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RÉSUMÉ 

Estimer la durée de vie utile restante (RUL) d’un système qui fonctionne suivant différentes 

conditions de fonctionnement représente un grand défi pour les chercheurs en maintenance 

conditionnelle (CBM). En effet, il est difficile de comprendre la relation entre les variables qui 

représentent ces conditions de fonctionnement et la RUL dans beaucoup de cas en pratique à cause 

du degré élevé de corrélation entre ces variables et leur dépendance dans le temps. Il est également 

difficile, voire impossible, pour des experts d’acquérir et accumuler un savoir à propos de systèmes 

complexes, où l'échec de l'ensemble du système est vu comme le résultat de l'interaction et de la 

concurrence entre plusieurs modes de défaillance. 

Cette thèse présente des méthodologies pour le pronostic en CBM basé sur l'apprentissage 

automatique, et une approche de découverte de connaissances appelée Logical Analysis of Data 

(LAD). Les méthodologies proposées se composent de plusieurs implémentations de la LAD 

combinées avec des méthodes non paramétriques d'estimation de fiabilité. L'objectif de ces 

méthodologies est de prédire la RUL du système surveillé tout en tenant compte de l'analyse des 

modes de défaillance uniques ou multiples. Deux d’entre elles considèrent un mode de défaillance 

unique et une autre considère de multiples modes de défaillance. Les deux méthodologies pour le 

pronostic avec mode unique diffèrent dans la manière de manipuler les données. 

Les méthodologies de pronostique dans cette recherche doctorale ont été testées et validées sur la 

base d'un ensemble de tests bien connus. Dans ces tests, les méthodologies ont été comparées à des 

techniques de pronostic connues; le modèle à risques proportionnels de Cox (PHM), les réseaux de 

neurones artificiels (ANNs) et les machines à vecteurs de support (SVMs). Deux ensembles de 

données ont été utilisés pour illustrer la performance des trois méthodologies: l'ensemble de 

données du turboréacteur à double flux (turbofan) qui est disponible au sein de la base de données 

pour le développement d'algorithmes de pronostic de la NASA, et un autre ensemble de données 

obtenu d’une véritable application dans l'industrie. Les résultats de ces comparaisons indiquent que 

chacune des méthodologies proposées permet de prédire avec précision la RUL du système 

considéré.  

Cette recherche doctorale conclut que l’approche utilisant la LAD possède d’importants mérites et 

avantages qui pourraient être bénéfiques au domaine du pronostic en CBM. Elle est capable de 

gérer les données en CBM qui sont corrélées et variantes dans le temps. Son autre avantage et 

qu’elle génère un savoir interprétable qui est bénéfique au personnel de maintenance. 
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ABSTRACT 

Estimating the remaining useful life (RUL) for a system working under different operating 

conditions represents a big challenge to the researchers in the condition-based maintenance (CBM) 

domain. The reason is that the relationship between the covariates that represent those operating 

conditions and the RUL is not fully understood in many practical cases, due to the high degree of 

correlation between such covariates, and their dependence on time. It is also difficult or even 

impossible for the experts to acquire and accumulate the knowledge from a complex system, where 

the failure of the system is regarded as the result of interaction and competition between several 

failure modes. 

This thesis presents systematic CBM prognostic methodologies based on a pattern-based machine 

learning and knowledge discovery approach called Logical Analysis of Data (LAD). The proposed 

methodologies comprise different implementations of the LAD approach combined with non-

parametric reliability estimation methods. The objective of these methodologies is to predict the 

RUL of the monitored system while considering the analysis of single or multiple failure modes. 

Three different methodologies are presented; two deal with single failure mode and one deals with 

multiple failure modes. The two methodologies for single mode prognostics differ in the way of 

representing the data. 

The prognostic methodologies in this doctoral research have been tested and validated based on a 

set of widely known tests. In these tests, the methodologies were compared to well-known 

prognostic techniques; the proportional hazards model (PHM), artificial neural networks (ANNs) 

and support vector machines (SVMs). Two datasets were used to illustrate the performance of the 

three methodologies: the turbofan engine dataset that is available at NASA prognostic data 

repository, and another dataset collected from a real application in the industry. The results of these 

comparisons indicate that each of the proposed methodologies provides an accurate prediction for 

the RUL of the monitored system.  

This doctoral research concludes that the LAD approach has attractive merits and advantages that 

add benefits to the field of prognostics. It is capable of dealing with the CBM data that are 

correlated and time-varying. Another advantage is its generation of an interpretable knowledge that 

is beneficial to the maintenance personnel. 
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estimated by KM.  

𝑃 The set of generated patterns, in the first article of the thesis. 

|𝑃| The cardinality of the set of generated patterns 𝑃 (i.e. the number of 

generated patterns). 

𝑝𝑗  A pattern belongs to the set of generated patterns 𝑃, where  

𝑗 = 1,2, … |𝑃|.  

𝑆𝑝𝑗(𝑡) The survival curve of the generated pattern 𝑝𝑗. 

𝑆𝑂(𝑢,𝑡𝑘,𝑍𝑢,𝑡𝑘)
(𝑡) The updated survival curve of the updating observation 𝑂(𝑢, 𝑡𝑘, 𝑍𝑢,𝑡𝑘), at 

time 𝑡𝑘 for the 𝑢𝑡ℎ system (𝑢 = 1,2, …𝑈), and 𝑈 is the number of 

systems in the updating dataset. 
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𝑆𝑓(𝑡) The former updated survival curve obtained from the previous updating 

observation. 

𝑀𝑅𝑈𝐿𝑢(𝑡𝑘) The mean remaining useful life of the 𝑢𝑡ℎ system , calculated at time 𝑡𝑘. 

𝛥𝑡𝑟 The monitoring interval which is the difference between two consecutive 

inspection times i.e. 𝛥𝑡𝑟 = 𝑡𝑟+1 − 𝑡𝑟. 

𝑅𝑀𝑆𝐸(𝑢) The calculated root mean squared error (RMSE) for the MRUL estimation 

of the 𝑢𝑡ℎ system in the updating dataset, where (𝑢 = 1.2, …𝑈). 

𝑁𝐹𝑢 The actual number of operational cycles until the failure of the 𝑢𝑡ℎ 

system. 

𝐹𝑟 Friedman test statistic. 

𝑃(𝜒𝑘−1
2 ≥ 𝐹𝑟) The calculated significance level, where 𝜒𝑘−1

2  is the Chi-Square value 

with 𝑘 degrees of freedom, and 𝑘 is the number of prognostic formulas. 

χ𝑘−1,𝛼
2  The Chi-Square value with 𝑘 degrees of freedom and a declared 

significance level 𝛼. 

𝑑𝛼𝐹√𝑈𝑘(𝑘 + 1)/6 A post-hoc value used for the second phase of Friedman test, where 𝑑𝛼𝐹  

is the 100(1 − 𝛼𝐹)
𝑡ℎ of the standard normal distribution, and 𝛼𝐹 is the 

family wise significance level. 

𝑝𝑔 ∈ 𝑃𝐺𝑒𝑛  A pattern belong to the set of generated patterns 𝑃𝐺𝑒𝑛, in the second 

article of the thesis. 

|𝑃𝐺𝑒𝑛 | The cardinality of the set of generated patterns 𝑃𝐺𝑒𝑛 (i.e. the number of 

generated patterns). 

𝑝𝑠 ∈ 𝑃𝑆𝑒𝑙  A selected pattern belonging to the set of selected patterns 𝑃𝑆𝑒𝑙. 

|𝑃𝑆𝑒𝑙 | The cardinality of the set 𝑃𝑆𝑒𝑙 (the number of selected patterns). 

𝑊𝑝𝑠 The normalized weight of the selected pattern 𝑝𝑠. 

𝑐𝑜𝑣(𝑝𝑠) The set of observations that are covered by the selected pattern 𝑝𝑠. 

𝑆𝑝𝑠(𝑡) The survival curve of the selected pattern 𝑝𝑠. 

𝑆(𝜏, 𝑍𝜏) The survival function at time 𝜏 for a vector of covariates 𝑍𝜏. 
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𝑀𝑅𝑈𝐿𝑢(𝑡𝑘, 𝑍𝑡𝑘) The mean remaining useful life (MRUL) calculated for the 𝑢𝑡ℎ system at 

time 𝑡𝑘 for a vector of covariates 𝑍𝑡𝑘. 

𝐸[𝑇 − 𝑡𝑘|𝑇 > 𝑡𝑘, 𝑍𝑡𝑘] The expected value of the conditional random variable 𝑇 − 𝑡𝑘, given the 

time 𝑡𝑘 and the vector of covariates 𝑍𝑡𝑘 . 

𝑃(𝑇 ≥ 𝑡𝑘) The probability that the random variable 𝑇 is greater than the value 𝑡𝑘. 

𝑆𝑖(𝑡) The cause-specific survival (sub-survival) for the failure mode 𝑖, where 

 (𝑖 = 1,… , 𝐶). 

𝑞𝑖 The proportion of systems that failed due to the failure mode 𝑖. 

ℎ𝑖(𝑡𝑗) The sub-hazard function for the failure mode 𝑖 at 𝑡𝑗.  

𝑓𝑖(𝑡𝑗) The sub-density function for the failure mode 𝑖 at time 𝑡𝑗. 

𝑑𝑖𝑗 The number of systems that have experienced the failure mode 𝑖 at 𝑡𝑗. 

𝐹̂𝑖(𝑡) The estimated CIF for the system that is experiencing the failure mode 𝑖 

at the time 𝑡. 

𝑆𝑂(𝑡𝑘)(𝑡) The updated survival curve for the system based on the collected 

observation 𝑂, at time 𝑡𝑘. 

𝑀𝑅𝑈𝐿𝑖(𝑡𝑘) The MRUL for the cause-specific failure mode 𝑖, calculated at time 𝑡𝑘. 

𝑆̂𝑖(𝑡) The estimated sub-survival function derived from the estimated CIF for 

the failure mode 𝑖. 

 𝑀𝑅𝑈𝐿̂
𝑂(𝑡𝑘) The 𝑀𝑅𝑈𝐿 of the monitored system estimated based on the updated 

survival curve  𝑆𝑂(𝑡𝑘)(𝑡). 

𝐸̅ The average absolute prediction error. 

𝐿𝐴𝑐𝑐(𝑡𝑘) The prediction accuracy function which measures the difference between 

the actual 𝑅𝑈𝐿 and the estimated 𝑅𝑈𝐿 at the inspection time 𝑡𝑘. 

𝐿𝐴𝑃(bearing𝑔 ) The average penalty incurred for the bearing 𝑔. 

𝐿(model) The total penalty incurred for each prediction model. 



xxii 

 

LIST OF APPENDICES 

Appendix A – Distance Evaluation Technique ............................................................................ 173 

Appendix B –Non Parametric Maximum Likelihood Estimation For Kaplan-Meier Estimator . 175 

Appendix C – Remaining Useful Life Calculation ...................................................................... 177 

Appendix D – Proportional Hazards Model ................................................................................. 180 

Appendix E – Data Binarization .................................................................................................. 182 

Appendix F – Pattern Generation ................................................................................................. 187 



1 

CHAPTER 1 INTRODUCTION 

Asset health management (AHM) system implies the continuous monitoring of an asset, in order 

to detect and predict as early as possible any changes in its condition that may have drastic 

consequences [1]. These consequences may concern safety issues, e.g. the failure of nuclear 

reactors or aircraft gas turbine engines. These consequences may also be economical when dealing 

with the occurrence of unscheduled downtime that may prevent accomplishing the committed 

mission schedules. As an example, unscheduled downtime has serious economic consequences in 

critical applications such as aircrafts or missiles assigned to space exploration missions [2]. These 

consequences provide the motivation to perform maintenance and repair tasks before such drastic 

situations arise.  

The task of maintenance is to maintain reliable and cost-effective operations of physical assets. 

Different maintenance strategies have been introduced as an efficient way to assure a satisfactory 

level of availability of the assets [3]. Moreover, the maintenance of an engineering asset is a 

prerequisite which has significant impacts on its safety and reliability [4].  

Maintenance costs have increased rapidly during the past years since they represent a major part 

(from 15% to 40%) of the total operating costs in manufacturing and production plants, according 

to the study reported in [4, 5]. It was also reported that as much as 30% of the total maintenance 

expenditures were spent on some unnecessary actions like, the use of unnecessary preventive 

maintenance, and wrong scheduling [6]. Consequently, the experts in maintenance engineering 

have paid a deep attention to various types of advanced maintenance strategies [7].  

1.1 Taxonomy of maintenance strategies 

Various definitions of maintenance strategies have been suggested during the past years. The 

maintenance terminologies used in this thesis have been used in [4, 8, 9]. In a broad sense, the 

maintenance strategies can be classified as reactive (also called unplanned or break-down or run-

to-failure maintenance) and proactive (also called planned maintenance). Figure 1-1 gives a brief 

taxonomy for different maintenance strategies, as presented in [2].  

In reactive maintenance, the actions are taken after breakdowns occur (fix or replace the unit after 

it fails). In proactive maintenance, the objective is to resolve the issues in the operating asset prior 

to the onset of failure [10]. This can be done by performing inspection and/or servicing tasks that 
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have been pre-planned to retain the functional capabilities of the asset [11]. Proactive maintenance 

strategies can be further classified into preventive and predictive maintenance. In preventive 

maintenance, the actions are taken in predetermined or periodic intervals in order to prevent 

breakdowns or failures, regardless of the health state of the physical asset [9].  

As technology developed rapidly, engineering systems have become more and more complex while 

higher quality and reliability are required [12]. As a result, the costs of preventive maintenance 

become higher. One way to minimize unnecessary maintenance and repair costs and probability of 

failure is to perform an assessment and prediction of the asset’s health state, based on its current 

and historical operating conditions [2]. This can be carried out by applying a predictive 

maintenance strategy where the action taken is dependent on the nature of the physical asset and 

the availability of input data. 

In predictive maintenance, the goal is to make economically justifiable decisions by blending 

together the economic aspects and the risk prediction, in order to identify the optimal maintenance 

decision [13]. The authors in [2] present a good review for the maintenance strategies that focus 

on improving reliability and reducing unscheduled downtime by monitoring and predicting the 

asset’s health conditions. As depicted in Figure 1-1, predictive maintenance can be further 

classified into reliability centered maintenance (RCM) and condition-based maintenance (CBM). 

Maintenance strategy

Break-down or 
Reactive Maintenance 

Proactive or planned 
Maintenance 

Corrective 
Maintenance 

Emergency 
Maintenance 

Preventive 
Maintenance 

Predictive 
Maintenance 

Reliability Centred 
Maintenance 

(RCM)

Condition Based 
Maintenance 

(CBM)

Constant Interval 
Maintenance 

Age based 
Maintenance 

Imperfect 
Maintenance  

Figure 1-1: Taxonomy of maintenance strategies as presented in [2] 
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Recently, CBM has received an increasing attention among the practitioners and researchers, as a 

predictive maintenance strategy [5]. It consists of activities and tasks for detecting and correcting 

failure causes, by monitoring the symptomatic conditions of the failure process in the targeted 

asset. CBM utilizes condition monitoring technologies to detect and predict the current and future 

health states of the engineering assets, based on non-intrusive measurements of their operating 

conditions [14].  

CBM strategy attempts to avoid unnecessary preventive maintenance tasks by taking maintenance 

actions only when there are abnormal signs coming from the monitored asset [15]. In other words, 

it makes a maintenance decision based on the up-to-date degradation data of the monitored asset. 

Many cases from the industry that are applying CBM show significant reductions in preventive 

maintenance costs, while maintaining or even improving the availability and reliability of the 

monitored systems [13].  

AHM system uses the CBM strategy to provide an intuitive and integrated solution to detect the 

defects of an asset through the continuous monitoring during multiple degraded states before it 

fails [1]. In the AHM/CBM system, the degraded states of the asset are monitored and predicted, 

and the optimal maintenance actions can be taken to protect it from breakdown or catastrophic 

failures [3].  

Researches supported by international agencies, industry and academia are focusing on designing 

more effective and intelligent AHM/CBM systems [16]. The National Aeronautics and Space 

Administration (NASA) uses the Integrated Vehicle Health Management (IVHM) program for its 

fleet [17]. The International Atomic Energy Agency (IAEA) is continuously paying a great 

attention to AHM/CBM programs, in order to improve both reliability and safety of nuclear power 

plants [18]. 

As decision making procedures in the CBM system, diagnostics and prognostics are two important 

aspects. Diagnostics deals with fault detection, isolation and identification when it occurs [3, 19, 

20]. Fault detection is the task of indicating whether something is going wrong in the monitored 

asset or not; fault isolation is the task of locating the faulty component; and fault identification is 

the task of determining the nature of the fault in the located faulty component [3, 20].  

Prognostics on the other hand deal with the prediction of failure before it occurs. The task of such 

prediction is to determine whether a failure is impending and estimate how long and how likely 
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this failure will occur [20]. A particular prognostic issue is to estimate the remaining useful life 

(RUL) (also called residual life) of the monitored asset. The RUL is defined as the time left before 

the occurrence of catastrophic failure [12, 20]. 

Developing an accurate prognostic method is motivated by the need to prolong the utilization of 

the system. The accuracy of diagnosis procedure affects the life of the monitored system since the 

prognosis procedure is based on these diagnostic results [3]. Therefore, the prognosis procedure 

requires precise diagnostic models, in order to estimate the future health states and the RUL of the 

monitored system, accurately [21].  

Fortunately, the invention of advanced sensors and powerful signal processing techniques enable 

the maintenance practitioners to extract multiple features for the purpose of degradation detection 

and quantification [22]. Some of the extracted features can be selected and can serve as the basis 

for accurate diagnosis and hence RUL prediction. The prediction of RUL in CBM is not completely 

understood in many practical situations [20]. As an example in bearing prognostics, it is known 

that the vibration in a pump is not the only indication for its future failure.  

The aim of this thesis is to present the subject of this doctoral research which focuses on the 

implementation of an interpretable knowledge discovery approach called Logical Analysis of Data 

(LAD) in the field of CBM prognostics. LAD was applied successfully in the field of medical 

diagnosis and prognosis to diagnose patient’s condition and to predict the propagation of some 

diseases [23-25]. As a machine learning classification technique, LAD was used on a great variety 

of problems and reacts well to noisy data and measurement errors [26].  It was applied in the field 

of CBM diagnostics for the first time by the maintenance and reliability research team at École 

Polytechnique de Montréal, Canada [27].  

The material discussed and the terminologies used in this thesis are often interdisciplinary, 

originating in quite disparate fields such as machine learning, pattern recognition, statistical 

models, mechanical engineering, computer science, and maintenance and reliability engineering. 

The terms used in this thesis are largely those pertaining to the CBM domain and are taken from 

some of the most cited papers and books such as [3, 12, 20]. Other terminologies from different 

disciplines may be brought to the CBM domain. The vocabulary used in Chapter 2 explaining the 

CBM and LAD are adopted from [3, 26], as they are the most cited articles concerning the two 

domains. 



5 

 

1.2 Problem statement 

A significant amount of researches and reasonable progresses have been achieved in system 

diagnostics and it has been a subject of considerable attention in CBM community, whereas the 

prognostic methods have not enjoyed the same attention [3]. In general, the design procedures for 

the prognostic methods are more complex than that of the diagnostic ones, due to some challenges 

and complications. As the systems become complex and critical, the need for accurate prognostic 

methods has been urgent in order to maximize their reliability. Maximizing the reliability of a 

system means increasing its ability to survive more and more in the future [28]. An example of 

such systems is the aircraft turbine engine [29].  

In order to compare different prognostic methods, some performance indices should be followed 

[20]. A justification of a designed prognostic method should be provided based on such 

performance indices [12]. From data analysis point of view, as more historical data about the 

system’s health conditions become available, the devised prognostic method will be able to predict 

the RUL more accurately [20].  

We identified two main research problems in the field of prognostics, they are stated as follows: 

1- A significant challenge is to estimate the RUL for a population of systems working under varying 

operating conditions. This is because the relationship between the covariates that are 

representing those operating conditions and the prediction of RUL in many cases is not fully 

understood, due to the high degree of correlation between such covariates and their dependence 

on time. Generally, long term prediction of RUL in CBM entails large amount of uncertainty 

because the system’s degradation undergoes dynamic stochastic process and usually consists of 

a sequence of degraded states [22].  

2- Another challenge is to estimate the RUL in case of complex systems that fail due to one of 

multiple failure modes. In this case, the failure of the system is regarded as the result of 

interaction and competition between several failure modes. In rotating machinery as an example, 

at the system level, different components can have different failures such as: bearing defect, 

cracked or broken rotor bars, mechanical seal wear, and others [30]. At the component level, 

there may be different types of failure modes such as: an inner race defect, an outer race defect, 

a crack in the cage of the rolling element. In multiple failure modes prognostics, the challenge 
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is to consider the effect of those interacting and competing failure modes when analyzing the 

RUL or the failure time of a monitored system.  

1.3 Limitations of current prognostic methods 

Most of the current prognostic methods in the CBM literature do not address the above two 

challanges more accurately. Accordingly, they pose some limitations summarized in the following 

two papagraphs.  

The majority of those prognostic methods either assume many impractical assumptions about the 

disribution of the data, or they are based on tedious parameter tuning and experimental settings. A 

number of these prognostic methods still rely on human experience. Although the experts have 

significant knowledge about system failure and its degraded states, they do not have systematic 

methodologies that can predict the RUL in the presence of highly correlated or time-varying 

covariates [2]. Therefore, there is a need to develop and to improve systematic prognostic 

methodologies that can be implemented in the AHM/CBM system without the need to hire an 

expert.  

In case of multiple failure modes prognostics, most of the prognostic methods assume that the 

lifetime data for each failure mode are drawn from a certain parametric failure distribution function. 

There are two major limitations when applying such parametric prognostic models in CBM. The 

first limitation of such models is that they are application-dependent. This means that the 

assumption that allows the lifetime data for each failure mode to follow a certain distribution, needs 

a lot of experience and knowledge about the application at hand. It is also hard or even impossible 

to accumulate the knowledge in the case of complex systems that have a multitude of failure modes. 

The second limitation of those prognostic models is that the failure distribution function of each 

failure mode is estimated by considering the other competing failure modes as censored categories. 

According to those two limitations, it is necessary to develop a non-parametric failure distribution 

function for each failure mode, while considering the other failure modes as competing ones. 

The above problems and limitations in CBM prognostics motivate us to design and develop 

prognostic methodologies that are not based on any assumptions for the distributions of CBM data, 

and are not based on any experts as well. The methodologies are based on certain theoretical and 

practical settings, targeting some issues of implementing CBM prognostics as a holistic 
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phenomenon. They are based on LAD as a proven approach which possesses two key advantages 

over the other knowledge discovery techniques.  

1.4 The advantages of using LAD as knowledge discovery approach 

The results reported in the CBM diagnostic applications presented in [10, 27, 31, 32], show that 

LAD as a classification technique demonstrated a good performance in detecting the faulty 

systems. It is also concluded from the results presented in those works that LAD is a promising 

tool in CBM decision making. Moreover, it is shown that the LAD approach has some important 

advantages over the other comparable techniques. These advantages are listed as follows:  

1- Unlike many CBM decision making techniques which assume that the input data belong to a 

certain probability distribution, LAD is not based on any statistical analysis. This makes it 

capable of dealing with the covariates that are highly correlated and time-varying, without the 

need to satisfy any statistical assumptions. LAD detects and evaluates the correlation between 

any number of covariates in the CBM data, without the need to select the most significant ones. 

2- The transparency (interpretability) and knowledge preservation. This is one of the important 

properties of the LAD approach when it is compared to the other machine learning techniques 

in the field of CBM [32]. The transparency means that LAD as a decision model is meaningful 

and gives a physical interpretation about the behavior of the monitored system. Once the training 

phase is completed, the knowledge is discovered in the form of interpretable patterns and 

preserved for the future use by the maintenance personnel.  

1.5 Research objectives 

1.5.1 General objective 

The ultimate objective of this doctoral research is to estimate the future health condition and to 

predict the failure time of the monitored systems using automated CBM prognostic methodologies 

based on LAD.  

The task is to predict the advent of failure in terms of the probability of mission survival or 

remaining useful life. The historical CBM data collected from various systems are analyzed for the 

purpose of knowledge discovery. The discovered knowledge is then used in different ways by using 

diagnostic and prognostic algorithms.  
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In this doctoral reseach, different implementation methodologies are adopted by combining LAD 

to non-parametric reliability estimation methods. These methodologies will be discussed in the 

subsequent chapters of this thesis. The developed prognostic methodologies can be employed to 

reduce industry’s dependence on the experts. 

The performance of each methodology in this doctoral research is measured in terms of the 

difference between the predicted and actual RUL of the monitored system.  

1.5.2 Specific research objectives 

The above general objective is achieved by fulfilling the following specific objectives: 

1- Implementation of two different prognostic methodologies based on the two-class LAD 

approach. The two methodologies are developed in order to predict the RUL of a system works 

under varying operating conditions. LAD is exploited to extract the hidden knowledge from the 

CBM data. The extracted knowledge is then used to update the reliability curve estimated by 

using a common non-parametric estimation method. The updated reliability curve is then 

exploited to estimate the system’s RUL.  

2- Implementation of multi-class LAD as a prognostic methodology for the systems that fail due 

to multiple failure modes. The multi-class LAD is merged with a set of non-parametric functions 

that are characterizing the different failure modes (one function for each failure mode). The 

reliability curve of a monitored system is updated based on the knowledge extracted from the 

CBM data. The RUL is then estimated based on the updated curve.  

3- Software development. The prognostic algorithms in the three methodologies are developed 

using designed computer codes. The codes are integrated and linked to the existing software 

cbmLAD, to deal with the CBM prognostic applications. The intellectual property of the 

developed software belongs to École Polytechnique de Montréal, and those members of our 

maintenance and relibility research team who contributed in the development of this software. 

1.6 Originality and success 

The maintenance and reliability research team at École Polytechnique de Montréal, Canada was 

able to reproduce human expertise in detecting and analyzing different faults in the field of CBM 

diagnostics, by using LAD as a classification method. LAD was used successfully to diagnose 



9 

 

machine conditions and to detect faults of some important applications such as rotor bearings and 

power transformers. It also demonstrated good performance in detecting and analysing the faults 

and phenomenon of rogue components in airplanes. It is clear that the accuracy of a prognostic 

algorithm is mainly dependent on the accuracy of diagnostic information used. Our hypothesis 

states that LAD diagnostic model can be developed and used as the cornerstone in different 

prognostic methodologies to predict the RUL. According to the previously mentioned advantages 

of LAD, this thesis presents novel CBM prognostic methodologies based on LAD. The novelty of 

this doctoral research is stated in two points (1) the application of two-class LAD as prognostic 

methodology, and enhancing this methodology in order to improve its performance (2) A novel 

and innovative application of multi-class LAD within the context of multiple failure modes 

prognostics in CBM. To the best of our knowledge, the material presented in this thesis is not 

published or written elsewhere except where due references are cited. 

The methodologies involved in this thesis were compared to other common prognostic methods in 

the CBM domain. The obtained results are promising and indicate that these methodologies can be 

applied successfully in the industrial applications. 

1.7 Deliverables 

The research conducted in this thesis was followed in an evolutionary manner in order to achieve 

the objectives stated previously. The outcomes of this doctoral research are: 

1- Three conference papers. 

2- Three articles, two focus on the implementation of two-class LAD in prognostics and the third 

one focuses on the implementation of multi-class LAD in multiple failure modes prognostics.  

3- A thesis compiling the findings, including the three articles. 

4- In addition to the articles, a related software was developed.  

This doctoral research is documented in the three articles incorporated into this thesis. The first 

two articles address the first problem stated previously. The first article in this thesis has been 

approved and published in the “Journal of Intelligent Manufacturing”. The second article addresses 

three modifications to the methodology proposed in the first article. It has been submitted to the 

journal of “IEEE Transactions on Reliability”.  
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The third article addresses the second problem stated above. It involves the implementation of 

multi-class LAD as a multiple failure modes prognostic methodology in a common CBM 

appliaction; rotating machniery prognostics. It has been submitted to the journal of “Mechanical 

Systems and Signal Processing”. Figure 1-2 illustrates the evolutionary approach followed in this 

doctoral research along with the three articles involved. 

Article 1: RUL Estimation Using 

Prognostic Methodology Based on LAD 

and Kaplan-Meier

Implementation of an innovative 

prognostic methodology using 

two-class LAD

Article 2: Pattern-Based Prognostic 

Methodology For CBM Using Weighted 

and Selected Survival Curves

Enhanced prognostic methodology 

using two-class LAD

Article 3: Prognostics of Multiple 

Failure Modes in Rotating Machinery 

Using LAD and Cumulative Incidence 

Functions (CIFs)

Implementation of multiple failure 

modes prognostic methodology 

using multi-class LAD

The proposed prognostic methodologies 

 

Figure 1-2: Illustration of published and submitted articles incorporated in this thesis 

1.8 Social impacts and economic benefits 

The results obtained during this doctoral research were published and submitted in international 

journals and specialized conferences, targeting to enforce the link between both academic and 

industrial communities. The results obtained were validated in collaboration with selected 

practitioners in North America such as NASA and Prüftechnik Canada. This research on the other 

hand is expected to reduce the maintenance cost significantly since it is able to accurately predict 

the system's health conditions. Hence, it enables the maintenance personnel to act only when 

maintenance is actually necessary. We are planning to extend this research in the future to the 

optimization of maintenance resources which is one of the interests of our research team at École 

Polytechnique de Montréal.  
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1.9 Thesis organization 

This thesis is divided into six chapters. Chapter 1 explains the problem being studied and its 

scientific, practical, and economical pertinence. It also states the objective of this research and 

explains its originality, the targeted deliverables, and delimitations of the thesis.  

Chapter 2 explains the different procedures involved in CBM and the techniques used in each 

procedure. It also presents a literature review on the current CBM prognostic methods. The purpose 

is to give the reader a general overview and a preliminary number of references for the common 

prognostic methods. Meanwhile, the chapter presents the LAD decision model and describes the 

state of the art in this approach. The historical perspectives and knowledge discovery process are 

overviewd. The common applications of LAD are presented at the end of the chapter. 

Chapters 3 through 5 present the three articles incorporated into this thesis. They include the 

developed prognostic methodologies used throughout this doctoral research. 

Chapter 3 proposes a novel and innovative prognostic methodology to predict the RUL of a system 

working under different operating conditions, based on two-class LAD. The performance of the 

proposed methodology is illustrated on a benchmark dataset in the field of prognostics, by 

comparing it to the most common statistical-based CBM prognostic method; the proportional 

hazards model (PHM). 

Chapter 4 presents an enhanced prognostic methodology addressing three modifications to the 

proposed methodology in Chapter 3. The utility of the proposed methodology is demonstrated 

through a number of experiments on the same benchmark dataset, by performing comparisons with 

two common machine learning techniques; support vector machines and artificial neural networks. 

Chapter 5 presents a novel prognostic methodology based on multi-class LAD to predict the RUL 

of the systems that are working under difffernt operating conditions and subjected to multiple 

failure modes. The methodology addresses the two main limitations of the current multiple failure 

mode prognostic methods that were stated previously. The proposed methodology is validated 

through experiments on a dataset collected from the industry. It is compared to support vector 

machines and artificial neural networks, for the purpose of validation.  

Chapter 6 presents a general discussion on the three articles incorporated in this thesis, followed 

by conclusions and future work directions to extend this doctoral research. 
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CHAPTER 2 BACKGROUND AND LITERATURE REVIEW 

2.1 CBM definition and standards 

The definition of CBM in this thesis is adopted from [3] as one of the most cited papers in this 

domain. It is defined as the predictive maintenance initiated as a result of continuous or periodic 

measurement and interpretation of data to indicate the condition of the monitored asset [3, 33, 34]. 

The standard definition found in the British Standard (BS 3811:1984) defines the CBM as “the 

preventive maintenance initiated as a result of knowledge of the condition of an item from routine 

or continuous monitoring ”, as stated in [35].  

CBM is needed to guarantee the survival of a system so that incipient faults can be detected and 

diagnosed as early as possible. Although the possibility of failure occurrance cannot be avoided, 

the earlier diagnosis of an incipient fault is useful to avoid the occurrance of catestrophic failure in 

the system. When such fault exists, it will give some indicators (symptoms) such as excessive 

vibration and noise, increased temperature, oil debris, and others. These indicators carry valuable 

information about the state of the system, and they form the basis for CBM policy planning [36]. 

The technical constituents and organizational aspects in the CBM system are investigated in [37, 

38]. The objective is to make the CBM strategy more accessible within the industry, and to increase 

technology modularization and system flexibility as well. Several standards and standardization 

reports were already published and have been available for the developers and customers of CBM 

system technology [38]. An Open System Architecture for CBM (OSA-CBM) for the organizations 

was presented in [39]. The architecture comprises seven layers as depicted Figure 2-1 [37]. This 

doctoral research focuses mainly on the fifth layer (prognostics) in this architecture.  

Another version of an OSA-CBM has been presented recently in [40]. In that paper, the architecture 

was developed to address the need for a certain standard that handles the flow of information 

between the different components of the CBM system. Generally, the OSA-CBM exploits the 

advancements in the information and database technologies. As a consequence of utilizing such 

technologies, a huge volume of data are available and stored in the CBM databases. The analysis 

of such massive data creates new challenges to researchers and practitioners in the CBM domain. 
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Figure 2-1: The seven functional layers of the OSA-CBM presented in [39]   

2.2 Types of CBM data 

The acquired data in the CBM system can be categorized into two main categories [3]: condition 

monitoring data and event data. Condition monitoring data are collected and processed to determine 

the system’s health condition, where the measured observations are related to the health states of 

the monitored system [3]. If the condition monitoring data have trends that are reflecting the 

degradation conditions of the system, they are called degradation data [41]. They can represent the 

vibration, temperature, pressure, moisture, humidity, oil debris, and others.  

Event data provide the information on what happened (failure, installation, overhaul, etc.) and/or 

what was done (repair, preventive maintenance, oil change, etc.) to the targeted system [3]. If the 

event data represent the failure of the system, they are called lifetime data.  

Types of condition monitoring data 

Condition monitoring data are further categorized into three subcategories: waveform data, value 

data, and multidimensional data [3]. Waveform type data are time series measurements which are 

collected over a certain time interval (time record), hence they are called time-domain data. 

Vibration and acoustic signals are common examples of waveform type data [42]. Value type data 

can be measured directly from the data acquisition module at a specific time instant or through 
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processing the waveform data. Examples of this type of data are measures of temperature, pressure, 

humidity, etc. Multidimensional type data are measured at specific time instants over three or more 

features (dimensions). An example of such data is the infrared thermographic image [3].  

In this doctoral research, the waveform data and value type data are the most relevant.  

2.3 Data Mining and Knowledge Discovery in CBM 

2.3.1 Big Data in CBM 

There are two main problems associated with the existence of huge volumes of CBM data. First, it 

is reported in [43] that the amount of stored databases doubles every 20 months. Accordingly, it is 

difficult and sometimes impossible to deal with such amount of data in any quantitative sense (this 

is referred to as Big Data) [43]. Instead, the important information should be extracted from the 

data. Second, the CBM databases have the potential to predict the evolution of interesting events 

in terms of variables or trends which have not been fully exploited yet, because these huge data are 

not well represented. 

The advancement of the software, hardware and methodological researchs have recently led to the 

development of flexible procedures that can be used to analyze the CBM data [9, 32, 44-46]. 

However, there is a need to develop a knowledge discovery procedure to deal with the CBM data 

in a systematic and clear way, in order to support the CBM maintenance personnel with an 

appropriate assessment for the health states of the monitored system. 

2.3.2 Data Mining and machine learning in CBM 

Data mining is defined as the process of automatic exploration and extraction of knowledge from 

the data [47]. Machine learning provides the technical basis of data mining. In other words, it is 

the technology for mining knowledge from data [43]. It relies on the availability of data and draw 

on learning strategies from the area of computational intelligence, pattern classification, and others 

[48]. The machine learning techniques are based on the concepts of training and testing.  

In the context of CBM, the main objective of machine learning is to build computer programs that 

refine the CBM databases automatically in order to extract useful information. Then, the extracted 

information are then exploited to discover a set of patterns. Those patterns are representing a 
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valuable knowledge about the history of the system’s health states. Among the extracted patterns, 

some are trivial and nonsignificant, others are general and can contribute to an accurate prediction 

for the targeted events [43]. The patterns discovered should be meaningful and have some 

advantage in an economic sense. From economical point of view, one of the most important 

requirements for the patterns is the comprehensiveness (interpretability) [32]. Some patterns are 

comprehensible (also called transparent or interpretable or structural), while some are 

comprehensive but not necessarily comprehensible (called black box patterns) [49]. From the 

performance point of view, both of them can have good prediction [48].  

The advantage of using the interpretable patterns in CBM is their transparency, therefore they can 

help the analyst and the decision maker to explain the predicted events in an explicit way. 

Based on the extracted patterns, the machine learning technique maps the CBM data into a decision 

model, in order to produce predicted outcomes for the new observations that are not found 

previously in the data. Those observations are collected recently from the monitored system, and 

they are carrying information about its health state. The decision model can be used as either a 

regression or classification technique, depending on the variable of interest to be predicted. 

Machine learning classification techniques are further divided into supervised and unsupervised. 

In supervised learning, the purpose is to infer a decision model from labeled data. In unsupervised 

learning, the learning technique is fed with only unlabeled observations (there is no a priori label). 

2.4 CBM Components 

The seven layers of the OSA-CBM depicted in Figure 2-1 can be aggregated into three main 

procedures in the CBM [3, 20]. In this thesis, we discuss the three aggregated procedures of the 

CBM program presented in [3]; namely: 

1. Data acquisition.  

2. Data processing.  

3. Maintenance decision-making (diagnosis and prognosis) 

2.4.1 Data acquisition 

Data acquisition is the first procedure in the CBM program. In this procedure, the data are collected 

by the means of transducing devices, in their raw forms. The data must be refined appropriately in 
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order to obtain proper measurements. The refined data will serve as the main input to the data 

processing procedure in the CBM program. The type of data processing algorithms and tools are 

dependent on the type of acquired data. 

Sensing strategies 

Sensors and sensing strategies constitute a major technology and foundational basis in CBM. They 

are intended to monitor typical state variables as vibration, temperature, pressure, speed, etc. Such 

variables are commonly used in CBM fault diagnostic/prognostic of machinery [20]. In the case of 

rolling elements diagnosis/prognosis for example, vibration data are needed because they relate the 

trends of vibration features to the degradation and failure process of bearings [50, 51].  

More specifically, some sensors are designed to measure quantities that are directly related to the 

failure modes which are candidates for diagnosis and prognosis [20]. Common examples of such 

sensors are: ultrasonic sensors, strain gauges, acoustic emission sensors, electrochemical fatigue 

sensors, and proximity devices [52-54]. Other sensors are designed as multipurpose sensors to 

monitor process variables in CBM [20]. Recently, wireless sensors have been introduced in CBM 

domain [55-57].  

Signal conditioning 

Signal conditioning is an important and required step in data acquisition procedure. The signals 

coming from the sensors can be very noisy, of low amplitude, and dependent on secondary 

variables such as temperature [20]. As a consequence, we may not be able to measure the quantity 

of interest but only the dependent quantity. The sensor output must be conditioned and processed 

to provide an appropriate measurement for the physical quantity [58]. Amplification, level 

translation, linearization, and filtering are fundamental signal conditioning tasks [59]. A common 

objective of signal conditioning is to improve the signal-to-noise ratio (SNR), in order to extract as 

useful as possible information from the raw data. Signal conditioning may be carried out with 

hardware or software. There is a variety of integrated circuits available for hardware signal 

conditioning. The signal conditioning in software is carried out much more efficiently and 

accurately, and this eliminates the need for difficult hardware calibrations [58].  

2.4.2 Data processing 

Data processing is the second procedure in the CBM [3]. In this procedure, the data acquisition 

module feeds the CBM system with the acquired signals, in order to process and extract the relevant 
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features as a first step [60]. The second step in data processing procedure is the feature selection 

step. In feature selection step, the purpose is twofolds, firstly, to select the optimal number of 

features that reduces the dimensionality of feature space and secondly, to select the superior 

features that improve the performance of the CBM decision making procedure [48].  

a-Feature extraction 

Generally, it is difficult to assess the health states of complex systems directly from the measured 

time-domain data. Those data are collected by the data acquisition module and are not useful in 

their raw forms. The acquired data must be preprocessed appropriately, to extract useful 

information that represent a reduced version of the original data, but preserve as much as possible 

some characteristic features [48, 61]. In the practice, it is useful to extract some features from these 

time-domain data as good representatives of state changes in the system being monitored [31]. 

These features are the indicators for the faulty events we are seeking to detect, isolate, and predict 

[20].  

For multidimensional type data, feature extraction using image processing is more complicated 

than that of waveform signal, due to the higher dimensionality involved. The resulting feature space 

after processing an image is a high dimensional space, since it represents all the constituent pixels 

in the image. Increasing the dimensionality of such space makes the training data sparse. This is a 

common problem in pattern recognition literature, it is known as curse of dimensionality [61]. The 

higher dimensionality leads to poor generalization (known as overfitting problem), and therefore 

decreases the performance of the decision model [48, 61]. 

One way to deal with such problem is to apply some processing techniques such as: principal 

component analysis (PCA) [62], Fisher discriminant analysis (FDA) [63], and independent 

component analysis (ICA) [64], to reduce the dimensionality of the feature space, while keeping 

the classification accuracy [48, 61]. In the context of CBM, other examples of processing 

techniques are presented in [65, 66]. 

In case of waveform type data, processing techniques such as time–domain analysis, frequency–

domain analysis, and time–frequency analysis are the most applicable [3]. Since this type of data 

is involved in this doctoral research, descriptions of these analysis techniques will be discussed 

briefly in this thesis, in the following.  
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Time-domain analysis 

Time-domain analysis techniques are used to reflect the statistical behavior of waveform signals. 

In these techniques, some commonly descriptive statistics or higher order statistics are calculated 

[67]. Examples of such descriptive statistics are: mean, peak, peak-to-peak, standard deviation, 

root mean square (RMS), and crest factor [68]. Examples of higher order statistics are: kurtosis and 

skewness [69]. The extracted features are called statistical features since they are based on the 

distribution of the waveform signal that is treated as a random variable. Vibration signals are the 

most common and popular examples of waveform type data in CBM [67]. The statistical features 

extracted from such signals are not effective measures when the acquired signal is a mixture of 

signals coming from more than one source of vibration, in the system being monitored [3].  

Another popular time-domain analysis technique is the time synchronous averaging (TSA). The 

waveform signal is divided into segments of equal length based on a certain synchronous signal 

(e.g. a tachometer signal can be used as a synchronous signal in rotating machinery). The idea of 

TSA is to average the waveform signal over a number of segments, in order to remove or to reduce 

the noise, thus having an improved estimate for the desired signal [70]. One of the disadvantages 

of TSA when it is applied in rotating machinery prognostics, is its sensitivity to speed changes. If 

the speed of the rotating machine changes, the sample length and the number of points in each 

segment will vary accordingly [68]. Other approaches apply time series models to waveform data 

such as autoregressive (AR) and autoregressive moving average (ARMA) models [3]. The 

objective behind these models is to extract features by fitting the waveform data to a parametric 

model. The disadvantage of time-domain analysis techniques is their weak performance when 

applied to modulated non-stationary signals, which exist commonly in industrial machinery [31]. 

Frequency-domain analysis 

Frequency-domain analysis techniques have been the subject of extensive research over many years 

[71]. In such techniques, the time-domain waveform is transformed to the frequency-domain using 

fast Fourier transform (FFT), for better identification of frequency components. It is also called 

spectrum analysis. The objective is to inspect the whole or certain frequency components, thus 

extract features from the spectrum. In the context of CBM, the frequency spectrum carries a great 

deal of useful information in the diagnosis and prognosis of rotating machinery [22]. The 

amplitudes of peaks found in the spectrum indicate the type of fault and its severity [20]. Other 
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frequency-domain analysis techniques such as Cepstrum and Waterfall have been developed to 

detect the faults in CBM [67]. These methods have been shown to have their own advantages over 

spectrum analysis methods in some specific cases [3, 51].  

The disadvantage of using the frequency-domain analysis techniques is their basis functions which 

are extending over an infinite period of time [71]. This limitation hinders these techniques to handle 

non-stationary transient signals with short durations [20]. Such transient signals come when the 

components of defect frequencies overlap each other in the machine [71].  

Time-frequency domain analysis 

As one of the most popular time-frequency techniques, short time fourier transform (STFT) was 

developed to address the limitation of the FFT [72]. The objective is to divide the whole waveform 

signal into a number of segments with a short time window and then apply the FFT to each segment. 

Some of the popular window functions are Hamming, Hann, and Gaussian functions [71]. The 

disadvantage of the STFT is that its time resolution and frequency resolution cannot be chosen to 

be simultaneously small, according to the Heisenberg’s uncertainty principle [73]. A trade off must 

be made between the time resolution and frequency resolution. 

Wavelet Transform (WT) was suggested as a multiscale time-frequency analysis for non-stationary 

signals through dilation and translation processes, aimed at extracting time-frequency features [72]. 

WT uses a series of oscillating functions with different frequencies as window functions (the 

mother wavelet) to scan and to translate the time waveform. The mother wavelet function is a zero 

average oscillatory function centered around the zero with a finite energy. It can take any possible 

form, provided that it satisfies the conditions of admissibility found in [74]. Some commonly used 

mother wavelets are the Morlet, Haar wavelet, Mexican Hat, Daubechies wavelets, etc [71]. At 

high frequencies, the wavelet reaches a higher time resolution but a lower frequency resolution, 

while at low frequencies; it reaches a lower time resolution but a higher frequency resolution [75]. 

This multiresolution characteristic is more advantageous for non-stationary signals with 

discontinuities and spikes.  

The discrete wavelet transform (DWT) is presented as a discritized version of the WT to reduce 

redundancy that results from varying the scale and translation parameters continuously. It uses the 

discrete values of those parameters [75]. One of the advantages of the DWT is its ability to reduce 

noise in raw signals (denoising) [71]. 



20 

 

As an extension for the DWT, wavelet packet transform (WPT) provides more flexible time-

frequency decomposition. The WPT can decompose the waveform in high-frequency regions, thus 

allows feature extraction from sub-frequency bands of the decomposed signal, where the important 

features are hidden [71]. When the WPT is applied to vibration signals, not only all the major 

transient elements are identified, but also the corresponding frequency shifts [71].   

Extensive researchs have been conducted through different settings of the WPT, in order to 

represent bearing vibration under different defect conditions [67, 71, 72, 76]. In [76], the discrete 

harmonic wavelet packet transform (DHWPT) was applied to vibration signals measured from 

rolling bearing, by decomposing each signal into a number of frequency sub-bands. Then, the key 

features associated with each sub-band were extracted.  

There are several ways in which wavelet features can be extracted and applied in fault diagnosis 

and prognosis. Some of the most common extraction techniques for wavelet features are: 

coefficient-based, energy-based, singularity-based, and wavelet function-based methods [20]. 

b-Feature selection 

Not all the extracted features are useful for the CBM decision-making procedure. The extracted 

feature set contains nonsignificant features and superior features as well. The usage of all the 

extracted features not only slows down the procedure of buliling a CBM decision-making model, 

but also tends to degrade its performance [20].  

In CBM decision making, it is necessary to deal with the rich faulty information, thus superior 

features need to be selected from the original feature set, in order to obviously characterize the 

system’s conditions. The feature selection procedure further improves the decision-making 

procedure accuracy and reduces the computational burdens in the CBM program [20, 22, 77].  

Many techniques have been proposed to perform feature selection. The distance evaluation 

technique (DET) [22, 78, 79] and genetic algorithm (GA) [80-82] were proposed for extracting the 

set of superior features. A feature selection technique employing sequential backward selection 

(SBS) is found in [83].  

The DET is one of the most simple and efficient feature selection techniques in the field of CBM 

[22, 78, 79]. The idea of the DET algorithm is to select the features that make the distances within 

a set of classes shorter and the distances among classes longer. An evaluation ratio (weight) for 

each feature in the original feature set, is calculated. Based on these weights, all the features are 
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ranked in an ascending order. According to a certain threshold value, the feature having a weight 

larger than the threshold is selected, otherwise it is discarded. The set of selected features are then 

applied to the decision-making procedure in CBM. 

In [84], the features are extracted using PCA and ICA, then the superior features are selected using 

the DET. An improved versions of the DET are introduced in [77, 85, 86].  

One of the important advantages of the DET over the GA and SBS methods is its tractability and 

excellent computational time. Another advantage of that technique over the PCA, FLD, and ICA 

is that it selects the set of features, without carriyng out any blind transformation for the original 

feature space. This makes the technique compatible with any decision-making model.  

