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DEDICACE

“Parler de ce qu’on ignore finit par vous l’apprendre.”
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remercier pour ses séminaires sur la modélisation des supraconducteurs à haute température
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RESUME

L’objectif principal de ce mémoire est d’étudier les systèmes d’Équations Différentielles et

Algébriques (EDA) qui apparaissent lors de la modélisation numérique d’équipements élec-

triques supraconducteurs à Haute Température Critique (HTC). Ces systèmes d’équations

ainsi que le comportement non linéaire des matériaux supraconducteurs sont possiblement

responsables des difficultés rencontrées lors de simulations numériques de ces appareillages.

Dans la littérature, beaucoup d’attention a été portée aux problèmes liés à la nonlinéarité des

matériaux, mais, au meilleur de notre connaissance, aucune étude des systèmes d’équations

différentielles et algébriques n’a été répertoriée. Ainsi, il est essentiel d’approfondir nos

connaissances à leur sujet dans le cadre de la simulation numérique d’équipements supracon-

ducteurs à HTC.

Dans ce document, nous présentons une revue de la théorie des supraconducteurs de type I

et de type II. Cette revue nous permet de bien comprendre le potentiel des supraconducteurs

à HTC en électrotechnique. Ces derniers se démarquent notamment par leur capacité à

opérer en fort champ et par leur température critique élevée. Nous discutons que la simu-

lation numérique d’équipements supraconducteurs permet de les optimiser à faible coût en

améliorant certaines caractéristiques d’opération tel que les pertes en courant alternatif.

Ensuite, nous présentons les principaux modèles physiques utilisés pour modéliser les

équipements supraconducteurs. Plus précisément, nous décrivons un modèle 1-D utilisant

une formulation en flux magnétique. Ce modèle est relativement simple mais son équation

aux dérivées partielles possède une solution analytique connue. Ce modèle est donc utile

pour s’introduire à la discipline et vérifier une méthode numérique implémentée dans un

code. Puis, nous présentons des modèles 2-D et 3-D qui utilisent la formulation en champs

magnétique. Ces modèles sont une meilleure approximation de la réalité que le modèle 1-

D. Ils peuvent notamment considérer des matériaux de différentes natures et géométries.

Cependant, ils sont plus complexes. Finalement, nous présentons un modèle qui utilise la

formulation en potentiel vecteur magnétique sous sa forme intégrale. Ce modèle peut tenir

compte d’effets 3-D en utilisant la bonne définition pour l’intégrale du potentiel vecteur.

Nous présentons deux méthodes numériques pour discrétiser les équations des modèles

physiques dans l’espace, soit la Méthode des Éléments Finis (MEF) et la Méthode Semi-

Analytique (MSA). Nous montrons que la MEF est utilisée pour discrétiser une forme faible

des équations à l’aide d’une approximation discrète de la solution sur un maillage consti-

tué d’éléments. Nous introduisons deux types d’éléments: les éléments finis nodaux et les

éléments d’arrête (edge elements). Finalement, nous présentons brièvement la MSA qui est
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utilisée pour discrétiser dans l’espace les équations de la formulation en potentiel vecteur

magnétique sous sa forme intégrale. Cette méthode consiste à trouver une expression analy-

tique reliant des champs et des potentiels aux termes sources sur une certaine discrétisation

puis à résoudre le système d’équations résultant numériquement. Il s’agit d’une méthode à

collocation par point.

Ensuite, nous introduisons les systèmes d’EDA. Ces systèmes d’équations sont obtenus

après avoir discrétisé les équations des modèles physiques dans l’espace. Nous mention-

nons que la structure mathématique d’un système d’EDA peut-être décrite par l’index.

L’index est le nombre de dérivées nécessaires pour qu’un système d’EDA devienne un sys-

tème d’Équations Différentielles Ordinaires (EDO). Il existe une structure de système d’EDA

particulière qu’on retrouve souvent dans les problèmes variationnels. Il s’agit du système

d’EDA d’index 2 de forme Hessenberg.

Nous décrivons quelques stratégies pour discrétiser les systèmes d’EDA. Nous montrons

que nous pouvons les discrétiser principalement de trois façons, soit par discrétisation directe,

par réduction d’index ou en reformulant un système d’index 0 en forme semi-explicite. La

méthode de discrétisation directe consiste à appliquer directement une méthode numérique

implicite au système d’équations, sans réduire son ordre. Dans la plupart des cas, une telle

opération mène à un système d’équations nonlinéaires. La réduction d’index consiste à réduire

l’index du système et à réévaluer sa structure. Nous pouvons aussi écrire les systèmes d’EDA

d’index 0 sous forme semi-explicite pour ensuite appliquer une méthode explicite. Nous in-

troduisons deux solveurs temporels, i.e. Differential-Algebraic System SoLver (DASSL) et

Implicit Differential-Algebraic Solver (IDAS). Ces solveurs utilisent la stratégie de discréti-

sation directe.

Ensuite, nous étudions les systèmes d’EDA obtenus lors de la modélisation numérique

de supraconducteurs à HTC avec la MEF pour un modèle physique en 1-D. Nous documen-

tons comment discrétiser les équations pour obtenir les systèmes d’EDA. En fonction de la

façon dont les conditions frontières sont appliquées, l’index du système peut être 0 ou 1.

Nous recommandons de résoudre les systèmes d’EDA d’index 0 et 1 par discrétisation di-

recte. Ensuite, nous vérifions un code que nous avons développé dans le cadre de ce projet

en comparant les approximations obtenues avec une solution analytique. La stratégie de

discrétisation directe est implémentée dans le code et aucun problème n’a été répertorié lors

du calcul des approximations. Nous concluons que la stratégie de discrétisation directe fonc-

tionne pour un problème typique de modélisation d’équipements supraconducteurs à HTC

en 1-D.

Dans la même lignée, nous étudions les systèmes d’EDA obtenus lors de la modélisation

numérique de supraconducteur à HTC en 2-D en utilisant une MEF basée sur des éléments
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d’arrête. Nous écrivons comment appliquer la MEF pour obtenir les systèmes d’EDA. En

fonction des conditions frontières, le système d’équations résultant peut être d’index 0 ou

de forme Hessenberg d’index 2. Ensuite, nous proposons des stratégies pour résoudre les

systèmes d’EDA. Pour le système d’index 2, nous ne pouvons conclure si il est mieux de le

discrétiser directement ou de réduire son index. Nous remarquons que la réduction d’index

de 2 à 1 nous permet d’obtenir directement un système d’EDO mais qu’il faut inverser une

matrice. Enfin, nous vérifions un code développé pour ce projet en comparant les résultats

obtenus avec des solutions analytiques linéaires. La stratégie de discrétisation directe est

implémenté dans le code à travers le solveur IDAS et fonctionne pour les problèmes considérés.

Le code donne de bonnes approximations aux solutions, excepté aux endroits où les solutions

ne sont pas linéaires. On peut améliorer les approximations à ces endroits en raffinant le

maillage.

Finalement, nous étudions les systèmes d’EDA obtenus lors de la modélisation numérique

de supraconducteurs à HTC en utilisant la MSA. Si le problème à l’étude utilise une source

de tension comme source d’énergie, le système d’EDA résultant est d’index 0. Si le problème

utilise une source de courant, il est d’index 2 et de forme Hessenberg. Nous notons que ce

système d’EDA est semblable à celui obtenu avec la MEF en utilisant des éléments d’arrête

et ainsi, les mêmes stratégies de discrétisation peuvent être appliquées. Enfin, nous analysons

deux stratégies pour discrétiser un système d’EDA d’index 2 de forme Hessenberg simple:

la stratégie de discrétisation directe et la stratégie de réduction d’index. Pour les deux

stratégies, nous obtenons les ordres de convergence prédits pour les méthodes numériques

utilisées. Cependant, nous notons que la méthode de réduction d’index est moins directe

que celle de discrétisation directe et qu’elle est plus risquée puisqu’il faut que les conditions

initiales satisfassent l’équation algébrique et sa dérivée. Pour cette analyse, nous utilisons

une solution manufacturée.
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ABSTRACT

The main objective of this thesis is to study the systems of Differential-Algebraic Equa-

tions (DAE) encountered in the numerical modeling of electrical devices made of High-

Temperature Superconductors (HTS). These systems of equations and the nonlinear behavior

of HTS are possibly responsible for the difficulties faced when simulating HTS devices. In

the literature, much attention is paid to the issues related to the nonlinearity of HTS but, to

the best of our knowledge, there is no in-depth study of the problems related to the systems

of DAE. Consequently, it is essential to improve our knowledge about those systems, in the

context of HTS modeling.

In this document, we review the theory of type I and type II superconductors. This review

is useful to understand the potential of HTS materials for power engineering applications.

Their potential is mainly due to their ability to operate in strong fields and their high critical

temperatures. We discuss that numerical simulation can be used to optimize HTS devices at

low cost, by improving some quantities of interest, e.g. AC losses.

We introduce the main physical models used for the modeling of HTS devices. We describe

a 1-D model based on a magnetic flux density formulation. This model is relatively simple but

has a known analytical solution for a nonlinear HTS problem. It is convenient to use as an

introduction to the methodology used in this thesis and to verify a code. Then, we introduce

a 2-D and a 3-D model based on a magnetic field formulation. These models provide a better

representation of the reality than the 1-D model. They can consider materials with different

properties and complex geometries. However, they are more complicated than the 1-D model.

Finally, we review a model based on a magnetic vector potential formulation in integral form

(A− V ). This model can take into account 3-D effects by using the proper definition for the

magnetic vector potential integral.

We summarize two numerical methods to discretize the equations of the physical models

in space, i.e. the Finite Element Method (FEM) and the Semi-Analytical Method (SAM).

The FEM is used to discretize a weak form of the equations of the models using a discrete

approximation of the solution over a mesh made of geometrical elements. We introduce two

types of elements: nodal elements and edge elements. Then, we review the SAM, a numerical

method used to discretize the equations of the magnetic vector potential formulation in

integral form. It is a collocation method.

We introduce systems of DAE. These systems of equations are obtained after discretizing

the equations of the physical models in space. We discuss that the mathematical structure

of a system of DAE can be described by a notion called the index. The index is the number
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of derivation required for a system of DAE to become a system of Ordinary Differential

Equations (ODEs). We note that systems of DAE of index 2 in Hessenberg form are recurrent

in variational problems.

Subsequently, we discuss three strategies to discretize systems of DAE in time, i.e. direct

discretization, reduction of the index and reformulation into semi-explicit form. The direct

discretization strategy consists in applying directly an implicit time integration scheme to a

system of DAE without reducing its index. In most cases, this yields a system of nonlinear

equations. The reduction of index consists in reducing the index of the system of DAE and

then reassess its structure. Systems of DAE of index 0 can be reformulated into a semi-

explicit form and then discretized using an explicit method. We introduce two time transient

solvers that use the direct discretization strategy, i.e. Differential-Algebraic System SoLver

(DASSL) and Implicit Differential-Algebraic Solver (IDAS).

We study the systems of DAE encountered in the numerical modeling of HTS devices

using the FEM with a 1-D model. We document how to discretize the equations of the model

in space to obtain a system of DAE. Depending on how the boundary conditions are enforced,

the system of DAE can be of index 0 or 1. We suggest to discretize the systems of DAE

of index 0 and 1 directly. We verify the code developed for this research work against an

analytical solution to a nonlinear problem. The code uses the IDAS library and consequently,

the direct discretization strategy. We show that this strategy works for both the system of

DAE of index 0 and 1.

Similarly, we study the systems of DAE encountered in the numerical modeling of HTS

devices using the FEM with edge elements for a 2-D model. We give the discretization of the

equations in space and identify the resulting system of DAE. Depending on the boundary

conditions, the resulting system of DAE can be of index 0 or 2 in Hessenberg form. For

the system of DAE of index 2, we cannot conclude if it is better to discretize it directly or

to reduce its index. We note that reducing the index from 2 to 1 yields a system of ODEs

for the Degrees Of Freedom (DOFs) of interest but that a matrix needs to be inverted. We

verify the code develop for this project against two analytical solutions for three different

problems. The strategy of direct discretization is implemented in the code through the IDAS

library. There are no difficulties reported when computing the approximations with the direct

discretization strategy. Therefore, this strategy works for the problems considered. We show

that the code gives good approximations for all the problems implemented, except where the

solution is not linear. The approximations get better when the mesh is refined.

In conclusion, we study the systems of DAE encountered in the numerical modeling of

HTS using the SAM. We summarize how to discretize the equation of the A−V formulation

with this method. For a voltage driven problem, the SAM yields a system of DAE of index
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0. For a current driven problem, the SAM gives a system of DAE of index 2 in Hessenberg

form. We note that this system of DAE is similar to the one obtained using the FEM with

edge elements in 2-D and as a result, the same strategies to discretize the system of DAE can

be applied. Finally, we study two strategies to discretize a simple system of DAE of index 2

in Hessenberg form, i.e. the direct discretization and the reduction of the index. We report

that the reduction of index is less straightforward than the direct discretization. It is also

more risky because the initial conditions need to satisfy both the algebraic equation and its

time derivative. We use a manufactured solution to study those strategies.
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CHAPTER 1

INTRODUCTION

1.1 Problematics and Objectives

Superconducting materials with high critical temperatures represent a technological av-

enue of choice for solving important problems experienced in modern power systems. How-

ever, the superconducting equipments used in power engineering are still being developed,

and the associated experiments are expensive. Therefore, it is important to first improve the

geometry of the superconducting devices using numerical simulations. However, the chal-

lenges related to the highly nonlinear behavior of superconducting materials and the need to

solve systems of differential-algebraic equations (DAE) in time are such that the use of free

or expensive commercial software is often ill-suited for the task. When the simulations are

possible, the long calculation times are not reasonable for device enhancement.

As a result, it is common in the modeling community to develop their own codes specif-

ically designed to deal with the problems encountered in the numerical modeling of high-

temperature superconductors (HTS). However, these codes are generally badly documented

and focus on solving the problems associated with the nonlinear behavior of HTS, and not

on the systems of DAE. Furthermore, to the best of our knowledge, systems of DAE have

never been studied in the context of HTS modeling.

The main objective of this project is to study the systems of DAE encountered in the

numerical modeling of HTS devices. The specific objectives of this thesis are as follows:

• Show that numerical methods used for the discretization in space of HTS problems lead

to systems of DAE ;

• Identify the structures and indexes of the resulting systems of DAE ;

• Give strategies to discretize the systems of DAE in time;

• Model problems based on the implementation of various numerical strategies for the

discretization in space and time of DAE.

1.2 Structure of The Thesis

In chapters 2 to 6, we introduce the concepts needed to achieve the objectives of this

thesis. More precisely, in chapter 2, we introduce type I and type II superconductivity.
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Then, in chapter 3, we give the main physical models used to study HTS devices. First, we

give a 1-D model based on a magnetic flux density formulation. Then, we describe a 2-D

and a 3-D model based on a magnetic field formulation. We finally review a model based

on a magnetic vector potential formulation in integral form. In chapter 4, we introduce two

numerical methods used to discretized the equations of the physical models in space, i.e. the

Finite Element Method (FEM) and the Semi-Analytical Method (SAM). With both methods,

the discretization of the equations leads to systems of DAE. In chapter 5, we introduce these

systems, the notion of index and systems of DAE in Hessenberg form. In chapter 6, we

propose some strategies to discretize systems of DAE in time.

Then, in chapters 7 to 9, we apply the concepts introduced in the previous chapters of

the thesis to three different problems:

• Discretization of HTS problems using nodal finite elements in 1-D;

• Discretization of HTS problems using edge elements in 2-D;

• Discretization of HTS problems using the SAM.

We show typical HTS device problems and propose models to discretize them. We discretize

the equations of the models in space using either the FEM or the SAM. In all cases, the spatial

discretization leads to systems of DAE. These systems are identified and we propose strategies

to discretize them in time. In chapters 7 and chapter 8, we verify the codes developed for

this project against analytical solutions. In chapter 9, we investigate some of the proposed

strategies with a simple problem with a manufactured solution. Note that in this research

work, we use the power law to model the resistivity of HTS because it is widely used by the

HTS modeling community.
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CHAPTER 2

SUPERCONDUCTIVITY

This chapter introduces the physics of superconductor. It is divided in four sections. In

section 2.1, we review concepts related to type I superconductivity. In section 2.2, we extend

those concepts and introduce new ones to cover type II superconductivity. In section 2.3,

we introduce high temperature superconductors (HTS) and a model that is widely used to

represent their E − J characteristics, the power law. Finally, in section 2.4, we discuss

some quantities of interest that require optimization to enhance HTS devices. The concepts

reported herein are general and come from multiple references: [1], [2], [7], [8], [9] and [10].

2.1 Type I Superconductivity

2.1.1 Electrical Resistance and the Thermodynamic Variables Tc, Hc and Jc

Let us consider a metal with a crystalline lattice containing a certain amount of im-

purities. At a temperature higher than 0 K, the atoms of this metal are vibrating with a

given amplitude and frequency. Conductive electrons carrying a current in such a structure

experience resistance due to the vibration of the lattice and the presence of impurities.

When the temperature is lowered, the vibrations of the lattice become less important and

the electrons can flow more easily. At 0 K, the lattice doesn’t vibrate and the only resistance

to the flow of current is the presence of impurities in the crystal. Therefore, in a perfect

crystal without impurities at 0 K, the resistivity is expected to be 0 Ωm. These two scenarios

are depicted in Figure 2.1.

