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RÉSUMÉ 

L’augmentation des émissions de CO2 et la diminution des ressources énergétiques d’origine 

fossile ont provoqué une augmentation de l’intérêt porté à la production de carburants et de produits 

chimiques biobasés ces dernières années. En même temps, le secteur des pâtes et papiers, qui était 

l’un des moteurs de l’industrie canadienne, a été confronté à une crise qui a été provoquée par un 

haut prix de l’énergie, une concurrence accrue de la part des pays en développement et une 

diminution de l’utilisation du papier. 

La bioraffinerie verte intégrée (BRVI), qui consiste à coupler une usine de pâtes et papiers existante 

à une nouvelle usine de production de produits chimiques de valeur, est apparue comme étant une 

solution permettant aux usines de pâtes canadiennes de redevenir compétitives grâce à la 

diversification de leur gamme de produits. 

L’acide lactique et l’acide succinique sont des produits chimiques importants de par leur haut 

potentiel d’application dans les industries cosmétique, agro-alimentaire et pharmaceutique. Ils sont 

tous les deux obtenus par des voies technologiques pétrochimique ou biochimique. Cette dernière 

est basée sur la fermentation de sucres par des bactéries. Ces dernières années, la voie biochimique 

a reçu une attention croissante, car elle offre à l’industrie chimique l’opportunité de produire des 

produits chimiques verts. 

La production économiquement compétitive de l’acide lactique et de l’acide succinique  nécessite 

l’utilisation de sources de carbone diverses (telles que la biomasse lignocellulosique) et le 

développement de procédés viables. La bioraffinerie verte intégrée à une usine de pâte 

thermomécanique (TMP) produisant de l’acide lactique et de l’acide succinique biobasés permet 

non seulement l’échange de matière première mais également de chaleur. L’objectif de ce projet 

est de proposer les configurations de bioraffinerie de production d’acide lactique et succinique et 

de démontrer la faisabilité technique et la pertinence économique de la production d’acide lactique 

et d’acide succinique dans une bioraffinerie intégrée à une usine de pâtes thermomécanique. 

Quatre modèles de simulation ont été développés sur Aspen Plus lors de ce projet : (i) la production 

d’acide lactique biobasé avec récupération du produit final par précipitation ou (ii) électrodialyse 

et (iii) la production d’acide succinique biobasé avec récupération par cristallisation directe et (iv) 

électrodialyse. L’intégration énergétique et la conception d’un réseau d’échangeurs de chaleur 

(Heat Exchanger Network, HEN) des installations de production d’acide lactique et succinique ont 
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été réalisées en se basant sur les résultats de simulation et des données fournies par FPInnovations.  

Des opportunités de réduction de la consommation des flux chauds ont été émises à partir des 

résultats obtenus précédemment. À  la fin du projet, une analyse économique globale est effectuée 

en se basant sur les bilans de matière et d’énergie obtenus à partir des modèles développés.    
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ABSTRACT 

In recent years, with rising concerns about CO2 emission and depletion of fossil fuel, production 

of bio-based fuel or chemicals has attracted more attention. Meanwhile the pulp and paper industry, 

which used to be one of the major industries in Canada, has been confronted with a crisis in its 

operation during last two decades resulted from high energy price, competition with developing 

countries, and reduced paper demand.  

As an alternative to this situation, the integrated forest biorefinery (IFBR), which is a concept of 

coupling of an existing conventional pulp and paper mill and a new plant for the production of 

valuable chemicals, has appeared as a potential way to make the Canadian pulp mills competitive 

again by diversifying their products.  

Lactic acid and succinic acid are important chemicals due to their high potential for applications in 

the food, cosmetic, and pharmaceutical industry. Both lactic acid and succinic acid are produced 

by petro-chemical pathways or bio-chemical pathways, which are based on the fermentation of 

sugars by bacteria. In recent years, bio-chemical pathways have received increased attention as 

they offer an opportunity to the chemical industry to produce green chemicals. 

So far, the bio-based lactic or succinic acid have been produced commercially from corn starch. 

This starch based raw material is converted to sugars by hydrolysis. Microorganisms produce lactic 

or succinic acid by metabolizing the sugars during the fermentation. Pure lactic and succinic acid 

are obtained by recovery from the fermentation broth. 

Making lactic and succinic acid production economically competitive requires the use of various 

carbon sources (such as lignocellulosic biomass) as well as the development of viable processes. 

The integrated forest biorefinery (IFBR) that combines two or more processes of the production of 

pulp and paper and co-products such as bio-fuels or bio-chemicals allows not only the supply of 

raw material but also the transfer of heat. Before now many researches on the IFBR have been 

conducted into Kraft pulp mills as a receptor and relatively less study was done about 

Thermomechnical pulp (TMP) mills. The main objective of this project is to propose the 

configurations of biorefinery of production of lactic and succinic acid and to demonstrate the 

technical and economic feasibility of the integrated biorefinery composed of a TMP process and a 

lactic or succinic acid plant. 
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In this project four simulation models on Aspen Plus were developed: bio-based lactic acid 

production with the recovery by precipitation and electrodialysis, and bio-based succinic acid 

production with the recovery by direct crystallization and electrodialsys. With the stream data of 

stand-alone lactic and succinic plant extracted from the results of the simulations and the stream 

data of TMP mill provided from FPInnovations, heat integration was performed and Heat 

Exchanger Network was designed. From these results, heat recovery opportunities that indicate the 

reduction of external hot utility (steam) were estimated. At the end of this project, a simple 

economic evaluation was performed based on the material balance and energy use from the 

simulation models.  
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CHAPTER 1 INTRODUCTION 

1.1 Context  

In the modern industrial society, the use of fossil resources such as coal, petroleum, and natural 

gas has provided the main power to operate our world. With the increase of transportation, 

electricity production, and industry in general, oil became the dominant fuel during the 20th century.  

The total petroleum consumption in Canada increased from 1,448 thousand barrels a day in 1983 

to 2,431 thousand barrels a day in 2013 [1].  

The development of a fossil-fuel-based economy has greatly improved our way of life but also 

raised some concerns like the depletion of fossil fuel, the high dependence on oil price, and the 

increase of political conflicts in the world. In addition, the combustion of fossil fuel emits gas such 

as CO2, CH4, NOx and SOx, which cause greenhouse effect and pollution. Thus, it is important to 

develop alternatives based on renewable energies.  

On the one hand, the pulp and paper (P&P) industry in Canada has encountered a downswing in 

its traditional production on account of the decrease of paper use as well as the competition of low 

cost products from developing countries. Moreover, its large use of energy and water makes it hard 

to be operated in the long term. The conversion of an existing pulp and paper mill into an integrated 

forest biorefinery (IFBR), which produces value-added chemicals from lignocellulosic biomass 

and is able to substitute petroleum-based products, has been suggested as an alternative for the 

transformation of the industry.  

The conversion of carbohydrates into ethanol fuel is a well-developed process. Almost all the 

bioethanol is currently produced from sugarcane or grain. The use of these raw materials has some 

disadvantages, for example, food shortage in developing countries, increase of the international 

price of grain and devastation of forests to increase agricultural land. Therefore, there is a need to 

develop the use of non-food resources in a biorefinery concept.  

Besides bio-fuels there is also a strong demand for bio-based chemicals that can substitute 

petroleum-based chemicals. Lactic and succinic acids are promising candidates as products of the 

IFBR. They have been chosen between the top 12 value-added chemicals from sugars and syngas 

by the US Department of Energy, thanks to their various potential uses [2].  
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Lactic and succinic acid production from biomass consists of the following main steps: extraction 

and hydrolysis of sugars from various carbon sources (e.g. energy crops, lignocellulosic biomass, 

and agricultural residues), fermentation of sugars, and purification of the final product. So far, the 

main raw material for commercial production of biobased lactic and succinic acids are grain crops, 

which forms a large part of the total production cost. 

It has been reported that the cost of feedstock of biobased Poly Lactic Acid (PLA) production is 

more than 34% of the entire manufacturing cost [3]. Therefore, making lactic and succinic acid 

economically competitive requires the use of various carbon sources such as lignocellulosic 

biomass as well as the development of economically viable processes.  

From this point of view, the integration of a biorefinery in a Thermomechanical Pulping (TMP) 

mill is a good alternative to process sugars obtained from the wood components. Moreover, it is 

also important to reach high energy efficiency to make the biorefinery process competitive. Heat 

integration based on Pinch Analysis can be conducted to increase thermal efficiency of the  

biorefinery by analyzing interactions between processes. Heat sources are used to supply heat to 

the heat sinks minimizing the demand of external energy.  
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CHAPTER 2 LITERATURE REVIEW 

2.1 Lignocellulosic biomass 

 Biomass is the living or recently living biological material including carbohydrates that can serve 

as a source of energy or chemicals. Lignocellulosic biomass is one of the most abundant materials 

in the world such as trees, agricultural food and residues, and pulp and paper mill residues [4]. As 

Canada has a large, well-developed forest that occupies 397.2 million ha, 41% of Canada’s land 

area and 10% of the world’s forested land, the utilization of wood has been considered as one of 

the country’s important valuable resources [5].  

Wood is mainly composed of cellulose, hemicelluloses, lignin, and extractives. Cellulose makes 

up about 45% of the dry weight of wood and forms long chains of glucose linked by β-1,4-

glycosidic bonds [6]. Hemicelluloses make up 25~30 % of the dry weight of wood and are 

composed of several sugars such as xylose, mannose, galactose, glucose, and arabinose. The 

different sugars are linked to each other by β-1,4- and β-1,3-glycosidic bonds and form branch 

structures with short lateral chains. Lignin makes up 18~35 % and is the most abundant polymer 

in nature. It is an amorphous heteropolymer, water insoluble that protects the plant body from 

microbial attacks and oxidative stress. The structure of wood in a microscope scale is represented 

in Figure 2-1. 

 

 

Figure 2-1 Structure of wood [7]  
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The composition of lignocellulosic biomass varies in the different plant species. For example, 

woody biomass contains more cellulose, whereas agricultural biomass (e.g. wheat straw) has more 

hemicelluloses. A comparison of compositions of different lignocellulosic biomass is shown in 

Table 2-1. The hardwood hemicelluloses are composed of higher fraction of pentoses than 

softwood hemicelluloses, which contain more hexoses [8].  

Table 2-1 Composition of lignocellulosic biomass [8]  

Lignocellulosic biomass Cellulose (%wt.) Hemicelluloses (%wt.) Lignin (%wt.) 

Hardwood 40-55 24-40 18-25 

Softwood 45-50 25-35 25-35 

Grasses 25-40 35-50 10-30 

Wheat straw 30 50 15 

 

2.2 The pulp and paper industry 

2.2.1 The current state in Canada 

The pulp and paper production in Canada has increased steadily of the last century, however, during 

the last 15 years the forest industry is in a declining tendency caused by U.S. recession of 2007-to-

2009, the decrease of consumption of paper from the growth of the digital media and the global 

competition with developing countries (Figure 2-2) [9, 10].  
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Figure 2-2 Pulp production in Canada [10] 

 

As a consequence, the contribution of the pulp and paper industry to the gross domestic product 

(GDP) in Canada has been decreasing for the last decade (Figure 2-3). In 2013, forest products 

contributed $19.8 billion, which is 1.25 % of GDP in Canada, while pulp and paper product 

manufacturing accounted for 36% of the contribution of the forest sector [11]. 

In fact, several pulp and paper mills in Canada closed their operations over the past few decades: 

for example, Eurocan mill (Kitimat, BC, 2010), Resolute Forest Products Inc. (Fort Frances, ON, 

2014), Laurentide mill (Shawinigan, QC, 2012) [12]. Therefore, it is necessary to develop an 

alternative approach for using forest biomass and maintain P&P mills in operation. In 2009, the 

Government of Canada launched “The Pulp and Paper Green Transformation Program”, with a 

funding of $90.4 million over four years in order to help pulp and paper mills to be more energy 

efficient, to degrease their greenhouse gases emissions and water waste, or to produce new bio-

based products [13].   
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Figure 2-3 Forest products sector contribution to the GDP of Canada  [14] 

 

2.2.2 Pulping process 

Pulping is the process of separating the fibrous mass (cellulose) from the other wood components 

(hemicelluloses and lignin) by rupturing the strong linkages within the wood structure. This task 

can be accomplished mechanically, chemically, or by combination of these two treatments.  

As the oldest form of pulping, mechanical pulping separates fibers by mechanical energy. The main 

objective in the mechanical pulping is to separate the fibers from the lignin and suspend them in 

water for paper making. The advantage of mechanical pulping is a high yield of production (up to 

90~95%) [15]. However, the fiber strength and the resistance to discoloration are low, because the 

mechanical pulping process does not dissolve lignin. Therefore, most of the mechanical pulp is 

used for lower grade papers such as newspaper and magazines. The main variations of the TMP 

processes are Stone Groundwood Pulping (SGW), Refiner mechanical Pulping (RMP), 

Thermomechanical Pulping (TMP), or Chemi-Thermomechanical Pulping (CTMP) [16].  

The objective of chemical pulping is to separate and dissolve the lignin by cooking wood chips 

with chemicals under high temperature and pressure. The two main methods are the Kraft process 

(alkaline) and the sulphite process (acidic) [15].  
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2.2.2.1 Thermomechanical Pulping 

TMP process is the most common mechanical process today. The TMP process produces the 

highest grade mechanical pulp but a large amount of energy is required due to the use of steam 

because of thermal pretreatment. 

Basic flow diagram for the TMP process is shown in Figure 2-4. In the TMP process, wood chips 

are first steamed to make them soft before being grounded during the refining. It is important to 

conduct the refining at a temperature below 140 °C, if the refining is performed above 140°C, the 

fibres are easily separated but the lignin is also softened dramatically. With cooling this lignin 

reverts to a glassy state thus making hard to separate the fibres. The refining process causes the 

fibres to form a coiled shape that is termed ‘Latency’. It is necessary to disintegrate this freshly 

produced fibres in hot water. A vigorous mixing at a temperature 71~93°C in a chest is conducted 

for the latency removal to produce paper. To maximize the average time in a chest of a given 

volume, it is preferable to have a long rectangular chest. The pulp produced by TMP process is 

dark, and is costly to bleach.  

 

Figure 2-4 Basic flow diagram of the TMP process [15] 

 

2.2.2.2 Kraft Pulping 

Kraft pulping is the dominant pulping method in the world [17]. In the Kraft process, chips are 

cooked in a solution of sodium hydroxide (NaOH) and sodium sulfide (Na2S), then the wood fibres 

are separated from lignin by dissolution [15]. After delignification, the cellulose fibres are 
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separated from the spent liquor (black liquid) and bleached by adding chemicals. Finally the fibres 

are drained, pressed, and thermally dried. The removed black liquor is concentrated by evaporation 

and sent to the recovery boiler for steam production. A causticizer is used to regenerate the white 

liquor. A schematic of the Kraft process is shown in Figure 2-5.  

 

Figure 2-5 A simplified diagram of the Kraft process 

 

2.2.3 Energy and water consumption in the pulp and paper industry 

A large amount of water is consumed in the pulp and paper industry. It is used for the dilution of 

pulp, washing, cooling, and general cleaning operations. The larger the amount of water used and 

effluent produced, the larger the energy needed for heating, cooling and pumping the streams. 

In 2005, 14% of the total water consumption in Canada was used in the manufacturing sector and 

45% of the manufacturing share was supplied to the paper manufacturing [18]. The electricity 

consumption in the manufacturing areas of Canadian P&P mills is shown in Table 2-2.  
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Table 2-2 Energy consumption of pulp manufacturing areas [19] 

Area Electricity (kWh/ODT) Thermal energy (GJ/ODT) 

Wood Preparation 22.20 0 

Kraft Pulping 169.30 4.94 

Kraft Evaporators – Direct Contact 24.50 5.91 

Kraft Recausticizing 32.10 0.14 

Kraft Bleaching (Softwood / 

Hardwood) 
179.50 / 143.90 3.41 / 2.33 

Sulphite Pulping 766.40 5.00 

Sulphite Acid Plant 32.00 N/A 

TMP for Newsprint / Paper 2661.60 / 2943.20 0.56 / 0.67 

SGW 1780.30 0 

 

2.3 Biorefinery 

According to the National Renewable Energy Laboratory of the US, a biorefinery is defined as a 

specific facility that converts biomass into various high-value products such as fuels, power, and 

chemicals. The biorefinery concept is analogous to the petroleum refineries that produce diverse 

fuels and products from petroleum. A comparison between the petroleum and the biomass-based 

refineries is shown in Figure 2-6.  
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Figure 2-6 The petroleum refinery versus the biorefinery [20] 

2.3.1 Biorefinery classification 

The IEA has introduced a biorefinery classification system based on the complete biomass to end 

product chains: the raw material utilized, conversion processes, platforms, and final products 

generated [21]. 

- Various types of raw materials can be used in a biorefinery, including dedicated crops and 

residues. Depending on the raw material, biorefineries can be classified in 1st , 2nd, and 3rd 

generation [22]. As the first generation biorefinery uses starch based biomass (e.g. grain 

crops), it causes several side-effects such as a destabilization of the world grain price, a risk 

of depletion of minerals in soil, and a competitive use of arable land [23]. The second 

generation biorefinery uses ‘plant biomass’ refers largely to lignocellulosic biomass that 

are cheap, abundant, and non-food materials [24]. Using the 2nd generation biorefinery is 

recommended to prevent the issues of the 1st biorefinery, however, as these 2nd generation 

biorefinery is relatively immature, the products are not cost-effective. So they should have 

good potential for cost reductions and increase of production efficiency. The third 

generation uses microalgae. Because microalgae can produce 15-300 times more oil for 

biodiesel production and have a very short harvesting cycle compared with conventional 

crops, it is considered to be an alternative energy resource. Although microalgae biorefinery 

has many advantages and potential benefits, some challenges including the production cost 
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of microalgae, environmental impacts from the microalgae production and waste treatment 

[25]. 

- The technologies that are capable of being applied to convert biomass feedstock into 

valuable products can be classified into four processes: mechanical /physical (pressing, 

milling, and separation), biochemical (fermentation, enzymatic conversion), chemical 

(hydrolysis, pulping), and thermochemical (pyrolysis, gasification, combustion) [21].   

- The platform is an intermediate between the raw material and the final products such as 

sugars (C5/C6), syngas, biogas, hydrogen, lignin, and pyrolysis liquid [2].  

- The final product can be broadly grouped into two classes: energy products and material 

products [22]. Energy products include biofuels such as bioethanol, biodiesel, biogas, and 

bioenergy (bio-steam). Material products include chemicals and building blocks and 

polymers, for example, amino acids, xylitol, succinic-, lactic-, levulinic acid, furfural, PLA 

etc [2]. 