According to those two advantages, we use the DET algorithm in this doctoral research as a feature 

selection technique. The DET algorithm found in [77], is presented in Appendix A of this thesis.  

2.4.3 Maintenance decision-making procedure (diagnosis and prognosis) 

Decision-making is the third and final procedure in the CBM system presented in this thesis. The 

objective is to determine the optimal time to replacement or overhaul the components of the 

monitored system [2]. This can be performed based on a prediction or assessment of the system’s 

health conditions and its residual life. The decision made based on accurate prediction is crucial to 

reduce down time, prolong the system’s lifetime, improve productivity, and enhance its safety [87]. 

In CBM, diagnostics and prognostics are essential tools to identify incipient faults and to predict 

the RUL before catastrophic failure occurs [3]. They are the two main aspects to support 

maintenance engineers by the decision making capability [20]. 

Three main tasks can be performed by the diagnostic algorithm, namely fault detection, fault 

isolation, and fault identification [3, 19, 20]. The task of fault detection is to detect and report the 

abnormal conditions in the system being monitored. In fault isolation, the task is to locate the 

component which is failing or has been failed. In fault identification, the task is to estimate the 

nature of the fault when it is located [3, 20].  

Prognostics on the other hand, deals with the prediction of failure before it occurs. The task of 

prognostic algorithm is to estimate the RUL or time to failure of the system [88]. In that sense, 

diagnostics is a posterior event analysis while prognostics is a prior event analysis [20]. The gap 
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between the detection of the incipient faults and the progression to complete failure is the realm of 

prognostics [3]. In CBM, fault prognostics is superior to fault diagnostics because it can prevent 

the occurrence of failures, thus saves extra unscheduled maintenance cost. From the maintenance 

decision makers point of view, prognostics can be distinguished from diagnostics in terms of the 

warning time before failure (it is also called lead time or prognostic distance). In effective 

prognostic algorithms, such distance should be far enough ahead for an appropriate action to be 

taken [12].  

Our focus in this doctoral research will be directly relevant to the prognostic algorithms in the 

CBM architecture. However, the performance of the prognostic algorithm is dependent on the 

performance of all the preceding procedures, in particular the diagnostics. 

2.5 Fault prognostics in CBM 

Based on the above discussion, the general scheme for the CBM program presented in this thesis, 

adopted from [89], is shown in Figure 2-2. The figure shows the entire offline and online 

procedures required for monitoring, diagnosis, and prognosis.  
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Figure 2-2: The overall architecture of the CBM program 

As shown in Figure 2-2,  two tasks should be implemented in advanced CBM decision making. 

The first one is the one that predicts the RUL of the monitored system, while the second task is the 

maintenance scheduling.  
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In the presence of a given fault, the function of the diagnostic model is to evaluate the current 

health condition of the monitored system, by performing a quantitative assessment between the 

newly arrived faulty signatures and the historical failure behaviors [22]. This assessment is very 

important for the prognostic algorithm to predict the RUL. The RUL estimation is then 

supplemented with forecasts describing the impact of predicted RUL on the operational and 

maintenance activities [30]. The RUL prediction is an essential task for the CBM decision maker, 

where a set of post-action decisions are taken. This is the task of maintenance scheduling module. 

In maintenance scheduling, the objective is to identify the potential actions that could retard or 

eliminate the progression to the critical failure and prevent the future ones, based on the estimated 

RUL. This task takes into account some procedures such as logistics, inventory management, and 

maintenance planning [9]. These are management procedures, and they are out the scope of this 

doctoral research. 

The accurracy of diagnostic algorithm is important to improve the prognostics, in the sense that the 

diagnostic information can be useful for updating some prognostic indices. One of the common 

prognostic indices in the CBM is the reliability function, which is used in this doctoral research to 

estimate the RUL of the monitored system. 

2.6 Reliability-based prognosis 

2.6.1 Reliability (survival) function 

Reliability is defined in [12] as “the ability of a product or system to perform as intended (i.e., 

without failure and within specified performance limits) for a specified time, in its life-cycle 

environment”. More specifically, it is the probability that a system will perform its intended 

function during a specified period of time, under certain operating or environmental conditions 

[28]. The reliability of a monitored system is affected by such conditions. 

The object of primary interest in reliability analysis is the reliability function, conventionally 

denoted as 𝑅(𝑡). The reliability function 𝑅(𝑡) is also called the survival function or survivorship 

function, denoted as 𝑆(𝑡) in problems of survival analysis. In this thesis, the words ‘reliability’ and 

‘survival’ are used interchangeably. The survival function is expressed mathematically as: 

                                                            𝑆(𝑡) = 𝑃𝑟(𝑇 > 𝑡) = ∫ 𝑓(𝜏)𝑑
∞

𝑡

𝜏                                                (2.1) 

http://en.wikipedia.org/wiki/Probability
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where 𝑓(𝜏) is the probability density function for the random variable 𝑇 which is denoting the 

system’s failure time. Equation (2.1) states that the survival function is defined as the probability 

that the time of failure is later than some specified time 𝑡.  

2.6.2 Survival function estimation: Parametric techniques 

As stated previously, when the event data represent the failure mechanism, they are called lifetime 

data. Event data are helpful in reliability analysis. An example of event data are the failure times 

that are used to assess the survival function of a system. In parametric survival analysis, the event 

data are fitted to a predefined probability distribution function (for example, Weibull, exponential, 

gamma, etc.) to estimate the survival function. One of the limitations of such parametric techniques 

in survival analysis, is that some impractical statistical assumptions must be made about the 

distribution of the event data. 

2.6.3 Non-Parametric survival curve: Kaplan-Meier estimator 

Kaplan-Meier (KM) estimator is one of the most common non-parametric techniques applied to 

estimate the survival function, it is known as the product limit estimator [90]. The advantage of 

using KM estimator is that, it does not make any assumptions about the distribution of lifetime 

data.  

The estimated KM survival function presented in [90, 91], is given as: 

                                                                          𝑆(𝑡) =∏[1 −
𝑑𝑗

𝑛𝑗
]

𝑡𝑗≤𝑡

                                                         (2.2) 

where 𝑛𝑗  is the number of systems that have not failed (at risk) just before 𝑡𝑗, and 𝑑𝑗 is the number 

of failures at time 𝑡𝑗. More details about equation (2.2) are given in Appendix B of this thesis. 

2.6.4 Prognosis: Remaining useful life estimation 

The estimated survival function (either parametric or non-parametric), is used to predict the RUL 

of the monitored system, which in turn gives an indication to estimate its failure time [92]. This 

kind of prediction is called reliability-based prognosis. 

The Mean Remaining Useful Life (MRUL) of a system at a certain time instant 𝑡𝑘, is calculated 

based on the following equation, which is presented in [93, 94]: 

http://en.wikipedia.org/wiki/Random_variable
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                                                       𝑀𝑅𝑈𝐿(𝑡𝑘) = 𝐸(𝑇 − 𝑡𝑘|𝑇 > 𝑡𝑘) 

                                                                            =
∫ (𝜏 − 𝑡𝑘)𝑓(𝜏)𝑑𝜏
∞

𝑡𝑘

𝑆(𝑡𝑘)
=
∫ S(𝜏)𝑑𝜏
∞

𝑡𝑘

𝑆(𝑡𝑘)
                           (2.3) 

The interested readers may be referred to Appendix C for more details about this equation. 

2.7 Updated survival curve using the condition monitoring data 

2.7.1 The effects of the CM data on the survival curve 

As stated previously, the event data are helpful in assessing the survival function and consequently 

the RUL of the system. However, the estimated survival function reflects only the effect of the age 

on the system’s health state. It does not reflect the effect of the current operating conditions on its 

health state.  

Using condition monitoring data in the CBM has several advantages. It is not necessary for the 

analyst to wait until the occurrence of complete failures. Instead, the analyst can use some condition 

indicators to predict the RUL of the system [92]. Thus, it is necessary to model the effects of 

condition monitoring data on the survival curve. 

2.7.2 Proportional hazards model 

Originally, the proportional hazards model (PHM) was applied in biomedicine to estimate the 

survival function for different groups of patients [95]. It is applied in the fields of reliability and 

CBM to estimate the reliability function of the monitored systems that work under different 

operating conditions [3].  

The PHM is made up of two parts: the first part is the baseline hazard function, while the second 

part is a function including all the covariates that affect the time to failure of the system [13]. The 

parameters of the baseline hazard function can be estimated using many estimation techniques such 

as Breslow’s estimator, while the effects of the covariates can be estimated using partial likelihood 

function [90]. The most common example for the baseline hazard function is the Weibull hazard 

function.  

The principle of the PHM is discussed in Appendix D. 
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2.8 Multiple Failure Modes Prognostics in CBM 

In the case of multiple failure modes prognostics, the objective is to estimate the RUL for a system 

subjected to a multitude of competing and interacting failure modes, by equating the system’s RUL 

with the lowest failure time. In most statistical-based prognostic methods, the assumption of 

independence between the failure modes must be met.  

It is concluded from the presented literature in [30] that the majority of multiple failure modes 

prognostic models do not help the industry practitioners to select an appropriate model for their 

specific needs, although these models have some technical merits. Other reported multiple failure 

modes prognostic models have been theoretical and restricted to a small number of failure modes, 

and do not concentrate on the practical implementation issues [96].  

It is therefore necessary to model the survival function of a system or a component subjected to 

one of many failure modes, in the presence of the other competing ones. 

2.9 Cumulative Incidence Function (CIF): A non-parametric technique for 

multiple failure modes 

The cumulative incidence function (CIF) is a non-parametric model that does not need any 

statistical assumptions to be met about the distribution of the data, as introduced in [97]. In CIF 

estimation, the assumption of independence between the competing failure modes is not required 

to be considered. This technique uses the cumulative incidence rather than the survival probability 

[98]. It provides an estimate for the marginal probability of a certain failure mode in the presence 

of the other competing ones, based on the collected lifetime data. The CIF for a failure mode 𝑖, 

adopted from [97], is given as: 

                                                             𝐹̂𝑖(𝑡) = ∑
𝑑𝑖𝑗

𝑛𝑗
𝑆̂(𝑡𝑗−1)

∀ 𝑗,𝑡𝑗≤𝑡 

                                                     (2.4) 

The CIF estimator for the failure mode 𝑖 depends not only on the number of systems that have 

experienced this type of failure (𝑑𝑖𝑗) at time 𝑡𝑗, but also on the number of systems that have not 

experienced any other failure mode (𝑛𝑗) just before 𝑡𝑗. Equation (2.4) represents the probability 

that a system will experience a failure mode 𝑖 by time 𝑡, in the presence of the other competing 

failure modes.  

In what follows, a literature review of the current prognostic models is discussed.  
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2.10 Current Prognostic Methods: A Literature Review 

2.10.1 Diagnostic/Prognostic decision approaches 

Numerous diagnostic and prognostic methods have been proposed and reported in the CBM 

literature [2, 3, 20]. A comprehensive literature review is found in [3], which is one of the most 

cited review papers in the CBM domain. According to that paper, current diagnostic/prognostic 

decision methods are broadly fall into two major categories: model-based and data-driven 

approaches. The model-based approaches are further classified into qualitative and quantitative 

methods [20]. The qualitative model represents the relationship between the inputs and outputs of 

a system in terms of qualitative functions centered on different units in the system. These kind of 

models are developed as qualitative causal models such as directed graphs (digraphs). Common 

examples of such models are Petri Nets (PNs) [99-101].  

In quantitative model-based methods, an explicit dynamic mathematical model is developed based 

on the fundamental understanding of the system’s physics [20]. Such models are capable of 

detecting and predicting the unanticipated faults, because they rely on residuals between the actual 

output of the system and its expected behavior (the output of the model) [2]. Such residuals 

represent the consistency checks between the sensed measurements of a real system and the outputs 

of a developed mathematical model [20]. The most common used techniques for generating and 

analyzing the residuals are: parameter estimation, parity relations, and observers [2, 3]. The 

physical models and damage propagation models which are based on damage mechanics, are 

employed commonly in the CBM to detect the incipient faults and to predict the failure as well 

[21]. Model-based approaches may not be practical in the case of complex systems that contain a 

multitude of components. The fault in such systems can vary from component to another. 

In contrast to model-based approaches, data-driven approaches require transforming a sufficient 

amount of historical data into a priori knowledge, in order to build diagnostic/prognostic models 

[3]. They are based on the concept of training (also called learning) and testing, which keep 

improving as the knowledge is provided [102].  

The data-driven approaches fall into two main categories: statistical-based and artificial 

intelligence-based methods. Artificial intelligence-based methods are the most popular and 

promising among the data-driven approaches [29]. Such methods rely on the availability of 
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condition monitoring data and draw on learning techniques from the area of computational 

intelligence, where artificial neural networks (ANNs), Neuro-Fuzzy, and others are employed to 

map the condition measurements into fault growth models [61]. In the statistical-based methods, 

statistical machine learning algorithms are employed to process the acquired historical data, in 

order to discover the hidden patterns [43].  

The advantage of utilizing the data-driven approaches over the model-based approaches in many 

practical cases is the ease to gather data rather than to build an accurate physical model [34]. The 

efficiency of data-driven approaches is highly dependent on the quantity and quality of acquired 

data [22]. Figure 3-1 is quoted from [20] to illustrate the difference between model-based and  

data-driven approaches.  

Sensor 
readings

Residuals
or 

innovations

Decision
logic

Model

Sensor 
readings

Inference

Decision
logic

Knowledge 
and 

training

Model-based Data-driven

Model required No model needed
 

Figure 2-3: Model-based and data-driven approaches as presented in [20] 

Since this doctoral research focuses mainly on prognostics, a literature review on the current 

prognostic methods will be considered in this thesis. A significant number of achievements in CBM 

prognostics are reviewed and reported in [30, 103-105]. Recently, numerous prognostic methods 

that have been implemented in many practical situations, are found in [30]. That paper presents a 

comprehensive survey on the recent prognostic methods used in the industry. It also discusses the 

theoritical and practical merits of each method. Other comprehensive literature reviews on 

prognostic models, have already been presented in [2, 3, 20]. The paper [106] surveys the 
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prognostic methods that particularly applied to aerospace applications. Other good reviews on the 

rotating machinery prognostics are found in [42, 107, 108]. Those review papers present the state 

of the art in CBM prognostics.  

The following sections present a literature review for the prognostic approaches employed in the 

context of CBM. 

2.11 Model-Based Prognostic Approaches 

A number of model-based methods have been successfully applied to real systems. The paper [109] 

presents a survey on the existing state of the art technologies of model-based fault 

diagnosis/prognosis for wheeled mobile robots (WMRs). The paper examines also a developed 

algorithm that is carried out on a WMR at the system and subsystem levels (power supply, driving, 

steering, suspensions, communication, and sensors). In that work a parametric estimation method 

is used to monitor the occurrence of some faults, such as flat tires deformation or broken spokes, 

while considering the parameters uncertainties. It is reported that the fault can be identified clearly 

using kinematic or dynamic models. The results in that paper conclude that model-based methods 

are used efficiently in such complex systems.  

A physics-based model has been adapted and developed for the bearing prognostic applications in 

[110]. The Finite Element Analysis (FEA) is used to compute the spall growth trajectory and time 

to failure, based on given operating conditions. The method uses the bearing geometry, the load 

effect, and the speed of rolling element, to calculate the stress on the material surrounding the spall. 

Accordingly, the damage mechanics are used to model the spall propagation and to determine the 

cycles to failure. In that work, two different sets of seeded fault test data have been collected; one 

from an actual turbine engine bearing, while the other data were collected from smaller angular 

contact ball bearings. The bearings in the two tests were run under different loads and speeds.  

A fault prognostic method based on both the physics of failure models and Bayesian estimation 

method was proposed in [60]. In that method, the particle filtering (PF) is used to provide a 

framework for long-term prognosis, while considering the uncertainties. The method is applied to 

an electrical power generation and storage (EPGS) system in automotive vehicles. The PF is used 

to predict the time evolution for the fault, based on typical automobile usage pattern and the 

temperature as a stress factor. The PF is used to estimate the probability density function by using 



30 

 

a set of particles representing sampled values from the state space. In that work, the performance 

of the PF has been tested and compared with the extended Kalman filtering (EKF). The results 

showed that the prediction precision when using the PF is higher than that of using the EKF. 

The battery is one of the most important component in our everyday life. One of the main 

prognostic issues when dealing with such kind of components is that the internal state variables are 

inaccessible to sensors [111]. As a model-based method, the PF was applied in battery health 

prognostics in [112]. In that work, the PF was compared to two data-driven statistical techniques 

namely; MM regression (it is the abbreviation of M in M estimates) and the robust-least trimmed 

sum of squares (LTS) regression, to predict the RUL of the battery. The battery health in that paper 

is directly tied to its capacity. The battery failed when its capacity has faded by 30%. In that paper, 

the RUL prediction using the PF approach got more accurate and precise prediction than the MM 

regression and the LTS regression. 

A hybrid method that integrates the model-based and data-driven methods was proposed in [113]. 

The paper presents a systematic prognostic algorithm applied to automotive and electronic systems 

(the suspension system and battery). In that work, the hidden Markov model (HMM) that infers the 

evolution of component’s degradation, is combined with the support vector regression (SVR) as a 

data-driven method. The proposed algorithm is designed from practical point of view, in order to 

allow the practitioners to carry out their experiments using an integrated framework. 

As mentioned previously, it is not easy task to build an accurate physical model in most practical 

situations. Building an accurate model-based prognostic method may be a rather time-consuming 

and intensive process in the cases when the targeted systems are complex (e.g. aircraft turbine 

engines). Therefore, it is not advantageous to apply the model-based approaches in such cases.  

2.12 Data-Driven Prognostics Approaches 

2.12.1 Artificial Intelligence-based methods 

As a data-driven prognostic method, the dynamic wavelet neural network (DWNN) was proposed 

in [114], to predict RUL of an industrial chiller. The rolling element bearing was used as the target 

component to demonstrate the applicability of the DWNN algorithm. Tri-axial accelerometers were 

employed to collect the vibration signals from a bearing with a crack in its inner race. The vibration 
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signal was then preprocessed and a set of features were extracted. The input features to the DWNN 

are: the maximum values and the maximum power spectral density (PSD) of the measured signals 

in the three axial directions. The DWNN algorithm was implemented with seven neurons in the 

hidden node. The algorithm uses six features (the signal’s amplitudes and the maximum PSDs) as 

inputs, and uses the width and length of the crack as outputs. The Mexican hats were used as mother 

wavelets functions. The trained DWNN model maps the features evolution to the crack growth. A 

failure threshold was established empirically to the crack width of 2000 µm or crack depth of 1000 

µm, as an indication for the complete failure.  

A prognostic method based on the ANNs was proposed in [115] to predict the failure time of the 

rolling bearings. The network was trained using the vibration-based degradation signals collected 

from a number of bearings. In that work, it was assumed that the bearing degradation signals 

possess an exponential growth. Each collected degradation signal was fitted to an exponential 

function and the parameters of that function were used to predict the failure time of the bearing. 

Another neural network called generalized regression neural network (GRNN) was used as an 

approximation technique to compute the regression model for each bearing. The regression model 

uses a weighted average of the exponential parameters coupled with parameter updating algorithm 

to predict the failure time of the bearing.   

A prognostic method based on the recurrent neural networks (RNNs) have been conducted in [116]. 

In that work, a neural network prediction model called extended recurrent neural network (ERNN) 

was developed. The method deals with multiple condition monitoring indicators to predict the 

health conditions of a monitored equipment. The prediction performance using ERNN was tested 

and compared with the fully connected recurrent neural network (FCRNN) model, based on 

vibration data collected from a gearbox. The results show that the ERNN model gives better 

prediction results than the FCRNN model. 

A prognostic method based on the ANNs has been proposed in [19] to predict the equipment’s 

RUL. The method deals with multiple condition monitoring measurements. The inputs to the ANN 

model are the age and condition monitoring values at current and past time instants. The output is 

the life percentage. The life percentage in that work was defined as the ratio between the current 

age of the equipment and its failure time. The ANN model has four layers; an input layer, two 

hidden layers, and an output layer. A parametric function was proposed to fit the measured 
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condition indicators. The optimal parameters’ values of that function were obtained by using the 

genetic algorithm (GA). The fitted condition indicators were then used to train the ANN model 

instead of the original measurements, to avoid the representation of noise in the model. The trained 

ANN model represents the nonlinear mapping between the current and the previous condition 

indicators values, and the life percentage. The prognostic model was validated using vibration 

monitoring data collected from pump bearings. 

In [117], a prognostic methodology based on a neural network was presented to predict the RUL 

of the aircraft actuator components. The methodology integrates both diagnostic and prognostic 

technologies. It exploits the diagnostic information throughout the operational life of the system to 

predict its RUL. It uses the neural network as signal processing and feature extraction technique, 

along with fuzzy logic classifiers and Bayesian inference as fusion strategies. The objective of the 

fusion module is to account for the diagnostic confidence. The system health state is implicitly 

modeled through the monitoring of specific features (such as the pressure, current, and position 

measurements). The methodology was applied to F/A-I8 stabilator electro-hydraulic servo valves 

(EHSVs). It is concluded from the results that the methodology can be implemented over a wide 

range of similar systems, including hydraulic and electro-mechanical actuation systems.  

A reliability-based prognostic methodology incorporating failure and suspended data is proposed 

in [34]. The instantaneous reliability of a set historical items is first estimated using a variation of 

the KM estimator and a degradation-based failure probability density function. The estimated 

reliability is then used as the training target for a feed-forward neural network (FFNN), to predict 

the failure time five intervals ahead. The estimated survival probabilities are collected to form an 

estimated survival curve. A vibration signals collected from a set of pump bearings were used to 

validate the proposed methodology. The predicted failure time was identified by detecting the time 

at which the monitored unit has a survival probability less than a certain threshold value (a value 

of 0.5 was set in that work). As reported in that paper, the proposed prognostic methodology was 

able to capture the nonlinear relationship between the condition indicators and the actual health 

state of the monitored items.  

A limitation of using the ANNs in prognostics is the difficulty of determining the optimal values 

of network parameters (number of nodes in the input layer, number of hidden layers, number of 

nodes in each hidden layer, learning rate, momentum, etc.). Finding the optimal number of hidden 
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layers and the appropriate ANN structure remains a challenge and requires a number of 

experimentations. Another limitation of using these networks is their black box representations. 

The architecture of the network could not give a clear relationship between the inputs and outputs. 

As a consequence, there is no physical interpretation of the training process (the maintenance 

personnel could not have any conclusion about the relationship between the fault and its causes) 

[31]. Therefore, the ANNs should be merged with other transparent approaches such as the fuzzy 

logic approach, in order to have a clear view for the CBM decision making procedure.  

In [118], similarity-based method was suggested to detect and predict the faulty behavior in a 

manufacturing plant. The historical data in the form of condition indicators (features) were 

collected from several identical machines. The degradation of two different machines were 

compared by assessing the similarity between any pair of feature vectors. In that work, a match 

matrix is calculated based on a similarity measure which is a function of Mahalanobis distance. 

The degradation patterns of the past and current operational run are compared through this match 

matrix. The future values of the match matrix indices are predicted using ARMA model or recurrent 

neural network (RNN). Given a set of signatures describing the faulty behavior, the prediction of 

the distribution of the feature vectors is used to estimate the future probabilities of failure. The 

method is computationally demanding since it compares the current operational run with a large 

number of past runs. 

Another similarity-based prognostic method was presented in [119]. A set of failure trajectory 

patterns (reference trajectories) are extracted and collected in a reference library. A fuzzy-based 

similarity analysis is performed to predict the RUL of a newly developed failure trajectory pattern 

(test trajectory). The matching between the reference and test patterns is performed by fuzzy 

distance evaluation algorithm. The RUL estimation is performed in four steps [119]: (1) computing 

the fuzzy distance between the test and the reference patterns, (2) calculating their fuzzy similarity 

and distance score, (3) calculating the weights of the RUL estimates provided by the reference 

patterns, and (4) calculating the system’s RUL by aggregating those weights. A nuclear power 

plant was employed as a case study to demonstrate the applicability of the proposed method.  

A reliability-based prognostic methodology was proposed in [120] to update the reliability of a 

hazardous gas detection system (HGDS). The HGDS was used in aerospace shuttles to detect the 

explosion of gases. In that method, the failure data are assumed to follow an exponential 



34 

 

distribution. In the first step of the proposed methodology, the system initial reliability parameters 

are calculated using Monte Carlo Simulation (MCS), by considering the variability of the system’s 

conditions. Secondly, the fuzzy system is used to capture the effect of environmental factors on 

system’s reliability. The input variables to the fuzzy system are: temperature, humidity, and the 

acidity. They were used as environmental factors. The output variable of the fuzzy system is a 

reliability estimate adjustor. In the last step, as the new failure data become available, the Bayesian 

inference uses the output of the fuzzy system to update the initial reliability estimated by the MCS. 

The proposed methodology thus allows continuous updating for the system reliability as new 

failure data are available at any stage of the system’s life. 

The limitation of applying the fuzzy logic in prognostics is the potential exponential explosion in 

the number of rules as the number of input variables increases [31]. Another limitation is its 

dependency on human expertise. Although this expertise is very valuable, it is subjected to some 

sort of tolerated performances, which often come from imprecise knowledge and inaccurate 

reasoning. For these reasons, those methods are often combined with some statistical tools and 

fusion algorithms to measure the uncertainty and confidence interval [20].  

2.12.2 Statistical-based methods 

Many statistical-based prognostic methods were utilized to predict the degradation conditions of 

the equipment [3, 20, 92]. In those methods, the model can be built from the observed degradation 

features using many statistical inference techniques. The PHM [13], logistic regression (LR) [121], 

and support vector machines (SVMs) [122], are the most common statistical inference procedures 

used in predicting the RUL in CBM.  

In the fields of reliability and maintenance engineering, the PHM was employed to estimate and 

relates the multiple degradation indicators of the monitored equipment to specific reliability indices 

[123, 124].  

The PHM was used in [125] to predict the raplacement time for the cutting tools in machining 

processes. It was used to model the tool’s reliability and hazard function. The objective is to find 

the replacement time when the tool is used under different values of cutting speed, based on three 

criteria. In that paper, the PHM is proven to be a good model in representing tool reliability and 

hazard rate when the cutting speed is varying. 
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In [13], the PHM model was developed for the purpose of risk prediction. The objective is to 

identify the risk function which is merged with the cost data, in order to select the optimal 

maintenance policy. The model was applied to vibration signals collected from shear pump 

bearings in food processing plants, in three directions: axial, horizontal, and vertical. Such 

measurements were transformed by using the FFT into the frequency domain. Twenty-one 

covariates were used to build the PHM model. The significant covariates were then checked 

statistically and only three of them were selected. After the PHM has been built, the transition 

probabilities indicating the behavior of the covariates were estimated, to predict the occurrence of 

the failures. Accordingly, the optimal policy was followed to prevent their occurrence. 

In the same context, the PHM was proposed to predict the hazard rate in [126]. The objective of 

the study is to maximize the reliability and to minimize the maintenance costs (multi-objective 

CBM optimization). At a certain inspection time, if the hazard rate multiplied by a predetermined 

scalar value K is greater than a certain risk threshold value d, the item is replaced at this moment 

(preventive replacement). The operation continues if the value of the risk threshold could not be 

reached. In case of complete failure, a failure replacement is performed. The physical programming 

was applied as a multi-objective optimization technique, to obtain the optimal risk threshold value 

that optimizes the maintenance costs and reliability.  

Unlike the PHM model proposed in [126] which mainly focuses on a single component, a PHM 

was proposed in [127] to deal with the CBM optimization in complex systems that consist of 

multiple components. In such systems, the economic dependency exists among the components. In 

that work, two levels of risk threshold (level-1 risk threshold d1 and level-2 risk threshold d2) were 

introduced, in order to determine which components should be subjected to preventive 

replacement, given that preventive replacements were performed for the other components at a 

certain inspection time.  

The PHM was merged with the SVM to predict the RUL of a monitored equipment in [128]. The 

idea behind merging the SVM with PHM, is to use the SVM as a regression technique to detect the 

outliers (abnormal or extreme data). Then the trained SVM regression algorithm is used as a 

prediction model to calculate the relative loss in the data points. If the loss exceeds a certain value, 

the data point is considered to be abnormal. The dataset is then updated by eliminating the abnormal 

data points. The parameters of the PHM are then estimated based on the new updated training 
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dataset. The PHM model is then used to predict the RUL of the monitored equipment. An 

experimental data were collected from oil samples in an engine to test the proposed prognostic 

method. The proposed method has a good short-time prediction capability as concluded in that 

paper. However, the long term prediction using that method was inaccurate. Choosing the optimal 

values of the SVM parameters is another issue in that method. Another algorithm is needed to 

optimize such values. 

The logistic regression (LR) was widely used in statistical sciences and biomedicine [129]. The 

utilization of logistic regression in the CBM is still in its infancy [121]. The LR is a modified 

version of linear regression method that is employed when the dependent variable is a dichotomous 

variable (coded as 0 and 1) [43]. The idea behind this modification is to find the best fitting model 

that describes the relationship between a dichotomous variable and a set of independent variables 

(covariates). In the LR, a logistic function is used to represent the probability that an event will 

occur. It is constrained between 0 and 1 (logit transformations of the dichotomous variable) [122]. 

The resulting function (also called logit model) is a linear combination of the independent variables 

weighted by regression coefficients. After the dichotomous variable is transformed into a logit 

variable, the maximum likelihood estimation technique can be applied to calculate the parameters 

(the regression coefficients) of the model  [129]. 

A combination of the LR and relevance vector machine (RVM) was proposed in [121] as machine 

health prognostic methodology. In that work, the LR is used to estimate the failure degradation of 

the run-to-failure bearing data. The RVM is trained by using the estimated failure probability as 

the target output, and the kurtosis as an input feature. After the termination of the training phase, 

the RVM model is obtained in the form of weights and bias. The trained RVM model is then 

employed to predict the failure probability of the bearings. The trained model produced the output 

in terms of one-step-a head or k-step-ahead prediction [121]. The performance of the proposed 

methodology was validated using two datasets (simulated and experimental).  

An LR prediction model was applied to estimate the RUL in condition monitoring in [130]. It was 

compared in that paper to the PHM prediction model. The comparison considers the efficiency and 

the computation efforts. The failure data and condition monitoring data were taken into account 

simultaneously in the two models. As a result of this comparison and from computational 

complexity point of view, the PHM considers the entire history of the degradation covariates. Thus 
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a numerical integration procedure was carried out to estimate the model parameters. On the other 

hand, the LR model considers only the current degradation covariates. Consequently, the PHM 

required more computation efforts than that of the LR. The parameter estimation procedures in 

both models were carried out offline. This indicates that the computational complexity of each 

model is insignificant in the online applications. In that paper, an accelerated bearing test was 

conducted on a specially designed test rig. The experiment was conducted under elevated loads 

and rotational speed, and considered multiple degradation covariates.  

Support vector machines (SVMs) originated from the statistical learning theory (SLT) [131-133]. 

More specifically, the SVM was introduced and developed by Vapnik and his co-workers [132, 

134]. It is one of the most important classification techniques in the last 15 years due to its excellent 

generalization ability [135]. The SVM is known as maximum margin classifier which has the 

ability to minimize the empirical classification error and maximize the geometric margin between 

the training observations and the decision boundary simultaneously [133]. As a classification 

technique, it searches among the separating hyperplanes the one with the maximum margin by 

transforming the classification problem into an optimization problem. This optimization problem 

is treated as Lagrangian dual problem [136].  

As reported in [132], for a smaller number of observations, the SVM has better generalization than 

the ANN when the local and global optimal solution are exactly the same. This can be considered 

as an advantage since the SVM can solve the same learning problem with a small number of 

observations.  

SVMs were originally designed as two-class classifiers. Multi-class SVMs can be obtained by the 

combination of multiple two-class classifiers. Several methods have been proposed, such as  

one-against-one (OAO), one-against-all (OAA), and direct acyclic graph (DAG) [137]. In [138], a 

comparison between those three methods is presented. It is shown in that paper that the OAO 

method has outstanding performance than the other methods. The theory, methodology, and 

software of the SVM are available in [139]. The algorithms for SVM are also implemented in the 

publicly available software package “Weka” [43, 140].  

In the context of CBM, the SVM has been applied in fault diagnosis and prognosis, due to its 

excellent performance and good generalization capability [22, 137]. A good survey on machine 

condition monitoring using the SVM is found in [137]. The paper [141] reviews the research and 
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developments of the SVM in fault diagnosis and prognosis. That paper includes the application of 

the SVM to rolling element bearing, induction motors, machine tools, high voltage AC machines 

(HVAC), pumps, compressors, valves, and turbines. 

The paper [141] applied the SVM as a regression technique called support vector regression (SVR) 

for machine fault prognosis. The SVR considers the predicted output to be numerical rather than 

categorical. A low methane compressor was presented as a case study to demonstrate the 

applicability of that method. The compressor was driven by 440 kW, 6600 volt, 2 poles motor. The 

operating speed of the motor was set to 3565 rpm. The data in that experiment were trending data 

of peak acceleration and envelop acceleration. The dataset contains observations of machine 

history with respect to the time. The objective of that method is to predict the future values of the 

vibration amplitude, based on those historical observations. The trained SVR learn the 

characteristics of the observations and save them in the form of weights, bias and support vectors, 

in order to predict the future conditions of the monitored machine.  

A bearing prognostic methodology based on health state probability estimation was proposed in 

[142]. In that methodology, the fault diagnosis and health states estimation was performed using a 

range of classification algorithms, such as the ANNs, SVMs, regression trees, and others. The SVM 

classifier shows outstanding performance compared to the other classifiers. The RUL estimation 

was calculated using the classification ability of the SVM and probability distributions of the health 

states. Real life fault data collected from a set of bearings in high pressure-liquefied natural gas 

(HP-LNG) pump, were used to validate the feasibility of the proposed methodology. The optimal 

number of health degradation states was selected, and the results obtained in that work showed that 

the proposed prognostic methodology with five degradation states has the potential to be used for 

RUL prediction in the industrial applications. 

Other statistical data-driven methods have been applied for the purpose of RUL prediction. 

Bayesian techniques are considered as good frameworks for the RUL prediction since they can 

handle various sources of uncertainties [143]. The techniques can perform dynamic state 

estimation, by constructing a probability density function, based on all available data [112]. Such 

techniques define the probability distributions over both parameters and covariates. 

A prognostic method for wear prediction in oil-based monitoring was proposed in [144]. The 

method is based on stochastic filtering and continuous hidden Markov model (HMM). The Beta 
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distribution is used to establish the transition matrix of the HMM, thus represents the unobservable 

state of the system in terms of wear. The relationship between the wear and metal concentration is 

modeled, based on observations representing the metal concentration at discrete time instants. The 

current and future states (the wear) of the system are predicted using recursive equations. In that 

paper, approximated grid and particle filtering were used as approximation techniques to compute 

such recursive equations. 

The authors in [112] employed and compared statistical data-driven prognostic methods to predict 

the health state of the battery. The MM regression and robust-least trimmed sum of squares (robust-

LTS) regression were explored as linear regression techniques, to extract the relationship between 

the charge transfer resistance RCT and electrolyte resistance RE, and the capacity C at baseline 

temperature (25ºC). The feature that represents (RE+RCT) was extracted from the electrochemical 

impedance spectrometry (EIS) measurements at an elevated temperature (45 deg C). The Gaussian 

process regression (GPR) was employed in that work as a nonlinear probabilistic regression model 

to estimate the RUL.  

The limitation of statistical-based methods is that they need sufficient amount of data to properly 

represent the nonlinear dynamics of the degradation process, in order to get more accurate and 

precise predictions. They may fail to learn the nonlinear trends in the absence of full range of 

training data. On the other hand, the parameter estimation procedures in such methods are complex 

and time consuming for historical data with a larger sample size. This will not facilitate the 

implementation of those methods in online applications. Moreover, those methods are based on 

statistical processes which require some impractical assumptions to be made. 

2.12.3 Other approches: logical analysis of data 

Logical Analysis of Data (LAD) is an interpretable knowlege discovery approach. It is based on 

the combinatorial optimization and Boolean functions [26]. It is proven in [26, 145] that the LAD 

approach can be used as a powerful diagnostic tool and reacts well to noisy and missing data. 

The LAD approach was used in the field of CBM diagnosis for the first time, by the maintenance 

and reliability research team at École Polytechnique de Montréal, in 2007 [27]. The research team 

was able to reproduce human expertise in detecting the rogue components in airplanes [10].  
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The LAD approach generates patterns that can be easily interpreted and translated into rules which 

are beneficial to the maintenance engineers and the technicians [31]. The results presented in [31, 

69] show that LAD is not based on any statistical analysis, this makes it capable of dealing with 

the condition monitoring data that are highly correlated. 

The LAD approach has been used in [146] to predict the health states of an equipment, based on 

the patterns generated from the condition monitoring data.  

In what follows, the stages of the LAD approach and its applications are described in more details.  

2.13 LAD: Historical perespective 

LAD is a supervised data mining approach that was presented in [26], by a group of researchers at 

RUTCOR, Rutgers University in USA. It was used for the first time as a Boolean classification 

technique to model the cause-effect relationship between a dependent variable that represents a 

certain event and a set of factors representing all the possible attributes that affect the occurrance 

of that event [147]. Originally, it is combinatorial optimization-based method used as two-class 

classification technique (dichotomizer) [26].  

As reported in [26], the accuracy of LAD is superior to the other compared classification methods. 

In the field of CBM, it was also proved that the LAD approach is an efficient diagnostic tool when 

it is compared to the top classification techniques [10, 31].   

2.13.1 Knowledge discovery in the form of extracted patterns 

LAD is based on extracting the knowledge from a training dataset consisting of observations that 

are represented as binary or numerical vectors, contained in a number of classes. Each observation 

is composed of the values of certain characteristic factors [26]. In this thesis, the words ‘covariates’ 

and ‘factors’ are used interchangeably. 

The knowledge is represented in the form of generated patterns for each class in the dataset. Those 

patterns represent the interactions between the factors in each class in the training dataset. The 

generated patterns are then used to construct a decision rule (model), that is used as a pattern-based 

classifier for the new testing observations that are not found in the training dataset [26].  
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In the conventional two-class LAD approach, the observations are classified as either positive 𝛺+or 

negative  𝛺−, where 𝛺+and 𝛺− are the sets of positive and negative observations, respectively in 

the training data set 𝛺 [31].  

In what follows, we will discuss in details the stages of the LAD approach to generate the entire 

set of patterns that can be used to construct the decision model, for a single dichotomizer. Then we 

will explain how to generate the set of patterns to construct the multi-class LAD decision model.  

2.14 Two-class LAD decision model 

2.14.1 Stages of two-class LAD 

The two-class LAD approach presented in [26] is composed of three stages: data binarization, 

pattern generation, and theory formation. In this thesis, the pattern generation stage is the main 

concern since the generated patterns represent the building blocks in the proposed CBM prognostic 

methodologies. 

2.14.2 Data binarization 

The data binarization stage involves the transformation of non-binary data, whether numerical, 

ordinal, or categorical to binary data, by transforming each non binary factor into a set of binary 

attributes.  

The binarization of the non-binary data is a research subject that attracted many researchers. Many 

binarization techniques are available in the literature [24, 26, 145, 148, 149]. In this doctoral 

research, the binarization procedure presented in [26] is used as the first stage of the LAD approach. 

It is presented in details in Appendix E through a numerical example. 

2.14.3 Pattern generation 

Patterns generation is the key building block in the LAD approach. This step is essential in 

identifying the positive and negative patterns from the binarized dataset of positive and negative 

observations. The accuracy of the LAD decision rule depends on the type of generated patterns 

[150].  
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2.14.4 Definition and characteristics of patterns 

A literal is either a binary attribute 𝑏𝑗 or its negation 𝑏̅𝑗 [26]. A positive (negative) pattern is defined 

as an elementary conjunction of some literals that is true for at least one positive (negative) 

observation and false for all negative (positive) observations, in the training dataset. Each binary 

attribute in the training set can be represented in a pattern as a literal 𝑏𝑗 or its negation 𝑏̅𝑗. The 

degree 𝑑 of a pattern indicates the number of literals used in its definition. In other words, a pattern 

𝑝 of degree 𝑑 is a conjunction of 𝑑 literals. A pattern is said to cover a certain observation if it is 

true for that observation [26].  

The set of observations covered by the pattern 𝑝 is denoted by 𝐶𝑜𝑣(𝑝). A high degree pattern is 

more likely to cover small proportion of observations, while the pattern with low degree is more 

likely to have large coverage [150].  

By definition, the strictly defined patterns can cover some observations from one class but cannot 

cover any observations from the other classes [26]. This is called pure or homogeneous pattern. 

The concepts of pure patterns may be too restrictive in many practical situations since their 

coverage may be too limited [32]. The definition of the pattern is relaxed to allow the coverage of 

a large proportion of observations in one class, and a much smaller proportion of observations in 

the opposite class  [23, 151]. This is called non-pure or non-homogeneous pattern. In other words, 

this relaxation allows the positive (negative) patterns to cover some negative (positive) 

observations. The homogeneity of the pattern is defined in [23].  

Four types of patterns are defined in [26, 150, 152]: prime, spanned, strong and maximam-π pattern. 

A prime pattern is defined as the pattern that if any of its literals is eliminated, it will not be a 

pattern. The spanned pattern is composed of the possible maximum number of literals for the same 

number of covered observations [152]. A pattern 𝑝𝑖 is strong if there is no other pattern 𝑝𝑘 such 

that 𝐶𝑜𝑣(𝑝𝑖) ⊂ 𝐶𝑜𝑣(𝑝𝑘). It is reported in [152] that the use of strong patterns leads to a superior 

performance of the LAD classifier. A maximal-π pattern is the one that has the largest coverage 

among all patterns that cover a certain observation π, in the training dataset. Two other types of 

patterns are defined as combinations of the prime, spanned, and strong patterns, namely strong 

prime and strong spanned patterns [150]. 
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2.14.5 Pattern generation methods 

In the literature, there are three common methods for pattern generation:  

1- Enumeration-based methods [23, 26].  

The enumeration-based methods are computationally demanding and time consuming for 

generating useful patterns if the dataset has a large number of binary attributes. In such case, the 

number of generated patterns in the training dataset can be extremely large. As an example, the 

number of degree 𝑑 patterns that can be generated from a binarized dataset of 𝑛 binary attributes 

is 2𝑑 (
𝑛
𝑑
). For this reason, these approaches are limited to the datasets with small number of binary 

attributes. 

2- Heuristic methods [151, 153]. 

In these methods, various heuristics have been developed and used for the solution of the pattern 

generation formulation problems. The patterns are generated from the training dataset by using 

heuristic algorithms applied iteratively until all observations are covered. These methods give 

feasible solutions but not the optimal ones. Moreover, their computational time is much shorter 

than the enumeration-based methods.  

3- Mixed Integer and Linear Programming (MILP)-based methods [31, 150, 154].  

The MILP-based method proposed in [150] can generate useful patterns that are optimal with 

respect to various selection preferences (simplicity, selectivity, and evidential [152]), without total 

enumeration. It can also generate patterns that also satisfy user specified requirements such as: the 

complexity (the degree of the pattern), coverage, and homogeneity [150]. The patterns generated 

by using the MILP-based method are strong patterns, which make the LAD classifier generalize 

better on the new testing observations.  

2.14.6 MILP-based method 

The basic task is the generation of positive and negative patterns from the binarized training dataset. 

In this thesis, we explain briefly the MILP-based method presented in [31]. The process of positive 

pattern generation is identical to that of negative pattern generation. For the sake of simplicity, the 

procedure for the generation of positive patterns is presented here, and stated in the following.  
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The procedure for generating one positive pattern 𝑝 is formulated into a set covering minimization 

problem whose decision variables are: the pattern vector 𝑊 of size 2𝑛 (𝑛 is the number of binary 

attributes in the binarized dataset), the degree 𝑑, and the coverage vector 𝑌 of size |𝛺+|. The 

objective is to maximize (minimize) the number of observations that are (not) covered by the 

generated pattern 𝑝 in the set 𝛺+. The MILP formulation of the positive pattern generation 

procedure is summarized as follows: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑊,𝑌,𝑑

∑ 𝑦𝑖
𝑖∈𝛺+

      

                                                               𝑠. 𝑡.

{
 
 
 
 
 
 

 
 
 
 
 
 
𝑤𝑗 + 𝑤𝑛+𝑗 ≤ 1                        ∀ 𝑗 = 1,2, … 𝑛               (2.5)

∑𝑎𝑖,𝑗

2𝑛

𝑗=1

𝑤𝑗 + 𝑛𝑦𝑖 ≥ 𝑑               ∀ 𝑖 ∈ 𝛺+                         (2.6) 

∑𝑎𝑖,𝑗

2𝑛

𝑗=1

𝑤𝑗 ≤ 𝑑 − 1                  ∀ 𝑖 ∈ 𝛺−                         (2.7)

∑𝑤𝑗

2𝑛

𝑗=1

= 𝑑                                                                          (2.8)

1 ≤ 𝑑 ≤ 𝑛                                                                           (2.9) 
𝑊 ∈ {0,1}𝑛                                                                      (2.10)

 𝑌 ∈ {0,1}|𝛺
+|                                                                  (2.11)

 

The feasible optimal solution (𝑊∗,  𝑌∗, 𝑑∗) to the above MILP problem generates a pattern 𝑝 of 

degree 𝑑∗. The generated pattern is defined mathematically as: 

                                                                    𝑝 ≔ ⋀ 𝑏𝑗
𝑤𝑗=1

𝑗∈{1,..𝑛}

⋀ 𝑏̅𝑗  
𝑤𝑗+𝑛=1

𝑗∈{1,..𝑛}

                                                    (2.12) 

More details about this MILP formulation are presented in Appendix F. A numerical example is 

given to clarify the procedures for generating the set of positive and negative patterns from a simple 

training dataset, as well. 

It is proved in [150] that the generated patterns using the above MILP formulation are strong ones 

which are optimal with respect to the degree and coverage. 

The above procedure for generating one positive pattern is repeated iteratively until every positive 

observation in the training dataset is covered by at least one generated pattern. If there are some 

uncovered observations, the above procedure is repeated after excluding the covered positive 
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observations from the dataset. In other words, we remove the observations that are already covered 

by the generated pattern in the previous iteration, and the constraints (2.6) must be satisfied only 

for the uncovered positive observations. The procedures for generating the negative patterns are 

similar. 

The MILP-based method proposed in [31] is a modified version of the method introduced in [150]. 

The modification aims at increasing the diversity of the generated patterns without a significant 

increase in the training time, thus increases the classification power of the two-class LAD decision 

model. The compact MILP-method proposed in [154] involves much smaller number of integer 

variables than the method presented in [150]. This participates in the reduction of computational 

burdens of the pattern generation stage in the LAD approach.  

2.14.7 Pattern selection 

In the pattern selection, a subset of the generated pattern is selected based on certain criteria  

[23, 26, 155]. The objective of this procedure is to find the minimal subset of patterns, such that 

each observation in the training dataset must be covered by at least one pattern [26]. In [23], the 

patterns are selected based on their prevalence, homogeneity, and degree. The pattern selection 

method proposed in [155], is based on solving a set covering problem (SCP). The method considers 

the coverage of the patterns as well as the outliers (the observations that are numerically far from 

the rest of the observations in the training dataset).  

Like the pattern generation procedure, the selection procedure for the positive patterns is identical 

to the selection procedure for the negative ones. The SCP formulation presented in [155] is 

explained in the following.  

We explain here the selection procedure for the set of positive patterns. Given the set of generated 

positive patterns deneoted by 𝑃+, a Boolean vector 𝑉 = (𝑣1, 𝑣2, … 𝑣s, … 𝑣|𝑃+|) is assigned such that 

the binary variable 𝑣𝑠 is equal to one (zero) if the generated positive pattern 𝑝𝑠 is (not) selected in 

the required subset, where |𝑃+| is the number of generated positive patterns. For the set of positive 

observations 𝛺+ = {𝑎1, 𝑎2, … 𝑎𝑖, … 𝑎|𝛺+|}, a Boolean matrix 𝐴 of size |𝛺+| × |𝑃+| is assigned such 

that its entry 𝐴𝑖𝑠 is defined as:  

                                            𝐴𝑖𝑠 = {
1           if the observation 𝑎𝑖 is covered by the pattern  𝑝𝑠
0           otherwise                                                                           
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The SCP is formulated and given as follows: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒∑𝑣𝑠

|𝑃+|

𝑠=1

      

                                                                 𝑠. 𝑡.  

