
UNIVERSITÉ DE MONTRÉAL

INTRUSION DETECTION FROM HETEROGENOUS SENSORS

ALIREZA SADIGHIAN
DÉPARTEMENT DE GÉNIE INFORMATIQUE ET GÉNIE LOGICIEL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

THÈSE PRÉSENTÉE EN VUE DE L’OBTENTION
DU DIPLÔME DE PHILOSOPHIÆ DOCTOR

(GÉNIE INFORMATIQUE)
MARS 2015

c© Alireza Sadighian, 2015.

UNIVERSITÉ DE MONTRÉAL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

Cette thèse intitulée :

INTRUSION DETECTION FROM HETEROGENOUS SENSORS

présentée par : SADIGHIAN Alireza
en vue de l’obtention du diplôme de : Philosophiæ Doctor
a été dûment acceptée par le jury d’examen constitué de :

M. QUINTERO Alejandro, Doctorat, président
M. FERNANDEZ José M, Ph. D., membre et directeur de recherche
M. GAGNON Michel, Ph. D., membre
M. TRAORÉ Issa, Ph. D., membre externe

iii

DEDICATION

I am proud to dedicate this thesis to my wife,
Roxanne

whose love and confidence is a constant source of inspiration and encouragement.. . .

iv

ACKNOWLEDGEMENTS

First of all, I would like to thank Almighty God. Without his wish, nothing is possible.

The completion of this dissertation was only possible with the supports and contributions of
many people.

I would like to take this opportunity to thank my supervisor, Professor José M Fernandez,
for all his substantial advices and inspiration throughout this research. I mainly learned from
him the skills of conducting a research, collaborating with other colleagues, presenting ideas,
etc.

I would like to thank members of the jury Dr. Alejandro Quintero, Dr. Michel Gagnon and
Dr. Issa Traoré for their valuable comments on my thesis.

I would like to thank Dr. Saman Taghavi Zargar and Dr. Antoine Lemay for their productive
feedbacks and comments during this research.

I am very thankful to all my friends and colleagues at the SecSI Lab, specially Pier-Luc
St-Onge, Carlton Davis, Joan Calvet, Fanny Lalonde, Abdelali Zerhouani and François
Labrèche for their valuable feedback and constant comradeship.

I would also like to thank Dr. Ali Zand, Dr. Gianluca Stringhini, Dr. Christopher Kruegel,
Dr. Giovanni Vigna and all the colleagues at the Computer Security Lab of University of
California Santa Barbara (UCSB) for their great advices that significantly improved my
research skills.

Thanks to NSERC ISSNet for funding this research and Groupe Access Company for supporting
this research.

Special thanks to Mr. Yves Lépine, Mr. Douglas Elie, Mr. Habib Malik, Mr. Vivien Tognisse,
Mr. Saeed Sarenche and all the friends and colleagues at Groupe Access Company for their
substantial supports.

Finally, I am deeply grateful for the supports of my family : my father Abbas, my mother
Roqayyeh, my sister Nahid and her husband Habib, mother-in-law Tahereh, brother-in-law
Sajjad and sister-in-law Maryam.

v

RÉSUMÉ

De nos jours, la protection des systèmes et réseaux informatiques contre différentes attaques
avancées et distribuées constitue un défi vital pour leurs propriétaires. L’une des menaces
critiques à la sécurité de ces infrastructures informatiques sont les attaques réalisées par
des individus dont les intentions sont malveillantes, qu’ils soient situés à l’intérieur et à
l’extérieur de l’environnement du système, afin d’abuser des services disponibles, ou de révéler
des informations confidentielles. Par conséquent, la gestion et la surveillance des systèmes
informatiques est un défi considérable considérant que de nouvelles menaces et attaques sont
découvertes sur une base quotidienne.

Les systèmes de détection d’intrusion, Intrusion Detection Systems (IDS) en anglais, jouent
un rôle clé dans la surveillance et le contrôle des infrastructures de réseau informatique.
Ces systèmes inspectent les événements qui se produisent dans les systèmes et réseaux
informatiques et en cas de détection d’activité malveillante, ces derniers génèrent des alertes
afin de fournir les détails des attaques survenues. Cependant, ces systèmes présentent certaines
limitations qui méritent d’être adressées si nous souhaitons les rendre suffisamment fiables
pour répondre aux besoins réels. L’un des principaux défis qui caractérise les IDS est le
grand nombre d’alertes redondantes et non pertinentes ainsi que le taux de faux-positif
générés, faisant de leur analyse une tâche difficile pour les administrateurs de sécurité qui
tentent de déterminer et d’identifier les alertes qui sont réellement importantes. Une partie du
problème réside dans le fait que la plupart des IDS ne prennent pas compte les informations
contextuelles (type de systèmes, applications, utilisateurs, réseaux, etc.) reliées à l’attaque.
Ainsi, une grande partie des alertes générées par les IDS sont non pertinentes en ce sens
qu’elles ne permettent de comprendre l’attaque dans son contexte et ce, malgré le fait que
le système ait réussi à correctement détecter une intrusion. De plus, plusieurs IDS limitent
leur détection à un seul type de capteur, ce qui les rend inefficaces pour détecter de nouvelles
attaques complexes. Or, ceci est particulièrement important dans le cas des attaques ciblées
qui tentent d’éviter la détection par IDS conventionnels et par d’autres produits de sécurité.
Bien que de nombreux administrateurs système incorporent avec succès des informations de
contexte ainsi que différents types de capteurs et journaux dans leurs analyses, un problème
important avec cette approche reste le manque d’automatisation, tant au niveau du stockage
que de l’analyse.

Afin de résoudre ces problèmes d’applicabilité, divers types d’IDS ont été proposés dans les
dernières années, dont les IDS de type composant pris sur étagère, commercial off-the-shelf

vi

(COTS) en anglais, qui sont maintenant largement utilisés dans les centres d’opérations de
sécurité, Security Operations Center (SOC) en anglais, de plusieurs grandes organisations.
D’un point de vue plus général, les différentes approches proposées peuvent être classées en
différentes catégories : les méthodes basées sur l’apprentissage machine, tel que les réseaux
bayésiens, les méthodes d’extraction de données, les arbres de décision, les réseaux de neurones,
etc., les méthodes impliquant la corrélation d’alertes et les approches fondées sur la fusion
d’alertes, les systèmes de détection d’intrusion sensibles au contexte, les IDS dit distribués
et les IDS qui reposent sur la notion d’ontologie de base. Étant donné que ces différentes
approches se concentrent uniquement sur un ou quelques-uns des défis courants reliés aux
IDS, au meilleure de notre connaissance, le problème dans son ensemble n’a pas été résolu. Par
conséquent, il n’existe aucune approche permettant de couvrir tous les défis des IDS modernes
précédemment mentionnés. Par exemple, les systèmes qui reposent sur des méthodes
d’apprentissage machine classent les événements sur la base de certaines caractéristiques
en fonction du comportement observé pour un type d’événements, mais ils ne prennent pas
en compte les informations reliées au contexte et les relations pouvant exister entre plusieurs
événements. La plupart des techniques de corrélation d’alerte proposées ne considèrent que
la corrélation entre plusieurs capteurs du même type ayant un événement commun et une
sémantique d’alerte similaire (corrélation homogène), laissant aux administrateurs de sécurité
la tâche d’effectuer la corrélation entre les différents types de capteurs hétérogènes. Pour leur
part, les approches sensibles au contexte n’emploient que des aspects limités du contexte
sous-jacent. Une autre limitation majeure des différentes approches proposées est l’absence
d’évaluation précise basée sur des ensembles de données qui contiennent des scénarios d’attaque
complexes et modernes.

À cet effet, l’objectif de cette thèse est de concevoir un système de corrélation d’événements
qui peut prendre en considération plusieurs types hétérogènes de capteurs ainsi que les
journaux de plusieurs applications (par exemple, IDS/IPS, pare-feu, base de données, système
d’exploitation, antivirus, proxy web, routeurs, etc.). Cette méthode permettra de détecter
des attaques complexes qui laissent des traces dans les différents systèmes, et d’incorporer les
informations de contexte dans l’analyse afin de réduire les faux-positifs. Nos contributions
peuvent être divisées en quatre parties principales : 1) Nous proposons la Pasargadae, une
solution complète sensible au contexte et reposant sur une ontologie de corrélation des
événements, laquelle effectue automatiquement la corrélation des événements par l’analyse des
informations recueillies auprès de diverses sources. Pasargadae utilise le concept d’ontologie
pour représenter et stocker des informations sur les événements, le contexte et les vulnérabilités,
les scénarios d’attaques, et utilise des règles d’ontologie de logique simple écrites en Semantic
Query-Enhance Web Rule Language (SQWRL) afin de corréler diverse informations et de

vii

filtrer les alertes non pertinentes, en double, et les faux-positifs. 2) Nous proposons une
approche basée sur, méta-événement , tri topologique et l‘approche corrélation d‘événement
basée sur sémantique qui emploie Pasargadae pour effectuer la corrélation d’événements à
travers les événements collectés de plusieurs capteurs répartis dans un réseau informatique.
3) Nous proposons une approche alerte de fusion basée sur sémantique, contexte sensible,
qui s‘appuie sur certains des sous-composantes de Pasargadae pour effectuer une alerte
fusion hétérogène recueillies auprès IDS hétérogènes. 4) Dans le but de montrer le niveau de
flexibilité de Pasargadae, nous l’utilisons pour mettre en œuvre d’autres approches proposées
d‘alertes et de corrélation d‘événements. La somme de ces contributions représente une
amélioration significative de l’applicabilité et la fiabilité des IDS dans des situations du monde
réel.

Afin de tester la performance et la flexibilité de l’approche de corrélation d’événements
proposés, nous devons aborder le manque d’infrastructures expérimental adéquat pour la
sécurité du réseau. Une étude de littérature montre que les approches expérimentales actuelles
ne sont pas adaptées pour générer des données de réseau de grande fidélité. Par conséquent,
afin d’accomplir une évaluation complète, d’abord, nous menons nos expériences sur deux
scénarios d’étude d‘analyse de cas distincts, inspirés des ensembles de données d’évaluation
DARPA 2000 et UNB ISCX IDS. Ensuite, comme une étude déposée complète, nous employons
Pasargadae dans un vrai réseau informatique pour une période de deux semaines pour
inspecter ses capacités de détection sur un vrai terrain trafic de réseau. Les résultats obtenus
montrent que, par rapport à d’autres améliorations IDS existants, les contributions proposées
améliorent considérablement les performances IDS (taux de détection) tout en réduisant les
faux positifs, non pertinents et alertes en double.

viii

ABSTRACT

Nowadays, protecting computer systems and networks against various distributed and
multi-steps attack has been a vital challenge for their owners. One of the essential threats to
the security of such computer infrastructures is attacks by malicious individuals from inside
and outside of the system environment to abuse available services, or reveal their confidential
information. Consequently, managing and supervising computer systems is a considerable
challenge, as new threats and attacks are discovered on a daily basis.

Intrusion Detection Systems (IDSs) play a key role in the surveillance and monitoring of
computer network infrastructures. These systems inspect events occurred in computer systems
and networks and in case of any malicious behavior they generate appropriate alerts describing
the attacks’ details. However, there are a number of shortcomings that need to be addressed
to make them reliable enough in the real-world situations. One of the fundamental challenges
in real-world IDS is the large number of redundant, non-relevant, and false positive alerts
that they generate, making it a difficult task for security administrators to determine and
identify real and important alerts. Part of the problem is that most of the IDS do not take
into account contextual information (type of systems, applications, users, networks, etc.),
and therefore a large portion of the alerts are non-relevant in that even though they correctly
recognize an intrusion, the intrusion fails to reach its objectives. Additionally, to detect newer
and complicated attacks, relying on only one detection sensor type is not adequate, and as a
result many of the current IDS are unable to detect them. This is especially important with
respect to targeted attacks that try to avoid detection by conventional IDS and by other
security products. While many system administrators are known to successfully incorporate
context information and many different types of sensors and logs into their analysis, an
important problem with this approach is the lack of automation in both storage and analysis.

In order to address these problems in IDS applicability, various IDS types have been proposed
in the recent years and commercial off-the-shelf (COTS) IDS products have found their
way into Security Operations Centres (SOC) of many large organisations. From a general
perspective, these works can be categorized into: machine learning based approaches including
Bayesian networks, data mining methods, decision trees, neural networks, etc., alert correlation
and alert fusion based approaches, context-aware intrusion detection systems, distributed
intrusion detection systems, and ontology based intrusion detection systems. To the best of
our knowledge, since these works only focus on one or few of the IDS challenges, the problem
as a whole has not been resolved. Hence, there is no comprehensive work addressing all

ix

the mentioned challenges of modern intrusion detection systems. For example, works that
utilize machine learning approaches only classify events based on some features depending
on behaviour observed with one type of events, and they do not take into account contextual
information and event interrelationships. Most of the proposed alert correlation techniques
consider correlation only across multiple sensors of the same type having a common event and
alert semantics (homogeneous correlation), leaving it to security administrators to perform
correlation across heterogeneous types of sensors. Context-aware approaches only employ
limited aspects of the underlying context. The lack of accurate evaluation based on the data
sets that encompass modern complex attack scenarios is another major shortcomings of most
of the proposed approaches.

The goal of this thesis is to design an event correlation system that can correlate across
several heterogeneous types of sensors and logs (e.g. IDS/IPS, firewall, database, operating
system, anti virus, web proxy, routers, etc.) in order to hope to detect complex attacks
that leave traces in various systems, and incorporate context information into the analysis,
in order to reduce false positives. To this end, our contributions can be split into 4 main
parts: 1) we propose the Pasargadae comprehensive context-aware and ontology-based event
correlation framework that automatically performs event correlation by reasoning on the
information collected from various information resources. Pasargadae uses ontologies to
represent and store information on events, context and vulnerability information, and attack
scenarios, and uses simple ontology logic rules written in Semantic Query-Enhance Web Rule
Language (SQWRL) to correlate various information and filter out non-relevant alerts and
duplicate alerts, and false positives. 2) We propose a meta-event based, topological sort based
and semantic-based event correlation approach that employs Pasargadae to perform event
correlation across events collected form several sensors distributed in a computer network.
3) We propose a semantic-based context-aware alert fusion approach that relies on some
of the subcomponents of Pasargadae to perform heterogenous alert fusion collected from
heterogenous IDS. 4) In order to show the level of flexibility of Pasargadae, we use it to
implement some other proposed alert and event correlation approaches. The sum of these
contributions represent a significant improvement in the applicability and reliability of IDS
in real-world situations.

In order to test the performance and flexibility of the proposed event correlation approach,
we need to address the lack of experimental infrastructure suitable for network security. A
study of the literature shows that current experimental approaches are not appropriate to
generate high fidelity network data. Consequently, in order to accomplish a comprehensive
evaluation, first, we conduct our experiments on two separate analysis case study scenarios,
inspired from the DARPA 2000 and UNB ISCX IDS evaluation data sets. Next, as a complete

x

field study, we employ Pasargadae in a real computer network for a two weeks period to
inspect its detection capabilities on a ground truth network traffic. The results obtained show
that compared to other existing IDS improvements, the proposed contributions significantly
improve IDS performance (detection rate) while reducing false positives, non-relevant and
duplicate alerts.

xi

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

RÉSUMÉ . v

ABSTRACT . viii

TABLE OF CONTENTS . xi

LIST OF TABLES . xiv

LIST OF FIGURES . xv

LIST OF SIGNS AND ABBREVIATIONS . xviii

CHAPTER 1 INTRODUCTION . 1
1.1 Intrusion Detection Systems . 2
1.2 Improvements on Intrusion Detection Systems 5
1.3 Problem Statement . 8
1.4 Research Objectives . 10
1.5 Thesis Structure . 11

CHAPTER 2 PREVIOUS WORK IN INTRUSION DETECTION SYSTEMS . . . 13
2.1 Intrusion Detection and Alert Correlation Using Machine Learning

Techniques . 14
2.1.1 Bayesian Networks . 14
2.1.2 Data Mining Methods . 16
2.1.3 Decision Tree . 17
2.1.4 Artificial Neural Networks . 19
2.1.5 Fuzzy Logic . 21
2.1.6 Genetic Algorithm . 23
2.1.7 Support Vector Machine . 25
2.1.8 Hidden Markov Models . 26

2.2 Alert and Event Correlation . 28
2.3 Alert Fusion . 31

xii

2.4 Context-Aware Intrusion Detection and Alert Correlation Systems 34
2.5 Distributed Intrusion Detection Systems . 36
2.6 Host-Based Intrusion Detection Systems . 39
2.7 Intrusion Detection Evaluation Metrics . 42
2.8 Data Sets to Evaluate Intrusion Detection and Alert Correlation System . . 46
2.9 Conclusion . 47

CHAPTER 3 BASIC KNOWLEDGE ON ONTOLOGIES 50
3.1 Introduction to OWL Web Ontology Language 52

3.1.1 Description of the OWL Language 52
3.2 Semantic Query-enhanced Web Rule Language (SQWRL) 54

3.2.1 Basic Querying . 54
3.2.2 Set Operators: Closing the World . 56
3.2.3 Ontology Traversing Operators: Drill-Down and Roll-Up 57

3.3 Ontologies for Security Requirements . 57
3.4 Previous Work in Ontology-Based Intrusion Detection Systems 60
3.5 Summary . 63

CHAPTER 4 PASARGADAE : A CONTEXT-AWARE ANDONTOLOGY-BASED EVENT
CORRELATION FRAMEWORK . 65
4.1 Pasargadae Event Correlation Framework 66

4.1.1 Information Resources . 67
4.1.2 Event and Context Integration . 68
4.1.3 Description of the Ontologies . 69
4.1.4 Correlation Engine . 75

4.2 A Semantic-Based Event Correlation Approach Based on Pasargadae 77
4.3 ONTIDS Alert Correlation Framework as a Subset of Pasargadae 82

4.3.1 Example Implementation of Valeur Approach Using ONTIDS 83
4.4 Alert Fusion Using Pasargadae Framework 86

4.4.1 The Proposed Alert Fusion Approach 87
4.4.2 The Decision Making Component . 89

4.5 Summary . 92

CHAPTER 5 REFERENCE IMPLEMENTATION 97
5.1 Implementing the Designed Ontologies . 97
5.2 Storing, Reasoning and Querying the Designed Ontologies 99
5.3 Populating the Designed Ontologies . 100

xiii

5.3.1 Event Sensors and Event Integration Process 101
5.3.2 Context Sensors and Context Integration Process 104

5.4 Discussion on Scalability . 106
5.5 Summary . 107

CHAPTER 6 CASE STUDY-BASED EVALUATION 108
6.1 Case Study 1: Island-hopping attacks . 108
6.2 Case Study 2: Recon-breakin-Escalate attacks 113
6.3 Case Study 3: Alert fusion and alert correlation based on DARPA 2000 data set116
6.4 Discussion on flexibility . 122
6.5 Summary . 123

CHAPTER 7 FIELD TEST-BASED EVALUATION 125
7.1 Groupe Access Company as Our Field Test Environment 125
7.2 Testbed Network Architecture . 126
7.3 Field Test 1: Sensors Functionality Test . 128
7.4 Field Test 2: A Targeted Attack to Compromise a Web Server 129
7.5 Field Test 3: A Targeted Attack to Launch an Internal DoS Attack Against

Asterisk VoIP Server . 134
7.6 Summary . 137

CHAPTER 8 CONCLUSION . 139

REFERENCES . 144

xiv

LIST OF TABLES

Table 3.1 Comparison of the concept of “ontology” vs. database schema 51
Table 4.1 A list of static attributes of the context ontology classes 73
Table 4.2 A list of dynamic attributes of the context ontology classes 74
Table 6.1 Event logs generated by the sensors in the island-hopping attack scenario110
Table 6.2 The meta-event list created from the events in Table 6.1 112
Table 6.3 The meta-event list created from the events in Table 6.1 114
Table 6.4 The meta-event list created from the events in Table 6.1 115
Table 6.5 Five phases of DARPA’s LLDDOS1.0 attack scenario 117
Table 6.6 Alert types generated by ISS RealSecure based on the DARPA 2000

dataset . 119
Table 6.7 Alert fusion results of DARPA 2000 data set 120
Table 6.8 Experimental results based on the DARPA 2000 dataset 121
Table 7.1 Involved nodes in the testbed network architecture 130
Table 7.2 Some event logs generated by the employed event sensors 131
Table 7.3 Event logs generated by the sensors during the Web Server attack . . 132
Table 7.4 Event logs generated by the sensors during the Web Server attack . . 133
Table 7.5 Event logs generated by the sensors in the VoIP Server attack 136
Table 7.6 Event logs generated by the sensors during the Web Server attack . . 138

xv

LIST OF FIGURES

Figure 1.1 Intrusion detection systems categories 3
Figure 2.1 The integration of Basset and Snort [174] 15
Figure 2.2 Srinivasulu’s intrusion detection framework [162] 17
Figure 2.3 Mulay’s proposed IDS [126] . 18
Figure 2.4 Stein’s hybrid GA/decision tree intrusion detection approach [163] . . 19
Figure 2.5 FC-ANN framework [181] . 22
Figure 2.6 Block diagram view of integrated FASIDS [147] 23
Figure 2.7 Architecture of applying GA into intrusion detection [108] 24
Figure 2.8 Jiang’s GNN-based Intrusion Detection Model [95] 25
Figure 2.9 The architecture of the proposed IDS based on multi-FSVM [167] . . 26
Figure 2.10 Zeng’s Detection Model Based on HMM and Rough Set Reduction [195] 28
Figure 2.11 HMMPayl architecture [16] . 28
Figure 2.12 The subcategories of the correlation process 29
Figure 2.13 Valeur et al. alert correlation framework [177] 29
Figure 2.14 Yusof’s Domain Perspective of Heterogeneous Log Resources [192] . . 30
Figure 2.15 The Hierarchical Architecture of Zhao’s Proposed System [197] 32
Figure 2.16 Data-dependent decision fusion architecture [168] 34
Figure 2.17 Gagnon’s automatic evaluation process [70] 35
Figure 2.18 Zhang’s proposed three-layer network architecture for SGDIDS [196] . 38
Figure 2.19 Cooperative IDS proposed by Lo [113] 39
Figure 2.20 Abraham’s hierarchical architecture with free communication between

layers [11] . 40
Figure 2.21 General architecture of an anomaly-based HIDS [149] 40
Figure 2.22 Sekeh’s proposed model for intrusion detection [149] 42
Figure 2.23 ABIDS architecture [132] . 43
Figure 2.24 Comparing the efficiency of four different example analyses using ROC

curve . 44
Figure 3.1 Drilling-down and rolling-up operators 57
Figure 3.2 Classification of security ontologies into 8 families [158] 58
Figure 3.3 The proposed ontology by [175] . 59
Figure 3.4 The Security Asset-Vulnerability Ontology [179] 61
Figure 3.5 Wang’s proposed ontology for vulnerability management [182] 63
Figure 4.1 The Passargade ontology-based context-aware event correlation framework 66

xvi

Figure 4.2 Conceptual relationship of the proposed ontologies 70
Figure 4.3 Class diagram relationship of the designed ontologies 71
Figure 4.4 Class diagram relationship of the Event ontology 72
Figure 4.5 Class diagram relationship of the context ontology 72
Figure 4.6 Meta-event structure . 78
Figure 4.7 An example of meta-event graph to reconstruct attack scenarios . . . 81
Figure 4.8 Mapping between the attack scenario reconstruction and the designed

ontologies . 82
Figure 4.9 Class diagram relationship of the ONTIDS ontologies 84
Figure 4.10 The proposed semantic-based context-aware alert fusion model 88
Figure 4.11 The IDMEF alert attributes [50] . 89
Figure 4.12 The conceptual relationships among the proposed ontologies 89
Figure 4.13 The class diagram of relationships among the proposed ontologies . . 90
Figure 4.14 The alert fusion process. 90
Figure 5.1 Hierarchical class diagram of the designed ontologies 98
Figure 5.2 Object propoerties of the designed ontologies 99
Figure 5.3 How to store an OWL Ontology in Protégé 100
Figure 5.4 The Pellet reasoner of the Protégé ontology editor 101
Figure 5.5 SWRL Tab in Protégé . 102
Figure 5.6 Prelude SIEM architecture . 104
Figure 5.7 Populating the Event Ontology . 105
Figure 5.8 Populating the Context Ontology . 106
Figure 6.1 An instance of Island-hopping attack 109
Figure 6.2 Class diagram relationship of the attack ontology 111
Figure 6.3 The island-hopping attack graph . 113
Figure 6.4 An instance of recon-breakin-escalate attack 114
Figure 6.5 The recon-breakin-escalate attack graph 116
Figure 6.6 Alerts related to the 5 phases of the LLDDOS 1.0 118
Figure 6.7 Improving the false positive rate of Snort + RealSecure using the

proposed fusion approach . 121
Figure 6.8 Improving the false positive rate of Snort + RealSecure using the

proposed correlation approach . 122
Figure 6.9 The involved classes of the designed ontologies on the proposed test cases123
Figure 7.1 Field test network architecture . 127
Figure 7.2 IXIA 400 GUI . 128
Figure 7.3 Ostinato’s GUI . 129

xvii

Figure 7.4 The targeted attack scenario to compromise a Web Server 130
Figure 7.5 Correlating the event generated by the web server attack 134
Figure 7.6 The targeted attack scenario to launch DoS attack against VoIP Server 135
Figure 7.7 Correlating the events generated by the VoIP server attack 137

xviii

LIST OF SIGNS AND ABBREVIATIONS

AAFID Autonomous Agent for Intrusion Detection
ABAIS Agent Based Artificial Immune System
AIS Artificial Immune System
AM Analyzing Module
ANN Artificial Neural Network
CAC Central Analyzer and Controller
C&C Command and Control
CAPEC Common Attack Pattern Enumeration and Classification
CEE Common Event Expression
CEP Complex Event Processing
CMS Content Management System
COTS Commercial Line Interface
CS Context Sensor
CSM Cooperating Security Management
CTF Capture The Flag
CVE Common Vulnerabilities and Exposures
DAG Directed Acyclic Graph
DBMS Data Base Management System
DBN Dynamic Bayesian Network
DD Data-dependent Decision
DDoS Distributed Denial of Service
DIDS Distributed Intrusion Detection System
DIPPS Distributed Intrusion Prediction and Prevention System
DL Description Logic
DoS Denial of Service
D-SCIDS Distributed Soft Computing-based Intrusion Detection System
FCM Fuzzy C-Means
FN False Negative
FP False Positive
FSM Finite State Machine
GA Genetic Algorithm
GNN Genetic Neural Network
HAN Home Area Network

xix

HIDE Hierarchical Intrusion Detection
HIDS Host Based Intrusion Detection System
HMM Hidden Markov Model
IDMEF Intrusion Detection Message Exchange Format
IDS Intrusion Detection System
ID2S Intrusion Detection and Diagnosis System
IEEE Institute of Electrical and Electronics Engineer
IETF Internet Engineering Task Force
IDS Intrusion Detection System
IIS Internet Information Services
IPS Intrusion Prevention System
IoT Internet of Things
IT Information Technology
KDD Knowledge Discovery and Data Mining
MAS Multi-Agent System
NAN Neighborhood Area Network
NIDS Network Based Intrusion Detection System
NVD National Vulnerability Database
OS Operating System
OVM Ontology for Vulnerability Management
OWL Ontology Web Language
OWL-DL Ontology Web Language Description Logic
PPV Positive Prediction Value
ROC Receiver Operating Characteristic
RST Rough Set Theory
SAO Security Attack Ontology
SASO Security Algorithm-Standard Ontology
SAVO Security Asset-Vulnerability Ontology
SDO Security Defense Ontology
SFO Security Function Ontology
SGDIDS Smart Grid Distributed Intrusion Detection System
SOC Security Operation Center
SQWRL Semantic Query-Enhanced Web Rule Language
SVM Support Vector Machine
SWN Sensor Wireless Network
SWRL Semantic Web Rule Language

xx

TN True Negative
TPE Transfer Probability Estimation
UML Unified Modeling Language
UNM University of New Mexico
WAN Wide Area Network
WIND Workload-aware Intrusion Detection

1

CHAPTER 1 INTRODUCTION

Today, the rapid growth of virtualization and cloud computing and the emergence of the
several heterogeneous infrastructures, has led to the evolution of various applications, services,
and systems within a computer network. At the same time, there is an increasing trend
of attacks on these assets to exploit their possible vulnerabilities by malicious entities.
Hence, technologies and defensive systems aiding the efforts of Information Technology (IT)
personnel to improve the responsiveness and reliability of their organizations IT assets (i.e.
network infrastructure and computer systems) continue to be paramount.

Intrusion detection systems (IDS) are among the most popular of the front line tools to defend
computation and communication infrastructures from intruders. IDS collect and analyze
information from computers and network devices to identify possible security breaches against
the systems or the network infrastructure. Various IDS types have been proposed in the
past two decades and commercial off-the-shelf (COTS) IDS products have found their way
into Security Operations Centres (SOC) of many large organisations. Nonetheless, the
usefulness of single-source IDS has remained relatively limited due to two main factors:
their inability to detect new types of attacks (for which new detection rules or training
data are unavailable) and the often very high rate of false positives. Due to the increasing
prevalence of complex multi-pronged attacks, the necessity for organizations to have access
to and deploy reliable IDS that correlate across all available sensor types and other sources
of security-related information (including system and application logs) is undeniable. This
is especially important with respect to targeted attacks that try to avoid detection by
conventional IDS and by other security products.

One of the approaches that have been suggested to address these problems is that of alert
correlation, where the alert stream from several different IDS, or more generally various
alert sensors, is jointly considered and analysed to provide a more accurate threat picture.
However, these systems are only limited to IDS, and they do not employ other sensor types
(e.g. firewalls, web servers, operating systems, antiviruses, databases, etc.) that generate
valued event logs helping to identify malicious behaviours happening inside a computer
network. In addition, these systems do not take into account contextual information in their
analysis that can be considerably useful to reduce non-relevant alerts and false positives rate.
Lack of automation is another important problem of current alert correlation systems.

The work presented in this thesis strives to address the problems described above, and
provide a comprehensive solution to significantly improve IDS effectiveness. We propose a

2

comprehensive ontology-based (automated) event correlation system that 1) correlates event
logs across several heterogenous types of sensors, 2) incorporates contextual information into
its analysis to reduce false positives and non-relevant alerts.

To get to this point, we start by providing a brief overview of IDS types and their detection
methods in section 1.1. In Section 1.2, we introduce some improvements proposed by
researchers to make current IDS technology capable to mitigate the influences of sophisticated
attacks. Using the analysis of the current situation as a starting point, we define our research
problem in Section 1.3. Section 1.4 presents our research objectives in this thesis to address
current IDS technology problems. Section 1.5 presents our contributions in this thesis.
Finally, Section 1.6 details the organization of this thesis in which the efforts to achieve
our research aim are summarized.

1.1 Intrusion Detection Systems

Intrusion Detection Systems play a key role in the surveillance and monitoring of computer
network infrastructures. These systems inspect events that have occurred in computer
systems and networks, and in case of any malicious behavior, they generate appropriate
alerts describing the attacks’ details.

In the recent years, several types of IDS have been proposed. These systems can be split into
several categories based on various factors (Figure 1.1) [49]:

— Detection method: Intrusion detection systems in term of detection method can be
categorized into three main categories:

1. Misuse-based IDS: A misuse-based IDS is based on an attack signature-based
approach that compares every happening event with the attacks existing in its
signature database [36, 79, 128]. Once it finds any match, a particular alert,
according to the type of the event, will be reported. In these IDS, signature
database shall be updated to contain more recent attacks. Although these IDS
have higher detection rate, their main shortcomings are: 1) they are not able to
detect zero-day attacks, 2) modeling complex signatures in these systems is a time
consuming and difficult task.

2. Anomaly-based IDS: An anomaly-based IDS, based on the normal behavior of
a system, models its normal profile. Any deviation from this normal profile
is reported as a malicious behaviour. If the system models the normal profile
accurately enough, its false positive rate will be significantly reduced. However,
because the accurate modeling of the normal profile is a difficult task, the false

3

Figure 1.1 Intrusion detection systems categories

positive rates in these systems are higher than signature-based IDS.

3. Specification-based IDS: in these IDS, a number of specifications are defined for
network protocols or software processes. Any deviation from these specifications
is considered as a suspicious event.

— Information sources: Intrusion detection systems in term of information sources
are categorized into three major categories [21]:

1. Host-based IDS (HIDS): basically, a HIDS monitors a single host to detect
anomalous attempts. It analyzes a wide variety of activities including applications
and the system logs, operating system audit trails, and contextual information.
For example, it usually watches for suspicious login attempts, unauthorized or
abnormal file access, etc. Thus, HIDS have detailed information in hand for their
analysis.

2. Network-based IDS: NIDS monitor and analyze the ongoing traffic at several
locations of a network. Its analysis can be in different levels of sophistication.
NIDS might be distributed in the entire of a network, but mostly in the strategic
places. In such cases their main components can be detection sensors, management
server, database server, and consoles.

4

3. Application-based IDS: this type of IDS are a subset of HIDS, and they usually
monitor one or a number of specific applications, such as database management
systems (DBMS), content management systems (CMS), accounting systems, etc.
Their main information sources are the log files of these applications.

— Types of response: in term of how to react to a particular suspicious behavior,
intrusion detection systems can be categorized into two main categories:

1. Active IDS: Active systems automatically undertake further actions either to prevent
an attack or to collect additional information. In case of suspicious events, these
systems may look closer to the events to do more detailed analysis. These systems
may have not capability to directly deny the activities of an intruder. However,
they can change the system configuration such that proceeding by the attack
becomes at least more difficult.

2. Passive IDS: Passive IDS inform to the system administrators when any suspicious
event is happening. Pop-up messages and email notification are some of the
standard tasks of passive IDS.

— Usage frequency: in term of usage frequency, intrusion detection systems can be
categorized into two main categories:

1. Online IDS: An online IDS performs continuous and real-time analysis on network
events immediately after they happen. The main advantage of this approach is
that system activities can be analyzed timely. Thus, an appropriate response can
be issued once an attack is detected. However, the system overhead in these cases
is significantly high.

2. Offline IDS: Offline IDS analyze network traffic periodically, and looks for abnormal
events [29]. They do not provide any protection between two consecutive analyses.
Therefore, in case of any successful attack, they can be used only for postmortem
analysis.

— State awareness: in term of state awareness IDS can be categorized into two major
categories:

1. Stateless IDS: Stateless IDS analyze events independently from each other. In
other words, these systems do not take into account the events relationships. Even
though these IDS simplify the system design process, they are not able to detect
complex attacks, such as distributed and multi-step attacks.

2. Stateful IDS: Stateful IDS maintain information related to the past events. When
they are inspecting an event, they consider its relation to the past events (the

5

event stream approach). While these systems introduce additional complexity in
the design process, they have significant advantages i.e. they have a potential to
detect complex attacks.

In order to choose a specific IDS type for a particular application, we need to inspect IDS
types based on a comprehensive list of criteria. For this purpose, a number of criteria have
been defined by researchers [24, 49]. These criteria are as follows:

— Accuracy: An IDS should detect normal and abnormal events accurately. Inaccuracy
occurs when: 1) an IDS considers an abnormal or malicious event as a normal or
legitimate one (false negative), 2) an IDS identifies a normal or legitimate event as an
abnormal or malicious one (false positive).

— Performance: performance indicates the processing rate of audit events. Typically,
online IDSs have higher performance because they should react to the audit events in
a real-time mode.

— Completeness: completeness indicates the ability to detect all attack types.
Therefore, incompleteness occurs when an IDS is not able to detect and analyze a
particular attack type. Measuring this criterion is more difficult than others because
it needs detailed knowledge about attack types.

— Adaptability and scalability: it is necessary for an IDS to be configured to detect
new attacks and operate under new circumstances. In other words, adaptability
and scalability indicate on the ability of an IDS to adapt with new environments
(topologies, systems, software, etc), new configurations, and even new scales.

— Availability: sometimes attackers try to target the availability of IDS using attacks
like denial of service (DOS). An IDS has to be resistant against such attacks. This
criterion is important particularly for those IDS protecting very sensitive environments,
such as military and commercial environments.

— Timeliness: an appropriate IDS should analyze every event as quickly as possible to
protect the underlying system from upcoming significant problems. This criterion is
very important especially for online IDS that perform their tasks in a real-time mode.

1.2 Improvements on Intrusion Detection Systems

As the various IDS available (COTS or research prototypes) can only detect attacks for
which rules have been written (rule-based detection) or that were present in data used to
train them (anomaly-based detection), each IDS tends to perform differently on each class
of attack [1]. Therefore, many researchers and industry practitioners have tried to increase
overall detection efficacy by running several different IDS on the same data sources (i.e. live

6

feed of system and network events), and combining their outputs.

