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RÉSUMÉ 

Les erreurs géométriques d’une machine-outil ont un impact direct sur la précision des pièces 

usinées. Cette thèse traite de la compensation d'erreur des machines-outils CNC à cinq-axe. Dans 

la première phase, une formulation générale de l’erreur volumétrique et un système de 

compensation hors ligne sont proposés pour améliorer la précision de la pièce. En utilisant la 

cinématique des corps rigides et les paramètres d'erreur estimés de la machine, les commandes de 

position de la machine contenues dans un code G standard sont utilisées pour calculer l’erreur de 

position de l'outil. Le Jacobien, exprimant le différentiel entre l’espace articulaire et l'espace 

cartésien, est également développé et utilisé pour calculer les modifications de commande 

articulaire de telle sorte que l'effet des erreurs de la machine peut être annulé par de petits 

changements directement sur le code G. 

Lorsque la compensation est implémentée, sa validation est requise. Des machines à mesurer 

tridimensionnelles (MMT) ou d'autres dispositifs de mesure externes sont couramment utilisés 

pour mesurer la précision de la pièce usinée à des fins de validation. Dans ce travail, une série de 

tests de défauts surfaciques issus de l’usinage sont proposés pour comparer la précision d'usinage 

avant et après la compensation en utilisant des mesures sur machine seulement. Les écarts sur les 

surfaces produites découlent de l'erreur volumétrique et proviennent d’erreurs géométriques 

spécifiques de la machine qui sont mesurées en utilisant un palpeur placé sur la machine erronée 

elle-même. L'effet de la stratégie de compensation est ensuite validé en comparant l’écart entre 

les surfaces avec usinage compensé et non compensé. Les résultats des mesures sont compatibles 

avec les valeurs d'erreur volumétrique prévues et montrent une amélioration de la précision 

(réduction de décalage) d'environ 90% après compensation. 

Finalement, deux nouvelles notions, la pertinence de l'erreur et l’aptitude à la compenser, sont 

introduites et quantifiées pour la machine-outil. La compensation des erreurs pertinentes et 

compensables seulement conduit à une compensation optimisée dans laquelle des modifications 

de commandes minimales mais efficaces sont faites. Une pièce est conçue spécialement pour le 

test, contenant des caractéristiques communes est usinée, en utilisant les cinq axes d’usinage 

simultanément, pour la validation expérimentale. Les résultats de simulation montrent jusqu'à 

75% de réduction dans la 1-norme des compensations linéaires et angulaires alors que les erreurs 

pertinentes demeurent efficacement corrigées. 
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ABSTRACT 

Machine tool geometric errors directly impact on the accuracy of machined parts. This thesis 

addresses the error compensation in five-axis CNC machine tools. In the first phase, a general 

volumetric error formulation and an off-line compensation scheme are proposed to improve part 

accuracy. Using rigid body kinematics and estimated machine error parameters, the machine 

position commands contained in a standard G-code are used to calculate the tool erroneous 

location. The Jacobian, expressing the differential joint space to Cartesian space relationship, is 

also developed and used to calculate minute joint command modifications so that the effect of 

machine errors can be canceled by making small changes directly to the G-code.  

When compensation is implemented, its validation is sought. Coordinate measuring machines 

(CMM) or other external measurement devices are commonly used to measure the accuracy of 

the machined part for validation purpose. In this work, a series of surface mismatch producing 

machining tests are proposed to compare the machining accuracy before and after the 

compensation using only on-machine measurements. The produced surface mismatches that 

represent the volumetric error and come from specific machine geometric errors are measured 

using touch probing by the erroneous machine itself. The effect of the compensation strategy is 

then validated by comparing the surface mismatch value for compensated and uncompensated 

slots. The measurement results are compatible with the predicted volumetric error values and 

show an accuracy improvement (mismatch reduction) of about 90 % after compensation for the 

machine tested.  

Finally, two new notions, error relevance and error compensability, are introduced and 

quantified. Compensation of only relevant and compensable errors leads to an optimized 

compensation in which minimal but effective command modifications are made. A specially 

designed test part containing common features is machined, using up to five-axis simultaneous 

machining, for the experimental validation. Simulation results show up to 75% reduction in the 1-

norm of the linear and angular compensations while the relevant errors are still effectively 

corrected. 
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INTRODUCTION 

With the burgeoning demand for machined parts with complicated shapes and high accuracy, as 

in the aerospace industry, the use of five-axis machine tools has been increasing. Applying five-

axis machining, the cutting tool can be orientated relative to the part so that shorter machining 

time, fewer setups, jigs and fixture are required. However, the complex structure of these 

machines due to the presence of two rotary axes compared to three-axis ones, may cause further 

volumetric inaccuracy of the tool tip position.  

In recent decades, computer numerically control (CNC) of machine tools provided more 

flexibility and productivity and reduced manual work and operator-related error sources. Machine 

tools manufacturers’ goal is to minimize the possible error sources when designing, 

manufacturing and assembling machines to improve the quality of their production and stay 

competitive. However, reaching to higher levels of accuracy leads to exponentially rising costs. 

Thus, error prediction and compensation is a worthwhile approach for accuracy enhancement. 

Machined part dimensions and tolerances, particularly in the aerospace industry, are consistently 

controlled according to drawing tolerance. The dimensional imperfections of the machined part 

may come from machine errors like geometric errors of machine joints and components, thermal 

and cutting force induced errors and so on. The geometric error is a significant one that adversely 

influences the overall accuracy and cause unwanted deviations of tool location called "volumetric 

error". Prediction and compensation of the volumetric error in multi-axis machine tools have 

been the subjects of much research in recent decades.  

Problem definition 

To compensate the volumetric error in a machine tool, a precise model of geometric and 

kinematic parameters is required. A general and common understanding of the volumetric error 

which can be quantified using a mathematical formulation is a perquisite to reach an effective 

compensation. Once error compensation is implemented, its validation and optimization are also 

sought. 

In addition, the machine structure (topology), the feature to be machined, the machining process 

and also tool geometry are effective factors in compensation strategy selection, validation and 

optimization. There is a lack of knowledge about the relationship between the compensation 
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scheme and the above-mentioned factors. In the present thesis, strategies and techniques are 

proposed to answer following the main research question: 

 How to compensate the relevant and compensable volumetric error in five-axis machine 

tools? 

This can be detailed in the form of below questions: 

 How to calculate and predict the components of volumetric error in a five-axis machine?  

 Is it possible to predict the volumetric error using the original G-code and then 

compensate errors through G-code modification? 

 How to validate the compensation effectiveness using on-machine measurement (OMM) 

without an external measurement device? 

 Do all volumetric error components require compensation? 

 Is it possible to compensate all components of the volumetric error by changing original 

axes commands? 

Objectives 

To effectively compensate the volumetric error in a five-axis machine tool, these specific 

objectives are defined:  

1. Develop an exact mathematical formulation to predict the volumetric error vector that 

relies solely on original axes positions and the machine error parameters. 

2. Propose a fast and easy method for validation of error compensation effectiveness in 

machine tools without using CMM. 

3. Reduce the demand on volumetric error compensation by considering the tool geometry 

and the feature to be machined. 

4. Quantify the machine capability to compensate all volumetric error components by G-

code adjustment. 
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Hypotheses 

 Volumetric error twist in a five-axis machine tool can be predicted using a general 

modeling formulation, original G-code, machine tool error parameters and then 

compensated by minute adjustments in original commands of the machine axes. 

 The effectiveness of a compensation strategy can be validated using OMM and without 

need for an external measurement device such as CMM. 

 Minimal and effective modifications in axes positions can be calculated and implemented 

in an optimized compensation strategy in which only relevant and compensable error 

components are attempted to be compensated. 

Assumptions 

The assumptions considered in this research are as follow: 

 Rigid body kinematics: the mathematical model of the machine tool is developed 

assuming that the machine joints and structure are rigid. Therefore, the error 

components of each joint are not influenced by the movement of other; 

 estimated values for machine joints errors are known as input of the compensation 

function and also they remain constant after estimation and before machining tests are 

done; 

 the machine tool is supposed to be able to accurately track the programmed 

commands and uploaded to the CNC controller; 

 machine error values are sufficiently small to assume small, but not negligible, 

angular errors and approximation of the equations in the first article; 

 nominal dimensions and location coordinate of the feature to be machined and tool 

geometry are known for the third paper when studying relevance of the error 

components. 
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CHAPTER 1 THEORY AND LITERATURE REVIEW 

Basically, for the volumetric error compensation in machine tools, three steps should be taken 

into consideration; 1) Modeling of the machine tool and its errors, 2) Error measurement and 

identification, 3) Implementation of a compensation strategy. In this chapter, general definitions 

and concepts of error sources in multi-axis machine tools, as a perquisite for machine modeling 

and compensation, are presented. This is followed by an introduction about machine error 

measurement and identification techniques and then error elimination (reduction) strategies. 

Since error elimination or compensation is the main subject of the work, this will be explained in 

details in this chapter and the next chapters in the form of research articles. 

1.1 Error sources and classifications 

Error is “the difference between the actual response of a machine to a command issued according 

to the accepted protocol of that machine's operation and the response to that command anticipated 

by that protocol” [Hocken, 1980]. Various error sources may lead to overall machine inaccuracy 

and imperfections in machined part dimensions and geometry. Generally, machine errors are 

classified into two categories namely quasi-static errors and dynamic errors. Quasi-static errors 

are associated with the structure of the machine tool itself and do not depend on the particular 

operating conditions of the machine. The sources of these errors include geometric errors, errors 

due to the dead weight of the machine components and those due to thermally induced strains in 

the machine structure. Such errors slowly vary in time and accounted about seventy percent of 

the total error of machine tools. Thus quasi-static errors are a major error focus in error 

compensation research. On the other hand, dynamic errors are related to the dynamic behavior of 

the machine and usually depend on machining conditions during cutting operation such as 

spindle error motions, vibration of the machine structure, tool deflection and servo control and 

contouring errors [Hocken, 1980]. 

In this section, brief introductions to some of these errors are separately presented.  

1.1.1 Thermal errors 

Thermal errors or temperature induced errors are due to internal or external heat/cold sources. In 

addition to quasi-static errors due to thermally induced strains in the machine structure, dynamic 

behavior of the machine also produces thermal error. The movement of machine elements and 
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continuous running of motors and pumps during the machining process generate considerable 

heat. Significant expansion coefficients and expansion coefficient differences result in thermal 

distortion of machine elements [Schwenke et al., 2008]. Thermal factors contribute 40-70% of 

total dimensional and shape errors of the machined part. Six sources of thermal deformation are 

identified; 1) heat from the cutting process, 2) heat generated by the machine, 3) heating or 

cooling provided by cooling system, 4) environmental temperature, 5) effect of people, 6) 

thermal memory from previous environments [Bryan, 1990]. The heat transferring across the 

machine structure depends on the distribution of contact pressure along each joint and can be 

described based on the theory of thermo-elastic behavior [Attia et al., 1979]. A certain percentage 

of the total power of the machine is converted to thermal energy because of the frictional 

resistance exists in moving elements. Continuous movements of bearings, gears, hydraulic oil, 

drives, clutches, motors, pumps and guideways during machining operations cause temperatures 

to rise in the machine tool. Spindle growth, thermal expansion of the ball screws and thermal 

distortion of the column are some of its consequences that may influence the relative position and 

orientation of the tool. Additionally, heat generated by the shearing action during cutting (some 

of which is transferred to the deformed chip) should be considered as an important heat source 

[Ramesh et al., 2000].  

The thermal errors can be categorized in two groups. The first group includes the position 

independents thermal errors (PITE) which vary with temperature but not the axis position. These 

errors don't depend on the joints positions and mostly affect the machine offsets. The second 

group is function of both axis position and temperature. These are called position dependent 

thermal errors (PDTE) and usually produce linear positioning errors [Allen et al., 1997]. 

The non-linear and time-varying nature of the thermally induced errors that come from non-

uniform temperature distribution in machine structures and also the complexity of heat transfer 

mechanism makes it complicated to model and predict the thermal errors [Mou, 1997].  But, 

thermal errors cannot be neglected in machine tool accuracy improvement; particularly when a 

“real-time” compensation strategy is implemented. Thermal effect of heat produced during 

machining is possible to be detected using temperature sensors and considering the thermal errors 

in machine model for error compensation purpose. Reduction of external and internal heat 

sources, control of heat flow, usage of high volume of coolant, redesign the machine tool and 
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making machine components less sensitive to the heat flow are some proposed strategies to 

minimize thermal errors [Ramesh et al., 2000]. 

1.1.2 Load induced errors 

The major sources of load induced errors can be divided into three categories, i.e. 1) strain 

resulting from the machine tool assembling, 2) strain resulting from the dead weight of the 

machine elements, 3) strain resulting from workpiece weight [Hocken, 1980].  

1.1.2.1 Machine tool materials and assembling 

The instability of the materials may result in geometric distortion in machine structure such as 

long-term dimensional length changes. Slow relaxation of metallurgical stress (e.g., iron casting 

or steel weldments) is the main reason of such instabilities. However, this error source can be 

minimized through stress-relieving methods such as vibration at liquid-metal solidification stage, 

vibration in solid state, commercial stress-relief annealing, weathering, etc. Great stress relief is 

achievable in good quality iron casting or steel weldments by means of long-cycle stress relieving 

process. Another error source is due to machine foundation and its mounting. Using a minimum 

but efficient number of physical constraints to constrain the machine body (e.g. kinematic 

mounting) provides the highest accuracy. This approach is mostly applicable for small and 

medium-size machine tools for which the foundation problems can be eliminated. For large 

machine tools, the properties of bedplate, foundation, and soil structure, static deformation and 

damping behavior of foundation and also, its long-term dimensional stability are of importance to 

reduce the error sources [Hocken, 1980]. 

1.1.2.2 Self-loading forces 

Due to the finite stiffness of the load-bearing elements, static deformations may occur especially 

in large machine tools in which larger and heavier components are used and their displacement 

may cause deformations out of allowed limits. For instance, a vertical straightness and a pitch 

error motion may occur in straight guideways due to the weight of the moving slide. This is 

called " quasi-rigid behavior" [Schwenke et al., 2008]. Sometimes, the motion of one component 

affects the motion of another one (cross-coupling).For example, in the bridge-type machine tool 

shown in Figure  1-1a, a roll error (rotation around X-axis) may occur as a result of the Y 
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carriage movement across the table. Figure  1-1b clearly illustrates that the changes in Y position 

of the cross carriage mounted on the bridge is affecting the positioning error of the X table. 

 

Figure  1-1 a) Schematic of a bridge-type machine b) roll error of the X-table [Hocken, 1980] 

1.1.3 Dynamic force induced errors and vibrations 

The presence of significant dynamic forces during cutting processes influences the overall 

accuracy by excessively deforming the tool and work piece or deformation of machine tool 

structure. Depending on the stiffness of the machine structure, its accuracy is affected by such 

forces.  

Vibration of the machine tool during cutting operations is another source of volumetric error 

especially in milling processes in which the tool experiences periodic forced vibration. The 

magnitude and the phase of these vibrations depend on several factors such as the spindle speed 

and the number of teeth on the cutter, cutting coefficients of the tool/workpiece system, the radial 

and axial depths of cut, the feed per tooth and the cutter helix angle [Schmitz et al., 2008]. 

Vibration induced errors are not easily compensable due to very often unknown amplitude and 

the phase angle of the vibration frequencies. The resultant relative motions between tool and 

workpiece have detrimental effects on the surface roughness as well as tool wear. Sometimes 

vibrations come from external sources through foundation, bearing defects, interrupted cuts, etc. 

This type of vibration is named forced vibrations. On the other hand, self-excited vibration which 
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is associated with machine vibrations in one or several natural frequencies while there is no 

external noise or factor [Hocken, 1980]. Finally, in the case of high speed machining (high feed 

rate and velocity), forces caused by acceleration and decelerations of machine parts vary during 

machining process and may result in significant errors [Cano et al., 2008].  

Tool deflection occurs due to machining forces and produces surface location errors. In the case 

of milling, the tooth either deflects towards the surface in up-milling thus causing an over cut 

form error, or deflects away from the surface in down milling causing an undercut form error. 