2.3.2 The integrated forest biorefinery (IFBR) 

The integrated Forest Biorefinery (IFBR) is the integration of one or more bio-processing facilities 

that use lignocellulosic biomass into an existing process such as a pulp and paper mill in order to 

reduce costs of investment and operation by sharing infrastructure. Figure 2-7 represents an 

example of an integrated biorefinery based on the Kraft mill and the possible interactions.  

Pulp and paper mills are appropriate sites for the integration of a biorefinery process, because they 

are located near to the raw material, and they have an extensive experience to handle biomass and 

utilities such as steam and water that can be transferred to the biorefinery.  

The integration of a bio-process in a P&P mill can affect the quality of the pulp produced and the 

material and energy balance. For example, the integration of a lignin extraction technology to a 

P&P mill would affect its energy balance. The extraction of hemicelluloses from wood chips before 

pulping will impact both the material balance and the heating value of the black liquor.  
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Figure 2-7 Distribution and share of resources in an integrated biorefinery complex 

2.3.3 The sugar platform  

Burning is the most basic way to use lignocellulosic biomass to produce heat and electricity. 

However, there is great potential in the use of lignocellulosic biomass to produce liquid fuel or 

chemicals. In order to make possible the use of lignocellulosic biomass as feedstock for the 

production of bio-based products, it is fundamental for them to be converted to a sugar platform 

[23].  

Cellulose and hemicellulose are hydrolyzed using biochemical or chemical pathways to produce 

sugars that can be converted to various bio-chemical products including bio-ethanol/butanol or 

organic bio-acids (lactic, succinic, etc.), as shown in Figure 2-8. After the hydrolysis step, the 

stream contains not only sugars but also toxic compounds such as hydroxymethylfurfural (HMF), 

acetic acid, formic acid, and phenolic compounds, therefore, a detoxification step is essential to 

purify the stream and to use the sugars.  

The production of bio-ethanol by the conversion of glucose via a biochemical pathway is well-

developed process at the industrial scale. Yeasts are mainly used as micro-organisms during the 

fermentation because of their characteristics: high ethanol yield, tolerance to ethanol, toxicity, and 

high fermentation ability at a low pH [26]. However, yeasts cannot ferment xylose that is derived 
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from hemicelluloses. To overcome this limitation, researches on the genetic modification of yeasts 

are developing new microorganisms [27]. Finally a recovery step with distillation is used and a 

pure ethanol stream is obtained.  

Above bio-ethanol, various building blocks can be produced from sugars by certain micro-

organisms at appropriate temperature and pH conditions. In this perspective, detailed process 

configurations for the production of bio-based lactic and succinic acid from lignocellulosic biomass 

will be reviewed in Section 2.4. 

 

Figure 2-8 Bio-based products from cellulose and hemicelluloses 

 

2.3.3.1 Lactic acid 

Lactic acid (C3H6O3) is an organic acid naturally occurring with a long history of use for 

fermentation in food. Lactic acid was discovered in sour milk and considered as a milk component 
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by Scheele in 1780. In 1857 Pasteur discovered that it is a fermentation product by certain 

microorganisms [28].  

Lactic acid has various applications in the food, pharmaceutical, cosmetic, and chemical industries 

[29]. In recent years, there has been a growing interest in Poly Lactic Acid (or PLA) which is a 

biodegradable plastic synthesized from lactic acid [30]. As a feedstock of PLA, the global demand 

of lactic acid has been increasing rapidly. In 2013, the global lactic acid and PLA market was 

estimated to be 714.2 kilo tons and 360.8 kilo tons respectively, and is expected to reach 1,960 kilo 

tons and 1,205.3 kilo tons by 2020 [31].  

Lactic acid can be manufactured by both chemical and biological pathways (Figure 2-9). The 

chemical synthesis needs petrochemical feedstock and produces a racemic mixture of D(-)-lactic 

acid and L(+)-lactic acid which is not suitable for the production of PLA; the biobased production 

uses carbon sources such as corn, lignocellulosic biomass, or cheese whey and creates optically 

pure lactic acid [32]. Therefore, the biological pathway of lactic acid production has received 

significant interest. Around 90% of the lactic acid at commercial scale is produced by the biological 

pathway. 
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Figure 2-9 Overview of the two manufacturing methods for the production of lactic acid [33] 

The major manufacturers of biobased lactic acid are NatureWorks (USA, 180,000 tons), Purac 

(Thailand, 100,000 tons), Henan Jindan (China, 100,000 tons). Among them, NatureWorks started 

the first commercial-scale plant of PLA that produces 140,000 tons per year [34].  

2.3.3.2 Succinic acid 

Succinic acid (or butanedioic acid, C4H6O4) is a metabolite participating in the TCA (tricarboxylic 

acid) cycle and could be a final product of fermentation of various bacteria and fungi [35]. It is also 

known as an amber acid because it has originally been obtained from amber by distilling in 1550.  

It is widely used as a precursor of many chemicals with applications in chemical, food, and 

pharmaceutical industries [36]. In addition, as the synthesis of biodegradable polymers (like 

polybutylene succinate, polyamides and various green solvents) has been expending in the recent 

years, the market is expected to increase [37].  
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Conventional succinic acid is produced from butane by the conversion of maleic anhydride, 

however the operation is complex, expensive and causes environmental contamination. Recently 

the production of succinic acid by the bio-based pathway using fermentation has increased.  

The global succinic acid market was estimated to 40,000 tons in 2011 and is expected to reach 

about 600,000 tons in 2020 [38]. Currently, 97% of the succinic acid is produced via the 

petrochemical pathway and the main producers are Gadiv petrochemical Industries, Mitsubishi 

Chemical, Kawasaki Kasel Chemical, Nippon Shokubai, and several Chinese companies. The main 

producers of bio-based succinic acid are Succinity (25,000 tons/year, Spain), BioAmber (3,000 

tons/year, France and 35,000 tons/year, Ontario), Myriant (5,000 ton/year, Germany), and Reverdia 

(10,000 tons/year, Italy) [38].  

 

2.4 LA/SA Production from biomass 

Bio-based lactic and succinic acid production from biomass feedstock is obtained through the 

fermentation of sugars by microorganisms. The pre-treatment and hydrolysis steps are necessary 

depending on the type of biomass. The configurations of the process for the production of lactic 

and succinic acids from lignocellulosic biomass consist of five steps: i) pretreatment, ii) enzymatic 

hydrolysis, iii) detoxification, iv) fermentation, and v) product recovery. 

 

2.4.1 Pretreatment 

Lignocellulosic feedstock (LCF) has a strong structure to protect itself from physical, chemical and 

biological attacks occuring in nature due to its inner complex linkages between cellulose, lignin, 

and hemicellulose. Therefore, the pretreatment process is a critical step in the biorefinery. The main 

goals of the pretreatment are removing lignin and changing the primary structure to make the 

reaction between cellulose, hemicellulose and enzymes (that converts carbohydrate polymers into 

mono sugars) more effective in the hydrolysis step [39]. The effect of pretreatment is illustrated in 

Figure 2-10. 
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Figure 2-10 Modification of the lignocellulosic structure during pretreatment [40]    

 

Given that each pretreatment process has advantages and disadvantages, it is important to choose 

an appropriate process according to the raw materials and the desired final products. Some features 

have to be considered: high recovery of carbohydrates, less inhibitors produced, less energy 

demands, less catalysts or chemicals added, and less capital costs. Table 2-3 shows the comparisons 

of the main pretreatment routes.  

 

Table 2-3 Advantages and disadvantages of different pretreatment methods of linocellulosic 

biomass [41, 42] 

Pretreatment Advantages Disadvantages 

Mechanical 

- Simple operation 

- Handle large volumes of 

biomass 

- No use of chemicals 

- Very little inhibitors generated 

- Low sugar yield 

- High energy consumption 

- Requires an additional 

pretreatment step 

Dilute acid 
- Dissolution of hemicelluloses 

- High sugar yield 

- High costs of acids and need for 

neutralization 

- Corrosive resistant equipment 

are required 

- Formation of inhibitors 



18 

 

AFEX 

- Effective for agricultural 

biomass 

- High sugar yield 

- Low formation of inhibitors 

- Recycling of ammonia is 

needed  

- Hemicelluloses are not 

hydrolyzed 

 

Steam explosion 

- No corrosion equipment 

required 

- Suitable for hardwood 

- Formation of inhibitors 

- Requires washing of the treated 

biomass or conditioning of the 

hydrolyzate to remove inhibitors 

 

2.4.2 Enzymatic hydrolysis 

In the pretreatmnet step, the bonds of cellulose and hemicelluloses can be broken into 

oligosaccharides. These oligosaccharides should be broken to fermentable monosaccharides. 

Enzymatic hydrolysis is a very promising method to obtain fermentable sugars from pretreated 

lignocellulosic biomass. The main goals of the enzymatic hydrolysis are the break of chemical 

linkages in polysaccharides and the obtention of monosaccharides [43]. The enzymes are generally 

classified as cellulases and hemicellulases, suitable to convert cellulose and hemicellulose into 

sugars, respectively. Mixtures of theses enzymes are used to maximize the yield of hydrolysis and 

to decrease the reaction time and the process cost [44]. Enzymatic hydrolysis allows to produce 

relatively pure sugars, which can be done in mild operating conditions, without environmental and 

corrosion problems. However, a preliminary biomass pretreatment is required, the cost of enzymes 

is high, and the hydrolysis rate is low.  

2.4.3 Detoxification 

The pretreatment and hydrolysis steps may result in the production of inhibitors that are toxic for 

the fermentation microorganisms. The inhibitors can be classified in three groups: furan 

compounds (furfural and HMF) derived from sugars, weak acids (acetic, formic, and levulinic acid), 

and phenolic compounds due to the degradation of lignin [45]. As an example, the formation of 

acetic acid and furfural can prevent yeasts from growing and producing ethanol [46]. It is 

demonstrated that the phenolic components destroy and damage the cell membrane [47]. To correct 
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this, it is necessary to remove the inhibitors before the fermentation. The detoxification methods 

can be categorized in physical, chemical and biological, as shown in Table 2-4. 

Table 2-4 Main detoxification methods for inhibitors removal 

Methods Features Ref 

Physical 

Membrane (Nanofiltration or 

ultrafiltration) 

High cost 

Selective removal of inhibitors 
[48] 

Evaporation (Vacuum evaporation) 
Reduce volatile compounds (acetic acid, 

furfural) 
[49] 

Chemical 

Activated charcoal 

Low cost 

Remove phenolics and furans 

Low sugar loss 

[50] 

Ion Exchange Resin 

Reduce phenolics 

Recycle is possible 

Difficult to scale-up 

[51] 

Overlimming 
Addition of Ca(OH)2 

High sugar loss 
[48] 

Extractive solvents  

(liquid-liquid extraction) 

Using ethyl acetate, trialkylamine 

Remove acetic acid, furfural, and 

phenolics 

High cost of operation 

Long process time 

[52] 

Biological Enzymes 

Little waste generated 

Environmentally friendly 

Long process time 

High cost of enzymes 

[53] 
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2.4.4 Fermentation 

2.4.4.1 Lactic acid fermentation 

The production of bio-based lactic acid is based on the fermentation of sugars by several 

microorganisms such as bacteria, fungi, and yeast. Lactic Acid Bacteria (LAB), such as 

lactobacillus, lactococcus, and E.coli strains can produce lactic acid with high yield at pH condition 

of  5~7 and temperature of 35~45 °C [54].  

LAB are classified into two groups according to the fermentation end product: homo-fermentative 

or hetero-fermentative (Table 2-5). The conversion reactions of the C6 and C5 sugars by homo-

fermentative LAB can be described by the following equations [34, 55]: 

- C6H12O6 → 2C3H6O3 

- 3C5H10O5 → 5C3H6O3 

The theoretical yield of lactic acid production is 2 mol/mol glucose and 1.67 mol/mol xylose, on 

the other hand, the maximal yield of hetero-fermentative LAB is only 1 mol/mol sugar [34]. While 

the homo-fermentative LAB converts glucose into lactic acid almost exclusively, the hetero-

fermentative LAB produces mixture of lactic acid, ethanol, CO2 and acetic acid. The ratio of 

ethanol to acetic acid is dependent on the redox potential in the cells.   

 

Table 2-5 Homofermentive and heterofermentative lactic acid bacteria [34] 

 Homofermentative LAB Heterofermentative LAB 

Products Lactic acid Lactic acid, ethanol, formic 

acid, acetic acid, carbon 

dioxide 

Theoretical yield of lactic 

acid from sugar 

2.0 mol / mol glucose 

1.67 mol / mol xylose 

1.0 mol / mol glucose 

1.0 mol / mol xylose 

Strain Lactococcus, Enterococcus, 

Lactobaillus 

Leuconostoc, Oenococcus 

Availability for commercial 

production 

Available due to high yield  Not available due to high by-

product formation 
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The high production yield and the safety make homofermentative LAB suitable for the production 

at the commercial scale. Most LAB strains used in the commercial production of lactic acid  belong 

to lactobacillus because they are tolerant to acid and easy to be engineered for the selective 

production of lactic acid [56, 57].  

Generally, LAB need complex nutrition including amino acids, peptides, and vitamins because of 

their limited ability to grow. This not only increases the production costs but also prevents the 

recovery of lactic acid. E.coli and yeast need simple nutrition that facilitates the recovery of lactic 

acid. Moreover, the tolerance of yeast to pH is as low as 1.5, which makes fermentation possible 

without the use of neutralizing agent. However, a wild type of E.coli produces a mixture of ethanol 

and several organic acids and a wild type of yeast hardly produces lactic acid.  

The moderate temperature condition in LAB fermentation needs less energy but it increases the 

risk of contamination of the fermentation broth. In addition, the low fermentation temperature 

hinders the use of Simultaneous Saccharification and Fermentation (SSF) of lignocellulosic 

biomass that is carried out at higher temperature than that of LAB fermentation. Therefore, research 

on the use of genetically engineered yeast for the fermentation of lactic acid to compensate the 

difficulties related with nutrients and recovery is ongoing.  

2.4.4.2 Succinic acid fermentation 

Succinic acid can be produced via the fermentation of carbon sources by several microorganisms 

at 37~39 °C, pH 6~7.5, in presence of CO2. The overall yield can vary depending on the supply of 

CO2 and hydrogen:  

- C6H12O6 + CO2 → C4H6O4 + CH3COOH + HCOOH     [58] 

- 7C6H12O + 6CO2 → 12C4H6O4 + 6H2O   [59] 

- C6H12O6 + 2CO2 + 2H2 → 2C4H6O4 + 2H2O    [60] 

The supply of CO2 is an important factor for the fermentation of succinic acid. At low CO2 

availability, the formation of microorganism and succinic acid is strongly inhibited [61]. Both 

external CO2 gas and carbonates in the medium resulting from the addition of CaCO3, NaCO3, or 

MgCO3 can be a source of CO2. 
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In addition to CO2, H2 is considered as a potential electron donor that affects the cellular 

metabolism. For a ratio of 5 % H2 / 95% CO2, the succinic acid production yield is increased by 

5.86% compared with 100% CO2 [62].  

Actinobacillus succinogenes isolated from rumen is reported to produce a large amount of succinic 

acid from various carbon sources such as glucose, arabinose, xylose, galactose, mannose, sorbitol, 

cellobiose [63]. Acinobacillus succinogenes tolerates high concentrations of glucose, which is 

advantageous for fermentation [37]. Theoretically, 1 mol of CO2 is spent to produce 1 mol of 

succinic acid. Actinobacillus succinogenes 130Z is an appropriate candidate that can be used to 

produce large amounts of succinic acid. The variant strain produces succinic acid up to 85% yield 

(g SA/ g glucose) and concentration of 68.5 g/L [64].  

Anaerobiospirillum succiniciproducens isolated from the throat of dogs can produce succinic acid 

from renewable sources such as whey or wood hydrolysate [65, 66]. An important issue with this 

strain is the synchronous fermentation of the mixture of C5 and C6 sugars. It is reported that A. 

succiniciproducens produces succinic acid with 91.8% yield (g SA/ g glucose) and concentration 

of 30.5 g/L [67].  

Another promising succinic acid bacteria, Manheimia succiniciproducens, is isolated from the 

bovine rumen and is also a capnophilic bacterium which grows well in presence of CO2. It is 

expected to be able to produce 1.71 mol of succinic acid from 1 mol of glucose if the supply of 

CO2 is enough [37].  

Likewise with lactic acid bacteria, succinic acid producers require complex nutrition, including 

nitrogen sources and mineral salt for their metabolism and a strict pH control in the medium is 

essential. Therefore, there are vigorous research works on the use of genetically modified E.coli, 

Corynebacterium glutamicum, or yeast which needs simple nutrient to make the recovery step 

easier.  

2.4.5 Separation and Purification 

2.4.5.1 Lactic acid recovery 

In the fermentation broth, lactic acid exists as a form of lactate salt rather than free lactic acid 

because of the neutralizing agents (CaCO3, Ca(OH)2, NaOH, and NH3) that were added to control 
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the pH at 5~7 in the fermenter. The purification of lactic acid is one of the major steps that affects 

the global production cost and the final quality of lactic acid at commercial scale production.  

Precipitation (Figure 2-11) is widely used as a traditional separation method. The fermentation 

broth is first neutralized by calcium carbonate so that a pH of 10 is reached and then heated at the 

temperature of 80 °C. The high temperature and pH let the remaining proteins coagulate and make 

the filtration simpler [68]. The liquor is then filtered to remove cells, evaporated and acidified by 

adding sulfuric acid to turn lactate salt into lactic acid and CaSO4 in the precipitation step  [69]. 

The insoluble CaSO4 is removed by filtration. Esterification, distillation and hydrolysis are finally 

performed to get pure lactic acid [70].   

 

Figure 2-11 Conventional method (precipitation) for LA purification and final separation 

 

The conventional process can be described by the following reactions:  

 Neutralization: 

2C3H6O3 + CaCO3 → (C3H5O3)2Ca + H2O + CO2 

 Precipitation by H2SO4:  

(C3H5O3)2Ca + H2SO4 → 2(C3H6O3) + CaSO4 
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 Esterification: 

C3H6O3 + CH3OH → C4H8O3 + H2O 

 Hydrolysis by H2O: 

C4H8O3 + H2O → C3H6O3 + CH3OH 

The disadvantages of this method are the generation of gypsum as a by-product and the high cost 

of the chemicals consumed.  

There are several alternatives to the conventional separation such as electrodialysis, adsorption, 

reverse osmosis, reactive extraction, and liquid membrane [71]. These separation methods are more 

expensive but environment-friendly and energy-saving compared to the conventional process [72].  

Among these methods, the electrodialysis is considered to be a potentially attractive process 

because it is a sustainable technique, which makes possible to treat quickly and obtain high 

concentrations of lactic acid [73]. In addition, an in-situ recovery system makes the relief of the 

product inhibition, which may cause the reduction of pH in the fermenter. 