In 1911, Karlingh Onnes observed that this is not the case for all metals [1]. When some

metals are cooled to very low temperatures, their resistivity suddenly drops to 0 Ωm, even

for metals with impurities, as shown in Figure 2.2. This is the critical temperature Tc. Below

this temperature, the metal is said to be a superconductor or in a superconducting state.

About half of the metals of the periodic table of elements are known to be superconductors

below a certain temperature. There is also a good amount of alloys that share the same

properties, even if some of these are composed of non-superconducting metals.

For metallic elements, alloys, and metallic compounds, Tc is low. It is below 10 K for

metallic elements and below 39 K for metallic compounds and alloys1. This is why we refer

to these superconductors as Low-Temperature Superconductors (LTS).

1The binary compound MgB2 has a critical temperature of 39 K.
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Figure 2.1 Expected resistivity as a function of the temperature for impure and pure metals.
(Source of figure: [1])

Figure 2.2 Resistivity as a function of the temperature for superconductors. We see that the
resistivity drops to 0 Ωm when the temperature reaches Tc. (Source of figure: [1])
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When cooled below the critical temperature Tc, two other thermodynamic variables can

cause a superconductor to return to its normal state, i.e. the critical field Hc and the critical

current density Jc. If a superconductor is subjected to a magnetic field that is larger than Hc,

it will transition back to its normal state. The same scenario will occur if it carries a current

that is larger than its critical current. In the literature, the critical field is often written in

terms of the critical magnetic flux density Bc, because of its physical significance.

The three thermodynamic variables, Tc, Hc and Jc all depend on each other and therefore,

the transition between the normal and the superconducting state can be represented by a

critical surface in the J −H − T (or J −B − T ) phase diagram, as shown in Figure 2.3.

2.1.2 The Meissner Effect

Another unique property of type I superconductors is called the Meissner effect, discovered

by Walther Meissner and Robert Ochsenfeld in 1933 [1]. The Meissner effect is the ability of

a type I superconductor to expel the magnetic flux density out of its volume, i.e. to exhibit

perfect diamagnetism. Therefore, inside such a material, we always have

B = 0. (2.1)

The perfect diamagnetism that results from the Meissner effect is a property that is

Figure 2.3 Critical surfaces (shaded) for various materials. These surfaces separate the normal
and the superconducting states as a function of the thermodynamic variables J−B−T . Note
that the YBaCuO exhibits type II superconductivity. Type II superconductors are discussed
in section 2.2. (Source of figure: [2])
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unique to superconductors since this is not the expected scenario for ‘perfect conductors’,

i.e. a material without resistivity such as a pure metal that is not in a superconducting state

at 0 K.

Let us consider the resistanceless closed circuit shown in Figure 2.4 a). In this figure, we

see that the total amount of flux passing through the resistanceless ring is given by Φ = ABa

where A is the area enclosed by the ring and Ba is the applied field. According to Faraday’s

law of induction, the equation that governs this circuit is given by

− AdBa

dt
= Ri+ L

di

dt
, (2.2)

where R is the resistance of the circuit, i is the current and L is the inductance. Since the

ring has no electrical resistance, we have R = 0, which yields

d

dt
(ABa + Li) = 0. (2.3)

This means that the total flux passing through the ring does not vary with time. If we change

the amplitude of the applied flux density Ba, the current i will compensate so that the total

flux is always constant. This is depicted in Figure 2.4 b).

Let us now consider a bulk specimen such as the one shown in Figure 2.5. When cooled,

this specimen becomes resistanceless, i.e. a perfect conductor. As discussed above, the mag-

netic flux passing through any closed path within this specimen is always constant. If the

Figure 2.4 a) Resistanceless closed circuit subjected to an applied magnetic flux Φ = ABa

and no initial current. b) When the applied field is removed, a current flows in the ring to
keep the flux constant. (Source of figure: [1])
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specimen is cooled in the absence of a field, the net magnetic flux passing through it is always

zero, even if a field is applied afterwards. This is shown in Figure 2.5 a), b), c) and d). If

the specimen is cooled in the presence of a field Ba, the internal flux distribution will not

be zero and it will remain constant even if we remove that field thereafter (see Figure 2.5

e), f) and g)). Therefore, the magnetic flux inside a resistanceless conductor depends on the

sequence of application of the magnetic field.

For a superconductor, this is not the case. Independently of the sequence of application

of the magnetic field, it is always zero inside, as shown in Figure 2.6.

2.1.3 Electrodynamics of Type I Superconductivity

In a superconductor, only a certain portion of the electrons carry the resistanceless current,

i.e. the superelectrons. The others remain normal electrons and behave accordingly. The ratio

of normal electrons is higher when the temperature of the superconductor is close to Tc and

goes to zero when the temperature approaches 0 K. This model that describes the currents

observed in superconductors is known as the two-fluid model.

Figure 2.5 The magnetic field inside a resistanceless conductor is always constant. Therefore,
the magnetic flux distribution inside the material depends on the sequence of application of
the magnetic field. (Source of figure: [1])
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Figure 2.6 The magnetic field inside a superconductor is always zero. Therefore the magnetic
flux distribution inside the material does not depend on the sequence of application of the
magnetic field. (Source of figure: [1])

The superelectrons are normal electrons that gained the ability to carry current with-

out resistance by pairing each other to form Cooper pairs. The concept of Cooper pairs is

explained by the Bardeen-Cooper-Schrieffer (BCS) theory, which is out of the scope of this

project. The interested reader is referred to [1] and [8] for a thorough introduction.

For the two-fluid model, the current density is defined by

J = Js + Jn, (2.4)

where Js and Jn are the current densities due to the superelectrons and to the normal

electrons, respectively. All of these electrons obey Maxwell’s equations, however, some re-

strictions need to be applied so that they predict the proper observed behaviors, i.e. the

absence of resistance and the Meissner effect.

For the normal electrons, subjected to resistivity ρn, we use the linear E−J characteristic:

E = ρnJn. (2.5)

For the superelectrons, this does not apply since there is an electric field E that is nonzero,
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even if ρs = 0 Ωm. This is why we need to add an equation to Maxwell’s equations to take into

account the fact that superconductors are resistanceless. This equation is the first London

equation
∂Js
∂t

= − 1

µ0λ2
L

E, (2.6)

where λL, the London penetration depth, is explained below. This equation describes two

important behaviors of superconductors:

1. A Direct Current (DC) can exist in a superconductor in the absence of an electric field.

In this case, there is absolutely no loss in the superconductor.

2. If an Alternating Current (AC) is applied to a superconductor, there will be an electric

field and as a result, losses. These losses are very small at low frequencies but can be

large at high frequencies (& 1011 Hz).

As mentioned earlier, superconductors act as perfect diamagnetic materials due to the

Meissner effect. When a magnetic field is applied to type I superconductors, there are screen-

ing currents that circulate at their surfaces in a very thin layer. These currents create a field

that is equal and in the opposite direction to the applied field. As a result, the magnetic

flux density inside the superconductors is zero. The thickness of the layer where the surface

currents circulate can be approximated by the London penetration depth λL, which can be

computed using the second London equation

∇× Js = − 1

µ0λ2
B. (2.7)

The London penetration depth λL is about 10−8 m. This is a fair approximation since ex-

perimentally, it has been observed that the penetration depth is at least twice this length.

Therefore, the London theory is good for a first approximation but has some limits. A more

refined theory called the Ginzburg-Landau Theory predicts a penetration depth that is more

accurate. However, this theory is out of the scope of this project.

2.2 Type II Superconductivity

In 1957, Alexei A. Abrikosov [1] suggested that a second category of superconductors

with different inherent features could exist. Today, this second category is known as type II

superconductivity.
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2.2.1 The Differences Between Type I and Type II Superconductivity

For a type I superconductor, the energy released (free energy) when a superconducting

and normal interface is created, is positive. Therefore, such interfaces are not energetically

favorable for the material and they are minimized. As a result, the Meissner effect is observed

for all applied fields that are less than Hc.

For a type II superconductor, it is the opposite: when the strength of the applied field is

larger than a lower critical field Hc1, such thatHc1 < Hc, the free energy released when normal

and superconducting interfaces are created is negative. Therefore, it becomes advantageous

for the superconductor to create those interfaces. As a result, small cylindrical normal regions

parallel to the applied field begin to form inside the superconductor. These cylindrical normal

regions are called normal cores and they form the most energetically favorable configuration.

With these normal regions inside the superconductor, it is said to be in a mixed state.

As those normal cores progressively form, magnetic flux density lines, called fluxons, enter

those areas. A fluxon is a quantum of magnetic flux and is given by Φ0 = 2.07 · 10−15 Wb.

Since the superconducting regions of the material are still perfectly diamagnetic, there are

screening currents that circulate around the fluxons to expulse the magnetic flux out of those

regions. The combination of a fluxon with the screening current around it is called a vortex

and the final configuration of the material is called the fluxon lattice, as shown in Figure 2.7.

The superconductor remains in the mixed state until the applied field strength reaches the

critical upper field Hc2, with Hc2 � Hc. At fields beyond Hc2, the superconductor returns to

Figure 2.7 Fluxon lattice of a type II superconductor in the mixed state. The current circulat-
ing around the fluxons helps in maintaining the perfect diamagnetism of the superconducting
regions. (Source of figure: [1])
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its normal state.

As a result, for type II superconductors, the Meissner effect is not observed for magnetic

field strengths that are between Hc1 < H < Hc2. However, since their upper critical field is

much higher than the critical field of type I superconductors, they are useful for high field

applications such as power engineering devices and high field magnets.

2.2.2 Flux Pinning, the Critical State and Flux Flow

When a transport current JT is applied to a type II superconductor, there is a resulting

force called the Lorenz force that applies to the vortices in the lattice. This force is defined

as

FL = J ×Φ0. (2.8)

If nothing holds the vortices in place, they start to move under the influence of this force.

However, in reality, there are impurities and irregularities in the crystal lattice of the super-

conductors. This results in a force that is equal and in the opposite direction to the Lorentz

force and helps to keep the vortices in place. This force is called the pinning force Fp. As

long as the magnitude of the pinning force is larger than the magnitude of the Lorentz force

(Fpmax > FL), the vortices do not move and the current circulates according to the London

equations discussed previously.

When the equilibrium between the magnitude of the two forces is reached, FL = Fpmax,

the superconductor is said to be in the critical state. The current needed to reach this state

is called the critical current Jc. Beyond this current, the Lorentz force is larger than the

pinning force and the vortices start to move in the superconductor; it is in the flux flow

regime.

The vortices move with velocity v and generate an electric field according to

E = B × v, (2.9)

which means that there is also a local power dissipation

p = J ·E. (2.10)

Therefore, the superconductor is not a lossless conductor anymore.

Since there is an electric field in the superconductor, the London equations can be super-

seded by an appropriate E − J characteristic. For LTS, we use the flux flow model :

E = ρff (J − Jc), (2.11)
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where ρff is a resistivity related to the viscous force that opposes to the motion of the

vortices.

Generally, for power engineering applications, LTS are not economically viable because

of the cooling costs. This is why HTS are generally used for this type of applications. They,

however, exhibit a different E − J characteristic, which we describe in the next section.

2.3 High-Temperature Superconductors (HTS)

HTS are type II superconductors that have a critical temperature that is higher than

77K. Therefore, they can be cooled using liquid nitrogen, a low cost coolant compared to

the ones needed for LTS, e.g. liquid helium.

Due to their high Tc and because they can operate in large magnetic fields (Hc2 >> Hc),

they are promising for power engineering applications. Typical HTS are made of Yttrium

Barium Copper Oxide (YBCO) and Bismuth Strontium Calcium Copper Oxide (BSCCO)

with specific stoichiometry.

Seeing that HTS operate at high temperatures, their E − J characteristic is affected by

thermal effects and unfortunately, the flux flow model cannot be used. Instead, it is common

to use the power law model [7]:

ρ(J) =
Ec
Jc

(
||J ||2
Jc

)n−1

, (2.12)

where n is an exponent related to the material, usually between 20 and 50, and typically

Ec = 10−4 V/m, a criterion used to define Jc.

For HTS, the critical current density Jc depends on the magnetic flux B and the tem-

perature T . These dependencies could be taken into account in the power law by using the

appropriate model for Jc such as the Kim model [11] which is not described in this document.

2.4 Quantities of Interest for HTS Devices

As discussed in section 2.2.2, type II superconductors, and therefore HTS, can exhibit

losses if the current density flowing in them is large enough for the vortices to move and

create an electric field. These losses generate heat that needs to be extracted from the

system to keep the superconductor below its critical temperature. As a result, one of the

objectives of the numerical modeling of HTS is to compute these losses, often called the AC

losses, in order to minimize them. The optimization parameters are generally the geometry

of the device, the material, and the nominal conditions of operation. Other quantities of

interest are:
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• The magnetic/electric field distribution, its amplitude and its orientation;

• The current density distribution, its amplitude and its orientation;

• The normal zone propagation velocity;

• etc...
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CHAPTER 3

MODELING OF HTS DEVICES

We now introduce physical models used to model HTS devices. This chapter is divided

into two sections. First, in section 3.1, we describe models based on the H-field formulation

in 1-D, 2-D and 3-D. In section 3.2, we report a 2-D general model based on the magnetic

vector potential formulation (A − V ) in integral form. The A − V formulation in integral

form is also known as the Integral Equations (IE) formulation.

For the HTS models introduced in this chapter, we propose to use the power law for the

E − J characteristic. Note that this is not a restriction and other E − J models can be used

as well. For the remainder of this document, î, ĵ and k̂ are the unit vectors along the x, y

and z axes respectively of a 3-D Cartesian coordinate system.

3.1 Modeling of HTS Devices Using the H-field Formulation

In this section, the 1-D model is written in terms of the magnetic flux density B (the

dependent variable) in accordance with the notation used in the literature. For the same

reason, the 2-D and 3-D models are written in terms of the magnetic field strength, H .

Either way, when modeling HTS, we usually assume that B = µ0H , which is accurate as

long as the local field B � Bc1, typically a few mT at most.

3.1.1 1-D Model: Infinite Slab

This model is used to compute the diffusion of the magnetic flux density as a function

of time and depth in a 1-D HTS slab, using Dirichlet boundary conditions as illustrated in

Figure 3.1. The main reference used for the description of this model is [3]. For convenience,

since B(x, t) = By(x, t)ĵ, we use By(x, t) = B(x, t).

The Partial Differential Equation (PDE) to solve for the flux diffusion is

− ∂

∂x

[
ρ(J)

µ0

∂B(x, t)

∂x

]
+
∂B(x, t)

∂t
= 0, (3.1)

with x ∈]− a, a[, t ∈ [0,∞[ and the initial conditions are

B(x, 0) = B0 and Ḃ(x, 0) = Ḃ0. (3.2)
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Figure 3.1 One-dimensional geometry used to compute the magnetic flux density across the
width of a slab. (Source of figure: [3])

The Dirichlet boundary conditions are given by

B(−a, t) = Ba(t) and B(a, t) = Ba(t). (3.3)

Finally, the constitutive equation for the E − J characteristic can be modeled using the

power law. For the 1-D case, we have

ρ(J) =
Ec
Jc

∣∣∣∣ JJc
∣∣∣∣n−1

where J = − 1

µ0

∂B

∂x
. (3.4)

The equations of this model can be solved analytically or discretized to be solved nu-

merically. Both scenarios will be extensively reported in chapter 7 for a typical problem.

The quantities of interest can then be analyzed either directly, e.g. for B and H, or by

post-processing the results, e.g. for the AC losses and J .

3.1.2 2-D and 3-D Models

In this subsection, we generalize the 1-D model described above to 2-D and 3-D geometries.

The references used for this subsection are [12] and [13].

Consider a 2-D domain Ω with k subdomains Ωi, where i = 1, ..., k. A domain Ω with

two subdomains Ω1 and Ω2 are shown in Figure 3.2. The domain Ω is in the x− y plane in

Cartesian coordinates. The 3-D domain and subdomains are not shown but they are similar

to the 2-D case.

Over a domain Ω and for a time interval T , we want to solve: µ
∂H

∂t
+∇× (ρ∇×H) = 0;

∇ · (µH) = 0,
(3.5)
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Figure 3.2 Two-dimensional domain Ω with subdomains Ω1 and Ω2. The domain is in the
x − y plane. Dirichlet boundary conditions are applied on the boundary ΓD and Neumann
boundary conditions are applied on the boundary ΓN . The unit vector n̂ is the normal vector
to the boundary of the domain Ω.

with the initial and boundary conditions:
H(x, 0) = H0(x);

n̂×H = f on ΓD;

n̂× (ρ∇×H) = g on ΓN .

(3.6)

Different materials can be considered in the subdomains Ωi, as in a HTS device, e.g.

type II superconductors, insulating dielectrics and ferromagnetic materials. As a result, the

definition of µ and ρ may or may not change for the different subdomains.

