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RÉSUMÉ 

Sécuriser l'approvisionnement en eau potable est l'un des défis les plus importants pour l'industrie 

de l'eau potable. L'analyse quantitative du risque microbien (AQRM) est un outil qui sert à 

estimer le risque de la santé publique causé par l'exposition aux microorganismes pathogènes 

suite à la consommation d'eau potable. Une approche à barrières multiples de traitement d'eau 

potable est généralement adoptée pour assurer une bonne qualité d’eau potable. L’AQRM peut 

être considéré comme une étape de l'implantation d’une approche à barrières multiples. 

Santé Canada a élaboré un modèle sur Excel d’AQRM qui fournit une évaluation des risques 

pour la santé humaine suite à l’exposition vi à l’eau potable à cinq agents pathogènes cibles: E. 

coli O157: H7, Cryptosporidium, Giardia, Campylobacter et rotavirus. Ce modèle simplifié est 

conçu pour un usage par les ingénieurs municipaux, les opérateurs et les décideurs locaux. 

L'objectif général de ce projet est d'évaluer le retour d’expérience canadienne en ce qui concerne 

l'application du modèle d'AQRM de Santé Canada sur 17 installations de traitement. Cet objectif 

a été réalisé en trois étapes: [1] caractérisation de l'eau de source: Investigation de quatre 

méthodes disponibles pour représenter la concentration des agents pathogènes dans l'eau brute, 

[2] Les performances de traitement: évaluation de l'impact de diverses méthodes pour prédire 

l'inactivation sur les risques, [3] La caractérisation des risques: évaluation des risques microbiens 

pour la santé dans deux régions du Canada (Ontario et Québec). Cette analyse a permis de 

proposer une méthodologie d’utilisation du modèle de Santé Canada et mis en évidence les forces 

et les points de faiblesse du modèle qui devrait être améliorés dans le futur. 

Pour mener à bien ce projet, les concentrations de trois organismes pathogènes de référence 

(Coliformes fécaux / E. Coli, Giardia et Cryptosporidium) ont été recueillies grâce à un suivi 

historique de la qualité de l’eau brute dans les 17 installations. 

Pour la caractérisation de l'eau, une analyse des quatre approches suivantes (moyenne 

arithmétique avec zéros, moyenne arithmétique avec limites de détection (LD), la régression sur 

les statistiques d'ordre (ROS) par ProUCL, et la technique de la moyenne de Poisson (point 

estimate) ont généré des résultats proches pour E. coli et Giardia. Toutefois, les données LD se 

sont avérées comme un problème particulièrement important pour Cryptosporidium. La 

concentration moyenne de Cryptosporidium de toutes les installations a été augmentée de 8,0 fois 

lors de l'utilisation de la moyenne arithmétique avec LD au lieu de zéros et 4,5 fois en utilisant la 
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méthode de régression sur les statistiques d'ordre (ROS) par ProUCL. Enfin, l’utilisation de la 

moyenne arithmétique avec les zéros a été choisie pour caractériser la source d'eau pour la suite 

du projet (tel que prescrit actuellement dans le modèle).   

La performance des chaînes de traitement a été calculée pour chaque WTP. En ce qui concerne 

les procédés physiques, les valeurs proposées par défauts par le modèle de Santé Canada ont été 

utilisées. Pour la désinfection, une comparaison de trois méthodes de calcul de CT (CT50, CT10, et 

N-CSTR) a été réalisée pour évaluer l'impact de la méthode choisie sur le risque estimé. L'impact 

de la méthode de calcul du CT était plus important pour E. coli que Giardia. Les méthodes de 

CT50 et CT10 prédisent souvent des valeurs qui atteignent les plafonds de performance 

arbitrairement imposées dans le modèle de Santé Canada. L'approche N-CSTR prédit des risques 

plus réalistes car il est moins sensible aux conditions d’inactivations élevées.  

Pour estimer le risque des 17 usines, les calculs de CT ont par la suite été effectués avec 

l'approche CT50 (comme proposé dans le modèle Santé Canada).Les résultats de risque annuels 

pour les 17 usines révèlent que la plupart sont conformes aux niveaux de référence de l'EPA et de 

l’OMS. Les exceptions ont été trouvées seulement pour deux usines (WTP1 et WTP2) dans 

lequel les risques calculés pour Giardia et Cryptosporidium  étaient au-dessus des niveaux de 

référence de l'OMS et de l'EPA. 

Le modèle HC AQRM a été relativement simple à mettre en œuvre pour les 17 usines 

canadiennes. Le modèle s’est avéré utile pour estimer le risque de la santé lié aux agents 

pathogènes lors de la consommation de l'eau potable. Les différents scénarios évalués dans cette 

étude illustrent la flexibilité du modèle Santé Canada. Certaines limitations ont été remarqués au 

sein de cette étude et, en conséquence, des recommandations susceptibles d'améliorer la précision 

des résultats de risque, ont été proposées et discutées. Enfin, les résultats de risque fournis par le 

modèle HC d’AQRM sont semi-quantitatifs en raison des nombreuses simplifications et les 

sources d'incertitude et de la variabilité d'un tel exercice. Néanmoins, le modèle de Santé Canada 

devrait être vu comme un outil qui peut être intégré dans le contexte plus large d'élaboration d'un 

plan de sécurisation de l’alimentation en eau. 
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ABSTRACT 

Securing drinking water supply is one of the most significant challenges for the drinking water 

industry. Quantitative microbial risk assessment (QMRA) is a tool used to estimate the public 

health risk from exposure to pathogenic microorganisms through drinking water consumption. A 

multiple barrier approach to drinking water treatment is generally adopted to ensure safe drinking 

water. QMRA can be used as a part of the multiple barriers approach.  

Health Canada developed an Excel based QMRA model providing an assessment for human 

health risk while exposed to 5 index pathogens: E. coli O157:H7, Cryptosporidium, Giardia, 

Campylobacter, and Rotavirus. This model is designed for the municipal engineers, Water 

Treatment Plant (WTP) operators and local decision makers. 

The general purpose of this project is to evaluate the Canadian experience with regards to the 

application of Health Canada’s QMRA model on 17 WTPs located in Ontario and Quebec. This 

objective was realized into three steps: [1] The Source water characterization: Investigating four 

methods available to represent pathogens concentration in raw waters. [2] The treatment 

performance: Evaluating the impact of various methodologies for predicting inactivation on the 

overall risk outputs. [3] The risk characterization: Assessing the microbial health risks. These 

investigations allowed proposing a standardize methodology for using the Health Canada QMRA 

model, and highlighted the strengths and the weaknesses of the model which should be improved 

in the future.  

For this investigation, the concentrations of three reference pathogens (Fecal coliform/E. coli, 

Giardia and Cryptosporidium) were collected from historical monitoring of raw water data for 

the 17 WTPs. For the source water characterization, an analysis of the following four approaches 

(Arithmetic mean with zeros, Arithmetic mean with DL, regression on order statistics (ROS) by 

ProUCL, and Point estimate) has been assessed to generate almost similar outputs for E. coli and 

Giardia. However, BDL data proved to particularly be an issue for Cryptosporidium. The 

average Cryptosporidium concentrations of all WTPs were increased of 8-folds while using the 

detection limit rather than zeros and 4.5-folds while using the regression on order statistics (ROS) 

means provided by ProUCL. Following this analysis, the Arithmetic mean was chosen to 

characterize the source water while proceeding with the rest of the study.  
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The treatment process performance has been calculated for each WTP. Regarding the physical 

processes, the HC QMRA model provides default values to represent the physico-chemical. For 

evaluating disinfection performance, a comparison of three CT calculation methods (CT50, CT10, 

and N-CSTR) was realized to assess impact of the selected method on the predicted health risk 

outcomes. The impact of CT calculation methods on risk estimates was more important for E. 

coli than Giardia. The CT50 and CT10 methods are more prone to capping due to their tendency to 

overestimate inactivation. The N-CSTR approach offered more realistic risk disinfection 

performances as it proved to be less sensitive to high inactivation conditions.  

To evaluate risk estimates in the 17 WTPs, CT calculations were performed with the CT50 

approach (as proposed in the model). The health risk outcomes predicted for the 17 WTPs 

revealed that most comply with the DALY and the USEPA reference risk levels. The exceptions 

were found for two WTPs (WTP 1 and WTP 2) in which Giardia and Cryptosporidium risk 

levels were above the WHO and USEPA reference levels.  

The HC QMRA model proved to be relatively simple to implement in the 17 Canadian WTPs. 

The model proved to be useful in estimating pathogen health risk arising from consuming 

drinking water. The different scenarios assessed within this study illustrate the flexibility of the 

HC model. Some limitations were noticed within this study and accordingly some 

recommendations to improve the accuracy of the overall risk outcomes were proposed and 

discussed.  

Finally, the risk outcomes provided by HC QMRA model are semi-quantitative due to the 

numerous simplifications and sources of uncertainty and variability of such exercise. 

Nevertheless, the HC model may be used by water treatment utilities as a tool to be integrated 

within the larger context of developing a water safety plan. 
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CHAPTER 1  INTRODUCTION 

1.1 Overview of the problem 

Water plays an essential role in human life. A poor quality of water can be a real menace to 

health and well-being. Securing drinking water supply is a significant challenge for the Canadian 

drinking water industry dealing with aging infrastructures. Risk analysis can be used to assess the 

impact of pathogens on human health. Ideally, risk assessment would be based on effective on-

line pathogens monitoring of treated waters. However, monitoring all pathogens in water is costly 

and impractical due to the difficulty in their detection and random distribution (Field & 

Samadpour, 2007). Due to these limitations, good management practices from source to tap as 

become the recommended approach for the drinking water industry (Rizak & Sinclair, 2001). The 

multiple barrier approach is a group of procedures, process and tools while implemented; assure 

the necessary reduction of waterborne pathogens in drinking water prior to reach consumer. It 

provides a preventive action through the implementation of multiple effective barriers to 

minimize any possible failures within the system. Quantitative microbial risk assessment 

(QMRA) can be used as a part of a multiple barriers approach. QMRA is used to estimate the 

public health risk from exposure to pathogenic microorganisms through drinking water 

consumption. At this time, QMRA only addresses microbial risks related to treatment processes 

and as such does not replace a proper multiple barrier approach which also consider the impact of 

distribution.  

Many challenges are encountered during the utilization of QMRA models. Properly 

characterizing source water contamination can be challenging as pathogen concentrations are 

often below detection limits. To address the issue of data below the detection limit (BDL) 

substitution methods are commonly used: where the data BDL are simply replaced by the 

detection limit, half its value or zero (Travis & Land, 1990). Improper handling of BDL samples 

can lead to risk calculation outputs that falsely exceed health-based targets (Dechesne & Soyeux, 

2007; Jaidi, Brabeau, Carriere, Desjardins, & Prevost, 2009; Parkhurst & Stern, 1998). Secondly, 

monitoring of pathogens in source waters is not mandatory in all Canadian provinces. For 

example, Ontario and Quebec do not require Giardia and Cryptosporidium monitoring (Cook et 

al., 2013). In the absence of pathogen measurements, bacterial indicators data can be used as 
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alternative. However, any correlations found between bacterial indicators and protozoan 

pathogen concentrations have been weak and site specific and generated a lot of uncertainty 

(Harwood et al., 2005; Howard, Pedley, & Tibatemwa, 2006). Another problem with pathogen 

concentrations is related to the method efficacy, termed recovery, which is known to vary 

according to source water characteristics (Schijven, Teunis, Rutjes, Bouwknegt, & Husman, 

2011). Proper source water characterization is not the only challenge of using QMRA as of the 

assessment of treatment process performances can also introduce significant bias. More 

specifically, as the primary disinfection is key in reducing the burden of waterborne disease, there 

is a need to use proper models to predict treatment performances. This is of utmost importance as 

an under- or overestimation of inactivation will either have cost implications due to the increase 

use of water treatment chemicals and energy or lead to an inadequate conclusion on the safety of 

a given water system (Jaidi et al., 2009).  

Health Canada has developed an Excel based QMRA model that allows an assessment of the 

human health risk following exposure to 5 index pathogens: E. coli O157:H7, Cryptosporidium, 

Giardia, Campylobacter, and Rotavirus through drinking water. This model was elaborated in 

order to provide a user-friendly tool to Canadian water suppliers, which allows them to assess the 

risk associated to drinking water consumption of their system. The model provides as outputs the 

risk of infection, the risk of illness as well the health burden assessed according to the disability 

adjusted life-years (DALY) concept. 

The general objective of this project is to evaluate the Canadian experience with regards to the 

application of Health Canada’s QMRA model. This model was used on 17 Canadian water 

treatment plants (WTPs) located in the regions of Ontario and Quebec to assess the microbial risk 

associated to drinking water consumption. Considering the numerous challenges of using QMRA 

described earlier, this project proposes not only an assessment of the model application but also 

some technical recommendations to improve its performance or facilitate its use by the water 

industry. 
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1.2 Research Objectives 

As stated above, the general aim of this study is to evaluate the Canadian experience with regards 

to the application of Health Canada’s QMRA model on 17 WTPs. This objective will be 

investigated in the following manners: 

1. Compare four different methods to best represent the microbial concentrations in source

waters (arithmetic mean with zeros, arithmetic mean with DL, regression on order

statistics (ROS), and point estimate),

2. Assess the impact on the health risk estimates of three alternative methods to evaluate

inactivation by chemical disinfection processes, (CT50, CT10 and N-CSTR),

3. Calculate and summarize the predicted microbial health risks associated to drinking water

in 17 WTPs located in two Canadian provinces (Ontario and Quebec),

4. Recommend improvements to Health Canada QMRA model in order to improve

predictions of risk and facilitate the use of the model.

1.3 Research Questions 

Based on our research objectives, several questions were raised: 

1. How should data below detection be handled during the source water characterization?

2. What is the impact of using CT calculation methods on the risk outcomes and what is the

recommended optimal method?

3. Are the 17 WTPs under investigation able to meet the burden disease targeted DALY

proposed by Health Canada and the risk of infection objectives proposed by USEPA?

4. What are other improvements that could be made to HC model?

1.4 Research Hypothesis 

The Health Canada QMRA model has been developed with the objective of being a user-friendly 

model. If HC model is distributed within the water suppliers, it will allow them to better 

understand the microbial risks in their own system. Accordingly two specific hypothesis were 

suggested below: 
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1. The treatment of BDL data in source waters may bias concentrations mean by more than

one order of magnitude.  Falsifiability: the assumption is refutable if the concentrations

mean are all +/- 1 fold of each other for the four methods of raw water characterization

assessed.

2. The CT calculation methods for representing disinfection performances may bias risk

estimates by more than one order of magnitude. Falsifiability: the assumption is refutable

if the risk estimates are all +/- 1 log of each other for the three CT calculation methods

assessed.

3. All WTPs under investigation meet the targeted risk of infections or DALY in treated

waters. Falsifiability: the assumption is refutable if one WTP is not meeting the targeted

objectives.

The first chapter of this thesis consists of a literature review on QMRA. Chapter two outlines the 

methodology used in this research. Chapter three presents the results of this investigation in a 

research paper submitted for publication to the Journal of American Water Works Association. 

Chapter four consists of a general discussion, which is followed, in chapter 5, by conclusions and 

recommendations for future research and application of the HC model.   
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CHAPTER 2 LITERATURE REVIEW 

This literature review presents theoretical concepts needed to conduct a microbial risk 

assessment. First an overview of the framework of quantitative microbial risk assessment 

(QMRA) is presented. Second, a detailed description of Health Canada’s approach to QMRA is 

described. Finally, the available methodologies to predict chemical disinfection performance are 

reviewed. 

2.1 Risk Assessment 

 General Concepts and Definitions 2.1.1

Hazarda.

A hazard is a status or agent that threatens the health, life, environment or property and could 

cause an adverse impact. In other word, the hazard is the potential of some situations to provoke 

damage. There are three types of hazard: natural hazards (such as epidemics, animal disease 

outbreaks, earthquakes…), technological hazards caused by accident or systems and structures 

failures, or human-caused incidents (such as terrorism) ((Homeland Security), 2013). 

Riskb.

There is a public dispute between the two terms of hazard and risk. Actually, a hazard combined 

with risk produces an accident or damage. It is the harmful effect, and the risk is the probability 

that it will occur. For example, a hurricane is a hazard but may produces very low damage if it 

does not touch a habited land. Therefore, the risk is a combination of the likelihood of damage or 

hurt and the degree of probability of such damage (Kaplan & Garrick, 1981). 

Risk assessmentc.

Risk assessment is the process of qualitative and quantitative identification of the impact related 

to the exposure of individuals or populations to recognized hazards. The methods for assessing 

risk may differ from one field to another such as public health, environmental, or ecological risk 

assessment. Prof. Haas (Drexerl University, USA) was the first to introduce the concept of 

quantitative microbial risk assessment of waterborne disease through drinking water consumption 

by using dose-response models (Haas, 1983). Generally, risk assessment is conducted in four 
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steps: hazard identification, dose-response assessment, exposure assessment and risk 

characterization. This thesis focuses on microbial risk assessment associated to drinking water. 

 Quantitative Microbial Risk Assessment (QMRA) d.

The Quantitative Microbial Risk Assessment (QMRA) aims to evaluate the infectious risk related 

to pathogenic microorganisms. It combines pathogens data (distribution, concentration) with the 

infectivity of those pathogens on humans, in order to estimate public health risks (WHO & 

OECD, 2003). Over the years, QMRA has been developed into a workable framework which has 

helped improve water quality, food safety and public health (Haas, Rose, & Gerba, 1999). 

Moreover, it helps support risk management decisions on a scientific basis.  

