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RÉSUMÉ 

Le mélange de poly (acide lactique), PLA, et autres bioplastiques à haute résistance à l’impact a 

été introduit en tant que méthode efficace pour améliorer la ténacité du PLA. Toutefois, cette 

stratégie réduit considérablement le module d’Young et la résistance mécanique du PLA. L'ajout 

de particules solides est une méthode bien connue pour réconcilier l'équilibre rigidité / ténacité 

des matrices polymères. Bien que l'importance de contrôler la localisation des inclusions solides 

dans des mélanges de polymères soit mise en évidence, la littérature échoue à fournir une analyse 

détaillée des mécanismes de migration et n'identifie pas en détail les conséquences des 

paramètres thermodynamiques et cinétiques relatifs à la localisation de particules solides dans des 

mélanges de polymères. 

Dans ce mémoire, la localisation et la migration des particules de micro- et nano-silice sphériques 

dans deux mélanges de bioplastiques, soit : PLA / polyéthylène basse densité (LDPE) et PLA / 

poly (butylène adipate-co-téréphtalate), PBAT, ont été étudiés. 

Dans la première partie de ce travail, une étude détaillée de la miscibilité et du développement de 

la morphologie dans le mélange PLA / PBAT a été réalisée. Une tension interfaciale de 0,6 ± 

0,15 mN / m a été déterminée pour le couple PLA et PBAT en ajustant le modèle de Palierne sur 

les données rhéologiques. La miscibilité du PLA / PBAT a ensuite été examinée en étudiant le 

décalage de la température de transition vitreuse (Tg) des phases de polymère à différentes 

compositions. Les résultats obtenus indiquent une miscibilité partielle unidirectionnelle limitée 

des molécules de PBAT dans la phase riche en PLA. Cette miscibilité partielle dépend 

significativement du poids moléculaire du PBAT, qui reflète son caractère entropique. L'analyse 

de la morphologie des échantillons a montré que la phase dispersée dans les mélanges de PLA / 

PBAT existe sous la forme de fibres, même à basse composition de 1% en vol. de la phase 

dispersée. Enfin, la région de co-continuité dans les mélanges de PLA / PBAT a été déterminée 

en utilisant une approche rhéologique. Il a été montré que le mélange PLA / PBAT a une région 

de co-continuité symétrique large située entre 30 à 40 et 60 à 70 vol.% de PBAT. 

Dans la deuxième partie de ce projet, la localisation et la migration des particules de silice dans 

les mélanges de PLA / PBAT ont été étudiés. Basé sur les énergies de surface mesurées du PLA 

et PBAT, le modèle d'Young prédit que la position d'équilibre thermodynamique des particules 

de silice se situe dans la phase de PBAT. Suite à l'ajout de particules de silice au PLA / PBAT 
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fondu, les particules de micro- et nano-silice ont été localisées dans la phase de PBAT quelle que 

soit la viscosité de la phase de PLA. Il a été démontré que cette localisation sélective se produit 

lors des premières étapes de mélange et a été attribuée à la tension interfaciale inférieure du 

couple PBAT / silice par rapport au couple PLA / silice. L'influence des paramètres cinétiques a 

été étudié en effectuant le pré-mélange des particules de silice avec la phase PLA, ainsi, les 

particules étaient localisées dans la phase thermodynamiquement défavorable. Il a été constaté 

que la migration des particules de micro-silice à partir de la phase PLA à l'interface dépend 

fortement de la viscosité de la phase PLA, du taux de cisaillement lors du mélange et de la taille 

des particules de silice. Ces résultats mettent en évidence le rôle critique de l'étape du retrait du 

film de PLA entre les particules de micro-silice et l'interface. Suite au pré-mélange de particules 

de nano-silice dans la phase PLA, une localisation stable à l'interface PLA/PBAT a été constatée, 

quel que soit la viscosité de la phase PLA. En utilisant un modèle semi-empirique récemment mis 

au point pour déterminer la vitesse de migration de particules sphériques à l'interface, il a été 

montré que la localisation stable des particules de silice à l'interface est dû à la vitesse de 

migration très lente à l'interface, qui provient de la faible tension interfaciale entre le PLA et le 

PBAT. 

Dans la dernière partie de cette thèse, les effets des paramètres thermodynamiques et cinétiques 

sur la migration et la localisation des particules de micro- et nano-silice dans un mélange à haute 

tension interfaciale de PLA / LDPE ont été étudiés. La surface des particules de micro-silice a été 

modifié par greffage de (2-Dodecen-1-yl) d'anhydride succinique en utilisant une nouvelle 

approche de réaction en phase gazeuse. Les localisations d'équilibre thermodynamique de 

particules de silice non-modifiées et modifiées ont été déterminées comme étant dans la phase 

PLA et à l'interface, respectivement. Il a été constaté que l'addition de particules de silice non-

modifiées et modifiées à une masse fondue de PLA et de LDPE haute viscosité (H-LDPE) résulte 

en l'encapsulation préférentielle des particules de la phase avec laquelle ils ont la plus faible 

tension interfaciale. Les effets des paramètres cinétiques ont été étudiés en pré-mélangeant des 

particules de silice avec la phase H-LDPE suivi du mélange avec le PLA. Il a été constaté que le 

retrait du film de LDPE entre les particules et l'interface joue un rôle critique dans l'inhibition de 

la migration des particules de micro-silice non-modifiées et modifiées vers le PLA et l'interface, 

respectivement. D'autre part, lorsque les particules de nano-silice ont été utilisées, les particules 

individuelles de nano-silice ont pu migrer vers la phase PLA , tandis que les agrégats de nano-
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silice sont restés dans la phase H-LDPE. Ces résultats indiquent que la localisation de 

nanoparticules bien dispersées dans un mélange de polymères à haute tension interfaciale est peu 

susceptible d'être influencée par les effets cinétiques. 

En comparant les résultats obtenus pour la localisation des particules de silice dans les mélanges 

PLA/PBAT et PLA/LDPE, une perspective générale des paramètres importants dans le contrôle 

de la migration et de la localisation des particules dans les mélanges de polymères est présenté 
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ABSTRACT 

Blending poly(lactic acid), PLA, with other high impact bioplastics has been introduced as an 

effective method for improving the toughness of PLA; however, this strategy considerably 

reduces the modulus and mechanical strength of PLA. The addition of solid particles is a well-

known method for tuning the stiffness/toughness balance in toughened polymer matrices. 

Notwithstanding the significance of controlling the localization of solid inclusions in polymer 

blends, the literature is lacking a detailed analysis of the migration mechanisms and the effects of 

thermodynamic and kinetic parameters on the localization of solid particles in polymer blends. 

In this dissertation, the localization and migration of spherical micro- and nano-silica particles in 

two bioplastic blends of PLA/low density polyethylene (LDPE) and PLA/poly(butylene adipate-

co-terephthalate), PBAT, were studied. 

In the first part of this work, a detailed study on the miscibility and morphology development in 

the PLA/PBAT blend was carried out. The interfacial tension between PLA and PBAT was 

determined to be 0.6 ± 0.15 mN/m by fitting Palierne’s model on the rheological data. The 

miscibility of PLA/PBAT was then examined by studying the shift in the glass transition 

temperature (Tg) of the polymer phases at different blend compositions. The obtained results 

indicate a limited one-way partial miscibility of PBAT molecules in the PLA-rich phase. This 

partial miscibility depends significantly on the molecular weight of PBAT, which underlines its 

entropic nature. The morphology analysis of the blend samples revealed that the dispersed phase 

in PLA/PBAT blends exists in the form of fibers, even at low compositions of 1 vol.% of the 

dispersed phase. Finally, the co-continuity region in PLA/PBAT blends was determined using a 

rheological approach and it was shown that PLA/PBAT has a wide symmetric co-continuous 

region located between 30-40 and 60-70 vol.% of PBAT. 

In the second part of this project, the localization and migration of the silica particles in 

PLA/PBAT blends were studied. Based on the measured surface energies of PLA and PBAT, 

Young’s model predicts that the thermodynamic equilibrium localization of the silica particles 

should be in the PBAT phase. When the silica particles were added to a PLA/PBAT melt, micro- 

and nano-silica particles were localized in the PBAT phase irrespective of the PLA phase 

viscosity. This selective localization was shown to occur at the early stages of mixing and was 

attributed to the lower interfacial tension of PBAT/silica compared to PLA/silica. The influence 
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of kinetic parameters was imposed by the premixing of the silica particles with the PLA phase, 

which is the least thermodynamically preferred phase. It was found that the migration of micro-

silica particles from the PLA phase to the interface depends strongly on the viscosity of the PLA 

phase, the shear rate of mixing and the particle size of the silica. These results point to the critical 

role of the PLA film draining between micro-silica particles and the interface. When nano-silica 

particles were premixed in the PLA phase, they were localized at the interface in a stable fashion 

irrespective of the PLA phase viscosity. Using a newly developed semi-empirical model for the 

migration velocity of spherical particles at the interface, it was shown that the stable localization 

of silica particles at the interface is due to the very slow migration velocity at the interface, which 

originates from the low interfacial tension between PLA and PBAT. 

In the last part of the thesis, the effects of thermodynamic and kinetic parameters on the 

migration and localization of micro- and nano-silica particles in a high interfacial tension blend 

of PLA/LDPE were studied. The surface of the micro-silica particles was modified by the 

grafting of (2-dodecen-1-yl) succinic anhydride using a new gas phase reaction approach. The 

thermodynamic equilibrium localizations of unmodified and modified silica particles were 

determined to be in the PLA phase and at the interface, respectively. It was found that the 

addition of unmodified and modified silica particles to a melt of PLA and high viscosity LDPE 

(H-LDPE) results in the preferential encapsulation of the particles by the phase with which they 

have the lowest interfacial tension. The effects of kinetic parameters were studied by premixing 

silica particles with the H-LDPE phase followed by mixing with PLA. It was found that the 

draining of the LDPE film between the particles and the interface plays a critical role in 

inhibiting the migration of both unmodified and modified micro-silica particles toward the PLA 

phase and the interface, respectively. On the other hand, when nano-silica particles were used, 

individual nano-silica particles could migrate to the PLA phase, while the nano-silica aggregates 

remained in the H-LDPE phase. These results indicate that the localization of well-dispersed 

nanoparticles in a high interfacial tension polymer blend system is unlikely to be significantly 

influenced by the kinetic effects. 

By comparing the obtained results on the localization of silica particles in PLA/PBAT and 

PLA/LDPE, a general perspective of the important parameters in controlling the migration and 

localization of the particles in polymer blends is presented. 
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CHAPTER 1 INTRODUCTION 

Polymers from renewable resources have received an increasing amount of attention over the last 

two decades due to environmental concerns and finite petroleum resources[1]. As a result, the 

production of bioplastics has increased significantly in recent years. According to the latest 

annual report of the European Bioplastic Organization[2], the global production capacity of 

bioplastics in 2012 reached 1.5 million tons per year and is expected to grow by 400% in 2017. 

Therefore, in the near future, bioplastics will be a key player in the polymer market. 

Among different bioplastics, poly(lactic acid), PLA, has attracted considerable attention as it is 

not only a bio-based polymer but also can be composted in industrial plants [1, 3]. The most 

important weaknesses of PLA are its poor impact properties, low heat deflection temperature 

(HDT), moisture sensitivity and thermal degradation [3]. Different strategies have been used to 

improve the poor toughness and impact strength of PLA such as plasticization, copolymerization 

with other polyesters and blending with other bioplastics [4-26]. Among them, the blending of 

PLA with other bioplastics has received much attention as it is economical and through using this 

method not only the brittleness but also other properties of PLA can be modified[6]. Among 

blends of PLA with bioplastics, blends of PLA with polycaprolactone (PCL) and poly(butylene 

adipate-co-terephthalate) (PBAT) have been studied extensively as these two bioplastics have 

much higher impact strength and elongation at break compared to most bioplastics. Moreover, 

PCL and PBAT are produced in an industrial scale and are available in the market, which makes 

them potential candidates for achieving a high performance PLA blend at a reasonable price. On 

the other hand, the low melting temperature of PCL limits the application of PLA/PCL blends 

and, therefore, PLA/PBAT blends can offer a much wider application range. Presenting blends of 

PLA/PBAT under the trademark of Ecovio by BASF is clear evidence of this claim. However, 

many important aspects of PLA/PBAT such as miscibility and morphology have not yet been 

studied in detail. Therefore, it is necessary to carry out a comprehensive analysis of these aspects 

of PLA/PBAT. In addition, the commercial production of bio-based polyethylene (bio-PE) using 

ethylene manufactured from sugar cane ethanol has recently been undertaken. According to the 

annual report of the European Bioplastics Organization [2], the global production capacity of bio-

PE has passed that of PLA in 2013. Currently, bio-based HDPE and bio-based LDPE (bio-LDPE) 

exist in the market. Considering the higher impact and elongation at break of bio-LDPE, blends 
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of PLA/bio-LDPE have a significant commercial potential to be introduced as a fully bio-based 

high performance polymer blend.  

Due to all the factors mentioned above, blends of PLA/PBAT and PLA/LDPE were chosen as the 

bioplastic blends in this study. However, due to the limited access to bio- LDPE, petroleum-

based LDPE was used in this research study. It is worth mentioning that the processing and final 

properties of bio-LDPE are similar to petroleum-based LDPE.  

The most important drawback of blending PLA with PBAT or LDPE is the drop in the 

mechanical strength and stiffness compared to neat PLA. The addition of solid inclusions is a 

well-known method for achieving a balance between toughness and stiffness in polymer blends 

[27-29]. Moreover, it has been shown that the addition of conductive solid particles such as 

carbon nanotubes not only improves the mechanical properties but also can enhance electrical 

conductivity[30]. However, all previous studies point to the important role of controlling the 

localization of solid particles in achieving the desired mechanical properties and/or electrical 

conductivity [31, 32]. Despite previous attempts, little knowledge exists on the mechanism of the 

migration and localization of solid particles in polymer blends. This can be attributed to the 

complexity of the analysis of the systems incorporating solid particles. For example, the rheology 

of these systems can be affected considerably by the addition of the particles. In addition, the 

complex shape of the particles and particle size distribution increase the complexity of 

interpreting the results. In addition, the level of the dispersion of the particles can also affect the 

results. 

To eliminate these issues, spherical silica particles with a narrow particle size distribution 

(D90/D10 = 1.3) and a good dispersion were used in this study. Note that D90 and D10 refer to the 

particle diameters at 90% and 10% from the cumulative percent curve, respectively. Moreover, 

the spherical shape of these particles allowed us to use the rheological and thermodynamic 

equations that have been developed in the field of filled polymers, which are mainly based on the 

mono-dispersed spherical particle assumption. Two types of spherical silica with individual 

particle sizes of 100 nm and 300 nm were used to study the effect of the particle size on the 

migration and localization. These particles will be referred to as nano- and micro-silica, 

respectively. Note that according to ISO/TS 27687 and ASTM E2456-06, nanoparticles are 

defined as particles with at least one length dimension smaller than 100 nm. Therefore, in this 
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study the localization of spherical micro- and nano-silica particles in two bioplastic blends of 

PLA/PBAT and PLA/LDPE are studied. Considering all the aforementioned, the main objectives 

of this work are presented in the following section. 

1.1  Objectives 

The main objective of this project is to control the preferential location of spherical micro- and 

nano-silica particles in heterophase bioplastic blends. Thus, the following specific objectives are 

defined as the main milestones to achieving the main objective of this work: 

 Investigate the miscibility and morphology development in PLA/PBAT blends. 

 Determine the effect of thermodynamic and kinetic parameters on the localization and 

migration of micro- and nano-silica in a low interfacial tension system of PLA/PBAT. 

 Study the localization and migration of micro- and nano-silica particles in a high 

interfacial tension PLA/LDPE blend. 
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CHAPTER 2 LITERATURE REVIEW 

2.1 Bioplastics 

 

Each year more than 300 million tons of plastics, mostly non-biodegradable or compostable, are 

produced. The disposal of plastic waste into landfills has short and long-term negative ecological 

impacts. Despite the growing demand on the recycling of plastics as a solution, recycling cannot 

solely resolve this issue due to its cost and limited capacity. In addition, most of the commodity 

polymers are petroleum–based materials; therefore, limited oil and gas resources underline the 

need for these materials to be replaced by the plastics produced from renewable resources. 

Bioplastic materials have emerged as a new class of polymers that are bio-based and/or 

biodegradable. These unique characteristics of bioplastics have motivated the plastic industries 

and even consumers to consider them as the next generation of polymer materials. This new class 

of polymers is generally classified into three main categories:  

1) bio-based and biodegradable (or compostable) polymers, such as starch, poly(lactic acid) or 

PLA, and polyhydroxyalkanoate (PHA). 

2) bio-based or partially bio-based but non-biodegradable (or non-compostable) polymers, such 

as bio-polyethylene (bio-PE) and bio-polyamide 11 (bio-PA11). 

3) petroleum-based but biodegradable (or compostable) polymers, such as poly(butylene adipate-

co-terephthalate) or PBAT, poly(butylene succinate) or PBS, and polycaprolactone (PCL). 

Despite the great potential of bioplastics, they have not been widely used in the plastic industry 

mainly due to their higher price and poor mechanical properties. Improving the production 

technology and increasing the production capacity of bioplastics are likely to reduce their final 

cost; however, the poor mechanical properties of these materials will still be a limiting factor. 

Figure  2.1 compares the modulus and elongation at break of some bioplastics. As can be seen, 

almost all bioplastics have either a low modulus or a low elongation at break, which indicates the 

lack of a balance between stiffness and toughness in these materials.  
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Figure  2.1.  Modulus versus elongation at break for bioplastics and commodity polymers. The red 

symbols and the green symbols indicate synthetic polymers and bioplastics, respectively[33]. 

 

2.1.1 Poly (lactic acid)  

Compared to other biodegradable polyesters, PLA has one of the highest commercial potential 

due to its availability in the market, its mechanical properties and its price [34]. The molecular 

structure of PLA is shown in Figure  2.2.  

 

Figure  2.2. The molecular structure of PLA. 

The most common method for the production of PLA is the ring opening polymerization (ROP) 

of cyclic lactide dimers [1]. Therefore, almost all commercial PLAs available in the market are 

polylactides. The properties of PLA are highly related to the ratio between its D and L 

mesoforms. At present, 100% L-PLA, PLLA, which is a highly crystalline polymer and 

copolymers of poly (L-lactic acid) and poly (D -lactic acid), which are rather amorphous, are 

commercially available. As can be seen in Figure  2.1, PLA is among the few bioplastics that have 

a mechanical strength comparable with the commodity polymers such as polystyrene (PS) and 

polyethylene terephthalate (PET). The main weaknesses of PLA are its brittleness, low barrier 

properties and low crystallization rate [1]. Anderson et al. [6] and Rasal et al. [26] reviewed 

different strategies for increasing the toughness of PLA including the variation of the ratio of D 

and L mesoforms, plasticization, copolymerization with other polyesters and blending with other 
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bioplastics. Among these approaches, blending with other bioplastics has received much attention 

as it is economical and through using this method not only the brittleness but also other properties 

of PLA can be improved [6]. The blending of PLA with other bioplastics will be discussed later 

in this chapter. 

2.1.2 Poly (butylene adipate-co-terephthalate) 

PBAT is a petroleum-based biodegradable aliphatic-aromatic copolyester which was first 

produced industrially by BASF in 1997. The molecular structure of PBAT consists of butylene 

terephthalate (BT) and butylene adipate (BA) segments as shown in Figure  2.3.  

 

Figure  2.3. The molecular structure of PBAT. 

PBAT is mainly manufactured for packaging applications and has processability, impact strength 

and elongation at break comparable to low density polyethylene (LDPE) [19]. On the other hand, 

unlike LDPE, the polyester nature of PBAT provides good compatibility with hydrophilic 

materials. Witt et al.[35] studied the biodegradability of PBAT and found no sign of 

environmental risk (eco-toxicity) after degradation.  

 

2.1.3 Bio-Based Polyethylene 

The low price, excellent chemical resistance, easy processing, high elongation at break and 

electrical insulation make polyethylene (PE) an excellent candidate for a wide range of 

applications. Recently, Braskem started the commercial production of bio-based high density 

polyethylene (bio-HDPE) and bio-based low density polyethylene (bio-LDPE) using ethylene 

manufactured from sugar cane ethanol. It is worth mentioning that the mechanical properties and 

performance of bio-PE are similar to those of petroleum-based PE. Braskem has also announced 

that they will use this approach to produce bio-based polypropylene (bio-PP). Therefore, it can be 

seen that bio-based polyolefins will soon be an important component of the bioplastics market.  
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2.1.4 Blends of PLA and Other Bioplastics 

As mentioned before, the blending of PLA with other bioplastics has been introduced as an 

effective approach for improving the toughness of PLA. Blends of PLA with PCL [9, 36-38] and 

PBAT [10-12, 14-21, 39-42] have received much attention due to their high impact strength and 

elongation at break of PCL and PBAT. Moreover, the polyester nature of these polymers 

provides good compatibility with PLA. However, considering the low melting temperature of 

PCL (∼60 oC), PLA/PBAT blends can offer a much wider range of applications as a high 

performance compostable bioplastic material. On the other hand, the high impact strength and 

renewable resource of bio-PE indicate the potential of the PLA/bio-PE blend as a fully bio-based 

blend with improved mechanical properties [5, 7, 8, 43, 44]. Before reviewing the literature on 

PLA/PBAT and PLA/PE blends, some general concepts of polymer blends will first be reviewed 

in the next section. 

 

2.2 Polymer Blends 

 

2.2.1 Thermodynamics of Polymer Blends 

The thermodynamics of mixing in binary polymer mixtures can be expressed by the Gibbs free 

energy of mixing: 

∆G𝑚 =  𝑅𝑇χ𝐴𝐵 .𝜑𝐴𝜑𝐵 + 𝑅𝑇 �
𝜌𝐴𝜑𝐴 ln𝜑𝐴
𝑀𝑤𝐴

+
𝜌𝐵𝜑𝐵 ln𝜑𝐵

𝑀𝑤𝐵
� 

Here, ∆Gm is Gibbs mixing energy, χAB is the Flory-Huggins interaction parameter, φi is the 

volume fraction of the polymer components, ρi is the density of polymers, and Mwi is the 

molecular weight of the polymers. The first term on the right side of this equation shows the 

enthalpy of mixing, ∆Hm, according to Hilbrand-Scatchard-van Lard theory and the terms in the 

brackets represent the combinational entropy of mixing based on Flory-Huggins lattice theory. 

Based on Gibbs free energy of mixing, binary polymer blends are categorized into three main 

groups: (i) miscible polymer blends: when ∆Gm < 0 and 𝜕
2∆𝐺
𝜕𝜑2

 > 0 over the full composition range; 
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(ii) partial miscible polymer blends when ∆Gm < 0 but 𝜕
2∆𝐺
𝜕𝜑2

 < 0 in some compositions; (iii) 

immiscible polymer blends when ∆Gm > 0 over the full composition range. In miscible polymer 

blends, both components are miscible down to the molecular scale while in immiscible polymer 

blends, two separate phases of the polymers are formed. In partially miscible systems, again, two 

phases are formed but each phase is a miscible mixture of both polymer components. The 

negligible entropy of mixing in polymers mixtures (due to their high molecular weights) and the 

positive enthalpy of mixing (in the absence of any specific interaction) results in the 

immiscibility of most polymer mixtures. However, achieving miscibility in polymer blends is not 

always desired as some unique properties can only be obtained in immiscible polymer systems. 

The final properties of immiscible polymer blends strongly depend on their morphology. 

Figure  2.4 shows the different morphologies of binary polymer blends with their potential 

properties. 

 

Figure  2.4. Different morphologies of immiscible polymer blends with their potential properties 

[45]. 

It has been shown that the morphology of immiscible polymer blends depends strongly on the 

interfacial tension between the phases [46]. On the other hand, the interfacial tension between 

two polymers is directly related to their surface tension (energy). The surface tension and 

interfacial tension will be discussed below. 

2.2.2 Surface Tension 

Surface tension is defined as the work required to increase the surface area of a solid or a liquid 

by the unit of area [47]. The unit of the surface tension is J/m2 or N/m. The surface tension 

 



  9 

originates from the imbalanced molecular forces at the surface compared to the bulk. Among 

different techniques, the contact angle method [48] is the most common method used to measure 

the surface tension of polymers in the solid state. On the other hand, the pendant drop technique 

has been widely used in determining the surface tension of polymer melts [49, 50]. This method 

can be used for both Newtonian and viscoelastic fluids and provides a high accuracy and small 

range of error [51].  

2.2.3 Interfacial Tension 

The interface is the boundary between two phases and plays a critical role in the morphology and 

final properties of heterophase polymer blends [52]. The interfacial tension is defined as the 

reversible work required to increase the interfacial area by the unit of area[47]. The interfacial 

tension can also be defined as the rate of the change in the interfacial energy of a system by 

increasing the interfacial area. The interfacial tension has the same unit as the surface tension 

(J/m2 or N/m) and originates from the imbalanced forces at the interface. Different techniques 

that have been used to determine the interfacial tension between polymer pairs will be reviewed 

below. 

2.2.3.1 Estimation of the Interfacial Tension from the Surface Energy Data 

The interfacial tensions between two polymer melts or a polymer melt and a solid can be 

estimated from the surface energy of the components. Good and Girifalco [53] estimated the 

interfacial tension using the work of adhesion concept as: 

𝛾12 = 𝛾2 + 𝛾1 −𝑊𝑎 

Where γ12 is the interfacial tension between the components, γ1 is the surface tension of the 

component 1, γ2 is the surface tension of the component 2 and Wa is the work of adhesion 

between the components. Wu [54] applied the energy additivity concept and estimated the 

contributions of polar and nonpolar interactions in the work of adhesion using the Harmonic 

Mean approach: 

𝑊𝑎 = 4�
𝛾2𝑑𝛾1𝑑

𝛾2𝑑 + 𝛾1𝑑
+

𝛾2
𝑝𝛾1

𝑝

𝛾2
𝑝 + 𝛾1

𝑝� 
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Here 𝛾𝑖𝑑 and 𝛾𝑖
𝑝 are the nonpolar (or dispersive) and polar components of the surface energy, 

respectively. On the other hand, Wu [55] found that the Harmonic Mean equation cannot 

accurately estimate the interfacial tension between two materials with highly different polarity 

(such as the interfacial tension between mercury and organic polymers) and showed that the 

estimation of the work of adhesion by the Geometric Mean approach results in much better 

predictions of the interfacial tension in those systems. The work of adhesion by the Geometric 

Mean equation is defined as: 

𝑊𝑎 = 2��𝛾2𝑑𝛾1𝑑 + �𝛾2
𝑝𝛾1

𝑝� 

2.2.3.2 The Breaking Thread Method 

If a high aspect ratio thread of a liquid is embedded in another liquid, in the absence of flow, 

sinusoidal distortions form and grow exponentially at the interface of the liquids and finally cause 

the thread to break up into a number of smaller droplets. The formation and growth of the 

sinusoidal distortions occur due to the tendency of two immiscible liquids to minimize their 

interfacial area. The breakup of a nylon 6 (PA6) thread embedded in a polystyrene (PS) matrix is 

shown in Figure  2.5. According to Tomotika’s model, the amplitude of the sinusoidal distortions 

grows exponentially over time as: 

𝛼 = 𝛼0. 𝑒𝑞𝑡 

where α0 is the amplitude of the initial distortions and q is defined as[56]: 

𝑞 =  
𝛾12Ω

η0𝐷0
 

here γ12 is the interfacial tension between the liquids, η0 is the zero-shear viscosity of the matrix, 

Do is the initial thread diameter and Ω is a tabulated function. 
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Figure  2.5. From left to right: the breakup process of a PA6 thread with a diameter of 55 µm 

embedded in a PS matrix at 230 ℃ [56]. 

 

The interfacial tension can be determined from the slope (q) of the log-log plot of the amplitude 

of the distortions (α) versus time. It should be considered that the breaking thread method can 

only be used if both polymers exhibit a Newtonian plateau at low frequencies. 

 

2.2.3.3 Rheological Analysis 

Palierne [57] presented a model to predict the rheological properties of viscoelastic emulsions 

with a narrow droplet size distribution in the small amplitude oscillation shear (SAOS). 

According to his model, the complex modulus of a polymer blend can be written as: 

𝐺∗ = 𝐺𝑚∗
1 + 3𝜑𝐻
1 − 2𝜑𝐻

 

In this equation, H is defined as: 

𝐻 =  
(𝐺𝑑∗ − 𝐺𝑚∗ )(19 𝐺𝑑∗ + 16 𝐺𝑚∗ ) + 4 𝛾12𝑅 (5 𝐺𝑑∗ + 2 𝐺𝑚∗ )

(2 𝐺𝑑∗ + 3 𝐺𝑚∗ )(19 𝐺𝑑∗ + 16 𝐺𝑚∗ ) + 40 𝛾12𝑅 (𝐺𝑑∗ +  𝐺𝑚∗ )
 

here G*is the complex modulus of the blend, G*m is the complex modulus of the matrix, G*d is 

the complex modulus of the dispersed phase, γ12 is the interfacial tension between the matrix and 

the dispersed phase, R is the volume average dispersed phase diameter and φ is the volume 

fraction of the dispersed phase. In this method, 𝛾12
𝑅

 is obtained from fitting Plaierne model on the 
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rheological data. The estimation of the interfacial tension by the rheological method is limited to 

systems where the second plateau in the storage modulus is experimentally accessible. 

2.2.4 Morphology Development in Heterophase Polymer Blends 

The final morphology in a heterophase polymer blend is a result of the competition between the 

disintegration and breakup on one hand and the coalescence of the dispersed phase on the other. 

These two processes will be briefly reviewed below.   

2.2.4.1 Droplet Breakup 

Droplet breakup in a Newtonian emulsion under the elongation and shear flow was first studied 

by Taylor [58]. He found that by increasing the elongation rate, the shape of the dispersed droplet 

changed from a sphere to a thread and finally broke down into a number of smaller droplets after 

the secession of the flow. This is similar to the thread breakup experiment that was discussed in 

2.2.3.2. On the other hand, the droplet in the shear flow was stretched and oriented in a plane of 

45o with respect to the flow direction. Taylor also found that by increasing the deformation, the 

droplet breakup occurred when the ratio of the viscous force to the interfacial force was greater 

than a critical value. The ratio of the viscous force to the interfacial force is known as the 

Capillary number and is defined as: 

Ca =
η𝑚 γ̇
γ12

R�
 

where γ̇ is the shear rate, ηm is the matrix viscosity, γ12 is the interfacial tension and R is the 

droplet radius. Figure  2.6 shows the critical capillary number (Cacrit), at which the droplet 

breakup occurs, as a function of the viscosity ratio (p) a Newtonian emulsion under the 

elongation and shear flow fields [59]. Note that the viscosity ratio is defined as the ratio of the 

dispersed phase viscosity to the viscosity of the matrix. As can be seen, Cacrit for the shear flow is 

always greater than that of the elongation flow and shows a minimum at 0.25 < p< 1. This 

indicates much enhanced droplet breakup in the elongation flow compared to the shear flow. 

Favis and Chalifoux [60] studied the effect of viscosity ratio on the droplet breakup in the blends 

of polycarbonate (PC) PC and PP. Figure  2.7 shows the average dispersed phase diameter in 

PC/PP blends as a function of the torque ratio of the neat dispersed phase to the neat matrix. Note 
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that they observed a similar effect of the torque ratio and the viscosity ratio on the dispersed 

phase morphology. 

 

Figure  2.6. Cacrit versus viscosity ratio (p) in the shear and elongation flows [61] 

 

Figure  2.7. The effect of the torque ratio on the number average diameter (Dn) of the dispersed 

phase in the blends of PC/PP [60] 

By increasing the torque ratio from 2 to 13, they observed that the dispersed phase size increased 

by a factor of about 2. Moreover, they found that the dispersed phase size decreased when the 

torque ratio was less than 1 with a minimum in the particle size occurring at the torque ratio of 

0.25. This value is in good agreement with the one observed by Taylor in a Newtonian emulsion 

under shear flow, Figure  2.6. Wildes et al. [62] also studied the effect of the viscosity ratio on the 

dispersed phase size in a blend of PC and styrene–acrylonitrile (SAN) and found that in the 

absence of a compatibilizer, the minimum droplet size occurred at a viscosity ratio of 0.4. 
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Bhadane et al.  [63] examined the effect of viscosity ratio on dispersed phase size in a low 

interfacial tension blend of PP and ethylene propylene diene monomer (EPDM) and found that a 

small change in the viscosity ratio did not influence the dispersed phase size but a seven-fold 

increase in the viscosity ratio increased the dispersed EPDM phase size by a factor of 3 to 4. 

As mentioned previously, Taylor[58] found that the droplet breakup is enhanced in the elongation 

flow. Favis and Therrien [52] compared the dispersed phase size/viscosity ratio dependency in a 

high viscosity polycarbonate (PC)/PP blend in an internal batch mixer and a twin screw extruder. 

They found that the dispersed phase size was much less dependent on the viscosity ratio in the 

twin-screw extruder. Considering that elongation flow is very dominant in the twin screw 

extruder, the observed difference can be related to the highly effective droplet breakup in the 

extruder. These results are in agreement with the results of Wildes et al. [62] who found that in a 

PC/SAN blend processed by a twin-screw extruder, the phase size of the dispersed SAN particles 

was independent of the viscosity ratio. 

Therefore, the previous studies have shown that: (a) shear flow has a limitation in droplet 

breakup when the viscosities of the phases are very different; (b) elongation flow is highly 

efficient.  

2.2.4.2 Coalescence 

The coalescence of two droplets in an emulsion can be assumed as a three-step process: (i) two 

droplets are brought together by the flow field, (ii) A film of the matrix between two droplets is 

drained until the thickness of the film reaches a critical value, (iii) The rupture of the film occurs, 

which results in the coalescence and merging of the droplets [64]. At equilibrium, Tokita derived 

the following equation for the phase size of the dispersed phase [52]: 

De ≈
24Prγ12
πτ

(φ +
4PrEDK
πτ

φ2) 

where τ is the shear stress, Pr is the probability that a collision results in the coalescence and EDK 

is the bulk breaking energy of the dispersed phase. Tokita’s model predicts that the phase size 

decreases linearly by increasing the shear stress and by decreasing the interfacial tension. Favis 

and Willis [65] obtained a master curve of the phase size as a function of composition for several 

immiscible polymer blends and found that the phase size dependency on compositions follows 

ϕ+kϕ2 but Tokita`s theory overestimates the effect of shear stress on the dispersed phase size. 
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Therefore, it can be seen that the coalescence and coarsening of the dispersed phase increases 

significantly by increasing the amount of the dispersed phase.  

2.2.4.3 Continuity Development in Polymer Blends 

By increasing the amount of the dispersed phase, at a certain volume fraction, a 3D inter-

connected continuous structure of the dispersed phase is formed in the blend. This volume 

fraction is known as the onset of the continuity of the dispersed phase. When both phases exist in 

the form of the 3D interconnected structures, the morphology is known as the co-continuous 

morphology. It has been shown that the formation of the continuous structure of the dispersed 

phase is promoted when the dispersed phase exists in the form of a stable highly elongated phase 

[63, 66, 67]. According to Tomotika’s model [56], increasing the viscosity of the matrix and 

decreasing the interfacial tension result in the formation of a more stable thread of the dispersed 

phase and, therefore, these factors should enhance the formation of the co-continuous 

morphology. Previous studies confirmed the broadening of the co-continuity region by 

decreasing the interfacial tension [67, 68]. 