The periodic force at the contact point of tool and feature leads to vibration as Schmitz et.al 

[Schmitz et al., 1999] investigated the effect of spindle speed (tooth passing frequency) on tool 

deflection in high speed machining and found both system natural frequency and flexibility as the 

important factors to choose the depth of cut for a stable operation. 

Some researchers have neglected the effect of cutting force induced errors considering that for 

the finishing process, the cutting forces are too small to influence the overall accuracy. However, 

in cases of machining some materials like hardened steel to final form (without finishing 

operation), large forces may be the source of considerable errors and this has to be considered in 

an overall compensation process [Ramesh et al., 2000]. Errors induced by cutting forces can be 

particularly dominant also in turning thin workpieces (where a significant elastic deflection 

occurs in workpiece) or in boring small diameter holes (where tool is subject to have a significant 

deflection) [Li, 2001]. 

1.1.4 Fixture dependent errors 

A fixture is an element that holds the workpiece on the machine table during machining. Errors in 

fixture and setup are related to geometric inaccuracies or misalignments of the locating element. 

Furthermore, if the workpiece is not fixed well or if the fixture is too compliant, its deformation 

or displacement may become a significant source of error. Therefore, the appropriate fixture 

elements and locators, clamping sequence, clamping intensity and the contact area of workpiece 

are of importance to avoid the fixture dependent geometric errors [Hockenberger, 1994; De 

Meter et al., 1997; Ramesh et al., 2000]. 



9 

 

1.1.5 Contouring and servo errors 

After modeling the part to be machined in a manufacturing process, usually a computer-aided 

machining software is used to generate a desired tool path for machining. Due to interpolation 

and discretization methods applied for tool path generation of complex shape parts, there may be 

some differences between the generated tool path and the numerical model of the part. 

Approximations occur in the inverse kinematic transformation during the post-processing phase 

are also, should be considered as a source of error in machine tool. Reversal spike and servo 

mismatch are examples of control system and servo setting error sources. Accurate path tracking 

for contouring is not always possible due to the loss of joint coordination or CNC controllers’ 

limitations especially during high speed motions. Each machine axis may have follow-up errors, 

influencing the overall accuracy [Lavernhe et al., 2008; Andolfatto et al., 2011]. In other words, 

unavoidable tracking imperfection between the commanded and actual positions may occur due 

to the servo controller dynamics that result in contouring errors. The contour error can be defined 

as the normal distance, of the actual tool tip, from the desired (reference) tool path while tool 

orientation contour error can be defined as the normal angular deviation of the tool axis from the 

desired orientation trajectory [Koren, 1983]. Modeling, evaluation and compensation of 

contouring errors are studied in some researches [Kwon, 1996; Sencer et al., 2009]. 

1.1.6 Geometric errors 

Machine tool accuracy is directly affected by manufacturing defects, surface straightness and 

roughness of the machine components and bearing pre-loads. Geometric errors include firstly, the 

straightness error of the guideways upon which a machine axis carriage moves and secondly, the 

link geometric errors which may result from shape and assembly errors of the machine structural 

components. 

1.2 Description of the machine errors 

According to causality principle, Ekinci et al. [Ekinci et al., 2007] proposed a hierarchal 

classification of machine errors. As shown in Figure  1-2., geometric errors of the guideways 

directly lead to kinematic errors in moving joints which would be called “error motions”. The 

second group of the errors considered in the kinematic chain model is called “link geometric 

errors”. 
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Figure  1-2 Machine error analysis according to causality principle [Ekinci et al., 2007] 

The error motions are position dependent geometric parameters (PDGEPs) while the link errors 

are called position independent geometric parameters (PIGEPs). Link errors are basically 

associated with misalignment of a structural component and its deviation from the nominal 

position and orientation in the machine coordinate system such as out of squareness, angular 

offset and rotary axes separation errors [Abbaszadeh-Mir et al., 2002]:   

In next section, all possible motion errors and link errors for multi-axis machine tools are 

described based on the standard ISO 230. Other common notations for such errors are compared 

in [Ibaraki et al., 2012]. 

1.2.1 Error motions 

As shown in Figure  1-3, a linear axis (Z-axis for example) could have six motion errors when it 

moves. These errors are listed in Table  1-1 where the notation is based on ISO 230-1[ISO230-1, 

2012]. If, the behavior of the machine is assumed as a rigid body, such errors depend only on the 
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nominal movement of the axis of concern and so, the location of the other axes does not affect 

them [Schwenke et al., 2008]. 

 

Figure  1-3 Error motions of a horizontal Z-axis [ISO230-1, 2012] 

 

Table  1-1 Error motions of a horizontal Z-axis, notation is according to ISO 230-1 

Error description Error symbol 

Straightness error motion of Z in X direction EXZ 

Straightness error motion of Z in Y direction EYZ 

Positioning error in Z direction EZZ 

Pitch error motion of Z (tilt error motion around X) EAZ 

Yaw error motion of Z (tilt error motion around Y) EBZ 

Roll error motion of Z ECZ 
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The same possible errors may exist for a nominal rotational movement (for example C-axis) as 

shown in Figure  1-4 and listed in Table  1-2. 

 

Figure  1-4 Error motions of a rotary C-axis [ISO230-7, 2006] 

 

Table  1-2 Error motions of a rotary C-axis, notation is according to ISO 230-1 

Error description Error symbol 

Radial error motion of C in X direction EXC 

Radial error motion of C in Y direction EYC 

Axial error motion of C EZC 

Tilt error motion of C around X EAC 

Tilt error motion of C around Y EBC 

Angular position error of C ECC 
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1.2.2 Link errors 

To define the link errors relative to the reference coordinate, generally a “reference straight line 

(average location and orientation) is assumed as the nominal axis (linear or rotational) according 

to ISO 230-1. A linear motion axis can be defined as a vector with a zero position on the vector. 

Thus, there are only two squareness errors and the zero position error for it as shown in 

Figure  1-5 and Table  1-3. 

 

Figure  1-5 Link errors of a linear axis, Z [ISO230-1, 2012] 

 

Table  1-3 Link errors of a linear Z-axis, notation is according to ISO 230-1 

Error description Error symbol 

Zero position of Z EZOZ 

Squareness of Z related to Y   EAOZ 

Squareness of Z related to X   EBOZ 
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A rotary axis has also two translational errors in addition to the ones of a linear axis as shown in 

Figure  1-6 and Table  1-4. 

 

Figure  1-6 Link errors of a rotary axis, C [ISO230-1, 2012] 

 

Table  1-4 Link errors of a rotary C-axis, notation is according to ISO 230-1 

Error description Error symbol 

Position error of C in X direction EXOC 

Position error of C in Y direction EYOC 

Out-of-squareness of C relative to Y direction EAOC 

Out-of-squareness of C relative to X direction EBOC 

Angular position error of C ECOC 
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The total number of errors of a particular machine tool depends on the number of axes. In three-

axis machine tools, there are only three prismatic joints whereas, a five axis machine tool is a 

kinematic chain made of three prismatic and two rotary axes and can be in various arrangement 

of sequential manners. Everett et al. [Everett et al., 1988], proposed Eq. 1-1 to determine N, the 

minimum number of fixed value parameters required to define a serial kinematic chain, the robot 

base frame and end effector frame (regardless of the modeling scheme); 

           (1-1) 

where R is the number of rotary axes and P is the number of prismatic axes. Thus, N=20 in five-

axis machines. If six parameters among of these 20 parameters are assumed to define the tool 

frame location and another six to locate the work piece relative to the work piece axis branch, 

then, only eight link error parameters are remained for the machine internal structure. If the 

spindle axis and its five error parameters (the rotational error around spindle axis is not accounted 

as an error) are also considered,  a total of 13 link errors are required for error modeling of the 

five axis machine tool [Zargarbashi et al., 2009]. 

Based on Abbaszadeh-Mir research [Abbaszadeh-Mir et al., 2002], potentially 42 PIGEPs or link 

errors are considered for prediction of tool location error respect to the feature in five-axis 

machine tools; six PIGEPs per axis, six parameters to describe the pose error (positioning and 

orienting error) of the work piece and an additional six error parameters for the pose of the tool 

frame in the spindle. Using mathematical analysis of the sensitivity Jacobian matrix, its rank and 

singular value decomposition (SVD), eight independent error parameters can be determined as 

the minimum but sufficient set of link error parameters required for estimation of the volumetric 

error. This is also mentioned in ISO 230-1 (Annex A). In this standard, first, position and 

orientation error parameters for each axis of a five-axis machine tool (Figure  1-7) are presented. 

If the coordinate system is defined using the linear axes of motion of the machine, a set of 

minimum number of error parameter to fully characterize the five-axis machine tool can be 

extracted as seen in Table  1-5. Note that the possible errors of the spindle axis are not shown in 

this table [ISO230-1, 2012]. 
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Figure  1-7 A five-axis machine tool configuration; 1) rotary C-axis 2) X-axis 3) bed 4) Y-axis 5) 

column 6) Z-axis 7) yoke 8) A-axis 9) Spindle [ISO230-1, 2012] 

 

 

Table  1-5 Minimum number of error parameter to fully characterize a five-axis machine tool 

C-axis X-axis Y-axis Z-axis A-axis 

0 (0) - - - 

0 - (0) - EYOA 

- - - (0) 0 

EAOC - 0 EAOZ (0) 

EBOC 0 - EBOZ EBOA 

(0) 0 ECOY - ECOA 
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1.2.3 Volumetric error 

The term “volumetric error” refers to the resulting error in position and orientation of the 

machine tool end effector (tool or stylus tip) related to the workpiece or feature to be machined or 

measured. The term “volumetric accuracy” for three-axis machine is defined as” the maximum 

range of relative deviations between actual and ideal position in X-, Y-, Z-axis directions and the 

maximum range of orientation deviations for A-, B- and C-axis directions for X-, Y- and Z-axis 

motions in the volume concerned [ISO230-1, 2012]. This definition is valid for the rotary axes 

accuracy in five-axis machine tools too. This error is defined in the working volume of the 

machine and can be measured using calibrated artifacts or telescoping ball-bar. In chapter three, a 

general mathematical formulation for volumetric error and also a graphical representations of that 

will be explained.  

1.3 Machine tool modeling  

Most machine tools are serial kinematic chain made of successive joints and moving components 

to provide a desired relative location between cutter tool and the feature to be machined. The 

common modeling approaches are as follows; 

 Rigid body kinematics is one of the most widely used techniques for simulation and 

modeling of the machine tools. Based on rigid body kinematics, machine tool axes and 

links are connected to each other like a chain but error motions of each axis are not 

influenced by other axes position. The direct kinematic model can be built using 

homogenous transformation matrices (HTMs) [Roberts, 1966] and accommodating both 

link and motion error modeling. Srivastava [Srivastava et al., 1995] used this approach to 

model geometric and thermal errors in a five-axis machine tools. This modeling approach 

is used to model the machine tool in the present research as explained in details in chapter 

three (first article). 

 Non-rigid body assumption may be applied where a heavy movable slide in a large size 

machine, for instance, produces deformations in the guideways of other slides. Chen et al. 

[Chen et al., 1992] compared two approaches, i.e. off-line multidimensional fitting and 

on-line identification to measure the non-rigid body kinematic effect using a laser 
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interferometer and then compensated it by compensation signals through digital I/O 

board.   

 D-H modeling [Denavit, 1955]; using D-H modeling, Mahbubur et al. [Mahbubur et al., 

1997] proposed a compensation strategy in which the nominal values of the rotary axes 

are derived from CL-data and then applied for correcting the tool path within the post-

processor before generating the G-code. This modeling approach is mostly used to model 

the robots and not machine tools. This is due to the rules imposed in this method for the 

definition of the local reference frames. 

 Product of exponential (POE) method is widely used in robotic and recently in machine 

tools. It represents the kinematics of an open-chain mechanism as the product of 

exponentials of twists. Using POE method, the problem of determining the joint angle 

given the end-effector location (inverse kinematic) can be solved compared to D-H 

modeling. Furthermore, the manipulator Jacobian and its singularities can be easily 

characterized. [Murray et al., 1994]. 

1.4 Error measurement and identification  

1.4.1 Direct and indirect measurement  

Several measurement instruments and techniques are applied to detect the geometric errors of the 

machine tool. The most suitable measuring method depends on the machine geometry and the 

errors to be measured or identified. In "direct" measurement methods, a specific geometric error 

of only one axis is measured and there is no need to simultaneously move other axes. Direct 

measurements can be divided into three subgroups [Sartori et al., 1995; Schwenke et al., 2008];  

1. The material-based methods wherein standard artifacts such as straightedges, line scales 

or step gages and even multidimensional artifacts like ball plates are applied. 

2. The laser-based methods which use laser light wavelength as a reference; Environmental 

factors like temperature and pressure have a relatively small effect on the laser 

wavelength characteristics but should be taken into consideration for calibration purposes. 

Yielding a high accuracy on short- and long-machine axes, the laser interferometer is 

commonly used for measurement of the positioning errors as shown in Figure  1-8. 
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3. The gravity-based method wherein local gravity of the earth is used to define the 

metrological reference to measure some errors such as angular errors around horizontal 

axes. 

 

 

Figure  1-8 Laser interferometer for the measurement of Y-axis positioning error [Schwenke et al., 

2008] 

In contrast, "indirect" measurement techniques focus on superposed errors and thus, multi-axis 

motions are required. Either calibrated, partially calibrated or un-calibrated artifacts may be used 

in indirect methods. Contour measurement, multi-lateration measurement and chase-the-ball 

measurement are some examples of indirect measurement approaches. [Schwenke et al., 2008]. 

One of the most common indirect methods is the circular test using a ball bar as presented in ISO 

230-4 [ISO230-4, 2005]. This method was established by Bryan [Bryan, 1982] and is applicable 

to check of contouring accuracy, backlash error and also the error motions of two orthogonal 

linear axes in machine tools. Other developed artifacts and measurement approaches are still the 

subject of much researches [Lei et al., 2002; Weikert, 2004; Zargarbashi et al., 2009; Erkan et al., 

2011].  

1.4.2 Error identification 

The machine error to be identified must have a significant effect on the measurement results in 

order to its influence to be separated from any combination of other parameters. In other words, 

if, a geometric error parameter does not have a distinguished effect on the measurement result, its 

identification may be impossible. Error identification is done using analytical or best fit methods. 
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Regarding the measurement method applied, an appropriate identification approach is used. For 

example, the errors measured using calibrated artifacts or self-calibrated methods could be 

identified by analytical methods. While best fit methods are usually used in cases of multi-

lateration or chase-the-ball measurement methods [Schwenke et al., 2008]. Another 

categorization for error identification approaches was reported by Lo [Lo, 1994], i.e. 1) grid 

calibration method 2) error synthesis method 3) designed artifact method 4) metrology frame 

method 5) finite element method. He found the error synthesis model as the only efficient method 

to correct the overall quasi-static error in his research on a four-axis turning center. In addition, 

an adaptive error identification method was developed [Mou et al., 1995] in which inverse 

kinematic were used to characterize the individual effect of machine error parameters on 

machined part geometric errors. 

1.5 Error elimination and its categorizations 

The efforts for accuracy improvement for machine tools are categorized in two main groups; 

"Error avoidance" and "error compensation".  

1.5.1 Error avoidance  

In "error avoidance", the source of the error or its effect is eliminated through refinement of the 

machine design or its environment. The machine accuracy is improved during both designing and 

manufacturing steps. Precise components, high stiffness, and low thermal distortion will result in 

machine accuracy enhancement. However, this approach basically needs high degree of 

investment especially to reach as accuracy beyond a certain level. As an example, to avoid the 

thermal induced errors in machine tools, three strategy are proposed [Ni, 1997]: 

a) heat source reduction; control the environmental conditions through heat exchangers or 

enclosing the machine tool in temperature-controlled boxes. 

b) heat flow control through passive control (such as blocking the heat flow using insulation 

pads) or active control (modifying the thermal-induced deformations of machine tool 

structure by using an external heat source to minimize the machine warm-up time etc.)   

c) thermally robust structural design; that reduces the sensitivity of machine structure to 

thermal changes or symmetric design of heat sources etc. 
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1.5.2 Error compensation 

The second approach is "error compensation" in which no attempt is made to avoid the error and 

involves lower costs compared to the former. In this approach, the errors in the machine are 

measured and then suitably compensated. In the literature, the strategy reported by Koliskor 

[Koliskor, 1971] based on the results of post-process inspection and also the software-based 

method developed by Donmez et al. [Donmez et al., 1986] for geometric error correction are two 

early researches on error compensation. The strategies for error compensation can be generally 

categorized as follow: 

1.5.2.1 Real-time compensation and off-line compensation 

If the machining process and measurement is repeatable enough, a “pre-calibrated” error 

compensation can be applied. Errors are measured after the machining process and used to 

subsequently change or calibrate the process (off-line). This method is suitable especially for 

cases involving with mass productions. The second and more accurate method is named "real-

time active error compensation" (or “dynamic compensation” as it is named in [Ramesh et al., 

2000]) wherein the process is altered or calibrated based on the error measurement results during 

the same operation. However, this is more expensive and time consuming compared to the former 

[Hocken, 1980]. 