In the drinking water industry, QMRA is widely used to estimate the public health risk from 

exposure to pathogenic microorganisms associated to drinking water consumption (Ashbolt, 

2004; Howard et al., 2006; Signor & Ashbolt, 2006). In fact, this approach has been utilized to 

elaborate drinking water quality regulations worldwide (Bichai & Smeets, 2013; Harwood et al., 

2005; Signor & Ashbolt, 2006; WHO, 2004). For example, the United States Environmental 

Protection Agency (USEPA) has introduced QMRA to set drinking water treatment requirements 

as early as 1989 for the Safe Drinking Water Treatment Rule. Since then, the World Health 

Organization (WHO) has promoted the use of water safety plans (WSP) along with health-based 

target evaluated using QMRA. The Dutch Drinking water Act of 2001 obliges drinking water 

suppliers to assess the human health risk associated to index pathogens such Cryptosporidium 

and Giardia every three years using a QMRA methodology (Schijven et al., 2011). The 

Australian water authorities are currently evaluating the option of incorporating QMRA process 

into the national drinking water guidelines (Bichai & Smeets, 2013). Finally, the Guidelines for 

Canadian Drinking Water Quality (GCDWQ) encourage the implementation of a risk-based, 

multi-barrier approach that includes QMRA (Health Canada, 2011b, 2012b; Krewski et al., 

2004). 

QMRA can be considered as additional tool to help improve drinking water quality management. 

This tool may be used to review treatment strategies to meet regulatory requirements, to evaluate 

the robustness of a treatment train and to determine set point values or critical situations where 

the risk of exposure is greater (Bichai & Smeets, 2013; Hartnett, McFadyen, Douglas, Robertson, 

& Paoli, 2007; Health Canada, 2011b; Howard et al., 2006; McFadyen et al., 2009).! QMRA 
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allows a better identification of the water treatment system and helps in assess the impact of the 

variations in source water quality and treatment performance on the overall microbial risk. 

QMRA can also help in elaborating operational guidelines to ensure quality control and to 

minimize the health risk (Health Canada, 2011b). The operating staff within the water utilities 

would easily recognize the vulnerabilities within the treatment train and would react accordingly 

(Health Canada, 2011b).  

2.2 QMRA Framework 

The QMRA process consists of four steps; (1) hazard identification, (2) exposure assessment, (3) 

dose response assessment and (4) risk characterization (Haas et al., 1999). 

 Hazard identification 2.2.1

Hazard identification is defined as the effects of particular hazards on human health. It involves 

collecting information about pathogenicity and their tendency to cause human disease and illness. 

The epidemiological data such as endemic and epidemic disease investigations, hospitalization 

feedback, cases studies are very important to accomplish this step. It allows better understanding 

of pathogens characteristics, the particularity of host response in regard of immunity and multiple 

exposures, and highlights the various routes of disease transmission and causes of waterborne 

diseases (Haas et al., 1999).  

While conducting QMRA to assess the human health risk associated to drinking water 

consumption, the hazard identification consists in the identification of infectious agents 

responsible of waterborne disease. The majority of hazards in drinking water system are derived 

from ingested enteric pathogens and their probable gastrointestinal illness (Medema & Ashbolt, 

2006). 

QMRA is usually performed only for reference pathogens which cover a wide range of health 

risks (Medema & Ashbolt, 2006) and typically includes bacteria (e.g. pathogenic E. coli), viruses 

(e.g. rotavirus) and protozoan parasites (e.g. Giardia). A proper risk assessment conducted on 

reference pathogens assumes a sufficient protection against other biological agents (Medema & 

Ashbolt, 2006). 
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 Exposure assessment 2.2.2

The exposure assessment consists on defining the individual dose or set of doses to which 

individual consumers are exposed to (Teunis, P. F. M., Medema, Kruidenier, & Havelaar, 1997).  

In this regard, many elements are needed to define proper exposure: the concentration of the 

pathogens in source water, the impact of the detection methods performance (termed recovery), 

the fraction of detected microorganisms actually infectious to humans, the performances of water 

treatment processes, and finally, the daily consumed volume of drinking water (Teunis, P. F. M. 

& Havelaar, 2002). The dose of ingested organisms (D) is calculated for each pathogen according 

to Eq. 2-1:  

! = !!"×(1 !)×!!"#$%&'(×10!(!"#!!"#$%&')×! ;        Equation 2- 1 

Where CSW the concentration of microorganisms in source water, R the recovery of the analytical 

method (from 0 to 1), Ifraction the infectious fraction of the detected pathogens (from 0 to 1), Log 

Removal is the overall performance of the water treatment plant (expressed on decimal log 

reduction and V the daily individual consumption (in Liter) of unboiled drinking water (Teunis, 

P. F. M. & Havelaar, 2002; Teunis, P. F. M. et al., 1997). 

Concentration microorganisms in source watere.

Source water quality is vulnerable to two categories of contamination: point source pollution and 

nonpoint source pollution (NPS). The point source pollution is defined as a single detectable 

source of contamination. The sewage treatment plants are considered as the main cause for point 

source microbial pollution, while for the NPS, the runoff is the major cause of that contamination 

(Nikolaidis, Heng, Semagin, & Clausen, 1998). The basis of NPS is attributed to wide area 

instead of particular discharge point, which making its control more difficult (Nikolaidis et al., 

1998). These factors need better characterization for improving the risks accuracy (Krewski et al., 

2004). The contribution of both contamination sources and the analysis of indicator organisms is 

recommended to properly assess the microbial quality of a given source water (Health Canada, 

2011b). 
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i Sources of contamination 

Understanding the dynamics of contamination sources is very important. It allows proper 

characterization of raw water quality, which is useful to conduct QMRA. There are two key 

sources of waterborne pathogens: the fecal and the non-fecal origin. The enteric pathogens with 

fecal origin are derived fromSaint Laurent, Canada the fecal material of animals (native and 

domestic) or from the human sewage (Ferguson, Husman, Altavilla, Deere, & Ashbolt, 2003). 

Both parasites and bacteria can originate from animals (zoonose) or humans while the source of 

enteric viruses are mainly associated to human sewage (Krewski et al., 2004). Animal slurries 

and farm waste is considered as an important source of contamination especially for 

Cryptosporidium oocysts, Giardia cysts, and Campylobacter (Carey, Lee, & Trevors 2004; Lack, 

1999; Monis & Thompson, 2003). Many factors could facilitate the transmission of such 

contaminants into the environment and consequently lead to source water pollution. These may 

be related to morphology, hydrology and hydrogeology (water flow, slopes, soils…) or climate 

impact (rainfall, temperature, snowmelt…) (Dechesne et al., 2006). For example, following a 

wastewater treatment plant failure, important volumes of untreated sewage can be released and 

consequently pathogens are dispersed in the environment (Dechesne & Soyeux, 2007). Moreover, 

combined sewer overflows, storm water discharge and accumulation/release of pathogens from 

sediment will also lead to water contamination (Dechesne & Soyeux, 2007). Consequently, 

several challenges render difficult the proper characterization of source water contamination. In 

fact, the raw water concentrations vary according to many factors such as seasonal variations, 

sources of contamination, fate and transport of pathogens in the environment. This complexity 

urges the necessity to obtain site-specific data for pathogen density in source water. 

ii Reference pathogens 

Microbial indicators are used to estimate the probability of occurrence of other pathogens but are 

rarely well correlated to pathogens concentrations in source water (Payment & Locas, 2011). 

Many pathogens of public health importance do not exhibit the same behavior than their 

reference pathogens, and up to now microbial indicators are utilized mostly to indicate the 

probability of co-occurrence (Payment & Locas, 2011). 

On the other hand, monitoring all pathogens in water is considered costly and impractical due to 

their rarity, difficulty in the culture, uneven distribution (Field & Samadpour, 2007). In fact, 
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waterborne microbial pathogens include enteric virus, bacteria and parasitic protozoa (Ferguson 

et al., 2003). A large fraction of surface water bodies exhibit impaired microbiological qualities 

(Field & Samadpour, 2007). To date, bacterial indicators (mostly E. coli and enterococci) are still 

considered as the most popular tools to assess microbiological quality of water (Field & 

Samadpour, 2007; Howard et al., 2006; Krewski et al., 2004). It is also a common practice in the 

field of QMRA (Roser et al., 2007; Soller et al., 2006; Soller et al., 2003) to characterize the risk 

using a suite of pathogens, which offers the benefit of encompassing a wide range of potentials 

risks arising from distinct environmental fate and infectivity. Several researchers have proposed 

lists of waterborne pathogens that should be included in QMRA calculations (Olivieri & Soller, 

2002; Rosen, 2000). In general, representative of bacterial, viral and protozoan parasite 

pathogens are used for this purpose.  

Recovery of detection methodsf.

The determinations for microbial occurrence, concentration, viability or infectivity have 

important impact on exposure assessment. Many culture methods have very low recovery rates, 

which may underestimate the pathogens loads and bias the risk calculation (Dechesne et al., 

2006). In general, almost all available methods are at best tentative, given a variable and low 

recovery, and hard to differentiate the infectious strains to humans from the viable strains (WHO, 

2004). For example, culture based methods which are commonly used to assess microorganisms 

in water often underestimate the overall microbial concentration as these method do not allow a 

characterization of viable but non-cultivable bacteria (McFeters, Pyle, Lisie, & Broadaway, 

1999). 

To assess the expected protozoan parasite concentrations, the numbers of observed (oo)cysts are 

corrected for the recovery of the detection method (Teunis, P. F. M. et al., 1997). The recovery is 

not constant, it varies from sample to sample, according to the physic-chemical properties of 

water, temperature, turbidity, the volume analyzed and the methods utilized, the age of (oo)cysts 

(Teunis, P. F. M. & Havelaar, 2002; WHO, 2004)….  

Infection ability of organisms (Viability/Infectivity)g.

Microorganisms viability and infectivity has an important significance while assessing the risk 

from pathogens in waters (WHO & OECD, 2003). In fact, dead or inactive pathogens will not 
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threaten public health (USEPA, 2008). Ignorance of the pathogen infectivity will overestimate 

the exposure assessment. In order to respond properly after pathogen detection, a rapid and 

accurate differential determination of infectious versus non infectious microbes is necessary 

(Johnson-White, Lin, & Ligler, 2007). This issue is still a topic of debate. Culture-based methods 

are classic measurements of viability (USEPA, 2008). However, it is a growth-based and time-

consuming method and is not applicable to all target organisms (USEPA, 2008). Hence, 

molecular methods are a better alternative. Molecular methods allow a more rapid detection, and 

they are more sensitive and specific than culture-based detection methods (Keer & Birch, 2003). 

However, the conclusion on the infectivity and or viability may be impacted by the selection of 

the analytical method (USEPA, 2008). 

 Treatment efficiency h.

The evaluation of water treatment efficiency is considered an essential part of the exposure 

assessment, whereas this efficiency is based on the performance of series of barriers. The 

treatment may be divided into two groups physical-chemical removal and disinfection. Indeed, 

performance evaluation of each treatment step provides a quantitative understanding of the 

treatment (LeChevallier & Au, 2004). Water treatment is a dynamic process, which varies 

according to the treatment train design criteria, operation and source water quality (LeChevallier 

& Au, 2004). However, assumptions for treatment parameters can cause significant uncertainties 

(Smeets, P. , Rietveld, Hijnen, Medema, & Stenström, 2006). During QMRA application, the 

monitoring of full-scale system increase the amount of details necessary while representing the 

treatment processes (Smeets, P. et al., 2006). Such information, once collected, can assure helpful 

data base for preventing any possible future risks (Smeets, P. et al., 2006). It was recommended 

by the Canadian Subcommittee on Drinking Water the use of surrogate or indicator organisms to 

evaluate water treatment processes performance (Krewski et al., 2004).  

 Drinking water consumption i.

The number of microorganisms to which an individual is exposed to is defined by the volume of 

unboiled water consumed (Teunis, P. F. M. et al., 1997) multiplied by the concentration of 

organisms. The daily water consumption of individuals is variable from one person to another 

(Krewski et al., 2004; Teunis, P. F. M. & Havelaar, 2002) and from one day to another. The 

survey of various publications showed different assumptions for the daily consumption of 



12 

unboiled water. It is quite linked to the region (climate) and the culture of the population. Some 

QMRA were previously assessed with an assumed consumption of 2 liters per person per day 

(Regli, Rose, Haas, & Gerba, 1991; WHO, 2011c). While in the U.S.A., data of a large survey 

suggest that the average daily consumption per individual is of 0.96 L (Roseberry & Burmaster, 

1992). On the other hand, Netherlands considered a smaller water consumption equal to 0.25 L 

(Teunis, P. F. M. et al., 1997). In Health Canada, the average daily volume of unboiled drinking 

water is estimated at 1 L per individual (Gale, 1996; Health Canada, 2012b) . 

 Dose-response assessment 2.2.3

The dose-response defines the relation between the dose ingested and the probability of infection 

or illness within the exposed population (Haas et al., 1999). This relationship are typically 

derived by applying high dose/risk levels in human studies (Van Ryzin, 1980). An extrapolation 

using mathematical relationship is necessary to assess the risk at lower exposure (Krewski et al., 

2004). 

There are two dose-response models utilized in QMRA, initially introduced by Haas (1983), the 

exponential and the beta-Poisson models. They assume that the risk at low levels is a linear 

function of the dose and that only one viable microorganism is required to initiate the infection 

process in vivo (Haas, 2002; Krewski et al., 2004). The exponential model assumes that the 

probability of a pathogen to cause an infection is independent of dose, whereas the beta-Poisson 

model follows the same principle as the exponential but it introduces a parameter that models 

non-constant survival and infectivity. The beta-Poisson model is an approximate of the exact 

form that uses the confluent hyper geometric function. This can be numerically complex when 

optimization and uncertainty analysis are needed (Teunis, P. F. & Havelaar, 2000).  

The exponential dose–response equation proposed by Haas (1983) 

!!"# = 1− !"#!!!×!!;        Equation 2- 2 
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Where Pinf the probability of infection at dose D, D the ingested dose, and r a specific parameter 

for each pathogen (it is considered as the probability that any single pathogen survives all barriers 

of the host defense systems and succeeds in initiating an infection) (Haas, 1983, 2002).  

[2] The beta-Poisson equation according to Haas (1983): 

!!"! = 1− 1+ ! !
!!

;        Equation 2- 3 

Where: α the model infectivity parameter, β the model shape parameter (Haas, 1983, 2002). 

To this day the health impacts from exposure to some pathogens doses are uncertain, researchers 

need to better understand the dose response relation and its variation within pathogens and 

humans host conditions (Teunis, P. F. M. & Havelaar, 2002). The selection of the dose-response 

parameter has a direct impact on the predicted risk estimates. In the case of Cryptosporidum, the 

infectivity parameters (r) has been shown to vary as much as two order of magnitudes between 

three strains (TAMU, IOWA & UCP) (Okhuysen, Chappell, Crabb, Sterling, & DuPont, 1999). 

There is currently not international consensus on which dose-response parameters should be used 

but most QMRA have adopted the proposed values of the USEPA or WHO. 

 Risk characterization 2.2.4

In the risk characterization, the information from both exposure and dose-response assessments 

are integrated to assess the public health outcomes, as example in terms of annual probability of 

infection or in disability adjusted life years (DALY). 

Annual probability of infectionj.

The probability of infection is the mostly used to express the risk outcomes for a given 

consumption of drinking water (Havelaar & Melse, 2003).  

The annual probability of one or more infections (Pinf/year) is given by Eq.2-4: 

Pinf/year = 1-(1-Pinf) 365;       Equation 2- 4 

The probability of infection is considered a simple method and concentrates only on health risk, 

not on the severity of the health outcome. The USEPA use 10-4 infection/year as the acceptable 

annual risk of infection in their analysis (Regli et al., 1991).  
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DALYsk.

The global burden of disease (GBD) Group of the WHO developed and promoted DALYs as 

opposed to Pinf/year in order to assess the global burden of diseases, to set health policy priorities in 

different regions in the world (Murray & Lopez, 1997). DALYs is determined by Eq. 2-5: 

DALY=YLL + YLD;        Equation 2- 5 

Where the number of years of life lost due to premature death (YLL) is calculated as the product 

of the number of deaths with standard life expectancy at the age of death, accumulated over all 

the health effects an agent is causing or aggravating (Havelaar & Melse, 2003) and the number of 

years lived with a disability or impairment (YLD), weighted with a factor from 0 to 1 for the 

severity of disability or disease, and it is calculated as the accumulated product over all diseases 

related to an agent, of the number of persons affected by a non-lethal disease with the duration of 

this disease and with a measure for its severity (Havelaar & Melse, 2003). 

By considering the outcomes of serious diseases such as mortality and nonfatal health outcomes, 

DALYs will enable a comprehensive evaluation of health gain and losses of various intervention 

options. It establishes public health concepts (quality and quantity of life and social magnitude), 

using time as unit of measurement (Havelaar & Melse, 2003). The utilization of DALYs allows 

the comparison of various outcomes from different pathogens (Howard et al., 2006). This metric 

recognizes the difference between the severities of disease for various pathogens. The disease 

outcomes method required more information about agents and diseases, and implies several 

normative choices, such which reference life table to use for the lost life expectancy, the severity 

valuation procedures, etc. These assumed information may lead to important uncertainty (Masago 

et al., 2006; Xiao et al., 2012). The WHO (2011c) adopted a health based target of 10-6 

DALY/person/year.  

2.3  Health Canada Model 

 Overview 2.3.1

The Health Canada QMRA model was developed as part of the risk assessment process for 

enteric pathogens in drinking water. The model provides the disease impact for user-defined 
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scenarios aiming to represent site-specific drinking water systems (Health Canada, 2010, 2011a; 

McFadyen, Douglas, & J., 2011). The model is realized in a standard Microsoft Excel file 

containing approximately 16 spreadsheets. The first sheet named “Reference” provides technical 

information about reference values and equations used in the QMRA calculations. The second 

sheet “UserGuide” contains tips and suggestions for using the QMRA model. The third sheet 

“input_output” allows the users to input the following data: [1] population, [2] daily 

consumption, [3] raw water pathogen concentration, [4] and treatment barriers. Subsequently the 

model calculates in the same sheet the summary log removal, inactivation values and the mean 

risk estimate along with PDF graphs for each pathogen. The fourth sheet “Treatment” contains 

details about the treatment parameters used for physical removal values and chemical 

inactivation. The remaining sheets contain details for risk calculation, individual and overall 

treatment barriers, PDF for each pathogen and estimates about daily pathogen ingested. 
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  Figure 2-1 Health Canada QMRA model Flow Chart 

 Reference pathogens 2.3.2

Health Canada QMRA model estimates the health risk associated with five reference pathogens: 

Cryptosporidium parvum, Giardia duodenalis, Rotavirus, Campylobacter and E. coli O15:H7. 