2.2.5 Compatibilization of Polymer Blends 

The addition or in-situ generation of compatibilizers in immiscible polymer blends is a well-

known method for enhancing the interfacial adhesion between polymeric phases and improving 

the final mechanical properties. The features of the compatibilization of polymer blends can be 

listed as: 1) decreasing the interfacial tension; (2) reducing the dispersed phase size; (3) 

preventing either partially or completely both dynamic and static coalescence processes; (4) 

improves the adhesion between the phases; (5) stabilizing the microstructure and (6) ultimately 

allowing much more control over the various processing parameters and final properties of the 

material [69]. The compatibilization process is generally carried out through two methods: a) the 

addition of a copolymer which has parts that are miscible or highly compatible with either 

phases, (b) formation of a compatibilizer at the interface by reactive processing. In the second 

method, the third component either has functional groups that can react with both phases at the 

interface or has a tail compatible with one of the phases and a functional group that can react with 

the other phase.  
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In the first method, different types of the copolymers can be used such as a di-block copolymer, 

tri-block copolymer or branched or grafted copolymers. Fayt et al. [70] showed that among the 

different types of block copolymers, di-block copolymers are the most effective at enhancing the 

interfacial adhesion and final mechanical properties. More recently, Harrats [71] found that a 

tapered copolymer of hydrogenated butadiene-styrene (SEB) can offer even better 

compatibilization properties than a pure di-block copolymer in an LDPE/PS blend.  

By the addition of the compatibilizer, the compatibilizer molecules situate themselves at the 

interface and reduce the interfacial free energy of the system. By increasing the compatibilizer 

content, at a certain amount of the compatibilizer, the interface becomes saturated with the 

compatibilizer and increasing the compatibilizer content does not have a considerable effect on 

the interfacial adhesion between polymer pairs. However, higher concentration of the 

compatibilizer causes micelle formation in the system. This effect is clearly shown in Figure  2.8, 

in which the measured interfacial tension between PS and polybutadiene (PB) decreased by the 

addition of a styrene-butadiene (SB) block copolymer and reached a plateau at high 

compatibilizer contents. 

 

Figure  2.8.Effect of the addition of a SB copolymer on the interfacial tension (υ12) between PS 

and PB [72]. 

Considering the direct influence of the interfacial tension on the phase size of polymer blends, 

this effect can also be seen by studying the particle size of the blend as a function of 

compatibilizer content, Figure  2.9. 
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Figure  2.9. The effect of the addition of a hydrogenated styrene-butadiene-styrene tri-block 

copolymer on the phase size of PS/Ethylene-propylene rubber (EPR) (90/10%) [73]. 

As these curves are similar to the emulsification curves, they are being referred to as the 

emulsification curve of compatibilizers in polymer blends [69, 73]. 

In the case of reactive compatibilization, the main requirements are [74]: 1) Short reaction time 

(< 3 minutes) which means that the chemical functionalities should be very reactive; 2) the 

reaction should not generate a significant amount of heat; 3) as the reaction takes place at the 

interface, rigorous mixing is required to increase the interfacial area; 4) the reaction product 

should be stable. An example of reactive compounding is the compatibilization of 

polyolefin/polyamide blends by the addition of polyethylene grafted maleic anhydride and/or 

polypropylene grafted maleic anhydride. In this case, maleic anhydride reacts with amine groups 

of polyamide resulting in the formation of a graft copolymer. In this case, maleic anhydride was 

grafted to PE prior to the reactive compounding. 

 

2.3 PLA/PBAT and PLA/PE Blends 

2.3.1 PLA/PBAT Blends 

Jiang et al. [12] studied the miscibility of PLA/PBAT by examining the shift in the glass 

transition temperature (Tg) of the phases in dynamic mechanical analysis (DMA) results. They 
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observed two distinct Tgs of PLA and PBAT phases over the studied composition range and 

concluded that PLA/PBAT is an immiscible polymer blend. Yeh et al. [19] used the same 

approach and observed two Tgs at compositions above 2.5 wt.% of PBAT (which indicates 

immiscibility in this composition range). On the other hand, they only observed one Tg close to 

the Tg of the PLA phase at 2.5 wt.% of PBAT. They finally concluded that a PLA/PBAT blend is 

a miscible system below 2.5 wt.% of PBAT. However, the amplitude of the response of the 

PBAT phase in the DMA results at 2.5 wt.% of PBAT is expected to be very small and, therefore, 

achieving a solid conclusion about the presence of the PBAT phase at this composition is 

challenging. Therefore, it can be seen that the miscibility of the PLA/PBAT blend is still a 

controversial issue that has not yet been studied in detail. Previous studies on the mechanical 

properties of PLA/PBAT indicate that the addition of PBAT reduces the tensile strength and 

modulus and enhances the elongation at break compared to the neat PLA [12, 19, 41]. For 

example, Figure  2.10 shows these trends in the mechanical properties of PLA/PBAT reported by 

Jiang et al. [12]. On the other hand, as can be seen in Figure  2.10, the addition of PBAT does not 

improve the impact properties of PLA considerably, which is attributed to an insufficient 

interfacial adhesion between the phases to transfer the stress from PLA to the PBAT phase [12, 

20, 21, 39].  

 

Figure  2.10. The mechanical properties of PLA/PBAT blends at different compositions: (a) 

tensile strength and modulus, (b) impact strength [12]. 
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Some authors have used the compatibilization approach to enhance the interfacial adhesion 

between PLA and PBAT. Lin et al. [39] added tetrabutyl titanate (TBT) to a PLA/PBAT blend 

and reported that TBT enhanced the tensile and impact strength by the formation of a PLA-PBAT 

copolymer through a trans-esterification reaction at the interface. However, the authors did not 

provide any morphological and/or elemental analysis to prove the formation of the copolymers at 

the interface. Zheng et al. [20] added glycidyl methacrylate (GMA) to a PLA/PBAT blend and 

observed an increase in the elongation at break and impact strength compared to the neat blend. 

They also attributed this observation to the formation of a PLA-PBAT copolymer at the interface 

but did not present any evidence to prove the presence of the copolymer. Al-Itry et al. [75] 

proposed a mechanism to demonstrate how multi-functional epoxy chain extenders such as 

Joncryl can bind PLA and PBAT molecules at the interface. However, as the multi-functional 

epoxy components are not selectively localized at the PLA/PBAT interface, they can also react 

with either phase and form branched molecules, which considerably increases the elasticity and 

viscosity [75, 76]. Therefore, it can be seen that despite previous attempts to compatibilize the 

PLA/PBAT interface, an effective compatibilization strategy for PLA/PBAT blends is lacking in 

the literature. 

 

2.3.2  PLA/PE Blends 

Despite the commercial potential of a PLA/PE blend, this blend has been studied by few authors. 

A set of systematic studies on the mechanical properties and compatibilization of the interface in 

this blend was carried out by the research group of Professor Hillmyer at the University of 

Minnesota [5, 77, 78]. They studied the mechanical properties of blend samples prepared by 

solution blending [78] and melt blending [5, 77] and found that in both cases the blending 

enhanced the elongation at break but reduced the tensile modulus and impact properties. They 

studied the effect of the addition of di-block copolymers of PLA-b-PE on the morphology and 

mechanical properties of PLA/LDPE, Figure  2.11. As can be seen, the addition of PLA-b-PE 

copolymers reduced the dispersed phase and enhanced considerably the elongation at break. In 

another interesting work from the same group, the effect of the microstructure of PLA-PE 

copolymers on the final properties of PLA/linear low density polyethylene (LLDPE) blends was  
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Figure  2.11. (Left) the effect of the addition of a PLLA-b-PE copolymer on the morphology of 

PLLA/LDPE (80/20) blends at (a) 0, (b) 2, (c) 5 and (d) 10 wt.% of the copolymer (based on the 

total weight of the blend); (right) the tensile properties of the blends [78]. 

 

studied and it was found that the presence of high crystalline blocks in the copolymer increased 

the impact strength from 20 J/m, for the neat PLA, up to 760 J/m [5].On the other hand, the 

elongation at break of the same sample was only enhanced from 4% to 31%. However, the 

authors did not discuss the observed limited improvement in the elongation at break. They also 

studied the effect of the compatibilizer content on the phase size and impact properties and 

showed that the interface saturation occurred at about 1 wt.% of the copolymer, Figure  2.12.  

 

Figure  2.12. The effect of PLLA-b-PE content on the dispersed phase size and impact strength of 

PLLA/LLDPE (80/20)[77]. 
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2.4 Polymer Nanocomposites 

As shown in the previous section, the blending of PLA with PBAT or PE enhances the elongation 

at break but, at the same time, reduces the mechanical strength and modulus considerably. The 

addition of solid inclusions to polymer blends is an effective method for achieving a balance 

between stiffness and toughness [27-29, 79-82]. The addition of nanoparticles to polymer blends 

in particular has received much attention due to their potential in enhancing the mechanical 

properties at much lower solid contents. Moreover, with the discovery of the double and multiple 

percolation phenomena, the addition of conductive nanoparticles to polymer blends to produce 

conductive and semi-conductive materials has been studied extensively [83, 84]. Previous studies 

clearly indicate that the key parameter in achieving a balance between stiffness and toughness 

and/or increasing conductivity in the systems incorporating nanoparticles is the ability to control 

the localization of solid inclusions[27, 79, 85-87]. Therefore, understanding the mechanisms 

involved in the localization of solid particles in polymer blends is crucial in achieving the final 

blend with the desired properties. In the following sections, the effects of the most important 

thermodynamic and kinetic parameters on the localization of solid particles in polymer blends 

will be reviewed. 

2.4.1 Thermodynamic of the Localization of Solid Inclusions in Polymer 

Blends 

The thermodynamic equilibrium localization of solid particles in a polymer blend can be 

predicted by Young’s model or the wetting parameter which is defined as[31]: 

𝜔 =  
𝛾1𝑠 − 𝛾2𝑠
𝛾12

 

Where γ1s, γ2s and γ12 are the interfacial tension between: polymer 1 and a solid, polymer 2 and 

a solid and polymer 1 and 2. Figure  2.13 schematically shows the different predicted localizations 

of solid particles based on the different values of ω. As can be seen in Young’s model, the 

interfacial tension between solid particles and polymers has a determining role in the final 

thermodynamic localization of the particles. Elias et al. [88] showed that in a PP/PS blend, by the 

simultaneous addition of all components, hydrophobic silica particles were located in the  
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Figure  2.13. Different localizations of solid inclusions based on the wetting parameter(ω): (a) in 

Phase 2 when ω > 1; (b) at the interface when -1 < ω < 1; (c) in phase 1 when ω <-1. 

PP phase and at the interface while hydrophilic silica particles were localized into the PS phase. These localizations 

were in agreement with the predicted localizations from Young’s equation.However, some authors found that 

the localization predicted by Young’s model did not match with their observation [89-92]. The 

uncertainty in the surface energy data of the components as well as the difference between the 

melting temperatures of the polymeric phases have been mentioned as the main reasons for these 

observations. The uncertainty in the reported values of the surface energies of solid particles can 

be seen inTable  2-1.  

  Table  2-1. The surface energy of different nano-particles reported in the literature. 

Solid particle grade γ 
(mN/m) 

γd (mN/m) γp (mN/m) T (oC) Reference 

CB NC7000 from 
Nanocyl 

55 51-49 4-6 190 [93] 

CB From Denki-
kagaku Co. Japan 

108.8 108.1 0.8 180 [94] 

CB Printex XE 2B 
from Degussa 

42 3-5 37-39 210 [95] 

Silica Aerosil A200 from 
Degussa 
 

80 29.4 50.6 25 [88] 
- 79 

38 
- 0 

100 
[96] 

Silica Aerosil R805 From 
Degussa 

32 30 2 25 [88] 

Montmorillonite Cloisite®30B from 
Rockwood 
additives 

24.3 17.4 6.9 260 [97] 
35 22.4 12.6 250 [98] 

MWCNT from Dynamic 
Enterprises 

27.8 17.6 10.2 25 [99] 

MWCNT from Nanolab 45.3 18.4 26.9 - [100] 

MWCNT from Arkema and 
Nanocyl 

- 81-115 - 100 [101] 
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The difference in the reported values is mainly due to the differences in purity, surface 

crystallinity and functionality of the solid particles. Therefore, all these factors should be 

considered when selecting surface energy data from the literature. For example, in the case of 

silica particles, the density of the SiOH groups on the surface can be used as a criterion to select 

the most proper surface energy data. Hydrophilic silica particles have SiOH density of 2-6 

SiOH/nm2, while this value is usually less than 1 SiOH/nm2 in hydrophobic silica [96]. In 

addition to the above-mentioned factors, the different techniques that have been used in the 

measurements of the surface energy of solid particles can also result in different surface energy 

data. Moreover, in most of the previous studies, the surface energy of polymers at room 

temperature was taken from the literature and then was extrapolated to higher temperatures. This 

common strategy increases errors in the prediction of the thermodynamic localization as the 

surface energy and its temperature coefficient depend on the molecular weight and molecular 

weight distribution of polymers [47, 102, 103].  

It should be mentioned that, in addition to the surface energy of the components, any specific 

interaction between polymer components and solid particles should also be considered in 

analysing the localization of the particles. These interactions can be in the form of a chemical 

reaction with the surface of the solid or strong adsorption of polymer molecules on the surface of 

the particles. Taghizadeh and Favis [104] found that in a thermoplastic starch (TPS)/ PCL blend, 

Young’s model predicts that CNT particles should be localized at the interface; however, they 

found that the particles had a significant tendency toward the TPS phase. Using X-ray 

Photoelectron spectroscopy (XPS) analysis, they found that TPS molecules react with the 

carboxylic groups on the surface of the CNT particles. As a result, the CNT particles are drawn 

from their thermodynamic localization at the interface into the TPS phase. Specific interactions 

can be used as an effective tool to alter the thermodynamic equilibrium localization of solid 

particles in multiphase systems. For example, Gultner et al. [105] found that the addition of 

amino functionalized CNT particles to a PC/SAN blend resulted in the localization of CNT 

particles in the PC phase. By premixing N-phenylmaleimide styrene maleic anhydride with the 

SAN phase, they could successfully change the thermodynamic localization of the particles to the 

SAN phase. They attributed the change in the localization to the reaction of N-phenylmaleimide 

styrene maleic anhydride with the functional amino groups on the surface of CNT. In another 

study, Chen et al. [106] found that the addition of CNT particles to a blend of PC and 
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acrylonitrile butadiene styrene (ABS) resulted in the localization of the particles in the PC phase. 

However, with the addition of 5 wt.% of ABS-graft-maleic anhydride (ABS-g-MA) to the ABS 

phase, the localization of the particles changed to the ABS/ABS-g-MA phase. Liu et al.[107] also 

showed that in a blend of PP/ethylene propylene rubber (EPR), nano-silica particles were 

localized in the PP phase. On the other hand, when they used EPR-graft-Maleic Anhydride (EPR-

g-MA), the silica particles were selectively localized in the EPR-g-MA phase.  

Therefore, it can be seen that in addition to the surface energy of the components, the specific 

interactions can also be used to control the localization of solid particles in multiphase systems. 

2.4.2 Kinetics of the Migration and Localization 

Although the thermodynamic equilibrium localization of solid particles in polymer blends can be 

predicted by Young’s model, kinetic effects can interrupt the migration of the particles toward 

their preferred thermodynamic equilibrium location. In this section, the effect of different kinetic 

parameters on the migration and localization of solid particles in polymer blends will be 

reviewed. 

2.4.2.1 The Effect of Mixing Strategy 

The effect of the sequence of the addition of components is the most studied kinetic parameter in 

the literature. Most of the previous studies found that the addition of all the components to the 

mixing chamber or the addition of solid particles to a melt of polymers result in the localization 

of the particles in their thermodynamic equilibrium localization[29, 85, 88-91, 94, 105, 108-117]. 

On the other hand, when solid particles are premixed with a phase with which they have the 

lowest thermodynamic affinity, different observations have been reported. Some authors 

observed that, even by changing the mixing strategy, the particles migrated to their 

thermodynamic equilibrium localization[85, 88, 105, 106, 113] while in some other systems, the 

migration of solid particles was inhibited and a non-equilibrium localization was observed [89, 

104, 115]. For example, Baudouin et al.[90] found that when CNT particles were added to a 

blend of polyamide 12 (PA12) and ethylene–acrylate (EA) copolymer, they were localized at 

their thermodynamic equilibrium localization at the interface. However, when the particles were 

premixed in a high viscosity PA12 phase, they remained in the PA12 phase. Therefore, it can be 

seen that premixing particles with a low affinity phase increases the effect of kinetic parameters. 
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Viscosity is the most mentioned kinetic barrier for the migration of solid particles in the 

literature. The effect of this parameter will be reviewed in the next section. 

 

2.4.2.2 The Effect of Viscosity 

Austin et al. [111] studied the effect of the viscosity of EPR-g-MA on the localization of 

organoclay in a blend of PP/EPR-g-MA and found that the particles were localized in the EPR-g-

MA phase irrespective of its viscosity. It should be mentioned that they carefully eliminated the 

effect of the difference between the melting temperatures of the phases by the addition of the 

particles to a PP/EPR-g-MA melt. 

Persson and Bertilsson [118] studied the effect of the viscosity of phases on the localization of 

aluminum whiskers in a low interfacial tension blend of PE and polyisobutylene (PIB). They 

found that the aluminum whiskers were always localized in the more viscous phase irrespective 

of the mixing strategy. This observation was attributed to the minimization of the viscous energy 

of the system by the localization of aluminum whiskers in the more viscous phase. On the other 

hand, they also found that in a polyamide (PA)/SAN blend, the aluminum borate whiskers were 

localized in the less viscous PA phase. Finally, they concluded that the role of the viscosity is 

only important in low interfacial tension systems and the thermodynamic interactions control the 

localization in high interfacial tension blends. However, some other authors observed 

considerable effects of viscosity in high interfacial tension systems. Feng et. al. [119] studied the 

effect of the viscosity of  poly(methyl methacrylate), PMMA, on the localization of carbon black 

(CB) in a PP/PMMA blend. They found that by the addition of all the components to the mixing 

chamber, CB particles were localized in the less viscous PMMA phase, while by increasing the 

viscosity of the PMMA phase, CB particles were only localized at the interface and in the PP 

phase. Considering that the thermodynamic localization of CB particles was determined to be in 

the PMMA phase, they concluded that increasing the viscosity of the PMMA phase prevented the 

migration of CB particles to the PMMA phase. Figure  2.14 shows the localization of CB particles 

in the samples with low and high viscosity PMMA. 
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Figure  2.14. The effect of the viscosity of the PMMA phase in PP/PMMA(73/27): (a) high 

viscosity PMMA, (b) low viscosity PMMA. PMMA is always the brighter phase[119]. 

Plattier et al. [120] studied the effect of the viscosity ratio of the phases on the localization of CB 

particles in a blend of PP and PCL. Although the thermodynamic localization of CB particles was 

predicted to be in the PCL phase the particles were always localized in the more viscous phase 

irrespective of whether it was PP or PCL. They attributed this observation to the higher drag 

force that the more viscous phase applied to the particles at the interface. However, as can be 

seen in Figure  2.15, they based their conclusion on the assumption that the drag forces always 

tend to pull the particles out of the interface, which is not necessarily a valid assumption. 

 

Figure  2.15. Schematic representation of a CB particle at the PP/PCL blend interface. Fd and Fm 

are the drag forces applied by PCL and PP, respectively[120]. 

Chen et al. [106] found that in a blend of PC/ABS/ABS-g-MA (55/40/5), the premixing of CNT 

particles with a high viscosity PC phase prevents the migration of the particles to their 

thermodynamic equilibrium localization in the ABS/ABS-g-MA phase. Elias et al. [91] also 

studied the localization of fumed silica in a PP/ethylene-co-vinyl acetate (EVA) blend and found 
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that when hydrophobic fumed silica, PP and a low viscosity EVA were added simultaneously to a 

micro-compounder, all silica particles were located at the interface and in the PP phase, which 

was the predicted thermodynamic equilibrium localization. On the other hand, when a high 

viscosity EVA phase was used in the experiments, the silica particles were localized in the EVA 

phase and at the interface. Figure  2.16 shows the different localizations of silica particles in these 

samples.  

 

Figure  2.16. The localization of hydrophobic silica in PP/EVA blends by the simultaneous 

addition of components: (a) high viscosity EVA, (b) low viscosity EVA[91]. 

 

Considering the much lower melting temperature of EVA (~75 oC) compared to PP (~165 oC), it 

is likely to expect that at the early stages of the mixing, EVA melted first and encapsulated silica 

particles. As a result, when the high viscosity EVA phase was used, the particles could not 

migrate from the EVA phase to their thermodynamic equilibrium localization (at the interface 

and in PP). Taghizadeh and Favis [104] compared the localization of carboxylic acid 

functionalized CNT in a blend of PCL and TPS prepared by a twin-screw extruder and an internal 

batch mixer. As can be seen in Figure  2.17, they found that by mixing a PCL/CNT masterbatch 

with TPS in the twin-screw extruder, CNT particles completely migrated to the TPS phase. 

However, when the sample was prepared by the internal batch mixer, CNT particles were located 

in the PCL phase and at the interface. Using rheological analysis, they showed that the TPS phase 

viscosity drops significantly by increasing the shear rate. They concluded that, in addition to the 

different flow fields that exist in these instruments, the higher shear rate of mixing in the twin-

screw extruder dropped the viscosity of the TPS phase and allowed CNT particles to migrate into 
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the TPS phase. On the other hand, the viscosity of TPS was much higher in the internal batch 

mixer (due to the lower shear rate) which prevented the migration of CNT particles to the TPS 

phase. 

 

Figure  2.17. TEM images of PCL/TPS/CNT nanocomposites prepared by premixing CNT with 

PCL. (Left) sample prepared in the internal batch mixer; (right) sample prepared in the twin-

screw extrude [104]. 

From all the aforementioned, it can be seen that the viscosity can prevent or delay the migration 

of solid particles in polymer blends. However, the origin of the effect of viscosity has not been 

discussed yet. 

 

2.4.2.3 Effect of Mixing Time 

Gubbels [121] showed that when CB particles were initially dispersed in the PS phase in a PS/PE 

blend, electrical resistivity was reduced and reached a minimum after 2 minutes, Figure  2.18(a), 

and increased again by further processing. Further investigations revealed that after 2 minutes of 

mixing (the minimum in the resistivity curve), the particles were localized temporarily at the 

interface. The localization of the particles at the interface formed a conductive network of the 

particles at the interface and significantly reduced the electrical resistivity of the blend. Further 

processing resulted in the complete migration of the particles to the PS phase, which increases the 

electrical resistivity, 
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Figure  2.18. (a) Electrical resistivity of the PS/PE (55/45) blend with 1 wt.% CB particles as a 

function of mixing time, (b) the localization of CB particles after 2 minutes of mixing. [121]. 

 

Hunag et al. [113] studied the localization of CNT particles in a PLA/PCL blend and showed 

that, according to Young’s model, CNT particles should be localized in the PCL phase. By 

premixing CNT with PLA followed by mixing with PCL they found that after 20 minutes of 

mixing, all CNT particles completely migrated to the PCL phase. Figure  2.19 shows the TEM 

images of PLA/PCL blends with the CNT particles at different mixing times. 

 

 

Figure  2.19. TEM images of the PLA/PCL(50/50) blend with 0.25 wt% CNT premixed with: (a) 

after 1 min of processing, (g) after 20 min of processing. (b) and (h) show higher magnifications 

of (a) and (g) respectively[113]. 
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Hong et al. [122] studied the effect of mixing time on the migration of organoclay from a PS 

phase to Poly(butylene terephthalate) PBT. To this aim, they prepared multilayer disks of PBT 

and PS/organoclay (organoclay was premixed initially with PS) and studied the migration of 

organoclay particles under steady shear flow in a rheometer with parallel plate geometry. As can 

be seen in Figure  2.20, they found that after 300 s at the shear rate of 1    s-1, most of the 

organoclay particles were localized in the PS phase. By increasing the time, more particles 

migrated to the interface and finally after 1800 s, all organoclay particles either migrated to the 

PBT phase or were localized at the interface. 

 

Figure  2.20. TEM images of PBT/PS disk samples showing the migration of organoclay in a 

PBT/PS nanocomposite at a shear rate of 1 s-1 at different times: a) 700 s; b) 1800 s [122]. 

 

In conclusion, it can be seen that the previous studies in the literature show that increasing the 

mixing time can enhance the migration of the particles to their thermodynamic equilibrium 

localization. 

2.4.2.4 Effect of Shear Rate 

The shear rate of mixing is another kinetic parameter that can influence the migration and final 

localization of solid particles in polymer blends. The effect of shear rate was studied by Hong et 

al. [122] in a PBT/PS blend. They studied the effect of shear rate on the migration of organoclay 

from PS layers to PBT layers in a multilayer disk of PBT and PS/organoclay. The results are 

shown in Figure  2.21. 
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Figure  2.21. TEM images of PBT/(PS/organoclay) after 700 s at shear rates of (a) 10 s-1 and (b) 

50 s-1 [122]. 

 

Although the TEM images in Figure  2.21 show that by increasing the shear rate from 10 to 50 s-1, 

all organoclay particles migrated from the PS to PBT phase, but it should be considered that 

working at the shear rate of 50 s-1 or even 10 s-1 in a parallel plate geometry results in the leaking 

of the material out of the disk space. Considering the non-Newtonian behaviour of polymer 

materials, changing the shear rate can also affect the viscosity of the phases in a polymer blend. 

As mentioned previously in 2.4.2.2., Taghizadeh and Favis [104] found that in a PCL/TPS blend, 

increasing the shear rate reduced the viscosity of the TPS phase and enhanced the migration of 

CNT particles to the TPS phase.  

 

2.4.2.5 Effect of the Aspect Ratio of the Particles 

Goldel [110] studied the effect of the aspect ratio of solid particles on the migration by 

comparing the migration of CNT and CB particles from SAN to PC in a PC/SAN blend. They 

found that the migration of CB particles at the interface is much slower than the CNT particles. 

They proposed a mechanism named the “slim-fast-mechanism” or SFM in which the interface 

curvature is considered as the only driving force for the migration. As is shown in Figure  2.22, 

they mentioned that during the migration of a low aspect ratio particle through the interface, the 

interface curvature and the thermodynamic driving force decrease, which can result in the 
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trapping of the particles at the interface. On the other hand, during the migration of a high aspect 

ratio particle, the interface cannot relax until the particle completely passes through the interface. 

Therefore, the driving force for the migration of high aspect ratio particles remains unchanged 

during the course of the migration and these particles migrate much faster. However, the authors 

did not consider the difference between the surface energies of CB and CNT particles in their 

discussions. This can be related to the fact that they assumed the migration to occur only due to 

the interface curvature.  

 

Figure  2.22. The migration of a low and a high aspect ratio particle at the interface: (a,c) at the 

beginning of the migration, (b,d) at the end of the migration. θ indicates the interface 

curvature[110]. 

2.4.2.6 Effect of the Dispersion of the Particles 

Achieving a good dispersion of nano-particles is challenging as decreasing the particle size 

significantly increases the agglomerate strength of solid particles [123]. The presence of the 

agglomerates or aggregates of solid particles can significantly reduce the reinforcement effect of 

the particles [28, 81, 82]. The poor dispersion of solid particles can also affect the migration and 

localization of the particles. Baudouin et al. [90] found that in an EA/PA6 blend, when CNT 

particles were premixed by the EA phase, aggregates of CNT remained in the EA phase while 

well-dispersed CNT particles could migrate to their thermodynamic localization at the interface. 

Goldel et al. [110] proposed that the dispersion-state dependence of the localization of solid 

particles increases by increasing the aspect ratio of individual nanoparticles. They attributed this 
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conclusion to the SFM mechanism that was reviewed in the previous section. It can be seen that 

achieving a goof dispersion can be another limiting parameter in controlling the localization of 

solid particles in polymer blends. 

2.4.2.7 The effect of Molecular Adsorption on the Migration and Localization 

Baudouin et al. [90] used extraction followed by thermal gravimetric analysis (TGA) and showed 

that in an EA/PA12 blend with CNT particles localized in the PA12 phase, some PA12 molecules 

remained adsorbed to the surface of the particles even after the extraction. Tao et al [124] coated 

CNT particles with two PS phases with different molecular weights of 2900 and 2900000 g/mol. 

The coated particles were premixed with PA12 followed by mixing with the EA phase. They 

found that when CNT is coated with the low molecular weight PS, particles were localized in the 

PA12 phase while in the case of the high molecular weight PS, the particles migrated and were 

localized at the interface. The same interface localization was observed when neat PS was added 

to a EA/PA12 blend. They concluded that, by increasing the molecular weight of the PS, the 

desorption of the PS molecules from the surface of CNT particles becomes much more difficult 

and the CNT particles coated by the high molecular weight PS acted the same as the neat PS 

droplets. 

 

2.4.2.8 Mechanisms of Migration of Solid Inclusions in Polymer Blends 

The mechanism of migration and transfer of solid particles in polymer blends are not yet well-

understood. All previous works agreed that the diffusion and Brownian motion are not effective 

mechanisms of particle migration in high viscous polymer matrices [31, 91, 109]. In the shear 

induced migration, solid particles move randomly under hydrodynamic forces and collide with 

the interface. The frequency of the collision of mono-dispersed spherical particles moving in a 

shear flow is estimated as [91]: 

𝐶 =
8
𝜋
𝛾̇𝜑 

where 𝛾̇ and ϕ are the shear rate and the volume fraction of the solid particles. The linear 

dependency of the collision frequency to the shear rate in this mechanism can explain the 

enhancement effect of the shear rate on the migration of solid particles. However, this mechanism 
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cannot explain the observed effects of other kinetic parameters such as the effect of viscosity and 

particle size of silica. Moreover, this mechanism assumes that when the particles collide with the 

interface, the transfer of the particles to the other phase occurs instantaneously. Therefore, this 

mechanism cannot explain the non-equilibrium localization of solid particles reported in the 

literature [110, 121]. As mentioned in 2.4.2.5, Goldel et al. [110] proposed the SFM mechanism 

to explain the effect of the aspect ratio of solid particles on their migration velocity at the 

interface. However, this mechanism does not consider the effect of the surface energy of the 

components on the migration velocity at the interface. 

In addition, some authors proposed that the trapping of solid particles between two colliding 

dispersed phase droplets can result in the transfer of solid particles from the matrix phase to the 

dispersed phase [31, 109]. Obviously, this mechanism is not considerable when the particles are 

initially distributed into the dispersed phase droplets. As can be seen, the present mechanisms in 

the literature can only limitedly explain the effect of some parameters, but a general mechanism 

of migration that considers the whole migration process and the kinetic and thermodynamic 

parameters involved is lacking in the literature. 

 

2.4.3  The Effect of Different Localizations of Solid Particles on the 

Morphology of Polymer Blends 

After reviewing the thermodynamic and kinetic aspects of the migration and localization of solid 

particles, in this section, the effect of different localizations of solid particles on the morphology 

of polymer blends will be discussed. 

2.4.3.1 Localization of Solid Inclusions in the Dispersed Phase 

Filippone et al. [125] reported that in HDPE/PA6 blends, the addition of organoclay resulted in 

an exclusive localization of organoclay particles in the PA6 phase. They showed that by 

increasing organoclay content, the morphology of PA6 phase changed to an elongated 

morphology and at higher organoclay contents, a semi-continuous network of PA6 formed in the 

HDPE matrix, Figure  2.23. 
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Figure  2.23. The effect of organoclay content on the morphology of HDPE/PA6 (75/25) blends: 

a) 0 wt.%; b) 1 wt.%; d) 5 wt.% [5]. 

They also studied the continuity of the PA6 phase in this blend at different solid contents and 

confirmed that increasing the organoclay content promoted the continuity level of PA6. They 

proposed that at high solid contents, a double percolating network forms in which PA6 becomes 

the continuous phase as it encapsulates the 3D formed structure of organoclay, Figure  2.24. 

Moreover, they observed that increasing the organoclay content up to 2.5 wt.% decreased the 

dispersed PA6 phase size. This was attributed to the decrease in the coalescence due to the 

platelet-like geometry of the organoclay; however, the authors did not explain how the confined 

organoclay particles in PA6 can affect the coalescence rate of PA6 droplets.  

 

Figure  2.24. Mechanism of the formation of a continuous structure pf PA6 in HDPE/PA6 (75/25) 

blends: a) without organoclay; b) at low organoclay content; c) at high organoclay content [125]. 

The development of continuity in polymer blends by the formation of a 3D network of CB 

particles was also observed by Wu et al.[126] in a blend of ABS/PA6 where the particles were 

selectively localized in the PA6 phase, Figure  2.25.  
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Figure  2.25. SEM images of ABS/PA6 (60/40) blend: (a) without CB particles (PA6 was 

extracted), (b) with 7.5 phr CB (ABS was extracted)[126]. 

Hong et al. [127] studied the effect of the localization of organoclay particles in a PE/PBT(90/10) 

blend. They found that the localization of the particles in the dispersed PBT phase increased the 

PBT phase size due to the increase in the viscosity of PBT, Figure  2.26.  

 

Figure  2.26. TEM images of a PE/PBT (90/10) blend with (a) 1 wt.%, (b) 5 wt.% and (c) 10 wt.% 

of organoclay [127]. 

Nuzzo et al.[128] also observed the enhanced continuity development of polyamide 11 (PA11) 

induced by the selective localization of organoclay, organo-modified sepiolite and CNT particles. 

They attributed this observation to the increase in the relaxation time of the PA11 dispersed 

phase due to the formation of a 3D solid structure inside the PA11 phase. Kong et al. [129] 

studied the effect of the addition of nano-silica in PA6 on the relaxation and breakup of a 

deformed PA6 droplet in a PS matrix and confirmed that the presence of nano-silica in the PA6 

phase increased the relaxation and breakup time of PA6 droplets significantly. It can be 
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concluded that the previous studies show that the localization of solid inclusions in the dispersed 

phase promotes the formation of co-continuous structures in polymer blends. 

2.4.3.2 Localization of Solid Inclusions in the Matrix Phase 

The localization of solid inclusions in the matrix phase is a well-known approach to achieving a 

balance between toughness and stiffness [28, 79, 81, 82, 107]. Lee et al. [79] found that the 

localization of organoclay (MMT) in the PP phase in blends of PP/ethylene–octene based 

elastomer (EOR) increased both the modulus and impact strength of the blend, Figure  2.27. 

 

Figure  2.27. The effect of organoclay content on the mechanical properties of PP/EOR blends: (a) 

tensile modulus, (b) impact strength, (c) average particle size and inter-particle distance [79]. 

 

They found that by increasing the organoclay content, the dispersed EOR phase size decreased 

and finally reached a plateau at high organoclay contents, Figure  2.27(c). The observed onset of 

the plateau region in the droplet size curve occurs at the same composition as the onset of the 

plateau region in the impact strength (Figure  2.27 b). Khatua et al.[130] also reported that by 

increasing the organoclay content in a blend of nylon 6 (PA6) and EPR, the size of the dispersed 

EPR phase decreased and finally reached a plateau at high organoclay contents, Figure  2.28. 
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Figure  2.28. Volume (Dvs) and number (Dn) average diameter of EPR dispersed phase in a 

PA6/EPR blend as a function of organoclay content[130]. 