{
 

 
∑𝐴𝑖𝑠

|𝑃+|

𝑠=1

𝑣𝑠 ≥ 1                     ∀ 𝑖 ∈ 𝛺+                       (2.13)

𝑣𝑠 ∈ {0,1}                            ∀ 𝑠 ∈ 𝑃
+                       (2.14)

 

By solving this SCP formulation, a subset of positive patterns is selected and every positive 

observation in the training dataset is guaranteed to be covered by at least one selected pattern. The 

subset of negative patterns is selected in a similar way.  

The above SCP is NP-complete [156]. Numerous heuristic approximation methods were 

well-studied and developed for its solution, for example reasonable and feasible solutions for the 

above SCP formulation can be easily obtained using the simple greedy algorithm, found in  

[155, 156]. Typically, such algorithm selects the patterns iteratively one-by-one until all the 

observations in the training dataset are covered. At each iteration, the algorithm selects the pattern 

that covers as many of the uncovered observations as possible. 

2.14.8 Theory formation: discriminant function 

The final stage in the LAD approach is the theory formation. For the conventional two-class LAD 

classifier, the positive and negative patterns are used to create a model called the discriminant 

function that generates a score ranging between -1 and 1. The discriminant function for the new 

unseen observation 𝑂 is constructed and given as: 

                                                    ∆̂(𝑂) =∑𝑊𝑖
+𝑝𝑖

+(𝑂) −∑𝑊𝑖
−𝑝𝑖

−(𝑂)

𝑁−

𝑖=1

𝑁+

𝑖=1

                                       (2.15) 

where 𝑊𝑖
+(𝑊𝑖

− ) is the weight of the positive (negative) pattern 𝑝𝑖
+(𝑝𝑖

−). The value  𝑝𝑖
+(𝑂)(𝑝𝑖

−(𝑂)) 

is equal to 1 if pattern 𝑝𝑖
+(𝑝𝑖

−) covers the observation 𝑂, and zero otherwise, and 𝑁+(𝑁−) is the 

number of generated positive (negative) patterns. The weight of the positive (negative) pattern is 

defined as the ratio between the number of covered positive (negative) observations by that pattern 

and the total coverage of the positive (negative) patterns. Accordingly, 𝑊𝑖
+ is defined as: 
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                                                                      𝑊𝑖
+ =

𝑐𝑜𝑣(𝑝𝑖
+)

∑ 𝑐𝑜𝑣(𝑝𝑖
+)𝑁+

𝑖=1

                                                       (2.16) 

and 𝑊𝑖
− is defined as: 

                                                                     𝑊𝑖
−  =

𝑐𝑜𝑣(𝑝𝑖
−)

∑ 𝑐𝑜𝑣(𝑝𝑖
−)𝑁−

𝑖=1

                                                        (2.17) 

The output of the discriminant function has a positive value when the tested observation belongs 

to the positive class and a negative value otherwise. A value of zero means no classification is 

possible (unclassified observation) [31, 150]. The tested observation can be correctly classified, 

misclassified, or unclassified. The misclassified observations are the result of generating low 

degree patterns while unclassified observations are results of high degree patterns [150, 154]. 

The accuracy of the LAD decision model depends on the type of generated patterns. As 

experimented and reported in [150, 154], it is shown that the strong patterns can achieve a 

significant and superior testing accuracy. The experimentations in those papers show that the 

generated strong prime patterns can reduce the number of unclassified observations while the 

strong spanned patterns can reduce the number misclassified observations. 

2.15 Multi-class LAD decision model 

Like the conventional two-class LAD, the multi-class LAD approach presented in this thesis is 

composed of three steps: data binarization, pattern generation, and theory formation. In the 

following subsections, the pattern generation and the resulting decision model for the multi-class 

LAD approach, are discussed.  

2.15.1 Pattern generation for multi-class LAD decision model 

The generation of positive and negative patterns in two-class LAD model are extended in multi-

class LAD decision model. In the literature, there are two approaches on the extension of the  

two-class LAD to multi-class applications [157, 158]. Those works present the different 

philosophies that are followed to break down the multi-class classification problems (Polychotomy) 

into two-class problems (Dichotomies). Another philosophy to build a multi-class LAD decision 

model was proposed in [69]. It involves modifying the architecture of the two-class LAD in order 

to construct a unified multi-class LAD classifier. It uses OAO method to built the multi-class LAD 
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model. The proposed method has the advantage that it generates a less complex decision model 

which has a better execution time [69]. 

We discuss briefly the procedure presented in [69] to build a set of multi-class patterns that are 

used to create the multi-class LAD decision model. For the multi-class classification problem with 

𝐶 classes, the procedure starts by creating a set of patterns 𝑃𝑖𝑒 for each pair of classes (𝑐𝑖, 𝑐𝑒), 

where 𝑖, 𝑒 ∈ {1,2, . . 𝐶} and 𝑖 ≠ 𝑒. In that method the set 𝑃𝑖𝑒 is not identical to the set 𝑃𝑒𝑖 (i.e. 

𝑃𝑖𝑒 ≠ 𝑃𝑒𝑖). The paterns in the set 𝑃𝑖𝑒 are generated through the solution of the MILP-based pattern 

generation formulation presented in [69]. Accordingly, 𝐶(𝐶 − 1) sets of patterns are constructed. 

The pseudocode for that procedure is presented in [69].  

2.15.2 Scoring function for multi-class LAD decision model 

The discriminant function used in the multi-class LAD approach is significantly different from that 

of the two-class LAD. A multi-class LAD decision model was proposed in [159], by using OAA 

method. In that decision model, 𝐶 sets of patterns are constructed. The pattern set 𝑃𝑖 (𝑖 ∈ {1,2, . . 𝐶}) 

separates class 𝑖 from all the remaining (𝐶 − 1) classes.  

The discriminant function presented in that work generates a score for each class and therefore the 

testing observation belongs to the class with the highest score. The score is calculated for a certain 

class, by using all the sets of generated pattern. For a new testing observation 𝑂, the score is 

calculated as given in [159] as:  

                                                            ∆̂(𝑂) = 𝑎𝑟𝑔  𝑚𝑎𝑥
𝑖=1,…𝐶

∑ 𝑝𝑡
𝑖(𝑂)𝑤𝑡

𝑖

𝑝𝑡
𝑖  ∈𝑃𝑖 

                                          (2.18) 

where 𝑝𝑡
𝑖(𝑂) = 1 if the pattern 𝑝𝑡

𝑖 covers the observation 𝑂 and zero otherwise. The value 

𝑤𝑡
𝑖 associated with the pattern 𝑝𝑡 in the set 𝑃𝑖 acts as a normalized weight. The output of equation 

(2.18) is the class with the highest score. 

2.16 LAD's applications 

2.16.1 Application of LAD in medical diagnosis and prognosis 

LAD was used successfully in the medical field to diagnose patient’s condition and to predict the 

propagation of some diseases [23-25].  
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The risk of occurrance of a certain event (risk-of-death) in medical prognosis was estimated for 

two groups of patients in [23]. The dataset has two classes of observations representing the groups 

of patients who died and who survived during a follow-up period of 9 years. In that work, a 

modified discriminant function called prognostic index was defined for all patients. The value of 

the prognostic index was shown to be closely correlated with the patients’ risk of death, and 

outperforms the widely used indicator by cardiologists; Cox Score [23].  

A methodology called the Logical Analysis of Survival Data (LASD) was proposed in [25]. The 

objective of that methodology is to identify the interactions between the factors that affect the death 

of a group of patients. Each generated pattern covers only a proportion of patients in the dataset. A 

survival function for each pattern is estimated using the KM estimator. The patterns’ survival 

curves are used to construct a survival model for the new patient that is not included in the training 

dataset. Each of those survival curves are participating with the same weight in that survival model 

[25]. The performance of the LASD was compared to the survival decision trees and the KM 

estimator. The empirical results show that the LASD is an accurate prognostic model and 

outperforms the compared techniques. 

As an important conclusion from the above two medical prognostic applications, the high degree 

of correlation among the factors can be detected and used to estimate the survival curves, without 

making any statistical assumptions.  

2.16.2 Other applications 

The LAD approach was applied in the airlines industry to estimate the overbooking level by 

predicting the show rates of the passengers [160]. The idea of that paper is to extract the set of 

patterns that cover passengers who have higher or lower show rates from a given training dataset 

consisting of a number of observations. Each observation represents a passenger and is 

characterized by a set of attributes. According to the extracted patterns, the passengers are classified 

as one of the two outcomes show or no-show. 

The LAD approach was applied in the field of finance and banking as a credit risk rating model 

[161]. In that paper, a dataset consisting of a number of banks is used to extract the patterns that 

are characterizing the banks having high ratings and those having low ratings. The discriminant 

function is constructed using the extracted patterns to evaluate the credit quality of banks. It is 
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shown from the presented results that the LAD credit risk model is an accurate predictive tool in 

comparison to the other compared statistical models; the ordered logistic regression and the support 

vector machines.  

2.16.3 Applications of LAD in CBM diagnostics 

The LAD approach was used in the field of CBM for the first time by the maintenance and 

reliability research team at École Polytechnique de Montréal, Canada [27]. In that work, the first 

version of the software cbmLAD [162] was developed for the CBM diagnostic applications. 

In 2009, the research team was able to detect and analyze the phenomenon of rogue components 

in airplanes [10]. In that research, LAD was explored for the purpose of detecting rogues within a 

population of repairable components. The LAD approach was compared to the most popular 

techniques used in the industry and its performance was comparably better than those techniques. 

The application of LAD in the detection of the faulty bearings, is presented in [31]. It was used in 

that work as a tool for automatic diagnosis of the faults in rolling bearings, by using a modified 

MILP-based pattern generation method. In that paper, LAD was compared to the SVM, neural 

networks, and others and it is shown that it outperformed those techniques.  

The diagnosis of faults in power transformers using the multi-class LAD, was proposed in the 

doctoral research of Mortada [32]. The objective of that research was to design a tool for detecting 

and identifying the transformers’ faults, by extracting the patterns from the dissolved gas analysis 

(DGA) data. An updated version of the software cbmLAD was issued as a result of that doctoral 

research. 

2.17 Application of LAD in CBM Prognostics: Proposed methodologies 

The advantages mentioned in the introduction of this thesis motivate us to apply the LAD approach 

in CBM prognostics. In this doctoral research, LAD is applied in three novel prognostic 

methodologies. The philosophy behined each methodology is to exploit the constituents of the 

historical CBM data (the time and covariates) properly, in order to extract the hidden knowledge. 

Consequently, if this knowledge is extracted in an adequate manner, this can lead to an accurate 

RUL prediction for the monitored system. This philosophy is followed in each methodology, by 

combining LAD as an event driven technique with a time-driven estimation technique.  



51 

 

In each of these methodologies, based on the lifetime data, the survival function of the system is 

estimated by using a non-parametric reliability estimation method. Such method does not make 

any assumption for the distribution of the lifetime data. The estimated survival function represents 

the hidden knowledge in the first constituent of the CBM data (the time). It describes the temporal 

characteristics of the historical systems. LAD on the other hand is exploited to extract the 

knowledge from the covariates (the second constituent of the CBM data). It handles the condition 

monitoring data, in order to extract useful patterns that reflect the effect of the operating conditions 

on the survival function of the monitored system.  

In the first and second methodologies, the objective is to predict the RUL of a monitored system 

working under different operating conditions, while considering the analysis of single failure mode. 

The third methodology deals with the RUL prediction of a system working under different 

operating conditions, in the presence of multiple failure modes.  

The two methodologies for single failure mode prognostics differ in the way of representing the 

data. In both methodologies, the two-class LAD is merged with the KM as a non-parametric 

estimator.   

In the first methodology, the prognostic knowledge is extracted from the historical CBM data that 

are collected from a set of systems at/or immediately before the occurrance of failure. In this case, 

the data consist of the aging times and corrersponding covariates. In the second methodology, the 

knowledge is extracted from all the lifespan data that are collected from the historical systems. For 

each system, the data consist of all observations collected during its operational period until the 

occurrance of failure. More specifically, each observation contains the inspection times and 

corrersponding covariates.  

In the third methodology, all the lifespan data collected from a set of historical systems subjected 

to multiple failure modes, are exploited to extract the prognostic knowledge. The multi-class LAD 

is merged with a set of cumulative incidence functions as non-parametric estimators.  

Detailed discussions of these methodologies and their respective steps, together with validation 

procedures and tests to accomplish the stated research objectives, are presented in the subsequent 

chapters. 
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3.1 Abstract 

Most of the reported prognostic techniques use a small number of condition indicators and/or use 

a thresholding strategies in order to predict the remaing useful life (RUL). In this paper, we propose 

a reliability-based prognostic methodology that uses condition monitoring (CM) data which can 

deal with any number of condition indicators, without selecting the most significant ones, as many 

methods propose. Morever, it does not depend on any thresholding strategies provided by the 

maintenance experts to separate normal and abnormal values of condition indicators. The proposed 

prognostic methodology uses both the age and condition monitoring data as inputs to estimate the 

RUL. The key idea behind this methodology is that, it uses Kaplan-Meier (KM) as a time-driven 

estimation technique, and Logical Analysis of Data (LAD) as an event-driven diagnostic technique 

to reflect the effect of the operating conditions on the age of the monitored equipment. The 

performance of the estimated RUL is measured in terms of the difference between the predicted 

and the actual RUL of the monitored equipment. A comparison between the proposed methodology 

and one of the common RUL prediction technique; Cox proportional hazard model, is given in this 

paper. A common dataset in the field of prognostics is employed to evaluate the proposed 

methodology. 

3.2 Introduction 

One way to minimize both maintenance costs, and probability of failure is to perform an assessment 

and prediction of asset health and future failures based on current health, operating conditions, and 

maintenance history (Kothamasu et al. 2006). Condition based maintenance (CBM) utilizes 

condition monitoring technologies in order to detect and predict the future health states of the 

engineering assets, based on non-intrusive measurements of their current health conditions (Tan et 

al. 2009). 

The acquired data in a CBM system can be categorized into two main categories (Jardine et al. 

2006): condition monitoring data and event data. Condition monitoring data are collected and 

processed to determine the equipment health condition. These measured observations are related 

to the health states of the monitored equipment (Jardine et al. 2006). Also, they reflect the 

degradation conditions of such equipment (Hamada 2005). Event data provide the information on 

what happened (failure, installation, overhaul, etc.) and/or what was done (repair, preventive 
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maintenance, oil change, etc.) to the targeted equipment (Jardine et al. 2006). When the event data 

represent the failure mechanism, they are called lifetime data. An example of event data is the 

failure times that can be used to develop the survival (also called reliability) function of the 

equipment. In the parametric survival analysis, the event data are fitted to a known probability 

distribution (Weibull, exponential, gamma distributions, etc.) (Elsayed 2012). Non-parametric 

techniques are used to estimate the survival function without making any statistical assumption 

about the probability distribution (Klein and Moeschberger 1997). One of the most common non-

parametric techniques is Kaplan–Meier (KM) estimator (Klein and Moeschberger 1997). The 

estimated survival function using either parametric or non-parametric techniques, is used to predict 

the failure time of the monitored equipment which in turn allows to predict its remaining useful 

life (RUL) (it is called reliability-based prognosis) (Jardine et al. 2006). The RUL (also called 

residual life) is defined as the time left before the occurrence of complete failure (Vachtsevanos et 

al. 2006). Using condition monitoring data in CBM system has several advantages. It is not 

necessary for the analyst to wait until the occurrence of complete failures. Instead, the analyst can 

use some condition indicators to predict the RUL of the equipment. 

In CBM prognostic, a particular issue is to estimate the RUL of the monitored equipment under 

different operating conditions. This is because there is no clear and understandable relationship 

between the condition measurement and the prediction of RUL. Prognosis requires precise and 

adaptive models to estimate future equipment health states and to predict its RUL (Tian et al. 2010). 

Fortunately, the advanced sensors and signal processing techniques enable the maintenance 

practitioners to extract multiple degradation features for the purpose of degradation detection (Kim 

et al. 2012). Recently, RUL prediction has received an increasing attention as industrial equipment 

become complex and critical (e.g. aircraft turbine engine) (Schwabacher and Goebel 2007). In 

many industrial situations, prognostic of equipment performance relies on human experience. 

Although, the experts may have significant experience about equipment failure and degradation 

states, they do not have systematic methodology that can predict the RUL of the monitored 

equipment (Kothamasu et al. 2006). Therefore, there is a need to develop and improve prognostic 

schemes that can be implemented in CBM with minimum human involvement. 

Numerous diagnostic and prognostic models have been proposed in the CBM literature. They 

broadly fall into two major categories: model-based approaches and data-driven approaches. In 

model-based approaches, explicit dynamic models based on the fundamental understanding of the 
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physics of the system, are developed to detect significant faults, and to predict catastrophic failures 

(Vachtsevanos et al. 2006). These approaches may not be the most practical approach because there 

is no easy way to obtain an accurate model. In contrast to model-based approaches, data-driven 

approaches require transforming a sufficient amount of historical data into a prior knowledge to 

build behavior models. They are based on the concept of training and testing, which keeps 

improving as the knowledge is provided. One advantage of utilizing data-driven approaches in 

many practical cases is the availability of advanced sensing technologies that collect data, rather 

than to build an accurate physical model (Heng et al. 2009). 

The data-driven prognostic approaches fall into two main categories: statistical approaches, and 

artificial intelligent approaches. Artificial intelligent approaches are the most popular and 

promising data-driven approaches (Schwabacher and Goebel 2007). These approaches rely on the 

availability of condition monitoring data and draw on learning techniques from the area of 

computational intelligence, where artificial neural networks (ANNs), and other techniques are 

employed to map measurements into fault growth models (Vachtsevanos et al. 2006; Duda et al. 

2001). 

A data-driven prognostic method based on artificial neural networks (ANNs) has been proposed in 

Tian et al. (2010). That method aims to predict the RUL, while dealing with condition monitoring 

measurements. A reliability based prognostic method based on ANNs is proposed in Heng et al. 

(2009). In that method, the instantaneous reliability of items is calculated using a variation of 

Kaplan–Meier estimator and a degradation-based failure function. One of the limitation of that 

prognostic method is that it uses only one condition indicator to estimate that degradation-based 

function. Another limitation of that method is the consideration of assigning a certain threshold to 

the survival curve in order to predict the failure time. In general, a common drawback of using 

ANNs in prognostics is the difficulty of determining the optimal values of the network parameters 

(i.e. number of nodes in the input layer, the number of hidden layers, the number of the nodes in 

each hidden layer, the learning rate, etc.). Another drawback of using these networks is the black 

box representation, the architecture of the network could not be characterized. 

In the statistical data-driven prognostics, the statistical machine learning algorithms are employed 

to process the acquired historical data in order to discover the hidden patterns in such data (Witten 

et al. 2011). In the context of CBM prognostic, many statistical data-driven approaches were 
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utilized to predict the degradation conditions of the equipment (Jardine et al. 2006; Vachtsevanos 

et al. 2006). In those approaches, the model can be built from the observed degradation features 

using various statistical inference techniques. Proportional hazards model (PHM) (Jardine et al. 

1999), logistic regression (LR) (Caesarendra et al. 2010), and support vector machines (SVMs) 

(Friedman et al. 2001) are the most common statistical inference techniques used for the RUL 

estimation. PHM is employed in the field of the CBM to estimate the reliability function. It relates 

the multiple degradation indicators to specific reliability indices of the monitored equipment 

(Jardine et al. 2006). Also, PHM was used in Tian et al. (2012) to predict the risk of failure of 

equipment working under different operating conditions. LR model is used along with the relative 

vector machine (RVM) in Liao et al. (2006) to estimate the failure degradation of run-to-failure 

bearing data. SVM is used for fault diagnosis and prognosis due to its excellent performance and 

good generalization capability (Kim et al. 2012; Widodo and Yang 2007). Other statistical data-

driven approaches have been applied for RUL estimation such as Bayesian technique which is 

considered as a good framework since it can handle various sources of uncertainties (Saha and 

Goebel 2008). Hidden Markov model (HMM) is proposed in Wang (2007) as a prognostic method 

for wear prediction in oil-based monitoring. A statistical prognostic method is proposed in Son et 

al. (2013), it combines Wiener process as stochastic process, and principal component analysis, in 

order to model the degradation in a set of historical systems, and to estimate the RUL of another 

set of similar systems. Statistical prognostic methods possess some drawbacks since they are based 

on statistical inference procedures that require some impractical assumptions to be met. 

In the field of CBM, a combinatorial optimization-based method called logical analysis of data 

(LAD) was used for automatic diagnosis of faults in rolling bearings in Mortada et al. (2011). The 

results in Bennane and Yacout (2012) indicate that LAD is a promising tool in CBM diagnosis and 

prognosis. LAD was used on a great variety of classification problems and reacts well to data noise 

and measurement errors (Bores et al. 2000). Since LAD is not based on any statistical assumptions, 

it can deal with several covariates that may be highly correlated. Another important advantage of 

LAD in CBM diagnostic is the transparency of the technique, which leads to clear interpretability 

of diagnostic results (Mortada et al. 2011). LAD relies on extracting patterns from a set of training 

observations (Bores et al. 2000). The patterns can be easily interpreted and translated into rules 

which can be used by maintenance engineers and technicians. LAD can deal with any type of data: 

event data, condition monitoring data, or both (Mortada et al. 2011).  
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According to the previously mentioned advantages, applying LAD approach in CBM prognostic 

should be an interesting challenge. The challenge, though, is how to develop prognostic models 

using all condition monitoring data collected under different operating conditions, without making 

any statistical assumption, or assigning any prior thresholds. The aim of this paper is to propose a 

new prognostic methodology based on LAD in order to predict the RUL of a set of equipment 

working under different operating conditions. 

This paper is divided into five major sections: Section 3.3 presents LAD along with the definition 

of patterns, the pattern generation approaches, and the idea of combining LAD to KM estimator. 

Section 3.4 introduces the proposed prognostic methodology and explains its procedures in details 

through a numerical example. Section 3.5 presents a common case study in the field of CBM 

prognostics to validate the proposed methodology. It also presents a comparison between the results 

obtained by using our proposed methodology, and those obtained by using Cox proportional hazard 

model (Cox PHM). Section 3.6 concludes the paper and proposes some future works to be 

followed. 

3.3 Logical Analysis Of Data 

3.3.1 Logical analysis of data: preliminaries 

Logical analysis of data is a supervised data mining, pattern generation and classification technique 

that was introduced in (Bores et al. 2000). LAD was used as a Boolean technique to identify the 

causes of a certain event through investigating a set of factors representing all the possible causes 

of that event (Crama et al. 1988). It was applied on a various classification problems and the results 

in Bores et al. (2000) indicate that LAD’s classification accuracy is competitive and often superior 

to the other classification methods. 

LAD is used to extract knowledge from a dataset consisting of observations that can be represented 

as binary or numerical vectors. Each observation is composed of the values of certain covariates. 

Originally, LAD was used as two-class classification technique that is a dichotomizer (Bores et al. 

2000). As a combinatorial and optimization method, it has been evolved as an effective decision 

model that relies on extracting patterns from binarized data in order to formulate decision rules that 

classify data into two classes; called positive and negative (Mortada et al. 2011). Each extracted 

pattern represents the interactions between the covariates of either positive or negative observations 
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in the training dataset. Accordingly, LAD can be used as pattern-based classifier for the new 

observations that are not included in the training dataset (Bores et al. 2000). 

The two-class LAD approach is composed of three stages: data binarization, pattern generation, 

and theory formation. Pattern generation is the key building block in LAD decision model. This 

stage is essential in identifying a set of positive and negative patterns from the training dataset of 

positive and negative observations. In this paper, the main concern is the pattern generation stage 

since the set of generated patterns constitute one of the corner stones of the proposed prognostic 

methodology. The following subsection presents the definition and characteristics of the patterns, 

and reviews some of the pattern generation techniques. For more details about LAD, the interested 

readers may be referred to Bores et al. (2000), Crama et al. (1988), Mortada et al. (2013) and Alexe 

et al. (2007). 

3.3.2 Pattern generation for two class LAD decision model 

A positive (negative) pattern is defined as an elementary conjunction of literals that is true for at 

least one positive (negative) observation and false for all negative (positive) observations in the 

training dataset (Kim et al. 2012). The set of observations covered by the pattern 𝑝 is denoted as 

𝐶𝑜𝑣(𝑝). The strictly defined patterns, which are called pure patterns, cover some observations from 

one class but do not cover any observations from the opposite class (Bores et al. 2000). The non-

pure patterns cover a large proportion of the observations in one class, and a much smaller 

proportion of the observations in the opposite class (Mortada et al. 2013; Alexe et al. 2003). The 

accuracy of LAD decision model depends on some characteristics of the generated patterns (Alexe 

et al. 2007; Hammer et al. 2004). 

In the literature, there are three common approaches for pattern generation: enumeration-based 

approaches (Bores et al. 2000), heuristic approaches (Hammer and Bonates 2006), and mixed 

integer linear programming (MILP)-based approaches (Mortada et al. 2011; Ryoo and Jang 2009). 

In MILP based approaches, the objective is to maximize the number of positive (negative) 

observations that are covered by the generated positive (negative) patterns, while generating 

patterns that are optimal with respect to certain preferences or constraints (Ryoo and Jang 2009). 

The MILP based method proposed in Guo and Ryoo (2012) involves much smaller number of  

0–1 integer variables than the approach presented in Ryoo and Jang (2009), thus requires shorter 
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training time. The MILP based method proposed in Mortada et al. (2011) is a modified version of 

the approach introduced in Ryoo and Jang (2009). It aims at maximizing the diversity of the 

generated patterns from the training dataset without a significant increase in training time, thus 

increases the classification power. For more details about the pattern generation techniques, the 

interested readers may be referred to Mortada et al. (2011), Bores et al. (2000), Hammer et al. 

(2004), Ryoo and Jang (2009) and Guo and Ryoo (2012). 

3.3.3 Combining LAD to KM: the survival curves of the generated patterns 

In this paper, a prognostic methodology based on LAD and KM is proposed in order to predict the 

RUL of a set of equipment working under different operating conditions. The main idea is to use 

Kaplan-Meier as a time-driven estimation technique and LAD as an event-driven diagnostic 

technique. The baseline survival curve, called Kaplan-Meier curve, reflects only the effect of the 

age on the health state of the monitored equipment. LAD is used to generate a set of patterns that 

represent the interactions among the covariates without making any prior statistical assumption. A 

set of survival curves (one curve for each generated pattern) are estimated using Kaplan-Meier 

estimation model. The observations collected from the monitored equipment, are then employed to 

update its baseline survival curve according to the patterns covering those observations. This 

updating is carried out by averaging the weighted sum of the survival curves of the covering 

patterns and the baseline survival curve. Based on the updated survival curve, the RUL is estimated 

given that the equipment has survived up to the current time instant, and the patterns covering the 

recent observation.  

The main idea of our proposed methodology is inspired from the logical analysis of survival data 

(LASD) proposed in (Kronek and Reddy 2008), that was applied in the field of medical prognosis. 

In that paper, the survival curve for a given observation is updated by averaging the baseline curve 

and the survival curves of the patterns that cover that observation. Each of the survival curves of 

the patterns has a weight equal to that of the baseline, although it does not cover the same number 

of observations covered by the baseline, in the training dataset. This is one of the limitations of the 

updating formula in that methodology.  

In this paper, we propose two modified versions of the formula proposed in (Kronek and Reddy 

2008) to update the survival curve of the recent observation. In the two proposed formulas, the 

survival curve of the monitored equipment is updated initially by averaging the survival curve of 
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the patterns that cover the first updating observation and the baseline survival curve. Then, the 

following updating observations are used to update the survival curve by averaging the survival 

curves of the patterns that cover each observation and the former updated survival curve. We also 

go further in this paper by providing a single measure to evaluate the RUL based on the area under 

the updated survival curve.  

More specifically, in the first proposed updating formula, the survival curve for each of the 

generated patterns has the same weight as that of the baseline survival curve. In the second 

proposed formula, we modify the first formula by considering a weight for each of the survival 

curves of the patterns that is less than the weight of the baseline curve. In other words, the weight 

of the baseline curve is greater than the weight of the survival curve of each pattern. The next 

section presents the methodology in details, through a number of steps. 

3.4 Proposed Prognostic Methodology 

Based on a set of equipment monitoring data, the proposed prognostic methodology exploits the 

capability of Kaplan-Meier estimator and the two-class LAD. The objective is to predict the RUL 

of the monitored equipment based on its own operating conditions and condition indicators. Unlike 

the baseline survival curve (Kaplan-Meier curve) which is based on all the failure observations, we 

decompose these failure observations into two different categories (classes); failure observations 

that characterize the Short Life (SL) equipment and call it the positive class, and the other failure 

observations that characterize the Long Life (LL) equipment, which we call negative class. The 

equipment that fails before a certain time 𝑡𝑆  specified and decided by the maintenance personnel 

is called SL equipment, and the one that fails after that time is called LL equipment. A feasible and 

practical choice for the time 𝑡𝑆 is the mean time to failure (MTTF). Our objective is to use the most 

recent available observations (updating data) about the operating conditions and the condition 

indicators in order to give better estimation of the RUL for both SL and LL equipment. Figure 3-1 

depicts the schematic diagram for the proposed prognostic methodology. 
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Figure 3-1: Schematic diagram for the proposed prognostic methodology 

The stated objective of the methodology is achieved through the following steps: 

Step 1: Data preparation. In this step, the data is prepared and partitioned into two subsets; 

training dataset and updating dataset. The training data contains a set of historical failure 

observations for the two classes of equipment; short life and long life equipment. The 

updating dataset consists of a set of observations collected from another set of similar 

equipment. 

Step 2: Baseline survival curve estimation. In this step, the baseline survival curve is estimated 

using Kaplan-Meier estimation technique for all equipment, by using only the lifetime data 

in the training dataset prepared in step 1.  

Step 3: Pattern generation using two-class LAD method. In this step, the patterns are generated 

using two-class LAD methodology for the two classes of equipment, the SL and the LL, by 

using only the covariates that are representing the operating conditions and the condition 

indicators in the training dataset prepared in step 1.  
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Step 4: Survival curve estimation for the generated patterns. In this step, the survival curve for 

each pattern generated in step 3, whether SL or LL pattern, is estimated using Kaplan-Meier 

estimation technique by considering only the set of equipment covered by this pattern. 

Step 5: Updating the survival curve of the monitored equipment. Given a set of recent 

observations from the updating dataset which are collected from similar type of equipment, 

the survival curve of each equipment is updated using one of two different updating 

formulas. This updating step exploits the data indicating the operating conditions and the 

recent condition indicators in order to give an early indication of whether the equipment 

seems to be an SL or an LL. It is used to give a better prediction of the RUL. 

Step 6: RUL estimation. The RUL of the monitored equipment is estimated by using the updated 

survival curve obtained in step 5. The estimated RUL is predicted and compared to the 

actual RUL at each time instant. 

In order to illustrate the proposed methodology, we use a fictitious numerical example of ten 

equipment working under five covariates. The numerical example is designed in a way that 

facilitates the introduction of the methodology to the reader. The validation of the proposed 

methodology is given in section 4 where we use a common dataset in the realm of prognostics; the 

Turbofan engine dataset (C-MAPSS dataset) which is available on the website of NASA prognostic 

data repository (Saxena, et al. 2008). The dataset consists of observations collected from a set of 

equipment working under different operating conditions. Each of the six previously mentioned 

steps is explained in details in the following subsections. 

Step 1: Data preparation for training, and updating 

The training and updating datasets are prepared from a set of collected observations. Each 

observation comprises the identity of the equipment, the time or age, and a set of covariates 

reflecting the operating conditions and the condition indicators as well. Each observation in the 

training dataset consists of the time to failure (TTF) of the equipment and several covariates (i.e. 

operating conditions and condition indicators). The updating dataset consists of a group of 

observations collected from another set of similar equipment. Each observation in this dataset 

consists of the time (age) of the equipment and several covariates.  
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Training dataset. Table 3.1 presents the training dataset for 𝑇 equipment, where each equipment 

has only one failure observation consisting of the time to failure and a number of covariates. The 

equipment are classified according to their TTF as either 𝛺𝑆𝐿or 𝛺𝐿𝐿 , where 𝛺𝑆𝐿and 𝛺𝐿𝐿 are the sets 

of SL and LL equipment, respectively in the training dataset 𝛺. The time to failure of each 

equipment in the training dataset is used to estimate the baseline survival curve as stated previously 

in step 2 in the methodology. The covariates are used by LAD to generate the patterns that are 

discriminating between the set of SL equipment and the set of LL equipment, as stated in step 3 of 

the methodology. In Table 3.1, 𝑂(𝑖, 𝑡𝐹𝑖 , 𝑍𝑖,𝑡𝐹𝑖) represents the failure observation collected from the 

ith equipment (𝑖 = 1,2, …𝑇), 𝑍𝑖,𝑡𝐹𝑖  is the corresponding vector of covariates, 𝑡𝑆 is the separation 

time between the two classes (SL and LL), and 𝑡𝐹𝑖  is the failure time of the ith equipment.  

Table 3.1: Representation of the training dataset for 𝑇 equipment 

Training dataset 

𝛺 

SL equipment  𝛺𝑆𝐿 (positive observations) 𝑂(𝑖, 𝑡𝐹𝑖 ≤ 𝑡𝑆, 𝑍𝑖,𝑡𝐹𝑖≤𝑡𝑆 ) 

LL equipment  𝛺𝐿𝐿 (negative observations) 𝑂(𝑖, 𝑡𝐹𝑖 > 𝑡𝑆, 𝑍𝑖,𝑡𝐹𝑖>𝑡𝑆 ) 

Numerical Example 

In this example, we consider two classes of equipment (SL and LL). Each class contains a group of 

equipment that failed at different time units. The equipment are working under different operating 

conditions. The time that separates the two classes is set to be nine time units (𝑡𝑆 = 9). The first 

class contains the observations at failure of the five equipment that failed at 6, 8, 4, 5, and 7 time 

units, respectively, while the second class contains the observations at failure of the five equipment 

that failed at 10, 11, 12, 13 and 14 time units, respectively. Table 4.2 shows the SL and the LL 

observations with the failure times and five covariates’ measurements, 𝑍𝑖,𝑡𝐹𝑖 , for the ith equipment, 

where 𝑖 = 1,2, . . . ,10. These covariates represent the operating conditions and the condition 

indicators. The operating conditions are controllable, for example the speed and the mechanical 

load. In real life, they are set to certain values by the user. The condition indicators are gathered as 

sensory information reflecting the equipment’s conditions, for example the temperature, the 

vibration, and the percentage of oil debris. These conditions change with the time. In Table 3.2, we 

note that the working conditions may have different values, since LAD can deal perfectly with this 

situation. Also in Table 3.2, we assume that the covariates are already transformed from numerical 

to binarized values, by using the binarization stage of LAD. 



64 

 

Table 3.2: Dataset for SL and LL equipment 

Equipment 

Identity 

Class 
Time To Failure  

(TTF) 

Covariates 

Z1 Z2 Z3 Z4 Z5 

1 

2 

3 

4 

5 

 

SL 

(positive) 

6 

8 

4 

5 

7 

1 

0 

1 

1 

1 

0 

0 

1 

1 

1 

1 

0 

1 

1 

1 

1 

1 

1 

0 

0 

1 

1 

1 

1 

0 

6 

7 

8 

9 

10 

LL 

(negative) 

10 

11 

12 

13 

14 

1 

0 

1 

1 

0 

0 

0 

0 

0 

0 

0 

1 

1 

0 

1 

1 

0 

0 

0 

0 

0 

1 

0 

0 

0 

Updating dataset. We utilize the set of observations collected from another set of similar 

equipment at every one operational cycle (the number of equipment in the updating dataset is U). 

This dataset contains both failure and functional observations. The operating conditions, the 

condition indicators, and the cycle time in each observation are included. The updating observation 

𝑂(𝑢, 𝑡𝑘, 𝑍𝑢,𝑡𝑘  ) represents the observation collected from the uth equipment (𝑢 = 1,2, …𝑈) at time 

𝑡𝑘 (𝑡𝑘 = 1,2, … 𝑡𝐹𝑢), and 𝑍𝑢,𝑡𝑘  is a vector of covariates representing the operating conditions and 

condition indicators at time 𝑡𝑘. 

In this numerical example, we have a number of updating observations collected from another 

equipment (let us call it equipment 11). The updating observations for that equipment is presented 

in Table 3.3. The observations are different in age as well as the values of the operating conditions 

and the condition indicators. The equipment fails after the 8th cycle. All observations in the second 

column are functional observations except the last one shown in gray which is a failure observation  

(the 8th observation is the last observation collected before failure). 

Table 3.3: Updating observations from equipment 11 

Equipment identity Observation tk z1 z2 z3 z4 z5 

 

 

11 

O(11, 1, Z11,1) 
O(11, 2, Z11,2) 
O(11, 3, Z11,3) 
O(11, 4, Z11,4) 
O(11, 5, Z11,5) 
O(11, 6, Z11,6) 
O(11, 7, Z11,7) 
O(11, 8, Z11,8) 

1 
2 
3 
4 
5 
6 
7 
8 

1 
1 
0 
0 
1 
0 
1 
0 

0 
1 
0 
1 
0 
0 
1 
0 

0 
1 
0 
1 
1 
0 
1 
0 

0 
0 
1 
1 
1 
1 
0 
1 

0 
0 
1 
0 
1 
1 
0 
1 
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Step 2: Baseline survival curve estimation using Kaplan-Meier (KM) 

The baseline survival curve (also called survival probability function), is estimated using KM 

estimation technique (Klein and Moeschberger). The inputs to KM estimator are the failure times 

of all the SL and LL equipment. The baseline curve is estimated using equation (3.1) as follows: 

                                                       𝑆𝑏(𝑡) = ∏[1 −
𝑑𝑡𝐹𝑖
𝑌𝑡𝐹𝑖

]

𝑡𝐹𝑖≤𝑡

                                                        (3.1) 

where 𝑑𝑡𝐹𝑖 is the number of equipment that failed at time 𝑡𝐹𝑖 , and 𝑌𝑡𝐹𝑖 is the number of equipment 

which are at risk at time 𝑡𝐹𝑖. By “at risk”, we mean the number of equipment that did not fail before 

𝑡𝐹𝑖. The baseline 𝑆𝑏(𝑡) considers all the failure observations of the two classes (SL and LL 

equipment). Note that  𝑆𝑏(𝑡) does not reflect the effect of the operating conditions on the health 

state of the equipment. It reflects only the effect of the working time (or age) on its health state.  

From the third column in Table 3.2, the baseline survival function 𝑆𝑏(𝑡) is calculated using the 

TTFs of the ten equipment. It is shown in Table 3.4 and plotted as a stepwise curve in black color 

in Figure 3-2. The highlighted cells in Table 3.4 represent the values of the baseline survival 

function at the time instants that are not shown in the third column of Table 3.2. 

Table 3.4: The baseline survival curve 

Step 3: Pattern generation using two-class LAD method 

In this step, we use LAD to generate the SL and LL patterns that differentiate between the SL and 

the LL equipment in the training dataset. A specific characteristic of LAD is the extraction of 

collection of patterns which are the interactions between the operating conditions and the condition 

indicators for SL and LL equipment in the training dataset. As mentioned previously in Section 3.3, 

a pure pattern can cover one or more observations from one class and non of the observations in 

the opposite class. Based on the training data in Table 4.1, two-class LAD diagnostic is used to 

generate the SL and LL patterns. Each of the generated patterns may cover only a subset of 

observations in the training dataset, but each observation must be covered by at least one pattern. 

LAD keeps searching for patterns until all the observations in the training dataset are covered. 

Time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

𝑆𝑏(𝑡) 1 1 1 1 0.9 0.8 0.7 0.6 0.5 0.5 0.4 0.3 0.2 0.1 0 
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In this numerical examples, LAD found five patterns that cover all the observations in the dataset 

in Table 3.2. From this dataset, the five covariates and the class labels (SL and LL) are used to 

generate the SL and LL patterns. Table 3.5 shows the SL and LL patterns that are generated by LAD 

for this example and the corresponding covered equipment. The three SL patterns and two LL 

patterns guarantee that each of the SL and LL observations in Table 3.2, is covered by at least one 

pattern. The five generated patterns listed in the table are pure patterns. 

Table 3.5: Generated SL and LL patterns 

The generated SL 

Patterns 

Interpretation Covered equipment Cov(p) 

𝑝1 

𝑝2 

𝑝3 

𝑍1𝑍5 

𝑍4𝑍5 

𝑍2 

1, 3, 4 

1, 2, 3 

3, 4, 5 

The generated LL 

Patterns 

Interpretation Covered equipment Cov(p) 

𝑝4 

𝑝5 

𝑍2̅̅ ̅  𝑍5̅̅ ̅ 
𝑍2̅̅ ̅  𝑍4̅̅ ̅ 

6, 8, 9, 10 

7, 8, 9, 10 

Step 4: Survival curve estimation for the generated patterns using KM estimation 

The survival curve of each generated pattern is calculated by considering only the equipment 

covered by that pattern. Accordingly, the inputs to KM estimation technique are the failure times 

for the equipment that are covered by that pattern. The survival curve of the jth pattern  

(𝑗 = 1,2, … |𝑃|, where 𝑃 is the set of generated patterns) is estimated using equation (3.2) which is 

a modified version of equation (3.1), as follows: 

                                       𝑆𝑝𝑗(𝑡) = ∏ [1 −
𝑑𝑡𝐹𝑖
𝑌𝑡𝐹𝑖

]
𝑡𝐹𝑖≤𝑡

∀ 𝑂(𝑖,𝑡𝐹𝑖,𝑍𝑖,𝑡𝐹𝑖 
) ∈ 𝑐𝑜𝑣(𝑝𝑗)

                                         (3.2) 

It is noticed from Table 3.5 that pattern 𝑝1covers three SL equipment (equipment 1, 3, and 4). Its 

survival probability will be 2/3 after the failure of equipment 1. The estimated survival curve of 

the pattern 𝑝1 is depicted in the third row of Table 3.6. This curve is plotted in Figure 3-2 in red. 

Similarly, the estimated survival curves of the patterns 𝑝2, 𝑝3, 𝑝4, and 𝑝5 are depicted in Table 3.6, 

and are plotted in Figure 3-2.  

Table 3.6: Survival curves of SL patterns, LL patterns, and the baseline 

Time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

𝑆𝑏(𝑡) 1 1 1 1 0.9 0.8 0.7 0.6 0.5 0.5 0.4 0.3 0.2 0.1 0 

𝑆𝑝1(𝑡) 1 1 1 1 0.667 0.333 0 0 0 0 0 0 0 0 0 

𝑆𝑝2(𝑡) 1 1 1 1 0.667 0.667 0.333 0.333 0 0 0 0 0 0 0 

𝑆𝑝3(𝑡) 1 1 1 1 0.667 0.333 0.333 0 0 0 0 0 0 0 0 

𝑆𝑝4(𝑡) 1 1 1 1 1 1 1 1 1 1 0.75 0.75 0.5 0.25 0 

𝑆𝑝5(𝑡) 1 1 1 1 1 1 1 1 1 1 1 0.75 0.5 0.25 0 
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Figure 3-2: Estimated survival curves for the baseline, and the five generated patterns 

Step 5: Updating the survival curve of a monitored equipment 

The estimated survival curves (the baseline survival curve and the survival curves for the SL and 

LL patterns) are used to update the survival curve of a certain monitored equipment. The 

observations collected from the equipment are employed in order to extract the hidden patterns and 

to use these patterns to update its survival curve. The updated survival curve reflects the age of the 

equipment, its operating conditions, and its condtions indicators’ values. Initially, the survival 

curve after the first updating observation is calculated by averaging the survival curve of the 

patterns that cover that observation and the baseline survival curve. The following updating 

observations are then used to update the survival curve by averaging the survival curves of the 

patterns that cover each observation and the former updated survival curve simultanuously. One of 

the following two models, is used separately to update the survival curve of the monitored 

equipment 𝑢. The two models are represented by formula 1 and formula 2 respectively, as follows: 

Formula 1 

                                 𝑆𝑂(𝑢,𝑡𝑘,𝑍𝑢,𝑡𝑘)
(𝑡) =  

{
 
 

 
 [∑𝑆𝑝𝑗(𝑡) + 𝑆𝑏(𝑡) ]/(𝑛 + 1)       ∀ 𝑘 = 1

𝑛

𝑗=1

[∑𝑆𝑝𝑗(𝑡) + 𝑆𝑓(𝑡) ]/(𝑛 + 1)      ∀ 𝑘 ≥ 2

𝑛

𝑗=1

                   (3.3) 

Formula 2 

                                 𝑆𝑂(𝑢,𝑡𝑘,𝑍𝑢,𝑡𝑘)
(𝑡) =

{
 
 

 
 [∑𝑆𝑝𝑗(𝑡)/𝑛 + 𝑆𝑏(𝑡) ]/2       ∀ 𝑘 = 1

𝑛

𝑗=1

 [∑𝑆𝑝𝑗(𝑡)/𝑛  + 𝑆𝑓(𝑡) ]/2      ∀ 𝑘 ≥ 2 

𝑛

𝑗=1

                         (3.4) 
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where 𝑛  is the number of patterns that cover the updating observation, 𝑆𝑏(𝑡) is the baseline curve, 

and 𝑆𝑓(𝑡) is the former updated survival curve obtained from the previous updating observation at 

time 𝑡𝑘−1. In formula 1, the survival curve is updated by assigning the same weight for each of the 

survival curves of the covering patterns and the baseline. In formula 2, the survival curve is updated 

by assigning a weight for the baseline curve greater than the weight of the survival curve of each 

pattern covering the observation.  

To illustrate the updating procedure clearly, we use the updating observations listed in Table 3.3 

to update the survival curve of equipment 11, by using formula 2. Two-class LAD is used as a 

diagnostic technique to find the patterns that cover each updating observation simultaneously. Each 

updating observation is covered by a set of patterns as shown in the second column of Table 3.7. 

Each row in Table 3.7 represents the updated survival curve after collecting each updating 

observation.  

Table 3.7: Updating procedure for the estimated survival curve (formula 2) 

Observation/ 

Time 

Covering 

Patterns 

Updated 

survival 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

𝑂(11, 1, 𝑍11,1  ) 𝑝4 , 𝑝5 𝑆𝑂(11,1,𝑍11,1  )(𝑡) 1 1 1 0.95 0.9 0.85 0.8 0.75 0.75 0.638 0.525 0.35 0.175 0 

𝑂(11, 2, 𝑍11,2  )  𝑝3 𝑆𝑂(11,2,𝑍11,2  )(𝑡) 1 1 1 0.808 0.617 0.592 0.4 0.375 0.375 0.319 0.263 0.175 0.088 0 

𝑂(11, 3, 𝑍11,3  ) 𝑝2 𝑆𝑂(11,3,𝑍11,3  )(𝑡) 1 1 1 0.738 0.642 0.463 0.367 0.188 0.188 0.159 0.131 0.088 0.044 0 

𝑂(11, 4, 𝑍11,4  ) 𝑝3 𝑆𝑂(11,4,𝑍11,4  )(𝑡) 1 1 1 0.702 0.488 0.398 0.183 0.094 0.094 0.08 0.066 0.044 0.022 0 

𝑂(11, 5, 𝑍11,5  ) 𝑝1 , 𝑝2 𝑆𝑂(11,5,𝑍11,5  )(𝑡) 1 1 1 0.684 0.494 0.282 0.175 0.047 0.047 0.04 0.033 0.022 0.011 0 

𝑂(11, 6, 𝑍11,6  ) 𝑝2 𝑆𝑂(11,6,𝑍11,6  )(𝑡) 1 1 1 0.676 0.580 0.308 0.254 0.023 0.023 0.02 0.016 0.011 0.005 0 

𝑂(11, 7, 𝑍11,7  ) 𝑝3 𝑆𝑂(11,7,𝑍11,7  )(𝑡) 1 1 1 0.671 0.457 0.321 0.127 0.012 0.012 0.01 0.008 0.005 0.003 0 

𝑂(11, 8, 𝑍11,8  ) 𝑝2 𝑆𝑂(11,8,𝑍11,8  )(𝑡) 1 1 1 0.669 0.562 0.327 0.230 0.006 0.006 0.005 0.004 0.003 0.001 0 

 𝑍11,1  = (1,0,0,0,0),  𝑍11,2  = (1,1,1,0,0),  𝑍11,3  = (0,0,0,1,1),  𝑍11,4  = (0,1,1,1,0),  𝑍11,5  = (1,0,1,1,1),  𝑍11,6  = (0,0,0,1,1),  𝑍11,7  = (1,1,1,0,0),  𝑍11,8  = (0,0,0,1,1) 

To explain how the values in Table 4.7 are calculated, we consider, for example, the 6th cycle (the 

highlighted column). The survival curve of the first updating observation 𝑂(11, 1, 𝑍11,1) is 

calculated by averaging the baseline survival curve and the survival curves of the patterns that were 

found by LAD to cover that observation (the LL patterns 𝑝4 and 𝑝5). Accordingly, the survival 

curve of equipment 11 is estimated initially after collecting the first updating observation as 

follows: 

𝑆 𝑂(11,1,𝑍11,1) (𝑡) = [∑𝑆𝑝𝑗(𝑡)/𝑛 +  𝑆𝑏(𝑡) ]/2    

𝑛

𝑗=1

= [(𝑆𝑝4(𝑡) + 𝑆𝑝5(𝑡))/2 + 𝑆𝑏(𝑡) ]/2  

From Table 4.6, the baseline has the value of 0.7 and the values of the survival curves for the 

patterns 𝑝4 and 𝑝5, are 1 (one) and 1 in the 6th cycle, respectively (see the 8th column in Table 3.6). 
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Accordingly, the value of the updated survival curve at the 6th cycle after collecting the first 

updating observation, is calculated as follows: 

𝑆 𝑂(11,1,𝑍11,1) (6) = [∑𝑆𝑝𝑗(6)/𝑛 +  𝑆𝑏(6) ]/2    

𝑛

𝑗=1

= [(𝑆𝑝4(6) + 𝑆𝑝5(6))/2 + 𝑆𝑏(6) ]/2 

= [(1 + 1)/2 + 0.7 ]/2 = 0.85 

The second updating observation (the observation O(11, 2, 𝑍11,2) is found to be covered by the SL 

pattern 𝑝3. The survival curve is updated by averaging the survival curve of the pattern 𝑝3 and the 

former updated survival curve as: 

             𝑆 𝑂(11,2,𝑍11,2) (𝑡) = [∑𝑆𝑝𝑗(𝑡)/𝑛 +  𝑆𝑓(𝑡) ]/2    

𝑛

𝑗=1

= [𝑆𝑝3(𝑡)/1 + 𝑆𝑓(𝑡)  ]/2 

The value of the updated survival curve at the 6th cycle after collecting the second updating 

observation, is calculated as follows: 

𝑆𝑂(11,2,𝑍11,2)(6) = [𝑆𝑝3(6)/1 + 𝑆𝑓(6) ]/2 = [0.333/1 + 0.85 ]/2 = 0.592 

Similarly, the survival curve at each time of collecting a new updating observations, is calculated. 