These reference pathogens were selected to represent waterborne pathogenic bacteria, viruses and 

protozoa. The selection criteria for those pathogens were the occurrence of some organisms such 

in source water, the resistance to treatment, the high infectivity and virulence and the significant 

health impact (Hartnett et al., 2007). It is assumed that if health risk from the reference pathogens 

is acceptable, adequate safety is guaranteed from other waterborne pathogens (Schijven et al., 

2011). Health Canada chose Cryptosporidium parvum and Giardia duodenalis as reference 

protozoa due to their high infectivity, the well-defined dose-response model for each organism, 

the resistance of Cryptoporidium oocysts to chlorine and the high prevalence of Giardia in the 
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Canadian waters which makes it a useful protozoan reference organism in the Canadian context. 

Rotaviruses were selected due their high potential to infect children, which could lead to severe 

outcomes and also to the availability of the dose-response model. Both E. coli O157:H7 and 

Campylobacter were considered as of particular significance to water industry. It could be life 

threatening in the case of E. coli O157:H7. The two bacterial organisms also have defined dose-

response models (Health Canada, 2012a).

E. colia.

Escherichia coli (E. coli) is a gram negative, non-spore-forming bacteria typically found in 

humans and warm-blooded animals and does not multiply appreciably in the environment 

(Edberg, Rice, Karlin, & Allen, 2000). E. coli transmission occurs through the fecal-oral route 

which may be facilitated by water or food consumption (WHO, 2011b). E. coli strains are divided 

into six different major groups (Cabral, 2010), which not all of them is pathogenic. This 

classification was based on epidemiological evidence, clinical characteristics of disease, 

phenotypic traits, and specific virulence factors. The more important strains that can be 

transmitted via drinking water are enterotoxigenic (ETEC, namely O148), enterohemorrhagic 

(EHEC, namely O157) and enteroinvasive serotypes (EIEC, namely O124) (Scheutz & 

Strokbine, 2005). The diseases caused by EHEC are such as abdominal cramps; fever, vomiting 

and diarrhea which could progressed to bloody diarrhea (WHO, 2011b). The infection by EHEC 

of vulnerable population (such young and elderly) may lead to life-threatening disease (WHO, 

2011b). One member of the EHEC group, E. coli (O157:H7) was previously involved in many 

disease outbreaks (Health Canada, 2000; Hunter, 2003). E. coli O157:H7 produces toxins known 

as verotoxins or Shiga-like toxins. The contamination of sources waters is of environmental 

health significance as E. coli O157:H7 can survive up to 4 to 12 weeks in surface waters (Edberg 

et al., 2000; Wang & Doyle, 1998). 

The animals are the important reservoir of E. coli O157:H7. In fact cattle are known as the 

principal reservoir (Haas et al., 1999; WHO, 2004) and other hosts such as sheep, goats, deer, 

mammals and birds are also known to behave as a reservoir (WHO, 2011b). Finally, human 

sewage also contributes to E. coli O157:H7 contamination of surface waters (Health Canada, 

2012a).  
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Campylobacterb.

Campylobacter infections are considered a major cause of bacterial gastroenteritis.�
Campylobacter is a ubiquitous bacteria, it could be shaped in many forms such as spiral, curved, 

S-shaped or rod-shaped. This bacterial genus is divided into 17 species and 6 subspecies where 

C. jejuni and C. coli are the most commonly known to infect humans (Dasti, Tareen, Lugert, 

Zautner, & Groß, 2010; WHO, 2011a). In fact, more than 90% of Campylobacter infections are 

caused by C. jejuni and C. coli (Dasti et al., 2010). Campylobacteriosis is characterized by severe 

diarrhea (sometimes bloody diarrhea), fever, nausea, vomiting and abdominal pain. Infections 

persist from 5 to 7 days and rarely lead to post-infection problems. Some complications are 

associated to C. jejuni infection, such as Bacteremia (fatal potential for HIV/AIDS), Guillain-

Barré syndrome (which is an acute immune mediated disorder of the peripheral nervous system) 

and reactive arthritis syndrome with severe gastrointestinal associated with joint pain (Altekruse 

& Tollefson, 2003). Finally some infected individuals remain asymptomatic (Altekruse & 

Tollefson, 2003). The health significance of Campylobacter is not only associated to its clinical 

features (as described above) but also to the low infectious dose.

Campylobacter infections are transmitted through the fecal-oral route either from direct or 

indirect contact of infected individuals or from fecal contamination of animal origin. 

Consequently, human sewage and as well as fecal pollution of warm-blooded animals such wild 

birds, waterfowl, pigs, cattle, poultry, sheep, goats, dogs and cats have been defined as source of 

infection (Abulreesh, Paget, & Goulder, 2006; Gölz et al., 2014). After the excretion from animal 

digestive tract, the bacteria enter a non-cultivable stage. It is hard to multiply outside the host 

because Campylobacter required minimal temperature of growth between 30 to 42˚C and an 

aquatic environment to survive. Campylobacter survives in a non-cultivable form for long 

duration in water (Abulreesh et al., 2006). Finally, its occurrence in surface water has shown to 

follow seasonal patterns where higher concentrations are observed in summer and lower 

concentrations in winter (Jore et al., 2010).  

Rotavirusesc.

Rotaviruses are intestinal viruses known as one of the main cause of severe diarrheal disease in 

kids worldwide. By the age of 5 years old, around 95% of children will have been infected by 

minimum one rotavirus infection (Matthijnssens et al., 2008). Rotaviruses cause acute, watery, 
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dehydrating diarrhea in various species like mammals and birds (Rajendran & Kang, 2014). It 

consists of a double-stranded (ds) RNA genome of 11 segments with six structural viral proteins 

encodes and six non-structural [NS] (Matthijnssens et al., 2008; Rodger, Bishop, Birch, McLean, 

& Holmes, 1981). 

Rotaviruses infection could lead to HRV disease, which consists in attacking the enterocytes in 

the small intestine. It lasts from 4 to 7 days with symptoms similar to gastrointestinal diseases. 

Symptoms of a rotavirus infection are mild fever, vomiting, watery diarrhea and abdominal pain. 

It appears typically within 2 days after exposure. Rotavirus infection could provoke severe 

dehydration such as dry, cool skin, dry mouth, and sunken eye in infants and kids (Surendran, 

2008). Other diseases are associated to rotaviruses such as upper and lower respiratory infection 

and intussusception (Public Health Agency of Canada, 2011).

The typical modes of transmission for rotavirus are the fecal-oral, person-to-person or direct 

contact with contamination (Public Health Agency of Canada, 2011). The typical reservoir of 

rotaviruses is the humans, although some of the groups of rotaviruses have been found in pigs, 

foals, cats, dogs, calves and birds (Public Health Agency of Canada, 2011). The rotaviruses can 

persist and remain infectious in warm temperatures (30-35°C) for many days (Raphael, Sattar, & 

Springthorpe, 1985).  

Cryptosporidiumd.

Cryptosporidium is a genus of apicomplexan protozoans (Corso et al., 2003). The taxonomy of 

Cryptosporidium is a serious challenge to molecular epidemiologists and biologist (Tzipori & 

Ward, 2002). Cryptosporidium have been classified in six species; they include C. parvum and C. 

muris as mammalian, C. meleagridis and C. baileyi as avian species C. serpentis in the reptiles 

and C. nasorum in fish. The most infectious species for human are C. parvum and C. hominis 

(Fayer, Speer, & Dubey, 1997). Its life cycles consists of an asexual reproduction phase, along 

with sexual reproduction that exhibits an unusual intracellular phase of development within its 

life cycle (Hunter, 2003). 

Cryptosporidium infections cause the gastrointestinal illness cryptosporidiosis (Corso et al., 

2003; Hunter, 1997). An infection can be induced with less than 10 oocycts in adult human 

volunteers (Okhuysen et al., 1999). It is transmitted through the fecal-oral route may it be person-

to-person or animal-to-person transmission, water and food consumption (Tzipori & Ward, 
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2002). Sources of Cryptosporidium contamination of surface waters is mainly attributed to cattle 

and human feces (Health Canada, 2012b). Cryptosporidium oocysts can survive from 8 weeks to 

24 weeks in surface waters (Carey et al., 2004; King, Keegan, Monis, & Saint, 2005; USEPA, 

2010). 

Giardiae.

Giardia is a genus of flagellate parasite of the intestinal tract of a wide range of vertebrate hosts 

(Caccio & Ryan, 2008). It is divided in six species according to the morphology and 

ultrastructure of their trophozoites; namely Giardia agilis in amphibians, Giardia ardeae and 

psittaci in birds, Giardia microti and Giardia muris in rodents and Giardia duodenalis in 

mammals. Symptoms of Giardia infections are diarrhea, dehydration, abdominal pain, nausea, 

vomiting and chronic infections contributing poor growth and many nutritional and health 

disorders for children and disadvantaged groups of population (Adam, 2000; Thompson, 2004). 

Giardia is a recognized parasite in the humans also in the domestic animals, especially livestock, 

dogs, cats and numerous species of wild mammals and birds (Thompson, 2004). Due to its simple 

life cycle, which involves an environmentally resistant cyst, Giardia can be transmitted from one 

infected host to another directly or indirectly. The water is considered an important vehicle of 

transmission of Giardia to humans (Thompson, 2004). The survival of Giardia in surface waters 

varies between weeks to months (deRegnier, Cole, Schupp, & Erlandsen, 1989; Health Canada, 

2012b) 

 Source water characterization 2.3.3

Pathogen concentrations in source water are assumed to fit to lognormal distribution.  The log-

normal PDF parameters are calculated using the arithmetic mean and standard deviation of 

available data. In absence of site-specific pathogen data the HC QMRA model provides default 

values for pathogens concentration based on a large literature review. Table 2-1 presents the 

pathogens concentration proposed by the model classified according to the perceived level of 

contamination of the source water. However, the use of site-specific data is favored as it provides 

useful information with regards to the vulnerability of a WTP (Schijven et al., 2011). 
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Table 2-1 Default values for pathogens concentrations at raw water proposed by Health Canada 

model. 

1Crypto. represents Cryptosporidium  

2The values of concentrations presented are for generic E. coli; in the model E. coli O157:H7 is calculated 

as being equivalent to 3.49% of the generic E. coli.  

 Treatment efficiency 2.3.4

The treatment efficiency is determined by the sum of physical treatment removal and pathogen 

inactivation by disinfection. The model allows the user to choose from the following water 

treatment barriers: coagulation (coagulation only, coagulation/ filtration, coagulation/ filtration/ 

sedimentation), filtration (slow sand, granular high-rate, microfiltration, & ultrafiltration) and 

disinfection (chlorine, monochloramine, ozone, chlorine dioxide, UV). To assess the overall 

performance of a given WTP the performance of each individual process within the treatment 

train must be determined. 

    Source 

    Water 

Crypto.1 Giardia Rotavirus Campylobacter E. coli2

Oocysts/100L Cysts/100L Virus/100L CFU/100L CFU/100L 

Protected 0.1 0.5 0.1 100 100 

Slightly 

impacted 

1 5 1 1 000 10 000 

Moderately 

impacted 

10 50 10 10 000 100 000 

Highly 

impacted 

100 500 100 100 000 1 000 000 
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Physical-chemical processesa.

Tables 2-2 and 2-3 present the recommended performances according to the type of coagulation 

and filtration processes. If site-specific data are available (e.g. aerobic spore removals), they can 

be used to evaluate treatment performance, otherwise the model provides weighted mean values 

based on an intensive literature review by both Health Canada (2008) and KIWA from 

Netherlands (2007).  

Table 2-2 Recommended performances (as Log removal) used in Health Canada model for 

various coagulation processes used ahead of filtration. 

Processes 

Log removals 

Crypto.1 Giardia Rotavirus Campylobacter E. coli 

Coagulation 

Only 

0.00 0.00 0.00 0.00 0.00 

Coagulation

, Filtration 

0.00 0.00 0.00 0.00 0.00 

Coagulation

, Filtration, 

sedimentati

on 

1.86 1.61 1.76 1.55 1.55 

1Crypto. represents Cryptosporidium 
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Table 2-3 Recommended performances (as Log removal) used in Health Canada model for 

various filtration processes. 

Processes Log removals 

Crypto.1 Giardia Rotavirus Campylobacter E. coli 

Granular high-rate 
(no coag.) 

1.11 1.23 0.77 0.55 0.55 

Granular high-rate 
(coag.online/ direct.filt) 

2.97 2.86 0.59 1.36 1.36 

Granular high-rate 
(coag/direct.filt)  

Granular rapid 
(coag/filt/sedim) 

2.41 1.92 1.11 0.87 0.87 

Slow sand 4.66 4.88 2.18 2.69 2.69 

Microfiltration 6.13 6.62 1.10 4.60 4.60 

Ultrafiltration 6.41 6.18 4.12 10.00 10.00 

1Crypto. represents Cryptosporidium 

Inactivationb.

For chemical disinfection, the inactivation is calculated using CT50 method. The model provides 

the possibility to calculate the performances of three stages of primary disinfection. Health 

Canada used the following formulas in the evaluation of disinfection performance for 

chlorination (Table 2-4) and ozonation (Table 2-5): 



24 

Table 2-4 Chlorination inactivation formulas 

Organisms Equations to predict inactivation Reference 

Giardia (USEPA, 1999) 

Crypto.1 (Korich et al., 

1990 

Rotavirus ! = !"×0,3536×e!,!"#$×!"#$
−0,066658×pH! + 1,58972×pH! − 12,4303611×pH + 32,3369

(Sobsey, 1999) 

Campylobacter ! = 3.64
0.5 !" (Blaser et al., 

1986) 

E. coli (Rice, 

Clark, & 

Johnson, 

1999) 

1Crypto. represents Cryptosporidium 

I = CT
0.2828× pH 2,69 ×[Cl2 ]

0.15 ×0.933(Temp−5)

I = 2×CT
7200

I = 3.8962CT 0.3124
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Table 2-5  Ozonation inactivation formulas 

Organisms Inactivation Reference 

Giardia  (USEPA, 1999) 

Crypto.1 (USEPA, 2003) 

Rotaviruses !! = !"e!!.!"#$!×!!!(!,!"!×!"#$)
 

(USEPA, 1999) 

Campylobacter 
 (Hunt & Mariñas, 

1999) 

E. coli 
 (Hunt & Mariñas, 

1999) 

1Crypto. represents Cryptosporidium 

If the calculated inactivation exceeds the maximum values reported in the literature, the QMRA 

model will replace the extreme values by default capping values. Table 2-6 presents the capping 

values utilized by the model. 

I =CT (0.0087Temp2 − 0.0334Temp+1.545)

I = 0.0397CT (1.09757)Temp

I =CT60( S
min

)(4.828Temp+31.9)

I =CT60( S
min

)(4.828Temp+31.9)
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Table 2-6 Capping values used by Health Canada QMRA model 

 Water consumption 2.3.5

In Health Canada, the volume of unboiled drinking water is assumed to be 1 liter daily per 

individual (Gale, 1996; Health Canada, 2012b) . 

 Dose response  2.3.6

The dose-response models utilized by the HC QMRA model are presented in table 2-7: 

Disinfectants Capping Value (Max. Inactivation Log) 

Cryptosporidium Giardia Rotavirus Campylobacter E. coli 

Free Chlorine 4 8 8 8 8 

Chloramine 5 4 4 8 4 

Ozone 6 4 4 8 8 

Chlorine Dioxide 6 4 8 4 4 

UV 5 4 5 5 5.5 
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Table 2-7 HC model dose-response equations 

Pathogens 

   Model 

Dose response parameters 

      N50
1    Reference r Α Β 

Crypto.3 Exponential 0.018 – – 38.5 (Messner, Chappell, 

& Okhuysen, 2001) 

Giardia Exponential 0.01982 – – 35.0   (Rose & Haas, 

1991) 

Rotavirus Beta-Poisson – 0.265 0.4415 5.597 (Haas et al., 1999;

Haas, Rose, Gerba, 

& Regli, 1993) 

2Campy. Beta-Poisson – 0.024 0.011 (Teunis, P. F. M. et 

al., 2005) 

E. coli 

O157:H7 

Beta-Poisson – 0.0571 2.2183 4.15x105 (Strachan, Doyle,

Kasuga, Rotariu, 

& Ogden, 2005) 

1 N50 the median infectious dose given by:  

N50=Ln(0.5)/-r for exponential dose-response model and N50= β/ (21/α – 1) (Haas et al., 1999). 

2 Campy.: Campylobacter jejuni 

3Crypto. represents Cryptosporidium  
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 Risk characterization 2.3.7

The risk outputs are calculated for each pathogen separately using the appropriate dose-response 

equation. Instead of calculating point estimates based on the average dose in treated waters (cf. 

Eq. 1-1), the HC model generates a lognormal distribution from the arithmetic mean and the 

standard deviation of the pathogens concentrations input by the user as the first step in the model 

application. The raw water log-normal probability distribution function (PDF) is then divided 

artificially into 500 segments. The average pathogen dose in treated waters is calculated for each 

single segment separately by applying the constant log reduction value calculated using the 

various site-specific process performance inputs. Once this information is available (CTWi), a 

Poisson distribution is used to predict the probability of finding from 0 to 40 organisms in the 

treated volume of water given a concentration C!!! and volume ingested V. The upper number of 

40 organisms was selected arbitrarily as the risk of finding more than 40 organisms in 1 L of 

treated waters is insignificant. The elemental probability of being infected is obtained by 

multiplying the Poisson probability of having N organisms in treated waters by the risk of 

infection arising from N organisms as predicted using the appropriate dose-response models. This 

probability is multiplied by the weight-average to account for the relative contribution of each 

segment (0.002). This process is repeated for the 500-segmented risks. The final risk estimate is 

obtained by summing up the risk from the 500 segments. Eq. 2-6 summarizes the equation used 

for the calculation. For this example, the exponential model is presented but may be replaced by 

the Beta-Poisson model, if pertinent.  