Two real-time techniques are proposed as follow: 

 Feedback interception method in which feedback signals from the servo loop are 

intercepted by a computer. The computer calculates the volumetric error and modifies the 

feedback signals before embedding back to the controller and this, leads to adjustment of 

the slide position [Yee et al., 1990]. Although, no modification in controller software is 

required, the electronic devices used for insertion of the quadrature signals in this 

technique need extreme caution to prevent inserted signals interfering with the machine 

tool error controls.  

 Origin-shift method in which the computer sends compensation signals after calculating 

the volumetric error and without interception of the feedback signal from servo loop. This 

results in shifting the reference origins of the control system through an I/O interface as 

shown in Figure  1-9 [J.S. Chen, 1993]. 
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Figure  1-9 Compensation by shifting the origins of machine axes [Ni, 1997] 

 

In real-time compensation usually the information on thermal-induced errors and force-induced 

errors are acquired using sensors mounted on the machine and so, a synthesis model of all 

positioning, thermal and force errors is used [Lo, 1994; Spaan, 1995]. Although, both systematic 

and random errors can be corrected, there are some difficulties in this approach. Firstly, finding 

the optimal location of the sensors (especially thermocouples) to be mounted is not easy and 

usually needs statistical analysis and several empirical (trial-and-error) processes. Secondly, 

characterization of the machine thermal behavior is time consuming since a considerable time is 

needed for machine to reach the thermal steady state and then to cool down to its original state. 

Robustness of the error model when modeling the thermal errors depends on several factors such 

as sensors mounting location, sudden change in the coolant or environmental temperature etc. 

[Ni, 1997]. 

1.5.2.2 Software (numerical) compensation and hardware compensation  

Another categorization for the compensation techniques could be assumed; 1) hardware error 

compensation (similar to the error avoidance conceptm involves modifications in machine tool 

hardware and physical components and so, applicable only when errors are larger than a defined 
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range and 2) software error compensation. Hocken [Hocken, 1993] defines the term software 

correction as follows: “The use of per-process data, a machine model and indirect sensing of 

process parameters relevant to that model, in order to provide data to control system for the 

correction of a nominal tool position with respect to a nominal part during the machining process 

or measuring using the actuators normally supplied with the machine.” Software compensation is 

also called “numerical compensation” in some references.  

For numerical compensation, the quantified information of machine errors through measurement 

methods is required. The compensation will be effective if the machining conditions and errors 

are time invariant and also have high repeatability. An absolute coordinate system is also 

required. Numerical compensation could maintain accuracy over the machine life time even when 

its geometry changes due to aging, wear, foundation stabilization, environment thermal 

condition, etc. However, the required motions for error compensation in the functional orientation 

in five-axis machine tools is not always available to the CNC and it may leads to highly 

accelerated motions of other axes. The thermal conditions of the machine and the object used for 

its calibration affect the numerical compensation results and should be considered as one of the 

limitations [ISO/TR16907, 2015].  

Most modern industrial controllers provide useful tools to compensate specific geometric errors 

such as positioning errors of linear and rotary axes, backlash error, straightness error and some 

thermal induced errors. As discussed in ISO/TR 16907 [ISO/TR16907, 2015] and also [Sartori et 

al., 1995], there are four ways to store the error information (obtained from measurement) into 

the CNC controller; 

 Error lattice; the error magnitudes are stored at points spread evenly in a working volume 

and used to directly compensate only translational deviations at those spatial points. Such 

error lattices are applicable only when the tool offset is fixed.   

 Look-up tables; assuming positioning errors as a function of axis position, such tables 

contain nominal position and direction of the axis motion and the corresponding error 

value (which is a correction value to cancel the error effect). CNC controller may apply 

linear interpolation for intermediate points. 

 Coefficient table; the coefficients of polynomials used for analytical error modeling are 

stored and employed for error compensation at working points. 
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 Spatial error grid tables; in which user is required to input translational and angular error 

values at all grid points of each linear or rotary axis. A model based software may 

calculate the spatial error grid both on modeled or un-modeled error motion of the 

machine tool. An example of such spatial error grid tables is shown in Table  1-6. 

Table  1-6 A spatial error grid for rotary axes [ISO/TR16907, 2015] 

Point 

No. 

 

 

 Sample points  Compensation value (error value) 

 

A (or B)-axis C-axis  
   

(mm) 

   

(mm) 

   

(mm) 

   

(°) 

   

(°) 

   

(°) 

1  0 0  0 0 0 0 0 0 

2  0 5  0.001 -0.001 0.001 0 0 0.001 

3  0 10  0.002 -0.002 0 0.002 -0.001 0.002 

…  … …  … … … … … … 

 

Correction of erroneous tool path prior to the inverse kinematic conversion to G-code is another 

software compensation strategy widely used in the literature. Uddin et al. [Uddin et al., 2009] 

employed this strategy in five-axis machining of a cone frustum as the case study (based on 

standard NAS979). In a similar strategy, a recursive compensation method was applied by Khan 

et al. [Khan et al., 2011] in which the nominal tool path is obtained from CAD/CAM software 

and the actual path is calculated through kinematic equations considering error information. 

Then, the correction vector is computed from the difference between the actual and nominal paths 

and is used to correct the actual path until an assigned tolerance limit is satisfied. 

Some research focused on compensation of both translational and angular errors in presence of 

rotary axes in machine tools. As a recent case, Lei and Hsu [Lei et al., 2003] assumed a linear 

relation between differential changes in machine joint coordinates and the workpiece Cartesian 

coordinates and used a nominal machine Jacobian matrix to calculate the correction vector and 

then conduct real-time compensation. Due to some limitations of the proposed method, such as 

singular points of the machine, they, later applied a two-step process (decouple method) 

assuming that the motion of only rotary axes can compensate the tool orientation error. This 
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method first compensates the volumetric errors relevant to rotary axes and then, linear ones in 

real time [Hsu et al., 2007].  

Khan et al. [Khan et al., 2011] grouped numerical (software) compensation techniques into four 

main classes as shown in Figure  1-10;    

1. Additional embedded software module wherein the position signals are modified in an 

additional software module based on machine error information. This module could be 

either inside of the controller or get connected to it using I/O interface. 

2. Control parameter modification: it is possible to calibrate some of the controller 

parameters before executing the NC program. The information of some errors such as 

pitch error, backlash error, temperature error, etc. can be uploaded in the CNC controller 

look-up or spatial grid tables. Siemens 840D and Heidenhain iTNC are some examples of 

controllers equipped with control systems to compensate sagging, lead screw, and even 

nonlinear behavior errors. 

3. Post-processor modification: Post processor applies the cutter location (CL) data and 

machine geometry information to produce the NC program. If geometric error 

information is available, a compensated NC code can be produced, in principle. 

4. NC program modification: In the cases that machine has a close-structure controller or 

the post processor does not cater for the all required error information, NC code 

modification after post processor step could be a strategy for compensation. 
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Figure  1-10 Error elimination categorization 
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CHAPTER 2 ORGANIZATION OF THE WORK 

After an introduction to the thesis subject and objectives, the theory and a critical literature 

review were presented in the first chapter. In this chapter, the general organization of the work 

and the coherence of articles presented in the thesis are briefly described. Based on the defined 

objectives for the project, the three presented articles answer these questions, respectively:  

1) How to compensate the errors? 

2) How to validate the compensation strategy? 

3) How to optimize the compensation? 

Chapter three includes the first article entitled “volumetric error formulation and mismatch test 

for five-axis CNC machine compensation using differential kinematics and ephemeral G-code” 

which is published in the international journal of advanced manufacturing technology. It 

proposes an off-line strategy for error compensation in which original G-code is modified after 

the post-processing step and before being uploaded into the controller. First, the axis commands 

are extracted from the original G-code and used for volumetric error prediction. A general 

formulation for volumetric error twist is developed that solely relies on the axis commands and 

machine error parameters. Assuming a local linearization of the actual erroneous kinematic 

model in the form of a sensitivity Jacobian matrix, it is possible to mathematically relate the 

differential changes in volumetric error at the tool tip to small changes of the machine axes 

positions. Therefore, a correction vector cancelling the effect of the volumetric error is defined 

and then the required small changes of the machine axes position to produce such a correction 

vector at the tool tip are calculated. This provides a modified G-code in which the axes 

commands are adjusted before uploading to the CNC controller. For validation purpose, a new 

experimental procedure based on a surface mismatch producing machining test is introduced and 

performed on a HU40T CNC machine. The newly produced G-code is coined ‘ephemeral G-

code’ because it must be regenerated as the machine geometry changes over time. 

In the next article (chapter four) entitled “validation of volumetric error compensation for a 

five-axis machine using surface mismatch producing tests and on-machine touch probing”, 

published in the International Journal of Machine Tools and Manufacture, the idea of surface 

mismatch producing test is further developed for more machine axes indexations sets. Seven 
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series of machining patterns are proposed as a new validation strategy. In each proposed pattern, 

two-dimensional geometric features are milled, each using two different rotary axes indexation 

sets. Due to the machine geometric errors, a surface mismatch may appear in each feature that 

helps to verify the machine volumetric accuracy. The overall accuracy of the machine after 

implementation of the compensation strategy is checked using a touch probe and OMM (on-

machine measurement) immediately after machining. The OMM is accurate enough and does not 

need to be compensated since the measurement is done in a small volume and using a single 

linear axis motion and in the same direction for each slot so that most error sources affecting the 

probing cancel out. 

Finally, in the third article which is submitted to the the “CIRP Journal of Manufacturing 

Science and Technology”, the optimization of the compensation is pursued and two new notions 

are introduced in five-axis machining. The “relevance” of the error indicates if the final 

dimension and accuracy of the machined part is affected by an error component or not. The 

irrelevant components of the volumetric error that have no effect on the machined part accuracy 

do not require compensation. A filtration matrix is defined for each machining process regarding 

the tool geometry and the feature to be machined. The second introduced notion is the “error 

compensability” which refers to the ability of the machine to cancel the effect of volumetric 

error. Due to the kinematic singularities of the machine tool, it may not be possible to 

compensate all error components by small adjustments in machine axes positions. In the 

proposed optimized compensation, first, the irrelevant errors are filtered out in compensation 

process and their reduction is not sought. Then, the uncompensable parts of the volumetric error 

are flagged using a compensability ratio and filtered out in the compensation process. As a case 

study, a designed workpiece containing four common features, i.e. hole, curved slot on a 

spherical surface, cone frustum and flat surface, is machined using uncompensated, compensated 

and optimized compensated G-code. This chapter also includes visual presentations and 

comparison of best fit residuals of the measured features before and after compensation. 

Figure  2-1 shows the highlights of the mentioned articles in brief. A general discussion on the 

three articles is presented in the sixth chapter which is followed by the conclusions and 

recommendations. The thesis ends by the list of all bibliographical references used in this work. 
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Figure  2-1 Thesis organization 
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CHAPTER 3 ARTICLE 1: VOLUMETRIC ERROR FORMULATION 

AND MISMATCH TEST FOR FIVE-AXIS CNC MACHINE 

COMPENSATION USING DIFFERENTIAL KINEMATICS AND 

EPHEMERAL G-CODE 

 

Mehrdad Givi 
1
 and J.R.R Mayer 

1 

1
 Mechanical Engineering Department, Polytechnique Montréal, P.O. Box 6079, Station 

Downtown, Montréal (Qc), Canada, H3C 3A7 

 

*Based on the paper published in the International Journal of Advanced Manufacturing 

Technology: 1-9, 2014 

3.1 Abstract 

Machine tool kinematic errors directly impact on the accuracy of machined parts. A general 

volumetric error formulation effectively implementing ISO230-1:2012 definition and an off-line 

compensation scheme are proposed and partly tested to improve part accuracy on a five-axis 

CNC machine. Using rigid body kinematics and estimated machine error parameters, the machine 

position commands contained in a standard G-code are used to calculate the tool erroneous 

location. The Jacobian, expressing the differential joint space to Cartesian space relationship, is 

also developed and used to calculate minute joint command modifications so that the effect of 

inter-axis link errors and intra-axis error motions, for example, can be canceled by making small 

changes directly to the G-code. Finally, a simple case of a machining sequence producing a 

surface mismatch in the presence of particular machine deviations is used to illustrate the 

usefulness of the analytical tools presented. A graphical representation of the volumetric errors 

assists in understanding the impact of each error source for this particular application. The 

measurement results are compatible with the predicted volumetric error values and show an 

accuracy improvement of about 90 % after compensation. 

 

Keywords: Volumetric error; Five-axis machine; Off-line compensation; G-code; Mismatch test 
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3.2 Introduction 

Five-axis CNC machine tools are widely used to machine complex parts with high accuracy. On 

the other hand, the added complexity of these machines due, in part, to the rotary axes causes the 

machine to have potentially significant volumetric errors. The machine errors are often classified 

as geometric, thermal and force-induced errors [Schwenke et al., 2008]. Geometric error sources 

can be further separated in two subgroups, the intra-axis joint kinematic errors (positioning 

errors, straightness errors, etc.) and the inter-axis link geometric errors (or simply link errors such 

as out-of-squareness). These errors are then propagated to the tool tip using rigid body kinematics 

[Paul et al., 1981; Abbaszadeh-Mir et al., 2002]. The relative location of the tool frame and 

workpiece frame is commonly assumed as the volumetric error in actual five-axis [Srivastava et 

al., 1995] or lathe machine tools [Donmez et al., 1986].  

Prediction, avoidance, and compensation of volumetric errors are actively sought. Early research 

work on error compensation techniques was reported by Koliskor [Koliskor, 1971] based on 

results from post-process inspection of a machined part and then, correcting the tool path 

trajectory for the subsequent parts. Direct tool path correction in Cartesian space is an approach 

applied by many researchers to compensate the volumetric error in multi-axis machine tools. 

Srivastava et al. [Srivastava et al., 1995], applied homogeneous transformation matrices (HTMs) 

for modeling the erroneous machine and calculated the volumetric error at the tool tip 

considering the time-varying geometric errors and thermal errors and then, compensated the tool 

path. Using the Denavit-Hartenberg [Denavit, 1955] modeling method, a numerical compensation 

algorithm was proposed by Rahman et al.[Mahbubur et al., 1997] where the nominal values of 

the rotary axes are derived from CL-data and then applied for correcting the tool path within the 

post-processor before generating the G-code. An automatic tool path correction was developed by 

Wang et al. [Wang et al., 2002] for static/quasi-static error compensation where a non-rigid body 

kinematics was assumed and the shape function theory used for mathematical modeling and error 

prediction in a three-axis machine tool. Three CCD cameras and a standard gage with evenly 

distributed holes were used by Wang et al. [Wang et al., 2013] in order to measure the axes 

positioning errors in a three-axis micro machine tool. The volumetric error in some points in the 

work space was calculated based on the measurement results and then a recursive compensation 
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method was applied to modify the machining trajectory (tool path) and improve the accuracy in 

the micro machine tool. 

Uddin et al. [Uddin et al., 2009] corrected the erroneous tool path prior to the inverse kinematic 

conversion to G-code in five-axis machining of a cone frustum, as the case study (based on 

standard NAS979), to compensate the geometric errors. In a similar strategy, a recursive 

compensation method was applied by Khan et al. [Khan et al., 2011] in which the nominal tool 

path is obtained from CAD/CAM software and the actual path is calculated through kinematic 

equations considering error information. Then, the correction vector is computed from the 

difference between the actual and nominal paths and is used to correct the actual path until an 

assigned tolerance limit is satisfied. 