This updating procedure guarantees that the resulting survival curve will be monotonically 

decreasing. 

Step 6: RUL estimation 

It is important to represent the effect of the operating conditions and the condition indicators in 

order to accurately predict the RUL of the monitored equipment. From the updating observations, 

we have updated the survival curve that reflects not only the age but also the operating conditions 

of the equipment. The remaining useful life of the monitored equipment is predicted after each time 

its survival curve is updated. Let 𝑇 represents the time to failure which is a random variable and 

let 𝑇 − 𝑡𝑘 represents the RUL of 𝑇 at time 𝑡𝑘. The mean remaining useful life (MRUL) is calculated 

using equation (3.5) (Banjevic and Jardine 2007) as: 

                                                                  𝑀𝑅𝑈𝐿(𝑡𝑘) =
∫ 𝑆(𝜏)𝑑𝜏
∞

𝑡𝑘

𝑆(𝑡𝑘)
                                                       (3.5) 

where 𝑆(𝜏) is the survival function. In this prognostic methodology, the MRUL is calculated at 

each time instant when new updating observation is collected, by considering the updated survival 

curve. The updated survival curve 𝑆𝑂(𝑢,𝑡𝑘,𝑍𝑢,𝑡𝑘)
(𝑡) of equipment 𝑢 is used instead of 𝑆(𝜏) in 

equation (5), and the MRUL for that equipment is calculated as: 
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                                                  𝑀𝑅𝑈𝐿𝑢(𝑡𝑘) =
∫ 𝑆𝑂(𝑢,𝑡𝑘,𝑍𝑢,𝑡𝑘)

(𝜏)𝑑𝜏
∞

𝑡𝑘

𝑆𝑂(𝑢,𝑡𝑘,𝑍𝑢,𝑡𝑘)
(𝑡𝑘)

                                                  (3.6) 

The calculation of the MRUL is performed through dividing by the value of the survival probability 

one period before, since the survival curve is estimated at discrete instants of time (Pintilie 2006). 

Accordingly, the value 𝑆𝑂(𝑢,𝑡𝑘,𝑍𝑢,𝑡𝑘)
(𝑡𝑘−1) is used in the denominator of equation (3.6) instead of 

𝑆𝑂(𝑢,𝑡𝑘,𝑍𝑢,𝑡𝑘)
(𝑡𝑘). Experimentally, equations (3.6) can be represented in discrete form as follows: 

                                                  𝑀𝑅𝑈𝐿𝑢(𝑡𝑘) =
∑ 𝛥𝑡𝑟𝑆𝑂(𝑢,𝑡𝑘,𝑍𝑢,𝑡𝑘)

(𝑡𝑟)
∞
𝑡𝑟=𝑡𝑘

𝑆𝑂(𝑢,𝑡𝑘,𝑍𝑢,𝑡𝑘)
(𝑡𝑘−1)

                                        (3.7) 

where 𝛥𝑡𝑟 is the monitoring (inspection) interval defined as: 𝑡𝑟 = 𝑡𝑟+1 − 𝑡𝑟.  

Based on the updated survival curves of equipment 11, calculated in Table 3.7, the values of MRUL 

are calculated using equation (3.7). These values are listed in Table 3.8, and are ploted in  

Figure 3-3. 

Table 3.8: MRUL calculation for equipment 11 

 

 

Figure 3-3: Actual RUL versus estimated RUL for equipment 11 
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Estimated RUL

Actual RUL

Time:  tk 1 2 3 4 5 6 7 8 

Actual RUL 7 6 5 4 3 2 1 0 

MRUL11(tk) 9.69 6.01 4.01 2.17 1.68 1.14 0.55 0.11 
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The previous steps of the methodology constitute three main phases; training, updating, and RUL 

calculation. Steps 2, 3, and 4 constitute the training phase while steps 5 is the updating phase, and 

step 6 is the RUL calculation phase. The pseudocodes of these three phases are explained in two 

algorithms. Algorithm 1 is depicted in Figure 3-4, it illustrates the training phase. Algorithm 2 is 

depicted in Figure 3-5, it illustrates the updating and the estimation of the RUL since it is calculated 

instantaneously based on the updated survival curve. 

Algorithm 1: Training 

Input: 𝜴𝑺𝑳 = 𝑶(𝒊, 𝒕𝑭𝒊 ≤ 𝒕𝑺, 𝒁𝒊,𝒕𝑭𝒊≤𝒕𝑺 
),  𝜴𝑳𝑳 = 𝑶(𝒊, 𝒕𝑭𝒊 > 𝒕𝑺, 𝒁𝒊,𝒕𝑭𝒊>𝒕𝑺 

), and 𝒊 = {𝟏, … , 𝑻} 

Output: Set of generated patterns 𝑷, baseline survival curve 𝑺𝒃(𝒕), pattern survival curves 𝑺𝒑𝒋(𝒕), and 𝒋 ∈ {𝟏, … . |𝑷|}  

𝑺𝒃(𝒕)  Estimation of baseline survival function using eq. (3.1), by considering 𝒕𝑭𝒊 .  

   𝑷 = {𝒑𝒋, 𝒋 ∈ {𝟏, … . |𝑷|}}  Pattern generation using LAD classifier considering  𝒁𝒊,𝒕𝑭𝒊≤𝒕𝑺 𝐚𝐧𝐝 𝒁𝒊,𝒕𝑭𝒊>𝒕𝑺   

  for 𝒋 = 𝟏 to |𝑷| 

      for 𝒊 = 𝟏 to 𝑻 
            𝒄𝒐𝒗(𝒑𝒋) Using LAD classifier to obtain the coverage of pattern 𝒑𝒋 considering  𝒁𝒊,𝒕𝑭𝒊  

 

       return 𝒄𝒐𝒗(𝒑𝒋) 

       𝑺𝒑𝒋(𝒕)  Estimation of the survival function for the pattern 𝒑𝒋 using eq. (3.2) 

    return 𝑷, 𝑺𝒃(𝒕), {𝑺𝒑𝒋(𝒕): 𝒋 ∈ {𝟏, … . |𝑷|}} 

Figure 3-4: The pseudocode of the training algorithm 

Algorithm 2: Updating the survival curve and RUL calculation for the equipment 𝒖 in the updating dataset 

Input:  {𝑶(𝒖, 𝒕𝒌, 𝒁𝒖,𝒕𝒌), 𝒕𝒌 = 𝟏, 𝟐, … 𝒕𝑭𝒖) }, 𝑺𝒃(𝒕), {𝑺𝒑𝒋(𝒕): 𝒋 ∈ {𝟏, … . |𝑷|}}, 𝒖 = {𝟏,… , 𝑼} 

Output: Updated survival curve 𝑺𝑶(𝒖,𝒕𝒌,𝒁𝒖,𝒕𝒌)
(𝒕), and remaining useful life 𝑹𝑼𝑳𝒖(𝒕𝒌) 

  for 𝒕𝒌 = 𝟏 to 𝒕𝑭𝒖 

         𝒋 ∈ {𝟏, … . |𝑷|}   Using LAD diagnoser to obtain the set of covering pattern considering 𝒁𝒖,𝒕𝒌   

           𝑺𝑶(𝒖,𝒕𝒌,𝒁𝒖,𝒕𝒌)
(𝒕) Updating the survival curve for the equipment 𝒖 using eq. (3.3) or eq. (3.4). 

          𝑹𝑼𝑳𝒖(𝒕𝒌)    RUL estimation for the equipment 𝒖 using eq. (3.7). 

  return 𝑺𝑶(𝒖,𝒕𝒌,𝒁𝒖,𝒕𝒌)
(𝒕), 𝑹𝑼𝑳𝒖(𝒕𝒌)          

Figure 3-5: The pseudocode of the updating and RUL estimation algorithm 

The next section discusses a comparison between the MRUL values calculated by using the 

proposed methodology and those obtained when using PHM model. A case study is presented. 
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3.5 Case Study 

3.5.1 Turbofan engine dataset 

To validate the proposed methodology, we use the turbofan engine dataset (C-MAPSS dataset) that 

is available on the website of NASA prognostic data repository (Saxena, et al. 2008). The training 

dataset is collected from a set of 260 aircraft engines. In this dataset, each row represents an 

observation taken during a single operational cycle. Each observation is represented by the 

corresponding equipment identity, the age of the equipment in cycles, in addition to twenty-four 

covariates. The first, the second, and the third covariates are three operational settings while all the 

remaining covariates represent sensor measurements.  

Training dataset. We have 260 equipment (engines) (𝑖 = 1,2, … 260), each equipment fails after 

a number of cycles. The equipment that fail before the 206th cycle (which is the MTTF) is 

considered as SL while the ones that fail after that time are considered as LL equipment. The 

training data is splitted into two classes. The first class contains the failure observations collected 

from equipment that fail before the mean time to failure (206 cycles) while the second one contains 

the failure observations collected from the equipment that fail after this time as listed in Table 3.9. 

Accordingly, we have 154 SL equipment and 106 LL equipment. 

Table 3.9: Representation of the training observations for the 260 equipment 

 

Training dataset 

𝛺 

SL observations 𝛺𝑆𝐿 (154 Equipment) 𝑂(𝑖, 𝑡𝐹𝑖 ≤ 206, 𝑍𝑖,𝑡𝐹𝑖≤206  ) 

LL observations 𝛺𝐿𝐿 (106 Equipment) 𝑂(𝑖, 𝑡𝐹𝑖 > 206, 𝑍𝑖,𝑡𝐹𝑖>206  ) 

3.5.2 Pattern generation 

The SL and LL patterns are generated from the twenty-four covariates of the training observation 

using two-class LAD. There are sixty-eight generated patterns (fourty-one SL and twenty-seven LL 

patterns). A sample of the generated patterns, and the corresponding covered equipment, are listed 

in Table 3.10.  
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Table 3.10: The generated SL and LL patterns 

Generated SL Patterns Identities of the covered equipment  

p4 8, 9, 26, 28, 29, 36, 63, 67, 70, 74, 89, 111, 130, 178, 182, 194, 197, 208, 212, 234, 247, 250, 253  

p17 8, 16, 26, 45, 55, 63, 70, 72, 129, 130, 137, 138, 166, 187, 198, 208, 210, 212, 229, 247, 250, 259    

p21 1, 6, 8, 14, 16, 26, 38, 55, 58, 63, 70, 120, 130, 133, 136, 137, 138, 154, 166, 187, 208, 212, 247, 250    

p23 8, 26, 44, 63, 67, 70, 71, 77, 87, 99, 122, 130, 132, 141, 152, 208, 212, 231, 247, 256 

p30 8, 25, 26, 28, 34, 36, 44, 55, 63, 67, 70, 83, 89, 114, 117, 130, 162, 176, 179, 182, 188, 194, 197, 208, 212, 

217, 225, 241, 247, 253, 258 

p39 25, 28, 34, 36, 60, 83, 89, 92, 98, 107, 117, 165, 176, 179, 182, 194, 197, 205, 213, 217, 225, 238, 253, 

258 

Generated LL Patterns Identities of the covered equipment 

p43 4, 15, 31, 32, 75, 80, 100, 112, 113, 156, 161, 164, 168, 181, 183, 216, 218, 220, 240, 248    

p53 13, 23, 43, 47, 48, 61, 73, 81, 84, 85, 94, 110, 123, 124, 135, 150, 159, 171, 180, 206, 215, 223, 228, 243, 
245, 257, 260 

p55 23, 43, 81, 84, 88, 91, 94, 109, 110, 123, 135, 144, 147, 150, 159, 171, 180, 183, 204, 206, 215, 228, 257  

p58 4, 12, 15, 31, 32, 37, 64, 75, 112, 116, 121, 128, 146, 153, 155, 158, 181, 216, 218, 239 

p60 23, 41, 47, 61, 81, 94, 104, 105, 106, 110, 124, 131, 134, 145, 148, 159, 160, 171, 180, 206, 223, 242, 243, 
245  

p70 23, 43, 81, 84, 88, 94, 109, 110, 123, 135, 144, 150, 159, 171, 180, 183, 204, 206, 215, 228, 254, 257 

The survival curves for the generated SL and LL patterns are shown in Figure 3-6. As expected, it 

is noticed from the figure that the survival curves of the SL (LL) patterns are below (above) that of 

the baseline.  

 

Figure 3-6: Survival curves for some of the generated SL and LL patterns 

Updating dataset. We employ the data collected from another set of similar equipment (259 

equipment) from C-MAPSS dataset to update the survival curve and to calculate the MRUL. The 

proposed LAD prognostic methodology is compared to Cox proportional hazard model (Cox PHM) 

as one of the common prognostic techniques. Cox PHM has been employed in the field of CBM 
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prognostic due to its capability of reflecting the effect of covariates on the equipment age. The 

survival function in Cox PHM is expressed as (Hosmer Jr, et al. 2011): 

                                                                  𝑆(𝑡, 𝑍) = 𝑆0(𝑡)
exp (𝛽𝑍)                                                  (3.8)  

where 𝑍 is a vector of covariates, 𝑆0(𝑡) is the baseline survival function which characterizes the 

effect of the age of the equipment on its failure time, and 𝑒𝑥𝑝 (𝛽𝑍) is a function of weighted 

covariates that affect the failure time.  

In what follows, we compare the results of MRUL estimation using the proposed LAD 

methodology and the PHM prediction model. Since each equipment in the updating dataset has 

different number of operational cycles, it is important to have a good performance measure to 

validate the prognostic methodology, we use the root mean squared error (RMSE) as a significant 

error measurement criterion. The RMSE for the MRUL estimation of the uth equipment is calculated 

as follows: 

                       𝑅𝑀𝑆𝐸(𝑢) = √
∑ [𝑎𝑐𝑡𝑢𝑎𝑙 𝑅𝑈𝐿  (𝑡𝑘) − 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑀𝑅𝑈𝐿(𝑡𝑘)]2
𝑡𝐹𝑢
𝑡𝑘=1

𝑁𝐹𝑢
                   (3.9)  

where 𝑁𝐹𝑢 is the actual number of operational cycles until the failure of the uth equipment, and  

𝑢 = 1,… ,259.    

As an example, the RMSE values of estimated MRUL for some of the equipment using  

LAD-Model 1, LAD-Model 2, and PHM prediction model, are listed in Table 3.11. The underlined 

bold results indicate that the corresponding model gives better results than the others (better result 

means smallest RMSE values). 

Table 3.11: The results for LAD prognostic models and PHM prediction model 

Equipment 
Identity 

Time To 
Failure (TTF) 

in cycles 

RMSE using LAD 
Model 1 

RMSE using LAD 
Model 2 

RMSE using PHM 
  

4 196 29.35168 27.95178 54.74630 

40 220 34.36686 31.60582 38.80056 

56 225 26.18971 28.52649 30.14525 

65 378 58.95770 54.54994 69.03294 

67 232 28.66452 26.75004 24.66802 

73 229 25.02456 23.56540 29.17804 

121 126 15.39275 14.66081 19.34902 

128 218 30.87016 28.83593 36.57858 

150 230 29.38356 32.02670 30.43499 

176 223 28.03367 25.79815 35.84996 

189 221 24.89997 23.79137 36.05095 

207 226 27.22564 25.21357 30.25787 

219 234 28.59781 27.03575 25.18294 

234 236 20.97568 21.32425 29.17945 

258 229 21.58249 22.45859 27.83652 
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3.5.3 Result validation using two-phase Friedman test 

Based on the results of MRUL estimation for the 259 equipment, we need to properly determine 

whether the performance of the proposed LAD prognostic models outperform that of PHM 

prediction model or not. In this paper, the question that need to be answered is; is any model ranked 

consistently higher or lower than the others? In other words, does any of the models perform 

consistently better or worse RUL estimation? 

Since each equipment has different number of operational cycles, we need a suitable non-

parametric statistical test to report the comparison of all models by considering that difference. 

Friedman test is one of the recommended tests in such situations (Daniel 1990). Friedman test can 

be employed even if the underlying distribution of the variable to be tested (in this case it is the 

RMSE) is asymmetrical and unknown. In two-phase Friedman test, we first test the hypothesis that 

all the prognostic models applied are statistically equivalent or not, afterwards post tests must be 

carried out to report the best model.  

Phase 1: Test hypothesis 

The RMSE is calculated for each equipment using the three prognostic models; LAD-Model 1, 

LAD-Model 2, and PHM. In this experiment, the results obtained from 259 equipment rate those 

three models. Friedman test is based on ranks rather than on the original raw data. It starts by 

assigning ordered ranks to the RMSE values calculated for each equipment, from the smallest to 

the largest. 

The null hypothesis in the Friedman test states that all the prognostic models have the same mean 

RMSE. It is formulated as: 

𝐻0: 𝜇𝐿𝐴𝐷_𝑀𝑜𝑑𝑒𝑙 1 = 𝜇𝐿𝐴𝐷_𝑀𝑜𝑑𝑒𝑙 2 = 𝜇𝑃𝐻𝑀 

And the alternative hypothesis is formulated as: 

𝐻𝑎: 𝑁𝑜𝑡 𝑎𝑙𝑙 𝑅𝑀𝑆𝐸 𝑚𝑒𝑎𝑛𝑠 {𝜇𝐿𝐴𝐷_𝑀𝑜𝑑𝑒𝑙 1 , 𝜇𝐿𝐴𝐷_𝑀𝑜𝑑𝑒𝑙 2 , 𝜇𝑃𝐻𝑀 }𝑎𝑟𝑒 𝑒𝑞𝑢𝑎𝑙  

The test statistic is given by the following equation (Daniel 1990): 

                                                     𝐹𝑟 =
12

𝑈𝐾(𝐾 + 1)
∑𝑅𝑗

2

𝐾

𝑗=1

− 3𝑈(𝐾 + 1)                                  (3.10) 
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Where 𝑅𝑗  is the total rank sum for the prognostic model j (j=1,..K), K is the total number of the 

prognostic models (K=3 in this case), and U is the total number of equipment in the updating dataset 

(U=259). In this work, the values of the total ranks for the three models are listed in the second 

column of Table 3.12. The calculated mean ranks for the three models are listed in the third column 

of Table 3.12. The calculated significance level ( p-value) is given by: 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑃𝑟(𝜒𝐾−1
2 ≥ 𝐹𝑟) = 𝑃𝑟(𝜒3−1

2 ≥ 60.33) = 0 

And the declared test significant level is calculated as: χ𝐾−1,𝛼
2 = χ2,0.05

2 = 5.9914. It is noticed that 

the p-value is too small, the test is said to be significant, and accordingly the null hypothesis is 

rejected. Rejecting 𝐻0 can be interpreted to mean that some prognostic models tend to have larger 

or smaller RMSE means than the other. Consequently, an appropriate post-hoc multiple 

comparisons test (pairwise Friedman test) is performed.  

Phase 2: Pairwise comparisons 

After the rejection of the null hypothesis, we are confident that one of the three prognostic models 

including PHM prediction model outperforms the other two ones. After performing the previous 

procedures, there is no indication as to which models have better performance and which ones have 

a similar performance. We want to know whether the performance of LAD prognostic models 

exceed that of PHM model or not.  

A pairwise Friedman test is performed to compare the RMSE estimated using PHM and those 

estimated using LAD prognostic models (one comparison between PHM model and each of LAD 

prognostic models). One hypothesis test for each comparison is formulated and a decision should 

be made regarding the rejection or acceptance of that hypothesis. In the comparison of LAD 

prognostic Model j and PHM, the null and the alternatives hypotheses are formulated as: 

𝐻0: 𝜇𝑃𝐻𝑀 = 𝜇𝐿𝐴𝐷_𝑀𝑜𝑑𝑒𝑙 𝑗  

𝐻𝑎: 𝜇𝑃𝐻𝑀 > 𝜇𝐿𝐴𝐷_𝑀𝑜𝑑𝑒𝑙 𝑗   

First, we compute the absolute difference between the rank sums |𝑅𝐿𝐴𝐷_𝑀𝑜𝑑𝑒𝑙 𝑗 − 𝑅𝑃𝐻𝑀| and if this 

difference exceeds the value  𝑑𝛼𝐹√𝑈𝐾(𝐾 + 1)/6, the null hypothesis is rejected. Where 𝑑𝛼𝐹  is the 

100(1 − 𝛼𝐹)
𝑡ℎ of the standard normal distribution (Gwet 2011). The results and the final decision 

discussed verbally are presented briefly in Table 3.12.  

http://en.wikipedia.org/wiki/P-value
http://en.wikipedia.org/wiki/Statistical_significance
http://en.wikipedia.org/wiki/Multiple_comparisons
http://en.wikipedia.org/wiki/Multiple_comparisons
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It is noticed from Table 3.12 that the results obtained by using LAD Model 2 outperform those 

obtained when using LAD Model 1 and PHM Model. This can be noticed through the underlined 

bold value, in the fourth column of Table 3.12. Each value in this column is the difference between 

the total rank of LAD Model j and the total rank of PHM.  

Table 3.12: Friedman test to validate the proposed LAD methodology 

Prognostic Model 

 

Total rank 

𝑅𝑗 
Mean 

rank 
|𝑅𝑗 − 𝑅𝑃𝐻𝑀| Is |𝑅𝐿𝐴𝐷_𝑀𝑜𝑑𝑒𝑙𝑗 − 𝑅𝑃𝐻𝑀|  

exceeding 𝑑𝛼𝐹√𝑈𝐾(𝐾 + 1)/6? 

 

Acceptance 

of the null 

hypothesis? 

Significant 

difference? 

LAD Model 1 539 2.08 55 Yes No Yes 

LAD Model 2 421 1.63 173 Yes No Yes 

PHM Model 594 2.29 

Test Statistic 𝐹𝑟 60.33 

χ𝑘−1,𝛼
2   5.9914 

P-value 0 

𝑑𝛼𝐹  1.96 

𝑑𝛼𝐹√𝑈𝐾(𝐾 + 1)/6 44.61 

Therefore, our final decision after the comparisons listed in Table 4.12 can be interpreted as follow: 

- There is a significant difference between the calculated RMSE values when using LAD 

Model 1, and that of using PHM Model. 

- There is a significant difference between the calculated RMSE values when using LAD 

Model 2, and that of using PHM Model. Morever, LAD Model 2 is competitive to both of 

LAD Model 1 and the PHM Model. 

3.6 Conclusion 

In this paper, we developed a two-class LAD prognostic methodology. The proposed methodology 

updates the survival (reliability) curve of an observed equipment and estimate its RUL. The 

survival curve of each observation collected from the equipment is updated by using a set of 

generated patterns covering that observation.  

The application of the two-class LAD in fault prognosis in CBM is done in a number of steps. In 

the first step, the historical data that consist of training and updating datasets is prepared. The 

training dataset is collected from a set of equipment, and contains the failure times and the 

corresponding covariates. The equipment in the training dataset are classified into two class (short 

life and long life). This is carried out by using the MTTF to separate the time to failures into two 

categories. The updating dataset is collected from another set of similar equipment, and also 

contains the aging times and the corresponding covariates. In the second step, the baseline survival 
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function is estimated from the failure times of all equipment using Kaplan-Meier (KM) estimator. 

In the third step, the two-class LAD classifier is used to generate patterns that differentiate between 

the short life and long life equipment, in the training dataset. In the fourth step, the updating 

observations collected from each equipment is used to update its survival curve, based on the 

patterns that are covering the most recent observation. One of two prognostic formulas is used to 

update that survival curve. In the final step of the methodology, the RUL of the equipment is 

calculated based on its updated survival curve.  

It is clearly shown from the obtained results that the proposed LAD prognostic methodology 

outperforms PHM prediction model in particular when applying LAD Model 2 (there is a higher 

significant difference in the performance when using LAD Model 2). This is may be attributed to 

the fact that the survival curve in LAD Model 1 is updated by assigning a weight for the baseline 

curve equal to the weight of the survival curve of each pattern covering the updating observation, 

although the coverage of each pattern is less than the coverage of the baseline. In LAD Model 2, 

the survival curve is updated by assigning a weight for the baseline curve greater than the weight 

of the survival curve of each pattern covering the observation.  

As a final conclusion, the proposed prognostic methodology is promising estimation technique for 

the estimation of RUL in the field of CBM prognostics since it is not based on any thresholding 

strategy to estimate the RUL. Unlike many statistical prognostic methods, LAD prognostic 

methodology does not need to satisfy any statistical assumptions, and can perform well when the 

covariates are highly correlated as the case of many practical situations.  

One of our future research trends is to study the effect of taking all the equipment’s history in order 

to generate the patterns.  We are also studying the effect of generating non pure patterns on the 

performance of LAD prognostic methodology. Another trend is to consider a weight for each 

pattern in the updating formula that reflect the true coverage (the number of the covered 

observations in the training dataset). One of our research challenge is to extend the proposed 

methodology to the case of multiple failure modes (multi-fault prognosis).  
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4.1 Abstract 

This paper proposes a pattern-based prognostic methodology which combines Logical Analysis of 

Data (LAD) as an event-driven diagnostic technique, and Kaplan-Meier (KM) estimator as a time-

driven technique. LAD captures the effect of the instantaneous conditions on the health state of the 

monitored system, while KM estimates the baseline survival curve that reflects the effect of the 

aging, based on the observed historical failure times. LAD is used to generate a set of patterns from 

the observed values of the covariates that represent the operating conditions and the condition 

indicators. A pattern selection procedure is carried out to select the set of significant patterns form 

all the generated patterns. A survival curve is estimated, for each subset of observations covered 

by each selected pattern, by using KM estimator. A weight that reflects the coverage of each 

patterns, is assigned to its survival curve. Given a recently collected observation, the survival curve 

of the monitored system is updated based on the patterns that cover that observation. The updated 

curve is used to predict the remaining life of the system. The methodology is validated using a 

common dataset in prognostics; the turbofan degradation data that is available at NASA prognostic 

data repository. Moreover, the methodology is compared to two machine learning regression 

techniques. 

4.2 Introduction 

Condition based maintenance (CBM) aims at avoiding unnecessary preventive maintenance tasks 

by taking preventive replacements only when there are signs of potential failure of the monitored 

system [1]. Thus, to make the appropriate decision in CBM, a fault prognostic strategy should be 

deployed [2]. Researches supported by international agencies, industry and academia, focus on 

developing intelligent CBM prognostic systems [3, 4]. Basically, maintenance decisions in CBM 

prognostics are based on up-to-date collected data (i.e. observations) from the monitored system 

[5]. These data consist of condition monitoring data and event data [6]. Condition monitoring data 

allow determining the system’s health condition. Event data provide the information on what 

happened to the system (failure, installation, overhaul, repair, inspection, etc.) [7]. When event data 

represent the failure mechanisms of the system, they are called lifetime data. They are used to 

assess the reliability (also called survival) function of the system by using either parametric or non-

parametric estimation techniques [8]. The survival function allows to predict the remaining useful 
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life (RUL) of the system, defined as the time left for a system in operation before the occurrence 

of complete failure [9]. Reliability-based prognosis methods provide some modeling options to 

process the collected data and predict the RUL of industrial systems [3].  

From practical point of view, estimating the RUL of a monitored system, by using the condition 

monitoring data, is a particular research area since there is no clear and known relationship between 

the condition measurements and the prediction of RUL. In fact, the estimated survival function 

does not reflect explicitly the effects of instantaneous conditions of each single system on its health 

state. Thus, the estimated RUL is not related to those system’s specific conditions, and as such are 

not very accurate [10]. In many industrial situations, the prognostic of RUL still relies on reliability 

experts who may have significant experience about the failure and the degradation states of the 

system. However, they do not have systematic methodologies that can predict the RUL using 

instantaneous conditions of the monitored system, and the experience is becoming hard to 

accumulate due to the complexity of the monitored system [3].  

The accuracy of current prognostic methods is limited by some common challenges, as follows  

[3, 6, 9, 10]:  

 The operating conditions and the condition indicators may be time-varying or intercorrelated. 

The challenge is to deal with such variation and correlation without making any statistical 

assumption. 

 The limited number of both event data and condition monitoring data. This can happen when 

the data are collected from similar but not identical systems, supplied from different 

manufacturers. The challenge is to design effective prognostic methods that can fully utilize 

all the data from systems with different specifications. 

 Noisy and missing data. The challenge is to enlarge the capacity of a given prognostic method 

to deal with both noisy and missing data. 

 Current reliability-based prognostic methods need predetermined threshold to predict the 

failure time of the monitored system. When such threshold is not known, the prediction 

accuracy will be affected accordingly. The challenge is to design a prognostic method without 

considering any threshold values. 

To deal with some of the above challenges, a powerful pattern-based machine learning approach 

called Logical Analysis of Data (LAD) was applied in CBM [11]. From the perspective of the CBM 
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decision makers, LAD is used as a supervised learning technique to automatically generate, from 

condition monitoring data, interpretable patterns and translate them into diagnostic rules, without 

any statistical treatments or assumptions, even if the data are highly correlated or time varying [12, 

13]. Moreover, LAD deals with noisy or missing data, as reported in [14, 15]. From the reliability 

analysis perspective, Kaplan-Meier (KM) is commonly applied as a non-parametric technique to 

provide an estimate for the survival function, based on lifetime data collected from a set of systems 

[16]. However, KM reflects only the effect of age on the systems’ health state. It does not reflect 

explicitly the effects of the instantaneous conditions on the health state of the system. 

The aim of this paper is to address some of the above common challenges in CBM prognosis. It 

proposes a reliability-based prognostic methodology based on LAD and KM, in order to predict 

the RUL of a monitored system. The proposed methodology uses both of LAD as an event-driven 

diagnostic technique and KM reliability modeling as a time-driven estimation technique. LAD 

offers some important advantages, particularly when it deals with highly correlated covariates 

without any statistical treatment or preprocessing [17]. The advantage of using KM is that, it is a 

non-parametric estimation method which does not need any statistical assumptions about the 

distribution of lifetime data [16]. KM is used to estimate the baseline reliability curve. The 

proposed methodology is inspired from the approach called logical analysis of survival data 

(LASD) that was presented in the field of medical prognosis [18]. However, LASD has two major 

limitations when updating the survival function. The first one is that, the survival curve of each 

pattern has a weight that is equal to the weight of the baseline survival curve, although none of the 

generated patterns can cover the same number of observations that are covered by the baseline 

curve. The second limitation is that, the survival curve for the recent observation is updated by 

averaging the baseline curve and the survival curves of the patterns that cover that observation, 

while ignoring the updated survival curve that was obtained from the previous observation.  

The above two limitations are already addressed in the prognostic methodology that is proposed in 

[13]. Furthermore, a single measure that calculates the RUL based on the updated survival curve 

is provided. However, that methodology considers only the condition monitoring data that are 

collected at/or immediately before the system failure. This limitation means that all the bulk of 

information embedded in previous observations are ignored. In order to address this specific 

limitation, three modifications are introduced in this paper. They are summarized as follows:  
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 All condition monitoring data collected from a group of systems during their life spans are 

considered (both normal and failure observations).  

 Since the number of generated pattern may be very large, pattern selection procedure is used 

in order to select the set of significant patterns form all the generated patterns.  

 Moreover, a weight that reflects the coverage of each pattern, thus its importance, is assigned 

to its survival curve.  

The proposed enhanced methodology comprises training and updating phases. In the training 

phase, a subset of observations collected from a group of similar systems are used. Each 

observation consists of the time and the condition monitoring data in the form of the covariates that 

represent the operating conditions and the condition indicators. For each observation, the time can 

be operational time or failure time. Given the historical lifetime data of all systems, the baseline 

survival curve is estimated by KM technique. Historical condition monitoring data are fed into two-

class LAD classifier to generate a set of patterns that reflects the effect of the covariates on the 

systems’ health state. The generated patterns represent the interactions among the operating 

conditions and the condition indicators. A pattern selection procedure is carried out to remove the 

redundant patterns and to select the significant ones. For each selected pattern, a survival curve is 

obtained by using KM estimation technique, by considering only the observations that are covered 

by that pattern. At the end of the training phase, the knowledge is discovered in the form of the 

baseline survival curve and a set of survival curves for the selected patterns (one survival curve for 

each selected pattern). 

In the updating phase, the knowledge discovered in the training phase is used to estimate, at a 

certain time, the health state of a given system, different from those used in the training phase. The 

latest observation collected from this system allows updating its survival curve. This can be done 

by using the patterns that are covering the recently collected observation. The covering patterns 

reflect the effect of the instantaneous conditions on the system’s health state. After collecting the 

subsequent observation, the former updated curve for that system is updated again based on the 

new covering patterns for that observation, and so on. Thus, each system has its own updated 

survival curve that reflects its specific working condition. Based on the new collected observation 

and the corresponding updated survival curve, the RUL of the system is estimated.  
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This paper is divided into five sections. Section 4.3 presents LAD approach along with the 

definition and characteristics of the pattern, and the pattern generation and selection techniques. 

Section 4.4 explains the enhanced prognostic methodology and its procedure in details. Section 4.5 

shows the obtained results by using a common case study in the field of prognostics. It presents a 

comparison between the proposed methodology and two common machine learning regression 

techniques: artificial neural networks (ANNs) and support vector regression (SVR). Section 4.6 

concludes the paper. 

4.3 Logical Analysis Of Data 

4.3.1 The approach 

Logical Analysis of Data is a supervised pattern generation and classification technique that was 

introduced in [19]. Originally, LAD was used as two-class classification method, that is a 

dichotomizer which is used to extract knowledge from the dataset that contain two classes of 

observations [14]. Each observation is represented as a vector of binary or numerical values of 

certain characteristic features or covariates. LAD has been evolved as an effective diagnostic 

technique which relies on extracting patterns from the training data, by using combinatorial and 

optimization methods [20]. The extracted patterns characterize and differentiate between the two 

classes of positive and negative observations, in the training dataset [17]. Each pattern represents 

the interactions between covariates for either the set of positive or the set of negative observations 

[21]. Accordingly, LAD can be used as pattern-based classifier for the new observations that are 

not included in the training dataset. It was applied on a various classification problems and the 

results in [14, 17] indicate that LAD’s classification accuracy is comparable and often superior to 

other classification methods. 

Two-class LAD is based on Boolean theory, it is composed of three stages; data binarization, 

pattern generation, and theory formation [14]. The binarization stage involves the transformation 

of numerical data to binary data using a binarization technique that transforms the numerical 

covariates’ values 𝑧1, 𝑧2, … , 𝑧𝑟 into a set of binary attributes 𝑎1, 𝑎2, … , 𝑎𝑚, where  𝑚 > 𝑟. A 

Boolean function 𝑓(𝑎1, 𝑎2, … , 𝑎𝑚) is a mapping [0,1]𝑚 → [0,1]. A partially defined Boolean 

function (PDBF) is given by a set of 𝑚 dimensional 0-1 vectors and is denoted by (𝛺+, 𝛺−), where 

𝛺+ ⊆ [0,1]𝑚 is the set of positive binary observations, and 𝛺− ⊆ [0,1]𝑚 is the set of negative 
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binary observations. The function 𝑓(𝐴) is called an extension of the PDBF (𝛺+, 𝛺−), it is defined 

as: 

          𝑓(𝐴) = {1    if     𝐴 ∈  𝛺
+

0    if     𝐴 ∈  𝛺−
 

where 𝐴 = (𝑎1, 𝑎2, … , 𝑎𝑚) is the binary observation vector obtained after the binarization of the 

numerical observation vector 𝑍 = (𝑧1, 𝑧2, … , 𝑧𝑟). For more details about LAD approach, the 

binarization, and the PDBF, the interested readers are referred to [14, 17, 19, 21, 22].  

4.3.2 Definition and properties of patterns 

The patterns generation stage is the key building block of LAD approach. This stage is essential in 

identifying the positive and negative patterns from the training dataset of positive and negative 

binary observations. A literal is either a binary attribute 𝑎𝑙 or its negation 𝑎̅𝑙, where (𝑙 = 1,2, …𝑚). 

A term 𝐶 is a conjunction of distinct literals, on condition that it does not contain both a literal and 

its negation. The term 𝐶 covers the binary vector 𝐴 if 𝐶(𝐴) = 1. The term 𝐶 is represented 

geometrically as the Boolean subcube of the 𝑚 dimensional cube [0,1]𝑚, not necessarily included 

in 𝛺+ ∪ 𝛺−, corresponding to the set of points that are covered by 𝐶, denoted by 𝑆(𝐶), while 

𝑆(𝐶) ∩ 𝛺+ ∪ 𝛺− is called coverage of 𝐶, denoted by 𝐶𝑜𝑣(𝐶) [23]. 

A term 𝐶 is called positive (or negative) pattern of the PDBF (𝛺+, 𝛺−) if: 𝐶(𝐴) = 0 for every 

𝐴 ∈ 𝛺− (or 𝐴 ∈ 𝛺+) and 𝐶(𝐴) = 1 for at least one vector 𝐴 ∈ 𝛺+ (or 𝐴 ∈ 𝛺−) [14]. Verbally, this 

means that the pattern can cover some observations from one class but cannot cover any 

observations from the opposite class. This is the concept of the strictly defined pattern. It is also 

called pure or homogenous pattern. Accordingly, a pure positive (negative) pattern is defined as an 

elementary conjunction of some of literals, that is true for at least one positive (negative) 

observation and false for all negative (positive) observations in the training dataset [19]. A pattern 

is said to cover a certain observation if it is true for that particular observation [14]. The set of 

observations covered by the pattern 𝑝 is denoted by 𝐶𝑜𝑣(𝑝). 

The degree of a pattern indicates the number of literals involved in its definition. In other words, a 

pattern 𝑝 of degree 𝑑 is a conjunction of 𝑑 literals. A pattern 𝑝𝑖 is strong if there is no other pattern 

𝑝𝑘 such that 𝐶𝑜𝑣(𝑝𝑖) ⊂ 𝐶𝑜𝑣(𝑝𝑘). The accuracy of LAD classification depends on the type and 

characteristics of the generated patterns [20, 24]. The following subsection reviews some of the 

pattern generation approaches. 



90 

 

4.3.3 Pattern generation 

There are three common approaches for pattern generation: enumeration-based [14], heuristic [22], 

and mixed integer and linear programming (MILP)-based approach [17, 20]. The MILP-based 

approaches are more accurate than the other approaches, give optimal solutions, and guarantee the 

generation of strong patterns, as reported in [20, 25].  

In the MILP-based pattern generation method presented in [20], the objective is to maximize the 

number of positive (negative) observations that are covered by the generated positive (negative) 

patterns. The method guarantees that the generated patterns are optimal with respect to certain 

characteristics, for example the maximum coverage.  

The generation procedure for each pattern, either positive or negative, is formulated as an MILP 

program. The procedure of positive pattern generation is identical to that of negative pattern 

generation. In what follows, the procedure for the generation of one pattern is stated briefly. 

The decision variables of this formulation are defined first. Given a binarized training dataset 

composed of 𝑚 binary attributes, each generated pattern 𝑝 is associated with a Boolean vector 

𝑊 = (𝑤1, 𝑤2, …𝑤𝑚, 𝑤𝑚+1, 𝑤𝑚+2, …𝑤2𝑚), whose size 2𝑚 is double that of the binary observation 

vector. For the generation of a positive (negative) pattern, the Boolean vector 𝑌, whose number of 

elements equals the number of positive (negative) observations, is presented to indicate the 

coverage of the positive (negative) observations. The elements of the vectors 𝑊 and 𝑌, and the 

degree 𝑑 of the generated pattern, are the decision variables in the MILP formulation.  

A set of constraints is formulated on the values 𝑤𝑙 and  𝑤𝑚+𝑙 to be mutually exclusive, i.e.  

𝑤𝑙 + 𝑤𝑚+𝑙 ≤ 1, ∀ 𝑙 = 1,2, …𝑚. An additional set of constraints is also formulated to ensure that 

the resulting pattern must be able to cover at least one observation in the corresponding class, and 

must not cover any observation in the opposite class. 

After getting the optimal solution (𝑊∗,  𝑌∗, 𝑑∗) to this MILP formulation, each binary attribute in 

the training dataset can be represented in the generated pattern as a literal or its negation. The 

elements of the vector 𝑊∗ are relative to the binary attributes such that if 𝑤𝑙 = 1 then the literal 𝑎𝑙 

is included in pattern 𝑝, and if  𝑤𝑚+𝑙 = 1 then its negation 𝑎̅𝑙 is included in pattern 𝑝. Since the 

values 𝑤𝑙 and 𝑤𝑚+𝑙 are mutually exclusive, the pattern 𝑝 cannot include both the literal 𝑎𝑙 and its 
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negation 𝑎̅𝑙  at the same time. The generated pattern 𝑝 is defined mathematically as a conjunction 

of the constituent literals as: 

  𝑝 ≔ ⋀ 𝑎𝑙
𝑤𝑙=1

𝑙∈{1,..𝑚}

⋀ 𝑎̅𝑙 
𝑤𝑚+𝑙=1

𝑙∈{1,..𝑚}

 

The procedure for generating one pattern is repeated iteratively until each observation in the 

training dataset is covered by at least one generated pattern. The set of generated patterns is denoted 

by 𝑃𝐺𝑒𝑛. The interested readers can find more details about the MILP-based approaches in  

[17, 20, 25]. 

The existing pattern generation approaches tend to generate too many patterns, in order to cover 

all the observations in the training dataset. Some of the generated patterns may be redundant or 

cover a very small number of observations. Therefore we need a pattern selection approach in order 

to select the most significant patterns. This step improves the classification performance of LAD 

[26]. The following subsection discusses the pattern selection technique used in our prognostic 

methodology.   

4.3.4 Pattern selection 

The pattern selection procedure aims at improving the prediction accuracy of the two-class LAD 

decision model, by selecting the most significant patterns [26]. The selected patterns may result in 

a more stable performance in terms of being able to classify both positive and negative 

observations, due to their robustness to measurement errors. Consequently, this may result in more 

accurate RUL prediction in the proposed prognostic methodology, as we will explain in this paper. 

The pattern selection procedure finds the minimal subset of the patterns that cover all the 

observations, in order to discover as much knowledge from the training dataset. Each positive 

(negative) observation must be covered by at least one positive (negative) pattern. One way to 

eliminate the redundant patterns is to select them based on some criteria such as the coverage and 

the degree as in [27]. Alternatively, a subset of patterns can be selected from the generated patterns 

by solving a set covering problem (SCP) [14].  

The pattern selection procedure used in our prognostic methodology is formulated as an SCP. The 

objective of the SCP formulation is to select the minimum number of patterns, while guaranteeing 

the coverage of all the training observations. In this SCP formulation, a Boolean vector  
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𝑋 = (𝑥1, 𝑥2, … 𝑥|𝑃𝐺𝑒𝑛|) is defined such that the binary variable 𝑥𝑔 is equal to one (zero) if the 

generated pattern 𝑝𝑔 ∈ 𝑃𝐺𝑒𝑛 is (not) selected in the required subset, where 𝑔 = 1, 2, … |𝑃𝐺𝑒𝑛|.  

In order to select the minimum number of patterns with the maximum coverage, a covering 

constraint is defined for each observation in the training dataset in order to ensure the full coverage 

of all observations. Certainly, a set covering problem is solved for each class of observations 

included in the training dataset. The interested readers can find more details about the SCP 

formulation for pattern selection in [26]. 

The pattern generation and selection procedures used in this proposed methodology are carried out 

by using the software cbmLAD that was developed at École Polytechnique de Montréal, Canada 

[11]. The software uses the MILP-based approach presented in [17], for pattern generation. It also 

carries out the pattern selection procedure by formulating an SCP to find the minimal subset of the 

patterns that cover each observation in the training dataset.  

4.4 The Proposed Reliability-Based Prognostic Methodology 

4.4.1 Problem Statement 

In this section, the proposed prognostic methodology is presented in details. Basically, the 

methodology combines KM estimation with LAD approach. KM is used to estimate the baseline 

survival curve, by using the historical lifetime data collected from a set of systems. However, the 

estimated baseline survival curve does not reflect the effect of the instantaneous conditions under 

which the systems are working. It reflects only the effect of the age on the health state of the 

systems. This limitation is overcome, by exploiting the condition monitoring data, in order to 

reflect explicitly the effect of the instantaneous conditions on the health state of the monitored 

system. Some systems fail before the mean time to failure (MTTF) due to working under severe 

operating conditions that lead to fast degraded performance, while others fail after the MTTF. We 

call the formers ‘Short Life’ systems, and the latter ‘long Life’ systems. The two-class LAD is used 

to generate patterns from the historical condition monitoring data that are collected from such set 

of monitored systems. The dataset consists of two categories of systems; ‘Short Life’ systems and 

‘long Life’ systems. The generated patterns have the ability to discriminate between the ‘short life’ 

and the ‘long life’ systems. A survival curve is estimated for each generated pattern. The baseline 

http://www.polymtl.ca/
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survival curve, along with the survival curves of the patterns can be used to reflect the effect of the 

age and the instantaneous conditions on the health state of the monitored system.  

4.4.2 Phases and steps of the methodology 

The applicability of the two-class LAD in fault prognosis is carried out in seven steps. These steps 

constitute two phases; the first one is the training phase while the second one is the updating phase. 

The training phase contains the first five steps, while the updating phase consists of the last two 

steps. In what follows, the two phases and their steps are briefly explained, then the details of each 

step will be discussed. Figure 4-1 shows the schematic diagram of the proposed prognostic 

methodology. 

Training phase: In step 1, the historical data that constitutes the training dataset is classified. This 

dataset consists of a set of observations collected from similar systems, and each observation 

contains the operational time and the corresponding covariates’ values. The systems in the training 

dataset are classified into two classes; short life (SL) and long life (LL). This is done by separating 

the systems according to their corresponding failure times. If the system fails before the MTTF, it 

is called SL, otherwise it is called LL system. The updating dataset contains a set of observations 

collected from other similar systems, and contains the time and the corresponding covariates’ 

values. In step 2, the baseline survival function is estimated from the failure times of all the systems 

in the training dataset using KM estimator. In step 3, the two-class LAD classifier is used to 

generate a set of SL and LL patterns that represent the hidden interactions between the covariates. 

Each pattern covers some observations of the systems in the corresponding class, and none of the 

observations in the opposite class. In step 4, a pattern selection procedure is then used in order to 

remove the redundant patterns. The most significant patterns are selected by solving a set covering 

problem that guarantees the coverage of all observations in the training dataset. In step 5, the 

survival curve for each of the selected SL and LL patterns, is estimated using KM estimator, by 

considering only the set of observations that are covered by each pattern, in the corresponding 

class.  