!!"# = 0.002× (!×!!!!)
!

!!
!"
!!! ×(1− exp −!×! )!""

!!! !;   Equation 2- 6 

Where C!!! !the concentration of microorganisms in source water, V the volume of unboiled 

water ingested daily, r is a pathogen specific coefficient used to depict the dose-response curves 

of each reference pathogen and N doses ranged from 0 to 40 microorganisms per day. 

Once the Pinf/year is defined the probability of illness per person per year (Pill/year) is assessed as 

follows: 

!!""/!"#$ = !!"#/!"#$×!!"".!!!"#$%!!"#$%&!'"    Equation 2- 7 
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Where the probability of illness given infection (Pill. given infection) determined according to the 

values published in literature for each reference pathogen (Table 2-8). 

Moreover, The HC model expresses the public health risk in terms of DALYs  (Eq. 2- 5 & Eq. 2-

8) to allow a comparison with the health based target of less than 10-6 DALY per person per year

(DALY/year) (Health Canada, 2011b, 2012b). 

!"#$/!"#$ = !!!!/!"#$×!"#$!"!!"#$!!"!!""#$%% Equation 2- 8 

Where the DALYs in case of illness per reference pathogen (Table 2-8) determined by Heath 

Canada based on a literature review and demographic information on the Canadian population. 

In summary, the risk calculation outputs and figures provided by the HC model are [1] the 

probability of infection per person (daily and yearly), [2] the probability of illness yearly (per 

person and for the given population), [3] the annual DALY risk (per person and for the given 

population), and [4] graphs showing the probability distribution function (PDF). The acceptable 

annual DALY is suggested to comply with health-based target of less than 10-6 DALY. 
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Table 2-8 Dose-response models, probability of illness given infection and total DALYs per case of illness according to HC model. 

*Pill-Probability of illness
†As defined in the HC model 
‡ Crypto.- Cryptosporidium parvum 
§ Exp.- Exponential & ** Illness used in dose response model

Reference 
Pathogen 

Type of 
model 

Dose-response curves Pill given infection* Total DALYs 
per case of 

illness† R β Reference Value Reference 

Crypto. ‡ Exp. § 0.018 Messner et al. 

(2001)

0.7 Casman, Fischhoff, 

Palmgren, Small, and Wu 

(2000); Okhuysen, 

Chappell, Sterling, 

Jakubowski, and DuPont 

(1998) 

1.70E -03 

Giardia Exp. 0.01982 Rose, and Gerba 

(1991)

0.24 Eisenberg et al. (2006); 

Macler, and Regli (1993) 

1.70 E-03 

Rotavirus Beta-

Poisson 

0.265 0.441

5 

Haas et al. (1993) 0.88 Havelaar, and Melse 

(2003)

8.46 E-03 

Campylobacter Beta-

Poisson 

0.024 0.011 Teunis, P. F. M., 

Nagelkerke, and 

Haas (1999)

1** 4.60 E-03 

O157 Beta-

Poisson 

0.0571 2.218

3 

Strachan et al. 

(2005)

1** 2.45E-02 
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2.4 Prediction of chemical disinfection performance 
Disinfection has a major role in reducing the exposure to pathogenic microorganisms and the 

associated human health risk. Consequently, the selected approach used to assess disinfection 

performance is of importance. An underestimation or overestimation of disinfection performance 

will either have cost implications, due to unnecessary additional treatment process or create a 

false sense of safety for a system which is vulnerable to waterborne disease outbreaks. Many 

variables could influence disinfection performance; such as inactivation kinetics, disinfectant 

decay in water and reactor hydrodynamics (Pfeiffer & Barbeau, 2014).  

There exist several methods to predict the disinfection performance most of which use the CT 

concept (product of disinfection residual and contact time). The HC QMRA model utilizes the 

CT50 approach. Other approaches such as the CT10 or N-CSTR may also be used for that purpose. 

Chick-Watson (1906-1908) were the first to introduce the CT concept as an empirical rate 

equation to describe inactivation (Eq. 2-9) expressed as: 

K=Cn.t ;         Equation 2- 9 

Where K is the constant for specific microorganism exposed under specific conditions, C the 

disinfectant concentration (mg/L); n the so-called coefficient of dilution; t the contact time (min) 

required for a fixed-percent inactivation (Clark, Read, & Hoff, 1989). Frequently, the value of the 

constant n is assumed equal to 1.  

In 1989, the USEPA introduced the CT concept in the Surface Water Treatment Rule (SWTR) in 

order to evaluate the inactivation of Giardia cysts by disinfection (Clark et al., 1989). Many 

factors affect CT calculation such water temperature, contact time, pH, degree of mixing, 

turbidity, and disinfectant concentration (Clark et al., 1989). For chlorination two factors have 

major impact on the inactivation efficiency: the pH and the water temperature. Meanwhile for 

ozonation, the water temperature has the greatest influence on inactivation performance. In the 

SWTR, the EPA recommends a first-order Chick-Watson’s law for describing the inactivation 

kinetics of disinfection processes:  

!" ! !! = −!"#!!   Equation 2- 10 

Where N and N0 the concentration of microorganisms at time t and t = 0, C the disinfectant 
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residual concentrations (mg/L), T the contact time (min) and k the inactivation rate constant for a 

given type of disinfectant (L/mg.min), microorganism, pH, and temperature (Lev O., 1992). 

The hydraulic of a system has a significant impact on microbial inactivation. Hence it is of 

relevance to accurately represent the hydraulic of a contactor in inactivation calculations. While 

assessing the exposure, several methods for measuring T could be used to predict the reactors 

performance, and the inactivation kinetics of disinfection. In this project, we compare three 

different approaches for T (T50, T10 and N-CSTR method).  

CT50 methodc.

T50 represents the time interval required for assuring the exposition of 50% of treated water to the 

disinfection. The use of T50 compared to the hydraulic retention time gives a very low safety 

factor (Lev & Regli, 1992). In most cases, it is inadequate measure to predict inactivation levels 

and does not consider the hydraulic efficacy. Often, the T50 is not available in a given water 

treatment train. The HC model, which uses the T50, recommends using the theoretical average 

retention time (Volume/Flow) if the T50 is not available. 

CT10 methodd.

T10 is another method for time characterization (T), recommended by the United States 

Environmental Protection Agency (USEPA) in 1989 (USEPA, 1991a). This regulatory approach 

is widely utilized in North America. T10 represents the time interval expected for the outlet 

concentration tracer to achieve 10% of its ultimate response, following inlet step perturbation 

(Lev & Regli, 1992). The CT10 method is generated from the CT by applying a “baffling factor” 

T10/T which describe the degree of short-circuiting occurred within the basins (Smeets, P. W. M. 

H. et al., 2006).  

T10=Baffling factor x HRT;    Equation 2- 11 

Where HRT is the hydraulic retention time. The baffling factor may vary from a low of 0.1 

(perfectly missed reactor) to a high of 1.0 (plug flow contactor). The CT10 approach can 

guarantee a sufficient level of inactivation when low level of inactivation is required and large 

ratio between T10/T prevails (Lev & Regli, 1992). The drawback of using the CT10 is that it 
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underestimates disinfection performance in conditions where inactivation is low whereas it 

overestimates disinfection performance in conditions where inactivation is high (Lev & Regli, 

1992; Pfeiffer & Barbeau, 2014; Zhang, Huck, Anderson, & Stubley, 2007). In general it’s a 

conservative scale-up design, could lead as much as 9.5 times the design based on HRT (Lev & 

Regli, 1992). Although this approach is conservative from a regulatory standpoint, it introduces a 

bias in the evaluation of chemical disinfection performance. 

N-CSTR modele.

First proposed by Lawer and Singer (1993), the partially segregated technique (also called N-

CSTR method) considers that the contactor is composed of several single completely stirred 

reactors  (CSTRs) in series, with constant disinfection equivalent to the effluent concentration 

(Pfeiffer & Barbeau, 2014). The N-CSTR model assumes that the liquid is perfectly mixed in 

each CSTR separately with different reactors. The number of CSTRs utilized does not have to 

match the actual number of chambers (N) in the contactor and can be fractional value (Pfeiffer & 

Barbeau, 2014). The number N of CSTRs is calculated based on the fit to a tracer curve of the 

hydraulics parameters (N and HRT). Based on the baffling factor (T10/T), one can also calculate 

the theoretical value of N. 

This method provides a more accurate description of the hydraulic behavior of a reactor and also 

considers the disinfectant decay within the reactor. N-CSTR method is less prone to over- or 

underestimate the inactivation performance in circumstances where low or high disinfectant 

decay is observed (Pfeiffer & Barbeau, 2014). 

The number at the exit of the last contactor (j) is obtained from the following Eq. 2-12:   

!! = !!

!!
!!!!!"#

!
!!! ;           Equation 2- 12 

Where Nj is the concentration of microorganisms after the j
th

 CSTR in series (mg/L), Ni is the

effluent concentration of microorganisms of the previous CSTR (mg/L), kL is the inactivation rate 

coefficient (L/mg.min) (Eq. 2-13), HRT is the hydraulic residence time (min), and N is the 

number of CSTRs in series for the entire contactor (Pfeiffer & Barbeau, 2014). 
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          !! !
!".!"# = !" !" ∗!"#$%&'#%&("! !"#$!%%!&!!"!!"#

!"   ;      Equation 2- 13 

While Cj is the concentration of the disinfectant after the j
th

 CSTR, calculated as follow:

!! = !!
!!!!!"#!

!  ;        Equation 2- 14

Where C0 is the initial disinfectant concentrations (after immediate demand) (mg/L) and kD is the 

decay constant of the disinfectant (min-1).  

The rate of elimination final (in log) after the jth CSTR in series is determined as: 

! = − !"# !"
!!

;       Equation 2- 15 

Where N0 is the initial concentration of microorganisms (assumed equal to 1) and Nj is the 

concentration of microorganisms at time t (mg/L) (Pfeiffer & Barbeau, 2014) calculated with Eq. 

2-12. 

Although the N-CSTR model may also overestimate or underestimate inactivation due to the 

implication of the kinetic rate law it uses, it is considered more reliable than the T10 method. 

Smeets, P. W. M. H. et al. (2006) showed that the CSTR method improves prediction of 

inactivation of microorganisms by full-scale ozonation (Pfeiffer & Barbeau, 2014). Also 

observed a better prediction of E. coli inactivation by free chlorine using this approach.
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CHAPTER 3 METHODOLOGY 

This section present the methodology used to complete the QMRA of 17 Canadian water 

treatment plants.  

3.1 Source water characterization and target pathogens 

First to define the source water quality, the arithmetic mean and standard deviation of the 

available monitoring data, assumed to fit lognormal distribution by the HC model, were inserted 

in the model spreadsheet. The concentrations for three reference pathogens (Fecal coliform/E. 

coli, Giardia and Cryptosporidium) were collected from historical monitoring of raw water data 

for the 17 WTPs. The assumptions (such as infectivity, recovery etc.) utilized in each WTP to 

simplify the monitoring of the three reference pathogens were identified separately in order to be 

identical within WTPs for the project use. The details of the model input assumptions are 

presented in Table A.1- 1 and Table A.1- 2 at appendix 1.  

The arithmetic mean and standard deviation for each pathogen on each WTP were calculated 

using STATISTICA (Statsoft) (Table A.1-3) and illustrated in box plot for the purpose of 

assessing four different methods namely, arithmetic mean with data Below Detection Limit 

(BDL) were substituted with zeros, arithmetic mean with BDL were substituted with Detection 

Limit (DL), regression on order statistics (ROS) by PROUCL, and point estimate (Poisson mean) 

to determine the best approach describing the microbial distribution in source waters. The Non-

Detects (ND) data in the study were handled in different ways according to the four calculation 

methods. Finally, the impact of two scenarios of risk estimations was assessed (Refer to appendix 

6). In one scenario, the annual risk was predicted according to the annual mean microbial 

concentrations. In another scenario, an annual risk was calculated based on monthly risk 

estimates. Each monthly risk calculation used the mean annual concentration of the month.   

3.2 Treatment efficiency 

The pathogens concentrations in the treated waters is based on the source water concentrations 

adjusted for the performance of treatments which is the sum of the individual performance of 

each physic-chemical processes and the disinfection processes within the treatment train. For the 

physic-chemical treatments, the proposed generic log removals of each physic-chemical process 
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were used. In circumstances where the calculated inactivation is too optimistic and unrealistic the 

model capped the performance to the documented values reported in literature. For chemical 

disinfection, the CT50 method was selected for calculating the treatment performance for all 

WTPs. 

However, the impact of the CT calculation method on risk estimate was also conducted on a 

limited number of WTPs (N=3) by comparing three scenarios: scenario 1 estimated disinfection 

efficiency through a CT50 approach, scenario 2 through a CT10 approach and scenario 3 through 

a N-CSTR approach. These three scenarios were assessed on WTPs which rely both on ozonation 

and chlorination to comply with primary disinfection requirements and which are fed with 

variable source water quality; WTP 9 (moderately impacted river), WTP 2 (pristine river) and 

WTP G (lightly impacted river). T10/T data were collected for both Chlorination (Table A.5-1) 

and ozonation treatment (Table A.5-2). The source water quality of each WTP was represented 

by the arithmetic mean and standard deviation of the yearly monitoring data. The BDL data were 

substituted by the zeros. To assess disinfection performance, average pH temperature and 

disinfectant concentrations were determined on monthly basis for each water treatment barrier 

(Refer to appendix 7, Table A.7-1 till A.7-5 for chlorination and Table A.7-6 till A.7-8 for 

ozonation). Monthly pathogen inactivation by ozonation and chlorination were calculated and 

transformed into annual risks. Finally, these yearly risk estimates were evaluated for three 

reference pathogens: E. coli O157:H7, Giardia duodenalis and Cryptosporidium parvum. A 

nonparametric test named “Wilcoxon test” was used to compare the risk estimates. The Wilcoxon 

test first computes the difference between the different approaches and then analyzes only the 

generated list of differences. 

3.3 Risk characterization 

The HC QMRA model expresses the estimated risk in terms of (i) probability of infection, (ii) 

probability of illness and (iii) DALYs. To do so, the model used the exponential model for 

Cryptosporidium and Giardia whereas the Beta-Poisson model for rotavirus, Campylobacter and 

E. coli. The HC model calculated the predicted dose in treated waters for each slices separately 

after segmenting the raw water PDF into 500 slices. From that predicted dose, the model assessed 

weighted average risk by assuming the probability of finding from 1 to 40 pathogens in the 

treated volume of water supposing a Poisson distribution.  This approach calculates the risk for 
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each of these possibilities, which are then summed up. This process is reiterated for the 500 

elements and the risk is weight-averaged to account for the relative contribution of each element 

(0.002).  

Finally, the health risks were assessed for the 17 WTPs, and the outcomes were compared to the 

health-based targets set by USEPA (10E-04 infection/y/person) and Health Canada (10E-06 

DALY/year).
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Abstract 

A QMRA model developed by Health Canada was applied at 17 WTPs located throughout 

Ontario and Quebec, Canada. Four source water characterization methods were compared that 

considered E. coli, Giardia and Cryptosporidium. In addition, three strategies to evaluate 

chemical disinfection performances were compared (CT50, CT10, and N-CSTR). The N-CSTR 

approach provided more reliable risk estimates as it is less sensitive to high inactivation 

conditions (when compared to use of CT10 or CT50). Predicted risk estimates for the 17 WTPs 

revealed that only two did not comply with the 10-6 DALY (WHO) and 10-4 risk of infection 

(USEPA) reference levels. This publically available QMRA model could help WTP managers to 

assess overall treatment performance via a systematic evaluation process.  

Keywords: QMRA, Source water characterization, Disinfection, N-CSTR, Risk assessment. 
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4.1 Introduction 

The implementation of water safety plans is increasingly being considered as an important 

approach for the provision of safe drinking water. As such, a need exists to assess the risk of 

adverse health effects arising from microbial pathogens. The use of quantitative microbial risk 

assessment (QMRA) is one of the most popular methodologies to achieve this objective. 

Traditionally QMRA is conducted in four steps: [1] Hazard identification; [2] Exposure 

assessment; [3] Dose-response; [4] Risk characterization (Coleman & Marks, 1999; Haas et al., 

1999). 

QMRA has been widely employed within the international drinking water community (Howard et 

al., 2006; Signor & Ashbolt, 2006), to determine health based targets and help decision makers 

set regulatory, operational, or research priorities to ensure safe drinking water (WHO, 2004; 

Signor, R.S. & Ashbolt, N.J., 2006). The United States Environmental Protection Agency 

(USEPA) first used QMRA to set drinking water treatment requirements (1989 Surface Water 

Treatment Rule) to ensure < 10-4 Giardia or virus infection per person per year as a result of 

drinking water consumption."The World Health Organization (WHO) subsequently promoted the 

use of water safety plans along with health based targets by applying QMRA (WHO, 2004, 

2006). Dutch regulations require drinking water suppliers to assess the human health risk 

associated with Cryptosporidium and Giardia using QMRA every three years to compare the risk 

calculation outputs to health based targets (Schijven et al., 2011). New Zealand has also adopted 

a QMRA-based regulation for drinking water (New Zealand Ministry of Health, 2008). Finally, 

the Guidelines for Canadian Drinking Water Quality (GCDWQ) encourage the implementation of 

a risk-based, multi-barrier approach that includes QMRA (Health Canada, 2012b; Krewski et al., 

2004). By offering a quantitative basis for the development of drinking water treatment goals, 

QMRA allows the identification of operational guidelines to ensure control and minimize public 

health risk.  

