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RÉSUMÉ 

Les séries des écoulements ne sont pas mesurées directement. Leur estimation peut parfois 

s’accompagner d’erreurs considérables. Comme ces valeurs sont importantes dans la planification 

de la production hydroélectrique, il s’avère donc important de reconstruire ces séries d’écoulement 

avec suffisamment de précision. Différentes méthodes de reconstruction des écoulements ont été 

développées au cours de dernières années, et plusieurs facteurs importants doivent être analysés 

lors du choix de la méthode la plus appropriée. Dans cette thèse, un algorithme est proposé pour 

déterminer la méthode la plus appropriée dans la détermination de la série fiable des valeurs 

d’écoulement pour chaque étude de cas analysée. Cet algorithme permet de choisir les méthodes 

de calcul des séries d’écoulement à la fois pour la période de temps avant la construction du 

réservoir que pour la période post-réservoir, selon la disponibilité de données dans les bassins 

environnants. 

Pour la période pré-réservoir, une nouvelle méthode basée sur le filtre de Kalman a été développée 

pour reconstruire la série des valeurs d’écoulement en utilisant la technique « State Fusion », 

lorsque les seules données disponibles pour les bassins non jaugés proviennent de bassins voisins. 

Les résultats de cette méthode sont par la suite comparés aux méthodes « Area Ratio », « Move 

type III » et régression multivariée utilisant différents indices de qualité. 

Pour la période post-réservoir, une nouvelle méthode basée sur l’équation d’équilibre hydrologique 

est proposée pour reconstruire et filtrer les valeurs d’écoulement en utilisant une technique 

d'optimisation, lorsque les données hydrométriques (débit turbiné, niveau d'eau dans le réservoir et 

débit évacué) sont collectées dans un bassin non jaugé. Les résultats de cette méthode sont par la 

suite comparés aux valeurs obtenues avec la méthode classique d’équation d’équilibre 

hydrologique utilisant différents indices de qualité. 

La stationnarité des séries écoulements reconstruites est également évaluée et l’analyse régionale 

réalisée pour assurer la cohérence entre le flux local et le flux régional. Enfin, les valeurs finales 

des séries écoulements reconstruites sont déterminées en combinant les valeurs de différentes 

méthodes combinées à l’aide d’une technique de pondération. Un calcul d’incertitude a été réalisé 

et il a permis d’évaluer la précision des séries pour la période post-réservoir. 
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ABSTRACT  

Since flow values for basins are indirectly measured and the estimations of these values may be at 

times accompanied by a considerable amount of uncertainty, it is desirable to reconstruct a reliable 

set of flow series as these values are important for water resource management and flow prediction. 

Different methods of flow reconstruction have been developed during recent years. As the quality 

of available flow data are not the same for different time periods, different flow reconstruction 

methods should be selected for each different time period. In this thesis, an algorithm will be 

proposed in order to determine the most appropriate family of flow reconstruction method for each 

case study scenario. This algorithm will help to choose the best method to reconstruct flow values 

for both for Pre-Reservoir Construction Period (Pre-R) and Post-Reservoir Construction period 

(Post-R), depending on the availability of data and other factors. 

A new Kalman-based method will also be developed to reconstruct the flow data series using the 

“State Fusion” technique for the Pre-R period, when the only available data for an ungauged basin 

(with no flow measurements) comes from meteorological data, the neighbouring basins’ flow, and 

the simulated flow using a rainfall-runoff model. The results of this method will be compared to 

existing Area Ratio method, Maintenance of variance (Move) type III method, and Multivariable 

regression method using different Quality Indexes (QIs) that are designed for use on ungauged 

basins.  

For the period when the basin has been equipped with a reservoir, the use of a new Water Balance 

equation (WBE) based method will be considered to reconstruct and filter the daily flow data by 

using an optimization technique in situations when hydrometric data (i.e. turbine flow, water level 

in the reservoir, and discharged flow) have been collected for an ungauged basin. The developed 

optimization model will be able to minimize WBE errors and flow variation. This model will be 

automatized using a Deterministic and a Stochastic technique to intelligently select the parameters 

and not require human judgment. The results of this method are then compared to the classic WBE 

using different QIs that are designed for use on ungauged basins. 

The regional and temporal homogeneity of the reconstructed flow values are also assessed to ensure 

that coherence between the local flow and the regional flow, and the stationarity of flow 

characteristics of the basin are maintained during the sampling time period. 
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Finally, a Weighted Average technique will be used to calculate the final reconstructed flow series 

by combining the reconstructed flow values obtained from different methods. Also, the uncertainty 

of the final flow data series (Post-R) will be evaluated with the help of a suggested sensitivity 

analysis method. 
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GLOSSARY 

Flow: 

Flow is defined as the runoff caused by effective rainfall. Flow can be calculated using the classic 

Water Balance Equation (WBE) for a reservoir (as a closed system): 

 

Fn=qout,n - qin,n+ (ΔSn/Δt)         (i-1) 

 

where: 

qout,n…..=  the summation of outflow from the reservoir number n (Rn) during the 

sampling time period,  

qin,n      = the summation of inflow to reservoir number n during the sampling time 

period,  

ΔSn       =  the net change of storage volume in the reservoir number n during the 

sampling time period, 

Δt = the sampling time period 

Fn      = the unknown flow value caused by effective rainfall (which includes all the 

minor terms such as evaporation, direct rainfall, and interaction between 

surface water and ground water) to reservoir number n. 

As illustrated in Figure i-1, qin,n is equal to the regulated outflow from the upstream reservoir (if 

available), qout,n-1, which is the summation of turbine flow from the reservoir number n-1 (qtr,n 1) 

and discharged/spilled flow from reservoir number n-1 (qsp,n-1).  
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Figure i-1: Schematic of three reservoirs in series 

 

Ungauged basin: 

An ungauged basin (with or without a reservoir) is defined as a basin that does not have available 

or recorded river flow measurements or data. 

 

Uncertainty: 

“The component of a reported value that characterizes the range of values within which the true 

value is asserted to lie” (NDT resource center, 2014).  

(Note: In this project, the uncertainty in a flow data series could be caused from the uncertainty of 

the methods’ structure (WBE, optimization model, and etc.) and/or input data uncertainty)

 

Noise: 

Noise is defined as obvious uncertainty and expressed as the spurious variation exhibited in a data 

series. Usually a data series’ uncertainty cannot be detected by looking at data series’ graph; 

however, noise is visually distinguishable when data values are plotted on a graph.  

Fn+1 

Rn Rn+1 Rn-1 

Fn 

qtr,n qtr,n-1 

qsp,n qsp,n-1 

qout,n-1= qin,n 

qout,n= qin,n+1 
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In the work presented in this thesis, the flow data series are considered noisy, from a variation 

standpoint, when they clearly differ from the neighbouring basin’s flow and rainfall-runoff model’s 

flow. 

 

Automatic model: 

An automatic model is defined as a method which is independent from a human’s decision and 

uncertainty. Automatic models could act like a type of software which takes input data and 

produces one or more output data. Thus, the output values will not require manual modification. 

Like software, the parameters of the automatic model would change depending on case study 

scenarios. 
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CHAPITRE 1 INTRODUCTION 

  

1.1 Context of Thesis 

Locally and regionally reliable flow data series (pre- and post-reservoir construction period) are 

essential for the purpose of analyzing flow frequency, simulating hydraulic systems, predicting the 

flow, designing hydraulic structures, and undertaking other activities related to water planning and 

management. Poor flow data records, however, may exacerbate the uncertainty of water 

management. For example, a lack of reliable flow data values affects water allocation studies and 

may result in deficiencies in hydropower production, irrigating plans, etc. As well, unreliable 

knowledge about flow results in poor flow prediction, leading to a lack of proper preparation for 

possible floods or droughts, causing irreparable financial or human loss. These examples show how 

unreliable flow data series affect socio-economic aspects of people’s life and government’s 

services, directly and indirectly.  

The discussion of obtaining reliable flow data holds importance for Quebec (and for any other 

region with the same characteristic) as this province possesses 2 percent of all of the planet’s 

freshwater, with potential use for many purposes such as agriculture, tourism, hydropower, and 

industry. As an example, in 2006, the province of Quebec produced 205.661 TWh of 

hydroelectricity, while “the clear exports of electricity have been established at 6,3 TWh for the 

same year” (ROBVQ, 2013). In 2004, Canada was the fourth largest producer of hydroelectricity 

in the world, with Quebec producing almost 50% of the total hydroelectricity in Canada (ROBVQ, 

2013). Systematic management and usage of Quebec’s water resources are feasible only if reliable 

data (including flow) is available. Flow is not measured in many of the basins of Quebec (neither 

the period when basins did not possess a reservoir nor the time period when they are equipped with 

reservoirs) because of the vastitude of province and inaccessibility of many of the catchments. 

Therefore flow needs to be estimated with reasonable accuracy.  

A project was initiated by Hydro-Quebec entitled “reconstructing the flow data for ungauged basins 

of Quebec” in order to estimate the flow values of ungauged basins in Quebec. The project 

addressed the flow estimating methods for the Quebec’s basins where the flow is not measured. It 

was necessary for Hydro-Quebec to conduct this project because of the claim that more reliable 
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flow data increases the justification of water resource management and in turn will help the 

production of hydroelectricity by a considerable amount.  

The main topic of this PhD thesis is to study the methods of reconstructing and obtaining reliable 

flow data when they are not readily available. This research was conducted within the framework 

of the Hydro-Quebec’s “Reconstructing the flow data for ungauged basins of Quebec” project. The 

nature of the Hydro-Quebec’s project has always encountered shortfalls in the existing studies and 

the intention of this work is to address and resolve these inadequacies. Some of the shortfalls 

encountered are listed below: 

 

A) Lack of an algorithm to select the most appropriate family of the flow reconstruction 

method: 

There exist many different methods of flow reconstruction. Selecting the appropriate 

method in each time period depends on different factors. For instance, the following six 

factors should be considered when selecting a method for basins within the province of 

Quebec:  

 

1. Flexibility of method 

The data reconstruction method needs to be flexible enough to be applicable for all the 

basins in Quebec, as most of them are ungauged. 

2. Scale of reconstructed flow 

The main reasons for reconstructing flow data values are to improve the processes of water 

resource management, flow prediction, and risk management. These goals are achievable 

with long-term (historical and real-time1) daily flow data; therefore, flow reconstruction is 

required to be done on a daily and long-term basis. 

                                                 

1 Real-time data are the data related to the present time step. For example, the real-time daily flow is the flow of the 

current day. 
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3. Quality of reconstructed flow 

As flow data are used for short term flow prediction and management, high-quality flow 

data is required because it may be difficult to efficiently analyze flow series affected by 

noise disturbing the short/long term memory of flow data (as flow analysis methods are 

based on the memory and behaviour of data series in time). Flow noise results in uncertainty 

of sometimes millions of cubic meter of estimated flow volume each day 2.  

Also, high quality reconstructed flow data result in more efficient water resource planning 

and management in long term.  

(Note: both snowmelt and evaporation are factors that can affect flow data, especially in 

large basins and reservoirs. Thus, accounting for these factors may improve the flow 

reconstruction results) 

4. Applicability of method 

One important objective of flow reconstruction is to predict future flow values (usually a 

few days in advance), which is usually possible by knowing the real-time flow data 

(predicting flow data is out of the scope of this study). Thus, any method employed should 

be applicable to both historical and real-time data. 

5. Data availability 

The flow reconstruction method should be selected based on available data. As most 

watersheds in Quebec are ungauged, the measured data obtained are limited to: 

- Pre-Reservoir (Pre-R) Period: the flow data series measured in neighbouring basins to 

that of the studied basin (few neighbouring basins), and hydrologic data (including daily 

rainfall, daily minimum temperature, daily maximum temperature, daily temperature, 

and daily snowfall) of the studied basin.  

- Post-Reservoir (Post-R) Period: the flow data series measured in neighbouring basins 

to that of the studied basin, hydrologic data (including daily rainfall, daily minimum 

                                                 

2 For example, 15 m3/s of flow noise is equal to (15*24*3600 = 129600) 129600 m3 of uncertainty in volume of flow 

during a day. 
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temperature, daily maximum temperature, daily temperature, and daily snowfall) of the 

studied basin, as well as reservoir related data of the studied basin such as water level 

on the upstream and downstream side of the reservoir, gate openings, and produced 

electricity. These reservoir data have been used by Hydro-Quebec to calculate turbine 

flow, discharged flow and reservoir volume.  

Thus, the flow reconstruction method may be different for Pre-R and Post-R time periods. 

Also, it is preferable to include as much data as possible in the flow reconstruction process 

because they empower the flow estimation values by taking into account different aspects 

of this topic.  

(Note: Hydro-Quebec already used hydrologic data to simulate flow using a Rainfall-

Runoff (RR) model. The results of this simulation are available for both Pre-R and Post-R 

periods.) 

6. Quality of input data 

7. It is known that the quality of input data affects the results of the flow reconstructing 

method. Therefore, available hydrologic data and neighbouring basin’s flow data must be 

of high quality and reliability. On the other hand, reservoir related data (including turbine 

flow, discharged flow, and reservoir volume) prior to 20053 (considered as raw data) may 

contain uncertainties and noises during certain time periods. 

 

The fundamental topic of developing a flow reconstruction and validation method for 

ungauged basins in Quebec that considers these six factors has always been a constant 

debate. However, there is no research results available on how to select the appropriate 

                                                 

3 For the years after 2005, the water level on the upstream and downstream side of the reservoir, produced electricity, 

and system’s characteristics are validated, and thus, the calculated discharged flow, turbine flow, and storage volume 

data for post-2005 are more reliable. However, before 2005, discharged flow, turbine flow, and storage volume data 

taken from Hydro-Quebec data base are calculated based on non-validated measured data. It means that these data are 

raw and they may contain noise and/or outlier.  
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method of flow reconstruction that puts into consideration the different aforementioned 

factors that affect choice of method for the province of Quebec (Question # 1). 

 

B) Lack of a flexible methodology in reconstructing reliable daily flow data series:  

During the past few decades, a lot of effort has been devoted to reconstructing plausible 

flow data series that can be used to validate flow data, and to estimate the uncertainty of 

hydraulic systems in Quebec (i.e. Perreault et al. 1996, Bennis et al. 1994, Bennis and Kang, 

2000, and Haché et al. 2003). Some of these studies are listed below: 

- Bisson and Roberge (1985) developed a rainfall-runoff (RR) model to simulate flow in 

the basins of Quebec; however, this model usually underestimates peak flows.  

- Charbonneau and Berube (1987) and Berrada et al. (1996) proposed separate methods 

to remove noise from flow data series (filter flow data series) that were calculated using 

WBE; but ultimately, because these methods required knowledge of future data, they 

could not be used in real-time situations. 

- Perreault et al. (1995) suggested a procedure to improve flow data series by combining 

the results from rainfall-runoff (RR) model, WBE, and neighbouring basin’s filtered 

flow (reconstructed flow using their suggested method which has been applied in a 

nearby basin). However, this method may overestimate the cumulative amount of flow 

for a period of certain number of days (Nguyen and Bisson, 1998).  

- Nguyen and Bisson (1998) suggested a regression and exponential smoothing technique 

to solve the problems of the Perreault’s model (1995). In their method the validated 

flow for each day is regarded as an exponential function of previous days’ flow. This 

method is acceptable when data are stationary; in reality, a more appropriate method is 

required to take into account seasonality effects on flow. Moreover, it would be 

preferable to calculate a more accurate flow data series by filtering the Water Balance 

equation (WBE) series using all available flow data of basin (such as flow from RR 

model and neighbouring basin, etc.). 

- Lastly, Hydro-Quebec currently uses a method that adopts a mostly manual procedure 

for calculating and filtering flow data values. In this method, flow values are calculated 
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using WBE and then modified by taking into consideration regional and temporal 

analysis. However, the results obtained using this method may be affected by human-

caused uncertainties and misjudgments, requiring a method that eliminates human error. 

- Thus, Perreault (2011) suggested a WBE based optimization model (POM) which is 

independent from human judgment. This model reconstructs and filters hourly flow data 

series and attempts to minimize the variation of flow data and WBE errors (this model 

is described in more details in Chapter 2). Despite the fact that POM is successful in 

reducing noise and removing unrealistic values, it still has some deficiencies and 

problems. For example:  

(1) this method is dependent on volume data of 5-minute intervals (not applicable 

when data of 5-minute intervals are not available),  

(2)  it is only applicable for an hourly time scale, 

(3)  the parameters of this model are constant during the time and space,  

(4)  this model does not take into account available data from rainfall-runoff model 

and neighbouring basins to improve results, 

(5)  results are still susceptible to noise, especially for low flows.  

All of the studies mentioned above were important steps towards enhancing the knowledge 

of flow data series in the province of Quebec. Nevertheless, all of the methodologies 

developed for ungauged basins in Quebec (except for the developed RR model by Bisson 

and Roberge, 1985) were based on WBE, and thus, only applicable for Post-R period when 

the input data of WBE (turbine flow, discharged flow, and reservoir volume) are available. 

However, reconstructing daily flow data values for Pre-R period has remained almost 

unexplored. Knowing the values of flow for Pre-R period is helpful in that it provides a 

more comprehensive understanding of historical flow data, which helps to perform more 

reliable flow analysis. Accordingly, the second question is how to reconstruct daily flow 

for Pre-R period (Question # 2).  

Even for the Post-R period, none of the research mentioned above provide a flexible 

methodology to reconstruct and validate reliable daily flow data series that is independent 
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of human decisions. This gives rise to an interesting question of how to reconstruct more 

likely values for daily flow for Post-R period (Question # 3). 

 

C) Lack of criteria to evaluate the quality of the reconstructed flow in ungauged basins:  

An important topic related to the flow reconstruction studies is how to assess the 

performance of flow reconstruction methods. Usually, researchers would apply one or two 

quality indexes (QIs) to evaluate reconstructed data series (e.g. Mean Square Error by 

Gupta et al. (2009), temporal or spatial correlation coefficient, and Nash-Sutcliffe 

Efficiency by Johnston et al. (2009)). These methods adopt different techniques when 

comparing the reconstructed data with a measured data series. However, the topic is more 

challenging when there is no measured data series that can be used as reference data (same 

as current study). In the research mentioned above which applies to Quebec, traditional QIs 

were used in the comparison of reconstructed flow data with existing filtered flow series 

(the mostly manually filtered flow series are available in Hydro-Quebec’s database). As the 

filtered flow values are less reliable prior to 2005 (as the input data may contain 

uncertainties before 2005), it will be advantageous to design a few different QIs to evaluate 

the quality of the reconstructed flow values that are independent from filtered flow values. 

This challenge raises the questions of how to evaluate the quality of the reconstructed flow 

data series for ungauged basins (Question # 4). 

 

D) Lack of a methodology to analyze the uncertainty of reconstructed flow in ungauged basins: 

Another indispensable element related to hydrological studies (aside from flow data 

reconstruction) is uncertainty analysis. There are many different methods available to 

evaluate different types of uncertainty. For instance, Generalized Likelihood Uncertainty 

Estimator (GLUE), Markov Chain Monte Carlo (MCMC), and most existing sensitivity 

analysis methods are used to define the parameter of uncertainty. The Bayesian model is 

also another method which factors in uncertainty in input data, output parameters, and the 

model’s structure (Yang et al. 2007). Most of the existing methods are dependent on the 

measured data. Therefore, it is still a challenge to find out how to evaluate the uncertainty 

of flow data in ungauged basins (Question # 5).  
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As the previous researches could not find answers to the above mentioned questions (Questions # 

1-5), the goal of this study was to find solutions to these questions. In fact, the mentioned questions 

formed the base of the objectives of this thesis. 

 

1.2 Motivation 

The driving force in finding solutions to the questions mentioned above (as explained in section 

1.1) were because of the importance of this topic, coupled by a lack of the following tools for our 

research: 

 an algorithm to select the most appropriate family of flow reconstruction method 

considering different factors,   

 a flexible methodology to reconstruct daily flow data series for Pre-R period, 

 an automatic flexible method (independent from a human’s decision and uncertainty) for 

Post-R period, 

 the indexes to evaluate the quality of reconstructed flow in ungauged basins, and  

 a methodology to analyze the uncertainty of reconstructed flow in ungauged basins. 

The desire to find solutions to the above questions also enhanced the desire of taking the next step 

towards reaching the final goal; the ability to estimate more reliable flow data series for ungauged 

basins of Quebec. 

 

1.3 Objectives 

The general objective of this research is to develop a method to obtain daily flow values for 

ungauged basins in Quebec for both Pre-R and Post-R periods. To attain this primary objective, 

five secondary objectives had to be completed in the course of this research. These include (Figure 

1-1): 

a) Introducing an algorithm for selecting the most appropriate family of flow reconstruction 

methods in each case study (Pre-R and Post-R periods).  



9 

 

The motivation for this came from the fact that currently there is no completely recognized 

methodology available to help researchers in selecting an appropriate method of flow 

reconstruction. This objective aims to find the answer to Question # 1 mentioned in Section 

1.1. The developed algorithm based on this objective should consider all the 6 factors 

mentioned in Section 1.1 that affect the selection of flow reconstruction method in the area. 

According to the suggested algorithm, WBE based methods and regression based methods 

are the most appropriate family of flow reconstruction methods in the current case-study 

for Post-R and Pre-R periods, respectively. 

b) Evaluating the performance of existing methods of flow reconstruction, and defining the 

weaknesses in them. 

Before developing a methodology for flow reconstruction, it is necessary to assess the 

capabilities and weaknesses of the existing flow reconstruction methods that are currently 

being used.   

c) Developing an optimization method based on Kalman filter4 as a tool to combine the 

available data and produce flow values for Pre-R, and an automatic WBE based model to 

reconstruct daily flow for Post-R periods. 

This objective was formed to develop a flexible regression based methodology for the Pre-

R period, and an adjustable automatic WBE based model for Post-R period. This objective 

addresses Questions # 2 and # 3 mentioned in Section 1.1. 

d) Designing criteria applicable to ungauged basins in order to evaluate the performance of 

developed methods. 

After reconstructing the flow data series, an assessment of the data quality is required. This 

objective was designed to address Question # 4, mentioned in Section 1.1. 

e) Evaluating the uncertainty of the reconstructed flow in ungauged basins. 

                                                 

4 It is called Kalman filter based method in this thesis. 
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It is always helpful to define the confidence level of estimated data series. This objective 

was designed to analyze the uncertainty of flow data series and respond to Question # 5, 

mentioned in Section 1.1. 

 

1.4 Content of Thesis 

The content of this thesis is summarized in Figure 1-1: 

- Chapter 1 provides an introduction to the subject, problem, motivation, and the objectives. 

- Chapter 2 gives a literature review of the different methods and models of flow reconstruction 

for Pre-R and Post-R periods, existing methods of quality evaluation, and techniques of 

uncertainty analysis.  

- Chapter 3 explains the case study presented in this thesis. This chapter discusses the available 

data and information for the area, as well as the quality of this data. In this research, the 

methodology and the result are divided into a few sub-methodologies and sub-results related 

to Pre-R and Post-R periods because the results of each sub-methodology define the approach 

of next step. The sub-methodologies and sub-results are presented in Chapters 4, 5, 6 and 7. 

Therefore, the case study is presented before them in Chapter 3. 

- Chapter 4 introduces an algorithm that helps to select the most appropriate family of flow 

reconstruction method to different scenarios, with consideration to the applicability, 

advantages and disadvantages of reviewed methods in Chapter 2. This algorithm factors in all 

determinative parameters that can affect the selection of appropriate methods of flow 

reconstruction. It is then applied and tested in our case study. This algorithm and the results of 

its application to the case study are presented in this chapter to fulfill Objective a, and provide 

answer to Question # 1, stated in Section 1.1. The content of this chapter has been submitted 

to Canadian Water Resource Association (CWRA) in 2013 in the form of a journal paper. The 

submitted version of this papers is presented in appendix 1. 

- Chapter 5 suggests a methodology for reconstructing daily flow for the Pre-R period (satisfying 

Objective c and answering Question # 2). This method is then applied in our case study and 
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the results are then compared to those of a few existing methods. The comparison is done using 

visual graphs with a few suggested QIs.  

- In Chapter 6, several existing methods of flow reconstruction (classic WBE and POM) for 

Post-R period will be first assessed (Objective b). Then, an optimization model will be 

developed based on POM. Lastly, a sensitivity analysis will be done on the optimization 

method to evaluate the authenticity of its assumptions and the necessity of improving them.  

Then, the developed methodology for automatizing the suggested optimization model for Post-

R period will be explained (achieving Objective c and answering Question # 3). A few QIs 

that are applicable to ungauged basins are then introduced to evaluate the reliability of 

reconstructed flow values and compare the results with classic WBE. A methodology will also 

be presented to evaluate the regional and temporal homogeneity of the flow data series 

(Objective d). A methodology for analysing the uncertainty and defining the range of 

reconstructed flow is presented in this chapter to fulfil Objective e.  

Chapter 7 will present the results of applying all the presented methodologies in Chapter 6 to 

a case study. 

Chapters 5, 6, and 7 will provide answers to Questions # 4 and 5 mentioned in Section 1.2. 

The content of these chapters has been published in the form of two journal papers at Journal 

of Hydrologic Engineering (ASCE). The accepted version of these papers are presented in 

appendices 2 and 3. 

Finally, conclusion and recommendations are presented at the end of the thesis. The limitations of 

developed methodology in this thesis are also listed in this section. 
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Figure 1-1: Schematic of thesis 
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CHAPITRE 2 LITERATURE REVIEW 

2.1 Introduction 

In this chapter, a general literature review is presented on different flow reconstruction methods 

available for Pre-R and Post-R period. This is followed by a summarized explanation of the existing 

methods for data series evaluation including QIs, recent methods used to assess stationarity and 

regional homogeneity of flow data series. A literature review is also presented on the available 

methods used to analyse the uncertainty found in flow data series. 

 

2.2 Flow Reconstruction 

In the past several years, many different methods and models have been developed to simulate or 

extend flow data in gauged or ungauged basins. In this chapter, these methods are grouped in three 

main categories based on their approach to simulate flow:  

 hydrologic methods,  

 hydraulic methods,  

 and regression-based methods.  

The applicable flow reconstruction methods may be different for Pre-R and Post-R period because 

the available data, information, and the basins’ condition, are usually different for these two time 

periods. The categories of flow reconstruction methods (hydrologic, hydraulic, and regression-

based methods) which can be applied for each Pre-R and Post-R period are explained in the 

following section.  

 

2.2.1 Pre-R Period 

In the case of basins without a reservoir (Pre-R period), hydrologic data, climate data, and/or 

catchment characteristics can be measured. Thus, hydrologic or regression based methods, which 

depends on these types of data, may be used for flow reconstruction. 
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2.2.1.1 Regression based methods 

Regression-based methods are those developed based on a mathematical relationship between the 

flow of the study basin (as a dependent variable) and independent variables from the same or the 

neighbouring basins. These methods are simple and fast to use (Rezaeianzadeh et al. 2013). 

An example of a regression-based methods is one that estimates the flow data of the interested sub-

basin using available flow data of the main basin. For example, there exists one method that 

calculates the stream flow of an ungauged sub-basin by relating the ratio of the slope and area of 

that sub-basin to those of the main basin (Schreiber and Demuth, 2002).  

When flow data of neighbouring basins are available, a logarithmic relation (logarithmic scaled 

data helps to obtain residuals that are approximately symmetrically distributed around zero) can be 

developed between the flow data characteristics of the neighbouring basins and applied to the basin 

of interest (using regression method in space). For example, Jones et al. (2004) applied a 

regression-based method to relate the logarithmic values of measured river-flow to linear 

combinations of soil moisture and effective precipitation. They then applied this regression 

equation to the ungauged basin of interest to calculate the flow data series. Also, Wen (2009) tried 

to reconstruct flow by relating the discharge time series to rainfall and maximum temperature. 

Hughes and Smakhtin (1996) explained that a potential method of extending the flow of a basin of 

interest would be to simply weight the observed streamflow values of one or more neighbouring 

gauged basins by the ratio of the catchment area of the basin of interest to the area of the gauged 

neighbouring basins. The problem with this method is that the flow values of adjacent basins are 

rarely linearly related to the catchment area of the basin of interest as they may have different 

hydrology and morphology. Also, it is possible to have a trend of non-stationarity in the actual 

stream flow data series at the sites or stations used for interpolation (Hughes and Smakhtin, 1996). 

Thus, it is not recommended that flow values of neighbouring basins be directly transferred to the 

flow characteristic of a basin of interest.  

A regression method can also be developed based on the available short-term data of a basin and 

used to extend the flow series over a whole time interval (regression method in time) of that basin. 

Simple regression between a basin’s short-term flow data series and the long-term flow data series 

of a nearby basin (Hernandez-Henriquez et al., 2010, Dastorani et al. 2010) exemplifies this type 

of regression based method. In a case study by Taylor et al. (2006), they developed a statistically-
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linear model based on regression of rainfall and short-term runoff data. Since the complete rainfall 

data were available for their case study, a regression based method was applied to extend flow data 

over the whole period.  

Maintenance of variance (Move) is another regression-based method for data reconstruction that 

preserves both mean and variance, and therefore works better than the linear-regression method 

(Koutsoyiannis and Efstratiadis, 2007). The Move technique reconstructs flow based on a linear 

regression (𝑦�̂� = 𝑎 + 𝑏𝑥𝑖) in which the variables a and b were calculated in a special way (Moog 

et al. 1999). For example, Move.I and Move.II (Hirsch, 1982) reproduce the same first and second 

moments when they generate the entire sequences of 𝑦�̂�, where i=1,...,n1+n2 (n1 is the length of the 

short record and n1+n2 is the length of the long record), compared to historical samples. However, 

in practice, Move is used to generate 𝑦�̂� with i= n1+1,...,n1+n2 (Vogel and Stedinger, 1985). Thus, 

Move.I and Move.II did not achieve its intended objective. This problem was resolved with the 

development of Move.III (Matalas and Jacobs 1964).   

In general, regression based methods have few independent variables and usually do not take the 

physical characteristics or dynamics of a system into account. This reduces data authenticity, 

especially when they are used to reconstruct or extend short time-step and long-term flow values. 

Thus, it is more reliable to apply the hydrologic models that use both the hydrological and the 

physical data (such as characteristics of the catchment) for reconstructing flow data values. 

 

2.2.1.2 Hydrologic methods 

Hydrologic models use hydrologic data or climate data5 (Hwang et al. 2005) to calculate the flow.  

Different studies have been undertaken to develop a relationship between the flow and climate 

signals in order to identify the predictability of flow or possibility of a non-random pattern in space 

or time (Fortin, 2001) and in most cases, a significant statistical link has been observed (Fortin and 

Slivitzky, 2000). Fortin (2001) found that climate has an obvious influence on runoff; he evaluated 

                                                 

5 In this thesis, ‘hydrologic data’ is referred to data such as precipitation, temperature, evaporation, and etc., but 

‘climate data’ includes climate signals such as sea level pressure (SLP), sea surface temperature (SST), and etc. 
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the reliability of different climatic indices to see if there was a non-random pattern in space or time, 

and identified a statistically significant link between Arctic Oscillation (AO) and runoff in northern 

Quebec. However, the correlation was found at times to be caused by extreme climate conditions. 

According to Fortin and Slivitzky (2000), river flow often correlate well with the winter 

temperatures, suggesting that winter temperature could be an indicator of how the regional climate 

is affected by the global phenomenon of AO. But while the performance of climate-based flow 

reconstruction methods is good in some areas, some questions remain as to their level of 

confidence. 

RR models are the main group of hydrologic models that are most often used to estimate runoff in 

time and space. They can estimate runoff at different time-steps in different hydraulic systems and 

land uses, given that limited measured flow data is available in order to calibrate the model. RR 

models can range from a simple relation between rainfall and runoff to complex models that also 

consider the hydrologic and physical characteristics of a region.  