In order to facilitate this task, several researchers have attempted to introduce tools and
processes to implement alert correlation, where alerts generated by distributed IDS sensors
located at different locations are integrated, correlated and jointly analysed to produce
compact reports on security status [177, 198]. When each of these IDS examine the same
type of data, one can speak of homogeneous IDS correlation. In fact, the majority of research
and real-world deployment of correlation approaches involves the analysis of alerts generated
by different network IDS (NIDS), such as SNORT or Bro, examining network traffic streams
at different network locations.

One notorious sub-case of homogeneous correlation is alert fusion [15, 31, 89, 137, 143, 152,
188], where all IDS are examining events from the exact same data source and where a
decision as to which alert-generating events are most relevant. Hence, for each event we
might have some IDS generating an alert while others do not. Alert fusion thus includes
the decision process in which for each alert-generating event, we consider the output of all
IDS and decide how important and relevant it is, and how to report in a concise form usable
by a security analyst. While alert fusion is notionally a specific case of alert correlation of
same-source IDS, it can also be used as an intermediate step in more generic heterogeneous
correlation of IDS monitoring different types of event streams.

Nonetheless, most attacks, whether automated malware infections or manual network
intrusions, do not leave traces only on network traffic captures but also on host-based IDS
(HIDS) and other security products, and sometimes even on non security-related logs of
commodity or corporate applications. This fact has been successfully exploited by security
analysts worldwide to detect sophisticated attacks by visually or manually correlating these
various information and alert sources. Because all of these sensors examine different types of
events and raw data sources, one can speak in this case of heterogeneous alert correlation.

One of the important difficulties of heterogeneous correlation is the integration of data from
various alert sources, each having potentially different formats and semantics. In order to
be useful, the integrated information must capture the generic properties pertaining to all
types of alerts in order to allow the analyst to consider the information as a whole. At the
same time, sensor-specific attributes must also be retained in order to preserve the ability
for the security analyst to drill down and refine his analysis, such as for finding root causes,
determining attack type, objectives, etc. Having recognised the usefulness of alert correlation,
whether homogeneous or heterogeneous, security researchers have attempted to create unified
models for events and alerts, such as the notorious Intrusion Detection Message Exchange
format (IDMEF) [50], which is now supported by many COTS NIDS and HIDS. However,

7

IDMEF does not solve all integration woes. It does not gracefully support non-standard
attributes that might be needed for refined analysis (except through "user" fields) and is
not suited for integrating other types of information that security analysts might want to
correlate, such as application logs, configuration information, etc.

In fact, one very fundamental principle of event management is that security analysts must
be able to understand and consider in which context an event originated. This is what allows
to consider the relevance and relative importance of events. Contextual information that
can be relevant to security analysis can include network topology and protocols, network,
system or application configurations, user profiles and roles, etc. For example, an IDS
alert that describes a malicious activity exploiting a PHP buffer overflow vulnerability (e.g.
CVE-2014-4049), is considered as a real or relevant alert if and only if the PHP application
is installed in the underlying context. Otherwise, it will be considered as a non-relevant
alert even though it correctly recognizes the attack. Unfortunately, security analysts often
need to manually gather such information from multiple systems to feed the correlation
process in order to integrate and validate the alerts and identify the consequences of any
intrusion. This is why certain researchers have proposed approaches to automatically include
such contextual information into the event correlation process, an approach referred to as
context-aware event correlation. The simple false positive-reducing idea applied here is simple
and intuitive: events that are related to a certain type of attack are only relevant if the context
in which they happen is indeed vulnerable to that type of attack. Thus, for context-aware
event correlation to be useful it must also consider vulnerability information and, potentially,
also attack models that describe how attacks require vulnerabilities and how they generate
alert-triggering events.

Here again, the difficulty in implementing such approaches resides in integrating the
information into a data model that is generic enough to allow a global view of the data,
while retaining maximum data granularity for drill-down analysis. For example, assume that
in one query we intend to list all the network-based events, and in another query we intend
to list only proxy server events. As proxy server events are a specific subset of network
events, in the first query we employ roll-up operations, and in the second query we employ
drill-down operations in the objects hierarchy to obtain appropriate results. Furthermore,
whether we are considering data representations for alerts, context, vulnerabilities or attacks,
the ever-changing nature of threats and of our own IT infrastructures make it unattainable
to try to design a unified one-size-fits-all data model. Flexibility and extensibility of the
data model is thus a key requirement of any such approach. Lastly, the method by which
security analysts extract information and intelligence from such data stores must itself also
be flexible and extensible. It must support generic simple queries and detailed analysis, and

8

furthermore it must be relatively simple and quick for analyst to implement and run various
correlation paradigms and algorithms.

1.3 Problem Statement

Intrusion detection systems are one of the key requirements of every organization to ensure
confidentiality, integrity and availability of its IT resources. Unfortunately security
professionals confirm that IDS are not technically advanced enough to detect, verify and
assess many sophisticated attacks particularly in critical environments. At the other end of
the technical spectrum, IDS often output a large amount of alerts having numerous redundant
and
non-relevant alerts which make it a flustering task for security administrators to determine
real alerts. Part of the problem is that most of the current IDS do not take to account
contextual information (type of server, application, user, network location, etc.), and therefore
a large portion of the alerts are non-relevant in that even though they correctly recognize
an intrusion, the intrusion fails to reach its objectives. Additionally, to detect newer and
complicated attacks, relying on only one detection sensor type is not adequate, and as a result
many of the current IDS are unable to detect them. While many system administrators are
known to successfully manually incorporate context information and many different types of
sensors and logs into their analysis, an important problem with this approach is the lack of
automation in both storage and analysis.

During recent years many research projects have proposed to address the mentioned problems
in IDS applicability. However, as most of these works have focused on only one of these
aspects, the problem as a whole has not been resolved. Most of the proposed alert correlation
techniques consider correlation only across multiple sensors of the same type having a common
event and alert semantics (homogeneous correlation), leaving it to security administrators to
perform correlation across heterogeneous types of sensors. Another major shortcoming is the
lack of accurate evaluation based on the data sets that encompass modern complex attack
scenarios.

In summary, the most important shortcomings of current IDS technology are as follows:
— Alert flooding: The ubiquitous phenomenon of alertflooding is exacerbated by the

fact that most IDS generate large numbers of low-level alerts without any high level
description, hence making it time consuming and difficult for security analysts to
determine valid and important alerts and act upon them appropriately.

— False positives and false negatives: One of the major challenges in real-world IDS
is the large amount of false positives that they generate, making it a difficult task for

9

security administrators to determine and identify real and important alerts.
— Non-relevant alerts: Most of the current IDS do not take into account contextual

information (type of server, application, user, network location, etc.) to verify the
correctness of generated alerts. Consequently, a large portion of the alerts are
non-relevant in that even though they correctly recognize an intrusion, the intrusion
fails to reach its objectives.

— Continuous human interaction: Human interaction is one of the fundamental
requirement of current IDS. Usually, system administrators analyze (i.e. verifying,
correlating, fusing, etc.) generated alerts, update signature databases, etc. This
interaction significantly reduces detection speed and efficiency. Therefore, the lack of
automation in both storage and analysis is considered as another main challenges of
these systems.

— Unable to detect zero-day attacks: Ability to recognize new attacks when they
are launched for the first time, is not principally possible for current IDS technology.
This fact reduces the overall system performance and makes them unreliable in real
environments.

— Unable to detect multi-step attacks: Detection of the recently emerged
sophisticated multi-step attacks is a big challenge in current IDS research and
technology. These attacks are mostly based on scenarios that employs methods such
as social engineering, spam emails, Phishing, etc. to compromise legitimate users and
machines, and through them accomplish malicious activities. In order to detect such
complex attacks, relying on only one detection sensor type is not adequate, and as a
result many of the current IDS are unable to detect them.

— Limited scalability and flexibility: Current intrusion detection and event
correlation systems are not able to achieve the level of scalability required to effectively
inspect high volume of audit data collected from distributed agents in large networks.
Moreover, as they do not take into account contextual information, their easy
reconfiguration to adapt in new environments or to employ various approaches in
their detection and correlation engine is a problematic task.

— Lack of proper and effective evaluation methods: Effective evaluation of intrusion
detection systems has been a considerable challenge for many years even though
various evaluation approaches have been proposed. The most common approach has
been to send attack traffic within some background traffic, and test the detection
ability of systems. However, publicly available data sets do not include most of the
recent complex attacks to efficiently evaluate intrusion detection systems.

10

1.4 Research Objectives

To address the challenges described in the previous section, the goal of this thesis is to
design a comprehensive event correlation system that can provide: 1) context awareness, 2)
system automation, 3) sensor heterogeneity, and 4) appropriate correlation through various
event logs. Our proposed approach consists of a set of extensible ontologies to automatically
perform event correlation by reasoning on the information collected from various information
resources.

We summarize the detailed objectives of our research as the following items:

1. Develop a unified and comprehensive ontology-based and context-aware event
correlation framework to seamlessly and automatically implement various alert and
event
correlation approaches on the same data model. The proposed framework will be
flexible enough to be employed as a reference correlation framework to implement
other works.

2. In order to allow IDS analysis automation, designing comprehensive and extensible
ontologies, allowing correlation and reasoning with information collected from various
resources including system context, vulnerabilities, attacks, and event logs.
Additionally, In order to allow context-awareness, incorporating useful contextual
information into the analysis from either explicit information in Configuration
Management Systems (CMS) or from implicit information obtained by user and system
profiling techniques.

3. Propose a semantic-based and context-aware event correlation approach performing
heterogenous correlation from various sensor types (NIDS, HIDS, routers, firewalls,
antiviruses, databases, operating systems, applications, etc.), and a semantic-based
context-aware alert fusion approach fusing alerts received from various network-based
intrusion detection systems.

4. Evaluate the flexibility and effectiveness of the proposed framework by applying to
different deployment and analysis contexts, from simple to complex IT infrastructures,
generic threat detection to complex attack forensics analysis.

5. A complete evaluation of the effectiveness and performance of the proposed event
correlation and alert fusion approaches based on data sets including recent complicated
attack scenarios and realistic laboratory experimentation.

6. Preparing a new data set in the lab environment to test and evaluate the proposed
ontology-based and context-aware event correlation approach. The data set will need

11

to adhere to the protocol specifications, and will need to include multi-step attacks
designed based on recently emerged attack scenarios.

1.5 Thesis Structure

This document presents a summary of our efforts to tackle the problems of generating a large
amount of false positives and the lack of automation in intrusion detection systems. Various
sections focus on the different efforts made to tackle our research objectives.

Chapter 2 presents a critical review of the current state of the art. In particular, in this
chapter, we review machine learning-based intrusion detection systems, alert correlation
systems, alert fusion systems, host-based intrusion detection systems, distributed intrusion
detection systems, context-aware intrusion detection systems, and evaluation metrics and
data sets.

Chapter 3 provides a background and basic knowledge required to follow the next sections.
We bring an introduction about ontologies and their impact in computer security research.
We also introduce Ontology Web Language Description Logic (OWL-DL) and Semantic
Query-Enhanced Web Rule Language. A review on recent ontology-based intrusion detection
systems is another part of this chapter.

Chapter 4 presents Pasargadae, the proposed context-aware and ontology-based event
correlation framework. In this chapter, we describe the event correlation phases using
Pasargadae, designed ontologies (i.e. context, event, vulnerability and attack), and the
correlation engine. Next, we propose a novel semantic-based and context-aware
event correlation approach that employs Pasargadae as its main framework to perform event
correlation. We describe how Pasargadae can be employed to implement other alert and
event correlation approaches. In the last section of this chapter, we describe our proposed
semantic-based and context-aware alert fusion approach.

In Chapter 5, we describe how Pasargadae which is the main framework of all the proposed
approaches, was implemented in our lab and field test environment. For this purpose, we
explain various tools and methods that were employed to implement Pasargadae’s components.

Chapter 6 demonstrates the flexibility of our framework by applying it to analyze some
different case studies. In this chapter, we evaluate the proposed correlation and fusion
approaches from various perspective and based on different popular data sets.

In Chapter 7, as a complete field test, we concentrate on applying the proposed event
correlation and alert fusion approaches in a real network environment to analyze ground
truth network traffic. We mainly evaluate the performance and efficiency of the proposed

12

approaches to show how these approaches behave in real world usages.

Finally, Chapter 8 presents the general discussion of our results and contributions with respect
to our initial research objectives. This chapter also proposes avenues for future research that
have been opened by our contributions.

13

CHAPTER 2 PREVIOUS WORK IN INTRUSION DETECTION SYSTEMS

During recent years, many sophisticated attacks have emerged that target computer systems
located in various organizations. These multi-step and coordinated attacks pose significant
threats to these organizations and their intellectual property. In order to protect these valued
resources against complex attacks, Intrusion Detection Systems (IDS) and alert correlation
systems play a significant role to detect and report these threats. Consequently, a large
number of intrusion detection and alert correlation approaches have been proposed in the
literature over the recent years.

From a classification point of view, Cuppens and Miege [43] classify intrusion detection and
alert correlation approaches into two main categories:

— Explicit alarm correlation, which relies on the capabilities of security administrators
to express logical and temporal relationships between alerts in order to detect complex
multi-step attacks. For instance, Morin and Debar [122], propose an explicit correlation
scheme based on the formalism of chronicles. Other researchers have proposed
imperative languages to express logical and temporal relationships in attacks in order
to correlate sequences of the alerts [45, 170].

— Implicit alarm correlation, which is based on employing machine learning and
data mining techniques to fuse, aggregate and cluster alerts for alert correlation and
intrusion detection purposes. For instance, Chen and Aritsugi [34], employ Support
Vector Machines (SVM) and co-occurrence matrices in order to propose a masquerade
detection method. In [142], Raftopoulos performs log correlation using C4.5 decision
tree classifiers after analysing the diagnosis of 200 infections that were detected within
a large operational network. Almgren, Lindqvist and Jonsson [14] use Bayesian
networks to correlate alerts generated from several audit sources to improve detection
accuracy.

From another perspective, Yusof et al. [192] categorize intrusion detection and alert correlation
techniques into four main categories: 1) Similarity-based techniques, 2) Pre-defined attack
scenarios techniques, 3) pre-requisite and consequences of individual techniques, and 4)
Statistical causal analysis techniques. The main goal of our research work is proposing a
model having most of the advantages of these categories while reducing major disadvantages.

This chapter presents a review of the state of the art of intrusion detection and alert
correlation approaches. It starts by presenting machine-learning and data-mining based
intrusion detection approaches. In section 2.2 and 2.3, we explain the importance of alert

14

correlation and alert fusion in improving IDS performance and efficiency. Section 2.4 presents
context-aware alert correlation and intrusion detection systems. In section 2.5, we describe
distributed and agent-based intrusion detection systems. Section 2.6 presents host-based
intrusion detection systems. Section 2.7 reviews intrusion prediction and prevention
techniques. In section 2.8, we describe some evaluation metrics in order to compare the
efficiency of intrusion detection and alert correlation approaches. Section 2.9 presents some of
the popular data sets that are frequently employed to evaluate the performance and efficiency
of intrusion detection and alert correlation techniques. Finally, section 2.10 inspects the
advantages and disadvantages of the prior works, and describes our objectives in this work
considering the prior works.

2.1 Intrusion Detection and Alert Correlation Using Machine Learning
Techniques

In order to analyze network traffic and classify every event into normal or malicious classes,
machine learning techniques can be an appropriate solution. Hence, during recent years
various machine learning-based intrusion detection and anomaly detection systems have been
proposed. Some of these approaches employ only a single learning technique, such as neural
networks, genetic algorithms, decision trees, etc. On the other hand, some approaches are
based on a combination of several learning techniques, such as hybrid or ensemble techniques.

Essentially machine learning techniques are split into two major categories: supervised and
unsupervised learning techniques. Supervised techniques, first, in the training phase, learn
classes using a labeled training data set. Then, they analyze and classify a test data set based
on the knowledge learned in the training phase. In such techniques, the training data set plays
an important role in improving total performance. On the other hand, in the unsupervised
techniques, the training data set is not labeled. In these techniques, some different data
sets are given to the machine to cluster them by their similar features. In the following, we
describe how machine learning techniques have been employed by researchers to propose new
intrusion detection approaches.

2.1.1 Bayesian Networks

Bayesian networks represent another approach to detect and prevent anomalous activities
in computer networks. In this technique, there is a Directed Acyclic Graph (DAG) which
represents causal relationship of events [174]. In this graph, the nodes represent events and
the edges represent their causal relationship. The graph can be used for both inference and

15

prediction purposes. Bayesian networks are considered as a supervised machine learning
technique. Both learning the graph and the probabilistic table are possible in these systems.
During recent years many intrusion detection and prevention approaches based on Bayesian
networks have been proposed [63, 100, 101, 124, 133, 148, 173, 174]. In the following we
briefly describe some of these works.

Tuba and Bulatovic in 2009 [173], proposed a standalone IDS based on a large Bayesian
network. Their proposed approach consists of two main steps: 1) developing a tool to design
a number of small components representing the basis of a Bayesian network, 2) developing
a tool interconnecting these components in a way that provides efficient control on network
complexity. To this end, they define a small number of natural templates called idioms,
that facilitate the design of Bayesian networks. The main feature of these idioms is their
ability to represent a graphical structure without probabilistic tables. Consequently, these
idioms speed-up the Bayesian network development, and improve their quality. In order
to evaluate the proposed approach, the authors have used it to improve privacy of medical
data, and they show that using Bayesian networks for intrusion detection purpose outcomes
efficient and acceptable results. However, we believe that the proposed approach cannot
eliminate non-relevant alerts because it does not take into account contextual information in
the intrusion detection process.

Figure 2.1 The integration of Basset and Snort [174]

Tylman in 2010 [174], presented a system called Basset that improves functionality of Snort
IDS by incorporating a Bayesian network as an additional processing stage. Based on the
authors claim, the flexible structure of Basset makes it applicable in both misuse-based and
anomaly-based detection processes. They use Snort as the first stage of their detection
process which has two main advantages: 1) Snort works as a reliable packet sniffer, 2) it
provides valuable information for the next steps. The proposed approach intercepts Snort
alerts before transferring into the output plug-in. First, the intercepted alerts are fed to the
Basset for more analysis. Then, the results are fed to the Snort output plug-in. Figure 2.1
illustrates this process. The main disadvantage of this approach is the modifications that the

16

system enforces to Snort’s core engine.

Dewan et al. in 2010 [63], proposed a learning algorithm for adaptive NIDS based on naive
Bayesians and decision trees. The main goal of proposing this work was addressing some
difficulties of data mining based approaches, such as reducing noise in training data, handling
continuous attributes, and dealing with missing attribute values. The authors have evaluated
the proposed work using KDD 99 data set, and based on their experiments, they believe that
it significantly reduces the false positive rate. However, because KDD does not cover most
of the recent complex attacks, we cannot consider it as a reliable evaluation factor.

2.1.2 Data Mining Methods

Essentially, during an intrusion detection process a large volume of host and network traffic
is analyzed. Data mining methods can be considerably useful to perform such analyses.
Generally, a data mining process has three main steps [162]: 1) initial exploration, 2) pattern
identification, and 3) deployment. Various data mining approaches such as classification,
clustering, association rule mining, and outlier detection approaches are frequently used
during intrusion detection processes to determine and analyze captured traffics, and eventually,
discover malicious behaviors [51, 58, 78, 102, 105, 106, 162, 190].

Xiao et al. in 2010 [190], proposed a novel unsupervised data mining based method to
efficiently handle generated alerts by IDS. In this work, they use an outlier detection approach
to determine true alerts and reduce false positives. They assign an FP score to each alert
that indicates its probability of being a false positive. Their proposed approach mainly has
three steps. First, using a mining algorithm, all existing frequent item sets in the data set
are recognized. Then, based on the frequent patterns, the outlier score of each transaction is
calculated. Finally, based on the outlier scores, all the transactions are sorted in ascending
order, and the first p% is chosen as candidate outliers. In this work, a dynamic set of
features is considered to describe normal behaviors, i.e. once a new alert is generated, a
new normal behavior emerges. This fact based on the authors claim, is the main advantage
of the proposed approach. In order to update the feature set, the corresponding frequent
pattern of any new behavior should be constantly added to the feature set. However, the
main shortcoming of this work is that it does not take into account the semantic information
of the alerts.

Barbara et al. in 2001 [25], proposed the ADAM (Audit Data Analysis and Mining) anomaly
detection system that combines association rules mining and classification to detect malicious
events in a TCPdump audit trail. First, ADAM employs data mining to build normal
behaviour profiles. Next, based on a sliding-window online algorithm it recognizes frequent

17

item sets in the last D connections and compares them with the normal profiles to detect
malicious events. An important limitation of this work is that it needs a comprehensive
list of normal profiles to perform an efficient anomaly detection that is very difficult task
to prepare. Otherwise, it will produce a large number of false positives. It also does not
consider the alerts semantic information in its analysis.

Figure 2.2 Srinivasulu’s intrusion detection framework [162]

Srinivasulu et al. in 2009 [162], applied data mining classification techniques into an intrusion
detection process to improve its efficiency. In this work, CART [114, 140], Naïve Bayesian and
Artificial Neural Network (ANN) are applied into an intrusion detection process.
Consequently, the results were compared together to show which classification method is
more efficient. Figure 2.2 illustrates the proposed framework. In the proposed framework,
in order to determine false positives, before transferring into the classifier, the alerts are
filtered by HOMER. The results indicate that Induction tree and ANN are more efficient
than Naïve Bayesian. However, time complexity of ANN is more than other classifiers.
The main shortcoming of this approach is that the classifiers only classify events based on
limited number of features depending on behaviours observed with limited number of events.
Moreover, they do not take into account contextual information and event interrelationships.

2.1.3 Decision Tree

Decision trees are one of the most popular machine learning techniques. They provide a
simple and efficient predictive model. Decision trees are useful to define and improve intrusion
detection rules while reducing the manual analysis rate. During recent years many intrusion
detection approaches based on decision trees have been proposed [9, 15, 62, 126, 127, 156,

18

163, 165, 189]. In most of these approaches, decision trees play an integrated classifier role
to improve overall detection efficiency. In the following, we briefly describe some of these
works.

Mulay et al. in 2010 [126], proposed a hybrid intrusion detection approach based on Support
Vector Machines (SVM) and decision trees. In this work, their main goal from combining
SVM and decision trees is to improve the training time, testing time and accuracy of IDS.
Figure 2.3 illustrate the proposed intrusion detection approach. First, the proposed approach
prepares five SVM models for five types of labeled data. Then, these five types of patterns
are organized into a binary tree. The authors believe that combining these two techniques
produces better results than using a single classifier. However, they have proved it by
a comprehensive experiments. Another shortcoming of this work is that it cannot detect
zero-day attacks because of using only supervised learning techniques.

Figure 2.3 Mulay’s proposed IDS [126]

Stein et al. in 2005 [163], proposed a novel misuse-based intrusion detection approach using
a combination of Genetic Algorithms (GA) as a feature selector and decision trees as a
classifier. Figure 2.4 illustrates the proposed framework. First, the initial population is
randomly produced. Within this population, each individual consists of 41 genes where each
one represents a particular aspect of a network connection. In this framework, for each
individual a C4.5 program [140] is considered. Once, the fitness values of all the individuals

19

were computed, the GA generates the next generation that is an optimized feature set.
Based on the authors claim, the proposed hybrid approach improves the system efficiency
because it concentrates only on the related features. However, the proposed approach does
not consider the individual relationships. Consequently, it can not detect multi-step and
distributed attacks.

Figure 2.4 Stein’s hybrid GA/decision tree intrusion detection approach [163]

Xiang et al. in 2008 [189], proposed a hybrid multi-level intrusion detection approach based on
decision trees as a supervised classifier and Bayesian clustering techniques as an unsupervised
classifier. In the proposed approach that has four classification steps, C4.5 has been used as a
decision tree classifier. First, it categorizes network traffic into three subclasses: DOS, Probe

and Others. Then, the Others class is categorized into two subclasses: Normal and Attack.
In the third step, the Attack class is categorized into U2R and R2L subclasses. Finally, in the
last step, the attacks are categorized into more specific subclasses. The main reason of using
unsupervised classifier in the third step is the close similarity between U2R and R2L with
the Normal traffic. Therefore, after filtering out the Normal connections, C4.5 categorizes
U2R (User-to-Root) and R2L (Remote-to-Local) into more specific subclasses. Based on the
authors claim, combining both supervised and unsupervised classifiers significantly improves
the system efficiency while reducing the false positive rate. However, the main shortcoming
of this work is that they do not take into account the contextual information to eliminate
non-relevant alerts. Ignoring semantic information of the alerts is another limitation of this
work.

2.1.4 Artificial Neural Networks

An Artificial Neural Networks (ANN) is a computational model based on biological neural
networks. In this model, first, the system using a training data set, learns various patterns.
Then, it can be applied to a test data set. Because of significant adaptability and learning

20

capability, ANN can be very useful for intrusion detection purposes. During recent years,
many intrusion detection approaches based on ANN have been proposed [13, 27, 28, 40, 110,
125, 139, 181, 183]. In the following we briefly describe some of them.

Beqiri in 2009 [27], proposed an ANN based intrusion detection approach. In this work,
novel concepts such as multi-layer perception mode, multi-level perceptron neural networks,
and Hierarchical Intrusion Detection (HIDE) have been presented. In this paper the authors
highlight major challenges of the intrusion detection research such as high false positive
rate, continuous human interaction, etc. Based on the authors claim, unsupervised learning
and fast network convergence are two significant capabilities of neural networks that can be
integrated into intrusion detection processes. However, this work classifies events based on
some features depending on behaviour observed with one type of events, and they do not
take into account contextual information and event interrelationships.

Wang et al. in 2009 [183], using feed forward Backward Propagation (BP) neural networks
proposed an intrusion detection approach based on workflow feature definition. In the
proposed approach, workflow allows to define new attack sequences to assist BP neural
networks in order to detect new attack types. First, the system analyzes network traffic
to classify normal users’ behaviors. Then, it detects possible existing attacks. During the
training phase, in order to simulate real attacks, the authors have injected noisy data into
the training data set. In this phase, they use several noisy data sets to simulate various
attacks. The noise level has direct influence on the recognition percentage. The result will
be acceptable only if it satisfies precise corrected data set with attack workflow feature and
low noise level. The main difficulty of this work is creating a comprehensive training data
set that can significantly reduce false positive rate.

Linda et al. in 2009 [110], proposed IDS-NNM (Intrusion Detection System using Neural
Network based Modeling) wherein a specific window-based feature extraction technique is
derived from the analysis of network traffic in a critical infrastructure. For this purpose, a
combination of two neural network algorithms, the Error Back-Propagation and the
Levenberg-Marquardt algorithm, is employed for training purpose. Based on their
experiments, the authors believe that the proposed approach is able to detect long intrusion
attacks as well as short intrusion attempts. However, the main shortcoming of this work is its
inability to detect zero-day attacks. Preparing a comprehensive training data set is another
difficulty of this works.

21

2.1.5 Fuzzy Logic

Fuzzy logic has several significant characteristics that make it useful in various research
areas as well as intrusion detection systems. The three major reasons that researchers use
fuzzy logic in the IDS research are: 1) security itself involves fuzziness, 2) fuzzy systems
can easily integrate many data types generated from various sources, and 3) the generated
alerts by intrusion detection sensors are mostly fuzzy because we cannot strictly emphasize
on their intrusiveness. During recent years, a number of fuzzy logic based intrusion detection
approaches have been proposed [56, 57, 83, 166, 166, 181]. In the following, we describe the
works proposed by Tajbakhsh [166], Wang [181] and Sangeetha [147].

Tajbakhsh et al. in 2009, proposed an intrusion detection framework based on data mining.
In this framework, they perform association-based classification using fuzzy association rules
within the classification engine. During the classification process, every new sample is
classified considering its compatibility with predefined classes. In order to induce desired set
of association rules, a modified version of the standard Apriori algorithm [103] is employed.
Essentially, the proposed framework has two main phases namely training and detection
phases. A trapezoid membership, based on Fuzzy C-Means (FCM) clustering, is used as a
fuzzy membership approach. Within the item reduction module, an association hyper-edge
that is basically sets of items that are strongly predictive to each other, is used. The authors
believe that the proposed approach has several advantages such as human comprehensible
rules, handling symbolic attributes, and efficient classification on large data sets. However,
the main difficulty of this work is preparing a comprehensive training set including various
samples. Otherwise, it will generate a huge rate of false positives.

Wang et al. in 2010, proposed a hybrid ANN and fuzzy clustering based intrusion detection
approach, called FC-ANN. In this work, first, they use a fuzzy clustering technique to
generate some training data sets. Next, using these training data sets, a number of ANN
modules are separately trained. Finally, the results are aggregated by a fuzzy aggregation
modules. Figure 2.5 illustrates a graphical version of this process. The authors based on
their experiments on the KDD CUP 1999 data set, believe that dividing the training data
set into some subsets improves detection performance. However, this work does not take into
account the semantic information and interrelationship of the alerts. Hence, it cannot detect
distributed and multi-step attacks.

Sangeetha et al. in 2010, proposed an application layer intrusion detection approach called
FASIDS based on the Fuzzy Rule-Base algorithm. The proposed approach combines a
semantic-based IDS with a fuzzy-based one. In this approach, HTTP traffic headers and
payloads on the application layer are analyzed for possible intrusions. Figure 2.6 illustrates

22

Figure 2.5 FC-ANN framework [181]

23

the FASIDS block diagram view. As the figure shows, first, the HTTP sniffer captures the
application layer traffic. Session Dispatcher module differentiates the header and the payload
of the captured data, and transfers each one to the corresponding modules. Header Analyzer
module, lists objects existing within HTTP packets. IDS Interpreter module, in case of any
match between its rules and the input patterns, reports an intrusion. Otherwise, it transfers
the patterns into the FIDS module for more analysis. Based on the authors claim, the
proposed approach combines both the advantages of semantic-based IDS and fuzzy-based
IDS. Consequently it provides more efficiency compared to other approaches that use only
one of these methods. However, one of the major shortcomings of this work is that it is
limited to the application layer, and in particular, it only covers the HTTP traffic. Whereas,
most of the current multi-step attacks leave traces of their prior activity at the several layers
of the protocol stack, which can be leveraged in the intrusion detection process.

Figure 2.6 Block diagram view of integrated FASIDS [147]

2.1.6 Genetic Algorithm

Genetic Algorithms (GA) are basically a type of search algorithm that provides optimal
solutions for various problems. Some of the major features of GA are adaptability with new
environments, robustness to noise, self-learning capability, ability to produce initial rules
without prior knowledge, and intrinsically parallelism. During recent years, many GA-based
intrusion detection approaches have been proposed [12, 23, 74, 85, 95, 102, 108]. In the
following we describe the works presented by Li, Bankovic and Jiang.

24

In 2004 Li [108], proposed a genetic algorithm-based IDS that represents how the information
of network connections can be modeled as chromosomes. Figure 2.7 illustrates how GA has
been applied to improve intrusion detection rule set’s quality. DARPA data set has been
used as the input into GA. The authors believe that this implementation of the genetic
algorithm is unique because it takes into account both temporal and spatial information of
network connections. However, using DARPA data set which covers only some old and basic
attacks is not enough as the input of GA. We believe that in this phase they can use more
comprehensive attack samples to outcome more optimized rules.

Figure 2.7 Architecture of applying GA into intrusion detection [108]

Bankovic et al. in 2009 [23], proposed a GA-based framework to classify network connections.
The proposed framework composed of serial combination of two GA-based intrusion detection
systems. The first system that is a single linear classifier, acts as an anomaly-based IDS.
Therefore, both its detection rate and false positive rate are higher than the second one which
is a rule-based classifier. The linear classifier splits connections into two classes: normal and
potential attack. The main advantage of this classifier is its very low false negative rate.
On the other hand, the rule-based classifier has the advantage of filtering and reducing
false positive alerts. Consequently, there is a strong classifier upon a weak classifier to
improve detection rate while reducing false positives. The authors believe that the proposed
framework has some capabilities such as the high accuracy, the ability of dealing with rare
classes, the inherent adaptability, and the feasibility of hardware implementation. We also
believe that the proposed framework that combines an anomaly-based and a misuse-based
detection system, is more effective than using only one classifier. However, this work does
not consider semantic information of the alerts. It also does not use the interrelationship
information of the alerts to detect multi-step and distributed attacks.

Jiang et al. in 2009 [95], proposed an anomaly-based intrusion detection approach using
Genetic Neural Networks (GNN). In this approach they combine the advantages of both
genetic algorithms (appropriate global searching) and BP neural networks (accurate local
searching). Figure 2.8 illustrates the proposed approach. In this approach, first, network
packets are collected and converted to a standard format analysable by GNN. Then, the GNN

25

Figure 2.8 Jiang’s GNN-based Intrusion Detection Model [95]

module analyzes the input data and in case of any malicious activity, generates appropriate
warnings for security administrators. Based on the authors claim, the proposed approach has
some significant advantages such as fast learning and higher accuracy. However, the main
performance of this work depends on the initial data that GA uses to generated detection
rules. If this data does not cover most of the common attacks, the system produces a huge
rate of false positives.

2.1.7 Support Vector Machine

Support Vector Machines (SVM) are one of the popular machine learning techniques applied
to various research areas such as pattern recognitions, nonlinear classifications, function
estimations, density estimations, and intrusion detection systems. Essentially, SVM uses
non-linear mapping to transfer an input data into a higher dimension. Therefore, an efficient
mapping into a sufficient high dimension splits the input data into two main classes. This
strategy can be useful to detect normal and malicious activities. During recent years SVM
has been widely used in intrusion detection research [35, 36, 86, 109, 125, 164, 167]. In the
following, we describe some of these works.

Teng et al. in 2010 [167], proposed a cooperative intrusion detection approach using fuzzy
SVM. The proposed approach consists of three detection agents for TCP, UCP, and ICMP
connections. Figure 2.9 illustrates the proposed framework. First, within the data
preprocessing component, tasks such as filtering, cleaning, integrating, preprocessing data,
attribute selection, and data conversion are accomplished. Then, the preprocessed data are
transferred into its corresponding detection agent based on its protocol. In SVM all the
input data should be in a same dimension. Therefore, all the input data are converted to a
unified format. Next, the detection component analyzes the received data, and classifies it
into intrusion or normal classes. Finally, the response unit produces appropriate responses
based on the detected intrusions. The authors believe that classifying the network traffic
based on network protocols improves the detection speed and efficiency. However, the main
shortcoming of this work is that it cannot detect multi-step and distributed attacks because

26

it does not take to account alert interrelationships. Moreover, it only classify events based
on some limited features depending on behaviour of observed traffic.

Figure 2.9 The architecture of the proposed IDS based on multi-FSVM [167]

Chen et al. in 2010 [36], proposed an intrusion detection approach using Rough Set Theory
(RST) and Support Vector Machine (SVM). RST [32, 135] is one of the popular data mining
techniques that reduces feature sets into an optimal subset. In the proposed approach, first,
RST is used to preprocess the data and reduce its dimensionality. Then, the features selected
by RST are transferred into the SVM module for both training and testing purposes. The
SVM module splits the input data into two main classes: intrusion and normal. The authors
believe that the RST-SVM achieves higher accuracy compared to the full feature or entropy
methods. However, they have evaluated the proposed approach only against the MIT DARPA
1998 data set that only covers some basic attacks and not recently emerged complex attacks.

2.1.8 Hidden Markov Models

Hidden Markov Models (HMM) are probabilistic finite state machines to model stochastic
sequences [67]. They are doubly stochastic processes consisting of an underlying Markov
process that is not observable, and an observable process determined by the underlying
Markov process [33]. In recent years, HMM has been applied to a variety of applications
such as signal processing, pattern recognition, speech recognition, time series analysis, as
well as intrusion detection systems [33, 37, 67, 82, 88, 98, 195]. In the following we review

27

some of the recently proposed intrusion detection approaches based on HMM.

Flores et al. in 2010 [67] proposed an anomaly-based intrusion detection model based on
Hidden Markov Models (HMM). In this work, a genetic algorithm is employed to train the
HMM. The number of states, connections and weights, and probability matrix of states
distributions are specified by the GA. First, the IDS takes a time series as input data, and
trains the HMM without any human interference. Then, the trained HMM model is used
for anomaly detection purposes. After evolution of HMM using the GA, it can be used to
determine which observation sequences are anomalous. It is worth pointing out that HMM
focuses on statistic-based anomaly detection. First, the statistic-based normal profile is
constructed. Then, it can be used to determine anomalous behaviors. In their experiments,
the authors compared their method with the Baum-Welch algorithm [141]. The performance
of this work mostly depends to the comprehensiveness of the training data. If the training
data does not cover enough attack types, the system will produce a huge rate of false positives.