Electrodialysis is a process that is performed to separate ions from the fermentation broth under 

the influence of a direct current. The basic principle is that positively (cations) or negatively (anions) 

charged ions migrate toward the cathode or the anode, respectively (Figure 2-12). In desalting 

electrodialysis, ion-exchange membranes that can transfer cations or anions selectively are used. 

Because cations (sodium or ammonium ions) move across the cation exchange membranes in the 

direction to the cathode but they cannot pass the anion exchange membranes, so cations reach the 

compartment. On the other hand, anions (lactate ions) go through the anion exchange membranes 

towards the anode [74]. Finally, the originally-fed solution becomes diluted while the solution in 

the adjacent compartment is concentrated. Therefore, highly-concentrated lactate salt can be 

obtained from the fermentation broth.  
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Figure 2-12 Principle of the conventional electodialysis   

 

Desalting electrodialysis is used first to concentrate lactate and bipolar membrane electrodialysis 

is then applied to turn lactate into lactic acid by acidification [75]. After the desalting eletrodialysis, 

water-splitting electrodialysis (Figure 2-13) with the bipolar membrane is done to produce lactic 

acid from lactate salt and the resulting base is recycled to the fermentation step as a pH controller 

[76]. Bipolar membranes can separate water to H+ and OH- ions and convert ionic salt into acids 

and bases without chemical addition. To obtain pure lactic acid, further purification by ion 

exchange is required [75]. 
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Figure 2-13 Water-splitting electrodialysis (with bipolar membranes) 

 

Recently, various techniques of eletrodialysis for lactic acid recovery have been studied. The 

application of one-stage water splitting electrodialysis, combined nanofiltration and watersplitting 

electrodialysis has been reported [77]. Another particular process was proposed as well that is 

combined with desalting electrodialysis, water-splitting electrodialysis, esterification, and 

distillation, called the ‘double ED’ process, (Figure 2-14) has been developed at the Michigan 

Biotechnology Institute (MBI) [70]. However, there is still a challenge involved in a co-

instantaneous operation of the fermentation and the electrodialysis. 
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Figure 2-14 Double-ED process schematic [70] 
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2.4.5.2 Succinic acid recovery 

The purification and downstream processing represent a large part of the total cost of biobased 

succinic acid production. The purification consists of two processes: the removal of the cells and 

the rest of the nutrients, and the conversion of succinic salts to succinic acid. Because of the neutral 

agents added in the fermentor to adjust the pH value around 7 for the growth of microorganism, 

the resulting products exist in a form of succinic salts in the broth.  

Ca(OH)2 is usually added to neutralize the fermentation broth and to precipitate calcium succinate 

at the same time. Calcium succinate is separated by filtration and converted to succinic acid by 

adding sulfuric acid [78]. However, a large amount of by-product calcium sulfate (CaSO4) is 

generated and an important amount of the chemicals which cannot be regenerated are consumed 

with this method.  

Reactive extraction with amine-based extractants has also been reported in many studies in the 

literature because of its easy operation at mild temperature and pressure conditions [79].  

Vacuum distillation combined with crystallization was developed, which enables the removal of 

by-products such as acetic, formic acids from the broth and crystalizes succinic acid [80]. 

Electrodialysis (Figure 2-15) is used to separate succinate from non-ionized compounds such as 

carbohydrates, proteins and amino acids, then water-splitting electrodialysis converts succinate salt 

to succinic acid [81]. 

Recently, the application of one-step recovery method which crystallizes succinic acid directly in 

the fermentation broth was reported [82]. In the neutral solution, about 90 % of the succinic acid 

and by-products such as formic, lactic and acetic acid exist in their ionic forms. When the pH value 

of the solution is 2.0, the solubility of succinic acid is only 3%. On the other hand, the by-products 

still have larger solubility in the fermentation broth at pH 1.0~1.4 and temperature of 0~4 °C. 

Therefore, succinic acid can be selectively separated by crystallization if the pH is controlled at 2.0 

by adding HCl. According to the report of Qiang et al., 70% yield and 90% purity of succinic acid 

using this process can be obtained [82]. 
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Figure 2-15 Process combining electrodialysis and water-splitting electrodialysis [83] 

2.5 Process integration and internal heat recovery 

When a biorefinery process is added to an existing pulp and paper facility, it is unavoidable that 

the demands for heating and cooling increase. However, building a new utility system, including a 

cooling tower and a steam boiler in a stand-alone design is not cost-effective. Therefore, it is 

imperative to analyze the process and to identify opportunities for heat integration and energy 

reduction in order to decrease the energy demand and the operation costs. Pinch Analysis can be 

applied to the heat integration studies. 

2.5.1 Pinch Analysis  

The Pinch Analysis, which was developed by Linnhoff et al. in 1982, is a widely-used method for 

energy integration [84]. It provides a systematic methodology to save energy within a process by 

maximizing internal heat recovery and minimizing external hot and cold energy demands supplied 
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by utilities. It also provides systematic guidelines to design a heat exchanger network for the 

maximum internal heat recovery and optimal utility use.  

In order to start a pinch analysis, thermal data such as in/out temperature and heat load of streams 

are extracted from the process. The streams are identified as either hot, which need to be cooled, 

or cold, which need to be heated. The total energy excess or deficit can be illustrated separately by 

means of the Composite Curves where enthalpy is represented on the x-axis against temperature 

on the y-axis (Figure 2-16 a). Once the construction of the hot and cold composite curves is done, 

the cold composite curve is moved toward the hot composite curve in order to obtain the minimum 

energy target (Figure 2-16 (a)). The minimum temperature difference, Tmin, determines the closest 

point between the curves and the minimum temperature difference in a heat exchanger. The 

Composite Curves provide several important features of the thermal system, such as (Figure 

2-16(b)): 

 Maximum potential heat recovery, QRmax: the overlap between the composite curves. 

 Minimum hot utility requirement, QHmin: the remaining heating needs. 

 Minimum cold utility requirement, QCmin: the remaining cooling needs. 

 

 

Figure 2-16 Building and use of the composite curves to determine the energy targets [85] 

 

The point of closest approach between the hot and the cold composite curves is called “Pinch 

point”. It separates the system into two regions: one above the pinch is the heat sink and one below 
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the pinch is the heat source. In Pinch Analysis, three rules should be followed to reach the minimum 

energy targets of the process: 

 Heat must not be transferred across the pinch 

 No external cooling above the pinch  

 No external heating below the pinch 

For the selection of Tmin, the consideration of a trade-off between capital and energy costs is 

required. Higher value of Tmin causes higher hot and cold utility requirements while lower Tmin 

needs larger and more expensive heat exchangers in P&P processes. The optimum Tmin is 

approximately 10~20°C [86].  

The composite curves provide the overall energy targets. However, they do not show how much 

energy must be supplied based on the utility conditions. The energy can be supplied by various 

utility levels such as different steam pressure levels, cold water, refrigeration, etc. It is necessary 

to design heat exchangers that maximize cheaper utility levels and minimize expensive utility 

levels in order to save energy cost. In fact, it is encouraged to use LP steam or cooling water instead 

of HP steam or refrigeration because of their cost. Therefore, the grand composite curve is used to 

choose the appropriate utility levels and to target the optimal heat loads.  

To build the Grand Composite Curve, hot and cold composite curves are shifted by moving down 

the hot curve and moving up the cold curve, each by ½  Tmin until they touch at the pinch point 

(Figure 2-17 (b)). The grand composite curve is drawn by plotting the heat load difference between 

the hot and the cold composite curves, as a function of the temperature (Figure 2-17 (c)). The pinch 

point is where the curve touches the y-axis. From the Grand Composite Curve, the utility levels 

required for the process can be chosen.  
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Figure 2-17 Construction of the grand composite curve [85] 

2.6 Water pinch 

Over the past two decades, there has been a growing concern regarding freshwater consumption 

and wastewater treatment in the industry. The purpose of water pinch analysis is to reduce flows 

going to the water treatment process and to reuse them where possible. Its principles are similar to 

those of thermal pinch analysis. However, the driving force is the difference of contaminant 

concentration. Similarly in the way as energy pinch does, water purity profiles that correspond to 

composite curves in energy pinch are built. The flow rate is indicated on the horizontal axis and 

water purity is represented on the vertical axis. By moving both water source and sink curves until 

they touch at the pinch, water purity profiles are completed. The water pinch indicates the amount 

(b) (c) (a) 
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of water that can be re-used (overlapped parts), the minimum wastewater generated (on the left), 

and the minimum freshwater consumed (on the right) (Figure 2-18).  

 

Figure 2-18 Water purity profiles   [85]      

2.7 Energy and water pinch analysis in P&P mills 

pinch analysis is applied in many energy-intensive industries such as oil refining, pulp and paper, 

or textiles to reduce external fossil fuel consumption [86]. In the old pulp and paper mills, pinch 

analysis has not be considered for the energy recovery. Therefore, it is possible to obtain 

economically attractive energy savings just by respecting the pinch rules [87]. Actually, the 

Augusta Newsprint Company in the US identified overall steam savings of 42% and cost savings 

of $7.15 per ton of paper, Kimberly Clarke’s Coosa Pines facility in US achieved energy savings 

of 22% and cost savings of $15.4 per ton of paper [88]. Lafourcade, S. et al. carried out pinch 

analysis on TMP mills and improved the energy efficiency: the steam consumption has dropped 

from 60.5 ton/h to 56.1 ton/h [89].  Jacob et al. proposed water network optimization methods that 

can be applied to pulp and paper mills [90]. Mateos et al. performed an interaction study between 

the water and energy systems in a Kraft mill, showing synergistic effects of water reutilization on 

energy consumption [91, 92].   
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2.8 Critical review 

Integrated forest biorefinery (IFBR) has been recommended as a reasonable alternative to 

overcome the current operational risk of the P&P mills and to find sustainable fuels and chemicals 

that can substitute petroleum-based process. The interaction between the biorefinery and the 

existing pulp mill in terms of material and energy should be considered without negative impacts 

on the quality of final products. 

So far, several studies for the development of an IFBR concept were performed. However, many 

researches have dealt with specific parts of the process configuration in biorefinery such as 

pretreatment, hemicellulose extraction technology, or combining of black liquid gasification 

instead of the overall process [79, 93, 94].  

In addition, most of the studies are focused on the Kraft pulp mill as a biorefinery receptor mill 

[95].  There are 28 mechanical pulp mills and 24 Kraft pulp mills in Canada [19], and the economic 

value of their manufacturing in 2010 were 973 M$ and 5 659 M$, respectively [96]. Therefore, 

research work on IFBR with a mechanical pulp mill as a receptor mill is also needed.  

Most of studies on the IFBR consider the production of bio-ethanol [97], however, it is important 

to expand the types of final products to various value-added chemicals to diversify the sources of 

revenue.  

In this work, overall process configurations for the production of bio-based lactic and succinic acid 

from a hydrolysate diverted from a TMP process were developed and simulated on Aspen Plus. 

The interactions between the biorefinery plant and the TMP process were analyzed in terms of heat 

integration. Finally, the strategies and the technical/economic feasibility of a IFBR composed of a  

TMP mill and a LA/SA plant were discussed.   
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CHAPTER 3 OBJECTIVES AND METHODOLOGY 

3.1 Objectives  

The main objective of this study is to demonstrate the technical and economic feasibility of an 

integrated forest biorefinery (IFBR) composed of a TMP process and a biorefinery plant for the 

production of lactic or succinic acid. 

The specific objectives of this work are to: 

 Review the production processes for lactic and succinic acid. 

 Propose process configurations for the production of lactic and succinic acid from forest 

biomass. 

 Develop simulation models for both lactic and succinic acid on ASPEN Plus. 

 Perform energy analysis by using Pinch Analysis.  

 Evaluate the proposed process configurations to identify the effects from energy 

perspectives (e.g. heat integration potential, minimum hot and cold utility demand).  

 Demonstrate the technical and the economic feasibility of the concept of integrated forest 

biorefinery (IFBR) in a TMP process.  
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3.2 Methodology 

The methodology used to develop the lactic and succinic acids IFBR is illustrated in Figure 3-1. 

The project consists of five phases that are listed below: 

 

 

Figure 3-1 Overview of the methodology for the bio-based lactic and succinic acids IFBR 

development 
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Phase 1 – Literature review for the production of bio-based lactic and succinic acids: 

In the first phase, a literature review on different configurations of biorefinery depending on raw 

material, final products, and recovery methods was conducted.   

Phase 2 – Selection of the process configuration: 

Two configurations for each final products (LA/SA) to be integrated to a TMP plant were selected. 

In addition, specific conditions such as temperature, pressure were selected in this phase. These 

conditions are used as input data in the simulation module. 

Phase 3 – Development of the simulation: 

The selected bio-refinery configurations for both lactic and succinic acid production, which 

represent four different processes, were simulated on Aspen Plus. The composition and the amount 

of feedstock were provided from FPInnovations. The material and energy balances were calculated 

in this phase. 

Phase 4 – Process integration: 

In the fourth phase, the process integration of the four stand-alone bio-based lactic and succinic 

acid plants into a TMP process was performed based on Pinch Analysis. The streams data of the 

TMP mill were provided by FPInnovations and those for the lactic and succinic acid plants were 

extracted from the Aspen Plus simulation. The energy target and the required utility levels of each 

stand-alone process were determined by the Composite Curve and the Grand Composite Curves. 

Aspen Energy Analyzer and Microsoft Excel were used in this phase.  

During the process integration two scenarios were developed. In the first scenario, part of the 

streams of the stand-alone biorefinery plant that need hot utility (steam) were selected, and then 

the heat integration was performed with these streams and the TMP mill. In the second scenario, 

the heat integration was performed using all the streams of the stand-alone biorefinery plant and 

the TMP process. The impact of the integration and the heat recovery opportunities were evaluated 

and the Heat Exchange Network was designed.  

Phase 5 – Economic evaluation: 

Finally, an economic evaluation was performed. The economic viability of the IFBR between a LA 

or SA plant and a TMP mill has been assessed by calculating the payback period.  
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CHAPTER 4 DESIGN OF BIOREFINERY CONFIGURATIONS & 

SIMULATION DEVELOPMENT 

4.1 Selection of the process configurations 

The detailed explanation of the configurations selected in this study for the production of bio-based 

lactic and succinic acid from biomass was given in Section 2.4. In summary, there are five main 

steps for the production of lactic and succinic acid from lignocellulosic biomass by bio-based 

pathways: i) pretreatmnet, ii) enzymatic hydrolysis, iii) detoxification, iv) fermentation, and v) 

product recovery. Figure 4-1 illustrates the process configuration for the production of lactic and 

succinic acid from lignocellulosic and starch biomass feedstocks.  

 

Figure 4-1 Configuration of the bio-based LA/SA production 
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In order to develop a simulation model, two configurations for both lactic and succinic acid were 

selected depending on the recovery method. The selection criteria are the high yield/purity of the 

final product, low energy consumption, availability in a commercial scale, and environmental 

sustainability (Table 4-1).  

  

Table 4-1 The criteria used for process configurations selection 

Process Yield Energy use 
Commercial 

application 

Environmental 

sustainability 

LA production with the recovery by 

conventional method (precipitation) 
√ √ √  

LA production with the recovery by 

electrodialysis 
√   √ 

SA production with the recovery by direct 

crystallization 
√ √ √  

SA production with the recovery by 

electrodialysis 
√   √ 

 

Finally lactic acid production with the recovery by conventional method (precipitation) and 

electrodialysis, and succinic acid production with the recovery by direct crystallization and 

electrodialysis were chosen. In this project, as the feedstock is a pretreated sugar-rich stream 

diverted from a TMP process and the hydrolysate are almost pure sugars with very small amount 

of acetic acid, the pretreatment and the detoxification steps are not considered in the simulation. 

The final four configurations to be simulated and evaluated for the integrated forest biorefinery 

(IFBR) are presented in Figure 4-2.  
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Figure 4-2 Configurations considered for the simulation 

 

4.2 Development of the simulation models 

To support the work, simulation models in Aspen Plus for stand-alone plants that produce bio-

based lactic and succinic acid from lignocellulosic feedstock have been developed. The feedstock 

used and the hydrolysis step are the same for the four simulations. However, different reactions are 

applied for the production of lactic and succinic acid in the fermentation step. During the recovery 

process, the conventional method (Project A) and electrodialysis (Project B) are used for the 

purification of lactic acid, and the method of direct crystallization (Projcet C) and electrodialysis 

(Project D) are adopted for the succinic acid recovery.  

4.2.1 Feedstock composition 

In this project, the feedstock is a prehydrolysate of aspen wood chip submitted to a mild chemical 

treatment and a low pressure mechanical refining. The composition of the feedstock is supplied by 

FPInnovations [98]. Table 4-2 gives the composition of the feedstock and its representation in the 

Aspen Plus simulation. The amount of the feedstock was assumed to be 500 ton/day (dry basis).  
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Table 4-2 Representation of the feedstock composition in Aspen Plus [98] 

Wood component Aspen Plus % 

Glucan CELLULOS  54.71 

Xylan XYLAN  14.37 

Lignin LIGNIN  23.1 

Other Carbons GALACTAN 2.91 

Extractives ASH  0.35 

Unknown ACETATE  4.56 

Total  100.00 

 

Some of the materials that do not exist in the conventional databank of Aspen Plus, but are involved 

in the production of lactic and succinic acid, such as cellulose, xylan, lignin, galactan, and ash, are 

taken from the NREL database [55]. The glucan is assumed to have the same properties as cellulose 

and the other carbons, extractives, and unknown components are considered as galactan, ash, 

acetate, respectively. 

4.2.2 Enzymatic hydrolysis 

In the hydrolysate supplied by FPInnovations, the pretreated stream is mixed with water and 

enzyme formulations from Novozymes. The properties of enzymes are assumed to be the same as 

those of zymo in the NREL data bank [55]. In Aspen Plus, the hydrolysis step is modeled as a 

stoichiometric reactor (RStoic). The remaining solid part and the enzymes in the resulting stream 

are separated by centrifugation. Figure 4-3 shows the flowsheet of the simulation of the enzymatic 

hydrolysis. The reactions that are assumed to occur in the enzymatic hydrolysis reactor are 

presented in Table A1 in Appendix A. 
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Figure 4-3 Flowsheet of the enzymatic hydrolysis step modeled in Aspen Plus 

 

4.2.3 Lactic acid production 

4.2.3.1 Lactic acid fermentation 

For the simulation of the lactic acid fermentation, a stoichiometric reactor (RStoic) is used and the 

operating conditions (temperature of 49°C, pH of 5.8 to 6.0) are chosen based on the literature 

review [68]. The used microorganism is assumed to be lactobacillus (added 4g/L [99]) whose 

properties are supposed to be the same as those of biomass in the NREL data bank. Regarding the 

pH control, two different bases are added in the fermentation step depending on the method of 

separation. Ca(OH)2 (49% [g/g sugar] [100]) is used for the separation by precipitation 

(conventional) and NaOH (160g/L [99]) is added for the separation by electrodialysis. The nutrient 

for the metabolism of the microorganisms is assumed to be a corn steep liquor (20 g/L [99]), the 

properties of which are taken from the NREL data bank. The reactions that are assumed to occur 

in the fermentation reactor are presented in Table A2 in Appendix A.  