Examples of RR models are Thornthwaite-Mather (TM) for calculating monthly flow (e.g. Taylor 

et al. 2006), StormNET for calculating daily or even smaller timescale flow (e.g. Karamouz et al. 

2011), and the Wright model to calculate mean monthly or daily flow (Adeloye and Nawaz, 1998).  

Hydrotel is another RR model developed in the mid-1980s in Quebec and has been used extensively 

in this province for its ability to factor in the area’s meteorological condition by considering snow 

packs and snow melt. Hydrotel is a physically-based distributed hydrological model that can be 

run for hourly to daily time steps. In this model, spatial variations in watershed characteristics are 

taken into account using GIS and remote sensing data (Fortin et al. 2006). However, when only 

meso-scale grid data are available, high resolution data should be calculated from standard 

meteorological station data using a disaggregation model. In addition to downscaling, calibration 

is another inconvenience of Hydrolet because it is very time consuming. 

HSAMI is another RR model developed by Bisson and Roberge (1985) to simulate the hourly or 

daily flow series values in Quebec’s watersheds. HSAMI is a linear reservoir-based lumped 

conceptual hydrological model which uses a watershed as a transfer function, whereas the 

meteorological conditions are used as input data, and has as its output the flow values at the outlet 

of the catchment. The parameters of this model include five data categories: evaporation, vertical 

flow (such as rainfall), horizontal flow (such as upstream flow), surface runoff and snow. It has 
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been used for daily forecasting of natural inflows on 84 watersheds, with surface areas ranging 

from 160 to 69,195 km2” (Minville et al. 2010). However, HSAMI does not take the effects of 

reservoir on flow into account.  

Generally, RR models (with linear and nonlinear functions) can be classified into three distinct 

groups: metric (data-based, empirical or black-box), parametric (conceptual, explicit soil moisture 

accounting or grey box), and mechanistic (physically-based or white box) (Wagener et al. 2004). 

However, their usage is mostly restricted only to gauged basins, provided that there is flow data 

available (even for limited period) to calibrate the model.  

Metric models commonly use basin data series (rather than the catchment behaviour) and flow to 

estimate model structure and parameter values, and as a result, this model is seemingly unsuitable 

for spatial extension of data in ungauged basin. The limitation of metric models is partially resolved 

by data-based mechanistic models that “constrain the degree of freedom of such models to those 

structures that are physically interpretable” (Wagener et al., 2004). Examples of metric models are 

the Artificial Neural Network (ANN) and Transfer Functions. 

“Parametric models have a structure (defined by the modeller’s understanding of the hydrological 

system) that is specified prior to use” (Wagener et al., 2004), and is required to be calibrated to 

adjust to parameters that cannot all be measured independently. As a result of their dependency on 

flow parameters, parametric models are not easily applied to ungauged catchments. Mechanistic 

rainfall-runoff models attempt to relate the model parameter with catchment characteristics to avoid 

calibration; however, this has not been completely successful (Wagener et al., 2004). Other 

attempts have been made to make the RR models applicable for ungauged basins by 

regionalization. In this method, the RR model is calibrated for as many basins as possible and the 

estimated parameters are then transferred to ungauged basins. Theoretically, this method should be 

simple enough to keep the uncertainty low, along with the number of parameters, but unfortunately 

it fails to capture flow behaviour with a reasonable degree of accuracy (Wan Jaafar et al. 2011 and 

Madsen, 2000).  

Many studies have used regional calibration to simulate low-flows (e.g., Vezza et al. 2010, 

Schreiber and Demuth, 1997), floods (e.g. Eslamian, 2010, Wan Jaafar et al., 2011), and continuous 

flow (monthly, seasonal, and annual) data series (e.g. Singh and Singh 1996, Özçelik and 
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Benzeden, 2010). However, the approach to reconstruct continuous flow (such as daily) is rarely 

used (e.g. Kokkonen et al. 2003).  

Generally, different criteria should be considered for selecting the appropriate RR model in each 

case study (Vaze et al. 2011). The most important of these criteria is the availability of data that 

will act as input data of model. Model selection also depends on the area climate; for example, if 

snowmelt, evaporation, or groundwater are important, the model should be able to take into account 

their effects. For instance, in cold regions with large snow loads, it is necessary to account for 

snowmelt in the flow estimation (Kim and Kaluarachchi, 2013). Land use also is another important 

factor that impacts the selection of RR model. For example, SWAT is mostly used to simulate the 

flow in rural basins (Simic et al. 2009) and StormNET (Boss International, 2005) is more efficient 

flow simulator in urban areas.  

The main disadvantage of the RR models is that they most often need to be calibrated, which 

introduces some difficulties. Firstly, the flow data which are required in order to calibrate the model 

are not always available for ungauged basins. Secondly, model calibration is time consuming when 

flow must be estimated for several basins, as the calibration process must be repeated for each 

basin separately. As well, model calibration always introduces uncertainties if it is done manually.  

 

Selecting among the families of flow reconstruction methods (regression based methods, 

hydrologic methods) explained in Sections 2.2.1.1 and 2.2.1.2, depends on many different factors 

such as data availability, expected model flexibility, expected data output reliability, etc. At this 

point in time, there isn’t an algorithm that helps one to select the appropriate method considering 

these factors. This problem brings up the question of how to select the appropriate method of flow 

reconstruction considering different mentioned factors that affect the method selection in each case 

study. The same issue is recognized for Post-R period as well. 

Another concern is that there are no recognized methods that are reliable enough to estimate flow 

data for Pre-R period in ungauged basins. Hydrological methods require model calibration, and 

thus cannot be used in ungauged basins due to lack of available data. The reliability of regression 

based methods is also decreased through increasing the time step. Accordingly, the second question 

is how to reconstruct daily flow for Pre-R period in ungauged basins in Quebec (or any other areas 

with similar conditions).  
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2.2.2 Post-R Period 

Hydrologic data, climate signals, catchment characteristics, and/or reservoir’s data could be 

available for the basin during the Post-R period. Thus, hydrologic, regression based, or hydraulic 

method, which depends on these same data, may be applicable for flow reconstruction in this 

period. 

 

2.2.2.1 Regression based methods 

Regression based methods were explained earlier in Section 2.2.1.1 and are presented here only to 

emphasize the fact that they can be also applied to reconstruct flow for Post-R period if required 

data are available. 

 

2.2.2.2 Hydrologic methods 

Hydrological based methods were explained earlier in Section 2.2.1.2 and is presented here only 

to emphasize the fact that they can be also applied to reconstruct the flow for Post-R period if 

required data are available. 

 

2.2.2.3 Hydraulic methods 

Hydraulic models are those based on the water cycle rule. One of the most common hydraulic 

model used in flow data reconstruction is the classic WBE (Equation i.1) for a reservoir which uses 

regulated flow data of the given reservoir to estimate the flow data. This equation is as follows: 

Included in calculated flow values (F) of this simplified WBE is the amount of precipitation over 

the reservoir surface (P) and evaporation (E) from the reservoir during the time (Δt), as well as the 

interaction (Int) between stored water in the reservoir and groundwater. If enough information is 

available for these variables, they can be separated from flow. Note that the hydrograph of input 

flow to the downstream reservoir is not exactly the same as that of the outflow from the upstream 
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reservoir (Das and Saikia 2013). In such cases, the flow routing equation should be used to calculate 

the downstream flow hydrograph in order to increase the likelihood of obtaining reliable results. 

For example, Smithers et al. (2001) used the Muskingum technique to route flows in river reaches 

of the Sabie River catchment in South Africa.  

The WBE can be also applied to basins or rivers. Sokolov and Chapman (1974) describe a few 

forms of WBE and provide good information about the main components. They reported that by 

factoring in variables such as infiltration, evaporation (e.g. Guntner et al. 2004) and interaction 

between groundwater and surface water during the year (when seasonal changes can affect these 

variables), WBE will yield more accurate results, albeit that these variables are somewhat difficult 

to account for. 

The great advantage of using the WBE method is that it does not need to be calibrated, allowing it 

to be used for ungauged basins as well. WBE is an easy and fast method which can be easily used 

to calculate real-time flow data. Moreover, factors such as snowmelt or evaporation can easily be 

considered in the equation if they are available. Unlike other flow reconstruction methods, the 

results of model will not be affected by model uncertainty and it will produce reliable results in 

cases where the input data for WBE are of acceptable quality. This model can be used for either 

long time step (monthly, seasonally) or short time step (daily) reconstruction, though it is mainly 

used for long step reconstruction. 

Several studies have been conducted in Quebec to reconstruct and filter flow series. Figure 2-1 

shows the hierarchy of developed flow reconstruction methods in the province. Most of these 

methods have been developed based on WBE as it is an easy and fast method that does not require 

model calibration (which is a great advantage for ungauged basins). Since the results of this method 

are highly affected by the quality of input data, they may include significantly noisy or unrealistic 

(negative) values. Thus, validating and filtering the flow data series has been always a concern in 

this area. For example, Charbonneau and Bérubé (1987) proposed a frequent filter based method 

for removing noise from flow data series calculated with WBE. This model cannot be used with 

real-time data because it depends on the future water level of the reservoir. It also underestimates 

the peak flows because it does not take into consideration short term variations in water levels. 

Berrada et al. (1996) evaluated the performance of several filtering techniques to validate the 

historical hydrometric data and found that all these methods cannot be used for real-time because 
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they necessitate having pre-knowledge of future flow value. Also, filtering methods underestimate 

peak flow values as they do not recognise noise affected data inputs from local peaks.  

Therefore, the idea of combining the results of WBE with other data series such as flow from RR 

model was introduced as an alternative solution. For instance, Perreault et al. (1995) proposed a 

procedure that depended on the combination of results from HSAMI, WBE, and neighbouring 

basin’s filtered flow (reconstructed flow using their suggested method in a nearby basin). The 

approach is based on combined forecasts from two multiple regression models for daily flow 

estimation. The two applied models are the spatial and the temporal models, and their weights are 

function of the squared residuals. It appears that this methodology gives good results, which 

constitutes a considerable improvement in comparison with classical models and real-time 

estimation methods. This method also does not underestimate peak flows, a necessity for superior 

water resources management. However, it may overestimate the cumulative amount of flow for a 

certain number of days (Nguyen and Bisson, 1998). Also, the suggested methodology to reconstruct 

the flow values in each basin depends on the reconstructed flow in neighbouring basins, which may 

lead to an increase in the uncertainty by using this method. Implementing the suggested method by 

Nguyen and Bisson (1998) mitigates these problems as their method is based on regression and 

exponential smoothing techniques. With this method, the validated flow for each day is regarded 

as an exponential function of the previous days’ flow. However this method is not acceptable for 

non-stationary data, which requires a more appropriate method that take seasonality into account.  

All these studies resulted in a procedure which is presently used in Quebec (primarily by Hydro-

Quebec) for calculating and validating the real-time flow based on the classic WBE. This procedure 

requires a daily manual task to be performed on all basins in Quebec for every day of work (or 

every day during the critical periods such as spring floods, strong rain events, or intense low water). 

How daily flow estimates are being calculated in Quebec is summarized in the following steps:  

1- Manual validation of all input data to flow calculations (water level, gates’ opening, produced 

electricity, etc.). 

2- Calculating flow using classic WBE. 
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3- Visualizing climate- flow using the data generated and evaluating regional and temporal flow 

consistency, basin by basin (21 days prior values by default), after which the flow is modified 

or filtered if necessary6.   

a.  Raw and filtered flow for the last days, and predicted flows for the next days. 

b. Minimum, maximum, and average daily weather series of temperatures, rainfall and 

snow in the basin.  

c. Weather data from nearby stations.  

d. Flow data of nearby rivers. 

4- Analysing the accuracy of flow according to the following considerations and filtering them 

(if necessary): 

a. Checking the acceptability of flow values compared to the usual raw data (check if 

there is excessive variation, medium jump and change, low variation, etc.). 

b. Comparing the specific flow values with that of neighbouring basins. 

c. Verifying the magnitude of evapotranspiration when flow data have doubtful 

coherency (if necessary). 

d. Considering the effect of wind on the variation of water levels variation and the flow 

calculation (if necessary). 

e. Evaluating the effect of direct rainfall over the reservoir surface on the flow 

calculation (if necessary). 

f. Evaluating the effect of maneuver disorders on outflow from the reservoir and the 

flow calculation (if necessary). 

g. Considering the effects of the upstream reservoir’s variation on the downstream 

reservoir’s flow and the flow calculation (if necessary). 

h. Considering the effect of ice cover on the water level and the flow calculation (if 

necessary). 

                                                 

6 Decision about the necessity of performing any of optional steps is always made by the engineer who is conducting 

the process of flow filtering. Sometimes the engineer may believe that the estimated flow is highly affected by other 

factors and it is “necessary” to take them into account. There is no specific rule that can be used to provide clarification 

to the users if some step is necessary or not 
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i. Rejecting or accepting the calculated flow for the last week and/or last month based on the 

similarity of net calculated flow and net flow from WBE during this time period. 

5- Determining if there is a need to modify the filtered flow data series of the previous days by: 

a. Preferably, filtering the flow values subjectively with consideration to the following 

factors: 

i. The anterior form of basin’s hydrograph in the same hydrologic condition. 

ii. The shape of the hydrograph given by the hydrological model (HSAMI).  

iii. Peak specific flow of neighbouring basins. 

b. Trying to respect the average raw flow of last days (or if is impossible last month). 

 

6- Secondary overall work would be done once yearly, (i) to "refine" the processing steps and 

(ii) adjust any corrections that may have been carried out on the raw data during the year. 

7- Recording any problematic basins once a year (the basins where the official flow of Hydro-

Quebec is not the calculated flow but the filtered flow). 

8- Repeating the procedure for validating and filtering the flow after the historical flow 

recalculation. 

 

The mostly manual filtering procedure produces a smooth and realistic data series. However, it 

does contain some limitations and problems, some of which are listed below: 

 Time consuming: This method requires considerable time and effort each day. 

 Human-caused uncertainties: most of the steps in the manual flow filtering process require 

human decision making, and thus, it is likely that mistakes may occur due to misjudgments. 

The values of the filtered flow depend on the judgment of the engineer calculating the flow, 

which may lead to different engineers giving differing flow value for the same day. This is 

an obvious source of uncertainty. Also, some steps in this filtering process (such as steps 

4.c to 4.h), are performed only if deemed necessary. However, one engineer may consider 

them important for the recording day while another may see the same steps as unnecessary 

for the same day. More reliable estimations of flow values require people with greater 

experience on deciding which factors will be considered into the flow calculations. With 
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inexperienced employees, the uncertainty of the filtered flow series could increase due to 

the lack of experience in calculation judgment calls.  

 Debateable and/or insufficient information: Post-2005, the action of validating input data 

and the filtered flow values became a required daily task. However, for periods that were 

prior to 2005, the input data may contain uncertainties, putting into question the reliability 

of mostly manually filtered flow data. But if one were to filter the input data and use the 

same described mostly manual procedure for reconstructing and filtering the flow series 

values for the time period before 2005, a lot of accurate daily information and data would 

be required for this task, which is not always readily available for that period. Values such 

as historical water level, turbine flow, and spilled flow data series (pre-2005) contain a large 

amount of noise for some time periods and there is not enough information to efficiently 

filter them.  

Therefore, a flow filtering method independent from the human decision-making and experience 

was missing for the time period after reservoir construction in Quebec. Thus, Perreault (2011) 

suggested an optimization model which reconstruct and filter flow series values by minimizing the 

variation of flow values and the WBE’s errors. His model is explained in details in the following 

section. 
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Figure 2-1: The hierarchy of developed methods for flow reconstruction and filtering in Quebec  

 

2.2.2.3.1 Suggested method by Perreault (2011) for flow reconstruction 

Perreault (2011) suggested a WBE-based optimization model (POM) to estimate hourly flow. POM 

uses the classic WBE to define the values of flow. At the same time, it tries to minimize WBE error 

and the flow variations from one hour to the next. The quadratic objective function of this 

optimization model is expressed by Equation 2.2: 
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where: 

)inf(nE and )sup(nE  =  WBE’s error during the nth hour 

Z(n) and  (n)     = Flow variations over 2 and 3 consecutive hours, respectively.  
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In this equation, infE , supE , Z, and  are variables in m3/s (range of these variables are defined in 

Equations 2.11 to 2.13), and c, p, q,  , and time interval of dn=1+end hour-start hour represent 

the model’s parameters (which are set as dn=3, p= q=  =1, and c=10000 in winter and c=1 in rest 

of the year of corresponding period)  

Equation 2.2 tries to minimize the summation of squared errors (
2

infE and 2

supE ) and of the 

variations (Z and  ) for a time interval with the length of dn (the optimization window). In this 

equation, dn is the number of days for which the model is solved (or the length of the optimization 

window in which the WBE is solved). That is, the whole period is divided into several time periods 

with the length of dn, and POM is being solved for each dn hour.  

For instance, as it is shown in Figure 2-2, a sample year (8760 hours) is divided into time periods 

with the length of 3 hours (dn=3). Thus, for the first time, the optimization model is solved for 

hours 1 to 3 (start hour =1 and end hour =3) and the flow values are estimated for these three hours. 

In the second step, the optimization model is solved for the hours 4 to 6 (start hour =4 and end 

hour =6) and the flow values are defined for these three hours. This means that the optimization 

window is non-moving.  

In Equation 2.2, the parameters of p and q assign weights to the variables Z and  , and their ratio 

defines the importance of each of these two variables in minimizing the flow variation. The 

parameter c assigns a weight to the set of variation variables Z and  , and its magnitude defines 

the importance of the variation variables compared to the squared errors ( infE  and supE ).   is 

another parameter which does not seem necessary for the model because it does exactly the same 

task as c.  

 

Subject to (equations 2.3 to 2.14): 

nstarthourstarthourstarthour offsetvEVolume  )inf()inf()(      (2.3) 

nstarthourstarthourstarthour offsetvEVolume  )sup()sup()(      (2.4) 
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2/)( (max),sup(min),inf nnn vvoffset          (2.5) 

where:  

)(starthourVolume = the volume of the reservoir (m3/s) at the beginning of time step (all 

the volume units are changed from hm to m3/s by being multiplied 

by 
3600

1000000
),  

)inf(starthourv = the minimum measured reservoir volume (m3/s) during the 

starthourth hour (reservoir volume is measured every 5 min), 

)sup(starthourv = the maximum measured reservoir volume (m3/s) during the 

starthourth hour,  

nv (min),inf   = the minimum of )inf(nv set (m3/s) where n=starthour,…, endhour, 

nv (max),sup   = the maximum of )(sup nv  set (m3/s) where n=starthour,…,endhour, 

offset   = the mean value of extreme volume values (measured every 5 min) 

in the optimization window (Equation 2.5).  

 

)(starthourVolume  is a variable which could change in theory between 0 and reservoir’s maximum 

capacity, but Equations 2.3 and 2.4 force it to stay between minimum and maximum measured 

volume. In this equation, the summation of )0inf(E  and )0sup(E  is the error of 
)(starthourVolume , and 

offset is subtracted from the volume data to normalize them to around zero.  

 

Equations 2.6 and 2.7 are the core constraints because they represent the WBE and are used to 

control the range of water budget. 
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Where: 

qin  =  the measured inflow to the reservoir (which is the released flow from the 

upstream reservoir),  

qout  = the measured outflow from the reservoir (which is the summation of 

turbine flow and spilled flows),  

F  = a variable referring to flow caused by effective rainfall (m3/s - range of this 

variable is defined in Equation 2.10).  

 

In this equation, infE and supE  are the inferior and superior errors of WBE. Equations 2.6 and 2.7 

estimate each flow value by considering the other flow values of the optimization window.  

 

)()()1( nnn FF            (2.8) 

)()()1()1()( nnnnn FFFF           (2.9) 

 

)(n  is the difference between flow for day number (n+1) and (n), while )(n  is related to the 

variation of  flow during three consecutive days. When n is equal to endhour, )(n is assumed equal 

to zero and when n is equal to endhour/starthour, )(n  is assumed equal to zero. These assumptions 

cause poor boundary conditions.  
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 F0            (2.10) 

 E            (2.11) 

            (2.12) 

 Z           (2.13) 

endhourstarthourn ,....,          (2.14) 

 

According to Equation 2.10, flow should be greater than zero. However, E, Z, and   could be 

positive or negative (Equations 2.11, 2.12, and 2.13). Also, n changes between starthour and 

endhour for each optimization window (Equation 2.14). 

 

 

Figure 2-2: The schematic of optimization window in the POM for a hypothetical year  

 

POM has some advantages over the simple WBE: 

 It tries to minimize the flow variation (noise) and error.  
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 It does not allow flow to take negative values.  

 It has an optimization window with the length of dn and flow values are estimated with 

consideration to the other values of flow in that window.  

These advantages are all inspired by the existing manual flow filtering process. For instance, like 

POM, the negative flow values are replaced by positive ones and flow values are modified by 

factoring in the values of previous days in the mostly manual flow filtering process. However, 

POM has still some deficiencies and limitations, as listed below: 

1. The results of this model are still noisy, especially during periods of low flows. 

2. The parameter of   seems unnecessary.  

3. It does not factor in all the available information of the basin such as simulated flow and 

neighbouring basins’ flow to improve the quality of the reconstructed flow. 

4. The designed optimization window is fixed, resulting in values near the boundary of 

optimization window to suffer from poor boundary condition. This imperfect boundary 

conditions include the following assumption about Z and  : if n=endhour, then Z=0 and 

if n=starthour or n=endhour, then  =0. Thus, in each optimization window, the first and 

the last flow values are affected by a definite uncertainty.  

5. This model was developed for hourly flow reconstruction and its reliability decreases when 

larger time steps are applied, such as daily time periods (24 hours). This is because in the 

case of daily time-steps, )inf(nv  and )sup(nv  need to be calculated for 24 hours (instead of an 

hour) and this augments the range of WBE in Equations 2.6 and 2.7, which increases the 

uncertainty of the model output. The model may even fail to work in this situation. 

6. POM is applicable only when volume data of 5-minute intervals (volume data measured 

every 5 minutes) are available. Otherwise, )inf(nv  and )sup(nv should be defined based on 

volume data of 1-hour intervals, if they are available. This results in the model producing 

greater uncertainty in the data results. The model may even fail to work because the range 

of inequality in Equations 2.3, 2.4, 2.6, and 2.7 may be narrower. Also, when volume data 
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of 5-minute and hourly intervals are not available, the method is no longer applicable as 

)inf(nv  and )sup(nv  cannot be defined.  

7. The model parameters are considered constant during the time and space. This assumption 

evokes the question of ‘how are we to be sure that the selected parameters are the best 

possible when time and case-study change?’ Hence, a sensitivity analysis is required in 

order to define if this assumption for the model is appropriate or not. This will be done in 

Chapter 6.  

 

None of the aforementioned research for Post-R period provides a flexible methodology to 

reconstruct and validate reliable daily flow data series that is independent of human decision 

making. This gives rise to an interesting question of how to reconstruct more likely daily flow for 

Post-R period in ungauged basins. 

 

2.3 Performance of Flow Reconstruction Method 

It is necessary to evaluate the data quality of reconstructed flow to confirm the performance of the 

flow reconstruction model. This evaluation could be done using different QIs and stationarity and 

regional homogeneity tests.  

 

2.3.1 Quality Indexes 

The Quality Indexes are criteria that are applied to the model in order to evaluate the integrity levels 

of a data series. Each Quality Indexes has its own characteristics but not all of them can satisfy 

every user (Weglarczyk, 1998).  

Some of the more popular QIs are Mean Square Error (i.e Gupta et al. 2009), Temporal or Spatial 

Correlation Coefficient (i.e. Johnston et al. 2009), and Nash-Sutcliffe efficiency (i.e. Villa-

Alvarado et al. 2014, Johnston et al. 2009). Krause et al. (2005) compared nine different efficiency 

criteria, including Coefficient of Determination (r2), Nash-Sutcliffe efficiency, Index of 
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Agreement, Nash-Sutcliffe efficiency with logarithmic values, and Relative Efficiency criteria 

applicable for hydrological model assessment. They tested these criteria by applying them on three 

different examples. According to their paper, each Quality Index has its own advantages and 

disadvantages, and could be used for specific purposes. For example, the Coefficient of 

Determination is not sensitive to flow over- or underestimations. Also, a large disadvantage of 

Nash-Sutcliffe efficiency is that the difference between measured and simulated values is 

calculated as a squared value. As a result, lower values are neglected while larger values are 

emphasized more, showing that this QI is not an appropriate index to use in evaluating the flow 

data series during the low flows.  

Since most existing QIs compare the simulated flow values with the measured flow values, they 

cannot be applied for the basins with unavailable measured data series. This means that the subject 

of evaluating the quality flow has remained an issue in ungauged basins. This challenge raises the 

questions of how to evaluate the quality of reconstructed flow series in ungauged basins. 

 

2.3.2 Temporal and Regional Homogeneity Tests 

Temporal homogeneity (stationarity) in a data series implies that the homogeneous behaviour of a 

data series is time independant; its statistical properties will stay the same over time. More 

precisely, in the case of stationarity, the joint probability distribution of the process remains 

unchanged over the time. It is important to analyse whether or not the presence of stationarity in 

the flow data series is created artificially by the reconstruction method. Although there are some 

means to evaluate the stationarity of a time interval series, it is also visible at its time plot; a time 

series would be stationary if its time plot appears similar at different points along the time axis 

(Nagpaul 2005). 

It is very common to employ a simple stationarity test, which indicates if the mean and variance of 

a data series are constant or not. Turner and Twieg (2005) divided the data series into S equal 

segments of size N, and then administered T-statistic with 2N-2 degree of freedom to compare the 

segments’ means and F-statistic with N-1 degree of freedom to compare the segments’ variances. 

They defined a Wide Sense Stationary (WSS) index based on the results of F-test and T-test and 

assumed that the data series would be stationary if WSS exceeded 0.9.  
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Perreault et al. (1996) assessed the stationarity of average annual aggregate flow using a Bayesian 

procedure to detect change in mean annual series of flow, and found three different groups with 

three different averages. Given the limited information available in their project, it was difficult to 

distinguish between non-stationarity of the mean and the presence of sustained deviations caused 

by the autocorrelation. Despite the results obtained from the precipitation series, which support the 

presence of a change in the average, it is difficult to deduce the non-stationarity average in the 

series of annual flow.  

Some of the common tests designed to evaluate the stationarity of a data series are Mann–Kendall 

(e.g. Cunderlik and Burn 2003), Dickey–Fuller, Augmented Dickey–Fuller (ADF) (e.g. Oh 2005), 

and Kwiatkowski-Phillip-Schmidt-Shin (KPSS) (Kwiatkowski et al. 1992). Among these, KPSS, 

which originated from econometrics, has been widely used in hydrological studies (i.e. Wang et al. 

2005 and 2006). Although KPSS was originally developed for data with short memory, Lee and 

Schmidt (1996) deployed it to assess the stationarity of long-memory data and found it to be 

adequate. “KPSS tests the null hypothesis of stationarity around a deterministic trend (trend 

stationarity) and the null hypothesis of stationarity around a fixed level (level stationarity). If a 

process is not level stationary but trend stationary, it indicates that the process may be decomposed 

into a trend component and a stationary component” (Wang et al. 2005 and 2006).  

On the other hand, it is expected that the catchments within the same region have homogenous flow 

data series (regional homogeneity) because they have more or less the same geographical and 

hydrological characteristics. Thus, testing of the regional homogeneity of reconstructed flow is 

required. 

Cunnane, (1978) compared the T-year return levels with standardized empirical return levels from 

14 sampled sites by plotting them against each other. They also compared the standardized 

empirical discharge and the fitted values by LN3 distribution in a graph to evaluate the regional 

homogeneity of flow. Gustard and Demuth, (2008) also used graphical methods by plotting 

empirical quantiles (observations) against the distribution quantiles to assess how well the 

homogeneity of data is according to applied distribution. They checked if the points lie close to the 

theoretical curve (probability plot) and the unit diagonal (P-P plot for probabilities and Q-Q plot 

for quantiles).  

http://www.sciencedirect.com/science/article/pii/S0022169403000623
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According to Albertini, 2013, some of the standard and most common plots used to assess the 

homogeneity of a data series and to identify unusual observations are Tukey-Anscombe plot 

(residuals vs. fitted values), Normal plot, Scale-Location plot, Normal Quantile-Quantile plot (Q-

Q plot), and Leverage Plot (i.e. Henry, 2013., Lashermes et al. 2007, Sofia et al. 2011). 

 

2.4 Uncertainty Analysis 

Uncertainty is a component of a reported value that characterizes the range of values within which 

the true value is asserted to lie (NDT recourse center, 2014) “Uncertainty analysis of hydrological 

modeling has become an indispensable element for any hydrologic modeling and forecasting. The 

uncertainty of the prediction from one single model has been known to arise from input data, model 

structure and the process of parameter calibration” (Dong et al. 2013).  

There are many different methods available to evaluate the different types of uncertainty found in 

a data series. Among those that are extensively used are the Generalized Likelihood Uncertainty 

Estimator (GLUE) (Beven 2007; Nott et al. 2012, Shen et al. 2012; Beven and Freer 2001), Markov 

Chain Monte Carlo, MCMC, (Kuczera & Parent 1998), Sensitivity Analysis (Abebe et al. 2010, 

Johnston et al. 2009), and the Bayesian method (Bates and Campbell 2001; Khu and Werner 2003; 

Li et al. 2010, Engeland et al. 2005). Comparing the different methods, GLUE is the most popular 

because of its conceptual uncomplicated nature, simplicity to apply, and flexibility. However, “it 

is computationally inefficient and can even lead to misleading results, unless a large sample may 

be drawn” (Han et al. 2014). 

GLUE, MCMC, and most of the existing sensitivity analysis methods are applied to define the 

parameter of uncertainty. However, the Bayesian model is a method which considers uncertainty 

of all input data, output parameters, and model’s structure (Yang et al. 2007) but it requires a 

specific likelihood function.  

Although different uncertainty analysis techniques have been widely proposed and applied, most 

of them are dependent on the measured data. Therefore, it is still a challenge to find out how to 

evaluate the uncertainty of flow data in ungauged basins. 
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CHAPITRE 3 CASE STUDY 

 

3.1 Introduction 

In the research presented in this thesis, the methodology and the results are divided into several 

sub-methodologies and sub-results related to Pre-R and Post-R periods, which are presented in 

Chapters 4, 5, 6, and 7. The focus of this chapter will be on the flow reconstruction case study. 

Since the topic of flow reconstruction is seen as a challenge for watersheds located in Quebec, a 

basin in the province of Quebec will be chosen as the subject of our case study in order to evaluate 

the performance of the recommended methodology for reconstructing daily flow in actual 

situations. Since the goal of the developed method for reconstructing daily flow in this thesis is to 

be suitable for use on all basins in Quebec, the Outardes basin (with its three reservoirs) has been 

selected as the subject of this case-study (Figure. 3-1). The reasons for the selection of the Outardes 

basin over other basins in the province are the following: 

 

i) the reservoirs possess hydraulic systems with different types and numbers of gates 

and turbines;  

ii) the basin includes reservoirs of different sizes and characteristics; 

iii) the basin has a simple structure with its reservoirs arranged in series. 