Another compensation approach is to modify the axes position in real time through a digital I/O 

interface [Donmez et al., 1986]. Real-time compensation is an appropriate strategy especially 

when thermal errors are considered [Lo, 1994]. Lei and Hsu [Lei et al., 2003] assumed a linear 

relation between differential changes in machine joint coordinates and the workpiece Cartesian 

coordinates and used a nominal machine Jacobian matrix to calculate the correction vector and 

then conduct real-time compensation. Due to some limitations of the proposed method, such as 

singular points of the machine, Lei [Hsu et al., 2007] applied a two-step process (decouple 

method) assuming that the motion of only rotary axes can compensate the tool orientation error. 

This method first compensates the volumetric errors relevant to rotary axes and then, linear ones 

in real time.  

 G-code program modification after the post-processing step and before being loaded into the 

controller is another compensation approach. Jing et al. [Jing, 2006] and Lu et al. [Lu, 2011] 

proposed this method for compensating linear and circular interpolation movements for a three-

axis machine tool. In this paper, first, the volumetric error is defined as deviation of the actual 

tool location in tool branch compared to the desired tool location in workpiece branch. An “exact 

model” formulation is presented, without any small angular error approximation, and then a 

formal definition of volumetric error is proposed to calculate the six volumetric error 

components. The workpiece is taken out of the loop since in practice, in the machine tool 

controller, it has neither relevance nor existence. This leads to the definition of a desired cutter 

location (DCL) defined in the last workpiece branch frame. This formulation of the volumetric 



33 

 

error solely relies on the axes commands extracted from the G-code which facilitates 

implementing the off-line compensation strategy. The compensation uses a local linearization of 

the actual erroneous kinematic model in the form of a Jacobian matrix as part of an iterative 

Gauss-Newton procedure to calculate exact small joint coordinate adjustment for the original G-

code. Then, a new experimental procedure based on a surface mismatch producing machining test 

is described in which a one-dimensional slot machining sensitive to link geometric errors is 

machined. Finally, the results obtained on a HU40T CNC machine with a significant cross-axis 

distance error between its B and C rotary axes are presented. 

3.3 Machine Modeling 

A five-axis machine tool generally has three prismatic and two rotary joints or axes in two serial 

open kinematic branches from its foundation bed (Figure  3-1). One holds the workpiece, the 

other the tool. As an example, let us take a machine with a topology WCBXFZYSt.  

 

Figure  3-1 Five-axis machine tool (WCBXFZYSt) as a kinematic chain 

Assuming a perfect machine, the nominal foundation frame origin {F} can be uniquely defined at 

the intersection point of the two rotary joints, B and C, with its  ̂  ,   ̂ and  ̂  direction cosines 

parallel to the nominal X, Y and Z prismatic joints of the machine. Based on the rigid body 
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assumption, the tool and feature frame poses relative to the foundation frame for a perfect 

machine are calculated by multiplying the relevant homogeneous transformation matrices 

(HTMs) as follows: 

   
                  

      
  (3-1) 

   
                        (3-2) 

where indices                   and t represent the foundation, X-joint, B-joint, C-joint, 

workpiece, feature, Z-joint, Y-joint, spindle and tool frames, respectively. Note that neither the 

links nor joint kinematic errors are considered in the perfect nominal machine model. Therefore, 

the tool versus feature location HTM,     is given by: 

    
          (    

 )
  

    
  (3-3) 

3.4 Definition of desired cutter location 

A frame is added to the workpiece side of the kinematic chain, named desired cutter location 

(DCL). The DCL frame is attached to the feature frame and its HTM,     
    represents the 

desired relative location of the tool and feature. Often, the DCL frame coincides with the feature 

frame during machining and therefore,        is the identity matrix. However, in some machining 

operations, it may be different. For example, in milling of a curved surface with a bull-nose end 

tool, the tool orientation is not necessarily the same as the feature orientation. For a perfect 

machine             
 
         and the HTM,        

 
          is a     identity matrix.  
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Figure  3-2 Volumetric error 

Let us now consider the actual erroneous machine kinematic model illustrated in Figure  3-2 

where the errors are exaggerated for a better understanding of the volumetric error definition. A 

geometrically erroneous machine tool (considering all possible link geometric errors, joint 

kinematic errors, workpiece setup errors, spindle misalignments and tool deviations) can be 

modeled as follows: 
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and therefore,  
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where W, t, S,                        are the nominal joint frames,   
    

     
    

       
 
 are 

the actual joint frames before motion,                                             assuming 

a joint has moved perfectly relative to its erroneous predecessor and,                            

are the actual frames of the moved joints accounting for the motion errors. Note that both the link 

geometric errors (such as the X-Z out-of-squareness, BOZ) and the joint kinematic errors (such as 

the X-direction out-of-straightness error of axis Z, EXZ) are included in this exact model. For 

example, for the Z-joint, 
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where R0y is the rotation matrix associated with the angular axis location error of the Z link 

around local Y axis (EBOZ) and Rx, Ry and Rz are the rotation matrices associated with the 

angular errors of the Z motion (EAZ, EBZ, ECZ) around local axes. The error notation is based 

on [Schultschik, 1977] and [ISO230-1, 2012]. On the basis of the proposed structure which 

includes the DCL frame, the volumetric error matrix     
  
         can be interpreted as the 

difference between the tool's nominal and actual poses (Figure  3-2). The three positional 

volumetric error components (                  and the three orientation volumetric error 

components (              ) can be extracted from this matrix: 
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  (3-11)  

where C and S represent cosine and sine, respectively. So, in the form of a twist, 

   
   
 

{   }    
= [                                  ]

   (3-12)  

Usually, machine errors are sufficiently small so that a small angular error assumption allows 

approximating Eq. 3-11 by 
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]  (3-13)  

which facilitates the extraction of the six volumetric error component twist. The volumetric error 

vector calculated using this definition, will be graphically shown for a particular case in the 

experimental verification section. This definition of volumetric error also helps to compute the 

"correction twist", (        
   ), by extraction from the inverse of the volumetric error matrix:  

     
            

        (3-14)   

The correction twist contains the small variations in tool pose required to compensate the 

combined effect of all geometric errors and so bring the actual cutting tool (  ) back at the desired 

location (DCL). For small errors, the correction twist can be approximated as: 

       
{  }     

       
   

{   }    
  (3-15)  

3.5 Error compensation 

3.5.1 Compensation model 

The Jacobian matrix,       
{  }    

 , expresses the effect of small motions in axes (     ) on the 

tool to DCL relative location [Paul et al., 1981; Abbaszadeh-Mir et al., 2002; Lei et al., 2003]: 
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{  }    

   
          

           
{  }    

  (3-16)  

where        
{  }    

 is the volumetric error twist as defined in the previous section that expressed 

in the actual tool frame. Eq. 3-16 can be solved for       by replacing the volumetric error twist 

with the correction error twist as follows:  

          (         
 

{  }    
)  

   
           

{  }    
        (3-17)  

      has five terms for a five-axis machines ([                     ]      and expresses the 

required adjustments in machine axes positions to produce the correction vector and so 

compensate the volumetric error. Since a linear system is assumed for the machine tool, an 

iterative approach (Gauss-Newton method) is applied to find a numerically exact solution for 

      when large machine errors are present. The calculated      , after the first iteration, is used 

for calculating the new volumetric error HTM and twist and then the second iteration is done to 

obtain the new value for      .  

 

Figure  3-3 Gauss-Newton method for iteration 
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This cycle is repeated until the required       to cancel the remained volumetric error is 

negligible. The accumulated       at the end, is applied to modify the original G-code before 

loading to the machine (Figure  3-3). 

3.5.2 Ephemeral G-code 

An off-line scheme in now described in which the compensation is performed using an original 

G-code as input, so after post-processing, but before the CNC controller (Figure  3-4). It involves 

modifying the original G-code offline to produce an ephemeral (used once and then discarded) G-

code. The original axes commands are explicit in the original G-code lines. These axes 

commands, tool length and the current machine geometric errors are used to compute the 

volumetric error matrix (    
          ) using Eq. 3-6 and then, the required       with Eq. 3-17.  

 

Figure  3-4 Error compensation strategy 
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3.6 Experimental verification 

A simple test was performed to compare the machining accuracy before and after compensation. 

The idea is to machine each half of a slot using different indexations of the rotary axes. This 

causes a particular link error associated with rotary axes to produce a mismatch between the two 

halves. The test is designed to be particularly sensitive to the laboratory machine’s significant BC 

cross-axis distance error (XOC) by causing a surface mismatch twice as big. A rectangular 

parallelipipedic aluminum part was selected as the workpiece and mounted on the table. The 

compensation aims at eliminating the "surface mismatch" error on the machined part.  

 

Figure  3-5 Top view of the machine tool, BC cross-axis distance error (XOC) causes a mismatch 

on the part when the same point is reached by the tool using two different rotary axes 

indexations. 
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Table  3-1 Test steps 

Step Title Indexation Compensation 

1a Machining one half of the first reference slot B = 90º 

C = 0 

No 

1b Machining the other half of the first reference slot B = 90º 

C = 0 

No 

2 Machining one half of the uncompensated slot B = 90º 

C = 0 

No 

3 Machining the other half of the uncompensated slot B = -90 º 

C = 180 º 

No 

4 Machining one half of the compensated slot B = 90 º 

C = 0 

Yes 

5 Machining the other half of the compensated slot B = -90 º 

C =180 º 

Yes 

6a Machining one half of the second reference slot B = 90º 

C = 0 

Yes 

6b Machining the other half of the second reference slot B = 90º 

C = 0 

Yes 

 

Let us set the B-axis to 90º and the C-axis to 0º and the relative horizontal distance between tool 

tip and the part surface is h (Figure  3-5). If the Z-axis is kept fixed at the initial command and 

both B and C-axes rotate 180º (B=-90º and C=180º), the relative distance of the tool tip and the 

part should be the same (h) after rotations if there is no B-C distance error.   
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Any XOC error results in a "mismatch" which is easily measured with a comparator and also, can 

be felt to the touch. Spindle speed, tool length, tool diameter and depth of cut were set to 4000 

rpm, 157.3 mm, 19.0 mm and 2.0 mm, respectively. The machining steps are summarized in 

Table  3-1 and Figure  3-6 and machining setup is shown in Figure  3-7. 

 

Figure  3-6 Test steps and machined slots according to Table  3-1 

 

 

Figure  3-7  Machining setup 
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Four NC programs are used for the validation test. The first and last NC program codes produce a 

full reference slot before and after compensation, respectively, but without any rotary axes 

indexation changes, and therefore, no mismatch is expected. This validates that the process itself, 

does not generate a significant mismatch. The second program machines one half of the slot 

before and then the other half after indexation changes of the rotary axes. The mismatch between 

these two half slots is attributed to the link errors especially the most significant error, i.e. XOC 

in this case. The third program uses a compensated G-code. The original G-code (the second 

program) provides the input axes commands as the inputs of the compensation function. For this 

experiment, eight link errors, estimated using the SAMBA method [Mayer, 2012], are fed to the 

function while other sources of errors are neglected (Table  3-2).  

 

Table  3-2 The machine link errors used to calculate the volumetric error and the compensation 

Jacobian 

Error description 
Symbol 

(µrad or µm) 

First 

value 

Second 

value 

Out-of-squareness of the B-axis relative to the Z-axis AOB 4 -1 

Out-of-squareness of the B-axis relative to the X-axis COB -3 1 

Distance between the B and C axis XOC -103 -102 

Out-of-squareness of the C-axis relative to the B-axis AOC 4 20 

Out-of-squareness of the C-axis relative to the X-axis BOC 23 4 

Out-of-squareness of the Z-axis relative to the X-axis BOZ -30 -38 

Out-of-squareness of the Y-axis relative to the Z-axis AOY 1 24 

Out-of-squareness of the Y-axis relative to the X-axis COY 26 -9 

 

The SAMBA test was repeated twice, at a few months interval providing two sets of link error 

values. The compensation validation was performed for both sets of link error values. In order to 
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achieve a better compensation, intermediate points are added along the slot and corrected. 

Table  3-3 illustrates the original and the ephemeral modified G-code program before and after 

compensation for the test with the first sets of link error values. 

Table  3-3 Original G-code and compensated ephemeral G-code 

Original G-code for the 

first slot’s half  

(B=90 and C=0) 

Compensated ephemeral G-code for the first slot’s half  

 (B=90 and C=0) 

G54 G0 B90. C0.; 

X18.926 Y-15.; 

G43 Z261. H5; 

Z251.; 

G94 G1 Z201. F1000.; 

X-33.574; 

Z251.; 

G0 Z261.; 

G54 G0 B90.00573 C0.; 

X19.0228 Y-15.0157 ; 

G43 Z261. H5; 

Z251.; 

G94 G1 X19.0228 Y-15.0139 Z200.8985 B90.00573 C0. F1000.; 

X11.0968  Y-15.0139  Z200.8982 B90.00573 C0. F1000.; 

X3.09680  Y-15.0139  Z200.8979 B90.00573 C0. F1000.; 

X-4.9032  Y-15.0139  Z200.8976 B90.00573 C0. F1000.; 

X-12.9032 Y-15.0140  Z200.8973 B90.00573 C0. F1000.; 

X-20.9032 Y-15.0140  Z200.8970 B90.00573 C0. F1000.; 

X-28.9032 Y-15.0140  Z200.8967 B90.00573 C0. F1000.; 

X-33.4772 Y-15.0140  Z200.8965 B90.00573 C0. F1000.; 

X-33.4772 Y-15.0136  Z250.8965 B90.00573 C0. F1000.; 

G94 G0 Z261.; 
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3.7 Results and discussion 

As mentioned in section 3, the volumetric error HTM (     
  
         ) can be predicted considering 

the second set of values for machine link errors in Table  3-2 and then the six volumetric error 

twist components can be extracted. The three positional components of the volumetric error form 

a vector in 3D workspace. Examples of such error vectors are shown in Figure  3-8 for some 

arbitrary positions in the workpiece table frame. The volumetric error vector at the test point 

located at the interaction of both halves of the machined slot is also shown in bold. Given the 

significant XOC error on the laboratory machine tool, the volumetric error vector is mainly in the 

z direction (mismatch depth direction) as expected. The vectors length and orientation look 

almost similar for each indexation since the rotary axes positions are the same for all these points. 

However, because each point is reached using two different rotary axes indexations as explained 

in Table  3-1, the calculated components of the volumetric error may not be the same for the two 

indexations. The positional components values (in µm) of the volumetric error for the test point 

for the first and second indexations are  -4.8, 1.0, -98.9) and  -4.8, 0.5, 98.9) respectively. As 

illustrated in Figure  3-8, the      component of the volumetric error at each point has opposite 

direction for each indexation and so the effect of this error on the surface mismatch is expected to 

be doubled. For example, for the test point the predicted mismatch depth would be around   

            . The other error components in the x and y direction are negligible compared to 

this component. Note that the vector length is magnified to be observable compared to the 

working volume dimensions in Figure  3-8. Figure  3-9 shows the machined slots on the part 

mounted on the machine table. The part was later measured on a granite table where a comparator 

was used to measure the variation between the depths of the two halves of each slot (mismatch). 

The measurement results of both tests are shown in Table  3-4. 

For the second test using the second set of link error values, for example, the reference slots had 

mismatches of around 5 µm which shows that the process itself causes an insignificant mismatch. 
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Figure  3-8 Volumetric error vector projected in the foundation frame, calculated at arbitrary 

working points and at the test point on the machined slot, magnified 200X. 

 

 

Figure  3-9 Machined slots for original and ephemeral G-code programs 
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Table  3-4 Measurement results 

Mismatch measurement results First test Second test 

The first reference slot (µm) 5 5 

The second reference slot (µm) 5 5 

Mismatch depth before compensation (µm) 220 210 

Mismatch depth after compensation (µm) 20 25 

Percentage of accuracy improvement (%) 91 88 

 

Before compensation, there was a large mismatch of 210 µm, which is approximately    XOC, 

as expected. The small difference between the measured mismatch depth (in Table  3-4) and the 

predicted one (198 µm) may be due to other error sources of the machine tool such as thermal, 

force-induced and motion errors that were not taken into account for mismatch depth calculation. 