Bailly et al.[28] also showed that the selective localization of nano-silica particles in the PP 

matrix phase in a PP/ethylene-octene copolymer blend reduced the dispersed copolymer phase 

size and increased the mechanical strength. It can be seen that the reported effect of organoclay 

on the droplet size of the dispersed phase is similar to the effect of a compatibilizer on the phase 

size in polymer blends (which was reviewed in 2.2.5). These studies clearly indicate the potential 

application of nano-particles to reduce the dispersed phase size and improve the mechanical 

properties of the systems where finding a compatibilizer is challenging. The observed reduction 

in the dispersed phase size in polymer blends with solid inclusions localized in the matrix phase 

has been attributed to the decrease in the coalescence due to: (i) the presence of solid particles 

between droplets at the contact point[31, 32, 88, 131], (ii) reduced mobility of the chains around 

the particles [28, 29, 31, 32]. According to the first mechanism, during the coalescence of the 

dispersed phase droplets, solid particles that exist between the droplets can act as a solid barrier 

and prevent the coalescence. In the second mechanism, decreasing the mobility of the polymer 

chains around the particles increases the viscosity and the draining time of a thin film of the 

matrix separating the droplets. On the other hand, increasing the viscosity of the matrix can alter 

the viscosity ratio and affect the droplet breakup[81]. Lee et al.[132] observed a phase size 

reduction in PP/polyolefin elastomer (POE). As the presence of the particles did not change the 

viscosity, they proposed that the presence of the solid particles in the matrix forces the dispersed 

phase droplets to follow a highly tortuous path which implies a confined flow condition and 

enhances the droplet breakup. Lee et.al [81] studied the effect of nano-silica on the coarsening of 

a (PP+PP-g-MA)/poly(ethylene-co-octene), EOC, blend in a quiescent and under shear condition  

shows the obtained results. As can be seen in Figure  2.29, the presence of the particles in the 
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matrix phase significantly suppressed the coarsening of the structure in the quiescent annealing. 

Similar observations have been reported by other authors [132, 133]. Moreover, the coalescence 

of the blends with and without silica under shear showed a similar stabilization effect. 

 

Figure  2.29. The effect of the quiescent annealing on the morphology of (PP+PP-g-MA)/EOC 

(60/40) in (A) the neat blend, (B) blend with 5 wt.% of nano-silica [81]. 

2.4.3.3 Localization of Solid Inclusions at the Interface 

The localization of solid particles at the interface of emulsions has been shown to reduce the 

dispersed phase size and stabilize the morphology. Ramsden in 1903 was the first researcher who 

reported particle stabilized emulsions, but Pickering conducted the first systematic study on 

solid-stabilized emulsions[134]. This work has been widely recognized as the first study on solid-

stabilized emulsions and because of Pickering’s contribution in this field solid stabilized 

emulsions are called “Pickering emulsions”. Trifkovic et al.[135] studied the effect of the 

interface localization of nanoclay on the stability of a co-continuous blend of PE and PEO. They 

showed that the localization of organoclay at the interface significantly reduced the coalescence 

and stabilized the morphology against annealing, even with as little as 1 wt.% of organoclay. For 

lower organoclay contents, they observed that the coarsening of the morphology proceeded until 

the interface was entirely covered by the organoclay. By changing the surface treatment of 

organoclay, they found that the effectiveness of organoclay in stabilizing the morphology 

increases as the wetting parameter (ω) approaches zero. This is a situation in which organoclay 

particles are predicted to be symmetrically localized at the interface. Elias et al. [88] found that 

by the addition of 3 wt.% fumed silica to a PP/PS blend, the silica particles were localized at the 
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interface and reduced the volume average diameter of the dispersed phase from 6.5 µm to 1.7 

µm. Figure  2.30 shows the localization and morphology of the blends with and without fumed 

silica.  

 

Figure  2.30. SEM images of (a): PP/PS (70/30) blend; (b) the blend with 3 wt.% fumed silica, (c) 

TEM image showing the localization of fumed silica at the interface[88]. 

The reduction in the dispersed phase size of polymer blends has been attributed to two main 

mechanisms [31, 32]: I) the solid barrier effect and II) the effect of solid particles on the 

interfacial tension. In the solid barrier mechanism, the presence of a solid shell around the 

dispersed phase prevents the coalescence upon the collision of the dispersed phase droplets. 

Baoudouin et al. [90] clearly showed the formation of a solid shell of CNT around PA6 droplets 

in an EA/PA6 blend, Figure  2.31. 

 

Figure  2.31. TEM (a) and SEM (b) image of the CNT shell around the PA phase in EA/PA6[90]. 

Elias et al. [91] found that despite the addition of 3 wt.% of hydrophobic silica to PP/EVA(80/20) 

the interface was not covered completely by the particles but the dispersed phase size was 

reduced from 1.6 µm to 0.9 µm.  Figure  2.32 shows the localization of the silica particles in the 
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PP/EVA blend. These results confirm that the presence of solid particles at the interface even 

below the interface saturation can reduce the dispersed phase size. This stabilization is similar to 

the one observed in Pickering emulsions at low solid contents[136]. The mechanism of the 

stability of sparsely covered droplets is not well understood but the formation of a layer of solid 

particles at the contact area of the droplets may be responsible for the stabilization. 

 

Figure  2.32. TEM images of PP/EVA(80/20) with 3 wt.% silica particles localized at the 

interface[91]. 

The effect of solid particles on reducing the interfacial tension has been mentioned frequently as 

another mechanism responsible for the observed reduction in the dispersed phase size. The idea 

of decreasing the interfacial tension and improving the compatibility in the presence of solid 

particles originates from the work of Lipatov [137] who showed that the presence of solid 

particles can enhance the compatibility of polymers in a blend. Fang et al. [138] proposed three 

different mechanisms for the enhancement in the compatibility of polymer phases due to the 

localization of nanoclay at the interface. These mechanisms are schematically shown in 

Figure  2.33. 

 

Figure  2.33. The proposed mechanisms for the enhancement of the compatibility of polymers due 

to the localization of nanoclay particles at the interface [138]. 
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In these mechanisms, polymer chains are immobilized due to their interactions with the surface of 

nanoclay. As a result, a structure similar to a copolymer is formed which can act as a 

compatibilizer and enhance the compatibility of the polymer phases. The immobilization can 

occur as a result of strong interactions (or reactions) such as the one shown in Figure  2.33(a), or 

by the physical adsorption of the molecules (Figure  2.33 c). 

Some authors tried to demonstrate the compatibilization effect of the particles at the interface by 

the estimation of the interfacial tension using rheological analysis. Elias et al. [88] used 

Palierne’s model to estimate the interfacial tension between PP and PS in the presence of silica 

particles at the interface. Using this method, they concluded that the localization of 3 wt.% of 

silica particles at the interface reduced the interfacial tension between PP and PS from 2.3 mN/m 

to 0.45 mN/m. In another work from the same group [116], they used a new approach where they 

first separated the effect of composition from the effect of droplet relaxation on a  storage 

modulus in PP/EVA blends and then, by assuming a Newtonian behaviour at low frequencies, 

they used Taylor theory [139] to estimate the interfacial tension. They found that the interfacial 

tension decreased from 0.94 mN/m to 0.56 mN/m. Salehyian et al. [140] used Gramespacher and 

Meissner’s model [141] to predict the interfacial tension in a PP/PS(80/20) blend with organoclay 

localized at the interface and reported that the interfacial tension dropped from 1.9 mN/m for the 

neat blend to 0.4 mN/m for the system containing 5 wt.% of organoclay. 

Despite the above-mentioned results in the literature, the definition of an interface and interfacial 

tension between two phases that are completely separated by a shell of solid particles should be 

used with caution. Moreover, the rheological models that were used in the literature to determine 

the effect of solid particles on the interfacial tension were developed for liquid emulsions with 

liquid-liquid interfaces and do not consider the effect of solid particles on the interfacial 

rheology. 
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CHAPTER 3 ORGANIZATION OF ARTICLES 

 

The results of the first part of this thesis are presented in Chapter 4 as the first article entitled 

“Morphology, miscibility and continuity development in poly(lactic acid)/poly(butylene adipate-

co-terephthalate) blends”. This chapter is dedicated to the study of the morphology and 

miscibility of PLA/PBAT blends. The interfacial tension between PLA and PBAT was estimated 

using a rheological approach. The miscibility of PLA/PBAT was examined using the 

temperature-modulated DSC. Different microscopy techniques including SEM using lower 

secondary electron imaging (LEI), SEM using low-angle backscattered electrons (LABE) and 

atomic force microscopy (AFM) were used to investigate the morphology of this system. The 

morphology of the blend over the full composition range was studied and, finally, the co-

continuity region was determined using a rheological approach.  

In the second part of this project, the localization and migration of micro- and nano-silica 

particles in PLA/PBAT blends were studied. The results of this part are presented in Chapter 5 as 

the second article entitled “Localization of Micro- and Nano-Silica Particles in Heterophase 

Poly(lactic acid)/ Poly(butylene adipate-co-terephthalate) Blends”. The thermodynamic 

localization of silica particles was predicted to be in the PBAT phase. The effect of different 

mixing strategies was studied and it was found that the kinetic effects are very pronounced when 

the particles were premixed with the PLA phase. Using this mixing strategy, the effects of the 

viscosity of the PLA phase, the shear rate and the particle size of silica particles on the migration 

of silica were studied. The mechanism and parameters involved in each step of the migration 

were discussed in detail. 

The effects of thermodynamic and kinetic parameters on the localization of micro- and nano-

silica particles in PLA/LDPE blends were investigated. The results were presented as the third 

article entitled “Localization of Micro and Nano-Silica Particles in a High Interfacial Tension 

Poly(lactic acid)/ Low Density Polyethylene System” in Chapter 6. To study the effect of the 

surface energy of the particles, the surface of micro-silica particles was modified from a high to a 

low energy surface. The thermodynamic equilibrium localization of the unmodified and modified 

silica particles were determined to be in the PLA phase and at the interface, respectively.  The 

effect of different mixing strategies was studied and it was found that the kinetic effects were 
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considerable when the particles were premixed with the LDPE phase. This mixing strategy was 

used and the effects of the viscosity of LDPE, the shear rate and particle size of silica particles on 

the migration were studied. The origin of the effects observed was discussed by considering 

different steps in the migration of the particles. 

In addition, in Annex 1, the development of a semi-empirical model proposed for the migration 

velocity at the interface is presented in detail. The effects of different localizations of micro- and 

nano-silica particles on the morphology, rheology and mechanical properties of PLA/PBAT are 

studied in Annex 2. As will be discussed later in this thesis, finding a compatibilizer to enhance 

the interfacial adhesion in a PLA/PBAT blend is challenging due to the similar nature of PLA 

and PBAT. In Annex 3 solid state shear pulverization was used to enhance the interfacial 

adhesion in this system. The effects of silica particles on the morphology and continuity of 

PLA/PBAT were studied in Annex 4. Finally, Annex 5 presents the results of studying the effects 

of kinetic parameters on the migration and localization of copper nanowires in PLA/LDPE 

blends. 
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CHAPTER 4 ARTICLE 1: MORPHOLOGY, MISCIBILITY AND 

CONTINUITY DEVELOPMENT IN POLY(LACTIC 

ACID)/POLY(BUTYLENE ADIPATE-CO-TEREPHTHALATE) BLENDS* 

 

Ebrahim Jalali Dil, P. J. Carreau and Basil D. Favis 

CREPEC, Department of Chemical Engineering, École Polytechnique de Montréal, Montreal, 

Québec, H3C3A7, Canada. 

 

4.1 Abstract 

 

In this study, the morphology and miscibility of poly(lactic acid), PLA, and poly(butylene 

adipate-co-terephthalate), PBAT, blends were studied in detail. Three techniques to examine the 

morphology of PLA/PBAT are compared: SEM using lower secondary electron imaging (LEI), 

SEM using low-angle back scattered electrons (LABE) and atomic force microscopy (AFM). The 

interfacial tension of the system was examined by fitting the Palierne model to the rheological 

data and the results indicate a very low value of 0.6±0.15 mN/m. The miscibility in PLA/PBAT 

blends was studied by modulated DSC and the results show a limited one-way partial miscibility 

of PBAT in the PLA-rich phase with the glass transition temperature of the PLA-rich phase in 

PBAT showing a drop of up to 10 ℃, as compared to the neat PLA. Further investigations reveal 

that this effect depends significantly on the molecular weight of PBAT and underlines the strong 

entropic nature of this partial miscibility. The morphology at 1 vol.% of the dispersed phase 

shows that the dispersed phase exists in a stable fiber form even at these very low concentrations, 

an observation which is compatible with partial miscibility, with fiber diameters of 300 nm for 

PLA in PBAT and 150 nm for PBAT in PLA. The influence of composition on the dispersed 

phase fiber diameter shows a significant increase in fiber diameter with minor phase 

concentration which is not a result of classic coalescence, but more a result of the partial 

miscibility phenomenon. The region of dual-phase continuity has been examined by a rheological 

*Published in Polymer (2015): 68, 202.  
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approach and is determined to be a wide and highly symmetric region with the lower and upper 

limits located between 30-40 and 60-70 vol.% of PBAT, respectively.  

Keywords: Poly(lactic acid), Miscibility, Morphology 

 

4.2 Introduction 

 

Bioplastics have received much attention during the past decade predominantly due to 

environmental concerns related to greenhouse gas production and the end of life scenarios for 

classic petroleum based polymers [1]. Among bioplastics, poly(lactic acid), PLA, has shown 

significant commercial growth due to its bio-based and compostable nature, mechanical strength, 

availability in the market and lower price compared with most other bioplastics [2]. One of the 

most important weaknesses of PLA is its brittleness. Different methods have been proposed to 

overcome this drawback and, in this regard, the blending of PLA with other polymers has 

received much attention [3]. Polymer blends with PLA offer an economically viable approach to 

overcome the brittleness and also enhance other properties, such as the crystallinity of PLA. 

Among different blends of PLA, blends with other polyester-based bioplastics such as 

polycaprolactone (PCL) [4, 5] and poly(butylene adipate-co-terephthalate), a copolymer of 

butylene adipate (BA) and butylene terephthalate (BT) known as PBAT, [6-21] have been studied 

more extensively due to their compatibility with PLA, high elongation at break and impact 

strength and biodegradability/compostability. The PLA/PBAT blend is particularly interesting 

since it can offer a much wider range of application temperatures and thus has the most 

significant commercial potential.  

Jiang et al. [21] studied PLA/PBAT and showed that the addition of 20 wt.% of PBAT increases 

the elongation at break by a factor of 50. A number of other studies [6-20] have focused on the 

mechanical properties and, to some extent, the rheological properties, however many aspects of 

the morphology and miscibility of PLA/PBAT remain unclear. This can be attributed to the 

complexity of the characterization of this blend which originates from the very similar polyester 

nature of both PLA and PBAT. The complex morphology of some polymer blends with similar 

nature components was previously studied in this group. Ravati et al. [22] studied the 
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morphology of ternary blends of PLA/PBAT/ poly(butylene succinate), PBS, and 

PLA/PBS/polycaprolactone,PCL and showed that PLA/PBAT/PBS develops into a tri-continuous 

morphology while PLA/PCL/PBS has a partially wet morphology with droplets of one phase 

spread on the interface of two other phases. In previous work from this group, Li et al. [23] 

studied the continuous and co-continuous morphology development in polymer blends with 

different types of the interfaces and showed that highly interacting, low interfacial tension 

systems demonstrate fibrillar morphologies even at low composition. This fibrillar morphology 

leads to a lower percolation threshold for continuity development and results in a wide region of 

co-continuous morphology. Marin et al. [24] and Bhadane et al.  [25] also studied the 

morphology development in highly compatible low interfacial tension blends and observed some 

deviations from the classified features by Li et al. which they attributed to the partially miscible 

nature of the polymer blends studied. The results of these three studies clearly indicate that the 

level of interaction between components in low interfacial tension polymer blends and their 

mutual miscibility/immiscibility can have a determining effect on the morphology development. 

Jiang et al. [21] used dynamic mechanical analysis, DMA, to study the miscibility of PLA/PBAT 

blends in the composition range of  5 to 20 wt.% of PBAT and concluded that PLA/PBAT is an 

immiscible polymer blend. Yeh et al. [16], also using DMA, reported that PLA/PBAT was a 

miscible binary polymer blend system when PBAT was less than 5 wt.%. The 

miscibility/immiscibility of PLA/PBAT still remains to a large degree unresolved. 

The objective of this work is to carry out a highly detailed examination of the miscibility, 

interfacial tension and morphology of PLA/PBAT blends. The dispersed phase and co-continuous 

morphology will be characterized using a variety of microscopic and rheological techniques. 

Finally a comprehensive conceptual model for the morphological development of these systems 

will be proposed. 

 

4.3 Experimental 

4.3.1 Materials 

PLA 3001D (Natureworks) from Cargill and two commercial grades of PBAT, Ecoflex F BX 

7011 and Ecoflex F Blend C1200 from BASF will be referred as PLA, L-PBAT and H-PBAT 
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respectively. All the materials were dried at 60 ℃ under vacuum overnight before being used in 

the experiments.  

 

4.3.2 Molecular weight and Gel permeation chromatography (GPC) 

The molecular weights of the three polymers were obtained from GPC tests carried out on an 

Agilent 1260 Infinity Multi-Detector GPC/SEC system equipped with two Phenomenex Phenogel 

columns (103Å pore size, 5µm bead) and a 1260 Infinity Refractive Index Detector. The solution 

of polymers (100 µL of 2mg/ml in chloroform) was injected with the flow rate of 1 mL/min.   

 

4.3.3 Proton nuclear magnetic resonance (1HNMR) 

In order to determine the ratio of butylene adipate (BA) to butylene terephthalate (BT) segments 

in PBATs, 1HNMR spectra of L-PBAT and H-PBAT in CDCl3 were recorded at 25℃ on a 

Bruker AVII-700, operating at 16.4 Tesla (1H frequency of 700 MHz). 64 scans with a repetition 

time of 7.8 s were used for all the samples.  

 

4.3.4 Blend preparation 

All samples were prepared using an internal batch mixer (Plasti-Corder DDR501, Brabender) 

with a total volume of 30 mL at 50 RPM and 180 ℃ under a nitrogen blanket. The average shear 

rate at the processing condition used was estimated as 25 s-1 [26].  After 10 minutes of mixing, 

samples were cut and cooled in ice-water to freeze-in the morphology of the samples.  

 

4.3.5 Field emission scanning electron microscopy (FE-SEM) 

The samples were cut and microtomed under liquid nitrogen using a microtome (Leica-Jung RM 

2065). Then, the sample surface was coated with a15 nm thick gold layer and the morphology 

was observed with a FE-SEM machine (JSM 7600F, JEOL). Two different detectors of lower 
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secondary electron image (LEI) and low-angle backscattered electron (LABE) were used to 

examine the morphology of the microtomed sample. Cryo-fractured samples were also coated 

with a gold layer before determining their morphology by FE-SEM. 

 

4.3.6 Atomic force microscopy (AFM) 

The samples were microtomed using the same procedure as mentioned for FE-SEM samples. The 

AFM machine was equipped with a scanning probe microscope Dimension 3100 with a 

Nanoscope IVa controller from Veeco Instruments. Silicon tips, model ACTA-W from AppNano, 

with the tip radius less than 10 nm were used in this study. Because of the differences in the 

modulus of PLA and PBAT, the tapping phase mode was used to determine the morphology of 

the samples. 

 

4.3.7 Image analysis 

The AFM images were analyzed by an image analysis software (SigmaScan Pro. V.5, Sigmaplot) 

equipped with a digitizer table (Wacom) and a pressure sensitive pen for convenient mapping of 

the dispersed phase. The detailed procedure on how the digitizing table works was described 

elsewhere [27]. The average dispersed phase fiber or spherical droplet diameter were determined 

using an average number of 350 measurements from 6 to 8 AFM images (depending on the blend 

structure) for each sample. In the samples with 1 vol.% of the dispersed phase, the average 

dispersed phase diameter was determined using an average number of 30-50 measurements. In 

the disk samples with spherical dispersed phase morphology for the interfacial tension 

measurement, the Saltikov correction was applied [28] in calculating the dispersed phase 

diameter to consider the fact that the droplets are not cut exactly at their equator in the 

microtomed surface. The average dispersed fiber diameter in the samples with fibrillar 

morphology cannot be determined from the area of the dispersed fibers in the microtomed 

samples as the cross-sectional area depends considerably on the angle between the microtoming 

direction and the fiber axis. Figure  4.1 schematically shows how cutting a fiber at different angles 

in a blend with fibrillar morphology can result in different observed cross-sectional area of the 

fiber in AFM images. 
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Figure  4.1. The effect of different cutting angles with respect to a fiber axis on the observed 

cross-sectional area in the microtomed surface. θi is the cut angle with the respect to the fiber 

axis and R is the fiber radius.  

 

After cutting a fiber, its final geometry becomes a cylindrical segment in which the smallest 

diameter of the formed ellipse (minor axis) in the microtomed surface is always equal to the 

diameter of the fiber. Therefore, the average fiber diameter in this work was calculated based on 

the measured smallest diameter of the dispersed fibers cross-sectional area in the microtomed 

surfaces. The average fiber diameters are reported as XX±YY where XX denotes the average 

value and YY represents the standard deviation.  

 

4.3.8 Rheological analysis 

All the samples were compression moulded at 180 ℃ and at 300 kPa under a nitrogen blanket in 

the form of 1.2 mm thick disks with 25 mm diameter. The rheological analysis was carried out 

using a controlled stress rheometer (Physica MCR 301, Anton Paar) with 25 mm parallel plate 

geometry at 1 mm gap and at a temperature of 180 ℃ under nitrogen atmosphere. All the samples 

were annealed at 180 ℃ for 5 minutes in the rheometer before performing the rheological tests. 

Before measuring the rheological properties of the PLA/L-PBAT blends, the stability of PLA and 

L-PBAT was studied in the test condition using a time sweep test and no degradation was 

observed in the experimental time scale of 40 minutes. Moreover, the linear viscoelastic region 

was determined using a strain sweep test for neat polymers and polymer blend samples at 

different frequencies. According to the obtained results, the frequency sweep tests for the neat 

polymers and polymer blends were performed at strains of 5% and 1% respectively.  
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4.3.9 Interfacial tension measurement 

The interfacial tension between PLA and L-PBAT was determined in this work using a 

rheological approach developed by Palierne [29, 30]. That model predicts the rheological 

behaviour of incompressible viscoelastic emulsions with a narrow droplet size distribution 

(Dv/Dn ≤ 2) in small amplitude oscillatory shear experiments, SAOS, and relates it to the 

interfacial tension. According to the Palierne model, the complex modulus of an emulsion can be 

expressed as: 

𝐺∗ = 𝐺𝑚∗
1 + 3𝜑𝐻
1 − 2𝜑𝐻

 

where H is defined as: 

𝐻 =  
(𝐺𝑑∗ − 𝐺𝑚∗ )(19 𝐺𝑑∗ + 16 𝐺𝑚∗ ) + 4 𝛾𝑚𝑑𝑅 (5 𝐺𝑑∗ + 2 𝐺𝑚∗ )

(2 𝐺𝑑∗ + 3 𝐺𝑚∗ )(19 𝐺𝑑∗ + 16 𝐺𝑚∗ ) + 40 𝛾𝑚𝑑𝑅 (𝐺𝑑∗ +  𝐺𝑚∗ )
 

and G*, G*m, G*d, γmd, R and φ are respectively the complex modulus of the blend, complex 

modulus of the matrix, complex modulus of the dispersed phase, the matrix/dispersed phase 

interfacial tension, the volume average dispersed phase radius and the volume fraction of the 

dispersed phase. As the sample preparation for rheological analysis and the annealing of the 

sample during preheating before the rheological measurements can change the morphology and 

phase size of the dispersed phase considerably, to increase the precision of the obtained value for 

the average dispersed phase radius, the phase size of the dispersed phase right before starting the 

rheological analysis should be determined. To this aim, the disk sample of PLA/L-PBAT(80/20) 

prepared by compression moulding was placed in the rheometer at 180 ℃ under a nitrogen 

atmosphere and the gap was set as 1mm. The sample was kept in this condition for 5 minutes (the 

same period as the preheating step in the rheological measurements) and then, the chamber of the 

rheometer was opened and the sample was cooled as quickly as possible using an air gun. The 

disk sample was then cut and microtomed at ½ of the radius of the disk and the morphology of its 

cross-section was determined by AFM. The volume average dispersed phase diameter was 

determined using the procedure explained in the image analysis section. 
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4.3.10  Temperature-Modulated dynamic scanning calorimetry (TMDSC) 

Modulated DSC was employed to determine the miscibility state of PLA/PBAT blends by 

studying the variation of the glass transition temperature (Tg) of the polymeric phases. TMDSC 

tests were performed using a DSC Q1000 machine (TA Instruments) in the temperature range of -

60 to 70 ℃. To obtain precise results, the calibration of heat capacity was performed by running a 

standard sapphire sample and comparing the obtained results with the literature value[31]. 

Moreover, melting peak temperature and cell constant calibrations were carried out using an 

empty pan and a standard indium sample. In all of the TMDSC experiments, an oscillation 

amplitude of ±1.27 ℃ and oscillation period of 60 s were used with a heating rate of 2℃/min. 

The Tgs of the phases were determined from the inflection points in the reversible heat flux 

curves of TMDSC results. The reported values are an average of three different measurements. 

Due to the high accuracy of TMDSC, the error in the measured Tgs was always less than 0.8% (~ 

0.3-0.4 ℃) .  

 

4.4 Results and Discussion 

 

4.4.1 Molecular Weight and Rheological Characterization of the Neat 

Polymers 

The molecular weight and molecular structure of PLA, L-PBAT and H-PBAT were characterized 

using GPC and 1HNMR and the results are shown in Table  4-1. The ratios of BA to BT co-

monomers in both L-PBAT and H-PBAT were determined using the ratio of the integrated peak 

intensities of chemical shifts at 2.34 ppm and 8.11 ppm in the 1HNMR spectra of PBAT which 

correspond to methylene protons adjacent to carbonyl groups in BA segments and protons of the 

aromatic groups in BT segments, respectively. The 1HNMR spectra of PLA and L-PBAT (which 

is identical to H-PBAT) are shown in Figure  4.2.  It can be seen that the molecular weight of H-

PBAT is about three times higher than L-PBAT, but both of these copolymers have similar 

molecular structure with the same ratio of BA/BT co-monomers.  
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Table  4-1. The molecular characteristics of PLA, L-PBAT and H-PBAT. 

 Mn(g/mol)* Mw(g.mol)* Degree of polymerization (DP)* BA/BT ratio** 
PLA 72000 142000 2535 - 
L-PBAT 20000 45000 214 1.08 
H-PBAT 72000 126000 600 1.08 

*Determined from GPC data 

** Determined from 1HNMR spectrum 

 

Figure  4.2. The 1HNMR spectra of (a) PLA, (b) L-PBAT. The red labels indicate the different 

hydrogen with the associated peaks. 

The complex viscosities of the neat polymer components were measured and are shown in 

Figure  4.3. As expected, increasing the molecular weight of PBAT increases the complex 

viscosity. However, the increase in the viscosity is much less than what is expected from the 

empirical model of η∼ Mw
3.4 presented for narrow molecular weight distribution (MWD) of 

linear homopolymers with the molecular weight (Mw) greater than the entanglement molecular 

weight (Me) [32]. It should be mentioned that the deviation from the empirical relation has also 

been observed in some other polymers [33, 34]. The observed deviation could be related to the 
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MWD of the L-PBAT and H-PBAT as well as the difference in their MWDs. In addition, the 

empirical relation was presented for homopolymers and therefore the copolymer nature of PBAT 

can also contribute to the observed deviation. All polymer components show a Newtonian plateau 

at low frequencies (shear rates) and the viscosity ratios of L-PBAT to PLA and H-PBAT to PLA 

at the shear rate corresponding to the processing conditions used are determined as 0.3 and 1.  

 

Figure  4.3. The complex viscosity of the polymer components as a function of angular frequency. 

The dashed line represents the average shear rate of mixing (25 s-1) estimated using the equation 

presented in ref.[26]. 

4.4.2 PLA/PBAT Interfacial Tension 

The interfacial tension between polymer components is an important characteristic parameter that 

significantly influences the morphology of a polymer blend system. The interfacial tension 

between PLA and PBAT at 185 ℃ was previously estimated using the Harmonic Mean 

Approach as 0.08 ± 0.1 mN/m by extrapolation of the measured surface energy data at room 

temperature [22]. The error in the estimated interfacial tension is due to the small differences 

between the surface energy of PLA and PBAT and the unavoidable errors in the contact angle 

measurements (such as the roughness of the surface of solid polymer, purity of the liquid probes 

and the resolution of the droplet images). Since that approach is approximative, it was decided to 

undertake a more detailed experimental approach for measuring the interfacial tension.   

The interfacial tension between PLA and PBAT was estimated by fitting the Palierne model on 

the complex modulus (G*) of PLA/L-PBAT (80/20) blend sample. The storage modulus (G`) of 

the blend sample was used as the criterion to evaluate the accuracy of the fitting as it is more 

sensitive to elastic interfacial phenomena such as droplet relaxation. The result of the fitting of 

the Palierne model on the experimental data is shown in Figure  4.4.  
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Figure  4.4. Fitting of the Palierne model on the storage modulus of PLA/L-PBAT blends. (a) 

PLA/L-PBAT (80/20), the solid line shows the Palierne fit with γ/d=444, (b) PLA/L-PBAT 

(20/80), the solid line shows the Palierne fit with γ/d=232.5. 

Using this approach, the ratios of  𝛾𝑚𝑑
𝑅

 in PLA/PBAT(80/20) and PLA/L-PBAT(20/80) were 

determined as 444.45±111.1 and 232.5±23 mN/m2 which are an average of three different 

measurements. Figure  4.5(a) shows the AFM image of the microtomed surface of the disk sample 

of PLA/L-PBAT prior to rheological analysis. 

 

Figure  4.5. The morphology of the cross-section of PLA/L-PBAT(80/20) disk sample after 

decreasing the gap to 1mm and annealing for 5 minutes at 180 ℃: a) AFM phase image, b) FE-

SEM image of the fractured surface. The scale bars show 10 µm. 

As can be seen in Figure  4.5(b), the morphology of PLA/L-PBAT (80/20) right before the 

rheological measurements is a matrix-dispersed phase morphology with a spherical L-PBAT 

dispersed phase. It should be noted that later in this paper, we will show that the morphology of 

PLA/L-PBAT demonstrates a fibrillar dispersed phase morphology over a wide composition 
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range. The spherical morphology shown above is due to the compression molding and annealing 

times used in preparing the samples for the rheological measurements. That procedure allows 

dispersed fibers to retract to a spherical form.  

The difference in the number of the observed particles in Figure  4.5 (a) and (b) is related to the 

different sample preparation method of these samples. The AFM sample was microtomed and 

therefore all the observed dispersed PBAT droplets are in a flat-plane surface. On the other hand, 

the SEM sample was prepared by cryo-fracture and as the cryo-fracture occurs at the weakest 

points of the sample, the dispersed phase droplets in the SEM image are not necessarily in the 

same-plane. This causes more particles to be seen in the SEM images compared with the AFM 

images. In Figure  4.7, it can be seen that when the SEM samples were prepared by microtoming, 

the particle density of SEM and AFM images are similar. 

The volume average diameter of L-PBAT droplets in the annealed samples of 

PLA/L_PBAT(80/20) and PLA/L-PBAT(20/80) were determined from AFM images as 2.7± 0.6 

and 4.3 ± 0.9 µm, respectively. Using the  𝛾𝑚𝑑
𝑅

 ratio obtained from the fitting of the Palierne 

model on G’data, the interfacial tension between PLA and L-PBAT was determined as 0.60±0.15 

mN/m for PLA/L-PBAT(80/20) and 0.5±0.1 mN/m for PLA/L-PBAT(20/80). It is important to 

note that the same interfacial tension was observed for the blends of PBAT dispersed in PLA and 

for PLA dispersed in PBAT. 

Recently, Al-Itry et al. [20] and Nofar et al. [35] also used the Palierne rheological analysis to 

determine the interfacial tension between PLA and PBAT and reported values of 6.0 and 1.25 

mN/m, respectively. The high interfacial tension reported by Al-Itry et al.[20] could be related to 

the fact that they fit their experimental data to loss modulus (G”) rather than the storage modulus 

(G’) and that the data fit to their G’ data at low frequencies, where the droplet relaxation occurs, 

is very poor. Nofar et al. [35] report a low interfacial tension for PLA/PBAT, but which is 

nevertheless double the value reported here. Nofar et al. used a significantly lower molecular 

weight PLA and a higher molecular weight PBAT in their study. 

 

4.4.3 Miscibility 

In order to examine the state of miscibility in PLA/L-PBAT blends, TMDSC tests were 

carried out on samples with 10-30 and 70-90 vol.% of L-PBAT. The main advantage of the 
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TMDSC technique over dynamic mechanical analysis (DMA) is that the test can be performed on 

the samples taken right after mixing without any further sample preparation step and, therefore, 

can better represent the miscibility state of the phases during processing. Figure  4.6(a) shows the 

variation of the Tgs of the PLA and L-PBAT phases.  

 

 Figure  4.6. (a) Glass transition temperatures of PLA and PBAT phases in the blend samples 

determined from TMDSC results:  (■) L-PBAT phase in PLA/L-PBAT blends; (●) PLA-rich 

phase in PLA/L-PBAT blends; (▲) H-PBAT in PLA/H-PBAT blends; (▼) PLA-rich phase in 

PLA/H-PBAT blends. (b): wt.% of PBAT in PLA-rich phase determined from the Fox equation: 

(□) wt.% of L-PBAT in PLA-rich phase in PLA/L-PBAT blends; (►) wt.% of H-PBAT in PLA-

rich phase in PLA/H-PBAT blends.  The dashed line in (a) shows the Tg of a miscible blend 

based on the Fox equation. 

 

As can be seen, after melt-mixing, the Tg of the L-PBAT phase remains unchanged, but the Tg of 

the PLA phase decreases considerably which indicates the presence of L-PBAT in the PLA 

phase. Since the Tg of the L-PBAT phase did not change, these results point to a limited one-way 

partial miscibility of L-PBAT in the PLA phase and therefore, the PLA phase will be referred to 

as the PLA-rich phase hereafter in this paper. The composition of L-PBAT in the PLA-rich phase 

can be determined using the Fox equation: 

1
𝑇𝑔

=
𝑊1

𝑇𝑔1
+

(1 −𝑊1)
𝑇𝑔2
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where Tg, Tg1 and Tg2 are the Tgs of the PLA-rich phase, the neat PBAT phase, and the neat 

PLA phase, respectively. Moreover, W1 is the weight percent of PBAT in the PLA-rich phase. 

The calculated compositions of L-PBAT in the PLA-rich phase are shown in Figure  4.6(b). 

Interestingly, as can be seen in Figure  4.6 (a), the one-way partial miscibility of L-PBAT in the 

PLA-rich phase is dramatically reduced by increasing the molecular weight of the PBAT phase. 

The miscibility state in a mixture is determined by the enthalpy of mixing and the entropy gain 

due to mixing. Considering the identical molecular structure of L-PBAT and H-PBAT, the 

observed decrease in the partial miscibility of PBAT by increasing its molecular weight cannot be 

due to the change in the enthalpy of mixing. On the other hand, considering the much smaller 

degree of polymerization (DP) of L-PBAT compared with PLA, Table  4-1, the observed one-way 

partial miscibility of L-PBAT in PLA can be attributed to the higher mobility of L-PBAT chains 

and/or the larger entropic gain due to mixing of L-PBAT molecules in the PLA-rich phase. In 

previous work, Marin et al. [24] showed that PC/PMMA blends demonstrate a classic partial 

miscibility after melt processing. The materials used in that work were of substantially larger 

viscosities than the materials used in the present study. This strongly suggests that kinetic barriers 

to the inter-diffusion of polymer chains due to the absolute viscosities of the base polymers are 

not responsible for the one-way partial miscibility phenomenon observed in the current work. 