 

3.2 Case Study Description 

As shown in Figure 3-1, the Outardes basin consists of three sub-basins designated as Outardes 4, 

Outardes 3, and Outardes 2, with each of them possessing a reservoir (see Figure 3-2 for the 

reservoir schematics of this basin). Outardes 3 is a small basin located downstream of Outardes 4, 

which is a big watershed with a large reservoir. Since Outardes 4 is located in the upstream position, 

the only input flow into this reservoir is the flow which is caused by rainfall). Also, Outardes 2 is 

a moderate sized reservoir situated downstream from Outardes 3. Among the three sub-basins of 

the Outardes watershed, Outardes 3 is considered the reservoir of the greatest challenge because it 

is small and is more susceptible to changes from the releasing outflow of the larger Outardes 4 
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reservoir. Any increase or decrease of discharged flow from Outardes 4 greatly affects the water 

level in Outardes 3, resulting in fluctuations that make it difficult to estimate flow values in this 

basin.  

In Quebec, the operation mode is the same for all the reservoirs as they all regulate the river for 

short and medium term intervals. For instance: 

- The reservoirs are generally emptied before spring floods for safety reasons. This allows for 

flood storing and flood routing inside the reservoir.  

- Water depth downstream from the reservoirs is set according to the safety and economic 

requirements. For example, low water levels downstream of a reservoir may increase the 

height of the water drop, thus exceeding power production norms.  

- Generally, the reservoirs are kept full (if it is safe) during the winter to maximize the 

hydropower production rate and meet electricity requirements during the winter season.  

However, the exact daily operation (rate of water that should be taken from each reservoir) is 

defined based on short term (i.e. daily) decision. The decisions are usually made based on short-

term predicted flow and daily measurements.  
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Figure 3-1: Location of the Outardes Basin in Quebec (a and b), and sub-basins of Outardes 4, 

Outardes 3 (in darker color), and Outardes 2 (c) 

(a: https://maps.google.ca, b: www.wikipedia.org) 

 

b 

c 

Outardes 2 

Outardes 3 

Outardes 4 

a 

http://www.wikipedia.org/
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Figure 3-2: Schematic of three reservoirs of Outardes 4, Outardes 3, and Outardes 2 
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3.3 Available Data and Information 

Table 3.1 shows the general characteristics of the Outardes sub-basins. One of the available sets of 

data related to the Outardes sub-basins (for both Pre and Post-R periods) is the flow data series 

measured from gauged basins in the surrounding area, as shown in Table 3.2.  

The flow data series for these gauged basins were obtained from the CEHQ website (CEHQ, 2013) 

and used in the flow reconstruction process and quality evaluation procedure of the Outardes sub-

basins. Thus, for each case study, two of the neighbouring basins should be selected among the 

measured catchment areas; one for the flow reconstruction process, and the other for quality 

evaluation of the reconstructed flow. The criteria used for selecting the neighbouring basins for 

each case study watershed are the following:  

i) to be physically close to the watershed because of its possibility of sharing similar 

geological and hydrological characteristics,  

ii) to have relatively the same surface area as the case study watershed, which increases 

the likelihood of both having similar flow characteristics,  

iii) to have sufficient time intervals of measured flow data series,  

iv) and last, but not least, should have comparable hydrographical shape with the case study 

watershed because of its possibility of having similar weather, drainage system, and 

catchment characteristics (such as watershed slope that affect the time of concentration 

and eventually sharpness of hydrograph).  

As a result, the Moisie basin will be selected as the primary neighbouring basin for Outardes 4 and 

used for its flow reconstruction, while the sub-basin Romaine will be chosen as its secondary 

neighbouring basin and used for the purposes of reconstructed flow evaluation (Table 3.3). The 

sub-basin Godbout is considered the most appropriate choice as the primary neighbouring basin 

for Outardes 3 and Outardes 2, while Moisie will be used in a dual role as the secondary one for 

these two watersheds (note: the Outardes river was measured by Hydro-Quebec for a limited time 

before construction of Outardes 4 reservoir. The flow data of that period is used to evaluate the 

quality of reconstructed flow for Pre-R period in this sub-basin).  
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The flows from all the measured neighbouring basins are also used for regional homogeneity 

assessment of reconstructed flow.  

Since some features of basins and data availabilities are different for Pre-R and Post-R periods, 

more specific characteristics for each period are defined in sections 3.3.1 and 3.3.2.  

 

Table 3.1: Characteristics of case study basins 

Characteristic of basins Outardes 4 Outardes 3 Outardes 2 

Basin area (km2/100) 171.19 4.85 13.02 

Average long-term minimum temperature (°C) -6.76 -3.71 -3.06 

Average long-term maximum temperature (°C) 4.38 7.08 6.84 

Average long-term rainfall (cm/day) 0.17 0.18 0.19 

 

Table 3.2: Characteristics of gauged basins in the neighbourhood of case study  

Basin Name Latitude Longitude Start-End 
Number 

of Years 

Area 

(km2/100) 

Specific Flow-2007 

(L/s/Km2) 

Godbout 49.55222 -68.09611 1975-present 39 15.77 23.13 

Moisie 50.59028 -66.31861 1966-present 48 190.12 20.04 

Magpie 51.14889 -64.97389 1979-present 35 72.01 22.53 

Romaine 50.52167 -64.04056 1957-present 57 129.22 6.39 

Natashquan 50.72083 -62.18944 1981-present 33 156.93 21.57 

Saint-Paul 52.28556 -58.00306 1968-present 46 55.04 17.10 

Petit Saguenay 48.31694 -70.085 1999-present 15 4.33 11.06 

Chicoutimi 48.52278 -71.35278 1911-present 103 34.44 13.58 

Aux Ecorces 48.30722 -72.08056 1972-present 42 11.15 20.76 

Pikauba 48.57139 -71.63861 1970-present 44 4.9 22.91 

Metabetchouane 48.63417 -72.65833 1978-present 36 22.12 15.79 

Ouiatchouan 48.34528 -72.41 1967-present 47 5.76 13.55 

Petite Peribonca 49.36167 -72.08361 1975-present 39 10.20 13.86 

Ashuapmushuan1 49.14917 -72.82139 1954-present 60 155.15 16.23 

Ashuapmushuan2 49.46778 -73.6 1962-2011 49 111 17.73 

Mistassibi1 49.50944 -72.35472 1954-2004 50 93.2 15.51 

Mistassini2 49.49056 -72.45583 1953-present 61 96.31 15.43 

Manouane 50.47056 -71.55028 1980-2013 33 36.86 20.71 

Valin 48.82361 -71.6275 1975-present 39 7.68 27.22 

Ste-Marguerite 48.45333 -70.52167 1998-present 16 10.97 19.37 
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Table 3.3: Neighbouring basins selected for each case study in order to be used in the process of 

flow reconstruction (primary neighbouring basin) and reconstructed flow evaluation (secondary 

neighbouring basin) 

 Outardes 4 Outardes 3 Outardes 2 

Primary neighbouring 

basin 
Moisie river Godbout river Godbout river 

secondary neighbouring 

basin 

Romain river 

Outardes river 
Moisie river Moisie river 

 

3.3.1 Pre-R Period 

The Pre-R time period includes the years between 1960 and 1968 for Outardes 4 and Outardes 3, 

and the years between 1960 and 1977 for Outardes 2. Available data within this time period for the 

Outardes basins is limited only to the hydrologic data consisting of daily rainfall, minimum 

temperature, maximum temperature, actual temperature, and snowfall (Hydro-Quebec’s database). 

Because of their high reliability and quality, Hydro-Quebec has already used these sets of 

hydrologic data to simulate flow data series using a RR model for the basins of Quebec. Since the 

measured flow is not available for most basins in Quebec, the RR model has been calibrated and 

validated using filtered flow (the flow that was mostly filtered manually by Hydro-Quebec) instead 

of measured flow. Thus, for the periods that filtered flow are not reliable, the quality of these results 

may be questionable. 

 

3.3.2 Post-R Period 

In addition to measured hydrological data (such as rainfall, temperature, and snowfall) and 

simulated flow using RR model, more historical data exists for Post-R period in this area. 

The Outardes 4, Outardes 3, and Outardes 2 reservoirs were built in 1969, 1969, and 1978 

respectively, upon which data such as water level on the upstream and downstream of reservoir, 

gate openings, and produced electricity began to be measured. The collected data were then used 

to calculate turbine flow, discharged flow, and reservoir volume (data used in the case study were 
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obtained from Hydro-Quebec’s data base). However, the quality of measured data have always 

been affected by different factors such as natural phenomena (i.e. floods, ice cover), instrument 

disorders (i.e. gates’ maneuver disorders), instrument uncertainties, neglecting flow routing, 

simplification of calculations, and human uncertainties. Since the uncertainty of the input data will 

clearly affect the quality of the flow values or any other data series generated, the filtering of input 

data (mostly manual) began after 2005. Table 3.4 shows list of available data and their reliability 

status for different time periods.  

The constructed reservoirs are different in their size, number and type of gates, and turbines (which 

make them different for hydraulic calculations). For example, the conveying dikes to the turbines 

may be separate or common. Some general information about the Outardes hydraulic systems is 

tabulated in Table 3.5. According to this table, each reservoir has several characteristic sets for 

their turbines which are associated to varying characteristics of hydraulic system during the time 

(information is again obtained from Hydro-Quebec’s database).  

 

Table 3.4: List of available data and their validity situation for Outardes basin 

 Data availability in 

Outardes (Pre-R)- 

Status of validity 

Data availability in 

Outardes (Post-R, before 

2005)-Status of validity 

Data availability in 

Outardes (Post-R, after 

2005)- Status of validity 

Rainfall available- validated available- validated available- validated 

Temperature available- validated available- validated available- validated 

Snowfall available- validated available- validated available- validated 

Measured 

Neighbouring basin 

available- validated available- validated available- validated 

Simulated flow 

using RR model 

available available available 

Turbine flow not available available- calculated based 

on not validated data 

available- calculated 

based on validated data 

Discharged flow not available available- calculated based 

on not validated data 

available- calculated 

based on validated data 

Reservoir volume not available available- calculated based 

on not validated data 

available- calculated 

based on validated data 
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Table 3.5: General characteristics of reservoirs of Outardes basin 

 Outardes 4 Outardes 3 Outardes2 

Construction of reservoir 1969 1969 1978 

Maximum reservoir storage volume (hm3) 10940.44 14.72 16.21 

Number of groups of turbines 4 4 3 

Number of types of turbines 4 2 3 

Number of sets of turbines’ characteristic 25 15 30 

Number of gates 3 3 6 

Type of gates spillway spillway bottom gate 

Number of sets of reservoir’s 

characteristic 

2 1 1 

 

3.4 Conclusion 

This chapter presents a detailed description of the Outardes basin in Quebec, which will be used as 

the subject basin of our case study. The developed methodologies of daily flow reconstruction in 

the current project will be applied on the three catchments of this basin to evaluate their 

performance in actual situations. The suggested methodologies and the results of applying them on 

Outardes 4, Outardes 3, and Outardes 2 are presented in Chapters 4, 5, 6, and 7. 
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CHAPITRE 4 AN ALGORITHM FOR SELECTING THE MOST 

APPROPRIATE FAMILY OF METHOD FOR FLOW 

RECONSTRUCTION 

   

4.1 Introduction 

Having knowledge of a basin’s flow data series is essential for estimating water availability, 

predicting extreme events, designing hydraulic structures and undertaking other activities related 

to water planning and management. But flow data is not always measured (even in cases of 

developed countries), and when recorded data is available, it may contain some level of uncertainty 

or gaps, which is why reconstructing flow data is necessary in these cases. The first step to 

achieving this is to select the appropriate family (group) of flow reconstruction methods. 

Previous studies have attempted to reconstruct or complete flow data at a given reservoir in order 

to increase the quality of information used for water management. Regression based methods were 

used for years to reconstruct and extend flow data (e.g. Kevin, 1996, Rupp et al. 2008, Hernandez-

Henriquez et al. 2010, Kim and Pachepsky, 2010). These methods usually relate the flow value to 

one or more independent variables such as rainfall and temperature. The regression based methods 

are still used in some cases because they are fast, simple to use, and can be developed using a 

minimal amount of information from the basins. Although the results of this method can be good 

when rough estimations are adequate, they are not highly reliable in estimating flow using short 

time intervals (daily or hourly).  

Hydrological and hydraulic methods are the two main alternative groups of flow reconstruction 

methods. Generally, hydrological methods (such as rainfall-runoff models) rely primarily on 

climate and/or hydrological input data to simulate flow. Hydraulic methods include those based on 

the water cycle (such as WBE). A literature review on these methods shows that each may be 

appropriate in a particular case, depending on the availability and quality of data, the desired time 

interval measurement, the flexibility and uncertainty of the reconstructed data, climate, and length 

of the reconstruction period. However, there is no in-depth general study showing how to select 

the appropriate method for flow reconstruction which considers all these factors in one case study. 

Therefore, in this chapter, an algorithm will be presented in order to help select the appropriate 
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method in each case (Figure 4-1, box # 1). This algorithm has been developed based on the 

characteristics, advantages, disadvantage, and applicability of existing models and methods as 

presented by the literature review in Chapter 2 of different methods of flow reconstruction. In fact, 

this algorithm achieves the first step of the current project - the choosing of the family of flow 

reconstruction methods - that will lead to reaching the final goal of flow reconstruction in ungauged 

basins.  

The developed algorithm will then be used to define the appropriate family of flow reconstruction 

methods for Pre-R and Post-R periods in the given case study example (see also Figure 4-1). This 

example will confirm the capability of the algorithm to select the appropriate family of flow 

reconstruction method. At the conclusion of this chapter, it will be revealed that the families of 

WBE based models and regression based methods are respectively the most appropriate choices to 

be used for flow reconstruction for Post-R and Pre-R periods.   
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4.2 Proposed Methodology for Selecting the Appropriate Family of Flow 

Reconstruction Method 

According to the literature review presented in Chapter 2, recent research have employed various 

reconstruction methods that differ according to their fundamental concepts and equations, the input 

data they require, their uncertainty and flexibility, and their range of application. Each method may 

have particular value in a given circumstance, depending on data availability and the overall 

objectives. However, none of the studies in the review provided a methodology for selecting a flow 

reconstruction method that considered all of the factors mentioned above.  

A number of criteria should be considered when selecting a method of flow reconstruction. These 

criteria can be summarized as: 

 required flexibility  

 available input data  

 quality of input data 

 desired flow time interval and period 

 desired certainty 

 climate and other features of the area  

The goal of this chapter is to formulate an algorithm that will help select a family of flow 

reconstruction methods which best responds to above criteria. The function of this algorithm is to 

be a step-by-step decision making process based on the factors summarized in Tables 4.1 and 4.2, 

with the initial step being illustrated in Table 4.1. This table suggests which model offers the most 

applicable methods for each case study. Then, the final decision should be made based on the 

available data and the advantages and disadvantage of each method summarized in Table 4.2. 

Since available data and information can be different for Pre-R or Post-R periods, the first step in 

Table 4.1 is to define the appropriate time period (Pre-R or Post-R), after which it should be 

determined if the basin is gauged or ungauged. It is important to keep in mind that a gauged basin 

is referred to as a watershed where flow data is measured at least for short time period, making it 

possible to calibrate the flow reconstruction model with this data.   
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The two steps described in Table 4.1 are used in regard to the length and time interval of the output 

data (reconstructed flow), with consideration to the goal of this project.  

In the work presented in this thesis, a short time step will be defined as one day or less, while time 

steps longer than a day will be defined as long time step. As well, a short term interval is selected 

if the reconstruction method is meant to produce a smaller data sample, while a long term interval 

is selected if a larger series of data over a longer period of time are to be reconstructed. For example, 

producing flow data for five days on a daily scale is considered short-term, but if the scale is hourly 

it would be considered long-term data reconstruction. The researcher then needs to analyse the 

input data and define their quality. There are different methods of assessing data quality but they 

are beyond the scope of this thesis. When data quality is considered unreliable, decisions about the 

reconstruction method become more critical. Therefore, validating input data before applying them 

to any flow reconstruction method is highly recommended. Finally, the applicable methods of flow 

reconstruction for each case are presented in the last column of Table 4.1. The suggested methods 

in each row of this column are selected based on capability and characteristics of each method 

presented in literature review found in Chapter 2. When more than one method exists for a given 

case, this indicates that options are available for the researcher, rather than implying that all the 

equations suggested are to be used. This second level selection will be done in the next step after 

considering available data and presented information in Table 4.2. 

. 
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Table 4.1: Preliminary algorithm for determining the applicable methods of flow reconstruction 

for each case 

Period Basin 
Output data Input  data 

Applicable method 
time-step length quality 

P
re

-R
 

G
au

g
ed

 

Sh-ts** 

Sh-t** 
L-q RR model 

H-q RR model, Regression based method, Climate method 

L-t** 
L-q RR model 

H-q RR model, Regression based method 

L-ts** 

Sh-t 
L-q RR model, Regression based method, Climate method 

H-q RR model, Regression based method, Climate method 

L-t 
L-q RR model, Regression based method, Climate method 
H-q RR model, Regression based method, Climate method 

U
n

g
au

g
ed

 Sh-ts 

Sh-t 
L-q - * 

H-q Regression based method * 

L-t 
L-q - * 

H-q Regression based method * 

L-ts 

Sh-t 
L-q Regression based method * 

H-q Regression based method * 

L-t 
L-q Regression based method * 
H-q Regression based method * 

P
o

st
-R

 

G
au

g
ed

 

Sh-ts 

Sh-t 
L-q RR model, WBE 

H-q RR model, Regression based method, Climate method, WBE 

L-t 
L-q RR model, WBE 

H-q RR model, Regression based method, WBE 

L-ts 

Sh-t 
L-q RR model, Regression based method, Climate method, WBE 

H-q RR model, Regression based method, Climate method, WBE 

L-t 
L-q RR model, Regression based method, Climate method, WBE 
H-q RR model, Regression based method, Climate method, WBE 

U
n

g
au

g
ed

 Sh-ts 

Sh-t 
L-q WBE * 

H-q Regression based method, WBE * 

L-t 
L-q WBE * 

H-q Regression based method, WBE * 

L-ts 

Sh-t 
L-q Regression based method, WBE * 
H-q Regression based method, WBE * 

L-t 
L-q Regression based method, WBE * 
H-q Regression based method, WBE * 

 * RR model could be used if regionalization is applicable and desired to define the parameters of model 

**Sh-t = Short term, L-t = Long term, Sh-ts = Short time-step, L-ts = Long time-step 
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Table 4.2: Advantages and disadvantages of different groups of flow reconstruction methods 

Method  Advantages Disadvantages Comments 
W

B
E

 

 Accurate enough when all data are 

available for the interested basin or 

reservoir  

 Does not need to be calibrated 

 Simple and fast 

 Applicable for real-time data 

 Flexible enough to be applied to any 

case study 

 Difficult to calculate water loss terms if 

they are not available 

 The uncertainty of one basin or reservoir 

highly affects downstream simulation 

 If applied in a region where snow or 

evaporation are significant, these should 

be considered in the equation 

 Data validation is recommended before 

using the WBE if it is applied for short 

time step data  reconstruction 

R
R

 m
o

d
el

 

 Can be used in time and space 

 One of the most reliable methods of flow  
reconstruction 

 Mostly have capability of considering 

snow, evaporation, infiltration, etc. 

 Could consider both hydrology and 

physics of flow 

 Applicable for real-time data 

 Needs to be calibrated  

 It is sometimes very consuming to 

calibrate the model 

 Model parameters change from basin to 

basin  

 Requires a lot of data 

 Increasing the number of parameters 

does not  necessarily mean greater 

accuracy  

 Selecting the specific rainfall-runoff 

model depends on: 

 Available data 

 Climate of area (if evaporation or 

snowpack is important in the case) 

 Land-use (urban or rural areas) 

C
li

m
at

e 
m

o
d

el
 

 Climate signal data is usually available 

 Applicable for real-time data 

 Needs to be calibrated  

 Model parameters change from basin to 

basin  

 Does not consider the physics of flow 

 Not always easy to find the climate signals 

which affects the flow 

 Needs to be updated over time with new 

measured data 

 Climate signals needs to be downscaled 

R
eg

re
ss

io
n

 b
as

ed
 

m
o

d
el

  

 Fast and simple 

 Few parameters need to be defined 

 Applicable when limited data are 

available 

 Applicable for real-time data 

 Medium to low certainty 

 Needs to be updated over time with new 

measured data 

 Model parameters change from basin to 

basin  

 Uncertainty of model increases as the 

time-step decreases  

 Selecting the specific regression based 

method depending on the available data 
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In the second step of the flow reconstruction method selection process, Table 4.2 is used to help in 

the decision of which method to use based on the strengths and weaknesses of the different 

methods, along with data availability. At times, data availability will be the main factor in selecting 

the method that will ultimately be chosen. 

 

4.3 Applying the Proposed Algorithm to the Current Case Study 

The proposed algorithm will be applied to the most appropriate family of flow reconstruction 

methods selected for this current project’s case study. The project’s main requirements on the 

method chosen for data reconstruction are the following: 

 to be flexible enough to be applicable to all regulated rivers and basins in Quebec; 

 to be applicable for daily time-step and long-term period for both Pre-R and Post-R periods; 

 produces high-quality flow data;  

 to be selected based on available data and their quality in Pre- and Post-R periods.  

(Note: Both snowmelt and evaporation affect the results, especially in large reservoirs.) 

Since there is a need to reconstruct the flow data series for both Pre-R and Post-R periods, the 

algorithm will be applied to define the appropriate method for each period separately.  

 

4.3.1 Pre-R Period 

Table 4.1 will be used to select the most appropriate flow data reconstruction method for Pre-R 

period.  

The objectives of this project is to reconstruct short time step (daily) flow for long term flow for 

the ungauged Outardes 2 (pre-1977), Outardes 3 and 4 (pre-1969) basins. Data currently available 

for these basins are high quality hydrological data (such as rainfall, temperature, and snowfall) for 

the time period. Thus, Table 4.1 suggests the use of the Regression based method, according to the 

step by step process. Following up with Table 4.2, the specific regression based method should be 

selected in the next step after considering the reliability of the input data. For example, in the 
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current case, a regression based method should be developed based on simulated flow using RR 

model, neighbouring basin’s flow, rainfall, minimum temperature, maximum temperature, 

snowfall, and/or surface area. 

 

4.3.2 Post-R Period 

The selection of an appropriate family of flow data reconstruction method for Post-R period will 

be a two-steps process: 

- Step 1: Define the list of appropriate methods of flow reconstruction 

According to Table 4.1., if we take into the consideration that the basins are ungauged and 

that the aim of the project is to reconstruct short time-step (daily) flow for long-term (from 

1969 to present for Outardes 3 and 4, and from 1977 to present for Outardes 2): 

 regression based methods will be used when high quality data (rainfall, minimum 

temperature, maximum temperature, snowfall, surface area, and neighbouring 

basin’s flow) are available, and 

 WBE based methods will be used if available storage volume, turbine flow, and 

discharged flow time-series are calculated based on non-validated data. 

 

- Step 2: Evaluate the advantages and disadvantages of the different flow reconstruction 

methods by using Table 4.2: 

 

The final method of choice for flow reconstruction method should be selected based on the 

advantages and disadvantages of each defined method in previous step. According to Table 4.2, 

regression-based methods have medium to low certainty which increases as the time step decreases. 

Thus, they are not the perfect choice to produce acceptable flow values when applied to the daily 

time-step required in the case study. On the other hand, Table 4.2 indicates that WBE is a flexible 

model that can be applied to any basin. This advantage could be important in the current case study, 

which requires a model that can be applied to all basins in Quebec. According to this table, WBE 

is also simple, fast, and does not require model calibration. This is another key advantage for the 
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current project because no measured flow data are available to calibrate the model. However, WBE 

does presents an inconvenience in that it is necessary to calculate water loss and take evaporation 

and snowmelt into account as well (which can be dealt with by including these terms into the 

calculated flow). Moreover, Table 4.2 recommends that data validation be required for cases where 

input data are non-validated.  

Therefore, the proposed algorithm recommends WBE as the most appropriate model for Post-R 

period in this case. Regression-based methods are also applicable, but are not recommended. To 

prove the efficiency of the algorithm, results generated by the WBE will be compared to regression-

based methods during Post-R period. 

 

4.4 Evaluating the Performance of Developed Algorithm 

According to the proposed algorithm, WBE based methods are the most appropriate family of 

method for Post-R period in the current case-study. To evaluate the performance of the developed 

algorithm, the results of a WBE based method will be compared to the results of a regression based 

method calculation in an example basin called Outardes 4 for a Post-R period of a few years. The 

Classic WBE will be used as the simple common type of WBE based method, while Area Ratio 

will be selected as the regression based model according to the available data (as other regression 

based methods were tested and it was concluded that this method works better than the rest). 

 

4.4.1 Classic WBE 

Major watersheds in Quebec have their own reservoirs and currently, there is enough data available 

(storage volume, turbine flow from each reservoir, and discharged flow through the reservoirs’ 

gates) for these reservoirs to allow WBE to be applied to each of them. WBE will be used to 

calculate flow for a reservoir (Equation 2.1), with water loss terms factored into the calculated 

flow. 
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4.4.2 Area Ratio Method 

The Area Ratio method will be used to reconstruct the flow for Outardes 4 (Post-R period) because 

it is an example of a regression based method that can be developed independently from the 

measured flow data series. In this method, the flow data of each basin is related to the flow of a 

neighbouring basin, according to the ratio of their surface area. As explained in Chapter 2, the 

Moisie basin was chosen as the neighbouring basin in this case study because: 

i) it is relatively close to the Outardes 4 basin and very likely to have similar 

characteristics to this catchment,  

ii) its area is 19000 km2, which is the approximate area of Outardes 4, increasing the 

likelihood that they share similar flow characteristics, and  

iii) measured flow data series are available for the requested period of the case study.  

 

4.4.3 Results 

Comparison of the Area Ratio results and classic WBE methods for the time period between 2008 

and 2012 are presented in Figure 4-2. To confirm the quality of the reconstructed flow values, the 

Nash–Sutcliffe efficiency coefficient (NASH) (Equation 4.1) and Absolute Volume Error (Equation 

4.2) were used to compare the reconstructed flow to available filtered flow data series (flow which 

was mostly filtered manually and is currently the most reliable calculated flow values in all basins 

of Quebec) for the same time period (Table 4.3). Since the most reliable filtered flow data series is 

only available within the last few years, it cannot be used to calibrate long-term simulations and its 

applicability is limited to serving as a reference value series for recent years.  
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where: 

NASH   =   Nash–Sutcliffe efficiency coefficient,  

AVE   =   absolute volume error,  

fiq   =   the reference filtered flow for day i,  

riq    =  the reconstructed flow for day i,  

fq   = the average filtered flow when i=1,…,N, and N is the total 

number of days.  

 

The Nash–Sutcliffe model efficiency coefficient is mostly applicable for high flow comparisons 

because it squares the difference and increases sensitivity to peak flows (Krause et al. 2005). 

However, in Equation 4.2, the influence of low flows and high flows are the same. Thus, both of 

the results can be considered as the QI. The NASH values vary between 1 and −∞ and the closer it 

is to one, the better it is. AVE also varies between 0 to +∞, and the closer it is to zero, the better it 

is. 

 

Table 4.3: Quality index comparison of WBE and area ratio 

Quality Index WBE Area ratio 

Nash–Sutcliffe model efficiency coefficient  0.981 0.705 

Absolute volume error 0.08 0.263 
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Figure 4-2: Comparison of reconstructed flow using WBE and area ratio 

 

Comparing the results of WBE and Area Ratio methods with available filtered flow data series 

(filtered flow data series are not shown in Figure 4-2 to maintain confidentiality) shows that the 

Area Ratio method underestimated low flows and overestimated peaks, with its performance being 

insufficient for daily flow reconstruction. However, the over and under estimations may 

compensate one other and the method could prove to be a good estimation of seasonal or annual 

flow. On the other hand, results of the WBE method follow the same trend as filtered flow, but 

they are noisier, especially during low flow. This noise could be related to the uncertainty of input 

data. The calculated Quality Indexes for these two methods support the generated results through 

visual comparison. The Nash–Sutcliffe model efficiency coefficient is much better than that of 

WBE, indicating that this model is more successful in high flow estimations. Moreover, Absolute 

Volume Error is lower for the WBE, showing that this model provides greater likelihood of 

approximating the trend of flow data.  

The greater reliability of WBE results confirms the efficiency of the proposed algorithm of method 

selection. The algorithm considers all aspect of flow reconstruction and clearly points out the 

advantages and disadvantages of different methods.  
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4.5 Conclusion 

Knowing the flow values in each basin is important for water planning, management, and hydraulic 

designs. This information is also helpful for estimating water availability, designing flood-warning 

systems, and conducting studies based on historical flow data. Thus, flow data series should be 

reconstructed when previously measured data are not available. The first step of flow 

reconstruction is selecting the appropriate model to reach this goal.  

In this chapter, an algorithm was developed to show how to select the appropriate family of flow 

reconstruction method in each case study. The presented algorithm will help researchers to select 

a family of models for each particular case with regard to different important factors such as the 

model’s flexibility, requiring input data, output time step and uncertainty, climate, the length of the 

reconstruction period, and the advantages and disadvantages of each family of flow reconstruction 

methods.  

The developed algorithm has been applied on the case studies in this thesis. The results showed 

that for our case study, regression based methods and WBE based methods are the most appropriate 

family of flow reconstruction methods for Pre-R and Post-R periods respectively (see also Figure 

4-1). Lastly, the efficiency of the algorithm was tested by comparing the performance of defined 

appropriate method for Post-R period, WBE, with Area Ratio, a regression based method. Results 

confirmed the predominance of WBE to produce more likely flow values, and supported the 

efficiency of the algorithm. 

According to the results of this chapter, a regression based method will be developed in Chapter 5 

to reconstruct flow for Pre-R period, and a WBE based method will be developed in Chapter 6 to 

estimate flow data for Post-R period. 
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CHAPITRE 5 FLOW RECONSTRUCTION (PRE-RESERVOIR 

PERIOD, THEORY AND RESULTS) 

 

5.1 Introduction 

In the current project, the only available data for the Pre-R period are hydrological data (such as 

rainfall, temperature, and snowfall), neighbouring basins’ flow, and simulated flow from RR 

models. Thus, only limited and simple methods could be used for flow reconstruction for this 

period. According to the results of Chapter 4, the most appropriate family of flow reconstruction 

methods for the Pre-R period is regression based methods. Now it is necessary to define the specific 

regression based method and find the answer to the question of how to reconstruct daily flow for 

Pre-R period. As shown in Figure 5-1, in this chapter, a new Kalman-based method will be 

developed as a tool to combine the available data and reconstruct the flow series for Pre-R periods 

(Figure 5-1, box # 3). The developed method is then compared to a few existing regression based 

methods (Area Ratio method, the Maintenance of Variance (Move) type III method, and the 

Multivariable Regression method; Figure 5-1, box # 2). Few QIs will be required to effectively 

evaluate the performance of the mentioned methods. However, traditional QIs cannot be used in 

our study because they compare the reconstructed flow with the measured flow data series 

(reference data), which are not available in the current case. Therefore, the question is how to 

evaluate the quality of reconstructed flow series for ungauged basins. In this chapter, in addition to 

visual comparison, some QIs that are applicable to ungauged basins are designed to evaluate the 

quality of flow data series for Pre-R period (Figure.5-1, box # 4). 
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Figure 5-1: Schematic of methodology- Developing the specific flow reconstructing method and evaluating the quality and uncertainty 

of reconstructed flow for Pre-R period 

12- Evaluating the uncertainty of flow data 

More likely flow data series 

are produced 

Result 

Measured flow in 

neighbouring basins  

 

Simulated flow 

using RR model 

Result 

Post-R 

 

Result 

Pre-R 

 

Discharged flow, 

Turbine flow, 

Storage volume 

5- Developing an optimization 

model based on WBE 

 4- Comparison using: 

- Few QIs 

 - Graph 

7- Automatizing 

optimization model for 

parameter selection 

using: 

 - Stochastic method 

 - Deterministic method  

 WBE based methods are 

the most appropriate choice 

for the current study 

An intelligent 

method is 

required to define 

the parameters of 

method  

10- Regional and 

temporal 

homogeneity test 

1- Developing an algorithm to select the most appropriate family of flow reconstructing 

method considering different factors 

 9- Comparison using: 

- Few QIs 

 - Graph 

2- Selecting a few 

existing regression 

based methods 

3- Developing a 

Kalman based 

method 

Regression based methods 

are the most appropriate 

choice for the current study 

Pre-R Period Post-R Period Start 

8- Classic WBE 

11- Calculating the final flow data  

Selecting the family of flow reconstructing 

method 

Developing the specific flow reconstructing method 

Evaluating the quality and uncertainty of reconstructed flow 

6- Sensitivity analysis 



60 

 

5.2 Selecting A Few Specific Regression-Based Methods 

A literature review on the different regression based methods was presented in Chapter 2, which 

showed that regression-based methods are fast, simple, and are mostly developed based on the data 

or information of neighbouring basins. For example, the flow series can be extended by weighting 

the observed stream flow at one or more neighbouring gauged basins. This weighted value may be 

the ratio of the catchment surface of the studied basin to that of the gauged basins (Hughes and 

Smakhtin 1996, Schreider et al. 1997). Although neighbouring basins may have different 

hydrological and meteorological characteristics, and thus dissimilar flow hydrographs, the Area 

Ratio method is one of the methods compared in the development of the Kalman-based method in 

this chapter. 