QMRA can be applied by end users (e.g. municipal engineers) to evaluate alternative treatment 

strategies in order to satisfy regulatory requirements, evaluate the robustness of a given treatment 

train, or determine critical situations where the risk of exposure may be increased (Hartnett et al., 

2007; Health Canada, 2011b; McFadyen et al., 2009). Health Canada (HC) has developed a 

simplified Excel version of QMRA model suitable for use by municipal water utilities (Hartnett 

et al., 2007; Harwood et al., 2005). This user-friendly model, available as an Excel spreadsheet, is 
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designed to provide municipal engineers, water treatment plant (WTP) operators and local 

decision makers with a tool to estimate health risk associated with five reference pathogens: 

Cryptosporidium parvum, Giardia duodenalis, Rotavirus, Campylobacter and E. coli O157:H7. 

Owing that monitoring all pathogens in water is considered costly and impractical (Schijven et 

al., 2011), QMRA is generally applied using reference pathogens which cover a broad range of 

health risks (Medema & Ashbolt, 2006). To assess exposure via drinking water consumption, 

population size, source water monitoring data and information regarding each process within a 

given treatment train must be specified. Protozoan parasite or bacterial indicator data are 

collected to quantify raw water quality. Performance of physical-chemical treatment processes is 

either described using site-specific data or by adopting default values included in the model, 

which have been identified following an extensive literature review by Health Canada and KWR 

Watercycle Research Institute (Netherlands) (Hijnen & Medema, 2010). To allow a site-specific 

evaluation of chemical disinfection performance, a user must specify the operating conditions 

(residual concentration x time) of each disinfection process; the spreadsheet then computes 

inactivation associated with each reference pathogen. Water consumption behaviour as well as 

the dose-response models for each reference pathogen are incorporated such that calculated risk 

outcomes may ultimately be expressed in terms of the probability of infection, probability of 

illness and disability adjusted life years (DALY). An acceptable annual DALY has been 

established to comply with the health based target of < 10-6 DALY (Health Canada, 2011b) while 

maintaining a tolerable annual probability of infection of 10-4, as suggested by the USEPA (Regli 

et al., 1991). 

One limitation of the model is that it uses the CT50 method to assess chemical disinfection 

performance. Such an approach may not be optimal as the T50 does not always assure that the 

minimum inactivation level required by the USEPA Surface Water Treatment Rule (SWTR) 

regulation (USEPA, 1989) (Lev & Regli, 1992) is achieved. CT10 as promulgated by the USEPA 

(1991a) is widely used throughout North America (Lev & Regli, 1992; Rakness, Najm, Elovitz, 

Rexing, & Via, 2005). A drawback of using CT10 is that it underestimates disinfection 

performance in conditions where inactivation is low whereas it overestimates disinfection 

performance in conditions where inactivation is high (Lev & Regli, 1992; Pfeiffer & Barbeau, 

2014). An alternative method, using a partially segregated flow technique (also called the N-

CSTR method) has been proposed by Lawler, and Singer (1993) to improve accuracy when 
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predicting disinfection performance. This model was recently shown to improve predictions of 

E. coli inactivation by free chlorine (Pfeiffer, V. & Barbeau, B., 2014). The N-CSTR model 

considers the reactor to be composed of several single CSTRs in series. In contrast to CT10, it 

implies a more accurate description of the hydraulic behaviour of a reactor but also assumes that 

disinfectant decay within the reactor is known. As such, the N-CSTR method offers a more 

accurate prediction of inactivation and is less prone to over- or underestimation in circumstances 

where low or high disinfectant decay is observed (Pfeiffer & Barbeau, 2014). As primary 

disinfection is key in reducing the burden of waterborne disease, there is a need to determine 

which method should be employed in QMRA modeling to ensure accurate estimation of public 

health risk while adopting a convenient methodology for end-users. The objectives of this 

investigation were: [1] to apply the Health Canada QMRA model at seventeen WTPs located in 

Ontario and Quebec (Canada) having a wide range of treatment technologies, [2] to propose the 

best method to represent the microbial concentrations in source waters, considering three 

different calculation techniques (regression on order statistics (ROS), arithmetic mean, and point 

estimate) in order to improve the accuracy of risk outputs, and [3] to evaluate the impact on risk 

characterization as a function of the methodology used to predict inactivation by primary 

disinfection (CT50, CT10, and N-CSTR). 

4.2 Methodology 

 QMRA model 4.2.1

Source waterf.

Source water quality was characterized using the arithmetic mean and standard deviation of 

available monitoring data. The model assumes that pathogen concentrations can be fitted to a 

lognormal distribution. E. coli O157:H7 concentrations were estimated using E. coli data where 

the fraction of E. coli O157:H7 was assumed to correspond to 3.49% of the total E. coli 

population present in source water (Martins, Rivera, Clark, & Olson, 1992).  

Treatment efficiencyg.

To estimate pathogen concentrations in treated waters the model sums the individual performance 

of each unit process in the treatment train. The user must select an appropriate type of physical-

chemical treatment processes from 4 coagulation/settling scenarios and 7 filtration scenarios. If 
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site-specific performance data are available, the user may enter it instead. In the absence of 

such information the model assigns log removal values to each process according to weighted 

means reported in the literature review (Hijnen & Medema, 2010) and adapted by Health Canada 

(Table 4.1). The user must enter the theoretical contact time (min), residual disinfectant 

concentration (mg/L), pH, and temperature (°C) in order to assess the inactivation efficiency of 

chemical disinfection. In circumstances where the calculated inactivation exceeds values reported 

in the literature, the model automatically assumes a maximum performance value (Table 4.2). 

Table 4-1: Assigned reduction of pathogens by physical-chemical treatment processes. 

Reference 

pathogens 

Reduction per unit process (log values) 

Coagulation/ 

Sedimentation 

Filtration 
Disinfection 

Slow Rapid granular Membrane 

I(c)* D(c/f)† C(c/f/s)‡ SS§ NC** I(d)†† C‡‡ MF§§ UF*** UV†††

Crypto.§§§ 0.00 0.00 1.86 4.66 1.11 2.97 2.41 6.13 6.41 4.43 

Giardia 0.00 0.00 1.61 4.88 1.23 2.86 1.92 6.62 6.18 4.00 

Rotavirus 0.00 0.00 1.76 2.18 0.77 0.59 1.11 1.10 4.12 4.08 

Campy.**** 0.00 0.00 1.55 2.69 0.55 1.36 0.87 4.60 8.00 5.00 

E. coli 0.00 0.00 1.55 2.69 0.55 1.36 0.87 4.60 8.00 5.50 
*I(c)-In-line coagulation
†D(c/f)-Direct (coagulation, flocculation) 
‡C(c/f/s)-Conventional (coagulation, flocculation and sedimentation) 
§SS-slow sand
**NC-no coagulation 
††I(d)-In-line/direct 
‡‡Conventional 
§§MF-microfiltration 
*UF-ultrafiltration
†††UV- Ultraviolet disinfection 
§§§Crypto - Cryptosporidium 
****Campy-Campylobacter 
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Table 4-2: Inactivation (I) equations for ozonation and chlorination. 

Pathogen Process Equation Reference Maximum 
inactivation* 

Giardia 

O3 ! = !"(0.0087×!"#$"%&'(%"! − 0.0334!"#$"%&'(%" + 1.545) (USEPA, 1991b, 
1999) 4 log 

Cl2 ! = !"
0.2828×!"!.!"×! !"! !.!"×0.933 !"#$"%&'(%"!!

(USEPA, 1991b, 
1999) 8 log 

Crypto. 

O3 ! = 0.0397!"(1.09757)!"#$"%&'(%" (USEPA, 2006) 6 log 

Cl2 ! = 2!"
7200

(Korich, Mead, 
Madore, Sinclair, 
& Sterling, 1990) 

4 log 

E.coli 

O3 ! = !" 60!
!"# (4.1828!"#$"%&'(%" + 31.9) (Hunt & Mariñas, 

1999) 8 log 

Cl2 ! = 3.8962!"!.!"#$ (Rice et al., 1999) 8 log 

*Maximum inactivation values adopted by the model
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Risk characterizationh.

The model expresses estimated risks in terms of (i) the probability of infection, (ii) the 

probability of illness and (iii) DALYs, using an exponential dose-response model for 

Cryptosporidium and Giardia (Equation 4.1); for rotavirus, Campylobacter and E. coli, a Beta-

Poisson model (Equation 4.2) is applied. For both cases, output is defined as the daily probability 

of infection (Pinf) upon the ingestion of a given pathogens dose.  

!!"# = 1− !"#!!" !!!!!!!! Equation 4.1 

    !!"# = 1− 1+ ! !
!!
!!!!!!!! Equation 4.2 

Where r, β, and α are pathogen specific coefficients used to depict the dose-response curves for 

each reference pathogen (Table 4.3). 

The probability of infection per year (Pinf/year) is calculated as: 

!!"!/!"#$ = 1− (1− !!"#)!"#!!!!!!!!!Equation 4.3 

The dose of ingested organisms (D) is calculated for each pathogen according to Equation 4.4 

! = !!"×(1 !)×!!"#$%&'(×10!(!"#!!"#$%&')×!!!!!!!!Equation 4.4 

Where CSW represents the concentration of microorganisms in the source water, R the recovery of 

the analytical method, Ifraction the infectious fraction and V the volume of unboiled water ingested 

daily.  

To conduct risk calculations it is assumed that all pathogens are infectious; recoveries of 

Cryptosporidium and Giardia of 40% and 69%, respectively (Jaidi et al., 2009), and that one liter 

of unboiled water is consumed per person per day (Health Canada, 2012b). Protozoan data were 

corrected prior to entering (oo)cyst concentrations into the model.  
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In lieu of calculating point estimates based on the average pathogen dose in treated waters, the 

model defines the raw water probability distribution function (PDF) as 500 segments, for each of 

which the predicted dose in treated waters can be calculated using Eq. 4.4 The weighted average 

risk is subsequently calculated using Eq. 4.5: 

!!"# = 0.002× !!×!!"_!
!

!!
!"
!!! ×(1− exp −!×! )!""

!!!  Equation 4.5 

This approach calculates the probability of finding 1 to 40 pathogens with concentration (CTW_i) 

in a volume of treated water (V), assuming a Poisson distribution. For each probability, the risk is 

calculated and summed. This process is reiterated for the 500 elements and the risk is weight-

averaged by multiplying by 0.002 to account for the relative contribution of each. Once the 

Pinf/year is defined, the probability of illness per person per year (Pill/year) is assessed as follows: 

!!""/!"#$ = !!"#/!"#$×!!"".!!!"#$%!!"#$%&!'"!!!!!!!!Equation 4.6 

Where the probability of illness given infection (Pill. given infection) is determined according to the 

values published in literature for each reference pathogen (Table 4.3), and public health risk is 

expressed in terms of DALYs (Equation 4.7).  

!"#$ = !"! + !"# Equation 4.7 

Where LYL is the life years lost due to premature death, YLD is the years lived with disability or 

impairment. 

!"#$/!"#$ = !!""/!"#$×!"#$!"!!"#$!!"!!""#$%% Equation 4.8 
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Table 4-3: Dose-response models, probability of illness given infection and total DALYs per case of illness according to the Health 
Canada model. 

Reference 
Pathogen 

Type of 
model 

Dose-response curves  Pill given infection*  Total DALYs 
per case of 

illness** R ! β  Reference  Value Reference  

C. parvum ‡ Exp. §    0.018     Messner et al. 

(2001)  

 0.7 Casman et al. (2000); 

Okhuysen et al. (1998)  

 1.70E -03 

Giardia Exp.   0.01982     Rose, and Gerba 

(1991)  

 0.24 Eisenberg et al. (2006); 

Macler, and Regli (1993)   

 1.70 E-03 

Rotavirus Beta-

Poisson 

  0.265 0.4415 Haas et al. (1993)   0.88 Havelaar, and Melse 

(2003)  

 8.46 E-03 

Campy.§§ Beta-

Poisson 

  0.024 0.011 Teunis, P. F. M. 

et al. (1999)  

 1†    4.60 E-03 

E.coli O157 Beta-

Poisson 

  0.0571 2.2183 Strachan et al. 

(2005)  

 1†    2.45E-02 

*Pill-Probability of illness 
†Illness used in dose response model 
‡ Crypto.- Cryptosporidium parvum 
§ Exp.- Exponential  
§§ Campy- Campylobacter 
**As defined in the HC model 
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 Water treatment plants 4.2.2

All 17 Canadian WTPs were located in Ontario (named using alphabetical letter) and in Quebec 

(numbered). They all received surface waters and varied in terms of treatment schemes (Table 

4.4). 

              Table 4-4:  Observed reduction of pathogens at water treatment plants (WTPs)

Province WTP Source Treatment regime 
Log removals  

E. coli Giardia Crypto
. 

Ontario A Lake ActifloTM + O3  
+ Granular filtration 

2.42 3.53 4.27 

Ontario B Lake ActifloTM + O3
 + Granular filtration 

2.42 3.53 4.27 

Ontario C River Conventional treatment*

 + Cl2 
2.42 3.53 4.27 

Ontario D Lake Microfiltration + GAC contactors 
+ Cl2 

5.15 7.85 7.24 

Ontario E Lake Conventional treatment + UV + 
Cl2 

2.42 3.53 4.27 

Ontario F Lake Conventional treatment + Cl2 2.42 3.53 4.27 
Ontario G River Conventional treatment + Cl2 2.42 3.53 4.27 
Ontario H Lake Direct filtration (coag./floc.) 

 + Cl2 
1.36 2.86 2.97 

Quebec 1 River Direct filtration  
(without coag.) + Cl2 

0.55 1.23 1.11 

Quebec 2 River Direct filtration  
(without coag.) + O3 + Cl2 

0.55 1.23 1.11 

Quebec 3 River Conventional treatment + Cl2 2.42 3.53 4.27 
Quebec 4 River Conventional treatment + Cl2 2.42 3.53 4.27 
Quebec 5 River O3 + Conventional treatment 

 + Cl2 
2.42 3.53 4.27 

Quebec 6 River Conventional treatment + O3
 + Cl2 

2.42 3.53 4.27 

Quebec 7 River Conventional treatment + O3
 + Cl2 

2.42 3.53 4.27 

Quebec 8 River Conventional treatment + O3
 + Cl2 

2.42 3.53 4.27 

Quebec 9 River Conventional treatment + O3
 + GAC Filtration + Cl2 

2.97 4.76 5.38 

*Conventional treatment: coagulation, flocculation, sedimentation, and granular filtration.
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 Source water data 4.2.3

Historical E. coli/Fecal coliforms, Giardia and Cryptosporidium raw water data were provided 

for each WTP (except for parasites which were available in only 12 of 17 plants). The sampling 

period considered in this study ranged from 2004 to 2010 for WTPs located in Quebec, and 2009 

to 2011 for Ontario WTPs. Sampling strategies differed from one WTP to another; 

Cryptosporidium/Giardia and E.coli/fecal coliform measurements were conducted on a monthly 

or biweekly basis, respectively.  

 Source water characterization 4.2.4

Four methods were investigated to determine the most appropriate approach to describe pathogen 

concentrations in source waters: regression on order statistics (ROS) (ProUCL, USEPA), 

arithmetic mean (with or without replacement of below detection limit concentrations) and a 

point estimate (PE). The latter is calculated using Equation 4.9 (Parkhurst & Stern, 1998).   

!" = !! !! Equation 4.9 

Where Nx is the number of pathogens detected in the sample x, Vx is the sample volume and x the 

number of collected samples. 

Data below detection limit (BDL) were handled according to the method used to describe 

pathogen concentrations in the source water: [1] Arithmetic mean was calculated by substituting 

data BDL either by the detection limit or using zeros, [2] ROS extrapolates data BDL according 

to a log normal distribution performed on data above detection limit, [3] Point estimate represents 

a Poisson mean which can be calculated including zeros (BDL data). 

 Impact of CT calculations on risk assessment 4.2.5

Three scenarios were compared to determine the most suitable method to assess chemical 

disinfection performance. Scenarios 1, 2 and 3 estimated disinfection efficiency using CT50, 

CT10, and N-CSTR approach, respectively. All are derived from the first-order Chick-Watson’s 

law as presented below (Lev & Regli, 1992): 

!" ! !! = −!×!"!!    Equation 4.10 
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Where N and N0 are the concentrations of microorganisms at time t and t = 0, C is the 

disinfectant residual concentration (mg/L), T the theoretical contact time (min) and k the 

inactivation rate which is constant for a given type of disinfectant (L/mg.min), microorganism, 

pH, and temperature.  

A correlation between the T10/T ratio and the corresponding number of CSTR (Carlson et al., 

2001; Pfeiffer & Barbeau, 2014) was used to determine the total number of CSTR in series (n) 

for a given contact basin. The concentration of microorganisms following the nth CSTR (Nn), was 

assessed by predicting the effluent concentration of microorganisms (Nj) of each jth CSTR while 

considering the effluent concentration of the previous CSTR (Ni) as follows: 

!! = !!

!!
!!!!"#

!
!!!  Equation 4.11 

Where k is the inactivation rate constant and Cj the effluent disinfectant concentration of the jth 

CSTR. For this study, the disinfectant decay rate was not considered. The residual disinfectant 

concentrations used to calculate CT10 and CT50 were also used as Cj in Eq. 4.11. Finally, the 

overall disinfection process inactivation efficiency (I) was determined as follows:         

! = !−!"#! !! !! ! Equation 4.12 

These disinfection calculation scenarios were applied to three WTPs which rely ozonation and/or 

chlorination to provide primary disinfection and which receive surface water of varying quality; 

WTP 2 (pristine river), WTP G (lightly impacted river) and WTP 9 (moderately impacted river). 