After compensation, a mismatch of 25 µm is measured for an 88% improvement.  

3.8 Conclusion 

Rigid body kinematics and HTMs are used to calculate the complete and general position and 

orientation components of the volumetric error of a five-axis machine tool in accordance with the 

proposed formulation based on the concept of desired cutter location in the workpiece branch. 

Then, joint coordinate corrections are obtained by iteratively solving a linear system of equations 

built around the locally linearized variational error model (Jacobian matrix) between small 

changes in machine joints (axes) coordinates and consequent differential changes in the machine 

volumetric error. 

The compensation scheme requires, as input, the original G-code and the estimated machine 

geometric error parameters to produce a corrected ephemeral G-code that is executed by the 

machine and then discarded.  

The capability of this compensation algorithm for a five-axis machine was verified for one-

dimensional slots machining. The effect of the large cross-axis distance between the B and C 

axes (XOC) of the test machine, which was a source of significant mismatch, was compensated 

by around 90%. 
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4.1 Abstract 

In order to validate volumetric error compensation methods for five-axis machine tools, the 

machining of test parts have been proposed. For such tests, a coordinate measuring machine 

(CMM) or other external measurement, outside of the machine tool, are required to measure the 

accuracy of the machined part. In this paper, a series of machining tests are proposed to validate a 

compensation strategy and compare the machining accuracy before and after the compensation 

using only on-machine measurements. The basis of the tests is to machine slots, each completed 

using two different rotary axes indexations of the CNC machine tool. Using directional 

derivatives of the volumetric errors, it is possible to verify that a surface mismatch is produced 

between the two halves of the same slot in the presence of specific machine geometric errors. The 

mismatch at the both sides of the slot, which materialize the machine volumetric errors are 

measured using touch probing by the erroneous machine itself and with high accuracy since the 

measurement of both slot halves can be conducted using a single set of rotary axes indexation and 

in a volumetric region of a few millimetres. The effect of a compensation strategy is then 

validated by comparing the surface mismatch value for compensated and uncompensated slots. A 

compensation effectiveness of about 65% to 99 % was observed using the proposed strategy. 

Keywords: Error compensation validation, surface mismatch, on-machine probing, five-axis 

machining 
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4.2 Literature review 

A number of error compensation strategies have been proposed to increase the accuracy of 

industrial parts machined by five-axis machine tools [Donmez et al., 1986; Mahbubur et al., 

1997; Wang et al., 2002]. Compensation efficiency must be verified experimentally. To do so, 

the geometric accuracy of a machined part, before and after the implementation of the 

compensation, can be measured using coordinate measuring machine (CMM) and then compared. 

Different workpieces have been used as case studies for such purpose. Semi-spherical surfaces 

[Lei et al., 2003], a cone frustum as described in standard NAS979 [Uddin et al., 2009] and two-

dimensional contouring path [Zhu et al., 2012] were proposed. In ISO10791-1 [ISO10791-7, 

1998] a composite test piece in which there are some features (central hole, square, diamond, 

circle, sloping faces and bored holes) is introduced for accuracy check in five-axis machining 

centres. In the same standard, a cone frustum and a truncated square pyramid are also proposed. 

The machining setup and stipulations of these two artefacts were discussed and then the 

measurement results of the finished parts were compared in [S.P. Moylan, 2011]. Khan et al. 

[Khan et al., 2011] machined a standard workpiece with additional features like step portions, 

circle, diamond and cylindrical parts and also, a spherical surface to verify the compensation 

method effectiveness for different geometric errors. In all of the above mentioned cases, a CMM 

was used to inspect the machined part to compare the uncompensated and compensated part 

dimensions against the desired geometry. This approach requires an accurate CMM, additional 

setups and part handling.  

Takeshima et al. [Takeshima, 2009] mounted an LVDT sensor on the machine tool for measuring 

purpose. They proposed a cubic box (containing a square hole) whose inside and outside surfaces 

were machined using a ball-end mill and simultaneous five-axis motion and then, measured the 

squareness, flatness and dimensions of the flat surfaces using only linear axes machine motion.  

On-machine measurement (OMM) was used to verify the five-axis machining where a semi-

sphere was machined with and without tool path compensation and then, measured with a touch 

probe [Jung et al., 2006]. However, the OMM accuracy needed to be compensated based on 

mathematical model of the machine and some diagonal measurements before the machining 

process.   



52 

 

Ibaraki et al. [Ibaraki et al., 2010] proposed a series of simple machining patterns to identify the 

kinematic errors associated with rotary axes in five-axis machine tools. The geometric errors of 

the workpiece are measured using a CMM and then, the sensitivity of the machined part 

geometry to the above mentioned kinematic errors is analysed. Although, the proposed method 

was applied solely for error identification, it illustrates the use of multiple axes indexations to 

produce related part surfaces and doing so materialize the machine volumetric errors. 

In this paper, two-dimensional geometric features are milled, each using two different rotary axes 

indexation sets. Due to the machine geometric errors, a surface mismatch may appear in each 

feature that helps to verify the machine volumetric accuracy. In total, seven machining patterns 

are proposed to check the overall accuracy of the machine tool after compensation. There is no 

need for independent measurement device like a CMM as the validation process can be done 

using a touch probe and OMM immediately after machining. The OMM is accurate enough and 

does not need to be compensated since, in this case, the measurement is done in a small volume 

and using a single linear axis motion and in the same direction for each slot. The paper begins by 

presenting the mathematical model of the machine and the effect of the geometric errors using a 

sensitivity Jacobian in section 2. Then, in section 3, the surface mismatch concept and the 

proposed machining patterns are described while section 4 details the machining procedure. This 

is followed by a sensitivity analysis of each machined pattern to the machine link geometric 

errors in section 5. Section 6 presents the results followed by a discussion and conclusion in 

sections 7 and 8. 

4.3 Machine modeling  

A five-axis machine tool is modelled as an open kinematic chain made of prismatic and rotary 

joints as shown in Figure 4-1. Assuming a perfect machine, the nominal foundation frame {F} 

can be located at the intersection point of the two rotary axes (B and C) with its  ̂ ,  ̂  and  ̂  

directions cosines parallel to the nominal X-, Y- and Z-axis of the machine. Assuming rigid body 

kinematics, homogenous transformation matrices (HTMs) can be applied to model the five-axis 

machine tool. On a real machine, geometric errors occur as link error affecting the position and 

orientation of each axis with respect to its predecessor in the chain. So, for example, the z-axis 
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HTM,     can be decomposed as a nominal link     
, a link error  

  
  

 , and a nominal motion 

 
  

 

    so that  

         
 

  
  

  
  

 

  .  (4-1) 

where   is the foundation frame,    is the nominal joint frame,   
  is the actual joint frame before 

motion and   is the joint frame after nominal motion. 

 

Figure 4-1 Five-axis machine tool (WCBXFZYSt) as a kinematic chain 

Assuming small errors, a small angle approximation (                ) is used and a linear 

relationship results between small changes in machine link errors and the consequent variations 

in feature-tool relative location. A nominal Jacobian matrix is generated that expresses the effect 

of the link geometric errors (  ) on differential changes in volumetric errors at the tool tip 

relative to feature frame projected in the tool frame [Paul et al., 1981; Abbaszadeh-Mir et al., 

2002]: 

     

{ }            
{ }  

  (4-2) 
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where      

{ }  
 is the     volumetric error twist of the tool (subscript t) relative to the feature (f) 

expressed in tool frame, { }  and has six error components [                                  ]
 . 

According to Abbaszadeh-Mir et al. [Abbaszadeh-Mir et al., 2002] and ISO-231 standard 

[ISO230-1, 2012], only eight machine error parameters are sufficient to fully characterize a five-

axis machine tool link errors. So, in this research, only these eight components are considered: 

    [                                              ]
   (4-3) 

The error notations are based on ISO230-1 [ISO230-1, 2012]. 

4.4 Surface mismatch concept 

If one specific machining point in the workpiece space can be reached using two different rotary 

axes indexations, there exist two different Jacobian matrices, one for each configuration. The idea 

of the surface mismatch producing tests is to machine a linear slot in two steps. In each step, one 

half of the slot is completed using a distinct rotary axes indexation set. For the perfect machine, 

there is no mismatch between the machined halves of the slot. In the actual machine, a depth 

lateral surface mismatch may appear caused by the machine errors (see Figure  4-2).  

 

 

Figure  4-2 Depth mismatch between two halves of the machined slot 

 

This can be mathematically explained based on the Jacobian matrix. To study the effect of the 

errors on a mismatch produced in the feature frame, the Jacobian matrix is projected in the 
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feature frame to yield the directional derivatives of the volumetric error along the  ̂ ,  ̂ and  ̂ axes 

of the slot feature frame { } as a set of the machine link errors    
{ }  

   Let us assume the 

Jacobian matrix at the two halve slots meeting point for one set of indexation is    and the 

Jacobian matrix at the same point but, for the other half of the slot, reached using a different 

rotary axes indexation set, is    .Then, the differential directional Jacobian which models the two 

halves of the same slot is calculated as follows: 

    
{ }  

          
{ }  

 
   

{ }  

 
  (4-4) 

where     is a projection matrix (   ) projecting the Jacobian from tool to feature frame so 

that the effect on the slot feature can be readily quantified. The first three lines of the Jacobian 

relate to the translational volumetric errors and the last three lines of the Jacobian relate to the 

angular volumetric errors. The translational and angular sets are projected separately so the 

projection matrix takes the form of Eq. 4-5: 

     [
     
     

]  (4-5) 

where 

     [

 ̂    
 

 ̂    
 

 ̂   
 

] (4-6) 

where,  ̂     ,  ̂     and  ̂    are the slot frame unit vectors projected in the tool frame. Using Eq. 

4-2 and substituting    with    , it becomes possible to predict the volumetric error twist during 

the machining of the slot halves: 

      

{ }               
{ }  

   (4-7) 

where       

{ }  
 is the differential volumetric error twist, 

[                                        ]
 , expressed in feature frame with for example,      , 

the depth mismatch between the two slots halves. The other error components in the feature 

frame are as illustrated in Figure  4-3.  
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Figure  4-3 Coordinate system and error components on the machined slot 

Therefore, a machining process can be mathematically shown to be mismatch producing in the 

presence of machine tool geometric errors and then selected and used for validating a 

compensation strategy.  

Although it is believed that the mismatch producing test can be used to validate any 

compensation strategy, in this research, a G-code modification method is applied for volumetric 

error compensation in a five-axis machine tool. In this strategy, first, the original axes commands 

(that are explicit in the original G-code lines), tool length and the current machine geometric 

errors are used as inputs to compute the volumetric error twist using Eq. 4-7. Then, the required 

adjustments in the original axes positions to cancel the volumetric error are calculated assuming a 

local linearization of the erroneous kinematic model. A Jacobian matrix mathematically relates 

the differential changes in volumetric error at the tool tip (     and the small changes in machine 

axes positions (     ) as shown in Eq. 4-8 [Lei et al., 2003] : 

                (4-8) 

So, an ephemeral G-code is generated substituting the adjusted axes commands for the original 

ones. 
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4.5 Machining procedure 

Seven machining patterns are proposed. In each machining pattern, as illustrated in Figure  4-4, 

two halves of three slots are machined; Slot R) reference slot without any change in rotary axes 

positions, slot U) uncompensated slot, and slot C) compensated slot using modified G-code.  

 

 

Figure  4-4 Reference (R), uncompensated (U) and compensated (C) machined slots in each 

pattern 

 

Table  4-1 lists the proposed seven machining patterns illustrated in Figure  4-5. For machining 

patterns 1 to 5, slots are machined using a flat end-mill cutter tool. The slots are wide enough to 

allow touch probing both its bottom and side surfaces. In order to minimize the effect of the 

forced induced errors, the machining of each slot is done in two steps. The slots are rough 

machined using an end-mill with diameter 7.938 mm and then, the mentioned procedure for 

patterns is applied only for the finishing pass using a tool with diameter 9.525 mm. Spindle 

speed, tool length, and depth of cut (for finishing step) are 5000 rpm, 137.9 mm and 0.8 mm, 

respectively. 

For patterns 6 and 7 a flank mill with diameter 9.525 mm is used for one-step flank milling 

process with the machine Y-axis motion. In these cases, the mismatch depth is measured in only 
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one direction (   ). Spindle speed, tool length, and depth of cut are 5000 rpm, 212.48 mm and 

1.00 mm, respectively. 

 

Table  4-1 Applied rotary axes indexations for machining patterns 

Pattern 

number 

B- and C-axis indexation 

First half of the slot (step 1) 

 

Second half of the slot (step 2) 

B C b C 

1 -90 -45  90 135 

2 -45 -45  45 135 

3 -90 0  90 180 

4 -45 0  45 180 

5 -90 -90  90 90 

6 -90 0  -90 180 

7 -90 0  90 0 
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Figure  4-5 Proposed patterns for machining the slots 
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Figure 4-5 (cont.) Proposed patterns for machining the slots 

 

An aluminium pre-machined part provides the required planes to perform the machining patterns 

(Figure  4-6). 

A numerical solid model of the nominal workpiece after performing the seven machining patterns 

is shown in Figure  4-7. The labels indicate the two machining steps of the compensated slot in 

each pattern.Figure  4-8 illustrates the machined workpiece on the machine table. 
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Figure  4-6 Workpiece with pre-machined planes 

 

 

Figure  4-7 Numerical solid model of the nominal machined workpiece 
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Figure  4-8 Machined workpiece on the machine table 

4.6 Sensitivity analysis to link errors  

In order to assess the sensitivity of the surface mismatch to the machine link errors, the 

differential directional Jacobian matrix of tool to feature volumetric error expressed in feature 

frame,    
{ }   

 , is calculated for each pattern using Eq. 4-4. As a numerical example, the 

calculation of differential Jacobian matrix for pattern 3 is as below: 

(    
{ }  

 )
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where the columns correspond to the link errors as in Table  4-2, with the same units, and the 

rows correspond to the translational and then rotational volumetric error twist components as 

previously described. Then, the first and third rows of the resultant matrix, which correspond to 

the first and third components of volumetric error (i.e.     and     as shown in Figure  4-3), are 

extracted and listed in Table  4-2 and Table  4-3 separately.      represents the mismatch depth on 

the lateral walls of the slots and      represents the mismatch depth at the bottom surface of the 

slots.  

According to the sensitivity tables, each test pattern is affected by some of the link errors. Since 

multiple error parameters affect the volumetric error value, the produced mismatch in each 

pattern can be predicted by multiplying the corresponding row by a link error column matrix 

using Eq. 4-7.  

 

Table  4-2 The sensitivity of the mismatch depth in the x direction (   ) to the link errors 

Machining  

pattern 

     

      
 

(mm/rad) 

     

      
 

(mm/rad) 

      

      
 

(mm/mm) 

     

      
 

(mm/rad) 

      

      
 

(mm/rad) 

      

      
 

(mm/rad) 

      

      
 

(mm/rad) 

     

      
 

(mm/rad) 

1 -0.002 -61.9528 0 4.0052 0.2152 0 0.0072 61.956 

2 -0.0001 -65.3361 0 2.8284 0.1535 0 0.0048 65.336 

3 -0.0046 -190.3368 0 4.0061 0.2142 0 0.0059 190.34 

4 -0.0016 -190.3391 0 2.8289 0.1538 0 0.0036 190.34 

5 -0.0018 117.9632 0 4.0054 0.2166 0 0.009 -117.96 
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Table  4-3 The sensitivity of the mismatch depth in the z direction (   ) to the link errors 

Machining 

pattern 

     

      
 

(mm/rad) 

     

      
 

(mm/rad) 

      

      
 

(mm/mm) 

     

      
 

(mm/rad) 

      

      
 

(mm/rad) 

      

      
 

(mm/rad) 

      

      
 

(mm/rad) 

     

      
 

(mm/rad) 

1 61.9528 -0.0002 2 0 243.46 -0.0013 -61.956 -0.0006 

2 65.3361 -0.0001 1.4142 46.1996 -9.0738 -0.0014 -65.336 -0.0007 

3 190.3368 -0.0008 2 0 243.4644 -0.004 -190.34 -0.0019 

4 190.3391 -0.0017 1.4142 134.59 73.0064 -0.004 -190.34 -0.0019 

5 -117.9632 0.0005 2 0 243.4539 0.0025 117.96 0.0012 

6 271.6409 -0.0011 0 0 0.013 -0.0046 -271.64 -0.0027 

7 -0.0045 0 2 0 419.691 0.0011 0 0 

4.7 Mismatch measurement 

After performing the tests, the improvement in overall accuracy of the five-axis machining is 

measured prior to removing the part from the machine by on-machine touch probing using a 6 

mm stylus tip diameter.  