If the domain Ω or some of the subdomains Ωi are HTS, we use µ = µ0 for the permeability

and the power law for the resistivity. For the 2-D and 3-D cases we have

ρ(J) =
Ec
Jc

(
||J ||2
Jc

)n−1

where J = ∇×H . (3.7)

For other materials, the proper permeability and resistivity need to be used.
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For the 2-D model, we make the following assumptions:

1. The current density J is only flowing along the z-axis:

J = Jzk̂. (3.8)

2. The magnetic field component Hz is zero and therefore

H = Hxî+Hyĵ. (3.9)

Other assumptions can be made for the boundary conditions but they will depend on the

specific geometry of the problem considered.

For the 3-D case, there are no assumptions to be made since the geometry of the model

is closer to real-world problems. However, for a given problem, specific assumptions can be

made on a case-by-case basis.

The boundary conditions can be used to apply an external magnetic field to the geometry

of the model. A current can be imposed in the different subdomains Ωi by adding current

constraints to the set of equations (3.5):

IΩi
=

∫
Ωi

∇×H dΩi. (3.10)

3.2 Modeling of HTS Devices Using the A-V Formulation in Integral Form

The magnetic vector potential formulation (A − V ) in integral form, i.e. using the Biot-

Savart law, has been widely used by the HTS modeling community. It was first introduced

by Brandt (the Brandt Method) [14] for specific geometries and then generalized by Sirois

with the Semi-Analytical Method (SAM) [6] for superconductors of arbitrary shapes.

Consider a 2-D domain Ω with k subdomains Ωi, where i = 1, ..., k, such as the one shown

in Figure 3.3 for i = 1, 2. Again, each Ωi can represent different materials that are a part of

a HTS device but with this model, ferromagnetic materials cannot be used; the permeability

of all materials must be µ = µ0.

We want to solve

E = −∂A
∂t
−∇V (3.11)

for the current density J on Ω using the constitutive relation

E = ρ(J)J , (3.12)
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Figure 3.3 General 2-D domain Ω with subdomains Ω1 and Ω2. The domain is in the x − y
plane.

with the power law and where the magnetic vector potential is given by

A(r) =
µ0

4π

∫
Ω

J log |r − r′| dΩ +Aext. (3.13)

Here, r = xî + yĵ and Aext is used to model an external magnetic field. In the case of an

homogeneous and constant field Bext = bxx̂+ bvŷ in the x− y plane, we have

Aext(x, y) = ybx − xby. (3.14)

The resulting equation in J is given by

ρ(J)J = − ∂

∂t

[
µ0

4π

∫
Ω

J log |r − r′| dΩ +Aext

]
−∇V. (3.15)

The subdomains Ωi can be conductors that are either driven by a current source or by a

voltage source. For the subdomains that are driven by a current source, a current constraint

expressed as a function of the current density J must be used in addition to equation (3.15),

i.e.

IΩi
=

∫
Ωi

JdΩi. (3.16)

On those subdomains, the voltage V is constant in the x − y plane and is an unknown of

the problem. In the case where the conductors represented by the subdomains Ωi are voltage

driven, the voltage V on these subdomains are known and equation (3.15) only needs to be

solved for J .
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Even if the model is 2-D, it can take into account 3-D effects by defining the proper kernel

for the integral of A. Interesting geometries have been modeled this way such as the twisted

tapes of Siahrang [15] and the superconducting transformer windings of Carlier [16]. If the

subdomains Ωi are thin conductors, it is possible to approximate them using a 1-D geometry

inside the 2-D domain Ω. Such models, called 1.5-D models, have been implemented by

Brambilla in [17] and [18] and have shown to be an effective and accurate strategy.

3.3 Other Models

More models can be found in the literature for HTS devices and it would be out of the

scope of this research work to introduce all of them in details. Table 3.1 lists other models

that are widely used for HTS modeling. Moreover, a general review of the status of numerical

modeling for HTS devices design can be found in [19].

Table 3.1 Physical models used for HTS devices.

Physical model description Main reference

Minimum Magnetic Energy Variation (MMEV) [20]
Current vector potential (T − Ω) [21]

Magnetic vector potential, differential form (A− V ) [22]
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CHAPTER 4

NUMERICAL METHODS FOR SPATIAL DISCRETIZATION

The equations in the models introduced in the previous chapter can be solved numerically

by discretizing them in space and in time. In this chapter, we describe two methods to

discretize these equations in space, i.e. the Finite Element Method (FEM) and the Semi-

Analytical Method (SAM). In both cases, the discretization in space leads to systems of

DAE which are introduced in the next chapter. The main references used to describe the

numerical methods are [4], [5], [6], [23], [24] and [25].

4.1 The Finite Element Method

4.1.1 The Variational Problem

The problem described below is one-dimensional for the sake of clarity, however, the

extension to higher dimensions is straightforward. Let us consider the following function

spaces:

U([a, b]) = {u(x) : u(x) ∈ C2([a, b]); u(a) = ua, u(b) = ub}, (4.1)

V ([a, b]) = {v(x) : v(x) ∈ C2([a, b]); v(a) = 0, v(b) = 0}, (4.2)

where C2([a, b]) is the space of twice continuously differentiable functions, and the functional

I(ω) =

∫ b

a

F

(
x, ω,

dω

dx

)
dx, (4.3)

where ω(x) ∈ U([a, b]) and F is a real-valued function. Function spaces are studied in a

branch of mathematics known as functional analysis. More information about functional

analysis and function spaces can be found in [4].

We want to find a function u(x) ∈ U([a, b]), assuming it exists, such that

I(u) ≤ I(ω), ∀ω(x) ∈ U([a, b]). (4.4)

If ω(x) = u(x) + αv(x), it is equivalent to write inequality (4.4) as

I(u) ≤ I(u+ αv), ∀α ∈ R, ∀ v(x) ∈ V ([a, b]). (4.5)
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Using equation (4.3), this yields

I(u) ≤
∫ b

a

F

(
x, u+ αv,

du

dx
+ α

dv

dx

)
dx = Ĩ(α). (4.6)

Since u(x) minimizes the functional I, we see that I will be at its minimum when α = 0,

therefore
dĨ

dα

∣∣∣∣
α=0

= 0, ∀ v(x) ∈ V ([a, b]). (4.7)

If we use Ĩ from (4.6) in (4.7), we have that

dĨ

dα

∣∣∣∣
α=0

=

∫ b

a

[
∂F

∂ω
v +

∂F

∂ω′
dv

dx

]
dx = 0, (4.8)

where ω′ = dω
dx

. The second term on the right can be integrated by parts to yield

∫ b

a

[
∂F

∂ω′
dv

dx

]
dx =

∂F

∂ω′
v

∣∣∣∣b
a

−
∫ b

a

v
d

dx

(
∂F

∂ω′

)
dx. (4.9)

According to the definition of V ([a, b]), we have v(a) = 0 and v(b) = 0. Therefore, if we use

equation (4.9) in (4.8), we get∫ b

a

[
∂F

∂ω
− d

dx

(
∂F

∂ω′

)]
v dx = 0, ∀ v(x) ∈ V ([a, b]). (4.10)

Consequently, to minimize the functional I, we need to find the solution w(x) ∈ U([a, b]) of

the Euler-Lagrange equations: 
∂F

∂ω
− d

dx

(
∂F

∂ω′

)
= 0;

ω(a) = ua;

ω(b) = ub.

(4.11)

Note that the functions u(x) and v(x) can be in different function spaces than the ones used

for this demonstration. The choice of a proper function space depends on the boundary

conditions of the problem. Equation (4.10) is also known as the weak form of the differential

equation in expression (4.11), used in the context of the finite element method.
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4.1.2 The FEM with nodal elements

The FEM is a numerical method used for the discretization of PDEs in boundary value

problems. Let us consider the following differential equation:

− d

dx

(
q
du

dx

)
= f(x), (4.12)

where x ∈ ]0, L[ and q is a constant, and the boundary conditions:{
u(0) = 0;

u(L) = 0.
(4.13)

The first step of the FEM consists in multiplying the differential equation (4.12) by a test

function v(x) ∈ H1
0 ([0, L]) where H1

0 ([0, L]) is a Sobolev space, to integrate over the domain

[0, L], and to integrate by parts in order to get the weak form∫ L

0

q
du

dx

dv

dx
dx =

∫ L

0

fv dx ∀ v ∈ H1
0 . (4.14)

Note that since v(x) ∈ H1
0 ([0, L]), we have v(0) = 0 and v(L) = 0. More information about

Sobolev spaces can be found in [4].

The next step consists in building the mesh. The mesh is a spatial discretization of the

domain [0, L] using nel geometrical elements Ki for i = 1, .., nel. An example of a mesh

for [0, L] is shown in Figure 4.1. The Degrees of Freedom (DOFs) of the problem, e.g. ui

for i = 1, ..., ndof are assigned at different positions in the mesh and are stored in a vector

written u. For nodal elements, they are usually associated with the nodes of the elements.

On an element Ki, there are nKi
d DOFs.

On an arbitrary element K = [xK1 , x
K
2 ], the elementary weak form is given by

∫ xK2

xK1

q
du

dx

dv

dx
dx−

[
q
du

dx
v

]xk2
xk1

=

∫ xK2

xK1

fv dx (4.15)

Figure 4.1 One-dimensional mesh built with nel elements. The elements are denoted Ki for
i = 1, ..., nel. (Source of figure: [4])
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and an approximation of the solution u(x) is given by

u(x)

∣∣∣∣
K

≈ uK(x) =

nK
d∑

j=1

uKj ΨK
j (x), (4.16)

where uKj for j = 1, ..., nKd are the DOFs on element K and ΨK
j (x) for j = 1, ..., nKd are the

shape functions on K. If v(x) = ΨK
i for i = 1, ..., nKd , we have the elementary system of

equations

MKuK = FK + SK . (4.17)

where

MK
ij =

∫ xK2

xK1

q
dΨK

j (x)

dx

dΨK
i (x)

dx
dx, (4.18)

FK
i =

∫ xK2

xK1

f(x)ΨK
i (x) dx, (4.19)

SKi = SK12ΨK
i (x) + SK11ΨK

i (x), (4.20)

where SK11 = −q du(xK1 )

dx
and SK12 = q

du(xK2 )

dx
, and uK is the vector containing the DOFs on

element K.

To evaluate the elementary system of equations, we use a transformation on a reference

element K̂ = [−1, 1]. An example of 1-D linear shape functions on K̂, is shown in Figure 4.2.

The reference element is introduced in details in chapter 7.

For each element Ki, i = 1, ...nel, there is an elementary system of equations (4.17).

Figure 4.2 One-dimensional linear shape functions over the element K̂ = [−1, 1]. (Source of
figure: [4])
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These different systems of equations are coupled because one DOF can belong to more than

one element. To account for this coupling, we assemble a global system of equations of the

form

Mu = F + S. (4.21)

This system of equations can then be solved for u using either LU decomposition or an

iterative method.

Nodal elements have shown mitigated results for the modeling of HTS devices in 2-D and

3-D. For general electromagnetic problems, Jin [5] stated three main difficulties encountered

with the use of this type of elements:

• Difficulty in enforcing the divergence free condition ∇ ·B = 0 and, as a result, non-

physical solutions are observed (spurious modes);

• Difficulty in imposing the continuity conditions of electric and magnetic fields at the

different materials interfaces;

• Difficulty to deal with conducting and dielectric edges because of field singularities.

As a result, nodal elements are seldomly used for the numerical modeling of HTS devices in

2-D and 3-D.

4.1.3 Edge Elements

Nédélec’s edge elements are vectorial elements for which the DOFs are associated with

the edges of the elements rather than the nodes [25]. More precisely, they represent an

approximation of the tangential component of the dependant variable along each edge. For

an edge e and a DOF he:

H · te = he, (4.22)

where te is a unit vector tangent to the edge. As a result, an approximation of the dependant

variable H on a triangular element K, with nKd = 3 DOFs, is given by

H

∣∣∣∣
K

≈ hK(x) =

nK
d∑

e=1

hKe N
k
e (x), (4.23)

where hKe for e = 1, ..., nKd are the DOFs and NK
e for e = 1, ..., nKd are the shape functions.

A vectorial representation of these functions is shown in Figure 4.3.

For the numerical modeling of HTS, edge elements are popular because they don’t suffer

from the main limitations reported by Jin [5] for nodal elements. First, the basis functions
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Figure 4.3 Vectorial interpretation of the 2-D shape functions for edge elements over a tri-
angular element K. a) The function associated with edge #1: NK

1 ; b) Edge # 2: NK
2 ; c)

Edge # 3: NK
3 . (Source of figure: [5])

implicitly satisfy the divergence free condition on each element, i.e. ∇ ·NK
e = 0. If hK is an

approximation of the magnetic field on element K and if µ is constant in space, we have

∇ · hK(x) =

nK
d∑

e=1

hKe ∇ ·NK
e (x) = 0. (4.24)

The definition of the functions NK
e for e = 1, ..., nKd are discussed in chapter 8. Secondly, the

materials interface conditions between the different domains are easier to implement because

the tangential components of the fields are continuous across all edges. Finally, the normal

component of the fields across an edge is not continuous which makes it easier to deal with

singularities at conducting and dielectric interfaces.

4.2 The Semi-Analytical Method

The Semi-Analytical Method (SAM) is used to discretize in space the equations of the

A − V formulation in integral form. A physical model based on this formulation has been

introduced in section 3.2.

The SAM is a point collocation method and it consists in computing the current density J

at n nodes of a mesh composed of ne elements. The mesh is in the x − y plane with J

being perpendicular to that plane, but 3-D effects can still be taken into account using the

integral definition of the magnetic vector potential. An example of a typical mesh is shown

in Figure 4.4.
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Figure 4.4 Typical two-dimensional mesh for the SAM. (Source of figure: [6])

We write

Jv =


J1

J2

...

Jn

 , (4.25)

where Ji for i = 1, .., n are the DOFs for the current density at each node of the mesh.

Therefore, Jv is a discrete version of J . By considering the current density J to be either

linear or constant per element, we can get an expression for the magnetic potential vector at

each node of the mesh:

Ai = [coeff]1×nJv + Aext,i. (4.26)

The line vector [coeff]1×n is obtained by computing analytically the integral for the magnetic

vector potential introduced in section 3.2, i.e.

A(r) =
µ0

4π

∫
Ω

J log |r − r′| dΩ. (4.27)

This integral depends only on the geometry of the conducting parts of the domain Ω. The

term Aext,i is a discrete version of Aext which was introduced in section 3.2. We recall that

Aext is used to model an external magnetic field. Since the contribution of Aext,i does not

impact the structure of the equations, it will not be considered hereafter.

We recall the equation for the current density J that was introduced in section 3.2:

− ∂A

∂t
− ρJ −∇V = 0. (4.28)

If we apply the collocation method described above to this equation, we obtain the system

of ODEs:

MAJ̇v − ΛρJv −DV = 0. (4.29)
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Here, MA is a dense invertible n × n matrix whose entries are given by equation (4.26).

The coefficients Λρ is a diagonal n×n matrix with its diagonal elements given by the definition

of ρ. The vector V contains the DOFs Vi for i = 1, ..., nbcond where nbcond is the number

of conductors and D is a matrix of size n× nbcond.
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CHAPTER 5

INTRODUCTION TO SYSTEMS OF DAE

As discussed in the previous chapter, the numerical methods used to discretize the equa-

tions modeling HTS devices in space lead to systems of DAE. This chapter introduces systems

of DAE. It is divided into 3 sections. In section 5.1, we report basic definitions for systems

of DAE. In section 5.2 we describe a notion used to classify systems of DAE, i.e. the in-

dex. Finally, in section 5.3, we discuss an important type of system of DAE known as the

Hessenberg form. The references used for this chapter are [26], [27], and [28].

5.1 Definition of a System of DAE

The first order explicit system of Ordinary Differential Equations (ODEs)

ẋ = f(t,x), (5.1)

contains m ODE. It can also be written in a more general implicit form

G(t,x, ẋ) = 0, (5.2)

where the Jacobian matrix of G with respect to ẋ

∂G(t,x, ẋ)

∂ẋ
=


∂G1

∂ẋ1
... ∂G1

∂ẋm
...

. . .
...

∂Gm

∂ẋ1
... ∂Gm

∂ẋm

 (5.3)

is assumed to be nonsingular. If we add a system of algebraic equations g of size ` and `

algebraic variables, i.e. z to the system of equations (5.1), we have:{
ẋ = f(t,x, z);

0 = g(t,x, z),
(5.4)

which is a semi-explicit system of DAE of size n = m+ `. The solution of this system must

satisfy both systems of differential and algebraic equations.
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A more general form of DAE is the semi-explicit nonlinear system:{
h(t,x, ẋ, z) = 0;

g(t,x, z) = 0,
(5.5)

where h only contains the differential equations and g contains the algebraic equations.

The systems of equations (5.4) and (5.5) can be written as

F (t,y, ẏ) = 0, (5.6)

with

y =

[
x

z

]
(5.7)

which is called an implicit system of DAE. This time, the Jacobian matrix of F with respect

to ẏ, i.e. ∂F (t,y,ẏ)
∂ẏ

is singular. To explain this statement, let us write

y =


y1

y2

...

yn

 , ẏ =


ẏ1

ẏ2

...

ẏn

 , (5.8)

and

x =


y1

y2

...

ym

 , z =


ym+1

ym+2

...

yn

 , (5.9)

where n is the length of vectors y and ẏ, m is the length of vector x and ` = (n−m) is the

length of vector z. Since z contains algebraic variables, its time derivative

ż =


ẏm+1

ẏm+2

...