Updating phase: In step 6 of the methodology, we consider a new monitored system that is similar 

to the ones used for training. The patterns that cover each collected observation of this system are 

identified by using LAD as a diagnostic technique. The KM survival curve is then updated 

according to the identified patterns, by calculating the weighted sum of the survival curves of these 
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patterns and the KM survival curve. In step 7, the RUL of the monitored system is calculated, based 

on the updated survival curve, each time a new observation is collected. As a result of this updating 

procedure, the updated curve reflects the history of the operating and working condition of the 

monitored system, and consequently gives a better prediction of its RUL.  

Training DataUpdating Data

Step 2: Baseline 

survival curve 

estimation

Step 3: Pattern generation 

using LAD classifier

Step 6: survival 

curve updating

Step 5: Survival curve 

estimation for the selected 

patterns

LAD 

diagnostic

Step 7: RUL

Estimation

Step 1: Data preparation

Training

Updating

RUL estimation

Sb(t)

ZSL and ZLL

Sp1(t),... Sps(t), 

SO(u,tk,Zu,tk)(t)

Ztk

tk

PSel ={p1,...ps,... }

RULu(tk)
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Step 4: Pattern selection 

using SCP

PGen ={p1,...pg,... }

Failure times
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Updated survival curve
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Covering patterns
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Instanteneous

Covariates
Time

Remaining useful life

 

Figure 4-1: The diagram of the pattern-based prognostic methodology 
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In what follows, the details of each step are presented.  

Step1: Data preparation  

For data preparation, we consider a set of observations collected from a group of 𝑀 systems at 

every operational cycle. The systems are working under different specific conditions. Each 

observation comprises the identity of the system, the time, and a set of covariates reflecting the 

operating conditions and the condition indicators. These covariates may be time-dependent, that is 

changing with the time, or time independent. Each system is observed periodically until the failure 

occurs (Run-To-Failure data). The time just before the system fails will be considered as the time 

to failure (TTF). The corresponding observation is called a failure one, while all the others are 

called normal observations. In Table 4.1, 𝑂(𝑖, 𝑡𝑘, 𝑍𝑖,𝑡𝑘) represents the observation collected from 

the ith system (𝑖 = 1,2, …𝑀) at time 𝑡𝑘  (𝑡𝑘 = 1,2, … 𝑡𝐹𝑖), where 𝑡𝐹𝑖 is the failure time, and 𝑍𝑖,𝑡𝑘  is 

a vector of covariates’ values at time 𝑡𝑘. The highlighted gray observations 𝑂(𝑖, 𝑡𝐹𝑖 , 𝑍𝑖,𝑡𝐹𝑖
) are the 

failure observation of the 𝑖𝑡ℎ system, and 𝑍𝑖,𝑡𝐹𝑖  
is the corresponding vector of covariates.  

The dataset listed in Table 4.1 is divided into two datasets; training dataset and updating dataset. 

The training dataset consist of the observations collected from a set of similar systems (V systems), 

while the updating dataset consists of the observations that are collected from another set of similar 

systems (U systems). This means that the total number of systems is 𝑀 = 𝑉 + 𝑈. 

Table 4.1: The observations collected from 𝑀 system 

Time/System 1 2 …….. 𝑖 ……. 𝑀 

𝑡1 

𝑡2 
. 

. 

𝑡𝑘 

. 

. 

. 

. 

𝑡𝐹2 

𝑡𝐹𝑀 

. 

𝑡𝐹1 

. 

𝑡𝐹𝑖 
. 

𝑂(1, 𝑡1, 𝑍1,𝑡1  ) 

𝑂(1, 𝑡2, 𝑍1,𝑡2  ) 

. 

. 

𝑂(1, 𝑡𝑘 , 𝑍1,𝑡𝑘  ) 

. 

. 

. 

. 

. 

. 

. 

𝑂(1, 𝑡𝐹1, 𝑍1,𝑡𝐹1  ) 

 

𝑂(2, 𝑡1, 𝑍2,𝑡1  ) 

𝑂(2, 𝑡2, 𝑍2,𝑡2  ) 

. 

. 

𝑂(2, 𝑡𝑘 , 𝑍2,𝑡𝑘  ) 

. 

. 

. 

. 

𝑂(2, 𝑡𝐹2, 𝑍2,𝑡𝐹2  ) 

 

 

 

 

……. 

 

𝑂(𝑖, 𝑡1, 𝑍𝑖,𝑡1  ) 

𝑂(𝑖, 𝑡2, 𝑍𝑖,𝑡2  ) 

. 

. 

𝑂(𝑖, 𝑡𝑘, 𝑍𝑖,𝑡𝑘  ) 

. 

. 

. 

. 

. 

. 

. 

. 

. 

𝑂(𝑖, 𝑡𝐹𝑖 , 𝑍𝑖,𝑡𝐹𝑖  ) 

 

 

 

 

……. 

𝑂(𝑀, 𝑡1, 𝑍𝑀,𝑡1  ) 

𝑂(𝑀, 𝑡2, 𝑍𝑀,𝑡2  ) 

. 

. 

𝑂(𝑀, 𝑡𝑘 , 𝑍𝑀,𝑡𝑘  ) 

. 

. 

. 

. 

. 

𝑂(𝑀, 𝑡𝐹𝑖 , 𝑍𝑀,𝑡𝐹𝑖  ) 
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Training dataset: The training dataset is drawn from the dataset listed in Table 4.1. The training 

observations collected from V systems are divided into two different categories (classes); SL 

systems and LL systems. The systems that failed before a certain time 𝑡𝑆, specified and decided by 

the maintenance personnel, are called SL systems and all their corresponding observations are SL 

ones, and the ones that failed after that time are called LL systems. The time 𝑡𝑆 is set to the MTTF, 

which can be obtained by the maintenance personnel, by using the historical lifetime data. 

Accordingly, 𝑡𝑆 is the separation time between the two classes (SL and LL). In Table 4.2, the 

training observations are classified as either 𝛺𝑆𝐿or 𝛺𝐿𝐿, where 𝛺𝑆𝐿and 𝛺𝐿𝐿 are the sets of SL and 

LL systems’ observations, respectively. The highlighted entries in the table represent the set of 

failure observations.  

The SL observations are listed in the first raw of Table 4.2 and the LL observations are listed in the 

second raw. It means that for the vth system, the normal observation 𝑂(𝑣, 𝑡𝑘 ≤ 𝑡𝐹𝑣 , 𝑍𝑣,𝑡𝑘≤𝑡𝐹𝑣)  

and the failure observation 𝑂(𝑣, 𝑡𝐹𝑣 ≤ 𝑡𝑠, 𝑍𝑣,𝑡𝐹𝑣≤𝑡𝑠), are SL observations. The normal  

observations 𝑂(𝑣, 𝑡𝑘 ≤ 𝑡𝑠, 𝑍𝑣,𝑡𝑘≤𝑡𝑠) and 𝑂(𝑣, 𝑡𝑘 > 𝑡𝑠, 𝑍𝑣,𝑡𝑘>𝑡𝑠), and the failure observation  

𝑂(𝑣, 𝑡𝐹𝑣 > 𝑡𝑠, 𝑍𝑣,𝑡𝐹𝑣>𝑡𝑠), are considered to be LL ones. Figure 4-2 illustrates how those 

observations are classified according to the failure time of the corresponding system. In this figure, 

the 𝑣𝑡ℎ system in the training dataset may fail before or after the time 𝑡𝑠. If the system fails before 

this time, it means that it is SL system, and if it fails after that time, it is LL one. The collected 

observations are plotted as red points if the system is SL, and in green if the system is LL. The small 

red rectangle represents the failure observation of the vth SL system, while the green rectangle 

represents the failure observation of the vth LL system.    

The historical lifetime data of the systems are used to estimate the baseline survival curve in step 

2, as shown in Figure 4-1. In step 3 as depicted in the figure, the condition monitoring covariates 

are employed by the two-class LAD classifier in order to generate the patterns that are 

discriminating between the set of SL observations and the set of LL observations.  

Table 4.2: Representation of the training observations collected from V systems 

Class Failure Time Observations 

Short Life systems 

𝛺𝑆𝐿  
𝑡𝐹𝑣 ≤ 𝑡𝑠 

𝑂(𝑣, 𝑡𝑘 ≤ 𝑡𝐹𝑣, 𝑍𝑣,𝑡𝑘≤𝑡𝐹𝑣) 

𝑂(𝑣, 𝑡𝐹𝑣 ≤ 𝑡𝑠, 𝑍𝑣,𝑡𝐹𝑣≤𝑡𝑠) 

Long Life systems 

𝛺𝐿𝐿 
𝑡𝐹𝑣 > 𝑡𝑠 

 

𝑂(𝑣, 𝑡𝑘 ≤ 𝑡𝑠, 𝑍𝑣,𝑡𝑘≤𝑡𝑠) 

𝑂(𝑣, 𝑡𝑘 > 𝑡𝑠, 𝑍𝑣,𝑡𝑘>𝑡𝑠) 

𝑂(𝑣, 𝑡𝐹𝑣 > 𝑡𝑠, 𝑍𝑣,𝑡𝐹𝑣>𝑡𝑠) 
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Figure 4-2: SL and LL observations in the training dataset 

Updating dataset: The updating dataset is drawn from Table 4.1. It is a set of observations collected 

from another group of systems U which are not in the training dataset, in order to validate the 

proposed methodology. The operating conditions, the condition indicators, and the time of each 

observation, are considered. The observations collected from each system are used to update its 

survival curve, instantaneously. The survival curve of the 𝑢𝑡ℎ system is updated at each time a new 

updating observation 𝑂(𝑢, 𝑡𝑘, 𝑍𝑢,𝑡𝑘) is available, according to the patterns covering that 

observation, where 𝑢 = 1,2, …𝑈.  

Step 2: Baseline survival curve estimation using KM estimator 

In this step, the survival curve, also called survival probability function, is estimated by KM 

estimation technique using the lifetime data of all the SL and LL systems, in the training dataset. 

The baseline survival curve, is estimated using equation (4.1) as in [16]: 

                                                              𝑆𝑏(𝑡) = ∏[1 −
𝑑𝑡𝐹𝑣
𝑌𝑡𝐹𝑣

]

𝑡𝐹𝑣≤𝑡

                                                            (4.1)   
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where 𝑑𝑡𝐹𝑣  is the number of systems that failed at the time 𝑡𝐹𝑣, and 𝑌𝑡𝐹𝑣  is the number of systems 

which are at risk at that time. The baseline survival function 𝑆𝑏(𝑡) considers all the failure 

observations of the two classes (SL and LL system). It does not reflect the effect of the operating 

conditions on the reliability of the monitored system. It reflects only the effect of the working time 

on the system’s health state. This is one of the limitations of using the baseline alone when 

estimating the RUL in CBM prognostics. In the next step, LAD is used to reflect the effect of the 

operating conditions, by generating a set of SL and LL patterns from the condition monitoring data, 

in the training dataset. 

Step 3: Pattern generation using the two-class LAD classifier 

A specific characteristic of LAD is the generation of patterns which represent the hidden 

knowledge in the training dataset. These patterns are hidden natural rules that define the 

interactions between the covariates for SL and LL systems separately. Since LAD is not a statistical-

based approach, there is no need to satisfy any statistical assumptions. As a result, the pattern 

generation is carried out even if the covariates are highly correlated or time-dependent.  

The LAD classifier is used in this step to generate the SL and LL patterns that differentiate between 

the SL and the LL systems, in the training dataset. Given only the covariates of the observations 

that are found in Table 4.2, and the class labels (SL and LL), in the training dataset, the two-class 

LAD classifier is used to generate the set 𝑃𝐺𝑒𝑛 of SL and LL patterns. Each generated pattern 𝑝𝑔 in 

the set 𝑃𝐺𝑒𝑛 (i.e 𝑝𝑔 ∈ 𝑃𝐺𝑒𝑛), covers only a subset of observations in the training dataset.  

Step 4: Pattern selection using an SCP formulation 

After generating the set 𝑃𝐺𝑒𝑛 of SL and LL patterns, we formulate the pattern selection as an SCP, 

in order to select the most significant patterns and to remove the redundant patterns. The most 

significant patterns are covering the largest number of observations. They are called strong 

patterns. This SCP guarantees that each observation in the training dataset is at least covered by 

one of the selected patterns.  

The SCP is NP complete [28], and an exact solution for the large size problems could not be found 

in a reasonable time. Therefore, in our proposed methodology, the greedy algorithm developed in 

[28] is applied. The feasible solution of the SCP is obtained after a number of iterations. In the 

beginning an empty set 𝑃𝑆𝑒𝑙 is assigned to the set of selected patterns. The algorithm is initialized 
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and the pattern that covers the maximum number of observations in the training observations is 

added to the set 𝑃𝑆𝑒𝑙. At each consecutive step of this algorithm, another pattern that covers the 

maximum number of the observations that are currently uncovered by the previously selected 

patterns, is added to the set of selected patterns. The algorithm stops when all the training 

observations are covered by the patterns that are included in the set 𝑃𝑆𝑒𝑙. The set of selected patterns 

𝑃𝑆𝑒𝑙 is a subset of the generated patterns (𝑃𝑆𝑒𝑙 ⊆ 𝑃𝐺𝑒𝑛). It is the minimal subset of patterns such 

that every observation in the training dataset is covered at least once.  

By ignoring the redundant patterns and considering only the selected ones, this leads to build 

more stable and robust classifier model, in terms of being able to classify both SL and LL 

observations, accurately. Consequently, this results in developing more accurate prognostic 

methodology for predicting the RUL, as it will be shown in Section 4.5 of the paper.  

Each selected pattern has a normalized weight that reflects the ratio between the number of covered 

observations by this pattern to the total coverage of all the patterns in the same class. The 

normalized weight of the selected pattern 𝑝𝑠 (𝑠 = 1,2, … , |𝑃𝑆𝑒𝑙 |), which takes values between  

0 and 1, is defined and calculated as: 

                                                                  𝑊𝑝𝑠 =
𝑐𝑜𝑣(𝑝𝑠) 

∑ 𝑐𝑜𝑣(𝑝𝑞) 
𝑄
𝑞=1  

                                                           (4.2) 

where 𝑐𝑜𝑣(𝑝𝑠) is the set of observations that are covered by the selected pattern 𝑝𝑠, and 𝑄 is the 

number of selected patterns for the corresponding class. As will be shown later, the pattern 

selection procedure as well as the weights of the selected pattern, have a significant effect on the 

accuracy of the RUL estimation. 

Step 5: Survival curve estimation for the selected patterns using KM estimator 

In this step, the survival curve of each selected pattern is estimated by considering only the failure 

observations of the systems which are covered by that pattern. Accordingly, the inputs to KM 

estimation technique are the failure times of the observations that are covered by that pattern. The 

survival curve of the selected pattern 𝑝𝑠, is estimated using equation (4.3) as: 

                                                                   𝑆𝑝𝑠(𝑡) = ∏ [1 −
𝑑𝑡𝐹𝑣
𝑌𝑡𝐹𝑣

]
𝑡𝐹𝑣≤𝑡

∀ 𝑂(𝑣,𝑡𝐹𝑣,𝑍𝑣,𝐹𝑣) ∈ 𝑐𝑜𝑣(𝑝𝑠)

                                         (4.3) 

Each pattern’s survival curve represents the complement of a non-parametric cumulative 

distribution function (CDF), for the subset of failure observations that are covered by that pattern. 
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Each subset has shown specific hidden interactions between the operating conditions and the 

condition indicators. As such, the failure times are not any more the only measure that characterize 

the system reliability, but also the system’s conditions are reflected in the set of patterns’ survival 

curves that are represented in equation (4.3). After the execution of this step, the training phase of 

the methodology is terminated and the knowledge is extracted from the training dataset in the form 

of a set of survival curves; the baseline curve and the patterns’ survival curves. 

Step 6: Updating the survival curve of the monitored system 

This is the beginning of the updating phase of the methodology. The estimated baseline survival 

curve obtained in step 2 and the survival curves for the SL and LL patterns obtained in step 5, are 

used to update the survival curve of each of the systems in the updating dataset. Given the 

observations collected from each system, LAD is used as a diagnostic decision model in order to 

extract the patterns that cover each observation and to update the system’s survival curve. The 

updated survival curve not only reflects the system’s age but also reflects the effect of the operating 

conditions on the system’s health state.  

Initially, the survival curve is updated by averaging the baseline survival curve and the survival 

curves of the patterns that are covering the most recent observation. The set of covering patterns is 

denoted by 𝑃𝐶𝑜𝑣. It is a subset of the set of the selected patterns (i.e. 𝑃𝐶𝑜𝑣 ⊂ 𝑃𝑆𝑒𝑙). The following 

updating observations are then used to update the survival curve by averaging the survival curves 

of the patterns that cover each observation, and the former updated survival curve, simultaneously. 

In this paper, based on the most recent collected observation, one of the following three updating 

formulas is used to update the survival curve of the 𝑢𝑡ℎ monitored system at time 𝑡𝑘.  

Formula 1 
                𝑆𝑂(𝑢,𝑡𝑘,𝑍𝑢,𝑡𝑘

)(𝑡) =  

{
 
 

 
 [∑𝑆𝑝𝑠(𝑡) + 𝑆𝑏(𝑡) ]/(𝑛 + 1)      ∀  𝑘 = 1

𝑛

𝑠=1

[∑𝑆𝑝𝑠(𝑡) + 𝑆𝑓(𝑡) ]/(𝑛 + 1)     ∀  𝑘 ≥ 2

𝑛

𝑠=1

                                                           (4.4) 

Formula 2 
                 𝑆𝑂(𝑢,𝑡𝑘,𝑍𝑢,𝑡𝑘

)(𝑡) =

{
 
 

 
 [∑𝑆𝑝𝑠(𝑡)/𝑛 + 𝑆𝑏(𝑡) ]/2     ∀   𝑘 = 1

𝑛

𝑠=1

 [∑𝑆𝑝𝑠(𝑡)/𝑛 + 𝑆𝑓(𝑡) ]/2      ∀   𝑘 ≥ 2 

𝑛

𝑠=1

                                                                (4.5) 

Formula 3 
                 𝑆𝑂(𝑢,𝑡𝑘,𝑍𝑢,𝑡𝑘

)(𝑡) =

{
 
 

 
 [∑𝑊𝑝𝑠𝑆𝑝𝑠(𝑡) +  𝑆𝑏(𝑡) ]/(1 +∑𝑊𝑝𝑠

𝑛

𝑠=1

 )     ∀  𝑘 = 1             

𝑛

𝑠=1

[∑𝑊𝑝𝑠𝑆𝑝𝑠(𝑡) +  𝑆𝑓(𝑡) ]/(1 +∑𝑊𝑝𝑠

𝑛

𝑠=1

 )     ∀  𝑘 ≥ 2            

𝑛

𝑠=1

                            (4.6) 
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In these updating formulas, 𝑛 is the number of patterns that cover the updating observation 

𝑂(𝑢, 𝑡𝑘, 𝑍𝑢,𝑡𝑘) (i.e. 𝑛 = |𝑃𝐶𝑜𝑣 |), and 𝑆𝑓(𝑡) is the former updated survival curve obtained from the 

previous updating observation at time 𝑡𝑘−1.   

Formula 1, which is considered in [13], has the limitation that the survival curve of the new 

observation is updated by assigning the same weight for each of the survival curves of the covering 

patterns and the baseline, although the coverage of each pattern is less than that of the baseline. We 

address this limitation by assigning a weight for the baseline curve that is greater than the weight 

of the survival curve of each pattern, as shown in Formula 2. Because the weights of the survival 

curves of the patterns are equal in Formula 2, we assign a different weight for each of the survival 

curves of the patterns in Formula 3. These weights reflect the coverage of each pattern. The 

prediction accuracies of the three formulas are compared later through a case study in Section 4.5. 

Step 7: RUL estimation 

In this step, the RUL is estimated based on the updated survival curve of the monitored system. It 

is important to represent the effect of the operating conditions and the condition indicators, in order 

to accurately predict its RUL. Let 𝑇 represents the time to failure which is a random variable and 

let 𝑇 − 𝑡𝑘 represents the RUL of  𝑇 at time 𝑡𝑘. The RUL is random variable, its expected value 

called the mean remaining useful life (MRUL), is calculated using equation (4.7) as in [29]: 

                                                   𝑀𝑅𝑈𝐿(𝑡𝑘) = 𝐸[𝑇 − 𝑡𝑘|𝑇 > 𝑡𝑘] =
∫ 𝑆(𝜏)𝑑𝜏
∞

𝑡𝑘

𝑆(𝑡𝑘)
                                                (4.7) 

where 𝑆(. ) is the survival function. The MRUL is calculated at each time instant a new updating 

observation is collected, by considering the updated survival curve of that observation. The MRUL 

is calculated by considering the vector of covariates 𝑍𝑡𝑘as in [30]: 

                               𝑀𝑅𝑈𝐿(𝑡𝑘 , 𝑍𝑡𝑘) = 𝐸[𝑇 − 𝑡𝑘|𝑇 > 𝑡𝑘 , 𝑍𝑡𝑘] =
∫ 𝑆(𝜏, 𝑍𝜏)𝑑𝜏
∞

𝑡𝑘

𝑆(𝑡𝑘 , 𝑍𝑡𝑘)
                                      (4.8) 

Here, the updated survival function 𝑆𝑂(𝑢,𝑡𝑘,𝑍𝑢,𝑡𝑘
)(𝑡) is used instead of 𝑆(𝜏,𝑍𝜏) to give an estimate for 

the MRUL of the 𝑢𝑡ℎ system at time 𝑡𝑘, since it reflects the effect of covariates on the survival 

probability of that system. Accordingly, the MRUL is given by: 

                                                          𝑀𝑅𝑈𝐿𝑢(𝑡𝑘, 𝑍𝑡𝑘) =
∫ 𝑆𝑂(𝑢,𝑡𝑘,𝑍𝑢,𝑡𝑘)

(𝜏)𝑑𝜏
∞

𝑡𝑘

𝑆𝑂(𝑢,𝑡𝑘,𝑍𝑢,𝑡𝑘)
(𝑡𝑘)

                                               (4.9) 
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Since 𝑃(𝑇 ≥ 𝑡𝑘) = 𝑃(𝑇 > 𝑡𝑘−1) for the discrete time distributions (see [31] for more details about 

the discrete distributions), equation (4.9) can be represented experimentally in discrete form and 

the MRUL is calculated as: 

                 𝑀𝑅𝑈𝐿𝑢(𝑡𝑘, 𝑍𝑡𝑘) = 𝐸(𝑇 − 𝑡𝑘|𝑇 > 𝑡𝑘−1, 𝑍𝑡𝑘)  =
∑ 𝛥𝑡𝑟𝑆𝑂(𝑢,𝑡𝑘,𝑍𝑢,𝑡𝑘)

(𝑡𝑟)
∞
𝑡𝑟=𝑡𝑘

𝑆𝑂(𝑢,𝑡𝑘,𝑍𝑢,𝑡𝑘)
(𝑡𝑘−1)

                   (4.10) 

where 𝛥𝑡𝑟 is the monitoring interval which is the difference between two consecutive inspection 

times i.e. 𝛥𝑡𝑟 = 𝑡𝑟+1 − 𝑡𝑟. Equation (4.10) is used to estimate the RUL in the final step of this 

prognostic methodology.  

4.4.3 Training and updating algorithms 

Two algorithms are developed to implement the constituent steps of this prognostic methodology; 

algorithm 1 for the training and algorithm 2 for the updating and the RUL prediction.  

Algorithm 1: Training 

Input: Training dataset 𝛺𝑆𝐿 = 𝑂(𝑣, 𝑡𝑘 ≤ 𝑡𝐹𝑣 , 𝑍𝑣,𝑡𝑘≤𝑡𝐹𝑣), 𝑂(𝑣, 𝑡𝐹𝑣 ≤ 𝑡𝑠, 𝑍𝑣,𝑡𝐹𝑣≤𝑡𝑠) and 𝛺𝐿𝐿 = 𝑂(𝑣, 𝑡𝑘 ≤ 𝑡𝑠, 𝑍𝑣,𝑡𝑘≤𝑡𝑠),  

              𝑂(𝑣, 𝑡𝑘 > 𝑡𝑠, 𝑍𝑣,𝑡𝑘>𝑡𝑠), and 𝑂(𝑣, 𝑡𝐹𝑣 > 𝑡𝑠, 𝑍𝑣,𝑡𝐹𝑣>𝑡𝑠), where 𝑣 = {1, … , 𝑉}. 

Output: The set of generated patterns 𝑃𝐺𝑒𝑛 , the set of selected patterns 𝑃𝑆𝑒𝑙, the baseline survival curve 𝑆𝑏(𝑡), a 

             survival curve 𝑆𝑝𝑠(𝑡) for each selected pattern 𝑝𝑠, and a weight 𝑊𝑝𝑠  for each selected pattern. 

  1. 𝑆𝑏(𝑡) Estimation of the baseline survival curve using eq. (4.1) by considering the lifetime data 𝑡𝐹𝑣 of all systems. 

   2. 𝑃𝐺𝑒𝑛 = {𝑝𝑔, 𝑔 = 1,… |𝑃𝐺𝑒𝑛|}}Pattern generation using LAD classifier, by considering the covariates 𝛺𝑆𝐿 and 𝛺𝐿𝐿 

   3. 𝑃𝑆𝑒𝑙 = {𝑝𝑠, 𝑠 = 1,… |𝑃𝑆𝑒𝑙|}Pattern selection procedure formulated as SCP.  

  4. for 𝑠 = 1 to |𝑃𝑆𝑒𝑙 | 

  5.      for 𝑣 = 1 to 𝑉 

  6.           𝑐𝑜𝑣(𝑝𝑠)  Using LAD classifier to obtain the coverage of the pattern 𝑝𝑠, by considering 𝛺𝑆𝐿  and 𝛺𝐿𝐿 . 

  7.      return 𝑐𝑜𝑣(𝑝𝑠) 

  8. 𝑊𝑝𝑠     Calculation of the weight for each selected pattern 𝑝𝑠 using eq. (4.2). 

  9. 𝑆𝑝𝑠(𝑡) Estimation of the survival curve for the selected pattern 𝑝𝑠 using eq. (4.3). 

10. return {𝑆𝑝𝑠(𝑡): 𝑠 = 1,… |𝑃𝑆𝑒𝑙 |},𝑊𝑝𝑠 . 

 

Algorithm 2: Updating the survival curve and RUL calculation for the 𝒖𝒕𝒉 system  

Input:  𝑆𝑏(𝑡), {𝑆𝑝𝑠(𝑡): 𝑠 = 1, … |𝑃𝑆𝑒𝑙 |},𝑊𝑝𝑠 , and  {𝑂(𝑢, 𝑡𝑘, 𝑍𝑢,𝑡𝑘), 𝑡𝑘 = 1,2, … 𝑡𝐹𝑢) },  where 𝑢 = {1,… , 𝑈}. 

Output: Updated survival curve 𝑆𝑂(𝑢,𝑡𝑘,𝑍𝑢,𝑡𝑘)
(𝑡), and mean remaining useful life 𝑀𝑅𝑈𝐿𝑢(𝑡𝑘). 

  1.   for 𝑡𝑘 = 1 to 𝑡𝐹𝑢 

  2.        𝑃𝐶𝑜𝑣   Using LAD diagnostic model to obtain the set of covering pattern, by considering 𝑍𝑢,𝑡𝑘. 

  3.        𝑆𝑂(𝑢,𝑡𝑘,𝑍𝑢,𝑡𝑘)
(𝑡)   Updating the survival curve of the 𝑢𝑡ℎ system using eq. (4.4) or eq. (4.5), or eq. (4.6). 

  4.        𝑀𝑅𝑈𝐿𝑢(𝑡𝑘)       MRUL estimation for the 𝑢𝑡ℎ system using eq. (4.10). 

  5.   return 𝑆𝑂(𝑢,𝑡𝑘,𝑍𝑢,𝑡𝑘)
(𝑡),𝑀𝑅𝑈𝐿𝑢(𝑡𝑘).      
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In the next section, we use a common dataset in the field of prognostics and we compare the RUL 

prediction accuracy in the case of using each updating formula; Formula 1, 2 and 3, through one 

of the common tests; Friedman test. Moreover, the proposed prognostic methodology is compared 

to two common machine learning regression techniques; artificial neural networks (ANNs) and 

support vector regression (SVR). 

4.5 Application To NASA Prognostic Turbofan Engine Dataset 

In order to validate the proposed methodology, we use the turbofan engine dataset (C-MAPSS 

dataset) which is available on the website of NASA prognostic data repository [32]. The training 

dataset is collected from a set of 260 aircraft turbofan engines. Each observation in the training 

dataset consists of the engine identity, the age of the engine in cycles, in addition to twenty-four 

covariates. The first, the second, and the third covariates are three operational settings, while all 

the remaining covariates represent sensor measurements of condition indicators. The updating 

dataset consists of a set of observations collected from another set of 259 engines.  

4.5.1 Results Analysis 

a) Pattern Generation  

The software cbmLAD [11] is used to generate a set of SL and LL patterns from the training 

observations. The engines that fail before the 206th cycle (which is the MTTF) are considered as 

SL, while those fail after that time are considered as LL ones. Consequently, we have 26547 SL 

observations collected from 154 SL systems, and 27212 LL observations collected from 106 LL 

systems. The SL and LL patterns are generated from the twenty-four covariates of the training 

observations. Accordingly, 527 SL patterns and 510 LL patterns are generated.  

b) Pattern selection 

The software cbmLAD applies the pattern selection procedure in order to remove the redundant 

patterns and to select the most significant ones. By solving an SCP, 405 patterns are selected from 

the 527 generated SL patterns (122 redundant SL patterns are removed), and 379 patterns are also 

selected from the 510 generated LL patterns (131 redundant LL patterns are removed). The survival 

curves for a sample of the selected SL and LL patterns are shown in Figure 3. The survival curves 

of the generated patterns are plotted in the figure in different colors, while the baseline survival 

curve is plotted in black. The curves that are below the baseline belong to the SL patterns, while 
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those above the baseline belong to the LL patterns. The SL survival patterns represent the specific 

characteristics for the short life systems, while the LL patterns represent the specific characteristics 

for those that have long lives.  

c) Survival curve updating 

To clarify how the survival curve of one of the aircraft turbofan engines is updated, we exploit the 

survival functions of the patterns that are plotted in Figure 4-3. The figure illustrates also the 

procedure when using LAD Formula 1 in updating the survival curve of the first engine in the 

updating dataset. Given the first observation collected from that engine, the set of covering patterns 

𝑃𝐶𝑜𝑣 = {𝑝13
− , 𝑝14

− , 𝑝17
+ , 𝑝26

− }, is obtained by using the two-class LAD diagnostic model. As shown in 

the figure, the pattern 𝑝17
+  is SL pattern, while the patterns 𝑝13

− , 𝑝14
− , and 𝑝26

−  are LL patterns. The 

updated survival curve for that observation is the dotted curve in blue. After collecting the second 

observation, the covering SL patterns for that observation are 𝑝18
+ , 𝑝20

+ , 𝑝23
+ , 𝑝27

+ , and 𝑝33
+ , while the 

covering LL patterns are 𝑝2
−, 𝑝3

−, and 𝑝5
−. The resulted updated curve for that observation is the 

dotted curve in black. 

 

Figure 4-3: The baseline survival curve, the survival curves for a sample of the selected SL and 

LL patterns, and the updating procedure after collecting the first two observations from the first 

engine, using LAD Formula 1. 
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d) RUL estimation 

Since each engine in the updating dataset has a different failure history, it is important to have a 

good accuracy measure to validate the prognostic methodology. We use the root mean squared 

error (RMSE) as an error measurement criterion. The RMSE of the MRUL estimation for the 𝑢𝑡ℎ 

engine is calculated as: 

                      𝑅𝑀𝑆𝐸(𝑢) = √∑[𝑎𝑐𝑡𝑢𝑎𝑙 𝑅𝑈𝐿(𝑡𝑘) − 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑀𝑅𝑈𝐿(𝑡𝑘)]2

𝑡𝐹𝑢

𝑡𝑘=1

/𝑁𝐹𝑢              (4.11)  

where 𝑁𝐹𝑢 is the actual number of operational cycles until the failure of the uth engine, where 

𝑢 = 1, 2, …𝑈. The RMSE is calculated for the 259 engines using the three different updating 

formulas; LAD Formula 1, LAD Formula 2, and LAD Formula 3. The RMSE of the estimated 

MRUL for a sample of ten engines are listed in Table 4.3. The underlined bold results (the smallest 

RMSE) indicate that the corresponding formula gives the highest performance. It can be noticed 

from this sample that, in general, LAD Formula 2 and LAD Formula 3 give a better results than 

that are given by LAD Formula 1. However, the results listed in Table 4.3 are not necessarily the 

best way to compare between the three formulas. There is a need to statistically compare between 

the three prognostic formulas, based on the calculated RMSE values of all engines.  

Based on the results of MRUL estimation for the 259 engines, we need to properly determine 

whether the accuracy of LAD Formula 2 and LAD Formula 3 significantly outperform that of LAD 

Formula 1, or not. That is, the question that needs an answer is: Whether any updating formula 

ranks consistently and significantly higher or lower than the others? 

Table 4.3: The results for LAD Formula 1, LAD Formula 2, and LAD Formula 3, for a sample of 

ten engines 

System Identity Time To Failure 
(TTF) 

RMSE using LAD 
Formula 1 

RMSE using LAD 
Formula 2 

RMSE using LAD 
Formula 3 

6 218 31.87956 28.08579 26.85231 

55 190 20.07931 17.82797 17.28543 

85 263 39.12543 34.23242 35.27549 

117 172 18.40472 16.33767 15.95682 

126 163 15.18374 16.79543 15.04567 

141 168 27.62458 26.85612 24.56912 

162 147 20.56892 18.85341 18. 45628 

175 194 28.53627 25.26347 25.78456 

200 171 23.53687 22.38421 21.48267 

247 202 27.38167 26.57846 25.18547 



106 

 

 

We need a suitable test to report the comparison of all formulas and to consider the difference in 

the failure history of each engine in the updating dataset. In what follows, we use Friedman test to 

rank the results obtained from the 259 engines, by using the three updating formulas. 

4.5.2 Accuracy of the MRUL Calculations 

a) Comparing LAD Formula 1, LAD Formula 2, and LAD Formula 3 

Friedman test is a non-parametric statistical test, used to compare different values of population 

means that are evaluated under different levels of the study’s factors [33]. In this study, the first 

factor is the difference in the failure histories of the engines, and the second factor is the applied 

updating formula that affects the magnitude of the calculated RMSE value. 

In the Friedman test of this work, two phases are followed. In the first phase, we test the hypothesis 

that all the applied updating formulas are statistically equivalent or not. In the second phase, a set 

of post tests is carried out, in order to report the formula that gives the highest performance.  

Phase 1: Test hypotheses 

Friedman test is based on ranking; it assigns ordered ranks from the smallest to the largest, to the 

calculated RMSE, by using the three prognostic formulas for each engine. In other words, each of 

the 259 engines rates those three different prognostic formulas (LAD Formula 1, LAD Formula 2, 

and LAD Formula 3). They are compared in this phase where the null hypothesis states that all of 

them have the same mean RMSE.  

Thus, the null hypothesis is formulated as: 

𝐻0: 𝜇𝐿𝐴𝐷 𝐹𝑜𝑟𝑚𝑢𝑙𝑎 1 = 𝜇𝐿𝐴𝐷 𝐹𝑜𝑟𝑚𝑢𝑙𝑎  2 = 𝜇𝐿𝐴𝐷 𝐹𝑜𝑟𝑚𝑢𝑙𝑎  3  

and the alternative hypothesis is formulated as: 

𝐻𝑎: Not all RMSE means (𝜇𝐿𝐴𝐷 𝐹𝑜𝑟𝑚𝑢𝑙𝑎 1,𝜇𝐿𝐴𝐷 𝐹𝑜𝑟𝑚𝑢𝑙𝑎 2,𝜇𝐿𝐴𝐷 𝐹𝑜𝑟𝑚𝑢𝑙𝑎 3) are equal 

To reject or to accept this null hypothesis, the test statistic given by equation (4.12), is applied as 

in [33]: 

                                                            𝐹𝑟 =
12

𝑈𝑘(𝑘 + 1)
∑𝑅𝑗

2

𝑘

𝑗=1

− 3𝑈(𝑘 + 1)                                     (4.12) 

where 𝑅𝑗 is the rank sum for the  𝐹𝑜𝑟𝑚𝑢𝑙𝑎 𝑗 (𝑗 = 1, 2, 3), and U is the number of engines in the 

updating dataset. The values of the rank sums for the three formulas, without applying the pattern 
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selection procedure, are listed in the second columns of Table 4.4. The mean rank of each of the 

three formulas for the calculated 259 RMSE values is listed in the third column of the table. The 

calculated significance level (p-value) for this test statistic is given by: 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑃(𝜒𝑘−1
2 ≥ 𝐹𝑟) = 𝑃(𝜒3−1

2 ≥ 137.7683) = 0 

and the declared test significant level is calculated as: 𝜒𝑘−1,𝛼
2 = 𝜒2,0.05

2 = 5.9914, where 𝜒𝑘−1
2  is 

the Chi Square test statistic [34]. The calculated p-value is too small, and the test is said to be 

significant, and accordingly the null hypothesis 𝐻0 is rejected. Rejecting 𝐻0 means that some 

prognostic formulas tend to have larger or smaller RMSE means than the others.  

Phase 2: Pairwise comparisons 

After carrying out the first phase of Friedman test, there is no indication as to which formula has 

better performance than the others, although we are confident that one of the three updating 

formulas outperforms the other two. Thus, multiple post-hoc comparisons  (pairwise Friedman 

test), are performed, in order to find the best prognostic formula, that is the formula that leads to a 

significantly lower RMSE.  

In pairwise Friedman test, we select the formula that has the largest mean rank, and compare it 

with those of the lower mean ranks. As depicted from the third column of Table 4.4,  

LAD Formula 1 has the largest mean rank. Consequently, the pairwise Friedman test is performed 

to compare the RMSE estimated using LAD Formula 1, and those estimated using LAD Formula 2 

and LAD Formula 3.  

Two hypotheses for each comparison are formulated, and a decision is made regarding the rejection 

or acceptance of the null hypothesis. In the comparison of LAD Formula 1 with 

𝐹𝑜𝑟𝑚𝑢𝑙𝑎 𝑗 (𝑗 = 2, 3), the null and the alternatives hypotheses are formulated as: 

𝐻0: 𝜇𝐿𝐴𝐷 𝐹𝑜𝑟𝑚𝑢𝑙𝑎 1 = 𝜇𝐿𝐴𝐷 𝐹𝑜𝑟𝑚𝑢𝑙𝑎 𝑗  

𝐻𝑎: 𝜇𝐿𝐴𝐷 𝐹𝑜𝑟𝑚𝑢𝑙𝑎 1 > 𝜇𝐿𝐴𝐷 𝐹𝑜𝑟𝑚𝑢𝑙𝑎 𝑗   

First, we compute the absolute difference between the rank sums |𝑅𝐿𝐴𝐷 𝐹𝑜𝑟𝑚𝑢𝑙𝑎𝑗 − 𝑅𝐿𝐴𝐷 𝐹𝑜𝑟𝑚𝑢𝑙𝑎 1|, 

and if this difference exceeds the post-hoc value 𝑑𝛼𝐹√𝑈𝑘(𝑘 + 1)/6, the null hypothesis is rejected. 

The value 𝑑𝛼𝐹  is the 100(1 − 𝛼𝐹)
𝑡ℎ of the standard normal distribution, and 𝛼𝐹 is the family-wise 

significance level [35].  

http://en.wikipedia.org/wiki/P-value
http://en.wikipedia.org/wiki/Statistical_significance
http://en.wikipedia.org/wiki/Multiple_comparisons
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The results of Friedman test, when the three formulas are applied, are presented briefly in Table 

4.4. In this table, we use the set of generated patterns in the prognostic methodology, without 

removing the redundant ones.  It is seen in the fourth column of Table 4.4 that LAD Formula 3 

outperforms both of LAD Formula 1 and LAD Formula 2, through the largest rank difference 

between LAD Formula 3 and LAD Formula 1, which is 258. This may be attributed to the fact that 

the weights assigned to the survival curves in the updating step of the methodology, have a 

significant effect on the estimated RUL. Actually, the assigned weight reflects the coverage of each 

pattern, and consequently reflects its importance.  

Table 4.4: Friedman test without considering pattern selection in the proposed LAD methodology 

 Phase 1 Phase 2 

Updating LAD 

Formula 

Rank 

sum 

𝑅𝑗 

Mean 

rank 
|𝑅𝑗 − 𝑅𝐿𝐴𝐷 𝐹𝑜𝑟𝑚𝑢𝑙𝑎 1| Is 

|𝑅𝐿𝐴𝐷 𝐹𝑜𝑟𝑚𝑢𝑙𝑎 𝑗 − 𝑅𝐿𝐴𝐷 𝐹𝑜𝑟𝑚𝑢𝑙𝑎 1| >

𝑑𝛼𝐹√𝑈𝑘(𝑘 + 1)/6?  

Acceptance 

of the null 

hypothesis? 

Significant 

difference? 

LAD Formula 2 478 1.846 189 yes No yes 

LAD Formula 3 409 1.579 258 yes No yes 

LAD Formula 1 667 2.575 

Test Statistic 𝐹𝑟  137.768 

χ𝑘−1,𝛼
2   5.9914 

p-value 0 

𝛼𝐹 0.025 

𝑑𝛼𝐹  1.96 

𝑑𝛼𝐹√𝑈𝑘(𝑘 + 1)/6 44.609 

 

As stated previously, the objective of the pattern selection procedure is to remove the redundant 

patterns from the set of generated patterns. The selected patterns have a larger coverage than those 

of the original generated patterns. The pattern selection removes the redundant patterns, and 

consequently assigns larger weights for the selected patterns.  

The results of Friedman test when the selected patterns are considered in the updating formulas are 

shown in Table 4.5. The results obtained show that LAD Formula 3 still outperforms LAD Formula 

1 and LAD Formula 2. The largest rank difference is the one between LAD Formula 3 and LAD 

Formula 1 (it is 280 as shown in the fourth column of Table 4.5). It is noticed that the pattern 

selection procedure has an effect on all the updating formulas. The effect of using the selected 

patterns is noticed in this table by comparing the average ranking that are changed between the 

LAD Formula 1 and LAD Formula 2 in favor of the latter. The difference in rank increases from 

189 as shown in Table 4.4 to 206 as shown in Table 4.5. Moreover, the pattern selection has also a 

significant effect on the LAD Formula 3, since the new weights of the selected patterns are affecting 
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the results; the highest rank difference is increased to 280 instead of 258 as in Table 4.4. From 

these two tables, it is clear that the results obtained by using LAD Formula 2 and LAD Formula 3 

have significant differences when compared to those obtained by using LAD Formula 1. It is 

concluded that the selected patterns and the weights of the patterns have a significant effect on the 

results. 

Table 4.5: Friedman test when considering the selected patterns 

 Phase 1 Phase 2 

Updating LAD 

Formula 

Rank 

sum 

𝑅𝑗 

Mean 

rank 
|𝑅𝑗 − 𝑅𝐿𝐴𝐷 𝐹𝑜𝑟𝑚𝑢𝑙𝑎 1| Is 

|𝑅𝐿𝐴𝐷 𝐹𝑜𝑟𝑚𝑢𝑙𝑎 𝑗 − 𝑅𝐿𝐴𝐷 𝐹𝑜𝑟𝑚𝑢𝑙𝑎 1| >

𝑑𝛼𝐹√𝑈𝑘(𝑘 + 1)/6?  

Acceptance 

of the null 

hypothesis? 

Significant 

difference? 

LAD Formula 2 474 1.830 206 Yes No Yes 

LAD Formula 3 400 1.544 280 Yes No Yes 

LAD Formula 1 680 2.626 

Test Statistic 𝐹𝑟  162.564 

χ
𝑘−1,𝛼

2
  

5.9914 

p-value 0 

𝛼𝐹 0.025 

𝑑𝛼𝐹  1.96 

𝑑𝛼𝐹√𝑈𝑘(𝑘 + 1)/6 44.609 

 

b) Comparing the proposed methodology to the methodology introduced in [13] 

The Friedman test is performed to compare the proposed prognostic methodology and the 

methodology proposed in [13]. The test allows evaluating the effect of using all the condition 

monitoring data versus using only failure data. In this test, we compare the results obtained by 

using the two updating formula in both methodologies. The results of comparing the formulas in 

both methodologies are listed in Table 4.6 and Table 4.7. It is shown that the proposed methodology 

outperforms the methodology proposed in [13]. 

Table 4.6: Comparison between the obtained results using the first two formulas in both 

methodologies 

 Phase 1 Phase 2 

Prognostic 

Methodology 

Rank 

sum 

Mean 

rank 

|𝑅𝐿𝐴𝐷 𝐹𝑜𝑟𝑚𝑢𝑙𝑎 1 − 𝑅𝐿𝐴𝐷 𝑀𝑜𝑑𝑒𝑙 1| Is 

|𝑅𝐿𝐴𝐷 𝐹𝑜𝑟𝑚𝑢𝑙𝑎 1 − 𝑅𝐿𝐴𝐷 𝑀𝑜𝑑𝑒𝑙 1| >

𝑑𝛼𝐹√𝑈𝑘(𝑘 + 1)/6? 

Acceptance 

of the null 

hypothesis? 

Significant 

difference? 

LAD Formula 1 in 

our methodology 

300 1.158 177 Yes No Yes 

LAD Model 1 in [13] 477 1.842 

Test Statistic 𝐹𝑟  120.96 

χ𝑘−1,𝛼
2   3.84 

p-value 0 

𝛼𝐹 0.05 

𝑑𝛼𝐹  1.65 

𝑑𝛼𝐹√𝑈𝑘(𝑘 + 1)/6 26.47 
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Table 4.7: Comparison between the obtained results using the second two formulas in both 

methodologies 

 Phase 1 Phase 2 

Prognostic 

Methodology 

Rank 

sum 

Mean 

rank 

|𝑅𝐿𝐴𝐷 𝐹𝑜𝑟𝑚𝑢𝑙𝑎 2 − 𝑅𝐿𝐴𝐷 𝑀𝑜𝑑𝑒𝑙 2| Is 

|𝑅𝐿𝐴𝐷 𝐹𝑜𝑟𝑚𝑢𝑙𝑎 2 − 𝑅𝐿𝐴𝐷 𝑀𝑜𝑑𝑒𝑙 2| >

𝑑𝛼𝐹√𝑈𝑘(𝑘 + 1)/6? 

Acceptance 

of the null 

hypothesis? 

Significant 

difference? 

LAD Formula 2 in 

our methodology 

298 1.151 181 Yes No Yes 

LAD Model 2 in [13] 479 1.849 

Test Statistic 𝐹𝑟  126.49 

χ𝑘−1,𝛼
2   3.84 

p-value 0 

𝛼𝐹 0.05 

𝑑𝛼𝐹  1.65 

𝑑𝛼𝐹√𝑈𝑘(𝑘 + 1)/6 26.47 

 

c) Comparing the proposed methodology to artificial neural networks (ANN) and support 

vector regression (SVR) 

The proposed methodology is compared to the most common machine learning regression 

techniques: artificial neural networks (ANNs) [36, 37] and support vector regression (SVR) [38]. 

They are used commonly as regression techniques to predict the remaining useful life in the field 

of CBM prognostics [10, 39, 40]. The variable of interest (dependent variable) in the two regression 

techniques is numerical rather than categorical. The task in this case is to find a relationship 

between the dependent variable and a group of independent variables. In this study, the remaining 

useful life is the dependent variable, while the independent variables are the set of covariates that 

represent the operating conditions and the condition indicators. In what follows, each technique is 

presented briefly along with the experimentations that are carried out in this paper. 

Artificial Neural Networks. ANNs have given many desirable characteristics that are not present 

in many machine learning regression techniques. These include generalization ability, learning 

ability, and adaptability [36]. They are used to represent the nonlinear relationship between the 

covariates and the RUL in order to get more accurate and precise predictions. The ANN model was 

trained using the turbofan engine dataset. The architecture of the trained model has four layers of 

neurons; one input layer, two hidden layers, and one output layer. The ANN is trained using the 

collected observations from the 260 engines. The inputs to the ANN model are the age and condition 

monitoring data, while the desired output is the actual RUL (the difference between the equipment 

failure time and its current age). Each input neuron represents a separate covariate and accordingly 

the number of the neurons in the input layer is equal to the number of covariates in the dataset (i.e. 

24 neurons in the input layer). After a number of experimentation, the optimal number of nodes for 
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each of the hidden layers is set to seven in this paper. The weights of the ANN are adjusted based 

on gradient-descent method [38], based on the difference between the actual and the estimated 

RUL, in the training phase. After the training phase, the network can recognize the correlation and 

relates the observations to the actual RUL. Given the collected observations from the 259 engines 

in the updating dataset, the trained model is used to predict the RUL for each. The RMSE for each 

engine is calculated as in equation (4.11). 