 

Figure  4-9 Probing the machined surfaces to acquire the points coordinates in each half slot 
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As shown in Figure  4-9, two points are touched on each half slot surface and the averages of the 

relevant acquired coordinates is compared to the ones of the other half slot in order to calculate 

the surface mismatch (with the assumption of parallelism of the surfaces of two halves). For 

example, for the slot bottom mismatch: 

    (
         

 
 

         

 
)
                

 (
         

 
 

         

 
)
              

 (4-8) 

The specified area (A) in Figure  4-9 may not be used for measurement since the forces are not 

stable in this area and machining conditions for the two halves of the slot are not the same. This  

is because when the tool reaches this area when machining the second slot half, the first slot half 

having been machined there is not the same amount of material to be machined compared to the 

machining of the first half. So, the machining forces vary in this area and may affect the 

volumetric error (mismatch dimensions). Therefore, measurement in this area is avoided for 

surface mismatch comparison. The accuracy of the on-machine probing measurement (using 

single linear axis motion) is high since the measurement volume, in this case, is in the range of a 

few millimetres (for each specific pattern) and motion kinematic errors of the machine do not 

significantly affect the measurement accuracy in such small volume [Zargarbashi et al., 2009; 

Andolfatto et al., 2011]. In addition, all form probing is done with the same approach direction 

for any one slot.  For validation purpose, the mismatch depth measurement results were 

confirmed for all patterns using a sine table, a surface plate and a dial indicator. This is repeated 

for all three (reference, uncompensated and compensated) slots for every pattern (Figure  4-10 and 

Figure  4-11) and the results of mismatch measurement for the x and z directions, are shown in 

Table  4-4 and Table  4-5. 
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Figure  4-10 Probing on bottom surface and side surface of the three machined slots of each 

pattern 

 

 

Figure  4-11 On-machine measurement of the mismatches using a Renishaw MP700 touch trigger 

probe 
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Table  4-4 Measurement results using touch trigger probe 

Pattern 

no. 

 
Mismatch depth in x direction 

 
Approximate 

accuracy 

improvement 

 (%) 

 reference slot  

(µm) 

uncompensated slot  

(µm) 

compensated slot  

(µm) 

 

1  1 175 32  82 

2  1 50 6  88 

3  1 185 37  80 

4  1 44 13  70 

5  1 184 18  90 

 

Table  4-5 Measurement results using touch trigger probe 

Pattern 

no. 

 
Mismatch depth in z direction 

 
Approximate 

accuracy 

improvement 

 (%) 

 reference slot  

(µm) 

uncompensated slot  

(µm) 

compensated slot  

(µm) 

 

1  1 210 3  99 

2  2 152 3  98 

3  1 107 3  97 

4  3 155 3  98 

5  3 230 6  98 

6  1 20 7  65 

7  1 172 38  78 
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To better illustrate the mismatch depth reduction in the x and y directions, the measurement 

results are presented graphically in Figure  4-12 and Figure  4-13 respectively. 

4.8 Discussion 

Regarding Table  4-4 and Table  4-5, for the reference slot (the first columns of the tables), the 

mismatch is close to zero showing that despite the fact that the two slot halves are machined in 

opposite feed directions, the process itself causes insignificant errors. It also supports the 

measurement procedure. In addition, the measurement values demonstrate a significant reduction 

(around from 65% to 99%) in surface mismatch depth after compensation using the modified G-

code. The accuracy improvement in the cases of pattern 6 and 7 (flank machining) are lower 

compared to other patterns. Regarding Table  4-2 and Table  4-3, at each machining point, the 

effect of multiple machine geometric error parameters combines to produce a volumetric error on 

the machined part. So, some of them may cancel each other. Therefore, this method is proposed 

to assess the “overall” accuracy improvement of the machine but not to find the effect of each 

error source separately. Also, regarding the sensitivity analysis tables, none of the proposed 

machining patterns can sensitively detect the      link error. Thus, work is underway to imagine 

a pattern sensitive to this remained link error. In general, the mismatch depth is not the result of 

only one link error, but of several other geometric errors as well as error motions of each 

individual axis, thermal errors and force induced errors amongst many. In this research, the effect 

of the force errors can be neglected because of the relatively small value for slot depth (depth of 

cut) in finishing passes as observed in the reference slot. However, if the measurement of each 

slot is done over a short time but the slot machining is conducted by machining all first halves of 

the slots and then all second halves, then, the effect of machine thermal drift could be brought to 

zero. 
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Figure  4-12 Mismatch depth comparison in x direction for three slots of each pattern 

 

 

Figure  4-13 Mismatch depth comparison in y direction for three slots of each pattern 
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4.9 Conclusion 

The paper proposes an “all on-machine” fully automated experimental validation of the 

effectiveness of volumetric error compensation on a machined part. A series of simple two-

dimensional cutting patterns were performed in the form of two halves of one slot produced using 

different rotary axes indexations. Due to the machine errors, a mismatch may appear on each 

slot’s surface. The concept of differential directional Jacobian of the volumetric error is proposed 

and applied to analyse the effect of the machine geometric link errors on the machined slot 

mismatch. For each pattern, three slots were produced, one with uncompensated G-code, another 

one with compensated G-code to see the effect of error compensation on the mismatch depth and 

a third slot without indexation change nor compensation used as a reference. The mismatch is 

measured by the erroneous machine itself using on-machine touch probing in a small volume and 

using unidirectional probing to avoid machine tool errors. The reference slot showed that the 

machining process and measurement produced no significant mismatch readings. A 

compensation effectiveness of about 65% to 99 % was observed. This strategy simplifies the 

validation of the compensation process in five-axis machine tools in a machining situation.  
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*Based on the paper submitted to the CIRP Journal of Manufacturing Science and Technology 

5.1 Abstract  

Compensation of a machine tool’s volumetric errors can be achieved by adjustment of the axes 

original commands.  Depending on the machine topology, the volumetric errors and the axes 

commands, a full compensation may not be achieved due to kinematic singularities. Furthermore, 

corrections of volumetric errors which do not affect part quality, by virtue of the machining 

process and machined feature, may lead to excessive corrections causing surface degradation. 

The paper addresses these problems through the introduction of two notions, error relevance and 

error compensability, leading to an optimized compensation in which minimal but effective 

command modifications are made. Mathematical definitions are presented together with 

application examples for different processes. A specially designed test part containing four 

common features, i.e. hole, curved slot on a spherical surface, cone frustum and flat surface is 

machined, using up to five-axis simultaneous machining, for the experimental validation. Three 

parts are machined using uncompensated G-code, compensated G-code and optimized 

compensated G-code, respectively, which are then measured on a coordinate measuring machine. 

Simulation results show a reduction (up to 75%) in the 1-norm of the linear and angular 

compensations while the relevant errors are effectively corrected by the proposed optimized 

strategy.  

Keywords: Machining, Compensation, Volumetric error, Error compensability, Error relevance 
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5.2 Introduction 

Various approaches have been proposed to compensate multi-axis machine tool volumetric errors 

in order to increase the machined part accuracy such as tool path correction before generating the 

G-code [Srivastava et al., 1995], off-line G-code modification [Jing, 2006], and real time 

compensation [Donmez et al., 1986]. Most effort have been directed to the question “how to 

compensate?” and less attention has been paid to “what to compensate?”. As briefly mentioned in 

ISO 230-1 standard [ISO230-1, 2012], in machining processes some machine errors may not 

produce significant defect on the feature surface. Such irrelevant volumetric errors that have no 

effect on the machined part accuracy do not require compensation [Schwenke et al., 2008]. In 

numerical error compensation for machine tools, it may happen that some axes, which nominally 

are not programmed to move, are required to move for the sake of error correction. For example, 

when milling a flat surface in the XY plane, straightness errors of both the X and Y axes in the Z-

direction could be compensated by programming small Z-axis movements. This may result in 

some additional errors (such as reversal errors when the Z-axis motion direction changes) 

[ISO/TR16907, 2015]. Furthermore, if such Z-axis changes are significant relative to the 

programmed depth of cut, undesirable surface effects may result for example by approaching the 

minimum chip thickness limit. 

 In addition, in a machine tool with a specific configuration, some components of the volumetric 

error may not be compensable. If uncompensable components are known, no attempt should be 

made to compensate them and the situation should simply be flagged.  

In the robotic field, the terms “observability” and “controllability” are used for almost similar 

concepts. For example, some observability indices were proposed and compared to find the 

relevant kinematic parameters for robot calibration purpose [Yu et al., 2008]. Liebrich et al. 

[Liebrich et al., 2009] proposed a measurement procedure  to minimize the effect of a CMM 

geometric errors on the calibration of a 3D-ball plate. It was found that some geometric error 

parameters of the CMM were “non-compensable”. 

This paper defines and explores the concepts of “error relevance” and “error compensability” and 

applies them in five-axis machining. First, the compensation strategy used in this work is 

reviewed and then a new mathematical tool called the “filtration matrix” is proposed to filter out 

any irrelevant volumetric error components. In section 5, the error compensability concept is 

file:///C:/Users/megiv/Desktop/M.Givi/Third%20journal_optimization/CIRP%20submission/revision/rene/manuscript_revised_V1.docx%23_ENREF_17
file:///C:/Users/megiv/Desktop/M.Givi/Third%20journal_optimization/CIRP%20submission/revision/rene/manuscript_revised_V1.docx%23_ENREF_9
file:///C:/Users/megiv/Desktop/M.Givi/Third%20journal_optimization/CIRP%20submission/revision/rene/manuscript_revised_V1.docx%23_ENREF_2
file:///C:/Users/megiv/Desktop/M.Givi/Third%20journal_optimization/CIRP%20submission/revision/rene/manuscript_revised_V1.docx%23_ENREF_6
file:///C:/Users/megiv/Desktop/M.Givi/Third%20journal_optimization/CIRP%20submission/revision/rene/manuscript_revised_V1.docx%23_ENREF_16
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described in details and the inability of the machine tool to correct uncompensable errors at a 

singular position, for example, is graphically illustrated. Consideration of these two notions leads 

to an optimized compensation which is practically implemented in machining a specially 

designed workpiece containing four common features as a case study in section 7. It discusses the 

implementation of the optimized strategy using the proposed concepts. Off-line measurements 

are performed for all three parts using a coordinate measuring machine (CMM) in order to 

compare the part accuracy when no compensation, regular compensation and optimized 

compensation are applied. The measurement results are presented and compared in section 7 and 

followed by a conclusion in section 8.  

5.3 Error compensation strategy 

The volumetric error at each working location and axis commands consists of six components 

twist i.e. three positioning errors and three angular errors of the tool with respect to its desired 

location. The volumetric error twist is here taken as the difference between the actual and desired 

tool location as follows [Givi et al., 2014]. 

   
   

 
{   }    = [                                  ]

    (5-1) 

where    
   
 

{   }    
 is the volumetric error twist of the actual tool frame (  ) relative to desired 

cutter location (DCL) and projected in DCL frame ({DCL}). Assuming the error components are 

known, their compensation is sought through changes to the machine axis commands which 

could, for example, be achieved through off-line modification of the G-code using a locally 

linearized model [Lei et al., 2003; Givi et al., 2014]. This linear relation between small axis 

motions (     ) and a volumetric error twist (  ) can be expressed using the Jacobian matrix (  ) 

[Paul et al., 1981; Abbaszadeh-Mir et al., 2002] : 

          . ( 5-2) 

Solving Eq. 2 for        provides the required changes in machine axis commands to cancel the 

volumetric error twist  . Therefore, the compensation formula is 

            . (5-3) 
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Since a linear system is assumed for the modeled machine, an iterative method is applied to 

obtain an exact solution for       as explained in [Givi et al., 2014]. 

5.4 Error relevance 

In some machining operations, one or more error components of the volumetric error may not be 

relevant for the accuracy of the machined feature. For instance, in face milling, if the surface 

normal is the z direction, the translational errors in the x or y directions of the tool tip (δx and δy) 

are irrelevant. Figure  5-1 shows four common machining processes and the relevant components 

of the deviation of the actual cutter related to its desired location (volumetric error) in each case. 

 

Figure  5-1 Relevant components of the volumetric error in common machining processes a) face 

milling b) hole drilling c) slot milling d) flank milling a conical surface 
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Based on the machining process, feature and tool geometry, the relevant errors can be isolated for 

the calculation of the compensation. A “filtration matrix” pre-multiplies the volumetric error 

twist in order to filter out (eliminate) the irrelevant errors as shown in Eq. 5-4 

             [                                  ]
  (5-4) 

where    and     represent the whole and relevant volumetric error twists defined in feature 

frame respectively and F is the filtration matrix. Filtration matrices for the cases shown in 

Figure  5-1, and also relevant and irrelevant error components for each one are listed in Table  5-1. 

Table  5-1 Filtration matrix for common machining processes illustrated in Figure  5-1 

Feature 
Machining 

process 

Tool 

type 

Relevant components  

(in feature frame) 

Irrelevant 

components 

(in feature 

frame) 

Filtration matrix 

a) Flat 

surface 

Face 

milling 

Flat-end 

mill 
               

            ,

      
[
      
      
      

] 

b) Hole Drilling 
Twist 

drill 

                   

          

     

[
 
 
 
 
 
 
 
 
 

 
 
 
 
 

    
    
    
    
    ]

 
 
 
 

 

c) Slot on 

spherica

l surface 

Curve 

milling 

Ball-end 

mill 

                     

     

           [

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

] 

d) Cone 

frustum 

Flank 

milling 

Flank 

mill 
                                 [

      
      
      

] 
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To obtain the volumetric error in feature frame, the volumetric error in actual tool frame can be 

simply calculated using Eq. 5-5 and 5-6 as explained in [Givi et al., 2014]. 

   

     (     
  )

  
       

          (5-5) 

and in the form of twist vector: 

   
    

 
{  }   

= [                                  ]
  (5-6) 

Then, the volumetric error is projected in the feature frame applying a projection matrix as 

follows: 

   
    

 
{ }   

  
 

       
    

 
{  }   

 (5-7) 

where      is a projection matrix (   ) projecting the error twist from actual tool to feature 

frame. The translational and angular error components are projected separately so the projection 

matrix takes the form: 

      [
        

        
] (5-8) 

where 

     

[
 
 
 
  ̂     

 

 ̂     
 

 ̂   
 

 

]
 
 
 
 

 (5-9) 

where,  ̂     ,  ̂      and  ̂  

  are the feature frame orthonormal basis projected in the tool frame. 

Finally, the filtration matrix (    ) is applied in this step to filter out the irrelevant errors: 

 
{ }     F H    

    
 

{  }   
 (5-10) 
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The number of rows n of the F matrix is the number of relevant error components for each 

machining case. Multiplying the matrices F and H in both sides of the Eq.5-2 and replacing the 

relevant volumetric error from Eq. 5-10 leads to: 

 
{ }                       

{  }    
 (5-11) 

which is solved for       

          (           
{  }    

)  
   

   
{ }          (5-12) 

For example, in case of a cone frustum as mentioned in Table  5-1, the filtration matrix is: 

   [
      
      
      

]

   

 (5-13) 

which has three rows since only three volumetric error components are relevant.  If the number of 

rows of relevant volumetric errors is less than the number of controllable axes, a solution can be 

found for the equation using underdetermined least square approach [Press, 1992]. 

5.5 Compensability ratio 

Due to the machine tool configuration, it may not be possible to compensate all of the relevant 

error components. For example, when the target five-axis machine tool, with topology 

WCBXbZYt (as shown in Figure  5-2) is in its singular position (b=0), it is not possible to 

compensate a pure angular error around the X-axis (   ). In this case, the volumetric error 

component cannot be cancelled with minute adjustments in axes command.  