ẏn

 (5.10)

does not appear in F . As a result, columns (m+ 1) to n of ∂F (t,y,ẏ)
∂ẏ

are given by a vector of



30

zeros of length n, i.e.

∂F (t,y, ẏ)

∂ẏ
=


∂F1

∂ẏ1
... ∂F1

∂ẏm
0 · · · 0

...
. . .

...
...

. . .
...

∂Fn

∂ẏ1
... ∂Fn

∂ẏm
0 · · · 0

 . (5.11)

Consequently, ∂F (t,y,ẏ)
∂ẏ

is singular.

5.2 The Index of a System of DAE

Let us consider the following system of DAE, taken from Ascher [26]:{
ẏ1 = y2;

y1 = q(t).
(5.12)

If we differentiate the second equation in this system, we have ẏ1 = q̇(t) and y2 = q̇(t). Then,

if we differentiate the first equation, we have ẏ2 = ÿ1 and therefore ẏ2 = q̈(t). This yields the

following system of ODEs: {
ẏ1 = q̇(t);

ẏ2 = q̈(t).
(5.13)

Since it took two differentiations to transform the original system of DAE into a system of

ODEs, its index is 2. The minimum number of differentiation needed to obtain an explicit

system of ODEs from a system of DAE is called the index. Therefore, systems of ODEs are

systems of DAE of index 0. Systems of DAE with indexes that are higher than one are called

higher index systems of DAE.

The initial or boundary conditions specified for the system of DAE (5.13) need to be

consistent. This means that they need to satisfy the algebraic constraint y1 = q(t) but also

y2(t) = q̇(t). The latter equation is called a hidden constraint because it does not appear in

the initial or final system of equations.
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5.3 The Hessenberg Form of a DAE

Some systems of DAE have a particular mathematical structure called Hessenberg form.

Generally and explicitly, a system of DAE of index r in Hessenberg form is written as [27]

I1 0 · · · · · · 0

0 I2
. . .

...
...

. . . . . . . . .
...

...
. . . Ir−1 0

0 · · · · · · 0 0





ẏ1

...

...

...

ẏr


+



B11 · · · · · · B1,r−1 B1r

B21 · · · · · · B2,r−1 0

0
. . .

...
...

...
. . . . . .

...
...

0 · · · 0 Br,r−1 0





y1

...

...

...

yr


=



f1

...

...

...

fr


. (5.14)

If the vectors yi for i = 1, ..., r have length nyi , then the Ii are identity matrices of size

nyi ×nyi , the Bi,j are matrices of size nyi ×nyj for i, j = 1, ..., r and the fi are known vectors

of length nyi . The most common indices for Hessenberg DAEs are 2 and 3. For a system of

DAE of index 2 in Hessenberg form, we have:{
ẏ1 +B11y1 +B12y2 = f1;

B21y1 = f2,
(5.15)

and for an index 3: 
ẏ1 +B11y1 +B12y2 +B13y3 = f1;

ẏ2 +B21y1 +B22y2 = f2;

B32y2 = f3.

(5.16)

A system of DAE of index 2 in Hessenberg form can be expressed in a semi-explicit form:{
ẏ1 = h(t,y1,y2);

0 = g(t,y1),
(5.17)

or in a semi-explicit nonlinear form:{
h(t,y1, ẏ1,y2) = 0;

g(t,y1) = 0.
(5.18)

In both cases, the algebraic variable y2 is not in the system of algebraic equations g. Systems

of DAE in Hessenberg form are of full index r ; all algebraic variables can be eliminated with

the same number of derivations.

Systems of DAE in Hessenberg form are common in constrained variational problems.

The algebraic variables are often associated with the Lagrange multipliers of the problem.

For example, nonlinear systems of DAE of index 2 in Hessenberg form are encountered in the
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modeling of the flow of an incompressible fluid using the Navier-Stokes equations:{
M u̇+ (K +N(u))u+Cp = f ;

CTu = 0.
(5.19)

The details of this system of DAE are omitted here but we can note that the algebraic

variable, i.e. the pressure p, is only in the first system of equations.

In conclusion, we can note three main features of systems of DAE of Hessenberg type.

First, they are often encountered in constrained variational problems. Second, all algebraic

variables require the same number of derivations for the system of DAE to be reduced to a

system of ODEs. Third, for a system of DAE of index 2 in Hessenberg form, the algebraic

variables are not in the algebraic equations.
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CHAPTER 6

THE DISCRETIZATION OF SYSTEMS OF DAE IN TIME

In this chapter, we introduce some strategies, time-integration schemes and transient

solvers that are used to discretize systems of DAE in time. In section 6.1 we describe a

direct discretization method that consists in discretizing systems of DAE directly. Then, in

section 6.2, we cover how to discretize systems of DAE by reducing their index. Afterwards,

in section 6.3, we briefly discuss how we can discretize systems of DAE of index 0 in semi-

explicit form. Finally, in section 6.4, we introduce one of the main transient solver used to

discretize systems of DAE, i.e. the Differential-Algebraic System SoLver (DASSL) and related

solvers. The main references used in this chapter are [26], [27], [29] and [30].

6.1 Direct Discretization

Systems of DAE can be solved numerically by direct discretization. This method consists

in discretizing directly the system of DAE in its full implicit form:

F (t,y, ẏ) = 0, (6.1)

or in its semi-explicit nonlinear form:{
f(t,y, ẏ) = 0;

g(t,y) = 0,
(6.2)

or its semi-explicit form: {
ẏ = f(t,y);

0 = g(t,y),
(6.3)

using an implicit method such as a multistep Backward Differentiation Formula (BDF). Other

methods can be used but in this thesis, we concentrate our efforts on the BDF schemes due

to their use in the software DASSL, which is described in forthcoming sections.

An approximation of the time derivative at time t = tn using a BDF method of order k

is written as [27]

ẏn ≈
1

β04t

k∑
j=0

αjyn−j, (6.4)

where β0 and αj are the coefficients of the method and 4t is the time-step size. Note that
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the first order accurate BDF method is the backward Euler method.

For a system of DAE, initial conditions are said to be consistent when they satisfy the

differential equations, the algebraic equations and the hidden constraints as explained in

section 5.2. For consistent initial conditions, a convergence analysis reported by Brenan [27]

shows that BDF methods of order k with k < 7 achieve the same convergence rate for

systems of DAE of index 1 as they do for systems of ODEs. Furthermore, the same rate of

convergence can be achieved with semi-explicit nonlinear systems of DAE of index 2, under

certain conditions1.

For most of the systems of DAE, the discretization of the time derivative with an implicit

method yields a nonlinear system of equations that needs to be linearized using Newton’s

method. For the fully implicit system, the nonlinear system is

F

(
tn,yn,

1

β04t

k∑
j=0

αjyn−j

)
= 0, (6.5)

for the semi-explicit nonlinear form, it is:{
f
(
tn,yn,

1
β04t

∑k
j=0 αjyn−j

)
= 0;

g(tn,yn) = 0,
(6.6)

and for the semi-explicit form, it is:{
1

β04t
∑k

j=0 αjyn−j = f(tn,yn);

0 = g(tn,yn).
(6.7)

6.2 Reduction of Index

In some situtations, it could be advantageous to reduce the index of the system of DAE

before discretizing its time derivative. This process consists in the three following steps:

1. Reduce the index of the system of DAE;

2. Identitfy the resulting system of DAE;

3. As a function of item 2, discretize the system of DAE in time or reduce its index, again.

When reducing the index of a system of DAE, extra care must be taken to ensure that the

initial conditions are consistent.

1see [27], theorem 3.2.2
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6.3 Reformulation of Systems of DAE into Semi-Explicit Forms

The reformulation of systems of DAE into semi-explicit forms applies to systems of DAE

of index 0. It consist in writing the DAE as a semi-explicit system of ODEs, i.e.

ẏ = f(t,y), (6.8)

and then discretize ẏ using an explicit method such as forward Euler. It is an efficient tech-

nique to avoid solving a nonlinear system of equations but it often requires to invert matrices.

Note that this strategy has no use when the system of DAE to discretize is nonlinear.

The semi-explicit form, ẏ = f(t,y), is the form solved by certain transient solvers such

as ode45 in MATLAB. Systems of DAE of index 0 can be reformulated into semi-explicit

form to use these solvers.

6.4 DASSL and IDAS

DASSL was developed at Sandia National Laboratories by a team directed by Linda

Petzold [29]. The way this solver works is similar to the direct discretization method applied

to implicit systems of DAE introduced in section 6.1. DASSL is used to discretize initial

value problems of the form

F (t,y, ẏ) = 0, y(t0) = y0, ẏ(t0) = ẏ0. (6.9)

The time derivatives are discretized using BDF methods. As a result, at each time step,

a nonlinear system of the form

F

(
tn,yn,

1

β04t

k∑
j=0

αjyn−j

)
= 0 (6.10)

needs to be solved using a variant of Newton’s method. The linearization of this system of

equations leads to a linear system of equations that is solved using dense or banded direct

methods.

The BDF methods used in DASSL have a variable order of precision and the time-steps

have variable size. The order of precision of the BDF methods vary from 1 to 5. DASSL

discretizes systems of DAE of index 0 and of index 1, but it was shown to give good results

in solving nonlinear semi-explicit systems of DAE of index 2.
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IDAS (Implicit Differential-Algebraic Solver) is an extension of DASSL. The main differ-

ence is that iterative methods have been added to solve the linear system resulting from the

linearization of the nonlinear system. Since it uses iterative methods, IDAS can be used to

study large-scale problems.
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CHAPTER 7

DISCRETIZATION OF HTS PROBLEMS USING NODAL FINITE

ELEMENTS IN 1-D

In this chapter, we study the systems of DAE obtained from the discretization in space of

HTS problems using nodal finite elements in 1-D. More precisely, in section 7.1, we describe

a typical HTS problem that can be studied using a 1-D physical model. Afterwards, in

section 7.2, we give the discretization in space of the equations of this model using the FEM

with nodal elements. This discretization in space leads to systems of DAE. In section 7.3, we

identify the structure and index of those systems of DAE and propose strategies to discretize

them in time. Finally, in section 7.4, we describe and verify the code that was developed for

this research work.

Despite their simplicity, we decided to study 1-D problems for two reasons. First, the 1-D

case is used to introduce the general methodology of this research work. Second, Mayergoyz

[31] and Wan [12] both derived analytical solutions for the 1-D model of the HTS slab which

can be used to verify the developed code. The main references used to write this chapter

are [4] and [23].

7.1 Typical Problem

Let us consider an HTS domain whose width and length are much larger than its thickness,

often referred to the slab geometry [3]. We want to compute the current density distribution

in the HTS slab as a function of the magnetic flux density applied parallel to the slab at

x = a and −a, i.e.: {
B(−a, t) = Bat

p;

B(a, t) = −Bat
p,

(7.1)

where Ba is the magnitude of the flux density and p ≥ 1.

Since the slab is long and wide compared to its thickness, it can be approximated using a

1-D geometry of finite thickness. We can then use the 1-D model described in section 3.1.1.

We recall the main characteristics of the model. The PDE for the flux density diffusion is

given by

− ∂

∂x

[
ρ(J)

µ0

∂B(x, t)

∂x

]
+
∂B(x, t)

∂t
= 0, (7.2)
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with x ∈]− a, a[ and t ∈ [0,∞[. The initial conditions are given by:{
B(x, 0) = 0;

Bt(x, 0) = 0.
(7.3)

The parallel magnetic flux density is applied using Dirichlet boundary conditions:{
B(−a, t) = Bat

p;

B(a, t) = −Bat
p.

(7.4)

For the resistivity of the HTS slab, we use the power law model:

ρ(J) =
Ec
Jc

∣∣∣∣ JJc
∣∣∣∣n−1

, (7.5)

and the current density is given by

J = − 1

µ0

∂B

∂x
. (7.6)

7.2 Discretization in Space Using the FEM with Nodal Elements

7.2.1 The Weak Form

We want to discretize the PDE (7.2) over the 1-D domain Ω shown in Figure 7.1. This

domain represents the width of the slab. The first step consists in multiplying this PDE by

a test function v(x) taken in the Sobolev space H1
0 (Ω) and we integrate over the domain Ω:

−
∫ a

−a

∂

∂x

[
ρ(J)

µ0

∂B(x, t)

∂x

]
v(x) dx+

∫ a

−a

∂B(x, t)

∂t
v(x) dx = 0. (7.7)

Figure 7.1 Domain Ω that represents the width of the HTS slab.
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We then integrate the first term of equation (7.7) by parts to get∫ a

−a

∂B(x, t)

∂t
v(x) dx+

∫ a

−a

ρ(J)

µ0

∂B(x, t)

∂x

dv(x)

dx
dx−

[
ρ(J)

µ0

∂B(x, t)

∂x
v(x)

]a
−a

= 0. (7.8)

Since v(x) is in H1
0 (Ω), we have v(−a) = v(a) = 0. Therefore, the last term in equation (7.8)

is zero and we have∫ a

−a

∂B(x, t)

∂t
v(x) dx+

∫ a

−a

ρ(J)

µ0

∂B(x, t)

∂x

dv(x)

dx
dx = 0, (7.9)

which is a weak form of equation (7.2).

7.2.2 The Mesh

The next step consists in building a spatial discretization of the domain of definition of the

problem Ω using nel elements Ki for i = 1, ..., nel. Elements do not need to be of the same

size h. Each element Ki is defined using nKi
g = 2 geometric nodes, as shown in Figure 7.2.

An arbitrary element K = [xK1 , x
K
2 ] contains nKc computation nodes. For the problem

studied in this chapter, the computation nodes are at the geometric nodes and therefore

nKc = nKg = 2. The total number of nodes is nnodes.

The x coordinate of each node is stored in a table called COOR. An example of a table

COOR is shown in Table 7.1. The relationship between an element and the nodes within

this element is stored in a table called CONNEC. An example of a table CONNEC is shown

in Table 7.2. For the problem studied in this chapter, the DOFs are an approximation of

the magnetic flux density at the computation nodes and there is only one DOF associated

with each node. As a result, there are nKd = 2 DOFs in an element K and ndof DOFs on Ω.

The DOFs are time-dependent and written as bi(t) with i = 1, ..., ndof .

The DOFs are unknowns except for the DOFs related to Dirichlet boundary conditions.

Figure 7.2 Domain Ω discretized using nel elements Ki. Each element have nKg = 2 geomet-
rical nodes.
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Table 7.1 The x coordinate of each node is stored in a table called COOR.

COOR

Node x coordinate

1 −0.5

2 −0.4
...

...

nnodes 0.5

Table 7.2 The relationship between an element Ki for i = 1, ...nel and the nodes within this
element is stored in a table called CONNEC.

CONNEC

Element Node #1 Node #2

K1 1 2

K2 2 3
...

...
...

Knel nnodes− 1 nnodes

We write

B =


b1

b2

...

bndof

 =

[
BU

BD

]
, (7.10)

whereB is the global vector containing the DOFs of B,BU is a vector containing the unknown

DOFs and BD is a vector containing the known DOFs on the boundary where the Dirichlet

boundary conditions are imposed. Similarly, for the time derivative of the DOFs, we can

write

Ḃ =


ḃ1

ḃ2

...

ḃndof

 =

[
ḂU

ḂD

]
. (7.11)

The DOFs are numbered using a table called NUMBER. It has dimensions ndof × 1. It

gives the number of the DOF associated with each node. To get the structure of the global
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vector as in equation (7.10), the DOFs that are unknown are numbered first, then a number

is given to the DOFs that are known. An example of this table is shown in Table 7.3.

7.2.3 The Elementary System of Equations

Let us consider an element K = [xK1 , x
K
2 ]. By defining

SK11 = −ρ(J)

µ0

∂B(x, t)

∂x

∣∣∣∣
x=xK1

, (7.12)

and

SK12 =
ρ(J)

µ0

∂B(x, t)

∂x

∣∣∣∣
x=xK2

, (7.13)

the elementary weak form of equation (7.2) can be written as

∫ xK2

xK1

∂B(x, t)

∂t
v(x) dx+

∫ xK2

xK1

ρ(J)

µ0

∂B(x, t)

∂x

dv(x)

dx
dx = SK12v(xK2 ) + SK11v(xK1 ). (7.14)

Let us suppose we can approximate B(x, t) on K using

B(x, t)|K ≈ bK(x, t) =

nK
d∑

j=1

bKj (t)ΨK
j (x), (7.15)

where the bKj (t) are the DOFs on element K and the ΨK
j (x) are shape functions defined on

K. We recall that nKd = 2 for the problem studied in this chapter. Replacing equation (7.15)

Table 7.3 The NUMBER table gives the number of the DOF associated with each node.

NUMBER

Node Number of the DOF

1 ndof − 1

2 1
...

...

nnodes ndof
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in the elementary weak form (7.14), we have

nK
d∑

j=1

[
ḃKj (t)

∫ xK2

xK1

ΨK
j (x)v(x) dx+bKj (t)

∫ xK2

xK1

ρ(J)

µ0

dΨK
j (x)

dx

dv(x)

dx
dx

]
= SK12v(xK2 ) + SK11v(xK1 ).