Support Vector Regression. Support vector regression is regression technique based on the 

concept of support vector machines (SVM) that was developed by Vapnik [41]. Recently, SVR 

becomes competitive with the best available regression techniques, and it has now evolved into an 

active area of research. A comprehensive tutorial on SVR has been published by [42]. The SVR has 

two main important properties. First, it has better generalization ability than the other competitive 

techniques due to choosing the maximal margin hyperplane, thus minimizing the risk of over-fitting 

[38]. Second, it supports an efficient learning for highly nonlinear functions by applying the kernel 

trick [41]. According to these two properties, it is expected that SVR will give better prediction 

results than those given by ANNs. The objective is to estimate the parameters of certain function 

which give the best fit of the covariates of the training data. Such function approximates all pairs 

while maintaining the differences between estimated values and real values under a certain 

precision [40]. The kernel trick is applied to transform the input space (the set of covariates) to 

high dimensional feature space, and the SVR in this space becomes a nonlinear function in the 

original covariates. There are several kernels; choosing one kernel is an application-dependent (it 

depends on the task at hand). The commonly used family of kernels are; polynomial kernel, radial 

basis function (RBF) kernel, and sigmoid kernel. In this paper, we tested and applied the RBF 

kernel, and it gives the best results. 

Implementation of ANN and SVR models and performance comparison with LAD formulas  

The algorithms for ANN and SVR models are implemented in the publicly available Weka software 

package [38, 43]. The results of comparing the performance of all prognostic models (LAD 

Formula 1, LAD Formula 2, LAD Formula 3, ANN and SVR) are depicted in Table 4.8 and Table 

4.9. In Table 4.8, we did not use the pattern selection procedure in the three LAD formulas. Table 

4.9 shows the results when the pattern selection procedure is used. It is noticed from Table 8 that 

the ANN has the largest mean rank. Thus, we compare the performance of the ANN to all the 

remaining prognostic models. It is seen in the fourth column of Table 4.8 that LAD Formula 2 and 

LAD Formula 3 outperform both of ANN and SVR. This can be clarified by inspecting the rank 

differences between the ANN and the two models; LAD Formula 2 and LAD Formula 3, which are 
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265 and 368, respectively. It is also noticed that these differences are larger than the difference 

between the ANN and the SVR, which is 92. As a result of using the pattern selection procedure, 

these differences increase as shown in the fourth column of Table 4.9, in particular for LAD 

Formula 3. 

The final decision after the comparisons listed in Table 4.8 and Table 4.9 can be summarized as 

follow: there is a significant difference between the performance of LAD Formula 2 and LAD 

Formula 3, and that of ANN. Moreover, LAD Formula 2 and LAD Formula 3 outperform also the 

SVR. There is no significant difference between the performance when using ANN, and that of 

using LAD Formula 1. There is a significant difference between the performance of ANN and SVR.  

Table 4.8: Friedman test for the ANN, the SVR, and the proposed LAD methodology without 

considering pattern selection  

 Phase 1 Phase 2 

Prognostic Model Rank 

sum 

𝑅𝑗 

Mean 

rank 
|𝑅𝑗 − 𝑅𝐴𝑁𝑁| |𝑅𝑀𝑜𝑑𝑒𝑙 𝑗 − 𝑅𝐴𝑁𝑁|  

> 𝑑𝛼𝐹√𝑈𝑘(𝑘 + 1)/6 ? 

Acceptance of the 

null hypothesis? 

Significant 

difference? 

LAD Model 1 870 3.3591 65 No Yes No 

LAD Model 2 670 2.5869 265 Yes No Yes 

LAD Model 3 567 2.1892 368 Yes No Yes 

SVR Model 843 3.2548 92 Yes No Yes 

ANN Model 935 3.6100 

Test Statistic 𝐹𝑟  144.4293 

χ𝑘−1,𝛼
2   9.488 

p-value 0 

𝛼𝐹 0.0125 

𝑑𝛼𝐹  2.241 

𝑑𝛼𝐹√𝑈𝑘(𝑘 + 1)/6 80.6449 

Table 4.9: Friedman test for the ANN, the SVR, and the proposed LAD methodology when 

considering the selected patterns  

 Phase 1 Phase 2 

Prognostic Model Rank 

sum 

𝑅𝑗 

Mean 

rank 
|𝑅𝑗 − 𝑅𝐴𝑁𝑁| |𝑅𝑀𝑜𝑑𝑒𝑙 𝑗 − 𝑅𝐴𝑁𝑁|  

> 𝑑𝛼𝐹√𝑈𝑘(𝑘 + 1)/6 ? 

Acceptance of the 

null hypothesis? 

Significant 

difference? 

LAD Model 1 884 3.4131 54 No Yes No 

LAD Model 2 672 2.5946 266 Yes No Yes 

LAD Model 3 557 2.1506 381 Yes No Yes 

SVR Model 834 3.2201 104 Yes No Yes 

ANN Model 938 3.6216 

Test Statistic 𝐹𝑟  154.5081 

χ𝑘−1,𝛼
2   9.488 

p-value 0 

𝛼𝐹 0.0125 

𝑑𝛼𝐹  2.241 

𝑑𝛼𝐹√𝑈𝑘(𝑘 + 1)/6 80.6449 
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4.6 Conclusions 

In this paper, we propose a new pattern-based prognostic methodology using KM as a time-driven 

technique and LAD as an event-driven diagnostic method. LAD offers some important advantages, 

particularly when it deals with highly correlated or time varying covariates, without making any 

statistical assumptions. Kaplan-Meier estimator on the other hand, is non-parametric estimation 

method that does not need any statistical assumptions. As the estimated KM survival curve reflects 

only the effect of age on the systems’ health state, the effect of the operating conditions of the 

monitored system is characterized through LAD.  

The quality of the collected data affects the accuracy of the classification and consequently affects 

the performance of the prognostic model. Another advantage of using the LAD is its robustness to 

noisy and missing data, which is a big challenge in CBM prognostics.  

The main objective of the methodology is to update the survival curve of the monitored system, 

based on the analysis of the most recent collected observation, and by finding the hidden patterns 

that cover this observation. Therefore, the survival curve of the monitored system is updated using 

the weighted sum of the survival curves of these patterns and the baseline survival curve. This 

updated survival curve is used to estimate the system’s RUL. The proposed prognostic 

methodology does not set any threshold for the updated survival curve to predict the RUL.  

The paper proposes two modifications for the updating formula that is used in the field of medical 

prognosis (LAD Formula 1). In the first modification, we assign a weight for the baseline survival 

curve that is greater than the weights of the survival curves of the patterns. In the second 

modification, we assign a weight for each survival curve. The assigned weight reflects the coverage 

of the pattern. We also consider the former updated survival curve in the updating formulas, in 

order to reflect the operational history of the monitored system.  

It is noticed from the computational results that there is a significant difference between the 

performance of the two modified LAD prognostic formulas (LAD Formula 2 and LAD Formula 3) 

and that of LAD Formula 1. This difference is in favor of the formers. From the obtained results, 

it is also concluded that the pattern selection procedure has an effect on the performance of LAD 

prognostic methodology because it removes the redundant patterns. The comparisons between the 

three prognostic formulas, using Friedman test, show that the proposed methodology yields an 
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improved accuracy for the RUL estimation, when it considers the selected patterns and their 

weights. The prognostic methodology is also compared to ANN and SVR as common machine 

learning regression techniques. The results show that there is a significant difference between the 

performance of LAD Formula 2 and LAD Formula 3, and that of ANN and SVR. In other words, 

we can conclude that LAD Formula 3 and LAD Formula 2 are the best, SVR and LAD Formula 1 

come in second, and ANN Model is the worst. 

As a final conclusion, the proposed prognostic methodology is promising for estimating the RUL 

in the field of CBM prognostics since the survival curve is updated without making any prior 

statistical assumption. It also deals with the covariates that are highly correlated as in the case of 

many practical situations. The obtained results show that the proposed methodology exploits 

effectively the CBM data, and give accurate prediction for the RUL. 
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5.1 Abstract 

This paper presents a novel methodology for multiple failure modes prognostics in rotating 

machinery. The proposed methodology merges a machine learning approach called Logical 

Analysis of Data (LAD), with a set of non-parametric cumulative incidence functions (CIFs). It 

considers the condition monitoring data collected from a system that experiences several competing 

failure modes over its life span. LAD as a non-statistical classification technique captures the actual 

state of the system based on the condition monitoring data. The CIF provides an estimate for the 

marginal probability of each failure mode in the presence of other competing failure modes. 

Accordingly, the assumption of the independency between the failure modes which is considered 

in many prognostic methods, is irrelevant in this paper. The proposed methodology is validated 

using vibration data collected from bearing test rigs. The results obtained are compared to those of 

two common machine learning prediction techniques. The comparison shows that the proposed 

methodology is capable of estimating accurately the RUL of an individual system, based on its 

collected condition monitoring data.  

5.2 Introduction 

Failure prognostics is an important decision making procedure in the condition-based maintenance 

(CBM) [1]. It deals with the prediction of the failure before it occurs. The task of such prediction 

is to determine if the failure is impending and estimate when and how this failure will occur [2]. In 

many industrial cases, the prognostics still relies on the experts who have significant experience 

about the system degradation. Recently, researches have been undertaken to develop prognostic 

models in order to predict the remaining useful life (RUL) of a monitored system [3]. Many of 

those prognostic models aim at predicting the RUL in the presence of a single failure mode, in 

which the historical lifetime data follow only one failure distribution with different parameters, in 

the presence of a set of covariates that represent the operating conditions and the condition 

indicators, which influence the system lifetime. 

The prognostic methodology proposed in [4] uses Kaplan-Meier (KM) estimator as a non-

parametric statistical method, to estimate the RUL. One of the advantages of that methodology is 

that it does not have any assumption about the distribution of the historical lifetime data. However, 

it considers the lifetime data that are drawn from only one failure mode.  
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The conventional prognostic methods that consider a single failure mode are inadequate to model 

the failure of a system subjected to multiple competing failure modes. Unfortunately, most of the 

multiple fault prognostic models have been theoretical and restricted to a small number of failure 

modes. Multiple fault prognostic models need to be both compliant and affordable to the 

maintenance decision makers and the technician as well. In the literature, a number of multiple 

fault prognostic models have already been applied in industry, although they have some theoretical 

limitations. They tend to concentrate on the technical merits only. A good review covering those 

models is found in [5].  

The common method for analyzing the collected data from a set of systems that are subjected to 

multiple failure modes, is based on the analysis of each failure mode separately. There are two 

primary limitations to that method. The first limitation is that the assumption of the independency 

between the failure modes must be satisfied. The typical statistical survival analysis assumes that 

such assumption is met when there are competing failure modes, even if this is not the case in 

practical situations. The second limitation comes when statistical models are applied to estimate 

the survival curve of the system, in the presence of those competing failure modes. In such 

statistical models, all competing failure modes are treated as censored categories. As an example, 

in traditional KM estimation, the estimated survival curve for each failure mode has questionable 

interpretation. The estimated KM survival curve is not informative in this case as when only one 

failure mode is considered (the interested readers can be referred to [6] for more details). This is 

because KM method is mainly based on the independent censoring, which requires that those 

systems are censored due to other failure modes, withdrawal from the field, or lost-to-monitor at a 

certain time, are as likely to have a failure later as those in the risk set. 

The assumption of the independence between the competing failure modes is unrealistic and mostly 

cannot be satisfied in the practical situations. No one can verify or prove in an explicit way that 

competing failure modes are independent. Three strategies that are dealing with the assumption of 

independence, are found in [7]. However, there is no strategy that can directly assess the 

independence or guarantee the correct estimate for the targeted statistical model, when the 

independence assumption is violated.  

It is also important to reflect the effect of the operating conditions and condition indicators of the 

monitored system, on the failure time of each failure mode. Therefore, the big challenge in multiple 

http://www.merriam-webster.com/dictionary/compliant
http://www.merriam-webster.com/dictionary/affordable
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fault prognostics is to evaluate the effects of each failure mode on the other competing modes, and 

to construct a model for estimating the RUL for the monitored systems when the covariates are 

highly correlated and time-varying. Thus, we need to develop prognostic models that are describing 

the interactions among the failure modes, and such models have to be verified and validated for 

varying and inter-correlated covariates. 

In this paper, we propose a multiple failure modes prognostic methodology based on a supervised 

machine learning approach called Logical Analysis of Data (LAD), and a set of non-parametric 

cumulative incidence functions (CIFs). The proposed methodology consists of two phases; training 

and updating. In the training phase, the multiclass LAD approach is used to extract the hidden 

knowledge from the condition monitoring data that are collected from a set of similar systems 

subjected to a multitude of competing failure modes. Each observation in the condition monitoring 

data consists of the time and a set of covariates. The observation represents either the operational 

state or the failure state. The knowledge is extracted from the set of covariates in the form of 

relevant patterns. LAD reflects the effect of the condition monitoring data of each failure mode on 

the failure time of the system. A CIF curve is estimated for each failure mode, by considering the 

failure times of the systems that are subjected to that failure mode. In the updating phase, an 

observation from a newly monitored system is collected, the multi-class LAD diagnostic model is 

used to identify the hidden patterns which are covering that observation. The diagnostic knowledge 

identified from this model is then used to update the survival curve of the monitored system in 

order to estimate its RUL.  

The effectiveness of the proposed methodology is validated using vibration data obtained from a 

bearing test rigs. The methodology is compared with two common machine learning prediction 

models; the support vector regression (SVR) and the artificial neural networks (ANNs). It is also 

compared with a prognostic methodology that neglects the effect of the varying failure modes on 

the lifetime of the monitored system.  

This paper is organized in seven sections. Section 5.3 states the problem of multiple failure modes 

prognostics in the CBM. In Section 5.4, the theory of the CIF is presented in details. Section 5.5 

presents the multi-class LAD approach, its stages, and how it is used as a classification scheme for 

the diagnosis of multiple faults. Section 5.6 presents the proposed multiple failure modes 

prognostic methodology in details. Section 5.7 presents a case study from the industry in order to 
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validate and compare the proposed methodology to the other prediction models. Section 5.8 

concludes the paper. 

5.3 Multiple Failure Modes Prognostics 

5.3.1 The main challenges in multiple failure modes prognostics 

A big challenge in multiple failure modes prognostics is that the relationship between the RUL of 

the system and the covariates, is complicated and non-understandable. This is due to the 

competition and the interaction between the failure modes. Figure 5-1 shows how the paths of each 

failure mode can be interacted and have stochastic nature. The figure illustrates the competition 

between two failure modes. Each failure mode has one condition indicator, and the failure times of 

the monitored systems in each mode are determined based on a certain threshold. It is noticed from 

the figure that the failure times in both modes are interleaved.  

Generally, this situation will be more complicated when a multitude of failure modes are 

considered. Therefore, it is necessary to evaluate the effects of each failure mode on the other 

competing modes and to build a prediction model to estimate the worst case scenario for the 

affected monitored system. Another challenge exists when the covariates are time-varying. Thus, 

the challenge is to develop prognostic models that are describing the effect of the varying operating 

conditions and condition indicators on the failure modes and their interactions.   

5.3.2 The idea of the proposed methodology: Merging LAD and CIFs 

The purpose of this paper is to propose a novel methodology for multiple failure modes prognostics. 

In this methodology, we consider the CBM data in which each system can experience one of several 

types of competing failure modes over its life span. The general objective is to assess the 

relationship of relevant covariates to the failure rate or the corresponding survival probability of 

any of the possible failure modes, while allowing the other competing failure modes to occur. This 

objective can be achieved by merging the CIF as a non-parametric time driven technique and LAD 

as an event driven technique.  

The advantage of using the CIF curves is that the assumption of the independency of failure modes, 

is not necessary to be met. This is because the CIF of a certain failure mode provides an estimate 

for the marginal probability of that mode in the presence of the other competing modes [8]. As a 
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result, the characteristic information of each failure mode are extracted in the form of CIF curve. 

The advantage of using LAD is that it is a non statistical-based classification approach that deals 

with the covariates that are time-varying and highly correlated. The LAD diagnostic model is used 

to detect novel events so that prognostic estimates can be updated appropriately. This can be 

achieved through updating the survival curve of the monitored system. Thereafter, the updated 

curve is used for the prediction of its remaining useful life.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5-1: Different deterioration paths for each failure mode 

In the next section, the theory of the CIF is presented in details. The LAD prognostic methodology 

is presented in Section 5.5 of the paper. 

5.4 Cumulative Incidence Functions (CIFs) 

The CIF is a non-parametric model that does not need any statistical assumptions to be met, as 

introduced in [9]. It provides an estimate for the marginal probability of a certain failure mode in 

the presence of the other competing failure modes, based on the collected lifetime data. The 

cumulative incidence model is derived from the cause-specific hazard function. This technique 

uses the failure times of the different failure modes to calculate the cumulative incidence rather 

than the survival probability [8]. Moreover, the assumption of independence between the 
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competing failure modes is not required to be considered. In this section, the CIF is presented in 

details. It illustrates how the CIFs for the failure modes are estimated. It also discusses the 

limitation of the KM estimator when multiple failure modes are considered. 

5.4.1 The CIF estimation for each failure mode 

In the reliability analysis, it is known that the cumulative distribution function (CDF) is the 

probability that any failure mode occurs at or before the time 𝑡. Given the time to failure (TTF) 

which is a continuous random variable denoted by 𝑇, the CDF is given as presented in [10] by: 

                                                                        𝐹(𝑡) = 𝑃𝑟(𝑇 ≤ 𝑡) = ∫ 𝑓(𝜏)𝑑
𝑡

0

𝜏                                    (5.1) 

The probability density function 𝑓(𝜏) is defined as: 

                                                                        𝑓(𝑡) = ℎ(𝑡)𝑆(𝑡)                                                                 (5.2) 

where ℎ(𝑡) is the hazard function, and 𝑆(𝑡) = 1 − 𝐹(𝑡) is the survival probability (reliability) 

function.  

The KM estimator is one of the most common non-parametric methods to estimate the survival 

function 𝑆(𝑡). The survival probability when considering only one failure mode is estimated using 

the KM estimation as presented in [11], as follows: 

                                                                      𝑆̂(𝑡) =∏[1 −
𝑑𝑗

𝑛𝑗
]

𝑡𝑗≤𝑡

                                                             (5.3) 

where 𝑑𝑗 is the number of systems that have experienced a failure at 𝑡𝑗 and 𝑛𝑗  is the number of 

systems at risk at 𝑡𝑗. 

According to equation (5.2), the CDF is given by: 

                                                                   𝐹(𝑡) = ∫ ℎ(𝜏)𝑆(𝜏)𝑑
𝑡

0

𝜏                                                         (5.4) 

The cumulative incidence function (CIF) presented in [8], for the failure mode 𝑖(𝑖 = 1,… , 𝐶), is 

defined as follows: 

                                      𝐹𝑖(𝑡) = 𝑃𝑟(𝑇 ≤ 𝑡, 𝑖) = ∫ 𝑓𝑖(𝜏)𝑑
𝑡

0

𝜏 = ∫ ℎ𝑖(𝜏)𝑆(𝜏)𝑑
𝑡

0

𝜏                               (5.5) 

where ℎ𝑖(𝜏) is the cause-specific hazard (sub-hazard) function for the failure mode 𝑖. The CIF is 

not a proper distribution that has the properties of a distribution function, hence the term  

‘sub-distribution’ is used in [12].  

The cause-specific survival (sub-survival) for the failure mode 𝑖 is given by: 
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                                                                     𝑆𝑖(𝑡) = 𝑞𝑖 − 𝐹𝑖(𝑡)                                                                 (5.6) 

where 𝑞𝑖 = 𝑃𝑟(𝑖) = lim
𝑡→∞

𝐹𝑖(𝑡) =
𝑚𝑖

𝑀
< 1, and ∑ [𝐹𝑖(𝑡) + 𝑆𝑖(𝑡)] = ∑ 𝑞𝑖 = 1

𝐶
𝑖=1

𝐶
𝑖=1 , where 𝐶 is the 

number of failure modes. The value 𝑚𝑖 is the number of systems that failed due to the failure mode 

𝑖 and 𝑀 is the total number of systems. Accordingly, the value 𝑞𝑖 physically represents the 

proportion of systems that failed due to the failure mode 𝑖.  

In the case of discrete random variable 𝑇, the sub-hazard function for the failure mode 𝑖 at 𝑡𝑗 is 

given by ℎ𝑖(𝑡𝑗) = 𝑃𝑟(𝑇 = 𝑡𝑗 , 𝑖⃓ 𝑇 ≥ 𝑡𝑗). Since 𝑃𝑟( 𝑇 ≥ 𝑡𝑗) = 𝑃𝑟( 𝑇 > 𝑡𝑗−1) = 𝑆(𝑡𝑗−1), it 

follows that: 

                                                                    ℎ𝑖(𝑡𝑗) =
𝑓𝑖(𝑡𝑗)

𝑆(𝑡𝑗−1)
                                                                    (5.7) 

where 𝑓𝑖(𝑡𝑗) is the sub-density function for the failure mode 𝑖 at time 𝑡𝑗. Accordingly, this sub-

density function is estimated as: 

                                                                    𝑓𝑖(𝑡𝑗) = ℎ̂𝑖(𝑡𝑗)𝑆̂(𝑡𝑗−1)                                                          (5.8) 

where 𝑆̂(𝑡𝑗−1) is the probability of survival (failure-free) prior to 𝑡𝑗, given that the system has not 

experienced any failure mode up to 𝑡𝑗−1. The term ℎ̂𝑖(𝑡𝑗) is the estimated sub-hazard for the failure 

mode 𝑖 at 𝑡𝑗.  

It follows from equation (5.5) and equation (5.8) that the estimated CIF for the system that is 

experiencing the failure mode 𝑖 at the time 𝑡, is given by: 

                                                                     𝐹̂𝑖(𝑡) = ∑ ℎ̂𝑖(𝑡𝑗)𝑆̂(𝑡𝑗−1)                                              (5.9)

∀ 𝑗,𝑡𝑗≤𝑡 

 

It is noticed from equation (5.9) that the probability of failing (the incidence) due to the failure 

mode 𝑖 at time 𝑡𝑗, is simply equal to the probability of surviving at the previous time period 𝑡𝑗−1 

multiplied by ℎ̂𝑖(𝑡𝑗). Hence, it is called cumulative incidence function. Since it has a cumulative 

nature, it is a monotonically increasing function. The CIF estimates the marginal probability for 

the failure mode 𝑖 as the cumulative sum up to the time 𝑡𝑗 of these incidence values, over all failure 

times of that failure mode. In other words, the CIF is the sum of the probabilities of observing 

failure mode 𝑖 until time 𝑡𝑗, while the system is still at risk: that is to say, the system did not 

experience any failure prior to 𝑡𝑗.  
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The sub-hazard ℎ̂𝑖(𝑡𝑗) for the failure mode of type 𝑖 in equation (5.9), is estimated as given in [13] 

for the proportion of systems failing due to that failure mode, as: ℎ̂𝑖(𝑡𝑗) =
𝑑𝑖𝑗

𝑛𝑗
, where 𝑑𝑖𝑗 is the 

number of systems that have experienced this type of failure at 𝑡𝑗, and 𝑛𝑗  is the number of systems 

at risk (those that have not experienced any failure mode before 𝑡𝑗). It implies: 

                                                                       𝐹̂𝑖(𝑡) = ∑
𝑑𝑖𝑗

𝑛𝑗
𝑆̂(𝑡𝑗−1)

∀ 𝑗,𝑡𝑗≤𝑡 

                                             (5.10) 

This means that the CIF estimator for the failure mode 𝑖 depends not only on the number of systems 

that have experienced this type of failure (𝑑𝑖𝑗), but also on the number of systems that have not 

experienced any other failure mode (𝑛𝑗). Therefore, equation (5.10) represents the probability that 

a system will experience a failure mode 𝑖 by time 𝑡, in the presence of the other competing failure 

modes.  

The CIF requires that the overall hazard is the sum of the individual hazards for all failure modes 

[8]. Consequently, the overall cumulative function is equal to the sum of the CIFs for all failure 

modes, as follows: 

                                                                     𝐹̂(𝑡) =∑𝐹̂𝑖(𝑡)                                                                 (5.11)

𝐾

𝑖=1

 

5.4.2 Limitation of the KM estimator in the presence of competing failure 

modes 

The KM estimation method for analyzing the data collected from a set of systems subjected to 

multiple failure modes, is based on the analysis of each failure mode separately, while the other 

competing modes are treated as censored. The estimated KM survival curve for each failure mode 

has questionable interpretation when the other modes are treated as censored. This is because the 

complement of the KM estimate denoted by 𝐹̂(𝑡) = 1 − 𝑆̂(𝑡), at any time 𝑡, is larger than the 

estimate of each of the CIF curves. The proof is presented in [13]. This means that the estimated 

survival probability using the KM in the presence of competing failure modes is not informative.  

The analysis of this situation can be interpreted as follows: the survival probability using the KM 

estimation is mainly based on the independent censoring, which requires that those systems which 

are censored due to other failure modes, at a certain time, are as likely to have a failure later as 

those in the risk set. 
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Unlike the estimated KM survival curve, the assumption of independence between the competing 

failure modes, is not required for the estimation of the CIF. Therefore, the estimated CIF is 

informative and has clear interpretation for the incidence probability of a given failure mode in the 

presence of the other competing modes.  

5.5 Multi-Class Logical Analysis Of Data 

LAD is a supervised machine learning classification technique that relies on extracting the 

knowledge from the training dataset in the form of interpretable patterns. Those interpretable 

patterns represent the interactions between the covariates for each class of observations in the 

training dataset. The extracted patterns are then used to formulate a decision model that classifies 

the unseen data to one of the classes.  

5.5.1 Stages of the LAD approach and characteristics of the patterns 

The LAD approach is composed of three stages: data binarization, pattern generation, and theory 

formation [14]. The data binarization stage involves the transformation of each numerical 

observation vector into a vector of binary attributes. The pattern generation stage is essential in 

identifying the positive and negative patterns from the binarized dataset. It is the cornerstone in 

LAD approach. The two-class LAD which generates an entire set of patterns is discussed in details 

in [15]. In the theory formation stage of the two-class LAD, the generated patterns are used to 

create a decision model called the discriminant function that generates scores for the tested 

observations, in order to classify them into the positive and negative classes. The accuracy of the 

LAD decision model depends on the type of the generated patterns [16].  

A pattern is said to cover a certain observation if it is true for that particular observation [14]. The 

set of observations covered by the pattern 𝑝 is denoted by 𝐶𝑜𝑣(𝑝). A pattern can cover some 

observations from one class, but cannot cover any observations from the opposite class. This is 

called pure pattern [17]. This definition is relaxed to allow the pattern to cover a large proportion 

of observations in one class, and a much smaller proportion of the observations in the opposite 

class (this is called non-pure pattern) [18]. For more details about LAD, the interested readers may 

be referred to the comprehensive material that is found in [14]. 
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5.5.2 Multi-class LAD decision model 

The multi-class classification problem (polychotomizer) can be obtained by combining the 

conventional two-class classifiers in several methods [19]. A multi-class LAD method, that 

involves modifying the architecture of the two-class LAD, is proposed in [20]. In that work, a 

unified multi-class LAD classifier is obtained by combining a set two-class LAD classifiers. The 

method aims at modifying the architecture of LAD as a dichotomy to a multi-class decision model. 

The proposed method has the advantage that it generates a less complex decision model, in a better 

execution time. Given a training dataset that consists of different classes of observations, the 

knowledge is discovered in the form of sets of generated patterns that are representing those classes. 

The discriminant function used in the multi-class LAD is significantly different than that of the 

two-class LAD. Given a new testing observation that is not found in the training data, the 

discriminant function in multi-class LAD generates a score for each class and therefore the testing 

observation belongs to the class with the highest score. The score is calculated for a certain class 𝑖, 

by using all the pattern sets 𝑃𝑖 (𝑖 ∈ {1,2, . . 𝐶}). Each set 𝑃𝑖 separates class 𝑖 from all the remaining 

(𝐶 − 1) classes. The score for the testing observation 𝑂 is calculated as given in [21] as follows: 

                                                           ∆̂(𝑂) = 𝑎𝑟𝑔  𝑚𝑎𝑥
𝑖=1,…𝐶

∑ 𝑝𝑡
𝑖(𝑂)𝑊𝑡

𝑖

𝑝𝑡
𝑖  ∈𝑃𝑖

                                            (5.12) 

where 𝑝𝑡
𝑖(𝑂) = 1 if the pattern 𝑝𝑡

𝑖 covers the observation 𝑂, and zero otherwise. The values 

𝑊𝑡
𝑖  associated with each pattern 𝑝𝑡

𝑖   in the set 𝑃𝑖, act as normalized weights. The output of equation 

(5.12) is the class with the highest score. More details are found in [21] to show how to generate a 

set of multi-class patterns that can be used to create the decision model in the multi-class LAD 

approach.  

5.6 The Proposed Multiple Failure Modes Prognostic Methodology 

The proposed prognostic methodology based on LAD and CIF is presented in this section. The 

objective is to predict the RUL of a set of systems working under different operating conditions, in 

the presence of different competing failure modes. The main concept is to merge both LAD as a 

multi-class diagnostic technique, and a set of CIFs. As stated in Section 5.4, each CIF represents 

the marginal probability function for one failure mode, in the presence of the other modes as 

competing ones. The CIF curve represents an estimate that reflects the effect of the age on the 
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health state of the system. The generated patterns by using the multi-class LAD reflect the effects 

of the covariates on the health state of the monitored system, and on the interactions among the 

failure modes. 

The proposed methodology consists of two phases; training and updating. Each phase consists of 

two steps. In the training phase, the failure times for the distinct failure modes are used to estimate 

a set of CIFs, one CIF for each failure mode. The multi-class LAD is used as diagnostic technique 

to extract the hidden knowledge from the covariates of the condition monitoring data, in the form 

of the generated patterns for each failure mode. The set of generated patterns are then refined into 

a set of selected patterns, by using a pattern selection procedure. In the updating phase, the CIF 

curves for the failure modes and the generated patterns, are used to update the survival curves of a 

similar type of monitored systems, in order to obtain certain prognostic indices. After collecting 

the most recent observation from the monitored system, the covering patterns are identified and the 

discriminant function score is obtained by using the multi-class LAD diagnostic model. The 

obtained score is then used to update the survival curve of the monitored system and to predict its 

RUL. Figure 5-2 shows the phases and the corresponding steps of the methodology. In what 

follows, the details of each step, are presented. 

Step 1. Estimation of the CIF curves  

A CIF curve is estimated for the failure mode 𝑖 ∈ {1,2, . . 𝐶}, by using the historical lifetime data 

collected from the systems that failed due to that failure mode. As depicted in Figure 5-2, the 

survival function is estimated first for all the systems, by considering all the lifetime data using the 

KM estimator in equation (5.3), then a CIF curve is estimated for each failure mode by using 

equation (5.10). Each CIF curve extracts the characteristic information of the corresponding failure 

mode. So far, each of the estimated CIF curves does not reflect the effect of the operating conditions 

on the system’s health state. 

Step 2. Pattern generation and selection for each failure mode using multi-class LAD  

The multi-class LAD is used to generate sets of patterns from the historical condition monitoring 

data. These historical data contain a number of observations collected from a set of systems. Each 

system starts running from its new state (good condition) until the occurrence of complete failure. 

Each system failed due to one of many failure modes. A set of patterns 𝑃𝑖 for the failure mode  

𝑖 ∈ {1,2, . . 𝐶}, are generated from all the observations collected from the systems that failed due to 
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that failure mode. Accordingly, each patterns’ set characterizes the corresponding failure mode. 

These sets of patterns reflect the effect of changing the values of the covariates of different failure 

modes on the failure time of the monitored system.  

The generated patterns represent the interaction between the covariates of such historical data. Each 

generated pattern is allowed to cover a large proportion of observations of the corresponding class 

(observations from a given failure mode), and small proportion of observations from the other 

classes (the competing failure modes). A pattern selection procedure is carried out to select the 

significant patterns in each set and to remove the redundant ones. In this prognostic methodology, 

the pattern generation and selection procedures are carried out by using the software cbmLAD [22]. 

Step 3. Updating the survival curve of the monitored system 

In the updating phase of this methodology, the LAD diagnostic model is used to detect the patterns 

that are hidden in each new observation, so that the prognostic estimates can be updated 

appropriately. Based on a set of observations collected recently from a set of similar type of 

systems, the survival curve for each system is updated according to the patterns covering those 

observations. The covering patterns reflect the effect of the covariates and the competing failure 

modes on the system’s survival curve. If the recent observation is covered by a set of patterns that 

belong to a certain failure mode, this mode consequently affects the survival curve of the monitored 

system. Updating the system’s survival curve is simply explained in the following. 

After collecting the current observation from the monitored system, the multi-class LAD detects 

the covering patterns for that observation. The covering patterns are used to calculate the score 

using the discriminant function in equation (5.12). Based on the obtained highest score, the survival 

curve of the recent observation 𝑂 that belongs to class 𝑖 at time 𝑡𝑘, is updated using the following 

updating formula: 

                                      𝑆𝑂(𝑡𝑘)(𝑡) = {
𝑞𝑖 − 𝐹̂𝑖(𝑡)                                          ∀   𝑘 = 1                        

[𝑞𝑖 − 𝐹̂𝑖(𝑡) + 𝑆𝑓(𝑡) ]/2                  ∀   𝑘 ≥ 2                        
(5.14) 

where 𝑆𝑓(𝑡) is the former updated survival curve based on the previous observation 𝑂(𝑡𝑘−1).  

The updating formula can be simply clarified as follows: given the first observation collected from 

the system, its survival curve is updated by considering the sub-survival curve 𝑆̂𝑖(𝑡)  = 𝑞𝑖 − 𝐹̂𝑖(𝑡) 

for the failure mode 𝑖 which is identified based on the score calculated by the multi-class LAD 
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diagnostic model. The subsequent observations are then employed to update the survival curve, by 

adding the sub-survival curve of the identified failure mode to the former updated curve 𝑆𝑓(𝑡), and 

then calculate the average. Considering the former survival curve makes the prognostic model be 

able to reflect the history of the monitored system. 

Step 4. RUL calculation based on the updated curve 

In this prognostic methodology, the updated survival curve in step 3 is used to reflect the effect of 

the operating conditions and the competition between the failure modes on the RUL of the system. 

The time to failure is represented previously as a continuous random variable and denoted by 𝑇. 

The RUL of the system at the monitoring (inspection) time 𝑡𝑘 is also random variable denoted by 

𝑇 − 𝑡𝑘. The expected value of the RUL called the mean remaining useful life (MRUL), is calculated 

as presented in [23], by considering only one failure mode, as follows: 

                                𝑀𝑅𝑈𝐿(𝑡𝑘) = 𝐸(𝑇 − 𝑡𝑘|𝑇 > 𝑡𝑘) =
∫ (𝜏 − 𝑡𝑘)𝑓(𝜏)𝑑𝜏
∞

𝑡𝑘

𝑆(𝑡𝑘)
                                 (5.15) 

The MRUL can be calculated experimentally, by using the estimated KM survival function 𝑆̂(𝑡) in 

equation (5.3). Accordingly, equation (5.15) is represented in the discrete form as: 

                                           𝑀𝑅𝑈𝐿(𝑡𝑘) =
∑ 𝑡𝑟
∞
𝑡𝑟=𝑡𝑘

[𝐹̂(𝑡𝑟−1) − 𝐹̂(𝑡𝑟)]

𝑆̂(𝑡𝑘−1)
− 𝑡𝑘                                    (5.16) 

where 𝐹̂(𝑡) = 1 − 𝑆̂(𝑡).  

By considering the sub-survival of each failure mode, the remaining useful life for each sub-

distribution (or the MRUL for the cause-specific failure mode 𝑖) is calculated, by considering the 

sub-density function 𝑓𝑖(𝑡) and the sub-survival 𝑆𝑖(𝑡), as follows: 

                           𝑀𝑅𝑈𝐿𝑖(𝑡𝑘) = 𝐸(𝑇 − 𝑡𝑘, 𝑖|𝑇 > 𝑡𝑘, 𝑖) =
∫ (𝜏 − 𝑡𝑘)𝑓𝑖(𝜏)𝑑𝜏
∞

𝑡𝑘

𝑆𝑖(𝑡𝑘)
                              (5.17) 

Equation (5.17) is represented experimentally as: 

  𝑀𝑅𝑈𝐿𝑖(𝑡𝑘) =
∑ 𝑡𝑟[𝐹̂𝑖(𝑡𝑟) − 𝐹̂𝑖(𝑡𝑟−1)]
∞
𝑡𝑟=𝑡𝑘

𝑆̂𝑖(𝑡𝑘−1)
− 𝑡𝑘  

                                                             =
∑ 𝑡𝑟[𝑆̂𝑖(𝑡𝑟−1) − 𝑆̂𝑖(𝑡𝑟)]
∞
𝑡𝑟=𝑡𝑘

𝑆̂𝑖(𝑡𝑘−1)
− 𝑡𝑘                                       (5.18) 

The estimated sub-survival function 𝑆̂𝑖(𝑡) in equation (5.18) is derived from the estimated CIF for 

the failure mode 𝑖, by using equation (5.6). 
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Based on the collected updating observation and the resulting updated survival curve, the 𝑀𝑅𝑈𝐿 

of the monitored system is calculated as: 

                                     𝑀𝑅𝑈𝐿̂
𝑂(𝑡𝑘) =

∑ 𝑡𝑟[𝑠𝑂(𝑡𝑘)(𝑡𝑟−1) − 𝑠𝑂(𝑡𝑘)(𝑡𝑟)]
∞
𝑡𝑟=𝑡𝑘

s𝑂(𝑡𝑘)(𝑡𝑘−1)
− 𝑡𝑘                    (5.19) 

In the next section, a case study is employed to test the effectiveness of the proposed methodology. 
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Figure 5-2: Phases and steps of the proposed multiple failure modes prognostic methodology  
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5.7 Case Study: Rotating Machinery Application 

5.7.1 Multiple failure modes prognostics in rotating machinery 

The rotating machinery is widely used in a multitude of industrial systems, including naval and 

automotive industries, aircraft engines in aeronautics, power plants’ turbines, and train 

transmission systems [24, 25]. Components such as bearings are at the heart of rotating machinery 

and are the most likely to have failures. They are commonly used in rotating machines to support 

rotating shafts and to transmit torque; they are the major causes of the rotating machinery 

catastrophic failures that result in costly downtime. Incipient faults that occur in the bearings are 

usually caused by localized defects in the races, or the rolling element. The failure of the bearings 

can result in the deterioration of the health state of the rotating machine [26]. 

The problem of multiple failure modes prognostics in the rotating machinery can be summarized 

in the following. At the system level, different components can have different failures such as 

bearing defect, cracked or broken rotor bars, mechanical seal wear, and others. At the component 

level, there may be different types of failure such as the bearing inner race defect, outer race defect, 

a crack in the cage of rolling element.   

In fact, the rotating machinery prognostics pose important challenges in the reliability and 

maintenance fields, in particular when there are competing failure modes. It is important to develop 

a multiple fault diagnostic/prognostic scheme to identify the different faulty patterns of the rotating 

machinery and to predict the failure time as well. The objective is to decrease the downtime of the 

machines in production and to increase their reliability against possible competing failures. It is 

therefore necessary to accurately and automatically diagnose the existence of incipient faults in the 

bearings, and to predict the RUL of such significant components.  

5.7.2 Prüftechnik Canada vibration data 

One of the most common tools for fault diagnostic and prognostic in rotating machinery is the 

vibration analysis [1, 27]. The proposed LAD prognostic methodology explained in the previous 

section is tested and validated on a database of vibration signals obtained from bearing test rigs in 

Prüftechnik Canada [28]. The bearings started running from the brand new state (good condition). 

Three types of faults have been initialized in bearings by seeding three types of defects; inner race 
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defect, outer race defect, and rolling element defect. The test was carried out until the complete 

failure of each bearing. The vibration signals were acquired continuously from each bearing by the 

accelerometers at a sampling frequency of 65384 Hz, for a time record length of 62 milliseconds, 

between different inspection intervals of 40-90 minutes. Each time record of the vibration signals 

containing 4096 sampling points, taken per accelerometer snapshot. The collected vibration signals 

carry the information about the status of the bearings from the good condition state throughout their 

deterioration states until the occurrence of complete failure.  

5.7.3 Feature Extraction 

It is extremely difficult for the vibration analyst to identify the faults in a monitored bearing through 

the time domain data. This is because the vibration signals are non-stationary time function that 

changes in both amplitude and distribution, and does not give a clear information about the type of 

faults being identified [1].  

Moreover, a vibration signal generated by a certain bearing fault has relatively low amplitude, and 

it is often overwhelmed by noises with higher amplitudes and other sources of vibrations generated 

from other components in the rotating machine. Therefore, in order to exploit the information found 

in the raw signal efficiently, it is necessary to extract the faulty features that identify the different 

failure modes. Thus, the raw signals are preprocessed and some statistical metrics, which represent 

the features are calculated.  

In this paper, five statistical features are calculated from the time domain data and are considered 

as covariates. The following features are calculated for the signal 𝑥(𝑛): the kurtosis, root mean 

square (RMS), crest factor, skewness, and peak-to-peak value. These feature are listed in Table 1. 

Table 5.1: Time domain-based features 

Feature Mathematical Formula 

Kurtosis 

 
𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠(𝑥(𝑛)) =

∑ [𝑥(𝑛) − 𝜇]𝑁
𝑛=1

(𝑁 − 1)𝜎4
  

where 𝜇 and 𝜎 are the mean and standard deviation of the signal 𝑥(𝑛), respectively and 𝑁 

is the length of the time record of the signal. 

Root Mean Square 

(RMS) 

 
𝑅𝑀𝑆(𝑥(𝑛)) = √

∑ [𝑥(𝑛)]2𝑁
𝑛=1

𝑁
 

Crest Factor 

 
𝐶𝑟𝑒𝑠𝑡 𝐹𝑎𝑐𝑡𝑜𝑟(𝑥(𝑛)) =

𝑝𝑒𝑎𝑘(𝑥(𝑛))

𝑅𝑀𝑆(𝑥(𝑛))
  

Skewness 

 
𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠(𝑥(𝑛)) =

∑ [𝑥(𝑛) − 𝜇]𝑁
𝑛=1

(𝑁 − 1)𝜎3
  

Peak-to-Peak 𝑃𝑒𝑎𝑘 − 𝑃𝑒𝑎𝑘(𝑥(𝑛)) = 𝑀𝑎𝑥(𝑥(𝑛)) − 𝑀𝑖𝑛(𝑥(𝑛)) 
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It is important to reveal the temporal structure of the vibration signal; how the signal’s frequency 

contents vary with time. This can help to clarify if two or more frequency components are found 

throughout or in some intervals of the signal. Thus, it is necessary to represent the raw signals in 

the time-frequency domain, in order to handle the non-stationary nature of such signals.  

In this paper, the wavelet transform (WT) is suggested as a multiscale time-frequency analysis. It 

is used to represent the non-stationary signals through dilation and translation processes. The WT 

uses a series of oscillating functions with different frequencies as window functions to scale and 

translate the time domain signal. These functions are derived from a short wave called the mother 

wavelet function. The continuous wavelet transform (CWT) equation presented in [29], is 

expressed as: 

                                                                   𝑊𝜓(𝑎, 𝑏) = ∫ 𝑥(𝑡)𝜓∗(
𝑡 − 𝑏

𝑎
)𝑑𝑡

∞

−∞

                                    (5.20) 

where 𝑥(𝑡) the continuous time domain signal, 𝑎 is the scale parameter and 𝑏 is the translation 

parameter of the mother wavelet function 𝜓∗(𝑡) along the time axis. There are many types of 

mother wavelet functions and each one has its own applications and merits. The most common 

mother wavelets are the Morlet, Daubechies, Haar, and Mexican Hat wavelet [30]. The mother 

wavelet is given by: 

                                                                     𝜓𝑎,𝑏
∗ (𝑡) =

1

√𝑎
𝜓(
𝑡 − 𝑏

𝑎
)                                                     (5.21) 

The WT is basically expressed as the dilation and the compression of the translated wavelet. The 

main idea behind this dilation or compression is that if the wavelet is dilated it represents the low 

frequencies in the time domain signal, and if it is compressed it has a high rate of change and as a 

result it represents the high frequencies in the signal [29].  

Since the vibration signal has a discrete nature rather than continuous, therefore there is a need to 

perform the discrete wavelet transform (DWT). The DWT for the discrete time signal 𝑥(𝑛) is 

represented in the following equation [30]: 

                                                         𝐷𝑊𝑇𝜓(𝑎, 𝑏) = 2−
𝑎
2  ∑𝑥(𝑛)𝜓(2−𝑎𝑛 − 𝑏)

𝑛

                             (5.22) 

The objective of the DWT analysis is to decompose the signal into a set of frequency bands, by 

using a set of low-pass and high-pass filters, along with a decimation procedure (it is the process 
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of reducing the sampling rate of a signal) [30, 31]. As a result of that decomposition, the time 

domain signal is converted into a set of wavelet coefficients. These coefficients represent the 

approximation and details in the time domain signal [29].  

In this paper, the Wavelet Toolbox in MATLAB [31] is used to carry out the DWT decomposition 

for the vibration signals in this case study. Ten time-frequency domain scales are analysed using 

the Daubechies wavelet (db10). The input to the Wavelet toolbox is the vibration signal collected 

from the bearing, and the output is a scalogram consisting of ten scales (levels). The scalogram 

provides a clear image visualization for the energy levels in the signal. Consequently, it is easier 

to compare and identify abnormalities or anomalies in the faulty signals that are coming from 

different failure modes. Each of the scales in the scalogram represents the detailed information 

about the defect frequencies (the different abnormalities in each failure mode).  

So far, to able to automatically diagnose the existence of certain failure mode in the monitored 

bearing, suitable features can be extracted either using image-processing techniques or by 

calculating the energy values in each scale in the wavelet scalograms, by using the wavelet 

coefficients directly [29]. In this paper, the wavelet analysis is carried out in MATLAB 

programming environment to calculate the relative energy in each scale in the wavelet scalogram, 

in order to use it as a fault-feature to train the multi-class LAD classification algorithm. For each 

raw signal, a fault-feature vector is extracted to represent the percentages of energy in all levels of 

the wavelet scalogram. 

In this paper, the five time-domain features in addition to the ten wavelet scales-based features 

(WS-1 to WS-10), are respectively extracted from each collected vibration signal, to train the multi-

class LAD classifier. A sample of the processed observations in the training data for the three 

failure modes, is displayed in Table 5.2. Each observation is represented as a numerical vector that 

contains the inspection time and the covariates (the fifteen extracted features). The objective is to 

generate a set of patterns that are recognising the various failure modes of the bearings.  

 

 

 

 

http://en.wikipedia.org/wiki/Sampling_(information_theory)
http://en.wikipedia.org/wiki/Sampling_rate
http://en.wikipedia.org/wiki/Signal_(information_theory)


137 

 

Table 5.2: A sample of the processed observations collected from three different bearings having 

three different failure modes 

Failure 

mode 

Time 

(Hours) 

Covariates 

Time domain Features Time-Frequency domain (Wavelet-based) Features 

Kurtosis RMS Crest  

Factor 
Skewness Peak-Peak WS-1 WS-2 WS-3 WS-4 WS-5 WS-6 WS-7 WS-8 WS-9 WS-10 

1 57 21.298 21.197 9.578 0.969 361.208 6.217 19.524 43.186 18.242 11.524 0.794 0.254 0.192 0.058 0.003 

1 123 16.973 33.531 8.426 0.950 478.557 8.089 21.527 44.992 16.625 7.645 0.764 0.303 0.037 0.015 0.001 

1 187 18.215 40.035 8.739 0.985 595.023 9.028 24.470 44.692 15.152 5.691 0.680 0.172 0.075 0.038 0.002 

1 202 11.205 83.453 7.2587 1.032 954.606 10.168 27.646 45.457 11.926 4.045 0.527 0.125 0.059 0.041 0.0018 

2 65 40.892 9.840 10.916 1.0815 192.172 5.183 15.368 36.629 22.880 18.169 1.014 0.523 0.195 0.019 0.0052 

2 134 19.075 22.019 8.024 0.715 342.875 7.886 25.632 46.149 15.544 3.949 0.557 0.228 0.028 0.023 0.0039 

2 179 16.325 27.816 7.663 0.450 419.024 9.294 24.692 36.369 20.292 8.009 0.837 0.345 0.124 0.022 0.011 

2 216 13.683 31.951 6.949 0.304 434.443 9.086 25.241 41.871 17.971 5.019 0.598 0.189 0.017 0.0112 0.002 

2 258 11.526 40.735 6.094 0.076 490.587 9.258 25.622 43.163 12.723 8.254 0.568 0.278 0.087 0.022 0.013 

3 78 68.591 13.093 14.191 1.913 344.394 7.166 20.108 27.509 29.638 13.433 1.672 0.397 0.056 0.008 0.0009 

3 163 25.953 43.778 10.161 0.827 802.297 8.439 25.662 46.655 13.669 4.819 0.556 0.147 0.022 0.020 0.0094 

3 341 14.298 107.92 7.998 0.793 1515.969 12.332 32.007 43.582 9.177 2.448 0.361 0.051 0.027 0.012 0.0055 

3 347 18.077 101.894 8.820 0.949 1595.323 13.315 31.102 43.349 9.128 2.475 0.505 0.089 0.021 0.011 0.0032 

 

5.7.4 Feature Selection 

From the CBM fault diagnosis point of view, some features are irrelevant or non-significant [2]. If 

the whole feature set is employed by the classification technique directly, it may give a lower 

diagnosis accuracy, and accordingly affects the performance of the prognosis. Thus, to improve 

the diagnosis accuracy in the proposed prognostic methodology, a set of significant features which 

obviously discriminate between the data in the different failure modes need to be selected from the 

original feature set.  