Jones et al. (2004) developed a regression between the logarithms of river-flow, soil moisture and 

effective precipitation (which is precipitation minus actual evaporation), while Wen (2009) tried 

to reconstruct flow by relating discharge time series to rainfall and maximum temperature. In this 

project, however, no acceptable relation definable using a simple regression between a basin’s flow 

and hydrological data (such as rainfall, temperature, and snowfall) could be found (the squared 

coefficient was always less than 10 percent).  

A regression can also be developed between the short-term flow data series of the case study basin 

and the long-term flow data of a nearby basin (e.g. Hernandez-Henriquez et al. 2010, Dastorani et 

al. 2010). This method, however, does not guarantee that the flow series mean and variance will 

be preserved. Nevertheless, a multivariable linear regression will be developed and compared to 

the suggested Kalman-based method in this thesis. This multivariable regression relates the two 

independent variables of neighbouring basin’s flow and simulated flow to the dependent variable 

of flow of the case study catchment (Multivariable Regression method). 

Maintenance of Variance (Move) is another method used to extend flow series. This method 

preserves both mean and variance and has been tested by several researchers to extend the flow 

series (Hirsch 1982). Move III is also used to reconstruct the pre-reservoir flow data and is 

compared with the other methods (Move III method). 

Considering that a neighbouring basins’ flow and simulated flow (using RR model) are two main 

available data series for flow reconstruction during Pre-R period, they can be combined to give a 
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possible set of flow values for the case study. The Kalman filter will be the method used to filter 

and combine data when more than one time interval series are available.  

There are two types of Kalman filters, based on multi-sensor data fusion7 (Zhou et al. 2010). The 

first one, Measurement Fusion methods, involve merging multi-sensor data or combining them 

based on minimum mean square error estimates, compounding the measurements, and then 

filtering the data series using the Kalman method. The second one, State Vector fusion, first filters 

the data series using a Kalman filter and then compounds them. State estimate covariance matrices 

are used for State Vector fusion; however, the State estimates from different estimators are usually 

dependent, and to account for this, a new technique of fusing the filtered data series is introduced 

in this thesis by combining flow data from a neighbouring basin to flow data from an RR model. 

This new method was established to reconstruct the flow data for the Pre-R period and its 

performance was compared to results from Area Ratio, Multivariate regression, and Move III 

methods.  

Table 5.1 summarizes the list of selected regression based methods and the reason for their 

selection. There are a limited number of applicable methods for Pre-R period and the listed methods 

considered the most common. The Area Ratio is a simple and fast method that can be used, 

considering the available data for the current case study. This method is developed based on one 

available data series (flow from neighbouring basin). However, Multivariable regression model 

uses flow from both neighbouring basin and the RR model as the input data and benefit from both 

of them. This is a common, simple method that is applicable according to the limited available data 

for the Pre-R period. The mean and variance of the results of this method may change in time. 

Move III also appeared on the list because it can preserve mean and variance. However, Move III 

can only be developed based on the flow from neighbouring basin or from rainfall-runoff model. 

These comparisons show that the three mentioned methods complement each other. 

The Kalman filter based method has been suggested for flow reconstruction during pre-reservoir 

construction period. In fact, this method is based on an optimization technique that combines the 

flow from neighbouring basin and from RR model filtered using Kalman technique.   

                                                 

7 Combination of two or more measured data series of n values 
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Table 5.1: The list of applied methods for flow reconstruction during the Pre-R period 

P
re

-R
 p

er
io

d
 

Method The reason of choosing method 

Area ratio 

- simple and fast 

- widely used method  

- applicable based on available data 

- being used in Quebec 

Multivariable regression 

- simple and fast 

- widely used method  

- applicable based on available data 

- benefits from both RR model and neighbouring basin’s flow 

Move III 

- simple and fast 

- widely used method 

- applicable based on available data 

- preserves mean and variance 

Kalman based method 

- applicable based on available data 

- benefits from both RR model and neighbouring basin’s flow 

- finds flow data, combining simulated flow and neighbouring 

basins’ flow, using an optimization technique 

 

5.3 Methodology 

Since the available data for Pre-R period is limited to flow from an RR model and from 

neighbouring basins, using a simple regression based methods is unavoidable. For the work 

presented in this thesis, a new Kalman-based method was developed to reconstruct the flow data 

series using the State Vector Fusion technique. The results of this method are compared with those 

of selected regression based methods (Area Ratio, Multiple Regression, and Move III).  

 

5.3.1 Area Ratio Method 

In the Area Ratio method, the neighbouring basin’s flow is the only flow data that is used to 

reconstruct flow data. In this method, presented by Equation 5.1, the flow of neighbouring basin is 

multiplied by the ratio of the case study basin’s surface to the neighbouring basin’s surface. 
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𝐹𝑖 =
𝑠𝑛𝑏

𝑠𝑐𝑎𝑠𝑒 𝑠𝑡𝑢𝑑𝑦
× 𝑛𝑏𝑓𝑖          (5.1) 

 

where: 

  snb   = surface area of the neighbour basin 

scase study  = surface area of the case study basin 

nbfi  = flow of neighbouring basin for the ith day. 

 

5.3.2 Multivariable Regression Method 

One of the flow extending methods for Pre-R periods is a Multivariable Regression method 

(Equation 5.2). In this method, a linear regression is developed between the flow data as a 

dependent variable and the logarithmically scaled flow of a neighbouring basin and the 

logarithmically scaled simulated flow (by RR model) as the independent variables. Here, the 

neighbouring basin flow is scaled using the surface area ratio. 

 

𝑁𝐹𝑖 = 𝑎 × 𝑛𝑏𝑓𝑖 + 𝑏 × 𝑓𝑅𝑅 + 𝑒        (5.2) 

 

where: 

    fRR   = simulated flow using RR model 

a and b  = coefficients of the model  

e   = regression equation constant 

 

This equation was developed based on the reconstructed flow data series during the Post-R period, 

which will be described in Chapter 6. This means that the calibration period for this method is 

selected from years following the Post-R period. 
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5.3.3 Move III 

Move III (Equation 5.3) is a linear regression equation based on a specific method for calculating 

the slope and constant value of regression to extend a data series. The logarithmic values are used 

to develop this model for the Outardes basin.  

 

𝑌�̂� = �́� + �́�( 𝑥𝑖 − 𝑥2̅̅ ̅)          (5.3) 

 

with: 

�́� =
(𝑛1+𝑛2)𝜇�̂�−𝑛1𝑦1̅̅̅̅

𝑛2
          (5.4) 

�́�2 = [(𝑛1 + 𝑛2 − 1)�̂�2
𝑦 − (𝑛1 − 1)𝑆𝑦1

2 − 𝑛1  − 𝑛2(�́� − 𝜇�̂�)
2

] × [(𝑛2 − 1)𝑆𝑥2
2 ]−1 (5.5) 

𝑦1̅̅ ̅ =
1

𝑛1
∑ 𝑦𝑖

𝑛1
𝑖=1           (5.6) 

𝑆𝑦1
2 =

1

𝑛1−1
∑ (𝑦𝑖 − 𝑦1̅̅ ̅)𝑛1

𝑖=1          (5.7) 

𝑆𝑥2
2 =

1

𝑛2−1
∑ (𝑥𝑖 − 𝑥1̅̅̅)2𝑛1+𝑛2

𝑖=𝑛1+1         (5.9) 

𝑥2̅̅ ̅ =
1

𝑛2
∑ 𝑥𝑖

𝑛1+𝑛2
𝑖=𝑛1+1           (5.8) 

𝑥1̅̅̅ =
1

𝑛2
∑ 𝑥𝑖

𝑛1
𝑖=1           (5.10) 

 

where: 

 𝑥𝑖   = the available flow data for day i 

 nl  = the length of the short term data record 

 nl + n2 = the time length of the available long term data 

n2 =  the length of reconstructed flow 

𝑌�̂�  = the reconstructed flow for day i,  
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𝜇�̂�  = unbiased mean estimator of the complete extended record, 

 �̂�𝑦  = unbiased variance estimator  

 

(Vogel and Stedinger, 1985).  

 

5.3.4 Kalman Filter-Based Method 

In the developed State Vector fusion Kalman method, the measured data series are first filtered 

using a Kalman filter method (Equations 5.11 and 5.12). The filtered data series are then combined 

(Equation 5.13) using an optimization model. In the work presented in this thesis, the SSM Matlab 

toolbox is used to filter the flow series. 

 

Flow filtering: 

)(1 RRfKalmany            (5.11) 

)(2 snbfKalmany            (5.12) 

 

where:  

RRf  = simulated flow using the RR model  

snbf      = scaled flow from the neighbouring basin (neighbouring 

basin’s flow multiplied by area ratio),  

y1 and y2 = filtered flow using the Kalman filter method. 

 

Filtered flow combining: 

 

)( 2

2

2

1 BBMinimize                         (5.13) 

  

Subject to: 

YBy  111           (5.14) 

YBy  222           (5.15) 
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Y0            (5.16) 

  ]}1,2[],..,8.1,2.1[],2,1[],1,1{[, 21       (5.17) 

 

where:  

 Y  = reconstructed flow 

1 and 2  = coefficients of reconstructed flow 

1B  and 2B   = the errors values.  

 

Equation 5.14 implies that the reconstructed flow is a multiple of filtered simulated flow (y1) plus 

an error value, and Equation 5.15 shows that the reconstructed flow is a multiple of filtered 

Neighbouring basin’s flow (y2) plus an error value. Equation 5.16 forces the flow values to stay 

positive, and Equation 5.17 shows a set of coefficients of 
1 and 

2 . For example, the sub-set of 

]2,1[  indicates that 
1 =1 and 

2 =2. This model tries to optimize the reconstructed flow (Y) by 

taking the most appropriate ratio of available filtered flow data series (y1 and y2) and minimizing 

the errors (
1B  and 

2B ). 

 

5.3.5 Evaluating the Quality of Reconstructed Flow 

An important topic that has not been discussed enough in regards to ungauged basins is the 

evaluation of reconstructed flow. Most of the studies have applied traditional QIs to compare the 

validated flow with measured flow. Even in Quebec, where measured flow data series are not 

readily available, reconstructed flow has been compared with filtered flow data (the flow series 

that mostly was filtered manually and is available in Hydro-Quebec’s database) using one or two 

indices. However, as explained in Chapter 2, filtered flow values in Quebec are less reliable prior 

to 2005, and as a result, designing new Quality Indexes to evaluate the integrity of validated flow 

that are independent from filtered flow would be beneficial.  

Since there is no proper statistical quality criterion for hydrological simulation models, more than 

one QI are usually used to assess more precisely the performance of the model (Weglarczyk, 1998). 

Therefore, it is preferable to use several QIs to evaluate the reliability of reconstructed flow data 
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series in ungauged basins. The three drafted QIs for the Pre-R period are Normalized Nash (NN), 

Consistency Coefficient (CC), and Normalized Tortuosity (NT), as shown below by Equations 

5.18, 5.20, and 5.21 respectively.  

 

1) 
))-(1+(a

)-(1
-1=

2NASH

NASH
NN         (5.18) 
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iii nbfnbfa  1       (5.22) 

calicalii qqb  1         (5.23) 
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1

N
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NT



           (5.24) 

   || 1 calicali qqT          (5.25) 

 

where:  

a  = a constant number between 0 and ∞ 

obsiq    = the observed flow in the case-study basin in day i,  

caliq   = the reconstructed flow by developed model for day i,  

nbfi     = the flow of ith day in the neighbouring basin,  
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ia  and ib   =  the differences of discharge between the days i+1 and i for 

the selected neighbouring basin and calculated flows 

respectively 

ni  = marks the status of day number i , it is equal to one if the 

trend of both calculated flow (
calq ) and neighbouring basin’s 

flow ( nbf ) is increasing or decreasing,  

N   = the total number of days, and  

T   = tortuosity.  

 

(Note: simulated flow using an RR model is considered as the observed flow ( obsiq ) to calculate 

NASH) 

 

The QIs are all normalized by scaling them between 0 and 1. The QI values which are closest to 1 

indicate the better QI.  

As stated in Chapter 1, flow data series are used for different purposes such as flow prediction, 

flood analysis, water resource management, and flow simulation. In this project, the suggested 

indices are designed to fulfill the above mentioned purposes.  

 NN: The flow data series that disregard the physics of flow and the climate of the area are 

considered unreliable. According to Equations 5.18 and 5.19, NN factor in these terms by 

calculating NASH based on the simulated flow through the hydrologic RR model (see also 

Figure 5-1, box # 4). Meteorological data are used as input data for RR models and thus 

they reflect the flow physics in flow simulation. Thus, flow physics and meteorological 

factors are indirectly used in NN. This implies that the reconstructed flow data series that 

best respect flow physics and the coherence between climate and flow have higher NN 

values. Such reconstructed flow data series are more reliable for calibrating hydrological 

models. As the difference between obsiq  and caliq  is squared in Equation 5.19, NN is more 

sensitive to peak flows. Therefore, NN is also a beneficial QI for flood prediction and PMF 

estimation. 
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 CC: Dissimilarity in variation of the reconstructed flow to that of the neighbouring basin’s 

flow affects regional flow analysis. Therefore, CC is designed to compare the similarity of 

the trend of reconstructed flow with that of neighbouring basin’s flow (Figure 5-1, box # 4) 

and penalizes the reconstructed flow series that do not respect regional integrity. As 

explained in Chapter 2, the selection of a neighbouring basin (among other measured basins 

in the area) for comparison with the case study watershed is based on similar physical 

characteristics; therefore, it is expected that the neighbouring basin shares almost the same 

hydrographical and flow variation with the case study basin. Any dissimilarity in variation 

between a neighbouring basin’s flow and simulated flow causes lower CC.  

 NT: Noise disturbs short term and long term flow memory and makes it difficult to analyze 

flow data series and thus to efficiently predict flow values. Unreliable predicted flow values 

will evidently lead to uncertainty in water resource management and inconveniences in 

flood situations. Therefore, this QI is designed to penalize noisy data series and to provide 

a better idea on the safety levels of predicted flow.  

The names of these criteria and the reason for choosing them are listed in Table 5.2. 

  

 

Table 5.2: The list of selected quality indexes for Pre-R period 

 QI The reason of choosing QI 

P
re

-R
 p

e
ri

o
d

 

 

 

 

CC 

 

- penalizes the flow data series not respecting the regional homogeneity 

in the sense of hydrograph shape  

- beneficial for regional flow analysis studies 

 

 

 

NN 

 

- penalizes the flow data series not respecting meteorological factors 

- more sensitive to peak flows 

- beneficial for flood prediction and PMF estimation, and RR model 

calibration purposes 

 
 

NT 
 

- penalizes noisy flow data series 

- useful for water management and flow prediction studies 
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5.4 Results 

The suggested Kalman-based method was used to calculate flow on the Outardes 4, Outardes 3, 

and Outardes 2 sub-basins and the results were compared with the reconstructed flow using existing 

methods of flow reconstruction: Area Ratio method, Maintenance of Variance (Move III) method, 

and Multivariable Regression method. In these methods: 

 The Moisie River has been selected as the neighbouring basin for Outardes 4 and the 

Godbout has been chosen as the neighbouring basin for Outardes 3 and Outardes 2 (Table 

3.3).  

 Simulated flow and neighbouring basin’s flow are considered as independent variables of 

the Move III method.  

 The calibration and validation periods of Multivariable Regression and Move III methods 

are 1979-2011 and 1960-1978 respectively.  

 

The results derived from the application of these methods are presented for several example years 

for Outardes 4 in Figures 5-2 to 5-6. Figures 5-4 to 5-6 show the results of the same models for the 

years when the results of classic WBE are available. These figures provide helpful information on 

the performance of the different models. 
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Figure 5-2: Comparison of different methods of flow reconstruction for Outardes 4 (1966) 

 

  

Figure 5-3: Comparison of different methods of flow reconstruction for Outardes 4 (1968) 
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Figure 5-4: Comparison of different methods of flow reconstruction for Outardes 4 (1970) 

  

 

Figure 5-5: Comparison of different methods of flow reconstruction for Outardes 4 (1971) 
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Figure 5-6: Comparison of different methods of flow reconstruction for Outardes 4 (1981) 
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 For Outardes 4, Kalman had the highest CC during the Pre-R period. However, for Post-R 

years, the Area Ratio method had the best CC. For Outardes 3 and Outardes 2, Move-III 

(x = neighbouring basin) and Area Ratio have respectively the highest CC. This means that 

the ability of the different methods to produce regionally coherent flow data is different 

for variations in time and space. 

 For Outardes 4, Move III (x=simulated flow) generally produced the best individual QIs, 

and the best average QI for Pre- and Post-R periods. This can be also seen in Figures 5-4 

to 5-6, which compare the different methods to classic WBE (although the results of classic 

WBE are not very reliable, they can give an idea about the general shape of hydrograph). 

In these figures, the reconstructed flow using Move III (x=simulated flow) had the most 

similar trend to classic WBE, which could be related to the quality of simulated flow data 

for this basin.  

 Move III (x=simulated flow) produced the best NT values for Outardes 4, while Area Ratio 

produced the best NT values for Outardes 3, and the Kalman method for Outardes 2. This 

implied that smoothness of the model values are different in the three case studies.  

 The best NN values are associated to Move (x=simulated flow) for Outardes 4, and to 

Multiple Regression for Outardes 3 and 2. Thus, these two methods are more adept to 

reflect meteorological data in comparison to other methods.  

 In Figures 5-4 to 5-6, the Area Ratio method overestimates the flow in comparison with 

WBE. This is why this method has the highest Specific Flow (SF) and the lowest NAVE 

for Outardes 4 and Outardes 2 in comparison to other methods. Unlike these two basins, 

the highest SF is related to Move III for Outardes 3.  

 The inverse relationship between SF and NN for Outardes 3 and 2 shows that the methods 

with higher SF (Area Ratio and Move III) are overestimating flow comparing to simulated 

flow. Hence, they possess low NN. 

 For Outardes 4, all methods produce more or less the same SF. However, the range of 

generated SF was wider for Outardes 3 and Outardes 2. 

Comparing the SF of Pre-R and Post-R periods (Figure 7-25) shows that for Outardes 4, 

the four methods used for flow reconstruction for the Pre-R (Area Ratio, Multiple 
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Regression method, Move III, and Kalman filter based method) result in higher SF 

compared to the methods applied for Post-R. However, for Outardes 2, the Area Ratio and 

Move III (x=NB) methods shows higher SF, while for Outardes 3, the Move III method 

produces a higher SF than other methods. For both Outardes 3 and Outardes 2, the Kalman 

and Regression methods underestimate the flow in comparison to the reconstructed flow 

series during Post-R period. 

Figure 7-25 shows that for the three sub-basins, Move III (from Pre-R period) has the most 

similar SF to the suggested flow reconstruction methods for Post-R period. This shows that 

Move III is probably the most reliable method for Pre-R period in this case-study. However, 

SF is only one of the criteria. Selecting the most appropriate method in each case-study 

depends on the engineering decision of researcher.   
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Table 5.3: Comparison of QIs for a few methods of flow reconstruction (Outardes 4) 

Flow 

reconstruction 

Methods 

 Reservoir Name NAVE NT SFR NN CC 
Aérage 

QI 

SF 

(L/s/km2) 

Kalman 

Pre-RC -Outardes river  0.850  0.744 0.564 0.719 
24.1 

Pre-RC -Romaine river  0.850  0.744 0.677 0.757 

Post-RC -Romaine river 0.699 0.864 0.941 0.802 0.741 0.809 23 

Area Ratio 

Pre-RC -Outardes river  0.808  0.588 0.529 0.642 
25.6 

Pre-RC -Romaine river  0.808  0.588 0.630 0.675 

Post-RC -Romaine river 0.677 0.82 0.87 0.657 0.997 0.804 24.2 

Regression 

Pre-RC -Outardes river  0.868  0.798 0.573 0.746 
23.8 

Pre-RC -Romaine River  0.867  0.650 0.592 0.703 

Post-RC -Romaine River 0.702 0.876 0.925 0.850 0.791 0.829 23.0 

Move III 

 x= simulated 

flow 

Pre-RC -Outardes river  0.876  0.842 0.581 0.766 
22.6 

Pre-RC -Romaine river  0.876  0.842 0.622 0.780 

Post-RC -Romaine river 0.7 0.886 0.97 0.885 0.704 0.829 21.9 

Move III 

x=Moisie 

Pre-RC -Outardes river  0.875  0.803 0.529 0.736 
22.8 

Pre-RC -Romaine river  0.875  0.803 0.630 0.769 

Post-RC -Romaine river 0.684 0.883 0.986 0.859 0.997 0.882 21.4 

Note: (1) Pre-RC =Pre-Reservoir Construction = 1960 to1969 

(2) Post-RC = Post-Reservoir Construction=1969 to 1978 

(3) SF = Specific Flow 
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Table 5.4: Comparison of QIs for a few methods of flow reconstruction during Pre-R period 

(Outardes 3) 

Flow reconstruction Methods NT NN CC Average QI SF (L/s/km2) 

Kalman 0.995 0.795 0.64 0.81 16.676 

Area ratio 0.997 0.299 0.693 0.663 22.758 

Regression 0.995 0.802 0.602 0.766 18.101 

Move-x= simulated flow 0.985 0.422 0.502 0.64 28.080 

Move-x=neighbouring basin 0.988 0.19 0.914 0.584 30.055 

 

Table 5.5: Comparison of QIs for a few methods of flow reconstruction during Pre-R period 

(Outardes 2) 

Flow reconstruction Methods NT NN CC Average QI SF (L/s/km2) 

Kalman 0.988 0.832 0.652 0.824 11.710 

Area ratio 0.983 0.357 0.697 0.679 23.351 

Regression 0.984 0.988 0.516 0.829 14.592 

Move-x=simulated flow 0.981 0.501 0.599 0.694 16.980 

Move-x= neighbouring basin 0.98 0.352 0.618 0.649 20.647 

 

5.5 Conclusion 

In this chapter, a Kalman filter based method was developed to reconstruct the flow for Pre-R 

years. This suggested methodology was applied to the Outardes basin and the results of that were 

compared with the following regression based methods: Move III, Area Ratio, and Multivariable 

regression using visual graphs and three different QIs. Although all the methods produced smooth 
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and non-negative flows, they exhibited different performances in time and space. Looking at their 

QIs and visual comparisons, it is evident that:  

 Kalman method produces a set of smooth data series (good NT) which is close to that of 

simulated flow (good NN). However, the results of this method are not the best compared 

to regional flow (moderate CC).  

 Area Ratio method produces a smooth set of data series (good NT) but shows the most 

deviation from simulated flow (low NN). This method produced the best results with respect 

to regional flows at Outardes 2 and Outardes 4 but not at Outardes 3.  

 Regression method produces a smooth set of data series (good NT) which most closely 

matches to that of simulated flow (good NN). The results of this method are not the best, 

though, with respect to regional flows in Outardes 3 and Outardes 2.  

 For Outardes 3 and 2, Move III (x= simulated flow) produces a smooth set of data series 

(good NT) but does not match the data series from simulated flow (low NN). The results of 

this method are not the best also for regional flows. This method performs the best for 

Outardes 4. 

 Move III (x= Neighbouring basin’s flow) produces a smooth set of data series (good NT). 

The results of this method are comparable to regional flow (good CC). However, it had a 

very weak performance in calculating flow values close to simulated flow (low NN) in 

Outardes 3 and 2. 

The general conclusion is that the results of different methods vary with different time and space 

periods. Selecting one method for each time period is not easy because each method has its 

advantages in producing flow data series. In the case that all the QIs of different methods (including 

SF) are very close and do not give a clue to select the most appropriate method, calculating the 

final reconstructed flow based on weighted flow8 for each time period is suggested as a solution to 

the question of how to reconstruct daily flow for Pre-R period. However, in Outardes 3 and 2, 

                                                 

8 The weight of each method could be defined based on the average QI of that method. In this approach, the flow with 

higher QI has larger weight in the final flow data series. 
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Move III (x= simulated flow) is the most reliable flow reconstruction method because it is the only 

method that produces the flow time series with the SF close to Post-R period methods. In Outardes 

4, Move III (x= simulated flow) is also the most reliable flow reconstruction method because it 

mostly has the best QIs (including SF).  

Also, the visual graphs and three QIs are possible answers the question of how to evaluate the 

quality of reconstructed flow series in ungauged basins for Pre-R period. 

In Chapter 6, a methodology for reconstructing the flow values and evaluating the quality of 

estimated flow for Post-R period will be presented.  
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CHAPITRE 6 FLOW RECONSTRUCTION (POST-RESERVOIR 

PERIOD, THEORY) 

 

6.1 Introduction 

In Chapter 4, WBE-based methods were suggested as the appropriate family for flow 

reconstruction method for Post-R in this current research. Using classic WBE for a reservoir as a 

closed hydraulic system is a common method (e.g. Shiau and Lee 2005) for flow reconstruction in 

ungauged basins. Many researchers have attempted to estimate the water-loss parameters, which 

are fundamentally part of the WBE, such as infiltration (Joshi and Tambe 2010, Telis 2001) and 

evaporation (i.e. Yeung 2005, Gunter et al. 2004, Hamon 1961, Sivapragasam et al. 2009, and 

Parasuraman et al. 2007). However, it remained a source of uncertainty. Therefore, WBE can be 

simplified as Equation i.1 (classic WBE) by including water-loss parameters when calculating flow 

values. This simplification, along with input data uncertainty, causes noisy and even negative 

values of WBE calculated flow. Thus, more investigation is required on WBE-based methods in 

order to improve their results.  

In light of the literature review presented in Chapter 2, different alternative WBE based methods 

have been recommended to reconstruct flow in ungauged basins in Quebec. This critical review 

shows that each of developed methods has its own strengths and weaknesses, and can improve the 

results of previous research as well. For example, the current method of flow reconstruction 

currently used at Hydro-Quebec has the potential of being improved by applying a WBE based 

optimization model, POM, as an alternative. POM improves the limitations and problems of a 

mostly manual filtering method (listed in Chapter 2). It is flexible enough to be applied to any 

reservoir where storage volume, turbine flow, and discharged flow are measured. Results of POM 

exhibit non-negative flow values and decreased noise. Nevertheless, this method still has some 

limitations (as listed in Chapter 2) that restricts its applicability and efficiency and leaves the 

question of how to reconstruct more likely daily flow for Post-R period unanswered. Thus, an 

optimization model will be developed in this chapter based on POM (Figure 6-1, box # 5) in order 

to address the problems stated previously. Next, a sensitivity analysis will be performed to evaluate 

the improved POM under the assumption that both time and space are considered as constant 

http://www.springerlink.com/content/?Author=C.+Sivapragasam
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parameters (Figure 6-1, box # 6). Then, both automatic deterministic and stochastic techniques will 

be developed to intelligently estimate the parameters of suggested model (Figure 6-1, box # 7).  

After, flow values have been reconstructed, it is essential to evaluate the quality of the flow values 

obtained. In Chapter 5, three QIs were suggested for reconstructed flow values in the Pre-R period. 

As more information is available for Post-R, it is desirable to develop more QIs in order to more 

comprehensively assess the flow data series. In current chapter, five QIs will be designed (Figure 

6-1, box # 9), in addition to visual graphs, to compare the results from the developed Stochastic 

based models, Deterministic based models, and classic WBE (Figure 6-1, box # 8). Also, regional 

and temporal homogeneity of the reconstructed flow values will be evaluated in this chapter (Figure 

6-1, box # 10). This part of the research is used to answer to the question of how to evaluate the 

quality of reconstructed flow series in ungauged basins for Post-R period.  

Lastly, the final flow will be calculated using a Weighted Average method (Figure 6-1, box # 11). 

Evaluating uncertainty is an indispensable step in regards to flow reconstruction. There are many 

different methods available to evaluate different types of uncertainty, but most existing methods 

are dependent on previously measured data. Therefore, it is still a challenge to find out how to 

evaluate the uncertainty of flow data in ungauged basins. In this study, a methodology is suggested 

to answer this question and to estimate the probable range of the final flow data series. 
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Figure 6-1: Schematic of methodology- Developing the specific flow reconstructing method and evaluating the quality and uncertainty 

of reconstructed flow for Post-R period 

12- Evaluating the uncertainty of flow data 

More likely flow data 

series are produced 

 4- Comparison using: 

- Few QIs 

 - Graph 

10- Regional and 

temporal 

homogeneity test 

 9- Comparison using: 

- Few QIs 

 - Graph 

Result 

Post-R 

 

Result 

Pre-R 

 

Measured flow in 

neighbouring basins  

 

Simulated flow 

using RR model 

Discharged flow, 

Turbine flow, 

Storage volume 

2- Selecting a few 

existing regression 

based methods 

3- Developing a 

Kalman based 

method 

Regression based methods 

are the most appropriate 

choice for the current study 

5- Developing an optimization 

model based on WBE 

Pre-R Period Post-R Period Start 

 WBE based methods are 

the most appropriate choice 

for the current study 

An intelligent 

method is 

required to 

define the 

parameters of 

method  

7- Automatizing 

optimization model for 

parameter selection 

using: 

 - Stochastic method 

 - Deterministic method  

Result 

8- Classic WBE 

11- Calculating the final flow data series 

1- Developing an algorithm to select the most appropriate family of flow reconstruction 

method considering different factors 

Selecting the family of flow reconstruction method 

Developing the specific flow reconstruction method 

Evaluating the quality and uncertainty of reconstructed flow 

6- Sensitivity analysis 



83 

 

6.2 Methodology 

First, an optimization model will be developed in order to address the problems of POM (described 

in Chapter 2). This model is called the Improved Optimization model or Improved POM in this 

thesis. A sensitivity analysis will then be performed to evaluate the authenticity of the model’s 

assumption regarding constant parameters in time and space. Finally, Stochastic and Deterministic 

techniques are used to estimate the appropriate PS (Parameter Set) of the improved optimization 

model. Lastly, the final flow data series is estimated using a Weighted Average method. At the end 

of the chapter, a methodology will be suggested to define the probable range of flow resulting from 

input data uncertainty. 

 

6.2.1 Developing an Optimization Model Based on POM  

In this section, an optimization model will be developed based on POM (improved POM) in order 

to solve the problems of POM (mentioned in Section 2.2.2.3.1). The objective function and the 

constraints of the improved POM are presented in Equations 6.1 to 6.9. This optimization model: 

1. considers the parameter   as a coefficient for squared E. Equation 6.1 is a single quadratic 

objective function in which all the variables possess their own coefficients (solving problem 

number 2, Section 2.2.2.3.1).  