To further understand the origin of the observed limited one-way partial miscibility of PBAT in 

PLA, the solubility parameters of PLA and PBAT were estimated by the group contribution 

method. Using this approach, the solubility parameters of PLA and PBAT were determined as 

21.9 and 22.2 MPa1/2. Although the solubility parameter of PBAT has not yet been measured 

experimentally in the literature, the estimated solubility parameter for PLA is in good agreement 

with the literature data [36]. The almost identical estimated solubility parameters of PLA and 

PBAT clearly support the hypothesis of a very small enthalpy of mixing for these two polymers. 

Under such conditions, it is possible that small changes in the entropy of mixing could affect the 

miscibility state of the system and result in partial miscibility. Roland et al. [37] reported a 

similar observation in 1,4 polyisoprene and poly(vinylethylene) blends. They showed that 

although these polymers do not have any specific interactions, the blends show miscibility even 

at the high molecular weight of 330000 g/mol. They showed that the enthalpy of mixing was also 

very small and they estimated the Flory-Huggins interaction parameter to be less than 0.004. At 

such a small enthalpy of mixing, they concluded that even a small value of the entropy of mixing 
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can favour the miscibility. Similar behavior has also been reported for the blend of polystyrene 

and poly(α-methyl styrene) which has a very small positive enthalpy of mixing (Flory-Huggins 

interaction parameter ~ 3×10-5 [38]) and shows miscibility even at the molecular weight of 70000 

g/mol of PS [39]. That system also showed a relatively strong dependence of miscibility/partial 

miscibility to the molecular weight of the components [40]. 

Considering all of the above, it can be concluded that the near equivalent cohesive energy density 

between PLA and PBAT leads to a negligible energy change and a very small enthalpy of mixing 

when replacing a PLA segment in a PLA rich environment with a PBAT segment. Consequently, 

small changes in the combinational entropy can favour the observed limited partial miscibility in 

this system. The observed one-way nature of the partial miscibility in PLA/L-PBAT can be 

attributed to the larger entropic gain of mixing L-PBAT molecules in the PLA-rich phase 

compared with mixing PLA molecules in the L-PBAT phase. Furthermore, the entropic gain of 

mixing H-PBAT with PLA is significantly reduced as the molecular weight of these two 

polymers is very similar. This work is important as it indicates a potential strategy for controlling 

the level of partial miscibility for systems demonstrating close to zero enthalpy of mixing. One 

could envisage the addition of small quantities of low molecular weight fractions to a higher 

molecular weight material that could potentially allow for the tailoring of interfacial properties 

while maintaining the advantages of high molecular weight materials for mechanical property 

enhancement. 

4.4.4 Morphological Characterization of PLA/L-PBAT Blends 

Figure  4.7 compares the morphology of PLA/L-PBAT blends of different compositions 

determined using two different FE-SEM detectors (LEI and LABE) and an AFM technique. As 

can be seen, phase contrast in the images taken by the LEI detector is poor and no phase can be 

distinguished in the LEI image of PLA/L-PBAT(50/50). This is due to the small topographical 

contrast between the phases in the microtomed surfaces of these samples. On the other hand, the 

LABE detector, due to its position and size, can detect the backscattered electrons with low 

scattering angles, which significantly enhances the contrast between phases. In Figure  4.7, the 

LABE detector presents the PBAT phase as the brighter phase while PLA is the darker phase 

[41].  This allows one to distinguish the phases even in the co-continuous region, which is not 

generally possible in images taken by SEM without selective extraction of either phase. Note that 
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due to the very similar solubility parameter of PLA and PBAT selective solvent extraction is not 

a possibility here. On the other hand, the LABE detector works at higher current and voltage and 

the scan needs to be done quickly at high magnifications to avoid burning of the surface of the 

samples due to the high energy of the incident electron beam. 

 

Figure  4.7. Comparison between different microscopy techniques in the analysis of the 

morphology of PLA/L-PBAT blends with different compositions. All the white scale bars 

indicate 5 µm. 

Atomic force microscopy (AFM) is also a powerful imaging technique that has been successfully 

used in studying the morphology of polymer blends with complex morphologies [42]. Although it 

has some inconveniences such as long scan time, limited scan area and great care required in the 

sample preparation, AFM can provide images with high resolution and phase contrast at nano-

metric scales (lateral resolution > 10 nm, height resolution > 1 nm). Such high resolution and 

phase contrast can be seen in Figure  4.7 where very fine dispersed phase domains in the order of 

200 nm can be seen in 30 µm×30 µm AFM images. The AFM technique will be used as the 
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principal microscopic technique to characterize the morphology of the microtomed samples in 

this paper. 

As previously established by Li et al. [23] and Bhadane et,al [25], the dispersed phase in low 

interfacial tension systems typically exists in the form of fibers rather than droplets. The 

formation of the fibrillar morphology in these systems is due to the very long breakup time of the 

dispersed phase fibers, which originates from their low interfacial tension. Therefore, the type of 

the morphology of PLA/L-PBAT needs to be determined before any further morphological 

analysis. Cryo-fractured surfaces of polymer blends with 1, 10, 20, 80, 90 and 99 vol.% of L-

PBAT were studied using FE-SEM and the results are shown in Figure  4.8. It can be seen that the 

dispersed phase exists in the form of stable fibers even at very low compositions of 1 vol.% of 

the dispersed phase. This fiber-like morphology across the composition range is in line with 

previous studies and is a direct result of the low interfacial tension resulting from the partial 

miscibility of the system. 

 

Figure  4.8. FE-SEM images of the fractured surfaces of PLA/L-PBAT blends with different 

compositions showing the fibrillar morphology of blend samples. 
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4.4.4.1 The Effect of Composition  

 The effect of composition on the morphology of PLA/PBAT is shown by AFM imaging in 

Figure  4.9. Although the dispersed phase in Figure  4.9 appears to be spherical, this is an anomaly 

due to the cutting of the microtome as discussed in the Experimental. As discussed above, the 

dispersed phase in PLA/PBAT exists in an elongated/fibrillar state. At low composition of L-

PBAT, L-PBAT fibers are dispersed in the PLA-rich matrix and increasing the composition of L-

PBAT increases the diameter of these fibers. By further increasing the composition, the co-

continuous morphology can be clearly seen in samples with 40 and 50 vol.% of L-PBAT. 

Although the co-continuous structure in the sample with 60 vol.% of L-PBAT is not as clearly 

observed as in 40 and 50 vol.% of L-PBAT, the large and elongated structure of PLA-rich phase 

in this sample nevertheless indicates a high level of continuity of the PLA-rich phase. The 

continuity development in this blend will be discussed later in this paper. At 70 vol.% of L-

PBAT, an evident phase inversion has occurred as the darker phase, L-PBAT, clearly dominates 

as the matrix. The dispersed PLA-rich phase also shows a fiber diameter dependence with 

composition. Figure  4.10 shows the average dispersed fiber diameter as a function of L-PBAT 

composition in these blend samples. Considering that coalescence is generally negligible at 1%, a 

dashed line can be extrapolated from that point to represent the “no-coalescence” baseline. 

Therefore, the difference between that baseline and the determined fiber diameters at higher 

compositions represents the extent of the coalescence in the blend samples with different 

compositions. It is clear there that, although PLA/L-PBAT has a very low interfacial tension, its 

morphology shows a considerable coalescence effect with increasing blend composition. This 

result differs with the results of Li et al. [23] who showed that an immiscible low interfacial 

tension polymer blend typically demonstrates a phase size that is almost independent of the blend 

composition. On the other hand, Bhadane et al. [25] observed an increase in phase size with 

composition in low interfacial tension PP/EPDM blends which they attributed to the partially 

miscible nature of the blend in the melt state. Marin et al. [24] also observed an increase in the 

dispersed PMMA phase size with composition in partially miscible PMMA/PC blends. This was 

related to the reduced miscibility of PMMA in PC phase by increasing the composition. The 

observed increase in the dispersed fiber phase size with composition in PLA/L-PBAT is thus 

clearly related to the partially miscible nature of this system. 
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Figure  4.9. AFM images of PLA/L-PBAT blends at different blend compositions. The darker 

phase is the L-PBAT phase and the brighter phase is the PLA phase in all images. All the 

micrographs are 30 μm×30 μm. 

 

Figure  4.10. The volume average (■) and number average (●) fiber diameter in PLA/L-PBAT 

blends with different L-PBAT compositions. The dashed lines show the “no-coalescence” 

baseline. The error bars show the standard deviation of the measured dispersed fiber diameters. 
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When one compares the left side of Figure  4.10 with the right side, it can be observed that the 

phase size for PLA in PBAT is always larger at the same composition than for PBAT in PLA. 

This effect is even observed for 1% PLA in PBAT which has a fiber diameter of 300 ± 60 nm as 

compared to 150±40 nm for 1% PBAT in PLA. Based on the miscibility data alone, this result is 

intuitively unexpected since Figure  4.6 indicates that partial miscibility is enhanced when PLA is 

in a PBAT matrix. Furthermore, the effect is not explained by correcting for the true PLA-rich 

concentration determined from the Fox equation as that did not result in significant changes to 

the concentration values. An important factor than can affect the morphology of polymer blends 

is the viscosity ratio between the dispersed phase and the matrix. From the data in Figure  4.3, the 

viscosities of PLA and L-PBAT at the shear rate of 25 s-1 are determined as 1140 and 346 Pa.s 

respectively. Therefore, when L-PBAT is the minor phase, the viscosity ratio of dispersed L-

PBAT to the PLA matrix is 0.3. On the other side of the composition diagram, the viscosity ratio 

of the dispersed PLA phase to the L-PBAT matrix will be 3.3. This indicates that after phase 

inversion, the viscosity ratio of the dispersed phase to the matrix increased by 11 fold. Bhadane et 

al. [25] studied the effect of viscosity ratio on the dispersed phase size in low interfacial tension 

blends of PP/EPDM and found that, although small changes in the viscosity ratio does not 

considerably affect the morphology, increasing the viscosity ratio by a factor of 8 could increase 

the dispersed phase size by a factor of 3-4 in their system. Hence, it is quite reasonable to expect 

that an 11 fold larger viscosity ratio for PLA in PBAT can explain the differences in the domain 

size as compared to PBAT in PLA blends observed in Figure  4.10. 

 

4.4.4.2 Co-continuity Development in PLA/L-PBAT Blends 

The co-continuity development in a polymer blend is a key morphological feature of the system 

and to date, this has not been closely studied in PLA/PBAT systems. Typically, the most simple 

and reliable method to determine co-continuity quantitatively is by selective gravimetric solvent 

extraction. In that procedure either phase is extracted using its selective solvent and the ratio of 

the extracted weight to the initial weight of the phase in the blend is defined as the percent of 

continuity of that phase. However, as discussed earlier, PLA and PBAT have very similar 

solubility parameters and selective solvent extraction is impossible in this blend. Therefore, other 
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methods will need to be employed to determine the co-continuity region in the PLA/L-PBAT 

system.  

Weis et al.[43] and Omonov et al. [44] studied the droplet relaxation in polymer blends with 

different blend compositions using a Palierne approach. They proposed that the limits of co-

continuity can be determined as the compositions where the droplet relaxation shifts to very low 

frequencies and cannot be observed in the rheological analysis. This is based on the knowledge 

that increasing the size of droplets in a viscoelastic emulsion results in a shift of the relaxation 

time of the droplets to lower frequencies. When a 3-D continuous network forms, the relaxation 

time of the network shifts to very long times or very low frequencies which cannot be observed 

experimentally.    

The storage modulus (G’) of polymer blends at different compositions can be used to determine 

the co-continuity region in PLA/L-PBAT blends using the droplet relaxation approach. The 

storage modulus of PLA/L-PBAT blends with different compositions are shown in Figure  4.11.  

 

Figure  4.11. Storage modulus (G’) as a function of frequency in PLA/L-PBAT blends with 

different blend compositions at 180oC. 

 

As can be seen, the storage modulus of the samples with 10, 20, 30 and 80 to 90 vol.% of L-

PBAT clearly shows a shoulder and a terminal zone at low frequencies which is attributed to the 

droplet relaxation in these samples. In other words, the dispersed phase in these samples has not 

formed a 3-D continuous structure and is able to relax during the rheological measurements. On 

the other hand, such relaxation phenomena cannot be observed clearly in the samples with 40 to 

70 vol.% of L-PBAT. The droplet relaxation phenomenon can also be shown using the plot of the 

imaginary component of complex viscosity (η”) versus its real component (η’) in the form of a 
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Cole-Cole plot[30]. Figure  4.12 shows the Cole-Cole plot of PLA/L-PBAT blends with different 

compositions. 

 

Figure  4.12. Cole-Cole plot of PLA/L-PBAT blends with different blend compositions at 180 ℃. 

 

Two arcs in the Cole-Cole plots of polymer blends represent the relaxation phenomena in the 

blend samples. The arc on the left side of the plots shows the relaxation of polymer chains while 

the arc on the right side is attributed to the droplet relaxation phenomenon [30]. The droplet 

relaxation arcs can be seen clearly in the blend samples with L-PBAT content up to 30 vol.% but 

at 40 vol.%, the droplet relaxation arc disappears. The droplet relaxation arc was also not 

observed in the samples with 50 and 60 vol.% of L-PBAT. These results confirm that a 3-D 

structure of L-PBAT exists in these samples between 30/40-50/60 which is in agreement with 

AFM images shown in Figure  4.9. It should be noted that, although the shoulder for the droplet 

relaxation could not be clearly seen in the storage modulus of PLA/L-PBAT(30/70) in 

Figure  4.11, the maximum peak of the droplet relaxation arc can be clearly seen in the Cole-Cole 

plot of this sample at low frequencies. These results show that although the domain sizes in 

PLA/L-PBAT(30/70) are large, they have not formed a 3D continuous structure. Thus, the 

rheological analysis indicates a wide, symmetric co-continuity region for PLA/L-PBAT 

extending from 30-40% vol% to 60-70 vol%. Very wide regions of co-continuity have been 

observed previously for low interfacial tension systems. The co-continuity development in such 

systems occurs by fiber-fiber coalescence due to the dispersed fibrillar morphologies. These low 

interfacial tension systems form co-continuous systems at low compositions on both sides of the 
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composition diagram due to the fiber-fiber coalescence mechanism[25] which results in a wide 

range of co-continuity.  

 

4.5 Conclusions 

In this work, the morphology and miscibility of PLA/PBAT blends was examined by a variety of 

microscopic techniques and by thermal and rheological analysis. The interfacial tension between 

PLA and low molecular weight PBAT (L-PBAT) was determined as 0.60 ±0.15 mN/m by fitting 

Palierne’s model to the rheological data of the blend at 20 vol.% of L-PBAT. The miscibility of 

PLA/ PBAT blends was studied by temperature-modulated DSC and the results show a one-way 

partial miscibility of PBAT in the PLA-rich phase. Increasing the molecular weight of the PBAT 

phase reduces its partial miscibility in the PLA-rich phase dramatically. Since the solubility 

parameters of PLA and PBAT are virtually identical, the driving force for this partial miscibility 

is attributed to the entropy of mixing. This also explains the limited one-way miscibility of PBAT 

in PLA since changes to the entropy of mixing would be significantly less important for PLA in 

PBAT. The morphology of the blend samples reveals that the dispersed phase in PLA/L-PBAT 

blends exists in the form of fibers even at low compositions of 1 vol.% of the dispersed phase. 

This fiber formation is attributed to the very low interfacial tension of the blend system. AFM 

images were used to study the influence of composition on dispersed fiber diameter over the 

entire composition range. Although PLA/L-PBAT has a very low interfacial tension, its 

morphology shows a considerable coalescence effect with increasing blend composition. 

Furthermore, the AFM images indicate an inversion of phases at compositional limits of 30/70 

and 70/30. It is shown that the larger phase size for PBAT in PLA as compared to PLA in PBAT 

is due to an 11 fold difference in the viscosity ratio. The co-continuity region for this blend was 

quantitatively determined for the first time using rheological analysis and it was shown that 

PLA/L-PBAT has a wide symmetric co-continuous region which is located between 30-40 and 

60-70 vol.% of L-PBAT. This result confirms the morphological observation of phase inversion.  
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CHAPTER 5 ARTICLE 2: LOCALIZATION OF MICRO- AND NANO- 

SILICA PARTICLES IN HETEROPHASE POLY(LACTIC ACID)/ 

POLY(BUTYLENE ADIPATE-CO-TEREPHTHALATE) BLENDS*  
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CREPEC, Department of Chemical Engineering, École Polytechnique de Montréal, Montreal, 

Québec, H3C3A7, Canada. 

 

5.1 Abstract 

This work studies the thermodynamic and kinetic parameters influencing the localization of 

micro- and nano-silica particles in multiphase mixtures of poly (lactic acid), (PLA), and 

poly(butylene adipate-co-terephthalate), PBAT. The surface energies of PLA and PBAT were 

measured at ambient and high temperature using contact angle and pendant drop techniques 

respectively. Based on this data, as well as that for silica, Young’s model, which estimates the 

preferred lowest surface energy condition, predicts that silica particles should be located in the 

PBAT phase. Atomic force microscopy and scanning electron microscopy results confirm that 

when micro- or nano-silica particles are added to a PLA/PBAT melt, the silica particles are 

selectively localized in the PBAT phase irrespective of the PLA phase viscosity. The preferential 

encapsulation of silica particles by PBAT is shown to occur at the early stages of mixing. 

However, when micro- or nano-silica is initially distributed into the PLA melt prior to 

PLA/PBAT mixing, two distinct morphological behaviors are observed that persist over long 

mixing times. Nano-silica in PLA locates perfectly at the PLA/PBAT interface independently of 

the PLA viscosity while micro-silica locates at the interface with low viscosity PLA and stays 

distributed within the PLA when it is of high viscosity. It will be shown that the observed 

localization of micro- and nano- silica particles at the interface is due to the slow migration 

velocity of the particles at the interface that originates from the very low interfacial tension in this 

system. The localization of micro-silica particles in high viscosity PLA is related to the slow PLA 

film draining step close to the PLA-PBAT interface.   

*Accepted in Polymer  
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5.2 Introduction 

The addition of solid inclusions to polymer blends is a common method to achieve a balance 

between toughness and stiffness [1-3, 67]. Recently, the addition of conductive solid particles to 

polymer blends to achieve semi-conductive materials has also received much attention [4, 5]. It is 

apparent that controlling the localization of solid inclusions in a multiphase polymer system is 

crucial to achieving the desired mechanical and/or electrical properties. Although the effects of 

the thermodynamic interactions of solid particles with polymeric phases[1, 6-26] and the effects 

of kinetic parameters such as the sequence of addition of components [7, 9, 10, 13, 17-22, 24-33], 

mixing time [12-14, 20, 29, 30, 33], viscosity [7, 24, 25, 31] and shear rate [23, 34] have been 

studied in the literature, the fundamental mechanisms of migration and localization of solid 

particles in multiphase systems are still not understood.  

Considering the high viscosity of polymers, the diffusion and Brownian motion of solid particles 

are not effective mechanisms of the migration in polymer blends [20, 25, 35]. Shear-induced 

migration is one of the mechanisms that has been proposed to explain the migration of solid 

particles in multiphase systems. In this mechanism, solid particles move under the hydrodynamic 

force applied by the shear flow field and collide with the interface. This will eventually result in 

the transfer of the solid particles from one phase to another phase. The frequency of collision of 

mono-dispersed spherical particles moving in a shear flow field can be estimated as [25]: 

𝐶 = 8
𝜋
𝛾̇𝜑           Eqn.1 

where 𝛾̇ and ϕ are the shear rate and the volume fraction of the particles. As can be seen, the 

shear-induced migration mechanism predicts that increasing the shear rate increases the 

frequency of collision of the particles with the interface and, consequently, should enhance the 

migration of solid particles. This is in agreement with the observed enhancement effect of shear 

rate on the migration of solid particles in polymer blends [23, 34]. However, this mechanism 
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cannot explain the effects of other kinetic parameters such as mixing strategy, viscosity, particle 

size and aspect ratio of solid particles. Moreover, this mechanism only considers the migration of 

the solid particles in the bulk of the phases and does not take into account the migration at the 

interface. 

Goldel et al. [21] proposed a mechanism called “Slim-Fast mechanism (SFM)” to explain the 

effect of the aspect ratio of solid particles on their migration velocity at the interface. The 

proposed mechanism is based on the assumption that the driving force for the particle migration 

at the interface is the interface curvature due to the presence of the particles. According to this 

mechanism, the transfer of spherical particles through the interface is slower since by moving a 

spherical particle through the interface, the interface curvature decreases rapidly which reduces 

the driving force for the migration of the particles. On the other hand, when a rod-like particle 

migrates perpendicularly through the interface, the interface curvature does not change and 

therefore, they concluded that, rod-like particles migrate faster at the interface. 

Goldel et al. and Fenouillot et al. [20, 35] suggested that the trapping of solid particles between 

two colliding dispersed phase droplets can also result in the migration of solid particles from the 

matrix phase to the dispersed phase.  

As can be seen, a comprehensive understanding of the parameters and mechanisms governing 

solid particle migration and localization in multiphase polymer systems is lacking in the 

literature. In many cases, this difficulty can be attributed to the complexity of the morphological 

structures that are often achieved. In order to study the effects of the thermodynamic and kinetic 

parameters on the migration and localization of solid particles in multiphase systems, a model 

system comprised of poly (lactic acid), PLA; poly (butylene adipate-co-terephthalate), PBAT; 

and micro- and nano-spherical silica particles was chosen in this study. The PLA/PBAT system 

also provides the advantage of studying silica localization in a system of very low interfacial 

tension (0.6 mN/m [36]).  

The aim of this article is to examine the effects of thermodynamic and kinetic parameters on the 

localization of micro- and nano- silica particles in PLA/PBAT blends. The effects of mixing 

strategy, viscosity of the PLA phase, shear rate and the particle size of silica on the localization 

and migration of silica particles in PLA/PBAT blends will be studied in detail. The fundamental 

mechanisms responsible for the observed effects will be examined as well.  
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5.3 Experimental 

5.3.1  Materials 

PLA 2003D and 3001D (Natureworks, Cargil) were purchased from NatureWorks LLC and will 

be referred hereafter as H-PLA and L-PLA respectively. H-PLA and L-PLA refer to high 

viscosity and low viscosity PLA. PBAT (Ecoflex FBX 7011) was purchased from BASF. Micro- 

and nano- spherical silica particles, SEAHOSTAR KE-P30 and KE-P10, were purchased from 

Nippon Shokubai, Japan. The average diameters of the individual spherical silica particles for 

micro- and nano-silica are 300 nm and 100 nm, respectively. The silica particles were 

synthesized by the sol-gel method which results in a narrow particle size distribution. All the 

materials were dried under vacuum at 60 ℃ overnight before being used in the experiments. 

 

5.3.2 Surface tension measurements 

To determine the surface energy of PLA and PBAT, thin sheets of the polymers were prepared by 

compression moulding. Ethanol and distilled water were used to remove any contamination from 

the surface of the sheets. Finally, the sheets were dried at 60 ℃ for 6 h in a vacuum oven. The 

surface energy of solid polymers then was determined by measuring the contact angles of water, 

glycerol and diiodomethane, as liquid probes, on the polymer sheets. The Owens-Wendt [37] 

approach was used to determine the surface energy as well as its dispersive and polar 

components. The total surface energies of the PLA and PBAT melts at 180 ℃ were determined 

using the pendant drop technique under nitrogen atmosphere. The apparatus and the operation 

description can be found elsewhere [38]. The melt densities of PLA and PBAT at 180 ℃ were 

measured as 1.1 g/cm3 and 1.06 g/cm3 using a high pressure piston-type dilatometer (PVT-100, 

ThermoHaake). The polar (γp) and dispersive (γd) components of the surface energy of PLA and 

PBAT melts at 180 ℃ were determined using the assumption that the polarity (the ratio of the 

polar component to the total surface energy) is independent of temperature [39-41]. The 

interfacial tension between PLA and PBAT was estimated using the Harmonic Mean 

Approach[39]: 

𝛾12 = 𝛾1 + 𝛾2 − 4 � 𝛾1𝑑𝛾1𝑑

𝛾1
𝑑+𝛾1

𝑑 + 𝛾1
𝑝𝛾1

𝑝

𝛾1
𝑝+𝛾1

𝑝�        Eqn.2 
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and the interfacial tensions between PLA/Silica and PBAT/Silica were calculated using the 

Geometric Mean Approach[39]: 

𝛾12 = 𝛾1 + 𝛾2 − 2��𝛾1𝑑𝛾1𝑑 + �𝛾1
𝑝𝛾1

𝑝�       Eqn.3 

The Harmonic Mean approach is more accurate in the estimation of the interfacial tensions 

between low surface energy materials while the Geometric Mean equation can predict the 

interfacial tensions between low and high surface energy materials more accurately [39].  

 

5.3.3 Blend preparation 

All samples were prepared using an internal batch mixer (Plasti-Corder DDR501, Brabender) 

with the total mixing chamber volume of 30 cm3 at 180 ℃ under a nitrogen blanket. The average 

shear rate at the mixing speeds of 50 and 100 RPM, used in this study, were estimated as 25 s-1 

and 47 s-1, respectively [42]. The two following mixing strategies were employed to prepare the 

samples: 

Pr1: The addition of silica particles after melting of PLA and PBAT (one-step process). 

Pr2: Premixing of silica particles with the PLA phase followed by mixing with PBAT (two-step 

process). 

After 10 minutes of mixing, the chamber was opened and the samples were rapidly frozen in ice-

water to freeze-in the morphology and localization of silica particles. All the prepared blend 

samples contain 70 vol.% of PLA phase and 30 vol.% of PBAT phase. The wt.% of silica 

particles added to the blends is based on the total weight of the blend. 

In L-PLA/PBAT blends prepared by Pr1 at short mixing time, the mixing was stopped 30 s after 

the addition of nano-silica particles to L-PLA/PBAT melt. 
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5.3.4 Atomic force microscopy (AFM) 

The samples were cut and microtomed under liquid nitrogen using a microtome (Leica-Jung RM 

2165). The AFM machine was equipped with a scanning probe microscope Dimension 3100 with 

a Nanoscope IVa controller from Veeco Instruments. Silicon tips, model ACTA-W from 

AppNano, with the tip radius less than 10 nm were used in this study. The morphologies of the 

samples were determined by Tapping mode AFM in air. Because of the difference in the modulus 

of PLA and PBAT, tapping phase AFM is used to determine the morphology of the blend 

samples. The localization of silica particles in the blends samples was determined using both 

height and phase images obtained from AFM analysis. 

 

5.3.5 Field emission scanning electron microscopy (FE-SEM) 

In order to determine the morphology and the localization of silica particles, samples from the 

internal batch mixer were fractured in liquid nitrogen then the sample surface was coated with 

gold and the morphology was observed with the Field Emission Scanning Electron Microscope 

(FE-SEM, JSM 7600F, JEOL). 

 

5.3.6 Image analysis 

To quantify the localization of silica particles, the locations of 110 to 200 silica particles, 

depending on the blend structure, were counted in AFM images.  

 

5.3.7 Rheological analysis 

All the samples were compression moulded at 180 ℃ and at 300 kPa in the form of 1.2 mm thick 

disks of 25 mm diameter under a nitrogen blanket. The rheological analysis was done using a 

controlled-stress rheometer (Physica MCR 301, Anton Paar) with 25 mm parallel plate geometry 

at a 1 mm gap at 180 ℃ under nitrogen atmosphere. All the samples were kept at 180 ℃ for 5 

minutes in the rheometer before performing the rheological tests. The stability of L-PLA, H-PLA 

and PBAT was studied under the test conditions using a time sweep test and a less than 7% drop 
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in the complex viscosity and storage modulus was observed in the experimental time scale of 40 

minutes. Moreover, the linear viscoelastic region was determined using strain sweep tests for the 

neat polymers at different frequencies. According to the obtained results, the frequency sweep 

tests were performed at strains of 5%. 

  

5.3.8 Temperature-modulated dynamic scanning calorimetry (TMDSC) 

TMDSC was employed to determine the miscibility state of PLA/PBAT blends by studying the 

glass transition temperature (Tg) of the polymeric phases. TMDSC tests were performed using a 

DSC Q1000 machine (TA Instruments) in the temperature range of -60 to 70 ℃. In all of the 

TMDSC experiments, oscillation amplitude of ±1.27 ℃ and oscillation period of 60 s were used 

with a heating rate of 2℃/min. The Tgs of the phases were determined from the inflection points 

in the reversible heat flux curves of TMDSC results. The reported values are an average of three 

different measurements. Due to the high accuracy of TMDSC, the error in the measured Tgs was 

always less than 0.8% (~ 0.4 ℃).  

 

5.4 Results and Discussion 

5.4.1 Rheological Characterization and Surface Tension Measurements of 

Neat Materials 

Figure  5.1 shows the viscosities of the neat polymers. Both PLA and PBAT follow the Cox-Merz 

rule [43, 44]. All the neat polymers show a Newtonian plateau and liquid-like behaviour at low 

shear rates. The viscosities of L-PLA, H-PLA and PBAT at the shear rate of 25 s-1 were 

determined as 1140 Pa.s, 2930 Pa.s and 340 Pa.s, respectively. The viscosities of L-PLA, H-PLA 

and PBAT at the shear rate of 47 s-1 were determined as 1030 Pa.s, 2430 Pa.s and 310 Pa.s. 

 



  78 

 

Figure  5.1. The complex viscosity of polymer components as a function of angular frequency: (■) 

H-PLA; (▼) L-PLA; (●) PBAT. The dashed lines show the angular frequencies which 

correspond to the shear rates of 25s-1 and 47 s-1.  

 

The measured surface energies of the neat PLA and PBAT at both room and processing 

temperatures are reported in Table  5-1. The difference between the measured surface energies of 

H-PLA and L-PLA was within the margin of the error of the measurements and therefore an 

average of their surface energies is reported as the surface energy of PLA.  

 

Table  5-1. Surface energy data of PLA, PBAT and silica at 25 and 180 ℃ and the estimated 
interfacial tensions between the components at the processing temperature. 

 γ 
(mN/m) 

γd 
(mN/m) 

γp 
(mN/m) 

γ 
(mN/m) 

γd 
(mN/m) 

γp 
(mN/m) Interfacial tension 

 at 25 ℃ at 180 ℃ PLA PBAT Silica 

PLA 39.4 33.6 5.8 28 23.9 4.1 - 0.03a 155.3b 

PBAT 38.4 32.1 6.3 27.6 23.1 4.5 0.03a - 153 b 

Silica c 519.8 72.8 447 242.8 34 208.8 155.3 b 153 b - 
a: Calculated from the Harmonic Mean Approach  

b: Calculated from the Geometric Mean Approach 

c: Estimated from the adsorption energy data of Papirer et al.[45, 46]. 
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The surface energy of silica was estimated from the literature data. Papirer et al. [45] used inverse 

gas chromatography and reported the dispersive component of the surface energy of hydrophilic 

silica at 110 ℃ as 52 mJ/m2. Using their reported thermal coefficient of -0.25 mJ/(m2K), the 

dispersive component of the surface energy of hydrophilic silica at 180 ℃ can be estimated as 34 

mJ/m2. In this study, the polar component of the surface energy of silica was estimated using the 

method presented by Das et al. [47]. In that method, the polar component of the surface energy 

can be estimated from the free energy of the adsorption in inverse gas chromatography 

measurements of a mono-acidic probe such as dichloromethane and a mono-basic probe such as 

ethyl acetate. Using the free energies of adsorption reported for hydrophilic silica by Papirer [46] 

and the characteristics of the dichloromethane and ethyl mono-acetate as mono-acidic and basic 

the liquid probes [48], the polarity of silica was estimated as 0.86. Using the estimated polarity 

and the dispersive component of the surface energy, the polar component of the surface energy of 

silica was estimated at both room and processing temperatures. The estimated surface energies of 

silica and the interfacial tensions between the components are listed in Table  5-1. 

 

5.4.2 Thermodynamics of Localization of Silica Particles in PLA/PBAT 

Blends 

The thermodynamic equilibrium localization of solid particles in a polymer blend can be 

predicted by the Young’s model [35]: 

𝜔 =  𝛾1𝑠−𝛾2𝑠
𝛾12

           Eqn.4 

Where ω, γ1s, γ2s and γ12 are the wetting parameter, the interfacial tensions between: polymer 1 

and solid; polymer 2 and solid; and  polymer 1 and 2. If ω in Equation 4 is greater than 1, then 

the localization of solid particles in phase 2 is thermodynamically preferred while for ω < -1, the 

thermodynamic equilibrium localization of solid particles should be in phase 1. When -1<ω< 1, 

the localization of solid particles at the interface is thermodynamically preferred. Taking PLA as 

phase 1 and PBAT as phase 2 and using the estimated interfacial tensions in Table  5-1, ω can be 

calculated as 76.7 for PLA/PBAT/Silica mixture. Considering the unavoidable errors in the 

contact angle measurements (such as the roughness of the surface of the solid polymers, the 
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purity of liquid probes and the resolution of droplet images), the estimated interfacial tension of 

0.03 mN/m for PLA/PBAT is within the margin of the experimental error. If the interfacial 

tension of 0.6 mN/m determined using a rheological technique in the previous study [36] is used 

in the calculations, ω in PLA/PBAT/silica system can be estimated as 3.8. As both rheological 

and surface energy approaches estimate a wetting parameter (ω) greater than 1, the 

thermodynamic equilibrium localization of the silica particles should be in the PBAT phase. 

In order to confirm the Young’s model prediction, 1 wt.% of micro-silica was added to the L-

PLA/PBAT melt according to Pr1 (see Experimental for description of Pr1 and Pr2). Figure  5.2 

(a,c) and line 1 in Table  5-2 show the localization of micro-silica particles in this sample. As can 

be seen, 97% of micro-silica particles are selectively localized in the PBAT phase which is in 

agreement with Young’s model.  

 

Figure  5.2. Localization of micro-silica particles in L-PLA/PBAT (70/30)/ 1 wt.% micro-

silica:(a) AFM image of the sample prepared by Pr1, (b) AFM image of the sample prepared by 

Pr2. (c) and (d) show SEM images of the fracture surfaces of (a) and (b), respectively. The scale 

bars show 2µm. 
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Most of the previous studies have shown that the simultaneous mixing of solid particles and 

polymer components results in the localization of solid particles in the thermodynamically 

preferred phase [6, 10, 11, 13, 14, 16-22, 26] unless the difference between the melting 

temperatures of the polymeric phases is considerable. Under those conditions, solid particles 

were found to be encapsulated by the phase with the lower melting temperature rather than the 

phase with the higher thermodynamic affinity [8, 24, 25]. In this study, the effect of the 

difference between the melting temperatures of PLA and PBAT was eliminated by the addition of 

silica particles to the mixing chamber after complete melting of the PLA and PBAT phases. 