(7.16)

Taking v(x) = ΨK
i (x) for i = 1, ..., nKd , we get the nonlinear elementary system of equations

MKḂK + AK(J)BK = SK , (7.17)

where BK
i = bKi is the elementary vector of the DOFs, ḂK is its time derivative,

MK
ij =

∫ xK2

xK1

ΨK
j (x)ΨK

i (x) dx, (7.18)

AKij =

∫ xK2

xK1

ρ(J)

µ0

dΨK
j (x)

dx

dΨK
i (x)

dx
dx, (7.19)

and

SKi = SK12ΨK
i (xK2 ) + SK11ΨK

i (xK1 ), (7.20)

for i, j = 1, ..., nKd .

7.2.4 The Reference Element

Let us consider the following change of variable:

TK : K̂ → K;

[−1, 1] → [xK1 , x
K
2 ];

ξ → x =
(xK1 + xK2 ) + hKξ

2
;

dx =
hK

2
dξ,

(7.21)
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and the inverse change of variable:

(TK)−1 : K → K̂;

[xK1 , x
K
2 ] → [−1, 1];

x → ξ =
2x− (xK1 + xK2 )

hK
;

dξ =
2

hK
dx,

(7.22)

where hK is the size of element K, K̂ = [−1, 1] is the reference element and ξ is the indepen-

dent variable on K̂. On this element, we have

ΨK
i (x) = ΨK

i (TK(ξ)) = ΨK
i

(
(xK1 + xK2 ) + hKξ

2

)
= Ψ̂i(ξ), (7.23)

and
dΨK

i (x)

dx
=
dΨ̂i(ξ)

dξ

dξ

dx
=

2

hk
dΨ̂i(ξ)

dξ
, (7.24)

for i = 1, ..., nKd .

We choose Ψ̂i(ξ) to be the linear Lagrange shape functions:
Ψ̂1(ξ) =

1− ξ
2

;

Ψ̂2(ξ) =
1 + ξ

2
,

(7.25)

which yield an approximation of J that is piecewise constant by element. The choice of the

shape functions for HTS problems has been studied by Sirois and more information on this

subject can be found in [3].

As a result, for the elementary system of equations on K̂, we have

MK
ij =

hK

2

∫ 1

−1

Ψ̂j(ξ)Ψ̂i(ξ) dξ, (7.26)

AKij =
4ρK(t)

(hK)2µ0

∫ 1

−1

dΨ̂j(ξ)

dξ

dΨ̂i(ξ)

dξ
dξ, (7.27)

and

SKi = SK12Ψ̂i(1) + SK12Ψ̂i(−1), (7.28)

for i, j = 1, .., nKd . Note that the HTS resistivity ρK is not in the integral of AKij . This is
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because it is independent of ξ, i.e.

ρK(t) =
Ec
Jc

∣∣∣∣bK1 (t)− bK2 (t)

µ0JchK

∣∣∣∣n−1

. (7.29)

This is shown in Appendix A.

7.2.5 Assembly of the Global System of Equations

We have the elementary system of equations (7.17) for each element Ki, i = 1, ..., nel. We

cannot solve these systems independently because the DOFs are shared between elements.

As a result, we need to assemble a global system of equations

MḂ + A(J)B = S, (7.30)

where B is the global vector described in equation (7.10), Ḃ is its time derivative, A and

M are matrices of dimensions ndof × ndof and S is a vector of length ndof . The entries

of A and M come from the elementary contributions of AKi and MKi for i = 1, ..., nel. The

coefficients of S come from the elementary contributions of the vectors SKi , for i = 1, ..., nel.

For the problem studied in this chapter, we do not impose any jump in the approximation

of the solution between the elements. Therefore, the coefficients SKi of S at the DOFs

locations inside the domain Ω will either be zero or they will cancel. As a result, for the

remainder of this chapter, we will have

S =

[
0

SU

]
, (7.31)

where SU is an unknown vector of length 2, i.e. one coefficient for each DOF on the boundary

where Dirichlet boundary conditions are applied.

To assemble the global system of equations, we use a table called ADDRESS. This table

gives the number of the DOFs on each element. An example of this table is shown in Table 7.4

and a thorough explanation of the assembly process can be found in [4].

7.3 Systems of DAE

Depending on how the Dirichlet boundary conditions are enforced, the discretization of

equation (7.2) in space can lead to a system of DAE of index 0 or index 1. In this section,

we give the structure of those systems and propose strategies for solving them.
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Table 7.4 The ADDRESS table gives the number of the DOFs on each element Ki for
i = 1, ..., nel.

ADDRESS

Element DOF #1 DOF #2

K1 ndof − 1 1

K2 1 2
...

...
...

Knel ndof − 2 ndof

7.3.1 System of DAE of Index 0

As mentioned in subsection 7.2.2, the coefficients of vector BD are known. Therefore,

using

MḂ =

[
M11 M12

M21 M22

][
ḂU

ḂD

]
, (7.32)

and

A(J)B =

[
A11(J) A12(J)

A21(J) A22(J)

][
BU

BD

]
, (7.33)

we can rearrange the global system of equations (7.30) to obtain two systems of equations:{
M11ḂU + A11(J)BU +M12ḂD + A12(J)BD = 0;

M21ḂU + A21(J)BU +M22ḂD + A22(J)BD = SU .
(7.34)

Only the first system of equation needs to be solved to find BU . Since we have no interest

in computing SU for the problem described in section 7.1, the only system of equations to

solve is

M11ḂU + A11(J)BU +M12ḂD + A12(J)BD = 0. (7.35)

This is a system of ODEs and therefore, it is a system of DAE of index 0.

We propose two strategies for solving the system of DAE of index 0:

• Direct discretization;

• Reformulation into a semi-explicit form.

Let us write BU = B in order to simplify the notation. The direct discretization consists in
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discretizing directly

F (t,B, Ḃ) = M11Ḃ + A11(J)B +M12ḂD + A12(J)BD = 0 (7.36)

in time using a time integration scheme. The discretization of this system of DAE results in

a nonlinear algebraic system of equations to be linearized using Newton’s method.

For example, using a BDF time integration scheme of order k, at time t = tn, we have

the nonlinear system of equations

F

(
tn,Bn,

1

β04t

k∑
j=0

αjBn−j

)
= 0, (7.37)

where β0 and αj are the coefficients of the BDF scheme, n is the time-step number, tn is the

time at time step n and 4t is the time-step size. The vector Bn contains the DOFs at time

step n, i.e.

Bn =


b1,n

b2,n

...

bndof,n

 , (7.38)

where bi,n ≈ bi(tn) for i = 1, ..., ndof .

We can reformulate the system of DAE of index 0 (7.35) as

ḂU = M−1
11

(
−A11(J)BU −M12ḂD − A12(J)BD

)
. (7.39)

Since M11 is not time dependent, ḂU only needs to be isolated once. We then discretize ḂU

using a time integration scheme.

Since the system of DAE of index 0 studied in this chapter is nonlinear, the strategy of

reformulation has no use. If we use an explicit method to discretize ḂU in equation (7.39), we

get a nonlinear system of equations, similar to the one obtained with the direct discretization

strategy. As a result, it is better to use the direct discretization strategy and avoid inverting

the matrix M11.

7.3.2 System of DAE of Index 1

Using the submatrices of equations (7.32) and (7.33), we define

M̃ =
[
M11 M12

]
, (7.40)
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and

Ã(J) =
[
A11(J) A12(J)

]
. (7.41)

Note that M̃ and Ã(J) are matrices of dimensions (ndof − 2) × ndof . If we apply the

boundary conditions as algebraic equations, we have{
M̃Ḃ + Ã(J)B = 0;

BD = Ba.
(7.42)

This is a nonlinear semi-explicit system of DAE of index 1 because one differentiation of the

system of algebraic equations BD = Ba leads to a system of ODEs. The system of DAE

(7.42) can also be written as {
f(t,B, Ḃ) = 0;

g(t,BD) = 0,
(7.43)

where f = M̃Ḃ + Ã(J)B and g = BD −Ba.

Since M̃ and Ã are matrices of dimensions (ndof − 2) × ndof , we propose two ways to

discretize the system of DAE of index 1 in time:

• Reduction of the index;

• Direct discretization.

Reducing the index of the DAE results in a system of ODEs similar to the one obtained

in the index 0 case. The same strategies can then be applied, e.g. the direct discretization.

Note that when reducing the index, we need to verify that the initial conditions are consistent

with the hidden constraints.

As discussed in chapter 6, BDF schemes of order k with k < 7 used with consistent initial

conditions converge with the same order of accuracy for systems of ODEs and systems of

DAE of index 1. Therefore, the system of DAE of index 1 can also be discretized directly

using a BDF scheme. This yields a nonlinear system of equations:{
f
(
tn,Bn,

1
β04t

∑k
j=0 αjBn−j

)
= 0;

g(tn,BD,n) = 0,
(7.44)

which can be linearized using Newton’s method.

When using the direct discretization strategy, we do not need to reduce the index and we

do not need to verify that the initial conditions are consistent with the hidden constraints.

As a result, it is more straightforward and less risky than the reduction of the index.
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7.4 Code Development

We implemented a code to solve the problem described in section 7.1. We programmed the

discretization in space in C and used the IDAS library for the transient solver. As discussed

in chapter 6, IDAS uses the direct discretization strategy to discretize systems of DAE. As a

result, the developed code does a direct discretization of the systems of DAE of index 0 and

1 described in the previous section. The implementation goes as follows:

• Discretization in space using the FEM;

• Programmation of a routine for computing the residual to be used by IDAS;

• Approximation of the Jacobian matrix using difference quotients (easier but slower);

• Selection of the parameters for the IDAS solver (absolute and relative tolerances).

7.4.1 Verification of the Code

In this section, we verify that the code developed for this project gives an accurate approx-

imation of the solution for the equations described in section 7.1. We compare the computed

approximation with an analytical solution derived by Wan [12] and described in Appendix

B. Note that a similar solution was first derived by Mayergoyz [31] for the current density as

the dependent variable.

A comparison between the analytic solution and the FEM approximation at time t =

0.0025 s for 40 elements is illustrated in Figure 7.3. Only the results for the index 1 case are

shown but the results for the index 0 formulation are indistinguishable. We see that both

solutions overlap. It therefore seems that the code gives the right approximation for a given

system of equations. We note that we did not faced any issues when computing the FEM

approximation for the system of DAE of index 0 and for the system of DAE of index 1. For

this example, we consider the developed code as verified and we conclude that the direct

discretization strategy works.
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Figure 7.3 Comparisons between the analytical solution and the FEM approximation for the
problem of equation (7.2) with B(−a, t) = Bat

p and B(a, t) = −B(−a, t) at time t = 0.0025s
for 40 elements for the index 1 formulation.
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CHAPTER 8

DISCRETIZATION OF HTS PROBLEMS USING EDGE ELEMENTS IN 2-D

In this chapter, we study the systems of DAE obtained from the discretization of HTS

problems in space using edge elements in 2-D. For this, in section 8.1, we define a basic model

for modeling HTS devices in a two-dimensional environment. In section 8.2, we give the

discretization in space of the equations of the model using the FEM with edge elements. The

discretization in space leads to systems of DAE. In section 8.3, we identify those systems and

propose strategies to discretize them in time. Finally, in section 8.4, we describe and verify the

code developed for this project. The main references used for this chapter are [4], [5], [12], [23]

and [25].

8.1 Basic 2-D Model for the Study of HTS Devices

Let us consider long conductors that are surrounded by dielectrics. The conductors can

be made of HTS or metal. We restrict our study to the case µ = µ0. The conductors are so

long that their electromagnetic behavior can be assumed to be constant along their length.

We want to compute different electromagnetic quantities in these conductors, e.g. the current

density distribution and the magnetic field strength as a function of an applied current or

magnetic field.

Since the conductors are long and their electromagnetic behavior is assumed to be constant

along their length, the electromagnetic quantities of interest can be computed on a cross-

section and then be extrapolated to the full length of the geometry. As a result, we can

model this problem using the 2-D model introduced in section 3.1.2. We recall the main

characteristics of the model.

In a domain Ω and for a time interval T , we want to solve: µ0
∂H

∂t
+∇× (ρ(J)∇×H) = 0;

∇ ·H = 0,
(8.1)

with the initial and boundary conditions:
H(x, 0) = H0(x);

n̂×H = f on ΓD;

n̂× (ρ(J)∇×H) = g on ΓN .

(8.2)
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The domain Ω and subdomains Ω1 and Ω2 are illustrated in Figure 3.2. There can be more

than two subdomains. Note that we write ρ(J) to show the nonlinearity but for materials

that are not HTS, e.g. the air domain, ρ can be constant.

For the subdomains of Ω that represent HTS materials, we use the power law model for

the resistivity:

ρ(J) =
Ec
Jc

(
||J ||2
Jc

)n−1

where J = ∇×H . (8.3)

For other materials, we use the proper resistivity.

We make the following assumptions:

• The current density J is only flowing along the z-axis:

J = Jzk̂. (8.4)

• The magnetic field component Hz is zero and therefore

H = Hxî+Hyĵ. (8.5)

The boundary conditions can be used to apply a magnetic field on the device being

modeled. A transport current can also be imposed in the different subdomains by adding

current constraints to the set of equations. These constraints are defined as

Ii =

∫
Ωi

∇×H dΩi, (8.6)

for i = 1, ..., nc where nc is the total number of constraints and Ωi is a subset of Ω where this

constraint is applied.

8.2 Discretization in Space using the FEM with Edge Elements

8.2.1 The Weak Form

Let us consider a subset V0 of the Sobolev space W p(Curl : Ω):

V0 = {u ∈ W p(Curl : Ω) : ∇ · u = 0 on Ω, n̂× u = 0 on ΓD}. (8.7)

A thorough description of the Sobolev space W p(Curl : Ω) can be found in [12]. The first

step to obtain a weak form of the PDE in equation (8.1) is to mutiply it by a test function
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v in V0 and integrate over Ω. We have∫
Ω

µ0
∂H

∂t
· v +∇× (ρ(J)∇×H) · v dΩ = 0. (8.8)

Now, let us use the divergence theorem:∫
Ω

∇ · (a× b) dΩ =

∫
∂Ω

(a× b) · n̂ dS. (8.9)

If we use the identity

∇ · (a× b) = b · (∇× a)− a · (∇× b) (8.10)

in equation (8.9), it yields∫
Ω

b · (∇× a) dΩ =

∫
Ω

a · (∇× b) dΩ +

∫
∂Ω

(a× b) · n̂ dS. (8.11)

Now, if a = ρ∇×H and b = v, we have∫
Ω

v·[∇× (ρ(J)∇×H)] dΩ =

∫
Ω

ρ(J)∇×H ·∇×v dΩ+

∫
∂Ω

(ρ(J)∇×H×v)·n̂ dS, (8.12)

and if we replace equation (8.12) in (8.8), we get∫
Ω

µ0
∂H

∂t
· v dΩ +

∫
Ω

ρ(J)∇×H · ∇ × v dΩ +

∫
∂Ω

(ρ(J)∇×H × v) · n̂ dS = 0. (8.13)

Then, with the identity

(A×B)× (C ×D) = (A · (B ×D))C − (A · (B ×C))D, (8.14)

and replacing A and C with the unit normal vector n̂, we have that

(n̂×B)× (n̂×D) = (n̂ · (B ×D))n̂. (8.15)

If we apply equation (8.15) in the third term of equation (8.13) with B = ρ∇ ×H and

D = v, this yields∫
Ω

µ0
∂H

∂t
·v dΩ+

∫
Ω

ρ(J)∇×H ·∇×v dΩ+

∫
∂Ω

n̂·[n̂×(ρ(J)∇×H)×(n̂×v)] dS = 0. (8.16)
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Using g = n̂× (ρ∇×H), and since n̂× v = 0 on ΓD, we have∫
Ω

µ0
∂H

∂t
· v dΩ +

∫
Ω

ρ(J)∇×H · ∇ × v dΩ +

∫
∂ΓN

n̂ · [g × (n̂× v)] dS = 0. (8.17)

For this research work, when applying Neumann boundary conditions, we want the tangential

component of the electric field E = ρ∇×H to be zero at the boundary ΓN , i.e.

n̂× (ρ(J)∇×H) = g = 0 on ΓN . (8.18)

As a result, the final weak form of the PDE in equation (8.1) is given by∫
Ω

µ0
∂H

∂t
· v dΩ +

∫
Ω

ρ(J)∇×H · ∇ × v dΩ = 0, ∀v ∈ V0. (8.19)

8.2.2 The Mesh

We discretize the domain Ω using nel triangular elements Ki for i = 1, ..., nel. Each

element is defined using nKi
g = 3 geometrical nodes XKi

1 , XKi
2 and XKi

3 , and three edges, eKi
1 ,

eKi
2 and eKi

3 . These edges are where the elementary DOFs of the problem are computed. The

length of the edges are `Ki
1 , `Ki

2 and `Ki
3 , and the area of an element Ki is given by 4Ki . The

total number of nodes is nnodes and the total number of edges is nedges. An example of a

discretized domain Ω using 16 elements is shown in Figure 8.1.

Figure 8.1 Domain Ω discretized using 16 elements. The nodes are numbered and the elements
are denoted Ki for i = 1, ..., 16. The edges are not identified to simplify the illustration.
(Source of Figure: [4])
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Each edge ei for i = 1, ..., nedges is defined using the nodes Xei
1 and Xei

2 . Each edge

belongs to either a single element Kei
1 or two adjacent elements Kei

1 and Kei
2 , depending if it

is located at the boundary of the domain Ω or not.