2. has a moving optimization window with the length of dn to define the variables in each 

step. Unlike POM, only the calculated flow in the middle of the window is returned as the 

output of that step. For instance, as it is shown in Figure 6-2, a sample year (365 days) is 

divided into time periods with the length of 3 hours (dn=3). Thus, for the first time, the 

optimization model is solved for the days 1 to 3 (start day =1 and end day =3) but only the 

flow value of the day in the middle of window (day # 2 in this example) is saved. In the 

second step, the optimization model is solved for the days 2 to 4 (start day =2 and end day 

=4) but only the flow value of day # 3 is saved. This means that the optimization window 

is moving and the problem of poor boundary condition do not affect the flow values 

(solving problem number 4, Section 2.2.2.3.1). Calculating each flow value while 
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considering the other flow values of optimization window is an obvious advantage of this 

model over classic WBE. 

3. does not depend on a 5 minute interval data sample. To make the model independent of the 

5 minute interval data sample, the variable of Volume (Equations 2.6 and 2.7) is replaced 

with the measured volume data and thus no longer requires variables or data with the inf or 

sup subscript. Consequently, 

a. Equations 2.3 and 2.4 are removed from the model (solving problem number 5, 

Section 2.2.2.3.1).  

b. The inequalities of Equations 2.6 and 2.7 (WBE) are replaced by equality of 

Equation 7.2 (WBE). This means that the range of WBE will not be affected by time 

intervals anymore, and the certainty of results is not decreased with increasing time 

intervals.  

c. Not only is the model much simpler to use, but it is also applicable for reconstructing 

daily flow without any concern.  

4. is applicable for any time period. Since the model is not dependent on 5 minute interval 

data sample anymore, it can even be applied for time periods when only hourly or daily 

volume data is available (solving problem number 6, Section 2.2.2.3.1). 
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Figure 6-2: The schematic of optimization window in the improved POM for a hypothetical year  

 

Note that the problems number 1, 3, and 7 (mentioned in section 2.2.2.3.1) are also solved using 

the suggested methods for parameter estimation in section 6.2.4. In order to solve the problem of 

constant parameters, a deterministic genetic algorithm and a stochastic probabilistic algorithm will 

be proposed in Section 6.2.4 in order to define the parameters automatically for each segment9 of 

a year. In using these methods, the parameters could change by time and case-study (solving 

problem number 7, section 2.2.2.3.1).  

In order to use all available data (flow from neighbouring basins and RR model), the simulated 

flow generated by the RR model is entered to deterministic based models as the external signal and 

it forces the flow values to get close to the simulated flow by a predefined weight. Also, the 

parameters of the stochastic based model are defined by considering the hydrograph shape of the 

neighbouring basins and flow from RR model (solving problem number 3, section 2.2.2.3.1). 

                                                 

9 Each year is divided to few time periods called segment. In this thesis, each segment is defined in a way that it 

includes the flows of almost the same characteristics. To do so, the annual cumulative simulated flow data series is 

plotted and segment start points are placed where the slope of this data series shows considerable change. 
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The modification made in this section, in addition to the suggested methods in section 6.2.4, results 

in decreased noise and improved quality of reconstructed flow values (solving problem number 1, 

section 2.2.2.3.1). 

 

The modified POM is represented in the following equation: 

  





endDay

startDayn

n
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n
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n qZpcEMinimize )( 2
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     (6.1) 

 

Unlike POM, the parameter of   is considered as a coefficient of squared E in the objective 

function (Equation 6.1). As it appears that the parameters of c and   have the same role in POM, 

it is not necessary to consider both as the variable variation parameters of flow (Z and ). 

Therefore, it is now easier to manipulate the coefficients of different parameters in the modified 

objective function (Equation 6.1) and change their ratio.  

 

 Subject to (Equations 6.2 to 6.8): 

 

)360024(

1000000
)( )1()()(


 nnnnnn vvEFqoutqin  endDaystartDayn ,....,  (6.2) 

 

where )(nv  is the measured volume of water in the reservoir at the beginning of day n in hm3 (the 

coefficient of 
)360024(

1000000


 is to convert the unit of volume from hm to m3/s).  

In Equation 6.2, )(nv  is the measured volume (which is a substitute for both )inf(nv and )sup(nv  in 

Equations 2.6 and 2.7) that makes the model independent from 5 minute interval data sampling 

(data which is measured every 5 minutes) for nth day. This modification seemed necessary because 
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achieving an independent model from 5 minute interval data sampling makes the equation 

applicable for any time period, even if 5 minute sampling intervals are not available. Also, a model 

free of )inf(nv and )sup(nv variables is flexible enough to be applied for any time scale (hourly, daily, 

etc.). 

By performing this alteration, the two inequality of Equations 2.6 and 2.7 are replaced by the 

equality of Equation 6.2 in the improved POM, and the offset subscript was removed from the 

model, with nEinf, and nEsup,  being replaced with )(nE  (Equations 2.3 and 2.4 were removed). 

The rest of the model stayed the same as follows: 

 

)()()1( nnn ZFF       endDaystartDayn ,....,   (6.3) 

)()()1()1()( nnnnn FFFF       endDaystartDayn ,....,   (6.4) 

 E            (6.5) 

 F0            (6.6) 

            (6.7) 

 Z           (6.8) 

 

Equations 6.3 and 6.4 show the variation of flow values for two and three consecutive days 

respectively. These variations are minimized in Equation 6.1 to decrease the flow data noise. 

Although it seems that minimizing the flow variation for a period of two consecutive days 

(Equation 6.3) should be enough to minimize the noise, it is not able to decrease the probability of 

a “zigzag” data series. Minimizing the variation for a period of three sequential days (Equation 6.4) 

was required to give a set of smoother flow time series.  
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One consideration that has not been addressed in this study is the situations where there is a gap in 

volume, turbine flow, and/or discharged flow data series. In such cases, the suggested optimization 

model is not able to estimate flow values and a report value of “NA” (not available) must be entered 

in the records. The missing flow values, in the end, do need to be estimated. Since this situation 

did not occur in the current case study, the subject is not addressed in this thesis. However, different 

methods such as linear regression, nearest neighbour, Piecewise Cubic Spline, and Piecewise Cubic 

Hermite are suggested methods to be used for estimating the missing flow data for basins in 

Quebec. 

 

6.2.1.1 Sensitivity analysis  

A sensitivity analysis was performed to show the effects on flow values as a result of changing the 

parameters of the improved POM.  

In the original POM, the parameters of p, q, and γ were considered equal to 1, c had two different 

values for different seasons (c= 10000 for winter and c= 1 for the remaining seasons), and dn was 

set to 3. These parameters do not change from year to year and from basin to basin in the original 

POM.  

To understand how the results change when c, γ, and dn take on different values, few hypotheses 

are considered as follow: 

a) The results change by changing dn with season:  

i. dn has different value in winter from rest of year 

ii. dn has different value in winter, summer and rest of the year 

b) The results change by changing dn and c with season.  

i.     dn and c have different values in winter from rest of year 

ii. dn and c have different values in winter, summer and rest of the year 

c) The results are affected by the value of γ 
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In the hypothesis above, the changing of seasons are not dictated by a date on the calendar but on 

the change of the maximum and minimum climate temperature. When the minimum temperature 

is greater than zero, it is classified as summer, and when the maximum temperature is less than 

zero, it is classified as winter. All other temperature ranges are classified as spring.  

 

6.2.2 Selecting Techniques for Defining the Parameters of Improved POM 

Although POM produces more feasible flow data values than the classic WBE, it still exhibits some 

deficiencies. Though some of the weaknesses in the method were overcome in the improved 

version of POM (Section 6.2.1), nevertheless, a more intelligent method is still required to define 

the parameters of the model automatically.  

Several methods are available in order to determine the parameters of the optimization models. 

Some of these are Neural Network (Cheng et al. 2009, Chu 1992), Genetic algorithm (GA), and 

Stochastic methods (Shalev-Shwartz and Tewari 2011). Different types of GA have been widely 

used to solve the optimization models over the last decade (e.g. Deb 2000, Deb 2002). In this thesis, 

a posterior GA, which is one type of Deterministic method, will be one of the selected methods 

that will be used to determine the parameters of the optimization model because;  

i) it automatically defines the best parameter set,  

ii) it solves problems by producing multiple solutions (it gives more than a single solution 

to provide the possibility of engineering judgment),  

iii) it is easy to understand and to apply to existing models,  

iv) it searches in parallel from a population of points, which means that it is able to explore 

the solution space in multiple direction at the same time. Therefore, it has the ability to 

avoid being trapped in local optimal solution like traditional methods, which search 

from a single point Marczyk, 2004),

v) it is “robust and has been proven theoretically and empirically to be able to efficiently 

search complex solution spaces” (Simpson et al. 1994). 

Another method used in this work to determine the PSs is the Probabilistic Algorithm, which is 

one type of the Stochastic method. This method was selected because: 
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i) it automatically defines the best PS, and  

ii) it considers the probability of different PS’s to define the final PS.  

In short, the applied methods to determine the PSs are GA and the Probabilistic Algorithm. 

However, in this thesis, the more general terms of Deterministic method and Stochastic method are 

respectively used to name these algorithms. 

The list of suggested methods for flow reconstruction during the Post-R period and the reasons of 

their selection are tabulated in Table 6.1. 

 

Table 6.1: List of applied methods to define the parameters of suggested method for flow 

reconstruction during the Post-R construction period 

 Method The reason of choosing the method 
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- Defines the parameters automatically 

- Provides multiple solutions 

- Easy to understand and to be transferred to existing model 

- it has the ability to avoid being trapped in local optimal solution  

- It is able to efficiently search complex solution spaces 
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- Defines the parameters automatically 

- Takes the probability of different parameter sets into account (for 

calculating the best parameter set) 

 

 

6.2.2.1 Deterministic technique 

As discussed in Section 6.2.1, the improved POM estimates the daily flow in ungauged basins by 

solving the WBE for each reservoir. In this model, a single quadratic objective function is used to 

minimize the error of WBE and decrease the variation of flow data series over continuous days. 

However, as it was stated earlier, the parameters of model cannot be constant in time and space. 

Since flow characteristics differ depending on the time of year (winter, spring, and summer), the 

PS model should be different for each sub-time period. Thus, each year is divided into few 
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segments (sub-time period), and the most appropriate parameter set (PS) is determined for each 

segment. The number of segments is kept at less than 8 for each year to avoid unnecessary 

complexity.  

In this section, a deterministic GA was developed to define the parameters of the optimization 

model for each segment automatically. A trial and error procedure shows that changing the 

objective function from Equation 6.1 to Equation 6.9 gives better results in a GA based 

optimization model. In this objective function (Equation 6.9), simulated flow is entered into the 

model as an external signal. This forces the flow values to approximate simulated flow (using RR 

model) by the weight of d. Since the RR model is developed based on meteorological data, it is 

able to take climate and the flow dynamics (phenomena such as winter snowfalls and spring floods) 

into account. Thus climate of area and the dynamic of flow are indirectly considered in the 

Deterministic method.  
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  (6.9) 

With: 

nnsim FqA  ,           (6.10) 

 

where nsimq ,  is the simulated flow by RR model for day n, and d is a weight vector defined by the 

user.  

The algorithm of the proposed methodology is presented in Figure 6-3. The algorithm benefits 

from posterior GA (Whitley 1994) in defining the parameters of the optimization method (bolded 

boxes are the steps of GA). The posterior GA is created by solving the GA for different d 

coefficients. As can be seen in Figure 6-3, the GA finds the best PS for each segment of the year 

and each predefined d coefficient (which defines the level of similarity between calculated flow 

and simulated flow using RR model). This approach produces more than one parameter set and 

thus more than one reconstructed flow series for each segment, which allows one to select among 

the generated results.  

http://link.springer.com/search?facet-author=%22Darrell+Whitley%22
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At the end of the process, there will be d estimated flow series for each segment. Among these 

series, the best graph is selected based on a few quality indices and trend similarity to flow 

calculated by classic WBE. First, the graphs with higher QIs are selected, and then the final graph 

is chosen visually among them. The final graph chosen should exhibit a data series that appear 

smoother than other graphs and should not display general over or under-estimations in comparison 

with classic WBE.  

In the GA technique described in this section: 

 a) the genes include  , p, q, c, dn (five parameters),  

b) the fitness of each PS is the calculated QI (Nash–Sutcliffe coefficient (1970), which 

compares simulated flow and reconstructed flow) for the estimated flow data series based 

on that PS,  

c) the mother PSs of the next generation are defined using the Tournament method,  

d) the chance of a mutation occurring is considered at 2 percent  

 

http://en.wikipedia.org/wiki/Nash%E2%80%93Sutcliffe_model_efficiency_coefficient
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Figure 6-3: Schematic of the proposed Deterministic based optimization model  

 

Simulated flow 

Combine the results 
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6.2.2.2 Stochastic technique 

The parameters of the optimization model were also defined using a Stochastic method. In the 

Stochastic based optimization model, the objective function was kept as Equation 6.1.  

Like the Deterministic based model, each year is divided into segments, and then, the 8-step 

Stochastic based optimization model is completed in order to define the model’s parameters for 

each segment (Figure 6-4).  

Step 1: One hundred random initial parameter sets are produced (Figure 6-4, Box 1).  

Step 2: The optimization model is solved with each parameter set and the related flow series 

are produced. Thus, one hundred flow data series should be produced (Figure 6-4-

box 2). 

Step 3: The fitness of each reconstructed flow series from Step 2 is determined (Figure 6-

4-box 3) based on weighted summation of the three normalized criteria QIs (NN, 

NAVE, CC) using Equation 6.11. NN compares the reconstructed flow with 

simulated flow from the RR model. As the RR model is developed based on 

meteorological data, NN reflects the degree of coherence between the reconstructed 

flow and area’s climate. CC compares the reconstructed flow with the neighbouring 

basin’s flow and thus reflects the level of coherence between the reconstructed flow 

and regional flow dynamic.  

 

CCwNAVEwNNwBenefit  321     (6.11) 

where: 
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         (6.12) 
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and:  

w1, w2, w3  =  user defined weight coefficients 
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 NAVE   = normalized absolute volume error,  

WBEiq   = calculated flow by classic WBE for the day i  

(NN, and CC are defined using Equations 5.18 and 5.20 respectively).  

 

Step 4: Narrow down the number of parameter sets by selecting the 10 sets with the highest 

fitness (Figure 6-4-box 4). 

Step 5: This step has 2 stages: first, the probability of the ten PSs generated from Step 4 is 

calculated using Equation 6.14 (Kalakrishnan et al. 2011): 

 

10...,,2,1),
1

exp()(  j
Benefit

psP
j

j                                               (6.14) 

where: 

)( jpsP      = the probability of jth parameter set 

jBenefit  = the fitness related to this jth parameter set (calculated in 

Step 3).  

 

Afterwards, an aggregated parameter set is estimated using the 10 calculated 

probabilities in Equation 6.14. This aggregated PS will be used as the mother 

parameter set for the next iteration (Figure 6-4, Box 5). Here the parameter sets with 

the higher probabilities will have more weight in the mother PS definition.  
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where: cn, n , and dnn form the mother parameter set of the next iteration, cj is the 

c coefficient of jth parameter set, j is the   coefficient of jth parameter set, and dnj 

is the dn parameter of jth parameter set.  

The optimization model is solved using this new PS and the related fitness is 

defined. 

Step 6: If the difference between the computed fitness in Step 5 and the fitness from the last 

iteration is greater than a predefined value (Figure 6-4, Box 6), it indicates that the 

desired convergence has not been reached and we proceed to Step 7. Otherwise 

the iteration is stopped and user will proceed to Step 8. 

Step 7: One hundred new PSs are again generated (Figure 6-4, Box 7) using the mother 

parameter set calculated in Step 5. To do this, each parameter is selected randomly 

from a specific range around the mother parameter (defined in Step 5). 

Step 8: When the desired convergence is reached, the final flow data series is reconstructed 

based on the last parameter set defined in Step 5.  

 

 

 

 

 

 

 

 

 

Figure 6-4: Schematic of the Stochastic based optimization model 
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6.2.3 Evaluating the Quality of Reconstructed Flow 

The common method for assessing a data series is by comparing the generated data set with a 

measured data series using one or two traditional indexes. However, evaluating the quality of the 

data series for an ungauged basin has remained relatively ignored.  

Since there are statistically no “best quality criterion” for hydrological simulation models, users 

tend employ more than one index to assess more efficiently the performance of the model 

(Weglarczyk, 1998). This project will also use different methods as well to assess the quality of 

the reconstructed flow. In addition to a visual evaluation, five quality indexes will be used to 

analyze the different aspects of the calculated flow. Also, the regional and temporal homogeneity 

of reconstructed flow are examined.  

 

6.2.3.1 Quality indexes 

Five QIs are designed to evaluate the degree of reliability of the reconstructed flow using the 

proposed Deterministic and Stochastic techniques. These five criteria are: 

 

1) NN (Equation 5.18) 

2) CC (Equation 5.20) 

3) NAVE (Equation 6.12) 

4) 
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where: 

SFR = the specific flow ratio 

sfWBE  =the specific flow calculated using the classic WBE 



98 

 

sfcal  =the specific flow calculated using the reconstructed flow 

s  = the surface of the basin. 

 

5) NT (Equation 5.24) 

 

As described in Chapter 1, flow data series are used for different purposes such as flow prediction, 

flood analysis, water resource management, and flow simulation. In this project, the suggested 

indices take into consideration these purposes.  

 NAVE: Over- or under-estimations change the pattern of flow data series and introduce 

some uncertainties to flow analysis studies, and thus to flow predictions. Unreliable 

predicted flow causes some deficiencies in water resource management and results in 

inefficient exploitation of natural resources. Therefore, this QI is designed to penalize 

over/under estimations and to provide an idea about the safety level of flow analysis.  

 SFR: The reconstructed flow data series should be able to close the water balance budget 

for long time period (seasonal or annual). Otherwise, it is obvious that there is a serious 

problem in the results of that period. SFR penalizes flow series that are not successful in 

closing the water balance budget for a year with comparison to classic WBE. Thus, it is 

beneficial for the users who care about the quality of average long term flow data (NN, CC, 

and NT are described in section 5.3.5).  

All of these indexes are normalized between 0 and 1, values closer to 1 indicating better quality. 

The name and the reason of selecting these indexes are listed in Table 6.2. 

  

 

 

 

 

http://en.wikipedia.org/wiki/Exploitation_of_natural_resources
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Table 6.2: The list of designed quality indexes for post-reservoir construction period 
 QI The reason of choosing QI 
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CC 

 

- penalizes the flow data series not respecting the regional homogeneity in the sense 

of hydrograph shape  

- beneficial for regional flow analysis studies 
 

 

 

NN 

 

- penalizes the flow data series not respecting meteorological factors 

- more sensitive to peak flows 

- beneficial for flood prediction and PMF estimation, and RR model calibration 

purposes 
 

 

NT 
 

- penalizes noisy flow data series 

- useful for water management and flow prediction studies 
 

 

NAVE 

 

- penalizes over/under estimations 

- sensitive to peak flow and low flows equally 

- beneficial for short term flow analysis 
 

 

SFR 

 

- penalizes flow data series that does not close water balance budget 

- useful for evaluating the average long term flow  
 

 

6.2.3.2 Regional and temporal homogeneity  

Confidence in the quality of reconstructed flow would increase if the flow is homogeneous 

regionally and temporally. In this project, KPSS is used to evaluate the stationarity (temporal 

homogeneity) of the data, a method which has been widely used in hydrological studies (i.e. Wang 

et al. 2005, and 2006).  

Also, a regional analysis is done to assess the coherency of the quantile of the reconstructed flow 

obtained from local frequency analysis with that of neighbouring basins. To do this, the 

reconstructed flow in the case study is compared to 19 neighbouring gauged basins. First, the 

annual peak flows of each basin are sorted in descending order and then the probability of each 

flow is defined using the Weibul formula (Equation 6.18). A lognormal distribution with three 

parameters is then fitted to the peak flows (LN3) of the flow data series.  
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1


n

m
f             (6.18) 

 

where:  

f  = probability, 

 m  = rank of the value 

n  = total number of observations.  

 

A power regression is then developed between the basin’s area and the values of LN3 over a 2-year 

return period (the results are the same for other return periods) as follows: 

 

basFQ             (6.19) 

 

where FQ is the fitted line to the values of LN3 of a 2-year return period, a and b are the parameters, 

and s is the basin’s area. The residuals from this equation are plotted in Quantile-Quantile plot (Q-

Q plot), scale location plot, and residual versus fitted value plot to evaluate the coherence of the 

reconstructed peak flows with the regional peak flows. 

 

6.2.4 Calculating the Final Flow Data Series 

In this section, it is suggested that the results of the two flow reconstruction methods (Stochastic 

based model and Deterministic based model) be combined using a weighted average technique.  

This strategy is plausible because:  

 none of the flow reconstruction methods is preferred over the another for the whole time 

period for all the basins, 

 if one model is deemed as unreliable for one time period and is rejected, it does not 

automatically get chosen to be used as the superior model for another period,  
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 Each flow reconstruction method has its own strengths in factoring in different effects on 

flow formation. Combining the results of flow reconstruction models takes advantages of 

each individual simulation and thus represents a more complete representation of the likely 

flow characteristic of case study basin (Dong et al. 2013, Reid, 1968).  

 By combining N methods, each method will contribute an uncertainty multiple of 1/N into 

final flow. This means that the uncertainty of N methods will not be cumulated in final 

reconstructed flow. 

Examples of weighted average combination in hydrological research are Neural Network 

(Shamseldin et al. 1997, Xiong & O’Connor 2002), Fuzzy System (Xiong et al. 2001) and Bayesian 

Model Averaging (Ajami et al. 2006). Most of these methods need to be treated using measured 

flow. As this data is not available for many of Quebec‘s basins, the simple weighted average 

method (WAM) is used to combine the values of flow calculated using Stochastic and 

Deterministic techniques. The weighted average flow for the kth day of ith segment of a year 

(𝑁𝐹𝑊𝐴,𝑘,𝑖) is calculated using Equation 6.20. In this equation, the final flow of each day of a 

segment is a function of the weighted reconstructed flow using Deterministic and Stochastic 

techniques for the same day of that segment. The weight of Deterministic and Stochastic methods 

for each segment is the simple average of five QIs for that segment (Equations 6.21 and 6.22) 

related to the Deterministic and the Stochastic methods respectively. In Equation 6.20, the method 

with a better average QIs has the larger role in defining the final flow.   

 

𝐹𝑊𝐴,𝑘,𝑖 =
𝑤𝑆,𝑖𝑓𝑆,𝑘,𝑖+𝑤𝐷,𝑖𝑓𝐷,𝑘,𝑖

𝑤𝑆,𝑖+𝑤𝐷,𝑖
         (6.20) 

𝑤𝑆,𝑖 = 𝑄𝐼𝑎𝑣𝑒 𝑆,𝑖          (6.21) 

𝑤𝐷,𝑖 = 𝑄𝐼𝑎𝑣𝑒 𝐷,𝑖          (6.22) 

 

where: 

𝐹𝑊𝐴,𝑘,𝑖       = the weighted average flow (combined/final flow) for kth day of 

segment i, 
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 𝑓𝑆,𝑘,𝑖, 𝑓𝐷,𝑘,𝑖       = the flow calculated using stochastic and deterministic techniques for 

kth day of segment i,  

𝑤𝑆,𝑖, 𝑤𝐷,𝑖      = the weight of Stochastic and Deterministic techniques for segment i, 

𝑄𝐼𝑎𝑣𝑒 𝑆,𝑖, 𝑄𝐼𝑎𝑣𝑒 𝐷,𝑖  = the average QI of Stochastic and Deterministic methods for segment 

i. 

 

6.2.5 Uncertainty of Reconstructed Flow  

Flow uncertainty is the component of reported flow that characterizes the range of values within 

which the true value is asserted to reside. “Uncertainty analysis of hydrological modeling has 

become an indispensable element for any hydrologic modeling and forecasting.” (Dong et al. 

2013). Although many uncertainty analysis techniques have been proposed and are widely applied, 

defining the flow uncertainty in an ungauged basin has still remained an important issue, since it 

is a big challenge to develop a method independent from measured data. Even the few existing 

applicable methods, such as sensitivity analysis, are very time consuming to perform within a 

whole time period. The method of sensitivity analysis is developed based on running the flow 

reconstruction method for hundreds of times, and it is a laborious job to do over several years.   

In summary, evaluating the uncertainty of reconstructed flow for the current case study is 

accompanied with some inconveniences: 

 Using the common methods of uncertainty analysis is not possible due to a lack of measured 

flow in the area. 

 It is very time consuming to estimate uncertainty using traditional methods (sensitivity 

analysis) for the whole time period.  

Thus, a methodology which is applicable and flexible for any ungauged area basin and can be 

executable within a reasonable time interval is required.  

In this project, the input data (turbine flow, discharged flow and volume data series) of the WBE 

based method have been calculated based on non-validated measured data prior to 2005, and their 

uncertainty was obvious to us. As a result, they cause some uncertainties in the reconstructed flow. 

Comparing the graphs of the classical WBE pre- and post-2005 confirms that the uncertainty of 
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flow is more related to quality of input data than anything else. Thus, a methodology towards 

defining the effects of input data uncertainty10 when performing uncertainty analysis is required 

for the area.  

The suggested methodology which fulfills these needs could be summarized in four steps (see also 

Figure 6-5):  

1) selecting a sub-time period for which uncertainty analysis will be performed, 

2) defining the daily11 uncertainty of each input data series, 

3) evaluating the uncertainty of flow for the selected sub-time period, and  

4) extending the calculated uncertainty range to the whole time period.  

 

 

 

 

 

 

 

 

 

 

 

                                                 

10 Parameter and model uncertainties will not be addressed in this chapter as they seem negligible compared to input 

data uncertainties. 

11 Since the reconstructed flow is daily, the estimated uncertainty of that should also be daily to give a reliable level of 

confidence about the range of flow data series.  
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Figure 6-5: Schematic of developed methodology for flow uncertainty analysis 

 

6.2.5.1 Selecting a sub-time period for which uncertainty analysis will be performed 

The first step of uncertainty analysis process is selecting a sub-time period for which the 

uncertainty analysis will be performed. This the sub-time period should be at least one year to take 

into consideration all levels of flow (high and low flows). This one-year period should be selected 

carefully because it should include any usual and unusual values such as negative flows, low, 

medium, and high data variation. If this is the case, then the potential of calculating the uncertainty 

for different situation would be available. This chosen year is not representative of whole time 

period, but it is just a year based on which the uncertainty of whole time period is calculated.  

Calculating the uncertainty for a sub-time period and then extrapolating the results to the desired 

time period is practical when it is very time consuming to do uncertainty analysis for a case study 

of multi-year time periods.  
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6.2.5.2 Input Data Uncertainty  

Input data uncertainty includes instrument uncertainty and/or random uncertainty. The combination 

of these two factors forms flow uncertainty. The total uncertainty or range of flow is described by 

Equation 6.23: 

 

𝑅𝑎𝑛𝑔𝑒𝐹 = 𝐸𝑖𝑛𝑝𝑢𝑡 𝑑𝑎𝑡𝑎 + ∆𝑖𝑛𝑝𝑢𝑡 𝑑𝑎𝑡𝑎        (6.23) 

 

where: 

𝑅𝑎𝑛𝑔𝑒𝐹   = possible flow data series range (total uncertainty), 

𝐸𝑖𝑛𝑝𝑢𝑡 𝑑𝑎𝑡𝑎  = uncertainty of flow caused by random uncertainty of input data,  

∆𝑖𝑛𝑝𝑢𝑡 𝑑𝑎𝑡𝑎  = uncertainty of flow caused by instrument uncertainty (while 

measuring input data).  

 

6.2.5.2.1 Instrument uncertainty 

Each instrument has its own uncertainty related to resolution, readability, and measurement method 

specific to that instrument; this type of uncertainty is called instrument uncertainty. Instrument 

uncertainty has been already defined for some of the basins in Quebec. This is explained in detail 

in the C1 report (Haché, et al. 1996), which states that the average uncertainties of turbine flow, 

discharged flow, input flow to the reservoir, and storage volume have been calculated for 17 sub-

basins. The schematic of these basins are shown in Figure 6-6 and their characteristics are 

summarized in Table 6.3.  
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Figure 6-6: Schematic of reservoirs for which uncertainty analysis of input data is done by 

Hydro-Quebec 

 

Table 6.3: Characteristics of studied basins for input data uncertainty 

 
Surface 

(km2) 

Number of 

turbines 

Number 

of gates 

Number of water 

level gages 

GOUI 10057 - 14 2 

MANA 1507 - 7 1 

MANB 733 - 7 1 

MANC 842 - 7 1 

RBLA 10142 6 7 1 

RTREN 2719 6 9 1 

BEAU 2680 6 9 1 

TUQU 3711 6 8 1 

MATA 4118 - 8 1 

GMER 6008 9 21 1 

SHAW 37 11 24 1 

GABE 78 5 9 1 

CABO 2659 - 10 3 

BASK 13031 - 30 1 

PAUG 6905 8 7 1 

CHEL 1147 5 35 1 

FARM 2 5 2 1 

 

Reservoir 
 

Power plant 
 

Distance between 

upstream and 

downstream 
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In the C1 report, the concept of uncertainty is introduced to highlight the differences between the 

accuracy of various quantities. Relative uncertainty is defined as the ratio of absolute uncertainty 

to the measured or calculated value. The absolute instrument uncertainty is defined as the possible 

maximum difference between an obtained value (measured or calculated) and the exact variable 

value. This uncertainty is a function of the measurement instrument, applied method, and the 

experimenter. Usually half of the smallest division of the unit is used for defining the uncertainty. 

Considering y=f (x1,x2,..,xn), the absolute uncertainty of y, ∆𝑦, is defined by: 

 

∆𝑦 = ∑ |
𝜕𝑦

𝜕𝑥𝑖
| ∆𝑥𝑖

𝑛
𝑖=1           (6.24) 

 

where:  

  |
𝜕𝑦

𝜕𝑥𝑖
|  = the partial derivative of y with respect to 𝑥𝑖 

∆𝑥𝑖  = the absolute uncertainty of measured 𝑥𝑖.  

 

6.2.5.2.2 Random uncertainty 

Random uncertainty could also happen from any occasional natural phenomenon. For example, 

wind or ice cover can affect volume measurements, and maneuver disorders can influence turbine 

flow values. The magnitude of random uncertainty could change by season, reservoir size, number 

of turbines, etc. Thus, it is not easy to estimate the daily uncertainties caused by these factors. In 

this research, 5% of the input data value is considered as part of the random uncertainty in that data 

set.  

In order to evaluate the sufficiency of the mentioned amounts of perturbation (5%), the sensitivity 

of the calculated flow (from classic WBE) to each term of qin, qout, and volume is assessed. To this 

end, each qin, qout, and volume data series are disturbed in a separate task (there will be three tasks 

in total). The amounts of perturbation are up to 5%. Then, in each task, the classic WBE is solved 

based on disturbed qin, qout, or volume data, and the difference between the original and the new 

flow data series (𝐷𝑛,𝑜  ) is calculated using Equation 6.25.  
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The 5% perturbation will be sufficient if 𝐷𝑛,𝑜  shows a meaningful difference in the results of 

classic WBE. Since the perturbation limit could change depending on daily condition, more studies 

need to be performed in future research to make a better estimation of daily random uncertainty.   