Zeng et al. in 2009 [195], proposed a host-based anomaly detection approach using HMM. In
this paper, to overcome one of the common shortcomings of HMM, such as excessive training
complexity, the authors combine Rough Set Reduction and HMM. Their method has two
phases. First, In the training phase the system call data is transformed to HMM observation
sequences. Then, based on the observations, the HMM is evolved. In the testing phase,
based on the observed system calls, the HMM is used to calculate the probability of whether
it is anomalous or not. In this paper in order to train HMM, the Baum-Welch algorithm
is used, and to evaluate the system, the Forward-Backward algorithm is used. Figure 2.10
illustrates the detection model based on HMM and rough set reduction. According to their
experiments, the authors believe that their proposed approach in practice is more efficient
than others, and it improves the detection rate and reduces the false alarm rate constantly.
However, it does not consider the semantic information of the alerts to detect multi-step and
distributed attacks. Limitation to a specific feature set is another shortcoming of this work.

Ariu et al. in 2011 [16], proposed an HMM-based IDS, called HMMPayl, which analyzes
HTTP payloads at the byte level to detect malicious events. As figure 2.11 illustrates,
HMMPayl analyzes HTTP payloads in three steps:

1. The proposed feature extraction algorithm allows the HMM to produce an effective
statistical model being sensitive to the details of attacks.

2. In order to have robust detection system, a comprehensive training data set is prepared.

3. Multiple classifiers are employed to improve both efficiency and the difficulty of evading
the IDS.

The authors have tested HMMPayl on several data sets of legitimate traffic and attacks

28

Figure 2.10 Zeng’s Detection Model Based on HMM and Rough Set Reduction [195]

including generic attacks, Shell-code attacks, CLET attacks and XSS-SQL attacks. Based on
their experiments, they believe that compared to other proposed works, HMMPayl provides
more efficient and accurate detection results. However, this work is limited to only the HTTP
traffic, and it does not cover other traffic types.

Figure 2.11 HMMPayl architecture [16]

2.2 Alert and Event Correlation

Generally, the concept of correlation is considered as two distinct process (Figure 2.12):
Event Correlation and Alert Correlation. First, we differentiate alert and event correlation
processes. Alert correlation is the process of gathering alerts from a number of IDSs
(misuse-based or anomaly-based) and generating a high-level description of the happening

29

Figure 2.12 The subcategories of the correlation process

malicious behaviours. On the other hand, event correlation relates not only to IDSs, but
also other event generators such as firewalls, routers, operating systems, antiviruses, web
servers, etc. we believe that to detect recently emerged super complex and multi-step
attacks, a well-defined event correlation approach can be more efficient than alert correlation
approaches. Essentially, alert and event correlations are accomplished in multi-step processes,
and they have a number of potential advantages, such as decreasing false positive rate and
increasing detection accuracy. During recent years, researchers have proposed several alert
and event correlation approaches [43, 48, 61, 123, 145, 177, 192]. In the following we describe
some of these works.

Figure 2.13 Valeur et al. alert correlation framework [177]

Valeur et al. in [177], proposed a correlation workflow having 10 steps including normalization,
pre-processing, alert fusion, alert verification, thread reconstruction, attack session
reconstruction, focus recognition, multi-step correlation, impact analysis and prioritization.
As Figure 2.13 illustrates, this is perhaps the most comprehensive approach because other
works concentrate on only a particular aspect or limited aspects of the correlation process,
such as alert fusion or attack thread reconstruction. Based on their experiments, the authors
believe that the effectiveness of each component is dependent on the data sets being analyzed;
attack properties, network topology, available meta-data, etc. can influence the efficiency of
the correlation process. They applied their model to seven different data sets, and inspected

30

the results. They believe that the proposed approach significantly reduces the number of
false alerts. However, the main limitation of this work is that the authors only rely on
alerts produced via intrusion detection sensors, but, not the other logging resources such as
operating systems, databases, anti viruses, firewalls, etc. We believe that using such resources
has direct impact on the efficiency of a correlation process. Moreover this work only employs
a limited part of context information (i.e. target configuration). Whereas, using other types
of context information can significantly improve the final performance.

Yusof et al. in 2008 [192], analyzed alert correlation techniques and listed their advantages
and disadvantages in terms of being prone to alert flooding, contextual problem, false alerts,
and scalability. In this paper, from the domain perspective, heterogeneous log resources
have been categorized into network, wireless, host, application and sensor logs. Figure 2.14
illustrates this classification. Additionally, the authors in this paper categorize alert correlation
techniques into four main categories (Figure 2.14):

Figure 2.14 Yusof’s Domain Perspective of Heterogeneous Log Resources [192]

— Similarity-based techniques: these techniques compare an alert with all the existing
alert threads having similar attributes. Where a match is found, the alert is correlated
with the existing thread. Otherwise, a new alert thread is created.

— Pre-defined attack scenarios techniques: these techniques believe that every
attack requires a sequence of steps to happen in order to succeed. In this technique,
every low-level alert is compared with the steps of a number of pre-defined attack

31

scenarios in order to correlate with the best fit. The main shortcoming of this
technique is its restriction to known attack scenarios. Consequently, this technique is
not necessarily able to detect zero-day attacks.

— Pre-requisite and consequences of individual attack techniques: these
techniques are based on the fact that every attack has some pre-requisites that are
absolutely necessary for the attack to proceed. Moreover, in these techniques, attack
consequences are those events that take place after the attack succeeds. Unlike the
previous techniques, these techniques are not restricted to known attack scenarios,
and it is an appropriate technique to detect zero-day and multi-step attacks.

— Statistical causal analysis techniques: these techniques are based on the
anomaly-based intrusion detection approaches. They employ statistical causality
analysis to correlate alerts that are related to some specific attacks in order to
reconstruct attack scenarios. As these techniques are based on pure statistical analysis,
having pre-defined knowledge about attack scenarios is not required.

Morin et al. in 2002 [123], proposed M2D2 which is a data model for IDS alert correlation.
M2D2 performs its analysis based on four information resources: the characteristics of the
monitored information system, the vulnerabilities, the security tools used for the monitoring,
and observed events. It integrates these concepts into a unified framework for more analysis.
In this work, they formally define the M2D2 date model that ensures that processing of
security information and more specifically alert correlation is anchored on a comprehensive
model representing the information being processed. However, the main drawback of this
work is the lack of evaluation based on reference data sets. Moreover, the described examples
targets limited aspects of a comprehensive alert correlation process.

2.3 Alert Fusion

Employing distributed IDS in order to exploit their unique detection capabilities enhances
organizations overall detection efficiency. However, efficient alert correlation and fusion
(aggregation) approaches are required to manage the large number of alerts produced by
distributed IDS. Alert fusion is a special case (sometimes a sub-process) of alert correlation
that collects and analyzes alerts independently generated from the same potentially malicious
event by different IDS, in order to make an appropriate final decision about the event [77].

Alert fusion improves detection accuracy, fault-tolerance, stability, and reliability of IDS and
helps make appropriate decisions. During recent years, sensor fusion has been widely used in
many types of applications such as defence, geological industry, speech recognition, pattern
recognition, as well as intrusion detection systems. In intrusion detection systems, to cover

32

the limitations of using only one detection method, alert fusion-based methods have been
widely used to obtain more accurate and reliable decisions [72, 73, 77, 154, 168, 191, 197].
Essentially, a fusion system includes two major phases [197]: selection of base detection
sensors, and specifying the fusion mechanism. Most of the alert fusion approaches that have
been proposed to date are mainly categorized into two categories:

— Winner-take-all approaches. The final decision over the received alerts from
various IDS is made based on the decision of the IDS that has the highest measurement
value. Some of the alert fusion approaches of this category include majority vote,
weighted majority vote, behavior knowledge space, naive-Bayes combination, and
Dempster-Shafer combination

— Weight-based approaches. Different weights are assigned to each IDS as its
importance indicator on the final decision. The final decision is made based on the
weighted sum of the measurement values of all the IDS. Some of the alert fusion
approaches of this category include neural networks and weighted average.

Figure 2.15 The Hierarchical Architecture of Zhao’s Proposed System [197]

Zhao et al. in 2009 [197], proposed a robust and scalable intrusion detection system based on
Data Fusion Theory. In the approach proposed, multiple detection measures were fused in a
system such that its final false positive and false negative rate were dramatically decreased.
The whole detection system has three layers: a basic detection layer, an information layer,
and a knowledge layer. Figure 2.15 depicts the hierarchical architecture of the system. In the
basic detection layer, various IDS agents having different detection approaches (misuse-based,
anomaly-based and application based) have been arranged. In this layer, all the detection
data are transferred into the data fuse module in the upper layer. Therefore, each detection

33

agent has a partial impact on the final decision. The calibration layer integrates the generated
outputs from the basic detection agents. As, in the basic layer, a variety of detection
methods having different output formats are employed, the calibration layer converts them to
a unified format analyzable by the upper layers. Next, in the information layer, a reasonable
and effective decision about the received alerts from various agents is made. Finally, the
knowledge layer inspects the information layer’s output and refines the output as appropriate
as possible in order to decrease false alarms. In this layer, based on the revived decisions, a
more specific and comprehensive perception about system’s security state is acquired. Neural
nets and Dempster–Shafer (DS) theory are two popular fusion methods. However, both have
scalability and efficiency problem. The authors based their experiments on the KDDCup99
data set. They believe that the final detection rate of their proposed approach is higher than
or close to the best detection rate of the basic detectors. It means that this approach has
lower false negative and false positive rate as well as better scalability. However, there are
some drawbacks in their proposed approach. First of all, relying on only fusion techniques
is not enough to obtain acceptable detection results; we believe that these techniques should
be combined with correlation techniques to result efficient detection result. Furthermore,
KDDCup99 data set does not include most of the recent complex attack scenarios.

Thomas et al. in 2009 [168], proposed a Data-dependent Decision (DD) fusion method for
multi-sensor intrusion detection systems. This work is an improvement of their previous DD
fusion approach [169]. In this paper, they improve the efficiency of IDS by fusing alerts from
multiple sensors. The Chebyshev inequality is employed to specify the fusion threshold. Each
IDS should be parameterized with a threshold which has a direct impact on its performance.
If the threshold becomes very large, some potentially attacks will not be detected. On the
other hand, small threshold values result more false alarms. These thresholds should be
defined optimally to obtain an appropriate system-wide performance. Therefore, for each
sensor considering its decision importance, a particular threshold is considered. Figure 2.16
illustrates the architecture of a DD fusion. This architecture has three main phases: first,
the sensors generate their alerts, then, the Neural Network Learner specifies a weight for
each alert indicating on its importance, finally, the fusion unit performs fusion aggregation.
The neural network in this data-dependent architecture is a supervised learning system
that performs preprocessing tasks for the fusion unit. When an alert is correctly classified
via detection sensors, the neural network will gain some knowledge, and consequently, it
will be stabilized gradually. The authors have evaluated their method both theoretically
and experimentally. For the experimental evaluation, they have used the DARPA 99 data
set. Based on the authors claim, their experimental results validate the correctness of their
theoretical analysis. However, as each detection sensor detects some particular attacks with

34

an acceptable correctness, one interesting suggestion is defining the thresholds dynamically
based on the contextual information.

Figure 2.16 Data-dependent decision fusion architecture [168]

2.4 Context-Aware Intrusion Detection and Alert Correlation Systems

The term “Context” based on Dey’s definition is “Any information that can be used to
characterize the situation of an entity. An entity is a person, place, or object that is
considered relevant to the interaction between a user and an application, including the user
and application themselves” [10]. One of the main characteristics of context-aware systems
is their ability to adapt to underlying context without any explicit human interference. The
Pervasive (ubiquitous) computing is one of the areas where contextual information has a
principle role because the entities (users, objects, etc) have higher dynamicity [22]. In
computer security and more specifically in malware detection, context can play a significant
role in improving system efficiency. Since each attack requires particular context (network
topology, protocols, system configuration, application configuration, etc) to proceed, using
contextual information has undoubtedly a considerable role. More specifically, using contextual
information can considerably reduce the false positives and non relevant alert rates. According
to [70], contextual information can be categorized into four main classes:

— Network-related context: network related context includes information such as
network topology, communication protocol, traffic rate, etc.

— Target configuration: target configuration typically includes information related
to the operating system and applications running on the target system. Using these
information and some vulnerability databases, it is possible to figure out whether an
attack succeed or not.

— Vulnerability assessment: vulnerability assessment usually relies on tools that scan
target system vulnerabilities to inspect whether the target is safe against security flaws
used by an attack.

35

— Attack side effects: attack side effects are determined by inspecting target system
behaviors to figure out whether an attack was successful. One solution is using IDS
like Snort or Bro to analyze target reactions to some of the predefined attacks.

Contextual information has proved useful in better identifying specific alerts or in improving
IDS efficiency. Gagnon, Massicotte and Esfandiari [70] have studied the use of target
configuration as context information in order to identify non-critical alerts. In this paper they
use target configuration (i.e., operating system and applications) as the context information.
According to this paper, those alerts that are not related to a successful attack are called
non-critical alerts. These alerts pose two types of problems: system administrators should
spend a long time to investigate them, and they disrupt the normal activities of the underlying
network. In order to have a fully automated evaluation process, the proposed approach relies
on three information sources: 1) a well-documented attack data set, 2) alarms generated by
Snort, 3) a vulnerability database. Figure 2.17 illustrates how this information is used during
the evaluation process. First, complete configuration of the target machine is obtained based
on the Snort alarms and data set information. Then, a list of products which are vulnerable
to the underlying attacks are determined based on the Snort’s references to Security Focus
[3]. Next, criticality or non criticality of the alerts are investigated based on the evaluation
algorithm. Finally, the outcome of the algorithm is verified using the data set documentation.
According to their experiments, the authors believe that target configuration has valuable
impact on the detection accuracy of IDS. Additionally, they believe that existing operating
system discovery tools are not efficient enough to extract accurate context information.

Figure 2.17 Gagnon’s automatic evaluation process [70]

36

The Workload-aware Intrusion Detection (WIND) proposal by Sinha, Jahanian, and Patel
[153] combines network workload information with Snort rules to improve its efficiency. To
this end, they have added two distinct components over Snort: 1) a profiler that inspects the
network traffic and the input rules to outcome a packet inspection strategy, 2) an evaluation
engine that pre-processes rules based on the profiler, and evaluates incoming packets to
determine the set of applicable signatures. According to their experiments, they believe that
a workload-aware IDS outperforms Snort IDS by 1.6 times for all rules, and 2.7 times for
web-based rules by consuming 10− 20% less memory.

Massicotte et al. in 2005 [117], analyzed the effectiveness of context information in the
accuracy of Snort detection. To this end, they combined Snort signatures with context
information collected using Nessus scripts [55], and the Bugtrac vulnerabilities database [3].
In this work they use a modified version of the M2D2 network model [123] which provides
a network model for information correlation with network context information. In this
paper, the authors employ Snort as an intrusion detection system, Nessus as a vulnerability
detection system, and Bugtraq and CVE as the popular vulnerabilities databases in their
experiments. These information sources can be used mainly for two purposes: to populate
static information in the network model, and for specifying enhanced detection rules combined
with the network context to reduce false positives. Since Nessus scripts are not in the same
format as Snort rules or Bugtrag vulnerability entries, detection rules and the contextual
information is combined manually. As future work, they intend to design some rule sets to
collect hosts, OS, protocol discovery, service discovery, switch and router discovery, and host
IP configuration information.

Unfortunately, these studies only consider partial contextual information, such as target
configuration or network traffic, and do not allow for inclusion of other types of context
concepts, such as users profiles, organizations profiles, attack side effects, full network
information, etc. Lack of automation is another significant drawback of this work.

2.5 Distributed Intrusion Detection Systems

A Distributed Intrusion Detection System (DIDS) consists of a number of detection sensors
or agents distributed over a large network. In these systems, all the agents communicate
together or with central servers that control accuracy of the intrusion detection process.
Every detection agent in a DIDS might employ a specific detection method to analyze ongoing
traffic that makes it capable to detect a particular attack type. Consequently, the whole
performance and efficiency of the system will be significantly improved. Some of the major
advantages of DIDS are:

37

— Possibility of early detection of complex and coordinated attacks
— Improving the quality of network monitoring and incident analysis
— Having a better control on worms spread

During recent years many DIDS have been proposed by researchers. AAFID (Autonomous
Agents for Intrusion Detection) [160], DIDS (Distributed Intrusion Detection System) [157],
EMERALD (Event Monitoring Enabling Responses to Anomalous Live Disturbances) [138],
and CSM (Cooperating Security Management) [185] are some of the proposed systems.
However, designing a fully distributed DIDS without having shortcomings like single point
of failure or generating many false alerts is still one of the main challenges of DIDS research.
In the following we describe some of the recent works.

Zhang et al. in 2011 [196], proposed a hierarchical and distributed intrusion detection system
for smart grids called the Smart Grid Distributed Intrusion Detection System (SGDIDS).
SGDIDS using its Analysis Module (AM) that employs some classification techniques such
as Support Vector Machines (SVM) and Artificial Immune System (AIS) to inspect network
traffic to efficiently classify malicious events. A three-layer network architecture, shown
in Figure 2.18, including Home Area Network (HAN), Neighborhood Area Network (NAN),
and Wide Area Network (WAN) is considered for SGDIDS. In order to evaluate the proposed
work, they have applied the SVM and AIS techniques located in every layer of the network
architecture to the KDD Cup 1999 data set. The authors believe that the achieved results
show that the proposed approach can considerably improve detection effectiveness. However,
the proposed work does not consider the underlying contextual information in the intrusion
detection process. Poor evaluation based on an old data set that does not cover recent attacks
is another main drawback of this work.

Lo et al. in 2010 [113], proposed a cooperative intrusion detection system framework to
mitigate the impact of DoS and DDoS attack in cloud environments. In the proposed
framework, for every region in the cloud environment, an IDS is considered. These IDS
cooperate together via exchanging alerts to prevent or mitigate the impact of DDoS attacks.
Figure 2.19 illustrates the proposed cooperative IDS framework. The system has four main
components including: intrusion detection, alert clustering and threshold computation and
comparison, intrusion response and blocking, and cooperative operation. Additionally, every
IDS has three modules:

— Block: drops bad packets received from source node
— Communication: sends warning messages about the detected attack by the IDS
— Cooperation: gathers alerts and analyzes the accuracy by majority voting

38

Figure 2.18 Zhang’s proposed three-layer network architecture for SGDIDS [196]

The authors believe that one of the main advantages of their proposed framework is addressing
the single point of failure problem. Furthermore, the proposed framework provides the
intrusion prevention capability. However, this work is limited to only DoS and DDoS attacks.
Moreover, this work has a potential to produce a large amount of false positives because it
does not use contextual information to find out what kind of tools and vulnerabilities exist
in the underlying context.

Abraham et al. in 2007 [11], proposed a Distributed Soft Computing-based IDS (D-SCIDS)
that combines different machine learning classifiers to produce more efficient
intrusion detection system. As mentioned in this paper, one of the most popular models
for a distributed IDS is the master-slave model that is very efficient for small networks.
This hierarchical model is also one of the prevalent models especially for wide networks.
In this model, analysis and control tasks are performed at different layers because of their
geographical distance. In such models, as Figure 2.20 illustrates, the alerts generated by
different detection sensors are passed to analyzer/controller nodes. Analyzer/controller
nodes may exist in different locations within the network. Agents residing in the individual
analyzer/controllers include components responsible for the agent regeneration, dispatch,
updating, and maintaining intrusion signatures, etc. In such models, Central Analyzer
and Controller (CAC) is the key component of the whole model. It usually includes some
databases and web servers which provide possibility of communication with system administrators
and other components. Some other tasks of CAC are: attack aggregation, building statistics,

39

Figure 2.19 Cooperative IDS proposed by Lo [113]

identifying attack patterns, and performing rudimentary incident analysis. The authors in
their experiments mention the importance of feature selection in order to model lightweight
intrusion detection systems. In the base classifiers, they use soft computing approaches such
as fuzzy logic and genetic algorithms. They also believe that their approach is useful for
lightweight networks such as MANETs and Sensor Wireless Networks (SWN). However, the
effectiveness of this work mainly depends on the selected feature set. If in the first level,
an inappropriate feature set is employed, the final performance will be significantly reduced.
Lack of automation is another shortcoming of this work that needs direct interaction with
system administrators.

2.6 Host-Based Intrusion Detection Systems

In Host-based Intrusion Detection Systems (HIDS), events happening within an individual
computer system are analyzed to determine malicious behaviors. Unlike NIDS, HIDS are
able to watch the outcome of an attempted attack because it can directly monitor the data
files and system processes which are target of the attack. HIDS usually use information of
two sources: 1) operating system audit trails (system calls), and 2) system logs. As OS
audit trails are usually generated in the kernel level, they are more detailed and reliable than

40

Figure 2.20 Abraham’s hierarchical architecture with free communication between layers [11]

system logs. Figure 2.21 illustrates the general architecture of an anomaly-based HIDS [149].
As the figure shows, first the normal system call sequences are prepared. Then, based on
the normal sequences, any deviation is considered as a malicious behaviour. In this process,
the accuracy and comprehensiveness of the first step has direct impact on the efficiency of
the whole process. In the following we describe some of the recently presented host-based
intrusion detection approaches.

Figure 2.21 General architecture of an anomaly-based HIDS [149]

Sekeh et al. in 2009 [149], proposed an anomaly-based HIDS that uses the system call traces
in order to detect malicious behavior. In the proposed approach, data mining and fuzzy
logic techniques are employed to extract normal behavior, and promote the intelligence of

41

the system. Usually, in a HIDS operating system events are monitored for further analysis.
During the normal operation of the underlying system, the proposed approach collects system
call sequences to build a normal behavior data set. Based on this data set, normal profiles
are prepared so that the system can efficiently analyze new system call sequences, and detect
abnormal events. Figure 2.22 illustrates the proposed anomaly-based HIDS that has the
following steps:

1. Normal system call sequences are collected as a training data set (UNM 1 data set [5]
has been used for this purpose).

2. Using data mining approaches, detection rules are extracted from the data set.

3. The extracted rules are inserted into a Finite State Machine (FSM).

4. Using the strace command, system call sequences are collected as a testing data set.
This data set is the input of the anomaly detector component.

5. New system call sequences are compared with FSM normal rules, and using the fuzzy
logic inference engine, abnormal behavior is detected.

The authors believe that their proposed model has some advantages, such as real-time
intrusion detection, low false positive rate, higher visibility, higher information assurance,
and independence from the operating system. However, the total efficiency of this work
depends on the accuracy rate of its first phase. Otherwise, it may generate a huge amount
of false positives. Lack of automation is another shortcoming of this work.

Chung-Ming Ou [132] proposed in 2012 an HIDS based on Agent-Based Artificial Immune
Systems (ABAIS), called ABIDS. In this work, a Multi-Agent System (MAS) consisting of
antigen agents, DC agents, T-Cell agents and responding agents that have been designed.
Instead of packet analysis that is very time consuming, ABAIS directly uses system call
sequences to detect malicious events. Figure 2.23 illustrates the ABIDS architecture. As the
figure shows, ABIDS’s agents are:

— Antigen agents (Ag agent): they represent data items from some data sets.
— Dendritic cell agents (DC agent): they are the kernel of the ABAIS that are installed

and distributed at computer hosts.
— T-cell agents (TC agent): they are installed in each computer system, and they are

activated by the signals received from DC agents when the Danger Values (DV) exceed
some thresholds.

— Responding agents (RP agent): they generate appropriate responses to the detected
malicious events.

1. University of New Mexico

42

Figure 2.22 Sekeh’s proposed model for intrusion detection [149]

In this work, the author believes that evaluation of three factors from systems calls including
severity, certainty, and attacking time can significantly improve detection efficiency. However,
if the thresholds are not defined accurately in this work, there is a potential to generate a
significantly high false positive rate.

2.7 Intrusion Detection Evaluation Metrics

Every network-based IDS classifies each network event as normal or malicious. In order to
select an IDS for a specific application, it must be compared with other existing candidates
to choose the most appropriate one. For this purpose, we use evaluation metrics to compare
IDS performance and effectiveness. During recent years, a number of IDS evaluation metrics,
such as Bayesian detection rate, the expected cost, intrusion detection capability, etc. have
been proposed. In the following we describe some of the mostly used metrics summarized in
[84].

— Receiver Operating Characteristic (ROC) Curves. ROC curves plot the true
positive rate versus the false positive rate [30]. They can be used to compare detection
results of different IDSs. Figure 2.24 illustrates an example of how a ROC curve can be
used to compare results of four different example analyses. One important limitation

43

Figure 2.23 ABIDS architecture [132]

of this metric is that it calculates the overall performance of an IDS at all baselines.
However, an IDS should be developed based on a best baseline.

— Cost-Based Metrics. In cost-based metrics based on the importance of the false
positive rate and false negative rate, a cost measure is assigned to each one. It
means that this metric considers the trade-off between the false positive rate and
false negative rate. This cost measure can be individually adjusted to differentiate
between the damage caused by a successful intrusion or the costs corresponding to a
false alarm.

— Information-Theoretical Metrics. Intrusion Detection Capability (CID) is a metric
based on the following observation [76]: an IDS at the abstract level classifies the
network traffic X as normal or malicious. Therefore, from information theoretic
point of view, less uncertainty should exist about X considering an IDS output Y.
CID is the proportion of the mutual information between the IDS input and output,
I(X, Y), to the entropy of X, H(X):

44

Figure 2.24 Comparing the efficiency of four different example analyses using ROC curve

CID = I(X, Y)
H(X) (2.1)

— Binary classification: Each IDS classifies the network traffic into two main classes:
normal or malicious. The most common metrics to compare IDS are False Positive
(FP) rate and False Negative (FN) rate. FP rate is the probability of producing an
alert even though the behavior of the system is normal (in such cases IDS detection is
incorrect). In the other hand, FN rate is the probability of producing no alert even
though the behavior of system is malicious. Equations 2.2 and 2.3 represent FP and
FN rates:

FP = number of false positives

number of negatives
(2.2)

FN = number of false negatives

number of positives
(2.3)

Consequently, True Positive (TP) and True Negative (TN) rates can be defined:
TP = 1− FN and TN = 1− FP .
Essentially, there is a trade-off between false positives rate and false negative rate.

45

If the IDS detection policies become very sensitive, the risk of FP rate will be
higher. Otherwise, the risk of FN rate will be higher. Therefore, a balance should be
considered between these two risks in IDS configuration. Equation 2.4 represents IDS
sensitivity that is defined as the proportion of normal behaviour:

Sensitivity = number of true positives

number of true positives + number of false negatives
(2.4)

However, sensitivity is not meaningful enough because it can be trivially achieved by
classifying all behaviours as malicious. There is another metric called specifity that
solves this problem. Equation 2.5 represents this metric:

Specificity = number of true negatives

number of true negatives + number of false positives
(2.5)

However, by classifying all the traffic as normal, specifity is completely achieved.
F −measure is a metric that combines specifity and sensitivity:

F −measure = 2× sensitivity× specificity
sensitivity + specificity (2.6)

Positive Predictive Value (PPV or Bayesian Detection Rate) is another metric that
indicates the probability of an intrusion when an IDS reports an alert:

PPV = number of true positives

number of true positivies + number of false positives
(2.7)

Negative Predictive Value (NPV) is the probability of a normal event when an IDS
does not report an alert:

NPV = number of true negatives

number of true negatives + number of false negatives
(2.8)

Unlike specificity, PPV outcomes the proportion of normal behaviours to the whole
observation set. Essentially, the main difference between them is that specificity and
sensitivity are independent from the total observation set. However, PPV and NPV

are dependent on the total observation set. PPV is called Bayesian detection rate
[19] and can be expressed via Bayes theorem:

46

PPV = P (actual intrusion|IDS alert) (2.9)

In order to measure IDS efficiency based on these metrics, a common method is to employ
some standardized data sets and apply the IDS to them. An example of such data sets is the
DARPA 1998 [112]. We describe some of the most popular data sets in the next section.

2.8 Data Sets to Evaluate Intrusion Detection and Alert Correlation System

During the last two decades, one of the major challenges of many researchers was the
evaluation of intrusion detection and alert correlation systems. Since there was no standard
and comprehensive test framework consisting most of the attack and exploitation strategies,
a common method to evaluate the efficiency of these systems is employing popular test data
sets. In the following we describe some of these data sets:

— DARPA 98 [112]. This was the first IDS evaluation data set sponsored by DARPA
in 1998. This evaluation had two parts, off-line and real-time, that was conducted
by MIT Lincoln Lab and Air Force Rome Lab. A simulated network was used to
generate the network traffic. This data set includes real network traffic along with
some artificial background and attack traffic. The major services to generate the
traffic includes HTTP, FTP, SMTP, POP, DNS, X, IRC, SWL/Telnet, SNMP, Time
and Finger. The data set includes around 38 attack types falling into four main
categories:
— Denial of service (DOS)
— Remote to user (R2L)
— User to root (U2R)
— Surveillance / Probing

— DARPA 99 [111]: After the initial success of their first data set, the DARPA 99 data
set was released to cover more novel attacks than the previous one. Consequently,
Windows NT systems were added to the simulation network, and 17 new attacks
targeting these systems were injected to the network traffic.

— KDD CUP 99 [81]: This data set is one of the most widely used data sets in order
to evaluate network-based anomaly detection systems. It has been created based on
DARPA 98. The KDD training data set includes 4,900,000 labeled (normal or attack)
connections each of which contains contains 41 features, and the test data set contains
about 300,000 connections.

— DARPA 2000 [120]: The DARPA 2000 data set contains two attack scenarios,

47

LLDDOS 1.0 and LLDOS 2.0.2. Both attack scenarios are multi-step corresponding
to a Distributed Denial of Service (DDoS) flooding attack. They have 4 phases:
— Probing
— Exploiting vulnerabilities to break into vulnerable hosts.
— installing DDOS software on the compromised system
— Launching the DDoS attack
The difference between these two scenarios is that the attacks inside LLDDOS 2.0.2
are more complicated and difficult to detect.

— DEFCON 9: DEFCON is another data set that is commonly used in IDS evaluation.
It has been captured during a hacker competition in the Capture The Flag (CTF)
format. Essentially, this traffic is completely different from “real world” network
traffics because it includes only intrusive events without any normal background traffic.
Therefore, it can be very appropriate for stress-testing IDS because it provides a
worst-case scenario of the amount of attack traffic an IDS will receive.

— ISCX data set [151]: This data set was released in 2012 by the Information Security
Centre of Excellence in University of New Brunswick. The major services that
generated the traffic are: HTTP, SMTP, SSH, IMAP, POP3 and FTP. Various
multi-stage attacks scenarios have been carried out to supply the anomalous portion
of this data set:
— Infiltrating the network from the inside
— HTTP denial of service
— Distributed denial of service using an IRC Botnet
— Brute force SSH

2.9 Conclusion

In this chapter we reviewed the intrusion detection and alert correlation approaches proposed
in recent years. Our main focus was on the works that had significant impact on the IDS
and alert correlation advances. We started the chapter with machine learning based intrusion
detection and alert correlation approaches. In that section we explained how machine learning
techniques, such as Support Vector Machines (SVM), Bayesian Networks (BN), Artificial
Neural Networks (ANN), Genetic Algorithms (GA), Hidden Markov Models (HMM), etc.,
have been employed in order to design intrusion detection systems. Next, we explained some
of the valued alert correlation approaches, and how these works have addressed some of the
major problems of IDS. Alert fusion approaches that apply fusion algorithms to the collected
alerts from different sensors, context-aware IDS that use contextual information in order to

48

reduce false positives, Ontology-based or semantic-based IDS that target system automation,
Host-based IDS (HIDS) that analyze events happening in a single system, and Distributed
IDS (DIDS) that analyze events occurred in different part of a network, were some other
topics that we reviewed in this chapter. Finally, in the last two sections, we mentioned some
of the evaluation metrics and data sets that usually are used to compare and evaluate the
efficiency of intrusion detection and alert correlation systems.

Additionally, in this chapter we described the major shortcomings and limitations of prior
works. About machine learning based approaches, we explained that most of them only
classify network events based on some features depending on behaviors observed with one type
of event, and they do not take into account contextual information and events
interrelationships. These works only classify events that happened, and generally they are
not able to detect multi-steps or distributed attacks. In summary: 1) these techniques are not
adaptable and flexible enough to be applied to various contexts, 2) choosing a suitable subset
of features that is significantly critical to improve the performance of classifier, is another
difficulty of these techniques, 3) these techniques do not take into account the semantic
information of the alerts. It is also worth pointing out that most of these works have been
evaluated via very old data sets, such as DARPA 98 or KDD 99. Because these data sets do
not include recent complex attacks, they are not adequate to test and evaluate IDS efficiency.

About the described alert correlation approaches that apply correlation algorithms to the
collected events from one or a number of IDS, we explained that most of these approaches
only concentrate on one or few aspects of a comprehensive alert correlation process (e.g. alert
fusion or attack session reconstruction), and they do not verify the relevancy of collected alerts
based on the underlying context. Moreover, they mainly consider correlation only across
multiple sensors of the same type having a common event and alert semantics (homogenous
correlation), leaving it to security administrators to perform correlation across heterogeneous
types of sensors. As a result, the problem as a whole has not been resolved.

About the described context-aware intrusion and alert correlation approaches, unfortunately,
they only consider partial contextual information, such as target configuration or network
traffic, and do not allow for inclusion of other types of context concepts.

The reviewed distributed IDS mostly rely on homogenous intrusion detection that employs
similar IDS sensors as their detection agents. Lack of automation is another main shortcoming
of these works that prevent the analysis of alert interrelationships to be performed by
machines rather than security administrators.

In summary, previous intrusion detection and alert correlation approaches do not fully take
into account all possible pieces of information, such as contextual, vulnerability and attack

49

information, from various heterogeneous sensors. In addition, they lack the flexibility that
analyst requires to be able to add new types of information (e.g., contextual information)
into their analysis process. While some intrusion detection and alert correlation approaches
have attempted to address this problem by introducing security ontologies, their lack of
extensibility and flexibility constitute important drawbacks. Motivated by the aforementioned
shortcomings, and in order to provide a common solution encompassing the advantages of
all of these approaches, we have designed and proposed henceforth a flexible and extensible
ontology-based event correlation framework to incorporate various information (event logs,
contextual, vulnerabilities, attacks or any other type of relevant information) from
heterogonous sensors, such as NIDS, HIDS, operating systems, anti-viruses, databases, etc., in
the event correlation process in order to improve IDS performance (higher detection rate) and
automation (less human interaction) while reducing the number of duplicate, non-relevant,
and false positive event logs.

50

CHAPTER 3 BASIC KNOWLEDGE ON ONTOLOGIES

The term ontology based on Gruber’s definition is: “An Ontology is a formal, explicit
specification of a shared conceptualization” [75]. According to Sowa’s definition, Ontology is
“the study of categories of things that exist or may exist in some domain. The product of
such study, called an ontology, is a catalogue of types of things that are assumed to exist in a
domain of interest D from the perspective of a person who uses a language L for the purpose
of talking about D” [159]. Ontologies provide description for the following elements:

— Classes or “Things” in various domains
— Relationships among “Things”
— Properties or attributes for “Things”

Ontologies are useful for representing and interrelating many knowledge types. Hence, they
have been employed in various areas of computer science, such as machine learning, computer
security, knowledge representation, semantic web, etc. However, the major question that
everybody asks about the concept of Ontology is on the difference between an ontology and
a database schema. Unlike data models, the main capability of ontologies is their relative
independence of particular applications which means that an ontology provides a relatively
generic knowledge structure usable by different applications [161]. Table 3.1 illustrates a
comparison of the concepts of “ontology” and database schema. Open world assumption,
consistency with heterogeneous data, flexible structure, and deductive reasoning are a number
of the added capabilities of ontologies in comparison to database schemas.

In order to design and develop ontologies, a number of languages have been proposed in recent
years. The most popular ontology representation languages are RDF, RDF Schema, and
OWL. These languages have received considerable attention since the emergence of Semantic
Web. To make ontologies understandable for both machine and human, the ontology language
should have precisely defined semantics accessible by automated processing. For this purpose,
Description Logic (DL) can be an ideal choice, because it has formal logic-based semantics
and it is equipped with inference procedures with the goal of implementing automated
reasoning systems. This view of the potential place of DL in the semantic web resulted in
the emergence of a number of languages that brought DL concepts to the semantic web. The
World Wide Web Consortium (W3C) recommended the Web Ontology Language (OWL)
for the semantic web, which exploits many of the strengths of DL including well defined
semantics and practical reasoning techniques. The basic elements in OWL-DL are: class,
property, restriction, individual.

— Class: classes provide an abstraction mechanism for grouping resources with similar

51

Table 3.1 Comparison of the concept of “ontology” vs. database schema

Ontology Database Schema
Class hierarchy and

instances Yes Just Object oriented
databases

Constraints Intended meaning Data integrity
Execution Executable Non-executable
Assumption Open-world Close-world

Reasoning & inference Yes NO
Extendibility High Low

Consistency with
heterogeneous data High Low

characteristics.
— Property: OWL has two types of properties: i) object properties which are relations

between instances of two classes, ii) datatype properties which are relations between
instances of classes and RDF literals or XML schema datatypes.