The source water quality of each WTP was represented by the arithmetic mean (with BDL data 

replaced by zeros) and the standard deviation. To assess disinfection performance pH, 

temperature and disinfectant concentrations were based on monthly averages of ozone and 

chlorine residuals. Monthly E. coli O157:H7 and Giardia duodenalis inactivation by ozonation 

and chlorination were calculated using the equations in Table 4.2, and transformed into annual 

risks. These two organisms were selected to represent a sensitive and resistant pathogen, 

respectively. Finally, a Wilcoxon matched paired test was performed using Statistica 12 (StatSoft 

2012) to compare the risk outcomes of the three scenarios.  
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4.3 Results 

The various approaches examined during the calculation of QMRA risk estimates are 

summarized in Figure 4.1:  
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              Figure 4-1: Overview of various approaches examined in the framework of this study

• Arithmetic Mean
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 Source water Characterization 4.3.1

Raw water pathogen concentrations (Figure 4.2) showed significant variability when comparing 

the 17 WTPs. E. coli/fecal coliforms variability was an important factor, as in general 

fluctuations ranged two orders of magnitude (and as much as 4 log for WTP G). Parasite 

concentration variability was lower, with most data in the range of 1 to 100 (oo)cysts per 100 L. 

Point estimate concentrations mainly varied between 1 and 10 (oo)cysts/100 L (Giardia: 11 out 

of 12 WTPs; Cryptosporidium: 9 out of 12 WTPs). Finally, Giardia proved to be more prevalent 

than Cryptosporidium as observed concentrations of the former were higher than the later in 10 

out of the 12 source waters. Such variation within and between the WTPs is consistent with 

previous studies, which investigated E.coli, Giardia, and Cryptosporidium occurrence in surface 

waters (Dechesne & Soyeux; Schilling, Zhang, Hill, Jones, & Wolter, 2009; Smith & Grimason, 

2003).
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Figure 4-2: Distributions of raw water pathogen concentrations. 

(A) fecal coliforms (grey boxes) or E. coli (empty boxes), (B) Giardia (grey boxes) or Cryptosporidium 
(empty boxes). Boxes represent median, the 25th and 75th percentile while whiskers represent minimum 
and maximum values. The sample sizes (n) for a given treatment plant are shown above each box. Data, 
which fall below detection limits, were substituted by the detection limit. Black diamonds represent point 
estimate means. 
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1533 1537 227 281 122 197 520 602 1242 115 114 755 111 178 160185 6382

Fecal Coliforms E. coli

Quebec WTPs Ontario WTPs



   

 

54 

E. coli O157:H7 risk estimates were examined by assessing the two following scenarios for WTP 

2 (Figure 1): [1] using the mean concentration derived from the annual distribution; [2] using the 

mean concentration derived from monthly distributions. This site was selected due to the size of 

its database (1537 samples over five years, 2004-2010) and, its consistent treatment performance. 

Minimal changes in treatment performance help to better elucidate risk fluctuations attributable 

to source water variability. Both scenarios 1 and 2 yielded similar risk estimates of 3.49E-16 and 

3.92E-16, respectively. The use of an annual probability density function (PDF) was adopted as it 

simplified data handling. 

Four alternative approaches were examined with respect to dealing with data, which fell below 

the detection limit (BDL) (refer to Figure 4.1 & Table 4.5). The mean concentrations calculated 

by the different methods were compared to the standard arithmetic mean with zeros (Method 1). 

[1] The calculated arithmetic means of Method 2, whereby BDL data were substituted using the 

detection limit, resulted in an overestimation of 8 fold for Cryptosporidium. This discrepancy 

was smaller for E. coli and Giardia. [2] The regression on order statistics (ROS) (Method 3) 

provided similar results to the arithmetic mean with zeros (Method 1) for E. coli and Giardia, as 

the average mean concentrations were 53% and 13% smaller respectively than for the ROS 

technique. However, when considering Cryptosporidium, the average arithmetic mean 

concentrations of all WTPs were 4.5 fold higher than when applying the ROS technique. The 

observed discrepancy between Methods 1 & 3 increased as the proportion of data BDL also 

increased. [3] Using Method 4, point estimate (Poisson mean) provided results comparable to 

those of Method 1. Point estimates were on average higher than the arithmetic means with zeros 

by 1%, 50% and 14% for E. coli, Giardia and Cryptosporidium, respectively (Table 4.5). For 

subsequent calculations, Method 1, consisting of the standard arithmetic mean with zeros was 

used to calculate the health risk for the 17 WTPs. It corresponds to the proposed approach by 

Heath Canada and does not considerably differ from other approaches, except with respect to 

Cryptosporidium, for which more refined techniques would be valuable considering the high 

occurrence of non-detects.  
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           Table 4-5:  Comparison of 4 approaches for raw water characterization 

Pathogen Ratio (M2/M1)* Ratio (M3/M1)† Ratio (M4/M1)‡ 

E. coli 2.16 1.53 0.99 

Giardia 1.29 1.13 1.5 

Cryptosporidium 8.0 4.5 1.14 
*M2/M1: Arithmetic mean with DL (Method 2) versus Arithmetic mean with zeros (Method 1)
†M3/M1: ROS (Method 3) versus Arithmetic mean with zeros (Method 1) 
‡M4/M1: Point estimate (Method 4) versus Arithmetic mean with zeros (Method 1) 

 Performance of physical-chemical treatment processes 4.3.2

Predicted removals as a result of physical-chemical treatment processes varied from one WTP to 

another. Log removals for E. coli, Giardia and Cryptosporidium ranged from 0.55 to 5.15, 1.23 

to 7.85, and 1.11 to 7.24, respectively (Table 4.4). The lowest removals were associated with two 

WTPs (1 and 2), which use direct filtration without coagulation, whereas the highest performance 

was attributed to a microfiltration plant with post-GAC contactors (WTP D). 

 Comparison of alternative methods to predict disinfection performance 4.3.3

Predicted inactivation obtained using CT50 often reached the maximum values allocated by the 

model. When considering E. coli, maximum inactivation values were observed for 15 out of 17 

WTPs (data not shown). Giardia reached maximums for 4 out of 17 WTPs, while 

Cryptosporidium inactivation proved to always be below the maximum values (data not shown). 

These results highlight the importance of taking into account the hydraulics of a system when 

calculating disinfection performance, especially for sensitive microorganisms such as viruses or 

bacteria.  

Three strategies were applied (CT50, CT10, and N-CSTR) to assess the impact of hydraulics on 

inactivation and subsequent yearly probability of infection estimates. WTPs considered included 

WTP 2 (pristine river), WTP G (lightly impacted river) and WTP 9 (moderately impacted river) 

(Figure 4.3). As expected, the impact of CT calculation methods on risk estimates was greater for 

E. coli than for Giardia. According to a Wilcoxon matched paired test the E. coli health risk 

associated with WTPs 2 and 9 when applying the N-CSTR approach was significantly superior (p 



 56 

< 0.05) to either CT10 and CT50. When applied to WTP G all three methods predicted E. coli 

inactivations which exceeded the maximum values used by the model. As such, the calculated 

risk outcomes were deemed to be equivalent (Figure 4.3, part A). Similarly, the Giardia yearly 

probability of infection predicted using the CT10 and N-CSTR approaches  (Figure 4.3, part B) 

were significantly greater (p < 0.05) than predicted using CT50. Observed discrepancies among 

risk estimates when comparing N-CSTR and CT10 are consistent with the bias arising from the 

CT10 concept which is expected to overestimate disinfection performance at higher log 

inactivation (Lev & Regli, 1992). As such the CT50 and CT10 methods are more prone to reaching 

maximum values allocated by the model. Consequently, the N-CSTR approach may provide 

more reliable risk calculations as it is less sensitive to high inactivation conditions. 

Figure 4-3: Mean yearly probability of infection (A: E. coli, B: Giardia) for water treatment 
plants 2, 9 and G using various inactivation models. 

CT50 ( ! ), CT10 (") and N-CSTR (  ). The horizontal line within boxes represents the median, boxes the 
25

th
 and 75

th
 percentile and whiskers minimum and maximum values of monthly predictions. Significant

differences associated with the use CT50, according to a Wilcoxon test are denoted by a star (*) 
(pvalue<0.05). 

A B 
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 Overview of risk estimates predicted for the WTPs 4.3.4

QMRA analyses were performed on the 17 WTPs (Table 4.4) by applying the HC model 

according to scenario A (Figure 4.1). Due to the use of maximum values allocated by the HC 

QMRA model, no seasonal variation of E. coli inactivation was observed for any WTP. Yearly E. 

coli probability of infection values (left axis) of all 17 WTPs were below 10-4 (the basis for the 

current USEPA regulations) (Regli et al., 1991) (Figure 4.4, part A) and the 10-6 DALY value 

(right axis) (Health Canada, 2011b). In contrast, the annual Giardia and Cryptosporidium health 

risk targets were not always achieved for WTP 1 (Giardia - Figure 4.4, part B) and WTPs 1 and 2 

(Cryptosporidium - Figure 4.4, part C), as a result of the poor performance associated with direct 

filtration without coagulation.  

! !
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Figure 4-4: Mean yearly probability of infection and mean annual DALY for E. coli (A), Giardia (B) and 
Cryptosporidium (C) with the CT50 inactivation method.  

The horizontal line within the boxes represents the median, boxes the 25
th

 and 75
th 

percentile and whiskers 
the minimum and maximum values of monthly predictions. 

Mean yearly probability of infection          Mean annual DALY 
 

A

B

C



 59 

4.4 Discussions 

 Improving QMRA predictions 4.4.1

As statistical methods to account for data BDL can be complex (Emelko, Schmidt, & Roberson, 

2008), it would be useful to provide a tool capable of manipulating source water data for end-

users. Recently, the software QMRAspot (Schijven et al., 2011) has been developed in the 

Netherlands, and includes an automated data fitting procedure. A similar approach should be 

considered for future versions of HC QMRA model. 

A comparison of three CT calculation strategies highlighted the impact of the selected method on 

predicted health risk outcomes. The use of CT50 was shown to overestimate disinfection efficacy. 

Application of CT10 may serve as an attractive approach considering its common adoption in the 

water industry, however, its use yields overestimation at high inactivation and underestimation at 

low inactivation, therefore introducing a bias that should be avoided in a QMRA context. Use of 

the N-CSTR method has been shown to provide improved accuracy when considering predictions 

of E. coli inactivation (Pfeiffer & Barbeau, 2014; Smeets, P. W. M. H. et al., 2006). As such, 

water utilities are recommended to use this technique when performing a site-specific QMRA on 

their systems.  

QMRA performed on 17 WTPs highlights the importance of chemical disinfection for reducing 

risk. Use of an N-CSTR model would reduce the need for arbitrary maximum values since 

disinfection performance is not linear with applied CT. In addition, use of maximum inactivation 

values introduces a bias in the evaluation of disinfection performance. Other factors such as 

microorganism clumping or their attachment to particles, may also be an important factor causing 

deviation from the Chick-Watson kinetics (Barbeau et al., 2005). These effects may be site-

specific, vary seasonally, and be important under treatment failure conditions when 

flocs/aggregates may escape to downstream chemical disinfection. Improving QMRA models 

should address the issue of refining predictions of chemical disinfection performance at high log 

inactivation conditions for natural waters.  

The HC QMRA model provides default values to represent performance of the physical-chemical 

treatment processes, based on extensive data presented in the literature. However, consideration 

of site-specific parameters (e.g. filtered water turbidity) or site-specific performance data would 
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reduce uncertainty in calculated risk assessment outcomes (Smeets, P., Medema, Kruidenier, & 

Havelaar, 2007; Teunis, P. F. M. et al., 1997). Site-specific performance evaluations using 

microbial indicator organisms would represent a good opportunity for drinking water operations 

personnel aiming to reduce uncertainty in QMRA risk estimates. In Canada, aerobic spore-

formers have been examined as a practical alternative for the purpose of evaluating treatment 

performance (Barbeau et al., 2005), whereas in Netherlands, Clostridia spores have been 

commonly used for this purpose. Further studies should aim to provide advice to QMRA users 

willing to integrate site-specific performance indicators in their evaluations.  

 QMRA risk estimates 4.4.2

Health risk outcomes predicted using the Health Canada approach in this study revealed that the 

majority comply with the DALY and the USEPA reference levels. Exceptions were observed for 

two WTPs with respect to Giardia and Cryptosporidium associated risk. Both WTPs which used 

direct filtration without coagulation at the time of the data collection, have recently implemented 

coagulation, ozonation and UV disinfection.  

4.5 Conclusion  

The HC QMRA model proved to be useful to assess overall treatment performance and compare 

a wide range of treatment scenarios. The greatest value of using this tool may reside in the 

systematic evaluation process that WTP managers must follow to implement it. It should 

however be stated that the risk outcomes are semi-quantitative due to numerous simplifications 

and sources of uncertainty. Standardization of input source water data handling would improve 

the accuracy of risk estimates. In addition, the use of an N-CSTR method is suggested as an 

alternative to the CT10 or CT50 approach to calculate chemical disinfection performance. Future 

work should also evaluate techniques to improve the prediction of chemical disinfection in 

natural waters considering that these processes largely contribute to the reduction of risk. Finally, 

existing QMRA models do not address microbial risks to consumers during distribution. 

Nevertheless, the HC model may be used by water treatment utilities as a tool to be integrated 

within the larger context of developing a water safety plan. 
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CHAPTER 5 GENERAL DISCUSSIONS 

In this chapter, we will synthesize and review the results presented, either in the article or in the 

appendix, in order to answer the main research questions: of our research objective: How should 

data below detection be handled during the source water characterization? What is the impact of 

using CT calculation methods on the risk outcomes and what is the recommended optimal 

method? Are the 17 WTPs under investigation able to meet the targeted DALY and risk of 

infection objectives proposed by Health Canada and USEPA? What are other improvements that 

could be made to HC model? Our discussion will be divided into three parts: source water 

characterization, treatment performance, and risk characterization.   

5.1 Source water characterization 

An accurate source water characterization is a big challenge in the area of QMRA. Knowing that 

pathogens concentration distributions are usually undefined and vary on a log-scale: few samples 

could have very high concentrations of infectious organisms while others have concentrations 

below detection levels. Therefore, there is a necessity for caution when selecting the best-fitted 

distribution in the presence of the non-detectable data (Taylor, Kupper, Rappaport, & Lyles, 

2001). Many authors worked on describing the best-fitted statistical distributions for pathogens 

using Lognormal, Binomial, Negative Binomial, Poisson, and Gamma distributions, etc.… As 

previously mentioned, Health Canada model assumes that the 5 pathogens studied obey to a 

lognormal distribution. The lognormal distribution is a commonly used distribution for describing 

microbial populations (Williams & Ebel, 2014). One advantage of the log normal distribution is 

that while combining the oocysts/cycts in source water with treatment efficacy, the overall 

variance can be easily defined from the variance of each individual elements (Medema et al., 

2009). When the proportion of data below detection limit become important, Taylor et al. (2001) 

suggested the use of alternative models (other than the lognormal distribution) to account for 

these data in order avoid biased parameter estimates and potentially misleading inferences. 

Furthermore, the results illustrated in appendix 3 proved that the assumption of the HC model is 

not always valid since pathogens concentrations do not always follow a log normal distribution 

(Refer to appendix 3). This is one of the limitations within HC QMRA model. Moreover, BDL 
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data proved to be an issue mostly for Cryptosporidium data (Refer to Table A.2-1). Subsequently, 

and since statistical techniques can be complexes, it would be beneficial if source water data 

fitting could be performed automatically by a macro and transformed to usable PDFs within the 

HC model. Such improvements would facilitate the use of the software by the end-users and 

minimize the bias of the parameters estimates. The Dutch experience is a good example of this 

approach. The software QMRAspot (Schijven et al., 2011) collect uniformly through automated 

reading of the unprocessed raw water data, entailing index pathogens data from source water and 

indicator organism data for treatment efficiency. The software analyses the collected raw 

microbial data automatically, and assumes that concentrations can be fitted with negative 

binomial distribution and takes into consideration the non-detects data. Moreover, we used the 

CCFD method (Smeets et al. 2010) to define if extremes events are dominating the mean 

pathogen concentrations in raw water. The outcomes presented in appendix 4 is coherent with the 

vision of Smeets, P., Rietveld, Van Dijik, and Medema (2010) that we should not always rely on 

the statistical methods and sometimes the visual analysis of a PDF may replace the use of the P-

value to assess if the mean concentration is representative of the PDF.  

Furthermore, we assessed several correlations (presented in appendix 2) in order to better 

understand the raw water data. First, Giardia and Cryptosporidium concentrations were found to 

be uncorrelated (p-value equal to 0.15)  (figure A.2-1) as opposed to many previous studies in the 

literature (Crabtree, Ruskin, Shaw, & Rose, 1996; LeChevallier, Norton, & Lee, 1991; Rose, 

Darbin, & Gerba, 1988; Rose & Gerba, 1991).This discrepancy can most likely be traced back to 

the different sources of contamination (river or lake) and the various detection methods utilized 

in the various studies.  

In figure A.2- 2 to A.2- 4, we studied the correlation between the number of samples and the 

variance, which is the ratio between standard deviation and mean (SD/Mean). Our first 

expectation was that while the sample size increases, the variance (SD/Mean) would shrink, and 

consequently reduce our uncertainty about the estimated concentration mean. While, the results 

did not show any clear correlation between those elements and somehow for some WTPs the 

variance actually went up. Further research on how the number of samples could impact the HC 

QMRA outcomes and the identification to which extent we need to proceed with our sampling 

data would be valuable information to provide to the user of HC QMRA model. 
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5.2 Treatment Performance 

As discussed in the article, the physical-chemical treatment process performances are assessed 

independently from the raw water data within the HC model, and none of the site-specific 

parameters such as (pH, Temperature, Turbidity…) are considered. Indeed the HC model 

provides default values to represent the physico-chemical process performance. Whereas the 

potential of microbial indicator organisms and particle concentrations to be used in assessing 

pathogen risk was previously investigated by Brookes et al. (2005), further studies should focus 

on the use of microbial indicator organisms (such aerobic spore-formers) that could be integrated 

within the HC QMRA model to improve the accuracy of risk calculations while bearing in mind 

that this model was created in a perspective to provide a user-friendly tool to end-users.  