 

𝐷𝑑,𝑜 (%) = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (
 |𝑛𝑓𝑑,𝑖−𝑛𝑓𝑜,𝑖|

|𝑛𝑓𝑜,𝑖|
) × 100       (6.25) 

 

where:  

𝐷𝑛,𝑜 = the difference between the original and the new flow , 

𝑓𝑑,𝑖 = the flow calculated using disturbed input data for ith day, 

𝑓𝑜,𝑖 = the original flow for ith day. 

 

6.2.5.3 Evaluating the uncertainty of flow for the selected time-period 

6.2.5.3.1 Instrument uncertainty 

To calculate instrument uncertainty, the developed optimization model should be solved based on 

qin,± ∆𝑞𝑖𝑛
, qout,± ∆𝑞𝑜𝑢𝑡

, and volume,± ∆𝑣𝑜𝑙𝑢𝑚𝑒 data series (∆𝑞𝑖𝑛
,  ∆𝑞𝑜𝑢𝑡

, and  ∆𝑣𝑜𝑙𝑢𝑚𝑒 are calculated 

using Equation 6.24). This will give the range of reconstructed flow resulting from instrument 

uncertainty. Also, the range of WBE flow caused by instrument uncertainty would be simply 

±(∆𝑞𝑖𝑛
+ ∆𝑞𝑜𝑢𝑡

+∆𝑣𝑜𝑙𝑢𝑚𝑒).  

 

6.2.5.3.2 Random uncertainty 

Instrument uncertainty always exists and can be calculated with using Equation 6.124 However, 

the existence and importance of random uncertainty is dependent on the conditions. Random 

uncertainty may affect one or more input data. Thus, few scenarios are used to evaluate the random 

uncertainty of each input data and their combination. This random uncertainty, then, should be 

added to instrument uncertainty to get the total uncertainty.  
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 Scenario I: Disturb qout  only 

 Scenario II: Disturb qin only 

 Scenario III: Disturb volume only 

 Scenario IV: Disturb all the three input data variable 

The input data values are perturbed up to 5% in scenarios I to IV. Then, the developed optimization 

model is solved (for one hundred times) taking the randomly disturbed input data.  

 

6.2.5.3.3 Total uncertainty 

To calculate the total uncertainty, the calculated random uncertainty should be added to calculate 

instrument uncertainty. This gives the probable range of flow for the selected sub-time period. 

 

6.2.5.4 Extending the calculated uncertainty range to the whole time period 

The probable range of flow is calculated just for one year and it needs to be extended to the whole 

time period. To do this, two regressions are developed between daily reconstructed flow and daily 

upper limit and lower limit. These regressions, then, could be used to predict the upper and lower 

limit of uncertainty for each day of historical data series.  

The magnitude of uncertainty depends on many random factors (such as wind and ice cover) and 

they may change from one year to another year. Therefore, in future studies, it is appropriate to 

develop a methodology that is able to consider the weight of different affective factors when 

estimating the range of uncertainty.  

 

6.3 Conclusion 

As described earlier, POM was recommended as the method for flow reconstruction and filtering 

of ungauged basins of Quebec. The limitations of this model were mitigated using the improved 

version of optimization model that was presented in this chapter. The improved optimization model 

is more reliable and practical; however, one of the questionable assumptions of this model is 

considering predefined constant values for the parameters. Thus, a sensitivity analysis was 

performed to evaluate the authenticity of this assumption. Then, two Deterministic and Stochastic 



110 

 

techniques were suggested to select the parameters intelligently. Estimating the parameters using 

these automatic methods made the model easy to be reliably applied to any reservoir.  

In this chapter, five Quality Indices were suggested in order to measure the reliability of the 

reconstructed flow. Temporal and regional homogeneity tests were also proposed to evaluate the 

characteristics of reconstructed flow in time and space. Then, a weighted average method was 

suggested to calculate the final flow data series by combining the results of Deterministic and 

Stochastic based. At the end, a methodology was explained to estimate the probable range of flow 

due to the instrument and random uncertainty. The results of applying these methods on the 

Outardes basin are presented and interpreted in next chapter. 
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CHAPITRE 7 FLOW RECONSTRUCTION (POST-RESERVOIR 

PERIOD, RESULTS AND DISCUSSION) 

 

7.1 Introduction 

In order to evaluate the validity of the assumption regarding constant parameters in time and space 

on the modified POM, a sensitivity analysis will first be conducted, after which the methods 

suggested in Chapter 6 for flow reconstruction will be used on three sub-basins of different sizes 

found in the province of Quebec. The results are then compared against those produced by the 

classic WBE Model. Analysis of the results will be done using different Quality Indices 

(Normalized Nash, Consistency Coefficient, Normalized Absolute Volume Error, Specific Flow 

Ratio, and Normalized Tortuosity), the Kwiatkowski-Phillip-Schmidt-Shin (KPSS) stationary test, 

and regional homogeneity analysis. The flow results will show the capability of the recommended 

methods for improving the reconstructed flow data series. The results are found to be all positive, 

less noisy, perfectly matched with regional flows, and are reliable enough for frequency analyses. 

Also, the final flow series will be calculated and the probable range of flow will be estimated using 

an uncertainty analysis. The results shown in this chapter will answer the questions mentioned at 

the beginning of Chapter 6. 

 

7.2 Results Presentation 

7.2.1 Sensitivity Analysis of the Modified POM 

Classic WBE frequently produces flow data series which are noisy and highly improbable. For 

example, Figure 7-1 shows the results of applying this equation to the Outardes 3 basin, using 2009 

as the sample year (2009 was chosen as the sample year for Outardes 3 to illustrate the sensitivity 

analysis results because the flow data series for this particular time period was very noisy and even 

included negative values). In this figure, the calculated flow values are noisy, especially during 

periods of low flows by exhibiting negative values, which is an improbable representation of flow. 

The noisy flow values could be the results of natural phenomena (i.e. floods, ice cover), instrument 
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disorders (i.e. gates’ maneuver disorders), instrument uncertainties, neglecting flow routing, 

simplification of calculations, and human uncertainties. According to this figure, the questionable 

data happened mostly during the time period when maximum temperature is less than zero (winter).  

Figure 7-2 shows the results when the modified optimization model (Equations 6.1 to 6.9) was 

applied to the example case study of Outardes 3, using 2009 as the sample year, when all the 

parameters were set to one and dn=3. As it is clearly shown in the figure, the issue with negative 

flow values was resolved by applying the optimization model, causing the reconstructed flow 

values to be slightly less noisy. However, the problem of having noise, especially during periods 

of low flow, still remains an issue that needed a solution.  

To understand how each parameter affects the results, different scenarios were developed. In these 

scenarios, the parameters of p and q are kept equal to 1 in order to evaluate the importance of c, 𝛾 

and dn variables. 

 

 

 

Figure 7-1: Results of applying classic WBE to Outardes 3 (2009) 
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Figure 7-2: Results of applying optimization model to Outardes 3 (2009) when c=p=q=γ=1, 

dn=3  

 

These developed scenarios are listed below: 

a) The optimization results change by changing dn with season.  

i. dn=13 in winter, and for the rest of year dn=3 (c= γ =1) 

ii.  dn=13 in winter, dn=7 in summer, and for the rest of year dn=3 (c= γ =1). 

b) The optimization results change by changing dn and C with season.  

i.   dn=13 and c=10000 in winter and for the other days dn=3, c=1 (γ =1). 

ii. dn=13 and c=10000 in winter, dn=7 and c=1000 in summer, and for the rest of year 

dn=3, c=1 (γ =1). 

c)  dn=13 in winter, dn=7 in summer, and for the rest of year dn=3, c=1 (γ =0.1,10). 

Figures 7-3 and 7-4 give the results of these scenarios for the Outardes 3 basin using 2009 as the 

sample year. As shown in Figure 7-3-a, the noise level is decreased during periods of low flow 
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(marked by red circles) in comparison with the results of the optimization model, when all the 

parameters are set to one and dn=3 (darker line in Figure 7-3). This shows that smoother flow data 

series are obtained by increasing the number of days. However, increasing dn during the flood 

periods will under-estimate the peaks. Increasing dn from 3 to 7 during the summer in Scenario aii 

also gives smoother results (Figure 7-3-b in comparison with Figure 7-3-a), but again, peak flow 

may be underestimated.  

Comparing Figure 7-3-a with 7-3-c, one can obtain good information on the effects of increasing 

the C coefficient during winter. As illustrated in Figure 7-3-c, this augmentation in C decreases 

noise and increases the data quality for sampling done during the winter season. However, 

increasing this parameter during the rest of year does not affect the results (comparing Figure 7-3-

b to 7-3-d). 

Figure 7-4 also shows the sensitivity of the optimization model towards the changing of γ. In this 

figure, it can be seen that the variation of γ considerably affects the results: when γ is equal to 10, 

the reconstructed flow is extremely affected by noise, but gets much smoother when gamma is 

changed to 0.1; however, some peaks are missing. Figure 7.4, in addition to Figure 7-3, 

demonstrates the importance of selecting the proper parameter set for each segment of year. As we 

concluded earlier, the optimization model helps improved flow estimations but it is still necessary 

to select an appropriate parameter set, which changes during time and space. Thus, it is necessary 

to estimate the most appropriate PS for each segment of a sampling year using intelligent 

techniques. In the work presented in this thesis, the suggested method for this purpose will be the 

Deterministic and Stochastic techniques. The results of using these techniques are presented in this 

chapter. 
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Figure 7-3: Calculated flow data series based on scenarios ai, aii, bi, and bii in comparison with optimization model, when all the 

parameters are set to one and dn=3, which is shown in darker color in the graphs (Outardes 3-2009) 
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Figure 7-4: Calculated flow data series based on scenario c for two different gamma values in 

comparison with optimization model, when all the parameters are set to one and dn=3, which is 

shown in darkest color in the graph (Outardes 3-2009) 
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factored into the process of flow reconstruction for each segment in order to benefit from their 

ability to increase the average QI. For example, Figure 7-5 provides a sample result from the 

Deterministic optimization model solved with different d coefficient for Outardes 4, using 2008 as 

the sampling year.  

As illustrated, there is more than one graph for each year and the decision maker can single out the 

most appropriate one according to different Quality Indices (QIs) using a visual comparison against 

results from the regular WBE. Generally, the graphs that have considerably higher-quality indices 

(CC, NN, NT, NAVE, and SFR) are selected for each segment. The final graph is then chosen based 

on visual comparison (this is the graph which will be used as the Deterministic model per results 

in Figures 7-6 to 7-18). This graph should be smooth and follow the general trend of reconstructed 

flow by WBE (showing no considerable over/under estimations). It is important to keep in mind 

that a smoother graphical result may not necessarily be the better choice. For example, some 

smooth graphs may underestimate or overestimate the flow as highlighted in Figure 7-5 with red 

circles. 

In the developed Deterministic based model, the parameter ranges (1<dn<21, 0<γ<15, 0<c<10000, 

0<p<1000, 0<q<1000) are determined empirically.   

 

7.2.2.2 Stochastic based model 

As the Deterministic based model does not account for the probability of different parameter sets, 

a Stochastic model, which is a probabilistic algorithm, will be endorsed to determine reliable 

parameters for the optimization model. Unlike the Deterministic model, the Stochastic based model 

defines the parameters based on three QIs (NN, NAVE, and CC). Note that in the process of 

parameter definition, CC was calculated using Moisie as the neighbouring basin for Outardes 4 and 

Godbout as the neighbouring basin for Outardes 3 and Outardes 2. 

The developed Stochastic based model is capable of producing one hundred random parameter sets 

at the beginning of first iteration in such a way that dn changes from 1 to 10 and each dn values is 

repeated exactly 10 times, while c changes from 0 to 10000, and γ changes from 0 to 10. These 

parameter sets are then used to solve the optimization model and are ranked according to their 

related QIs. In this model, more than one quality index is used to appraise the fitness of the series. 
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The weighted summation of NN, NAVE, and CC are the criteria used in ranking the parameter sets 

and the weights of these indices are defined through trial and error.  

For our case study, w1 & w2=1 while w3 changes according to the season (Equation 6.11). w3 is 

usually assigned as 1 or 0.5 during low flow and 10 or more during the rest of the year. These 

weighted values are almost the same for all sampling years for the same basin, which makes the 

work in this research easier. The ten parameter sets with the highest QIs values are then drawn to 

define the probable “mother PS” of the next iteration. Using iteration, one hundred new parameter 

sets are formed based on the mother parameter set of the previous iteration. To do this, one hundred 

c, γ, and dn parameters are generated in the ranges of cn±100, γn ± 2 and dnn±2 respectively 

(where cn, 𝛾𝑛, and dnn belong to the mother parameter set). These ranges are large enough to avoid 

being trapped in a local optimum point and maintain parameter variety, yet be small enough to 

merge rapidly (in our case study, for example, the results merged after few iteration). The 

parameters are finalized when the difference between the fitness (“Benefit” calculated using 

Equation 6.11) of two consecutive iterations is less than 0.001. This amount of certainty would 

then be regarded as sufficient in this case. The results of the Stochastic based model are presented 

in Figures 7-6 to 7-18. 
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Figure 7-5: Comparison of daily flow (m3/s) calculated by classic WBE (bold line) 

with deterministic based optimization model solved based on different d coefficient 

(rest of the lines)- (Outardes 4-2008) 

 

 

Figure 7-6: Comparison of deterministic based model, stochastic based model, and classic WBE 

(Outardes 4-2005) 
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Figure 7-7: Comparison of deterministic based model, stochastic based model, and classic WBE 

(Outardes 4-2009) 

 

 

Figure 7-8: Comparison of deterministic based model, stochastic based model, and classic WBE 

(Outardes 4-2011) 
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Figure 7-9: Comparison of deterministic based model, stochastic based model, and classic WBE 

(Outardes 3-1995)  

 

             

 

Figure 7-10: Comparison of deterministic based model, stochastic based model, and classic WBE  

(Outardes 3-1996) 
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Figure 7-11: Comparison of deterministic based model, stochastic based model, and classic WBE 

(Outardes 3-2005) 

 

 

Figure 7-12: Comparison of deterministic based model, stochastic based model, and classic WBE 

(Outardes 3-2009) 
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Figure 7-13: Comparison of deterministic based model, stochastic based model, and classic WBE 

(Outardes 3-2011) 

 

     

                       

   

Figure 7-14: Comparison of deterministic based model, stochastic based model, and classic WBE 

(Outardes 2-1990) 
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Figure 7-15: Comparison of deterministic based model, stochastic based model, and classic WBE 

(Outardes 2-1991) 

 

 

Figure 7-16: Comparison of deterministic based model, stochastic based model, and classic WBE 

(Outardes 2-2005) 
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Figure 7-17: Comparison of deterministic based model, stochastic based model, and classic WBE 

(Outardes 2-2009) 

 

 

Figure 7-18: Comparison of deterministic based model, stochastic based model, and classic WBE 

(Outardes 2-2011) 
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7.2.2.3 Results discussion 

The reconstructed flow series for Outardes 4, Outardes 3, and Outardes 2 for the chosen sampling 

years are presented in Figures 7-6 to 7-18. In these figures, the calculated flow using classic WBE 

is compared to reconstructed flow using the developed Deterministic and Stochastic-based 

optimization models. As shown, both the Stochastic and Deterministic based methods could 

efficiently improve the estimated flow when measured against the classic WBE. Visual comparison 

shows that:  

 Reconstructed flow data series do not include negative values. 

 Reconstructed flow data series are much smoother than classic WBE.  

 Deterministic method sometimes underestimates or overestimates the flow (see Figure 7-

10, the areas marked with circle) in comparison to Stochastic method. Although there is 

always ten other graphs which could be replaced with the first one in Deterministic method, 

they might exhibit noisier data (see Figure 7-10, the areas marked with circle). 

 For the years after 2005, when reliable input data are available, the results of the Stochastic 

and Deterministic models are very similar and smooth. 

 For the years prior to 2005, when input data are more uncertain, the developed optimization 

model could, to a large extent, compensate for input data uncertainty. For most years in this 

period (pre-2005), the reconstructed hydrograph is smooth and exhibit non-negative values, 

with acceptable graphical shape.  

 For the few sample years where input data included unrealistic values for several time 

periods (days) in row, the calculated daily flow values using classic WBE were not 

acceptable for many of the chosen periods of the sample year. For example, winter flow 

series calculated by classic WBE show unreasonably high and low flows in Figures 7-14 

and 7-15 respectively. For these years, the Deterministic and Stochastic methods failed to 

work. The flow should be estimated with other methods (such as manual flow validation) 

during these periods. This task is out of the scope of this current project.  
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7.2.3 Evaluating the Quality of Reconstructed Flow 

7.2.3.1 Quality indexes 

A more precise evaluation of reconstructed flow is possible using different QIs. Five quality 

indexes —NN, CC, NAVE, SFR, and NT— are intended to grade the calibre of the reconstructed 

flow. The results of applying these QIs on three of the flow reconstruction methods (classic WBE, 

Deterministic WBE, and Stochastic WBE) for the three Outardes sub-basins are summarized in 

Table 7.1 and Figures 7-19 to 7-25. Analysing these tables, the figures showed that: 

 Classic WBE has consistently lower QIs than the other two methods (this lower quality is 

also clear in Figures 7-6 to 7-18, where reconstructed flows using Deterministic and 

Stochastic models are non-negative and are much smoother than classic WBE).  

 Both Deterministic and Stochastic methods have satisfactory performance. 

 The annual simple average QIs of both methods is more or less the same (see Figures 7-19 

to 7-21). Referring to these figures, the average QI does not have a sharp change from one 

year to another one. The low average QI for the sampling years of 1990 and 1991 for the 

Outardes sub-basins are because of the unreliability of the input data and the failure of 

developed models to reconstruct the flow (see also Figures 7-14 and 7-15). 

 Both Deterministic and Stochastic techniques have lower QI values for Outardes 3 in 

comparison with Outardes 4 and Outardes 2. This might be related to the small dimensions 

of the reservoir and its location downstream of a big reservoir. This reservoir is significantly 

affected by any changes in released flow from Outardes 4, even little ones. However, the 

values of Improvement Ratio (IR, the improvement achieved via applying the developed 

model) is considerable in Outardes 3. The Improvement Ratio is defined by Equation 7.1 

as follow: 

 

𝐼𝑅 =  
𝑄𝐼̅̅ ̅𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐 𝑜𝑟 𝑆𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐 𝑚𝑜𝑑𝑒𝑙−𝑄𝐼̅̅ ̅𝑊𝐵𝐸

𝑄𝐼̅̅ ̅𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐 𝑜𝑟 𝑆𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐 𝑚𝑜𝑑𝑒𝑙
× 100      (7.1) 
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 Both Deterministic and Stochastic methods have almost the same average NAVE for the 

three sub-basins. This means that both methods have almost the same ability in estimating 

the flow trend. 

 The average Improvement Ratio of NN is almost the same for the two Deterministic and 

Stochastic methods for Outardes 4 and Outardes 2. But for Outardes 3, the average 

Improvement Ratio of NN is higher for the Deterministic method, showing that this method 

takes meteorological factors more into account (NN compared the reconstructed flow with 

flow from RR model and RR model was developed based on meteorological data) than the 

Stochastic method for this basin (see also Figures 7-22 to 7-24). 

 The average Improvement Ratio of CC is almost the same for both the Deterministic and 

Stochastic methods for Outardes 4, but the Deterministic method works better for Outardes 

2 and Outardes 3 in producing flow with the most similar variation to its neighbouring basin 

(also see Figures 7-22 to 7-24). 

 The average Improvement Ratio of NT is almost the same for the Deterministic and 

Stochastic methods for the three sub-basins. Please note that unlike the years after 2005, 

NT values for pre-2005 are not scaled. This is why the values of this criterion are less for 

the pre-2005 years, in comparison with the years after that. Thus, their values cannot be 

compared for the two time periods or for different basins.  

 Average SFR of the Stochastic method is always better than the SFR of the Deterministic 

method. This means that the Stochastic method is more successful at closing the annual 

water budget.  

 Comparing the specific flow of different methods (Pre-R and Post-R periods) shows that 

the specific flow of Deterministic and Stochastic methods are almost similar in all the three 

basins. Since a) the flow reconstruction methods used for Pre-R are less accurate than flow 

reconstruction methods applied for Post-R and b) the presence of reservoir affect the value 

of specific flow (SF), a difference between SFs for the two periods was expected. The 

difference between specific flows of neighbouring basins were accepted as the SF in each 

basin depended on different factors such as slope, soil characteristics, shape, and area of 

that basin.  
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Table 7.1: Different QIs for three methods of flow reconstruction for Post-R in Outardes 4, Outardes 3, and Outardes 2 (part 1) 

  Deterministic WBE model Stochastic WBE model Classic WBE 

  O 4 IR (%) O 3 IR (%) O 2 IR (%) O 4 IR (%) O 3 IR (%) O 2 IR (%) O 4 O 3 O 2 

NN 

1
9
9
0
 

0.763 15.237 0.128 59.845 0.581 67.177 0.752 13.944 0.129 60.223 0.599 68.158 0.647 0.051 0.191 

CC 0.519 13.475 0.400 15.184 0.479 0.620 0.521 13.791 0.392 17.332 0.458 5.272 0.449 0.460 0.482 

NT 0.733 48.639 0.877 11.161 0.861 9.482 0.743 49.361 0.871 10.582 0.918 15.129 0.376 0.779 0.779 

NAVE   0.561  0.179  0.861  0.557  0.196     

SFR   0.924  -1.392  0.970  0.905  -0.899     

average 0.753 25.784 0.578 28.730 0.142 25.760 0.770 25.699 0.571 29.379 0.254 29.519 0.491 0.430 0.484 

NN 

1
9
9
1
 

0.918 19.071 0.631 63.902 0.717 25.147 0.928 20.014 0.555 58.984 0.735 26.922 0.743 0.228 0.537 

CC 0.570 20.676 0.481 8.874 0.435 5.184 0.546 17.169 0.477 8.147 0.443 3.353 0.452 0.438 0.458 

NT 0.723 46.570 0.907 5.579 0.856 2.497 0.735 47.432 0.890 3.751 0.913 8.569 0.387 0.856 0.835 

NAVE   0.602  0.106  0.848  0.596  0.093     

SFR   0.883  -1.761  0.992  0.877  -1.476     

average 0.798 28.772 0.701 26.118 0.071 10.943 0.810 28.205 0.679 23.627 0.142 12.948 0.527 0.508 0.610 

NN 

1
9
9
2
 

0.890 10.567 0.528 34.663 0.800 17.657 0.880 9.503 0.490 29.514 0.748 11.896 0.796 0.345 0.659 

CC 0.535 9.404 0.491 3.512 0.492 3.567 0.532 8.866 0.480 1.202 0.514 7.848 0.485 0.474 0.474 

NT 0.718 46.149 0.897 0.683 0.857 1.742 0.671 42.447 0.881 1.096 0.890 5.378 0.386 0.891 0.842 

NAVE   0.746  0.721  0.882  0.735  0.762     

SFR   0.921  0.851  0.985  0.907  0.913     

average 0.780 22.040 0.717 12.952 0.744 7.655 0.790 20.272 0.699 10.604 0.765 8.374 0.556 0.570 0.658 

NN 

1
9
9
3
 

0.949 13.900 0.437 57.511 0.650 10.581 0.933 12.455 0.370 49.800 0.668 12.956 0.817 0.186 0.581 

CC 0.557 8.933 0.489 9.177 0.423 8.890 0.562 9.834 0.405 9.649 0.463 0.623 0.507 0.444 0.460 

NT 0.697 42.866 0.905 5.467 0.851 1.143 0.737 45.964 0.884 3.126 0.889 3.155 0.398 0.856 0.861 

NAVE   0.696  0.736  0.891  0.686  0.767     

SFR   0.901  0.853  0.993  0.892  0.904     

average 0.806 21.900 0.686 24.052 0.703 6.871 0.823 22.751 0.647 20.858 0.738 5.578 0.574 0.495 0.634 

NN 

1
9
9
4
 

0.901 7.176 0.652 34.176 0.735 6.804 0.887 5.717 0.591 27.402 0.756 9.442 0.837 0.429 0.685 

CC 0.570 16.349 0.496 7.262 0.462 6.146 0.535 10.868 0.460 0.114 0.466 5.302 0.477 0.460 0.490 

NT 0.790 30.768 0.910 0.888 0.849 2.335 0.788 30.550 0.888 1.520 0.887 2.094 0.547 0.902 0.869 

NAVE   0.768  0.773  0.925  0.761  0.795     

SFR   0.858  0.863  0.995  0.910  0.892     

average 0.821 18.098 0.737 14.109 0.736 5.095 0.826 15.712 0.722 9.679 0.759 5.613 0.620 0.597 0.681 
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Table 7.1: Different QIs for three methods of flow reconstruction for Post-R in Outardes 4, Outardes 3, and Outardes 2 (part 2) 

  Deterministic WBE model Stochastic WBE model Classic WBE 

  O 4 IR (%) O 3 IR (%) O 2 IR (%) O 4 IR (%) O 3 IR (%) O 2 IR (%) O 4 O 3 O 2 

NN 

1
9
9
5
 

0.842 5.347 0.774 14.866 0.715 0.117 0.837 4.771 0.759 13.215 0.737 3.063 0.797 0.659 0.714 

CC 0.626 19.447 0.519 7.660 0.504 8.095 0.598 15.644 0.495 3.088 0.530 12.588 0.504 0.479 0.463 

NT 0.800 31.179 0.910 1.633 0.859 1.999 0.820 32.882 0.896 3.246 0.894 2.024 0.550 0.925 0.876 

NAVE   0.782  0.776  0.912  0.772  0.806     

SFR   0.905  0.875  0.985  0.902  0.918     

average 0.819 18.657 0.778 8.053 0.746 3.404 0.830 17.766 0.765 6.516 0.777 5.891 0.617 0.688 0.684 

NN 

1
9
9
6
 

0.575 15.335 0.780 4.135 0.722 0.249 0.556 19.295 0.753 0.668 0.727 0.512 0.663 0.748 0.723 

CC 0.482 6.291 0.588 18.919 0.509 4.674 0.502 2.039 0.520 8.274 0.522 7.104 0.512 0.477 0.485 

NT 0.753 20.088 0.911 2.607 0.837 3.435 0.800 24.770 0.892 4.824 0.876 1.197 0.602 0.935 0.866 

NAVE   0.796  0.786  0.903  0.790  0.812     

SFR   0.900  0.857  0.896  0.910  0.927     

average 0.717 13.905 0.795 8.554 0.742 2.786 0.731 15.368 0.773 4.589 0.773 2.937 0.592 0.720 0.691 

NN 

1
9
9
7
 

0.904 1.358 0.886 6.079 0.821 1.379 0.916 0.064 0.846 1.738 0.824 1.744 0.916 0.832 0.810 

CC 0.591 17.047 0.542 16.110 0.469 0.775 0.576 14.825 0.510 10.776 0.494 5.693 0.490 0.455 0.466 

NT 0.808 22.180 0.920 1.891 0.865 3.227 0.810 22.377 0.900 4.188 0.902 1.032 0.629 0.938 0.893 

NAVE   0.778  0.761  0.933  0.773  0.802     

SFR   0.893  0.851  0.947  0.906  0.921     

average 0.825 13.528 0.804 8.026 0.754 1.794 0.836 12.422 0.787 5.567 0.789 2.823 0.678 0.741 0.723 

NN 

1
9
9
8
 

0.871 8.694 0.784 59.112 0.827 11.358 0.821 3.221 0.733 56.271 0.810 9.473 0.795 0.321 0.733 

CC 0.501 2.044 0.486 3.065 0.428 7.638 0.532 7.836 0.447 5.361 0.420 9.678 0.490 0.471 0.460 

NT 0.773 18.757 0.908 1.121 0.876 2.630 0.754 16.710 0.899 2.114 0.903 0.488 0.628 0.918 0.899 

NAVE   0.729  0.745  0.941  0.695  0.786     

SFR   0.915  0.863  0.996  0.880  0.923     

average 0.803 9.832 0.765 21.099 0.748 7.209 0.809 9.256 0.731 21.249 0.768 6.546 0.638 0.570 0.697 

NN 

1
9
9
9
 

0.926 1.250 0.841 43.753 0.672 6.817 0.930 1.656 0.699 32.317 0.646 3.107 0.915 0.473 0.626 

CC 0.533 2.778 0.565 13.207 0.506 8.000 0.529 2.186 0.485 1.171 0.507 8.074 0.518 0.490 0.466 

NT 0.749 23.625 0.917 2.366 0.868 2.365 0.747 23.429 0.898 0.264 0.907 2.075 0.572 0.896 0.888 

NAVE   0.651  0.772  0.937  0.671  0.811     

SFR   0.899  0.849  0.991  0.902  0.933     

average 0.815 9.218 0.775 19.775 0.733 5.727 0.827 9.090 0.731 11.251 0.761 4.419 0.668 0.620 0.660 

NN 

2
0
0
0
 

0.911 32.483 0.783 19.367 0.784 13.411 0.890 30.928 0.740 14.734 0.741 8.401 0.615 0.631 0.679 

CC 0.567 16.923 0.542 11.056 0.469 0.393 0.576 18.156 0.495 2.534 0.486 3.077 0.471 0.482 0.471 

NT 0.734 26.364 0.917 0.462 0.864 0.743 0.826 34.520 0.896 2.786 0.891 2.237 0.541 0.921 0.871 

NAVE   1.335  0.749  0.908  1.311  0.784     

SFR   0.908  0.837  0.947  0.912  0.933     

average 0.812 25.256 0.897 10.295 0.741 4.849 0.829 27.868 0.871 6.685 0.767 4.572 0.542 0.678 0.674 
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Table 7.1: Different QIs for three methods of flow reconstruction for Post-R in Outardes 4, Outardes 3, and Outardes 2 (part 3) 

  Deterministic WBE model Stochastic WBE model Classic WBE 

  O 4 IR (%) O 3 IR (%) O 2 IR (%) O 4 IR (%) O 3 IR (%) O 2 IR (%) O 4 O 3 O 2 

NN 

2
0
0
1
 

0.774 6.443 0.691 22.071 0.761 10.717 0.770 5.888 0.642 16.059 0.759 10.575 0.724 0.539 0.679 

CC 0.554 16.904 0.537 14.804 0.452 6.636 0.521 11.689 0.500 8.443 0.496 2.868 0.460 0.458 0.482 

NT 0.743 26.265 0.915 1.548 0.855 3.822 0.791 30.727 0.893 4.073 0.906 2.040 0.548 0.930 0.888 

NAVE   1.327  0.778  0.922  1.302  0.788     

SFR   0.925  0.877  0.991  0.912  0.921     

average 0.786 16.537 0.879 12.808 0.744 7.058 0.799 16.101 0.850 9.525 0.774 5.161 0.578 0.642 0.683 

NN 

2
0
0
2
 

0.855 0.658 0.675 17.366 0.846 8.777 0.706 20.258 0.640 12.882 0.845 8.726 0.849 0.558 0.771 

CC 0.615 18.943 0.514 7.811 0.447 2.907 0.527 5.321 0.480 1.202 0.458 0.487 0.499 0.474 0.460 

NT   0.918  0.869  0.799  0.896  0.899  0.589 0.925 0.887 

NAVE   1.333  0.743  0.934  1.308  0.768     

SFR   0.903  0.871  0.888  0.887  0.923     

average 0.826 14.929 0.868 8.655 0.755 4.598 0.771 17.306 0.842 5.777 0.779 3.519 0.646 0.652 0.706 

NN 

2
0
0
3
 

0.863 7.990 0.666 31.914 0.672 7.503 0.840 5.404 0.596 23.988 0.678 8.377 0.794 0.453 0.622 