— Property restriction: property restriction describes an anonymous class, namely a class
of all individuals that satisfy the restriction. OWL provides two types of property
restrictions: value constraints and cardinality constraints.

— Individual: An individual corresponds to an instance of a class.
Although OWL provides a relatively rich set of class constructors, it provides much weaker
constructors for roles. A solution to address this limitation would be to extend it with rules.
Semantic Web Rule Language (SWRL) [87] is a rule language combining the OWL and the
Rule Markup Language. Using SWRL we can design various rules to extract information
from ontologies. Drilling-down into very detailed and specific classes, and rolling-up toward
very generic classes of the ontologies are two common and most useful operators that SWRL
provides to extract required information from various ontologies. In the next chapters of this
thesis, we use SWRL in order to extract and correlate information of various security-related
ontologies, and reconstruct attack scenarios.

The rest of this chapter is organized as follows. In section 3.1, we provide an introduction to
OWLWeb Ontology Language. In section 3.2, we briefly introduce Semantic Query-enhanced
Web Rule Language (SQWRL), which is one of the popular ontology query languages. In
section 3.2, we describe the role of ontology in computer security research. Section 3.3 reviews
ontology- or semantic-based intrusion detection and alert correlation approaches.

52

3.1 Introduction to OWL Web Ontology Language

OWL is an unified standard language for encoding and exchanging ontologies. It particularly
extends the Resource Description Framework (RDF) and RDF Schema. Therefore, OWL
is processable by most of the available XML and RDF tools. From a semantic perspective,
OWL is based on Description Logic (DL) [20] which is a decidable subfamily of first-order
predicate logic.

OWL describes classes, properties, and relations in a machine interpretable way. OWL 1 has
three increasingly expressive sublanguages:

— OWL Lite provides class and property hierarchy, and simple constraints with enough
expressive power to model simple ontologies.

— OWL DL increases expressiveness while retaining decidability. It provides all OWL
constructs, under certain limitations.

— OWL Full is the complete language without any limitation, but it ignores decidability
issues.

OWL Full is considered as an extension of RDF, whereas OWL Lite and OWL DL are
considered as extension of restricted version of RDF. OWL DL and OWL Lite have less
power but reduce the computing requests on a processor.

3.1.1 Description of the OWL Language

OWL uses RDF XML-based syntax. The root element of an OWL ontology is rdf:RDF
element which specifies a number of namespaces. Namespaces provide a means to
unambiguously interpret identifiers and make the rest of the ontology presentation much
more readable. For example, in the following, the first namespace says that elements prefixed
with owl: should be understood as referring to things defined in the namespace called
http://www.w3.org/2002/07/owl#.

<rdf:RDF

xmlns:owl ="http://www.w3.org/2002/07/owl#"

xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:xsd ="http://www.w3.org/2001/XMLSchema#">

(3.1)

In OWL, a class is defined using an owl:Class element. As an example:

53

<owl:Class rdf:ID="associateProfessor">

</owl:Class> (3.2)

There are two predefined classes: owl : Thing which is the most general class and contains
everything, and owl : Nothing which is the empty class.

OWL has two types of properties:
— Object properties: these properties relate objects to objects. For example

isTaughtBy and supervises:

<owl:ObjectProperty rdf:ID="isTaughtBy">

</owl:ObjectProperty> (3.3)

— Data type properties: these properties relate objects to RDF literals or XML
schema data types. For example, in the following we define a data type property age
that takes only non-negative values:

<owl:DatatypeProperty rdf:ID="age">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema

#nonNegativeInteger"/>

</owl:DatatypeProperty>

(3.4)

OWL provides class restriction capability. rdfs : subClassOf a class to be subclass of
another class; every instance of the first class is also an instance of the second class. owl :
allV aluesFrom is used to specify the possible values that a property can take. owl :
hasV alue states a specific value that a property must have. owl : someV alueFrom states
that there exists some values that a property can take from a specific class.

Some special properties of property elements are:
— owl:TransitiveProperty defines a transitive property.
— owl:SymmetricProperty defines a symmetric property.
— owl:FunctionalProperty defines a property that has at most one value.
— owl:InverseFunctionalProperty defines a property for which two different elements

objects cannot have a same value.
OWL provides boolean combinations of classes, such as union owl:unionOf, intersection

54

owl:intersectionOf, and complement owl:complementOf.

In OWL instances of classes are defined as in RDF:

<rdf:Description rdf:ID="949352">

<rdf:type rdf:resource="#academicStaffMember"/>

</rdf:Description>
(3.5)

In logics with the unique name assumption, different names always refer to different entities
in the world. Unlike database systems, OWL does not respect unique-names-assumption.

3.2 Semantic Query-enhanced Web Rule Language (SQWRL)

In order to extract information from OWL ontologies, a concise, readable, and semantically
robust query language is required. SPARQL is one of the current languages that is employed
for querying OWL-based ontologies. However, SPARQL only operates on the RDF
serialization of OWL and has no native understanding of OWL.

The Semantic Query-enhanced Web Rule Language (SQWRL) [131] is one of the popular
RDF query languages that provides the mentioned characteristics. It is built on the SWRL
rule language [87]. SQWRL employs built-in facilities of SWRL as an extension point. Using
these built-ins, and without adding any syntactic extensions, a set of operators has been
defined in SQWRL to construct retrieval specifications. Therefore, all the SWRL editors can
generate and edit SQWRL queries.

3.2.1 Basic Querying

sqwrl:select is the core operator of SQWRL. This operator takes one or more arguments, and
constructs a table making the arguments as table column. Example:

Person (?p) ∧ hasAge(?p, ?a) ∧ swrlb:lessThan(?a, 9)

−→ sqwrl:select(?p, ?a)
(3.6)

This query returns pairs of individuals with age less than 9.

The results of every query can be ordered using by orderBy and orderByDecending built-ins.
Example:

55

Person (?p) ∧ hasAge(?p, ?a)

−→ sqwrl:select(?p, ?a) ∧ sqwrl:orderBy(?a)
(3.7)

SQWRL supports basic counting using a built-in called sqwrl:count. As an example, the
following query returns the number of people in the underlying ontology:

Person (?p)

−→ sqwrl:count(?p)
(3.8)

And as an example of grouped count, the following query returns people and the number of
cars each one has:

Person (?p) ∧ hasCar(?p, ?c)

−→ sqwrl:select(?p) ∧ sqwrl:count(?c)
(3.9)

Basic aggregation is also supported. This feature is provided by built-ins called min, max,
sum, and avg. As an example, the following query returns the average age of the people in
the ontology:

Person (?p) ∧ hasAge(?p, ?age)

−→ sqwrl:avg(?age)
(3.10)

SQWRL supports the use of OWL class description. The following query retrieves all
individuals that are associated with a restriction on a hasChild property. In this case, the
query returns all the people having more than one child:

hasChild >= 1(?i) −→ sqwrl:select(?i) (3.11)

SQWRL queries can operate in conjunction with SWRL rules to retrieve knowledge inferred
by other rules. Assume that an ontology has the following restriction to classify people as
adult:

Person (?p) ∧ hasAge(?p, ?age) ∧ swrlb:greaterThan(?age, 17)

−→ Adult(?p)
(3.12)

Hence, a query to list adult people in the ontology can be:

56

Adult(?p)

−→ sqwrl:select(?p)
(3.13)

Intermediate inferences provided by SWRL rules make SQWRL able to decompose very
complex queries. Because defining sub-queries is not provided in SQWRL, these intermediate
inferences is an appropriate alternative. These inferences can be used by other queries and
rules.

3.2.2 Set Operators: Closing the World

SQWRL supports some degree of closure in its queries considering OWL‘s open world
assumption. SQWRL using set operators provides such additional requirements. A built-in
called
sqwrl:makeSet is provided to construct a set:

sqwrl:makeSet(<set>, <element>)
(3.14)

The first argument specifies the set and the second one specifies the element to be added to
the set. In SQWRL the set operator is shown with ’◦’ character. An example of a query to
list the number of persons in an ontology can be written:

Person (?p) ◦ sqwrl:makeSet(?s, ?p) ∧ sqwrl:size(?size, ?s)

−→ sqwrl:select(?size)
(3.15)

The set operator provides a closure mechanism. Essentially, to process such queries, two
phases are required: 1) constructing the set, 2) Applying the other rule elements to the
already constructed sets.

Some basic set operators provided in SQWRL are: sqwrl:union, sqwrl:difference,
sqwrl:intersection. For example, a query to list the number of non beta-blocker drugs in
an ontology with a class Drug and its subclass BetaBlocker is as follows:

Drug(?d) ∧ BetaBlocker(?bbd) ◦ sqwrl:makeSet(?s1, ?d)∧

sqwrl:makeset(?s2, ?bbd) ∧ sqwrl:difference(?s3, ?s1, ?s2)∧

sqwrl:size(?n, ?s3) −→ sqwrl:select(?n)

(3.16)

57

This query lists the number of non beta-blocker drugs.

3.2.3 Ontology Traversing Operators: Drill-Down and Roll-Up

In order to navigate among various levels of class hierarchies of an ontology, we introduce
two important operators that SQWRL provides:

— Drill-Down allows navigating among levels of data ranging from the most summarized
to the most detailed concepts. For example, in the Figure 3.1, if our current position is
in the level of class Human, in order to concentrate our analysis into a specific type of
human, by one level drilling-down, we can move to the class Male or the class Female.

— Roll-Up allows navigating among levels of data ranging from the most detailed to the
most summarized concepts. For example, in the Figure 3.1, if we want to generalize
our analysis in order to cover more people, by one level rolling-up toward to the higher
levels of the class hierarchy, we will reach to the considered level.

Figure 3.1 Drilling-down and rolling-up operators

3.3 Ontologies for Security Requirements

As the knowledge of computer security is growing in both science and industry, many security
ontologies have been proposed during recent years. Some of these ontologies include all
computer security aspects and they are considered as general ontologies. On the other
hand, some other ontologies tackle a specific aspect of security, such as risk analysis, event
correlation, attack analysis, etc. Figure 3.2 illustrates 8 families of security ontologies. Here
we describe some of these families.

A taxonomy can be considered as an ontology in the form of hierarchy. However, these types
of ontologies are considerably limited, and they only cover the generalization relationship.
In the computer security domain, we can find many taxonomies representing various fields.
For instance, [18] provides a taxonomy including classes of faults, fault modes, fault tolerance
techniques, and verification approaches. In this taxonomy, the main threats are defined as

58

Figure 3.2 Classification of security ontologies into 8 families [158]

failure, errors, and faults. Landwehr et al. [104] proposed a taxonomy for security flaws.
The taxonomy is based on three basic questions about each observed flaws: genesis, time of
introduction, and location.

General ontologies try to cover all security aspects. For instance, Herzog and colleagues
[80] proposed an OWL-based ontology for security information. The proposed ontology is
based on assets, threats, vulnerabilities, and countermeasures concepts. Fenz and Ekelhart in
[65] have proposed even broader ontology covering a larger part of the information security
domain.

Specific security ontologies describe specific aspects of security, such as intrusion detection,
security vulnerabilities, etc. Undercoffer et al. in 2003 [175], proposed a specific ontology
for computer attacks and intrusions and represented it with an ontology representation
language. In this ontology there is a class called attack described by the Directed to, Effected
by, and Resulting in properties, and the System Component, Input, and Consequences are
corresponding objects. Figure 3.3 illustrates this ontology. Viljanen in 2005 [178], proposed
an ontology modeling security trust. The proposed model is classified as identity-aware,
action-aware, business value aware, capability-aware, competence-aware, confidence-aware,
context-aware, history-aware, and third-party-aware. Geneiatakis and Lambrinoudakis in [71]
proposed an ontology for SIP-VoIP based services. This ontology covers attacks targeting
VoIP service on internet. The ontology which contains two main concepts SIPattack and
SIPmessage can be applied to find both attack countermeasures and testing the security
robustness of SIP-VoIP infrastructure.

59

Figure 3.3 The proposed ontology by [175]

Denker et al. in [52], [53], [54] proposed a number of OWL ontologies for security annotations
of web services. The proposed ontologies have two sub-ontologies including
“security mechanisms” that describes high-level security notations and “credential” describing
on authentication methods. The major goal of these ontologies is to enable high-level markup
of web resources, services, and agents. The NRL security ontology proposed in [99] is based on
7 security ontologies including “Main Security Ontology”, “Credential Ontology”, “Security
Algorithms Ontology”, “Security Assurance Ontology”, “Service Security Ontology”, “Agent
Security Ontology”, and “Information Object Ontology”. Artem Voroiev and Jaun Han in
[180] proposed an attack ontology for web services. The ontology includes most of the popular
web services attacks.

Risk analysis is one of the most important security processes. Ekelhart et al. in 2007 [60],
proposed a security ontology covering risk analysis methodologies. Assali et al. in 2008 [17],
also proposed an ontology for industrial risks analysis.

Some research work have proposed ontologies covering security requirements. Tsoumas et
al. [172] have used Asset, Stakeholder, Vulnerability, Countermeasure and Threat concepts in

60

their proposed ontology. In [97], the authors propose an OWL ontology in order to develop
secure applications. The ontology includes classes, such as “Countermeasures”, “objectives”,
and “threats”. They evaluate the proposed ontologies using nRQL queries. Firesmith in [66]
propose a taxonomy of safety-related requirements including Safety Requreiments,
Safety-Significant Requreiments, Safety constraints, Safety system requirements.

3.4 Previous Work in Ontology-Based Intrusion Detection Systems

Security researchers need to have a seamless mechanism to integrate various information
generated by heterogeneous sources into a common data store that allows them to query the
combined sensor alerts and contextual information. In order to solve this problem, several
researchers have proposed semantic-based alert correlation approaches in order to automate
and improve the flexibility of the correlation process [39, 92, 107, 146, 175, 179, 182].

Ontologies are knowledge representation models that allow the description of concepts, their
attribute and the inheritance and association relationships between these concepts, in a
way very similar to object-oriented modelling frameworks such as the Unified Modelling
Language (UML). This unified yet user-extensible representation of concepts, definitions and
relationships also allows the use of reasoning logic formalisms, that can be used to retrieve
information in a generic and class structure-agnostic fashion. In addition, various types
of ontologies have formal description languages that allow for the definition of complete
reasoning logic that are machine-interpretable and solvable. Hence, they can be suited for
representing concepts and for automated reasoning on domain-specific applications with a
limited number of concepts. For that reason, some researchers have proposed ontology-based
alert correlation approaches in alert correlation. In our case, we will be using these reasoning
logic formalisms to design event correlation algorithms.

Vorobiev et al. [179] proposed security ontologies to improve IDS capabilities for detecting
new generation of attacks such as multi-step distributed attacks and various distributed
denial of service (DDoS) attacks. In their paper, they introduced several ontologies including
Security Attack Ontology (SAO), the Security Defense Ontology (SDO), the Security
Asset-Vulnerability Ontology (SAVO), the Security Algorithm-Standard Ontology (SASO),
and the Security Function Ontology (SFO). The proposed ontologies encompass basic security
concepts including attacks, defenses, functions, vulnerabilities, etc. Here, we briefly describe
SAVO which is the major ontology of the proposed work. This ontology is located at a
higher level than the other proposed ontologies. Figure 3.4 illustrates its general structure.
In this ontology, the term “Asset” consists of all the entries in the underlying environment
that need to be securely protected, such as data (′Data′), software (′Software′), accounts

61

(′Accounts′), and resources (′Resource′). The class ′Asset′ consists of several subclasses
including ′ClientData′, ′SystemData′, ′Component′, ′Service′, ′CPU ′, ′Memory′, ′Storage′,
etc. The term ′Threat′ concerns any unwanted event which is dangerous for system elements.
′ThreatAgent′ concerns any agent using threat to abuse system resources. ′V ulnerability′

consists of any flaw or weakness that could bring the whole system under threat. Finally,
′defense′ represents the security methods protecting the system against threats. The authors
evaluated their proposed ontological approach against Mitnick, a multi-phased distributed
attack [176] that is an instance of man-in-the-middle attacks. However, the proposed ontologies
encompass only general security concepts and there is no detailed description of how these
ontologies can be utilized in different contexts.

Figure 3.4 The Security Asset-Vulnerability Ontology [179]

Coppolino et al. proposed the Intrusion Detection and Diagnosis System (ID2S) using an
ontology-based detection approach that correlates detection information at several
architectural levels for further intrusion symptom analysis [39]. In the proposed approach
Diagnosis means the ability to identify the reasons of the happened attack that took place,
and the ability to estimate consequences of the attack accurately. As currently available tools

62

only suport intrusion detection or prevention, the lack of an Intrusion Diagnosis approach is
significant. To do a diagnosis, attack related information should be collected from several
architectural levels such as networks, operating systems, databases, and applications. These
collected information using a Complex Event Processing (CEP) technology are correlated
and analyzed to result an appropriate and efficient detection. The authors have developed
two types of ontologies: the first one takes attack symptoms and detects which attacks
are related to these symptoms, and the second one estimates potential damages which are
consequence of the attack. Finally, appropriate reactions and responses are issued based on
the output of this process. The authors also emphasize that their proposed approach is able to
detect new types of stealthy attacks [94]. These attacks represent a major threat to not only
the network level, but also the levels of underlying systems. Some of the other advantages
of their work are improving detection performance, providing diagnostic capabilities, and
reducing false alarms. We also believe that providing a diagnosis, because of using detection
information at several architectural levels, can improve the detection efficiency. Moreover,
using ontologies can improve automation of the detection process, and has potential to detect
unknown attacks. The main shortcoming of the proposed work is their evaluation part which
is limited to only limited attacks: SQL Injection and Cross Site Scripting. In addition, the
proposed work does not take into account contextual information that can be very useful in
reducing the false positive rate.

Wang et al. in 2009 [182], proposed an ontology-based approach called Ontology for
Vulnerability Management (OVM) to model security vulnerabilities listed in the NVD [129]
with additional inference rules, data-mining mechanisms, and knowledge representation.
Figure 3.5 illustrates the proposed ontology. The top level concepts of the ontology are:
V ulnerability, IT_Product, Attacker, Attack, Consequence, and Countermeasure. An
existing vulnerability in a
IT_Product may be exploited by an attacker using a related attack. Countermeasures are
employed to protect the IT_Product through mitigating the Vulnerability. The authors
believe that the achieved results provides an appropriate path to make the security automation
successful.

Unfortunately, most of these works only cover only one or limited aspects of information
required within the correlation process. For instance, some of these works do not take into
account the contextual information, or some others are not able to correlate heterogenous
event generators.

63

Figure 3.5 Wang’s proposed ontology for vulnerability management [182]

3.5 Summary

In this chapter, we introduced the concept of ontology, its features and its role in computer
security research. We described that the concept of “Ontology” is a significantly promising
new paradigm in computer security. It represents knowledge in a formal and structured form
providing a better tool for communication, reusability, and organization of the knowledge.
We also provided a brief introduction to OWL which is a popular language to design and
develop ontologies. Next, we introduced the SQWRL which is the de facto standard OWL
query language. We described that drilling-down into very detailed and specific classes to
analyze only a small portion of instances, and rolling-up toward very generic classes of the
ontologies to cover a larger portion of instances, are two common and most useful operators
that both SWRL and SQWRL provide to extract our considered information from various
ontologies. In section 3.3, we described some a classification of ontologies proposed for
security requirements. Finally, in section 3.4, we reviewed recently proposed ontology-based
intrusion detection and alert correlation approaches. We highlighted that the reviewed
ontology-based approaches have not taken full advantage of ontologies expressive power in
terms of data modelling and logic reasoning. They also mostly focus on generic security

64

concepts rather than the detailed steps of a comprehensive alert correlation approach. Lack
of appropriate implementation by mentioning the employed tools and ontology querying
languages, and efficient evaluation are other limitations of most of these approaches.

65

CHAPTER 4 PASARGADAE: A CONTEXT-AWARE AND
ONTOLOGY-BASED EVENT CORRELATION FRAMEWORK

Intrusion detection and alert correlation systems play a key role in the surveillance and
monitoring of computer network infrastructures. Considering the current advances of the
hacker capability, these systems are increasingly important in any computer network in order
to protect the information systems of any organization. However, as described in chapter 1,
one of the main shortcomings of these systems is that they produce a large number of false
positives, and duplicate and non-relevant alerts. Our goal in this research work is to present
to the network analyst only interesting alerts. Once an alert is produced, we want the alert to
be actionable. For this purpose, we leverage the vast quantities of data available in the various
sensors already present in the network to improve the value of the alerts we present to the
administrator. In addition, any IDS and alert correlation system that can automate some of
the correlation and contextualization that (good) security analyst are forced to do manually
today will greatly enhance their productivity and security posture of their organizations.

In order to provide a method to gather event logs from various heterogenous sensors distributed
in a computer network, and automate the analysis of the various information resources
available to the security analyst, while preserving maximum flexibility and power of abstraction
in the definition and use of such concepts, we propose the Pasargadae
ontology-based context-aware event correlation framework in this chapter. Pasargadae uses
ontologies to represent and store information on events, context and vulnerability information,
and attack scenarios, and uses simple ontology logic rules written in Semantic Query-Enhance
Web Rule Language (SQWRL) to correlate and filter out false positives, duplicate and
non-relevant alerts.

The rest of this chapter is organized as follows. In section 4.1, we explain the Pasargadae event
correlation framework and its components including event, context, attack and
vulnerability ontologies along with its context and event integration components, and
correlation engine. Next, in section 4.2, we propose a semantic-based and context-aware
event correlation approach that employs Pasargadae as its main framework for the event
correlation purpose. In section 4.3, in order to show the flexibility and extendability of
Pasargadae, we explain how Pasargadae can be employed to implement other alert and event
correlation approaches. Finally, we give a short summary of this chapter.

66

4.1 Pasargadae Event Correlation Framework

In this section, we describe Pasargadae, an automated and context-aware event correlation
framework that relies heavily on ontologies and ontology description logic. Pasargadae

performs heterogenous event correlation which means that it gathers event logs from not
only NIDS, but also from other sensors, such as HIDS, operating systems, databases, anti
viruses and some applications. The Pasargadae framework was made context-aware in order
to take full advantage of the context information to which security analysts have typically
access to prioritise alerts, and ontology-based in order to provide a technological solution to
the problem of heterogeneous data integration and retrieval. The Pasargadae framework is
depicted in Figure 4.1.

Figure 4.1 The Passargade ontology-based context-aware event correlation framework

As Figure 4.1 illustrates, in its first step, the alerts generated via distributed heterogeneous
sensors are collected and transferred into the event integration component. Also in this step,
all the information required for reasoning on these events is gathered from three different
information resources namely:

— Context Sensors (CS)
— Common vulnerability databases, and
— Attack databases

67

The second step consists of the following two tasks:
— integrating and converting all the events generated by the heterogenous sensors into

a unified format analysable by the event correlation unit.
— integrating all the contextual information received implicitly or explicitly from the

various tools implemented in the system.
In the third step, the event and context ontologies are populated based on the integrated and
converted events and context information. In order to fully automate the event correlation
process, we have designed a group of comprehensive and extensible ontologies, namely event,
context, attack and vulnerability ontologies. The explicit relationships between these
ontologies allow reasoning on the information gathered from various resources, including
the (mostly) static attack and vulnerability databases.

The last step consists of correlating the existing information within the ontologies, which is
done via the correlation engine using ontology description logic. In the rest of this section,
we describe each of the above components in detail.

4.1.1 Information Resources

For information resources, we consider the following sensors as our event and contextual
information resources:

Event sensors: These sensors generate a specific type of logs based on the events that
they analyze on the systems they monitor. The most typical and commonly deployed type of
sensor are NIDS that generate alerts by examining individual network traffic packets. They
also include host-based IDS and antiviruses that generate alerts and events based on system
or application activity observed on a particular machine. Finally, it also includes other
types of non security-related sensors such as operating systems, databases, proxy servers,
routers, access points, applications that are not generating alerts per se, but rather system
events that the security analysts consider important enough to be correlated with other
sources of events. The difficulty here is that while many NIDS and HIDS will generate
IDMEF-compliant alerts by filling generic attributes (e.g. time, severity, etc.), there might
be some sensor- or log-specific attributes that we might want to correlate on, and that must
therefore be integrated also. This is what ontologies are particularly suited for.

Context sensors: A context sensor is a generic term for any information source that can
provide contextual information about the systems that are being monitored. The concept of
context is purposefully vague to allow analysts to define and use the particular aspects that

68

they think is suitable for monitoring of their systems. This can include different types of
information such as configuration (network, host or application), vulnerabilities, user role and
profile, location, and even criticality of the corresponding IT asset. Contextual information
can be implicitly collected by methods such as vulnerability scanning, network fingerprinting,
passive network monitoring tools, or they can be explicitly provided by system administrators
through tools such as Configuration Management Systems (CMS), for example.

Known vulnerabilities: At first, we gather information about vulnerabilities from the
well-known public databases such as the Common Vulnerabilities and Exposures (CVE)
[46] or the NVD [129]. Then, vulnerabilities can be associated to context instances (e.g.
hosts, networks, applications) through vulnerability scanning or asset management. Severity
information from these databases, in combination with information on asset criticality, can
then be used to help prioritise alerts occurring in these contexts.

Attack scenarios and models: An attack depending on its type, may exploit a specific
vulnerability to proceed. Attack information and models can be obtained from standardised
databases such as the Common Attack Pattern Enumeration and Classification (CAPEC)
[26] or expert knowledge. In order to model attacks, any of the existing attack modelling
languages such as LAMBDA [44], STATL [59], Adele [119] or SHEDEL [118] could be
used. These languages model attacks based on various techniques, such as scenario or
sequence-based modeling, state/transition-based modeling, temporal modeling, etc. However,
it is outside of the scope of this work to implement these formalisms within the ontology
description logics that we use. In the rest of this chapter, and without loss of generality, we
will illustrate our framework using a simplified attack model comprising a linear sequence of
steps.

4.1.2 Event and Context Integration

Different types of event sensors produce event logs in various formats that might not be
natively interpretable by the event correlation unit. Hence, it is necessary to preprocess these
alert streams and export them in a format that is understandable by the event correlation
unit. In production environments, this would be done by sensor specific drivers that would
match event fields with class attributes at the appropriate abstraction level. In following
good ontological engineering practises, all event sensor-specific fields should be translated
into class attributed at the highest possible class in the taxonomy of events, i.e. that where
all subclasses contain that type of information (or an equivalent one). The use of standard

69

representations such as IDMEF [47] or the Common Event Expression (CEE) [121] should
be encouraged, but not at the detriment of not integrating sensor-specific information that is
not standard-compliant; that is what sensor-specific event subclasses are for. For simplicity
of presentation and for illustrative purposes, we use an IDMEF-specific ontology.

Additionally, one of the main tasks of the event integration component is event refinement.
Obviously, each detection sensor has different logging format and logging attributes. Therefore,
some of the sensors may not support particular attributes or logging features. This component
covers missing data and attributes (specially the attributes which are important in following
components) existing inside collected events. Moreover, this component smoothes the received
data in case of any noise. Type transformation is another important task of this module.
The detection sensors may generate the value of event attributes in different types (string,
integer, etc.). This component transforms all the received data (attribute values) to a unified
type consistent with our defined policies.

The context integration component of our framework also integrates all the contextual
information in various formats received implicitly or explicitly from various tools implemented
in the system. In this component, the contextual information gathered using our designed
drivers is converted into a unified format analysable by the other components, i.e. into
instances in the context ontology. Once the integration process is complete, the correlation
process can start.

4.1.3 Description of the Ontologies

We chose to use ontologies because they provide a powerful knowledge representation
information structure in a unified format that is understandable by both machines and
humans. Ontologies also allow the use of reasoning logic formalisms, that can be used to
retrieve information in a generic and class structure-agnostic fashion. In our case, we use
these reasoning logic formalisms to design alert correlation algorithms, that will attempt
to reconstruct possible attack scenarios while eliminating improbable ones, while making
abstraction of irrelevant sensor- or system-specific details. The use of ontologies and ontology
description logic thus enables us to fully automate the correlation process that is typically
done manually by security analysts, and this uniformly considering all relevant information,
no matter what its original format or source.

In order to integrate the data inputs to the correlation process and allow generic correlation
reasoning, independent of specificities of information resources, we have constructed basic
ontologies capturing the essence of the concepts of event, context, vulnerability, and attack.
Essentially, they correspond to the following intuitive security facts:

70

1. Attack scenarios will generate system events that might in turn trigger sensors to
cause related alerts. Depending on the attack model, an attack scenario might be
described as linear sequence of events, or a partial ordering of events with pre- and
post-conditions, an attack graph, etc.

2. Events happen in a context, whether this is an IT asset, network location, application,
user, etc. In our case this relationship will be made explicit through information
provided by the sensor with the event (e.g. IP address).

3. Vulnerabilities are always associated to a context, whether to high-level context concepts
(e.g. an asset or service type) or to lower-level context subclasses (e.g. particular
versions of OS or applications). Conversely, explicit context instances can be linked to
specific or generic vulnerabilities, through vulnerability assessment or CMS information.

4. Most attack scenarios will require certain vulnerabilities to be present on the systems
(context) so that they can exploited by that attack.

Figure 4.2 Conceptual relationship of the proposed ontologies

Figure 4.2 illustrates the conceptual relationships of the ontologies, and Figure 4.3 illustrates
the class relationships and some of the subclasses of the basic ontology. These “starter”
ontologies are not meant to be the end state of knowledge representation that security
analysts would need in using our framework, but rather a starting point or template from
which to build on, depending on the kind of sensors, context information or granularity of
vulnerabilities and attack modelling desired. We now describe each of these ontologies in
more detail.

71

Figure 4.3 Class diagram relationship of the designed ontologies

Event ontology. All events in the integrated event logs are transferred into this ontology
as its instances. As explained above, it has dependency relationship with the context
ontology and an association relationship with the attack ontology, since usually each malicious
event e is typically generated by a (suspected) attack at in a particular context c. The
generic base class Event includes generic event attributes, such as time, and analyser (i.e.
sensor). As Figure 4.4 illustrates, the Event class has three subclasses NetEvent, HostEvent,
and AppEvent, corresponding to events generated by NIDS, HIDS, and application-based
IDS or application logs, respectively, each containing specific sensor-generated attributes.
It is important to note that because the concept of context is potentially very rich and
multifaceted, it is likely that a single event might have to be linked to multiple context
instances from various subclasses (e.g. a user, a network segment, an application), and thus
the association between event and context will be many-to-many at the Context base class
level.

72

Figure 4.4 Class diagram relationship of the Event ontology

Figure 4.5 Class diagram relationship of the context ontology

Context ontology. The integrated contextual information is transferred into the context
ontology. We split contextual information into two categories: i) static context information

73

that rarely changes over time (e.g. network architecture, host/user profiles, and OS type),
and ii) dynamic context information that changes continuously over time (e.g. traffic type,
system usage, time of day/week). Table 4.1 and 4.2 lists some of the possible subclasses of
context class and their static and dynamic attributes. As depicted in Figure 4.5, the context
ontology includes a Context base class and User, Host, Network and Service subclasses with
their corresponding attributes. As mentioned, the implicit and explicit context information
appear as instances of the context class in our proposed ontology, that will be populated
through static information from CMS or system administrators, dynamic information from
network profiling tools and even alert sensors themselves (e.g. when reporting on previously
unknown IT assets/contexts).

Table 4.1 A list of static attributes of the context ontology classes

Organization Network Host User OS Application
ID Topology Name ID Platform Name

Product Protocol IP Address Role Type Version

Client Address
Range

MAC
Address Location SPVersion

Location Firewall Role Access
rights Version

Network Switch Location
Host User
User Service

hosts OS
#Firewall Application
#Subnet CPU
#Switch Memory

#User
#OS

Vulnerability ontology. This ontology represents the list of vulnerabilities related to the
existing assets in the underlying context, typically populated from a public vulnerability
source such as CVE or NVD. This ontology has a part-whole relationship (composition) with
the context ontology since every vulnerability v is specific to a particular type of system,
which is represented as a part of Context (typically Host). Thus, v can be associated with all
the asset (context) instances {c1, ..., cn} that are vulnerable to it, by querying the ontology
for Host instances whose applications (App) or OS are those associated to that vulnerability.
This ontology also has an association relationship with attack ontology, since usually every
vulnerability v is exploitable by 0 or more (0..∗) attacks.

74

Table 4.2 A list of dynamic attributes of the context ontology classes

Date&Time Network Host OS Application Usage
Profile

Date Traffic
Type CPU Usage Syscall Started

State PerUser

Time Memory Usage Table PerHost
Disc Usage Processes PerNet
Open ports
Started Apps
Current Users
Connection

Status
Application

CPU
Memory

Sent (Bytes)
Received
(Bytes)

Attack ontology. The attack ontology includes information related to the known attack
scenarios, and it includes generic attack attributes such as vectors, objectives, and so on. The
Vector class represents the method that can be used by an attack to compromise computer
systems, with example subclasses including social engineering, phishing, removable media,
etc. The Objective class can include example subclasses such as information leakage, remote
core execution, spamming and privilege escalation. The attack ontology has dependency
relationships with the context ontology, and association relationships with the event and
vulnerability ontologies, since basically every attack a needs a particular context c to proceed,
and it might need to exploit particular vulnerabilities {v1, ..., vn}, and it results in triggering
some events {e1, ..., en}.

Rolling-up and drilling-down in the designed ontologies. In order to navigate among
various levels of class hierarchies in the designed ontologies, here, we introduce two important
operators that we can employ within the correlation engine of the Pasargadae framework.
These operators are:

— Drill-Down allows to navigate among levels of data ranging from the most summarized
to the most detailed concepts.

— Roll-Up allows to navigate among levels of data ranging from the most detailed to the
most summarized concepts.

75

Drill-Down and Roll-Up do not remove any data that exists in the ontologies but change
the level of granularity of a particular dimension. As an example, in Figure 4.3, lets assume
that we are in the event class level. If in a particular ontology rule we want to only analyze
the information of the FirewallEvent class, by two level navigation using the Drill-Down
operator, we can reach the FirewallEvent class, and analyze its data. In order to return to
the previous level (event class level), we can use Roll-Up operator for two times to reach the
considered level.

These two operators are always employed in the correlation engine of the Pasargadae framework
in order to correlate the information of the various ontologies in different levels of granularity.

Algorithm 1 Event Correlation Pseudocode

INPUT: Event Ontology (E), Context Ontology (C), Vulnerability Ontology (V), Attack
Ontology (A).
OUTPUT: Attack Scenarios: AS[]
BEGIN

{Context- and vulnerability-based-filtering}
for all Alert ∈ Event− Class do

targetSystem← AlertTarget
targetApp← AlertApp
targetV ulnerabilities← AlertV ulnerability

if targetApp ∈ targetSystem then
targetAppV ulnerability ← V

if targetV ulnerabilities ∈ targetAppV ulnerability then
finalAlertList← Alert

end if
end if

end for

{Attack reconstruction}
AS[]← EventCorrelationAlgorithm(finalAlertList)

END

4.1.4 Correlation Engine

In order to implement the correlation logic, we employ the Ontology Web
Language-Description Logic (OWL-DL) to design and populate an ontology for each of

76

the above four inputs. The usage of a generic language like OWL-DL provides significant
flexibility to the framework by allowing the reuse or adaptation of data queries expressed in
that logic to various deployment and security monitoring scenarios, e.g. on-line detection or
after-the-fact network forensics analysis. Additionally, it provides sophisticated capabilities
such as drilling-down and rolling-up in the class hierarchies of the ontologies to express very
specific or very generic concepts.

Generally speaking, the correlation engine will have information about only three of the four
ontologies that we have defined, i.e. event, context and vulnerabilities. It is by following the
above-mentioned relationships between the corresponding classes that the correlation engine
will be able to infer whether there is an attack instance that could match a particular subset
of linked alerts, contexts and vulnerabilities. This correlation process is two-fold and can be
viewed as two independent traversals on the core ontology classes:

— Context and vulnerability-based filtering. Given an event (or events) determine which
contexts instances are involved, what are their associated known vulnerabilities, and
finally determine which attack scenarios could be exploiting them. For instance,
assume that there are some alerts issued by the Suricata IDS/IPS reporting malicious
activities exploiting buffer overflow vulnerability of Microsoft SQL Server 2010. If in
the underlying network there are some computers having Microsoft SQL server 2010,
these alerts are considered context-relevant. Otherwise, they will be discarded from
the final analysis because of their non-relevancy to the underlying context.