Water

Hydrolysis

Waste, cells

Sugars
To Fermentation

Feed from TMP

Water

Enzymes



43 

 

 

Figure 4-4 Flowsheet of the lactic acid fermentation 

 

4.2.3.2 Lactic acid recovery 

4.2.3.2.1 Lactic acid recovery by conventional method 

The fermentation broth is filtered to remove cells, then heated to 70°C to kill the bacteria and make 

the proteins coagulate. Stoichiometric reactor (RStoic) is used to simulate the precipitation step by 

adding sulfuric acid. Calcium lactate is converted to lactic acid by reacting with sulfuric acid. 

Gypsum is created as a by-product and is removed by filtration. The resulting lactic acid is sent to 

evaporation (100 °C) to increase the concentration of lactic acid.  

A further purification process is carried out by esterification, distillation and hydrolysis. A 

stoichiometric reactor (RStoic) is used for the esterification at 100 °C, 1 atm, and methanol is added. 

During the esterification, lactic acid reacts with methanol and creates methyl lactate and vapor. 

The non-reacted methanol, methyl lactate and vapor are sent to first distillation unit, and the methyl 

lactate is separated in the distillation bottom. The distillation is simulated with the RadFrac model 

in Aspen Plus. The liquid phase of methyl lactate is converted to lactic acid and methanol in the 

hydrolysis reactor, which is simulated with RStoic. In the second distillation unit, the methanol is 

separated in the column head, then recycled to the esterification step and the lactic acid is sent to 

the distillation bottom. The simulation flowsheet of the lactic acid recovery steps with the 

conventional method is illustrated in Figure 4-5. The reactions that are assumed to occur are shown 

in Table A3 in Appendix A.  
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Figure 4-5 Flowsheet of the lactic acid recovery by conventional method (Project A) 

4.2.3.2.2 Lactic acid recovery by electrodialysis 

The fermentation broth is filtered to remove cells and the lactic acid is separated by electrodialysis. 

A separator is used to represent the electrodialysis step in Aspen Plus, the simulation flowsheet of 

the lactic acid recovery steps with electrodialysis is illustrated in Figure 4-6. After the 

electrodialysis, the remaining purification steps are the same as in Section 4.2.3.2.1. 
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Figure 4-6 Flowsheet of the lactic acid recovery by electrodialysis (Project B) 

4.2.4 Succinic acid production 

4.2.4.1 Succinic acid fermentation 

The operation conditions of the fermentation step are obtained from US patent (37°C, 

aerobiospirillum succiniciproducens strain) [64]. As in the lactic acid fermentation, a 

stoichiometric reactor (RStoic) is used and the properties of microorganism (added 2.5 g/L [101]) 

are supposed to be the same as biomass in Aspen Plus. NaOH is added (10 mol/L [102]) to control 

pH. The corn steep liquor (added 5 g/L [101]) is assumed as a nutrient for the metabolism of 

microorganism; the properties are taken from the NREL data bank. The simulation flowsheet of 

the succinic acid fermentation is illustrated in Figure 4-7. 

 

Figure 4-7 Flowsheet of the succinic acid fermentation 
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4.2.4.2 Succinic acid recovery 

4.2.4.2.1 Succinic acid recovery by direct crystallization 

The fermentation broth is filtered to remove cells, then sent to an evaporator (Flash2) operated at 

102°C and 1 atm [103]. Since the acetate and formate produced as by-products have a lower boiling 

points than succinate, they can be vaporised along with most of the water. At the bottom part of 

the evaporator, a concentrated succinate stream is obtained with a small amount of impurities. In 

the crystallization, HCl is added to lower the pH of the liquid to acidic conditions (pH 2), then 

cooled down to 4°C where the solubility of the succinic acid is 3%. Only succinic acid is 

crystallized because acetic or formic acid impurities entering in the crystallisation vessel are 

considered soluble in water. The crystallized succinic acid is then dried. The simulation flowsheet 

of the succinic acid recovery by direct crystallization is illustrated in Figure 4-8.  

 

Figure 4-8 Flowsheet of the succinic acid recovery by direct crystallization (Project C) 

4.2.4.2.2 Succinic acid recovery by electodialysis 

The fermentation broth is filtered to remove the cells and the solution is treated by electrodialysis. 

A separator is used to represent the electrodialysis step converting succinate to succinic acid. The 

solution is concentrated by evaporation, crystallized, and dried. The specification of the 
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evaporation, the crystallization and the drying steps are the same as in 4.2.4.2.1. The simulation 

flowsheet of the lactic acid recovery steps using electrodialysis is illustrated in Figure 4-9.  

 

Figure 4-9 Flowsheet of the succinic acid recovery by electrodialysis (Project D) 

 

4.3 Simulation results 

Four different configurations were simulated using Aspen Plus: the production of lactic acid with 

the recovery by conventional method (precipitation, Project A) and electrodialysis (Project B), and 

the production of succinic acid with the recovery by direct crystallization (Project C) and 

electordialysis (Project D).  

4.3.1 Stand-alone bio-based lactic acid production (Project A, B) 

Figure 4-10 shows the results of the material balance obtained from the Aspen Plus simulation of 

the stand-alone bio-based lactic acid production using the conventional method for the final product 

recovery (Project A).  

A stream of 500 ton/day (a pretreated stream diverted from the TMP mill whose components were 

given in Table 4-2 in Section 4.2.1) was sent to the enzymatic hydrolysis step and 240 ton/day of 

sugars were produced. In Table 4-3, the components concentration in the hydrolysates was 

calculated from the simulation results and was close to the FPInnovations data [98]. The results 
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generated from the enzymatic hydrolysis step will be also applied to the simulation of the succinic 

acid production in Section 4.3.2. 
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Figure 4-10 Material balance for the stand-alone bio-based lactic acid production with the recovery 

by conventional method (Project A) 

 

Table 4-3 Concentration of components in the hydrolysate based on simulation results [g/L] 

Composition 
Concentration 

[g/L] 

Glucose 92.2 

Xylose 28.9 

Oligosaccharides 10.9 

Acetic acid 3.2 

 

Recovery I 
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Microorganisms (Lactic Acid Bacteria) metabolize sugars (glucose, xylose) and produce lactic acid 

as a major metabolite during the fermentation at a temperature of 45 °C, pH of 7. During the 

fermentation, 201 tons of lactic acid were produced and 84% (g LA/ g sugar) yield was obtained.  

In Figure 4-10, for the recovery by precipitation, after treatment with sulfuric acid, 241 ton/day of 

gypsum (calcium sulfate) were produced and 184 ton/day of lactic acid were recovered from the 

fermentation broth, with a 92% yield. After the further purification steps, 180 ton/day of lactic acid 

was produced, and overall 36% yield was obtained (g LA/g feedstock). Table 4-4 presents the most 

energy demanding steps of the process in the stand-alone bio-based lactic acid production using 

the conventional method in the recovery (Project A).  

 

Table 4-4 The most energy demanding units in the lactic acid production with the recovery by the 

conventional method (Project A) 

Unit MW 

Distillation #1 117.8 

Distillation #2 59.0 

Evaporation 84.3 

Esterification 4.5 

Hydrolysis 5.7 

 

The material balance based on the Aspen Plus simulation of the stand-alone bio-based lactic acid 

production with the recovery by electrodialysis (Project B) is presented in Figure 4-11. The 

enzymatic hydrolysis and the fermentation step were the same as in the simulation of the Project 

A. As shown in Figure 4-11, the lactic acid recovered by electrodialysis from the fermentation 

broth was 190 ton/day, with a 95 % yield, then the stream is evaporated. Since electrodialysis 

requires electric energy, the electricity consumption in the electrodialysis (7MW) was included in 

the operating costs in the economic evaluation. After esterification, distillation, and hydrolysis, 184 

ton/day of lactic acid was produced. An overall 36% yield (g LA / g feedstock) for the lactic acid 

production was obtained. Table 4-5 presents the most energy demanding process steps in the stand-

alone bio-based lactic acid production with the recovery by electrodialysis (Project B).  
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Figure 4-11 Material balance for the stand-alone bio-based lactic acid production with the recovery 

by electrodialysis (Project B) 

 

Table 4-5 The most energy demanding units in the lactic acid production with the recovery by 

electrodialysis (Project B) 

Unit MW 

Distillation #1 117.8 

Distillation #2 58.7 

Evaporation 141.6 

Esterification 4.5 

Hydrolysis 6.0 
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4.3.2 Stand-alone bio-based succinic acid production (Project C, D) 

Figure 4-12 shows the results of the material balance obtained from the Aspen Plus simulation of 

the stand-alone bio-based succinic acid production with recovery by direct crystallization (Project 

C). 

The same results of the enzymatic hydrolysis as those obtained in Section 4.3.1 were used here. In 

a similar way as in the bio-based lactic acid production, microorganisms, which metabolize sugars 

(glucose, xylose) and produce succinic acid as a major metabolite, were used during the 

fermentation maintaining the temperature at 37 °C and the pH at 7. During the fermentation, 182 

ton/day of succinic acid are produced and a 76% (g SA/ g sugar) yield was obtained.  

In Project C, the fermentation broth was evaporated and the succinic acid was crystallized by 

adding 0.17 ton/day of hydrochloric acid (HCl) and by decreasing the temperature to 4 °C. During 

the direct crystallization, 154 ton/day of succinic acid crystals with 85% yield (g SAcry/ g SA) were 

produced before being sent to the Dryer. Table 4-6 presents the most energy demanding process 

steps in the stand-alone bio-based succinic acid production with the recovery by direct 

crystallization.  

Enzymatic
Hydrolysis

Fermentation Evaporation 

Crystallization Dryer

Feed (500 ton/day)

Water (1600 ton/day)

Sugars (240 ton/day) SA (181 ton/day)

Microorganism (8 ton/day)
Nutrient (16 ton/day)
NaOH (9.85 ton/day)
CO2 (34.56 ton/day)

Enzyme (10 ton /day)

SA (181 ton/day)

HCl  (0.17 ton/day)

Vapor

SA (154 ton/day)

SA (154 ton/day)

Recovery I

 

Figure 4-12 Material balance for the stand-alone bio-based succinic acid production with direct 

crystallization (Project C) 
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Table 4-6 The most energy demanding units in the succinic acid production with the recovery by 

direct crystallization (Project C) 

Unit MW 

Evaporation 290.3 

Dryer 5.0 

Crystallization 14.0 

 

The material balance based on the Aspen Plus simulation of the stand-alone bio-based succinic 

acid production with recovery by electrodialysis (Project D) is presented in Figure 4-13. The results 

of the enzymatic hydrolysis and the fermentation are the same as in Figure 4-12. For the recovery 

by electrodialysis, the succinic acid recovered from the fermentation broth was 163 ton/day, with 

90 % yield. The supply of extra electricity for the electrodialysis is 6MW, which will be included 

in the economic evaluation. After the electrodialysis, the stream is evaporated and the succinic acid 

is crystallized by decreasing the pH and the temperature. The final succinic acid crystal production 

after drying was 154 ton/day, with a 30.8 % (g SA / g feedstock) yield.  

Electrodialysis

Evaporation Crystallization Dryer

SA (163 ton/day)

HCl  (0.15 ton/day)

Vapor

SA (154 ton/day)

SA (163 ton/day) SA (154 ton/day)

Enzymatic
Hydrolysis

Fermentation

Feed (500 ton/day)

Water (1600 ton/day)

Sugars (240 ton/day) SA (181 ton/day)

Microorganism (8 ton/day)
Nutrient (16 ton/day)
NaOH (9.85 ton/day)
CO2 (34.56 ton/day)Enzyme (10 ton /day) Electricity (6MW)

Recovery II

Recovery I

 

Figure 4-13 Material balance for the stand-alone bio-based succinic acid production with recovery 

of electrodialysis (Project D) 
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Table 4-7 The most energy demanding units in the succinic acid production with the recovery by 

electrodialysis (Project D) 

Unit MW 

Evaporation 231.3 

Dryer 5.0 

Crystallization 14.0 

 

4.4 Summary 

In this project, five process steps for the production of bio-based lactic and succinic acid from 

hydrolysate of aspen chips were studied:  

i. Pretreatment: To make the structure of lignocelllulosic biomass more sensitive and 

accessible in order to release to cellulose and hemicelluloses 

ii. Enzymatic hydrolysis: To convert the cellulose and hemicelluloses to fermentable sugars 

(pentose, hexose) 

iii. Detoxification: To remove the inhibitors formed during pretreatment and hydrolysis that 

hinder the fermentation 

iv. Fermentation: To convert the sugars to lactic or succinic acid 

v. Product recovery: To separate pure lactic or succinic acid from the fermentation broth 

In this project two different configurations depending on the recovery method for each product 

(lactic and succinic acid) were selected and simulated on Aspen Plus:  

- Project A: Bio-based lactic acid production with recovery by conventional method 

(precipitation) 

- Project B: Bio-based lactic acid production with recovery by electrodialysis 

- Project C: Bio-based succinic acid production with recovery by direct crystallization 

- Project D: Bio-based succinic acid production with recovery by electrodialysis 

Table 4-8 summaries the key results obtained from the simulation of the Projects A to D.  
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Table 4-8 Comparison of the material balances based on the simulation results 

     Project A             Project B             Project C           Project D    

Enzymatic 

hydrolysis 

Feed 500 ton/day 

Sugars 240 ton/day 

Yield 48% 

  Lactic acid Succinic acid 

Fermentation 
Product 201 ton/day 182 ton/day 

Yield 84% 76% 

Recovery I 
Product 184 ton/day 190 ton/day 154 ton/day 163 ton/day 

Yield 92% 95% 85% 90% 

Recovery II 
Product 180 ton/day 184 ton/day - 154 ton/day 

Yield 98% 97% - 94% 

Overall Yield 36% 37% 30.8% 30.8% 

In Project A and Project B, Recovery I indicates the precipitation and electrodialysis steps respectively, and Recovery II indicates 

the further purification process after the Recovery I that consists of esterification, distillation, and hydrolysis steps.  

In Project C and Project D, Recovery I indicates the direct crystallization and electrodialysis steps respectively, and Recovery II 

indicates the crystallization step in Project D. 
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CHAPTER 5 TECHNO-ECONOMIC ANALYSIS OF THE 

INTEGRATED FOREST BIOREFINERY (IFBR) 

5.1 Energy analysis of the IFBR 

The Pinch Analysis and its analysis tools such as the Composite Curves (CC) and the Grand 

Composite Curve (GCC) were used to for the analysis of the IFBR. The process integration is 

composed of two steps that are described below (Figure 5-1).  

 

 

 

 

 

 

 

 

 

 

Figure 5-1 Process integration strategy 

 

In scenario 1, HEN design of the stand-alone lactic acid and succinic acid plant is performed first. 

Secondly, the streams using hot utility, which are indicated as green arrows in Figure 5-2, are 

extracted. Then a new HEN design is carried out with those streams, hot streams from the TMP 

mill that are determined during the combined analysis, and hot utilities (Figure 5-3). In scenario 2, 

HEN design with all of streams of the stand-alone lactic or succinic acid plants, hot streams from 

the TMP mill that are determined during the combined analysis, and hot utilities is performed 

simultaneously (Figure 5-4).  

Individual analysis

Combined analysis

Heat recovery opportunity of IFBR 

(Scenario 1, Scenario 2) 
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Hot streams in biorefinery

Cold streams in biorefinery

Hot utility (LP-steam)

 

Figure 5-2 HEN design and heat recovery opportunity in scenario 1 (1) 

Hot streams in TMP

Cold streams in biorefinery
using hot utility

Hot utility (LP-steam)
 

Figure 5-3 HEN design and heat recovery opportunity in scenario 1 (2) 

Hot streams in TMP

Hot streams in biorefinery

Cold streams in biorefinery

Hot utility (LP-steam)

 

Figure 5-4 HEN design for the heat recovery opportunity in scenario 2 
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5.1.1 Individual analysis of TMP, LA, and SA processes 

Pinch analyses on the TMP mill, lactic acid plant and succinic acid plant are performed separately. 

The streams data of the TMP mill such as heat load (H), supply temperature (°C), target 

temperature (°C) were provided by FPInnovations and those for the lactic and succinic acid 

biorerinery were extracted from the Aspen Plus simulation. The streams were defined as either 

“hot” that require cooling or “cold” that require heating. The total energy requirement (energy 

target) and pinch point were determined using the Composite Curves. The utility level that should 

be provided for the process were obtained from the Grand Composite Curve. The temperature 

difference (Tmin) of  10°C between the hot and cold curves was set. Aspen Energy Analyzer and 

Microsoft Excel were used to build the Composite Curves and Grand Composite Curve. 

5.1.1.1 TMP mill 

The relevant streams of the TMP mill were identified in Table B1 in Appendix B. The Composite 

Curves are shown in Figure 5-5, and the pinch point was obtained at 142.1°C (Tmin was assumed 

to be 10°C). The minimum hot utility demand (QH,min of 57 MW) and the minimum cooling utility 

demand (QC,min of 14 MW) were determined in Figure 5-5.  

 

Figure 5-5 Composite curve of the TMP mill 
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5.1.1.2 Stand-alone bio-based lactic acid plant (Project A, B) 

The Composite Curves of the bio-based lactic acid plant using 500 ton/day of aspen wood chips 

hydrolysate as a feed stock are shown in Figure 5-6. The streams data of the lactic acid biorefinery 

with the recovery by conventional method (precipitation, Project A) and electrodialysis (Project B) 

were extracted from the result of the Aspen Plus simulation (Table B2 and Table B3 in Appendix 

B). In project A, the pinch point was 94.9°C and the minimum heating demand (QH,min), the 

minimum cooling demand (QC,min) were determined as 209 MW and 40 MW, respectively. In 

project B, the pinch point was set to 95.1 °C, and the minimum heating demand (QH,min) and the 

minimum cooling demand (QC,min) were 305 MW and 90 MW respectively. 