CC 0.634 18.733 0.512 5.210 0.484 5.258 0.548 6.092 0.497 2.473 0.473 7.645 0.515 0.485 0.510 

NT 0.813 25.491 0.909 0.555 0.855 2.758 0.797 23.989 0.887 3.074 0.888 1.067 0.606 0.914 0.878 

NAVE   1.325  0.762  0.928  1.301  0.798     

SFR   0.904  0.839  0.954  0.907  0.911     

average 0.831 17.405 0.863 12.560 0.722 5.173 0.814 11.828 0.838 9.845 0.750 5.696 0.638 0.618 0.670 

NN 

2
0
0
4
 

0.969 1.272 0.721 30.510 0.773 4.337 0.988 0.664 0.651 23.058 0.764 3.235 0.981 0.501 0.739 

CC 0.663 21.497 0.514 6.745 0.509 2.327 0.551 5.563 0.495 3.088 0.502 3.789 0.521 0.479 0.521 

NT 0.812 29.701 0.913 0.068 0.860 3.463 0.774 26.274 0.898 1.553 0.900 1.099 0.570 0.912 0.890 

NAVE  0.658 1.322  0.772 8.777 0.942  1.298  0.790  0.849   

SFR  18.943 0.832  0.864 2.907 0.992  0.848  0.922  0.499   

average 0.867  0.860 12.441 0.755  0.849 10.834 0.838 9.233 0.775 2.708 0.589 0.631 0.717 

NN 

2
0
0

5
 

0.885 7.4 0.821 31.4 0.828 14.0 0.860 4.4 0.798 27.7 0.806 11.0 0.824 0.625 0.726 

CC 0.682 23.1 0.635 20.5 0.641 9.8 0.617 11.4 0.611 15.9 0.617 5.7 0.554 0.527 0.584 

NAVE 0.900  0.808  0.801  0.905  0.661  0.797     

SFR 0.972  0.916  0.995  0.999  0.934  0.999     

NT 0.772 33.3 0.491 109.8 0.551 68.5 0.759 31.1 0.507 116.7 0.542 65.7 0.579 0.234 0.327 

average 0.842  0.734  0.763  0.828  0.702  0.752     

NN 

2
0
0

7
 

0.864 7.2 0.841 114.0 0.731 28.0 0.852 5.7 0.744 89.3 0.806 41.2 0.806 0.393 0.571 

CC 0.627 13.4 0.570 11.3 0.638 25.8 0.660 19.3 0.575 12.3 0.617 21.7 0.553 0.512 0.507 

NAVE 0.888  0.812  0.713  0.889  0.631  0.797     

SFR 0.969  0.921  0.984  0.999  0.939  0.999     

NT 0.819 33.2 0.623 181.9 0.711 88.1 0.819 33.2 0.669 202.7 0.748 97.9 0.615 0.221 0.378 

average 0.834  0.753  0.755  0.844  0.712  0.793     
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Table 7.1: Different QIs for three methods of flow reconstruction for Post-R in Outardes 4, Outardes 3, and Outardes 2 (part 4) 

  Deterministic WBE model Stochastic WBE model Classic WBE 

  O 4 IR (%) O 3 IR (%) O 2 IR (%) O 4 IR (%) O 3 IR (%) O 2 IR (%) O 4 O 3 O 2 

NN 

2
0
0

8
 

0.808 2.0 0.650 33.2 0.875 16.7 0.801 1.1 0.676 38.5 0.811 8.1 0.792 0.488 0.750 

CC 0.645 19.2 0.631 19.1 0.648 15.7 0.642 18.7 0.631 19.1 0.639 14.1 0.541 0.530 0.560 

NAVE 0.920  0.884  0.783  0.924  0.700  0.773     

SFR 0.968  0.921  0.984  0.999  0.940  0.998     

NT 0.773 26.1 0.525 162.5 0.509 70.8 0.755 23.2 0.637 218.5 0.536 79.9 0.613 0.200 0.298 

NN 

2
0
0

9
 

0.880 5.9 0.808 52.5 0.899 22.1 0.862 3.7 0.754 42.3 0.843 14.5 0.831 0.530 0.736 

CC 0.611 13.1 0.616 22.2 0.616 14.7 0.622 15.2 0.636 26.2 0.605 12.7 0.540 0.504 0.537 

NAVE 0.901  0.873  0.759  0.907  0.693  0.758     

SFR 0.969  0.921  0.984  0.999  0.939  0.997     

NT 0.775 27.5 0.628 182.9 0.646 85.1 0.786 29.3 0.605 172.5 0.640 83.4 0.608 0.222 0.349 

average 0.827  0.769  0.781  0.835  0.725  0.769     

NN 

2
0
1

0
 

0.519 10.7 0.773 80.6 0.714 29.8 0.499 6.4 0.733 71.3 0.664 20.7 0.469 0.428 0.550 

CC 0.551 3.6 0.559 14.5 0.625 15.7 0.559 5.1 0.600 23.0 0.674 24.8 0.532 0.488 0.540 

NAVE 0.901  0.808  0.719  0.911  0.657  0.706     

SFR 0.969  0.921  0.984  0.999  0.939  0.997     

NT 0.814 24.5 0.485 142.5 0.576 94.6 0.772 18.0 0.588 194.0 0.588 98.6 0.654 0.200 0.296 

average 0.751  0.709  0.723  0.748  0.704  0.726     

NN 

2
0
1

1
 

0.916 1.9 0.883 54.9 0.840 15.1 0.913 1.6 0.838 47.0 0.845 15.8 0.899 0.570 0.730 

CC 0.600 10.1 0.637 15.4 0.632 17.5 0.627 15.0 0.599 8.5 0.591 9.9 0.545 0.552 0.538 

NAVE 0.936  0.864  0.736  0.929  0.660  0.733     

SFR 0.969  0.921  0.985  0.999  0.938  0.998     

NT 0.773 24.5 0.611 195.2 0.628 96.9 0.763 22.9 0.624 201.4 0.644 101.9 0.621 0.207 0.319 

average 0.839  0.783  0.764  0.846  0.732  0.762     

Note : O2=Outardes 2, O3=Outardes 3, O4=Outardes 4 
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Figure 7-19: Annual average QI12 for deterministic and stochastic methods (Outardes 2) 

 

 

Figure 7-20: Annual average QI for deterministic and stochastic methods (Outardes 3) 

 

                                                 

12 Simple average 
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Figure 7-21: Annual average QI for deterministic and stochastic methods (Outardes 4) 

 

 

Figure 7-22: Average IR of NN, CC, and NT for deterministic and stochastic methods 

(Outardes 2) 
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Figure 7-23: Average IR of NN, CC, and NT for deterministic and stochastic methods 

(Outardes 3) 

 

 

Figure 7-24: Average IR of NN, CC, and NT for deterministic and stochastic methods 

(Outardes 4) 
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Figure 7-25: Comparison of specific flow calculated using different methods of flow 

reconstruction  

 

7.2.3.2 Regional and temporal homogeneity  

In order to accurately evaluate the quality of the reconstructed flow series in comparison to the 

regional flow, the histogram of the local reconstructed flow is first compared with the scaled 

regional histograms (based on surface ratio) as shown in Figure 7-26. The figure shows the scaled 

reconstructed flow of the three basins in this current case study (using Deterministic WBE) in 

comparison with those of the gauged basins for the sample year of 2007. The results show that 

local flow seems totally in line with regional flows: no considerable under- or over-estimations are 

detected in the graphs. This means that the reconstructed flow has also comparable SF to 

neighbouring gauged basins (as SF of a basin is equal to average annual flow on surface area of 

that basin). 

Next, the scale location, Normal Q-Q plot, and residual versus fitted plots are graphed to evaluate 

regional homogeneity. To do so, a regression is developed between the basin surface area and 
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quantiles (0.5, 0.80, 0.9, 0.95, 0.98, 0.99) of the basin’s annual peak flows, after fitting a log normal 

distribution with three parameters as per the following equation (see also Equation 6.19): 

FQ = 20.04s0.871  ;  R² = 0.93 

 

The scale location, Normal Q-Q plot, and residual versus fitted plots are then drawn (Figures 7-27 

to 7-29) to complete the regional homogeneity analyses. In Figures 7-27 to 7-29, the obtained 

values from local frequency analysis of the three basins (Outardes 4, Outardes 3, and Outardes 2) 

are marked as local rivers. From these figures, it is observed that the reconstructed flow data series 

have comparable peak flows with its neighbouring basins. This means that the reconstructed flows 

values are considered as reliable data for local and regional frequency analyses because the three 

basins (or local rivers): 

 do not disturb the linear relationship in a normal Q-Q plot (Figures 7-27). 

 maintain the scattering in a scale-location plot (Figure 7-28) and does not cause any pattern 

in this plot. 

 maintain the random scattering of residuals around zero and the constancy of residuals 

(Figure 7-29). This means that they do not cause residual increases or decreases in the fitted 

values in a pattern.  

The local flow also appeared stationary using the KPSS test, which indicates that reconstructed 

flow has the same characteristics during this sampling time period (stationary flow). The 

stationarity of the reconstructed flow is valuable for frequency analyses. 
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Figure 7-26: Comparing the hydrograph of scaled reconstructed flow for Outardes 4, 3, and 2 with regional flow data series 
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Figure 7-27: Normal Q-Q plot 

  

Figure 7-28: Scale location plot 
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Figure 7-29: Residual versus fitted value plot 

 

In the end, the following questions arise: Are the results of the recommended optimization model 

much different from that of simple average method? Is it worth it to apply an optimization model 

instead of using a simple method such as average method?  

To answer these questions, the results of the Moving Average method are compared to those of the 

developed optimization model. The results of both 2-day and 7-day moving averages used on  

classic WBE and Deterministic optimization model for the winter and spring period using 2000 as 

the sample year (on Outardes 2) are presented in parts a and b of Figure 7-30 respectively. 

According to this figure, the 2-day moving average method still gives noisy results, while the effect 

of noise is noticeably less using the 7-day moving average method. However, the reliability of the 

7-day moving average method decreases during local and general peak flows because it 

underestimates the peak flows. Since this model does not take into account the physics of flow 

dynamics, it disregards real peak flows and filter out them too. The 7-day moving average method 

causes up to 55% (10.5 m3/s) underestimation for winter local peaks and up to 57% (82 m3/s) 

underestimation for spring flows (for the example of Outardes 2 in 2000) in this example, compared 

to the WBE method. Also, a shift appeared in the results of the moving average method because it 

only uses 'past' data to calculate the flow of the sample day. To avoid this, a central moving average 

must be used, but it is not applicable for real-time data reconstruction. 
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Figure 7-30: Comparing the results of moving average with deterministic based model, 

Outardes2 (2000). a) winter low flows, b) spring high flows 

 

7.2.4 Calculating the Final Flow Data Series 
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combining them will give a more comprehensive result. In the work for this thesis, a weighted 

average method will be the suggested technique to use to combine the reconstructed flow based on 

these two methods (the same approach can be applied for Pre-R period). The results of applying 

this method on Outardes 2 (2000) are shown in Figure 7-31.  

 

  

Figure 7-31: Comparison of Classic WBE, deterministic method, stochastic method, and 

combined flow (Outardes2-2000) 
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in this study, the uncertainty of flow series for Outardes 2 is evaluated using year 2000 as the 

sample year because, according to Figure 7-32, the flow characteristics of this time period include: 

 low, medium, and high variation  

 negative values of flow calculated using classic WBE 

 general peak flows with both similar and dissimilar values to the RR model 

 local peaks with both similar and dissimilar values to the RR model 

 flows with values over and under the RR model 

 

 

Figure 7-32: Selected year (2000) for uncertainty analysis in Outardes 2 

 

7.2.5.2 Input Data Uncertainty 

Input data uncertainty affects the values of flow reconstruction. In this section, input data 

uncertainties are to be factored into the reconstruction method as part of the flow results. The 

uncertainty of each input data series is caused either from instrument uncertainty and/or random 

uncertainty which are explained in the following sections. 
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7.2.5.2.1 Instrument uncertainty 

As explained in Chapter 6, instrument uncertainty has already been defined for 17 basins in 

Quebec. The instrument uncertainties in the average discharged flow, the turbine flow, the storage 

(volume), and the input flow for these 17 basins were calculated using Equation 6.24 and are 

presented in Table 7.2 (report C1, Haché et al. 1996). Based on this table, no meaningful 

relationship could be developed between the uncertainty of input/output flow, reservoir volume, or 

surface area of basins.  
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Table 7.2: The average values of different terms of each 17 hydraulic system and their 

instrument uncertainties- q sp= Discharged flow, q tr= Turbine flow, q out = Outflow from the 

reservoir, q out= Inflow to the reservoir (report C1, Haché et al. 1996) 
 Average values for the terms of hydraulic system Uncertainty-m3/s Uncertainty ratio-% 
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GOUI 172 0 172 0 171 5673.4 5.2 0 162 3.023  0.247 

MANA 23 0 23 0 23 212.2 0.7 0 19.5 3.043  0.794 

MANB  0  23 20 128 1.3 0.7 6  3.043 0.405 

MANC 46 0 46  3 145.1 1.4 1.3 3.7 3.043  0.220 

RBLA 20 366 386 218 170 379.7 6.9 66.6 8.3 1.675  0.189 

RTREN 30 412 442 412 60 6.3 6.1 6.9 1.6 1.412 1.675 2.194 

BEAU 31 453 484 432 41 3.4 6.8 6.1 0.6 1.408 1.412 1.525 

TUQU 57 493 550 483 67 4.5 10 6.8 0.9 1.908 1.408 1.728 

MATA 72 0 72 0 71 572.3 2.2 0 11.5 3.860  0.174 

GMER 98 553 651 581 42 22.1 20 12.2 2.4 3.200 2.100 0.938 

SHAW 125 597 722 625 49 4 14 20 0.5 2.014 3.200 1.080 

GABE 95 591 686 695 -13 1.6 14.4 14 0.4 2.011 2.014 2.160 

CABO 34 0 34 0 40 931.9 1.2 0 43 3.529  0.399 

BASK 268 0 268 34 233 1674.6 8 1.2 28.3 2.985 3.529 0.146 

PAUG 9 343 352 268 86 69.7 12.6 8 3.2 3.580 2.985 0.397 

CHEL 15 338 353 352 1 3.1 12.8 12.6 1 3.626 3.580 2.787 

FARM 24 333 357 353 2 1 13.2 12.8 0.1 3.697 3.626 0.864 

 

For the basins used in the current case study, the same methodology (Equation 6.24) was applied 

to determine the instrument uncertainty of qin, qout, and volume (∆𝑞𝑖𝑛, ∆𝑞𝑜𝑢𝑡,

∆𝑣𝑜𝑙𝑢𝑚𝑒 respectively). Unlike the C1 Report, the instrument uncertainty was calculated for each 

daily time period in order to have a better understanding of the daily range of flow. Then, in the 

Section 7.2.5.3, the optimization model will be solved using qin ± ∆𝑞𝑖𝑛
, qout ± ∆𝑞𝑜𝑢𝑡

, and 

volume,± ∆𝑣𝑜𝑙𝑢𝑚𝑒 data to calculate the range of flow resulting from this type of uncertainty.  

The range of WBE flow caused by instrument uncertainty is simply equal to ± (∆𝑞𝑖𝑛
+  ∆𝑞𝑜𝑢𝑡

+

 ∆𝑣𝑜𝑙𝑢𝑚𝑒). 
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7.2.5.2.2 Random uncertainty 

In the work done for this thesis, the random uncertainty value of the input data was set at 5% of the 

data set. To evaluate the adequacy of the mentioned perturbation, the sensitivity of the calculated 

flow (from classic WBE) to each terms of qin, qout, and volume should be assessed. To this end, 

each of qin, qout, and volume data series are disturbed in a separate task (giving a total of three 

separate tasks) up to a 5% uncertainty value. Then, in each task, the WBE is solved based on the 

data generated by the disturbed qin, qout, or volume.  

According to the results, the variance of the new flow data series from the original was up to 224% 

and 272% (Equation 6.25) when qin and qout are disturbed respectively. These variance values are 

at maximum and occur when all the values of each qin or qout data series disturbance is set equal to 

5%. Also, the new flow data series differ from the original one up to more than 200% when the 

volume data series is disturbed. Thus, it can be concluded that a 5% perturbation of the three 

parameters is enough to cause a meaningful difference in the results of WBE. Since the real values 

of random uncertainty are different from day to day, more studies are needed to be performed in 

future research in order to define the exact value of daily random uncertainty.  

 

7.2.5.3 Evaluating the uncertainty range for selected time-period 

7.2.5.3.1 Instrument uncertainty 

To calculate the instrument uncertainty, the improved POM optimization model (in Chapter 6) 

should be solved using qin± ∆𝑞𝑖𝑛
, qout± ∆𝑞𝑜𝑢𝑡

, and volume± ∆𝑣𝑜𝑙𝑢𝑚𝑒 data series. This gives the range 

of flow due to the instrument uncertainty. The range of WBE flow caused by instrument uncertainty 

is also equal to ± (∆𝑞𝑖𝑛
+  ∆𝑞𝑜𝑢𝑡

+ ∆𝑣𝑜𝑙𝑢𝑚𝑒). The instrument uncertainty calculated using WBE and 

optimization model for Outardes 2 using year 2000 as the sample year are presented in Figure 7-

33.  
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Figure 7-33: Instrument uncertainty for Outardes 2-2000 

 

As shown in Figure 7-33, the instrument uncertainty of the WBE and that of the optimization model 

(upper limit) are higher during the winter season because the values of turbine flow are larger 

throughout this period. Increasing the instrument uncertainty by augmenting the values of turbine 

flow shows that improving the quality of turbine flow data or methods of measuring them could 

highly decrease the uncertainty. According to Figure 7-33, the average and standard deviation of 

instrument uncertainty for WBE are 12.7 and 3.01 m3/s respectively, and the average and standard 

deviation of instrument uncertainty for optimization model are 2.9 and 1.97 m3/s regarding to the 

lower limit, and 9.9 and 2.7 m3/s regarding to the upper limit respectively. Thus, the optimization 

model could slightly improve the upper limit. In this figure, the lower limit of flow do not have the 

same shape as the upper limit. For example, the range is narrower in winter because the 

optimization model is not permitted to give negative flow values. 

 

7.2.5.3.2 Random uncertainty 

To evaluate the effects of random uncertainty, four different scenarios have been presented in 

Section 6.2.5.2.2. In these scenarios, a perturbation of 5% was applied to the input data and the 

0

5

10

15

20

25

30

35

40

45

1 29 57 85 113 141 169 197 225 253 281 309 337 365

In
st

ru
m

en
t 

U
n

ce
rt

ai
n

ty
 (

m
3

/s
)

day

WBE-uncertainty

Optimization model-Upper range

Optimization model-Lower range



148 

 

effect of this random perturbation on the flow series was assessed. This gives the range of flow 

results stemming from random uncertainty. To do this, the optimization model is solved for each 

of the four scenarios in which input data are disturbed randomly, as it was explained in Section 

6.2.5.2.2. The optimization model is then solved one hundred times through an iterative process. 

In the first scenario, it was assumed that the random uncertainty is only caused from qout, which 

included discharged flow and turbine flow from the reservoir. In our case (Outardes 2, using 2000 

as the sample year) the discharged flow is always zero; thus, the uncertainty of qout is only related 

to the turbine flow. The results of this scenario are presented in Figure 7-34. The maximum 

difference between upper limit of random uncertainty and the combined flow is 40 m3/s and the 

maximum difference between lower limit and the combined flow is 54.1 m3/s in this scenario. 

In the second scenario, it was assumed that the random uncertainty is only found in qin, which 

included discharged flow and turbine flow from upstream reservoir. In our case (Outardes 2, using 

2000 as the sample year), the discharged flow from the upstream reservoir is always zero; thus, the 

uncertainty of qin is only related to the turbine flow from the upstream reservoir (Outardes 3). The 

results of this scenario are presented in Figure 7-35. The maximum difference between upper limit 

of random uncertainty and the combined flow is 41.6 m3/s and the maximum difference between 

lower limit and the combined flow is 53.8 m3/s in this scenario. 

In the third scenario, it is assumed that the random uncertainty is only found in reservoir volume 

data. The results of this scenario are presented in Figure 7-36. The maximum difference between 

upper limit of random uncertainty and the combined flow is 42.5 m3/s and the maximum difference 

between lower limit and the combined flow is 53.8 m3/s in this scenario. 

In the fourth scenario, it is assumed that all the input data contain random uncertainty. The results 

of this scenario are presented in Figure 7-37. The maximum difference between upper limit of 

random uncertainty and the combined flow is 37.5 m3/s and the maximum difference between 

lower limit and the combined flow is 44.5 m3/s in this scenario. 

These figures, in addition to Table 7.3, show that (as was expected) the estimated range of flow is 

slightly higher in scenarios I and II compared to scenario III. Since these two scenarios considered 

the uncertainty caused by turbine flow, they result in a wider range of flow. As stated in Table 7.3, 

the probable range of flow is not symmetrical and the upper limit of flow is always larger than the 

lower limit because the lower limit is not allowed to drop below zero.  
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As shown in Figure 7-37, the estimated range of random uncertainty is different between low 

variation periods (the time period with less noise) and high variation periods. As expected, the 

range of uncertainty increases with variation (noise) of WBE because a noisier WBE means more 

uncertainty in the input data. Also, the lack of correspondence between simulated flow (using RR 

model) and WBE flow caused a wider range. For the periods when the values of the simulated flow 

are greater than that of the WBE flow, the upper range get wider and vice versa. Even global and 

local peak flows obey this rule. Unlike instrument uncertainty, it is not easy to determine the 

random uncertainty of WBE.  

 

 

Figure 7-34: The results of uncertainty analysis for Outardes 2-2000-scenario I  
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Figure 7-35: The results of uncertainty analysis for Outardes 2-2000-scenario II  

 

 

Figure 7-36: The results of uncertainty analysis for Outardes 2-2000-scenario III  
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Figure 7-37: The results of uncertainty analysis for Outardes 2-2000-scenario IV  

 

 

 

Table 7.3: The average range of estimated random uncertainty (m3/s) based on different 

scenarios in Outardes2-2000 

Scenario Upper limit Lower limit Range 

Scenario I + 10.24 - 9.25 19.49 

Scenario II + 9.96 - 9.08 19.04 

Scenario III + 8.54 - 8.04 16.58 

Scenario IV + 9.99 - 9.10 19.09 

 

7.2.5.3.3 Total uncertainty 

In order to determine total uncertainty, the calculated random uncertainty should be added to the 

computed instrument uncertainty. This gives the range of flow (Figure 7-38). According to this 

figure, the reconstructed flow fits perfectly between the estimated flow ranges, with the upper limit 

exhibiting a wider range flow than the lower limit during the low flows. This indicates that if the 

real flow data are different from the estimated flow data, it is more probable that their value is 

higher than combined flow.  
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Figure 7-38: Calculated range of flow (total uncertainty) 

 

7.2.5.4 Extending the calculated uncertainty range to the whole time period 

The probable range of flow was calculated for just one sample year and should be extrapolated to 

the whole lifetime of the basin. To achieve this, a polynomial regression was developed between 

the daily flow and each daily upper limit and lower limit. The developed regressions are represented 

by Equations 7.2 and 7.3 respectively. These regressions, then, could be used to predict the upper 

and lower limits of uncertainty for each day of historical data series.  

 

Ru = -0.00002𝐹𝑊𝐴
2 + 0.0149𝐹𝑊𝐴 + 20.954      (7.2) 

Rl = -0.0003𝐹𝑊𝐴
2 + 0.1078𝐹𝑊𝐴 + 3.2859      (7.3) 

 

where:   

Ru  = the predicted upper range 

Rl  = the predicted lower range  

𝐹𝑊𝐴  = the weighted average flow (Equation 6.20).  
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7.3 Conclusion 

The results of the sensitivity analysis show that the improved POM suffers from poor assumption 

of constant PS. According to the results, the quality of flow data series is highly dependent on the 

PS. Thus, the results could be improved by selecting the appropriate PS in time and space.  

In this thesis, the posterior Deterministic GA and the Stochastic probabilistic algorithm techniques 

were the suggested techniques to use in order to automatically define the parameters of the 

developed optimization model for ungauged basins containing a reservoir. Application of these two 

methods on the Outardes basin showed that they are highly capable of improving the result on the 

classic WBE method: the results did not contain any negative flow, they are less noisy, are more 

reliable, and matched perfectly with regional flows. Therefore the Deterministic and Stochastic 

based optimization model can be considered as the answer to the question of how to reconstruct 

more likely daily flow for Post-R period.  

Visual graphs, in addition to five QIs designed to evaluate the performance of reconstructed flow, 

enabled us to compare the Stochastic based method, Deterministic based method, and classic WBE. 

The application of the KPSS test, Q-Q plot, scale location plot, and residual versus fitted value plot 

techniques were also used to confirm the regional and temporal homogeneity of reconstructed flow 

data. These aforementioned methods and tools answered the question of how to evaluate the quality 

of reconstructed flow series in ungauged basins for Post-R period.  

According to the results of this chapter, the performance of the suggested flow reconstruction 

techniques depends on the particular case and on the time of year. Hence, a weighted average 

method was suggested to calculate the final flow for each segment based on the combination of 

results of Stochastic and Deterministic methods.  

Finally, a methodology was developed to estimate the uncertainty of the final flow caused by 

random and instrument uncertainties on the input data. The methodology is independent from flow 

measurements and is based on the input data sensitivity analysis for a chosen sub-time period. This 

method answers the question of how to evaluate the uncertainty of flow data in ungauged basins. 

The results show that flow data are highly affected by the uncertainty found in the input data, 

especially turbine flow. Therefore, more reliable results in the flow calculation process will be 

gained by validating all input data before use.  
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CONCLUSION AND RECOMMENDATIONS 

 

CONTRIBUTION 

The main focus of this thesis has been to develop a process to reconstruct a set of smooth and 

realistic daily flow values for ungauged basins. The work in this thesis has obtained these results 

through five main contributions to achieve this goal of flow reconstruction:  

 

i) Provide an algorithm to select the most appropriate family of the flow reconstruction 

methods in any case-study scenario; 

ii) Develop a flexible method of daily flow reconstruction for ungauged basins for the pre-

reservoir construction (Pre-R) time period; 

iii) Propose a flexible automatic methodology for daily flow reconstruction and filtering for 

ungauged basins that are equipped with a reservoir; 

iv) Develop several criteria to evaluate the quality of the reconstructed flow data for 

ungauged basins. 

v) Propose a methodology to evaluate the uncertainty in a flow data series generated 

through the flow reconstruction process for ungauged basins. 

 

The conclusions of each chapter are summarized in the “Conclusion” section. The limitations of 

the developed methodologies are marked by bullet points, and the recommendations on 

overcoming these limitations are listed at the end.  
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CONCLUSION 

The lack of a comprehensive methodology for selecting an appropriate method of flow 

reconstruction necessitated an inclusive study on this subject, along with research into the 

development of an algorithm to assist in choosing the right family of flow reconstruction method 

for different case study scenarios. This led to a complete literature review on the different methods 

currently being used for flow reconstruction. The applicability, advantages and disadvantages of 

these methods have been summarized through an algorithm that helps to define the fitting family 

of methods in each case study scenario. This algorithm takes into account all determinative factors 

that may affect the selection of appropriate method of flow data series reconstruction, and was then 

tested for its effectiveness by applying it on the selected case study scenarios. Results of this 

application have shown that in this specific case study, WBE based methods and regression based 

techniques work better than others methods for Post-R and Pre-R periods respectively (Chapter 4).  

 This algorithm puts the judgment of the input data quality and the required output data 

duration (long term or short term) in the hands of the researcher. If different researchers 

make different judgment calls on these deciding factors, the outcome of algorithm may be 

dissimilar. This is an area which needs to be refined in regards to the use of this developed 

algorithm.   

 

Pre-R period 

The existing regression based flow reconstruction methods for the Pre-R period are not considered 

the most precise or robust methods. However, the use of these methods are unavoidable when there 

is limited data available (such as flow data from neighbouring basins and RR model) for the sample 

time period. In this thesis, a new Kalman filter based model was developed to filter and combine 

the flow data from neighbouring basins and RR model for the Pre-R period. This method takes 

advantage of existing limited data in order to improve the results (Chapter 5). Results of developed 

Kalman based model were then compared with the results obtained from the use of existing models 

(including Area Ratio, Move III, and Multivariable regression). In addition to use of visual graphs, 

three QIs designed to evaluate the quality of reconstructed flow values for an ungauged basins were 

applied to perform the comparison.  
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The results show that there each method has its advantages in producing flow data series but SF is the 

determinative factor to select the most reliable method. In Outardes 3 and 2, Move III (x= simulated flow) 

is the most reliable flow reconstruction method because it is the only method that produces the flow time 

series with the SF close to Post-R period methods. In Outardes 4, Move III (x= simulated flow) is also the 

most reliable flow reconstruction method because it mostly has the best QIs (including SF).  

  

Post-R Period 

Classic WBE is the first choice from the family of WBE based methods to be used to reconstruct 

the flow data for the Post-R period. However, the results of using this method have been found to 

be noisy and unrealistic. Problems related to other alternative methods such as the manual flow 

reconstruction and filtering method and POM were also found. Although POM produced the much 

better results than classic WBE and it was independent from human decision making and 

experience, deficiencies and errors while using POM were still issues that needed to be resolved.  

Some of these problems were solved successfully with the improved POM (Chapter 6). For 

example, the improved POM is applicable for a daily time sample use, no longer relying on a 5 

minute volume data sample. Thus, the model is considered more flexible and can be applied 

towards any time sampling interval in the Post-R period. Moreover, the problem of poor boundary 

conditions was resolved in new version by applying a moving optimization window. Generally, 

altering the constraints of POM in the improved model has helped to get more realistic data series. 

Nevertheless, a sensitivity analysis shows that the modified POM is very sensitive to the changes 

in dn, C, and  , affecting the integrity of the flow results. The results show improvement when the 

PSs are modified for each time interval and case study scenario (Chapters 6 and 7). The weaknesses 

of the modified POM are as follows: 

 In this model, the WBE is simplified by including water loosing terms (evaporation, direct 

rainfall, and interaction between ground water and reservoir’s water) into the calculated 

flow. This results in unrealistic values of flow when the water loss is considerable.  

 Input data to the model are calculated based on non-validated measured data for the years 

prior to 2005. This causes some uncertainties in the reconstructed flow data series. When 

input data are not realistic during tens of continuous days, the model ends up failing. 
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The absence of a reliable technique to calculate the smooth daily flow in ungauged basins was the 

motivation to develop a WBE based model. This model needed to define the parameters of model 

intelligently; thus, an automatic optimization tool was drafted. The parameters of this model are 

defined by using both Deterministic and Stochastic techniques (Chapter 6). Unlike the Perreault’s 

assumption, the parameters of this model could change depending on the sample time. Stochastic 

and Deterministic methods use the simulated flow (using RR model) and the neighbouring basin’s 

flow to define the parameters of model. This approach increased the accuracy of results. These two 

techniques have shown different performances depending on the time and case-study (Chapter 7).  

A shortage of criteria for evaluating the quality of reconstructed flow was the motivation in 

designing a few QIs applicable in ungauged basins. Reliability of the data was measured using five 

QIs during Post-R period (Chapter 6). These criteria are independent from mostly manually filtered 

flow data series (available in Quebec). Also, a few tests were implemented to check the regional 

and temporal homogeneity of reconstructed flow. The results of quality evaluation confirmed the 

integrity of the results (Chapter 7).  

 In this thesis, a simple average method was used to define the mean QI for each sample 

time period. However, more investigation is still required to define the weight of different 

indexes in average QI. 