— Attack reconstruction. In this step, the information of the attack ontology that includes
a comprehensive list of known attack scenarios is employed. Therefore, when there is
an event or a group of events reported by the event sensors, for each possible attack
scenario related to this (or these) event(s), try to match the sequence of previous
alerts with the steps of the attack. We can use various alert and event correlation,
and attack reconstruction algorithms in this step due to the considerable flexibility of
the framework.

The pseudocode for the generic correlation process is presented in Algorithm 1. The outcome
of this process should hopefully provide the security analyst with a reduced list of high level
descriptions of potential ongoing (or completed) attacks that includes few redundancies,
non relevant scenarios and false positives. In order to implement both steps of this event
correlation process we use a set of logic rules expressed in Semantic Web Rule Language
(SWRL) and Semantic Query-Enhanced Web Rule Language (SQWRL).

As mentioned earlier, in order to have a significant flexility, the most important capabilities
that Pasargadae framework provides are easy drill-down and easy roll-up into the most

77

specific or most generic classes and attributes. Using these considerable capabilities, we can
write very generic rules covering generic concepts, or very specific rules covering detailed
concepts. Having such significant flexibility and adaptability makes the correlation engine
capable to implement various alert and event correlation, alert fusion, and attack reconstruction
approaches. Furthermore, within its correlation engine, Pasargadae can add some sophisticated
features, such as context-awareness, extendability, and object orientation, to the existing
correlation, fusion, and attack reconstruction approaches.

In the following sections, first, we propose a new semantic-based event correlation approach
that employs Pasargadae to do its task. Next, we describe how Pasargadae is able to represent
some of the existing alert correlation steps proposed in [177].

4.2 A Semantic-Based Event Correlation Approach Based on Pasargadae

In this section, we describe a new semantic-based event correlation approach that employs
Pasargadae as its main framework. The proposed event correlation approach that has 3
main steps, can be implemented easily in the correlation engine of Pasargadae. In the
proposed approach, after eliminating non-relevant alerts, events based on their attributes, are
classified into a number of groups, and for every group a meta-event is created. Finally, these
meta-events are logically analyzed to reconstruct existing attack scenarios. In the following,
we describe the proposed event correlation process in detail:

1. Non-relevant alerts elimination. As described earlier, non-relevant alerts are those
alerts that even though they correctly recognize an intrusion, those intrusions fail to
reach their objectives because of unavailability of required contextual configuration
(network-related context and target configuration). In order to verify relevance of an
alert, we inspect targeted vulnerabilities of the alert using the information extracted
from context and vulnerability ontologies. If the targeted vulnerabilities of the alert
were not related to the underlying context, the alert is reported as a non-relevant
alert. For example, suppose that there is an alert reported by Snort IDS which targets
CVE-2012-2531 vulnerability. This vulnerability is a password disclosure vulnerability
of Microsoft Internet Information Services (IIS). In case that Microsoft IIS is not used
in the underlying context, this alert is reported as a non-relevant alert. Rules 4.1
and 4.2 written in SQWRL within the correlation engine of Pasargadae perform
Non-relevant alerts elimination based on the target system vulnerabilities:

78

ALERT(?a) ∧ HOST(?h) ∧ OS(?o) ∧ VULNERABILITY(?v) ∧ CLASSIFICATION(?cl)∧

REFERENCE(?ref) ∧ hasTarget(?a,?h) ∧ hasClassific(?a,?cl) ∧ hasOS(?h,?o)

∧ hasReference(?c1,?ref) ∧ hasVulnerability(?o,?v) ∧ hasName(?ref,?n1)∧

hasName(?v,?n2) ∧ stringEqual(?n1,?n2)

−→ sqwrl:select(?a)
(4.1)

ALERT(?a) ∧ HOST(?h) ∧ APP(?ap) ∧ VULNERABILITY(?v) ∧ CLASSIFICATION(?cl)

∧ REFERENCES(?ref) ∧ hasTarget(?a,?h) ∧ hasClassific(?a,?cl)∧

hasApp(?h,?ap) ∧ hasReference(?c,?ref) ∧ hasVulnerability(?ap,?v)∧

hasName(?ref,?n1) ∧ hasName(?v,?n2) ∧ stringEqual(?n1,?n2)

−→ sqwrl:select(?a)
(4.2)

2. Meta-events creation. After eliminating non-relevant alerts, in this phase, first we
classify the events into various groups based on their attributes similarity. Next, for
every group of events, we generate an appropriate meta-event. We create separate
meta-events for host-based and network-based events because the event attributes are
different in each type. The structure of meta-events, as Figure 4.6 illustrates, contains
3 major parts:

Figure 4.6 Meta-event structure

— Prerequisites: This part indicates the conditions that should be satisfied by a
computer system or a computer network for an attack to succeed. This information
can be extracted mostly from the context ontology. For example, for a telnet

79

related attack, the telnet service should be listening on the target host on the
targeted port.

— Meta − attributes: This part includes any lower level event attributes such as
source, target, time, classification, etc., and a number of new attributes such as
meta-event ID, name and description.

— Consequences: This part indicates the impacts of a successful execution of an
attack. These consequences can be physical effects that change contextual status
of a system, or cognitive effects, which improve attacker knowledge. For example,
a TCP scan has cognitive effects because it improves the attacker’s knowledge of
the underlying context.

Based on this structure, we correlate network-based and host-based events to create
meta-events. For network-based events, we mainly use source and target of the events
as their main attributes in this level of class hierarchy. For this purpose, we consider
two major steps in order to correlate them:
— One-to-one-event correlation: we correlate those malicious events having same

source, and same target in a specified time period. Our goal is to correlate
events caused by an attacker testing multiple exploits or using the same attack
tool multiple times against the same target. Brute force password cracking and
blind SQL injection are example of such tools. A SQWRL rule to correlate such
events can be:

NetEvent(?ne) ∧ Host(?h1) ∧ Host(?h2) ∧ hasSource(?ne, ?h1)∧

hasTarget(?ne, ?h2) ∧ hasTime(?ne, ?t) ∧ biggerThan(?t, ?t1)∧

lessThan(?t, ?t2) −→ sqwrl:select(?ne)

(4.3)

In this rule, t1 and t2 are time thresholds to correlate events happening within a
specific time period.

— Many-to-one and one-to-many event correlation: we correlate those events
originating from multiple sources against a single victim or events having a single
source attacking multiple victims in a specified time period. These events are
replaced by a meta-event including the sources and targets involved in the attack.
Distributed denial of service attack (DDOS), spam distribution, and wide network
scanning are examples of malicious scenarios which would produce this kind of
events. Example of SQWRL rules to correlate such events can be:

80

NetEvent(?ne) ∧ Host(?h) ∧ hasTarget(?ne, ?h)∧

hasTime(?ne, ?t) ∧ biggerThan(?t, ?t1) ∧ lessThan(?t, ?t2)

−→ sqwrl:select(?ne) ∧ sqwrl:count(?ne)

(4.4)

NetEvent(?ne) ∧ Host(?h) ∧ hasSource(?ne, ?h)∧

hasTime(?ne, ?t) ∧ biggerThan(?t, ?t1) ∧ lessThan(?t, ?t2)

−→ sqwrl:select(?ne) ∧ sqwrl:count(?ne)

(4.5)

Regarding host-based events, we need to recognize that those events that indicate the
same malicious behavior. For this purpose, we consider the following host-based event
attributes:
— Node (N): Information about the host or device that appears to be causing the

events (network address, network name, etc.).
— User (U): Information about the user that appears to be causing or is involved the

event(s).
— Process (P): Information about the process that appears to be causing the event(s).
— Service (S): Information about the network service involved in the event(s).
— File (F): Information about file(s) involved in the event(s).
Based on these attributes we correlate those host-based events that have same node,
user and process ([N, U, P]) or same node, user and file ([N, U, F]) within a specified
time period. Example of SQWRL rules to correlate such events can be:

HostEvent(?he) ∧ Node(?n) ∧ User(?u) ∧ Process(?p)∧

hasNode(?he, ?n) ∧ hasUser(?he, ?u) ∧ hasProcess(?he, ?p)∧

hasTime(?he, ?t) ∧ biggerThan(?t, ?t1) ∧ lessThan(?t, ?t2)

−→ sqwrl:select(?he) ∧ sqwrl:count(?he)

(4.6)

HostEvent(?he) ∧ Node(?n) ∧ User(?u) ∧ File(?f)∧

hasNode(?he, ?n) ∧ hasUser(?he, ?u) ∧ hasFile(?he, ?f)∧

hasTime(?he, ?t) ∧ biggerThan(?t, ?t1) ∧ lessThan(?t, ?t2)

−→ sqwrl:select(?he) ∧ sqwrl:count(?he)

(4.7)

3. Attack reconstruction. After preparing meta-events, we correlate them to build attack
scenarios. For this purpose, we create a graph of the meta-events representing every

81

attack scenario. In order to create meta-event graphs, we use a modified version
of the topological sort algorithm [41]. In this algorithm, we define a factor called
pre-degree as the main criterion to sort meta-events. The Pre-degree of each meta-event
is computed based on the prerequisites, consequences and date/time attributes of the
meta-event. For example, if the consequences of two meta-events are the prerequisites
of a meta-event m regarding their time consistencies, m’s pre-degree will be 2. Generally,
the algorithm has two steps:

Figure 4.7 An example of meta-event graph to reconstruct attack scenarios

(a) Computing the pre-degree of all the meta-events and storing them in an array.

(b) Outputing the meta-events having pre-degree zero, and updating the pre-degree of
the remaining meta-events.

Figure 4.7 illustrates the graphical representation of the building of an attack scenario
based on these steps. the consequences part of Meta-event 2 constitutes the
prerequisites parts of the Meta-event 3 and Meta-event 4. The pre-degree of Meta-event
1 is zero, and the pre-degree of Meta-events 2, 3 and 4 are 1.
The above steps are repeated until the meta-event list gets empty. The resulting
graph corresponds to the attack scenario. The pseudocode for the proposed event
correlation approach is presented in Algorithm 2. Once the attack scenarios are built,
the outcome can be presented to the network security analysts.

Figure 4.8 illustrates how the proposed event correlation approach maps to the designed
ontologies of the Pasargadae framework. As the figure illustrates, in the first step (non-relevant
alerts elimination) and second step (meta-event creation), only three of the four ontologies

82

Figure 4.8 Mapping between the attack scenario reconstruction and the designed ontologies

(event, context and vulnerability) are involved. In the last step (building attack scenarios),
the information of the attack ontology is applied to the results of the previous steps to
reconstruct attack scenarios. The outcome of this process should hopefully provide the
security analyst with a reduced list of high level descriptions of potential ongoing (or
completed) attacks that includes few redundancies, non relevant scenarios and false positives.

In order to implement both components of this alert correlation approach we use a set of logic
rules expressed in Semantic Web Rule Language (SWRL) and Semantic Query-EnhancedWeb
Rule Language (SQWRL). While various specific correlation approaches could be
implemented within the above generic model, we use certain aspects of the approach described
in [177] to illustrate the use of our framework.

4.3 ONTIDS Alert Correlation Framework as a Subset of Pasargadae

As described earlier, the alert correlation and the event correlation are two distinct concepts.
The difference originates from the type of sensors that each one employs as their event log

83

generators. In the alert correlation process, only alerts generated by various IDS are taken
into the analysis. However, the event correlation process analyzes not only IDS alerts but
also event logs generated by other sensors, such as firewalls, routers, OS, antiviruses, web
servers, etc. We consider the alert correlation as a specific version, or as a subset of the
event correlation process. It means, the event correlation is more generic and more powerful
than the alert correlation process because it has detailed view on every event happening on
a computer network.

In this section, we describe how we can use a specific version of the Pasargadae framework
to build a context-aware and ontology-based alert correlation framework, called ONTIDS. In
the ONTIDS framework, instead of the generic event ontology, we define and develop an alert
ontology which includes only IDS alerts as its instances that can be considered as a subset
of the generic event ontology. This is the main difference between Pasargadae and ONTIDS
frameworks. Therefore, in Figure 4.1, instead of Heterogenous Event Sensors, ONTIDS has
Heterogenous Alert Sensors, instead of Event Integration, ONTIDS has Alert Integration,
instead of Event Correlation Unit, ONTIDS has Alert Correlation Unit, and finally, instead
of Event Ontology, ONTIDS has Alert Ontology.

Figure 4.9 illustrates the class relationship of theONTIDS ontologies. As the figure illustrates,
the class Alert has two subclasses HostAlert and NetAlert which includes NIDS and HIDS
alerts. During the alert correlation process, these alerts are collected and correlated with the
information existing in the context, vulnerability and attack ontologies within the correlation
engine.

In the following subsection, in order to show significant flexibility of the ONTIDS framework
in implementing various alert correlation approaches, we use it to implement various steps
of the alert correlation approach proposed in [177].

4.3.1 Example Implementation of Valeur Approach Using ONTIDS

The alert correlation approach proposed in [177] includes a comprehensive set of steps that
covers various aspects of an alert correlation process. In order to show how ONTIDS is
able to automatically implement these steps, in the following, we explain the implementation
details of some of these steps using ONTIDS.

— Alert fusion. Alert fusion is the process of merging alerts that represent the
independent detection of the same malicious event by different IDS. It helps to reduce
duplicate alerts and false positives. An important condition in order to fuse two or
more alerts is that they should be reported in a same time window by different alert

84

Figure 4.9 Class diagram relationship of the ONTIDS ontologies

sensors. We have defined Rule 4.8 within the correlation engine in order to perform
alert fusion:

ALERT(?a1) ∧ ALERT(?a2) ∧ ANALYSER(?an1) ∧ ANALYSER(?an2)∧

DetectTime(?dt1) ∧ DetectTime(?dt2) ∧ SOURCE(?s1) ∧ SOURCE(?s2)∧

TARGET(?tar1) ∧ TARGET(?tar2) ∧ CLASSIFICATION(?cl1)∧

CLASSIFICATION(?cl2) ∧ ASSESSMENT(?as1) ∧ ASSESSMENT(?as2)∧

stringEqual(?s1,?s2) ∧ stringEqual(?tar1,?tar2)∧

stringEqual(?cl1,?cl2) ∧ stringEqual(?as1,?as2)∧

subtractTimes(?td,?dt1,?dt2) ∧ lessThan(?td,"5s")

−→ sqwrl:select(?a1)

(4.8)

The Rule 4.8 lists all the alerts having same attributes but generated by different IDS
in a same time window.

— Alert Verification. Alert verification is the process of recognising and reducing
non-relevant alerts which refer to the failed attacks. The major reason of attack
failure is the unavailability of the contextual requirements of the attack, i.e. the

85

absence of required vulnerabilities in the attack context. Identifying failed attacks
allows the correlation engine to reduce the effects of non-relevant alerts in its decision
process. Rules 4.9 and 4.10 within the correlation engine of Pasargadae perform alert
verification based on the target system vulnerabilities:

ALERT(?a) ∧ HOST(?h) ∧ OS(?o) ∧ VULNERABILITY(?v) ∧ CLASSIFICATION(?cl)∧

REFERENCE(?ref) ∧ hasTarget(?a,?h) ∧ hasClassific(?a,?cl) ∧ hasOS(?h,?o)

∧ hasReference(?c1,?ref) ∧ hasVulnerability(?o,?v) ∧ hasName(?ref,?n1)∧

hasName(?v,?n2) ∧ stringEqual(?n1,?n2)

−→ sqwrl:select(?a)
(4.9)

ALERT(?a) ∧ HOST(?h) ∧ APP(?ap) ∧ VULNERABILITY(?v) ∧ CLASSIFICATION(?cl)

∧ REFERENCES(?ref) ∧ hasTarget(?a,?h) ∧ hasClassific(?a,?cl)∧

hasApp(?h,?ap) ∧ hasReference(?c,?ref) ∧ hasVulnerability(?ap,?v)∧

hasName(?ref,?n1) ∧ hasName(?v,?n2) ∧ stringEqual(?n1,?n2)

−→ sqwrl:select(?a)
(4.10)

The Rules 4.9 and 4.10 verify whether the targeted OS or application vulnerabilities
exist in the underlying context. The only difference between these two rules is the
functional properties hasOS and hasApp.

— Attack thread reconstruction. Attack thread reconstruction is the process of
merging a series of alerts that refer to an attack launched by one attacker against a
single target, and is another step in the alert correlation process of [177]. Similarly
to the alert fusion process, the alerts should happen in the same time window to be
correlated. Rule 4.11 performs the attack thread reconstruction task:

ALERT(?a) ∧ HOST(?h1) ∧ HOST(?h2) ∧ TIME(?t1) ∧ TIME(?t2)∧

hasSource(?a,?h1) ∧ hasTarget(?a,?h2) ∧ hasDetectTime(?a,?dt)∧

greaterThanOrEqual(?dt,?t1) ∧ lessThanOrEqual(?dt,?t2)

−→ sqwrl:select(?a,?h1,?h2)

(4.11)

Rule 4.11 lists all the alerts having same source and same target, and generated in a

86

same time window.
— Attack session reconstruction. Attack session reconstruction is the process of

linking network-based alerts to the related host-based alerts, and constructing attack
scenarios. As network-based alerts has different attributes compared to host-based
alerts, linking these alerts together is a difficult task. Two factors that can provide
clues to correlate these alerts are: time and port (process). Hence, we present the
following rule (4.12) based on these factors to do attack session reconstruction task:

NetAlert (?na) ∧ HostAlert(?ha) ∧ Node(?n) ∧ Process(?p)∧

hasTarget(?na, ?n) ∧ hasNode(?ha, ?n) ∧ hasProcess (?na, ?p)∧

hasProcess(?ha, ?p) ∧ hasTime(?na, ?t1) ∧ hasTime(?ha, ?t2)∧

biggerThan(?t1, ?tMin) ∧ biggerThan(?t2, ?tMin) ∧ lessThan(?t1, ?tMax)∧

lessThan(?t2, ?tMax)

−→ sqwrl:select(?na,?ha)
(4.12)

Rule 4.12 lists all the related network-based and host-based alerts generated by NIDS
and HIDS in a same time window.

In summary, we can see how the first component of our canonical description is implemented
by the correlation engine by applying Rules 4.9 and 4.10 to reduce non-relevant alerts. For this
purpose, it retrieves required information from the alert, context, and vulnerability ontologies.
Next, and for those alerts and scenarios that are relevant, attack thread reconstruction and
attack thread reconstruction are performed by applying Rules 4.11 and 4.12, where the engine
attempts to make a mapping between the filtered alerts and the steps of attacks in the attack
ontology. Once it finds any mapping between the two ontologies, it will output the whole
attack scenario.

4.4 Alert Fusion Using Pasargadae Framework

Most current IDS cannot by themselves adequately detect a large number of attacks. Each
IDS, based on its detection algorithm, is mostly able to detect a particular group of attacks.
For example, signature-based IDS are only able to detect known attacks, but not new attacks.
However, anomaly-based IDS are able to detect new attacks even though they generate higher
false positives. One of the solutions that has been proposed to improve detection rate is
combining or fusing the alerts generated from several different IDS examining the same
data source. In its generic definition, sensor fusion is the process of combining the output of

87

several different sensors observing the same data source, and then making a decision based
on this combined output. The data source is typically a stream of events, with each event
possibly triggering an alert by each of the sensors.

Current alert fusion approaches generate large numbers of redundant and non-relevant alerts,
thus exacerbating the false positive problem. They do not take into account the semantical
relationship and the contextual information of happening events to perform more appropriate
analysis. In order to address these shortcomings, in this section, we propose a semantic-based
and context-aware alert fusion approach that employs Pasargadae framework as its main bed
for the alert fusion purpose. The proposed approach incorporates contextual information in
order to reap the benefits of multi-sensor detection while reducing false positives.

In the rest of this chapter, first, we describe the steps of the proposed alert fusion approach.
Next, we describe in detail the decision making component that is the main component of
the proposed alert fusion approach.

4.4.1 The Proposed Alert Fusion Approach

Now, we describe our proposed semantic-based and context-aware alert fusion approach. The
proposed alert fusion approach employs Pasargadae’s components to perform its task. In the
following, we describe this approach with more details.

Figure 4.10 illustrates the proposed alert fusion approach and its components. This approach
employs alert ontology which is a subset of Pasargadae’s event ontology, context ontology
which provides contextual information of the underlying network, and vulnerability ontology.
The steps of the alert fusion process are as follows:

1. In this step, all the alerts generated by various IDS (alert sensors) that monitor
same event steams in the underlying network, are collected into the alert integration
component. We can employ different IDS having different detection methods, such as
anomaly-based IDS (e.g. Bro [136]) and signature-based IDS (e.g. Snort [144]). In
the same time, contextual information mostly generated by context sensors (CS) and
provided by system administrators are collected into context integration component.

2. This step consists of two phases:

(a) The integration and conversion of all alerts generated by various IDS into a unified
format analyzable by the alert fusion unit.

(b) The integration of all contextual information gathered implicitly via network
administrators or explicitly via context sensors (CS). Today, the most popular
format for integrating alerts from various IDS is the Intrusion Detection Message

88

Figure 4.10 The proposed semantic-based context-aware alert fusion model

Exchange Format (IDMEF) [50] proposed by Internet Engineering Task Force
(IETF). We use IDMEF in the alert integration component as the alert format.
Figure 4.11 represents the IDMEF alert attributes.

3. This step consists of populating the ontologies with the integrated data from Step
2. In order to fully automate the alert fusion process, we designed a group of basic
but extensible ontologies for alerts, context information, and vulnerabilities. These
ontologies enable sharing and reasoning on the information gathered from various
resources. Figure 4.12 illustrates the conceptual relationship among the ontologies
and Figure 4.13 describes the class diagram relationship among the ontologies.

4. The key step is the decision making process, where contextual information is combined
with alert information and vulnerabilities to filter out non-relevant alerts and false
positives, and a final decision is made to report redundant alerts based on the same
malicious event as a single alert instance.

As most of the components involved in the proposed alert fusion approach were described
in detail in section 4.1, in the rest of this section, we only describe the decision making
component of the proposed alert fusion approach.

89

Figure 4.11 The IDMEF alert attributes [50]

Figure 4.12 The conceptual relationships among the proposed ontologies

4.4.2 The Decision Making Component

We now describe the decision making component of the proposed alert fusion approach. The
outcome of this component provides the security analyst with a reduced list of alerts that
hopefully includes mostly accurate alerts with fewer non-relevant ones and false positive.

We assume that N different IDS monitor the underlying system, and based on every single
event e, each intrusion detection system IDSi makes a decision di(e). This decision can be
alert or no-alert based on the predefined detection policies of IDSi:

di(e) =

1, attack (alert)

0, normal (no-alert)

For every single event e, the alert fusion unit gathers all of the decisions from the different
IDS along with the information provided from other resources, i.e. context sensors and
vulnerability databases, and analyses them to make an appropriate final decision, alert or
no-alert. Figure 4.14 graphically represents this process. In the following, we describe the
decision making component of the alert fusion unit.

The decision making component essentially considers three conditions for each event e:

1. If all sensors report event e as a normal event, the decision making component adds

90

Figure 4.13 The class diagram of relationships among the proposed ontologies

Decision
making

(Fusion Unit)

IDS1

IDS2

IDSn

.

.

.

Event (e)

d1

d2

dn

Final Decision

Figure 4.14 The alert fusion process.

it to the normal events list.

2. If all sensors report event e as an attack, the decision making component adds it to
the attack events list.

3. If some sensors report event e as normal, and some report it as an attack, the decision
making component employs the gathered contextual and vulnerability information
to inspect the prerequisites and consequences of the event e in order to make an
appropriate decision.

For the first two conditions, the decision making component trusts the decisions of all the
IDS since they all generate the same alert for the same event e. In other words, in these
two scenarios, there is no need for further analysis (additional complexity) by the decision

91

making component.

On the other hand, when the third condition occurs, our alert fusion approach kicks in. The
decision making component of our approach first analyzes the characteristics of event e such
as its source and destination IP addresses, targeted port, involved applications, exploited
vulnerabilities, etc. Based on these characteristics, the decision making component retrieves
required information from alert, context and vulnerability ontologies in order to make an
appropriate final decision.

The key idea here is that as an attack progresses, it will generate a sequence of events
e1, e2, . . . , en that might be detectable by the alert sensors. Normally, each attack event ei

will need specific preconditions to be met for it to occur, and if it occurs it will have certain
effects on the attacked system. These preconditions and effects can be contextual or cognitive.
Contextual preconditions of an event are the tangible conditions in the underlying system
for that part of the attack to succeed. For example, for an ssh related attack, the ssh service
should be active on the target hosts. Contextual effects are any tangible modification to the
underlying system. For example, an event which is part of a SQL injection attack modifies a
portion of data in the target database. On the other hand, cognitive requirements and effects
are all those non-tangible conditions that are mostly related to the attacker’s knowledge. For
instance, an attacker who wants to start an ssh related attack, should know whether the ssh
service is available in the target network or not, which is a cognitive requirement of the ssh
attack. As such, a network vulnerability scanning event, which is part of the reconnaissance
phase of typical attack scenarios, can be considered as a cognitive effect.

In essence, the decision making component considers for each event e the following two
essential criteria:

1. Event prerequisites. The conditions that should be satisfied by system or network
for the attack event e to succeed. These conditions can be both contextual which
is related to the underlying context, and cognitive which is related to the attacker’s
knowledge. As an example, for the ssh related attacks, the appropriate context is when
ssh service is listening on the target host to the ssh port (i.e. 22), and the cognitive
condition is the attacker’s knowledge about the existence of ssh services underlying
context.

2. Event consequences. The consequences indicate the impacts of the successful
execution of an attack event e. These consequences can be physical effects that change
the contextual status of a system, or cognitive effects that improve the attacker’s
knowledge. For instance, a TCP scan has cognitive effects since it improves the
attacker’s knowledge of the underlying context (i.e. port scanning).

92

The decision making component first constructs the event’s prerequisites based on the
information retrieved from the ontologies using a number of pre-defined rules. For instance,
suppose that there is an alert reported by Snort IDS which targets CVE-2012-2531 vulnerability.
This vulnerability is a password disclosure vulnerability of the Microsoft Internet Information
Services (IIS). The following rule, defined using the Semantic Web Rule Language (SWRL),
extracts required information in order to constitute the event’s prerequisites in order to check
whether there are any vulnerable assets in the underlying system.

ALERT(?a) ∧ HOST(?h) ∧ APPLICATION(?ap) ∧ VULNERABILITY(?v) ∧ CLASSIFICATION(?c)

∧ REFERENCES(?r) ∧ hasTarget(?a,?h) ∧ hasClassification(?a,?c)∧

hasApplication(?h,?ap) ∧ hasReference(?c,?r) ∧ hasVulnerability(?ap,?v)∧

hasName(?r,"CVE-2012-2531") ∧ hasName(?v,?n)∧

swrlb:stringEqualIgnoreCase("CVE-2012-2531",?n) −→ sqwrl:select(?a)
(4.13)

In addition to event prerequisites, the decision making component inspects the event
consequences on the underlying network. If the event consequences provide cognitive or
contextual gain for an attacker, the event is considered as a malicious event. For instance,
if an event is part of a TCP scanning process which reveals some contextual information
for an attacker, the decision making component considers the event as a malicious event.
Consequently, the decision making component analyzes both prerequisites and consequences
of every single event, and if both are available, the corresponding alert is considered as an
attack. The pseudocode for the decision making process of our proposed alert fusion is
presented in Algorithm 3.

4.5 Summary

In this chapter, we proposed an ontology-based context-aware event correlation framework,
called Pasargadae, to overcome the shortcomings of current Intrusion Detection Systems
(IDS) and alert correlation technologies. The main idea is to collect and correlate events
generated by heterogeneous sensors (e.g., NIDS, firewalls, access control system, operating
system, HIDS, antivirus, web server, and other applications) located on several architectural
levels of a computer network to improve the systems’ detection capability. The output of the
system is a high-level description of the existing attack scenarios that is used to reduce false
positives and non-relevant alerts. For this purpose, we evaluated contextual information to
identify which aspects of context can be useful in improving IDS efficiency, and we proposed

93

an ontology of context information accordingly, with the goal of being able to import such
context information from either explicit information in Configuration Management Systems
(CMS) or from implicit information obtained by user and system profiling techniques. In
order to allow IDS analysis automation, we designed comprehensive and extensible ontologies
for events, vulnerabilities, attacks, and system context using OntologyWeb Language (OWL).
We designed and presented a number of rules using Semantic Query Web Rule Language
(SQWRL) based on description logic (DL) to correlate the information of these ontologies
within the correlation engine.

Next, we presented a new semantic-based and context-aware event correlation approach that
employs Pasargadae as its main framework. The proposed event correlation approach has 3
main steps: non-relevant alerts elimination, meta-event creation, and
attack-reconstruction. After eliminating non-relevant alerts, it classifies low-level events
generated by heterogeneous sensors, and creates meta-events. Then, based on a modified
topological-sort approach, it correlates these meta-events to reconstruct attack scenarios.

In section 4.3, we introduced ONTIDS an ontology-based automated alert correlation
framework that is considered as a subset or a sub-framework of the Pasargadae framework.
We described that the ontologies and correlation rules are generic enough to i) implement as
special cases other existing correlation approaches such as that of Valeur et al., and, ii) be
applied with minimal changes to different analysis scenarios, such as in the case studies that
are demonstrated in next chapters.

In section 4.4, we proposed a semantic-based, context-aware alert fusion approach to try to
overcome some of the existing shortcomings of current alert fusion approaches. The proposed
alert fusion approach employs Pasargadae as its main framework. The main idea of our
approach is to collect alerts (decisions) made by different IDS sensors on the same event,
and inspect them using contextual information to reduce redundant and non-relevant alarms
and false positives. While employing several different IDS sensors having different methods
can improve overall detection capabilities, the incorporation of contextual information allows
us to reduce false positives and non-relevant alerts. Within the decision making component
of the proposed alert fusion approach, based on the decisions received from a number of
individual IDS, we inspect prerequisites and consequences of the particular event, and if
both are acceptable according to the predefined policies, the event is considered as an attack.
Otherwise, the decision making component reports it a normal event. These steps of the
decision making component are implemented via a number of SWRL and SQWRL rules.

Pasargadae event correlation framework, compared to the proposed alert correlation
framework (ONTIDS) and alert fusion framework, is more generic to cover not only IDS

94

alerts but also other event logs generated via various sensors, such as firewalls, antiviruses,
OS, routers, databases, etc. Therefore, it is considered a more powerful and more generic
framework than alert correlation and alert fusion frameworks. Furthermore, having more
hierarchical levels in the Pasargadae framework, allows data analysts to easily drill-down into
very specific concepts, or roll-up to cover very generic concepts. Consequently, we believe
that significant flexibility to implement various similar approaches, ontological structure to
provide system automation, context-awareness, and comprehensiveness of Pasargadae makes
it powerful enough to be used in most of the real-world computer networks.

95

Algorithm 2 Semantic-based event correlation pseudocode

INPUT: Event Ontology (E), Context Ontology (C), Vulnerability Ontology (V), Attack
Ontology (A).
OUTPUT: Attack Scenarios
BEGIN {Meta-Events Creation}
for all e ∈ Event− Class do

Meta− Event− Creation(e)
end for
{Attack Scenario Reconstruction}
Attack − Scenario−Reconstruction(meta− event− list)

Return Attack − Scenarios
END
————————————————————————————–
Meta-Event-Creation
INPUT: Event e
OUTPUT: meta− event− list
BEGIN
{creating one-to-one, one-to-many and many-to-one meta-events}
if e ∈ Net− Event then
based on e’s date, source and target assign e to an existing meta-event or create a new
meta-event m
m− pre← add e’s prerequisites
m− con← add e’s consequences

end if
{creating meta event based on [node (n), user (u), process (p)] or [node (n), user (u), file
(f)]}
if e ∈ Host− Event then
based on e’s time, node, user, process and file assign e to a meta-event or create a new
meta-event m regarding the two patterns [n, u, p] or [n, u, f]
m− pre← add e’s prerequisites
m− con← add e’s consequences

end if

Return meta− event− list
END
————————————————————————————–
Attack-Scenario-Reconstruction
INPUT: meta− event− list
OUTPUT: atack − scenario− list
BEGIN
Compute the preDegree of all meta-events
Find a meta-event m having minimum preDegree
Add m to attack − scenario− list
Remove m from meta− event− list
Update the preDegree of remaining meta-events in the meta− event− list
Repeat the above steps while there are meta-events to be processed
Return attack − scenario− list
END

96

Algorithm 3 Decision making pseudocode

INPUT: Alert Ontology (A), Context Ontology (C), Vulnerability Ontology (V), Event
List (E).
OUTPUT: Fused Alert List: FAL[]
BEGIN

{Fusing all the alerts generated by IDS for every event e ∈ E}
for all e ∈ E do

finalDecision = normal

{Gathering decisions generated by IDS}
decisionList[1− n]← IDSDecision[1− n]

{Inspecting the decisions made by IDS}
if decisionList[1− n] = normal then

finalDecision = normal
else
if decisionList[1− n] = attack then

finalDecision = attack
else

Prerequisites← ContextOntology
if Prerequisites provided then

consequences← ContextOntology
if consequences malicious then

finalDecision = attack
end if

end if
end if

end if
FAL[e] = finalDecision

end for
Return FAL[]
END

97

CHAPTER 5 REFERENCE IMPLEMENTATION

In Chapter 4 of this thesis, we proposed a number of new approaches related to the event
and alert correlation and fusion. First, we proposed the Pasargadae context-aware and
ontology-based event correlation framework. Next, we proposed a semantic-based event
correlation approach that employs Pasargadae as its main framework. Finally, we proposed
a semantic-based alert fusion approach based on Pasargadae.

In this chapter, we describe how Pasargadae which is the main framework of all the proposed
approaches, was implemented in our lab and field test environment. For this purpose, we
explain various tools and methods that were employed to implement Pasargadae’s components.

The rest of this chapter is organized as follows. In Section 5.1, we describe how we implement
various parts of the designed ontologies, including their classes, and data type and object
properties. In Section 5.2, we explain how the designed ontologies are stored, their querying
process using SWRL, SQWRL and SPARQL, and their reasoning capability using Pellet
reasoner. In Section 5.3, we describe how the designed ontologies are populated (class
instantiation) with various information. Section 5.4 is dedicated to a discussion on the
scalability of the proposed implementation. Finally, in Section 5.5, we describe a short
summary of this chapter.

5.1 Implementing the Designed Ontologies

In this section, we describe how we implement our designed ontologies. As described in
Chapter 4, the proposed event correlation framework consists of four ontologies including
event, vulnerability, attack and context ontology. In order to design these ontologies, we use
the Ontology Web Language Description Logic (OWL-DL) introduced in Chapter 3. For this
purpose, we use the Protégé ontology editor and knowledge acquisition system [68].

Protégé is an open source software developed based on Java programming language. It
provides the following features:

— Editing OWL 2 ontologies
— Full change tracking and revision history
— A customizable graphical user interface to define and populate ontologies
— Web-based ontology editor
— Deductive classifiers to validate consistency of an ontology’s structure
— Inferring new information via analyzing ontologies

98

Figure 5.1 Hierarchical class diagram of the designed ontologies

— Editing Open Biological and Biomedical (OBO) Ontologies
— Multiple formats of uploading and downloading ontologies (RDF/XML, Turtle,

OWL/XML, OBO, etc.)
Various plug-ins for different usages, such as Importing, Exporting, Inferencing, Reasoning,
Querying, Visualization, etc., have been developed to integrate Protégé with other tools.
Some of its most popular plug-ins are:

— DataMaster: importing schema structure and data from relational databases
— XML Tab: importing an XML document
— Excel Import: importing content and generating classes from Excel
— SWRL-IQ: editing, saving and submitting queries
— JessTab: provides a reasoner for ontologies
— SWRL Tab: editing and execution of SWRL rules
— SPARQL Query: composing and editing SPARQL queries

Using Protégé, we create the ontologies proposed in Chapter 4 (Figure 4.3) and their related
classes, and object and data type properties. Figure 5.1 illustrates the hierarchical class
diagram of the designed ontologies within Protégé, and Figure 5.2 illustrates the object
properties of the designed ontologies.

99

Figure 5.2 Object propoerties of the designed ontologies

5.2 Storing, Reasoning and Querying the Designed Ontologies

In order to store a designed OWL ontology and have persistent information, Protégé provides
two types of storage OWL/RDF Databases and OWL/RDF Files. Figure 5.3 illustrates how
we can specify the type of storage when creating an OWL-based Ontology. Essentially, the
database storage has more advantages than file systems. However, it mostly depends on the
volume of information that an ontology includes. As in this research, we analyze a large
volume of event logs, the database storage provides better performance.

Protégé ontology editor has a number of reasoning plug-ins. Some of its most popular
reasoners are HermiT [150], Pellet [134], NoHR [93], and FaCT++ [171]. In our
implementation, we use the Pellet plug-in as a reasoner for OWL-DL. As Figure 5.8 illustrates,
it provides sophisticated features, such as data type reasoning, SWRL support, consistency
checking, etc.