 

  

Figure 5-6 Composite curves of the stand-alone bio-based lactic acid plant 

A) Project A: recovery by conventional method, B) Project B: recovery by electrodialysis 

 

5.1.1.3 Stand-alone bio-based succinic acid plant (Project C, D) 

The Composite Curves of the stand-alone bio-based succinic acid plant using 500 ton/day of aspen 

wood chips hydrolysate as a feed stock with the recovery by direct crystallization (Project C) and 

electrodialysis (Project D) are shown in Figure 5-7. The related stream data are represented in Table 

B4 and Table B5 in Appendix B. As can be seen in Figure 5-7, both processes have a 9 °C pinch 
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point and very little cooling demand. The minimum heating demand (QH,min) of the stand-alone 

bio-based succinic acid production with recovery by direct crystallization and elctrodialysis are 

determined 299 MW and 242 MW, respectively.  

 

  

Figure 5-7 Composite curves of the stand-alone bio-based succinic acid plant 

A) Project C: recovery direct crystallization, B) Project D: recovery by electrodialysis 
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Figure 5-8 Combined GCC of the TMP mill and the biorefinery 

A) Project A: LA production with recovery by conventional method 

B) Project B: LA production with recovery by electrodialysis 

C) Project C: SA production with recovery by direct crystallization 

D) Project D: SA production with recovery by electrodialysis 
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5.1.3 Heat recovery opportunities of the IFBR 

In order to identify the heat recovery opportunities of the IFBR, the Heat Exchanger Network (HEN) 

design was performed for the four projects in two scenarios. Project A to D are integrated to the 

TMP mill, and the integrated forest biorefineries are defined in Figure 5-9. 

 

 

Figure 5-9 Integrated forest biorefineries  

- IFBR A : Integration of the bio-based lactic acid plant with the recovery by conventional method to the TMP mill 

- IFBR B : Integration of the bio-based lactic acid plant with the recovery by electrodialysis to the TMP mill 

- IFBR C : Integration of the bio-based succinic acid plant with the recovery by direct crystallization to the TMP mill 

- IFBR D : Integration of the bio-based succinic acid plant with the recovery by electrodialysis to the TMP mill 

 

5.1.3.1 Integration of the bio-based lactic acid plant with recovery by conventional method 

to the TMP mill (IFBR A) 

The total heat requirement in the stand-alone bio-based lactic acid plant with the recovery by 

conventional method is 367.6MW. The possible heat recovery options are presented in Figure 5-11 

and Figure 5-11. In the stand-alone bio-based lactic acid plant with the recovery by conventional 

method, the 0.5 MW of LP-steam used to heat the H2SO4 supply for the precipitation can be 

completely substituted by the Dirty condensate stream.  The crude LA from the precipitation step 

is heated before the evaporation step using LP steam (18MW). Steam savings of 1.7 MW can be 
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achieved by using the heat from the Dirty Condensate stream after the integration. The LP-steam 

used to heat the methanol supply to the esterification step (0.3MW) was recovered by the stream 

of Dirty condensate. For the heating in the esterification step, 11MW of LP-steam is needed in the 

stand-alone Project A. After the integration, 0.3 MW of heat was recovered from the Dirty 

Condensate stream. The heating of the reboiler of the distillation unit consumes 58.41MW of LP-

steam. Thanks to the integration, 32.85 MW of heat was recovered by the stream of Line 3_Dirty 

steam. 
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Figure 5-10 Heat recovery opportunities in the IFBR A 

  



65 

 

 

 

Project A (stand-alone) IFBR A 

1. H2SO4 supply to the precipitation 

20 °C

H2SO4

70 °C

Precipitation

LP steam 
0.49 MW

 

 

20 °C

H2SO4

70 °C

Precipitation

Steam savings : 0.49 MW

DC
0.49 MW

 

2. Crude LA from the precipitation 

96.01 °C

LA

96.01 °C

Evaporation

LP steam 
18.06 MW

  

 

96.01 °C

LA

96.01 °C

Evaporation

Steam savings : 1.71 MW

LP steam 
16.35 MW

DC
1.71 MW

 

3. H2SO4 supply to the precipitation 

20 °C

MeOH

100 °C

Esterification

LP steam 
0.33 MW

 

 

20 °C

MeOH

100 °C

Esterification

Steam savings : 0.33 MW

DC
0.33 MW

 



66 

 

4. Heating for the esterification 

Esterification

LP steam 
10.79 MW

 

 

         

Esterification

LP steam 
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DC
0.3 MW

Steam savings : 0.3 MW
 

5. Heating for the reboiler in distillation #2 

Distillation

LP steam 
58.41 MW

 

       

          

Distillation

LP steam 
25.45 MW

L3_DS
32.85 MW

Steam savings : 32.85 MW
 

Figure 5-11 Comparisons of the LP steam consumptions between the project A (stand-alone) and 

the IFBR A  

(DC: Dirty condensate, L3_DS: Line3_Dirty steam) 

 

In scenario 1, the streams using LP-steam in the lactic acid biorefinery were extracted and a new 

HEN was designed with the following streams, two hot streams from the TMP mill (Dirty 

condensate and Line 3 dirty steam), and LP-steam. In the scenario 2, the HEN design was 

performed with all the streams at the same time. The LP-steam demand was decreased to 143.4 

MW and 144.1 MW after the heat integration in scenario 1 and 2 respectively (Table 5-1). Finally 

the 61% of total steam savings compared to the stand-alone project A were obtained. 
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Table 5-1 Energy profile of the IFBR A (integration of LA plant with recovery by conventional 

method to the TMP mill) 

Heat sources 
Load [MW] 

Scenario 1 Scenario 2 

Heat recovery 
Dirty condensate 2.83 4.30 

Line 3_Dirty steam 32.96 32.96 

External heating LP-STEAM 143.36 144.14 

Steam savings 61% 

 

5.1.3.2 Integration of the bio-based lactic acid plant with recovery by electrodialysis to the 

TMP mill (IFBR B) 

In the case of the stand-alone lactic acid plant with the recovery by electrodialysis, the total heat 

requirement is 351.1 MW. The possible heat recovery opportunities by the integration are shown 

in Figure 5-12 and Figure 5-13.  In the stand-alone bio-based lactic acid plant with recovery by 

electrodialysis, the LP-steam use for the methanol heating before the esterification step (0.33MW) 

can be recovered by the Dirty condensate stream. In the esterification step, 13.35 MW of LP-steam 

is needed to heat the esterification reactor. After the integration, 1.72 MW of heat was recovered 

from the stream of Dirty Condensate. To heat the reboiler of the distillation unit 84.3 MW of LP-

steam are required. As a result of the integration, 33 MW of heat can be recovered using the Line 

3_Dirty steam.   
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Figure 5-12 Heat recovery opportunities in the IFBR B 
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Figure 5-13 Comparisons of the LP steam consumptions between the project B (stand-alone) and 

the IFBR B 

 (DC: Dirty condensate, L3_DS: Line3_Dirty steam) 
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It was shown that 35 MW and 37.3 MW of internal heat is recovered during the heat integration 

from the TMP mill in scenarios 1 and 2 respectively, and the final LP-steam consumption was 

decreased to 255.7 MW, which means 27% of steam reduction, in both scenario 1 and 2 (Table 5-2) 

 

Table 5-2 Energy profile of the IFBR B (integration of LA plant with recovery by electrodialysis 

to the TMP mill) 

Heat sources 
Load [MW] 

Scenario 1 Scenario 2 

Heat recovery 
Dirty condensate 2.05 4.30  

Line 3_Dirty steam 32.96 32.96 

External heating LP-STEAM 255.71 255.71 

Steam saving 27 % 

 

5.1.3.3 Integration of the bio-based succinic acid plant with recovery by direct 

crystallization to the TMP mill (IFBR C) 

The total heat requirement in the stand-alone bio-based succinic acid plant with the recovery by 

direct crystallization is 330.4 MW. The opportunities for heat recovery by integration are presented 

in Figure 5-14 and Figure 5-15. The water supply to the filtration step after the enzymatic 

hydrolysis requires 5.3 MW of LP-steam. The integration allows 2.18 MW of heat to be recovered 

from the Dirty Condensate stream. The water supply to the filtration after the fermentation also 

requires 4.07 MW of LP-steam; it is possible to recover 1.15 MW of heat from the Dirty 

Condensate stream. Crude SA produced from the fermentation step is heated before the evaporation 

step using LP steam (290.32 MW). As a result of the integration, 32.96 MW of heat can be 

recovered using the Line 3_Dirty steam. For the air heating in the drying step, 0.96MW of LP-

steam is needed in the stand-alone project C. After the integration, this heat can be recovered from 

the Dirty Condensate steam.   
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Figure 5-14 Heat recovery opportunities in the IFBR C  
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Figure 5-15 Comparisons of the LP steam consumptions between the project C (stand-alone) and 

the IFBR C  (DC: Dirty condensate, L3_DS: Line3_Dirty steam) 

 

As a result of the heat integration, 37.26 MW of heat can be recovered from the TMP mill and the 

final LP-steam requirement is set to 265.63 MW (20% of steam saving) in both scenario 1 and 2 

(Table 5-3) 

 

Table 5-3 Energy profile of the IFBR C (integration of SA plant with recovery by direct 

crystallization to the TMP mill) 

Heat sources 
Load [MW] 

Scenario 1 Scenario 2 

Heat recovery 
Dirty condensate 4.30 4.30 

Line 3_Dirty steam 32.96 32.96 

External heating LP-STEAM 265.63 265.63 

Steam saving 20% 

 

5.1.3.4 Integration of the bio-based succinic acid plant with recovery by direct 

crystallization to the TMP mill (IFBR D) 

The total heat requirement in the stand-alone bio-based succinic acid plant with  recovery by direct 

crystallization is 270.9 MW. The heat recovery opportunities by integration are presented in Figure 

5-16 and Figure 5-17. In the stand-alone project D, the water supply to the enzymatic hydrolysis 

needs 3.3 MW of LP-steam; this heat can also be recovered from the Dirty Condensate stream. The 

water supply to the filtration after the enzymatic hydrolysis also requires 3.52 MW of LP-steam. 

In this case, 1 MW of heat may be recovered by the Dirty Condensate. Crude SA produced from 

the fermentation step is heated before the evaporation step, which requires 290.32 MW of LP-

steam. After the integration, 32 MW of heat can be recovered using the Line 3_Dirty steam. 

0.96MW of LP-steam is needed for the air heating in the dryer step. After the integration, this heat 

can be recovered from the Dirty Condensate stream.   
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Figure 5-16 Heat recovery opportunities in the IFBR D  
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Figure 5-17 Comparisons of the LP steam consumptions between the project D (stand-alone) and 

the IFBR D  (DC: Dirty condensate, L3_DS: Line3_Dirty steam) 

 

As a result of the heat integration, 37.26 MW of internal heat can be recovered from the TMP mill, 

thus decreasing the LP-steam to 205.80 MW (24% of total steam saving) in both scenario 1 and 2 

(Table 5-4).  

 

Table 5-4 Energy profile of the IFBR D (integration of SA plant with recovery by electrodialysis 

to the TMP mill) 

Heat sources 
Load [MW] 

Scenario 1 Scenario 2 

Heat recovery 
Dirty condensate 4.30 4.30 

Line 3_Dirty steam 32.96 32.96 

External heating LP-STEAM 205.80 205.80 

Steam saving 24% 

 

5.1.3.5 Summary of the heat integration results 

Thanks to the heat integration of the bio-based lactic and succinic acid plants with the TMP mill, 

the final LP-steam consumption has been decreased. There were little differences in the amount of 

possible heat recovery between scenarios 1 and 2. The details of LP-steam use in the stand-alone 

lactic and succinic plant and the integrated biorefinery in scenario 1 and 2 are shown in Figure 5-18. 

The results show that external utility (LP-steam) demand was reduced by 61%, 27%, 20%, and 24% 

in the IFBR A to D respectively.  
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Figure 5-18 Comparison of LP-steam consumption in the various IFBRs and scenarios 

 

The same result of heat integration was highlighted in scenario 1 and 2 in terms of additional LP-

steam use. However, it was found that the total HEX area is different in scenario 1 and 2.  The 

comparison of HEX area between the various projects and scenarios is shown in Figure 5-19. In 

IFBR A and scenario 1, the total HEX area was calculated as 33 200 m2, which is 4 560 m2 more 

than in scenario 2. In IFBR B, 41 334 m2 of total HEX area was obtained, which is 6 330 m2 more 

than in scenario 2. In IFBR C, on the other hand, the total HEX area in scenario 1 was 52 430 m2, 

which is 130 m2 less than in scenario 2. In IFBR D, the total HEX area in scenario 1 was 42 900 

m2, which is 461 m2 less than in the scenario 2. The HEX network of each project and scenario are 

listed in Appendix C.  

In conclusion, the heat integration of the biorefinery processes, which produce lactic or succinic 

acid, into the TMP mill allows the reduction of steam use comparing to the stand-alone biorefinery. 

The amount of possible heat recovery was similar for scenario 1 and 2. However, it was found that 

the HEX area may differ depending on the scenario. 
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Figure 5-19 Comparison of HEN area in the various IFBRs and scenarios 

 

5.2 Economic evaluation 

5.2.1 Total capital cost estimation 

A preliminary evaluation of the economic feasibility of the lactic and succinic acid production was 

made. The total capital costs for the bio-based lactic and succinic acid plants that are integrated 

into the TMP mill were estimated and the results are shown in Table 5-5. The total capital cost of 

each project is calculated by summing the individual equipment costs (such as reactors, separators, 

and distillations) and the HEX costs. The detailed calculation of the capital costs is presented in 

Appendix D. The results show that the HEX network has a great impact on the total capital cost. 

The HEX between the reboiler and the LP-steam requirement in the distillation are not considered 

in the HEX costs as it is already included in the equipment cost of the distillation unit. Additional 

investment costs, such as warehouse, a site development, and an office construction are not 

considered in the economic analysis because the TMP mill will share its existing facility. 
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Table 5-5 Total capital cost estimation for the four IFBRs 

 

Equipment 

cost 

[M$] 

HEX cost [M$] Total [M$] 

Scenario 1 Scenario 2 Scenario 1 Scenario 2 

IFBR A 12 96 75 108 88 

IFBR B 11 125 105 136 116 

IFBR C 5 205 206 209 210 

IFBR D 5 146 149 151 153 

 

5.2.2 Annual operating cost estimation 

The operating cost consists of fixed costs that include labor, maintenance fee, general overheads 

and variable costs of raw materials, waste handling, required chemicals, and utilities. 

The specific data of salaries on the 1998 basis were taken from the NREL report [55] and were 

indexed to 2015. The index used for this adjustment was taken from the Bureau of Labor Statistics 

[104]. A fraction of 50% of the total salaries was included in the operating cost considering that 

the integrated biorefinery can share manpower with the existing TMP mill. General overhead costs, 

annual maintenance costs, and insurance & taxes were assumed to be 60% of total salaries, 2% of 

the installed equipment cost, and 1.5% of the installed equipment cost, respectively [55].  

The variable operating costs for the enzymes, chemicals, and waste handling were taken from the 

literature [55, 105]. The feedstock price was assumed free as the prehydrolysate is provided by the 

TMP mill.  As for the electricity use, only the additional electricity demands for the electrodialysis 

are considered. The cost of electricity and LP-steam are 7.96 ¢/kWh (average industrial electricity 

price in Canada, 2013) [106] and 0.7¢/MJ (calculation based on the natural gas price), respectively.  

Table 5-6 presents the assumed prices for the operating cost estimation. The annual operating costs 

estimation of the four integrated bio-refineries are presented in Table 5-7 (see Appendix E for the 

detailed calculation).  
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Table 5-6 Assumed prices for the annual operating cost  

 Price Unit Reference 

Feedstock 0 $/ton  

Enzyme 0.0552 $/lb [55] 

Microorganism 0.024885 $/kg [105] 

Nutrient 0.0804 $/lb [55] 

Ca(OH)2 0.0348 $/lb [55] 

H2SO4 0.0124 $/lb [55] 

Gypsum disposal 0.0094 $/lb [55] 

MeOH 416 $/ton [107] 

NaOH 400 $/ton [55] 

Membrane replace 439 $/year [3] 

Electricity usage 0.0796 ¢/kWh [106] 

LP-steam 0.007 $/MJ Provided from FPInnovations 

 

Table 5-7 Annual operating cost estimation for the four integrated processes  

 Scenario 1 [M$] Scenario 2 [M$] 

IFBR A 20 19 

IFBR B 27 26 

IFBR C 30 30 

IFBR D 24 24 

 

5.2.3 Annual revenue estimation 

The sources of revenues are from selling the lactic and succinic acid produced. The selling prices 

of lactic and succinic acid were assumed to be 2300 $/ton [108] and 3000 $/ton [38], respectively. 

The time required to complete one batch of bio-based lactic and succinic acid was assumed to be 

3 days [109] and the possibility of market price changes in the future was not considered. The total 

annual revenue was obtained by multiplying the production of acid per batch by the number of 

batches per year by the selling price (Table 5-8). On the basis of the estimation of the capital costs, 

the operating costs, and the revenue, the payback period of each project was shown in Table 5-9.  
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Table 5-8 Annual revenue estimation 

 Annual revenue [M$] 

IFBR A 48 

IFBR B 49 

IFBR C 54 

IFBR D 54 

 

Table 5-9 Payback period  

 Scenario 1 [year] Scenario 2 [year] 

IFBR A 3.84 3.04 

IFBR B 6.05 4.99 

IFBR C 8.80 8.84 

IFBR D 5.08 5.18 

 

5.2.4 Summary 

The results of the economic evaluation indicate that the integrated forest biorefinery (IFBR) 

between the LA/SA plant and the TMP mill is economically feasible. The IFBRs for LA and SA 

are profitable and can increase the revenue of the existing TMP mill. The shortest payback period 

was estimated to be 3 years (IFBR A, scenario2) and 5.1 years (IFBR D, scenario 1) for the 

production of LA and SA respectively. In the IFBR A, however, the gypsum disposal as a waste 

by-product makes this conventional method ecologically unattractive. Therefore, it is 

recommended to develop and implement the IFBR B or the IFBR D, which use the electodialysis 

as a product recovery method.  
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CHAPTER 6 GENERAL DISCUSSION 

6.1 Process configurations of the stand-alone bio-based LA/SA plants and their 

simulation models 

Five main steps for the production of bio-based lactic and succinic acid from hydrolysate of aspen 

chips were considered: i) Pretreatment, ii) Enzymatic hydrolysis, iii) Detoxification, iv) 

Fermentation, v) Product recovery.  

Two different configurations depending on the recovery method for each product (lactic and 

succinic acid) were selected according to several criteria based on high yield, low energy 

consumption, commercial application, and environmental sustainability: 

- Project A: Bio-based lactic acid production with recovery by conventional method 

(precipitation) 

- Project B: Bio-based lactic acid production with recovery by electrodialysis 

- Project C: Bio-based succinic acid production with recovery by direct crystallization 

- Project D: Bio-based succinic acid production with recovery by electrodialysis 

The simulation of the four projects was performed on Aspen Plus, and the material and energy 

balances from the simulation results match to values from the literature. 

