illustrates statistics of the processing time observed in the four scenarios. It

depicts that after performing 500000 times FFT, the minimum mean of FFT computation is

belong to slave core with isolation of CPU. While the maximum mean is related to straight

FFT which is about 100 times more. The standard deviation for the isolated slave core has

the smallest value. While the standard deviation for straight FFT is 20 times more.



72

Our results show that using MKL in DPDK, especially when isolated from the OS and

other tasks, is the best solution to make the computation time as deterministic as possible. It

eliminates the second and the third modes in the computation time distribution histograms

that are apparent in Figs. 6.3(a), 6.3(c) and 6.3(d). Eliminating these two modes results in a

histogram with only one major mode (shown in Fig. 6.3(b)), meaning less randomness in the

computation times. Using DPDK along with MKL allows us to achieve lower latency with

small variations (near-deterministic computation time). Small variations in the computation

times is a key enabling feature to obtain scalable computational capacity for applications

with real time constraints. This is an important aspect in the design of large scale cloud-

based applications, since big variations make it difficult to predict the system behavior. For

instance, signal processing for applications such as LTE baseband processing requires an

implementation with near-deterministic computation times in order to be scalable and obey

the guaranteed quality of service for the subscribers.

6.4 Summary on Computing FFT using DPDK and MKL

In this chapter, we discussed system features inducing non-determinism and some

solutions. We described the parameters which cause delay and degrade performance of

computation and communication processes. We conclude that it is not possible to overcome

all those factors which cause delay and latency by conventional approach. While packages

like DPDK and MKL were developed by Intel to control hardware and OS architecture and

increase performance.

We combined DPDK and MKL to enable the abilities of Math computations in DPDK.

We computed FFT on slave core as a benchmark in four cases of 1) MKL with DPDK

without core isolation, 2) MKL with DPDK and core isolation, 3) MKL without DPDK and

4) straight C implementation of FFT.

Results show that DPDK can be developed as a part of the kernel for higher performance

which needs kernel development. This shows that DPDK can help in increasing processing

performance and reducing variability. On one hand, we have all sources of variability. On

the other hand, when we use DPDK and MKL, we have much less variability compared to

straight FFT. This means that DPDK effectively mitigates those sources of variability. So,

maybe many of those solutions are implemented by DPDK. It was also observed that the

mean computation time for the straight FFT is about 100 times longer while the standard

deviation is about 20 times higher compared to the isolated slave core. Indeed, it allows us



73

to achieve near-deterministic computation time and lower latency with small variations.

Although MKL offers excellent performance in terms of computation times, it is not

scalable and therefore not suitable for large scale cloud-based applications. By contrast,

DPDK allows us to improve the performance significantly while making MKL adaptable in

a scalable way. Further, DPDK supports threads and memory management, which give us

more flexibility in the design of large scale parallel computing architectures that can support

cloud-based applications.



74

CHAPTER 7

CONCLUSION AND FUTURE WORK

In this thesis, we studied the computational complexity of LTE processes and identified

FFT calculation as a major source of latency for LTE processing. We have proposed different

means to exploit parallelism for reducing the calculation times of FFTs. In this chapter, we

provide a summary of this thesis and discuss some of the main conclusions of our work.

7.1 Summary, Contributions and Lessons Learned

In Chapter 2, we discussed the main challenges in the calculations needed to implement

the LTE standard. Specifically, in this thesis, we focused on the latency as one of the critical

parameters for real time implementation of LTE. We explored the use of GPUs for parallel

computation of LTE processes and reduction of its computation times. Our analysis showed

that FFT/IFFT is the main component in OFDM and matrix inversion is the most time

consuming task in MIMO detection. Further, since convolution in time has the same role as

a multiplication in frequency in the LTE process, it needs to have less computation time as

well. It was found that in spite of large number of elements on GPU, we could never get

large acceleration in computation. Another technology of interest is DPDK, proposed to help

implementing on data centers the data plane of complex applications subject to real time

constraints. All existing literature found on DPDK in relation with wireless communication

is about packet forwarding in layer two and three (L2 and L3). There is nothing related to

computation and mathematical functions.