The x− y coordinates of each geometrical node are stored in a table called COOR. The

relationship between the elements and their nodes is stored in a table called CONNEC.

Examples of those tables for the mesh illustrated in Figure 8.1 are shown in Tables 8.1 and

8.2.

The information about the edges is stored in a table called EDGES. This table gives the

indices of the nodes and elements associated with an edge. If the edge is on a boundary, the

second element is numbered −1. An example of the table EDGES for the mesh illustrated

in Figure 8.1 is shown in Table 8.3.

For the problems studied in this chapter, there is one DOF associated with each edge and,

as a result, there are nKd = 3 DOFs in each element and ndof = nedges DOFs in total. The

DOFs hi for i = 1, ..., ndof are time-dependent approximations of the tangential component

Table 8.1 The x− y coordinates of each geometrical node are stored in a table called COOR.

COOR

Node x coordinate y coordinate

1 0.0 0.0

2 0.5 0.0
...

...
...

13 1.0 1.0

Table 8.2 The relationship between the elements and their nodes is stored in a table called
CONNEC.

CONNEC

Element Node #1 Node #2 Node #3

K1 1 2 4

K2 2 5 4
...

...
...

...

K16 13 12 10
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Table 8.3 The EDGES table gives the indices of the nodes and elements associated with an
edge. If the edge is on a boundary, the second element is numbered −1.

EDGES

Edge Node #1 Node #2 Element #1 Element #2

e1 1 2 K1 −1

e2 1 6 K4 −1
...

...
...

...
...

e28 10 13 K13 K16

of the magnetic field along the length of an edge. We have

hi(t) ≈H(x, t) · ti, (8.20)

for i = 1, ..., ndof , where ti is a unit vector tangent to the edge and H is the magnetic field.

Since the DOFs associated with Dirichlet boundary conditions are known and the others

are considered as unknown, we therefore have

Hv =


h1

h2

...

hndof

 =

[
HU

HD

]
, (8.21)

whereHv is the vector containing the DOFs, HU is the vector containing the unknown DOFs

and HD is the vector containing the known DOFs. Likewise, the vectors

Ḣv =


ḣ1

ḣ2

...

ḣndof

 =

[
ḢU

ḢD

]
(8.22)

contain the time-derivatives of the DOFs.

The DOFs are numbered in a table called NUMBER. It gives the number of the DOF

associated with the edge of the same index in the EDGES table. The DOFs that are unknown

are numbered first, followed by the ones that are known. An example of a table NUMBER

is shown in Table 8.4. Note that the last column of the table EDGES can be used to identify
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which DOF is on an exterior boundary where a Dirichlet boundary condition is applied.

8.2.3 The Elementary System of Equations

Let us consider an element K. If we define

sK = n̂ · [n̂× (ρ∇×H)× n̂], (8.23)

according to equation (8.16), the weak form of the PDE in equation (8.1) on element K is∫
K

µ0
∂H

∂t
· v dx+

∫
K

ρ(J)∇×H · ∇ × v dx+

∫
∂K

sK × v dS = 0. (8.24)

On element K, we suppose that we can approximate the magnetic field using

H ≈ hK =

nK
d∑

j=1

hKj (t)NK
j (x), (8.25)

where the hKj are the DOFs on element K and the NK
j are the shape functions defined on

K. We therefore have

nK
d∑

j=1

[
ḣKj

∫
K

µ0N
K
j · v dx+ hKj

∫
K

ρ(J)∇×NK
j · ∇ × v dx

]
+

∫
∂K

sK × v dS = 0. (8.26)

Table 8.4 The NUMBER table is used to number the DOFs. It gives the number of the DOF
associated with the edge of the same index in the EDGES table.

NUMBER

Edge Number of the DOF

e1 21

e2 22

e3 1
...

...

e28 19
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Note that nKd = 3 for the problem studied in this chapter. Taking v = NK
i for i = 1, ..., nKd ,

we get the elementary system of equations

MKḢK + AK(J)HK = SK , (8.27)

where HK
i = hKi is the elementary vector of the DOFs, ḢK is its derivative,

MK
ij =

∫
K

µ0N
K
j ·NK

i dx, (8.28)

AKij (J) =

∫
K

ρ(J)∇×NK
j · ∇ ×NK

i dx, (8.29)

and

SKi =

∫
∂K

sK ×NK
i dS, (8.30)

for i, j = 1, ..., nKd .

8.2.4 The Reference Element

To simplify the calculations, equations (8.28) and (8.29) are discretized on a reference

element K̂. A transformation is used to transform element K into K̂. For this project, we

do not give the details of this transformation; we directly use the results on K provided by

Jin in [5], as described below.

The functions NK
j for j = 1, 2, 3 are the first-order edge element basis functions defined

as:

NK
1 (x) = (LK1 (x)∇LK2 (x)− LK2 (x)∇LK1 (x))`K1 ; (8.31)

NK
2 (x) = (LK2 (x)∇LK3 (x)− LK3 (x)∇LK2 (x))`K2 ; (8.32)

and

NK
3 (x) = (LK3 (x)∇LK1 (x)− LK1 (x)∇LK3 (x))`K3 , (8.33)

where Li, for i = 1, 2, 3, are the classical Lagrange shape functions, i.e.L1

L2

L3

 =
1

24K

a
K
1 bK1 cK1

aK2 bK2 cK2

aK3 bK3 cK3


1

x

y

 , (8.34)
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and where:
aK1 = xK2 y

K
3 − yK2 xK3 , bK1 = yK2 − yK3 , cK1 = xK3 − xK2 ;

aK2 = xK3 y
K
1 − yK3 xK1 , bK2 = yK3 − yK1 , cK2 = xK1 − xK3 ;

aK3 = xK1 y
K
2 − yK1 xK2 , bK3 = yK1 − yK2 , cK3 = xK2 − xK1 ,

(8.35)

the coefficient 4K is the area of element K, `Kj for j = 1, 2, 3 is the length of edge j and

(xKi , y
K
i ) are the coordinates of the nodes XK

i for i = 1, ..., nnodes. According to Jin [5], we

have

∇×NK
i =

`Ki
4K

k̂, (8.36)

for i = 1, 2, 3. If we replace this result in equation (8.29), it yields

AKij (J) =
`Kj `

K
i

(4K)2

∫
Ω

ρ(J) dΩ (8.37)

for i, j = 1, 2, 3. If the resistivity ρ is constant in space, we have that

AKij = ρ
`Kj `

K
i

4K
, (8.38)

for i, j = 1, 2, 3, and if it is given by the power law, we have

AKij (t) =
`Kj `

K
i

(4K)n
Ec
Jc

∣∣∣∣∣
∑3

j=1 h
K
j (t)`Kj
Jc

∣∣∣∣∣
n−1

. (8.39)

We show how to get this expression in Appendix C.

The calculations of the entries MK
i,j are more complex. According to Jin [5], we have:

MK
11 =

µ0(`K1 )2

244K
(f22 − f12 + f11);

MK
12 =

µ0`
K
1 `

K
2

484K
(f23 − f22 − 2f13 + f12);

MK
13 =

µ0`
K
1 `

K
3

484K
(f21 − 2f23 − f11 + f13);

MK
22 =

µ0(`K2 )2

244K
(f33 − f23 + f22);

MK
23 =

µ0`
K
2 `

K
3

484K
(f31 − f33 − 2f21 + f23);

MK
33 =

µ0(`K3 )2

244K
(f11 − f13 + f33),

(8.40)

where fij = bKi b
K
j + cKi c

K
j . Since MK is symmetric, MK

21 = MK
12 , MK

31 = MK
13 and MK

32 = MK
23 .

For an element K, the functions NK
j for j = 1, 2, 3 are vectorial functions and therefore,
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they have an orientation when evaluated on an edge e. Their orientation is counterclockwise

with respect to the x− y plane. Let us now consider two adjacent elements K1 and K2. For

an edge e shared by the two elements, the two functions NK1
j and NK2

j associated with this

edge have opposite signs and as a result, the approximation of the tangential component of

the solution across the two elements is not continuous. To avoid this, we assign an orientation

to the edges in the table EDGES, i.e. from the smaller node number to the largest, and we

verify if it agrees with the orientation of the functions NK1
j and NK2

j . If this is the case,

there is no need to take action; if not, we multiply the functions by −1.

8.2.5 Assembly of the Global System of Equations

There is an elementary system of equations (8.27) for each element Ki for i = 1, ..., nel.

These systems cannot be solved independently because the DOFs are shared between el-

ements. To consider the coupling between the elements, we assemble a global system of

equations

MḢv + A(J)Hv = S, (8.41)

where M and A are matrices of dimensions ndof × ndof , S is a vector of length ndof , Hv

is a vector of length ndof containing the DOFs and described by equation (8.21), and Ḣv is

the times derivative of Hv.

The assembly of the global system of equations is done using a table called ADDRESS. For

a given element, this table gives the number of the DOFs within the element. The numbers

of the DOFs are the indices of the entries in the global system where the contributions of

the elementary systems must be added. An example of this table is shown in Table 8.5

and a detailed explanation of the assembly process is given in [4]. Therefore, the entries

of the matrices M and A are the added contributions of the local matrices AKi and MKi

for i = 1, ..., nel. The components of the vector S are the added contributions of the local

vectors SKi for i = 1, ..., nel. Note that for the problem studied in this chapter, we do not

Table 8.5 The ADDRESS table gives the number of the DOFs within an element.

ADDRESS
Element DOF #1 DOF #2 DOF #3

K1 21 1 2
K2 2 6 7
...

...
...

...
K16 18 19 28
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impose any jump in the approximation of the solution between the elements and the only

Neumman boundary condition that we use is

n̂× (ρ∇×H) = g = 0 on ΓN . (8.42)

As a result, the contributions to S that come from shared edges between two elements or

from DOFs on ΓN will either be zero or they will cancel out. Therefore, the vector S can be

simplified as

S =

[
0

SΓD

]
, (8.43)

where SΓD
is a vector containing the contributions to S that come from the DOFs that are

on the boundary ΓD of Ω. The length of SΓD
is the same as the length of HD.

8.3 Systems of DAE

8.3.1 Dirichlet Boundary Conditions: System of DAE of Index 0

Ampere’s law is used to apply an external magnetic field or a current constraint in a

domain Ω if the symmetry of this domain allows it. The law is enforced using Dirichlet

boundary conditions on all external boundaries of the domain. In such a case, the vector of

known DOFs HD contains as many DOFs as there are edges of elements on the boundary

ΓD. Let us write

MḢv =

[
M11 M12

M21 M22

][
ḢU

ḢD

]
, (8.44)

and

A(J)Hv =

[
A11(J) A12(J)

A21(J) A22(J)

][
HU

HD

]
. (8.45)

If we replace equations (8.44) and (8.45) in the global system of equations (8.41), we have:{
M11ḢU + A11(J)HU +M12ḢD + A12(J)HD = 0;

M21ḢU + A21(J)HU +M22ḢD + A22(J)HD = SΓD
.

(8.46)

The first expression in (8.46) yields HU and therefore Hv. This can be used in the second

expression of (8.46) to find SΓD
. However, for the problem considered in this chapter, we

have no interest in solving for SΓD
. As a result, the only system of equations to solve to find

Hv is

M11ḢU + A11(J)HU +M12ḢD + A12(J)HD = 0. (8.47)
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This system of equations only contains differential equations; there is no algebraic equation.

As a result, it is a system of ODEs, i.e. a system of DAE of index 0. This system is similar

to the system of DAE of index 0 (7.34) studied in chapter 7. As a result, the same strategies

for discretizing the system of DAE can be applied here.

8.3.2 Neumann Boundary Conditions: System of DAE of Index 2

Neumann boundary conditions with constraints are used to apply currents in conductors

when the domain Ω is not symmetrical. In such a case, Ampere’s law with Dirichet boundary

conditions cannot be used to impose currents. A current constraint is defined as

Ii(t) =

∫
Ωi

∇×HdΩi, (8.48)

where i is the index of the constraint and Ωi is the subset of Ω where the constraint is applied.

There can be a total of nc constraints. Let us define the Lagrangian

L =
nc∑
i=1

λi(t)

[∫
Ωi

∇×H dΩi − Ii(t)
]
, (8.49)

where λi(t) is the Lagrange multiplier associated with the constraint i. If H = h+αv where

α is a constant, we have

L =
nc∑
i=1

λi(t)

[∫
Ωi

∇× (h+ αv) dΩi − Ii(t)
]
. (8.50)

If we add this Lagrangian to a functionnal I similar to equation (4.3) and then minimize the

sum, we have
d

dα
[I + L]

∣∣∣∣
α=0

= 0, (8.51)

where
dL

dα
=

nc∑
i=1

λi(t)
d

dα

[∫
Ωi

∇× (h+ αv) dΩi − Ii(t)
]

;

=
nc∑
i=1

λi(t)
d

dα

[∫
Ωi

∇× h dΩi +

∫
Ωi

∇× αv dΩi − Ii(t)
]

;

=
nc∑
i=1

λi(t)

∫
Ωi

∇× v dΩl.

(8.52)
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This yields nc additional terms to the weak form (8.16), i.e.

∫
Ω

µ0
∂H

∂t
· v dΩ +

∫
Ω

ρ∇×H · ∇ × v dΩ +

∫
∂Ω

n̂ · [n̂× (ρ∇×H)× (n̂× v)] dS

+
nc∑
i=1

λi

∫
Ωi

∇× v dΩi = 0.

(8.53)

As a result, for an element K in Ωi, we have the weak form∫
K

µ0
∂H

∂t
· v dx+

∫
K

ρ∇×H · ∇ × v dx+

∫
∂K

sK × v dS + λi

∫
K

∇× v dx = 0, (8.54)

and the elementary system of equations is given by

MKḢK + AKHK +GKλi = SK , (8.55)

where

GK
i =

∫
K

∇×NK
i dx, (8.56)

for i = 1, ..., nKd . Note that nKd = 3 for the problem studied in this chapter. According to

Jin [5], ∇×NK
i =

`Ki
4K k̂ for i = 1, 2, 3. As a result

GK
i =

`Ki
4K

∫
K

dx = `Ki , (8.57)

for i = 1, 2, 3. The assembly process gives the global system of equations

MḢv + A(J)Hv +
nc∑
i=1

Giλi(t) = S, (8.58)

where M , A, Ḣv, Hv are the matrices and vectors of equation (8.41), Gi for i = 1, ..., nc

are vectors of length ndof containing the elementary contributions of GKj for j = 1, ..., nel.

Since there are no Dirichlet boundary conditions, SΓD
= 0 and S = 0 and as a result,

MḢv + A(J)Hv +
nc∑
i=1

Giλi(t) = 0. (8.59)

For the current constraints Ii(t) for i = 1, ..., nc, we have:

Ii(t) =

∫
Ωi

∇×H dΩi =
nelc∑
n=1

∫
Kn

∇×H dx, (8.60)
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where nelc is the number of elements in Ωi. Considering the approximation of H on each

element Kn for n = 1, ..., nelc, we have

Ii(t) =
nelc∑
n=1

nKn
d∑
j=1

hKn
j (t)

∫
Kn

∇×NKn
j dx

 , (8.61)

which yields

Ii(t) =
nelc∑
n=1

nKn
d∑
j=1

hKn
j (t)`Kn

j

 . (8.62)

We can sum up the contribution of Ii(t) using a vector Ci:

CT
i Hv = Ii(t). (8.63)

If we add the algebraic current constraints to the global system of equations (8.59), we have{
MḢv + A(J)Hv +

∑nc

i=1Giλi(t) = 0;

CHv(t) = I(t),
(8.64)

where

C =


CT

1

CT
2

...

CT
nc

 , (8.65)

I(t) =


I1(t)

I2(t)
...

Inc(t)

 , (8.66)

and nc is the number of applied constraints.

We see that the algebraic variables λi for i = 1, .., nc only appear in the differential

equations and not in the algebraic equations. Moreover, there is only one vector Hv that is

differentiated. Therefore, this system of equations is a DAE of index 2 in Hessenberg form.

We recall the general nonlinear semi-explicit form of this sytem:{
p(t,λ,Hv, Ḣv) = 0;

q(t,Hv) = 0,
(8.67)
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where

λ =


λ1

λ2

...

λnc

 . (8.68)

Note that the system of DAE of index 2 (8.64) can also be written in its matrix form:[
M 0

0 0

][
Ḣv

λ̇

]
+

[
A G

C 0

][
Hv

λ

]
=

[
0

I(t)

]
, (8.69)

where G is a matrix whose lines are Gi for i = 1, ..., nc.

We propose two strategies to discretize the system of DAE of index 2 in time:

• Direct discretization;

• Reduction of the index.

Direct Discretization

It is possible to discretize the system of DAE of index 2 directly. As mentioned in section

6.1, the same level of accuracy can be achieved using BDF schemes for ODEs and nonlinear

semi-explicit systems of DAE of index 2, under certain conditions. Such a direct discretization

yields the nonlinear system of equations:{
p
(
tn,λ,Hv,n,

1
β04t

∑k
j=0 αjHv,n−j

)
= 0;

q(tn,Hv,n) = 0,
(8.70)

where β0 and αj are the coefficients of the BDF scheme, n is the time-step number, tn is the

time at time step n and 4t is the time-step size. The vector Hv,n contains the DOFs at time

step n, i.e.