 This can be mathematically explained when Eq. 5-2 is rewritten with each matrix details: 

[
 
 
 
 
 
     
    

    

    

    

    ]
 
 
 
 
 

   

[
 
 
 
 
 
   
   

   

 
   

   

   
   

   

 
   

   

   
   

   

 
   

   

   
   

   

 
   

   

   
   

   

 
   

   ]
 
 
 
 
 

      

[
 
 
 
 
  
  
  
  
  ]

 
 
 
 

 (5-14) 
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Figure  5-2 Five-axis machine tool with the topology WCBXFZYt and and a pure angular error in 

the tool frame 

 

At this singular position (b=0), all elements of the fourth line of the Jacobian matrix have zero 

value and none of the axes is able to affect the fourth component of the volumetric error twist 

(   ). So, this component is not compensable using axis command adjustment. 

It may be possible to resolve such conditions in the presence of kinematic singularities [Press, 

1992] and find a solution to cancel all the error components but only with relatively large 

changes in axes positions. It means large motions in machine axes, but such modifications are not 

desirable in machining. As mentioned in [ISO/TR16907, 2015] the rotary axis which is 

nominally parallel to the spindle axis is considered as kinematic pole (singularity) of a five-axis 

machine tool. In the vicinity of kinematic poles, the required motions to compensate the errors in 

the functional orientation may not be directly available to the CNC and it could lead to highly 

accelerated motions of other axes. 

A metric so-called ‘compensability ratio’ between the volumetric error and the       components 

is proposed considering linear and angular portions as two separate vectors that can be compared: 
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  [        ] (5-15) 

             
  [     ] (5-16) 

        
   [             ]   (5-17) 

         
   [             ] (5-18) 

So, the compensability ratio can be calculated using the following ratios of the vectors’ 1-norms:  

         
|            

|

|        
  |

 
|  |   |  |   |  |

|   |   |   |   |     |
 

(5-19) 

          
|             

|

|         
  |

 
|  |   |  |

|   |   |   |   |    |
 

(5-20) 

As an example, assume the five-axis machine tool is in an arbitrary position, (e.g., x=100 mm, 

y=200 mm, z=300 mm and c=30°) and that the estimated values for the inter-axis geometric 

errors in [Mayer, 2012] are used in the compensation procedure. The required       is calculated 

using Eq. 5-3 and for different B-axis positions. When B-axis moves toward zero (a singularity 

point), the compensability ratios dramatically increase. Especially for values of b less than 0.01 

rad, the volumetric error and       components are not commensurate anymore which could 

indicate an uncompensability of the volumetric errors. (Figure  5-3 and Figure  5-4). Note that all 

of the six volumetric error components are assumed to be relevant in this section.  

In practice, when the compensability ratio reaches too high values (out of the commensurability 

range), the residual volumetric errors after compensation and the absolute value of the required 

motions in the machine axes may be checked separately and in details and also compared to the 

related machining conditions such as depth of cut before declaration of the compensability of 

volumetric error components in such critical areas. On the other hands, too small compensability 

ratios could be critical too. This situation could happen either when the volumetric error is too 

large or when the required axes motion is too small. Therefore, a minimum threshold for the ratio 

value can be assumed regarding the machining conditions such as depth of cut and least input or 
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command increment of the CNC machine tool. Significant changes to the depth of cut could be 

largely avoided by also introducing compensation at the semi-finishing step, if an, since the 

compensation values are likely to be very similar. 

 

 

Figure  5-3  Changes of          with B-axis position 

 

Figure  5-4  Changes of          with B-axis position 
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5.6 Compensation optimization 

The optimization process consists in applying both the relevance concept and compensability 

ratio in order to only compensate what needs to be and refrain from causing excessive corrective 

axis motions (Figure  5-5).  

 

Figure  5-5 Relevant and compensable errors 

5.7 Case study 

5.7.1 Design of the test piece 

A test piece containing four common features, as introduced in Table  5-1 , is designed to verify 

the effectiveness of the compensation based on the proposed concepts. The test piece is a 

hemispherical aluminum part contain with a flat surface, three holes, a curved slot on the 

hemisphere surface and also a tilted cone frustum as a standard feature in five-axis machining 

[NAS979, 1969; ISO10791-7, 2014]. The CAD model of the part is shown in Figure  5-6. 
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Figure  5-6 Test piece with four features to be machined 

 

To study the error relevance and find the relevant errors, the feature frame orientation must be 

defined for each feature. For all features, except the cone frustum in which flank milling is used, 

the normal vector of the machined surface can be defined as the same direction of the tool axis. In 

other words, the feature frame origin and orientation can be defined as the tool frame.  

5.7.2  Feature frame definition for tilted cone frustum  

To make the process of cone frustum machining sensitive to the machine geometric errors, the 

largest possible motions for rotary axes are sought. The required range of the rotary axes motions 

directly depends on the tilt and taper angles of the cone [Ihara, 2005; Hong et al., 2011] and the 

geometry of the other features of the test piece. 

For a tilted cone frustum, a feature frame origin can be defined at the tool tip and its   ̂ basis 

vector (surface normal) can be aligned with the tool axis. To find the orientation of the feature 

frame, imagine the flank milling process of the tilted cone frustum as shown in Figure  5-7. The 

subscripts t, f, C and cone represent tool, feature, C-axis and cone frame respectively. 

file:///C:/Users/megiv/Desktop/M.Givi/Third%20journal_optimization/CIRP%20submission/revision/just%20for%20copy.docx%23_ENREF_5
file:///C:/Users/megiv/Desktop/M.Givi/Third%20journal_optimization/CIRP%20submission/revision/just%20for%20copy.docx%23_ENREF_4
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Figure  5-7 Machining of a cone frustum 

The position of the feature frame origin can be defined at the tip of the tool and expressed in the 

C-axis frame: 

 
{ }  

   =  
{ }  

   (5-21) 

In terms of orientation of the feature frame, let assume the k direction of the C-axis as shown in 

Figure  5-7: 

 ̂   [     ]  (5-22) 

The direction of  ̂      is also calculated by rotating the  ̂   in direction of the cone tilt angle 

(ϕ). The direction of the  ̂   is obtained from the HTM,    . As illustrated in Figure  5-7,   ̂ 
  is 

perpendicular to both  ̂      and  ̂    and so, can be calculated using cross product of these two 

vectors: 

 ̂ 
    ̂         ̂   (5-23) 

Furthermore,  ̂ 
  can be defined in the same direction as tool axis (  ̂   ). Finally the  ̂   can be 

obtained by cross product of   ̂ 
  and  ̂ 

  : 

 ̂     ̂ 
     ̂ 

  (5-24) 

So, the feature frame HTM becomes 
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   = [  ̂ 

    ̂ 
    ̂    

{ }  
  ]

   
 (5-25) 

5.7.3 Experimental procedure  

Table  5-2 shows the cutting tool type, depth of cut (hole depth in hole drilling case) and spindle 

speed for each feature at the finishing step. 

Table  5-2 Machining conditions for each feature 

No. Feature Cutting tool 
Depth of cut 

(mm) 

Spindle speed 

(rpm) 

1 Cone frustum Flank mill, Ø19.05 1.5 5000 

2 
Curved slot on the 

hemisphere surface 
Bull-end mill, Ø19.05 4 70 

3 Hole Drill, Ø15.875 mm 18.6 (hole depth) 3000 

4 Flat surface Face mill, Ø62 mm 1 3500 

 

Three test pieces are rough-machined with the same G-code and are then finished with three 

different G-codes i.e. 1) original G-code without compensation, 2) regular compensated G-code 

and 3) optimized compensated G-code. As an example, in case of cone frustum machining, the 

original G-code is shown in Figure  5-8 while the regular compensated G-code and optimized 

compensated G-code for the same feature are shown side by side in Figure  5-9. The required 

changes of the axes positions for all working points (corresponding to the G-code lines) are 

graphically shown and compared between regular and optimized compensation in next section. 
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Figure  5-8 Original G-code for machining the cone frustum 

 

 
Figure  5-9 a) compensated G-code b) optimized compensated G-code for machining the cone 

frustum 

 

5.7.4 Discussion on simulation results 

a) Compensability ratio comparison 

The compensability ratios defined in Eq. 5-19 and Eq. 5-20, are calculated at each programmed 

point (different B-axis positions) for the cone frustum machining and curve slot machining and 
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are shown in Figure  5-10 and Figure  5-11 respectively. Relatively higher ratios (up to 5 for cone 

frustum and up to 14 for the curve slot) are observed when B-axis approaches zero. Such values 

are still proportional and show the commensurability between the required axes motions and 

volumetric error values. However, the remained volumetric error after compensation may be 

calculated for such critical points using the mathematical model and all relevant error 

components checked to be fully compensated. 

b)   

Figure  5-10 Compensability ratio at working points of the cone frustum machining trajectory 

 

Figure  5-11 Compensability ratio at working points of the curve slot machining trajectory 
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c) Required axes movement for compensation  

If the required modifications in axes positions are calculated and compared for the two 

compensation strategies (regular and optimized), it is expected that less axis movement 

modifications are required with the optimized compensation. Figure  5-12 illustrates the axis 

motion 1-norm (sum of the absolute values of the axes motions modifications at different B-axis 

positions) during machining of the cone for the two compensation strategies. This comparison is 

made separately for linear axes and rotary axes motions since the corresponding units are 

different. 

 

Figure  5-12 Required a) linear b) rotary axes movement for regular and optimized compensation 

of cone frustum machining 

 

 

Figure  5-13 Required a) linear b) rotary axes movement for regular and optimized compensation 

of curve machining 
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The same comparison is made for machining of the curved slot. Figure  5-13 reveals less required 

changes in the axes command for optimized compensation. An unexpected increase in the 

required axes motion occurs at a few working points (when B-axis approaches zero) in which the 

compensability ratio is relatively higher but still indicating commensurability between ∆axis and 

volumetric error, as explained in the last section (Figure  5-11).  The required axes motion goes up 

to 0.2 mm for linear axes and up to 1.15 mrad for rotary axes that could be explained regarding 

the less constraints for optimized compensation. Since, in optimized compensation, the irrelevant 

errors are not controlled, the constraints imposed to the machine axes are released. 

Comparing the components of volumetric error values before and after compensation indicates 

the error compensability in such critical area. Table  5-3 illustrates the values for the linear and 

angular ratios,  linear axis and also  rotary axis for six programmed points located close to the 

singularity area of the machine tool (b=0) and with the highest ratios. The sum of the linear and 

angular components of the volumetric error before and after (both regular and optimized) 

compensation at the same critical points is calculated using the mathematical model of the 

machine and listed in Table  5-4 as well. As seen in Table  5-3, relatively higher changes in linear 

and rotary axes commands are required for optimized compensation compared to the regular one 

especially at the points 2 and 5. However, Table  5-4  shows negligible residual volumetric error 

after compensation in these two points.  

The fact is that angular error components can be corrected only with rotary axes motions and so 

extra translational errors may be produced and added to the original linear error components. This 

explains the relatively larger changes in linear axes commands. Based on Table  5-4, the linear 

error components at all critical points can be cancelled after either regular or optimized 

compensation, but the angular components cannot be fully compensated using regular strategy. 

Except two singular points of the machine (points 3 and 4 in which b=0), the angular components 

are effectively compensated using optimized compensation. A residual value for angular error 

component (around 13 µrad) is observed in such singular points that could be flagged as an 

uncompensable error in the curve slot machining. 
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Table  5-3 Compensability ratio and required Δaxis at critical points in curve slot machining 

Working 

point 

b value 

(degree) 

Linear 

ratio 

Angular 

ratio 

Required 

Δ linear axis 

(mm) 

 Required 

Δ rotary axis 

(mrad) 

Reg. Opt.  Reg. Opt. 

1 -1.412 0.93 6.18 0.067 0.054  0.079 0.572 

2 -0.707 2.15 11.80 0.068 0.128  0.079 1.090 

3 0 0.18 2.73 0.069 0.011  0.079 0.252 

4 0 0.18 2.73 0.069 0.011  0.079 0.252 

5 0.671 3.07 12.46 0.070 0.190  0.079 1.150 

6 1.341 1.82 6.50 0.071 0.115  0.079 0.599 

 

Table  5-4 Comparison of the predicted volumetric error before and after compensation at critical 

points in curve slot machining 

Working 

point 

b value 

(degree) 

Linear error component (mm)  Angular error component (mrad) 

Before Reg. comp. Opt. comp. 
 

Before Reg. comp. Opt. comp. 

1 -1.412 0.058 0.000 0.000  0.092 0.012 0.000 

2 -0.707 0.060 0.000 0.000  0.092 0.013 0.000 

3 0 0.061 0.000 0.000  0.092 0.013 0.013 

4 0 0.061 0.000 0.000  0.092 0.013 0.013 

5 0.671 0.062 0.000 0.000  0.092 0.013 0.000 

6 1.341 0.063 0.000 0.000  0.092 0.012 0.000 
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The direction of the axes motions are also checked for all working points in the case of cone 

frustum and curve slot machining and no change in motion direction is observed. Note that the 

positioning accuracy characteristics of the axes such as backlash errors may differ upon a 

direction change and this would affect the accuracy improvement in compensation process. The 

ability of the machine to correctly accomplish small movements is not considered in this work.   

 

5.7.5 Measurements results and discussion 

The features on the three test pieces (uncompensated, regular compensated and optimized 

compensated) are measured on the CMM using a probe stylus tip with diameter Ø=4 mm.  

a) Holes 

The measurement results for the holes are summarized in Table  5-5. Comparing the circularity 

error of the machined holes shows a small variation (less than a few micrometers) in all cases. 

Such variation can be neglected considering the uncertainty of the measurements. Since the form 

of the holes (including circularity) is expected to be largely related to the drilling process, no 

significant change in form related errors is expected before and after compensation. 

Table  5-5 Comparison of circularity errors for the holes 

Feature Circularity error (µm) 

 No compensation Regular comp. Optimized comp. 

Hole 1 11 9 4 

Hole 2 8 8 7 

Hole 3 7 3 4 

b) Flat surface 

The deviation from a plane for the face milled surface is shown in Figure  5-14. The residual 

vectors are smaller for the regular and optimized compensated cases compared to the 

uncompensated one. Calculated flatness error and the standard deviation of residuals for flat 

surfaces are listed in Table  5-6. Flatness error and standard deviation values are reduced by 

around 50% for both compensation strategies. 
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Table  5-6 Comparison of flatness errors for the flat surface 

Parameter No compensation Regular comp. Optimized comp. 

Flatness error (µm) 10 4 5 

Standard deviation 

of residuals (µm) 
2 1 1 

 

 

Figure  5-14 Best fit residuals for the flat surface, magnified 2000X; a) uncompensated, b) regular 

compensated and c) optimized compensated plane 

 

c) Cone frustum 

A conical surface is fitted to the measured points of the cones and the residual distances are 

shown in Figure  5-15 as residual vector at each point. The length of residual distance vectors are 

significantly decreased after compensation at most of the points. Statistical parameters such as 

range of the residual distances (maximum residual minus minimum residual) and standard 

deviation are also listed in Table  5-7. The results show 15% to 35% reduction for those 

parameters.  
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Figure  5-15 Best fit residuals for the cone surface, magnified 1000X; a) uncompensated, b) 

regular compensated and c) optimized compensated cone 

 

Table  5-7 Residual analysis of the cone frustum measurement 

Parameter No compensation Regular comp. 
Optimized 

comp. 

Range of residual distances 

(µm) 
66 47 56 

Standard deviation of 

residuals (µm) 
17 11 13 

d) Curved slot  

In the case of curved slot on the spherical surface, two different surfaces are measured; the points 

on the slot sidewall and the points on the bottom which are nominally located on a sphere. Best 

fit residuals from the nominal surfaces for the sidewall and bottom surface points are illustrated 
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in Figure  5-16 and Figure  5-17, respectively. The range of the residual distances and standard 

deviation values are also listed in Table  5-8 and Table  5-9. 

 

Table  5-8 Residual analysis of the curve sidewall measurement 

Parameter No compensation Regular comp. Optimized comp. 