6.2 Technical feasibility of the IFBRs 

The four configurations were integrated to the TMP process and the following integrated processes 

were defined:  

- IFBR A : Project A + TMP process 

- IFBR B : Project B + TMP process 

- IFBR C : Project C + TMP process 

- IFBR D : Project D + TMP process 
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The heat recovery opportunities were evaluated by Pinch Analysis. The analysis shows that the 

concept of an IFBR is technically feasible. LP-steam savings were calculated as 61%, 27%, 20%, 

and 24% in the IFBR A to D, respectively.  

6.3 Economic feasibility of the IFBRs 

An economic estimation of each IFBR was performed based on the material balance from the 

simulation results and the literature review. Individual installed capital costs, operating costs, and 

revenues by selling LA or SA were estimated and the payback period was calculated. The results 

show that the concept of an IFBR is economically viable.  
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CHAPTER 7 CONCLUSION AND RECOMMENDATIONS 

7.1 Conclusion 

This research was undertaken to demonstrate the technical and economic feasibility of an integrated 

forest biorefinery consisting of a TMP process and a biorefinery plant for the production of lactic 

or succinic acid. This study is composed of four parts: the selection of two configurations for the 

production of lactic and succinic acid, the development of a simulation of the process 

configurations on Aspen Plus, the integration of the process for the production of lactic or succinic 

acid into the TMP process, and its economic evaluation.  

In the first part of the study, the configurations of the process encompassing a pretreatment, an 

enzymatic hydrolysis, a detoxification, a fermentation and a recovery step were reviewed. In this 

project, as almost pure sugars (glucose and xylose) derived from TMP process are supplied for 

feedstock, the pretreatment and the detoxification are not considered. Two different configurations 

of the process  for  each product (lactic and succinic acid) were developed taking into account the 

recovery process: the production of bio-biased lactic acid with  recovery by conventional method 

(precipitation) and electrodialysis, and the production of bio-based succinic acid with recovery by 

direct crystallization and electrodialysis.  

In the next step, a simulation on Aspen Plus for both the stand-alone bio-based lactic and succinic 

acid plants was performed. The material and energy balances were calculated based on the results 

of the simulation.  

The integration of the process for both the stand-alone bio-based lactic and succinic acid plants to 

the TMP process was done. A pinch analysis was carried out for each process and the pinch point, 

the total energy requirement and the energy level to be provided were determined from the 

Composite Curves and the Grand Composite Curve. The Heat Exchanger Network of the four 

integrated forest biorefineries was designed and the heat recovery opportunity was estimated. From 

the results of the process integration, the reduction in hot utility (LP-steam) is possible, as 

compared to a stand-alone biorefinery plant for the production of lactic or succinic acid. 
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At the end of the project, an economic evaluation based on the material balance and the energy use 

in the integrated processes was also performed. The capital costs, the annual operating costs, the 

annual revenues, and the payback period of the four integrated forest biorefineries were estimated. 

In conclusion, it was shown that the integrated forest biorefinery (IFBR) based on a bio-based 

LA/SA plant and a TMP mill is feasible technically and economically. The concept of IFBR can 

be a practicable alternative not only for the economically sustainable operation of the existing TMP 

mill but also for the production of bio-based chemicals. In the economic view, lactic acid 

production with recovery by conventional method (precipitation, IFBR A) is proposed, however, 

it creates gypsum disposal. In the environmental view, lactic and succinic acid production with 

recovery by electrodialysis (IFBR B and D) are proposed. Among these two integrated biorefinery, 

the former option might be recommended, since there is already a bio-succinic acid manufacture 

(BioAmber) in Ontario, Canada. 

 

7.2 Recommendations 

The following recommendations have been formulated for future studies: 

- The simulation of the process configuration for the production of bio-based lactic and 

succinic acid from the pretreatment of wood, including the detoxification, should be 

developed to generalize the application of the simulation.  

- Additional combinations of HEX designs should be proposed to diversify the strategies for 

their optimization. 

- Process integration options considering water and chemicals consumptions should be 

evaluated. 
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APPENDIX A – REACTIONS IN THE ASPEN PLUS SIMULATION 

Table A1 Reactions assumed to occur in the enzymatic hydrolysis 

Enzymatic hydrolysis  ( 50 ℃, 1 atm ) 

CELLULOS + H2O   →  GLUCOSE 0.6 

XYLAN  + H2O  →  XYLOSE 0.7 

ACETATE  → ACETIC ACID 0.28 

GALACTAN  →  GALAOLIG 0.3 

CELLULOS → GLUCOLIG 0.05 

XYLAN → XYLOLIG 0.05 

 

Table A2 Reactions assumed to occur in the fermentation of lactic acid 

Fermentation ( 45 ℃, 1 atm ) 

GLUCOSE  → 2 LACID 0.85 

3 XYLOSE → 5 LACID 0.8 

 

Table A3 Reactions assumed to occur in the recovery of lactic acid with conventional method 

Precipitation   

H2SO4 + CA(OH)2    →   GYPSUM 1 

Esterification ( 70 ℃, 1 atm )  

LACID + METHANOL   →  METHYL LACTATE + H2O 1 

Hydrolysis ( 100 ℃, 1 atm ) 

METHYL LACTATE + H2O  → LACID + METHANOL 1 

 

Table A4 Reactions assumed to occur in the fermentation of succinic acid 

Fermentation ( 37 ℃, 1 atm ) 

7 GLUCOSE + 2 CO2  → 12 SUCCACID + 6 H2O 0.75 

7 XYLOSE + 5 CO2  → 10 SUCCACID + 6 H2O 0.43 
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APPENDIX B – STREAM DATA FOR THE ENERGY ANALYSIS 

Table B1 Stream data for the TMP mill 

No. Type Stream 
Tin 

[°C] 

Tout 

[°C] 

Heat load 

[kW] 

1 Cold Line 1_Water heating 69.87 70.00 96.70 

2 Cold Clear filtrate from PM 58.98 83.00 7973.02 

3 Cold Demin water_reboiler 124.00 141.75 59116.28 

4 Cold Filtrate PM 58.98 65.24 3585.50 

5 Cold Water_Line 1 make up 25.00 56.27 5798.68 

6 Cold Water Line 3_make up 14.00 70.00 8382.40 

7 Cold Water PM_make up (1) 14.00 55.00 13779.75 

8 Cold Water PM_make up (2) 28.50 55.00 1762.79 

9 Cold Water PM_make up (3) 35.00 55.00 2826.54 

10 Cold Water PM_make up (4) 14.00 20.96 144.67 

11 Cold Air input_PM 4.00 34.00 3936.34 

12 Cold Water PM_make up (5) 18.00 60.00 1438.20 

13 Cold Filtrate  heating Wire pit 64.46 70.54 2503.60 

14 Cold LP Steam Dryer 138.90 167.00 44813.32 

15 Cold LP Line 3 138.90 167.00 3459.20 

16 Cold MP Line 1 138.90 219.00 889.41 

17 Cold Demin water deareator 14.00 124.00 3817.91 

18 Cold Denaturing 50.00 90.00 6631.44 

19 Cold Other steam needs 138.00 167.00 11860.00 

20 Cold Water heating 4.00 55.00 13900.00 

21 Hot Line 3_Effluent_a 90.52 30.00 12112.71 

22 Hot Line 3_Effluent_b 99.49 30.00 4463.71 

23 Hot Line 1_Effluent 87.99 30.00 4891.53 

24 Hot Rejects refiners Dirty steam 131.17 126.15 8055.59 

25 Hot Effluent 87.99 30.00 4891.53 

26 Hot Line 3_Dirty steam  149.27 135.01 32963.06 

27 Hot Line 1_Dirty steam 147.06 147.06 26159.78 

28 Hot Cloudy Line 1 69.31 56.27 8369.05 

29 Hot Filtrate Line 1 64.46 56.27 1014.67 

30 Hot Air exhaust PM 96.50 28.45 21274.46 

31 Hot Water recycle 55.00 23.09 1155.97 

32 Hot Condensate return deareator 138.90 124.00 1298.71 

33 Hot Effluent_bio 55.00 30.00 9658.55 

34 Hot Dirty steam 163.80 163.70 13351.80 

35 Hot Dirty condensate 163.70 30.00 4299.84 
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Table B2 Stream data for the stand alone bio-base lactic acid plant with the recovery by 

precipitation 

No. Type Stream 
Tin 

[°C] 

Tout 

[°C] 

Heat load 

[kW] 

1 Cold Methanol_esterification reactor 20.00 100.00 6461.13 

2 Cold Water_gypsum filtration 4.00 70.00 13024.00 

3 Cold Water_filtration after enzymatic hydrolysis 4.00 50.00 8908.89 

4 Cold Water_filtration after fermentation 4.00 45.00 7905.05 

5 Cold Water_hydrolysis reactor 20.00 100.00 2594.96 

6 Cold Water_enzymatic hydrolysis reactor 4.00 50.00 3299.59 

7 Cold Sulfuric acid_precipitation reactor 20.00 70.00 489.01 

8 Cold Lactic acid_heating to evaporation 69.47 101.00 89685.60 

9 Cold Lactic acid_heating to precipitation 45.00 70.00 4634.45 

10 Cold Methylactate_Distillation #1 100.28 100.81 84270.63 

11 Cold Lactic acid_Distillation #2 100.32 101.67 58413.96 

12 Cold Hydrolysis 100.00 100.50 6540.33 

13 Cold Esterification 92.09 100.00 20869.65 

14 Cold Enzymatic hydrolysis 50.00 50.50 156.34 

15 Hot Lactic acid_cooling 101.00 30.00 1820.37 

16 Hot Methanol_Distillation #1 97.83 90.15 78068.62 

17 Hot Methanol_Distillation #2 100.07 98.62 56358.14 

18 Hot Fermentation 47.83 45.00 1830.45 

19 Hot Evaporation 101.67 101.00 18.54 
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Table B3 Stream data for the stand alone bio-base lactic acid plant with the recovery by 

electrodialysis 

No. Type Stream 
Tin 

[°C] 

Tout 

[°C] 

Heat load 

[kW] 

1 Cold Methanol_esterification reactor 20.00 100.00 6461.13 

2 Hot Lactic acid_cooling 101.00 30.00 2557.09 

3 Cold Water_filtration after enaymztic hydrolysis 4.00 50.00 8908.89 

4 Cold Water_filtration after fermentation 4.00 45.00 7905.05 

5 Cold Water_hydrolysis reactor 20.00 100.00 2594.96 

6 Cold Water_enzymatic hydrolysis reactor 20.00 50.00 2180.99 

7 Cold Lactic acid_heating to evaporation 45.00 101.00 142474.86 

8 Cold Methylactate_Distillation #1 100.32 100.81 84270.63 

9 Hot Methanol_Distillation #1 97.74 90.21 71529.42 

10 Cold Lactic acid_Distillation #2 100.37 101.46 56283.17 

11 Hot Methanol_Distillation #2 100.05 98.25 53915.98 

12 Hot Fermentation 48.74 45.00 1950.49 

13 Cold Hydrolysis 100.00 100.50 8489.17 

14 Cold Esterification 92.29 100.00 25591.28 

15 Hot Evaporation 101.46 101.00 17.83 

16 Cold Enzymatic hydrolysis 50.00 50.50 156.34 
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Table B4 Stream data for the stand alone bio-base succinic acid plant with the recovery by direct 

crystallization 

No. Type Stream 
Tin 

[°C] 

Tout 

[°C] 

Heat load 

[kW] 

1 Cold Air_heating to dryer 4.00 100.00 962.79 

2 Cold Water_filtration after enaymztic hydrolysis 4.00 50.00 8908.89 

3 Cold Water_filtration after fermentation 4.00 37.00 6318.25 

4 Cold Water_enzymatic hydrolysis reactor 4.00 50.00 3299.59 

5 Cold Succinic acid_heating to evaporation 37.00 102.00 290319.93 

6 Cold Evaporation 102.00 102.50 1596.30 

7 Cold Enzymatic hydrolysis 50.00 50.50 614.41 

8 Hot Sugars_cooling to fermentation 50.00 37.00 3577.55 

9 Hot Succinic acid_cooling to crystallization 102.00 4.00 1904.31 

10 Hot Air_cooling from dryer 64.27 4.00 5723.80 

11 Hot Fermentation 37.44 37.00 2516.96 

 

 

 

Table B5 Stream data for the stand alone bio-base succinic acid plant with the recovery by direct 

crystallization 

No. Type Stream 
Tin 

[°C] 

Tout 

[°C] 

Heat load 

[kW] 

1 Cold Air_heating to dryer 4.00 100.00 962.79 

2 Cold Water_filtration after enaymztic hydrolysis 4.00 50.00 8908.89 

3 Cold Water_filtration after fermentation 4.00 37.00 6318.25 

4 Cold Water_enzymatic hydrolysis reactor 4.00 50.00 3299.59 

5 Cold Succinic acid_heating to evaporation 37.00 102.00 234163.89 

6 Cold Evaporation 102.00 102.50 957.83 

7 Cold Enzymatic hydrolysis 50.00 50.50 156.34 

8 Hot Air_cooling from dryer 69.71 4.00 5763.93 

9 Hot Sugars_cooling to fermentation 50.00 37.00 3577.55 

10 Hot Succinic acid_cooling to crystallization 102.00 4.00 1142.25 

11 Hot Fermentation 37.44 37.00 2516.96 
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APPENDIX C – HEAT EXCHANGER NETWORK OF IFBRS 

Table C 1 Integrated bio-based lactic acid plant with the recovery by precipitation in scenario 1 (IFBR A, Scenario 1) 

No. Cold Stream 
Cold in 
[◦C] 

Cold out 
[◦C] 

Hot Stream Hot in [◦C] 
Hot out 
[◦C] 

Load 
[MW] 

Area [m2] 

E-126 Reboiler (distillation #2) 100.32 100.32 Line 3_Dirty steam 135.07 135.01 0.12 33.85 

E-115 Esterification 92.09 100.00 LP-STEAM 163.31 149.02 10.49 1755.24 

E-117 Esterification 92.09 100.00 Dirty condensate 107.38 97.90 0.30 583.36 

E-111 Methanol supply to the esterification 75.62 100.00 Dirty condensate 163.70 160.57 0.10 13.67 

E-124 Methanol supply to the esterification 20.00 75.62 Dirty condensate 82.69 30.00 0.23 341.90 

E-112 
Crude LA produced from the precipitation, 
sent to the evaporation 

97.97 101.00 LP-STEAM 167.00 163.31 9.28 1413.58 

E-114 Reboiler (distillation #2) 100.32 101.67 LP-STEAM 163.31 149.02 25.45 4639.39 

E-116 Reboiler (distillation #2) 100.32 101.67 Line 3_Dirty steam 149.27 135.07 32.85 8058.99 

E-122 Enzymatic Hydrolysis 50.00 50.50 LP-STEAM 149.02 110.00 0.16 20.14 

E-113 
Crude LA produced from the precipitation, 
sent to the evaporation 

97.97 101.00 Dirty condensate 160.57 107.38 1.71 655.38 

E-119 H2SO4 supply to the precipitation 20.00 70.00 Dirty condensate 97.90 82.69 0.49 123.10 

E-123 Methanol supply to the esterification 96.01 97.97 LP-STEAM 149.02 110.00 7.07 2511.95 

E-121 Reboiler (distillation #1) 100.28 100.81 LP-STEAM 149.02 110.00 84.27 35303.02 

E-118 
water supply to the hydrolysis of 
methylactate 

74.24 100.00 LP-STEAM 149.02 110.00 0.10 27.43 

E-120 Hydrolysis 100.00 100.50 LP-STEAM 149.02 110.00 6.54 2698.41 

Sum             179.15 58179.41 
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Table C 2 Integrated bio-based lactic acid plant with the recovery by precipitation in scenario 2 (IFBR A, Scenario 2) 

No. Cold Stream 
Cold in 
[◦C] 

Cold out 
[◦C] 

Hot Stream 
Hot in 
[◦C] 

Hot out 
[◦C] 

Load 
[MW] 

Area [m2] 

E-142 
water supply to the hydrolysis of 
methylactate 

20.90 74.24 Condenser (distillation #1) 93.56 93.33 1.73 9.01 

E-144 Reboiler (distillation #1) 100.28 100.81 Line 3_Dirty steam 139.35 135.07 9.91 2706.85 

E-148 H2SO4 supply to the precipitation 20.00 70.00 LP-STEAM 113.75 110.00 0.49 51.04 

E-146 
water supply to the hydrolysis of 
methylactate 

20.00 20.90 LA cooling 44.13 42.93 0.03 0.53 

E-150 Enzymatic Hydrolysis 50.00 50.50 LP-STEAM 113.75 110.00 0.16 25.38 

E-133 
crude LA produced from the precipitation, 
sent to the evaporation 

85.66 96.65 Condenser (distillation #2) 100.07 98.83 36.82 1710.49 

E-135 water supply to enzymatic hydrolysis 4.00 20.00 Fermentation 47.83 45.00 1.15 180.21 

E-119 
water supply to filtration after 
fermentation 

5.21 45.00 Condenser (distillation #1) 97.83 96.45 7.67 55.85 

E-121 
water supply to filtration after enzymatic 
hydrolysis 

20.76 50.00 Condenser (distillation #1) 97.83 96.45 4.42 36.92 

E-143 
water supply to filtration after enzymatic 
hydrolysis 

5.63 17.24 Dirty condensate 99.91 30.00 2.25 267.94 

E-141 
crude LA produced from the precipitation, 
sent to the evaporation 

77.56 85.66 Condenser (distillation #2) 98.83 98.62 2.60 22.78 

E-138 
water supply to the hydrolysis of 
methylactate 

74.24 96.83 LP-STEAM 143.11 143.11 0.00 0.05 

E-126 Esterification 95.91 100.00 Line 3_Dirty steam 149.27 139.35 10.79 2338.66 

E-128 
water supply to the hydrolysis of 
methylactate 

96.83 100.00 LP-STEAM 167.00 143.11 0.10 9.43 

E-134 
water supply to filtration after enzymatic 
hydrolysis 

17.24 20.76 Fermentation 47.83 45.00 0.68 132.35 

E-136 Esterification 92.09 95.91 Condenser (distillation #2) 100.07 98.83 10.08 9749.54 

E-120 water supply to filtration after precipitation 4.00 70.00 Condenser (distillation #1) 97.83 96.45 13.02 111.22 

E-122 
fermentation broth from fermentation, 
sent to precipitation 

45.00 70.00 Condenser (distillation #1) 97.83 96.45 4.63 84.14 
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E-154 Reboiler (distillation #1) 100.28 100.28 Line 3_Dirty steam 135.07 135.01 0.12 33.81 