Hv,n =


h1,n

h2,n

...

hndof,n

 , (8.71)

where hi,n ≈ hi(tn) for i = 1, ..., ndof . This system can be linearized using Newton’s method.
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Reduction of the Index

We can reduce the index of the system of DAE by differenciating its algebraic equations

which yields: {
MḢv + A(J)Hv +

∑nc

i=1Giλl(t) = 0;

CḢv(t) = İ(t).
(8.72)

In matrix form, we can write [
M G

C 0

][
Ḣv

λ

]
=

[
−AHv

İ

]
. (8.73)

Nonlinearities are not written for the sake of clarity but are still present. From now on, the

matrix on the left-hand side is denoted P . The matrix P is constant in time.

If we suppose that P is invertible, we write

P−1 = T =

[
T1 T2

T3 T4

]
. (8.74)

If we multiply equation (8.73) by T , we have[
Ḣv

λ

]
=

[
T1 T2

T3 T4

][
−AHv

İ

]
, (8.75)

this yields the explicit system of DAE of index 1:{
Ḣv = −(T1A)Hv + T2İ;

λ = −(T3A)Hv + T4İ.
(8.76)

The structure of this DAE is interesting for two reasons. First, we can solve the first equation

for Hv using a time-integration scheme and then calculate λ with the second equation.

However, in typical engineering HTS applications, we have no interest in calculating λ and

therefore, we do not need to use the second equation. Second, we only need to invert the

matrix P once at the beginning of the solving process. As a result, the problem is reduced

to the system of ODEs

Ḣv = −(T1A)Hv + T2İ. (8.77)

We can reduce the index of the system of DAE to zero by differentiating the second

equation in (8.76). Performing this operation does not affect the first expression in (8.76).

As a result, equation (8.77) can still be used to find Hv and reducing the index to zero has

no added value.
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With the information that we have, we cannot conclude if the strategy of direct discretiza-

tion is better than the strategy of reduction of the index. However, when reducing the index,

we need to do additional mathematical manipulations such as inverting the matrix P . This

is a downside of this strategy.

8.4 Code Development

We implemented a code for the basic 2-D model described in section 8.1. The code was

written by Dubois [32] and the candidate for this M.Sc. project. It can be summarized as

follows:

• Discretization in space using the FEM;

• Programming of a routine for computing the residuals for IDAS;

• Approximation of the Jacobian matrix using difference quotients (easier but slower);

• Selection of the parameters of the solver (absolute and relative tolerances).

The transient solver IDAS uses the direct discretization strategy.

In the following subsections, we verify that the code gives the right solution for these

three types of problems:

• System of DAE of index 0 with one domain;

• System of DAE of index 0 with multiple subdomains;

• System of DAE of index 2 in Hessenberg form with multiple subdomains.

8.4.1 System of DAE of Index 0 with One Domain: Verification of the Code

Using Bessel’s Equation

We consider the circular two-dimensional cross-section of a conductor shown in Figure

8.2. On this domain, we want to solve equations (8.1) for ρ = 1 Ωm and µ0 = 1 N/A2 for

convenience. Initial and boundary conditions are given by:{
H(x, 0) = J1(a · ||x||);
n̂×H = e−a

2tk̂, on ΓD,
(8.78)

where J1 is the Bessel function of the first kind and a is its first roots.
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Figure 8.2 Circular 2-D cross section of a conductor.

There is a known analytical solution to this problem. Using the identity

∇×∇×H = ∇(∇ ·H)−∇2H , (8.79)

and the second equation of expression (8.1), we have

∂H

∂t
−∇2H = 0. (8.80)

Because of the symmetry of the problem in cylindrical coordinates, we can make the following

assumptions:

Hz = Hr =
∂H

∂φ
=
∂H

∂z
= 0, (8.81)

which yields
∂Hφ

∂t
− ∂

∂r

[
1

r

∂

∂r
(rHφ)

]
= 0, (8.82)

and a few additional steps give us

r2∂
2Hφ

∂r2
+ r

∂Hφ

∂r
= Hφ + r2∂Hφ

∂t
. (8.83)

We propose a solution of the form:

Hφ(r, t) = R(r) exp(−a2t). (8.84)

By replacing equation (8.84) in equation (8.83), we obtain Bessel’s differential equation:

r2d
2R(r)

dr2
+ r

dR(r)

dr
+ ((ra)2 − 1)R(r) = 0. (8.85)
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According to Arfken and Weber [33], the general solution to this equation is

R(r) = C1Jν(a · r) + C2Nν(a · r), (8.86)

where C1 and C1 are constants, Nν is the Bessel function of the second kind and ν is the

integral order of the Bessel functions. The function Nν is unbounded at the origin. Since we

want the solution to be finite at the origin, we exclude Nν from the general solution and we

have

R(r) = C1Jν(a · r). (8.87)

Finally, using the initial and boundary conditions, we find the particular solution:

Hφ(r, t) = J1(a · r) exp(−a2t). (8.88)

The numerical approximation of Hφ computed at t = 0.1 s is shown at the top of Figure

8.3. The analytical solution is illustrated at the bottom of Figure 8.3. The problem has been

discretized using a mesh of 542 elements and 837 edges, illustrated in Figure 8.4.

From Figure 8.3, the linear edge elements give a good approximation of the analytical

solution of Bessel’s problem. A cross section (φ = 0) of the solution and its approximation,

illustrated in Figure 8.5, shows that the approximation is better when it is nearly linear; the

numerical approximation is not as good close to the boundaries.

There are two factors that can explain the discrepancies observed between the discrete

approximation and the continuous solution. If we look at the mesh in Figure 8.4, there are

approximately two elements between r = 0.35 m and r = 0.481 m, where the discrepancies

are observed. We mentioned previously in this chapter that the shape functions that we

use are linear. Therefore, it is expected that the approximation of the solution cannot flaw-

lessly approximate the solution when this latter is not linear, specifically, with two elements.

Moreover, we mentioned in section 4.1.3 of chapter 4 that the normal component of the field

approximated using edge elements is not continuous between two elements. Therefore, noth-

ing guarantees the continuity of Hφ between two elements, unless it is exactly tangential to

an edge between two elements.
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Figure 8.3 Numerical (top) and analytical solutions (bottom) to Bessel’s problem at t = 0.1 s
obtained with a mesh of 542 elements and 837 edges. The Figure shows the magnitude of
the H field.
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Figure 8.4 Mesh composed of 542 elements and 837 edges used to compute the numerical
solution to Bessel’s problem.

Figure 8.5 Analytical and numerical solutions for Bessel’s problem at t = 0.1 s and φ = 0.
The numerical solution was computed using 542 elements and 837 edges.
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We can get a better approximation by refining the mesh where the solution is not linear.

Using a mesh made of 2178 elements and 3367 edges, illustrated in Figure 8.6, we get the

approximation shown at the top of Figure 8.7. The bottom of Figure 8.7 shows the solution

and the approximation at φ = 0. We see that the approximation is better when there are

more elements to approximate the solution.

Let us consider uniform meshes. If we compute the error in the L2-norm, i.e.

||E||L2 = ||h−H||L2 =

(∫
Ω

(h−H) · (h−H)dΩ

) 1
2

, (8.89)

as a function of the minimum element size, we observe that the numerical approximation

converges to the solution of the continuous problem, as shown in Figure 8.8. Note that we

cannot conclude on the rate of convergence using the L2-norm.

Figure 8.6 Refined mesh composed of 2178 elements and 3367 edges used to compute the
numerical solution to Bessel’s problem.
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Figure 8.7 At the top, the numerical approximation to Bessel’s problem at t = 0.1 s obtained
with a mesh of 2178 elements and 3367 edges. At the bottom, the analytical and numerical
solutions for Bessel’s problem at φ = 0.
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Figure 8.8 Error computed in the L2-norm as a function of the size of the elements.
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8.4.2 System of DAE of Index 0 with Multiple Subdomains: Verification of the

Code Using Ampere’s Law

In this subsection, we verify the code for a system of DAE of index 0 with multiple

subdomains using Ampere’s law and physical parameters. We consider a circular conductor

inside a circular air domain, as shown in Figure 8.9 (not to scale). The conductor is made of

copper with resistivity 1.68 ·10−8 Ωm inside an air domain with resistivity 1.0 Ωm. The radius

of the copper conductor is 0.1 m and the radius of the air domain is 1 m. The parameters

for this problem are summarized in Table 8.6.

We want to impose a current in the copper conductor. The imposed current is given by

the piecewise function

I(t) =


0, t = 0 s;

10t2, 0 < t ≤ 1 s;

10, t > 1 s.

(8.90)

According to Ampere’s law, the total current flowing in a 2-D domain is equivalent to the

Figure 8.9 Circular conductor (Ω2) inside of a circular domain (Ω1) filled with air.

Table 8.6 Parameters for the Ampere’s law problem.

ρΩ1 1.68 · 10−8 Ωm
ρΩ2 1 Ωm
µ0 4π · 10−7 N/A2

Radius of the domain Ω1 1 m
Radius of the domain Ω2 0.1 m
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closed path integral of the magnetic field tangential to the contour of that region:∮
H · ds = I. (8.91)

This equality and the definition of I(t) give the boundary and initial conditions of the

problem:

H(x, 0) = 0, (8.92)

and

n̂×H =


10t2

C
on ΓD×]0, 1];

10

C
on ΓD × [1, T ].

(8.93)

For t � 1 s, we expect the current to be distributed uniformly inside the copper conductor.

A steady-state analytical solution can be obtained for Hφ using Ampere’s law:

Hφ(r) =


rI

2πr2
conduc

, r ≤ 0.1;

I

2πr
, r > 0.1.

(8.94)

Figure 8.10 shows the numerical approximation of Hφ as a function of the radius of the

domain plotted on top of the analytical solution at t = 10 s. The mesh used consists of 1156

elements and 1758 edges. As discussed in section 8.4.1, the numerical solution gives a good

approximation of the analytical solution but it is less accurate where the magnetic field is

not linear. Again, this can be explained by the fact that the shape functions are linear and

because the normal component of the magnetic field is not necessarily continuous between

two elements.

8.4.3 System of DAE of Index 2 with Multiple Subdomains: Verification of the

Code Using Ampere’s Law

The objective of this section is to verify that the implemented code can properly discretize

systems of DAE of index 2 in Hessenberg form with multiple domains. The problem under

study is similar to the problem described in the previous subsection. The main difference is

that instead of applying the current in the conductor using Ampere’s law, we apply it directly

as a current constraint using Neumann boundary conditions and Lagrange multipliers.

Using a mesh of 1156 elements and 1758 edges, we get the solution shown in Figure 8.11.

We see that this solution is similar to the one computed with the Dirichlet boundary condi-
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Figure 8.10 Numerical approximation of Hφ as a function of the radius of the domain plotted
on top of the analytical solution for the copper conductor inside the air domain at t = 10
s. This approximation was obtained after the discretization in time of the system of DAE of
index 0.

tions in section 8.4.2, i.e. the system of DAE of index 0. It gives a good approximation of the

solution but there are some discrepancies where the magnetic field is not linear. The causes

of those discrepancies are the same as the ones discussed for the Bessel problem.
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Figure 8.11 Numerical solution for Hφ as a function of the radius of the domain plotted on
top of the analytical solution for the copper conductor inside the air domain at t = 10 s. This
approximation was obtained after the discretization in time of the system of DAE of index
2.
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CHAPTER 9

DISCRETIZATION OF HTS PROBLEMS USING THE SAM

In this chapter, we study systems of DAE obtained from the discretization in space of

HTS problems using the Semi-Analytical Method (SAM). In section 9.1, we describe a typical

problem for HTS devices that we discretize with the A−V formulation in integral form. We

then give, in section 9.2, the discretization in space of the equations and we identify the

resulting systems of DAE. We also propose various strategies to discretize these systems in

time. Finally, in section 9.3, we investigate the use of the proposed strategies with a simple

problem with a manufactured solution. The main references used for this chapter are [6], [26]

and [27].

Note that the simple problem studied in this chapter is purely investigative. It serves as

an introduction to the discretization of systems of DAE in time.

9.1 Typical Problem

We want to compute electromagnetic quantities of interest for a HTS device. The HTS

device is either voltage or current driven and it is not made of ferromagnetic materials. The

electromagnetic properties of the device can be assumed to be constant along its length.

There exists an analytical expression to compute the integral (3.13) for the magnetic vector

potential on a cross-section of its geometry.

We can solve this problem using an A − V formulation in integral form, introduced in

section 3.2. We recall the main aspects of this model. Let us consider a 2-D domain Ω with

subdomains Ωi for i = 1, ..., k, where k is the total number of subdomains. We want to solve

the following equation for J :

ρJ = − ∂

∂t

[
µ0

4π

∫
Ω

J log |r − r′| dΩ

]
−∇V, (9.1)

where ρ is the resistivity which is modeled using a power law for HTS, r = xî + yĵ is the

position vector and ∇V is the electric potential gradient.

The subdomains Ωi can be conductors that are either driven by a current source or by a

voltage source. For each subdomain that is driven by a current source, a current constraint

that is a function of the current density J must be added to equation (9.1). This constraint
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is given by

Ii =

∫
Ωi

J dΩi. (9.2)

for i = 1, ..., nc where i is the index of the constraint, nc is the total number of current

constraints and Ωi is the subset of Ω in which the constraint is applied. Note that the

voltages of each current driven conductors, i.e. Vi for i = 1, ..., nc, are unknown and constant

in the x− y plane. For the case of voltage driven conductors, the expression ∇V in equation

(9.1) is known and as a result, equation (9.1) only needs to be solved for J .

9.2 Systems of DAE

The discretization in space of the A − V formulation using the SAM is documented

in [6], [15] and [16]. Therefore, it will not be explained in detail. Note that this method is

briefly described in section 4.2.

The discretization yields the system of equations

MAJ̇v − Λρ(J)Jv −DV = 0. (9.3)

where Jv is not the local continuous current density but a vector containing the DOFs Ji

for i = 1, .., n at each computation node of the mesh, MA is a dense invertible matrix of size

n × n and Λρ is a diagonal matrix of size n × n containing the resistivity associated with

each DOF. The vector V contains the DOFs Vi for i = 1, ..., nbcond, where nbcond is the

number of conductors and D is a matrix of size n×nbcond. Depending on how this problem

is driven, the system to solve is either a system of DAE of index 0 or 2. Note that not all the

entries of Λρ depend on J . If a DOF is in a conductor that has a constant resistivity, e.g.

copper, the associated entry in Λρ is constant.

9.2.1 System of DAE of index 0

In the case of a voltage driven problem, the system of equations to solve is

MAJ̇v − Λρ(J)Jv = DV . (9.4)

This system of equations only contains differential equations. As a result, it is a system of

DAE of index 0, i.e. a system of ODEs. We propose two different strategies to discretize this

system of DAE in time, i.e. by direct discretization of by reformulation. Let us write the
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system of DAE of index 0 in residual form:

F (t,Jv, J̇v) = MAJ̇v − Λρ(J)Jv −DV = 0. (9.5)

If we discretize the system of DAE directly using a BDF time-integration scheme, we have

the nonlinear system of equations

F

(
tm,Jv,m,

1

β04t

k∑
j=0

αjJv,m−j

)
= 0, (9.6)

where m is the time-step number, tm is the time at time step m, 4t is the time-step size, and

β0 and αj are the coefficients of the BDF scheme. The vector Jv,m contains an approximation

of the DOFs at time step m, i.e.

Jv,m =


J1,m

J2,m

...

Jn,m

 , (9.7)

where Ji,m ≈ Ji(tm) for i = 1, ..., n. This nonlinear system of equations can be linearized

using Newton’s method.

It is also possible to reformulate the system of DAE of index 0 in semi-explicit form by

isolating J̇v:

J̇v = M−1
A (Λρ(J)J +DV ) . (9.8)

We then discretize J̇v using an explicit method. However, this strategy is not recommended

since we need to invert MA, a dense matrix and because the problem is nonlinear.

9.2.2 System of DAE of Index 2 in Hessenberg Form

If the problem is current driven, we need to add nc current constraints Ii for i = 1, ..., nc

to the system of equations (9.3). Those current constraints are given by

Ii =

∫
Ωi

J dΩi = CT
i Jv (9.9)

where Ci is a vector obtained from the discretization of the integral for Ii. As a result, the

system of equations to solve is:{
MAJ̇v − Λρ(J)Jv −DV = 0;

CJv = I,
(9.10)
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where C is a matrix whose lines are given by the vectors Ci for i = 1, ..., nc and I is a vector

containing the constraints Ii for i = 1, ..., nc. In matrix form, we have[
MA 0

0 0

][
J̇v

V̇

]
−

[
Λρ(J) D

−C 0

][
Jv

V

]
=

[
0

I

]
. (9.11)

We see that the the vector V only appears in the differential equations and not in the algebraic

equations. Moreover, we see that there is only one vector, Jv with the time derivative J̇v.

Therefore, this system of equations is a system of DAE of index 2 in Hessenberg form:{
q(t,V ,Jv, J̇v) = 0;

p(t,Jv) = 0.
(9.12)

This system of DAE of index 2 in Hessenberg form has the same structure as the one

studied in the previous chapter. We recall this system of equations for comparison purpose

without assigning new variables:[
M 0

0 0

][
Ḣv

λ̇

]
+

[
A(J) G

C 0

][
Hv

λ

]
=

[
0

I

]
. (8.69)

We see that the voltage vector V plays the role of the Lagrange multipliers contained in λ.