 

Table  5-2. The quantified localizations of micro- and nano-silica particles in PLA/PBAT samples 
with the associated standard deviation (std). 
 Sample name Mixing 

strategy 
Shear 
rate (s-

1) 

% Particles 
in PBAT 
phase 

% Particles 
at the 
interface 

% Particles 
in PLA 
phase 

std 

1 L-PLA/PBAT/micro-
silica 

Pr1 25 97 0 3 3.4 

2 L-PLA/PBAT/micro-
silica 

Pr2 25 0 95 5 4.1 

3 L-PLA/PBAT/nano-
silica 

Pr1 25 95 0 5 5 

4 L-PLA/PBAT/nano-
silica 

Pr2 25 9 91 0 6.3 

5 H-PLA/PBAT/micro-
silica 

Pr1 25 91 0 9 4 

6 H-PLA/PBAT/micro-
silica 

Pr2 25 0 7 93 5.2 

7 H-PLA/PBAT/micro-
silica (3 wt.%) 

Pr2 25 0 11 89 4.7 

8 H-PLA/PBAT/nano-
silica 

Pr1 25 95 5 0 4.3 

9 H-PLA/PBAT/nano-
silica 

Pr2 25 8 92 0 4.1 

10 L-PLA/PBAT/micro-
silica 

Pr2 47 7 93 0 3.2 

11 L-PLA/PBAT/nano-
silica 

Pr2 47 27 73 0 7.1 

12 H-PLA/PBAT/micro-
silica 

Pr2 47 0 40 60 6.8 
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In our previous study [36], it was shown that L-PLA/PBAT exhibits a limited one-way partial 

miscibility of PBAT in the L-PLA phase. The effect of the presence of silica particles on the 

miscibility of phases should thus be discussed as it could have also an influence on the 

localization of silica particles in this system. It can be seen from Table  5-3 that the addition of 

micro-silica particles in L-PLA/PBAT blends prepared by Pr1 and Pr2 did not have a significant 

effect on the glass transition temperatures as compared to the L-PLA/PBAT system without silica 

particles reported previously. Similar results were observed for L-PLA/PBAT with nano-silica 

particles. 

Table  5-3. Glass transition temperatures (Tgs) of the neat polymers and polymer blends and 
composites with 1 wt.% of micro-silica particles. 
 Tg of PLA phase Tg of PBAT phase 
L-PLA* 60.3 - 
PBAT* - -30 
L-PLA/PBAT* 57.8 -29.8 
L-PLA/PBAT/micro-silica-Pr1 58 -30 
L-PLA/PBAT/micro-silica-Pr2 57.7 -29.9 

*from ref.[36] 

5.4.3 Effect of mixing strategy 

Although, the Young’s model can predict the thermodynamic equilibrium localization of solid 

particles in polymer blends, kinetic effects can interrupt the migration of solid particles toward 

their preferred thermodynamic equilibrium location. Among different kinetic parameters, the 

effect of the mixing strategy on the migration and localization of solid particles has been studied 

extensively [7, 9, 10, 13, 17-22, 24-33]. Although some authors did not observe a considerable 

effect of mixing procedure on the localization of solid particles in polymer blends [19, 20, 24, 

49], most of the previous studies showed strong kinetic effects by changing the mixing strategy 

of the components[13, 14, 17, 18, 29, 30]. The effect of the mixing strategy on the localization of 

micro-silica particles was studied by preparing the L-PLA/PBAT blend according to Pr2 (silica 

dispersed initially in a L-PLA melt then mixed with PBAT). As can be seen in Figure  5.2 (b,d) 

and on line 2 in Table  5-2, it was found that 95% of the micro-silica particles were localized at 

the interface in this sample. Considering that the micro-silica particles were initially dispersed in 

the L-PLA phase, this result and the results of the samples prepared by Pr1 confirm the affinity of 

micro-silica particles to migrate toward the PBAT phase. Interestingly, as shown in Figure  5.3, it 
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was found that increasing the micro-silica content to 3 wt.% did not change the localization of 

micro-silica particles in L-PLA/PBAT samples prepared by Pr1 and Pr2. These effects were also 

found to be independent of mixing time. The same strategies were used to add nano-silica 

particles to L-PLA/PBAT and the results are shown in Figure  5.4 and line 3 and 4 in Table  5-2. It 

can be seen that decreasing the particle size of silica from 300 nm to 100 nm did not change the 

localization of silica particles in L-PLA/PBAT blends prepared by Pr1 and Pr2.  

The observed localization of micro- and nano-silica at the interface of the samples prepared by 

Pr2, shown above, was found to be stable and did not change by increasing the mixing time. This 

indicates the significant potential of this approach to generate partially wet silica blend structures.  

As the thermodynamic equilibrium localization of silica particles was established to be in the 

PBAT phase, the premixing of silica particles with the PLA phase using Pr2 provides a unique 

opportunity to rigorously examine the effect of kinetic parameters on the localization and 

migration of silica particles in PLA/PBAT blends. This will be considered in more detail below. 

 

Figure  5.3. Effect of mixing strategy on the localization of micro-silica particles in L-PLA/PBAT 

(70/30)/ 3 wt.% micro-silica:(a) SEM image of the fracture surface of the sample prepared by 

Pr1, (b) SEM image of the fracture surface of the sample prepared by Pr2. All the white scale 

bars show 2µm. 
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Figure  5.4. Effect of mixing strategy on the localization of nano-silica particles in L-PLA/PBAT 

(70/30)/ 3 wt.% nano-silica:(a) AFM image of the sample prepared by Pr1, (b) AFM image of the 

sample prepared by Pr2. (c) and (d) show SEM images of the fracture surfaces of (a) and (b) 

respectively. The scale bars show 2µm. 

5.4.4 Effect of the Viscosity of the PLA Phase 

The effect of viscosity on the migration of solid particles has been studied by only a few authors. 

Persson and Bertilsson [31] found that the effect of viscosity is only important in low interfacial 

tension blends while Feng et al. [50], Elias et al. [25] and Taghizadeh and Favis [23] observed 

strong effects of viscosity in high interfacial tension blends of  PP/PMMA, PP/EVA and 

thermoplastic starch (TPS)/PCL, respectively. 

In order to study the effect of viscosity of the PLA phase, micro- and nano- silica particles were 

added to the blend samples with a high viscosity PLA (H-PLA) using the Pr1 and Pr2 mixing 

protocols. The results are shown in Figure  5.5 and on line 5 to 9 in Table  5-2. When the H-

PLA/PBAT sample is prepared by Pr1, lines 5 and 8 in Table  5-2, both micro- and nano-silica 

particles are found to be localized in the PBAT phase.  
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Figure  5.5. SEM images showing the localization of micro-silica particles in H-PLA/PBAT 

blends containing:(a) 1 wt.% micro-silica prepared by Pr1, (b) 1 wt.% micro-silica prepared by 

Pr2, (c) 3 wt.% micro-silica prepared by Pr1, (d) 3 wt.% micro-silica prepared by Pr2. The scale 

bars show 2µm. 

 

Figure  5.6. The localization of nano-silica particles in H-PLA/PBAT blends containing 1 wt.% 

nano-silica particles:(a) prepared by Pr1, (b) prepared by Pr2. The scale bars show 2µm. 
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Comparing these results with the localization of micro- and nano-silica in L-PLA/PBAT blends 

prepared by Pr1 indicates that the localization of silica particles in the samples prepared by Pr1 

does not depend on the viscosity of PLA phase and the particle size of silica. A similar approach 

was taken by Austin et al.[51] to study the localization of organoclay in blends of polypropylene 

(PP) and ethylene-propylene rubber graft maleic anhydride (EPR-g-MA). They observed that the 

addition of organoclay to the melt of PP/EPR-g-MA results in the localization of organoclay 

particles in the EPR-g-MA phase irrespective of the viscosity of the elastomer phase. 

The same localization of nano-silica particles at the interface was also observed in H-PLA/PBAT 

prepared by Pr2, as shown in Figure  5.5 (b) and on line 9 in Table  5-2. On the other hand, when 

micro-silica particles were premixed with H-PLA according to Pr2, 93% of the particles were 

found to be localized in the H-PLA phase (see line 6 in Table  5-2). A similar localization at the 

interface was observed for the blend sample with 3 wt.% of micro-silica particles (see line 7 in 

Table  5-2). Therefore, it is can be concluded that the higher viscosity of H-PLA inhibits the 

migration of micro-silica to the interface in the case where silica is initially added to the H-PLA 

phase. These effects are stable over long mixing times. 

 

5.4.5 Effect of the Shear Rate of Mixing 

The shear rate of mixing is another important kinetic parameter that has been shown to enhance 

the migration of solid inclusions in polymer blends [23, 34]. 

The effect of the shear rate on the localization of silica particles in PLA/PBAT blends was 

examined by preparing three samples of: H-PLA/PBAT with 1 wt.% micro-silica; L-PLA/PBAT 

with 1 wt.% micro-silica; and L-PLA/PBAT with 1 wt.% nano-silica using Pr2 at the shear rate 

of 47 s-1. This is approximately double the shear rate used in the experiments in the sections 

above. Since it was shown above that Pr2 particularly imposes kinetic effects on the migration of 

silica particles, this procedure will be focussed on here. The final localizations of silica for the 

samples prepared at this shear rate are shown in Figure  5.7 and on lines 10 to12 in Table  5-2. 

It can be seen that by increasing the shear rate in the H-PLA/PBAT blend, the migration of 

micro-silica particles to the interface is enhanced and about 40% of micro-silica particles were 
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found at the interface. On the other hand, in the L-PLA/PBAT blends, increasing the shear rate 

did not change the localization of micro-silica particles at the interface. In L-PLA/PBAT blend  

 

Figure  5.7. The effect of shear rate on the localization of silica particles in the samples prepared 

by Pr2 at 47 s-1, (a) micro-silica particles in H-PLA/PBAT, (b) micro-silica particles in L-

PLA/PBAT, (c) nano-silica particles in L-PLA/PBAT. The arrows point to selected micro- and 

nano-silica particles. The scale bars show 2µm. 

 

with nano-silica particles, increasing the shear rate resulted in the migration of 27% of the nano-

silica particles from the interface to PBAT phase. At this point, the work demonstrates that solid 

inclusion localization kinetic effects are enhanced when solid inclusion addition initially takes 

place with the phase with which it has the least affinity. Increasing the viscosity of the low 

affinity phase and using larger solid particles aggravate the kinetic affects. Doubling the shear 

rate alleviates some of the kinetic issues, but does not eliminate them.  

 

5.4.6 Mechanism of Localization of Silica Particles in Pr1 

In order to understand the mechanism of the localization of silica particles in the samples 

prepared by Pr1, a L-PLA/PBAT blend with 1 wt.% of nano-silica was prepared by the addition 

of silica to a premixed melt of L-PLA and PBAT at a short mixing time of 30 seconds. SEM and 

AFM images of this sample are shown in Figure  5.8. 
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Figure  5.8. Nano-silica agglomerate in L-PLA/PBAT (70/30) blend prepared by Pr1 after 30 s of 

mixing (a) SEM image of the fracture surface, (b) AFM image of the microtomed surface. (c) and 

(d) show higher magnifications of the marked areas in (a) and (b) respectively. The scale bars 

show 2 µm.  

As can be seen, a shell of the PBAT phase encapsulates the agglomerate of nano-silica at the 

early stages of mixing. Using image analysis, the average thickness of the PBAT shell was 

determined to be 400 nm . Hence, a preferential encapsulation of PBAT around the nano-silica 

particles occurs at very early stages of the mixing process. Figure  5.8 (d) clearly shows droplets 

of PBAT/nano-silica subsequently being detached from the encapsulating PBAT shell. 

Consequently, the detachment of these droplets from the shell results in the selective dispersion 

of silica particles in the PBAT dispersed phase. The preferential encapsulation of the silica 

agglomerate by the PBAT phase can be explained by considering that Blake and De Coninck [52] 

showed that the wetting rate of a solid substrate depends linearly on the interfacial tension 

between the solid and the liquid phase.  Therefore, the observed selective encapsulation of silica 

agglomerates by the PBAT phase in this work can be attributed to the lower interfacial tension 

between PBAT/silica as compared with PLA/Silica. 
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5.4.7 Mechanism of Migration of Silica Particles from PLA to PBAT  

It was established earlier in this paper that the preferred location for silica in PLA/PBAT blends 

is in the PBAT phase. With this in mind, the initial dispersion of silica particles into the PLA 

melt followed by PBAT addition (Pr2) thus offers the possibility to model the important kinetic 

parameters governing the migration of silica particles from the PLA phase to the PBAT one. This 

migration process of silica particles can be considered as a three–step process: (a) migration from 

the bulk of the PLA phase toward the interface, (b) draining of a PLA film between the particle 

and the interface and (c) migration at the interface. These steps are shown schematically in 

Figure  5.9. 

 

Figure  5.9. The migration mechanism of a silica particle from PLA phase to PBAT phase in the 

samples prepared by Pr2, (a) migration from the bulk of PLA phase toward the interface, (b) 

draining of PLA film between the particle and the interface, (c) migration at the interface. 

 

5.4.7.1.1 Bulk Migration 

In this first step, silica particles, that have been initially mixed with the PLA, must migrate in the 

bulk of the PLA phase far from the interface in order to find the PBAT phase. Eckstein et al.[53] 

studied the phenomenon of bulk migration experimentally and found that the particle flux in 

shear-induced migration scales as γ̇RP

2. This result has been confirmed by many others authors 

since then [54, 55]. The transitional velocity of spherical solid particles in the direction of the 

flow (flow-induced mechanism) has also been shown to scale as 𝛾̇𝑅 [56-58].   

These equations indicate the well-known conclusions that both shear rate and particle size should 

significantly influence the particle migration velocity in the bulk. On the one hand, the 

proportional dependence of the bulk migration velocity to shear rate can potentially explain the 
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significant increase in the localization of micro-silica particles at the interface in the H-

PLA/PBAT blend prepared at the shear rate of 47 s-1 (line 12 in Table  5-2) compared with the 

blend prepared at 25 s-1 (line 6 in Table  5-2). However, as will be shown in the section below, 

shear rate will also influence the contact time at the interface and has a significant influence on 

film drainage as well. The best way to view the influence of bulk migration is to examine the 

results of this study with respect to micro- and nano-silica particles. As the particle migration 

depends on the particle radius, bulk migration should be more difficult for nano-silica than for 

micro-silica and yet when the particles are mixed initially with H-PLA, it is the nano-particles 

that are assembled almost perfectly at the interface. Even at an extreme limiting case where micro 

and nano-silica particles are considered to migrate at the same velocity as the surrounding H-PLA 

melt, this still does not explain why nano-silica assembles at the interface while micro-silica does 

not. This result, more than anything else, implies that bulk migration is not a controlling 

parameter related to the migration of silica particles in this system.      

 

5.4.7.1.2 Film Draining 

In the next step of migration, when a silica particle approaches the interface, a thin film of PLA 

phase between the particle and the interface needs to be drained before the particle contacts the 

other phase. The film draining time (td) between a spherical solid particle with radius R and a 

deformable liquid/liquid interface can be estimated as [59]: 

td =
3n2η A𝑓

2

16πF𝑐
 � 1

δ𝐶
2 −

1
δ𝑜
2�         Eqn.5 

Here Fc, η, Af, δC and δo are the contact force, the viscosity of the PLA, the surface area of the 

PLA film between the particle and the interface (∼2πR2), the critical film thickness in which the 

PLA film rupture occurs and the initial PLA film thickness where the film draining process 

begins, respectively. Moreover, n indicates the mobility of the interfaces and is defined as the 

number of immobile interfaces in the system. For example, in the present system, n=1 as only 

one immobile solid/liquid interface contributes in the film draining step. The approaching silica 

particle remains in contact with the interface for a certain amount of time, which can be called the 

“contact time”. If the film draining time is longer than this contact time, then the silica particle is 

moved away from the interface by the flow field and cannot reach the interface.  
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As can be seen in Equation 5, the estimation of the contact force and critical film thickness in 

Equation 5 is necessary to estimate the film draining time between silica particles and the 

interface. The contact force acting on a spherical solid particle moving close to a planar interface 

under simple shear flow has been estimated to be proportional to the shear rate and the inverse of 

the separation distance between the particle and the interface and the third power of the viscosity 

ratio [60-62]. However, the values of the predicted forces by the proposed analytical models are 

found to deviate considerably as the particle approaches the interface and also in systems with a 

high viscosity ratio of the phases[60]. Therefore, determining an analytical equation to estimate 

the contact force, Fc in Equation 5, is still a controversial issue. Moreover, at the end of the film 

draining step, the PLA film rupture occurs by the formation and growth of sinusoidal 

perturbations at the PLA/PBAT interface similar to the film rupture in polymeric thin films[63]. 

However, no model has been proposed for the estimation of the critical film thickness between an 

approaching solid particle and an interface. Despite the difficulties in arriving at analytical 

numerical values related to film-drainage in the current system, Equation 5 can still provide much 

insight into the dominant factors influencing film draining at the interface. Equation 5 shows that 

the PLA film draining time is proportional to the fourth power of the radius of the silica particles 

and directly proportional to the viscosity of the PLA phase. Therefore, the film draining time is 

much longer for larger particles and for a more viscous PLA phase. This can explain the 

enhanced assembly of nano-scale silica particles in the interfacial zone in the blends with H-PLA 

phase. Considering only the silica particle radius, micro-silica would be expected to take 

approximately 80 times longer to drain the PLA phase than the nano-silica. For this reason, nano-

silica particles, once in contact with the interface, drain the PLA film very effectively and thus 

are situated at the interface. Enhanced film drainage can also explain the observed effect of the 

viscosity of the PLA phase on the improved localization of micro-silica particles at the interface 

when they are initially mixed with L-PLA. As is supported by the experimental data, reducing the 

particle size is clearly the most effective approach to diminish film drainage time. This results in 

a virtually perfect assembly of nano-particles at the PLA/PBAT interface when the particles are 

initially mixed with the PLA phase, Figure  5.4 (b,d).  

The shear rate can also influence the film drainage times. Increasing the shear rate increases the 

frequency of collision of silica particles with the interface and also reduces the film draining time 

by increasing the contact force in Equation 5. Increased shear rate will, however, also result in a 
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reduction of the silica particle contact time at the interface. In this study, for the micro-silica in 

the H-PLA system at higher shear rate (line 12 in Table  5-2), a significantly higher percentage of 

silica particles locate at the interface. This demonstrates that, on balance, shear rate improved 

film drainage effects for micro-silica.   

5.4.7.1.3 Migration at the Interface  

At this point in the understanding of the mechanism of silica migration from the PLA phase to 

PBAT, bulk migration of silica particles in PLA does not appear to be a controlling issue. It has 

also been shown that film drainage at the interface is expected to be much more of a critical 

parameter to consider for micro-silica than for nano-silica particles. All these conclusions are 

corroborated by the experimental results. The main question to consider now is why are nano-

particles located in a stable fashion at the PLA/PBAT interface using Pr2? Why do they not move 

into the PBAT phase, which would be the most stable location from the thermodynamic surface 

energy perspective? In the third step of migration, for the silica particles initially added to the 

PLA, the PLA film ruptures between the silica and the interface and the silica particle enters the 

interface forming a three-phase contact line on the surface of the particle. The three-phase contact 

line can be clearly seen in Figure  5.10 where a typical micro-silica particle is shown at the 

interface of L-PLA/PBAT. At this point in the trajectory, the dynamics of silica particle 

movement towards the PBAT phase is dominated by a migration at the interface phenomenon.  

 

Figure  5.10. AFM image showing a micro-silica particle at L-PLA/PBAT interface in the sample 

prepared by Pr2. The pointers aim to the three-phase contact line on the surface of silica particle. 

The scale bar shows 1 µm. 
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The migration of silica particles at the interface is done by the displacement of the three-phase 

contact line on the surface of silica. Note that in reality the interface has a certain width to it and 

it cannot be considered as a simple line. That notion is simplified here to a line in order to more 

easily model the system. To move the three-phase contact line on the surface of the particle, work 

must be done to overcome the kinetic barriers against molecular displacement at the three-phase 

contact line in the preferred direction. This work is provided by the thermodynamic driving force 

as well as the drag force applied to the particle by either phase. The main difficulty in considering 

the drag forces in the estimation of the migration velocity at the interface originates from the 

complexity of determining the direction and magnitude of the drag forces on either side of the 

interface.For example, a drag force parallel to the interface is likely to move the particle along the 

interface rather than pushing it through the interface. Plattier et al. [64] tried to determine the 

relative drag forces applied to a particle at the interface by assuming that both drag forces in 

either phase always tend to pull the particle out of the interface during the mixing. Moreover, 

they assumed that the magnitudes of the drag force close to the interface are the same as the one 

in the bulk and ignored the effect of the interface on the drag forces and flow field. In fact, 

determining the effect of the drag forces on the migration at the interface requires the knowledge 

of the flow field close to the interface which is a complex issue and is outside of the scope of this 

paper. Therefore, in this work, that aspect will not be considered. 

The velocity of the displacement of the three-phase contact line on the surface of a silica particle 

can be estimated by considering dynamic wetting phenomena. In the dynamic wetting of a solid 

substrate by a liquid phase, the displacement velocity of the three-phase contact line can be 

estimated as [52, 65]: 

𝑉 = 𝐹
ξ𝐿

            Eqn. 6 

Where F is the thermodynamic driving force, L is the length of the three-phase contact line and ξ 

is the friction coefficient. The thermodynamic driving force originates from the tendency to 

decrease the interfacial energy of the system by the migration of the particles toward their 

thermodynamic equilibrium location. This driving force always acts parallel to the surface of 

silica and depends on the penetration depth of the particle into the PBAT phase. The driving force 

decreases by approaching the equilibrium location and finally vanishes when the equilibrium 

state is achieved. The work done by the thermodynamic driving force for displacing the three-
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phase contact line can be defined as the change in the interfacial energy of the system with 

respect to the particle penetration depth in the PBAT phase. The friction coefficient can be 

defined as proposed by Blake and De Coninck [52] to consider the effect of viscosity of the 

phases. Using this approach, the migration velocity at the interface can be estimated as:  

𝑉 =
−𝑅λ3�𝛾2𝑠−𝛾1𝑠−(1−𝑥𝑅)𝛾12�

�𝑥(2𝑅−𝑥)�η1ν1 exp�
𝑊1𝑆λ2

𝑘𝐵𝑇
�+η2 ν2 exp (𝑊2𝑆λ2

𝑘𝐵𝑇
)�

      Eqn.7  

where γ1s, γ2s γ12 are the interfacial tensions between: phase 1 and solid, phase 2 and solid, phase 

1 and phase 2, ηi is viscosity of the liquids, ν i is molecular volume of the liquids, λ is  length of 

individual molecule displacement at the three-phase contact line, WiS is the work of adhesion 

between liquids and solid, T and kB are the temperature and Boltzmann constant, and x is the 

penetration depth of the silica particle in the PBAT phase. The details of the derivation of 

Equation 7 can be found in the ANNEX 1. It should be emphasized that in Equation 7, λ is the 

only parameter that cannot be determined experimentally from the molecular and rheological 

analysis of the individual polymer components. The value for λ in Equation 7 depends on the 

molecular structure of the liquid phases and is shown to be in the order of the molecular size of 

the wetting liquid phase in small molecule liquids[65].  

Equation 7 now allows one to evaluate the influence of various parameters and can model, at 

least semi-quantitatively, the migration velocity of a silica particle at the interface of PLA/PBAT 

as a function of the particle penetration depth into the PBAT phase.  

The effect of the thermodynamic parameters (the interfacial tension and work of adhesion 

between the components) as well as the kinetic parameters (the viscosity of the phases) on the 

migration velocity at the interface can also be modelled semi-quantitatively based on Equation 7. 

For instance, it predicts that both reducing the interfacial tension between the liquid components 

and increasing the viscosity of the phases will reduce the migration velocity at the three-phase 

contact line. In previous work, the interfacial tension between PLA and PBAT was found to very 

low at 0.6 mN/m[36]. Hence, from the molecular viewpoint, due to the very similar nature of 

PLA and PBAT molecules, the molecular substitution of PLA with PBAT results in very little 

change in the interfacial free energy of the system which reduces significantly the tendency of the 

PBAT molecules to replace PLA molecules at the three-phase contact line and, consequently, 

results in a very slow migration velocity at the interface. In addition, it should also be underlined 
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that low interfacial tension systems represent significantly wider interphase regions[66]. Most 

likely, both the very slow migration velocity at the interface and the necessity to traverse a 

greater interfacial distance allows for the silica particles to assemble in a quasi-stable fashion at 

the interface. 

5.5   Conclusions 

In this work, the effects of the most important thermodynamic and kinetic parameters on the 

localization and migration of micro- and nano-silica particles in a low interfacial tension system 

of PLA/PBAT were studied in detail. To determine the thermodynamic equilibrium localization 

of silica particles, surface energies of PLA and PBAT were measured at the ambient and high 

temperatures using contact angle and pendant drop techniques, respectively. Using the Young’s 

model, the thermodynamic equilibrium localization of silica particles was determined to be in the 

PBAT phase. It was found that when the silica particles were added to a PLA/PBAT melt (Pr1), 

silica particles were localized in the PBAT phase irrespective of the viscosity of the PLA phase. 

By investigating the morphology at short mixing times, it was found that PBAT phase 

encapsulates silica particles preferentially at the early stages of mixing in these samples. This 

preferential encapsulation is due to the lower interfacial tension of PBAT/silica compared with 

PLA/silica. 

In order to examine the influence of kinetic effects on silica localization, detailed work was 

carried out on the case where the silica particles were premixed with PLA (Pr2). This allows one 

to examine the main factors controlling the migration of silica particles from the PLA phase to 

the PBAT. When nano-silica particles were premixed with low or high viscosity PLA phases (L-

PLA or H-PLA), they were found to be localized at the interface. The same localization was 

observed by premixing micro-silica particles with the L-PLA phase. A model is proposed to 

examine the role of different thermodynamic and kinetic parameters on the migration velocity of 

spherical particles at the interface of a multiphase system and it was shown that the stable 

localization of micro- and nano-silica particles at the interface in the above samples is due to the 

slow migration velocity at the interface which originates from the low interfacial tension of the 

PLA/PBAT system. In addition, the interphase region in low interfacial tension PLA/PBAT 

blends is likely to be wide which will also increase the silica particle migration time.  
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On the other hand, when micro-silica particles were premixed with the high viscosity PLA phase 

(H-PLA), they stayed in the H-PLA phase. It was shown that this localization of micro-silica 

particles in the PLA phase can be attributed to the long film draining time between the particles 

and the interface. The film draining time was shown to depend on the fourth power of the radius 

of the silica particles and directly to the viscosity of the PLA phase. For this reason, micro-silica 

particles would be expected to experience much longer drainage times as compared to nano-silica 

particles. It was also shown that increasing the shear rate of mixing enhances the migration of 

micro-silica particles from the H-PLA phase to the interface and this was also shown to be 

principally related to film drainage.  

These results clearly indicate that in low interfacial tension systems when the solid particles are 

mixed with the component with which it has the least affinity, the kinetic parameters influencing 

localization will be dominated by film drainage for micro-silica particles and by migration at the 

interface for nano-silica. These findings have important implications in the controlled localization 

of micro- and nano-particles in low interfacial tension polymer blends. 

 

5.6 Acknowledgment 

The authors would like to gratefully acknowledge the NSERC Network for Innovative Plastic 

Materials and Manufacturing Processes (NIPMMP) for the funding of this work. The authors 

would also like to acknowledge Professor Pierre J. Carreau for helpful discussions, as well as 

Professor Musa Kamal and Dr. Vahid Khoshkava for their help with the surface energy 

measurements. 

  

5.7 References 

1. Yoo Y, Cui L, Yoon PJ, and Paul DR. Macromolecules 2009;43(2):615-624. 

2. Lee H-s, Fasulo PD, Rodgers WR, and Paul DR. Polymer 2005;46(25):11673-11689. 

3. Karger-Kocsis J. Reinforced Polymer Blends. In: D. R. Paul CBB, editor. Polymer 
Blends, vol. 2. NewYork: John Wiley & Sons, 1999. pp. 395. 

4. Sumita M, Sakata K, Hayakawa Y, Asai S, Miyasaka K, and Tanemura M. Colloid and 
Polymer Science 1992;270(2):134-139. 

 



  97 

5. Levon K, Margolina A, and Patashinsky AZ. Macromolecules 1993;26(15):4061-4063. 

6. Al-Saleh MH and Sundararaj U. Composites Part A: Applied Science and Manufacturing 
2008;39(2):284-293. 

7. Wu D, Lin D, Zhang J, Zhou W, Zhang M, Zhang Y, Wang D, and Lin B. 
Macromolecular Chemistry and Physics 2011;212(6):613-626. 

8. Yuan J-K, Yao S-H, Sylvestre A, and Bai J. The Journal of Physical Chemistry C 
2012;116(2):2051-2058. 

9. Shi Y-y, Yang J-h, Huang T, Zhang N, Chen C, and Wang Y. Composites Part B: 
Engineering 2013(0). 

10. Chen J, Shi Y-y, Yang J-h, Zhang N, Huang T, Chen C, Wang Y, and Zhou Z-w. Journal 
of Materials Chemistry 2012;22(42):22398-22404. 

11. Cardinaud R and McNally T. European Polymer Journal 2013;49(6):1287-1297. 

12. Xiong Z-Y, Wang L, Sun Y, Guo Z-X, and Yu J. Polymer 2013;54(1):447-455. 

13. Huang J, Mao C, Zhu Y, Jiang W, and Yang X. Carbon 2014;73:267-274. 

14. Zhao X, Zhao J, Cao J-P, Wang D, Hu G-H, Chen F, and Dang Z-M. Materials & Design 
2014;56:807-815. 

15. Tao F, Nysten B, Baudouin A-C, Thomassin J-M, Vuluga D, Detrembleur C, and Bailly 
C. Polymer 2011;52(21):4798-4805. 

16. Katada A, Buys Y, Tominaga Y, Asai S, and Sumita M. Colloid and Polymer Science 
2005;284(2):134-141. 

17. Baudouin A-C, Bailly C, and Devaux J. Polymer Degradation and Stability 
2010;95(3):389-398. 

18. Baudouin A-C, Devaux J, and Bailly C. Polymer 2010;51(6):1341-1354. 

19. Göldel A, Kasaliwal G, and Pötschke P. Macromolecular Rapid Communications 
2009;30(6):423-429. 

20. Göldel A, Kasaliwal GR, Pötschke P, and Heinrich G. Polymer 2012;53(2):411-421. 

21. Göldel A, Marmur A, Kasaliwal GR, Pötschke P, and Heinrich G. Macromolecules 
2011;44(15):6094-6102. 

22. Gültner M, Göldel A, and Pötschke P. Composites Science and Technology 
2011;72(1):41-48. 

23. Taghizadeh A and Favis BD. Carbohydrate Polymers 2013;98(1):189-198. 

24. Elias L, Fenouillot F, Majesté JC, Alcouffe P, and Cassagnau P. Polymer 
2008;49(20):4378-4385. 

 



  98 

25. Elias L, Fenouillot F, Majesté JC, Martin G, and Cassagnau P. Journal of Polymer 
Science Part B: Polymer Physics 2008;46(18):1976-1983. 

26. Elias L, Fenouillot F, Majeste JC, and Cassagnau P. Polymer 2007;48(20):6029-6040. 

27. Zou Z-M, Sun Z-Y, and An L-J. Rheologica Acta 2014;53(1):43-53. 

28. Dasari A, Yu Z-Z, and Mai Y-W. Polymer 2005;46(16):5986-5991. 

29. Gubbels F, Jerome R, Teyssie P, Vanlathem E, Deltour R, Calderone A, Parente V, and 
Bredas JL. Macromolecules 1994;27(7):1972-1974. 

30. Gubbels F, Jerome R, Vanlathem E, Deltour R, Blacher S, and Brouers F. Chemistry of 
Materials 1998;10(5):1227-1235. 

31. Persson AL and Bertilsson H. Polymer 1998;39(23):5633-5642. 

32. Tchoudakov R, Breuer O, Narkis M, and Siegmann A. Polymer Engineering & Science 
1996;36(10):1336-1346. 

33. Cheah K, Forsyth M, and Simon GP. Journal of Polymer Science Part B: Polymer Physics 
2000;38(23):3106-3119. 

34. Hong JS, Kim YK, Ahn KH, and Lee SJ. Journal of Applied Polymer Science 
2008;108(1):565-575. 

35. Fenouillot F, Cassagnau P, and Majesté JC. Polymer 2009;50(6):1333-1350. 

36. Jalali Dil E, Carreau PJ, and Favis BD. Polymer 2015;68:202-212. 

37. Owens DK and Wendt RC. Journal of Applied Polymer Science 1969;13(8):1741-1747. 

38. Demarquette NR and Kamal MR. Polymer Engineering & Science 1994;34(24):1823-
1833. 

39. Wu S. Polymer Interface and Adhesion, 1982. 

40. Wu S. The Journal of Physical Chemistry 1970;74(3):632-638. 

41. Khoshkava V and Kamal MR. Biomacromolecules 2013;14(9):3155-3163. 

42. Bousmina M, Ait-Kadi A, and Faisant JB. Journal of Rheology 1999;43(2):415-433. 

43. Cox WP and Merz EH. Journal of Polymer Science 1958;28(118):619-622. 

44. Ravati S and Favis BD. Polymer 2013;54(13):3271-3281. 

45. Papirer E, Balard H, and C. V. Surface energies of silica investigated by inverse gas 
chromatoghraphy. In: Papirer E, editor. Adsorption on silica surfaces. New York: Marcel 
Dekker, 2000. pp. 205-276. 

 



  99 

46. Papirer E and Balard H. Inverse Gas Chromatography: A Method for the Evaluation of 
the Interaction Potential of Solid Surfaces. In: Pefferkorn E, editor. Interfacial Phenomena 
in Chromatography, vol. 80. New York: Marcel Dekker Inc., 1999. pp. 145. 

47. Das A, Mahaling RN, Stöckelhuber KW, and Heinrich G. Composites Science and 
Technology 2011;71(3):276-281. 

48. Jacob PN and Berg JC. Langmuir 1994;10(9):3086-3093. 

49. Bailly M and Kontopoulou M. Polymer 2009;50(11):2472-2480. 

50. Feng J, Chan C-m, and Li J-x. Polymer Engineering & Science 2003;43(5):1058-1063. 

51. Austin JR and Kontopoulou M. Polymer Engineering & Science 2006;46(11):1491-1501. 

52. Blake TD and De Coninck J. Advances in Colloid and Interface Science 2002;96(1–
3):21-36. 

53. Eckstein EC, Bailey DG, and Shapiro AH. Journal of Fluid Mechanics 1977;79(01):191-
208. 

54. Leighton D and Acrivos A. Journal of Fluid Mechanics 1987;181:415-439. 

55. WANG Y, MAURI R, and ACRIVOS A. Journal of Fluid Mechanics 1998;357:279-287. 

56. Buyevich YA. Fluid Dynamics of Fine Suspension Flow. In: Siginer DA, De Kee D, and 
Chhabra RP, editors. Advances in the Flow and Rheology of Non-Newtonian Fluids, Part 
B. Netherlands: Elsevier, 1999. pp. 1267. 

57. Bossis G and Brady JF. The Journal of Chemical Physics 1984;80(10):5141-5154. 

58. Liu S. Chemical Engineering Science 1999;54(7):873-891. 

59. Hartland S. Chemical Engineering Science 1969;24(6):987-995. 

60. POZRIKIDIS C. Journal of Fluid Mechanics 2007;575:333-357. 

61. Lee SH and Leal LG. Journal of Fluid Mechanics 1980;98(01):193-224. 

62. Yang S-M and Leal LG. Journal of Fluid Mechanics 1984;149:275-304. 

63. Reiter G. Langmuir 1993;9(5):1344-1351. 

64. Plattier J, Benyahia L, Dorget M, Niepceron F, and Tassin J-F. Polymer 2015;59(0):260-
269. 

65. Blake TD. Journal of Colloid and Interface Science 2006;299(1):1-13. 

66. Helfand E and Tagami Y. The Journal of Chemical Physics 1972;56(7):3592-3601. 

67. Liu Y and Kontopoulou M, Polymer 2006; 47:7731 

  

 



  100 

CHAPTER 6 ARTICLE 3: LOCALIZATION OF MICRO AND NANO- 

SILICA PARTICLES IN A HIGH INTERFACIAL TENSION 

POLY(LACTIC ACID)/ LOW DENSITY POLYETHYLENE SYSTEM* 
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CREPEC, Department of Chemical Engineering, École Polytechnique de Montréal, Montréal, 

Quebec, Canada, H3T 1J4. 