E-152 
water supply to filtration after enzymatic 
hydrolysis 

4.00 5.63 LA cooling 42.93 30.00 0.32 6.10 

E-140 
crude LA produced from the precipitation, 
sent to the evaporation 

77.56 85.66 Condenser (distillation #1) 95.58 93.56 17.89 289.24 

E-139 
water supply to filtration after 
fermentation 

4.00 5.21 LA cooling 53.67 44.13 0.23 3.20 

E-129 Reboiler (distillation #2) 100.32 101.67 LP-STEAM 167.00 143.11 46.60 4405.43 

E-127 
crude LA produced from the precipitation, 
sent to the evaporation 

96.65 101.00 Dirty condensate 163.70 99.91 2.05 555.76 

E-131 methanol supply to the esterification 20.00 95.91 Condenser (distillation #2) 100.07 98.83 6.13 1302.67 

E-123 water supply to enzymatic hydrolysis 20.00 50.00 Condenser (distillation #1) 97.83 96.45 2.15 17.88 

E-125 Reboiler (distillation #2) 100.32 101.67 Line 3_Dirty steam 149.27 139.35 11.81 1375.03 

E-153 
crude LA produced from the precipitation, 
sent to the evaporation 

69.47 76.44 Condenser (distillation #1) 93.33 90.15 14.32 149.72 

E-151 
crude LA produced from the precipitation, 
sent to the evaporation 

76.44 77.56 LP-STEAM 113.75 110.00 2.30 337.27 

E-145 Reboiler (distillation #1) 100.28 100.81 LP-STEAM 143.11 113.75 74.24 29595.97 

E-149 Hydrolysis 100.00 100.50 LP-STEAM 113.75 110.00 6.54 5675.92 

E-130 
crude LA produced from the precipitation, 
sent to the evaporation 

96.65 101.00 LP-STEAM 167.00 143.11 13.70 1285.15 

E-132 
water supply to the hydrolysis of 
methylactate 

74.24 96.83 Condenser (distillation #2) 100.07 98.83 0.73 22.29 

E-124 methanol supply to the esterification 95.91 100.00 Line 3_Dirty steam 149.27 139.35 0.33 71.59 

E-118 
water supply to filtration after enzymatic 
hydrolysis 20.76 50.00 

LA cooling 
101.00 53.67 1.24 20.29 

Sum             307.25 62639.71 

 

 



102 

 

Table C 3 Integrated bio-based lactic acid plant with the recovery by electrodialysis in scenario 1 (IFBR B, Scenario 1) 

No. Cold Stream 
Cold in 
[◦C] 

Cold out 
[◦C] 

Hot Stream 
Hot in 
[◦C] 

Hot out 
[◦C] 

Load 
[MW] 

Area [m2] 

E-115 heating for the reboiler at distillation #1 100.32 100.81 LP-STEAM 164.41 152.97 51.31 8856.10 

E-119 heating for the reboiler at distillation #2 100.37 101.46 LP-STEAM 152.97 110.00 56.28 22869.62 

E-121 
LA separated by electrodialysis, sent to the 
evaporation 95.88 101.00 LP-STEAM 152.97 110.00 127.74 12970.37 

E-113 heating for the esterification 92.29 92.59 Dirty condensate 115.85 97.87 0.51 418.11 

E-114 heating for the reboiler at distillation #1 100.32 100.81 Line 3_Dirty steam 149.27 135.08 32.81 7963.52 

E-118 heating for the hydrolysis of methylactate 100.00 100.50 LP-STEAM 152.97 110.00 8.49 3334.40 

E-120 heating for the enzymatic hydrolysis 50.00 50.50 LP-STEAM 152.97 110.00 0.16 19.71 

E-110 methanol supply to the esterification 95.85 100.00 Dirty condensate 163.70 115.85 0.33 91.07 

E-117 
water supply to the hydrolysis of 
methylactate 95.85 100.00 LP-STEAM 152.97 110.00 0.10 34.42 

E-111 heating for the esterification 92.59 100.00 Dirty condensate 163.70 115.85 1.20 312.42 

E-109 heating for the esterification 92.59 100.00 LP-STEAM 167.00 164.41 11.63 1677.73 

E-122 heating for the reboiler at distillation #1 100.32 100.32 Line 3_Dirty steam 135.08 135.01 0.15 43.75 

Sum             290.73 58591.22 
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Table C 4 Integrated bio-based lactic acid plant with the recovery by electrodialysis in scenario 2 (IFBR B, Scenario 2) 

No. Cold Stream 
Cold in 
[◦C] 

Cold out 
[◦C] 

Hot Stream 
Hot in 
[◦C] 

Hot out 
[◦C] 

Load 
[MW] 

Area [m2] 

E-131 
water supply to filtration after enzymatic 
hydrolysis 20.00 50.00 Condenser (distillation #1) 97.74 90.21 5.81 44.12 

E-138 
water supply to filtration after enzymatic 
hydrolysis 9.93 20.00 Fermentation 48.74 45.00 1.95 327.21 

E-158 
water supply to filtration after enzymatic 
hydrolysis 4.00 9.93 LA cooling 63.02 30.00 1.15 18.22 

E-130 
water supply to filtration after 
fermentation 22.73 45.00 Condenser (distillation #1) 97.74 90.21 4.29 31.85 

E-149 
water supply to filtration after 
fermentation 11.08 22.73 Dirty condensate 99.85 30.00 2.25 318.05 

E-154 
water supply to filtration after 
fermentation 4.00 11.08 LA cooling 100.16 63.02 1.37 10.69 

E-126 heating for the esterification 96.38 100.00 LP-STEAM 167.00 134.19 1.60 316.17 

E-135 heating for the esterification 96.38 100.00 Line 3_Dirty steam 149.27 138.69 10.41 2285.54 

E-139 heating for the esterification 92.69 96.38 Condenser (distillation #2) 99.62 99.45 12.24 13024.02 

E-160 heating for the esterification 92.29 92.69 LP-STEAM 110.30 110.00 1.34 757.71 

E-140 
water supply to the hydrolysis of 
methylactate 97.00 100.00 Dirty condensate 120.03 117.00 0.10 24.97 

E-143 
water supply to the hydrolysis of 
methylactate 96.22 97.00 LA cooling 101.00 100.33 0.03 2.35 

E-146 
water supply to the hydrolysis of 
methylactate 20.36 96.22 Condenser (distillation #2) 99.45 99.25 2.46 16.07 

E-153 
water supply to the hydrolysis of 
methylactate 20.00 20.36 LA cooling 100.16 63.02 0.01 0.07 

E-133 water supply to enzymatic hydrolysis 20.00 50.00 Condenser (distillation #1) 97.74 90.21 2.18 15.09 

E-156 heating for the enzymatic hydrolysis 50.00 50.50 LP-STEAM 128.70 110.30 0.16 22.71 

E-159 heating for the hydrolysis of methylactate 100.00 100.50 Line 3_Dirty steam 138.69 135.01 8.49 2321.45 

E-128 
LA separated by electrodialysis, sent to the 
evaporation 100.18 101.00 LP-STEAM 167.00 134.19 111.37 11618.19 

E-136 
LA separated by electrodialysis, sent to the 
evaporation 100.18 101.00 Dirty condensate 163.70 120.03 1.40 190.06 
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E-137 
LA separated by electrodialysis, sent to the 
evaporation 100.18 101.00 Line 3_Dirty steam 149.27 138.69 13.73 1597.39 

E-142 
LA separated by electrodialysis, sent to the 
evaporation 96.22 100.18 LP-STEAM 134.19 128.72 0.60 93.56 

E-144 
LA separated by electrodialysis, sent to the 
evaporation 96.22 100.18 Dirty condensate 117.00 99.85 0.55 379.31 

E-145 
LA separated by electrodialysis, sent to the 
evaporation 73.40 96.22 LP-STEAM 128.72 128.70 0.10 11.93 

E-147 
LA separated by electrodialysis, sent to the 
evaporation 73.40 96.22 Condenser (distillation #2) 99.45 99.25 6.50 147.41 

E-148 
LA separated by electrodialysis, sent to the 
evaporation 73.40 96.22 LA cooling 100.33 100.16 0.01 0.24 

E-152 
LA separated by electrodialysis, sent to the 
evaporation 45.00 73.40 Condenser (distillation #2) 99.25 98.25 8.22 53.79 

E-134 methanol supply to the esterification 95.85 100.00 Line 3_Dirty steam 149.27 138.69 0.33 73.08 

E-150 methanol supply to the esterification 20.00 95.85 Condenser (distillation #2) 99.25 98.25 6.13 1303.22 

E-127 heating for the reboiler at distillation #1 100.65 100.81 LP-STEAM 167.00 134.19 1.88 391.44 

E-155 heating for the reboiler at distillation #1 100.32 100.65 LP-STEAM 128.70 110.30 82.37 47256.83 

E-161 heating for the reboiler at distillation #1 100.32 100.32 LP-STEAM 110.30 110.00 0.02 24.93 

E-125 heating for the reboiler at distillation #2 100.54 101.46 LP-STEAM 167.00 134.19 32.35 3424.80 

E-141 heating for the reboiler at distillation #2 100.37 100.54 LP-STEAM 134.19 128.72 23.94 3888.15 

sum             345.32 89990.60 
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Table C 5 Integrated bio-based succinic acid plant with the recovery by direct crystallization in scenario 1 (IFBR C, Scenario 1) 

No. Cold Stream 
Cold in 
[◦C] 

Cold out 
[◦C] 

Hot Stream 
Hot in 
[◦C] 

Hot out 
[◦C] 

Load 
[MW] 

Area [m2] 

E-115 
crude SA produced from the fermentation, 
sent to the evaporation 37.00 37.03 Line 3_Dirty steam 135.07 135.01 0.12 11.99 

E-107 
water supply to filtration after 
fermentation 4.00 37.00 Dirty condensate 163.70 30.00 1.15 207.60 

E-106 
water supply to filtration after 
fermentation 4.00 37.00 LP-STEAM 167.00 166.37 2.91 200.21 

E-108 
water supply to filtration after enzymatic 
hydrolysis 4.00 15.27 Dirty condensate 163.70 30.00 2.18 329.20 

E-110 
crude SA produced from the fermentation, 
sent to the evaporation 37.03 102.00 LP-STEAM 166.37 111.15 257.36 43341.64 

E-111 
crude SA produced from the fermentation, 
sent to the evaporation 37.03 102.00 Line 3_Dirty steam 149.27 135.07 32.85 4883.34 

E-109 air sent to dryer  4.00 100.00 Dirty condensate 163.70 30.00 0.96 285.81 

E-113 heating for the evaporation 102.00 102.50 LP-STEAM 111.15 110.00 1.60 1921.14 

E-114 heating for the enzymatic hydrolysis 50.00 50.50 LP-STEAM 111.15 110.00 0.61 101.85 

E-112 
water supply to filtration after enzymatic 
hydrolysis 33.75 50.00 LP-STEAM 111.15 110.00 3.15 460.35 

Sum             302.89 51743.13 

 

 

 

 

 



106 

 

Table C 6 Integrated bio-based succinic acid plant with the recovery by direct crystallization in scenario 2 (IFBR C, Scenario 2) 

No. Cold Stream 
Cold in 
[◦C] 

Cold out 
[◦C] 

Hot Stream 
Hot in 
[◦C] 

Hot out 
[◦C] 

Load [MW] Area [m2] 

E-122 
water supply to filtration after enzymatic 
hydrolysis 4.00 23.67 

sugars cooling, sent to 
fermentation 50.00 37.00 3.58 69.03 

E-124 
water supply to filtration after enzymatic 
hydrolysis 4.00 23.67 air from dryer 43.62 27.40 0.23 14.96 

E-117 
water supply to filtration after enzymatic 
hydrolysis 23.67 50.00 LP-STEAM 167.00 110.68 5.10 273.73 

E-123 water supply to filtration after fermentation 4.00 9.38 air from dryer 43.62 27.40 1.03 45.30 

E-120 water supply to filtration after fermentation 9.38 37.00 Dirty condensate 163.70 30.00 4.30 440.55 

E-114 water supply to filtration after fermentation 9.38 37.00 air from dryer 64.27 43.62 0.99 40.26 

E-130 air sent to dryer  4.00 100.00 LP-STEAM 110.68 110.00 0.96 3212.87 

E-127 water supply to enzymatic hydrolysis 4.00 15.75 air from dryer 26.64 7.24 0.84 239.47 

E-115 water supply to enzymatic hydrolysis 15.75 50.00 air from dryer 64.27 43.62 2.46 161.32 

E-132 heating for the enzymatic hydrolysis 50.00 50.50 LP-STEAM 110.68 110.00 0.61 102.25 

E-121 
crude SA produced from the fermentation, 
sent to the evaporation 37.00 102.00 Line 3_Dirty steam 149.27 135.01 32.96 3963.90 

E-118 
crude SA produced from the fermentation, 
sent to the evaporation 37.00 102.00 LP-STEAM 167.00 110.68 257.36 42019.71 

E-131 heating for the evaporation 102.00 102.50 LP-STEAM 110.68 110.00 1.60 1974.86 

sum             312.02 52558.19 
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Table C 7 Integrated bio-based succinic acid plant with the recovery by electrodialysis in scenario 1 (IFBR D, Scenario 1) 

No. Cold Stream 
Cold in 
[◦C] 

Cold 
out [◦C] 

Hot Stream 
Hot in 
[◦C] 

Hot out 
[◦C] 

Load 
[MW] 

Area [m2] 

E-115 water supply to enzymatic hydrolysis 4.00 5.50 Dirty condensate 33.35 30.00 0.11 40.08 

E-108 water supply to enzymatic hydrolysis 5.50 50.00 Dirty condensate 163.70 33.35 3.19 616.90 

E-110 
SA produced from the electrodialysis, sent to the 
evaporation 37.03 102.00 LP-STEAM 166.30 110.31 202.16 34440.41 

E-107 water supply to filtration after enzymatic hydrolysis 13.35 50.00 LP-STEAM 167.00 166.30 2.52 187.90 

E-111 air sent to dryer  4.00 100.00 Line 3_Dirty steam 149.27 135.07 0.96 119.36 

E-109 water supply to filtration after enzymatic hydrolysis 13.35 50.00 Dirty condensate 163.70 33.35 1.00 214.87 

E-113 heating for the evaporation 102.00 102.50 LP-STEAM 110.31 110.00 0.96 1212.34 

E-116 
SA produced from the electrodialysis, sent to the 
evaporation 37.00 37.03 Line 3_Dirty steam 135.07 135.01 0.12 11.99 

E-114 heating for the enzymatic hydrolysis 50.00 50.50 LP-STEAM 110.31 110.00 0.16 26.10 

E-112 
SA produced from the electrodialysis, sent to the 
evaporation 37.03 102.00 Line 3_Dirty steam 149.27 135.07 31.88 4740.36 

Sum             243.06 41610.30 
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Table C 8 Integrated bio-based succinic acid plant with the recovery by electrodialysis in scenario 1 (IFBR D, Scenario 2) 

No. Cold Stream 
Cold in 
[◦C] 

Cold 
out [◦C] 

Hot Stream 
Hot in 
[◦C] 

Hot out 
[◦C] 

Load 
[MW] 

Area [m2] 

E-129 
water supply to filtration after enzymatic 
hydrolysis 4.00 12.02 Fermentation 37.44 37.00 0.78 141.86 

E-130 
water supply to filtration after enzymatic 
hydrolysis 4.00 12.02 air from dryer 28.45 7.24 0.78 220.98 

E-122 
water supply to filtration after enzymatic 
hydrolysis 12.02 50.00 LP-STEAM 

167
.00 110.58 2.52 128.37 

E-119 
water supply to filtration after enzymatic 
hydrolysis 12.02 50.00 air from dryer 69.71 28.45 4.83 528.22 

E-120 water supply to filtration after fermentation 17.98 37.00 
sugars cooling, sent to 
fermentation 50.00 45.85 1.14 33.65 

E-128 water supply to filtration after fermentation 4.39 17.98 Fermentation 37.44 37.00 1.73 362.15 

E-134 water supply to filtration after fermentation 4.04 4.39 
sugars cooling, sent to 
fermentation 45.85 37.00 0.07 1.01 

E-132 water supply to filtration after fermentation 4.39 17.98 Dirty condensate 57.00 30.00 0.87 154.84 

E-140 water supply to filtration after fermentation 4.00 4.04 Fermentation 37.00 37.00 0.01 1.20 

E-125 water supply to filtration after fermentation 17.98 37.00 Dirty condensate 163.70 57.00 2.50 191.70 

E-137 air sent to dryer  4.00 100.00 LP-STEAM 110.58 110.00 0.96 3220.51 

E-126 water supply to enzymatic hydrolysis 37.00 50.00 Dirty condensate 163.70 57.00 0.93 99.24 

E-135 water supply to enzymatic hydrolysis 4.00 37.00 
sugars cooling, sent to 
fermentation 45.85 37.00 2.37 80.46 

E-139 heating for the enzymatic hydrolysis 50.00 50.50 LP-STEAM 110.58 110.00 0.16 26.04 

E-127 
SA produced from the electrodialysis, sent to the 
evaporation 37.00 102.00 Line 3_Dirty steam 149.27 135.01 32.96 3967.43 

E-123 
SA produced from the electrodialysis, sent to the 
evaporation 37.00 102.00 LP-STEAM 167.00 110.58 201.20 33009.94 

E-138 heating for the evaporation 102.00 102.50 LP-STEAM 110.58 110.00 0.96 1192.58 

sum             254.77 43360.18 
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APPENDIX D – CAPITAL COSTS 

 

The equipment costs for the production of lactic and succinic acid are estimated according to a 

power law of capacity in Eq D.1 [110]: 

 (Eq D.1) 

Whereby: 

CE = equipment cost with capacity Q 

CB = base cost for equipment with capacity QB 

M = constant depending on equipment type 

 

CB, QB, and M are obtained from the literature [3, 55], Q is obtained from the Aspen Plus simulation 

results. To calculate the total capital cost of equipment, an installation factor from the literature 

[55] and the number of equipment are multiplied. Because published data of equipment cost are 

often old, such data were brought up-to-date using cost indexes using Eq. D.2 [110]: 

 (Eq. D.2) 

Whereby: 

C1 = equipment cost in year 1 

C2 = equipment cost in year 2 

INDEX1 = cost index in year 1 

INDEX2 = cost index in year 2 

Chemical Engineering (CE) Index is used to update literature data to year 2012.  