In Chapter 3, we presented a review of the LTE standard, GPU technology and DPDK

interface. In Chapter 4, we described different algorithms for FFT, matrix inversion,

convolution and cross-correlation operations and discussed their computational complexity.

In Chapter 5, we investigated the possibility of using GPUs for calculation of FFT,

matrix multiplication, matrix inversion and convolution all needed by the LTE standard.

Explicitly, we compared computation times of matrix multiplication (using CUDA) when

shared memory, global memory and multi-core architectures are used. Our experimental



75

results showed that matrix multiplication takes less time when we use a GPU with shared

memory, compared to the other two cases (global memory and multi-core). Reusing of data

in the shared memory architecture allows us to have an efficient computation process which

reduces the computation time. Further, our experimental results shows that parallel

computing achieves a significant improvement (decrease) on the computation times when

dealing with large-size matrices and vectors. Specifically, GPUs are well suited for matrix

multiplication as its computational time has a smaller order of complexity than matrix

multiplication performed without using GPUs 1. It is also observed that using GPU

prevents the saturation of memory bandwidth for calculation of large scale matrices.

The implementation of FFT is also discussed in Chapter 5. Specifically, we have used

CuFFT for implementation of FFT on NVIDIA GPUs expressed with the CUDA

programming paradigm. Our experimental results showed that CuFFT is an appropriate

solution (library) for parallel implementation of FFT 2. Further, we used the Gaussian

elimination algorithm for calculation of matrix inversion using the CUDA programming

paradigm. Finally, our experimental results showed that the computational time has a

complexity dominated by a term of order O(N3) for big matrices. While for small size of

matrix, the processing time is dominated by the initialization time.

As another contribution, we enhanced the computation time of calculating the convolution

in Chapter 5. Explicitly, we used zero padding and right shift rotation to obtain an appropriate

set of instructions which executes the kernel efficiently in parallel by having no boundary

check for the size of the vectors. We used shared memory to reuse the data and save some of

the memory bandwidth as well. Moreover, using summation reduction instead of simple sum

operation reduces the computation times and prevents the memory bandwidth from being

saturated. Hence, it was concluded that GPUs are a very practical choice for implementation

of convolution 3.

In Chapter 5, we also explored the possibility of using MATLAB for GPU programming

by implementing FFT as a benchmark. Our experimental results show that implementation of

FFT on GPUs using MATLAB is around 10 times faster than its MATLAB implementation

without parallelism (without using GPUs) 4. The implementation of matrix inversion on GPU

using MATLAB can reduce the computation time only by half (for matrix sizes of more than

1. The computation time of matrix multiplication is O(N2) which is reduced to 25% when GPU is used.
2. Because the computation time is much less than the FFT complexity order which is Nlog(N).
3. It was also deduced that parallel reduction with sequential addressing is more efficient than tree-based

reduction.
4. Specifically for array sizes of more than 100.



76

300×300) which is not significant. Therefore, matrix inversion function of Matlab is not very

effective 5. Finally, MATLAB is very well suited for fast implementation of matrix addition

and multiplication on GPUs when the result does not need to be sent to the computer

memory.

In summary, GPUs have the following characteristics :

– they have a large number of computing engines,

– their shared memory has a small capacity but one read operation can feed several

computing engines,

– their external memory is very slow and is a bottleneck when trying to implement fast

operations on computation engines.

The ability to feed several computation engines makes GPUs a suitable choice for many

of calculations in the LTE, as discussed earlier. Specifically, GPUs are well suited for the

operations where :

– the size of data is small and the (small) shared memory of GPU is useful,

– there are many simultaneous reuse of data for calculations on different computation

engines,

– there are few output variables (results) to keep as they can be stored in the registers

and the bandwidth of shared memory would not be saturated 6.

Another contribution of this thesis is the study of the computation times of FFT

calculations on multiple central processing units (CPU) using DPDK and MKL libraries.

This was carried out in Chapter 6 by considering four different scenarios and comparing

their performance metrics. Those four scenarios include 1) straight C implementation of

FFTs, 2) the Intel MKL implementation, 3) combining DPDK and MKL without isolation

of CPUs, and 4) combining DPDK and MKL with CPU isolation. Intel DPDK is an

excellent technology for supporting highly scalable execution of applications such as LTE

over a multiprocessor platform. It is designed for workload consolidation and load

balancing, which can provide a near-deterministic environment to compute LTE processes

by isolating CPUs from the kernel scheduler.