Our study showed clearly the significant impact of the treatment prediction methods on the health 

risk estimates, and proved our second hypothesis about the bias generated from the selected CT 

method. This phenomenon has been described earlier by Lev, and Regli (1992). The use of the 

CT50 will overestimate disinfection efficacy (the hydraulic efficacy not considered) (Figure A.8- 

1) while CT10 tends to overestimate at high inactivation and underestimate at low inactivation the 

disinfection. The regulatory method CT10 is not recommended in the QMRA context as it could 

produce bias risk estimates (Pfeiffer & Barbeau, 2014). The N-CSTR method is the best 

alternative simple method as it showed to be less impacted by the inactivation conditions 

(Pfeiffer & Barbeau, 2014). Consequently, more research is required for finding an optimal 

approach representing the treatment performance of chemical disinfection processes. In the 

meantime, water utilities are recommended to use the N-CSTR method while performing a 

QMRA on their system.  

5.3 Risk characterization 

By using HC QMRA on 17 WTPs, a global view was provided about the risk estimates predicted 

in these systems. We conclude that 15 WTPs out of 17 are meeting the WHO and USEPA 

reference levels under normal operating conditions. The exceptions were found for two WTPs 

(WTP 1 and WTP 2) in which Giardia and Cryptosporidium control was above the WHO and 

USEPA reference risk levels due to the use of direct filtration without coagulation. This allows 
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the identification of the strength and weaknesses within a treatment train, which could form a 

semi-quantitative basis for a higher scale risk communication to the higher-level water managers 

and politicians.  

HC QMRA model ignores all exposure to pathogenic microorganisms that could occur through 

drinking water distribution (Payment, 1989). Therefore, the microbial risk provided by the HC 

model is considered as a partial view. A provision to account the microbial risk of the distribution 

systems within the overall microbial risk management strategy is recommended. Consequently, 

more research is required for incorporating the microbial risk from drinking water distribution 

within the HC QMRA model.  

One limitation within this study is that the sensibility of the HC QMRA model over different 

parameters such as recovery, infectious rate, ingested volume, physical-chemical treatment or 

disinfection, etc. was not evaluated….  Further assessment would allow defining the critical 

parameters, that is the ones, which have the highest impact on the risk estimates. 
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CONCLUSION AND RECOMMENDATIONS 

The HC QMRA model proved to be useful to estimate pathogen health risk from drinking water 

consumption. The USEPA and WHO reference risk levels were met in all 17 Canadian WTPs 

plants, except for two WTPs where protozoan removals were too low. The different scenarios 

assessed within this study are relatively simple to implement by water utilities and risk managers 

and illustrate the flexibility of the HC model. However, we propose some recommendations, 

which should improve the accuracy of the overall risk outcomes. First the source water 

characterization showed to be complex; a standardization of source water data handling using 

macros within the HC model would facilitate its application and improve the accuracy of the risk 

estimates. Second, the health risk provided by the model represents the risk that pathogens be 

present in the source water and inactivated or removed by the treatment process and therefore 

ignores the vulnerability of the distribution system. A provision to consider this issue in the 

model would increase the usefulness of the overall risk outcomes. Second, for the physical-

chemical treatment, integrating performance indicators or additional parameters such turbidity, 

would improve the accuracy of risk calculations. Fourth, N-CSTR method proved to be the most 

optimum method in contrast with the CT50 and CT10. Integrating such treatment prediction 

method in HC QMRA model will ameliorate the accuracy of the health risk outcomes. 

Finally, knowing that each water utility is unique, the benefice from utilizing HC QMRA would 

be related to the users learning more about their own system. HC model may be used by water 

treatment utilities as a tool to be integrated within the larger context of developing a water safety 

plan. In that way, the Health Canada QMRA model provides at the same time an opportunity and 

challenges for water utilities users. However, this experience gained from implementing a site-

specific QMRA should proved to be useful in the management of their water facility 
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APPENDIX 1– Model Input Assumptions & Source Water Data 

Table A.1- 1 Model Input Assumptions- (Part 1) 

Parameter Microorganism   Standardized assumption 

Source Water Characterization 

Standard 
deviation All # It has little impact on output. 

Infectivity All # Assumed equal to 100%. 

Recovery Cryptosporidium # 40% (Jaidi et al., 2009). 
Giardia # 69% (Jaidi et al., 2009). 

Source water 
characterization All # Yearly mean and standard deviation are used in 

the calculation. 
Log normality 
distribution All # Using CCDF method to evaluate the quality of 

the means. 

Data Below 
detection limit All # Using Arithmetic mean calculated in Statistica 

while zero value substituted by detection limit. 

In absence of 
data 

Rotavirus & 
Campylobacter 

# Excluded from the calculation and no 
investigation was done. 

E. coli # 0.75*fecal coliforms. 

Physic-chemical Treatment 

Conventional 
treatment 

Direct 
filtration 
(with 
coagulation) 

All # Log reduction as defined by Health Canada 
QMRA Model. 

Direct 
filtration 
(no 
coagulation) 

Microfiltration 

GAC contactor All # Considered as rapid granular (no coagulation). 
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Table A.1- 2 Model Input Assumptions- (Part 2) 

Parameter Microorganism   Standardized assumption 

Disinfection 

# Daily CT calculations paired with microbial 
measurements according to (pH at reservoir 
effluent- highest pH) to adopt a conservative 
approach. 

Chlorination  All 
# CT calculation is based on maximum inlet flow 

rate. No info on T50. The T50 value was back 
calculated with CT and residual. 

# If more than one reservoir is used for post-
chlorination, to adopt a conservative approach 
the inactivation was determined according to the 
smallest CT value (shortest residence time). 

  Cryptosporidium 
# No impact of chlorination on Cryptosporidium, it 

was removed from the calculation. 

Ozonation All 
# While having many ozone reservoirs, CT 

calculation was done in segments, and then the 
total inactivation was calculated. 

Dose Response 

Pathogens All # As defined by the Heath Canada Model. 

Risk Calculation 

Pathogens All 
# Risk calculation based on yearly basis for source 

water and monthly basis for the treatment 
performance. 
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Table A.1- 3 Source Water Data 

Plant           Giardia    Cryptosporidium E. coli or Fecal Coliform 
Mean STD Ratio Mean STD Ratio Mean STD Ratio 

1 5.4 7.5 0.72 1.466 2.1 0.70 64251 87000 0.74 
2 8.2 10 0.82 1.12 2.3 0.49 6879 9200 0.75 
3 45303 110000 0.41 
4 41099 59000 0.70 
5 32377 63000 0.51 
6 38548 80000 0.48 
7 7.8 13 0.60 0.645 3.5 0.18 43803 53000 0.83 
8 10.1 18.55 0.54 1.2 5.6 0.21 61257 81000 0.76 
9 31.1 42.5 0.73 1.83 5.3 0.35 238417 250000 0.95 
A 4.1 3.6 1.14 2.73 5.5 0.50 3254 13820 0.24 
B 6.1 13 0.47 1.9 2 0.95 15956 120750 0.13 
C 7.9 5.6 1.41 2.51 2.9 0.87 15750 49300 0.32 
D 0.6 1 0.60 1.96 2.4 0.82 54 265 0.20 
E 6000 12500 0.48 
F 1.2 1.8 0.67 2 2.5 0.8 2050 6570 0.31 
G 15.3 31.15 0.49 2.97 7.99 0.37 45433 128000 0.35 
H 3.2 4.9 0.65 0.12 0.17 0.71 662 7120 0.09 
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              APPENDIX 2– Correlations Correlation Cryptosporidium versus Giardia 

Figure A.2- 1 Correlation Cryptosporidium/Giardia (Point estimate) 
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Correlations between SD/Mean and number of samples for Arithmetic mean 

Figure A.2- 2 Correlation SD/Mean versus Number of Samples for FC& E. coli- Arithmetic 

Mean 

Figure A.2- 3 Correlation SD/Mean versus Number of Samples for Giardia-Arithmetic Mean 
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Figure A.2- 4 Correlation SD/Mean versus Number of Samples for Crypto-Arithmetic Mean 

Correlations between the four approaches of raw water characterization 

Figure A.2- 5 Correlation E. coli Point Estimate versus Arithmetic mean with zero 
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Figure A.2- 6 Correlation E. coli ProUCL versus Arithmetic mean with zero 

Figure A.2- 7 Correlation Giardia Point Estimate versus Arithmetic mean with zero 
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Figure A.2- 8 Correlation Giardia ProUCL versus Arithmetic mean with zero 

Figure A.2- 9 Correlation Giardia Arithmetic mean with DL versus Arithmetic mean with zero 
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Figure A.2- 10 Correlation CryptosporidiumPoint Estimate versus Arithmetic mean with zero 

Figure A.2- 11 Correlation CryptosporidiumProUCL versus Arithmetic mean with zero 
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Figure A.2- 12 Correlation Cryptosporidium Arithmetic mean with DL versus Arithmetic mean 

with zero 
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Table A.2- 1 Correlation summary between the four approaches 

Point Estimate ProUCL Arithmetic with DL 

Ratio R(p-value) Ratio R(p-

value) 

Ratio R(p-value) 

E.coli-

Arithmetic with 

zero 

0.99 0.99 (0.00) 1.53 0.99 (0.00) 2.16 --(--) 

Giardia-

Arithmetic with 

zero 

1.51 0.86 (0.00) 1.13 0.99 (0.00) 1.29 0.97 (0.00) 

Crypto.-

Arithmetic with 

zero 

1.14 0.85 (0.00) 4.53 0.34 (0.26) 8.08 -0.27 (0.38) 
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APPENDIX 3–Log normality Graphs 

Figure A.3- 1 Log normality graphs for E. coli Quebec 

  Table A.3- 1 Statistics Summary for E. coli Quebec 

WTP SW-W P-VALUE 
1 0.9562 0.0000 
2 0.9653 0.0000 
3 0.9106 0.0000 
4 0.844 0.0000 

5 0.8832 0.0000 
6 0.877 0.0000 
7 0.9256 0.0000 
8 0.9561 0.0000 
9 0.9747 0.0000 
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Figure A.3- 2 Log normality graphs for E. coli Ontario 

Table A.3- 2 Statistics Summary for E. coli Ontario 

WTP SW-W P-VALUE 
A 0.8721 0.0004 
B 0.7284 0.00002 
C 0.9479 0.6897 
D Bad numerical conditions for statistics 
E 0.9404 0.00004 
F 0.8608 0.00001 
G 0.8957 0.164 
H 0.5243 0.00004 
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Figure A.3- 3 Log normality graphs for Giardia Quebec 

Table A.3- 3 Statistics Summary for Giardia Quebec 

WTP SW-W P-VALUE 

1 0.9545 0.1447 
2 0.9474 0.0406 
7 0.5705 0.0001 
8 0.5701 0.0001 
9 0.8073 0.00001 
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Figure A.3- 4 Log normality graphs for Giardia Ontario 

Table A.3- 4 Statistics Summary for Giardia Ontario 

WTP SW-W P-VALUE 
A 0.9456 0.5882 
B 0.8697 0.1845 
C 0.9416 0.5709 
D 0.9257 0.5697 
E Bad numerical conditions for statistics 
F 0.8569 0.2173 
G 0.9048 0.2811 
H 0.8959 0.4112 
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Figure A.3- 5 Log normality graphs for Cryptosporidium Quebec 

Table A.3- 5 Statistics Summary for Cryptosporidium Quebec 

WTP SW-W P-VALUE 
1 0.6865 0.0000 
2 0.5827 0.0000 
7 0.1714 0.0000 
8 0.1499 0.0000 
9 0.2036 0.0000 
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Figure A.3- 6 Log normality graphs for Cryptosporidium Ontario 

Table A.3- 6 Statistics Summary for Cryptosporidium Ontario 

WTP SW-W P-VALUE 
A 0.7623 0.0112 
B 0.88 0.2592 
C 0.9298 0.5145 
D 0.8083 0.0697 
E Bad numerical conditions for statistics 
F 0.8525 0.1649 
G 0.905 0.2827 
H 0.9919 0.8278 
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APPENDIX 4–CCDF Graphs 

Table A.4- 1 CCDF Results Summary 

WTP 1 2 3 4 5 6 7 8 9 A B C D E F G H 

F.C. 96 90 72 100 67 66 N.A. 

E. coli N.A. 100 100 100 35 25 1 2 67 35 0.2 6 

Giardia 66 83 N.A. 36 44 78 100 70 91 36 100 36 9 80 

Crypto 52 42 N.A. 3 6 13 73 70 73 55 100 55 8 0 

 Not enough data available (number of measurement above DL <= 4)      

 The mean is driven by extreme events (low occurrence of high microbial concentrations) 

 Data is well distributed 

 The numbers inside the boxes represent the % of available data above detection limit 
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 CCDF Graphs 

Figure A.4- 1 E. coli CCDF Graph for WTP1 

Figure A.4- 2 E. coli CCDF Graph for WTP 2 
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Figure A.4- 3 E. coli CCDF Graph for WTP 3 

Figure A.4- 4 E. coli CCDF Graph for WTP 4 
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Figure A.4- 5 E. coli CCDF Graph for WTP 5 

Figure A.4- 6 E. coli CCDF Graph for WTP 6 
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Figure A.4- 7 E. coli CCDF Graph for WTP 7 

Figure A.4- 8 E. coli CCDF Graph for WTP 8 
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Figure A.4- 9 E. coli CCDF Graph for WTP 9 

Figure A.4- 10 E. coli CCDF Graph for WTP A 
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Figure A.4- 11 E. coli CCDF Graph for WTP B 

Figure A.4- 12 E. coli CCDF Graph for WTP C 
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                                          Figure A.4- 13 E. coli CCDF Graph for WTP D 

 

 

               

Figure A.4- 14 E. coli CCDF Graph for WTP E 

 

0.01$

0.1$

1$

1000$ 10000$ 100000$ 1000000$

Pr
op

or
%o

n'

E.coli'(CFU/100'L)'

Source'water<'WTP'D'

D$
Tangent$

0.01$

0.1$

1$

1000$ 10000$ 100000$ 1000000$

Pr
op

or
%o

n'

E.coli'(CFU/100'L)'

Source'water<'WTP'E''

E$
Tangent$



              105 

 

 

              

Figure A.4- 15 E. coli CCDF Graph for WTP F 

 

 

                

Figure A.4- 16 E. coli CCDF Graph for WTP G 
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Giardia CCDF Graphs 

Figure A.4- 17 Giardia CCDF Graph for WTP 1 

Figure A.4- 18 Giardia CCDF Graph for WTP 2 
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Figure A.4- 19 Giardia CCDF Graph for WTP 7 

 

                 

Figure A.4- 20 Giardia CCDF Graph for WTP 8 
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Figure A.4- 21 Giardia CCDF Graph for WTP 9 

Figure A.4- 22 Giardia CCDF Graph for WTP A 
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Figure A.4- 23 Giardia CCDF Graph for WTP B 

Figure A.4- 24 Giardia CCDF Graph for WTP C 
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Figure A.4- 25 Giardia CCDF Graph for WTP D 

 

              

                                     Figure A.4- 26 Giardia CCDF Graph for WTP E 
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                                    Figure A.4- 27 Giardia CCDF Graph for WTP F 

 

               

                                     Figure A.4- 28 Giardia CCDF Graph for WTP G 
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Figure A.4- 29 Giardia CCDF Graph for WTP H 
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Cryptosporidium CCDF Graphs 

Figure A.4- 30 Cryptosporidium CCDF Graph for WTP1 

Figure A.4- 31 Cryptosporidium CCDF Graph for WTP 2 
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Figure A.4- 32 Cryptosporidium CCDF Graph for WTP 7 

Figure A.4- 33 Cryptosporidium CCDF Graph for WTP 8 
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Figure A.4- 34 Cryptosporidium CCDF Graph for WTP 9 

Figure A.4- 35 Cryptosporidium CCDF Graph for WTP A 
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Figure A.4- 36 Cryptosporidium CCDF Graph for WTP B 

 

 

                

Figure A.4- 37 Cryptosporidium CCDF Graph for WTP C 
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Figure A.4- 38 Cryptosporidium CCDF Graph for WTP D 

 

 

                

Figure A.4- 39 Cryptosporidium CCDF Graph for WTP E 
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Figure A.4- 40 Cryptosporidium CCDF Graph for WTP F 
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        APPENDIX 5- T10/T Source of Data 

Table A.5- 1 T10/T Source of Data for Chlorination 

Table A.5- 2 T10/T Source of data for Ozonation 

WTP T10/T Source/Comment 

1 0.2 Assumption taken by WTP in 2000 (Mr. Robert Millette) 

2 0.4 Assumption taken by WTP 
3 0.3 Theoretical value taken by the WTP 
4 0.6 Tracer study 
5 0.35 Tracer study 

6 0.55 Tracer study 

7 0.6 Value taken from literature 
8 0.6 Value taken from literature 

9 0.6 Value taken from literature 
A to D & G N/A No data available 
E 0.6 As per EPA & Procedure of Disinfection of DW in Ontario 
F 1 to 0.4 To be conservative, 0.4 is used in calculations 
H 0.4  & 0.3 0.3 is used in calculations.  
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APPENDIX 6- 

 Risk comparison of 2 scenarios: 

     A nnual versus Yearly source water distribution –WTP 2 

 WTP 2 risk estimates for E. coli assessed through two different scenarios. 

   Figure A.6- 1 Risk estimate of two scenarios – WTP 2 

!!!!!!Scenario!1!
Yearly'Distribu.on'
of'Source'Data'

!!!!!!!!Scenario!2!
Monthly'Distribu.on'
of'Source'Data'

!!!!!!Average!of!
!!Scenario!1!&!2!
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                                          APPENDIX 7- Disinfection Data

Table A.7- 1 Chlorination data for WTP 1 and 2 

WTP 1 WTP 2 

Month 

Chlorination            
(Low pH prior to softening) 

Chlorination
(Low pH prior to softening) 

Residual 
(mg/L) pH Temp. 