Some of the feature selection techniques are applied according to the experience accumulated by 

different researchers [32, 33]. A feature selection technique called compensation distance 

evaluation technique (CDET) proposed in [25] is adopted in this paper due to its tractability and 

reliability. A great advantage of the CDET over the other feature selection techniques, is that it 

selects the significant features automatically without relying on human experience. Another reason 

for choosing CDET in this paper is that it does not lose the meaning of the features in the reduced 

set, and therefore it keeps the interpretability of the LAD decision model which is very important 

for the CBM decision maker. 
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It is two-stage feature weighting algorithm that generates a normalized weight (ratio) for each 

feature. The CDET algorithm takes into account the different importance degrees of all features. A 

weight for each feature is computed and assigned according to its sensitivity and importance in 

classification [25]. These weights not only highlight the importance of sensitive features but also 

reflect the interference of insensitive features.  

For the fifteen extracted features in Table 5.2, a subset of features are selected, based on the 

selection criteria given in [25]. All features that have normalized ratios exceeding a certain 

threshold value, are selected. In this paper, a threshold value of 0.2 is assigned and accordingly ten 

features are selected as shown in Figure 5-3. As we will see later, the selected features can give 

better prognostic results. 

 

Figure 5-3: Feature selection using CDET 

5.7.5 CIF Estimation for Each Failure Mode 

Based on the lifetime data collected from each failure mode, a CIF curve is estimated for each 

mode by using equation (5.10). Three CIF curves are estimated; one curve for each failure mode, 

as depicted in Figure 5-4. These curves represent the marginal probabilities that are reflecting the 

operational time on the age of the monitored bearing. However, they do not reflect the effects of 

the extracted features on the health state of the bearing. 
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Figure 5-4: CIF for each failure mode and the curve 𝐹̂(𝑡) = 1 − 𝑆̂(𝑡) 

5.7.6 Pattern Generation Using Multi-Class LAD 

The multi-class LAD is used to generate the patterns for each failure mode, by exploiting the 

extracted features in training dataset. A set of the significant patterns are then selected. The pattern 

generation procedure is carried out by using the software cbmLAD [22]. The generated patterns 

have an important advantage which is the ease of interpretation. Each pattern is meaningful and 

has a physical interpretation of the characteristics of the failure mode of monitored bearing. The 

interpretability of the patterns means that it is easy to evaluate the failure modes and directly relates 

them to the covariates.  

Based on the fifteen covariates in the training dataset, twenty-two patterns are generated. Nine 

generated patterns for the first failure mode, seven for the second, and six for the third. The 

generated patterns for each failure mode and their interpretation are listed in Table 5.3. In order to 

study the effect of feature selection on the performance of the prognostic methodology, another set 

of patterns are generated from the set of selected features, in the similar way. The number of 

generated patterns in this case is eighteen patterns.  
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Table 5.3: Interpretations of the generated patterns (1: Inner race defect, 2: Outer race defect, and 

3: Rolling element defect) 

C
la

ss
 

Pattern 

𝑝𝑡
𝑖  

Time domain Features Time-Frequency domain (Wavelet-based) Features 

Weight 

𝑊𝑡
𝑖 Kurtosis RMS 

Crest  

Factor 

Skewness Peak- 

Peak 
WS-1 WS-2 WS-3 WS-4 WS-5 WS-6 WS-7 WS-8 WS-9 WS-10 

1 𝑝1
1 < 13.247 > 5.1661      > 36.7        0.1165 

1 𝑝2
1 

> 2.718 

AND   

< 25.891 

 > 3.837 

     < 23.60 < 7.74   < 0.67   0.1098 

1 𝑝3
1 < 25.891  < 10.017 > 0.803 < 1356.46  > 20.89   < 8.69 > 0.292     0.1128 

1 𝑝4
1 < 12.756   > 0.0017   > 18.25  < 32.65 < 14.79   < 0.64   0.1143 

1 𝑝5
1 < 12.756   > 3.629     < 32.65       0.1024 

1 𝑝6
1 < 25.891  < 10.017 > 0.746 

> 361.014 

AND   

< 1356.46 

> 6.155 

 

> 36.7 < 23.60 

 

> 0.292 

    0.1128 

1 𝑝7
1 < 25.891   > 0.756 < 1356.46 

 

> 21.06 

 

 

> 3.27 

AND   

< 8.74 

     0.1098 

1 𝑝8
1 

> 2.938 

AND   

< 13.247 

   

    

< 31.83 < 14.79 

  

< 0.64 

  0.1113 

1 𝑝9
1 < 13.188   > 0.022  > 4.665          0.1098 

2 𝑝1
2     < 435.729      < 1.782     0.1603 

2 𝑝2
2     < 511.267  < 25.94     > 0.18   < 0.0234 0.1526 

2 𝑝3
2     < 472.408   < 40.57 > 19.29 > 7.45    > 0.003 < 0.1586 0.1371 

2 𝑝4
2 > 11.511    < 511.267           0.1806 

2 𝑝5
2       < 20.31   > 7.45    < 0.427  0.1072 

2 𝑝6
2    > 0.0064 < 511.267 

   

> 17.79 

    > 0.003 

AND   

< 0.295 

 0.1371 

2 𝑝7
2     < 472.408   < 40.57 > 20.33     > 0.003 < 0.1586 0.1246 

3 𝑝1
3   

> 3.174 

AND   

< 3.620 

            0.1593 

3 𝑝2
3   > 3.996       < 10.49 > 0.901     0.0938 

3 𝑝3
3  < 111.89 > 3.174 

    > 38.46 

AND   

< 43.69 

  

< 1.258 

    0.2304 

3 𝑝4
3   > 7.996  > 472.408   < 49.27        0.2475 

3 𝑝5
3   > 9.392       < 13.50      0.1806 

3 𝑝6
3    < 0.0146            0.0882 

   

5.7.7 Validation of the Proposed Methodology 

The proposed methodology is validated and its performance is compared to the performance of two 

of the most common machine learning techniques; the artificial neural networks (ANNs) and 

support vector regression (SVR). ANNs have desirable characteristics such as generalization 

ability, learning ability, and adaptability [34]. Such networks are used commonly in the CBM fault 
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prognostics to represent the nonlinear relationship between the covariates and the RUL of the 

monitored equipment [2, 3, 35].  

ANN and SVR prediction models 

In this paper, the ANN prediction model is trained using the processed data that are collected from 

the bearings. The network topology is shown in Figure 5. It consists of three layers; the input layer, 

hidden layer, and output layer. The number of input nodes is fifteen that represent the extracted 

features (the five time domain and the ten wavelet-based features). The optimal number of neurons 

in the hidden layer is not easy to determine from the first time and needs a number of 

experimentations to be tuned. In this paper, the optimal number of neurons in the hidden layer is 

set to nine. The network is trained by using the observations in the training dataset, by providing 

the actual RUL to the output neuron as a desired output, and the corresponding features to the input 

layer. The actual RUL is the difference between the failure time of the bearing and its current age. 

Two ANN models are obtained. The first model is the one trained using all the fifteen extracted 

features. The second model is trained using the selected ten features according to the CDET 

algorithm. The weights of each ANN model are adjusted by using gradient-descent method [36], 

based on the difference between the actual and estimated RUL of the bearings. The trained models 

extract the relationship between the RUL and the extracted features.  

The second prediction model which is compared to the proposed methodology is the SVR. It is 

based on the concept of support vector machine (SVM), which was presented by Vapnik [37]. The 

SVR prediction model has two main important advantages over the ANN prediction model. First, 

it has better generalization ability due to choosing the maximal margin hyperplane, which results 

in minimizing the risk of overfitting [36]. Second, it can provide more complex nonlinear functions 

by applying the kernel trick [37]. A kernel mapping is applied to transform the original covariates 

in the dataset into higher dimensional space, and accordingly the SVR becomes a nonlinear 

function in the original covariates.  

Several kernels can be applied depending on the application at hand. Polynomial kernel, radial 

basis function (RBF) kernel, and sigmoid kernel are commonly used. In this paper, the RBF kernel 

is chosen, and it gives the best results among the other kernels. Similar to the training process of 

the ANN, two different SVR models are trained. One exploits all the extracted feature and the other 

uses the selected features only. The ANN and SVR prediction models are implemented in the 

machine learning software Weka [36, 38].  
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Figure 5-5: The ANN prediction model 

LAD-Kaplan Meier (LAD-KM) Prediction Model 

The proposed LAD methodology is compared with the prognostic methodology presented in [4]. 

That methodology uses the two-class LAD and the KM estimator to estimate the RUL. The two-

class LAD is used in that methodology to reflect the effects of the covariates on the system; health 

state, and KM is used to estimate the baseline curve. The methodology does not make any 

assumption about the distribution of the historical lifetime data. This makes it advantageous to be 

applied in a multitude of CBM prognostic problems. However, it considers the lifetime data that 

are drawn from a single failure mode. Our hypothesis states that the proposed multiple LAD 

methodology can predict the RUL more accurately than that methodology, since we consider the 

competition between the different failure modes. 

Testing vibration data collected from three different failure modes 

The validation is carried out by collecting testing vibration data from another set of bearings that 

are not found in the training dataset. The testing data are collected from three bearings running to 

failure with different types of defects; inner race, outer race defect, and rolling element defect. The 

data are processed and the features are extracted. Given an observation collected from each bearing 

in the testing dataset, each of the trained models (the proposed LAD, the ANN, the SVR model, 

and the LAD-KM) is used to predict the RUL instantaneously. The average absolute prediction 
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error is used in this paper to assess the prediction performance of each model. It measures the 

discrepancy between the actual 𝑅𝑈𝐿  and the estimated 𝑀𝑅𝑈𝐿 of each bearing, it is given as: 

                                                             𝐸̅ =
1

𝑁
∑|𝑅𝑈𝐿(𝑡𝑘) −𝑀𝑅𝑈𝐿̂ (𝑡𝑘)|

𝑁

𝑘=1

                                       (5.23) 

where 𝑁 is the actual number of testing observations collected from the monitored bearing.   

The results of the calculated average absolute prediction error for each testing bearing, by using 

each of the trained models, are listed in Table 5.4 and Table 5.5. Table 5.4 presents the results when 

all the extracted features are inputted to the prediction models, while Table 5.5 presents the case 

when the set of selected features are used. 

From the two tables, the results of the prediction error in the three bearings show that the proposed 

LAD prognostic methodology is promising and more accurate than the other models, for predicting 

the RUL in the presence of multiple failure modes. The percentage of the average absolute error to 

the TTF for each bearing is also presented in the two tables. These percentages indicate that the 

prediction performance of the proposed LAD methodology does not have a significant change 

when the life spans of the bearing changes.  

It is noticed from Table 5.5 that the feature selection procedure affects the performance of all the 

prediction models. The application of the selected features gives a better performance for all the 

models, in particular the ANN model and the SVR model. However, the change in the performance 

of the proposed LAD methodology is not that significant. This may be attributed to the fact that 

LAD can deal with a small or large number of features; either correlated or uncorrelated, which is 

one of the most important advantages of such technique. 

Table 5.4: Average prediction error when the prognostic models consider all features in the 

training dataset 

Test  
Bearing 
number 

Failure  
Mode 

Time To 
Failure  
(TTF) 

(in hours) 

Average prediction  
error 𝐸̅ 

Percentage of  
𝐸̅ to TTF 

Proposed 
LAD 

ANN SVR LAD-KM 
Proposed 

LAD 
ANN SVR LAD-KM 

1 Inner race defect 214 17.46 35.18 26.13  48.31  8.16 % 16.43 % 12.21 % 22.57 % 

2 Outer race defect 232 26.60 55.23 51.49  97.71  11.46 % 23.81 % 22.19 % 42.12 % 

3 Rolling element 
defect 

328 31.55 47.83 44.32 86.73  9.62 % 14.58 % 13.51 % 26.44 % 
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Table 5.5: Average prediction error when the prognostic models consider the selected features 

only 

Test  
Bearing 
number 

Failure  
Mode 

Time To 
Failure  
(TTF) 

(in hours) 

Average prediction  
error 𝐸̅ 

Percentage of  
𝐸̅ to TTF 

Proposed 
LAD 

ANN SVR LAD-KM 
Proposed 

LAD 
ANN SVR LAD-KM 

1 Inner race defect 214 15.28 25.73 19.43 44.72 7.14 % 10.02 % 9.08 % 20.89 % 

2 Outer race defect 232 22.84 47.42 43.97 94.82 9.84 % 20.44 % 18.95 % 40.87 % 

3 Rolling element 
defect 

328 27.55 38.79 38.42 82.30 8.39 % 11.83 % 11.71 % 25.09 % 

 

In addition to the average prediction error, the penalty function defined in [3] is used here as a 

validation criterion for the proposed prognostic methodology. The prediction accuracy function 

𝐿𝐴𝑐𝑐 measures the difference between the actual 𝑅𝑈𝐿 and the estimated 𝑅𝑈𝐿 at the inspection time 

𝑡𝑘 in each bearing. It is defined as follows: 

              𝐿𝐴𝑐𝑐(𝑡𝑘) = {

𝛼[𝑅𝑈𝐿(𝑡𝑘) − 𝑀𝑅𝑈𝐿̂ (𝑡𝑘)]             if      𝑀𝑅𝑈𝐿̂ (𝑡𝑘) < 𝑅𝑈𝐿(𝑡𝑘)    

0                                                          if      𝑀𝑅𝑈𝐿̂ (𝑡𝑘) = 𝑅𝑈𝐿(𝑡𝑘)    

𝛽[𝑀𝑅𝑈𝐿̂ (𝑡𝑘) − 𝑅𝑈𝐿(𝑡𝑘)]               if      𝑅𝑈𝐿(𝑡𝑘) < 𝑀𝑅𝑈𝐿̂ (𝑡𝑘)      

      (5.24) 

where 𝛼 and 𝛽 are underestimation and overestimation parameters, respectively. As shown in 

Figure 5-6, the overestimation is penalized more than the underestimation in RUL prediction. 

Accordingly, the value of 𝛼 is set to be less than the value of 𝛽. This is more feasible since the 

overestimation has more severe consequences in the practical situations.  

Under-estimationOver-estimation

RUL(tk) - MRUL(tk)MRUL(tk) - RUL(tk) 0

LAcc 

α [RUL(tk) - MRUL(tk)]β [MRUL(tk) - RUL(tk)]

 
Figure 5-6: The prediction accuracy function 
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For the bearing 𝑔, the average penalty incurred is defined as: 

                                                     𝐿𝐴𝑃(bearing𝑔) =
1

𝑁
∑[𝐿𝐴𝑐𝑐(𝑡𝑘 )]

𝑁

𝑘=1

                                               (5.25) 

The total penalty incurred for each prediction model is defined as: 

                                                             𝐿(model) =
1

𝐺
∑[𝐿𝐴𝑃(bearing𝑔 )]

𝐺

𝑔=1

                                    (5.26) 

where 𝐺 is the number of bearings in the testing dataset. In this paper, the values of 𝛼, 𝛽 are 

arbitrarily assigned with 0.1 and 0.3, respectively.  

The results of the incurred penalty for each bearing, when all the extracted features are exploited 

to train all the prediction models, are listed in Table 5.6. Table 5.7 lists the results for the incurred 

penalty when the set of selected features are used. The obtained results shown in Tables 5.6 and 

5.7 indicate that the prediction error of the proposed LAD methodology is penalized less than those 

of the other prediction models. These results show that the proposed prognostic methodology is 

promising and can predict the RUL accurately, in the presence of multiple failure modes. The 

results also show that the proposed methodology has a stable performance, since there is no big 

change in the incurred penalty due to the variation of the life spans of the bearings. 

Table 5.6: The total incurred prediction penalty for each prognostic model when all extracted 

features are considered 

 
Prediction Model  

 

Average penalty 
incurred  

for the first bearing 
𝐿𝐴𝑃(𝐵𝑒𝑎𝑟𝑖𝑛𝑔 1) 

Average penalty 
incurred for the 
second bearing 
𝐿𝐴𝑃(𝐵𝑒𝑎𝑟𝑖𝑛𝑔 2) 

Average penalty 
incurred  

for the third bearing 
𝐿𝐴𝑃(𝐵𝑒𝑎𝑟𝑖𝑛𝑔 3) 

Total penalty 
incurred for each 

model 
𝐿(𝑚𝑜𝑑𝑒𝑙) 

Proposed LAD 2.438 3.395 4.733 3.5220 

ANN 5.095 7.934 6.315 6.4480 

SVR 3.736 7.637 5.867 5.7467 

KM-LAD 6.360 14.554 13.009 11.3077 

 

Table 5.7: The total incurred prediction penalty for each prognostic model when the selected 

features using CDET are considered 

 
Prediction Model  

 

Average penalty 
incurred  

for the first bearing 
𝐿𝐴𝑃(𝐵𝑒𝑎𝑟𝑖𝑛𝑔 1) 

Average penalty 
incurred for the 
second bearing 
𝐿𝐴𝑃(𝐵𝑒𝑎𝑟𝑖𝑛𝑔 2) 

Average penalty 
incurred  

for the third bearing 
𝐿𝐴𝑃(𝐵𝑒𝑎𝑟𝑖𝑛𝑔 3) 

Total penalty 
incurred for each 

model 
𝐿(𝑚𝑜𝑑𝑒𝑙) 

Proposed LAD     2.133     3.139 4.1325 3.1348 

ANN     3.645     6.771     5.2055 5.2072 

SVR     2.905     6.416     5.1730 4.8313 

KM-LAD     5.866    14.093    12.3450 10.7680 
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5.8 Conclusions 

This paper presents a new multiple failure modes prognostic methodology in CBM. The presented 

methodology combines the multi-class LAD and a set of non-parametric cumulative incidence 

functions (CIFs). It can be applied to the field of CBM prognostics where a set of systems are 

working under different operating conditions and are subjected to a multitude of competing failure 

modes. The multi-class LAD is used to extract the hidden knowledge from the condition 

monitoring data of different failure modes, by detecting the high degree of interactions among the 

covariates, without making any priori statistical assumptions.  

The proposed methodology consists of two phases; training and updating. In the training phase the 

knowledge is extracted from the condition monitoring data in the form of relevant patterns and a 

set of CIF curves that reflect the temporal characteristic information, in the presence of the other 

competing failure modes. In the updating phase, after collecting a new observation, the diagnostic 

information obtained by using the multi-class LAD are used to update survival curve of the 

monitored system and to estimate its RUL as well.  

The RUL prediction results show that the prognostic methodology is able to reliably recognize the 

different failure modes of rotating machinery in the industry. A comparative study is performed 

between the proposed prognostic methodology and two common machine learning techniques, in 

order to measure its performance. It is also compared to a non-parametric prognostic methodology 

in the field of CBM, in order to study the effect of the competing failure modes. The results of 

comparing the performance of the proposed methodology to all prognostic models show that it is 

promising and can accurately predict the RUL of the machine in the presence of the multiple failure 

modes. The results also support our hypothesis that the prediction error of the proposed 

methodology is penalized less than those of the other models.  

The variation in the number of features used for the classification give different prognostic 

performance. An efficient feature selection algorithm called compact distance evaluation algorithm 

(CDET) is used to avoid the curse of dimensionality by discarding irrelevant or non-significant 

features. This algorithm is compatible with the LAD approach. The compatibility means keeping 

the interpretability of the LAD which is very important for the maintenance decision maker. In this 

paper, we studied the effect of linking DET to multi-class LAD on the accuracy. The accuracy of 

multi-class LAD prognostic algorithm is improved by using the CDET as a feature reduction 
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algorithm. However, this also support our hypothesis that the proposed methodology has stable 

performance over the other prediction models when the number of covariates is changing.  

The expected deliverables of this prognostic methodology lead to the creation of an automated 

knowledge-base of the most frequently occurring faults in the bearings and their human 

interpretations. The automated knowledge-base can be employed to detect and predict the hidden 

phenomena for a given bearing condition. It is concluded from the obtained results that the 

proposed methodology is promising and tractable prognostic tool in the CBM. It allows the 

maintenance engineers to make reliable decisions without the need for an expert to examine and 

analyze the data. It also allows the system operator to easily predict the remaining life which is 

difficult to estimate by the conventional multiple failure modes prognostic methods, in the presence 

of many competing failure modes.  
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CHAPTER 6 GENERAL DISCUSSION 

This chapter discusses the contributions of the articles presented in Chapters 3, 4, and 5 towards 

accomplishing the specific objectives stated in the introduction of this thesis. The first specific 

objective is to implement the two-class LAD in CBM prognostic applications. It was achieved by 

developing two distinct prognostic methodologies; the first methodology is presented in Chapter 3 

and the second one is presented in Chapter 4.  

The first prognostic methodology discussed in Chapter 3 involves the exploitation of a historical 

CBM dataset (lifetime data and condition monitoring data) collected from systems working under 

different operating conditions. The condition monitoring data represent the operating conditions 

and condition indicators. The operating conditions are controllable, they are set to certain values, 

while the condition indicators are gathered as sensory information to reflect those operating 

conditions. The dataset consists of a set of observations collected from a set of systems, at/or 

immediately before the time to failure. Each system has only one observation consisting of the time 

to failure and a number of covariates that represent the operating conditions and condition 

indicators. The system that fails before a certain time 𝑡𝑆  (specified by the maintenance personnel) 

is called Short-Life (SL) system and the one that fails after that time is called Long- Life (LL) 

system. The time 𝑡𝑆 is set in this doctoral research to be the mean time to failure (MTTF) which is 

a feasible and practical choice and can be obtained easily by the maintenance personnel.  

The two-class LAD is merged with KM estimatior as a non-parametric reliability estimation 

method that does not require any assuption about the distribution of the lifetime data. More 

specifically, LAD is used as an event-driven technique to deal with the covariates while KM is 

used as time-driven technique to deal with the lifetime data. Based on the lifetime data, KM is used 

to estimate the baseline survival curve. However, the estimated baseline survival curve does not 

reflect the effect of covariates on the monitored system. It reflects only the effect of the age on its 

health state. The two-class LAD is used as a machine learning classification technique to discover 

the hidden knowledge from the covariates in the form of generated patterns. An important 

advantage of the generated patterns is that they represent the high-degree of interactions among 

those correlated covariates.  

A survival curve for each generated pattern is estimated by considering only the systems covered 

by that pattern. Consequently, the knowledge is extracted from the lifetime and condition 
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monitoring data, in the form of non-parametric survival curves (the baseline survival curve and 

patterns’ survival curves). The patterns’ survival curves reflect the effect of covariates on the 

reliability of the monitored system.  

Given an observation collected recently from a monitored system, the LAD decision rule along 

with these survival curves, are used to estimate a certain prognostic index; the RUL. The baseline 

curve of the monitored system is updated based on the covering patterns for that obervation. The 

updating step is carried out using one of two different models (LAD Model 1 and LAD Model 2). 

In both models, the survival curve of the monitored system is updated initially, by averaging the 

survival curves of the patterns that cover the first observation and the baseline curve. Then, the 

subsequent observations are used to update the survival curve of the system, by averaging the 

survival curves of the patterns that cover each observation and the former updated survival curve. 

The updated curve is then used to estimate the RUL of the monitored system.  

In LAD Model 1, the survival curve for each generated pattern has the same weight as the baseline 

survival curve. Therefore, two situations can happen most probably. In the first situation, the 

resulting updated survival curve can have a pessimistic explanatory style or outlook, if the 

observation is covered by a large number of SL patterns. Pessimistic outlook means that the updated 

survival curve can be decreased significantly than it should be, due to the coverage of the SL 

patterns. Having a pessimistic outlook can be interpreted physically as that the monitored system 

attributes bad symptoms that lead to a catastrophic failure. This can result in an underestimated 

RUL for the monitored system. In the second situation, the updated survival curve can have an 

optimistic outlook if the observation is covered by a large number of LL patterns. The resulting 

updated curve interprets this situation as being best (optimized). In this case, the updated survival 

curve can be increased more than it should be. The optimistic outlook means that the system 

attributes good symptoms, which is interpreted as surviving more. This can lead to an 

overestimation of the system’s RUL. 

The extent in which the above two situations are evaluated as something bad or something good in 

the monitored system may not be fully comprehended in an optimum way. As a consequence of 

the two situations, the survival information of the monitored system will not be explored properly.  

In LAD Model 2, the baseline survival curve has a greater contribution than the survival curves of 

the patterns. In other words, the contribution of each pattern’s survival curve in the updating model 

http://en.wikipedia.org/wiki/Optimization
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is less than that of the baseline curve. This can help to decrease the amount of pessimism or 

optimism in the updated survival curve.  

The amount of decrease or increase in the updated survival curve can be illustrated in the following.  

For LAD Model 1, at the time which the first observation is collected from the monitored system, 

the averaging formula is given as: 

𝑆𝑀𝑜𝑑𝑒𝑙 1(𝑡) =  
[∑ 𝑆𝑝𝑗(𝑡) + 𝑆𝑏(𝑡) ] 

𝑛
𝑗=1

(𝑛 + 1)
=  

𝑆𝑝1(𝑡)

(𝑛 + 1)
+
𝑆𝑝2(𝑡)

(𝑛 + 1)
+ ⋯+

𝑆𝑝𝑛(𝑡)

(𝑛 + 1)
+

𝑆𝑏(𝑡)

(𝑛 + 1)
        (6.1) 

For LAD Model 2, the averaging formula is given as: 

𝑆𝑀𝑜𝑑𝑒𝑙 2(𝑡) =  

[∑ 𝑆𝑝𝑗(𝑡) ] 
𝑛
𝑗=1

𝑛 + 𝑆𝑏(𝑡)

2
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𝑆𝑝𝑛(𝑡)
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+
𝑆𝑏(𝑡)

2
                           (6.2) 

Mathematically, we can prove that LAD Model 1 gives more pessimistic (optimistic) survival curve 

than LAD Model 2, if the collected observation is covered by only SL (LL) patterns. Therefore, we 

need to prove the following: 

1-   𝑆𝑀𝑜𝑑𝑒𝑙 2(𝑡) >  𝑆𝑀𝑜𝑑𝑒𝑙 1(𝑡) if 𝑆𝑝𝑗(𝑡) < 𝑆𝑏(𝑡) for all 𝑗 = 1,…𝑛 

2-   𝑆𝑀𝑜𝑑𝑒𝑙 2(𝑡) <  𝑆𝑀𝑜𝑑𝑒𝑙 1(𝑡) if 𝑆𝑝𝑗(𝑡) > 𝑆𝑏(𝑡) for all 𝑗 = 1,…𝑛 

This can be proved if we subtract equation (6.1) from equation (6.2). This yields, 

𝑆𝑀𝑜𝑑𝑒𝑙 2(𝑡) −   𝑆𝑀𝑜𝑑𝑒𝑙 1(𝑡) = [ 
1
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−

1

𝑛+1
] 𝑆𝑝1(𝑡) + ⋯ [ 

1

2𝑛
−

1
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                                                     = [ 
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] [ 𝑆𝑝1(𝑡) + 𝑆𝑝2(𝑡) + ⋯𝑆𝑝𝑛(𝑡)] + [ 

𝑛 − 1

2(𝑛 + 1)
] 𝑆𝑏(𝑡)        (6.3) 

We notice from equation (6.3) that the term [ 
𝑛−1

2(𝑛+1)
] which is multiplied by 𝑆𝑏(𝑡) is equal to – 𝑛 

times the term [ 
1−𝑛

2𝑛(𝑛+1)
] which is multiplied by the sum of all survival functions of the covering 

patterns. It means that equation (6.3) can have one of possible three values, given as: 

[ 
1 − 𝑛

2𝑛(𝑛 + 1)
] [ 𝑆𝑝1(𝑡) + 𝑆𝑝2(𝑡) + ⋯𝑆𝑝𝑛(𝑡)] + [ 

𝑛 − 1

2(𝑛 + 1)
] 𝑆𝑏(𝑡) = {

= 0      if   𝑛 = 1                                 
> 0     if   𝑆𝑝𝑗(𝑡) < 𝑆𝑏(𝑡)        ∀  𝑗 

< 0     if   𝑆𝑝𝑗(𝑡) > 𝑆𝑏(𝑡)        ∀  𝑗 
 

For equation (6.3), having a value of zero means that the two models are identical. This is the case 

when the collected observation is covered by only one pattern. Having a value that is greater (less) 

than zero means that LAD Model 1 is more pessimistic (optimistic) than LAD Model 2. It means 
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that LAD Model 2 is more informative and have more interpretation than LAD Model 1. However, 

we can only prove that when the collected observation is covered by only SL (or LL) patterns.  

This proof will not be valid if the observation is covered by a mixture of SL and LL patterns. 

Therefore, it is necessary to adapt the updating model by assigning a weight for each of the patterns’ 

survival curves. This may be helpful to decrease such kind of  pessimistic (or optimistic) behaviour. 

Based on the two updating models, the proposed LAD methodology was compared to the PHM 

prediction model through Friedman test. The obtained results from this test conclude that the LAD 

prognostic methodology gives more accurrate prediction for the RUL than the PHM prediction 

model. Moreover, the results conclude that there is a significant difference between the 

performance of LAD methodology and that of the PHM, in particular when LAD Model 2 is used. 

Chapter 4 presents an enhanced prognostic methodology that proposes three modifications to the 

the prognostic methodology presented in Chapter 3. The modifications are summarized in the 

following:  

1- This enhanced methodology exploits all the CBM data (both normal and failure observations) 

collected from the systems during their lifespans. This means that all the bulk of information 

embedded in each system’s life are not ignored. 

2- A pattern selection procedure is used in order to select the most significant patterns form all the 

generated patterns. This is because the number of generated pattern from the lifespan data is 

large and some of them are redundant and cover small number of obervations. 

3- A weight that reflects the coverage of each pattern, thus its importance, is assigned to its survival 

curve. Accordingly, a new updating model (LAD Model 3) that considers the weights of the 

patterns, is proposed. Our hypothesis states that the new proposed model can decrease the 

amount of pessimism or optimism in the updating curve, significantly.  

In Chapter 4, a comparison was conducted between the two updating models (LAD Model 1 and 

LAD Model 2), and the proposed model (LAD Model 3). It is concluded from the computational 

results that there is a significant difference between the performance of the two models  

(LAD Model 2 and LAD Model 3) and that of LAD Model 1. This difference is in favor of the 

formers. From the obtained results, it is also noticed that the pattern selection procedure has an 

effect on the performance of the enhanced LAD prognostic methodology, because it removes the 

redundant patterns which have small weights. The comparisons between the three updating models, 
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using Friedman test, show that the proposed methodology yields an improved accuracy for the 

RUL estimation, when it considers the selected patterns and their weights. To illustrate that the 

proposed methodology in Chapter 4 exploits all the CBM data, it was compared to two of the most 

common machine learning regression techniques; the ANN and SVR. The results show that there 

are significant differences between the performance of LAD Model 2 and LAD Model 3, and those 

of ANN and SVR. It is also concluded from the comparisons that LAD Model 3 and LAD Model 2 

are the best, SVR and LAD Model 1 come in second, and ANN Model is the worst. The results 

support our hypothesis which states that the proposed methodology exploits effectively all the 

CBM data, and gives an accurate prediction for the RUL, in particular when LAD Model 3 is used 

in the updating phase. 

The second objective stated in the introduction of this thesis is accomplished through the 

application of multi-class LAD to construct the third prognostic methodology, which is presented 

in Chapter 5. The methodology considers the failure of the complex systems that are subjected to 

interactions and competitions between different failure modes. Two limitations of the current 

multiple failure modes prognostic models were addressed in the chapter. They were stated in the 

following. First, many of those models are parametric, they assign a certain failure distribution 

function for the lifetime data of each failure mode. This needs a lot of experience and knowledge 

about the application at hand. Second, Such models assume that the failure distribution function 

for each failure mode is estimated by considering the other competing modes as censored 

categories. The limitations were addressed in that prognostic methodology, by estimating a non-

parametric cumulative incidence function for each failure mode, based on its historical lifetime 

data. Each estimated function takes into account the competition between the different failure 

modes. The multi-class LAD approach is used on the other hand to generate a set of patterns from 

the historical condition monitoring data that reflect the interactions between the covariates in those 

failure modes. Accordingly, the generated patterns represent the interactions between the 

covariates of such historical data, and they differentiate between the observations in each failure 

mode. Each generated pattern is allowed to cover a large proportion of observations in the 

corresponding class (observations in a given failure mode), and small proportion from the other 

classes. The knowledge is extracted in the form of multi-class LAD decision rule (scoring function) 

and a set of CIF curves. Given a new observation collected from a monitored system, its survival 

curve is updated based on the score obtained by that decision rule, then its RUL is caculated. 
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The application discussed in Chapter 5 involves the RUL prediction of the bearings in rotating 

machinery, by using vibration data collected from a real application in the industry. The data 

contain a number of time waveform signals collected from a set of bearings subjected to one of 

many failure modes. Each bearing starts running from its new state until the occurrence of complete 

failure. The signals are processed and a set of features are extracted. A set of significant features 

are selected from all the extracted ones. The patterns are generated based on the given features to 

provide physical interpretations for the failure modes, thus not only help as diagnostic information 

but also aid in updating the prognostic measures to avoid the occurrence of bearing’s failure. The 

proposed methodology in Chapter 5 was validated based on two experiments. The first experiment 

involves all the extracted features, while the second involves the set of selected features. In those 

experiments, the proposed LAD methodology performed well against the ANN and SVR and gave 

a stable performance. The results show that it is promising and can accurately predict the RUL of 

a monitored system in the presence of multiple failure modes.  

The developed prognostic methodologies in this doctoral research are validated and justified by the 

following: 

1- The resulting performance in terms of the difference between the estimated and actual RUL 

of the monitored systems.  

2- The advantage of LAD which possesses some important merits over the other machine 

learning techniques and its beneficial role that supports the CBM decision makers with an 

adequate and updated prognostic knowledge. Merging LAD to non-parametric estimation 

methods can deal properly with the prognostic problems mentioned in the introduction of 

this thesis. 

3- The implementation of the prognostic methodologies in different practical situations, in 

terms of the type of analysis of failure modes being addressed, the nature of the CBM data 

(failure data or lifespan data), and the independency of the application at hand. The work 

presented in this thesis can be employed to reduce industry’s dependence on experts.  
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CONCLUSION AND FUTURE WORK 

Major advances have been achieved in machine diagnostics which is a subject of considerable 

attention in the condition-based maintenance (CBM) domain. However, the CBM prognostics has 

not enjoyed the same attention. A particular prognostic task is the prediction of system’s remaining 

useful life (RUL) that attracts a significant number of researchers, as the monitored systems 

become complex and critical. The RUL is defined as the time left before the occurrence of complete 

failure in the system. The need for accurate prognostic techniques has become urgent to maximize 

the reliability (survival probability) of such critical systems, hence survive for a long period of 

time. 

The estimated survival function using either parametric or non-parametric methods, is used to 

predict the failure time of the monitored system, which in turn allows the prediction of its RUL. 

This kind of prediction is called reliability-based prognosis. However, the prediction of the RUL 

may not be accurrate if the operating conditions of the monitored system are not involved. The use 

of condition monitoring data has a significant effect on the performance of the RUL prediction. 

Therefore, a particular challenge in CBM prognostic is to estimate the RUL of a monitored system 

working under varying operating conditions. This is because the relationship between condition 

measurements and the RUL in many situations is complicated and not fully understood. 

Many statistical prognostic methods are applied in CBM to estimate the reliability function of the 

monitored systems that are working under different operating conditions. Proportional Hazards 

Model (PHM) as an example is one of the common statistical CBM prognostic methods. One 

limitation for such statistical methods is that they assume a certain probability distribution for the 

lifetime data, in order to estimate the survival function.  

In this doctoral research, this limitation was addressed by using a non-parametric method called 

Kaplan-Meier (KM) to estimate the survival function. Another limitation of those statistical 

methods is that they could not deal with the covariates (the operating conditions and condition 

indicators) that are highly correlated or time-varying. Other prognostic methods are mainly 

dependent on accumulating knowledge or experience about the targeted application. 

The subject of this doctoral research to apply a relatively new knowledge discovery approach called 

Logical Analysis of Data (LAD) in the field of CBM prognostics. LAD is a pattern-based machine 

learning technique that originated from two disparate fields; Boolean functions and combinatorial 
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optimization. The objective is use LAD to exploit the CBM databases in order to discover the 

hidden knowledge. The data are collected from a set of historical systems, containing condition 

indicators, are exploited to generate patterns that relate those indicators to the RUL of the 

monitored systems.  

LAD as a diagnostic technique has two advantages over many machine learning techniques. LAD 

is not based on any statistical analysis. Therefore, it is capable of dealing with covariates that are 

highly correlated or time-varying, without the need to satisfy any statistical assumptions. One of 

the most important advantages of the LAD approach when compared to the other machine learning 

techniques in CBM is its transparency (interpretability) and knowledge preservation. This allows 

interpreting the discovered knowledge in the CBM databases (in the form of patterns) to a 

beneficial physical meaning. The obtained patterns are powerful tools for constructing a decision 

model that is useful for predicting newly unseen data. The discovered knowledge can be preserved 

for the future use by the maintenance personnel.  

The original contribution of this thesis is the introduction of innovative prognostic methodologies 

based on LAD, to the domain of CBM. In the first one, the KM and LAD are merged together to 

build a novel prognostic methodology. Given a set of observations collected from historical 

systems, the knowledge is extracted from the lifetime and the condition monitoring data, in the 

form of non-parametric survival curves. Based on the diagnostic information obtained from the 

LAD decision model, these curves (which reflect the effect of operating conditions) were used to 

estimate certain prognostic indices such as the RUL of the monitored system. The first 

methodology was compared to the PHM prediction model. The results showed that the LAD 

methodology provides a more accurate RUL prediction than the compared model. 

The second methodology involved three modifications to the first methodology, which resulted in 

an improved performance and achieved higher accuracy. In addition, it achieved the best overall 

accuracy when compared to other popular machine learning algorithms.  

The third methodology in this doctoral research addressed another challenge which is the RUL 

prediction in the presence of multiple competing failure modes. The multi-class LAD is merged 

with a set of non-parametric functions called cumulative incidence functions (CIFs), to construct a 

prognostic methodology for the systems that fail due to multiple failure modes. A well known 

application was employed from the field of rotating machinery, to illustrate the effectiveness of the 
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methodology. In this application, the vibration data are collected from a set of bearings. The 

obtained patterns have obvious physical meaning and the failure modes are linked back to the 

measured symptoms of the bearing. A comparison was conducted to validate the methodology. It 

is concluded from the obtained results that it outperforms the compared techniques. 

It is concluded that the three methodologies devised in this thesis were demonstrated higher 

performance than the other compared methods. As a final conclusion from obtained results in this 

doctoral research, LAD is a promising knowledge discovery approach which can be easily adapted 

to a multitude of CBM prognostic applications. 

In this doctoral research, we have identified a limitation of the proposed methodologies. All of 

these methodologies are based on LAD which is a combinatorial optimization-based approach. 

LAD uses Mixed Integer and Linear Programming (MILP) formulation to generate the patterns 

from the training dataset. The MILP formulation is solved iteratively until all the observations in 

the training dataset are covered by the generated patterns. This makes the pattern generation 

procedure computationally demanding. This process is time consuming in case of datasets with 

large number of observations. As such, we are planning to focus on the development of new pattern 

generation procedures that would help applying LAD as a CBM decision model in online 

applications. 

We also identified another limitation on the applicability of LAD as unsupervised learning 

approach. The current LAD approach depends on the existence of labeled data, in order to train the 

decision model. Our future plan is to apply LAD as unsupervised learning approach, either by 

modifying its structure or by linking it a suitable and compatible clustering technique. This could 

be more feasible and may help to separate the data automatically without setting any parameters. 

As a future work, we are planing to create an automated knowledgebase for the purpose of building 

a tele-maintenance system. Building this knowledgebase takes months or even years when relying 

on the expertise of the maintenance engineers. The developed prognostic methodologies in this 

doctoral research will be utilized in addition to the diagnostic capability of LAD, as the 

cornerstones of this automated knowledgebase. We already started the work in this direction in our 

lab at École Polytechnique de Montréal, by building a prototype system to collect the vibration 

data from rotating machines. The objective is the creation of an automated and updated knowledge 

for the most frequently occurring faults in rotor bearings and their human interpretations.  
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The automated diagnostic/prognostic knowledgebase will be exploited to build an online  

tele-maintenance system, in which the maintenance personnel can detect the faults and predict the 

RUL remotely, without the need to visit the system continuously. This can be helpful to reduce the 

maintenance cost significantly since the maintenance personnel acts only when a necessary action 

should be taken.  
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APPENDIX A – DISTANCE EVALUATION TECHNIQUE 

Figure A-1 shows how the observations (data points) from two classes; Class 1 and Class 2, are 

represented in the feature space [20]. The feature 𝑍2 in the right of the figure is more efficient to 

separate the observations of the two classes than the feature 𝑍1 in the left. In the left of the figure, 

the two probability distributions overlap, because of their relatively larger standard deviation 

values (𝜎1 and 𝜎2) and smaller distance between the mean values (𝜇1 and 𝜇2), compared with the 

feature in the right of the figure. Consequently, the feature in the right has a higher discriminative 

power than the other one. 

 

Figure A-1: Representation of two distributions using different feature spaces 

The distance evaluation technique (DET) is used in this thesis as an efficient feature selection 

algorithm. The idea is to evaluate the discriminative power of each individual feature within a set 

of classes. Features that have low discriminative power are excluded from the set of the extracted 

features, because they may contain nonsignificant information. The features with smaller distances 

within the classes and larger distance among them are superior to the other features.  

The DET algorithm presented in [77] is discussed as follows: 

Suppose that we have a training dataset with 𝐽 extracted features, 𝐶 classes, and 𝑀𝑐 observations 

in each class 𝑐. The value of each observation with the identity 𝑚 at the 𝑗𝑡ℎ feature in class 𝑐 is 

denoted by 𝑞𝑚,𝑐,𝑗, where 𝑚 = 1,2,… .𝑀𝑐, 𝑐 = 1,2, … . , 𝐶, and 𝑗 = 1,2, … . , 𝐽. 

The importance of the 𝑗𝑡ℎ feature in the training dataset is assessed through the following steps. 

Step 1: Calculating the average distance between the observations of the same class 𝑐 as: 

                                            𝑑𝑐,𝑗 =
1

𝑀𝑐 × (𝑀𝑐 − 1)
∑∑|𝑞𝑚,𝑐,𝑗 − 𝑞𝑙,𝑐,𝑗|

𝑀𝑐

𝑙=1

𝑀𝑐

𝑚=1

                                       (A. 1) 
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where 𝑙 = 1,2, … .𝑀𝑐, 𝑚 = 1,2, … .𝑀𝑐, and 𝑙 ≠ 𝑚 

Step 2: Calculating the average distance for all the 𝐶 classes as follows: 

                                                                         𝑑𝑗
𝑊 =

1

𝐶
∑𝑑𝑐,𝑗

𝐶

𝑐=1

                                                               (A. 2) 

Step 3: Calculating the variance factor of 𝑑𝑗
𝑊 as follows: 

                                                                         𝑣𝑗
𝑊 =

max (𝑑𝑐,𝑗)

𝑚𝑖𝑛(𝑑𝑐,𝑗)
                                                             (A. 3) 

Step 4: Calculating the average value of the feature for all observations in the same class as follows: 

                                                                         𝑢𝑐,𝑗 =
1

𝑀𝑐
∑ 𝑞𝑚,𝑐,𝑗

𝑀𝑐

𝑚=1

                                                        (A. 4) 

Step 5: Obtaining the average distance between the distinct classes as follows: 

                                                                         𝑑𝑗
𝑏 =

1

𝐶 × (𝐶 − 1)
∑∑|𝑢𝑒,𝑗 − 𝑢𝑓,𝑗|

𝐶

𝑓=1

𝐶

𝑒=1

                       (A. 5) 

where 𝑒 = 1,2, … . 𝐶,   𝑓 = 1,2, … . 𝐶, and 𝑒 ≠ 𝑓 

 

Step 6: Calculating the variance factor of 𝑢𝑐,𝑗 as: 

                                                                        𝑣𝑗
𝑏 =

max (|𝑢𝑒,𝑗 − 𝑢𝑓,𝑗|)

𝑚𝑖𝑛(|𝑢𝑒,𝑗 − 𝑢𝑓,𝑗|)
                                                (A. 6) 

Step 7: Calculating the compensation factor as follows: 

                                                                         𝜆𝑗 =
1

𝑣𝑗
𝑊

max (𝑣𝑗
𝑊)

+
𝑣𝑗
𝑏

max (𝑣𝑗
𝑏)

                                         (A. 7) 

Step 8: Calculating the ratio for the 𝑗𝑡ℎ feature :  

                                                                        𝛼𝑗 = 𝜆𝑗
𝑑𝑗
𝑏

𝑑𝑗
𝑊                                                                          (A. 8) 

Step 9: Normalizing the ratio 𝛼𝑗 to get the distance evaluation factor (weight) as follows: 

                                                             𝛼𝑗−𝑛𝑜𝑟𝑚 =
𝛼𝑗

𝑚𝑎𝑥(𝛼𝑗)
                                                                   (A. 9) 

The above steps are repeated until each feature in the dataset is assigned a weight. The features 

with the largest weights are selected to properly separate the 𝐶 classes, while the others are 

discarded. 
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APPENDIX B –NON PARAMETRIC MAXIMUM LIKELIHOOD 

ESTIMATION FOR KAPLAN-MEIER ESTIMATOR  

Let 𝑡1 < 𝑡1 < … < 𝑡𝑟 be the failure times (ordered chronologically) that are observed from a set 

of historical systems. The number of failures at the time 𝑡𝑗 is denoted by 𝑑𝑗, and 𝑚𝑗 is the the 

number of systems that were right-censored in the interval [𝑡𝑗, 𝑡𝑗+1) where 𝑡𝑗 ≤ 𝑡𝑟.  