In order to write and edit queries to correlate various information of the classes, we use
Semantic Web Rule Language (SWRL) [87], Semantic Query-Enhanced Web Rule Language
(SQWRL) [131], and SPARQL Protocol and RDF Query Language-Description Logic

100

Figure 5.3 How to store an OWL Ontology in Protégé

(SPARQL-DL) [155]. We introduced these languages in Chapter 3 in detail, and we explained
how they facilitate drilling-down to cover specific class instances, and rolling-up to cover
generic class instances in the class hierarchies of ontologies. The Jess rule engine [69]
is employed as SWRL rule compiler and SQWRLTab is employed as SQWRL compiler.
Figure 5.5 illustrates SWRL Rles Tab of Protégé, and SQWRL and Jess compiler. After
writing a rule, based on its type (SWRL or SQWRL), we can use SQWRL or Jess compilers
to run it.

5.3 Populating the Designed Ontologies

In this section, we describe how we populate the designed ontologies (Event, Context,
Vulnerability andAttack). For this purpose, first, the collected events, contextual information,
and attack and vulnerability information are converted to appropriate formats analyzable
by Protégé ontology editor. XML, Excel, and relational databases are the most popular

101

Figure 5.4 The Pellet reasoner of the Protégé ontology editor

formats that each one has its related plug-in, i.e. XML Tab, Excel Import and DataMaster
[130] respectively, to import information into Protégé as the instances of classes. About
the vulnerability and attack information, since the CVE vulnerability database and CAPEC
attack database provide both XML and relational database format, we can use XML Tab
or DataMaster to import the vulnerability and attack instances into the Protégé ontology
editor. For the collected events and contextual information, Event Integration and Context
Integration components perform this format conversion. In the following subsections, we
describe what kind of event and context sensors we employ as the events and contextual
information generators. Moreover, we describe how these event and contextual information
are integrated within the Event Integration and Context Integration components.

5.3.1 Event Sensors and Event Integration Process

In order to populate the classes of the Event Ontology, first, the event logs are collected from
heterogenous event sensors located in the various levels of a computer network into the Event
Integration component. For this purpose, we considered the following event sensors for our
lab and field experiments:

102

Figure 5.5 SWRL Tab in Protégé

— NIDS:
— Suricata [4]: Suricata is a high performance Network IDS, IPS and Network

Security Monitoring engine.
— Snort [144]: Snort is an open source Network Intrusion Prevention System (NIPS)

and Network Intrusion Detection System (NIDS).
— ISS RealSecure [42]: ISS RealSecure is a commercial firewall/IDS providing

malicious activity detection for large, complex networks.
— HIDS:

— OSSEC [38]: OSSEC is an open source Host-based Intrusion Detection System
(HIDS) performing log analysis, file integrity checking, rootkit detection, etc.

— Auditd [6]: Auditd is the userspace component to the Linux Auditing System
responsible for writing audit records to the disk.

— Firewall:
— IPTables [7]: IPTables is a command line utility for configuring Linux kernel

firewall implemented witthin the Netfilter project.
— pfSense [186]: pfSense is an open source firewall/router computer software

distribution based on FreeBSD.
— Antivirus:

103

— ClamAV [186]: ClamAV is an open-source anti virus able to detect many types of
malicious software.

— Operating systems: Windows 7, Windows Server 2003, Ubuntu 12.04, CentOS 6
— Access point: Linksys
— Databases: MSSQL, MySQL
— Web server:

— Apache [96]: Apache is a web server application supporting a variety of features,
many implemented as compiled modules which extend the core functionality.

— Proxy server:
— Squid [184]: Squid is a proxy server and web cache daemon having variety of

applications, mainly used for HTTP and FTP protocols.
— SquidGuard [91]: SquidGuard is a URL redirector software that can be used for

content control of websites users can access.
— VoIP server:

— Asterisk [116]: Asterisk is a software implementation of a telephone private branch
exchange (PBX) including many features, such as voice mail, conference calling,
call redirection, etc.

— VPN server:
— Openswan [187]: Openswan provides a complete IPSec implementation for Linux.
— OpenVPN [64]: OpenVPN is an open source software application that implements

virtual private network (VPN) techniques for creating secure point-to-point or
site-to-site connections in routed or bridged configurations and remote access
facilities.

— Email server:
— iRedMail [8]: iRedMail is a free, open source mail server solution for Linux/BSD,

provides services POP3/IMAP/SMTP, anti-spam, anti-virus, etc.

After collecting event logs into the Event Integration component, these events are preprocessed
and converted into the IDMEF which is a XML-based format. We use Prelude Hybrid IDS
[193] as our event integrator.

Prelude Hybrid IDS [193] is an agentless universal Security Information Management System
(SIM, a.k.a SIEM) released under the terms of the GNU General Public License. Prelude
collects, normalizes, stores and aggregates event logs from various event generators. Moreover,
it converts the collected events into the IDMEF standard format. As Figure 5.6 illustrates,
Prelude consists of several sophisticated components [193]:

— Prelude-Manager: Prelude-Manager is the central component of Prelude that can

104

Figure 5.6 Prelude SIEM architecture

connect to both event sensors or other managers. It support various output formats,
such as DB, Xmlmod, Textmod, Relaying and SMTP.

— Libprelude: Libprelude provides Application Programming Interfaces (API) that allows
third parties to communicate with Prelude-Manager.

— LibpreludeDB: LibpreludeDB is a library that provides an abstraction layer for storing
IDMEF alerts into the database.

— Prelude-LML: Prelude-LML provides the capability of analyzing different types of
event logs.

— Prewikka Interface: The Prewikka Interface is the web-based Graphical User Interface
(GUI) for Prelude.

— Prewikka-PFLogger: The PFLogger collects event logs from OpenBSD’s PF software.

Therefore, Prelude directly or using its Prelude-LML component, collects event legs from the
event sensors mentioned above, and converts them into the IDMEF format. As Prelude-LML
does not provide Perl Compatible Regular Expressions (PCRE) rules for all these sensors,
we developed new PCRE rules for those sensors which are not supported by Prelude-LML.

Next, when all the collected events were preprocessed and converted into the IDMEF format,
using the XML Tab plug-in, we import them into the corresponding classes in the Event
Ontology. Moreover, as Prelude allows storing the collected events into MySQL relational
database, in such situations, we can use DataMaster plug-in to import them into the Protégé
ontology editor. Figure 5.7 illustrates how we populate the Event Ontology classes with the
integrated event instances.

5.3.2 Context Sensors and Context Integration Process

In order to populate the classes of the Context Ontology, first, the contextual information
are collected form various context sensors into the Context Integration component. For this

105

Figure 5.7 Populating the Event Ontology

purpose, we considered the following context sensors for our lab and field experiments:
— Nessus [55]: Nessus is a comprehensive vulnerability scanner allowing scans for the

following types of vulnerabilities:
— Vulnerabilities that are exploited by hackers having malicious objectives
— Misconfiguration (e.g., missing patches)
— Default passwords
— Denials of service against the TCP/IP stack by using mangled packets

— Nmap (Network Mapper) [115]: Nmap is a security scanner used to discover hosts and
services on a computer network and create a map of the network. Some of its main
features are:
— Host discovery
— Port scanning
— Version detection
— OS detection
— Scriptable interaction with the target

106

Figure 5.8 Populating the Context Ontology

We complement the contextual information received from the above sensors with the
information that network and security administrators provide. Next, within the Context
Integration component, all these information are converted into XML or Excel format, and
using XML Tab or Excel Import plug-ins, they are imported into the Context Ontology as
its class instances. Figure 5.8 illustrates how we populate the Context Ontology with the
underlying contextual information.

5.4 Discussion on Scalability

We have not addressed at all the issue of scalability and performance of our approach.
One of the main challenges that we faced during implementing Pasargadae event correlation
framework is importing a large volume of information (e.g., 1G) into Protégé ontology editor.
For this purpose, we tested various data format (e.g., XML, Excel, MySQL database),
and various storage formats, such as Files and databases. However, this challenge is not
completely addressed yet.

Generally, while ontologies are quite flexible and readily provide the benefits of abstraction,

107

they are not always efficient at updating and quickly providing access to stored data. In
the case of alert correlation systems of large IT infrastructures, the vast amounts of data
involved are likely to make typical XML flat file or relational database storage unwieldily
and inefficient for quick on-line alert correlation. While some specific data storage solutions
such as object-oriented databases might help alleviate these problems, significant engineering
challenges would have to be solved to make Pasargadae perform at the same line speeds as
some current commercial-grade Intrusion detection and alert correlation systems.

5.5 Summary

In this chapter, we described the implementation process of the proposed Pasargadae event
correlation framework. We started by describing how we implemented the designed ontologies
using the Protégé ontology editor and knowledge acquisition system. Next, we described how
to store the designed ontologies, reasoning on the ontologies, and how to query them in order
to correlate various classes instances. In Section 5.3, we described the population process of
the designed ontologies. In this section, we described various event and context sensors that
were employed, and we explained in detail the event and context integration process. Finally,
in Section 5.4, we described the challenges that we faced during implementation process, and
a brief discussion on the scalability of the proposed ontologies was explained.

108

CHAPTER 6 CASE STUDY-BASED EVALUATION

In the Chapter 4 of this thesis, we proposed the Pasargadae ontology-based context-aware
event correlation framework as well as a new event correlation approach and a new alert
fusion approach. Next, in Chapter 5, we described in detail the implementation process of
Pasargadae framework in our lab and field test environment.

In this chapter, in the form of some case studies, we describe how the proposed event
correlation and alert fusion approaches employ Pasargadae to perform a semantic-based
and context-aware event correlation and alert fusion. We selected these case studies to
evaluate our proposed approaches because they include attacks that are based on recently
emerged sophisticated techniques making current IDS and correlation techniques unable to
detect them. Hence, we evaluate the proposed correlation and fusion approaches from various
perspective and based on different criteria, and we mainly show the significant flexility and
efficiency of Pasargadae in implementing various correlation and fusion approaches.

The rest of this chapter is organized as follows. In Section 6.1, we start by describing the
first case study that consists of an Island-Hopping attack. In Section 6.2, the second case
study covering a Recon-Breakin-Escalate attack is described. Our final case study will be
explained in Section 6.3 based on DARPA 2000 data set. Section 6.4 is dedicated to the
discussion on flexility and extendability of the proposed approaches. Finally, in Section 6.5,
we describe a short summary of this chapter.

6.1 Case Study 1: Island-hopping attacks

As our first case study, we describe an instance of Island-Hopping attack scenario which is
part of the UNB ISCX Intrusion Detection Evaluation Dataset [151]. Island-Hopping is a
technique of penetrating a network through a weak link, and then hopping around systems
within that network [177]. As shown by Figure 6.1, in this scenario the attacker employs
the Adobe Reader util.printf() buffer overflow vulnerability (CVE-2008-2992) to execute
arbitrary code with the same privileges as the user running it.

First of all, let us follow the steps taken by the attacker and let us consider what kind of
artifacts would be picked up by event sensors. To launch an attack, the attacker creates a
malicious PDF file using Metasploit, and embeds a Meterpreter reverse TCP shell on port
5555 inside it. Then, the attacker sends a system upgrade email including the PDF file on
behalf of admin@[...] to all the users of the testbed. Through user5, which initiates the first

109

Figure 6.1 An instance of Island-hopping attack

session (events 1, 2, 3), the attacker starts to scan potential hosts on two consecutive subnets
192.168.1.0/24 and 192.168.2.0/24 (event 4). User12 is identified as running Windows XP
SP1 with a vulnerable SMB authentication protocol on port 445 (CVE-2008-4037) (events 5,
6). The attacker exploits this vulnerability to capture user12 (event 7) and a scan is performed
from this user to the server subnet (192.168.5.0/24) (event 8). This scan identifies a Windows
Server 2003 running an internal Web application using MSSQL Server as its backend database
with only port 80 opened. This leads to the use of Web application hacking techniques like
SQL injection (event 9). Finally the attacker, using SQL injection techniques, compromises
the target system (event 10, 11). Table 6.1 presents a summary of the events.

Now that we have a specific example attack with defined attributes, we can expand the base
attack class of the proposed attack ontology, and drill down into some specific classes for our
analysis. For this purpose, we expand this class into some specific classes including attack

110

Table 6.1 Event logs generated by the sensors in the island-hopping attack scenario

Event
ID Name Sensor Date Source Target Tag

1 Local
Exploit HIDS 6/13/10

16:02:20 192.168.1.105 192.168.1.105 Step
1

2 Local
Exploit Antivirus 6/13/10

16:02:22 192.168.1.105 192.168.1.105 Step
1

3 Reverse
Connection

Packet
Capturer

6/13/10
16:17:32 192.168.1.105 192.168.1.105 Step

2

4 Scanning NIDS 6/13/10
16:42:24 192.168.1.105 192.168.1.0/24

192.168.2.0/24
Step
3

5 Windows
File Sharing NIDS 6/13/10

17:20:32 192.168.1.105 192.168.2.112 Step
3

6 Windows
File Sharing NIDS 6/13/10

17:34:32 192.168.1.105 192.168.2.112 Step
3

7 Local
Exploit HIDS 6/13/10

17:50:24 192.168.2.112 192.168.2.112 Step
4

8 Scanning NIDS 6/13/10
18:02:37 192.168.2.112 192.168.5.0/24 Step

5

9 HTTPWeb NIDS 6/13/10
18:19:41 192.168.2.112 192.168.5.123 Step

6

10 SQLInjection HIDS 6/13/10
18:20:19 192.168.5.123 192.168.5.123 Step

7

11 Bad
Request MSSQL 6/13/10

18:20:21 192.168.5.123 192.168.5.123 Step
7

vector, attack objectives, and a number of subclasses showing the type of example instances
of this class. Figure 6.2 illustrates this customized expansion of the base attack class. We will
use this specific version of the attack ontology in the next case studies, and also in the field
test. As explained, in this case study, the attack vector is “system upgrade email having a
malicious attachment”, and the attack objectives can be “data annihilation and information
leakage”.

In order to preprocess the events generated by event sensors during the above scenario, first,
the event integration component integrates all received events. Then, the integrated events
are transferred into the event ontology. Additionally, we manually populate vulnerability
and context ontologies based on the published documents related to the UNB ISCX dataset.
Therefore, the Adobe Reader util.printf() vulnerability and others that might be present
in the IT infrastructure are input into the vulnerability ontology. Contextual information
about the existing hosts (IP addresses, open ports, available services, etc.), services and
users are also manually input into the context ontology. In this case, this includes the

111

Figure 6.2 Class diagram relationship of the attack ontology

information about the three compromised hosts (IP addresses 192.168.1.105, 192.168.2.112,
and 192.168.5.123), their open ports (i.e. 5555 and 445).

After preprocessing the events and populating the ontologies, we start the event correlation
process. In this scenario, we can see that Table 6.1 only lists the event relevant to our attack
scenario. In this case, the first step of the process, filtering out non-relevant alerts, does not
reduce the number or events that must be processed. So, after gathering the generated events
from the heterogonous sensors, we jump to the first level meta-event creation phase, and we
create the corresponding meta-events. In our case, the correlator will regroup events 1 and 2,
two sensors reporting on the same occurrence, in a meta-event. Also, because they originate
from the same source and hit the same target, event 5 and 6 are correlated as being related
to each other in the same meta-event. Here, even though event 7 is related to event 5 and
6, representing the event generated on the host by the SMB exploit we see moving on the
network in event 6, the event is not correlated because of the Divide & Conquer technique
we use to correlate network and host based event separately. In a similar way, event 10 and

112

Table 6.2 The meta-event list created from the events in Table 6.1

Meta-
Event
ID

Name Sensor Date Source Target Tag

1 Local Exploit [HIDS,
Antivirus]

6/13/10
16:02:20-22 192.168.1.105 192.168.1.105 correlates

with 2

2 Reverse
Connection

Packet
Capturer

6/13/10
16:17:32 192.168.1.105 192.168.1.105 correlates

with 1

3 Scanning NIDS 6/13/10
16:42:24 192.168.1.105 192.168.1.0/24

192.168.2.0/24

4 Windows File
Sharing NIDS

6/13/10
[17:20:32 -
17:34:32]

192.168.1.105 192.168.2.112 correlates
with 5

5 Local Exploit HIDS 6/13/10
17:50:24 192.168.2.112 192.168.2.112 correlates

with 4

6 Scanning NIDS 6/13/10
18:02:37 192.168.2.112 192.168.5.0/24

7 HTTPWeb NIDS 6/13/10
18:19:41 192.168.2.112 192.168.5.123 correlates

with 8

8 [SQLInjection,
Bad Request]

[HIDS,
MSSQL]

6/13/10
[18:20:19 -
18:20:21]

192.168.5.123 192.168.5.123 correlates
with 7

11 will be correlated together because of the shared source IP, target IP, and application. As
Table 6.2 shows, the first level meta-events are the result of this phase. We make a second
pass on the meta-events to correlate all the events, both host based and network based, to
form a sequence of events based on consequence and prerequisite relationships. For example,
the packets flying on the network in meta-even 1 and 2 have consequences in the form of
scanning event 3 and so on. We can then rebuild the entire attack scenario using the Rule 6.1:

113

OS(?os1) ∧ hasName(?os1, ”WinXP”) ∧ hasVersion(?os1, ”SP1”) ∧ OS(?os2)∧

hasName(?os2, ”WindowsServer”) ∧ hasVersion(?os2, ”2003”) ∧ Application(?ap1)∧

hasName(?ap1, ”AdobeAcrobate”) ∧ hasVersion(?ap1, 8) ∧ Application(?ap2)∧

hasName(?ap2, ”MSSQLServer”) ∧ Host(?h1) ∧ hasApp(?h1, ?ap1) ∧ Host(?h2)∧

hasOS(?h2, ?os1) ∧ Host(?h3) ∧ hasOS(?h3, ?os2) ∧ hasApp(?h3, ?ap2) ∧ Event(?e1) ∧

hasSource(?e1, ?h1) ∧ hasDest(?e1, ?h2) ∧ Event(?e2)∧

hasSource(?e2, ?h2) ∧ hasDest(?e2, ?h3)∧

−→ sqwrl:select(?e1) ∧ sqwrl:select(?e2)∧

sqwrl:count(?e1) ∧ sqwrl:count(?e2)
(6.1)

Rule 6.1 correlates event and attack ontologies, and attempts to discover corresponding
events for each step of the attack. If it finds at least one match regarding each step, the
rule will be successful in detecting the whole attack scenario. This can now be presented to
the security administrator instead of flooding him with a huge number of events. Figure 6.3
represents the result of the event correlation process.

Compromising
USER 5 (XP SP1)

using
CVE-2008-2992

Compromising
USER 12 (XP SP1)

using
CVE-2008-4037

Network
Scanning

SQL Injection
into

Win Server 2003

Network
Scanning

Figure 6.3 The island-hopping attack graph

6.2 Case Study 2: Recon-breakin-Escalate attacks

As the second case study, we describe an instance of Recon-Breakin-Escalate attack scenarios.
The Recon-Breakin-Escalate scenario models an attacker who scans for vulnerabilities in a
network or host, breaks into a vulnerable host, and escalates her/his privilege [177]. In our
attack scenario, a malicious attacker scans a wide range of IP addresses to find a vulnerable
target. Once a server is found, he enumerates the services to find a vulnerability and he
exploits the vulnerability to get arbitrary code execution and gain control of the server. He
can then proceed to extract information from the server. Figure 6.4 illustrates this scenario.

As with our first example, we will go through each of the attacker’s step and explain what
events would be generated by our sensors on each step. Table 6.3 summarizes the events
generated during the attack. First, the attacker (152.63.146.6) using a vulnerability scanning

114

Figure 6.4 An instance of recon-breakin-escalate attack

Table 6.3 The meta-event list created from the events in Table 6.1

EventID Name Sensor Date Source Target Tag

1 Scanning Router May 31
09:27:44 152.63.146.6 xxx.yyy.zzz.1(80)

xxx.yyy.zzz.n(80) step 1

2 Scanning NIDS May 31
09:27:46 152.63.146.6 xxx.yyy.zzz.1(80)

xxx.yyy.zzz.n(80) step 1

3
Connection
volume
alert

Firewall Jun 1
06:08:50 152.63.146.6 xxx.yyy.zzz.4 step 2

4 Apache
Exploit NIDS Jun 1

06:08:51 152.63.146.6 xxx.yyy.zzz.4 step 2

5 IIS Exploit NIDS Jun 1
06:08:52 152.63.146.6 xxx.yyy.zzz.4 non-relevant

6 Local
Exploit HIDS Jun 1

06:08:54 152.63.146.6 xxx.yyy.zzz.4 step 2

7 Access Apache Jun 1
06:08:55 152.63.146.6 xxx.yyy.zzz.4 step 3

tools launches a series of probes against the target network (xxx.yyy.zzz.0/24) searching for
vulnerable hosts (events 1 and 2). The attacker finds that the host xxx.yyy.zzz.4 is vulnerable
to CVE-2012-1823 and CVE-2011-3348. The attacker launches a web server exploit kit tool
that exploits numerous vulnerabilities in a short period of time causing the firewall to register
a large number of connections (event 3). A number of exploits are spotted by the IDS (events
4 and 5) and one makes it through and is registered on the host based IDS (event 6). Finally,
the attacker accesses confidential information, such as the password file, on the web server

115

(events 7).

Table 6.4 The meta-event list created from the events in Table 6.1

MetaEvent
ID Name Sensor Date Source Target Tag

1 Scanning [Router,
NIDS]

May 31
09:27:44-
09:27:46

152.63.146.6 xxx.yyy.zzz.1(80)
xxx.yyy.zzz.n(80) step 1

2

[Connection
volume
alert,
Apache
Exploit]

[Firewall,
NIDS]

Jun 1
06:08:50-
06:08:51

152.63.146.6 xxx.yyy.zzz.4 step 2

3
[Local
Exploit,
Access]

[HIDS,
Apache]

Jun 1
06:08:54-
06:08:55

152.63.146.6 xxx.yyy.zzz.4 step 3

After gathering the events from the various sensors, the events are correlated. First, in
the non-relevant events reduction step, we eliminate those events which are detected as
non-relevant. For example, the attack tool attempts to exploit multiple vulnerabilities. Of
those vulnerabilities, some are known to be ineffective. So, based on our information about
the context (i.e. that the server is running a version of Apache) in the Host OS attribute and
based on the information in the attack ontology, we can eliminate the IIS exploit (event 5)
as being non-relevant event, i.e. as being impossible to start a chain of events. Therefore, we
eliminate this event from event list. Then, we create the first level meta-events as presented
in the island-hopping scenario. Table 6.4 shows the meta-events produced during this phase.
Finally, we can rebuild the entire attack scenario using the Rule 6.2. Figure 6.3 represents
the result of the event correlation process.

116

Host(?h1) ∧ Host(?h2) ∧ Application(?a) ∧ hasApplication(?h2, ?a)∧

Vulnerability(?v) ∧ hasVulnerability(?a, ?v) ∧ Analyzer(?an)∧

hasType(?an, HIDS) ∧ Time(?t1) ∧ Time(?t2) ∧ Time(?t3) ∧ Event(?e)∧

hasSource(?e, ?h1) ∧ hasTime(?e, ?t1) ∧ Event(?e1) ∧ hasSource(?e1, ?h1)∧

hasDestination(?e1, ?h2) ∧ hasTime(?e1, ?t2) ∧ Event(?e2)∧

hasSource(?e2, ?h2) ∧ hasDestination(?e2, ?h2) ∧ hasAnalyzer(?e2, ?an)∧

hasTime(?e2, ?t3) ∧ swrlb:stringEqualIgnoreCase(?t1,?t2)∧

swrlb:stringEqualIgnoreCase(?t2,?t3)∧

−→ sqwrl:select(?e) ∧ sqwrl:limit(20)∧

sqwrl:select(?e1) ∧ sqwrl:limit(5)
(6.2)

Figure 6.5 The recon-breakin-escalate attack graph

6.3 Case Study 3: Alert fusion and alert correlation based on DARPA 2000
data set

In this case study, we evaluate Pasargadae as an alert correlation framework using DARPA
2000 data set [120].

The DARPA 2000 dataset contains two attack scenarios: LLDDOS 1.0 and LLDOS 2.0.2.
We have chosen the first attack scenario (LLDDOS 1.0) for our evaluation. LLDDOS 1.0 is a
multi-step scenario corresponding to a Distributed Denial of Service (DDoS) flooding attack
[194]. The attack has 5 phases and it takes about three hours to be completed. Table 6.5
lists the attack phases, and Figure 6.6 illustrates a number of example events of every phase.

We use both the RealSecure and Snort NIDS as base our alerts sensors to detect all the steps
of the attack. Snort outputs around 1,211 raw alerts for the LLDDOS 1.0 dataset, but it does
not detect the installation phase of the DDoS attack (i.e. phase 4). On the other hand, and
as is described in [90], RealSecure outputs 924 raw alerts for the same dataset, corresponding

117

Table 6.5 Five phases of DARPA’s LLDDOS1.0 attack scenario

Step Name Time Description

1 IP Sweep 09:45 to
09:52

The attacker sends ICMP echo-requests and based
on the ICMP echo-replies finds out which hosts are
active.

2 Sadmind
Ping

10:08 to
10:18

Testing the existence of sadmind daemon on the
live IPs.

3 Exploiting 10:33 to
10:34

Exploiting the sadmind vulnerability to break into
vulnerable hosts.

4 Installation 10:50 Installation of the trojan mstream DDoS software
on three hosts.

5 Launching
DDoS 11:27 Launching the DDoS attack.

to the 22 alert types shown in Table 6.6. However, it does not output any alerts related
to ICMP pings (i.e. phase 1). Consequently, the combination of Snort and RealSecure can
detect all phases of the attack. Nonetheless, just using a combination of both IDS alerts with
a simple OR rule will result in a significant number of redundant alerts and false positives, as
we will see. With Pasargadae, we expect to have lower redundancy, and fewer non-relevant
alerts and false positives.

In the second step, Prelude converts all the received alerts into the IDMEF format, and
transfers the integrated alerts into the alert ontology as its instances. We manually populate
the context and vulnerability ontologies based on the information existing in the published
documents related to the DARPA 2000 dataset. Thus, the Solaris sadmind vulnerability
(CVE-1999-0977) and others existing vulnerabilities in the underlying network are transferred
into the vulnerability ontology. The same is done with contextual information about the
existing hosts and users, in this case including the three compromised hosts (IP addresses
172.16.115.20, 172.16.112.50, 172.16.112.10), and their open ports (i.e. telnet port 23) and
users (e.g. hacker2).

As more than one alert sensor have been employed in this scenario, first, we evaluate the
performance and efficiency of our proposed semantic-based and context-aware alert fusion
approach described in chapter 5. We start with eliminating redundant alerts related to the
independent detection of same malicious events via different alert sensor using the following
rule:

118

Figure 6.6 Alerts related to the 5 phases of the LLDDOS 1.0

ALERT(?a1) ∧ ALERT(?a2) ∧ ANALYSER(?an1) ∧ ANALYSER(?an2)∧

CreateTime(?ct1) ∧ CreateTime(?ct2) ∧ DetectTime(?dt1)∧

DetectTime(?dt2) ∧ AnalyzerTime(?at1) ∧ AnalyzerTime(?at2)∧

SOURCE(?s1) ∧ SOURCE(?s2) ∧ TARGET(?t1) ∧ TARGET(?t2)∧

TARGET(?t1) ∧ TARGET(?t2) ∧ CLASSIFICATION(?c1)∧

CLASSIFICATION(?c2) ∧ ASSESSMENT(?as1) ∧ ASSESSMENT(?as2)∧

swrlb:stringEqualIgnoreCase(?ct1,?ct2)∧

swrlb:stringEqualIgnoreCase(?dt1,?dt2)∧

swrlb:stringEqualIgnoreCase(?at1,?at2)∧

swrlb:stringEqualIgnoreCase(?s1,?s2)∧

swrlb:stringEqualIgnoreCase(?t1,?t2)∧

swrlb:stringEqualIgnoreCase(?c1,?c2)∧

swrlb:stringEqualIgnoreCase(?as1,?as2)∧

swrlb:stringEqualIgnoreCase(?an1,"Snort")∧

swrlb:stringEqualIgnoreCase(?an2,"RealSecure")

−→ sqwrl:select(?a1)

(6.3)

119

Table 6.6 Alert types generated by ISS RealSecure based on the DARPA 2000 dataset

ID AlertType
1 RIPExpire
2 RIPAdd
3 Email_Ehlo
4 TelnetTerminaltype
5 FTP_User
6 FTP_Pass
7 FTP_Syst
8 HTTP_Shells
9 Admind
10 Sadmind_Ping
11 Email_Almail_Overflow
12 HTTP_Java
13 Sadmind_Amslverify_Overflow
14 Mstream_Zombie
15 Rsh
16 HTTP_Cisco_Catalyst_Exec
17 SSH_Detected
18 Email_Debug
19 TelnetXdisplay
20 TelnetEnvAll
21 Port_Scan
22 Stream_DoS

Rule 6.3 discovers all alerts having the same attributes but detected by different sensors.
Based on our analysis, 32.7% of the gathered alerts have been generated by both Snort
and IIS RealSecure. Therefore, we eliminate these alerts and keep the rest of the alerts for
further analysis by the decision making component. Then, considering the five phases of the
LLDDOS 1.0 attack scenario, the decision making component uses further rules to inspect the
prerequisites (Rules 4.1 and 4.2) and consequences (Rule 6.4) of the event corresponding to
each alert. Thus, the decision making component recognizes those alerts whose prerequisites
are not met, or alerts whose consequences are not part of this particular 5-phase attack.
These alerts are classified as non-relevant alerts and false positives, respectively.

ALERT(?a) ∧ CONSEQUENCES(?c) ∧ hasStep(?c,?s) ∧ hasName(?a,?n1)∧

hasName(?s,?n2) ∧ swrlb:stringEqualIgnoreCase(?n1,?n2)

−→ sqwrl:select(?a)

(6.4)

120

For instance, in the first phase of the attack, the alerts that are related to the ICMP
echo requests are considered as attacks because their corresponding events are cognitive
requirements for the next attack steps. As another example, in the third phase of the attack,
the alerts that are related to the sadmind Remote-to-Root exploit are considered as attacks
because their corresponding events have contextual effects on the underlying systems. Our
results indicate that 91.08% of the alerts were false positives, and only 8.92% of the alerts
were true positives.

Table 6.7 lists our results based on the mentioned evaluation metrics in the previous subsection.
Since both base alert sensors (Snort and ISS RealSecure) only detect a few of the 33,787 attack
events in Phase 5 (launching DDoS), their total false negative rates are quite high. The recall
column in Table 6.7 consequently reports low rates for both sensors and our fusion approach.
On the other hand, our fusion approach does well at reducing false positives: it reduces the
false positive rate five-fold and four-fold for Snort and RealSecure, respectively, as can be
seen in the FP column. Figure 6.7 shows that our model gives better results.

Next, we apply our proposed event correlation approach to the remaining alerts of the
previous step. Therefore, alerts reported by only one IDS are then further analysed by
attempting attack reconstruction on the 5 phases of the LLDDOS 1.0 attack scenario, by
using the following rule:

Table 6.7 Alert fusion results of DARPA 2000 data set

IDS Redundant
alerts (%) FP TP FN Precision Recall F-measure

Snort 0.00% 1118 93 33814 0.07 0.002 0.002
RealSecure 0.00% 870 54 33853 0.05 0.001 0.001

The proposed
fusion

approach
32.7% 46 123 33784 0.836 0.003 0.005

121

Figure 6.7 Improving the false positive rate of Snort + RealSecure using the proposed fusion
approach

ATTACK(?at) ∧ hasName(?at,"LLDDOS1") ∧ ALERT(?a1) ∧ ALERT(?a2) ∧ ALERT(?a3)∧

ALERT(?a4) ∧ ALERT(?a5) ∧ ALERT(?a6) ∧ ALERT(?a7) ∧ HOST(?h1)∧

hasName(?a1,"Scanning") ∧ hasTarget(?a1,?h1) ∧ hasService(?h1,"ICMP")∧

hasName(?a2,"Sadmind_Ping") ∧ hasName(?a3,"Sadmind_Amslverify_Overflow")∧

hasName(?a4,"Admind") ∧ hasName(?a4,"Rsh") ∧ hasName(?a4,"MStream_Zombie")∧

hasName(?a4,"Stream_DOS")

−→ sqwrl:select(?a1,?a2,?a3,?a4,?a5,?a6,?a7,?at)
(6.5)

Table 6.8 Experimental results based on the DARPA 2000 dataset

IDS Redundant
alerts (%) FP TP FN Precision Recall F-measure

Snort 0.00% 1118 93 33814 0.07 2× 10−3 2× 10−3

RealSecure 0.00% 870 54 33853 0.05 10−3 10−3

ONTIDS 32.7% 0 123 33784 1.00 3× 10−3 5× 10−3

122

Rule 6.5 correlates alert and attack ontologies, and discovers corresponding alerts for the each
step of the attack. If at least one match is found for each step, the rule will be successful in
detecting the whole attack scenario. Table 6.8 summarises our results. The achieved results
indicates that ONTIDS does considerably well at reducing false positives, in fact reducing it
to 0. Figure 6.8 shows that our model gives better results.

Figure 6.8 Improving the false positive rate of Snort + RealSecure using the proposed
correlation approach

6.4 Discussion on flexibility

We have demonstrated the use of the Pasargadae event correlation framework in a number of
quite different case studies involving considerably distinct attack scenarios. More important
than the reduction in false positives (in this somewhat contrived evaluation scenario), the
point of these tests was to show the level of significant flexibility of such a framework. The
fact that the same correlation Rules 4.1 and 4.2 are used for the context-based alert filtering
in both scenarios deceptively hides the fact that the vulnerability and context instances in
both cases are quite different as they come from different sources, and hence have different
attributes and properties. In fact, Figure 6.9 illustrates that the ontologies for every attack

123

scenario are different as they involve different subclasses of context, sensors, attacks and
alerts. Nonetheless, it is the power of abstraction of ontologies (implemented through the
construction of adequate information integration drivers) that allows us to design and use
such generic correlation rules. As security analysts start to use Pasargadae, we expect that
these ontologies will naturally expand to include new subclasses capturing the idiosyncrasies
of the systems being monitored, the various types of sensors monitoring them, and richer
and more complex attack models and vulnerabilities.

Figure 6.9 The involved classes of the designed ontologies on the proposed test cases

6.5 Summary

In this chapter, in the form of some case studies, we evaluated Pasargadae framework along
with the proposed event correlation and alert fusion approaches. First, we evaluated the
proposed approaches using UNB ISCX 2012 data set. Next, we evaluated the proposed
approaches based on a Recon-Breakin-Escalate attack. Section 6.3 evaluated the proposed
event correlation and alert fusion approaches using DARPA 2000 LLDDOS 1.0 data set. The

124

achieved results in these case studies, indicate that the proposed approaches are efficient
enough to detect and reconstruct famous attack scenarios indexed in such publicly available
data sets. Finally, we discussed about the significant flexibility, extendability and efficiency
of the Pasargadae framework in implementing various correlation and fusion approaches, and
inspecting different attack scenarios.

125

CHAPTER 7 FIELD TEST-BASED EVALUATION

In the Chapter 4 of this thesis, we proposed the Pasargadae ontology-based context-aware
event correlation framework as well as a new event correlation approach and a new alert
fusion approach. Next, in Chapter 5, we described in detail the implementation process of
Pasargadae framework in our lab and field test environment. Chapter 6, using some popular
IDS evaluation data sets, evaluated the proposed event correlation and alert fusion approaches
in the form of some case studies. As the provided case studies were limited because of not
including the underlying contextual information, in this chapter, we concentrate on applying
the proposed event correlation and alert fusion approaches in a real network to analyze ground
truth network traffic. We mainly evaluate the performance and efficiency of the proposed
approaches, and we show how these approaches behave in real world usages.

The rest of this chapter is organized as follows. In Section 7.1, we start by introducing Groupe
Access Company and their gateway product as our field test environment. In Section 7.2, we
describe in detail our testbed network architecture. In Section 7.3, we describe the field test
scenario which was concentrated on the event sensors functionality test. In Section 7.4, we
describe the second field test which is related to a targeted attack that compromises a web
server. Section 7.5 is dedicated to the third field test which is related to a targeted attack
that launches an internal DoS attack against Astersik VoIP Server. Finally, in Section 7.6,
we describe a short summary of this chapter.