Our experimental results in Chapter 6 show that DPDK can help to increase processing

performance and to reduce variability that cause delays in computations. Further, in

Chapter 6, we discussed different sources of randomness (variability) in the scheduling of

processes by the operating system. Using DPDK along with MKL helps us achieve less

variability in implementation of FFT compared to the case where FFT is implemented

5. In fact the size of matrix operations in LTE is smaller than 300× 300.
6. It is important to note that the bandwidth of memory is a very critical parameter in GPUs.



77

without using them. Explicitly, our experimental results show that the mean and the

standard deviation of the computation time of FFT without using DPDK, MKL and

isolation are around 100 times and 20 times more than those observed when DPDK, MKL

and cpu isolation are used. It was also noted that although MKL offers an improvement of

the performance, it is not scalable. DPDK allows us to take advantage of MKL while it

provides means for achieving scalability 7.

7.2 Future work

Efficient and scalable implementation of the LTE standard requires the consideration of

several complex functions and layers in its architecture. This fact makes it challenging to

provide a unique solution for all of its practical issues and needs further research work to

understand and address them. In the following, we present a list of different possible directions

for future work and discuss them briefly.

7.2.1 GPU work

Studying other LTE functions to find an appropriate solution for their implementation

on GPU is an important step for future works. Specifically, it is important to study the

performance of using CUDA for implementation of the radix 4 FFT algorithm. This will

provide a better and comprehensive overview of different choices for implementation of FFT

as one of the biggest computational bottlenecks in the LTE.

7.2.2 Exploring other capabilities of DPDK

As it was discussed earlier, DPDK offers different benefits for implementation of LTE

operations. However, full exploration of its advantages can only be done by studying all of

its capabilities. For instance, it is essential to study the effect of using DPDK buffers on top

of memory and thread management. This has potentially significant benefits especially for

implementation of the turbo decoding algorithm. Multi-threading and software level

isolation of processing units are other capabilities that should be investigated in the future.

Moreover, further work remains to use multi-core processing environment in parallel to

prove the deterministic processing time.

7. DPDK also provides support for the management of threads and memory.



78

Using other processing devices, including XEON-Phi processors, for DPDK-based

implementation of LTE processes should also be studied. Specifically, XEON-Phi processors

may offer a useful balance between the bandwidth of memory and processing power. In

general, one has to look for the best choices of algorithm, software implementation and

hardware for efficient and scalable implementation of a specific function in the LTE

standard.



79

REFERENCES

[1] Erik Dahlman, Stefan Parkvall, and Johan Skold. 4G : LTE/LTE-Advanced for Mobile

Broadband : LTE/LTE-Advanced for Mobile Broadband. Academic Press, 2011.

[2] Gergely Pongrácz, Laszlo Molnar, and Zoltán Lajos Kis. Removing Roadblocks from

SDN : OpenFlow Software Switch Performance on Intel DPDK. In Software Defined

Networks (EWSDN), 2013 Second European Workshop on, pages 62–67. IEEE, 2013.

[3] Dominik Scholz. A look at Intel’s Dataplane Development Kit. Network, 115, 2014.

[4] Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei Lu, Qing Wu, and

Yajuan Wang. Intel Math Kernel Library. In High-Performance Computing on the

Intel® Xeon Phi�, pages 167–188. Springer, 2014.

[5] Arogyaswami J Paulraj, Dhananjay A Gore, Rohit U Nabar, and Helmut Bolcskei.

An overview of MIMO communications-a key to gigabit wireless. IEEE Proceedings,

92(2) :198–218, 2004.

[6] Martin Palkovic, Praveen Raghavan, Min Li, Antoine Dejonghe, Liesbet Van der Perre,

and Francky Catthoor. Future software-defined radio platforms and mapping flows.

IEEE Signal Processing Magazine, 27(2) :22–33, 2010.

[7] June Kim, Seungheon Hyeon, and Seungwon Choi. Implementation of an SDR system

using graphics processing unit. IEEE Communications Magazine, 48(3) :156–162, 2010.