 

𝐶𝐸 = 𝐶𝐵 (
𝑄

𝑄𝐵
)

𝑀

 

𝐶1

𝐶2

=
𝐼𝑁𝐷𝐸𝑋1

𝐼𝑁𝐷𝐸𝑋2
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The HEX costs are calculated based on the following generic formula [111]:  

 (Eq. D.3) 

Whereby: 

CB is assumed to be base cost for carbon steel floating head heat exchanger:  

𝐶𝐵 = 𝑒𝑥𝑝{8.202+0.01506(ln 𝐴)+0.06811(ln 𝐴)2} (Eq. D.4) 

FD is a design factor depending on the heat exchanger design or type: 

𝐹𝐷 = 𝑒𝑥𝑝{−0.9003+0.0906(ln 𝐴)} (Eq. D.5) 

FP is the design-pressure factor (4200 ~ 6200 kN/m2): 

𝐹𝑃 = 1.4272 + 0.12088 (ln 𝐴) (Eq. D.6) 

FM is the material cost factor for stainless steel 316:  

𝐹𝑀 = 1.4144 + 0.23296 (ln 𝐴) (Eq. D.7) 

 

Table D 1 HEX installation 

  
  

HEX cost [$] Pipe and installation [$] Sum [$] 

Scenario 1 Scenario 2 Scenario 1 Scenario 2 Scenario 1 Scenario 2 

IFBR A 73,750,371 58,054,444 22,125,111 17,416,333 95,875,483 75,470,777 

IFBR B 96,047,638 80,416,212 28,814,291 24,124,864 124,861,930 104,541,076 

IFBR C 157,417,894 158,078,195 47,225,368 47,423,459 204,643,262 205,501,654 

IFBR D 112,473,410 114,490,675 33,742,023 34,347,202 146,215,433 148,837,877 

 

 

 

𝐶𝐻𝐸𝑋 = 𝐶𝐵𝐹𝐷𝐹𝑃𝐹𝑀  
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Table D 2 Installed equipment costs for the integrated bio-based lactic acid plant with the recovery by precipitation (IFBR A) 

Unit  Quantity 

Base Eq. 
cost  
(CB) 

Scaled 
on 

Scaling  
Factor  
(M) 

Installation 
Factor 

Size 
Ratio 
(Q/QB) 

Eq.cost  
(base 
year) 

Base 
 year 

current  
year 

Index 
(base 
year) 

current 
year 

Eq. cost  
(2012) 

Capital  
Cost 
(2012) 

Reactor 5 2,466,955                     4,443,179 

Enzymatic Hydrolysis 1 493,391 Flow 0.6 1.2 1 592,069 1998 2012 389.5 584.6 888,636 888,636 

Fermentation 1 493,391 Flow 0.6 1.2 1 592,069 1998 2012 389.5 584.6 888,636 888,636 

Precipitation 1 493,391 Flow 0.6 1.2 1 592,069 1998 2012 389.5 584.6 888,636 888,636 

Esterification 1 493,391 Flow 0.6 1.2 1 592,069 1998 2012 389.5 584.6 888,636 888,636 

Hydrolysis 1 493,391 Flow 0.6 1.2 1 592,069 1998 2012 389.5 584.6 888,636 888,636 

Filtration 3 100,000 Flow 0.6 1.25 1 125,000 2000 2012 394.1 584.6 185,422 556,267 

Evaporation 2 435,650 Area 0.68 2.1 1.7 1,312,388 1996 2012 381.7 584.6 2,010,013 4,020,027 

Distillation 2 478,100 Diameter 0.7 2.1 1.13 1,093,687 1998 2012 389.5 584.6 1,641,513 3,283,026 

sum                         12,302,499 

HEX (Scenario 1)                         95,875,483 

HEX (Scenario 2)                         75,470,777 

Sum (Scenario 1)                         108,177,982 

Sum (Scenario 2)                         87,773,276 
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Table D 3 Installed equipment costs for the integrated bio-based lactic acid plant with the recovery by electrodialysis (IFBR B) 

Unit  Quantity 

Base Eq. 
cost  
(CB) 

Scaled 
on 

Scaling  
Factor  
(M) 

Installation 
Factor 

Size 
Ratio 
(Q/QB) 

Eq.cost  
(base 
year) 

Base 
 year 

current  
year 

Index 
(base 
year) 

current 
year 

Eq. cost  
(2012) 

Capital  
Cost 
(2012) 

Reactor 5 1,984,094                     3,570,138 

Enzymatic Hydrolysis 1 493,391 Flow 0.6 1.2 1 592,069 1998 2012 389.5 584.6 888,636 888,636 

Fermentation 1 493,391 Flow 0.6 1.2 1 592,069 1998 2012 389.5 584.6 888,636 888,636 

Electrodialysis 1 10,530 Flow 0.6 1.2 0.736 10,513 2000 2012 394.1 584.6 15,595 15,595 

Esterification 1 493,391 Flow 0.6 1.2 1 592,069 1998 2012 389.5 584.6 888,636 888,636 

Hydrolysis 1 493,391 Flow 0.6 1.2 1 592,069 1998 2012 389.5 584.6 888,636 888,636 

Filtration 3 100,000 Flow 0.6 1.25 1 125,000 2000 2012 394.1 584.6 185,422 556,267 

Evaporation 2 435,650 Area 0.68 2.1 1.7 1,312,388 1996 2012 381.7 584.6 2,010,013 4,020,027 

Distillation 2 478,100 Diameter 0.7 2.1 1.13 1,093,687 1998 2012 389.5 584.6 1,641,513 3,283,026 

sum                         11,429,458 

HEX (Scenario 1)                         124,861,930 

HEX (Scenario 2)                         104,541,076 

Sum (Scenario 1)                         136,291,388 

Sum (Scenario 2)                         115,970,534 
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Table D 4 Installed equipment costs for the integrated bio-based succinic acid plant with the recovery by direct crystallization (IFBR C) 

Unit  Quantity 

Base 
Eq. cost  
(CB) 

Scaled 
on 

Scaling  
Factor  
(M) 

Installation 
Factor 

Size 
Ratio 
(Q/QB) 

Eq.cost  
(base 
year) 

Base 
 year 

current  
year 

Index 
(base 
year) 

current 
year 

Eq. cost  
(2012) 

Capital  
Cost 
(2012) 

Reactor 2 986,782                     1,777,272 

Enzymatic Hydrolysis 1 493,391 Flow 0.6 1.2 1 592,069 1998 2012 389.5 584.6 888,636 888,636 

Fermentation 1 493,391 Flow 0.6 1.2 1 592,069 1998 2012 389.5 584.6 888,636 888,636 

Filtration 1 100,000 Flow 0.6 1.25 1 125,000 2000 2012 394.1 584.6 185,422 185,422 

Evaporation 1 435,650 Area 0.68 2.1 1.7 1,312,388 1996 2012 381.7 584.6 2,010,013 2,010,013 

Crystallization 1 300,000 Flow 0.6 1.2 1 360,000 1990 2012 357.6 584.6 588,523 588,523 

Dryer 1 15,498 Flow 0.6 1.3 0.61 14,977 1999 2012 390.6 584.6 22,415 22,415 

sum                         4,583,646 

HEX (Scenario 1)                         204,643,262 

HEX (Scenario 2)                         205,501,654 

Sum (Scenario 1)                         209,226,908 

Sum (Scenario 2)                         210,085,300 
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Table D 5 Installed equipment costs for the integrated bio-based succinic acid plant with the recovery by electrodialysis (IFBR D) 

Unit  Quantity 

Base 
Eq. cost  
(CB) 

Scaled 
on 

Scaling  
Factor  
(M) 

Installation 
Factor 

Size 
Ratio 
(Q/QB) 

Eq.cost  
(base 
year) 

Base 
 year 

current  
year 

Index 
(base 
year) 

current 
year 

Eq. cost  
(2012) 

Capital  
Cost 
(2012) 

Reactor 2 986,782                     1,777,272 

Enzymatic Hydrolysis 1 493,391 Flow 0.6 1.2 1 592,069 1998 2012 389.5 584.6 888,636 888,636 

Fermentation 1 493,391 Flow 0.6 1.2 1 592,069 1998 2012 389.5 584.6 888,636 888,636 

Filtration 1 100,000 Flow 0.6 1.25 1 125,000 2000 2012 394.1 584.6 185,422 185,422 

Evaporation 1 435,650 Area 0.68 2.1 1.7 1,312,388 1996 2012 381.7 584.6 2,010,013 2,010,013 

Crystallization 1 300,000 Flow 0.6 1.2 1 360,000 1990 2012 357.6 584.6 588,523 588,523 

Electrodialysis 1 10,530 Flow 0.6 1.2 0.616 9,448 1984 2012 322.7 584.6 17,117 17,117 

Dryer 1 15,498 Flow 0.6 1.3 0.61 14,977 1999 2012 390.6 584.6 22,415 22,415 

sum                         4,600,763 

HEX (Scenario 1)                         146,215,433 

HEX (Scenario 2)                         148,837,877 

Sum (Scenario 1)                         150,816,196 

Sum (Scenario 2)                         153,438,640 
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APPENDIX E – ANNUAL OPERATING COSTS  

Table E 1 various annual operating costs for the integrated bio-based lactic acid plant with the 

recovery by precipitation (IFBR A) 

 uses unit cost cost 

Feedstock 500 ton/day 0 $/ton - $/day 

Enzyme 10 ton/day 0.0552 $/lb 1,217 $/day 

Microorganism 13 ton/day 0.025 $/kg 324 $/day 

Nutrient 64 ton/day 0.0804 $/lb 11,344 $/day 

Ca(OH)2 118 ton/day 0.0348 $/lb 9,053 $/day 

H2SO4 173 ton/day 0.0124 $/lb 4,729 $/day 

Gypsum disposal 241 ton/day 0.0094 $/lb 4,994 $/day 

MeOH 0.12 ton/day 330 $/ton 39 $/day 

LP-steam (Scenario 1) 143 MW 0.007 $/MJ 86,702 $/day 

LP-steam (Scenario 2) 144 MW 0.007 $/MJ 87,176 $/day 

Sum (Scenario 1)     118,403 $/day 

Sum (Scenario 2)     118,877 $/day 

       

Sum (Scenario 1)     13,813,789 $/year 

Sum (Scenario 2)     13,869,062 $/year 

 

Table E 2 Fixed annual operating costs for the integrated bio-based lactic acid plant with the 

recovery by precipitation (IFBR A) 

 Unit cost  people Scenario 1 Scenario 2  

Plant Manager 80000 1 80,000 80,000 $/year 

Plant Engineer 65000 1 65,000 65,000 $/year 

Maintenance Supervisor 60000 1 60,000 60,000 $/year 

Lab Manager 50000 1 50,000 50,000 $/year 

Shift Supervisor 37000 5 185,000 185,000 $/year 

Lab Technician 25000 2 50,000 50,000 $/year 

Maintenance Technician 28000 8 224,000 224,000 $/year 

Shift Operators 25000 20 500,000 500,000 $/year 

Yard Employees 20000 32 640,000 640,000 $/year 

General Manager 100000 1 100,000 100,000 $/year 

Clerks & Secretaries 20000 5 100,000 100,000 $/year 

Total Salaries (1998 $)   2,054,000 2,054,000 $/year 

Total Salaries (2015 $)   3,116,523 3,116,523 $/year 

Final   1,558,261 1,558,261 $/year 

      

General Overhead 60% Of Total Salaries 934,957 934,957 $/year 

Maintenance 2% Of Installed Equipment Cost 2,163,560 1,755,466 $/year 

Insurance & Taxes 1.5% Of Installed Equipment Cost 1,622,670 1,316,599 $/year 

      

Sum   6,279,447 5,565,283 $/year 
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Table E 3 Various annual operating costs for the integrated bio-based lactic acid plant with the 

recovery by electrodialysis (IFBR B) 

 uses unit cost cost 

Feedstock 500 tonne/day 0  - $/day 

Enzyme 10 tonne/day 0.0552 $/lb 1,217 $/day 

Microorganism 0.036 tonne/day 0.025 $/kg 1 $/day 

Nutrient 64 tonne/day 0.08 $/lb 11,344 $/day 

NaOH 1.42 tonne/day 400 $/ton 569 $/day 

MeOH 0.12 tonne/day 330 $/ton 39 $/day 

Membrane replace   439 $/year 1 $/day 

Electricity usage 0.88 kWh/kg LA 0.0796 ¢/kWh 14,646 $/day 

LP-steam (Scenario 1) 256 MW 0 $/MJ 154,654 $/day 

LP-steam (Scenario 2) 256 MW 0 $/MJ 154,654 $/day 

       

Sum (Scenario 1)     167,825 $/day 

Sum (Scenario 2)     167,825 $/day 

       

Sum (Scenario 1)     19,581,627 $/year 

Sum (Scenario 2)     19,581,637 $/year 

 

Table E 4 Fixed annual operating costs for the integrated bio-based lactic acid plant with the 

recovery by electrodialysis (IFBR B) 

  Salary people Scenario 1 Scenario 2   

Plant Manager 80000 1 80,000 80,000 $/year 

Plant Engineer 65000 1 65,000 65,000 $/year 

Maintenance Supervisor 60000 1 60,000 60,000 $/year 

Lab Manager 50000 1 50,000 50,000 $/year 

Shift Supervisor 37000 5 185,000 185,000 $/year 

Lab Technician 25000 2 50,000 50,000 $/year 

Maintenance Technician 28000 8 224,000 224,000 $/year 

Shift Operators 25000 20 500,000 500,000 $/year 

Yard Employees 20000 32 640,000 640,000 $/year 

General Manager 100000 1 100,000 100,000 $/year 

Clerks & Secretaries 20000 5 100,000 100,000 $/year 

Total Salaries (1998 $)    2,054,000 2,054,000 $/year 

Total Salaries (2015 $)    3,116,523 3,116,523 $/year 

Final    1,558,261 1,558,261 $/year 

          

General Overhead 60% Of Total Salaries 934,957 934,957 $/year 

Maintenance 2% Of Installed Equipment Cost 2,725,828         2,319,411  $/year 

Insurance & Taxes 2% Of Installed Equipment Cost 2,044,371         1,739,558  $/year 

           

Sum     7,263,408 6,552,187 $/year 
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Table E 5 Various annual operating costs for the integrated bio-based succinic acid plant with the 

recovery by direct crystallization (IFBR C) 

 Use Unit cost Cost 

Feedstock 500 ton/day 0  - $/day 

Enzyme 10 ton/day 0.0552 $/lb 1,217 $/day 

Microorganism 0.036 ton/day 0.025 $/kg 1 $/day 

Nutrient 64 ton/day 0.0804 $/lb 11,344 $/day 

NaOH 9.85 ton/day 0.0348 $/lb 756 $/day 

LP-steam (Scenario 1) 266 MW 0 $/MJ 160,653 $/day 

LP-steam (Scenario 2) 266 MW 0 $/MJ 160,653 $/day 

       

Sum (Scenario 1)     173,971 $/day 

Sum (Scenario 2)     173,971 $/day 

       

Sum (Scenario 1)     20,296,563 $/year 

Sum (Scenario 2)     20,296,563 $/year 

   

Table E 6 Fixed annual operating costs for the integrated bio-based succinic acid plant with the 

recovery by direct crystallization (IFBR C) 

 Salary people Scenario 1 Scenario 2  

Plant Manager 80000 1 80,000 80,000 $/year 

Plant Engineer 65000 1 65,000 65,000 $/year 

Maintenance Supervisor 60000 1 60,000 60,000 $/year 

Lab Manager 50000 1 50,000 50,000 $/year 

Shift Supervisor 37000 5 185,000 185,000 $/year 

Lab Technician 25000 2 50,000 50,000 $/year 

Maintenance Technician 28000 8 224,000 224,000 $/year 

Shift Operators 25000 20 500,000 500,000 $/year 

Yard Employees 20000 32 640,000 640,000 $/year 

General Manager 100000 1 100,000 100,000 $/year 

Clerks & Secretaries 20000 5 100,000 100,000 $/year 

Total Salaries (1998 $)   2,054,000 2,054,000 $/year 

Total Salaries (2015 $)   3,116,523 3,116,523 $/year 

Final   1,558,261 1,558,261 $/year 

      

General Overhead 60% Of Total Salaries 934,957 934,957 $/year 

Maintenance 2% Of Installed Equipment Cost 4,184,538 4,201,706 $/year 

Insurance & Taxes 2% Of Installed Equipment Cost 3,138,404 3,151,280 $/year 

      

Sum   9,816,160 9,846,204 $/year 
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Table E 7 Various annual operating costs for the integrated bio-based succinic acid plant with the 

recovery by electrodialysis (IFBR D) 

 Use Unit cost Cost 

Feedstock 500 tonne/day 0  - $/day 

Enzyme 10 tonne/day 0.0552 $/lb 1,217 $/day 

Microorganism 0.036 tonne/day 0.025 $/kg 1 $/day 

Nutrient 64 tonne/day 0.0804 $/lb 11,344 $/day 

NaOH 0.027 tonne/day 0.0348 $/lb 2 $/day 

Membrane replace   439 $/year 1 $/day 

Electricity usage 0.88 kWh/kg SA 0.0796 ¢/kWh 12,258 $/day 

LP-steam (Scenario 1) 206 MW 0 $/MJ 124,467 $/day 

LP-steam (Scenario 2) 206 MW 0 $/MJ 124,467 $/day 

       

Sum (Scenario 1)     149,291 $/day 

Sum (Scenario 2)     149,291 $/day 

       

Sum (Scenario 1)     17,417,242 $/year 

Sum (Scenario 2)     17,417,242 $/year 

 

Table E 8 Fixed annual operating costs for the integrated bio-based succinic acid plant with the 

recovery by electrodialysis (IFBR D) 

 Salary People Scenario 1 Scenario 2  

Plant Manager 80000 1 80,000 80,000 $/year 

Plant Engineer 65000 1 65,000 65,000 $/year 

Maintenance Supervisor 60000 1 60,000 60,000 $/year 

Lab Manager 50000 1 50,000 50,000 $/year 

Shift Supervisor 37000 5 185,000 185,000 $/year 

Lab Technician 25000 2 50,000 50,000 $/year 

Maintenance Technician 28000 8 224,000 224,000 $/year 

Shift Operators 25000 20 500,000 500,000 $/year 

Yard Employees 20000 32 640,000 640,000 $/year 

General Manager 100000 1 100,000 100,000 $/year 

Clerks & Secretaries 20000 5 100,000 100,000 $/year 

Total Salaries (1998 $)   2,054,000 2,054,000 $/year 

Total Salaries (2015 $)   3,116,523 3,116,523 $/year 

Final   934,957 934,957 $/year 

      

General Overhead 60% Of Total Salaries 560,974 560,974 $/year 

Maintenance 2% Of Installed Equipment Cost 3,016,324 3,068,773 $/year 

Insurance & Taxes 2% Of Installed Equipment Cost 2,262,243 2,301,580 $/year 

      

Sum   6,774,488 6,866,273 $/year 

 