 

6.1 Abstract 

This work studies the effects of thermodynamic and kinetic parameters on the localization and 

migration of micro- and nano-silica particles in the high interfacial tension blend system of poly 

(lactic acid), (PLA)/ low density polyethylene (LDPE). The surface modification of micro-silica 

particles from a high to a low energy surface was carried out by the grafting of (2-Dodecen-1-yl) 

succinic anhydride to the surface of micro-silica particles using a new gas-phase reaction 

approach. The surface modification was confirmed by X-ray photoelectron spectroscopy analysis 

and surface energy measurements. Young’s model predicts that the thermodynamic equilibrium 

localization of unmodified and modified silica particles in PLA/LDPE blends should be in the 

PLA phase and at the PLA/LDPE interface, respectively. Scanning electron microscopy results 

confirm that when unmodified micro- or nano-silica particles are added to a PLA/LDPE melt, the 

silica particles are selectively localized in the PLA phase even in the blend sample with only 5 

vol.% of PLA. However, modified micro-silica particles were found to be located principally in 

the LDPE phase. The influence of kinetic parameters was imposed by premixing modified and 

unmodified micro-silica particles with a high viscosity LDPE phase (H-LDPE). In that case both 

silica types remain in the H-LDPE phase independent of shear rate and mixing time. When the 

viscosity of the LDPE phase is reduced, unmodified and modified micro-silica migrate to their 

thermodynamically predicted locations in the PLA phase and at the PLA/LDPE interface 

respectively. In the case of unmodified nano-silica particles premixed in the H-LDPE phase, 

individual well dispersed nano-silica particles migrate to the PLA phase while aggregates remain 

* Submitted to Polymer  
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in the H-LDPE phase. These results have important implications in the field of nanocomposites 

and indicate that the localization of well-dispersed nanoparticles in a high interfacial tension 

multiphase system will not likely be influenced by kinetic effects. Kinetic effects are much more 

dominant in micro-scale silica systems and the kinetic effects are found to depend on a film-

draining mechanism at the PLA-LDPE interface region. 

Keywords: Localization, Polymer blends, Surface modification 

 

6.2 Introduction 

Micro- and nano-particles dispersed in multiphase polymer systems are receiving significant 

attention as they can provide a wider range of mechanical and/or electrical properties as 

compared with those based on a single polymer matrix. Controlling the localization of the 

particles into specific phases or at the interface is one of the key parameters in achieving property 

control in such multiphase systems [1-6, 51]. It has been shown that the localization of solid 

particles in a dispersed rubbery phase not only increases the dispersed phase size [7, 8], but also 

dramatically suppresses the energy dissipation mechanisms [1]. The localization of solid particles 

in the matrix phase can reduce the dispersed phase size by diminishing coalescence through the 

formation of a physical barrier between the dispersed phase droplets as well as through an 

increase in the matrix viscosity [9, 10]. The localization of solid particles at the interface has also 

been reported to decrease the dispersed phase size by a solid barrier mechanism [11] and can 

even enhance the interfacial interactions between polymeric phases [12-15]. In conductive 

polymer blends, it has been found that the localization of solid particles in either phase of a co-

continuous system can significantly reduce the conductivity threshold [6]. This latter 

phenomenon is known as double percolation [6, 16]. The lowest electrical percolation threshold 

can be achieved when the conductive particles are localized at the interface of co-continuous 

polymeric phases [5]. 

It is apparent that controlling the localization of solid inclusions in a multiphase polymer system 

is crucial to achieving the desired mechanical and/or electrical properties. Despite the numerous 

studies in the literature on this subject, a comprehensive understanding of the parameters and 
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mechanisms governing solid particle migration and localization in multiphase polymer systems is 

lacking. 

Among the few mechanisms that have been proposed to explain the migration of solid particles in 

multiphase polymer systems, shear induced migration is the most mentioned mechanism [10, 17, 

18]. In this case the migration of solid particles is assumed to be controlled only by the 

hydrodynamic forces and the particles are transferred to the other phase as soon as they collide 

with the interface. The frequency of collision between mono-dispersed particles can be estimated 

as [10]: 

𝐶 = 8
𝜋
𝛾̇𝜑           Eqn. 1 

Where 𝛾̇ and ϕ are the shear rate and the volume fraction of the particles respectively. This 

mechanism, however, does not explain the trapping of solid particles at the interface reported in 

some previous studies [19, 20]. The Slim Fast mechanism was proposed by Goldel et al. [21] to 

explain the effect of aspect ratio on the migration of solid particles at the interface. Some authors 

[10, 17] also suggested that the trapping of solid particles between two colliding dispersed phase 

droplets can transfer solid particles from the matrix phase to the dispersed phase. Although each 

of these mechanisms may explain a part of the migration and localization process, they do not 

provide an overall picture of the surface energy/thermodynamics of the migration process versus 

the effects of important kinetic parameters such as viscosity, mixing strategy and the particle size 

of solid inclusions. In a previous study from this group [19], the migration and localization of 

micro- and nano-silica particles in low interfacial tension blends of poly (lactic acid),PLA, and 

poly(butylene adipate-co-terephthalate), PBAT, were studied in detail and it was shown that the 

film draining step, between silica particles and the interface, and the migration velocity at the 

interface are limiting factors that can cause a non-equilibrium localization of silica particles. 

PLA/PE blends are of interest in the study of solid particle localization since they provide the 

case of a model high interfacial tension system. In addition, the blending of PLA with PE has 

been shown to improve the elongation at break and impact properties of PLA considerably [22, 

23]. For instant, Anderson and Hillmyer [23] found that the addition of 20 wt.% of PE and 5 

wt.% of PLA-PE, as the compatibilizer, significantly increased the impact strength of PLA from 

20 J/m to 760 J/m. 
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The main objective of this paper is to study the effect of thermodynamic and kinetic parameters 

on the migration and localization of mico- and nano- silica particles in PLA/LDPE blends. The 

effect of the surface energy of polymer components as well as the surface energy of micro-silica 

particles on the localization of the silica particles will be studied. Moreover, the effect of mixing 

strategy, viscosity of the LDPE phase, the particle size of silica and shear rate of mixing on the 

localization of silica particles will be evaluated.  

 

6.3 Experimental 

6.3.1 Materials 

PLA 2003D (Natureworks, Cargil) was purchased from NatureWorks LLC. Two types of LDPE 

(133A and 100.BW) with melt flow indices of 0.25 g/10 min and 2 g/10 min were purchased 

from Dow Chemicals and ExxonMobil and will be referred to hereafter as H-LDPE and L-LDPE 

respectively. (2-Dodecen-1-yl) succinic anhydride was purchased from Sigma-Aldrich and was 

used as received. Spherical micro- and nano-silica particles, SEAHOSTAR KE-P30 and KE-P10, 

with hydroxyl content of 1mmol/g were received from Nippon Shokubai, Japan. The average 

diameters of the individual spherical particles for micro- and nano-silica are 300 nm and 100 nm. 

All the materials were dried under vacuum at 60 ℃ overnight before being used in the 

experiments. 

 

6.3.2 Surface modification of micro-silica particles 

A new gas-phase reaction approach was used to modify the surface of micro-silica particles 

which eliminates the need of using a solvent and the precautions required for controlling the 

solvent moisture content. To this aim, 3 g of micro-silica powder was placed on a mesh in a 

desiccator containing 1g of (2-Dodecen-1-yl) succinic anhydride at the bottom of the desiccator. 

After applying a vacuum of 760 Torr using a vacuum pump, the desiccator was placed in an oven 

at 160 ℃. After the reaction time, the desiccator was removed from the oven and cooled in the 

air. To remove the unreacted (2-Dodecen-1-yl) succinic anhydride, the silica powder was washed 

six times with acetone using a washing cycle of three days, followed by centrifugal separation of 
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the particles. Finally the obtained powder was dried in a vacuum oven at 60 ℃ overnight. The 

unmodified micro-silica and modified micro-silica particles will be referred to as U-micro-silica 

and M-micro-silica respectively in the rest of the paper. 

 

6.3.3 Surface energy measurements and interfacial tensions 

The surface energy of PLA and unmodified silica were examined in a previous study[19]. To 

measure the surface energy of L-LDPE and H-LDPE at room temperature, thin sheets of the 

polymers were prepared by compression moulding. Ethanol and distilled water were used to 

remove any contamination from the surface of the sheets. Finally, the sheets were dried at 60 ℃ 

for 6 h in a vacuum oven. The surface energy then was determined by measuring the contact 

angles of water, glycerol and diiodomethane, as liquid probes, on the polymer sheets. The 

Owens-Wendt [24] approach was used to determine the surface energy as well as its dispersive 

and polar components. The pendant drop technique was used to measure the surface energies of 

L-LDPE and H-LDPE at the processing temperature. The apparatus and the operation description 

can be found elsewhere [25].The melt densities of L-LDPE and H-LDPE at 180 ℃ were 

measured as 0.75 g/cm3 using a high pressure piston-type dilatometer (PVT100, ThermoHaake). 

To determine the surface energy of modified-silica particles, a film of M-micro-silica was formed 

by casting a suspension of 1 wt.% of M-micro-silica in acetone.  The film is a layer of about 20 

µm thick that is formed on a substrate so it can keep its integrity. The surface energy of M-micro-

silica at room temperature was determined using the contact angle method. The test procedure 

was the same as the one described for H-LDPE and L-LDPE. The surface energy of M-micro-

silica at the processing temperature was estimated using the thermal coefficient of -0.1 mN/m 

reported for hydrophobic silica in the literature [18, 26]. The interfacial tensions between 

PLA/LDPE, PLA/M-micro-silica and LDPE/M-micro-silica were calculated using the Harmonic 

Mean approach[27]: 

𝛾12 = 𝛾1 + 𝛾2 − 4 � 𝛾1𝑑𝛾2𝑑

𝛾1
𝑑+𝛾2

𝑑 + 𝛾1
𝑝𝛾2

𝑝

𝛾1
𝑝+𝛾2

𝑝�        Eqn.2  

and the interfacial tensions between PLA/Silica and LDPE/Silica were estimated using the 

Geometric Mean equation[27]: 
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𝛾12 = 𝛾1 + 𝛾2 − 2��𝛾1𝑑𝛾2𝑑 + �𝛾1
𝑝𝛾2

𝑝�       Eqn.3 

In these equations, γi is the surface energy, 𝛾𝑖𝑑 is the dispersive component and 𝛾𝑖
𝑝 is the polar 

component of surface energy.Note that when the wetting liquid does not change the arrangement 

of the solid molecules at the interface (does not swell the solid), the interfacial tension and 

interfacial surface energy terms are identical and interchangeable [28].  

 

6.3.4 X-ray photoelectron spectroscopy (XPS) 

X-ray photoelectron spectroscopy (XPS) measurements were conducted on a VG ESCALAB 3 

MKII spectrometer (VG, Thermo Electron Corporation, UK) with Mg-Kα ray source. Spectra 

were carried out with 100 eV pass energy for the survey scan and 20 eV pass energy for the high 

resolution scans. The relative atomic percent was calculated from the relative peak areas 

corrected by the Wagner sensitivity factors and Shirley background subtraction. 

 

6.3.5  Rheological characterization 

The samples were compression moulded at 180 ℃ and at 300 kPa in the form of 1.2 mm thick 

disks of 25 mm diameter under a nitrogen blanket. The rheological measurements were carried 

out using a stress-controlled rheometer (Physica MCR 301, Anton Paar) with a 25 mm parallel 

plate geometry at a 1 mm gap at 180 ℃ under nitrogen atmosphere. The stability of the polymer 

components was examined under the test conditions using a time sweep test. Less than a 7% drop 

in the complex viscosity and storage modulus was observed in the experimental time scale of 40 

minutes. 

 

6.3.6 Blend preparation 

The blend samples were prepared using a Brabender internal batch mixer (Plasti-Corder 

DDR501) with a total volume of 30 cm3 at 180 ℃ under a nitrogen blanket. A 70% mixing 
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chamber fill factor was used. The average shear rate at the mixing speeds of 50 and 100 RPM 

used in this study were estimated as 25 s-1 and 47 s-1, respectively [29]. Two different mixing 

strategies were used to prepare the samples: 

Pr1: The addition of silica particles to the PLA/LDPE melt (one-step process). 

Pr2: Premixing of silica particles with the LDPE phase followed by mixing with the PLA phase 

(two-step process). 

After 10 minutes of mixing, the mixer was stopped and the samples were taken and frozen in 

liquid nitrogen to freeze-in the morphology and localization of silica particles. The blend 

samples, unless otherwise mentioned, contain 80 vol.% of PLA phase and 20 vol.% of the LDPE 

phase. The wt.% of silica particles added to the blends is based on the total weight of the blend. 

 

6.3.7 Field emission scanning electron microscopy (FE-SEM) 

 In order to determine the localization of silica particles, samples from the internal batch 

mixer were cut and microtomed under liquid nitrogen using a microtome (Leica-Jung RM 2165). 

Then the sample surface was coated with gold and the morphology was observed with a Field 

Emission Scanning Electron Microscope (JSM 7600F, JEOL). 

6.3.8 Atomic force microscopy (AFM) 

The samples were microtomed using the same procedure as mentioned for the FE-SEM samples. 

The AFM machine was equipped with a scanning probe microscope Dimension 3100 with a 

Nanoscope IVa controller from Veeco Instruments. Silicon tips, model ACTA-W from AppNano, 

with a tip radius less than 10 nm were used in this study. The morphologies of the samples were 

determined by Tapping mode AFM in air.  

 

6.3.9 Image analysis 

 Image analysis software (SigmaScan Pro. V.5, Sigmaplot) was used to determine the average 

dispersed phase diameter using an average number of 250 measurements for each sample. The 

Saltikov correction was applied [27] in calculating the dispersed phase diameter to consider the 

 



  107 

fact that the droplets are not cut exactly at their equator in the microtomed surface. To quantify 

the localization of the silica particles, the location of 110 to 320 silica particles, depending on the 

blend structure, were determined in SEM images. 

 

6.4 Results and Discussion 

6.4.1 Material Characterization 

6.4.1.1 Rheological characterization 

Figure 6.1 shows the complex viscosities (η*) and storage moduli of the neat polymer 

components as a function of angular frequency. PLA shows a Newtonian plateau at low angular 

frequencies but L-LDPE and H-LDPE exhibit shear thinning behaviour even at very low 

frequencies which indicates the high level of long chain branching in their structure[30]. The key 

rheological characteristics of the neat polymer components are listed in Table  0-1.  

 

Figure 6.1. Complex viscosities of the neat polymer components. The dashed line represents the 

average shear rates of mixing [29]. 

Table  0-1. Rheological characteristics of the neat polymer components 

 Zero shear viscosity 
(Pa.s) 

Power-law index η* at 25 s-1 (Pa.s) η* at 47 s-1 (Pa.s) 

PLA 4830 0.46 2930 2430 
H-LDPE - 0.36 2450 1690 
L-LDPE - 0.43 1440 1015 
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6.4.1.2 Modification of the surface of micro-silica particles 

The surface modification of micro-silica particles from a high to a low energy surface was carried 

out by the grafting of (2-Dodecen-1-yl) succinic anhydride to the surface of micro-silica particles 

using a new gas-phase reaction approach. The evolution of the water contact angle (θ) with 

reaction time was used to evaluate the extent of the surface modification of the M-micro-silica 

(modified-silica) particles. Figure  0.2 (a) shows the AFM image of the surface topography of the 

M-micro-silica film that was used in the water contact angle measurements. 

 

Figure  0.2. (a) AFM image of the surface of the cast M-micro-silica film, the white scale bar 

shows 2µm. (b) the evolution of the water contact angle (θ) on the M-micro-silica film as a 

function of reaction time.  

The root mean-square (Rq) and arithmetic average (Ra) roughness of the M-micro-silica film 

were determined as 69 nm and 54 nm. These values are much smaller than the critical roughness 

of 500 nm where the surface roughness begins to affect the contact angle results [31, 32].  

Complete wetting of the water droplet (θ=0) was observed at short reaction times, but after 60 

minutes of the reaction, a water droplet with a contact angle of 22 degrees was formed on the M-

micro-silica film. Increasing the reaction time from 90 to 120 minutes only changed the water 

contact angle from 76 to 83 degrees; therefore, the M-micro-silica particles obtained after 120 

minutes of the reaction were used in the experiments. It should also be mentioned that an extra 

washing cycle of the M-micro-silica particles with acetone did not change the contact angle 

results which confirms the efficiency of the method used to remove the unreacted (2-Dodecen-1-

yl) succinic anhydride.  
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XPS was used to examine the presence of the (2-Dodecen-1-yl) succinic anhydride molecules on 

the surface of M-micro-silica particles. The survey scans of the U-micro-silica and M-micro-

silica particles are shown in Figure 6.3(a). 

 

Figure 6.3. (a) XPS survey spectra of U-micro-silica and M-micro-silica particles, (b) High 

resolution XPS spectra of the carbon regions of M-micro-silica particles 

 

In addition to the peaks of silicon at 103.5 eV and oxygen at 532.8 eV, a carbon peak at 285 eV 

appears in the M-micro-silica sample which confirms the presence of organic molecules on the 

silica surface M-micro-silica (modified-silica). The high resolution XPS spectrum of the carbon 

region in micro-silica and M-micro-silica particles is shown in Figure 6.3(b). The relative atomic 

% results obtained from the high resolution scans are also presented in Table 6-2. 

Table 6-2. The relative atomic% of different groups in the high resolution XPS spectra of U-
micro-silica and M-micro-silica particles. 

Element Identification Binding Energy (eV) Relative atomic % 
U-micro-
silica 

M-micro-
silica 

C C-C 285 0 18.9 
C-O 286.6 0 3.4 
O=C-O 289.1 0 3.1 

Si Si-O 101.9 1.5 0 
SiO2 103.7 31.5 17.7 

O Si-OH 531.2 3.7 0 
Si-O 533.1 63.3 56.9 
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As can be seen for the M-micro-silica, the atomic % of the C-C group is 6.1 times that of the 

O=C-O group and 5.5 times that for the C-O group. Since the ratio of C-C to O=C-O or C-O in a 

(2-Dodecen-1-yl) succinic anhydride molecule is 6, the XPS results confirm the presence of (2-

Dodecen-1-yl) succinic anhydride molecules on the surface of M-micro-silica particles. The 

disappearance of the silicon and oxygen peaks of the silanol group after the modification of silica 

can also be considered as an indication of the reaction of (2-Dodecen-1-yl) succinic anhydride 

with the silanol groups on the surface of silica particles. 

 

6.4.1.3 Surface energy measurements 

The measured surface energies of the components at room temperature and at the processing 

temperature are listed in Table  0-3. Since the difference between the surface energies of L-LDPE 

and H-LDPE were found to be within the range of the experimental error, an average value is 

presented for the surface energy of the LDPE phase. The estimated interfacial tension of 4.1 

mN/m between PLA and LDPE at 180oC using the Harmonic Mean approach is in good 

agreement with the interfacial tension of 5 mN/m at 200 oC reported previously in the literature 

[33]. 

Table  0-3. Surface energies of PLA, LDPE, silica and M-micro-silica particles and the estimated 
interfacial tensions between the components. 

 at 25o C at 180oC Interfacial tension at 
180 oC (mN/m) 

 γ 
(mN/m) 

γd 
(mN/m) 

γp 
(mN/m) 

γ 
(mN/m) 

γd 
(mN/m) 

γp 
(mN/m) 

PLA LDPE Silica 

PLA* 39.4  33.6 5.8 28  23.9  4.1 - 4.1 155.3 
LDPE 36.4 36.4  0 25.2 25.2 0 4.1 - 209.4 
Silica* 519.8 72.8 447 242.8 34 208.8 155.3 209.4 - 
M-micro-
silica 

49.2 48 1.2 33.7 33 0.7 3.6 1.8 - 

* taken from [19]  
 

6.4.2 Thermodynamics of the Localization of Silica Particles in PLA/PE 

Blends 

The thermodynamic equilibrium localization of solid particles in a multiphase polymer blend can 

be predicted by the Young’s model[10]: 
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𝜔 =  𝛾1𝑠−𝛾2𝑠
𝛾12

           Eqn.4 

Where γ1s, γ2s and γ12 are the interfacial tensions between: polymer 1 and solid, polymer 2 and 

solid; and polymer 1 and 2. If ω is greater than 1, the localization of silica particles in phase 2 is 

thermodynamically preferred while for ω < -1, the thermodynamic equilibrium localization of 

solid particles should be in phase 1. On the other hand, when -1<ω< 1, the localization of solid 

particles at the interface is thermodynamically preferred. By taking LDPE as phase 1 and PLA as 

phase 2, ω in PLA/LDPE/unmodified silica mixtures can be estimated as 13.2 which indicates 

that, at the thermodynamic equilibrium condition, unmodified silica particles should be localized 

in the PLA phase.  

Most of the previous studies have found that the simultaneous mixing of solid particles 

and polymer components results in the localization of the particles in the thermodynamically 

preferred phase [17, 21, 34-41]. In order to examine the prediction of the Young’s model, blends 

of PLA/H-LDPE(80/20) with U-micro- and nano-silica particles were prepared using 

Pr1(addition of silica particles to the PLA/LDPE melt). The SEM images of these samples are 

shown in Figure  0.4.As quantified in the first line of Table  0-4, 94% of the U-micro-silica 

(unmodified micro-silica) particles are located in the PLA phase. A similar localization in the 

PLA phase was observed for nano-silica particles. In order to confirm that the observed 

localization of silica particles is not due to the higher composition of the PLA phase in the blend, 

a blend of PLA/H-LDPE (5/95) with 3 wt.% of U-micro-silica (based on the total weight of the 

blend) was prepared by Pr1. As can be seen in Figure 6.5, even at such a low composition of the 

PLA phase, U-micro-silica particles were selectively localized in the PLA phase. These results 

are in agreement with the result of the previous study by this group on low interfacial tension 

PLA/PBAT blends [19]. In that study, it was shown that when silica particles are added to a melt 

of PLA/PBAT, the PBAT phase preferentially encapsulates the silica particles at the early stages 

of mixing irrespective of the particle size of silica due to the lower interfacial tension of 

PBAT/silica compared to PLA/silica. A similar mechanism is expected to be responsible for the 

selective localization of silica particles in the PLA phase in this high interfacial tension 

PLA/LDPE system. 
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Figure  0.4. The localization of silica particles in the samples prepared by Pr1: (a) PLA/H-LDPE 

(80/20) with 1 wt.% of U-micro-silica, (b)PLA/H-LDPE with 1 wt.% of nano-silica. The white 

scale bars show 5 µm. 

 

Figure 6.5. The localization of U-micro-silica particles in PLA/H-LDPE (5/95) with 3 wt.% of 

the silica particles prepared by Pr1. 

Table  0-4. The quantified localizations of 1% U-micro-silica, M-micro-silica and nano-silica 
particles in PLA/LDPE blends with the associated standard deviation (std). 
 Blend sample Mixing 

strategy 
Silica 
type 

% Silica std 

in 
PLA  

at 
interface  

in LDPE  

1 PLA/H-LDPE 
(80/20) 

Pr1 U-micro-
silica 

94 0 6 4 

2 PLA/H-LDPE 
(80/20) 

Pr1 M-micro-
silica 

0 11 89 5 
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Table  0-4 Cont’d 
3 PLA/H-LDPE 

(80/20) 
Pr2 U-micro-

silica 
19 0 81 8 

4 PLA/H-LDPE 
(80/20) 

Pr2 Nano-
silica 

35 0 65 12 

5 PLA/L-LDPE 
(80/20) 

Pr2 U-micro-
silica 

93 0 7 5 

6 PLA/L-LDPE 
(80/20) 

Pr2 M-micro-
silica 

0 85 15 7 

7 PLA/H-LDPE 
(80/20)* 

Pr2* U-micro-
silica 

21* 0* 79* 8 

8 PLA/H-LDPE 
(80/20)* 

Pr2* Nano-
Silica 

77* 0* 23* 11 

9 PLA/H-
LDPE(90/10) 

Pr2 U-micro-
Silica 

15 0 85 8 

10 PLA/H-
LDPE(90/10)** 

Pr2 U-micro-
silica 

17 0 83 10 

* Prepared at the shear rate of 47 s-1. 
** Contains 3 wt.% of silica 

6.4.3  Effect of the Surface Energy of Micro-Silica Particles 

The effect of the surface energy of solid particles on the localization was examined by the 

addition of M-micro-silica (modified-silica) particles to PLA/H-LDPE blend by Pr1(addition of 

silica particles to a PLA/LDPE melt). Using the measured surface energy of M-micro-silica 

particles reported in Table  0-3, the wetting parameter (ω) from the Young equation is determined 

as -0.4 which indicates that the thermodynamic equilibrium localization of M-micro-silica 

particles should be at the PLA/LDPE interface. The localization of M-micro-silica particles in the 

PLA/H-LDPE blend prepared by Pr1 is shown in Figure 6.6 and on line 2 in Table  0-4. It was 

found that 89% of the M-micro-silica particles were localized in the H-LDPE phase when 

processed by Pr1. Comparing these results with the localization of U-micro-silica particles in 

Figure 6.5, it can be seen that the surface modification treatment of the micro-silica particles 

completely changed the localization of the silica particles from PLA to H-LDPE in this blend. 

The encapsulation of M-micro-silica particles by the H-LDPE phase at the early stages of mixing 

can also be attributed to the lower interfacial tension of H-LDPE/M-micro-silica as compared 

with PLA/M-micro-silica (see Table  0-3). However, note that the equilibrium localization of M-

micro-silica particles, as determined by the Young equation, was predicted to be at the interface. 

This point will be examined later in this chapter. 
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Figure 6.6. The localization of 1 wt.% of M-micro-silica particles in PLA/H-LDPE(80/20) blend 

prepared by Pr1. 

6.4.4 Effect of the Mixing Strategy 

It has been shown above that the equilibrium localization for the U-micro-silica or nano-silica is 

in the PLA phase and that this supports the thermodynamic prediction based on surface energies. 

In this part, the influence of kinetic parameters were imposed on the localization of U-micro-

silica (unmodified silica) by premixing U-micro-silica particles with a high viscosity LDPE phase 

(H-LDPE) before mixing with PLA according to Pr2.  

The effect of the Pr2 mixing strategy on the localization of U-micro-silica particles is shown in 

Figure 6.7 and on line 3 in Table  0-4. This mixing strategy changes the localization of U-micro-

silica particles from the PLA phase to the H-LDPE phase. As a result, 81% of the U-micro-silica 

(unmodified micro-silica) particles are located in H-LDPE indicating strong kinetic barriers 

against the migration of the particles to the PLA phase. Even increasing the mixing time to 20 

minutes did not change the observed localization of U-micro-silica in the H-LDPE phase. 

As the localization of unmodified silica particles in the H-LDPE phase is not thermodynamically 

favoured, premixing of silica particles with the LDPE phase, Pr2, provides a unique opportunity 

to rigorously examine the effect of kinetic parameters on the localization and migration of silica 

particles in PLA/LDPE blends. Therefore, Pr2 will be used as the main mixing strategy in the rest 

of this paper. 
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Figure 6.7. The localization of 1 wt.% of U-micro-silica particles in PLA/H-LDPE (80/20) 

prepared by Pr2. 

6.4.5 Effect of the Shear Rate 

The shear rate of mixing has been shown to enhance the migration of solid inclusions in polymer 

blends [19, 20, 42].  The effect of increasing the shear rate from 25 s-1 to 47 s-1 on the localization 

of U-micro-silica particles in PLA/H-LDPE blends prepared by Pr2 is shown in Figure  0.8 and 

line 7 in Table  0-4. As can be seen, an almost two fold increase in the shear rate did not have a 

considerable effect on the localization of micro-silica particles. At the shear rate of 47s-1, 79% of 

U-micro-silica particles are still localized in the H-LDPE phase. 

 

Figure  0.8. The effects of shear rate on the localization of U-micro-silica particles in PLA/H-

LDPE (80/20) blend prepared by Pr2 at the shear rate of 47 s-1.  
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Therefore, it can be concluded that the observed localization of U-micro-silica particles in the H-

LDPE phase is stable and does not vary with increasing mixing time or shear rate. 

6.4.6 The Effect of the Viscosity of the LDPE Phase 

The high viscosity of polymer melts has been found to interrupt the migration of solid particles 

toward their thermodynamic equilibrium localizations. Although Persson and Bertilsson [43] 

mentioned that the effect of viscosity on solid particle localization should only be significant in 

low interfacial tension blends, other authors such as Feng et al. [44], Elias et al. [18] and 

Taghizadeh and Favis [20] observed strong viscosity effects on particle migration in high 

interfacial tension systems.  

The effect of viscosity of the LDPE phase on the localization of U-micro-silica particles was 

examined by preparing PLA/L-LDPE with 1 wt.% of U-micro-silica using Pr2. As can be seen in 

Figure  0.9 and on line 5 in Table  0-4, decreasing the viscosity of the LDPE phase by a factor of 

1.7 results in the migration of 93% of the U-micro-silica particles to the PLA phase, the 

thermodynamically predicted phase location. 

 

Figure  0.9.  The effect of the viscosity of the LDPE phase on the localization of 1 wt.% of U-

micro-silica particles in PLA/L-LDPE blend prepared by Pr2. 

 

The effect of viscosity of the LDPE phase on the migration and localization of the surface 

modified M-micro-silica particles was also examined by preparing the PLA/L-LDPE blend with 

1 wt.% of M-micro-silica using Pr2. The localization of the M-micro-silica particles in this 

sample is shown in Figure  0.10 and on line 6 in Table  0-4. As can be seen, decreasing the 
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viscosity of the LDPE phase results in the migration of 85% of M-micro-silica particles from the 

LDPE phase to their thermodynamically predicted localization at the interface. Therefore, it can 

be concluded that the high viscosity of the H-LDPE phase was also contributing a kinetic barrier 

that prevented the migration of M-micro-silica particles to the interface in PLA/H-LDPE blends 

prepared by Pr1 and Pr2. 

 

 

Figure  0.10. The localization of M-micro-silica particles in PLA/L-LDPE (80/20) blends 

prepared by Pr2: (a) before and, (b) after the extraction of the L-LDPE phase by boiling 

cyclohexane. The scale bars in (a) and (b) show 5 µm and 2µm respectively. 

 

6.4.7 Effect of the Particle Size of Silica 

The localization of nano-silica particles in the PLA/H-LDPE blend after premixing with H-LDPE 

using Pr2 is shown in Figure 6.11 and on line 4 in Table  0-4. Interestingly, it was found that 

individual well-dispersed nano-silica particles (35%) migrate from the H-LDPE phase to the PLA 

phase while the majority of the nano-particles (65%) remain localized in the H-LDPE phase in 

the form of aggregates. The average diameter of these aggregates was estimated as 420 nm using 

image analysis.  
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Figure 6.11. The localization of nano-silica particles in PLA/H-LDPE blend prepared by Pr2, (a) 

SEM image of nano-silica aggregates in H-LDPE, (b) AFM image of nano-silica aggregates in 

H-LDPE phase. All the white scale bars show 1 µm. 

The effect of increasing the shear rate on the localization of nano-silica particles in PLA/H-LDPE 

blend prepared by Pr2 was also studied and the results are shown in Figure  0.12 and on line 8 in 

Table  0-4. It can be seen that increasing the shear rate enhanced the dispersion and migration of 

nano-silica and 77% of nano-silica particles could migrate to the PLA phase. These results, for 

the first time, clearly show the critical role of dispersion on the localization of nano-particles and 

indicate that poor dispersion of nano-particles can strongly influence their localization in multi-

phase polymer systems. 

 

Figure  0.12. The effect of shear rate on the localization of nano-silica particles in PLA/H-LDPE 

blend prepared by Pr2 at the shear rate of 47 s-1. 
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6.4.8 The Mechanism of Migration of Silica Particles 

The migration process of silica particles from the LDPE phase to the PLA phase can be 

considered as a three-step process: (a) migration from the bulk of the LDPE phase toward the 

interface, (b) draining of the LDPE film between the particle and the interface and (c) migration 

at the interface. These steps are shown schematically in Figure  0.13 and were discussed 

previously in an earlier paper from this group [45]. 

 

 

Figure  0.13. The migration mechanism of a silica particle from the LDPE phase to the PLA phase 

in the samples prepared by Pr2, (a) migration from the bulk of the LDPE phase towards the 

interface, (b) draining of the LDPE film between the particle and the interface, (c) migration at 

the interface. 

 

6.4.8.1 Bulk Migration 

In the first step of bulk migration, the silica particles need to migrate from inside the LDPE phase 

to the interface. Figure 6.7 shows that 1 wt.% U-micro-silica particles in PLA/H-LDPE(80/20), 

prepared by Pr2, are localized in the H- LDPE phase. Figure 6.14 shows that this effect is still 

observed even when the concentration of H-LDPE is reduced to 10 vol.% and when the 

concentration of silica particles is increased to 3 wt.%. Decreasing the composition of the H-

LDPE phase to 10 vol.% reduces the volume average dispersed H-LDPE diameter by a factor of 

2.6. A reduced H-LDPE phase diameter decreases the mean path that a silica particle should 

migrate to reach the interface and should enhance the bulk migration. However, as can be seen in 

Figure 6.14 (a), (b) and on lines 9 and 10 in Table  0-4, these changes did not have a significant 

effect on the localization of U-micro-silica particles.  

 



  120 

 

Figure 6.14. The localization of U-micro-silica particles in PLA/H-LDPE(90/10) prepared by 

Pr2: (a) 1 wt.% of U-micro-Silica, (b) 3 wt.% of U-micro-silica. The white scale bars show 5 µm. 

 

In addition, the shear-induced and transitional migration of a spherical particle under shear flow 

has been shown to scale as 𝛾̇𝑅2 and 𝛾̇𝑅 respectively [46-49] which indicates that the migration of 

nano-silica particles should take a longer time compared to micro-silica particles. However, as 

has been shown in this paper, individual nano-silica particles could migrate from H-LDPE phase 

to the PLA phase while micro-silica particles remain in H-LDPE phase.   

The above mentioned results clearly confirm that the migration of U-micro-silica particles from 

the bulk of H-LDPE phase toward the interface is not a kinetic barrier that significantly 

influences the localization of U-micro-silica particles in the H-LDPE phase. A similar conclusion 

was found for silica localization in a low interfacial tension system in a previous paper from this 

group [45]. 

6.4.8.2 Film Drainage 

In the film draining step, a silica particle initially dispersed in the LDPE by Pr2 needs to drain a 

film of the LDPE phase between the particle and the PLA/LDPE interface in order to reach the 

interface. As discussed in more detail in a previous paper[45], the film draining time between a 

spherical solid particle with radius R and a deformable liquid/liquid interface can be expressed 

as[50]: 

td = 3n2ηA2

16F
 � 1

δ𝐶
2 −

1
δ𝑜
2�          Eqn.5 
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where F, A, η, δC and δo are the contact force, the surface area of the film (∼R2), the viscosity of 

the LDPE phase, the critical film thickness in which the LDPE film rupture occurs, and the initial 

LDPE film thickness where the film draining process begins, respectively. Moreover, n is the 

number of immobile interfaces such as LDPE/Silica which, in the present system, is equal to one. 