[8] Michael Wu, Yang Sun, Siddharth Gupta, and Joseph R Cavallaro. Implementation of

a high throughput soft MIMO detector on GPU. Journal of Signal Processing Systems,

64(1) :123–136, 2011.

[9] Teemu Nylanden, Janne Janhunen, Olli Silvén, and Markku Juntti. A GPU

implementation for two MIMO-OFDM detectors. In Embedded Computer Systems

(SAMOS), 2010 International Conference on, pages 293–300. IEEE, 2010.

[10] Gabriel Falcão, Vitor Silva, and Leonel Sousa. How GPUs can outperform ASICs for fast

LDPC decoding. In Proceedings of the 23rd international conference on Supercomputing,

pages 390–399. ACM, 2009.

[11] Sandra Roger, Carla Ramiro, Alberto Gonzalez, Vicenc Almenar, and Antonio M Vidal.

Fully parallel GPU implementation of a fixed-complexity soft-output MIMO detector.

Vehicular Technology, IEEE Transactions on, 61(8) :3796–3800, 2012.



80

[12] Michael Repplinger and Philipp Slusallek. Stream processing on GPUs using distributed

multimedia middleware. Concurrency and Computation : Practice and Experience,

23(7) :669–680, 2011.

[13] Michael Wu, Bei Yin, and Joseph R Cavallaro. Flexible N-way MIMO detector on GPU.

In 2012 IEEE Workshop on Signal Processing Systems (SiPS), pages 318–323. IEEE,

2012.

[14] Chiyoung Ahn, Saehee Bang, Hyohan Kim, Seunghak Lee, June Kim, Seungwon Choi,

and John Glossner. Implementation of an SDR system using an MPI-based GPU cluster

for WiMAX and LTE. Analog Integrated Circuits and Signal Processing, 73(2) :569–582,

2012.

[15] Dan Sui, Yunzhou Li, Jing Wang, Peng Wang, and Bin Zhou. High throughput MIMO-

OFDM detection with graphics processing units. In Computer Science and Automation

Engineering (CSAE), 2012 IEEE International Conference on, volume 2, pages 176–179.

IEEE, 2012.

[16] Axel Klatt and Peter Stevens. Method for considering the subscriber type in mobility

and radio resource management decisions in a radio access network, January 4 2008. US

Patent App. 12/522,465.

[17] Moustafa M Nasralla, Ognen Ognenoski, and Maria G Martini. Bandwidth scalability

and efficient 2d and 3d video transmission over lte networks. In Communications

Workshops (ICC), 2013 IEEE International Conference on, pages 617–621. IEEE, 2013.

[18] Alatishe S Adeyemi and Dike U Ike. A review of load balancing techniques in 3gpp lte

system. Int. J. Comput. Sci. Eng, 2(4) :112–116, 2013.

[19] Erik Dahlman, Stefan Parkvall, and Johan Skold. 4G : LTE/LTE-advanced for mobile

broadband. Academic Press, 2013.

[20] Kun Tan, He Liu, Jiansong Zhang, Yongguang Zhang, Ji Fang, and Geoffrey M Voelker.

SORA high-performance software radio using general-purpose multi-core processors.

Communications of the ACM, 54(1) :99–107, 2011.

[21] China Mobile. C-RAN, the road towards Green RAN. October 2011.

[22] Ichiro FUKUDA and Tomonori FUJITA. Deployment of OpenFlow/SDN technologies

to carrier services. IEICE Transactions on Communications, 96(12) :2946–2952, 2013.

[23] Amitabha Ghosh and Rapeepat Ratasuk. Essentials of LTE and LTE-A. Cambridge

University Press, 2011.

[24] LTE Tutorial. http ://lte/lte protocol stack layers.htm. 2014.



81

[25] Michael Wu, Yang Sun, and Joseph R Cavallaro. Implementation of a 3gpp lte turbo

decoder accelerator on gpu. In Signal Processing Systems (SIPS), 2010 IEEE Workshop

on, pages 192–197. IEEE, 2010.

[26] NVIDIA. http ://docs.nvidia.com/cuda/. 2014.

[27] Stefan Zerbst and Oliver Düvel. 3D game engine programming. Thomson Course

Technology, 2004.