7.1 Groupe Access Company as Our Field Test Environment

In this section, we describe how we implemented the Pasargadae framework in a real
environment in order to evaluate the proposed event correlation and alert fusion approaches
from various perspectives. To this end, we conducted our experiments in Groupe Access
company which is one of the leading hardware and information technology (IT) services firms
in Canada. Groupe Access provides cloud-based firewall and network security monitoring
services to many clients located in Canada and USA. One of the upcoming products of
Groupe Access is MCB 1 which is currently under tests and experiments and will be released
from February 2015. MCB mainly plays a gateway role for small and medium sized computer
networks and consists of several components which will be used as the event sensors in our
experiments:

— Openswan as a Site-to-Site VPN tool

1. MyCloud in a Box

126

— OpneVPN as a Client-Server VPN tool
— Linux IPtables as a Firewall
— Suricata as an IDS/IPS
— Asterisk as a VoIP PBX
— Squid as a web proxy
— SquidGuard as a web filtering tool
— WFS as a failover tool

Groupe Access intends to provide various cloud-based services, such as firewall, VPN, IDS/IPS,
VoIP PBX, web proxy, web filtering, etc. via MCB which will be located in the computer
networks of clients. In order to remotely configure and monitor the behavior of MCB in the
targeted network, there is a Command and Control (C&C) department situated in Groupe
Access that collects/issues various monitoring/configuration information from/to MCB. We
use the information collected in the C&C department to test and evaluate our event and
alert correlation system. In the following, first, we describe the testbed network architecture
and the sensors layout. Next, we explain our experiments and results.

7.2 Testbed Network Architecture

Figure 7.1 illustrates the network architecture of our experiments. This architecture includes
four distinct networks:

— Groupe Access network: this network is the main network of Groupe Access company.
About 60 employees having various roles are connected to this network. MCB is
connected through its eth0 to this network as a typical computer system, but in the
promiscuous mode that allows MCB to watch all the traffic passing the entire network.

— Test-LAN: This network is considered as a small LAN for our tests. It includes a
traffic generator and 2 client machines. MCB is the gateway of this network, i.e., all
the incoming traffic and outgoing traffic pass MCB.

— Test-DMZ: This network is considered as a DeMilitarized Zone (DMZ) for our tests.
It consists of servers that provide web, email, VoIP PBX and access control.

— Test-WAN: This network plays WAN role in our tests. It includes a traffic generator, 2
client machines, and an attacker. Using this network, we send various network traffic
(normal and malicious) into the test-LAN to evaluate the performance of MCB’s
sensors.

As the traffic generator, we use the IXIA 400 [1] and the Ostinato [2] traffic generators for our
tests. Depending on the type of test, the traffic generators can send distinct types of traffic
in both the sides. Figure 7.2 illustrates IXIA’s GUI, and Figure 7.3 illustrates Ostinatio’s

127

Figure 7.1 Field test network architecture

GUI configured for our experiments.

As the client machines, we use virtual machines with the following specifications:
— OS: Windows 7 SP1
— CPU: Intel (R) Core (TM) i5-2310 CPU @ 2.90GHz
— Memory: 2048

The Windows operating system is chosen because it would be possible to exploit a diverse
set of known vulnerabilities against the testbed environment.

Table 7.1 presents a summary of the existing nodes in the Testbed network. The context
ontology is populated using these information and some other information provided by
network administrators. These information will be employed in the next sections during
the event correlation process.

128

Figure 7.2 IXIA 400 GUI

7.3 Field Test 1: Sensors Functionality Test

In order to verify the functionality of the sensors integrated into MCB, we connected it to
the described networks based on the testbed architecture. Next, considering the type of the
sensors, various types of traffic were generated by traffic generators and client machines, and
transferred into both the test LAN and test WAN. In the same time, Suricata IDPS was
monitoring the whole traffic passing the Groupe Access Network. Table 7.2 lists some of the
logs generated by these sensors. We received these event logs and alerts via Prelude Security
Information Event Management system (SIEM) installed in the C&C servers. Receiving such
event logs indicates on the sensors’ correct functionality while inspecting their related events.

129

Figure 7.3 Ostinato’s GUI

7.4 Field Test 2: A Targeted Attack to Compromise a Web Server

In this section, first, we describe a targeted attack scenario. Next, using the proposed event
correlation system, we try to reconstruct the attack scenario. First of all, let us follow the
steps taken by the attacker and let us consider what kind of artifacts would be picked up by
event sensors.

As Figure 7.4 illustrates, to launch the attack, the attacker creates a malicious executable
using Metasploit, and embeds a Meterpreter reverse TCP shell inside it. Next, the attacker
sends a system upgrade email including the .exe file on behalf of admin@[...] to all the users
of the test LAN (event 1, 2). Client 2 (C2) which gets compromised by the attacker, initiates

130

Table 7.1 Involved nodes in the testbed network architecture

Node Role OS Application Users Usage
Profile

172.16.33.2 Traffic
Generator

Windows
Server 2008 IXIA 400 Administrators Permanent

172.16.33.4 Client
Machine

Windows 7
SP1 ClamAV Client 1 Login time:

8am - 5pm

172.16.33.3 Client
Machine

Windows 7
SP1

Adobe
Reader 8 Client 2 Login time:

8am - 5pm

172.16.44.1 AD Server Windows
Server 2012

Active
Directory,
OSSEC,
ClamAV

Administrators 8am - 5pm

172.16.44.2 Email
Server

UBUNTU
12.04

iRedMail,
OSSEC,
ClamAV

Administrators Permanent

172.16.44.3 Web Server Windows
Server 2012

MSSQL,
OSSEC,
ClamAV

Administrators Permanent

172.16.44.4 VoIP Server UBUNTU
12.04

Asterisk,
OSSEC,
ClamAV

Administrators 8am - 5pm

the first session (events 4). Through this client, the attacker starts to scan the server subnet
(172.16.44.0/24) collecting information (event 5). This scan identifies a Windows Server

Figure 7.4 The targeted attack scenario to compromise a Web Server

131

Table 7.2 Some event logs generated by the employed event sensors
Classification Source Target Analyzer Time

ET POLICY Dropbox Client
Broadcasting 172.16.51.32 172.16.51.255 Suricata 2014-08-21

17:21:47
SURICATA zero length padN

option
fe80:0000:0000:0000:
14cb:c811:6202:a394

ff02:0000:0000:0000:
0000:0000:0000:0016 Suricata 2014-08-21

17:21:37
SURICATA ICMPv4 unknown

type 172.16.52.212 224.0.0.1 Suricata 2014-08-21
17:23:05

UDP packet dropped 172.16.33.4 172.16.33.255 netfilter 2014-08-21
17:22:34

UDP packet dropped 172.16.33.4 172.16.33.255 netfilter 2014-08-21
17:22:34

UDP packet dropped 1.1.1.1 1.1.1.31 netfilter 2014-08-21
17:23:25

voip.ms unknown 192.168.71.130 Asterisk 2014-08-21
18:41:50

voip.ms unknown 192.168.71.130 Asterisk 2014-08-21
18:42:00

Log file rename 0xd79ef5ff.0x00000000 squid3 2014-08-21
06:25:04

Log file rename 0xd7a0477f.0x00000000 squid3 2014-08-22
06:25:03

VPN:.[AFINET]42.2.2.2:81 local OpenVpn 2014-08-18
21:16:10

VPN.Completed unknown unknown OpenVpn 2014-08-18
21:16:10

Promiscuous mode detected UBUNTU-MCB-PHY.
developer.ca kernel 2014-08-20

17:17:06

Promiscuous mode detected UBUNTU-MCB-PHY.
developer.ca kernel 2014-08-21

17:03:45

2012 providing internal and external web services. The attacker identifies that there is an
internal web application that uses MSSQL Server as its backend database, running on this
server. This leads to the use of web application hacking techniques like SQL injection (event
6, 7, 8). Finally, the attacker using such techniques, compromises the web server (event 9,
10). Table 7.3 presents a summary of the generated events via the existing sensors in the
underlying network.

After transferring the collected and integrated event logs into the event ontology, in this
step, using Rules 4.1 and 4.2, we verify the relevance of these events to the underlying
context in order to filter out non-relevant alerts. For this purpose, information of the context
and vulnerability ontologies are employed. Table 7.1 presents a summary of the contextual
information.

We continue to the first level meta-event creation phase, and we create the corresponding
meta-events of the collected events. In our case, the correlation will regroup events 9 and 10
two sensors reporting on the same occurrence, in a meta-event . In a similar way, events 6, 7,
8 will be correlated together because of the shared source IP, target IP, and application. As
Table 7.4 shows, the first level meta-events are the result of this phase. We make a second
pass on the meta-events to correlate all the events, both host based and network based, to

132

Table 7.3 Event logs generated by the sensors during the Web Server attack

Event
ID Name Sensor Date Source Target Tag

1
System
Upgrade
Email

iRedMail 2014-10-07
9:02:20

admin@
parseh.ca

testuser1@
parseh.ca

Step
1

2
System
Upgrade
Email

iRedMail 2014-10-07
9:02:24

admin@
parseh.ca

testuser2@
parseh.ca

Step
1

3 Local
Exploit Antivirus 2014-10-07

10:02:20 172.16.33.4 172.16.33.4 Step
2

4 Reverse
Connection TCPDUMP 2014-10-07

10:17:32 172.16.33.3 1.1.2.22 Step
3

5 Scanning NIDS 2014-10-08
1:42:24 172.16.33.3 172.16.44.0/24 Step

4

6 HTTPWeb NIDS 2014-10-08
2:19:41 172.16.33.3 172.16.44.3 Step

5

7 HTTPWeb NIDS 2014-10-08
2:19:44 172.16.33.3 172.16.44.3 Step

5

8 HTTPWeb NIDS 2014-10-08
2:19:47 172.16.33.3 172.16.44.3 Step

5

9 SQLInjection HIDS 2014-10-08
2:20:19 172.16.44.3 172.16.44.3 Step

6

10 Bad
Request MSSQL 2014-10-08

2:20:21 172.16.44.3 172.16.44.3 Step
6

11 Reverse
Connection TCPDUMP 2014-10-08

2:25:30 172.16.33.3 1.1.2.22 Step
3

form a sequence of events (sessions) based on consequence and prerequisite relationships. We
can then rebuild the entire attack scenario using the Rule 7.1.

133

Table 7.4 Event logs generated by the sensors during the Web Server attack

Meta-
Event
ID

Name Sensor Date Source Target Tag

1
System
Upgrade
Email

iRedMail 2014-10-07
9:02:20

admin@
parseh.ca

testuser1@
parseh.ca

correlated
with 3

2
System
Upgrade
Email

iRedMail 2014-10-07
9:02:24

admin@
parseh.ca

testuser2@
parseh.ca

correlated
with 4

3 Local Exploit Antivirus 2014-10-07
10:02:20 172.16.33.4 172.16.33.4 correlated

with 1

4 Reverse
Connection TCPDUMP 2014-10-07

10:17:32 172.16.33.3 1.1.2.22 correlated
with 2

5 Scanning NIDS 2014-10-08
1:42:24 172.16.33.3 172.16.44.0/24

6 HTTPWeb NIDS

[2014-10-08
2:19:41,

2014-10-08
2:19:44,

2014-10-08
2:19:47]

172.16.33.3 172.16.44.3 correlated
with 7, 8

7 [SQLInjection,
Bad Request]

[HIDS,
MSSQL]

[2014-10-08
2:20:19,

2014-10-08
2:20:21]

172.16.44.3 172.16.44.3 correlated
with 6, 8

8 Reverse
Connection TCPDUMP 2014-10-08

2:25:30 172.16.33.3 1.1.2.22 correlated
with 6, 7

Event(?e1) ∧ Analyzer(?A1) ∧ hasAnalyzer(?e1, ?A1)∧

hasType(?A1, "Email Server") ∧ User(?u1) ∧ hasEmail(?u1, ?em1) ∧ User(?u2)∧

hasEmail(?u2, ?em2) ∧ hasSource(?e1, ?em1) ∧ hasTarget(?e1, ?em2) ∧ Event(?e2)

∧ Analyzer(?A2) ∧ hasAnalyzer(?e2, ?A2) ∧ hasType(?A2, "Packet Capture")∧

Node(?n1) ∧ Node(?n2) ∧ hasSource(?e2, ?n2) ∧ hasTarget(?e2, ?n1)∧

hasNode(?u2, ?n2) ∧ Event(?e3) ∧ Analyzer(?A3) ∧ hasAnalyzer(?e3, ?A3)∧

hasType(?A3, "NIDS") ∧ hasSource(?e3, ?n2) ∧ Event(?e4) ∧ Analyzer(?A4)∧

hasAnalyzer(?e4, ?A4) ∧ hasType(?A3, "HIDS") ∧ Node(?n3) ∧ hasSource(?e4, ?n3)

∧ Event(?e5) ∧ Analyzer(?A5) ∧ hasAnalyzer(?e5, ?A5) ∧ hasType(?A4, "DB")∧

hasSource(?e5, ?n3) ∧ Event(?e6) ∧ hasSource(?e6, ?n3) ∧ hasTarget(?e2, ?n2)∧

hasTarget(?e2, ?n2) −→ sqwrl:select(?e1, ?e2, ?e3, ?e4, ?e5, ?e6)
(7.1)

134

Rule 7.1 correlates event and attack ontologies, and attempts to discover corresponding events
for each step of the attack. If it finds at least one match regarding each step, the rule will be
successful in detecting the whole attack scenario. This can now be presented to the security
administrator instead of flooding him with a huge number of events. Figure 7.5 represents
the result of the event correlation process.

Figure 7.5 Correlating the event generated by the web server attack

7.5 Field Test 3: A Targeted Attack to Launch an Internal DoS Attack Against
Asterisk VoIP Server

As another attack scenario, in this section, we describe a targeted attack causing an internal
DoS attack against VoIP server. First of all, let us follow the steps taken by the attacker and
let us consider what kind of artifacts would be picked up by event sensors.

135

Figure 7.6 The targeted attack scenario to launch DoS attack against VoIP Server

Event(?e1) ∧ Analyzer(?A1) ∧ hasAnalyzer(?e1, ?A1)∧

hasType(?A1, "Email Server") ∧ User(?u1) ∧ hasEmail(?u1, ?em1) ∧ User(?u2)∧

hasEmail(?u2, ?em2) ∧ hasSource(?e1, ?em1) ∧ hasTarget(?e1, ?em2) ∧ Event(?e2)

∧ Analyzer(?A2) ∧ hasAnalyzer(?e2, ?A2) ∧ hasType(?A2, "Packet Capture")∧

Node(?n1) ∧ Node(?n2) ∧ hasSource(?e2, ?n2) ∧ hasTarget(?e2, ?n1)∧

hasNode(?u2, ?n2) ∧ Event(?e3) ∧ Analyzer(?A3) ∧ hasAnalyzer(?e3, ?A3)∧

hasType(?A3, "NIDS") ∧ hasSource(?e3, ?n2) ∧ Event(?e4) ∧ Node(?n3)∧

hasSource(?e4, ?n2) ∧ hasTarget(?e4, ?n3) ∧ Event(?e5) ∧ Analyzer(?A4)∧

hasAnalyzer(?e5, ?A4) ∧ hasType(?A4, "VoIP PBX") ∧ hasSource(?e5, ?n3)∧

hasTarget(?e5, ?n3) ∧ Event(?e6) ∧ Analyzer(?A5) ∧ hasAnalyzer(?e6, ?A5)∧

hasType(?A5, "HIDS") ∧ hasSource(?e6, ?n3) ∧ hasTarget(?e5, ?n3)

−→ sqwrl:select(?e1, ?e2, ?e3, ?e4, ?e5, ?e6)
(7.2)

As Figure 7.6 illustrates, to launch an attack, the attacker creates a malicious PDF file using
Metasploit, and embeds a Meterpreter reverse TCP shell inside it. Then, the attacker sends
a system upgrade email including the PDF file on behalf of admin@[...] to all the users of the
test LAN (event 1, 2). Through client 2 (C2) compromised by the attacker, initiates the first
session (events 4), the attacker starts to scan the server subnet (172.16.44.0/24) collecting
information (event 5). This scan identifies an Asterisk v11 VoIP Server providing VoIP PBX
services to the internal clients. This leads to launch a DoS attack against the VoIP Server.

136

For this purpose, the attacker installs SIPp tool on the client 2 machine. SIPp is an open
source SIP traffic generator tool. Finally, using this tool, the attacker sends thousands of
requests to the VoIP Server (event 6, 7, 8, 9, 10, 11) to make it unavailable for legitimate
requests (events 12, 13). Table 7.5 presents a summary of the events generated by various
sensors during this attack.

Table 7.5 Event logs generated by the sensors in the VoIP Server attack

Event
ID Name Sensor Date Source Target Tag

1
System
Upgrade
Email

iRedMail 2014-10-08
9:02:20

admin@
parseh.ca

testuser1@
parseh.ca

Step
1

2
System
Upgrade
Email

iRedMail 2014-10-08
9:02:24

admin@
parseh.ca

testuser2@
parseh.ca

Step
1

3 Local
Exploit Antivirus 2014-10-08

10:02:20 172.16.33.4 172.16.33.4 Step
2

4 Reverse
Connection TCPDUMP 2014-10-08

10:17:32 172.16.33.3 1.1.2.22 Step
3

5 Scanning NIDS 2014-10-08
10:42:24 172.16.33.3 172.16.44.0/24 Step

4

6 VoIP
Requests NIDS 2014-10-07

11:19:41 172.16.33.3 172.16.44.4 Step
5

7 VoIP
Requests NIDS 2014-10-07

11:19:41 172.16.33.3 172.16.44.4 Step
5

8 VoIP
Requests NIDS 2014-10-07

11:19:41 172.16.33.3 172.16.44.4 Step
5

9 Call
Request Asterisk 2014-10-07

11:19:42 172.16.44.4 172.16.44.4 Step
5

10 Call
Request Asterisk 2014-10-07

11:19:42 172.16.44.4 172.16.44.4 Step
5

11 Call
Request Asterisk 2014-10-07

11:19:42 172.16.44.4 172.16.44.4 Step
5

12 DoS attack OSSEC 2014-10-07
11:20:10 172.16.44.4 172.16.44.4 Step

6

After transferring the collected and integrated event logs into the event ontology, in this
step, using Rules 4.1 and 4.2, we verify the relevance of these events to the underlying
context in order to filter out non-relevant alerts. For this purpose, information of the context
and vulnerability ontologies are employed. Table 7.1 presents a summary of the contextual
information.

We continue to the first level meta-event creation phase, and we create the corresponding

137

meta-events of the collected events. In our case, the correlation will regroup events 6, 7, 8 two
sensors reporting on the same occurrence, in a meta-event . In a similar way, events 9, 10,
11, 12 will be correlated together because of the shared source IP, target IP, and application.
As Table 7.6 shows, the first level meta-events are the result of this phase. We make a second
pass on the meta-events to correlate all the events, both host based and network based, to
form a sequence of events (sessions) based on consequence and prerequisite relationships. We
can then rebuild the entire attack scenario using the Rule 7.1.

Rule 7.2 correlates event and attack ontologies, and attempts to discover corresponding events
for each step of the attack. If it finds at least one match regarding each step, the rule will be
successful in detecting the whole attack scenario. This can now be presented to the security
administrator instead of flooding him with a huge number of events. Figure 7.7 represents
the result of the event correlation process.

Figure 7.7 Correlating the events generated by the VoIP server attack

7.6 Summary

In this chapter, we evaluated Pasargadae framework along with the proposed event correlation
and alert fusion approaches in the form some field tests in order to test them based on a
grand truth network traffic. We started the chapter by introducing our field test environment
(Groupe Access Company’s network). Next, we described in detail our testbed network
architecture. Event sensors function test was another step of our field test. Finally, we
carried out two distinct attack scenarios (i.e. targeted attack against a Web Server and DoS

138

Table 7.6 Event logs generated by the sensors during the Web Server attack

Meta-
Event
ID

Name Sensor Date Source Target Tag

1
System
Upgrade
Email

iRedMail 2014-10-08
9:02:20

admin@
parseh.ca

testuser1@
parseh.ca

correlated
with 3

2
System
Upgrade
Email

iRedMail 2014-10-08
9:02:24

admin@
parseh.ca

testuser2@
parseh.ca

correlated
with 4

3 Local
Exploit Antivirus 2014-10-08

10:02:20 172.16.33.4 172.16.33.4 correlated
with 1

4 Reverse
Connection TCPDUMP 2014-10-08

10:17:32 172.16.33.3 1.1.2.22 correlated
with 2

5 Scanning NIDS 2014-10-08
1:42:24 172.16.33.3 172.16.44.0/24

6 VoIP
Requests NIDS

[2014-10-07
11:19:41,
2014-10-07
11:19:41,
2014-10-07
11:19:41]

172.16.33.3 172.16.44.4 correlates
with 7

7
[Call

Request,
DoS Attack]

[Asterisk,
OSSEC]

[2014-10-07
11:19:42,
2014-10-07
11:19:42,
2014-10-07
11:19:42,
2014-10-07
11:20:10]

172.16.44.4 172.16.44.4 correlates
with 6

attack against VoIP PBX Server), and employed our proposed event correlation approach to
reconstruct the scenarios. We selected these scenarios to evaluate our proposed approaches
because they include attacks that are based on recently emerged sophisticated techniques
making current IDS and correlation techniques unable to detect them. The results obtained
showed that the proposed contributions significantly improve IDS performance and capabilities
in detecting currently existing complex multi-step attacks while reducing the rate of false
positives, non-relevant and duplicate alerts.

139

CHAPTER 8 CONCLUSION

With the implementation and the employment of the Pasargadae ontology-based
context-aware event correlation approach in a real computer network and under ground truth
network traffic, and observing its significant flexibility and efficiency, we have finally reached
our goal of improving current IDS, alert and event correlation research and technology.

In this research work, we discussed the shortcomings of current IDS, alert and event correlation
systems technology, such as prone to alert flooding, false positives and false negatives,
non-relevant alerts, continuous human interaction, limited scalability and flexibility, inability
to detect zero-day and multi-step attacks, etc., and we explained that these
shortcomings make IDS, alert and event correlation systems unreliable in real-world situations.
To address these limitations, we proposed a number of contributions adding more capabilities
and features to these systems, such as context-awareness, flexibility with various environments,
automation, extendability, etc.

In Chapter 2, we reviewed research projects that have been proposed to address the mentioned
shortcomings, such as machine learning and data mining based approaches, alert and event
correlation based approaches, alert fusion based approaches, context-aware intrusion detection
systems, distributed intrusion detection systems, ontology based intrusion detection systems,
host-based IDS, etc. However, most of these works have focused on limited aspects of a
comprehensive intrusion detection and alert correlation process, the problem as a whole
has not been resolved. Machine learning based approaches mostly classify network events
based on some features depending on behaviors observed with one type of event, and they
do not take to account contextual information and events interrelationships. Alert and
event correlation approaches mainly consider correlation only across multiple sensors of the
same type having a common event and alert semantics (homogenous correlation), leaving
it to security administrators to perform correlation across heterogeneous types of sensors.
Ontology-based approaches have not taken full advantage of ontologies expressive power
in terms of data modelling and logic reasoning. They also mostly focus on generic security
concepts rather than the detailed steps of a comprehensive alert correlation approach.
Context-aware intrusion and alert correlation approaches only consider partial contextual
information, such as target configuration or network traffic, and do not allow for inclusion of
other types of context concepts. Lack of automation is another main shortcoming of almost
all these works that postpone the analysis of the alert interrelationships to be performed by
security administrators.

140

Chapter 3 provided a background and basic knowledge required to follow the details of
our proposed approaches. We presented an introduction about ontologies and their impact
in computer security research. We also introduced Ontology Web Language Description
Logic (OWL-DL) and Semantic Query-Enhanced Web Rule Language. A review on recent
ontology-based intrusion detection systems was another part of this chapter.

Motivated by the aforementioned shortcomings, and in order to provide a common solution
encompassing the advantages of all of these approaches, we introduced Pasargadae a
context-aware and ontology-based automated event correlation framework that correlate
across several heterogenous types of sensors and logs (e.g., NIDS, firewall, access control
system, operating system, HIDS, antivirus, web server, and other applications), while
providing a level of flexibility that would allow it to be used in the many different deployment
scenarios that security analysts are likely to face. In order to make Pasargadae context-aware,
we inspected contextual information to identify which aspects of context can be useful in
improving IDS efficiency, with the goal of being able to import such context information from
either explicit information in Configuration Management Systems (CMS) or from implicit
information obtained by user and system profiling techniques. To make Pasargadae able
to perform automated event correlation, and to improve its flexility, we designed a number
of extensible ontologies incorporated within its correlation engine. In fact, the main idea
behind Pasargadae is to use and leverage a template ontology containing base classes and
some subclasses for the concepts of IT asset context, event logs, vulnerability and attack.
These ontologies are then populated by instances either automatically through source-specific
drivers (such as for IDMEF compliant event sensors), or manually for static information
(such as context, vulnerability and attack information). The correlation engine is then
implemented using logic rules written in Semantic Web Rule Language (SWRL) and Semantic
Query-Enhanced Web Rule Language (SQWRL) based on the OWL description logic
(OWL-DL). The ontologies and correlation rules described here are generic enough to i)
implement as special cases other existing correlation approaches and, ii) be applied with
minimal changes to different analysis scenarios.

Next, we introduced a context-aware and semantic-based event correlation and alert fusion
approaches based on Pasargadae. The proposed event correlation approach, first, based
on the network-based and host-based events’ attributes, splits events into several groups.
Then, it extracts pre-requisites and consequences of every group to create its correspondent
meta-events. Finally, using topological sort algorithm, it prepares sequences of meta-events
that outcomes existing attack scenarios. About the proposed alert fusion approach, the main
idea is to collect alerts (decisions) made by different IDS sensors on the same event, and
inspect them using contextual information to reduce redundant and non-relevant alarms and

141

false positives. While employing several different IDS sensors can improve overall detection
capabilities, the incorporation of contextual information allows us to reduce false positives
and non-relevant alerts. To do so in a manner that can be automated, but that yet can be
easily extended to new concepts (richer concepts of context, alarm or vulnerability), we used
ontologies and ontological engineering tools to represent knowledge and information about
alerts, vulnerabilities, and contextual information.

In order to evaluate the proposed event correlation and alert fusion approaches, we
implemented Pasargadae in our lab and field test environment. We employed various tools
and methods during the implementation process. Protégé ontology editor and knowledge
acquisition system was employed in order to design our ontologies. Protégé provides a
collection of plug-ins in order for reasoning, storing, populating and querying the ontologies.
Prelude Hybrid IDS was used as our event integration component to collects, normalizes,
stores and aggregates event logs from a number of heterogenous event generators. Using this
tool, we converted the collected logs into the IDMEF format analyzable by Protégé ontology
editor. We described the challenges that we faced during implementation process, and a brief
discussion on the scalability of the framework was explained.

Finally, in order to evaluate the performance (detection rate) and efficiency (detection
accuracy) of the proposed context-aware and semantic-based event correlation and alert
fusion approaches against realistic attack scenarios, we conducted two types of experiments:
1) case study, 2) filed study. First, we evaluated the proposed event correlation approach
based on the UNB ISCX IDS evaluation data set. As another case study, we evaluated
the proposed event correlation and fusion approaches based on the LLDDOS 1.0 attack
scenario of the DARPA 2000 data set, on which we conducted a comparative evaluation of
our approaches with Snort and ISS RealSecure, used separately and in combination. Next,
as a filed study, we installed and configured the proposed event correlation approach in
a real computer network for a two weeks period, and evaluated it against ground truth
network traffic. The obtained results show that our proposed event correlation and alert
fusion approaches significantly reduces false positives, duplicate, and non-relevant alerts,
while improving the detection rate. Furthermore, more important than the reduction in
false positives, duplicate, and non-relevant alerts, another important point of this work was
to show the level of flexibility and extendability of such a framework. The sum of these
contributions represents a significant improvement on the applicability and reliability of IDS
in real-world situations.

142

Future works

We are concluding this thesis by presenting some applications and possible improvements of
our proposed event correlation approach:

— We have not addressed at all the issue of scalability and performance of our approach.
While ontologies are quite flexible and readily provide the benefits of abstraction,
they are not always efficient at updating and quickly providing access to stored
data. In the case of alert correlation systems of large IT infrastructures, the vast
amounts of data involved are likely to make typical XML flat file or relational database
storage unwieldily and inefficient for quick on-line alert correlation. While some
specific data storage solutions such as object-oriented databases might help alleviate
these problems, significant engineering challenges would have to be solved to make
Pasargadae perform at the same line speeds as some current commercial-grade NIDS.
Nonetheless, and even if future research does not readily solve these problems, we
believe in the eventual applicability and usefulness of ontology-based approaches such
as this, in situations where immediate online processing is not a key requirement, such
as in network forensics in incident handling situations.

— Incorporating richer context into our analysis based on a sophisticated user and
system profiling is another future research direction. To this end, we can employ
machine learning techniques to analyze the behaviours of underlying users, systems
and networks for a specific time period. Then, based on the collected information, a
detailed profile can be considered for each of these entities. Importing these profiles
into the context ontology, makes it complete enough to provide more reliable information
for the correlation engine about the underlying context. As a result, the false positive
and non-relevant alert rate will be significantly reduced.

— Adding an ontology of response (response ontology or action ontology) to issue
appropriate responses in case of any ongoing attack is another considered future
research direction. This ontology can be mostly dependent to the pre-defined policies
of the underlying context. Because system automation is one of the main criteria that
we have considered in our event correlation process, this ontology covers automated
responses that a system can issue in case of any attack. Adding this ontology, makes
the proposed event correlation system more applicable in Command and Control
(C&C) units so that all the event logs from several branch are collected into a C&C
unit for more analysis.

— Proposing an ontology-based and context-aware Intrusion Prevention System (IPS)
to efficiently predict and prevent malicious behaviors is considered as another future
research direction. To this end, we can combine machine learning-techniques and

143

ontological paradigms to analyze contextual information, vulnerabilities and happening
events, and report potential malicious activities. This system is considered as a
complementing part of the comprehensive Pasargadae Framework.

144

REFERENCES

[1] “Ixia leader in converged ip testing.”. En ligne : http://www.ixiacom.com/

[2] “Ostinato traffic generator.” 2013.

[3] “Security focus, url=http ://www.securityfocus.com”.

[4] “Suricata : Open source ids / ips / nsm engine”. En ligne : http://suricata-ids.org/

[5] “Unm intrusion detection system data set”. En ligne : http://www.cs.unm.edu/
~immsec/data-sets.htm

[6] “auditd : The linux audit daemon”. En ligne : http://linux.die.net/man/8/auditd

[7] “iptables : Command line utility for configuring linux kernel firewall”. En ligne :
https://wiki.archlinux.org/index.php/iptables

[8] “iredmail email open source email server”, 2007. En ligne : http://www.iredmail.org/

[9] T. Abbes, A. Bouhoula, et M. Rusinowitch, “Efficient decision tree for protocol analysis
in intrusion detection”, International Journal of Security and Networks, vol. 5, no. 4,
pp. 220–235, 2010.

[10] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, et P. Steggles, “Towards a
better understanding of context and context-awareness”, dans Handheld and ubiquitous
computing. Springer, 1999, pp. 304–307.

[11] A. Abraham, R. Jain, J. Thomas, et S. Y. Han, “D-scids : Distributed soft computing
intrusion detection system”, Journal of Network and Computer Applications, vol. 30,
no. 1, pp. 81–98, 2007.

[12] S. Akbar, K. N. Rao, et J. Chandulal, “Implementing rule based genetic algorithm as
a solution for intrusion detection system”, Int. J. Comput. Sci. Netw. Secur, vol. 11,
no. 8, p. 138, 2011.

[13] G. A. Ali et A. Jantan, “A new approach based on honeybee to improve intrusion
detection system using neural network and bees algorithm”, dans Software Engineering
and Computer Systems. Springer, 2011, pp. 777–792.

http://www.ixiacom.com/
http://suricata-ids.org/
http://www.cs.unm.edu/~immsec/data-sets.htm
http://www.cs.unm.edu/~immsec/data-sets.htm
http://linux.die.net/man/8/auditd
https://wiki.archlinux.org/index.php/iptables
http://www.iredmail.org/

145

[14] M. Almgren, U. Lindqvist, et E. Jonsson, “A multi-sensor model to improve automated
attack detection”, dans Recent Advances in Intrusion Detection. Springer, 2008, pp.
291–310.

[15] N. B. Amor, S. Benferhat, et Z. Elouedi, “Naive bayes vs decision trees in intrusion
detection systems”, dans Proceedings of the 2004 ACM symposium on Applied
computing. ACM, 2004, pp. 420–424.

[16] D. Ariu et G. Giacinto, “A modular architecture for the analysis of http payloads based
on multiple classifiers”, dans Multiple Classifier Systems. Springer, 2011, pp. 330–339.

[17] A. A. Assali, D. Lenne, et B. Debray, “Ontology development for industrial risk
analysis”, dans Information and Communication Technologies : From Theory to
Applications, 2008. ICTTA 2008. 3rd International Conference on. IEEE, 2008, pp.
1–5.

[18] A. Avizienis, J.-C. Laprie, B. Randell, et C. Landwehr, “Basic concepts and taxonomy
of dependable and secure computing”, Dependable and Secure Computing, IEEE
Transactions on, vol. 1, no. 1, pp. 11–33, 2004.

[19] S. Axelsson, “The base-rate fallacy and its implications for the difficulty of
intrusion detection”, dans Proceedings of the 6th ACM Conference on Computer and
Communications Security. ACM, 1999, pp. 1–7.

[20] F. Baader, The description logic handbook : theory, implementation, and applications.
Cambridge university press, 2003.

[21] R. Bace et P. Mell, “Nist special publication on intrusion detection systems”, DTIC
Document, Rapp. tech., 2001.

[22] M. Baldauf, S. Dustdar, et F. Rosenberg, “A survey on context-aware systems”,
International Journal of Ad Hoc and Ubiquitous Computing, vol. 2, no. 4, pp. 263–277,
2007.

[23] Z. Banković, D. Stepanović, S. Bojanić, et O. Nieto-Taladriz, “Improving network
security using genetic algorithm approach”, Computers & Electrical Engineering,
vol. 33, no. 5, pp. 438–451, 2007.

[24] Z. Bankovic, J. M. Moya, Á. Araujo, S. Bojanic, et O. Nieto-Taladriz, “A genetic
algorithm-based solution for intrusion detection”, Journal of Information Assurance
and Security, vol. 4, no. 3, pp. 192–199, 2009.

146

[25] D. Barbara, J. Couto, S. Jajodia, L. Popyack, et N. Wu, “Adam : Detecting intrusions
by data mining”, dans In Proceedings of the IEEE Workshop on Information Assurance
and Security. Citeseer, 2001.

[26] S. Barnum, “Common attack pattern enumeration and classification
(capec) schema description”, Cigital Inc, http ://capec. mitre.
org/documents/documentation/CAPEC_Schema_Descr iption_v1, vol. 3, 2008.

[27] E. Beqiri, “Neural networks for intrusion detection systems”, dans Global Security,
Safety, and Sustainability. Springer, 2009, pp. 156–165.

[28] S. M. Botros, T. A. Diep, et M. D. Izenson, “Synthesis of anomalous data to create
artificial feature sets and use of same in computer network intrusion detection systems”,
Sep. 3 2013, uS Patent 8,527,776.

[29] S. T. Brugger, “Data mining methods for network intrusion detection”, University of
California at Davis, 2004.

[30] A. A. Cárdenas, J. S. Baras, et K. Seamon, “A framework for the evaluation of intrusion
detection systems”, dans Security and Privacy, 2006 IEEE Symposium on. IEEE, 2006,
pp. 15–pp.

[31] A. Chan, W. W. Ng, D. S. Yeung, et E. C. Tsang, “Comparison of different fusion
approaches for network intrusion detection using ensemble of rbfnn”, dans Machine
Learning and Cybernetics, 2005. Proceedings of 2005 International Conference on,
vol. 6. IEEE, 2005, pp. 3846–3851.

[32] C.-C. Chang et C.-J. Lin, “Libsvm : a library for support vector machines”, ACM
Transactions on Intelligent Systems and Technology (TIST), vol. 2, no. 3, p. 27, 2011.

[33] Z. Che et X. Ji, “An efficient intrusion detection approach based on hidden markov
model and rough set”, dans Machine Vision and Human-Machine Interface (MVHI),
2010 International Conference on. IEEE, 2010, pp. 476–479.

[34] L. Chen et M. Aritsugi, “An svm-based masquerade detection method with online
update using co-occurrence matrix”, dans Detection of Intrusions and Malware &
Vulnerability Assessment. Springer, 2006, pp. 37–53.

[35] R.-C. Chen et S.-P. Chen, “Intrusion detection using a hybrid support vector
machine based on entropy and tf-idf”, International Journal of Innovative Computing,
Information, and Control (IJICIC), vol. 4, no. 2, pp. 413–424, 2008.

147

[36] R.-C. Chen, K.-F. Cheng, et C.-F. Hsieh, “Using rough set and support vector machine
for network intrusion detection”, arXiv preprint arXiv :1004.0567, 2010.