When a silica particle approaches the interface, it remains in contact with the interface for a 

certain amount of time which can be called the “contact time”. The contact time of a silica 

particle can be defined as the inverse of the frequency of collision of any particle with the 

interface. If the film draining time between a particle and the interface is longer than the contact 

time between the particle and the interface, then the particle will be moved away from the 

interface by the internal flow field inside the LDPE phase before it can reach the interface.  The 

linear dependency of the film draining time on the viscosity of the LDPE phase in Equation 6 can 

explain the observed enhancement in the migration of U-micro-silica and M-micro-silica particles 

by decreasing the viscosity of the LDPE phase. The observed effect of the particle size of silica in 

the PLA/H-LDPE sample prepared by Pr2 can also be explained by considering the strong 

dependency of the LDPE film draining time to the silica particle radius in Equation 6 (td∼R4).  

Such a dependency indicates that decreasing the diameter of silica particles from 300 nm to 100 

nm should reduce the film draining time by approximately 80 times which significantly enhances 

the migration of individual nano-silica particles. On the other hand, as the average diameter of the 

nano-silica aggregates in H-LDPE phase was determined to be even larger than U-micro-silica 

particles, the film draining time between these aggregates and the PLA/H-LDPE interface is 

likely to be even longer than that of individual U-micro-silica particles. These results explain why 

well-dispersed nano-particles find their way to the predicted thermodynamic location in the PLA 

phase independently of mixing procedure and phase viscosity. It is worth mentioning that as the 

shear rate and silica content in the PLA/H-LDPE samples with U-micro-silica and nano-silica 

were similar, the contact time between silica particles and the interface in those two blends 

should also be similar.   

Increasing the shear rate did not change the localization of U-micro-silica particles in PLA/H-

LDPE blends. This can be explained by considering that the shear rate also reduces the contact 

time between a silica particle and the interface which decreases the chance of the particle to drain 

the H-LDPE film between the particle and the interface.  
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6.4.8.3 Migration at the Interface 

Since the non- equilibrium localization of U-micro-silica and nano-silica particles at the interface 

was not observed, the migration at the interface is clearly not a limiting kinetic parameter in the 

migration of the silica particles in the high interfacial tension PLA/LDPE system. 

 

6.4.9 Comparison between the Migration and Localization in Low and High 

Interfacial Tension Blends 

In the previous study [19], the effects of kinetic parameters on the localization of U-micro-silica 

and nano-silica in low interfacial tension blends of PLA/PBAT were studied in detail. Comparing 

the obtained results with the present study can provide a general perspective of the migration 

process in polymer blends. 

For both high and low interfacial tension blend systems, when the silica particles are added to a 

melt of the blend, the nano- and micro-silica particles are encapsulated preferentially by the phase 

for which they have the lowest interfacial tension independently of the viscosity of the phases.  

When the kinetic parameters are imposed by melt mixing of the silica particles with the phase  for 

which it has the least affinity, a number of interesting observations emerge: (a) film draining is a 

critical step in the migration of micro-silica particles in both low and high interfacial tension 

blends; (b) the migration of well-dispersed nano-silica particles from the bulk to the interface is 

not likely to be influenced by kinetic effects in polymer blends; (c) The migration at the interface 

is a limiting step in the migration of micro- and nano-silica in low interfacial tension blends while 

it does not affect the localization in the high interfacial tension blend. Table  0-5 shows a 

summary of the kinetic effects that controls the localization of silica particles in high and low 

interfacial tension systems. 

Table  0-5. The kinetic parameters that control the migration and localization of micro- and nano-
silica in high and low interfacial tension polymer blends. 
 High Interfacial tension system Low interfacial tension system 
Micro-Silica Film draining step Film draining step 

Migration at the interface 
Nano-Silica Film draining in the case of 

aggregation 
Migration at the interface 
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6.5 Conclusions 

In this article, the effects of thermodynamic and kinetic parameters on the localization of micro- 

and nano- silica particles in high interfacial tension blends of poly(lactic acid),PLA,/low density 

polyethylene(LDPE) were studied. The surface of micro-silica particles was modified by the 

grafting of (2-Dodecen-1-yl) succinic anhydride to the surface. Using the Young’s model, the 

thermodynamic equilibrium localizations of unmodified and modified silica particles were 

determined to be in the PLA phase and at the interface respectively. The addition of unmodified 

micro-silica (U-micro-silica) or nano-silica to a melt of PLA and high viscosity LDPE (H-LDPE) 

results in the localization of the particles in the PLA phase while modified micro-silica particles 

(M-micro-silica) are localized in the H-LDPE phase. The observed localizations are attributed to 

the preferential encapsulation of the particles by the phase which they have the lowest interfacial 

tension. 

The effects of kinetic parameters were studied by premixing of silica particles with H-LDPE 

phase followed by mixing with PLA. It was shown that U-micro-silica or M-micro-silica particles 

remain localized in the H-LDPE. By decreasing the viscosity of the LDPE phase, the silica 

particles migrated to their thermodynamic equilibrium localizations. When nano-silica particles 

were used, individual nano-silica particles could migrate to the PLA phase while the nano-silica 

aggregates remain in the H-LDPE phase. These observations can be explained by considering the 

effect of viscosity and particle size of silica on the film draining time between micro-silica 

particles and PLA/LDPE interface. Increasing the shear rate did not change the localization of 

micro-silica particles in the H-LDPE phase but enhanced the migration of nano-silica particles by 

enhancing their dispersion. 

One of the most important outcomes of this work is the conclusion that the equilibrium 

localization of well dispersed nanoparticles in a high interfacial tension polymer blend system 

will not be significantly influenced by kinetic effects. This conclusion has important potential 

implications for nanocomposites and underlines the critical role of controlling dispersion in such 

systems.    
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CHAPTER 7 GENERAL DISCUSSIONS 

In this study, first, a detailed study on the morphology and miscibility of PLA/PBAT was carried 

out. As a hypothesis at the beginning of this research, a PLA/PBAT blend was expected to have a 

low interfacial tension due to their similar natures. However, previous studies in this group 

showed that the breaking thread method could not be used to estimate quantitatively the 

interfacial tension of PLA/PBAT as the thread did not break even after one hour[142]. To 

determine the interfacial tension, first, the interfacial tension was estimated from the surface 

energy approach but the error of the estimation was even larger than the estimated interfacial 

tension value. Finally, rheological approach was undertaken to determine the interfacial tension. 

The first set of experimental data revealed that drying of the disk sample was necessary to avoid 

degradation of PLA during the rheological measurements. The degradation of PLA was 

minimized by drying the disk samples in a vacuum oven at 60 ℃ overnight. The obtained results 

by this approach indicate much better accuracy and reproducibility. 

 In this work, the miscibility of PLA/PBAT was studied by examining the shift in Tg of the 

phases. It was found that the conventional DSC cannot provide a good precision and 

reproducibility required to determine the miscibility of the phases in this system. In fact, in blend 

samples with low composition of the dispersed phase, the conventional DSC could not detect the 

Tg of the dispersed phase. On the other hand, the temperature-modulated DSC could detect Tg 

clearly, even at 10 vol.% of the dispersed phase. Using this approach, a limited one-way partial 

miscibility of PBAT in the PLA-rich phase was shown in PLA/PBAT blends. Determining the 

morphology of PLA/PBAT was another important goal in this project. The most important 

difficulty in the analysis of the morphology of PLA/PBAT was the very close solubility 

parameters of PLA and PBAT. This prevents etching and the selective extraction of either phase 

and makes the morphological characterization very difficult, especially close to the co-continuous 

region. In this work, SEM with LABE and AFM techniques were used to overcome the limits of 

the conventional SEM technique in distinguishing phases. The matrix dissolution and filtration of 

the dispersed phase is a common method in determining the type of the morphology of the 

dispersed phase (spherical or fibrillar). However, this method was not an option in this system. It 

was shown that studying the fracture surfaces of the blend sample can provide valuable 

information regarding the type of the morphology. Using this approach, the morphology of 
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PLA/PBAT was found to be fibrillar morphology over the full composition range. In addition, 

determining the co-continuity using selective solvent extraction was not possible in this system. It 

was shown that studying the droplet relaxation in rheological analysis can be a promising method 

in determining the limits of co-continuity in this system. 

The localization and migration of micro- and nano-silica particles in two blends of PLA/PBAT 

and PLA/LDPE were also studied. Measuring the surface energy of the silica particles was the 

most important difficulty in determining the thermodynamic equilibrium localization of silica 

particles. It was not experimentally possible to measure the surface energy of the particles by the 

contact angle technique as the liquid probes spread instantly on the surface of silica particles. 

Even when a droplet of the low viscosity PLA phase was placed on a layer of silica particles at 

180oC, the PLA droplet spread and formed a film on the surface of silica after 40 minutes. 

Therefore, the surface energy of silica was estimated from the data in the literature. In the first set 

of the experiments it was found that when silica particles were used without drying both micro- 

and nano-silica particles formed aggregates in the samples. The dispersion of the silica particles 

was significantly enhanced by drying them at 60oC under a vacuum overnight before the 

experiments. Therefore, the moisture content was found to play an important role in achieving a 

good dispersion of silica particles. To minimize the moisture intake, the PLA, PBAT, LDPE and 

silica particles required for each experiment were weighted and placed in the vacuum oven. This 

eliminates the moisture intake during the weighing of the polymers and particles before the 

experiments. The addition of the particles to a PLA/PBAT or PLA/LDPE melt resulted in the 

localization of the particles in the phase which has the lowest interfacial tension. The effect of 

kinetic parameters was studied by premixing particles with the phase which has the lowest 

thermodynamic affinity. The obtained results indicate the role of film draining in the migration of 

micro-silica particles. However, quantitative discussions on the effect of kinetic parameters on 

film draining were not possible due to the lack of a mathematical model to analyze the particle 

movement close to the interface. The poor dispersion of nano-silica particles was found to be the 

only kinetic barrier against their migration in PLA/LDPE blends. On the other hand, it was found 

that the migration of silica particles at the interface of PLA/PBAT is a significant kinetic barrier. 

By developing a semi-empirical model, it was found that the low interfacial tension between PLA 

and PBAT results in a slow migration velocity of silica particles at the interface.  
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CHAPTER 8 CONCLUSIONS AND RECOMMENDATIONS 

 

8.1 Conclusion 

In this dissertation, the localization of micro- and nano-silica particles in bioplastic blends of 

PLA/LDPE and PLA/PBAT were investigated. First, the miscibility and morphology 

development in PLA/PBAT blends were studied in detail. The interfacial tension between PLA 

and PBAT was determined to be 0.6±0.15 mN/m, which indicates a very low interfacial tension 

and high level of compatibility in this system. The miscibility of PLA/PBAT was analyzed by 

studying the shift in Tg of the phases in the temperature-modulated DSC results. The obtained 

results point to a limited one-way partial miscibility of PBAT in the PLA-rich phase. The partial 

miscibility of PBAT in PLA was reduced significantly by increasing the molecular weight of 

PBAT. Since the enthalpy of mixing in this system is small (due to the similar nature of PLA and 

PBAT), the observed partial miscibility is attributed to the combinational entropy of mixing. This 

can also explain the one-way partial miscibility as the entropic gain is much less for mixing PLA 

molecules in PBAT. SEM images of the fracture surfaces of blend samples with different 

compositions revealed that the dispersed phase exists in the form of stable fibers in this system. 

The fiber formation is attributed to the low interfacial tension between PLA and PBAT, which 

increases the stability of the dispersed phase fibers. The morphology of PLA/PBAT over the full 

composition range was studied by AFM. A considerable coarsening of the dispersed phase by 

increasing the composition was observed, which was attributed to the partially miscible nature of 

PLA/PBAT blends. It was also found that the dispersed PLA phase forms larger fibers in PBAT 

compared to the dispersed PBAT in PLA. This was attributed to an 11–fold increase in the 

viscosity ratio by the phase inversion. Using the droplet relaxation peak in Cole-Cole plots of 

PLA/PBAT blends, the limits of the co-continuity region in this system were determined. The 

results indicate that PLA/PBAT has a wide symmetric co-continuity region which is located 

between 30-40 and 60-70 vol.% of PBAT.  

The effects of thermodynamic and kinetic parameters on the localization of silica particles in 

PLA/PBAT blends were studied. It was shown that the addition of silica particles to PLA/PBAT 

does not affect the partial miscibility in this system. Using the measured surface energy data and 
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Young’s model, the thermodynamic equilibrium localization of the silica particles was predicted 

to be in the PBAT phase. When the particles were added to a PLA/PBAT melt, both micro- and 

nano-silica were selectively encapsulated by the PBAT phase due to the lower interfacial tension 

of PBAT/silica compared to that of PLA/silica. The effect of kinetic parameters was imposed by 

the premixing of the silica particles with the PLA phase. When micro- and nano-silica were 

initially dispersed in a low viscosity PLA phase, they were localized at the interface rather than in 

the PBAT phase. A semi-empirical model is proposed to determine the effects of thermodynamic 

and kinetic parameters on the migration velocity of the particles at the interface. It was shown 

that the observed stable localization of the silica particles at the interface of PLA/PBAT pertains 

to the very low migration velocity of the particles at the interface, which originates from the low 

interfacial tension of PLA/PBAT. By increasing the viscosity of the PLA phase, nano-silica 

particles were still localized at the interface but micro-silica particles could not migrate to the 

interface and remained in the PLA phase. Increasing the shear rate enhanced the migration of 

micro-silica particles from the high viscosity PLA phase to the interface. These results indicate 

that the migration of micro-silica particles to the interface is significantly influenced by the film 

draining time between the particles and the interface. 

The migration and localization of micro- and nano-silica particles in a high interfacial 

tension blend of PLA/LDPE was also studied. The surface of the micro-silica particles was 

modified by the grafting of (2-Dodecen-1-yl) succinic anhydride using a new gas phase reaction 

approach. The effect of the reaction time was studied by measuring the water contact angle of the 

modified powder at different reaction times. It was found that by increasing the reaction time, the 

surface energy of the particle decreased and reached a plateau after 90 minutes. Surface energy 

measurements and XPS analysis confirmed the presence of the reactant molecules on the surface 

of the particles. Using Young’s model, the thermodynamic equilibrium localizations of 

unmodified and modified silica particles were determined to be in the PLA phase and at the 

interface, respectively. When unmodified silica particles or modified micro-silica particles were 

added to a melt of PLA and a high viscosity LDPE, the unmodified silica particles were localized 

into the PLA phase while modified micro-silica particles were located in the LDPE phase. This is 

due to the preferential encapsulation of the particles by the phase with which they have the lowest 

interfacial tension. The effects of kinetic parameters were studied by premixing silica particles 

with the LDPE phase followed by mixing with PLA. Using this mixing strategy, both modified 

 



  131 

and unmodified micro-silica particles were localized in the LDPE phase. Decreasing the viscosity 

of the LDPE phase enhanced the migration of these particles to their thermodynamic equilibrium 

localizations but increasing the shear rate did not have a considerable effect on their localization. 

These results indicate that the LDPE film draining between the particles and the interface plays a 

critical role in inhibiting the migration of unmodified and modified micro-silica particles to their 

thermodynamic equilibrium localizations. On the other hand, when nano-silica was initially 

dispersed into the high viscosity LDPE phase, individual well-dispersed nano-silica particles 

could migrate to the PLA phase under all the conditions studied, while nano-silica aggregates 

remain in the LDPE phase. Increasing the shear rate enhanced the dispersion and migration of 

nano-silica particles. These results highlight the importance of achieving a good dispersion in 

controlling the localization of nanoparticles. Moreover, it can be concluded that the localization 

of well-dispersed nano-particles in a high interfacial tension polymer blend system is not 

significantly influenced by the kinetic effects. 

Comparing the obtained results in the low (PLA/PBAT) and high (PLA/LDPE) interfacial tension 

blends suggests that in both systems the addition of silica particles after the melting of the 

polymers results in the localization of the particles in the phase with which they have the lowest 

interfacial tension. When micro-silica particles are premixed into the phase with lower affinity, 

the migration of micro-silica particles to the interface is controlled by the film draining step 

between the particles and the interface. On the other hand, in both the systems studied, individual 

well-dispersed nano-silica particles could migrate readily to the interface, irrespective of the 

viscosity. However, in the low interfacial tension blend, both micro- and nano-silica particles 

experience a very low migration velocity at the interface, which results in a non-equilibrium 

thermodynamic localization of the particles at the interface. 

8.2 Original Contributions 

Several major scientific contributions of this work are listed below. 

In the first part of this research study: 

• For the first time, it was demonstrated that PLA/PBAT exhibits a limited one-way partial 

miscibility of PBAT in the PLA-rich phase. This partial miscibility was shown to depend 

strongly on the molecular weight and has a strong entropic nature. 
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• SEM with a LABE detector was used for the first time in the analysis of the morphology of 

polymer blends. The results indicate that LABE can provide much higher phase contrast 

compared to the conventional SEM technique. This provides valuable information, especially 

in the analysis of blends with a co-continuous morphology. 

• It was clearly shown that PLA/PBAT has a fibrillar morphology, even at 1 vol.% of the 

dispersed phase. 

• Using a rheological approach, the limits of the co-continuity region in PLA/PBAT were 

quantitatively determined for the first time. 

In polymer blends containing silica particles: 

• The wide range of thermodynamic and kinetic parameters that were studied in this work 

allowed us to achieve a detailed mechanism of the migration process that can explain clearly 

the role of different parameters involved in the migration. Such a detailed mechanism was 

lacking in the literature. The knowledge obtained on the role of these parameters will provide 

a high level of control in the localization of solid particles, which has not been achieved so far 

in the literature. As a result, in this work, silica particles could be localized in either phase or 

at the interface in both studied high and low interfacial tension blends. 

• It was found that the addition of solid particles to a melt of polymer blend results in the 

preferential encapsulation of the particles by the phase with which they have the lowest 

interfacial tension. This encapsulation occurred at the early stages of mixing irrespective of 

the viscosity of the phases, particles size and surface energy of silica. 

• The critical role of the film draining step between micro-particles and the interface was 

highlighted in this study for the first time. 

• It was shown that the migration of well-dispersed nano-particles in a high interfacial tension 

blend is not affected by the kinetic parameters. However, achieving a good dispersion can be 

a limiting factor in controlling the localization of nano-particles. 

• It was found that the migration of solid particles at the interface is a significant kinetic barrier 

in low interfacial tension systems. 

• The proposed model for the migration velocity at the interface, to our knowledge, is the only 

model existing in the literature that can show, at least semi-quantitatively, the relative effects 
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of thermodynamic and kinetic parameters on the migration velocity of solid particles at the 

interface of a multiphase system. 

•  A new gas phase reaction approach was introduced for the modification of silica, which 

eliminates the difficulties regarding using a solvent in the surface modification of silica.  

8.3 Recommendations for Future Works 

Based on the obtained results in the present study, the following recommendations are proposed 

for future works: 

1. Despite the low interfacial tension of partially miscible blends, increasing the composition 

results in a considerable coarsening of the dispersed phase in these systems. Further 

investigations are required to understand the nature of this behavior. 

2. The obtained results indicate the possibility of enhancing the compatibility of PLA and 

PBAT by the addition of a lower molecular weight fraction of the polymer components to 

the blend. It will be interesting to study this approach in improving the mechanical 

properties of PLA/PBAT blends. 

3. It will be interesting to study the effect of the shape and aspect ratio of solid particles on 

their migration and localization in polymer blends. However, the selected particles should 

have similar surface energies to isolate the effect of the kinetic parameters from the 

differences in the thermodynamic affinity. The two following systems are proposed: 

i.  Comparing the localization and migration of spherical nano-silica and unmodified 

montmorillonite clay: the dispersion of montmorillonite is very difficult due to the 

strong inter-layer bond in its structure. To overcome this issue, it is proposed to 

disperse montmorillonite particles in a water-soluble polymer (such as PEO) in 

water followed by the sonication of the mixture. After the water has evaporated, a 

highly dispersed mixture of polymer/ montmorillonite will be obtained that can be 

used in the experiments. 

ii. Comparing the localization and migration of graphene and carbon nanotube: a 

similar approach as mentioned for montmorillonite can be used to minimize the 

effect of dispersion on the localization. 

4. Although the internal batch mixer can provide much better control during mixing 

(compared to the extruders) the flow field inside the batch mixer is not a pure shear flow. 
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To study the effect of shear flow on the migration, it is proposed to study the localization 

in a blend of two polymers that have much different melting temperatures (Tm). For 

example, studying the migration of hydrophilic silica in PP/EVA could be a good model 

system. The particles should be premixed in the PP phase (which has a higher Tm). A 

powder of this mixture can be obtained by grinding it in liquid nitrogen. Then, this 

powder can be added to EVA in a batch mixer at temperatures above the Tm of EVA (but 

much less than the Tm of PP). This will prevent the melting of the PP phase and, as a 

result, the particles will remain in the PP phase. The disk samples then can be prepared by 

compression molding of the blend above the Tm of EVA. The obtained disk samples can 

then be used to study the migration under pure shear in a rheometer at temperatures above 

the Tm of the PP phase. 

5. Studying the localization and migration of micro- and nano-silica particles in a twin-

screw extrusion would be an interesting future work as it would provide information 

regarding the effect of the processing method (as another controlling tool) on the 

localization of silica particles. 

6. Recent studies revealed the great potential of ternary polymer blends in producing much 

wider properties compared to binary systems. It will be interesting to study the effect of 

thermodynamic and kinetic parameters on the localization and migration of solid particles 

in a ternary polymer blend. 
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ANNEX 1 SUPPORTING INFORMATION FOR ARTICLE 1 

A.1.1. Migration Velocity at the Interface 

In the dynamic wetting phenomena, the displacement velocity of the three-phase contact line can 

be estimated as [1, 2]: 

𝑽 = 𝑭
ξ𝑳

            Eqn. 1 

Where F is the thermodynamic driving force, L is the length of the three-phase contact line 

(which is shown as the red line in the Figure A.1.1 (b)) and ξ is the friction coefficient.  

 

Figure  1.1. (a) 2D and (b) 3D schematic of the geometry of a spherical particle at the interface, 

The red line in (b) shows the three-phase contact line on the surface of silica. x is the penetration 

depth of the particle into the PBAT phase and  a=�𝑥(2𝑅 − 𝑥)  

The work done by the thermodynamic driving force in displacing the three-phase contact line is 

equal to the change in the interfacial free energy of the system: 

 dW= -dG= F(x)×dx          Eqn. 2 
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Where W is the work done by the thermodynamic driving force at the three-phase contact line, 

dG is the change in the interfacial free energy of the system, F is the thermodynamic driving 

force and x is the penetration depth in the PBAT phase (shown in Figure A.1.1). 

The negative sign for dG in Equation 2 is due to the fact that the movement of the particle toward 

the thermodynamic equilibrium location reduces the interfacial free energy of the system. The 

thermodynamic driving force then can be defined as: 

𝑭(𝒙) = −𝒅𝑮
𝒅𝒙

            Eqn.3 

The interfacial free energy of a system with a spherical particle of radius R at the interface can be 

written as[3]: 

𝐆 = 𝛄𝟏𝐒.𝐀𝟏𝐒 + 𝛄𝟐𝐒.𝐀𝟐𝐒 − 𝛄𝟏𝟐.𝐀𝟏𝟐∗        Eqn.4 

Here, A1s, A2s and A12* are the interfacial areas between: polymer 1 and solid, polymer 2 and 

solid and the subtracted interfacial area from the interface of polymer 1 and 2 due to the presence 

of the solid particle at the interface. In the case of spherical particles at the interface, as can be 

seen in Figure A.1.1, the geometry of the part of the particle located in either phase represents a 

“spherical cap” and therefore the values of A1S, A2S and A12* can be calculated as: 

𝐀𝟏𝐒 = 𝟒𝛑𝐑𝟐 − 𝟐𝛑𝐑𝐱         Eqn.5 

𝐀𝟐𝐒 = 𝟐𝛑𝐑𝐱           Eqn.6 

𝐀𝟏𝟐∗ = 𝛑(𝟐𝐑𝐱 − 𝐱𝟐)          Eqn.7 

Substituting these values into equation 4 results in: 

𝑮 = 𝟐𝝅𝑹 �(𝟐𝑹 − 𝒙)𝜸𝟏𝒔 + 𝒙.𝜸𝟐𝒔 − (𝒙 − 𝒙𝟐

𝟐𝑹
)𝜸𝟏𝟐�      Eqn.8 

According to Equation 2, the thermodynamic driving force (F(x)) can then be determined by 

differentiating Equation 8 with respect to x: 

𝑭(𝒙) = −𝟐𝝅𝑹�𝜸𝟐𝒔 − 𝜸𝟏𝒔 − (𝟏 − 𝒙
𝑹

)𝜸𝟏𝟐�       Eqn.9 
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The thermodynamic driving force per the length of the three-phase contact line (F/L in Equation 

1) at any penetration depth (x) then can be determined as: 

𝑭(𝒙)
𝑳(𝒙)

= 𝑭(𝒙)
𝟐𝝅�𝒙(𝟐𝑹−𝒙)

= −𝑹
�𝒙(𝟐𝑹−𝒙)

�𝜸𝟐𝒔 − 𝜸𝟏𝒔 − (𝟏 − 𝒙
𝑹

)𝜸𝟏𝟐�      Eqn.10 

where 2𝜋�𝑥(2𝑅 − 𝑥) is the length of the three-phase contact line at any x. To estimate the 

friction coefficient (ξ) in Equation 1, the theory of Blake and De Conick [1, 2] for the friction 

coefficient in dynamic wetting can be extended to consider the effect of viscosity and surface 

energy of the second liquid phase as another energy dissipation mechanism at the three-phase 

contact line: 

ξ = η𝟏 ν𝟏
λ𝟑

𝐞𝐱𝐩 �𝑾𝟏𝑺λ𝟐

𝒌𝑩𝑻
� + η𝟐 ν𝟐

λ𝟑
 𝐞𝐱𝐩 (𝑾𝟐𝑺λ𝟐

𝒌𝑩𝑻
)       Eqn. 11 

where η, ν, λ, WLS, T and kB are the viscosity of the liquid phases, molecular volume of the 

liquid phases, the length scale of individual molecule displacement at the three-phase contact 

line, the work of adhesion between the liquid phases and solid, temperature and the Boltzmann 

constant. The migration velocity at the interface can then be estimated by substituting Equations 

10 and 11 into Equation 1:  

𝑽 =
−𝑹λ𝟑�𝜸𝟐𝒔−𝜸𝟏𝒔−(𝟏−𝒙𝑹)𝜸𝟏𝟐�

�𝒙(𝟐𝑹−𝒙)�η𝟏 ν𝟏 𝐞𝐱𝐩�
𝑾𝟏𝑺λ𝟐

𝒌𝑩𝑻
�+η𝟐 ν𝟐 𝐞𝐱𝐩 (𝑾𝟐𝑺λ𝟐

𝒌𝑩𝑻
)�

      Eqn.12 
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ANNEX 2 EFFECTS OF DIFFERENT LOCALIZATIONS OF MICRO- 

AND NANO- SILICA PARTICLES ON MORPHOLOGY, RHEOLOGY 

AND MECHANICAL PROPERTIES OF POLY(LACTIC 

ACID)/POLY(BUTYLENE ADIPATE-CO-TEREPHTHALATE) 

BLENDS* 

 

A.2.1. Introduction 

The addition of solid inclusions to polymer blends has been shown as an effective method to 

achieving a balance between toughness and stiffness [1-6, 38]. Moreover, with systems that 

display double and multiple percolation phenomena, the addition of conductive solid particles to 

polymer blends to achieve a semi-conductive material has also received much attention [7, 8]. 

Nanoparticles, in particular, have significant potential to improve the mechanical and/or electrical 

properties at much lower solid contents due to their much higher specific surface area.  

The localization of nanoparticles is one of the key parameters in achieving property control in 

multiphase systems incorporating nanoparticles [1, 2, 9-11]. It has been shown that the 

localization of solid particles in a dispersed rubbery phase increases the dispersed phase size due 

to increasing the viscosity and elasticity of the dispersed phase [5, 12, 13]. At higher solid 

contents, the localization of the solid particles in the dispersed phase can promote the continuity 

of the dispersed phase by the formation of a 3D network of solid particles [14-17]. The 

localization of solid particles in the matrix phase has also been shown to reduce the dispersed 

phase size by diminishing coalescence through increasing the viscosity of the matrix and a solid 

barrier mechanism [2, 6, 18].  In the solid barrier mechanism, solid particles in the matrix that are 

trapped between two colliding droplets act as a solid barrier and prevent the coalescence of the 

droplets. The localization of solid particles at the interface of polymer blends has particularly 

received much attention [8, 19]. It has been reported that the localization of solid particles at the 

interface in polymer blends reduces significantly the dispersed phase size by the solid barrier 

mechanism [20, 21] and can even enhance the interfacial interactions between polymeric phases 

[22-26]. Moreover, the localization of solid particles at the interface has been shown to affect the 

rheological behaviour of polymer blends [27, 28].  

*In preparation for ACS Applied Materials and Interfaces.  
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In the previous study [29], the effects of thermodynamic and kinetic parameters on the 

localization of micro- and nano- silica particles in a low interfacial tension blend of poly(lactic 

acid), PLA,/poly(butylene-adipate-co-terephthalate), PBAT, were studied and using different 

mixing strategies, viscosity of the PLA phase and the particle size of silica, different localizations 

of micro- and nano-silica particles could be achieved. In this study, the effects of different 

localizations of silica particles on the morphology, rheology and mechanical properties of 

PLA/PBAT will be studied. To this aim, the morphology and rheology of PLA/PBAT blends 

with micro- and nano-silica particles localized in the PBAT phase and at the interface were 

examined. In addition, the rheology and morphology of the blend with micro-silica localized into 

the PLA phase was studied. The effect of different localizations on the morphology and rheology 

was discussed in detail. Finally, mechanical properties of PLA/PBAT blends with nano-silica 

particles localized into the PBAT phase and at the interface were examined. 

 

A.2.2. Experimental 

A.2.2.1. Materials 

PLA 3001D and PLA 2003D (Natureworks) were purchased from Cargil and will be referred 

hereafter as L-PLA and H-PLA respectively. PBAT (Ecoflex FBX 7011) was purchased from 

BASF. Spherical micro- and nano- silica particles, SEAHOSTAR KE-P30 and KE-P10, were 

purchased from Nippon Shokubai, Japan. The average diameters of the individual spherical silica 

particles for micro- and nano-silica are 300 nm and 100 nm, respectively. All the materials were 

dried under vacuum at 60 OC overnight before being used in the experiments. 

 

A.2.2.2. Blend preparation 

All samples were prepared using an internal batch mixer (Plasti-Corder DDR501, Brabender) 

with the total mixing chamber volume of 30 cm3 at 180 oC under a nitrogen blanket. The average 

shear rate at the mixing speed of 50 RPM used in this study was estimated as 25 s-1 [30]. Two 

mixing strategies were used: 

Pr1) the addition of the particles to a PLA/PBAT melt (one step process) 

Pr2) premixing silica particles with PLA followed by mixing with PBAT (two-step process). 
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After 10 minutes of mixing, the chamber was opened and the samples were rapidly frozen in ice-

water to freeze-in the morphology and localization of silica particles. The wt.% of silica particles 

added to the blends is based on the total weight of the blend. 

 

A.2.2.3. Atomic force microscopy (AFM) 

The samples were cut and microtomed under liquid nitrogen using a microtome (Leica-

Jung RM 2165). The AFM machine was equipped with a scanning probe microscope Dimension 

3100 with a Nanoscope IVa controller from Veeco Instruments. Silicon tips, model ACTA-W 

from AppNano, with the tip radius less than 10 nm were used in this study. The morphologies of 

the samples were determined by Tapping mode AFM in air. Because of the difference in the 

modulus of PLA and PBAT, tapping phase AFM is used to determine the morphology of the 

blend samples. The localization of silica particles in the blends samples was determined using 

both height and phase images obtained from AFM analysis. 

 

A.2.2.4. Field emission scanning electron microscopy (FE-SEM) 

In order to determine the morphology and the localization of silica particles, samples from the 

internal batch mixer were fractured in liquid nitrogen then the sample surface was coated with 

gold and the morphology was observed with the Field Emission Scanning Electron Microscope 

(FE-SEM, JSM 7600F, JEOL). 

 

A.2.2.5. Image analysis 

In order to determine the average dispersed PBAT fiber diameter, commercial image analysis 

software (SigmaScan Pro. V.5, Sigmaplot) was used. The average dispersed PBAT fiber size was 

determined from an average number of 200 dispersed phase fibers in AFM images. To consider 

the effect of fiber alignment on the observed cross-section of PBAT fibers, a new approach based 

on the measuring of the smallest diameter of the cross-section of PBAT fibers in the microtomed 

surface was used [31].  
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A.2.2.6. Rheological analysis 

All the samples were compression moulded at 180 oC and at 300 kPa in the form of 1.2 mm thick 

disks of 25 mm diameter under a nitrogen blanket. The rheological analysis was done using a 

constant stress rheometer (Physica MCR 301, Anton Paar) with 25 mm parallel plate geometry at 

a 1 mm gap at 180 oC under nitrogen atmosphere. All the samples were kept at 180oC for 5 

minutes in the rheometer before performing the rheological tests. The stability of L-PLA, H-PLA 

and PBAT was studied under the test conditions using a time sweep test and a less than 7% drop 

in the complex viscosity and storage modulus was observed in the experimental time scale. 

Moreover, the linear viscoelastic region was determined using strain sweep tests for the neat 

polymers and the polymer blend samples at different frequencies. According to the obtained 

results, the frequency sweep tests for neat polymers and polymer blends were performed at 

strains of 5% and 1% respectively.  

 

A.2.2.7. Tensile properties 

Samples were prepared using compression moulding at 180oC and 300 kPa under nitrogen 

atmosphere. The samples were conditioned for 24h at 22oC and 50% humidity. Tensile tests were 

performed according to ASTM D638 on an Instron 3365 tensile machine equipped with 5kN load 

cell at a cross-head speed of 50mm/min. An average and standard error based on 10 

measurements are reported for each sample. 

 

A.2.2.8. Notched impact strength 

Samples were prepared and conditioned as of the tensile test samples. The samples dimensions 

were 64×12×3.4 mm. The tests were performed using an Izod impact pendulum (Ceast 6545) 

according to ASTM D256. The reported values are based on seven measurements for each 

sample. 

 

A.2.3. Results and Discussion 

A.2.3.1.Rheological Characterization 
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Figure A.2.1 shows the complex viscosity and the storage modulus of L-PLA, H-PLA, PBAT and 

their mixtures with micro- and nano-silica particles. As can be seen, all neat polymers show 

Newtonian plateau at low frequencies. The addition of 4.3 wt.% of micro-silica to the H-PLA 

phase slightly increased the zero-shear viscosity but did not change the viscosity at the processing 

condition.  

 

Figure A.2.1. The complex viscosity and storage modulus of H-PLA, L-PLA, PBAT and their 

mixtures with micro- and nano-silica: (■) H-PLA, (□) H-PLA with 4.3 wt.% micro-silica, (◆) L-

PLA, (●) PBAT, (●) PBAT/10 wt.% micro-silica, (▲) PBAT/10 wt.% nano-silica 

However, 10 wt.% of micro-silica particles in the PBAT phase increased the viscosity and 

resulted in a non-terminal behaviour at low frequencies. The upturn in the viscosity and non-

terminal behaviour were much pronounced when nano-silica was added to the PBAT phase. 

These results point to the formation of a structure of micro- or nano-silica in the PBAT phase at 

10 wt.% of silica.  