[28] Intel. Intel Math Kernel Library Cookbook. August 2014.

[29] Intel. Intel dual-channel ddr memory architecture white paper. 2015.

[30] Intel. http ://www.intel.com/go/dpdk. 2014.

[31] Intel DPDK. Getting started guide. 2014.

[32] Intel DPDK Sample. Dpdk sample aplication user guide. 2014.

[33] Intel DPDK. Programmers guide. 2014.

[34] Michael Corinthios. Signals, systems, transforms, and digital signal processing with

MATLAB. CRC Press, 2009.

[35] MICHAEL J Corinthios. The design of a class of fast fourier transform computers. IEEE

Transactions on Computers, 20(6) :617–623, 1971.

[36] LD Brandon, Chas Boyd, and Naga Govindaraju. Fast computation of general fourier

transforms on gpus. In Multimedia and Expo, 2008 IEEE International Conference on,

pages 5–8. IEEE, 2008.

[37] Charles Van Loan. Computational frameworks for the fast Fourier transform, volume 10.

Siam, 1992.

[38] David E Culler, Jaswinder Pal Singh, and Anoop Gupta. Parallel computer architecture :

a hardware/software approach. Gulf Professional Publishing, 1999.

[39] NVIDIA. http ://math/GPU/documents/CUFFT Library 3.0.pdf. August 2014.

[40] Jason Sanders and Edward Kandrot. CUDA by example : an introduction to general-

purpose GPU programming. Addison-Wesley Professional, 2010.

[41] Ramses van Zon. http ://wiki.MKLTechTalkMarch2012.pdf. August 2014.


	ACKNOWLEDGEMENTS
	RÉSUMÉ
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ACRONYMS AND ABBREVIATIONS
	1 INTRODUCTION
	1.1 Contributions
	1.2 Organization

	2 LITERATURE REVIEW
	2.1 Parallel processing to reduce computation time of LTE
	2.1.1 Summary

	2.2 Reducing computation time of LTE using DPDK
	2.3 Summary on literature review

	3 Overview of LTE, GPU, DPDK
	3.1 LTE overview
	3.1.1 Layers of LTE and their main functionalities
	3.1.2 OFDM in LTE
	3.1.3 OFDM implementation using FFT and IFFT
	3.1.4 Turbo decoder
	3.1.5 MIMO detection

	3.2 A glance at literature review
	3.2.1 MIMO detection
	3.2.2 Turbo decoder

	3.3 GPU
	3.3.1 GPU programming model
	3.3.2 Geforce GTX 660 Ti specifications

	3.4 Intel Math Kernel Library (MKL)
	3.5 DPDK
	3.5.1 DPDK features
	3.5.2 How to use DPDK


	4 FFT, Matrix Inversion and Convolution Algorithms
	4.1 Fast Fourier Transform
	4.1.1 Discrete Fourier Transform Radix-4
	4.1.2 Cooley-Tukey and Stockham formulation of the FFT algorithm
	4.1.3 Summary on Fast Fourier Transform

	4.2 Matrix Inversion
	4.2.1 Complexity of Gaussian Elimination algorithm
	4.2.2 Summary on Matrix Inversion

	4.3 Convolution and Cross-Correlation

	5 Hardware Acceleration using GPU
	5.1 Implementation on GPU using CUDA
	5.1.1 Matrix Multiplication
	5.1.2 Fast Fourier Transform
	5.1.3 Matrix Inversion
	5.1.4 Convolution and Cross-Correlation

	5.2 Implementation on GPU using Matlab
	5.2.1 FFT
	5.2.2 Matrix Inversion
	5.2.3 Matrix Addition
	5.2.4 Matrix Multiplication

	5.3 Summary on hardware acceleration using GPU

	6 Computing FFT using DPDK and MKL on CPU
	6.1 Sources of non-determinism in data centers
	6.2 DPDK
	6.2.1 Combining DPDK and MKL

	6.3 Experimental Results
	6.4 Summary on Computing FFT using DPDK and MKL

	7 Conclusion and Future Work
	7.1 Summary, Contributions and Lessons Learned 
	7.2 Future work
	7.2.1 GPU work
	7.2.2 Exploring other capabilities of DPDK


	REFERENCES