[37] S.-B. Cho et H.-J. Park, “Efficient anomaly detection by modeling privilege flows using
hidden markov model”, Computers & Security, vol. 22, no. 1, pp. 45–55, 2003.

[38] C. A. D. B. Cid, “Ossec, open source host-based intrusion detection system”, Web,
September, 2008.

[39] L. Coppolino, S. D’Antonio, I. A. Elia, et L. Romano, “From intrusion detection
to intrusion detection and diagnosis : An ontology-based approach”, dans Software
Technologies for Embedded and Ubiquitous Systems. Springer, 2009, pp. 192–202.

[40] E. Corchado et Á. Herrero, “Neural visualization of network traffic data for intrusion
detection”, Applied Soft Computing, vol. 11, no. 2, pp. 2042–2056, 2011.

[41] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein et al., Introduction to algorithms.
MIT press Cambridge, 2001, vol. 2.

[42] I. Corporation, “IBM RealSecure”, http://www-935.ibm.com/services/us/en/
it-services/express-managed-protection-services-for-server.html.

[43] F. Cuppens et A. Miege, “Alert correlation in a cooperative intrusion detection
framework”, dans Security and Privacy, 2002. Proceedings. 2002 IEEE Symposium on.
IEEE, 2002, pp. 202–215.

[44] F. Cuppens et R. Ortalo, “LAMBDA : A language to model a database for detection
of attacks”, dans Proceedings of the Third International Workshop on Recent Advances
in Intrusion Detection, série RAID ’00. London, UK, UK : Springer-Verlag, 2000, pp.
197–216.

[45] ——, “Lambda : A language to model a database for detection of attacks”, dans Recent
advances in intrusion detection. Springer, 2000, pp. 197–216.

[46] CVE, “common vulnerabilities exposures (CVE), the key to information sharing”,
http://cve.mitre.org/.

[47] H. Debar, D. Curry, et B. Feinstein, “The intrusion detection message exchange format
(idmef)”, 2007.

http://www-935.ibm.com/services/us/en /it-services/express-managed-protection-services-for-server.html
http://www-935.ibm.com/services/us/en /it-services/express-managed-protection-services-for-server.html
http://cve.mitre.org/

148

[48] H. Debar et A. Wespi, “Aggregation and correlation of intrusion-detection alerts”, dans
Recent Advances in Intrusion Detection. Springer, 2001, pp. 85–103.

[49] H. Debar, M. Dacier, et A. Wespi, “Towards a taxonomy of intrusion-detection
systems”, Computer Networks, vol. 31, no. 8, pp. 805–822, 1999.

[50] H. Debar, D. A. Curry, et B. S. Feinstein, “The intrusion detection message exchange
format (idmef)”, 2007.

[51] D. K. Denatious et A. John, “Survey on data mining techniques to enhance
intrusion detection”, dans Computer Communication and Informatics (ICCCI), 2012
International Conference on. IEEE, 2012, pp. 1–5.

[52] G. Denker, L. Kagal, T. Finin, M. Paolucci, et K. Sycara, “Security for daml
web services : Annotation and matchmaking”, dans The Semantic Web-ISWC 2003.
Springer, 2003, pp. 335–350.

[53] G. Denker, S. Nguyen, et A. Ton, “Owl-s semantics of security web services : A case
study”, dans The Semantic Web : Research and Applications. Springer, 2004, pp.
240–253.

[54] G. Denker, L. Kagal, et T. Finin, “Security in the semantic web using owl”, Information
Security Technical Report, vol. 10, no. 1, pp. 51–58, 2005.

[55] R. Deraison et al., “The nessus project”, see http ://www. nessus. org, 2002.

[56] J. E. Dickerson et J. A. Dickerson, “Fuzzy network profiling for intrusion detection”,
dans Fuzzy Information Processing Society, 2000. NAFIPS. 19th International
Conference of the North American. IEEE, 2000, pp. 301–306.

[57] J. E. Dickerson, J. Juslin, O. Koukousoula, et J. A. Dickerson, “Fuzzy intrusion
detection”, dans Ifsa world congress and 20th nafips international conference, 2001.
joint 9th, vol. 3. IEEE, 2001, pp. 1506–1510.

[58] P. Dokas, L. Ertoz, V. Kumar, A. Lazarevic, J. Srivastava, et P.-N. Tan, “Data mining
for network intrusion detection”, dans Proc. NSF Workshop on Next Generation Data
Mining, 2002, pp. 21–30.

[59] S. T. Eckmann, G. Vigna, et R. A. Kemmerer, “STATL : An attack language for
state-based intrusion detection”, Journal of Computer Security, vol. 10, no. 1, pp.
71–103, 2002.

149

[60] A. Ekelhart, S. Fenz, M. Klemen, et E. Weippl, “Security ontologies : Improving
quantitative risk analysis”, dans System Sciences, 2007. HICSS 2007. 40th Annual
Hawaii International Conference on. IEEE, 2007, pp. 156a–156a.

[61] H. T. Elshoush et I. M. Osman, “Alert correlation in collaborative intelligent intrusion
detection systems—a survey”, Applied Soft Computing, vol. 11, no. 7, pp. 4349–4365,
2011.

[62] D. M. Farid, N. Harbi, E. Bahri, M. Z. Rahman, et C. M. Rahman, “Attacks
classification in adaptive intrusion detection using decision tree”, World Academy of
Science, Engineering and Technology, vol. 63, pp. 86–90, 2010.

[63] D. M. Farid, N. Harbi, et M. Z. Rahman, “Combining naive bayes and decision tree
for adaptive intrusion detection.” International Journal of Network Security & Its
Applications, vol. 2, no. 2, 2010.

[64] M. Feilner, OpenVPN : Building and integrating virtual private networks. Packt
Publishing Ltd, 2006.

[65] S. Fenz et A. Ekelhart, “Formalizing information security knowledge”, dans Proceedings
of the 4th international Symposium on information, Computer, and Communications
Security. ACM, 2009, pp. 183–194.

[66] D. G. Firesmith, “A taxonomy of safety-related requirements”, dans International
Workshop on High Assurance Systems (RHAS’05), 2005.

[67] J. J. Flores, A. Antolino, et J. M. Garcia, “Evolving hmms for network anomaly
detection–learning through evolutionary computation”, dans Networking and Services
(ICNS), 2010 Sixth International Conference on. IEEE, 2010, pp. 271–276.

[68] S. C. for Biomedical Informatics Research, “Protege ontology editor and knowledge
representation system”, http://protege.stanford.edu/.

[69] E. Friedman-Hill et al., “Jess, the rule engine for the java platform”, 2003.

[70] F. Gagnon, F. Massicotte, et B. Esfandiari, “Using contextual information for ids
alarm classification”, dans Detection of Intrusions and Malware, and Vulnerability
Assessment. Springer, 2009, pp. 147–156.

[71] D. Geneiatakis et C. Lambrinoudakis, “An ontology description for sip security flaws”,
Computer Communications, vol. 30, no. 6, pp. 1367–1374, 2007.

http://protege.stanford.edu/

150

[72] L.-z. Geng et H.-b. Jia, “A novel intrusion detection scheme for network-attached
storage based on multi-source information fusion”, dans Computational Intelligence
and Security, 2009. CIS’09. International Conference on, vol. 2. IEEE, 2009, pp.
469–473.

[73] G. Giacinto, F. Roli, et L. Didaci, “Fusion of multiple classifiers for intrusion detection
in computer networks”, Pattern recognition letters, vol. 24, no. 12, pp. 1795–1803, 2003.

[74] R. H. Gong, M. Zulkernine, et P. Abolmaesumi, “A software implementation of a genetic
algorithm based approach to network intrusion detection”, dans Software Engineering,
Artificial Intelligence, Networking and Parallel/Distributed Computing, 2005 and First
ACIS International Workshop on Self-Assembling Wireless Networks. SNPD/SAWN
2005. Sixth International Conference on. IEEE, 2005, pp. 246–253.

[75] T. R. Gruber, “A translation approach to portable ontology specifications”, Knowledge
acquisition, vol. 5, no. 2, pp. 199–220, 1993.

[76] G. Gu, P. Fogla, D. Dagon, W. Lee, et B. Skorić, “Measuring intrusion detection
capability : An information-theoretic approach”, dans Proceedings of the 2006 ACM
Symposium on Information, computer and communications security. ACM, 2006, pp.
90–101.

[77] G. Gu, A. A. Cárdenas, et W. Lee, “Principled reasoning and practical applications
of alert fusion in intrusion detection systems”, dans Proceedings of the 2008 ACM
symposium on Information, computer and communications security. ACM, 2008, pp.
136–147.

[78] M. Gudadhe, P. Prasad, et K. Wankhade, “A new data mining based network intrusion
detection model”, dans Computer and Communication Technology (ICCCT), 2010
International Conference on. IEEE, 2010, pp. 731–735.

[79] L. T. Heberlein, G. V. Dias, K. N. Levitt, B. Mukherjee, J. Wood, et D. Wolber, “A
network security monitor”, dans Research in Security and Privacy, 1990. Proceedings.,
1990 IEEE Computer Society Symposium on. IEEE, 1990, pp. 296–304.

[80] A. Herzog, N. Shahmehri, et C. Duma, “An ontology of information security”,
International Journal of Information Security and Privacy (IJISP), vol. 1, no. 4, pp.
1–23, 2007.

151

[81] S. Hettich et S. Bay, “Kdd cup 1999 data”, UCI KDD Archive [http ://kdd. ics. uci.
edu//databases/kddcup99/kddcup99. html], 1999.

[82] X. Hoang et J. Hu, “An efficient hidden markov model training scheme for anomaly
intrusion detection of server applications based on system calls”, dans Networks,
2004.(ICON 2004). Proceedings. 12th IEEE International Conference on, vol. 2. IEEE,
2004, pp. 470–474.

[83] X. D. Hoang, J. Hu, et P. Bertok, “A program-based anomaly intrusion detection
scheme using multiple detection engines and fuzzy inference”, Journal of Network and
Computer Applications, vol. 32, no. 6, pp. 1219–1228, 2009.

[84] T. Holz, “13 security measurements and metrics for networks”, Dependability Metrics,
p. 157, 2008.

[85] M. S. Hoque, M. Mukit, M. Bikas, A. Naser et al., “An implementation of intrusion
detection system using genetic algorithm”, arXiv preprint arXiv :1204.1336, 2012.

[86] S.-J. Horng, M.-Y. Su, Y.-H. Chen, T.-W. Kao, R.-J. Chen, J.-L. Lai, et C. D. Perkasa,
“A novel intrusion detection system based on hierarchical clustering and support vector
machines”, Expert systems with Applications, vol. 38, no. 1, pp. 306–313, 2011.

[87] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, M. Dean et al., “Swrl :
A semantic web rule language combining owl and ruleml”, W3C Member submission,
vol. 21, p. 79, 2004.

[88] J. Hu, X. Yu, D. Qiu, et H.-H. Chen, “A simple and efficient hidden markov model
scheme for host-based anomaly intrusion detection”, Network, IEEE, vol. 23, no. 1, pp.
42–47, 2009.

[89] W. Hu, J. Li, et Q. Gao, “Intrusion detection engine based on dempster-shafer’s
theory of evidence”, dans Communications, Circuits and Systems Proceedings, 2006
International Conference on, vol. 3. IEEE, 2006, pp. 1627–1631.

[90] Y. Hu, “TIAA : A toolkit for intrusion alert analysis”, 2004.

[91] T. Internordia et al., “Squidguard filter”.

[92] G. Isaza, A. Castillo, M. López, et L. Castillo, “Towards ontology-based intelligent
model for intrusion detection and prevention”, dans Computational Intelligence in
Security for Information Systems. Springer, 2009, pp. 109–116.

152

[93] V. Ivanov, M. Knorr, et J. Leite, “Nohr : Querying sc with non-monotonic rules”, ISWC
2013 Posters & Demos, p. 17.

[94] M. Jakobsson, X. Wang, et S. Wetzel, “Stealth attacks in vehicular technologies”, dans
Vehicular Technology Conference, 2004. VTC2004-Fall. 2004 IEEE 60th, vol. 2. IEEE,
2004, pp. 1218–1222.

[95] H. Jiang et J. Ruan, “The application of genetic neural network in network intrusion
detection.” Journal of Computers, vol. 4, no. 12, 2009.

[96] M. J. Kabir, Apache Server Bible. IDG Books Worldwide, Inc., 1998.

[97] M. Karyda, T. Balopoulos, S. Dritsas, L. Gymnopoulos, S. Kokolakis,
C. Lambrinoudakis, et S. Gritzalis, “An ontology for secure e-government applications”,
dans Availability, Reliability and Security, 2006. ARES 2006. The First International
Conference on. IEEE, 2006, pp. 5–pp.

[98] R. Khanna et H. Liu, “System approach to intrusion detection using hidden
markov model”, dans Proceedings of the 2006 international conference on Wireless
communications and mobile computing. ACM, 2006, pp. 349–354.

[99] A. Kim, J. Luo, et M. Kang, Security ontology for annotating resources. Springer,
2005.

[100] L. Koc, T. A. Mazzuchi, et S. Sarkani, “A network intrusion detection system based on
a hidden naïve bayes multiclass classifier”, Expert Systems with Applications, vol. 39,
no. 18, pp. 13 492–13 500, 2012.

[101] C. Kruegel, D. Mutz, W. Robertson, et F. Valeur, “Bayesian event classification
for intrusion detection”, dans Computer Security Applications Conference, 2003.
Proceedings. 19th Annual. IEEE, 2003, pp. 14–23.

[102] V. K. Kshirsagar, S. M. Tidke, et S. Vishnu, “Intrusion detection system using genetic
algorithm and data mining : An overview”, International Journal of Computer Science
and Informatics ISSN (PRINT), pp. 2231–5292, 2012.

[103] C. M. Kuok, A. Fu, et M. H. Wong, “Mining fuzzy association rules in databases”,
ACM Sigmod Record, vol. 27, no. 1, pp. 41–46, 1998.

[104] C. E. Landwehr, A. R. Bull, J. P. McDermott, et W. S. Choi, “A taxonomy of computer
program security flaws”, ACM Computing Surveys (CSUR), vol. 26, no. 3, pp. 211–254,

153

1994.

[105] W. Lee, S. J. Stolfo, et K. W. Mok, “A data mining framework for building intrusion
detection models”, dans Security and Privacy, 1999. Proceedings of the 1999 IEEE
Symposium on. IEEE, 1999, pp. 120–132.

[106] W. Lee, S. J. Stolfo, P. K. Chan, E. Eskin, W. Fan, M. Miller, S. Hershkop, et
J. Zhang, “Real time data mining-based intrusion detection”, dans DARPA Information
Survivability Conference & ; Exposition II, 2001. DISCEX’01. Proceedings, vol. 1.
IEEE, 2001, pp. 89–100.

[107] W. Li et S. Tian, “An ontology-based intrusion alerts correlation system”, Expert
Systems with Applications, vol. 37, no. 10, pp. 7138–7146, 2010.

[108] W. Li, “Using genetic algorithm for network intrusion detection”, Proceedings of the
United States Department of Energy Cyber Security Group, pp. 1–8, 2004.

[109] Y. Li, J. Xia, S. Zhang, J. Yan, X. Ai, et K. Dai, “An efficient intrusion detection
system based on support vector machines and gradually feature removal method”,
Expert Systems with Applications, vol. 39, no. 1, pp. 424–430, 2012.

[110] O. Linda, T. Vollmer, et M. Manic, “Neural network based intrusion detection system
for critical infrastructures”, dans Neural Networks, 2009. IJCNN 2009. International
Joint Conference on. IEEE, 2009, pp. 1827–1834.

[111] R. Lippmann, J. W. Haines, D. J. Fried, J. Korba, et K. Das, “The 1999 darpa off-line
intrusion detection evaluation”, Computer networks, vol. 34, no. 4, pp. 579–595, 2000.

[112] R. P. Lippmann, I. Graf, D. Wyschogrod, S. E. Webster, D. J. Weber, et S. Gorton,
“The 1998 darpa/afrl off-line intrusion detection evaluation”, dans Proc. of the First
Intl. Workshop on Recent Advances in Intrusion Detection (RAID), 1998.

[113] C.-C. Lo, C.-C. Huang, et J. Ku, “A cooperative intrusion detection system framework
for cloud computing networks”, dans Parallel Processing Workshops (ICPPW), 2010
39th International Conference on. IEEE, 2010, pp. 280–284.

[114] W.-Y. Loh, “Classification and regression trees”,Wiley Interdisciplinary Reviews : Data
Mining and Knowledge Discovery, vol. 1, no. 1, pp. 14–23, 2011.

[115] G. F. Lyon, Nmap Network Scanning : The Official Nmap Project Guide to Network
Discovery and Security Scanning. USA : Insecure, 2009.

154

[116] P. Mahler, VoIP Telephony with Asterisk. Signate, 2005.

[117] F. Massicotte, M. Couture, Y. Labiche, et L. Briand, “Context-based intrusion
detection using snort, nessus and bugtraq databases.” dans PST, 2005.

[118] M. Meier, N. Bischof, et T. Holz, “Shedel—a simple hierarchical event description
language for specifying attack signatures”, dans Security in the Information Society.
Springer, 2002, pp. 559–571.

[119] C. Michel et L. Mé, “Adele : an attack description language for knowledge-based
intrusion detection”, dans Trusted Information. Springer, 2001, pp. 353–368.

[120] MIT Lincoln Laboratory, “2000 DARPA intrusion detection scenario specific data sets”,
2000.

[121] Mitre Corporation, “A standardized common event expression (CEE) for event
interoperability”.

[122] B. Morin et H. Debar, “Correlation of intrusion symptoms : an application of
chronicles”, dans Recent Advances in Intrusion Detection. Springer, 2003, pp. 94–112.

[123] B. Morin, L. Mé, H. Debar, et M. Ducassé, “M2d2 : A formal data model for ids
alert correlation”, dans Recent Advances in Intrusion Detection. Springer, 2002, pp.
115–137.

[124] S. Mukherjee et N. Sharma, “Intrusion detection using naive bayes classifier with feature
reduction”, Procedia Technology, vol. 4, pp. 119–128, 2012.

[125] S. Mukkamala, G. Janoski, et A. Sung, “Intrusion detection using neural networks and
support vector machines”, dans Neural Networks, 2002. IJCNN’02. Proceedings of the
2002 International Joint Conference on, vol. 2. IEEE, 2002, pp. 1702–1707.

[126] S. A. Mulay, P. Devale, et G. Garje, “Intrusion detection system using support vector
machine and decision tree”, International Journal of Computer Applications, vol. 3,
no. 3, pp. 40–43, 2010.

[127] A. P. Muniyandi, R. Rajeswari, et R. Rajaram, “Network anomaly detection by
cascading k-means clustering and c4. 5 decision tree algorithm”, Procedia Engineering,
vol. 30, pp. 174–182, 2012.

155

[128] P. G. Neumann et P. A. Porras, “Experience with emerald to date.” dans Workshop on
Intrusion Detection and Network Monitoring, 1999, pp. 73–80.

[129] NVD, “National vulnerability database (NVD), automatin vulnerability management,
security measurement, and compliance checking”, http://nvd.nist.gov/.

[130] C. Nyulas, M. O’Connor, et S. Tu, “Datamaster–a plug-in for importing schemas and
data from relational databases into protege”, dans Proceedings of the 10th International
Protege Conference, 2007.

[131] M. O’Connor et A. Das, “Sqwrl : a query language for owl”, dans Proc. of 6th OWL :
Experiences and Directions Workshop (OWLED2009), 2009.

[132] C.-M. Ou, “Host-based intrusion detection systems adapted from agent-based artificial
immune systems”, Neurocomputing, vol. 88, pp. 78–86, 2012.

[133] M. Panda et M. R. Patra, “Network intrusion detection using naive bayes”,
International journal of computer science and network security, vol. 7, no. 12, pp.
258–263, 2007.

[134] B. Parsia et E. Sirin, “Pellet : An OWL-DL reasoner”, dans Third International
Semantic Web Conference-Poster, 2004, p. 18.

[135] Z. Pawlak, “Rough sets : theoretical aspects of reasoning about data, system theory,
knowledge engineering and problem solving, vol. 9”, 1991.

[136] V. Paxson, “Bro : a system for detecting network intruders in real-time”, Computer
networks, vol. 31, no. 23, pp. 2435–2463, 1999.

[137] R. Perdisci, G. Gu, et W. Lee, “Using an ensemble of one-class svm classifiers to harden
payload-based anomaly detection systems”, dans Data Mining, 2006. ICDM’06. Sixth
International Conference on. IEEE, 2006, pp. 488–498.

[138] P. A. Porras et P. G. Neumann, “Emerald : Event monitoring enabling response
to anomalous live disturbances”, dans Proceedings of the 20th national information
systems security conference, 1997, pp. 353–365.

[139] M. S. Prasad, A. V. Babu, et M. K. B. Rao, “An intrusion detection system architecture
based on neural networks and genetic algorithms”, International Journal of Computer
Science and Management Research, vol. 2, 2013.

http://nvd.nist.gov/

156

[140] J. R. Quinlan, C4. 5 : programs for machine learning. Morgan kaufmann, 1993, vol. 1.

[141] L. Rabiner, “A tutorial on hidden markov models and selected applications in speech
recognition”, Proceedings of the IEEE, vol. 77, no. 2, pp. 257–286, 1989.

[142] E. Raftopoulos, M. Egli, et X. Dimitropoulos, “Shedding light on log correlation
in network forensics analysis”, dans Detection of Intrusions and Malware, and
Vulnerability Assessment. Springer, 2013, pp. 232–241.

[143] Š. Raudys et F. Roli, “The behavior knowledge space fusion method : Analysis
of generalization error and strategies for performance improvement”, dans Multiple
Classifier Systems. Springer, 2003, pp. 55–64.

[144] M. Roesch et al., “Snort : Lightweight intrusion detection for networks.” dans LISA,
vol. 99, 1999, pp. 229–238.

[145] S. Roschke, F. Cheng, et C. Meinel, “A new alert correlation algorithm based on
attack graph”, dans Computational Intelligence in Security for Information Systems.
Springer, 2011, pp. 58–67.

[146] S. Saad et I. Traore, “Extracting attack scenarios using intrusion semantics”, dans
Foundations and practice of security. Springer, 2013, pp. 278–292.

[147] S. Sangeetha, S. Haripriya, S. M. Priya, V. Vaidehi, et N. Srinivasan, “Fuzzy rule-base
based intrusion detection system on application layer”, dans Recent Trends in Network
Security and Applications. Springer, 2010, pp. 27–36.

[148] S. L. Scott, “A bayesian paradigm for designing intrusion detection systems”,
Computational statistics & data analysis, vol. 45, no. 1, pp. 69–83, 2004.

[149] M. A. Sekeh et B. Maarof, “Fuzzy intrusion detection system via data mining technique
with sequences of system calls”, dans Information Assurance and Security, 2009.
IAS’09. Fifth International Conference on, vol. 1. IEEE, 2009, pp. 154–157.

[150] R. Shearer, B. Motik, et I. Horrocks, “Hermit : A highly-efficient owl reasoner.” dans
OWLED, vol. 432, 2008.

[151] A. Shiravi, H. Shiravi, M. Tavallaee, et A. A. Ghorbani, “Toward developing
a systematic approach to generate benchmark datasets for intrusion detection”,
Computers & Security, vol. 31, no. 3, pp. 357–374, 2012.

157

[152] C. Siaterlis et B. Maglaris, “Towards multisensor data fusion for dos detection”, dans
Proceedings of the 2004 ACM symposium on Applied computing. ACM, 2004, pp.
439–446.

[153] S. Sinha, F. Jahanian, et J. M. Patel, “Wind : Workload-aware intrusion detection”,
dans Recent Advances in Intrusion Detection. Springer, 2006, pp. 290–310.

[154] A. Siraj, R. B. Vaughn, et S. M. Bridges, “Intrusion sensor data fusion in an intelligent
intrusion detection system architecture”, dans System Sciences, 2004. Proceedings of
the 37th Annual Hawaii International Conference on. IEEE, 2004, pp. 10–pp.

[155] E. Sirin et B. Parsia, “Sparql-dl : Sparql query for owl-dl.” dans OWLED, vol. 258,
2007.

[156] S. S. Sivatha Sindhu, S. Geetha, et A. Kannan, “Decision tree based light weight
intrusion detection using a wrapper approach”, Expert Systems with applications,
vol. 39, no. 1, pp. 129–141, 2012.

[157] S. R. Snapp, J. Brentano, G. V. Dias, T. L. Goan, L. T. Heberlein, C.-L. Ho, K. N.
Levitt, B. Mukherjee, S. E. Smaha, T. Grance et al., “Dids (distributed intrusion
detection system)-motivation, architecture, and an early prototype”, dans Proceedings
of the 14th national computer security conference, vol. 1. Citeseer, 1991, pp. 167–176.

[158] A. Souag, C. Salinesi, et I. Comyn-Wattiau, “Ontologies for security requirements : A
literature survey and classification”, dans Advanced Information Systems Engineering
Workshops. Springer, 2012, pp. 61–69.

[159] J. F. Sowa, “Knowledge representation : logical, philosophical, and computational
foundations”, 1999.

[160] E. H. Spafford et D. Zamboni, “Intrusion detection using autonomous agents”,
Computer networks, vol. 34, no. 4, pp. 547–570, 2000.

[161] P. Spyns, R. Meersman, et M. Jarrar, “Data modelling versus ontology engineering”,
ACM SIGMod Record, vol. 31, no. 4, pp. 12–17, 2002.

[162] P. Srinivasulu, D. Nagaraju, P. R. Kumar, et K. N. Rao, “Classifying the network
intrusion attacks using data mining classification methods and their performance
comparison”, International Journal of Computer Science and Network Security, vol. 9,
no. 6, pp. 11–18, 2009.

158

[163] G. Stein, B. Chen, A. S. Wu, et K. A. Hua, “Decision tree classifier for network
intrusion detection with ga-based feature selection”, dans Proceedings of the 43rd
annual Southeast regional conference-Volume 2. ACM, 2005, pp. 136–141.

[164] A. H. Sung et S. Mukkamala, “Identifying important features for intrusion detection
using support vector machines and neural networks”, dans Applications and the
Internet, 2003. Proceedings. 2003 Symposium on. IEEE, 2003, pp. 209–216.

[165] K. Swamy et K. V. Lakshmi, “Network intrusion detection using improved decision
tree algorithm”, IJCSIS) International Journal of Computer Science and Information
Security, vol. 10, no. 8, 2012.

[166] A. Tajbakhsh, M. Rahmati, et A. Mirzaei, “Intrusion detection using fuzzy association
rules”, Applied Soft Computing, vol. 9, no. 2, pp. 462–469, 2009.

[167] S. Teng, H. Du, N. Wu, W. Zhang, et J. Su, “A cooperative network intrusion detection
based on fuzzy svms.” Journal of Networks, vol. 5, no. 4, 2010.

[168] C. Thomas et N. Balakrishnan, “Improvement in intrusion detection with advances
in sensor fusion”, Information Forensics and Security, IEEE Transactions on, vol. 4,
no. 3, pp. 542–551, 2009.

[169] ——, “Advanced sensor fusion technique for enhanced intrusion detection”, dans
Intelligence and Security Informatics, 2008. ISI 2008. IEEE International Conference
on. IEEE, 2008, pp. 173–178.

[170] E. Totel, B. Vivinis, et L. Mé, “A language driven intrusion detection system for event
and alert correlation”, dans Security and Protection in Information Processing Systems.
Springer, 2004, pp. 208–224.

[171] D. Tsarkov et I. Horrocks, “Fact++ description logic reasoner : System description”,
dans Automated reasoning. Springer, 2006, pp. 292–297.

[172] B. Tsoumas et D. Gritzalis, “Towards an ontology-based security management”,
dans Advanced Information Networking and Applications, 2006. AINA 2006. 20th
International Conference on, vol. 1. IEEE, 2006, pp. 985–992.

[173] M. Tuba et D. Bulatovic, “Design of an intrusion detection system based on bayesian
networks”, WSEAS Transactions on Computers, vol. 8, no. 5, pp. 799–809, 2009.

159

[174] W. Tylman, “Misuse-based intrusion detection using bayesian networks”, International
Journal of Critical Computer-Based Systems, vol. 1, no. 1, pp. 178–190, 2010.

[175] J. Undercoffer, A. Joshi, et J. Pinkston, “Modeling computer attacks : An ontology for
intrusion detection”, dans Recent Advances in Intrusion Detection. Springer, 2003,
pp. 113–135.

[176] J. Undercoffer, J. Pinkston, A. Joshi, et T. Finin, “A target-centric ontology for
intrusion detection”, dans 18th International Joint Conference on Artificial Intelligence,
2004, pp. 9–15.

[177] F. Valeur, G. Vigna, C. Kruegel, et R. A. Kemmerer, “Comprehensive approach
to intrusion detection alert correlation”, Dependable and Secure Computing, IEEE
Transactions on, vol. 1, no. 3, pp. 146–169, 2004.

[178] L. Viljanen, “Towards an ontology of trust”, dans Trust, Privacy, and Security in
Digital Business. Springer, 2005, pp. 175–184.

[179] A. Vorobiev et N. Bekmamedova, “An ontology-driven approach applied to information
security.” Journal of Research & Practice in Information Technology, vol. 42, no. 1,
2010.

[180] A. Vorobiev et J. Han, “Security attack ontology for web services”, dans Semantics,
Knowledge and Grid, 2006. SKG’06. Second International Conference on. IEEE, 2006,
pp. 42–42.

[181] G. Wang, J. Hao, J. Ma, et L. Huang, “A new approach to intrusion detection using
artificial neural networks and fuzzy clustering”, Expert Systems with Applications,
vol. 37, no. 9, pp. 6225–6232, 2010.

[182] J. A. Wang et M. Guo, “Ovm : an ontology for vulnerability management”, dans
Proceedings of the 5th Annual Workshop on Cyber Security and Information Intelligence
Research : Cyber Security and Information Intelligence Challenges and Strategies.
ACM, 2009, p. 34.

[183] Y. Wang, D. Gu, W. Li, H. Li, et J. Li, “Network intrusion detection with workflow
feature definition using bp neural network”, dans Advances in Neural Networks–ISNN
2009. Springer, 2009, pp. 60–67.

[184] D. Wessels et al., “Squid web proxy cache”, 2001.

160

[185] G. B. White, E. A. Fisch, et U. W. Pooch, “Cooperating security managers : A
peer-based intrusion detection system”, Network, IEEE, vol. 10, no. 1, pp. 20–23, 1996.

[186] M. Williamson, PfSense 2 Cookbook. Packt Publishing Ltd, 2011.

[187] P. Wouters et K. Bantoft, “Openswan : Building and integrating virtual private
networks”, 2006.

[188] M. Wozniak, “Classifier fusion based on weighted voting-analytical and experimental
results”, dans Intelligent Systems Design and Applications, 2008. ISDA’08. Eighth
International Conference on, vol. 2. IEEE, 2008, pp. 687–692.

[189] C. Xiang, P. C. Yong, et L. S. Meng, “Design of multiple-level hybrid classifier
for intrusion detection system using bayesian clustering and decision trees”, Pattern
Recognition Letters, vol. 29, no. 7, pp. 918–924, 2008.

[190] F. Xiao, S. Jin, et X. Li, “A novel data mining-based method for alert reduction and
analysis.” Journal of Networks, vol. 5, no. 1, 2010.

[191] D. Yu et D. Frincke, “Alert confidence fusion in intrusion detection systems with
extended dempster-shafer theory”, dans Proceedings of the 43rd annual Southeast
regional conference-Volume 2. ACM, 2005, pp. 142–147.

[192] R. Yusof, S. R. Selamat, et S. Sahib, “Intrusion alert correlation technique analysis for
heterogeneous log”, IJCSNS International Journal of Computer Science and Network
Security, vol. 8, no. 9, pp. 132–138, 2008.

[193] K. Zaraska, “Prelude ids : current state and development perspectives”, URL
http ://www. prelude-ids. org/download/misc/pingwinaria/2003/paper. pdf, 2003.

[194] S. T. Zargar, J. Joshi, et D. Tipper, “A survey of defense mechanisms against
distributed denial of service (ddos) flooding attacks”, Communications Surveys &
Tutorials, IEEE, vol. 15, no. 4, pp. 2046–2069, 2013.

[195] F. Zeng, K. Yin, M. Chen, et X. Wang, “A new anomaly detection method based on
rough set reduction and hmm”, dans Computer and Information Science, 2009. ICIS
2009. Eighth IEEE/ACIS International Conference on. IEEE, 2009, pp. 285–289.

[196] Y. Zhang, L. Wang, W. Sun, R. C. Green, et M. Alam, “Distributed intrusion detection
system in a multi-layer network architecture of smart grids”, Smart Grid, IEEE
Transactions on, vol. 2, no. 4, pp. 796–808, 2011.

161

[197] X. Zhao, H. Jiang, et L. Jiao, “A data-fusion-based method for intrusion detection
system in networks”, International Journal of Information Engineering and Electronic
Business (IJIEEB), vol. 1, no. 1, p. 32, 2009.

[198] B. Zhu, Alert correlation for extracting attack strategies. University of New Brunswick
(Canada)., 2005.

	DEDICATION
	ACKNOWLEDGEMENTS
	RÉSUMÉ
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SIGNS AND ABBREVIATIONS
	1 INTRODUCTION
	1.1 Intrusion Detection Systems
	1.2 Improvements on Intrusion Detection Systems
	1.3 Problem Statement
	1.4 Research Objectives
	1.5 Thesis Structure

	2 PREVIOUS WORK IN INTRUSION DETECTION SYSTEMS
	2.1 Intrusion Detection and Alert Correlation Using Machine Learning Techniques
	2.1.1 Bayesian Networks
	2.1.2 Data Mining Methods
	2.1.3 Decision Tree
	2.1.4 Artificial Neural Networks
	2.1.5 Fuzzy Logic
	2.1.6 Genetic Algorithm
	2.1.7 Support Vector Machine
	2.1.8 Hidden Markov Models

	2.2 Alert and Event Correlation
	2.3 Alert Fusion
	2.4 Context-Aware Intrusion Detection and Alert Correlation Systems
	2.5 Distributed Intrusion Detection Systems
	2.6 Host-Based Intrusion Detection Systems
	2.7 Intrusion Detection Evaluation Metrics
	2.8 Data Sets to Evaluate Intrusion Detection and Alert Correlation System
	2.9 Conclusion

	3 BASIC KNOWLEDGE ON ONTOLOGIES
	3.1 Introduction to OWL Web Ontology Language
	3.1.1 Description of the OWL Language

	3.2 Semantic Query-enhanced Web Rule Language (SQWRL)
	3.2.1 Basic Querying
	3.2.2 Set Operators: Closing the World
	3.2.3 Ontology Traversing Operators: Drill-Down and Roll-Up

	3.3 Ontologies for Security Requirements
	3.4 Previous Work in Ontology-Based Intrusion Detection Systems
	3.5 Summary

	4 PASARGADAE: A CONTEXT-AWARE AND ONTOLOGY-BASED EVENT CORRELATION FRAMEWORK
	4.1 Pasargadae Event Correlation Framework
	4.1.1 Information Resources
	4.1.2 Event and Context Integration
	4.1.3 Description of the Ontologies
	4.1.4 Correlation Engine

	4.2 A Semantic-Based Event Correlation Approach Based on Pasargadae
	4.3 ONTIDS Alert Correlation Framework as a Subset of Pasargadae
	4.3.1 Example Implementation of Valeur Approach Using ONTIDS

	4.4 Alert Fusion Using Pasargadae Framework
	4.4.1 The Proposed Alert Fusion Approach
	4.4.2 The Decision Making Component

	4.5 Summary

	5 REFERENCE IMPLEMENTATION
	5.1 Implementing the Designed Ontologies
	5.2 Storing, Reasoning and Querying the Designed Ontologies
	5.3 Populating the Designed Ontologies
	5.3.1 Event Sensors and Event Integration Process
	5.3.2 Context Sensors and Context Integration Process

	5.4 Discussion on Scalability
	5.5 Summary

	6 CASE STUDY-BASED EVALUATION
	6.1 Case Study 1: Island-hopping attacks
	6.2 Case Study 2: Recon-breakin-Escalate attacks
	6.3 Case Study 3: Alert fusion and alert correlation based on DARPA 2000 data set
	6.4 Discussion on flexibility
	6.5 Summary

	7 FIELD TEST-BASED EVALUATION
	7.1 Groupe Access Company as Our Field Test Environment
	7.2 Testbed Network Architecture
	7.3 Field Test 1: Sensors Functionality Test
	7.4 Field Test 2: A Targeted Attack to Compromise a Web Server
	7.5 Field Test 3: A Targeted Attack to Launch an Internal DoS Attack Against Asterisk VoIP Server
	7.6 Summary

	8 CONCLUSION
	REFERENCES