Under the assumption of independence between the censoring times and the failure times, the 

likelihood for an observed observation at time 𝑡𝑗, presented in [163], is given as:  

                                                                      𝐿 =∏[𝑓(𝑡𝑗)]
𝑑𝑗
 [𝑆(𝑡𝑗)]

𝑚𝑗
                                              (B. 1)

𝑟

𝑗=1

 

The hazard function at the time 𝑡𝑗 is expressed as: 

                                                             ℎ(𝑡𝑗) = Pr[𝑇 = 𝑡𝑗|𝑇 > 𝑡𝑗−1] =
𝑓(𝑡𝑗)

𝑆(𝑡𝑗−1)
                                  (B. 2) 

where 𝑓(𝑡𝑗) = Pr[𝑇 = 𝑡𝑗] = 𝐹(𝑡𝑗) − 𝐹(𝑡𝑗−1) = 𝑆(𝑡𝑗−1) − 𝑆(𝑡𝑗) 

Thus, the hazard function can be written as: 

                                                            ℎ(𝑡𝑗) =
𝑆(𝑡𝑗−1) − 𝑆(𝑡𝑗)

𝑆(𝑡𝑗−1)
= 1 −

𝑆(𝑡𝑗)

𝑆(𝑡𝑗−1)
                                 (B. 3) 

Accordingly, the survival function in terms of ℎ(𝑡𝑗) is represented as: 

                                                                       𝑆(𝑡𝑗) =∏1− ℎ(𝑡𝑗)

𝑟

𝑗=1

                                                      (B. 4) 

According to (B.1) and (B.2), the likelihood function is expressed in terms of ℎ(𝑡𝑗) and 𝑆(𝑡𝑗) as: 

                                𝐿(ℎ, 𝑆; 𝑑1, . . 𝑑𝑟 , 𝑚1, . . 𝑚𝑟) =∏[ℎ(𝑡𝑗)]
𝑑𝑗
[𝑆(𝑡𝑗−1)]

𝑑𝑗
 [𝑆(𝑡𝑗)]

𝑚𝑗

𝑟

𝑗=1

                 (B. 5) 

Based on (B.4), the likelihood function in (B.5) can be expressed in terms of ℎ(𝑡𝑗) as follows:  

           𝐿(ℎ; 𝑑1, . . 𝑑𝑟 , 𝑚1, . . 𝑚𝑟) =∏{[ℎ(𝑡𝑗)]
𝑑𝑗
[∏1 − ℎ(𝑡𝑖)

𝑗−1

𝑖=1

]

𝑑𝑗

 [∏1− ℎ(𝑡𝑖)

𝑗

𝑖=1

]

𝑚𝑗

}

𝑟

𝑗=1

 

                                                               =∏{
[ℎ(𝑡𝑗)]

𝑑𝑗

[1 − ℎ(𝑡𝑗)]
𝑑𝑗
[∏1 − ℎ(𝑡𝑖)

𝑗

𝑖=1

]

𝑑𝑗

 [∏1− ℎ(𝑡𝑖)

𝑗

𝑖=1

]

𝑚𝑗

}

𝑟

𝑗=1

 



176 

 

                               =∏{
[ℎ(𝑡𝑗)]

𝑑𝑗

[1 − ℎ(𝑡𝑗)]
𝑑𝑗
[∏1− ℎ(𝑡𝑖)

𝑗

𝑖=1

]

𝑑𝑗+𝑚𝑗

 }

𝑟

𝑗=1

 

                                      = [∏
[ℎ(𝑡𝑗)]

𝑑𝑗

[1 − ℎ(𝑡𝑗)]
𝑑𝑗

𝑟

𝑗=1

] [∏∏[1 − ℎ(𝑡𝑖)]
𝑑𝑗+𝑚𝑗

𝑗

𝑖=1

𝑟

𝑗=1

] 

                                       = [∏
[ℎ(𝑡𝑗)]

𝑑𝑗

[1 − ℎ(𝑡𝑗)]
𝑑𝑗

𝑟

𝑗=1

] [∏[1 − ℎ(𝑡𝑗)]
∑ (𝑑𝑖+𝑚𝑖
𝑟
𝑖=𝑗 )

𝑟

𝑗=1

] 

Let 𝑛𝑗  denotes the number of systems at risk just prior to time 𝑡𝑗, given as: 

               𝑛𝑗 = (𝑑𝑗 +𝑚𝑗) + ⋯(𝑑𝑟 +𝑚𝑟) =∑(𝑑𝑖 +𝑚𝑖

𝑟

𝑖=𝑗

) 

It follows that: 

      𝐿(ℎ; 𝑑1, . . 𝑑𝑟 , 𝑛1, . . 𝑛𝑟) = [∏
[ℎ(𝑡𝑗)]

𝑑𝑗

[1 − ℎ(𝑡𝑗)]
𝑑𝑗

𝑟

𝑗=1

] [∏[1 − ℎ(𝑡𝑗)]
𝑛𝑗

𝑟

𝑗=1

]        

                      𝐿(ℎ; 𝑑1, . . 𝑑𝑟 , 𝑛1, . . 𝑛𝑟)  =∏[ℎ(𝑡𝑗)]
𝑑𝑗

𝑟

𝑗=1

[1 − ℎ(𝑡𝑗)]
(𝑛𝑗−𝑑𝑗)                              (B. 6) 

The objective is to maximize 𝐿 with respect to ℎ(𝑡𝑗). Taking the logarithm of (B.6), yields 

             𝑙(ℎ̂; 𝑑1, . . 𝑑𝑟 , 𝑛1, . . 𝑛𝑟) =  log𝐿 =∑{𝑑𝑗log [ℎ(𝑡𝑗)] + (𝑛𝑗 − 𝑑𝑗)log [1 − ℎ(𝑡𝑗)]}

𝑟

𝑗=1

      (B. 7)  

Differentiating (B.7) with respect to ℎ(𝑡𝑗), gives 

                                           
𝜕𝑙(ℎ̂; 𝑑1, . . 𝑑𝑟 , 𝑛1, . . 𝑛𝑟)

𝜕ℎ(𝑡𝑗)
 =

𝑑𝑗

ℎ(𝑡𝑗)
−

𝑛𝑗 − 𝑑𝑗

1 − ℎ(𝑡𝑗)
                                       (B. 8) 

Solving for equation (B.8) equal zero, the hazard function ℎ(𝑡𝑗) is estimated and given as: 

                                                                                  ℎ̂(𝑡𝑗) =
𝑑𝑗

𝑛𝑗
                                                                (B. 9) 

Therefore the estimated KM survival function is given as: 

                                                                         𝑆̂(𝑡) =∏[1 −
𝑑𝑗

𝑛𝑗
]

𝑡𝑗≤𝑡

                                                      (B. 10) 
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APPENDIX C – REMAINING USEFUL LIFE CALCULATION 

1- Continuous Form 

Let 𝑇 denotes a random variable representing the system’s time to failure (TTF). It is commonly 

known in the reliability analysis that the Mean Time To Failure (MTTF) is calculated as: 

                                                      𝑀𝑇𝑇𝐹 = 𝐸(𝑇) = ∫ 𝜏𝑓(𝜏)𝑑𝜏 = ∫ 𝑆(𝜏)𝑑𝜏

∞

0

                                  (C. 1)

∞

0

 

where 𝜏 is a dummy variable. 

Let 𝑇 − 𝑡𝑘 is a random variable that represents the remaining useful life (RUL) of 𝑇 at time 𝑡𝑘. The 

mean remaining useful life (MRUL) is the expected value of the variable 𝑇 given that the system 

survives until the time 𝑡𝑘. It is calculated as presented in [93] as follows : 

                         𝑀𝑅𝑈𝐿(𝑡𝑘) = 𝐸(𝑇 − 𝑡𝑘|𝑇 > 𝑡𝑘) =
∫ (𝜏 − 𝑡𝑘)𝑓(𝜏)𝑑𝜏
∞

𝑡𝑘

𝑆(𝑡𝑘)
                                          (C. 2) 

                                                                      =
∫ 𝜏𝑓(𝜏)𝑑𝜏
∞

𝑡𝑘

𝑆(𝑡𝑘)
−
𝑡𝑘 ∫ 𝑓(𝜏)𝑑𝜏

∞

𝑡𝑘

𝑆(𝑡𝑘)
                      

Since  ∫ 𝑓(𝜏)𝑑𝜏
∞

𝑡𝑘
= 𝑆(𝑡𝑘), it follows: 

                                                                𝑀𝑅𝑈𝐿(𝑡𝑘) =
∫ 𝜏𝑓(𝜏)𝑑𝜏
∞

𝑡𝑘

𝑆(𝑡𝑘)
− 𝑡𝑘                                              (C. 3) 

The MRUL at time 𝑡𝑘 = 0 is equal to the MTTF that can be calculated from equation (C.3) as 

follows: 

                                                           𝑀𝑇𝑇𝐹 = 𝑀𝑅𝑈𝐿(0) =
∫ 𝜏𝑓(𝜏)𝑑𝜏
∞

0

𝑆(0)
− 0 = ∫ 𝜏𝑓(𝜏)𝑑𝜏

∞

0

                 

where 𝑆(0) = 1. The calculated MTTF using (C.3) is identical to that is calculated using (C.1). 

The 𝑀𝑅𝑈𝐿(𝑡𝑘) can be also calculated as presented in [94] and given as : 

                                                     𝑀𝑅𝑈𝐿(𝑡𝑘) = 𝐸(𝑇 − 𝑡𝑘|𝑇 > 𝑡𝑘) =
∫ 𝑆(𝜏)𝑑𝜏
∞

𝑡𝑘

𝑆(𝑡𝑘)
                            (C. 4) 

It can be proven that equation (C.2) and equation (C.4) are identical, in the following. 

The numerator of equation (C.2) is represented as:  

                                         𝑁𝑢𝑚 = ∫(𝜏 − 𝑡𝑘)𝑓(𝜏)𝑑𝜏

∞

𝑡𝑘
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It is known that 𝑓(𝜏) = −
𝑑𝑆(𝜏)

𝑑𝜏
, thus 

    𝑁𝑢𝑚 = − ∫(𝜏 − 𝑡𝑘)
𝑑𝑆(𝜏)

𝑑𝜏
𝑑𝜏

∞

𝑡𝑘

      

                                                                      = − ∫(𝜏 − 𝑡𝑘)𝑑𝑆(𝜏)                                                         (C. 5)

∞

𝑡𝑘

 

Let us denote 𝑢 = 𝜏 − 𝑡𝑘 and 𝑑𝑣 = 𝑑𝑆(𝜏). Therefore 𝑑𝑢 = 𝑑𝜏 and 𝑣 = 𝑆(𝜏).  

After substituting 𝑢 and 𝑑𝑣 in equation (C.5), we get 

                                                           𝑁𝑢𝑚 = − ∫ 𝑢𝑑𝑣

∞

𝑡𝑘

                                                                          (C. 6) 

Integrating equation (C.6) by parts, we get 

    𝑁𝑢𝑚 = −{[𝑢𝑣]𝑡𝑘
∞ − ∫ 𝑣𝑑𝑢

∞

𝑡𝑘

}          

                                       = −{[(𝜏 − 𝑡𝑘)𝑆(𝜏)]𝑡𝑘
∞ − ∫ 𝑆(𝜏)𝑑𝜏

∞

𝑡𝑘

}           

                                = −[(𝜏 − 𝑡𝑘)𝑆(𝜏)]𝑡𝑘
∞ + ∫ 𝑆(𝜏)𝑑𝜏

∞

𝑡𝑘

           

                                                         𝑁𝑢𝑚 = −lim
𝑡→∞

𝜏𝑆(𝜏) + 𝑡𝑘𝑆(𝑡𝑘) + 𝑡𝑘𝑆(∞) − 𝑡𝑘𝑆(𝑡𝑘) + ∫ 𝑆(𝜏)𝑑𝜏

∞

𝑡𝑘

 

𝑁𝑢𝑚 = −lim
𝑡→∞

𝜏𝑆(𝜏) + ∫ 𝑆(𝜏)𝑑𝜏

∞

𝑡𝑘

   

where 𝑆(∞) = 0.  

It is known that lim
𝑡→∞

𝜏𝑆(𝜏) = 0 (the rate of decreasing the reliability function is greater than the 

rate of increasing the time), which is true for all distributions that have MTTF. Accordingly, we 

get  

                                                       𝑁𝑢𝑚 = ∫(𝜏 − 𝑡𝑘)𝑓(𝜏)𝑑𝜏

∞

𝑡𝑘

= ∫ 𝑆(𝜏)𝑑𝜏                                      (C. 7)

∞

𝑡𝑘

 

It implies that  

                                            𝑀𝑅𝑈𝐿(𝑡𝑘) =
∫ (𝜏 − 𝑡𝑘)𝑓(𝜏)𝑑𝜏
∞

𝑡𝑘

𝑆(𝑡𝑘)
=
∫ 𝑆(𝜏)𝑑𝜏
∞

𝑡𝑘

𝑆(𝑡𝑘)
                                    (C. 8) 

Eventually, the 𝑀𝑅𝑈𝐿 can be calculated either by using equation (C.2) or equation (C.4) that are 

identical.  
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2- Discrete Form 

For the discrete random variable 𝑇, the probability at time 𝑡𝑘 is defined as: 

𝑃(𝑇 ≥ 𝑡𝑘) = 𝑃(𝑇 > 𝑡𝑘−1). Accordingly, equation (C.3) is represented in the discrete form as: 

                                               𝑀𝑅𝑈𝐿(𝑡𝑘) = 𝐸(𝑇 − 𝑡𝑘|𝑇 ≥ 𝑡𝑘) = 𝐸(𝑇 − 𝑡𝑘|𝑇 > 𝑡𝑘−1) 

                                                                                  =
∑ 𝑡𝑗[𝐹(𝑡𝑗) − 𝐹(𝑡𝑗−1)]
∞
𝑡𝑗=𝑡𝑘

𝑆(𝑡𝑘−1)
− 𝑡𝑘                     (C. 9) 

By considering the survival probability instead of the cumulative probability of failure, we get 

                                                            𝑀𝑅𝑈𝐿(𝑡𝑘) =
∑ 𝑡𝑗[𝑆(𝑡𝑗−1) − 𝑆(𝑡𝑗)]
∞
𝑡𝑗=𝑡𝑘

𝑆(𝑡𝑘−1)
− 𝑡𝑘                   (C. 10) 

where  𝐹(𝑡𝑗) − 𝐹(𝑡𝑗−1) = 1 − 𝑆(𝑡𝑗) − 1 + 𝑆(𝑡𝑗−1) = 𝑆(𝑡𝑗−1) − 𝑆(𝑡𝑗). 

In a similar way, equations (C.4) is represented in the discrete form as: 

                                        𝑀𝑅𝑈𝐿(𝑡𝑘) = 𝐸(𝑇 − 𝑡𝑘|𝑇 > 𝑡𝑘−1) =
∑ 𝛥𝑡𝑗𝑆(𝑡𝑗)
∞
𝑡𝑗=𝑡𝑘

𝑆(𝑡𝑘−1)
                          (C. 11) 

We can also go from equation (C.10) to equation (C.11) through some mathematical manipulations 

in the following way: 

We can rewrite equation (C.10) as: 

   𝑀𝑅𝑈𝐿(𝑡𝑘) =
1

𝑆(𝑡𝑘−1)
{𝑡𝑘[𝑆(𝑡𝑘−1) − 𝑆(𝑡𝑘)] + 𝑡𝑘+1[𝑆(𝑡𝑘) − 𝑆(𝑡𝑘+1)] + 𝑡𝑘+1[𝑆(𝑡𝑘) − 𝑆(𝑡𝑘+1)] + ⋯ } − 𝑡𝑘     

=
1

𝑆(𝑡𝑘−1)
{𝑡𝑘𝑆(𝑡𝑘−1) + 𝑆(𝑡𝑘)[𝑡𝑘+1 − 𝑡𝑘] + 𝑆(𝑡𝑘+1)[𝑡𝑘+2 − 𝑡𝑘+1] + ⋯ } − 𝑡𝑘 

=
𝑡𝑘𝑆(𝑡𝑘−1)

𝑆(𝑡𝑘−1)
+

1

𝑆(𝑡𝑘−1)
{𝑆(𝑡𝑘)[𝑡𝑘+1 − 𝑡𝑘] + 𝑆(𝑡𝑘+1)[𝑡𝑘+2 − 𝑡𝑘+1] + ⋯ } − 𝑡𝑘 

= 𝑡𝑘 +
1

𝑆(𝑡𝑘−1)
{𝑆(𝑡𝑘)[𝑡𝑘+1 − 𝑡𝑘] + 𝑆(𝑡𝑘+1)[𝑡𝑘+2 − 𝑡𝑘+1] + ⋯ } − 𝑡𝑘 

=
1

𝑆(𝑡𝑘−1)
{𝑆(𝑡𝑘)[𝑡𝑘+1 − 𝑡𝑘] + 𝑆(𝑡𝑘+1)[𝑡𝑘+2 − 𝑡𝑘+1] + ⋯ } 

𝑀𝑅𝑈𝐿(𝑡𝑘) =
∑ [𝑡𝑗+1 − 𝑡𝑗]𝑆(𝑡𝑗)
∞
𝑡𝑗=𝑡𝑘

𝑆(𝑡𝑘−1)
=
∑ 𝛥𝑡𝑗𝑆(𝑡𝑗)
∞
𝑡𝑗=𝑡𝑘

𝑆(𝑡𝑘−1)
 

which is identical to equation (C.11), where 𝛥𝑡𝑗 = 𝑡𝑗+1 − 𝑡𝑗. 
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APPENDIX D – PROPORTIONAL HAZARDS MODEL 

The PHM is made up of two parts: the first part is the baseline hazard function, while the second 

part is an exponential function including all the covariates (the operating conditions and condition 

indicators) that affect the system’s time to failure. The most common example for the baseline 

hazard function is the Weibull hazard function which is presented in this appendix.  

Given the time-independent vector of covariates 𝑍𝑡, the Weibull hazard function is expressed as 

given in [123], as: 

                                                           ℎ(𝑡, 𝑍𝑡) =
𝛽

𝜂
(
𝑡

𝜂
)
𝛽−1

𝑒𝑥𝑝(𝛾𝑍𝑡) 

= ℎ0(𝑡) 𝑒𝑥𝑝(𝛾𝑍𝑡)                                                          (D. 1) 

where ℎ0(𝑡) is baseline hazard function. The survival function of the Weibull PHM found in [164] 

is expressed as: 

                                                           𝑆(𝑡, 𝑍𝑡) = 𝑒𝑥𝑝(−∫ ℎ(𝜏, 𝑍𝑡)

∞

0

𝑑𝜏) 

                  𝑆(𝑡, 𝑍𝑡) = 𝑒𝑥𝑝 (−(
𝑡

𝜂
)
𝛽

𝑒𝑥𝑝(𝛾𝑍𝑡))    

                             = [𝑒𝑥𝑝 (−(
𝑡

𝜂
)
𝛽

)]

𝑒𝑥𝑝(𝛾𝑍𝑡)

 

                              = [𝑆0(𝑡)]
𝑒𝑥𝑝(𝛾𝑍𝑡)                                                             (D. 2) 

where 𝑆0(𝑡) is the baseline survival function.  

Given the lifetime data and the corresponding vectors of covariates, the three parameters (𝛽, 𝜂, 𝛾) 

of the baseline hazard function, and the vector 𝛾 that represents the effects of the covariates, are 

estimated using the maximum likelihood estimation method [125]. 

Based on the survival function in (D.2), the MRUL at a certain time instant 𝑡𝑘 is calculated as: 

                                                    𝑀𝑅𝑈𝐿(𝑡𝑘) = 𝐸(𝑇 − 𝑡𝑘|𝑇 > 𝑡𝑘, 𝑍𝑡) 

                                                                         =
∫ (𝜏 − 𝑡𝑘)𝑓(𝜏, 𝑍𝜏)𝑑𝜏
∞

𝑡𝑘

𝑆(𝑡𝑘, 𝑍𝑡)
=
∫ 𝑆(𝜏, 𝑍𝜏)𝑑𝜏
∞

𝑡𝑘

𝑆(𝑡𝑘, 𝑍𝑡)
               (D. 3) 
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The MRUL calculation is dependent on the value of 𝑒𝑥𝑝(𝛾𝑍𝑡) that is affecting the reliability 

function. The systems that are working under severe operating conditions are expected to fail 

earlier (let’s call them short life systems), and the systems that are working under relaxed operating 

conditions are expected to fail after long time (we call them long life systems). 

The application of PHM in the field of CBM has three main limitations [91, 164-166]: 

 It needs some statistical assumptions about the probaility distribution of the lifetime data to 

build the baseline function.   

 In case of time-dependent covariates, an extended PHM model which assigns a function of 

time to each covariate, should be used. This requires multidimensional integration when 

estimating the hazard or reliability function. 

 The covariates must satisfy the proportional hazard (PH) assumption which is difficult or 

even impossible to be satisfied in the case of highly correlated covariates.  
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APPENDIX E – DATA BINARIZATION 

Binarization of the numerical factors 

The number of binary attributes needed to replace the numerical factor 𝑍 depends on the number 

of distinct values of 𝑍. The binarization procedure starts by ranking, in ascending order, all the 

distinct values of 𝑍 as follows: 

      𝑢𝑍
(1)
< 𝑢𝑍

(2)
< ⋯ < 𝑢𝑍

(𝐿)
 

where 𝐿 is the total number of distinct values of 𝑍 and 𝑁 is the total number of observations, and 

𝐿 ≤ 𝑁.  

A cut-point 𝛼𝑍,𝑗 is introduced between each pair of values that belong to different classes. The cut-

point is calculated by averaging the two values as: 

                                                                       𝛼𝑍,𝑗 =
𝑢𝑍
(𝑖) + 𝑢𝑍

(𝑖+1)

2
                                                           (E. 1) 

where 𝑢𝑍
(𝑖) ∈ 𝛺+ and 𝑢𝑍

(𝑖+1) ∈ 𝛺−, and vice versa. 

A binary attribute is then formed from each cut-point. Each cut-point 𝛼𝑍,𝑗 has a corresponding 

binary attribute 𝑏𝛼𝑍,𝑗 , defined as:  

                                                                    𝑏𝛼𝑍,𝑗 = {
1      if   𝑢𝑍 ≥ 𝛼𝑍,𝑗
0      if   𝑢𝑍 < 𝛼𝑍,𝑗

                                                  (E. 2) 

As a result of this binarization process, the number of binary attributes that make up the binarized 

training set is equal to the number of cut-points generated for each numerical factor in the training 

data set. 

Binarization of the categorical factors 

The categorical factors are commonly found in the databases. An example of such factors is  

‘the shape’ which has values: triangular, round, rectangular, and so on. The binarization of a 

categorical factor 𝑍 is performed by assigning a binary attribute 𝑏(𝑍, 𝑣) to each value 𝑣, which is 

defined such that: 

                                                               𝑏(𝑍, 𝑣) = {
1       if   𝑍 = 𝑣  
0       otherwise

                                                     (E. 3) 

The number of binary attributes is equal to the distinct values of the categorical factor. The special 

case of the categorical factors is the one that has only two distinct values. In this case, these values 

are assigned the binary values 0 and 1. 
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Binarization of the continuous ordinal factors 

In the case where the values of the factor are ordered and comparative, they are called ordinal. For 

example temperature can take the values, cold, warm, and hot. In case of non-numerical ordinal 

factors, a numerical value is assigned to each non-numerical value. For example, if the temperature 

takes the values cold, warm, and hot, a value of 1 (one) is assigned cold, 2 (two) to warm, and 3 

(three) to hot. The binarization of ordinal covariates is performed by comparing the assigned values 

with certain cut points. The number of binary attributes is equal to the number of cut points.  

Numerical Example 

The binarization procedure is illustrated through the simple example shown in Table E.1. The 

factors in the second and the fourth columns are numerical, while those in the third and the fifth 

columns are categorical ones. The factor in the last column is ordinal.  

Table E.1: Non-binary data 

Class  𝑧1  𝑧2  𝑧3  𝑧4  𝑧5 

 

Positive class 

𝛺+ 

1 yellow 3.2 yes cold 

5 green 2.9 no warm 

4 green 2.0 yes warm 

5 red 2.2 no hot 

Negative class 

𝛺− 

4 red 2.0 yes cold 

3 yellow 1.4 no warm 

5 yellow 0.7 no warm 

The first numerical factor 𝑧1, is ranked in ascending order as shown in Table E.2. 

Table E.2: Ranking of the numerical factor 𝑧1 in ascending order 

Class + − + & − + & − 

Distinct ranked values 𝑢𝑍1
(1)

 𝑢𝑍1
(2)

 𝑢𝑍1
(3)

 𝑢𝑍1
(4)

 

Numerical value 1 3 4 5 

The first cut-point 𝛼𝑍1,1 is introduced between the pair of values (1, 3) that belong to the different 

classes (+,−). It is calculated by averaging these two values as: 

       𝛼𝑍1,1 =
𝑢𝑍1
(1) + 𝑢𝑍1

(2)

2
=
1 + 3

2
= 2 

The second cut-point 𝛼𝑍1,2 is introduced between the pair of values (3, 4), and is calculated as: 

          𝛼𝑍1,2 =
𝑢𝑍1
(2) + 𝑢𝑍1

(3)

2
=
3 + 4

2
= 3.5 

The third cut-point 𝛼𝑍1,3 is introduced between the pair of values (4, 5), and is calculated as: 
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       𝛼𝑍1,3 =
𝑢𝑍1
(3) + 𝑢𝑍1

(4)

2
=
4 + 5

2
= 4.5 

Accordingly, the factor 𝑧1 is transformed into the binary attributes 𝑏𝛼 𝑧1,1, 𝑏𝛼 𝑧1,2 and 𝑏𝛼 𝑧1,3. The 

cut-point 𝛼𝑍1,1 has a corresponding binary attribute  𝑏𝛼 𝑧1,1  with defined values: 

                    𝑏𝛼 𝑧1,1 = {
1      if   𝑢 𝑧1 ≥ 𝛼 𝑧1,𝑗
0      if   𝑢 𝑧1 < 𝛼 𝑧1,𝑗

       𝑗 = 1,2,3 

The binary attributes  𝑏𝛼 𝑧1,2 and 𝑏𝛼 𝑧1,3 are defined in the same manner, according to the 

corresponding cut points. As an example, the first numerical value of the factor 𝑧1 which is 

𝑢 𝑧1 = 1, is transformed to the binary attributes (0, 0, 0) since 1 < 𝛼 𝑧1,1 and 1 < 𝛼 𝑧1,2 and 

1 < 𝛼 𝑧1,3. The numerical value 𝑢 𝑧1 = 4, is transformed to the binary attributes (1, 1, 0) since  

4 ≥ 𝛼 𝑧1,1 and 4 ≥ 𝛼 𝑧1,2 and 4 < 𝛼 𝑧1,3. For the sake of simplicity, we change the names of the 

attributes 𝑏𝛼 𝑧1,1, 𝑏𝛼 𝑧1,2 and 𝑏𝛼 𝑧1,3 , to  𝑏1, 𝑏2 and 𝑏3, respectively. Each value of  𝑧1 and its binarized 

value, is shown as follows: 

Numerical factor  Binary attributes 

Classes Z1  Classes b1 b2 b3 

 

Positive class 

𝛺+  

1   

Positive 

class 

𝛺+ 

0 0 0 

5 Binarization 1 1 1 

4  1 1 0 

5  1 1 1 

Negative class 

𝛺− 

4  Negative 

class 

𝛺− 

1 1 0 

3  1 0 0 

5  1 1 1 

The categorical factor 𝑧2 takes three different values (yellow, green, and red). The binary attribute 

 𝑏4( 𝑧2, yellow) is assigned to the value yellow such that: 

 𝑏4( 𝑧2, yellow)  = {
1        if    𝑧2 = yellow    
 0        otherwise               

 

Similarly, the binary attribute 𝑏5( 𝑧2, green) and 𝑏6( 𝑧2, red) is assigned to the value green 

and red, respectively such that: 

 𝑏5( 𝑧2, green)  = {
1        if    𝑧2 = green     
 0        otherwise               

 

   𝑏6( 𝑧2, red)  = {
1        if    𝑧2 = red       
 0        otherwise            

 

Accordingly, the factor 𝑧2 is binarized and converted into the binary attributes 𝑏4, 𝑏5, and 𝑏6 as 

follows: 
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Categorical factor  Binary attributes 

Classes Z2  Classes b4 b5 b6 

 

Positive 

class 

𝛺+  

yellow   

Positive  

class 

𝛺+ 

1 0 0 

green Binarization 0 1 0 

green  0 1 0 

red  0 0 1 

Negative 

class 

𝛺− 

red  Negative 

class 

𝛺− 

0 0 1 

yellow  1 0 0 

yellow  1 0 0 

The numerical factor 𝑧3 is binarized and converted into the binary attributes 𝑏7 and 𝑏8 in the same 

way as the numerical factor 𝑧1, as follows: 

Numerical factor  Binary attributes 

Classes Z3  Classes b7 b8 

 

Positive 

class 

𝛺+  

3.2   

Positive 

class 

𝛺+ 

1 1 

2.9 Binarization 1 1 

2.0  1 0 

2.2  1 1 

Negative 

class 

𝛺− 

2.0  Negative 

class 

𝛺− 

1 0 

1.4  0 0 

0.7  0 0 

The categorical factor 𝑧4 is binarized and converted into only one binary attribute (the attribute 𝑏9) 

since it takes only two values (yes, no), it is shown as follows: 

Categorical covariate  Binary attributes 

Classes Z4  Classes b9 

 

Positive 

class 

𝛺+  

yes   

Positive 

class 

𝛺+ 

1 

no Binarization 0 

yes  1 

no  0 

Negative 

class 

𝛺− 

yes  Negative 

class 

𝛺− 

1 

no  0 

no  0 

The ordinal factor 𝑧5 takes three different values (cold, warm, and hot). Therefore, we assign three 

ordinal numbers 1, 2, and 3 for cold, warm, and hot, respectively. Then we follow the same 

binarization procedures for transforming the numerical factors into binary attributes. First we start 

by ranking the assigned numerical values of the ordinal factor in an ascending order as shown in 

Table E.3.  

Table E.3: Ranking of the ordinal factor 𝑧5 in ascending order 

Class + & − + & − +  

Distinct ranked values 𝑢𝑍5
(1)

 𝑢𝑍5
(2)

 𝑢𝑍5
(3)

 

Assigned numerical value 1 2 3 
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The first cut-point 𝛼𝑍5,1 is introduced between the pair of values (1, 2), it is calculated by averaging 

the two values as: 

𝛼𝑍5,1 =
𝑢𝑍5
(1) + 𝑢𝑍5

(2)

2
=
1 + 2

2
= 1.5 

The second cut-point 𝛼𝑍5,2 is introduced between the pair of values (2, 3), and is calculated as: 

𝛼𝑍5,2 =
𝑢𝑍5
(2) + 𝑢𝑍5

(3)

2
=
2 + 3

2
= 2.5 

Accordingly, the factor 𝑧5 is transformed into the binary attributes 𝑏10 and  𝑏11 as follows: 

Ordinal factor  Binary attributes 

Classes Z5  Classes b10 b11 

 

Positive 

class 

𝛺+  

cold   

Positive 

class 

𝛺+ 

0 0 

warm Binarization 1 0 

warm  1 0 

hot  1 1 

Negative 

class 

𝛺− 

cold  Negative 

class 

𝛺− 

0 0 

warm  1 0 

warm  1 0 

All the binary attributes are listed in Table E.4 as follows: 

Table E.4: The binary data resulting from Table E.1 

Classes b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 

 

Positive class 

𝛺+ 

0 0 0 1 0 0 1 1 0 0 0 

1 1 1 0 1 0 1 1 0 1 0 

1 1 0 0 1 0 1 0 0 1 0 

1 1 1 0 0 1 1 1 0 1 1 

Negative class 

𝛺− 

1 1 0 0 0 1 1 0 0 0 0 

1 0 0 1 0 0 0 0 0 1 0 

1 1 1 1 0 0 0 0 0 1 0 
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APPENDIX F – PATTERN GENERATION 

The process of positive pattern generation is identical to that of negative pattern generation. For 

the sake of simplicity, we discuss the procedure found in [150], for generating the positive patterns.  

Basically, the pattern generation procedure is formulated as an MILP as follows: 

The decision variables of this formulation are defined first. Given a binarized training data set 

composed of 𝑛 binary attributes, each observation 𝑖 ∈ 𝛺+ or 𝑖 ∈ 𝛺− is associated with the Boolean 

observation vector 𝑎𝑖 = (𝑎𝑖,1, 𝑎𝑖,2, … 𝑎𝑖,𝑛, 𝑎𝑖,𝑛+1, 𝑎𝑖,𝑛+2, … 𝑎𝑖,2𝑛) whose size is 2𝑛, such that   

𝑎𝑖,𝑗 = 1 if the binary attribute 𝑏𝑗 = 1 and 𝑎𝑖,𝑛+𝑗 = 1 if 𝑏𝑗 = 0. The values 𝑎𝑖,𝑗 and 𝑎𝑖,𝑛+𝑗 are 

mutually exclusive since 𝑏𝑗  cannot be 1 and 0 at the same time for the same observation 

(i.e. 𝑎𝑖,𝑛+𝑗 = 1 − 𝑎𝑖,𝑗). 

Each generated pattern 𝑝 is associated with a Boolean pattern vector  

𝑊 = (𝑤1, 𝑤2, …𝑤𝑛, 𝑤𝑛+1, 𝑤𝑛+2, …𝑤2𝑛) whose size is the same as the binary observation 

vector 𝑎𝑖. The elements of the pattern vector 𝑊 are relative to the attributes such that if 𝑤𝑗 = 1 

then the literal 𝑏𝑗 is included in pattern 𝑝. Similarly, if 𝑤𝑛+𝑗 = 1 then literal 𝑏̅𝑗 is included in 

pattern 𝑝. A pattern 𝑝 cannot include both the literal 𝑏𝑗 and its negation 𝑏̅𝑖 at the same time; the 

following condition must be satisfied: 

                                                                    𝑤𝑗 + 𝑤𝑛+𝑗 ≤ 1                     ∀ 𝑗 = 1,2, … 𝑛                        (F. 1) 

For the generation of a positive pattern, the Boolean vector 𝑌 = (𝑦1, 𝑦2, … 𝑦|𝛺+|), whose number 

of elements equals the number of positive observations, is presented to indicate the coverage of the 

positive observations. The value of the entry 𝑦𝑖 in the vector 𝑌 is defined as:  

                                                        𝑦𝑖 = {
0          if the observation 𝑎𝑖 is covered  by pattern  𝑝 
1          otherwise                                                                     

 

The resulting pattern must be able to cover at least one positive observation 𝑎𝑖, at the same time it 

is not required to cover all the positive observations in 𝛺+. This condition can be formulated in the 

form of the following constraints: 

                                                                        ∑𝑎𝑖,𝑗

2𝑛

𝑗=1

𝑤𝑗 + 𝑛𝑦𝑖 ≥ 𝑑              ∀ 𝑖 ∈ 𝛺+                          (F. 2) 

A positive pattern should not cover any negative observations. The following constraints must be 

satisfied: 
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                                                                    ∑𝑎𝑖,𝑗

2𝑛

𝑗=1

𝑤𝑗 ≤ 𝑑 − 1                   ∀ 𝑖 ∈ 𝛺−                            (F. 3) 

The MILP formulation of the positive pattern generation procedure is given as follows: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑊,𝑌,𝑑

∑ 𝑦𝑖
𝑖∈𝛺+

      

                                                                𝑠. 𝑡.

{
 
 
 

 
 
 
(F. 1), (F. 2), (F. 3)                                                                      

∑𝑤𝑗

2𝑛

𝑗=1

= 𝑑                                                                          (F. 4)

1 ≤ 𝑑 ≤ 𝑛                                                                         (F. 5)

𝑊 ∈ {0,1}𝑛                                                                       (F. 6)

 𝑌 ∈ {0,1}|𝛺
+|                                                                   (F. 7)

 

Based on the optimal solution of this formulation, the resulting pattern 𝑝 is constructed as: 

                                                                𝑝 ≔ ⋀ 𝑏𝑗
𝑤𝑗=1

𝑗∈{1,..𝑛}

⋀ 𝑏̅𝑗  
𝑤𝑗+𝑛=1

𝑗∈{1,..𝑛}

                                                          (F. 8) 

Numerical Example   

This example illustrates the pattern generation stage in LAD. Assume the given binary dataset 

consist of five binary attributes. The data comprise a set of four positive observations and a set of 

four negative observations, as shown in Table F.1. The objective is to generate the set of strong 

positive and negative patterns that guarantee the coverage of all positive and negative observations. 

Table F.1: Eight observations (four positive and four negative) 

Observation Class 
Binary attribues 

b1 b2 b3 b4 b5 

1 

2 

3 

4 

 

 (Positive) 

𝛺+ 

1 

1 

1 

1 

1 

1 

0 

1 

1 

1 

1 

1 

0 

1 

1 

1 

0 

1 

0 

0 

5 

6 

7 

8 

(Negative) 

𝛺− 

1 

0 

0 

1 

0 

0 

0 

0 

1 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

A Boolean vector 𝑎𝑖 = (𝑎𝑖,1, 𝑎𝑖,2, … 𝑎𝑖,5, 𝑎𝑖,6, 𝑎𝑖,7, … 𝑎𝑖,10) is associated with each positive or 

negative observation, such that 𝑎𝑖,5+𝑗 = 1 − 𝑎𝑖,𝑗, as shown in Table F.2. As an example, the 

Boolean vector of the first positive observation is given as: 

𝑎1 = (𝑎1,1, 𝑎1,2, 𝑎1,3, 𝑎1,4 𝑎1,5, 𝑎1,6, 𝑎1,7, 𝑎1,8, 𝑎1,9, 𝑎1,10) = (1,1,1,0, 0, 0,0,0,1,1) 

The values  𝑎1,1 and 𝑎1,6 for example are mutually exclusive i.e.  𝑎1,6 = 1 − 𝑎1,1 = 1 − 1 = 0. 
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Table F.2: The observations and their complements (first MILP procedure) 

Observation Class 

The binary attributes in  

Table 5  

Complements of the binary 

attributes  

ai,1 ai,2 ai,3 ai,4 ai,5 ai,6 ai,7 ai,8 ai,9 ai,10 

1 

2 

3 

4 

 

(Positive) 

1 

1 

1 

1 

1 

1 

0 

1 

1 

1 

1 

1 

0 

1 

1 

1 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

1 

0 

0 

0 

1 

0 

1 

1 

5 

6 

7 

8 

(Negative) 

1 

0 

0 

1 

0 

0 

0 

0 

1 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

0 

1 

1 

1 

1 

0 

1 

0 

1 

1 

1 

1 

1 

1 

1 

1 

1 

First Iteration 

Now, we start the procedure of generating the first positive pattern. The objective is to generate the 

pattern 𝑝1
+ that guarantees the maximum coverage of positive observations in the set 𝛺+. The 

problem is formulated as an MILP that minimizes the number of uncovered observations. The 

MILP is presented in Table F.3. 

Table F.3: The first MILP iteration (generation of the positive pattern 𝑝1
+) 

This MILP is solved by using AMPL; A Modeling Language for Mathematical Programming 

[167]. AMPL is not a solver, it is a language for modeling the mathematical programs. The previous 

Iteration 1 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓 =𝑦1 + 𝑦2 + 𝑦3 + 𝑦4 

Subject to: 

𝑤1 +         𝑤6           ≤ 1 

  𝑤2 +         𝑤7         ≤ 1 

    𝑤3 +         𝑤8       ≤ 1 

      𝑤4 +         𝑤9     ≤ 1 

        𝑤5 +         𝑤10   ≤ 1 

𝑤1 + 𝑤2 + 𝑤3 +           𝑤9 + 𝑤10 + 5𝑦1 ≥ 𝑑 

𝑤1 + 𝑤2 + 𝑤3 + 𝑤4 + 𝑤5 +       𝑤9 +   5𝑦2 ≥ 𝑑 

𝑤1 +   𝑤3 + 𝑤4 +     𝑤7 +     𝑤10 + 5𝑦3 ≥ 𝑑 

𝑤1 + 𝑤2 + 𝑤3 + 𝑤4 +           𝑤10 + 5𝑦4 ≥ 𝑑 

𝑤1 +   𝑤3 +       𝑤7 +   𝑤9 + 𝑤10   ≤ 𝑑 − 1 

          𝑤6 + 𝑤7 + 𝑤8 + 𝑤9 + 𝑤10   ≤ 𝑑 − 1 

    𝑤3 +     𝑤6 + 𝑤7 +   𝑤9 + 𝑤10   ≤ 𝑑 − 1 

𝑤1 +           𝑤7 + 𝑤8 + 𝑤9 + 𝑤10   ≤ 𝑑 − 1 

𝑤1 + 𝑤2 + 𝑤3 + 𝑤4 + 𝑤5 + 𝑤6 + 𝑤7 + 𝑤8 + 𝑤9 + 𝑤10   = 𝑑 

1 ≤ 𝑑 ≤  5   

𝑤𝑗 ∈ {0,1}    𝑗 = 1,2,… 10   

𝑦𝑖 ∈ {0,1}    𝑖 = 1, 2, 3, 4       
 

Solution:  

 

𝑓 = 1 

𝑑 = 1 

𝑦1 = 0, 𝑦2 = 0, 𝑦3 = 1, 𝑦4 = 0 

𝑤1 = 0, 𝑤2 = 1, 𝑤3 = 0 , 𝑤4 = 0, 𝑤5 = 0, 𝑤6 = 0, 𝑤7 = 0, 𝑤8 = 0, 𝑤9 = 0, 𝑤10 = 0 
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MILP is coded in AMPL and then AMPL translates the code to a solver like CPLEX or MINOS. 

In this example, we used CPLEX to solve this MILP and the solution is also presented in  

Table F.3.  

The optimal solution for this MILP gives one positive pattern of degree one (𝑑 = 1) that covers 

three positive observations. The optimal value of the vector 𝑌 = (𝑦1, 𝑦2, 𝑦3, 𝑦4) = (0, 0,1,0) 

indicates that there is only one observation that is not covered by the pattern 𝑝1
+, and that the pattern 

covers the first, the second, and the fourth positive observations (i.e. 𝑐𝑜𝑣(𝑝1
+) = {1,2,4}). The 

generated pattern is constructed from this solution using equation (F.8) as 𝑝1
+ ≔ 𝑏2. 

Second Iteration 

All the observations in Table F.1 must be covered at least once. Accordingly, we remove the 

observations that are already covered by the generated patterns. In this case, the first, second, and 

fourth positive observations are removed. Only the third positive observation is considered in order 

to generate a pattern that covers that observation. The objective is to generate the second positive 

pattern 𝑝2
+ that guarantees the coverage of the third observation (which is not covered in the first 

iteration), while guaranteeing the maximum coverage of positive observations in the set 𝛺+. Hence, 

the data used to generate this pattern are shown in Table F.4. 

Table F.4: The observations and their complements (second MILP procedure) 

Observation Class 

The binary attributes in  

Table 5  

Complements of the binary 

attributes 

ai,1 ai,2 ai,3 ai,4 ai,5 ai,6 ai,7 ai,8 ai,9 ai,10 

3 (Positive) 1 0 1 1 0 0 1 0 0 1 

5 

6 

7 

8 

(Negative) 

1 

0 

0 

1 

0 

0 

0 

0 

1 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

0 

1 

1 

1 

1 

0 

1 

0 

1 

1 

1 

1 

1 

1 

1 

1 

1 

The MILP formulation and its solution are given in Table F.5. This optimal solution of MILP gives 

one positive pattern of degree one (𝑑 = 1) that covers the third positive observation since 𝑦3 = 0. 

The second positive pattern is constructed from this solution as  𝑝2
+ ≔ 𝑏4. However, this pattern 

also covers two of the removed observations {2,4}. Hence the coverage of this pattern is 

𝐶𝑜𝑣(𝑝2
+) = {2,3,4}. All the positive observations are covered now, so the procedure for the 

generation of the positive patterns is terminated.  
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Table F.5: The second MILP iteration (generation of the positive pattern 𝑝2
+) 

Iteration 2 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓 =𝑦3  

Subject to: 
𝑤1 +         𝑤6           ≤ 1 

  𝑤2 +         𝑤7         ≤ 1 

    𝑤3 +         𝑤8       ≤ 1 

      𝑤4 +         𝑤9     ≤ 1 

        𝑤5 +         𝑤10   ≤ 1 

𝑤1 +   𝑤3 + 𝑤4 +     𝑤7 +     𝑤10 + 5𝑦3 ≥ 𝑑 

𝑤1 +   𝑤3 +       𝑤7 +   𝑤9 + 𝑤10   ≤ 𝑑 − 1 

          𝑤6 + 𝑤7 + 𝑤8 + 𝑤9 + 𝑤10   ≤ 𝑑 − 1 

    𝑤3 +     𝑤6 + 𝑤7 +   𝑤9 + 𝑤10   ≤ 𝑑 − 1 

𝑤1 +           𝑤7 + 𝑤8 + 𝑤9 + 𝑤10   ≤ 𝑑 − 1 

𝑤1 + 𝑤2 + 𝑤3 + 𝑤4 + 𝑤5 + 𝑤6 + 𝑤7 + 𝑤8 + 𝑤9 + 𝑤10   = 𝑑 

1 ≤ 𝑑 ≤  5   

𝑤𝑗 ∈ {0,1}    𝑗 = 1, 2, … 10   

𝑦3 ∈ {0,1}     
 

Solution:  
 

𝑓 = 0, 𝑑 = 1, 𝑦3 = 0 

𝑤1 = 0, 𝑤2 = 0, 𝑤3 = 0 , 𝑤4 = 1, 𝑤5 = 0, 𝑤6 = 0, 𝑤7 = 0, 𝑤8 = 0, 𝑤9 = 0, 𝑤10 = 0 

Third Iteration 

In a similar way, the negative patterns are generated. The MILP for the generation of the negative 

patterns is formulated in Table F.6. The negative pattern is constructed from the resulting solution 

as 𝑝1
− ≔ 𝑏2̅̅ ̅ 𝑏4̅̅ ̅. It covers all the negative observations (i.e. 𝐶𝑜𝑣(𝑝1

−) = {5,6,7,8}). Table F.7 lists 

the generated positive and negative patterns. 

Table F.6: The third MILP iteration (generation of the negative pattern 𝑝1
−) 

Iteration 3  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓 =𝑦5 + 𝑦6 + 𝑦7 + 𝑦8  

Subject to: 

𝑤1 +         𝑤6           ≤ 1 

  𝑤2 +         𝑤7         ≤ 1 

    𝑤3 +         𝑤8       ≤ 1 

      𝑤4 +         𝑤9     ≤ 1 

        𝑤5 +         𝑤10   ≤ 1 

𝑤1 +   𝑤3 +       𝑤7 +   𝑤9 + 𝑤10 + 5𝑦5 ≥ 𝑑 

          𝑤6 + 𝑤7 + 𝑤8 + 𝑤9 + 𝑤10  5𝑦6 ≥ 𝑑 

    𝑤3 +     𝑤6 + 𝑤7 +   𝑤9 + 𝑤10 + 5𝑦7 ≥ 𝑑 

𝑤1 +           𝑤7 + 𝑤8 + 𝑤9 + 𝑤10 + 5𝑦8 ≥ 𝑑 

𝑤1 + 𝑤2 + 𝑤3 +           𝑤9 + 𝑤10   ≤ 𝑑 − 1 

𝑤1 + 𝑤2 + 𝑤3 + 𝑤4 + 𝑤5 +       𝑤9 +    ≤ 𝑑 − 1 

𝑤1 +   𝑤3 + 𝑤4 +     𝑤7 +     𝑤10   ≤ 𝑑 − 1 

𝑤1 + 𝑤2 + 𝑤3 + 𝑤4 +           𝑤10   ≤ 𝑑 − 1 

𝑤1 + 𝑤2 + 𝑤3 + 𝑤4 + 𝑤5 + 𝑤6 + 𝑤7 + 𝑤8 + 𝑤9 + 𝑤10   = 𝑑 

1 ≤ 𝑑 ≤  5   

𝑤𝑗 ∈ {0,1}    𝑗 = 1,2,… 10   

𝑦𝑖 ∈ {0,1}    𝑖 = 5, 6, 7, 8       
 

Solution:  

 

𝑓 = 0, 𝑑 = 2, 𝑦5 = 0, 𝑦6 = 0, 𝑦7 = 0, 𝑦8 = 0 

𝑤1 = 0, 𝑤2 = 0, 𝑤3 = 0 , 𝑤4 = 0, 𝑤5 = 0, 𝑤6 = 0, 𝑤7 = 1, 𝑤8 = 0, 𝑤9 = 1, 𝑤10 = 0 
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Table F.7: The generated positive and negative patterns 

The generated positive 

patterns 

Interpretation Covered observations Cov(p) 

𝑝1
+ 

𝑝2
+ 

𝑏2 

𝑏4 

1, 2, 4 

 2, 3, 4 

The generated negative 

patterns 

Interpretation Covered observations Cov(p) 

𝑝1
− 𝑏2̅̅ ̅  𝑏4̅̅ ̅ 5, 6, 7, 8 

 

The weights for the generated patterns are give as: 

𝑊1
+ =

𝑐𝑜𝑣(𝑝1
+)

∑ 𝑐𝑜𝑣(𝑝𝑖
+)2

𝑖=1

=
𝑐𝑜𝑣(𝑝1

+)

𝑐𝑜𝑣(𝑝1
+) + 𝑐𝑜𝑣(𝑝2

+)
=

3

3 + 3
= 0.5 

𝑊2
+ =

𝑐𝑜𝑣(𝑝2
+)

∑ 𝑐𝑜𝑣(𝑝𝑖
+)2

𝑖=1

=
𝑐𝑜𝑣(𝑝2

+)

𝑐𝑜𝑣(𝑝1
+) + 𝑐𝑜𝑣(𝑝2

+)
=

3

3 + 3
= 0.5 

𝑊1
− =

𝑐𝑜𝑣(𝑝1
−)

𝑐𝑜𝑣(𝑝1
−)
=
4

4
= 1.0 
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