Since the two systems of equations have the same structure, the same strategies can be

applied, i.e the direct discretization and the reduction of the index. The reformulation of the

system of DAE and the reduction of the index are investigated in the next section. Note that

this investigation serves as an introduction to the discretization of systems of DAE in time.

9.3 Investigation of the Proposed Strategies

In this section, we investigate some of the proposed strategies with a simple problem for

which we built a manufactured solution. We wrote a code to investigate the two following

strategies:

• System of DAE of index 2 in Hessenberg form discretized directly;

• Reduction of the index from 2 to 1 for a system of DAE of index 2 in Hessenberg form

and then reformulated in a semi-explicit form.
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9.3.1 System of DAE of Index 2 in Hessenberg Form Discretized Directly

The problem and manufactured solution go as follows. Let us consider the system of DAE

of index 2 in Hessenberg form: {
MAẋ = Λρx+Dz;

0 = Cx− I,
(9.13)

where the entries of Λρ are constant in space and time. If we isolate x by inverting MA, we

then have: {
ẋ = −M−1

A (Λρx+Dz) ;

0 = Cx− I,
(9.14)

where x and z are vectors containing the DOFs xi(t) and zj(t) for i = 1, ..., n and j = 1, ..., nc.

If n = 2 and nc = 1, and if all the entries of Λρ are constant, we have the simple system:
ẋ1 = a1x1 + a2x2 + a3z;

ẋ2 = b1x1 + b2x2 + b3z;

I = s1x1 + s2x2,

(9.15)

where ai and bj for i, j = 1, 2, 3 are constant entries coming from the product M−1
A Λρ or

M−1
A D and s1 and s2 are the values in C.

Let us consider the manufactured solution:
x1 = A sin(ωt);

x2 = B sin(ωt);

z = C sin(ωt),

(9.16)

where ω is an arbitrary angular frequency, and A, B and C are arbitrary constants. For the

manufactured solution to be a solution to the system of equations (9.15), we need to add two

functions to the first two equations of system (9.15), i.e.

f1(t) = Aω cos(ωt)− a1A sin(ωt)− a2B sin(ωt)− a3C sin(ωt), (9.17)

and

f2(t) = Bω cos(ωt)− b1A sin(ωt)− b2B sin(ωt)− b3C sin(ωt), (9.18)

and we define

I(t) = s1A sin(ωt) + s2B sin(ωt). (9.19)
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This yields: 
ẋ1 = a1x1 + a2x2 + a3z + f1;

ẋ2 = b1x1 + b2x2 + b3z + f2;

I = s1x1 + s2x2.

(9.20)

According to Brenan [27]: The k-step constant-step-size BDF method (k < 7) applied

to constant coefficient linear systems of DAE of index ν is convergent of order O(hk) after

(ν − 1)k + 1 steps. Let us verify this by discretizing the system of DAE of index 2 (9.20)

with BDF integration schemes of order 1, 2 and 3. The BDF integration scheme of order 1,

i.e. the implicit Euler scheme, is given by

ym = ym−1 +4tgm, (9.21)

where ym is an approximation of y(t) at time t = tm, m = 1, ..., nstep is the index of the time

step, 4t is the time-step size and g includes, for example, the RHS of equation (9.20). For

the system of DAE (9.20), this yields:
xm1 − xm−1

1

4t
= a1x

m
1 + a2x

m
2 + a3z

m + fm1 ;

xm2 − xm−1
2

4t
= b1x

m
1 + b2x

m
2 + b3z

m + fm2 ;

Im = s1x
m
1 + s2x

m
2 ,

(9.22)

and therefore, the system of linear equations to solve at each time step is1− a14t −a24t −a34t
−b14t 1− b24t −b34t
s1 s2 0


x

m
1

xm2

zm

 =

x
m−1
1 + fm1

xm−1
2 + fm2

Im

 . (9.23)

The BDF time integration schemes of order 2 and 3 are respectively given by:

ym+1 − 4

3
ym +

1

3
ym−1 =

2

3
fm+14t, (9.24)

and

ym+2 − 18

11
ym+1 +

9

11
ym − 2

11
ym−1 =

6

11
fm+24t. (9.25)

The additional initial conditions necessary for the higher order BDF integration schemes are

obtained recursively by using the results from the lower order methods, as described in [26].

Let us consider the dimensionless coefficients and parameters shown in Table 9.1. Using

these parameters, the maximum norm of the error ||E||max as a function of the time-step size
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Table 9.1 Coefficients and parameters for the simple system of DAE of index 2 (9.20) and
the manufactured solution (9.16).

a1 10000000
a2 20000000
a3 a1 + a2

b1 30000000
b2 40000000
b3 b1 + b2

s1 1
s1 1
A 1
B 50
C 3
f 60
ω 2πf

tnstep 20/f
x1(0), x2(0), z(0) 0

4t for the approximation of x1(t) using BDF schemes of order 1, 2 and 3 is shown in Figure

9.1. As predicted by Brenan [27], the BDF integration scheme of order 1 is convergent of

order O(h), the BDF integration scheme of order 2 is convergent of order O(h2) and the BDF

integration scheme of order 3 is convergent of order O(h3) for the approximation of x1(t).

The same orders of convergence are achieved for the approximation of the algebraic variable

z(t), as illustrated in Figure 9.2. A description of the calculation of the error in the discrete

maximum norm is available in Appendix D.

9.3.2 Reduction of the Index of a System of DAE from Index 2 to Index 1

If we differentiate the algebraic equations in the system of equations (9.13), we have{
MAẋ = Λρx+Dz;

İ = Cẋ.
(9.26)

For n = 2 and nc = 1, let us define

MA =

[
MA11 MA12

MA21 MA22

]
(9.27)
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Figure 9.1 Maximum norm of the error as a function of the time-step size 4t for the approx-
imation of x1(t) using BDF schemes of order 1, 2 and 3.

Figure 9.2 Maximum norm of the error as a function of the time-step size 4t for the approx-
imation of z(t) using BDF schemes of order 1, 2 and 3.

and write the system of equations (9.26) asMA11 MA12 −1

MA21 MA212 −1

s1 s2 0


ẋ1

ẋ2

z

 =

ρ1x1

ρ2x2

dI
dt

 , (9.28)
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where ρ1 and ρ2 are the diagonal entries of Λρ. The matrix on the left is the augmented

matrix based on MA, written M+
A . If we multiply this system of equations by the inverse of

the augmented matrix (M+
A )−1 whose entries are given by dij for i, j = 1, 2, 3, we have:

ẋ1 = d11ρ1x1 + d12ρ2x2 + d13
dI

dt
;

ẋ2 = d21ρ1x1 + d22ρ2x2 + d23
dI

dt
;

z = d31ρ1x1 + d32ρ2x2 + d33
dI

dt
,

(9.29)

which is a system of DAE of index 1. Note that in order to find x1 and x2, we only need to

solve the first two equations, which are ODEs.

For systems of ODEs, the forward Euler scheme is first order accurate. If we use the same

manufactured solution as for the index 2 case and discretize these two equations using the

forward Euler time integration scheme, we have:
xm1 = xm−1

1 +4t(d11x
m−1
1 + d12x

m−1
2 + d13

dI

dt

n−1

+ fn−1
1 );

xm2 = xm−1
2 +4t(d21x

m−1
1 + d22x

m−1
2 + d23

dI

dt

m−1

+ fm−1
2 ).

(9.30)

The algebraic variable at each time step m can then be calculated with the values obtained

from xm1 and xm1 , i.e.

zm = d31x
m
1 + d32x

m
2 + d33

dI

dt

m

. (9.31)

Let us consider the dimensionless coefficients and parameters shown in Table 9.2. Note

that we chose these parameters to be in the stability region of the forward Euler scheme.

Using these parameters, the maximum norm of the error as a function of the time-step size

4t for the approximation of x1(t) and x2(t) using the forward Euler scheme is shown in

Figure 9.3. As expected, the forward Euler scheme is convergent of order O(h). Figure 9.3

also shows the order of convergence for the approximation of the algebraic variable z(t). We

see that it is also O(h).

With both strategies, i.e. the direct discretization and the reduction of index, we achieved

the expected orders of convergence. Based on those results, we cannot conclude that one

strategy is better than the other. However, to reduce the index of the system of DAE, we

had to do additional mathematical manipulations. These mathematical manipulations are

additional steps in the solving process and as a result, the strategy of the reduction of the

index is less straightforward than the direct discretization. Moreover, when reducing the
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Table 9.2 Coefficients and parameters for the system of DAE of index 1 (9.20) and the
manufactured solution (9.16).

d11 1
d12 2
d13 d11 + d12

d21 3
d22 2
d23 d21 + d22

s1 1
s1 1
A 1
B 0.5
C 3
f 4
ω 2πf

tnstep 2/f
x1(0), x2(0), z(0) 0

Figure 9.3 Maximum norm of the error as a function of the time-step size 4t for the approx-
imations of x1(t), x2(t) and z(t) using the forward Euler integration scheme.

index, we need to make sure that the initial conditions satisfy the algebraic equation

s1x1 + s2x2 = I(t) (9.32)
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but also, the differentiated algebraic equation

s1ẋ1 + s2ẋ2 = İ(t). (9.33)

As a result, from what we discussed in this chapter, it is less risky and more straightforward

to use the strategy of direct discretization than to reduce the index of the system of DAE.



89

CHAPTER 10

CONCLUSION

In this thesis, we showed that the discretization of HTS problems using nodal finite

elements in 1-D results in a system of DAE of index 0 or 1, depending on how the Dirichlet

boundary conditions are enforced. We described two strategies to discretize the system of

DAE of index 0 in time, i.e. the direct discretization strategy and the reformulation strategy.

In practice, direct discretization is preferable to reformulation because the latter requires a

matrix inversion, which is not practical with a nonlinear problem such as that encountered

in HTS modeling. We described two strategies to discretize the system of DAE of index 1

in time, i.e. the reduction of the index strategy and the direct discretization strategy. We

concluded that the direct discretization is more straightforward than the reduction of the

index because it does not require as many mathematical manipulations. It is also less risky

because there are no hidden constraints. We implemented a code in which we discretized the

systems of DAE of index 0 and 1 directly. We verified the code against an analytical nonlinear

solution and we showed that it gives a good approximation of the solution for both systems

of DAE. We did not face any issues when we computed the approximations. We concluded

that the direct discretization strategy works for the typical 1-D HTS problem described in

chapter 7.

The system of DAE that results from the discretization of HTS problems using edge ele-

ments in 2-D is either of index 0 or 2 depending if Dirichlet or Neumann boundary conditions

are applied. The system of DAE of index 2 is in Hessenberg form. We described two strate-

gies to discretize the system of DAE of index 2 in time, i.e. the direct discretization and the

reduction of the index. We noted that reducing the index from 2 to 1 leads to a system of

ODEs. We were not able to conclude if the direct discretization strategy is better than the

reduction of the index. However, the reduction of the index requires additional mathematical

manipulations such as inverting a matrix, which is a downside of the strategy. We imple-

mented a code and we verified this code against two analytical solutions for three problems.

In all cases, we showed that the code gives a good approximation when the solution is nearly

linear in space. When it is not, we observed small discrepancies. We explained that those

discrepancies are due to the coarseness of the mesh and to the fact that the normal com-

ponent of the approximation of the magnetic field between two elements is not necessarily

continuous. We showed that the approximation converges, when the size of the elements is

reduced.
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We also showed that the discretization of HTS problems using the SAM leads to a system

of DAE of index 0 or 2, depending if the problem is voltage or current driven. The system

of DAE of index 2 is in Hessenberg form. We described two strategies to discretize the

system of DAE of index 0 in time, i.e. the direct discretization and the reformulation. We

mentioned that the reformulation is not the best strategy because it requires inverting a

dense matrix and because the system of DAE is nonlinear. We showed that the system of

DAE of index 2 in Hessenberg form obtained with the SAM is similar to the system of DAE

of index 2 in Hessenberg form obtained with the FEM using edge elements. Therefore, the

same conclusions for the discretization strategies still hold. We investigated the strategy of

direct discretization and the strategy of reduction of the index using a simple system of DAE

of index 2 in Hessenberg form with a manufactured solution. We showed that we get the

expected order of convergence with both strategies. However, we noted that the reduction of

the index is less straightforward than direct discretization. It is also riskier since the initial

conditions must satisfy both the algebraic equations and their time derivatives.

This project gives a background for the systems of DAE encountered in the numerical

modeling of HTS devices. However, we have not done a thorough investigation of the proposed

strategies for HTS devices problems. Generally, the direct discretization seems like the best

strategy but we have not quantified how well it works compared to the other strategies.

Maybe there is a limit at which one of the strategies becomes better than the others. In

Future work, we would like to assess the proposed strategies for a given HTS problem and

give recommendations based on data such as the rate of converge and the computation time.
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ture critique. Ph.D. Thesis, École Polytechnique Montreal, 2002.

[8] M. Tinkham, Introduction to superconductivity. Mineola: Dover publications Inc.,

2nd ed., 1996.

[9] N. W. Aschroft and N. D. Mermin, Solid State Physics. Orlando: Harcourt, Inc., 1st

editio ed., 1976.

[10] S. Elliott, The Physics and Chemistry of Solids. Chichester: John Wiley and & Sons,

1st ed., 1998.

[11] Y. B. Kim, C. Hempstead, and A. Strnad, “Resistive States of Hard Superconductors,”

Rev. Mod. Phys., 1964.

[12] A. Wan, Adaptive Space-Time Finite Element Method in High Temperature Supercon-
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APPENDIX A

Expression of the power law in terms of the discrete degrees of freedom for 1-D

nodal elements

We recall equations (7.5) and (7.6):

ρ(J) =
Ec
Jc

∣∣∣∣ JJc
∣∣∣∣n−1

and J = − 1

µ0

∂B

∂x
. (A.1)

On an arbitrary element K, using the approximation

B(x, t)

∣∣∣∣
K

≈ bK(x, t) =
2∑
j=1

bKj (t)ΨK
j (x), (A.2)

an approximation of the current J(x, t) can be computed using

J(x, t)

∣∣∣∣
K

≈ jK(x, t) =
−1

µ0

[
∂

∂x

(
b1(t)ΨK

1 (x) + b2(t)ΨK
2 (x)

)]
. (A.3)

Using the transformation over the reference element K̂, we have, from equation (7.24),

jK(ξ, t) =
−2

µ0hk

(
b1(t)

dΨ̂1(ξ)

dξ
+ b2(t)

dΨ̂2(ξ)

dξ

)
. (A.4)

Since we know that 
dΨ̂1(ξ)

dξ
=
−1

2
;

dΨ̂2(ξ)

dξ
=

1

2
,

(A.5)

the resistivity ρK(t) can be computed with

ρK(t) =
Ec
Jc

∣∣∣∣bK1 (t)− bK2 (t)

µ0Jchk

∣∣∣∣n−1

. (A.6)
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APPENDIX B

Analytical solution for a 1-D HTS problem

For a one sided slab with the boundary and initial conditions:{
B(−a, t) = Bat

p;

B(x, 0) = 0.
(B.1)

Using the power law

ρ(J) =
Ec
Jc

∣∣∣∣ JJc
∣∣∣∣n−1

, (B.2)

the magnetic flux density is given by

B(x, t) =

{
Bat

p
(

1− ε(x+a)
ξ0t

)p
, −a ≤ x < xf (t),

0, x > xf (t),
(B.3)

with

p =
n

n− 1
, (B.4)

ε = B
( 1−n
n+1)

a κ( −1
n+1), (B.5)

κ =
Ec

(µ0Jc)
n , (B.6)

ξ0 = p
n

n+1 , (B.7)

and

xf (t) =
ξ0

ε
t. (B.8)

This solution can be extended to a two-sided slab using the proper symmetry.
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APPENDIX C

Expression of the power law in terms of discrete degrees of freedom for 2-D

edge elements

Knowing that

J = ∇×H . (C.1)

On an arbitrary element K, we have

H(x, t)

∣∣∣∣
K

≈ hK(x, t) =
3∑
j=1

hKj (t)NK
j (x). (C.2)

Therefore, on the element K:

J(x, t)

∣∣∣∣
K

≈ jK(x, t)k̂ =
3∑
j=1

hKj (t)∇×NK
j (x), (C.3)

which yields for an approximation of the current J :

jK(t) =
3∑
j=1

hKj (t)
lKj
4K

. (C.4)

Therefore, on element K, the resistivity with the power law is time dependent and is given

by

ρK(t) =
Ec

Jc(4K)n−1

∣∣∣∣∣
∑3

j=1 h
K
j (t)lKj
Jc

∣∣∣∣∣
n−1

. (C.5)
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APPENDIX D

Calculation of the error in the discrete maximum norm ||E||max

Let us consider ym an approximation of the solution y(t) at time tm, where m = 1, ..., nstep

is the index of the time-step. The error in the approximation of the solution at time tm is

given by Em = ym−y(tm). For a simulation that lasts tnstep, the maximum norm of the error

is given by:

||E||max = max(|E1|, |E2|, ..., |Enstep|), (D.1)

where E is a vector containing the error Em for m = 1, ..., nstep.
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