Range of residual distances 

(µm) 
64 51 59 

Standard deviation of 

residuals (µm) 
11 8 10 

 

Table  5-9 Residual analysis of the curve depth measurement 

Parameter No compensation Regular comp. Optimized comp. 

Range of residual distances 

(µm) 
72 27 30 

Standard deviation of 

residuals (µm) 
19 5 8 
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Figure  5-16 Best fit residuals for the curve sidewall, magnified 1000X; a) uncompensated, b) 

regular compensated and c) optimized compensated slot 

 

Figure  5-17 Best fit residuals for the curve depth, magnified 1500X; a) uncompensated, b) 

regular compensated and c) optimized compensated slot  
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The length of the residual distance vectors are significantly decreased after both regular and 

optimized compensation. Comparing the calculated statistical parameters for curved slot, a slight 

residual reduction for the sidewall and around 60% residual reduction for the bottom (spherical 

surface) are observed. 

In both compensation strategies, position and orientation errors of the machine joints (inter-axis 

geometric error), as the main source of the machining errors are considered in the calculations. 

The effect of the other error sources were assumed to be negligible since the test was done for 

only finishing step and also aluminum parts were selected to minimize the thermal and force-

induced errors.  So, even after compensation, some residuals may be observed for the features’ 

form.  

In general, the residual ranges are mostly reduced after both regular and optimized compensation 

of the features. However, in the case of the flat surface and the curve depth, a very small (less 

than 3 µm) difference between the residual of regular and optimized compensation can be 

observed. In the cases of the cone and the curve side surface, the residuals are less after 

compensation but not as much as for the other features. Only form errors of the features’ surfaces 

are measured and compared in this paper. Therefore, work is underway to conduct new tests in 

which the positioning errors such as holes’ centre position or other positioning errors of the 

features could be measured and compared with respect to datum features. 

5.8 Conclusion 

Two new notions were introduced in five-axis machining error compensation and G-code 

modification. The concept of “error relevance” was described regarding the insensitivity of a 

machining process to some volumetric error components. In other words, only the relevant errors 

have to be taken into consideration in a compensation strategy and it is not necessary to make 

effort for the correction of those errors which are not affecting the accuracy of the machined 

feature. A filtration matrix was defined to mathematically obtain the relevant volumetric error 

vector.   

The concept of “compensability” comes from the machine tool capability to correct the 

volumetric error components by making small and proportional variations in machine axis 

positions. If some of the residual volumetric error components after compensation is not 

negligible (i.e., volumetric error is not fully compensated due to singularity condition, for 
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example) or the volumetric error and calculated        are not commensurate (i.e., large changes 

in axes position are required to cancel the error), that part is considered as “uncompensable”.  

The data of compensability ratio may not be enough to determine the capability of the machine to 

compensate the errors. It is recommended to check the values of volumetric errors before and 

after compensation, required axes motions and also machining conditions (such as depth of cut) 

where the compensability ratio approaches the maximum values especially in machine singularity 

area.  The least command increments of the machine tool may also be considered for too low 

compensability ratios. The compensation axes positions shall be checked to see whether or not 

the motion directions change after compensation. Since, any change in axes motion direction may 

influence the positioning accuracy characteristics of the axes (such as backlash error, etc.). 

Considering only relevant and compensable errors in the compensation procedure yields an 

optimized compensation in which there is no unnecessary or excessive change in axes commands 

while the accuracy is still effectively improved. 

Optimized compensation was implemented to machine a test piece containing four features (hole, 

flat surface, curved slot and cone frustum) and compared with the results of the regular 

compensation. 1-norm of the linear and angular compensations were considerably reduced (up to 

75%) at most of the points. Best fit residual analysis is also done for the features. For example, 

60% reduction was found for the residuals range after regular and optimized compensation of the 

bottom surface of the curved slot. 

 

5.9 Acknowledgements  

The authors greatly appreciated the support of CNC machine technician, Guy Gironne, during the 

experimental validations and also CMM technician, François Menard, for the part metrology.  

The authors also acknowledged the collaboration of Rahman Mizanur in the best fit residual 

analysis section. This research was supported by the NSERC Canadian Network for Research and 

Innovation in Machining Technology (NSERC CANRIMT; www.nserc-canrimt.org).   



99 

 

5.10  References 

Abbaszadeh-Mir, Y., J. R. R. Mayer, G. Cloutier and C. Fortin (2002); "Theory and simulation 

for the identification of the link geometric errors for a five-axis machine tool using a 

telescoping magnetic ball-bar." International Journal of Production Research 

40(Compendex): 4781-4797. 

Donmez, M. A., D. S. Blomquist, R. J. Hocken, C. R. Liu and M. M. Barash (1986); "A general 

methodology for machine tool accuracy enhancement by error compensation." Precision 

Engineering 8(4): 187-196. 

Givi, M. and J. R. R. Mayer (2014); "Volumetric error formulation and mismatch test for five-

axis CNC machine compensation using differential kinematics and ephemeral G-code." 

The International Journal of Advanced Manufacturing Technology: 1-9. 

Hong, C., S. Ibaraki and A. Matsubara (2011); "Influence of position-dependent geometric errors 

of rotary axes on a machining test of cone frustum by five-axis machine tools." Precision 

Engineering 35(1): 1-11. 

Ihara, Y., & Tanaka, K. (2005); "Ball bar measurement equivalent to cone frustum cutting on 

multi-axis machine: Comparison of ball bar measurement with cutting test on spindle-tilt 

type 5-axis MC." Journal of the Japan Society for Precision Engineering 71(12): 1553-

1557. 

ISO230-1, (2012); "Test code for machine tools-part 1 : geometric accuracy of machines 

operating under no-load or quasi-static conditions.". 

ISO10791-7, (2014); "Test conditions for machining centres – Part 7: Accuracy of finished test 

pieces." 

ISO/TR16907, (2015); "Machine tools-Numerical compensation of geometric errors.". 

Jing, H. J., Yao, Y. X., Chen, S. D., & Wang, X. P. (2006); "Machining accuracy enhancement 

by modifying NC program." Advances in machining and manufacturing technology 

eighth: 71-75. 



100 

 

Lei, W. T. and Y. Y. Hsu (2003); "Accuracy enhancement of five-axis CNC machines through 

real-time error compensation." International Journal of Machine Tools and Manufacture 

43(9): 871-877. 

Liebrich, T., B. Bringmann and W. Knapp (2009); "Calibration of a 3D-ball plate." Precision 

Engineering 33(1): 1-6. 

Mayer, J. R. R. (2012); "Five-axis machine tool calibration by probing a scale enriched 

reconfigurable uncalibrated master balls artefact." CIRP Annals - Manufacturing 

Technology 61(1): 515-518. 

NAS979, (1969); "Uniform cutting test—NAS series. Metal cutting equipments." 

Paul, R. P., B. Shimano and G. E. Mayer (1981); "Differential kinematic control equations for 

simple manipulators." Systems, Man and Cybernetics, IEEE Transactions 11(6): 456-460. 

Press, W. H. (1992). Numerical recipes in Fortran 77: the art of scientific computing, Cambridge 

university press. 

Schwenke, H., W. Knapp, H. Haitjema, A. Weckenmann, R. Schmitt and F. Delbressine (2008); 

"Geometric error measurement and compensation of machines—an update." CIRP Annals 

- Manufacturing Technology 57(2): 660-675. 

Srivastava, A. K., S. C. Veldhuis and M. A. Elbestawit (1995); "Modelling geometric and 

thermal errors in a five-axis cnc machine tool." International Journal of Machine Tools 

and Manufacture 35(9): 1321-1337. 

Yu, S. and J. M. Hollerbach; "Observability index selection for robot calibration". Robotics and 

Automation, 2008. ICRA 2008. IEEE International Conference on. 2008. 

 



101 

CHAPTER 6 GENERAL DISCUSSION 

The general discussion of the thesis including the most important outcomes of the different steps 

of the study is provided as follows. 

In the first phase of the work, a frame named “desired cutter location (DCL)” is introduced and 

added as the last chain of the workpiece branch. This effectively helps in definition of the 

volumetric error as the difference between nominal and actual tool. This definition approach is 

more general and beneficial in the field of five-axis machining since: 

 the difference of the actual tool (position and orientation) and the actual feature (or 

workpiece) frame which is commonly considered in the literature as a criterion for 

volumetric error definition does not appear to be a good basis of comparison. Specifically, 

the orientation of the tool frame does not nominally coincide with the feature frame in 

some machining operations such as milling of a curved surface with a ball-nose end tool. 

Definition of the DCL frame makes it possible to generally determine the desired tool 

location based on the machining operation alone.  

 this also helps to calculate the deviations of the desired (ideal) location of the actual tool 

related to the erroneous one and then, present it in the form of a volumetric error HTM, 

   
           .  

 the three positional components and three orientation components of the volumetric error 

can be extracted from the HTM matrix and taken into consideration for error relevance in 

the optimization phase.  

 three positional components of the volumetric error twist can be graphically presented in 

3D workspace as shown in the first article. 

 this formulation of the volumetric error solely relies on the axes commands extracted 

from the G-code as well as the machine error parameters. This provides the possibility of 

an on-line scheme for compensation. 

The local linearization hypothesis is used in different phases of the research in the form of the 

differential Jacobian matrix expressing the relation between differential changes in machine joint 

(axis) coordinates and the tool to workpiece Cartesian coordinates. The proposed compensation 
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formula is derived based on such local linear relation. The required       to produce the 

correction vector could be calculated using only the Jacobian matrix. However, since a linear 

system is assumed for the machine tool, an iterative approach is applied to find a numerically 

exact solution for       when large machine errors are present. For the proposed validation 

strategy also, the differential directional Jacobian is again applied for sensitivity analysis of the 

machining patterns to the geometric link errors. As detailed in the second article, the effect of the 

multiple machine geometric error parameters combines to produce a volumetric error on the 

machined part and at each machining point. So, some of them may cancel each other. Therefore, 

the proposed strategy for compensation validation can be applied to assess the “overall” accuracy 

improvement of the machine but not to find the effect of each error source separately. 

The compensation method needs information of the estimated link geometric errors to model the 

erroneous machine. The results of geometric link errors estimation may change during a machine 

tool life due to crashes, accidents, loads from machining processes, environmental conditions etc.  

Two different sets of estimated link errors, gathered at a few months interval, were used for the 

experimental validation and compensation effectiveness was validated (88% to 91% 

improvements) for both sets. To get the most precise result, the latest available estimated values 

are used for the compensation calculations during the experimental tests in all phases of the work.  

In optimized compensation, the geometry of the feature must be known in order to extract the 

relevant errors while the regular error compensation itself, can be implemented solely based on 

the G-code and machine errors parameters. Tool type and geometry also influence the error 

relevance. In the case of ball-end cutter face milling, for instance, small orientation errors do not 

leave any geometric defect on the machined surface and thus, do not require compensation. 

However, if a flat-end mill is used for the same operation and feature, the tool tilt angles become 

relevant. 

Unnecessary G-code modifications are avoided in the optimized compensation and so less axes 

motions are required. The relevant errors are minimized in both compensation strategies while no 

attempt is made to compensate or control the irrelevant errors in optimized compensation. The 

values of irrelevant errors may become even larger after compensation. Therefore, the norm of 

the whole volumetric error vector (including both relevant and irrelevant components) may not be 

an appropriate criterion for comparison and validation purpose. 
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CHAPTER 7 CONCLUSION AND RECOMMENDATIONS 

This chapter includes the conclusions of the thesis. Recommendations for future works are also 

listed. 

7.1 Conclusion and contributions of the work 

This thesis presented an integrated methodology for modeling the machine errors, compensation, 

its validation and optimization. The main contributions are summarized as below; 

 a general formulation for calculation of the volumetric error twist (including translational 

and angular components) of a five-axis machine tool is proposed. A desired cutter 

location (DCL) frame is defined and used to complete the workpiece branch kinematic 

chain when multiplying the HTMs. 

 an off-line compensation scheme is proposed based on the original axes commands 

(extracted from the original G-code) and the machine geometric errors information. The 

required adjustments in the G-code are then calculated assuming a local linearization and 

used to generate an ephemeral compensated G-code to be finally executed by the machine 

controller. 

 an “all on-machine” fully automated experimental validation of the effectiveness of error 

compensation is proposed. A series of unidirectional machining patterns are performed on 

a pre-designed part where surface mismatches appear due to the machine errors. This is 

repeated with both uncompensated and compensated G-code on the same part. The cutter 

tool is replaced with a touch trigger probe for on-machine measurement (OMM) using the 

erroneous machine itself and without removing the part. Unidirectional probing is done in 

a small volume and so, provides accurate and reliable results. 

 the introduced validation strategy is effective, fast and accurate and does not need CMM 

or other independent measurement devices. A compensation effectiveness of about 65% 

to 99% for the machined slots is observed using this strategy.  

 amongst the volumetric error components, only “relevant” components which are 

affecting the total accuracy of the machined feature require compensation. Considering 

the machining process, the feature to be machined and also the tool geometry, a filtration 
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matrix is defined to mathematically filter out the irrelevant errors in the compensation 

process. 

 Machine tool capability to correct the volumetric error components by making “small” or 

relatively commensurate variations in machine axes positions is quantified and verified 

with regard to a new notion definition, i.e. “compensability ratio” in five-axis machining. 

Uncompensable parts of the volumetric error can be predicted and flagged. So, no effort is 

made to correct them in the compensation process. 

 Considering only relevant and compensable errors in the compensation procedure yields 

an optimized compensation in which there is no unnecessary or excessive change in axes 

commands (around 75% reduction in required axes motions in case of cone frustum 

machining, for example) while the same accuracy is reached compared to a regular 

compensation strategy. 

7.2 Recommendations for future works 

Regarding the research contributions and proposed approaches in error compensation and its 

validation for five-axis machine tools, the following subjects are suggested for future work; 

 The compensation function needs the original axes commands as explained in the first 

article. Each command line of a five-axis machining G-code usually starts with G01 

which is followed by the original axes commands corresponding to a specific working 

point. However, in some machining cases, other terms of G-code may appear (such as 

G02 for circular trajectories) to command the machine axes drivers. Study on how to 

extract the machine axes positions for working points for such trajectories could be 

conducted to generalize the G-code modification strategy for error compensation. 

 the proposed validation strategy in the fourth chapter was implemented to compare the 

slots machined using uncompensated and compensated G-code. In other words, the 

effectiveness of G-code modification method was verified while the mismatch producing 

test can be used to validate any compensation strategy. It could be proven and 

experimentally shown if other possible compensation strategies (such as tool path 

correction in post processing step or real-time compensation) are implemented for 

machining the compensated slots.  
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 in the fourth chapter, the sensitivity of the machining patterns to the machine geometric 

link errors was analyzed. It revealed that none of the proposed machining patterns can 

sensitively detect the      link error. A machining pattern could be imagined and 

performed to detect this remaining link error too. 

 as mentioned in the fifth chapter, the error relevance depends on the machining operation, 

the feature to be machined and also the tool geometry. Some common features were 

already considered and tested for validation while there are still other features or tools 

with different geometry that could be tested. For example, optimization of the 

compensation can be validated in machining of a spherical surface or a flat surface using 

bull-end mill and ball-end mill and then compared to verify the effect of the applied tool 

geometry on error relevance in such cases. 

 in numerical error compensation for machine tools, it may happen that some axes which 

are not nominally programmed are driven for the sake of error correction. For example, 

when a pure X-axis motion is programmed, additional small motions of Y-and Z-axis 

maybe executed to compensate the straightness errors of X-axis. This may results in 

unwanted errors or surface degradation. This could be experimentally examined so that 

the effect of compensation optimization on surface roughness would be approved.  

 most modern industrial controllers provide entry points for compensation of some 

geometric errors. Such CNC controllers may contain error tables and spatial error grid 

tables. The limitations of their application should be studied and compared to the 

proposed strategies for error compensation. The development of industrial controllers 

using the proposed strategies also could be the subject of future works.  

 the proposed integrated machine modeling, volumetric error compensation and its 

validation and also compensation optimization could be collected in a fully automatic 

process developing a software package for machine tools. This would help in the 

industrialization of this research work. 
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