(0C) 
Residual 
(mg/L) pH Temp. 

(0C) 
January 1.1 7.84 0 0.98 7.69 0.04 

February 1.01 7.84 0 0.99 7.75 0.04 
March 1.08 7.79 4 0.99 7.73 0.61 
April 1.19 7.84 9 1 7.64 4.92 
May 1.3 7.74 14 0.99 7.56 11.1 
June 1.32 7.77 20 0.99 7.56 15.89 
July 1.25 7.9 22 0.97 7.54 19.98 

August 1.25 7.91 24 1.03 7.56 22.96 
September 1.24 7.95 23 1.04 7.71 19.82 

October 1.18 7.95 15 1.04 7.72 12.6 
November 1.09 7.88 10 1.01 7.72 8.81 
December 1.05 7.88 4 1.03 7.76 3.02 
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Table A.7- 2 Chlorination data for WTP 3 and 6 

WTP 3 WTP 6 

Month 

Chlorination
(Low pH prior to softening) 

Chlorination
(Low pH prior to softening) 

Residual 
(mg/L) pH Temp. 

(0C) 
Residual 
(mg/L) pH Temp. 

(0C) 
January 0.9 7.81 0.82 1.1 7.15 0.64 

February 0.91 7.82 0.87 1.39 7.19 0.65 
March 0.91 7.91 1.24 1.38 7.16 0.76 
April 0.89 7.87 6.23 1.4 6.96 8.83 
May 0.9 7.63 13.43 1.39 6.98 12.75 
June 0.94 7.38 17.89 1.42 7.11 18.23 
July 0.92 7.37 21.58 1.51 7.16 21.84 

August 1 7.42 23.54 1.49 7.17 23.18 
September 1 7.37 19.38 1.56 7.15 19.33 

October 0.96 7.43 11.39 1.4 7.2 11.33 
November 0.95 7.58 7.21 1.41 7.13 6.89 
December 1 7.66 2.46 1.35 7.09 1.82 

Table A.7- 3 Chlorination data for WTP 8 

WTP 8 

Month 

Chlorination
(Low pH prior to softening) 
Residual 
(mg/L) pH Temp. 

(0C) 
January 0.88 7.41 0.62 

February 0.88 7.4 0.4 
March 0.97 7.46 0.52 
April 1.02 7.48 5.53 
May 1.13 7.5 12.95 
June 1.31 7.48 18.72 
July 1.43 7.52 21.99 

August 1.46 7.67 23.54 
September 1.36 7.67 19.13 

October 1.06 7.68 10.85 
November 0.95 7.72 6.77 
December 0.86 7.77 1.75 
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Table A.7- 4 Chlorination data for WTP C and D 

!
WTP C WTP D 

Date 

Chlorination
(Low pH prior to softening) 

Chlorination
(Low pH prior to softening) 

Residual 
(mg/L) pH Temp. 

(0C) 
Residual 
(mg/L) pH Temp. 

(0C) 
09-Aug 1.28 6.52 25 1.03 7.7 16.78 
09-Oct 1.32 6.36 8.1 0.95 8.22 13.22 
09-Dec 1.65 6.48 16 1.05 8.03 6.56 
10-Feb 1.38 6.53 0.1 1.21 7.49 14.05 
10-Apr 1.24 6.72 12.3 1.12 7.88 9.01 
10-Jul 1.57 6.5 24.5 1.39 7.51 16.1 
10-Oct 1.51 7.46 14.3 1.2 7.79 18.2 
10-Dec 1.28 7.6 0.8 1.1 7.92 7.7 
11-Feb 1.21 6.59 0 1.7 8.05 6.43 
11-May 1.21 6.78 13.9 1.3 8.1 7.3 
11-Jun 1.36 6.76 20 1.35 7.41 13.8 

Table A.7- 5 Chlorination and UV data for WTP E and H 

WTP E WTP H 

Date 

Chlorination
(Low pH prior to 

softening) 
UV 

Date 

Chlorination
(Low pH prior to softening) 

Residual 
(mg/L) pH Temp. 

(0C) 
Dose 

(mJ/cm2) 
Residual 
(mg/L) pH Temp. (0C) 

09-Oct 1.2 8.19 14.08 0 10-Dec 2.62 8.07 4.6 
09-Nov 1.25 8.17 9.54 0 11-Jan 2.05 7.77 2.7 
10-Apr 1.36 8.76 7.58 158.98 11-Mar 2.33 8.23 3.2 
10-Jun 1.37 7.94 14.02 138.4 11-May 2.2 8.22 5.3 
10-Oct 1.31 8.36 13.65 139.08 11-Jul 2.25 8.37 8.9 
10-Nov 1.3 8.28 10.65 140.16 
11-Jan 1.28 7.92 0 155.87 
11-Mar 1.31 8.13 1.09 143.09 
11-Apr 1.22 8.2 4.3 138.4 
11-Aug 1.31 8.59 23.33 138.4 
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Table A.7- 6 Chlorination data for WTP F and G 

WTP F WTP G 

Date 

Chlorination
(Low pH prior to softening) 

Date 

Chlorination
(Low pH prior to softening) 

Residual (mg/L) pH Temp. (0C) Residual 
(mg/L) pH Temp. (0C) 

09-Aug 1.17 7.1 21.6 09-Sep 1.05 5.92 20.8 
09-Oct 1.21 7.1 12 09-Nov 1.03 6 7.8 
09-Nov 1.22 7.1 9.7 10-Jan 0.93 5.97 0.2 
10-Apr 1.16 7.2 9.5 10-Mar 1.48 6.02 3.2 
10-Jun 1.3 7.3 15.51 10-May 1.02 5.99 10.6 
10-Oct 1.35 7.15 13.2 10-Aug 1.05 5.92 21.6 
10-Nov 1.21 7.2 8.8 10-Oct 1.01 6.08 10 
10-Nov 1.16 7.14 8.33 11-Jan 0.94 6.08 0.4 
11-Mar 0.46 7.32 1.68 11-Mar 1.07 5.97 0.8 
11-Apr 0.51 7.24 3.52 11-May 0.79 6.03 9.1 
11-Aug 0.35 7.14 23.62 11-Jul 1.11 5.86 23.5 
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Table A.7- 7 Chlorination data for WTP 4 and 5 

WTP Month 

Chlorination
(Low pH prior to softening) 

Chlorination
(High pH prior to softening) 

Residual 
(mg/L) pH Temp. 

(0C) 
Residual 
(mg/L) pH Temp. 

(0C) 

4 

January 0.99 7.33 2.45 1.02 7.35 2.45 
February 0.98 7.22 2.54 0.95 7.27 2.54 

March 1.01 7.39 2.89 0.98 7.39 2.89 
April 1 7.22 6.33 0.95 7.04 6.33 
May 0.98 7.15 13.09 0.96 7.07 13.09 
June 0.99 7.19 17.78 0.96 7.33 17.78 
July 0.97 7.24 21.52 0.95 7.25 21.52 

August 1.01 7.18 23.8 0.99 7.15 23.8 
September 0.98 7.26 20.04 0.99 7.27 20.04 

October 0.97 7.35 12.25 1 7.4 12.25 
November 0.99 7.11 7.84 0.95 7.1 7.84 
December 1 7.36 2.57 0.98 7.23 2.57 

5 

January 1.03 6.49 1.43 0.87 7.14 1.43 
February 1.07 6.51 1.35 0.9 7.33 1.35 

March 1.04 6.45 1.66 0.91 7.26 1.66 
April 1.04 6.56 6.83 0.96 7.23 6.83 
May 1.06 6.48 13.9 0.8 7.29 13.9 
June 1.03 6.62 18.27 0.84 7.17 18.27 
July 1.12 6.73 21.55 0.94 7.39 21.55 

August 1.33 6.61 23.9 1.07 7.27 23.9 
September 1.2 6.59 20.31 1.01 7.32 20.31 

October 1.12 6.46 13.94 0.88 7.25 13.94 
November 1.1 6.46 7.51 1.05 7.58 7.51 
December 1.11 6.56 2.7 0.92 7.13 2.7 
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Table A.7- 8 Chlorination data for WTP 7 and 9 

WTP Month 

Chlorination        
(Low pH prior to softening) 

Chlorination
(High pH prior to softening) 

Residual 
(mg/L) pH Temp. 

(0C) 
Residual 
(mg/L) pH Temp. 

(0C) 

7 

January 1.03 6.27 0.89 1.03 7.11 0.89 
February 1.2 6.25 0.9 1.2 6.98 0.9 

March 1.15 6.37 0.95 1.15 7 0.95 
April 0.97 6.18 5.57 0.97 7.49 5.57 
May 1.09 5.91 12.68 1.09 7.58 12.68 
June 1.3 5.68 17.94 1.3 7.43 17.94 
July 1.43 5.74 21.58 1.43 7.36 21.58 

August 1.41 5.9 23.07 1.41 7.58 23.07 
September 1.36 6.21 19.21 1.36 7.73 19.21 

October 1.06 6.22 11.69 1.06 7.67 11.69 
November 0.87 6.39 7.37 0.87 7.64 7.37 
December 0.79 6.4 2.44 0.79 7.59 2.44 

9 

January 0.79 6.02 0.4 0.79 7.33 0.4 
February 0.81 6.06 0.4 0.81 7.33 0.4 

March 0.82 6.1 0.52 0.82 7.35 0.52 
April 0.89 5.98 5.53 0.89 7.49 5.53 
May 1.12 5.65 12.95 1.12 7.51 12.95 
June 1.3 5.76 18.72 1.3 7.54 18.72 
July 1.41 6.21 21.99 1.41 7.46 21.99 

August 1.42 6.62 23.55 1.42 7.55 23.55 
September 1.31 6.33 19.13 1.31 7.58 19.13 

October 1.06 5.73 10.85 0.8 7.48 10.85 
November 0.9 5.81 6.77 0.79 7.34 6.77 
December 0.81 6.07 1.65 0.79 7.16 1.65 
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Table A.7- 9 Ozonation data for WTP 2 

WTP 2 

Month Temp. 
(0C) 

Tank 1 Tank 2 Tank 3 Tank 4 Tank 5 Tank 6 
Residual 
(mg/L) 

T50 
(min.) 

Residual 
(mg/L) 

T50 
(min.) 

Residual 
(mg/L) 

T50 
(min.) 

Residual 
(mg/L) 

T50 
(min.) 

Residual 
(mg/L) 

T50 
(min.) 

Residual 
(mg/L) 

T50 
(min.) 

January 0.04 0.59 4.2 0.6 4.2 0.59 4.2 0.6 4.2 0.61 4.2 0.6 4.2 
February 0.04 0.64 4.28 0.66 4.28 0.66 4.28 0.66 4.28 0.67 4.28 0.66 4.28 

March 0.61 0.72 4.31 0.73 4.31 0.73 4.31 0.73 4.31 0.75 4.31 0.73 4.31 
April 4.92 0.47 4.27 0.51 4.27 0.51 4.27 0.5 4.27 0.54 4.27 0.53 4.27 
May 11.1 0.26 4.41 0.31 4.41 0.29 4.41 0.31 4.41 0.3 4.41 0.38 4.41 
June 15.89 0.27 4.16 0.29 4.16 0.32 4.16 0.33 4.16 0.3 4.16 0.41 4.16 
July 19.98 0.22 4.22 0.23 4.22 0.23 4.22 0.24 4.22 0.21 4.22 0.23 4.22 

August 22.96 0.17 4.22 0.18 4.22 0.17 4.22 0.19 4.22 0.17 4.22 0.17 4.22 
September 19.82 0.22 4.27 0.23 4.27 0.22 4.27 0.24 4.27 0.22 4.27 0.2 4.27 

October 12.6 0.36 4.41 0.38 4.41 0.39 4.41 0.41 4.41 0.38 4.41 0.35 4.41 
November 8.81 0.46 4.42 0.48 4.42 0.48 4.42 0.5 4.42 0.48 4.42 0.46 4.42 
December 3.02 0.73 4.49 0.73 4.49 0.72 4.49 0.73 4.49 0.72 4.49 0.71 4.49 
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Table A.7- 10 Ozonation data for WTP 6 

WTP 6 

Month Temp.
(0C) 

Tank 1 Tank 2 Tank 3 Tank 4 Tank 5 
Residual 
(mg/L) 

T50 
(min.) 

Residual 
(mg/L) 

T50 
(min.) 

Residual 
(mg/L) 

T50 
(min.) 

Residual 
(mg/L) 

T50 
(min.) 

Residual 
(mg/L) 

T50 
(min.) 

January 0.64 0.08 1.59 0.08 0.53 0.18 2.30 0.18 0.53 0.18 2.83 
February 0.65 0.12 1.65 0.12 0.55 0.31 2.39 0.31 0.55 0.31 2.94 

March 0.76 0.21 1.70 0.21 0.57 0.37 2.45 0.37 0.57 0.37 3.02 
April 8.83 0.13 1.70 0.04 0.57 0.03 2.45 0.03 0.57 0.03 3.02 
May 12.75 0.13 1.54 0.00 0.51 0.00 2.23 0.00 0.51 0.00 2.74 
June 18.23 0.13 1.48 0.01 0.49 0.08 2.13 0.08 0.49 0.08 2.62 
July 21.84 0.09 1.60 0.09 0.53 0.76 2.31 0.76 0.53 0.76 2.84 

August 23.18 0.13 1.45 0.04 0.48 0.86 2.09 0.86 0.48 0.86 2.57 
September 19.33 0.16 1.44 0.16 0.48 1.40 2.08 1.40 0.48 1.40 2.56 

October 11.33 0.31 1.83 0.31 0.61 1.20 2.64 1.20 0.61 1.20 3.25 
November 6.89 0.30 1.86 0.30 0.62 0.84 2.69 0.84 0.62 0.84 3.31 
December 1.82 0.18 1.75 0.18 0.58 0.70 2.53 0.70 0.58 0.70 3.12 
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Table A.7- 11 Ozonation data for WTP 7, 8 and 9 

WTP 7 WTP 8 WTP 9 

Month Temp.
(0C) 

Tank 1 
Temp. 
(0C) 

Tank 1 
Temp. 
(0C) 

Tank 1 Tank 2 
Residual 
(mg/L) 

T50 
(min.) 

Residual 
(mg/L) 

T50 
(min.) 

Residual 
(mg/L) 

T50 
(min.) 

Residual 
(mg/L) 

T50 
(min.) 

January 0.89 0.27 10.41 0.62 0.29 15.68 0.40 0.35 25.53 0.37 25.53 
February 0.9 0.27 10.26 0.4 0.29 14.89 0.40 0.28 25.40 0.29 25.40 

March 0.95 0.27 10.3 0.52 0.29 15.25 0.52 0.38 24.61 0.38 24.61 
April 5.57 0.31 10.34 5.53 0.26 15.02 5.53 0.38 22.69 0.38 22.69 
May 12.68 0.44 10.11 12.95 0.32 13.42 12.95 0.34 22.19 0.38 22.19 
June 17.94 0.38 10.14 18.72 0.29 12.6 18.72 0.37 21.66 0.38 21.66 
July 21.58 0.32 11.12 21.99 0.42 13.8 21.99 0.37 22.56 0.40 22.56 

August 23.07 0.29 10.54 23.54 0.48 12.71 23.55 0.38 20.36 0.39 20.36 
September 19.21 0.38 10.29 19.13 0.54 13.46 19.13 0.41 21.51 0.40 21.51 

October 11.69 0.36 11.64 10.85 0.5 0 10.85 0.40 25.38 0.39 25.38 
November 7.37 0.35 11.51 6.77 0.31 0 6.77 0.37 26.69 0.36 26.69 
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Table A.7- 1 Ozonation data for WTP A and B 

WTP A WTP B 

Date 
Ozonation- Total Log 

Removal Date 
Ozonation- Total Log 

Removal 
E. coli Giardia Crypto. E. coli Giardia Crypto. 

09-Jul 8 9.98 1.69 09-Jun 8 8.39 0.65 
09-Sep 8 8.66 2.02 09-Nov 8 7.53 0.65 
10-Jan 8 7.83 0.81 10-Jan 8 7.76 0.56 
10-Apr 8 7.27 0.75 10-Apr 8 7.3 0.72 
10-Jun 8 10.87 2.19 10-Nov 8 8.3 0.72 
10-Sep 8 10.84 1.69 11-Jan 8 7 0.68 
10-Nov 8 9.12 1.17 11-Mar 8 7.01 0.7 
11-Jan 8 7.77 0.78 11-Apr 8 7.86 0.9 
11-Mar 8 8.02 0.83 11-Jul 8 6.58 0.81 
11-Apr 8 8.32 0.93 

! ! ! !11-Jul 8 10.98 1.87 
! ! ! !
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APPENDIX 8- Predicted inactivation using CT50 calculations 

 

                 Figure A.8- 41. Mean annual inactivation E.coli predicted using CT50 calculations. 

* Capping values used for chlorination (Cl2) (dotted line) ozonation (O3) (dashed line) and UV irradiation 

(intermittent dashed and dotted line) in the HC QMRA model. Error bars represent minimum and maximum monthly 

predictions.  

  

                     Figure A.8- 42. Mean annual inactivation Giardia predicted using CT50 calculations. 

* Capping values used for chlorination (Cl2) (dotted line) ozonation (O3) (dashed line) and UV irradiation 

(intermittent dashed and dotted line) in the HC QMRA model. Error bars represent minimum and maximum monthly 

predictions.  
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               Figure A.8- 43. Mean annual inactivation Cryptosporidium predicted using CT50 calculations. 

* Capping values used for chlorination (Cl2) (dotted line) ozonation (O3) (dashed line) and UV irradiation 

(intermittent dashed and dotted line) in the HC QMRA model. Error bars represent minimum and maximum monthly 

predictions. Chlorine inactivation of Cryptosporidium are not considered presented due to the very low predicted.
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