 

A.2.3.1. Localization of Silica Particles 

In the previous study[32], using the measured surface energies of the polymer components and 

the estimated surface energy of the silica particles, thermodynamic equilibrium localization of 

silica particles was well-established to be in the PBAT phase.   However, different localizations 

of micro- and nano-silica particles could be achieved by changing the mixing strategy and the 

viscosity of the PLA phase. Figure A.2.2 shows the different localizations of micro- and nano-

silica obtained in the previous study. 
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Figure A.2.2. Different localizations of micro- and nano-silica particles in PLA/PBAT (70/30). 
As can be seen, micro-silica could be localized in either phase or at the interface but nano-silica 

could only be localized in the PBAT phase and at the interface.  

A.2.3.2. Effect of the Localization of Micro-silica in the PLA Phase 

By premixing micro-silica with H-PLA phase, the particles remained in the H-PLA phase, Figure 

A.2.2(c). Figure A.2.3 compares the morphology of H-PLA/PBAT(70/30) blend and the blend 

with micro –silica prepared by Pr2.  

 

Figure A.2.3. The effect of the localization of micro-silica particles in the PLA phase on the 

morphology of H-PLA/PBAT(70/30): (a) 0 wt.% of micro-silica, 3 wt.% of micro-silica. 
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As can be seen in Figure A.2.2(c), the micro-silica particles in this system are selectively 

localized in the PLA phase. Comparing the continuity of the PBAT phase in these samples can 

help to better understand their morphologies. However, due to the very similar solubility 

parameters of PLA and PBAT, the solvent extraction is not an option in determining the 

continuity of the PBAT phase. In the previous study on the morphology of PLA/PBAT blend 

[31], the rheological analysis was shown to be a promising method in distinguishing a 

dispersed/matrix morphology from a co-continuous morphology in PLA/PBAT. Figure A.2.4 

shows the rheological properties of H-PLA/PBAT with micro-silica localized in the PLA phase. 

 

Figure A.2.4. The effect of localization of micro-silica particles in the H-PLA phase on the 

rheological properties of H-PLA/PBAT (70/30) (■) and H-PLA/PBAT (70/30) with 3 wt.% of 

micro-silica(●). 

 

As can be seen, the localization of micro-silica particles in the H-PLA phase did not considerably 

change the rheological behavior of H-PLA/PBAT. The storage modulus of the neat H-

PLA/PBAT(70/30) blend shows a clear shoulder at low frequencies which is attributed to the 

droplet relaxation of the PBAT dispersed phase. The droplet relaxation can be better seen in 

Cole-Cole plot of these samples which plots the imaginary component of the complex viscosity 

(η”) versus its real component (η’). The arc on the left side in Cole-Cole plots shows the 
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relaxation of polymer chains and the one on the right side is related to the droplet relaxation of 

the dispersed PBAT phase [33].The droplet relaxation peak can be seen in both samples with and 

without micro-silica particles which indicates that the morphology of this blend is a 

matrix/dispersed morphology. However, the results of the image analysis indicate that the 

addition of micro-silica reduced the PBAT fiber diameter from 2.3 µm to 1.5 µm. As the 

presence of micro-silica in the H-PLA phase does not change the viscosity of H-PLA 

considerably, Figure A.2.1, therefore the observed reduction in the PBAT phase size should be 

attributed to the solid barrier effect of the particles. 

A.2.3.2. Localization of Micro- and Nano-silica in the PBAT Phase 

Figure A.2.5 shows the effect of localization of 3 wt.% of micro- and nano-silica in the PBAT 

phase in L-PLA/PBAT(70/30) blends. The localization of micro- and nano-silica in these samples 

are shown in Figure A.2.2 (a,d). 

 

Figure A.2.5. The effect of the selective localization of micro- and nano-silica in the PBAT phase 

in L-PLA/PBAT (70/30): (a) the neat blend, (b) the blend with 3 wt.% of micro-silica, (c) the 

blend with 3 wt.% of nano-silica. 
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As can be seen, the localization of micro- and nano-silica particles in the PBAT phase increases 

the PBAT phase size. This effect is much more pronounced for the system with nano-silica. As 

the larger PBAT phase size in these samples cannot be attributed to the effect of particles on the 

viscosity at the processing condition, Figure A.2.1, the observed coarsening of the dispersed 

phase is attributed to the retardation of the breakup of dispersed phase in the presence of solid 

particles [16, 34]. 

Figure A.2.6 shows the rheological properties of L-PLA/PBAT blend and the blend with micro- 

and nano-silica localized into the PBAT phase. As can be seen, the selective localization of 

micro- and nano-silica particles in the PBAT phase slightly increased the viscosity, Figure 

A.2.6(a), and shifted the droplet relaxation in Cole-Cole plot to lower frequencies, Figure A.2.6 

(c). However, the droplet relaxation peak can still be observed which indicates that the PBAT 

phase exists in the form of separated domains rather than a continuous structure. 

 

Figure A.2.6. The effect of the localization of micro- and nano-silica in the PBAT phase on the 

rheological properties of L-PLA/PBAT (70/30) blend. (■) the neat blend, (●) the blend with 3 

wt.% of micro-silica, (▲) the blend with 3 wt.% of nano-silica.  
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A.2.3.2. Localization of Micro- and Nano-silica at the Interface 

The morphology of L-PLA/PBAT(70/30) blend and the blend with micro- and nano-silica 

particles localized at the interface are shown in Figure A.2.7. As can be seen, a matrix/dispersed 

morphology can be seen in the sample with micro-silica but the sample containing nano-silica 

shows a co-continuous morphology. The rheological analysis can be again used to compare the 

continuity level of the PBAT phase in these samples. The rheological properties of the blend 

samples with 3 wt.% of micro- and nano- silica particles are shown in Figure A.2.8. 

 

Figure A.2.7. The localization of micro- and nano-silica in PLA/PBAT(70/30): (a) neat blend, (b) 

3 wt.% of micro-silica, (c) 3 wt.% of nano-silica. 
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Figure A.2.8. The rheological analysis of L-PLA/PBAT(70/30) blends with micro- and nano-

silica particles localized at the interface, (a) complex viscosity, (b) storage modulus, (c) Cole-

Cole plot. (■)L-PLA/PBAT(70/30) blend,(●)the blend with 3 wt.% of micro-silica, (▲)the blend 

with 3 wt.% of nano-silica, (▼) L-PLA/PBAT(50/50). The subplot in (c) shows the full range of 

the data.  

 

The storage modulus of L-PLA/PBAT(70/30) shows a clear shoulder at low frequencies which is 

attributed to the droplet relaxation of the PBAT dispersed phase. The droplet relaxation arc can 

be clearly seen in Cole-Cole plot of L-PLA/PBAT(70/30) which confirms the matrix/dispersed 

morphology in this sample. Despite the presence of the droplet relaxation arc in the blend with 

micro-silica particles, this arc was clearly shifted toward lower frequencies. This indicates that 

the presence of micro-silica at the interface retarded the PBAT droplet relaxation. In the blend 

sample with nano-silica particles at the interface, the droplet relaxation arc was disappeared in 

Cole-Cole plot and a gel-like behaviour was observed in the complex viscosity and storage 

modulus of the sample. Both SEM image (Figure A.2.7c) and the disappearance of the droplet 
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relaxation point to the formation of a continuous structure of the PBAT phase in this sample. The 

rheological properties of L-PLA/PBAT(50/50), which was shown to have a co-continuous 

morphology[31], is also shown in Figure A.2.8. It can be seen that by the formation of the 

continuous PBAT structure in L-PLA/PBAT(50/50), the droplet relaxation arc was disappeared 

in Cole-Cole plot; however, no gel-like behaviour was observed in the complex viscosity and 

storage modulus of this sample. Therefore, the formation of a 3D continuous structure of the 

PBAT phase cannot be responsible for the observed gel-like behaviour in the L-

PLA/PBAT(70/30) blend with 3 wt.% of nano-silica localized at the interface. These results 

indicate that the observed gel-like behaviour should be attributed to the formation of a 2D 

network of nano-silica particles at the PLA/PBAT interface.  

In the previous study[31], it was found that the limits of co-continuity in L-PLA/PBAT are 

located between 30-40 and 60-70 vol.% of PBAT. Therefore, the addition of nano-silica particles 

to L-PLA/PBAT(70/30) has shifted the limit of co-continuity in this sample. However, as the 

particles are localized at the interface, the observed shift cannot be attributed to the shift in the 

composition of the PBAT phase. Moreover, in the previous section, it was shown that even the 

selective localization of nano-silica in the PBAT phase did not result in the formation of a 

continuous PBAT structure in the blend. The effect of nano-silica particles on shifting the limit of 

continuity of the PBAT phase to lower compositions can be attributed to the stabilization 

mechanism of nano-silica particles.  Figure A.2.9 shows the proposed stabilization mechanism 

for nano-silica particles. 

 

Figure A.2.9. Stabilization mechanism of the PBAT dispersed phase in the blend with nano-silica 

localized at the interface: (a) a PBAT fiber with nano-silica at the interface, (b) deformation of 

the PBAT fiber by hydrodynamic forces, (c) stabilization of the deformed PBAT fiber by 

migration of nano-silica from PLA. 
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In this mechanism, a new PLA/PBAT interface is created due to the deformation of the PBAT 

phase by the hydrodynamic forces. The long relaxation and breakup time of the dispersed phase 

in low interfacial tension PLA/PBAT [35, 36] allows nano-silica particles to migrate and stabilize 

the newly created interface. This will result in the stabilization of the elongated PBAT thread and 

prevents its retraction and breakup. As this process repeats, it results in the formation of a highly 

elongated stabilized PBAT phase. Eventually the coalescence of these highly elongated dispersed 

PBAT fibers results in the formation of a continuous PBAT structure at lower compositions. 

  

A-2.3.3. Effect of different Localizations of Nano-silica Particles on the Mechanical 

Properties 

Figure A.2.10 and Table A.2.1 show the effect of different localizations of nano-silica particles 

on the tensile properties of L-PLA/PBAT(70/30) blends.  

 

Figure A.2.10. The effect of different localizations of nano-silica particles on the tensile stress-

strain curve of L-PLA/PBAT(70/30). 

 

Table A.2.1. The effect of different localizations of nano-silica on the mechanical properties of L-

PLA/PBAT(70/30)  
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Sample Tensile Modulus 
(MPa) 

Tensile 
Strength(MPa) 

Elongation at 
Break (%) 

Izod impact 
strength (J/m) 

L-PLA 2040±36 62.5±2.3 4.2± 1 22±5 
L-PLA/PBAT 1643±53 45.7±4.1 171±18 55±8 
L-PLA/PBAT-
Pr1 

1724±28 47±3.5 108±24 38±7 

PLA/PBAT-
Pr2 

1135±47 38±2.7 319±42 260±18 

It can be seen that blending PLA with PBAT improved the elongation at break and impact 

strength but, at the same time, it reduced the modulus and tensile strength. The localization of 

nano-silica particles in the PBAT phase increased slightly the modulus and tensile strength but 

reduced the elongation at break and impact strength. The localization of the particles at the 

interface reduced the tensile modulus and strength compared to the blend but improved 

significantly the elongation at break and impact properties. These results can be attributed to the 

formation of a highly continuous structure of PBAT in the blend sample as in highly continuous 

structures, both phases fully contribute to the tensile properties of the sample [37]. Interestingly, 

the localization of nano-silica particles at the interface increased the impact strength by a factor 

of 4.7 compared with the neat blend. The observed increase in the impact properties can be 

attributed to the formation of 3D network of PBAT phase. In addition, the localization of silica 

particles at the interface increases the work of adhesion between the phases. This can also 

improve the stress transfer and impact strength in this blend. 

 

A-2.4. Conclusion 

The effect of different localizations of micro- and nano-silica particles on the morphology 

and rheology of PLA/PBAT(70/30) was studied. The results indicate that the localization of 

micro-silica in the PLA phase reduced the dispersed phase size but did not affect the rheological 

properties. The localization of micro- and nano-silica particles in the PBAT phase promoted the 

formation of a continuous PBAT structure in the blend. This was attributed to the effect of the 

particles on the viscosity of PBAT and also on the retardation of the relaxation and breakup of the 

PBAT phase. When the particles were localized at the interface, micro-silica particles only 

shifted the droplet relaxation, however, no droplet relaxation was observed in the blend with 

nano-silica particles at the interface. Moreover, a gel-like behaviour was observed in the complex 
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viscosity and storage modulus of this sample. These results point to the formation of a continuous 

PBAT structure in this sample. This observation was attributed to the stabilization effect of the 

nano-silica particles which prevents the retraction and breakup of the PBAT phase. This results in 

the formation of a highly elongated PBAT phase which promotes the development of the 

continuity of PBAT. The formation of the co-continuous morphology of PLA/PBAT improves 

the elongation at elongation and impact properties significantly. This can be attributed to the 

formation of 3D network of PBAT phase and also increase in the interfacial adhesion due to the 

localization of nano-silica particles at the interface. 
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ANNEX 3 COMPATIBILIZATION OF PLA-PBAT INTERFACE BY SOLID 

STATE SHEAR PULVERIZATION (SSSP) 

 

According to the previous studies in the literature, the addition of PBAT to PLA enhances the 

elongation at break but does not improve the impact properties considerably[1-4]. For instant, 

Jiang et al. [1] showed that the addition of 20 wt.% of PBAT increased the elongation at break of 

PLA from 4% to more than 200% but could only enhance the impact strength by a factor of 1.7. 

These results indicate that despite the low interfacial tension between PLA and PBAT, the 

interfacial adhesion between them is not high enough to withstand the high deformation rates in 

the impact tests. The addition of comnpatibilizers is a well-known method to enhance the 

interfacial adhesion and impact strength in multiphase systems [5]. However, due to the very 

similar nature of PLA and PBAT, finding a compatibilizer that can be effectively situated at 

PLA-PBAT interface is challenging. The best choice for the compatibilizer is obviously the block 

copolymer of PLA and PBAT but this copolymer has not been synthesized yet. Solid state shear 

pulverization (SSSP) is a method in which two polymers are pulverized at the temperature much 

lower than their melting point. The applied mechanical forces results in the chain scission and 

formation of radicals on the surface of polymer powder particles. It has been shown that due to 

collision of polymer powder particles of two different polymers, the radicals on their surface can 

react and form a block or segmented copolymer of the polymers [6]. Due to its simplicity and low 

final cost, comparing with the synthesis of a new copolymer, researchers have been motivated to 

apply this method to compatibilize the interfaces between synthetic polymers[7, 8] and even the 

interfaces of polymers with solid particles [9-11]. The formation of the copolymers in this 

method has been experimentally proven but there is not much knowledge about controlling the 

final structure of the formed copolymer. Twin screw extruders with specific screw configurations 

are usually used in SSSP method but some authors have also used freezer mills[12] and showed 

that despite the lower efficiency of freezer mills, they still can be used as a simple method to 

produce block copolymers via SSSP. In this work, the SSSP method was employed to improve 

the interfacial adhesion between PLA (3001D) and PBAT (Ecoflex 7011 FBX). To this aim, two 

different strategies were used: 

(Procedure1) SSSP of PLA and PBAT granules separately. 
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(Procedure2) Simultaneous SSSP of PLA and PBAT granules. 

SSSP was done by a freezer/mill (6870, Spex SamplePrep) in a liquid nitrogen bath. The granules 

were milled in 15 cycles of 2 minutes long with 2 minutes of the cooling step after each cycle. 

The impact rate of 15 cps was used to prepare the samples. The obtained powders then were melt 

mixed with an internal batch mixer (Plasti-Corder DDR501, Brabender). All the blend samples 

contain 60 vol.% of PLA and 40 vol.% of PBAT. Rheological properties of PLA and PBAT 

powders after SSSP were found to be almost the same as the polymer granules. 

Figure A.3.1 shows the morphology of PLA/PBAT (60/40) prepared by the above mentioned 

strategies. 

 

Figure A. 3.1. The effect of different SSSP strategy on the morphology of PLA/PBAT(60/40): a) 

Procedure1, (b)Procedure 2 

 

 Comparing the morphology of these two samples reveals that, the morphology changed from a 

co-continuous morphology to a dispersed-matrix morphology. Note that the morphology of 

PLA/PBAT(60/40) was shown to be a co-continuous morphology in the previous study[13]. 

Considering the negligible change in the rheological properties of individually pulverized 

polymers, the obtained results indicate the suppression of coalescence after SSSP process. This 

can be attributed to the formation of PLA-PBAT copolymer at the interface reduces the 

coalescence rate in these systems. 
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These results indicate the potential of SSSP process as an economic and effective method in 

enhancing the interfacial adhesion and improving the mechanical properties in the systems with 

similar components such as PLA/PBAT. 

 

A-3.1. Conclusion 

Solid state shear pulverization (SSSP) was used as a method to enhance the interfacial adhesion 

between PLA and PBAT. It was found that the simultaneous pulverization of both PLA and 

PBAT granules changed the morphology from a co-continuous morphology to the matrix 

dispersed morphology. These results indicate that SSSP process could successfully be employed 

to compatibilize the interface of PLA/PBAT.  
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ANNEX 4 EFFECT OF MICRO-SILICA PARTICLES ON THE 

MORPHOLOGY OF PLA/H-LDPE BLENDS* 

The effects of the selective localization of micro-silica particles in the PLA phase on the 

morphology of PLA/H-LDPE blends are shown in Figure A.4.1. All the samples were prepared 

by the addition of micro-silica to the PLA/PBAT melts. In all samples, silica content is based on 

the PLA phase. The continuity diagrams of PLA/H-LDPE blends with different micro-silica 

contents are also shown in Figure A.4.2. 

 

Figure A. 4.1. The effect of the selective localization of micro-silica in the PLA phase at different 

silica contents on the morphology of PLA/H-LDPE blends. The silica contents are shown on the 

headers of the columns. The H-LDPE phase was extracted in PLA/H-LDPE(70/30); the PLA 

phase was extracted in PLA/H-LDPE(30/70) and (20/80). The white scale bars show 20 µm. 

*In preparation for Polymer Communication  
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Figure  4.2. The continuity development diagram in PLA/H-LDPE blends with different micro-

silica contents: (■)H-LDPE phase in the neat blend,(●) H-LDPE in the blend with 5 wt.% of 

micro-silica, (▲) H-LDPE in the blend with 15 wt.% of micro-silica, (□)PLA in the neat blend, 

(○) PLA in the blend with 5 wt.% of micro-silica, (△) PLA in the blend with 15 wt.% of micro-

silica. 

 

The localization of 5 wt.% of micro-silica in the PLA phase reduced the H-LDPE phase size and 

dropped the continuity level from 80% to 40%. Further increase in the micro-silica content 

decreased the continuity of H-LDPE phase to 25%. The reduction in the dispersed phase size by 

the localization of solid particles in the matrix has been attributed to two main mechanisms: (i) 

altered viscosity of the matrix and (ii) the solid barrier effect[1]. 

The increase in the viscosity of the matrix, due to the presence of the solid particles, increases 

significantly the film draining time between two dispersed phase droplets and, consequently, 

reduces the coalescence rate and the dispersed phase size[1, 2]. In the solid barrier mechanism, 

the coalescence of the dispersed phase droplets is prevented by the formation of a physical barrier 

of the particles between the colliding droplets [1-5]. 

The rheological properties of neat polymers and polymer/silica composites are shown in Figure 

A.4.3. As can be seen, the addition of even 15 wt.% of micro-silica particles to the PLA phase 

did not change considerably the viscosity and elasticity of this phase at the processing condition. 
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Figure A. 4.3. Complex viscosities and storage moduli of the neat polymer components and 

PLA/micro-silica mixtures at 180oC: (-) neat PLA, (▲)PLA with 5 wt.% of micro-silica, (■) PLA 

with 15 wt.% of micro-silica, (□) L-PE, (○) H-PE. The dashed line represents the average shear 

rate of mixing at 25 s-1[6]. 

 

Therefore, the most plausible explanation for the observed reduction in the H-LDPE phase 

continuity is the solid barrier mechanism.  

In the complementary blend of PLA/H-LDPE(30/70), the addition of 5 wt.% of micro-silica 

promoted the continuity development of the PLA phase and resulted in the formation of a co-

continuous morphology in this sample. Increasing the micro-silica content in this sample was 

found to reduce the size of the co-continuous structure. Similar effect of silica particles on the 

size of the co-continuous morphology of PP/polyolefin elastomer (POE) blends was previously 

reported by Lee et al. [7] and was attributed to the enhanced dispersed POE droplet deformation 

and breakup due to the confined flow between silica domains in the PP matrix. However, as the 

authors mentioned, confirming the confined flow mechanism is very difficult experimentally [8]. 

The effect of silica particles on the formation of continuous network of PLA phase can be better 

seen by studying the morphology of PLA/H-LDPE (20/80) blend. As can be seen in Figure A.4.2, 

the addition of 5 wt.% of micro-silica to this sample increased the continuity level of the PLA 

phase from 35% to 50%. Further increase in the silica content results in the formation of a co-

continuous structure at 15 wt.% of micro-silica particles. The increase in the continuity and phase 

size of the dispersed phase due to the localization of solid particles has been attributed to the 

increase in the viscosity and elasticity of the dispersed phase which reduces the deformation and 

 



  172 

breakup of the dispersed phase [2, 9-11]. However, as the localization of micro-silica particles in 

the PLA phase does not change the viscosity and elasticity considerably, this mechanism cannot 

explain the observed improvement in the continuity development of the PLA phase.  

The SEM image of the morphology of PLA/H-LDPE(10/90) containing 15 wt.% of micro-silica, 

Figure A.4.4, reveals a highly elongated fibrillar morphology of PLA/micro-silica phase in this 

sample.  

 

Figure A. 4.4. SEM image of PLA/H-LDPE (10/90) with 15 wt.% of micro-silica 

 

The observed elongated morphology in this sample can be attributed to the retarded relaxation 

and breakup of the dispersed PLA phase due to the presence of micro-silica particles. Kong et 

al.[12] used the breaking thread method and clearly showed that the presence of silica particles in 

the dispersed polyamide (PA6) phase retarded considerably the relaxation and breakup of PA6 

threads in the PS matrix. The formation of stable and highly elongated domains shifts the 

continuity limit of the dispersed phase to a lower compositions and broadens the co-continuity 

region[13, 14]. These are in agreement with the shift and broadening of the co-continuity region 

observed in this study. The formation of highly elongated stable PLA/silica threads in these 

samples can also explain the observed finer co-continuous structure of PLA/H-LDPE(30/70) 

blends containing micro-silica particles. 
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A-4.1. Conclusions 

The effect of selective localization of micro-silica particles in the PLA phase on the morphology 

of PLA/H-LDPE phase was studied. The results show that the selective localization of the 

particles in the PLA phase shifts and broadens the continuity diagram in this blend. These results 

are shown to be due to the retardation of the relaxation and breakup of the dispersed PLA/silica 

compared to the dispersed PLA. 
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ANNEX 5 LOCALIZATION OF COPPER NANO-WIRES IN 

POLY(LACTIC ACID)/LOW DENSITY POLYETHYLENE BLENDS* 

 

 

A.5.1. Summary 

In this part, the effect of kinetic parameters on controlling the localization of copper nanowire 

(CuNW) in poly(lactic acid), PLA,/Low density polyethylene (LDPE) were studied. The effect of 

mixing strategy on the localization of the particles was examined by premixing CuNW particles 

in either phase. In addition, the effect of shear rate and mixing time on the localization and 

migration of the particles was discussed. Finally, the effect of different localizations of the 

particles on the morphology of the blend was studied. 

 

A.5.2.Experimental 

A.5.2.1. Materials 

PLA 2003D (Natureworks, Cargil) was purchased from NatureWorks LLC. LDPE (133A) 

with melt flow indices of 0.25 g/10 min was purchased from Dow Chemicals. All the materials 

were dried under vacuum at 60 OC overnight before being used in the experiments. CUNW 

particles were synthesized and provided by Prof. Sundararaj’s group. 

 

A.5.2.2. Blend preparation 

Masterbatches of PLA/CuNW and LDPE/CuNW were provided by Prof. Sundararaj;s 

group. The blend samples were prepared using a Brabender internal batch mixer (Plasti-Corder 

DDR501) with a total volume of 30 cm3 at 180 oC under a nitrogen blanket. A 70% mixing 

chamber fill factor was used. The average shear rate at the mixing speeds of 50 and 100 RPM 

used in this study were estimated as 25 s-1 and 47 s-1, respectively [1]. Two different mixing 

strategies were used to prepare the samples: 

Pr1: The addition LDPE to PLA/CuNW masterbatch. *In preparation for Polymer Communication 
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Pr2: The addition LDPE/CuNW matsrebatch to PLA. 

After mixing, the mixer was stopped and the samples were taken and frozen in liquid nitrogen to 

freeze-in the morphology and localization of silica particles. All blend samples contain 70 vol.% 

of PLA phase and 30 vol.% of the LDPE phase. The mentioned wt.% of CuNW particles is based 

on the total weight of the blend. 

 

A.5.2.3. Rheological characterization 

The samples were compression moulded at 180 oC and at 300 kPa in the form of 1.2 mm 

thick disks of 25 mm diameter under a nitrogen blanket. The rheological measurements were 

carried out using a stress-controlled rheometer (Physica MCR 301, Anton Paar) with a 25 mm 

parallel plate geometry at a 1 mm gap at 180 oC under nitrogen atmosphere. The stability of the 

polymer components was examined under the test conditions using a time sweep test. Less than a 

7% drop in the complex viscosity and storage modulus was observed in the experimental time 

scale of 40 minutes. 

 

A.5.2.4.Transmission electron microscopy (TEM) 

The transmission electron microscopy (TEM) analysis of the blend nanocomposites was 

performed on cryo-ultramicrotomed sample sections using a Tecnai TF20 G2 FEG-TEM (FEI, 

Hillsboro, USA) at a 200 kV acceleration voltage with the standard single-tilt holder. The images 

were captured on a Gatan UltraScan 4000 CCD (Gatan, Pleasanton, USA) at 2048×2048 pixels. 

The samples were cryo-ultramicrotomed to sections of ~70 nm using a Leica EM UC6. 

 

A.5.2.5. Field emission scanning electron microscopy (FE-SEM) 

In order to determine the localization of silica particles, samples from the internal batch mixer 

were cut and microtomed under liquid nitrogen using a microtome (Leica-Jung RM 2165). Then 

the sample surface was coated with gold and the morphology was observed with a Field Emission 

Scanning Electron Microscope (JSM 7600F, JEOL). 

A.5.2.6. Continuity measurements 
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The continuity level of the phases in the blend samples was determined by cutting three samples 

of approximately 8×10×5 mm3 and weighing about 0.4–0.5 gm, from each blend sample. Then 

either the PE or PLA phase was extracted from these samples using boiling cyclohexane or 

chloroform, respectively. The continuity level of the extracted phase (A) was determined as: 

%𝐂𝐨𝐧𝐭𝐢𝐧𝐮𝐢𝐭𝐲 𝐨𝐟 𝐀 = 𝐄𝐱𝐭𝐫𝐚𝐜𝐭𝐞𝐝 𝐰𝐞𝐢𝐠𝐡𝐭 𝐟𝐫𝐨𝐦 𝐭𝐡𝐞 𝐬𝐚𝐦𝐩𝐥𝐞
𝐈𝐧𝐢𝐭𝐢𝐚𝐥 𝐰𝐞𝐢𝐠𝐡𝐭 𝐨𝐟 𝐀  𝐢𝐧 𝐭𝐡𝐞 𝐬𝐚𝐦𝐩𝐥𝐞

× 𝟏𝟎𝟎      

The reported values are an average of the three different measurements. 

 

A.5.3. Results and Discussion: 

A.5.3.1. Material characterization: 

Figure A.5.1 shows the synthesized CuNW particles. The synthesized nanowires had averages 

diameter and length of 30 nm and 1.5µm, respectively.  

 

Figure A. 5.1. SEM image of the CuNW particles. 

 

A.5.3.2. Rheological Properties of PLA and LDPE and PLA/CuNW and LDPE/CuNW 

mixtures 

Figure A.5.2 shows the complex viscosity of PLA/CuNW and LDPE/CuNW mixtures as a 

function of the angular frequency. 
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Figure  5.2. The complex viscosities of PLA, LDPE and their composites with CuNW particles. 

The dashed line represents the average shear rate of mixing[1]. 

PLA shows a Newtonian plateau at low angular frequencies but LDPE exhibit shear thinning 

behavior even at very low frequencies which is associated with the high level of long chain 

branching in its structure [2]. The viscosity of PLA/CuNW masterbatch is less than the neat PLA 

which can be attributed to the decrease in the molecular weight due to the sonication during 

masterbatch preparation [9]. The rheological properties of LDPE/CuNW were found to be almost 

identical to LDPE. To better understand these results, the dispersion of CuNW particles in 

PLA/CuNW and LDPE/CuNW masterbatches were studied by TEM and the results are shown in 

Figure A.5.3. 

 

Figure  5.3. Dispersion of CuNW particles in: (a) LDPE/ 4 wt.% CuNW masterbatch, (b) PLA/1.2 

wt.% CuNW masterbatch. 
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As can be seen, CuNW particles exist in the form of agglomerates in LDPE/CuNW. Such poor 

dispersion of CuNW particles in LDPE can explain why the addition of 4 wt.% of CuNW could 

not influence its rheological behavior. On the other hand, a good dispersion of CuNW particles in 

PLA was observed which indicates better interaction of PLA and CuNW particles. 

 

A.5.3.2. Thermodynamics of Localization of CuNW Particles in PLA/LDPE Blends 

The thermodynamic localization of solid inclusions in multiphase systems can be predicted by 

the Young’s equation: 

𝝎 =  𝜸𝟏𝒔−𝜸𝟐𝒔
𝜸𝟏𝟐

           Eqn.1 

Where γ1s, γ2s and γ12 are the interfacial tensions between: polymer 1 and solid, polymer 2 and 

solid; and polymer 1 and 2. If ω is greater than 1, the localization of silica particles in phase 2 is 

thermodynamically preferred while for ω < -1, the thermodynamic equilibrium localization of 

solid particles should be in phase 1. On the other hand, when -1<ω< 1, the localization of solid 

particles at the interface is thermodynamically preferred. 

The interfacial tensions between components can be estimated using the surface energy data of 

the components. However, determining the surface energy of metals such as copper is very 

challenging. For instant, the surface energy of solid and liquid copper at the melting point (1083 

℃) were experimentally determined as 1.52 and 1.295 J.m-2 respectively[3]. Using molecular 

dynamic simulation, Jia et al. [4] estimated the surface energy of copper at 180 ℃ as 1.77 J.m-2. 

Considering that most of polymer melts have surface energy in order of 30 mJ/m-2 at this 

temperature[5, 6] indicates the high surface energy of copper. Moreover, to estimate the 

interfacial tension between the components, the dispersive and polar contributions to the surface 

energy are required which has not been reported for copper yet. This clearly indicates the 

inapplicability of Young’s equation in the systems containing high surface energy metals. 
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A.5.3.3. Effect of Mixing Strategy on the Localization of CuNW particles in PLA/LDPE 

In the previous studies, changing the mixing strategy was shown to be an effective method to 

study the migration and localization of solid inclusions. The localization of CuNW particles in 

PLA/LDPE prepared by Pr1 and Pr2 are shown in Figure A.5.4. 

 

Figure  5.4. TEM image of PLA/LDPE (70/30) blend prepared by: (a) Pr1, (b) Pr2. The white 

scale bars show 2µm. 

As can be seen, when CuNW particles were premixed with PLA phase, they were found to 

remain localized in the PLA phase and no CuNW particle was observed in the PE phase. 

However, when CuNW particles were initially dispersed in the LDPE phase, the particles were 

found to be localized in both PLA and LDPE phase. Comparing these results clearly indicate that 

the particle tend to migrate from LDPE to PLA phase. This can be attributed to the higher 

polarity of PLA compared to LDPE. The presence of some CuNW particles in the LDPE phase in 

the sample prepared by Pr2 can be attributed to the kinetic effects. It was previously shown that 

increasing the shear rate and mixing time can enhance the migration of solid inclusions from one 

phase to the other. The effect of these parameters will be investigated below.  

 

A.5.3.4. Effect of Shear Rate and Mixing Time on the Localization of CuNW Particles in 

PLA/LDPE 

To examine the effect of shear rate on the migration of CuNW particles, LDPE/CuNW 

masterbatch was melt mixed with PLA (according to Pr2) at 100 RPM. Figure A.5.5 shows the 

localization of CuNW particles in this sample. 
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Figure A. 5.5. The localization of CuNW particles in PLA/LDPE (70/30) prepared by P2 at 100 

RPM. The white scale bar shows 2µm. 

As can be seen, increasing the shear rate by a factor of almost 2 clearly enhanced the migration of 

CuNW particles and only few particles can be seen in the LDPE phase. Increasing the mixing 

time has also been shown to enhance the migration of solid inclusions. To study the effect of 

mixing time, PLA/LDPE(70/30) /CuNW was prepared according to Pr2 at 20 minutes. The 

results are shown in Figure A.5.6. Again, it can be seen that increasing the mixing time by a 

factor of 2 resulted in the migration of more CuNW particles from the LDPE phase to PLA. 

 

Figure A. 5.6. The effect of mixing time on the localization of CuNW particles in 

PLA/LDPE(70/30)/CuNW prepared by Pr2 at 20 min of mixing. 
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A.5.3.5. Effect of Different Localizations of CuNW Particles on the Morphology of 

PLA/LDPE Blends 

The effect of different localizations of CuNW particles on the morphology of PLA/LDPE (70/30) 

is shown in Figure A.5.7. 

 

Figure A. 5.7. The effect of different localization of CuNW particles on the morphology of 

PLA/LDPE(70/30): (a) No CuNW, (b) 1 wt.% CuNW in PLA phase (prepared by Pr1), (c) 

CuNW in the PLA and LDPE phase (prepared by Pr2). The white scale bars show 10 µm. 

It can be seen that the localization of CuNW particles in the PLA matrix reduced the LDPE phase 

size. To quantify this effect, continuity of LDPE phase in these samples was determined using 

selective extraction of LDPE using boiling cyclohexane. It was found that when CuNW particles 

were initially distributed in the LDPE phase, the continuity of LDPE was reduced to 70% 

compared to 85% of the blend without CuNW particles. However, when the particles are only 

localized in the PLA phase, the continuity of LDPE phase dropped to 43%. These results indicate 

that the presence of CuNW particles in the matrix phase reduced the coalescence of the dispersed 

LDPE phase. The reduced phase size of the dispersed phase by the localization of solid inclusions 

in the matrix has been attributed to the increase in the viscosity of the matrix and solid barrier 

effect[7, 8]. Considering the rheological properties of PLA/CuNW, Figure A.5.2, it can be seen 

that the viscosity of PLA/CuNW is even lower than the neat PLA phase. Therefore, the increase 

in the viscosity could not be the effective mechanism of the phase reduction. Consequently, the 

observed decrease in the LDPE continuity can only be attributed to the solid barrier effect. 
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A.5.4.Conclusion 

The effects of kinetic parameters on the localization of CuNW particles in PLA/LDPE blends 

were studied. It was found that when the particles were initially dispersed into the PLA phase, the 

particles remained in the PLA phase but when they were dispersed in the LDPE phase, some 

particles migrated to the LDPE phase. These results indicate a higher affinity of the particles to 

the PLA phase. Increasing the shear rate and mixing time were also found to enhance the 

migration of CuNW particles from the LDPE phase to PLA. It was also found that the 

localization of CuNW particles in the PLA phase reduced the LDPE phase continuity due to the 

solid barrier effect. 
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