Finally, the reconstructed flow data series were combined using a Weighted Average method to 

form the final Flow. The final flow data series is influenced by different sources of uncertainty, 

such as input data error, parameter unreliability, and/or model weaknesses. Comparing flow values 

before and after 2005 indicated that the uncertainty of reconstructed flow is mostly related to the 

random uncertainty and instrument uncertainty of the input data that may be caused by natural 

phenomena (i.e. floods, ice cover), instrument disorders (i.e. gates’ maneuver disorders), 

simplification of calculations, and/or human uncertainties . Thus, an uncertainty analysis was 

performed to estimate the range of combined flow. Random uncertainty was defined based on four 

different scenarios. In each of first three scenarios, one input data was disturbed randomly (5%). 

In the last scenario, all the input data were perturbed together. The results of this analysis showed 

that the random uncertainty of the reconstructed flow is affected by the turbine flow data series 

more than anything else.  
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Also the effects of instrument uncertainties on flow reconstruction were assessed in this case study. 

The results of this assessment also confirmed the dependency of flow uncertainty on the quality of 

turbine flow data. Moreover, comparing the instrument uncertainty of the reconstructed flow with 

that of classic WBE showed that the quality of flow has been improved in the developed model. 

This means that the developed model could control part of input data uncertainty (Chapters 6 and 

7).  

 What requires more research is the magnitude of random uncertainty because, in practice, 

it could change by season, reservoir size, number of turbines, and etc. Thus, the limit 

random uncertainty is different on some days from the 5% introduced in this research.   

 

RECOMMENDATIONS  

Based on the present research, the following recommendations are proposed: 

1- Calculating the reservoir related data (storage volume, turbine flow, discharged flow) based 

on validated measured data before applying them in a WBE, especially during the time 

periods when the quality of input data is considerably low for several days in the row. 

2- Taking into consideration the basin flow routing into rivers and reservoirs to improve the 

quality of data (where they could make a big difference). 

3- Considering the effects of wind and ice cover on water level, and that of maneuver disorders 

of gates on discharged flow.  

4- Calculating the water loosing terms (evaporation, direct rainfall on reservoir, interaction 

between ground water and surface water) as part of reconstructed flow and extracting them 

from reconstructed flow values to have a better understanding of real flow data and their 

range in the area. 

5- Using more QIs to evaluate the flow reconstruction more comprehensively. 

6- Validating the weight of different QIs in average QI for each time period.  

7- Estimating more accurate values of random uncertainty based on condition (season, 

reservoir size, number of turbines, and etc.) 
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APPENDIX 1 – ARTICLE 1: AN ALGORITHM FOR SELECTING THE 

MOST APPROPRIATE METHOD OF NATURAL FLOW 

RECONSTRUCTION IN HYDROPOWER RESERVOIRS 

By Ana Hosseinpour, Leslie Dolcine, and Musandji Fuamba. Submitted to CWRA journal 

 

Abstract 

The quality and availability of hydrometric and hydrologic data series are a main concern in 

hydraulic or hydrologic research. Even in developed countries, the required data are not always 

measured directly, and when recorded data is available, it may have some level of uncertainties or 

gaps. River flow is rarely measured directly and technical error, human error, bad weather, and 

natural disasters can make measurements unreliable. Previous studies have attempted to 

reconstruct natural flow or complete flow data at a given reservoir in order to increase the quality 

of information used in water management. These studies have employed various methods, which 

differ according to their fundamental concepts and equations, the input they required, their 

uncertainty and flexibility, and their range of application. Each method may have particular value 

in a given circumstance, depending on data availability and the overall objectives. This paper 

describes an algorithm for selecting the appropriate method of flow reconstructing, and applies the 

algorithm to a Quebec reservoir case study where hydrologic and hydraulic data (but not natural 

flow data) are available. Based on the quality of input data and the objective of producing short 

time step (daily) and long-term flow data series, the algorithm led to the selection of a Water 

Balance Equation (WBE) approach as the most appropriate method for this specific case. 

 

Résumé 

La qualité et la disponibilité des séries de données demeurent une préoccupation majeure en 

recherche hydraulique ou hydrologique. Même dans les pays développés, les données nécessaires 

ne sont pas toujours mesurées directement, et lorsque les données enregistrées sont disponibles, 
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elles peuvent être entachées d'importantes incertitudes. Plusieurs études antérieures ont tenté de 

reconstruire ou de compléter les apports naturels qui arrivent dans un réservoir donné, afin 

d'améliorer la qualité de l'information utilisée dans la gestion des ressources en eau. Ces études 

ont eu recours à diverses méthodes, qui diffèrent en fonction de leurs concepts et équations 

fondamentaux, de données d'entrées et leur incertitude, et de leurs champs d'application. Chaque 

méthode peut avoir une valeur particulière dans une circonstance donnée, en fonction de la 

disponibilité de données et des objectifs généraux. Cet article décrit un nouvel algorithme 

développé dans le but de sélectionner la méthode appropriée pour la reconstruction des séries 

d’apports naturels. Cet algorithme est ensuite appliqué à un réservoir au Québec où les données 

hydrologiques et hydrauliques sont disponibles. Sur base de la qualité de données d'entrée et 

l'objectif de produire des pas de temps courts (tous les jours) et les séries à long terme des apports 

naturels, l'algorithme développé a déterminé que c’est l'Équation du Bilan Hydrique (EBH) qui est 

la méthode la plus appropriée. Une procédure a donc été élaborée sur base de l’EBH pour 

déterminer l'information nécessaire, en vue de prendre des décisions saines de gestion de l'eau. 

 

Introduction 

Knowing the inflow and outflow in reservoirs or basins is essential for estimating water 

availability, predicting extreme events, designing hydraulic structures and undertaking other 

activities related to water planning and management. Limited measured flow data causes some 

uncertainty in water management policies and the design of facilities, which can have substantial 

financial consequences (Adeloye and Nawaz, 1998). Reconstructing or extending flow data time 

series can help improving the quality of water management decisions.  

For years, regression-based methods were used in data reconstructing and extending (e.g. Kevin, 

1996, Rupp et al. 2008, Hernandez-Henriquez et al. 2010, Kim and Pachepsky, 2010). These 

methods usually relate the flow value to one or more independent variables such as rainfall and 

temperature. The regression based methods are still used in some cases because they are fast and 

simple, and can be developed using a minimal amount of information from the basins. Although 

the results of this method can be good when rough estimates are adequate, they are not reliable to 

estimate natural flow (NF) with shorter time scales (daily, hourly).  



172 

 

Hydrologic and hydraulic methods are the two main alternative natural flow reconstructing 

methods to regression-based methods. Generally, hydrologic methods (such as rainfall-runoff 

models) are considered those that rely primarily on meteorological and hydrological input data 

(such as rainfall, snow, temperature) to simulate natural flow in a case study. Hydraulic methods 

include those based on the water cycle (such as WBE). A literature review on these methods shows 

that each may be appropriate in a particular case, depending on the availability and quality of data, 

the desired time step, the flexibility and uncertainty of the reconstructed data, and the climate and 

length of the reconstructing period. However, there is no complete and general study to help 

researchers consider all these factors when selecting a flow reconstructing method.  

This paper has two main objectives. First, an approach was developed to select an appropriate NF 

reconstructing method for a given situation based on a literature review. The resulting algorithm 

was then tested through application in a case study.   

 

Main Methods Of Natural Flow Reconstructing Or Extending 

During the past several years, many different methods and models have been developed to 

reconstruct the natural flow at gauged or ungauged basins. These methods are grouped in three 

main categories based on their approach to simulate flow: i) hydrologic methods, which calculate 

flow values using primarily hydrologic and climatic data for the basin, ii) hydraulic methods, 

which estimate flow values using regulated flow and storage data, and iii) regression-based 

methods which define flow values based on any available and effective hydrologic, hydrometric, 

climatic, and physical data for the basin or neighbouring basins. 

 

Hydrologic Models 

Hydrologic models include those based on hydrologic data such as precipitation and climate 

(Hwang et al. 2005). Different studies have been undertaken to develop a relationship between 

flow and climate to identify the predictability of flow or possibility of a non-random pattern in 

space or time (Fortin, 2001) and in most areas a statistically significant link is evident (Fortin and 

Slivitzky, 2000). Fortin (2001) found that climate had an obvious influence on runoff. He also 



173 

 

evaluated the reliability of different climatic indices to see if there was a non-random pattern in 

space or time, and identified a statistically significant link between Arctic Oscillation (AO) and 

runoff in northern Quebec. However, the correlation was found to be sometimes caused by 

extremes. According to Fortin and Slivitzky (2000), river flows often correlate well with winter 

temperatures. The winter temperature could be an indicator of how the regional climate is affected 

by the global phenomenon of AO. However, while the performance of climate-based flow 

reconstructing methods is good in some areas, questions remain as to their level of uncertainty. 

Moreover, hydrologic models that use both physical and climate characteristics of the catchment 

area are generally recommended, especially when flow reconstructing is being done in regulated 

basins (Hernandez-Henriquez et al., 2010).  

Rainfall-runoff models are the hydrologic models most often used to estimate runoff in time and 

space. They can be applied to estimate runoff in different hydraulic systems and land uses where 

limited observed flow data are available to calibrate the model. Rainfall-runoff models can range 

from a simple relation between rainfall and runoff to complex models that also consider the 

hydrologic and physical characteristics of a region. A more complex model does not necessarily 

produce more accurate results, especially when it relies on spares and non-representative data 

(Raman et al. 1995).  

Examples of simple rainfall-runoff models are spatial models that can be developed based on the 

relation between flow and climate in neighbouring basins. For example, if the rainfall data series 

of a basin is available but there is no flow data to calibrate the rainfall-runoff model, a simple 

solution is to find the relation between rainfall and runoff in a neighbouring basin for which these 

data series are available and then apply this relationship to the rainfall data at the basin of interest 

(Raman et al., 1995). 

In addition to simple spatial rainfall-runoff models that relate regional and physiographic 

characteristics to temporal or spatial flow based on autoregressive techniques, some methods 

combine the two. Perreault et al. (1995) developed a method based on a combination of spatial 

and temporal rainfall-runoff models that considerably improved results and did not underestimate 

peak flows.  

Rainfall-runoff models (with linear and nonlinear functions) can be classified into three distinct 

groups: metric (data-based, empirical or black-box), parametric (conceptual, explicit soil moisture 
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accounting or grey box), and mechanistic (physically-based or white box) (Wagener et al. 2004). 

Metric models commonly use basin data series rather than the behaviour of catchment and flow to 

estimate model structure and parameter values, so do not seem suitable for the spatial extension of 

data in ungauged basin. Artificial Neural Network (ANN) and Transfer Functions are examples of 

these methods. The limitation of metric models is partially solved by data-based mechanistic 

models that “constrain the degree of freedom of such models to those structures that are physically 

interpretable” (Wagener et al., 2004). Parametric models define the structure before use, and need 

to be calibrated to adjust the parameters, which cannot all be measured independently. Their 

dependency on flow makes them difficult to apply to ungauged catchments.  

 

Advantages and disadvantages of hydrologic models 

Rainfall-runoff models are the main group of hydrologic models that are able to estimate the data 

flow of different time-steps. Examples of rainfall-runoff models are Thornthwaite-Mather (TM) 

for calculating monthly flow (e.g. Taylor et al. 2006), StormNET for calculating daily or even 

smaller timescale flow (e.g. Karamouz et al. 2011-a), and the Wright model to calculate mean 

monthly or daily flow (Adeloye and Nawaz, 1998).  

The structure of these models affects uncertainty, but also the number of parameters included and 

the quality of input data. Uncertainty increases along with the number of parameters; however the 

models need enough parameters to take the effective factors of flow modeling into account, 

especially when they are used to extend short time-step or long-term data. For example, according 

to Adeloye and Nawaz (1998) the performance of the Wright model, which only deals with rainfall, 

evaporation, and soil moisture (but not the physic of runoff process) and their parameters, is 

especially poor at producing low-flow frequencies. The accuracy of this method decreases even 

more for smaller time scales. 

The model that is best able to consider the climate factors (such as evaporation and snowmelt) 

with the greatest impact on the region’s flow should be selected to simulate the flow. For example, 

in cold regions with large snow-loads, considering snowmelt in the flow estimation is necessary 

(Kim and Kaluarachchi, 2013).  
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One of the problems with models in this group is that they most often need to be calibrated, which 

presents some difficulties. First, flow data needed to calibrate the model are not available for 

ungauged basins. Second, calibrating the model manually takes time and, when flow must be 

estimated for several basins, the process must be repeated for each basin separately because using 

approximated parameters based neighbouring basins’ parameters decreases the certainty. As well, 

manual calibration always introduces uncertainties.  

Mechanistic rainfall-runoff models attempt to relate the model parameter with catchment 

characteristics to avoid calibration, however, this has not been completely successful (Wagener et 

al., 2004). Other attempts have been made to calibrate the model on a regional basis, which makes 

it applicable for ungauged basins. The rainfall-runoff model is calibrated for as many basins as 

possible and the estimated parameters are then transferred to ungauged basins. Regional values 

require a rainfall-runoff model simple enough that it does not increase uncertainty along with the 

model parameters, but not so simple that it fails to capture the process behaviour with a reasonable 

degree of accuracy (Wan Jaafar et al. 2011 and Madsen, 2000). Many studies have used regional 

calibration to simulate low-flows (e.g., Vezza et al. 2010, Schreiber and Demuth, 1997) or floods 

(e.g. Eslamian, 2010, Wan Jaafar et al., 2011). Other studies dealing with the reconstruction of 

continuous flow data series using regionalization have looked at large discretization (monthly, 

seasonal, and annual) times (e.g. Singh and Singh 1996, Özçelik and Benzeden, 2010). Examples 

of rainfall-runoff models applied in regional calibration are IHACRES, which has low complexity 

(six parameters) (e.g. Kokkonen et al. 2003), for daily streamflow prediction, and different 

versions of the HBV (Mac-HBV, HBV light) model (e.g. Merz and Blöschl 2003, Krysanova et 

al. 1999, Samuel, Coulibaly, and Metcalfe, 2011) to areas with significant amounts of snow. 

Comparison of the lumped or semi distributed HBV model, Nordic HBV (Krysanova et al., 1999), 

with distributed HBV models, HBV96 (Lindstrom et al., 1997) and HBV-D (Krysanova et al., 

1999), shows that the presence of heterogeneity in distributed model versions makes them more 

accurate (Krysanova et al 1999). While better results are obtained with distributed models, these 

are also more data intensive. 

Generally, the appropriate Rainfall-Runoff (RR) model should be selected based on different 

criteria (Vaze et al. 2011). The most important is data availability. Model selection also depends 

on the climate of area. If meteorological or geological factors such as snowmelt, evaporation or 

groundwater are important, the model should be able to take their effects into account. Rural or 
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urban land use also impacts the selection of software. For example, SWAT is mostly applied to 

simulate the flow in rural basins (Simic et al. 2009) and StormNET (Boss International, 2005) is 

a more efficient flow simulator in urban areas.  

 

Hydraulic Models 

One of the most usual hydraulic models of data reconstructing involves applying the WBE to the 

reservoir or basin. This equation can be written as follows for the reservoir: 

 

Nf=Qout- Qin+ ΔS/Δt          (1) 

 

The hydraulic data required in this model are output discharge Qout from the reservoir, storage 

volume changes in the reservoir (ΔS), and input discharge to the reservoir Qin —which is the 

delayed outflow from the upstream sub-basin. Precipitation over the reservoir surface P and 

evaporation E from the reservoir during the time Δt, and the interaction Int between stored water 

in the reservoir and groundwater are terms included in calculated NF values (Nf) in this simplified 

WBE. If enough information is available about these terms, they can be separated from NF. If the 

distance between two reservoirs in the series is long, the hydrograph of input flow to the 

downstream reservoir is not exactly the same as that of outflow from the upstream reservoir (Das 

and Saikia 2013). In such cases, the flow routing equation should be used to calculate the flow 

downstream hydrograph and increase the accuracy of results. For example, Smithers, Schulze, 

Pike, and Jewitt. (2001) used the Muskingum technique to route flows in river reaches of the Sabie 

River catchment in South Africa.  

The WBE can also be applied to basins or rivers. The Penck-Oppokowa equation, in which water 

losses are usually neglected (Shiau and Lee, 2005), is a WBE applicable for basins. Sokolov and 

Chapman (1974) describe few forms of WBE and provided good information about the main water 

balance components. They described that considering infiltration, evaporation (e.g. Guntner et al. 

2004) and interaction between groundwater and surface water during the seasons when these terms 

have considerable values provides more accurate results, though it is somewhat difficult. 
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Advantages and disadvantages of hydraulic models 

WBE is a hydraulic model which can be considered for any closed hydraulic system such as a 

basin, river, or reservoir. The WBE is an easy method to apply and does not need to be calibrated. 

This method is easy and fast enough to be used for calculating real-time flow data. Moreover, 

factors such as snowmelt or evaporation can easily be considered in the equation if they are 

available (if not, they should be calculated and added to the equation, or be included in calculated 

NF). Also, if the distance between two reservoirs is considerable, the hydrograph of outflow from 

an upstream reservoir cannot be assumed as the hydrograph of inflow to the downstream reservoir 

(Das and Saikia 2013). This assumption could significantly affect the results of the flow 

calculation. 

In cases where almost all the required data for the WBE are of good quality, the result will be 

reliable. Although this model is mostly applied for long time-step reconstructing (monthly, 

seasonally) it can also be used for short time steps (daily). 

 

Regression-based Methods 

Regression-based methods apply linear or nonlinear regression to relate flow to hydrologic data, 

hydraulic data or physical characteristics (of the basin in question or neighbouring basins) that are 

available and impact on flow rate. These methods have some overlap with hydrologic models, 

which are based on the simple regression that relates runoff to ratio of rainfall. 

Where flow data for neighbouring basins are available, a logistic relation can be developed to 

relate this flow data to some characteristics of that basin, this relationship can then be applied to 

the basin of interest (flow reconstructing regression in space). For example, Hughes and Smakhtin 

(1996) explained that a probable method to extend the natural flow for an area could be simply 

weighting the observed streamflow at one or more gauged basins by the ratio of the catchment 

areas of the basin of interest to the area of the gauged basins. Jones, Lister, and Kostopoulou (2004) 

applied a regression-based method to relate the values of the logarithms of river-flow to linear 

combinations of data on soil moisture and effective precipitation (precipitation minus actual 
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evaporation). Wen (2009) tried to reconstruct flow by relating discharge time series to rainfall and 

maximum temperature. 

The regression method could be developed based on available short-term data and applied to 

extend the flow series over the whole time period (flow reconstructing regression in time). Simple 

regression between a basin’s short time-flow data series and the long-term flow of a nearby basin 

(Hernandez-Henriquez et al., 2010, Dastorani et al. 2010) exemplifies this type of regression based 

method. In a case study, Taylor et al. (2006) developed a statistically-linear model based on 

regression of rainfall and short-term runoff. Since complete rainfall data were available in this 

case, the regression could be applied to extend flow data over the whole period.  

Other examples of regression-based methods are those that estimate the flow data at ungauged 

sub-basins using flow data available for the main basin. For example, one method calculates the 

stream flow in ungauged sub-basins by relating the ratio of slope and area of that sub-basin to 

those of the larger basin (Schreiber and Demuth, 2002). 

Maintenance of variance (Move) is another regression-based method of data reconstructing that 

preserves both mean and variance, and thus works better than the linear-regression method 

(Koutsoyiannis and Efstratiadis, 2007). The Move technique (Hirsch, 1982) reconstructed flow 

based on a linear regression (𝑦�̂� = 𝑎 + 𝑏𝑥𝑖) in which a and b were calculated in a special way (e.g 

Moog, Whiting, and Thomas. 1999). 

 

Advantages and disadvantages of regression-based methods  

Regression-based methods are developed based on a mathematical relationship between flow in a 

basin and independent variables from the same or neighboring basins. These methods have few 

independent variables and do not usually take the physics of the system into account, which 

reduces the certainty, especially when they are used to reconstruct or extend short time-step and 

long-term data. 

Common regression-based methods include the normal ratio method and the correlation method. 

Comparing the results of these traditional methods with Artificial Neural Networks (ANN) and 

Adaptive Neuro-Fuzzy Interaction System (ANFIS) showed that ANN and ANFIS, especially 

ANFIS, was better able to reconstruct the missing data (Dastorani et al. 2010). 
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The area ratio method is another regression-based method of flow reconstructing and extension. 

The problem with this method is that even adjacent basins are rarely linearly related to the 

catchment area. Also, it is possible to have a trend or non-stationary in the actual stream flow data 

series at the site or stations used for interpolation (Hughes and Smakhtin, 1996). For areas where 

hydrology and morphology are different even in neighbouring basins, it is not recommendable to 

directly transfer their parameters to the basin of interest.  

Nevertheless, regression-based methods are simple and fast (Rezaeianzadeh et al. 2013) and can 

be developed easily when available data are limited.  

The advantages and disadvantages for all the three groups are summarized in Table 2. 

 

Proposed Methodology For Choosing The Appropriate Method For 

NF Reconstructing 

A number of criteria should be considered when selecting a flow reconstructing method. These 

can be summarized as: 

 required flexibility  

 requiring input data  

 quality of input data 

 desired flow time-step and period 

 desired certainty 

 climate and other features of the area  

In this paper, an algorithm has been developed to select the flow reconstructing method that best 

responds to above criteria. There is no absolute best method and the choice depends on the features 

and objectives of a given case study. A step-by-step decision making algorithm is proposed based 

on factors summarized in Figure 1 and Tables 1 and 2.  

The initial step is illustrated in Figure 1. A group number is chosen for the case study. First the 

proper time-step required for data reconstructing is selected. In this paper short time step refers to 
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daily time steps or less and every time step longer than that is called a long time step. Then, one 

of the short-term or long-term boxes is selected. Short term is selected if the reconstructing method 

is meant to produce a small number of data, and long term is selected if long series of data are to 

be reconstructed. For example, producing flow data for five days on a daily scale is considered 

short-term data, but if the scale were hourly it would be considered long-term data reconstructing. 

The researcher then needs to analyse the available data, define its quality and determine the group 

number, which is the last row of Figure 1. There are different methods of assessing data quality 

but they are not beyond the scope of this paper. When data quality is low, decisions about the 

reconstructing method are more critical. It is highly recommended to validate input data before 

applying them in any flow reconstructing method. 
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Goal of project

Long time step Short time step

Short term

High quality   Low quality

5 6 7 8

 Low quality High quality

Long termShort term

High quality   Low quality

1 2 3 4

High quality

Long term

Low quality

Output data flow

Input data

 

Figure 1: Preliminary algorithm for determining the group number of appropriate method for data reconstructing 
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Table 1: Determination of the appropriate method code for the identified group number from 

Figure 1 to be applied in Table 2 

Group number 

from Figure 1 
Method group Method Type 

Method 

Code 

7,5 
Hydraulic WBE I 

Hydrologic Rainfall-Runoff Models II 

8 

Hydraulic WBE I 

Hydrologic Rainfall-Runoff Models II 

Regression based  IV 

1, 2, 3, 4, 6 

Hydraulic WBE I 

Hydrologic 
Rainfall-Runoff Models II 

Climate model III 

Regression based  IV 
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Table 2: Advantages and disadvantages of different groups of natural flow reconstructing methods 

Method code 

from Table 1 
Advantages Disadvantages Comments 

I 

 Simple and accurate when all 

data are available for the basin 

or reservoir in question 

 No need for calibration 

 Results can be calculated 

quickly 

 Flexible enough to be applied 

in all basins 

 Difficult to calculate losses if 

they are not available 

 The uncertainty of one basin 

or reservoir highly affects 

those downstream  

 If applied in a region where snow or evaporation are 

significant, these should be considered in the equation 

 Data validation is recommended before using the WBE if 

it is applied for short time step data  reconstructing 

II 

 Can be used in time and space 

 Are some of the most reliable 

methods of flow  reconstructing   

 Most have special capability in 

considering snow, evaporation, 

infiltration, etc. 

 Metric and mechanistic 

models require that data be 

calibrated  

 It is time consuming to model 

different basins of an area 

 Models need to be calibrated 

for each basin separately 

 Require a lot of data 

 Increasing the number of parameters does not  necessarily 

mean greater accuracy  

 Selecting the rainfall-runoff model depends on: 

 Available data 

 Climate of area (if considering evaporation or 

snowpack is important for the case) 

 Land-use (usually RR models are designed either 

for urban or rural areas) 

III 
 Climate signal data is usually 

available 

 Model parameters change 

from basin to basin (not 

flexible) 

 Does not consider the physics 

of flow 

 Not easy to find the climate 

index which affects flow 

 Needs calibration 

 Climate data sometimes needs to be downscaled 

IV 

 Results can be calculated 

quickly  

 Few parameters need to be 

defined 

 Simple to apply 

 Applicable when limited data 

are available 

 Medium to low certainty 

 Needs to be updated over time 

with new data 

 Requires finding the 

parameters for each basin. 

Uncertainty of model 

increases as the time-step 

decreases  

 Among five regression models of runoff coefficient, 

single linear regression, monthly linear regression, 

monthly linear regression with stochastic description for 

residuals, and a double regressed model, the monthly 

linear regression model with stochastic description for the 

residuals has the best results (Raman et al. 1995) 

 Some other methods like ANN and ANFIS are 

recommended as alternatives  
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In the second step, the codes for methods that are likely applicable to a determined group number 

are taken from Table 1. When more than one method exists for a given group number, this does 

not mean that they can all be applied to the study area, but rather present the options the researcher 

should consider. This second level of selection will be done in next step using Table 2, which 

presents the advantages and disadvantages of each method.  

The final step involves using Table 2 to find out more about the strengths and weaknesses of 

different methods, and make a decision based on these and on data availability. Sometimes data 

availability is the main driver in the method selection. For example, methods requiring calibration 

can only be used in gauged basins for which at least short-term time data are available. 

 

Case Study 

The proposed algorithm was then applied to a real case study to demonstrate its ability to select 

the most appropriate method for flow reconstructing. The case-study basin was part of a project 

aimed at reconstructing daily natural flow in all regulated rivers of the Quebec province in Canada. 

Important requirements of this study include: 

 The data reconstructing method needs to be flexible enough to be applicable to all regulated 

rivers in Quebec. 

 Data reconstructing is required for daily and long-term scales. 

 High-quality flow data is required. 

 The daily reconstructing method should be selected based on available data in the area, 

which is rainfall, minimum temperature, maximum temperature, snowfall, surface area, 

water level-volume curve of each reservoir, turbine flow from each reservoir, discharged 

flow through the reservoir gates, and water level upstream and downstream from the 

reservoir. Natural flow data are available for a limited number of basins. 

 Hydrologic data (rainfall, minimum temperature, maximum temperature, snowfall) is of 

good quality. However, hydrometric data (water level-volume curve of each reservoir, 

turbine flow from each reservoir, discharged flow through the reservoir gates, and water 
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levels upstream and downstream of the reservoir) are sometimes noisy and may contain 

uncertainties. 

 Both snowmelt and evaporation affect the results, especially in large reservoirs. 

One sub-basin in Quebec was selected as the case study for this paper. This sub-basin, the Outardes 

4, has an area of 17119 Km2 (Figure 2). It has its own reservoir and is located in the upstream 

basin, thus the only input flow into this reservoir is NF (the flow which is caused by rainfall). 
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Figure 2: Location of the Outardes Basin in Quebec (a and b), and sub-basins of Outardes 4, 

Outardes 3 (in darker color), and Outardes 2 (c) (a: https://maps.google.ca, b: 

www.wikipedia.org) 

 

b 

c 

Outardes 2 

Outardes 3 

Outardes 4 

a 

http://www.wikipedia.org/
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Applying the proposed algorithm to the case study 

The appropriate flow data reconstructing method will be selected in three steps: 

1- Defining the group number for appropriate methods of NF reconstructing according to 

Figure 1. 

Considering that the aim of the project is to reconstruct short time-step (daily) and long-term 

flow, group number 7 or 8 should be selected. If working with hydrometric data of lower 

quality, the group number will be 7; if hydrological data has been validated or hydrologic data 

is of higher quality, the group number will be 8. Initially, both groups will be considered 

because the final decision were made using Tables 1 and 2, which present the advantages, 

disadvantages and data required with each method.  

2- Defining the appropriate method code for the group number using Table 1: 

According to Table 1, all hydraulic models (WBE), hydrologic models (rainfall-runoff models 

and climate models), and regression-based methods are applicable for group numbers 7 and 8. 

This table shows that the WBE, RR models, and regression-based methods have the group 

codes of I, II, and IV respectively.  

3- Find out more about the advantages and disadvantages of different flow reconstructing 

methods, referring to Table 2: 

The final choice of flow data reconstructing method should be based on the advantages and 

disadvantages of each. According to Table 2, the WBE with a group code of I is a flexible 

model that can be applied to any basin. This advantage could be important in the current case 

study, which requires a model that can be applied to all basins in Quebec. It is also simple and 

fast and does not require calibration. This advantage is also important in the current case study 

because no measured flow data are available to calibrate the model. However, it will present 

the inconvenience of necessity of calculating losses and consider evaporation and snow, which 

can be dealt with by considering these terms in the calculated NF. Moreover, Table 2 

recommends data validation for the case study, in which input data are noisy.  

According to Table 2, RR and climate models with group code of II needs to be calibrated to 

the basin, which is not possible in the present case study because short-term measured flow 
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data would be required to calibrate these models before applying them to simulate long-term 

flow. 

Although enough data are available to apply regression-based methods under group code IV, 

it has medium to low certainty and uncertainty increases as the time step decreases (Table 2). 

This method is unlikely to produce certain results when applied to the daily time-step required 

in the case study.  

To summarize, the algorithm for choosing a method of flow reconstructing finds WBE to be 

the most appropriate model in this case. Regression-based methods are also applicable, but are 

not recommended. To prove the efficiency of the algorithm, results of the WBE and regression-

based methods are then compared. 

 

Results 

WBE 

Most of the watersheds in Quebec have their own reservoir and there are enough data available 

(water level-volume curve of each reservoir, turbine flow from each reservoir, discharged flow 

through the reservoirs’ gates, and water level upstream and downstream from the reservoirs) about 

these reservoirs to allow the WBE to be written for each of them. The general WBE for a reservoir 

is calculated by Equation 1: 

Nf=Qout-Qin+ΔS/Δt 

 

Regression-based method 

The area ratio method, in which the flow data for each basin is related to the flow of neighbouring 

basin according to the ratio of their surface area, is selected to reconstruct the NF because it can 

be developed independent of flow data series from Outardes 4. The Moisie basin is chosen as 

neighbouring basin in this case because: i) it is close to the case study basin and probably has very 

similar characteristics to the Outardes 4 basin, ii) its area is 19000 km2, which is close to the area 

of Outardes 4 and increases the likelihood that they share similar flow characteristics, and iii) 
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measured flow data series are available. The flow data series for this basin were obtained from 

CEHQ website (CEHQ, 2013).  

A comparison of results from the area ratio and WBE methods for the years 2008 to 2012 is 

presented in Figure 3. To decide on the quality of reconstructed flow, the Nash–Sutcliffe model 

efficiency coefficient (NASH) (Equation 2) and absolute volume error (Equation 3) quality indexes 

are used to compare the reconstructed flow to available filtered flow data series for the last few 

years (Table 3). This filtered flow data series is the most reliable flow data for the area, which is 

calculated using the WBE and filtered manually. Since this data series is only available for the last 

few years, it cannot be used to calibrate long-term simulations and its applicability is limited to 

serving as a reference value series for recent years.  
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where AVE is the absolute volume error, fiQ  is the reference filtered flow for day i, riQ  is the 

reconstructed flow for day i, and obsQ  is the average reconstructed flow. The Nash–Sutcliffe model 

efficiency coefficient is most applicable for high flow comparisons because the squared difference 

in this equation increases sensitivity to peak flows (Krause et al. 2005). However, in Equation 3, 

the influence of low flows and high flows are the same. The NASH values vary between 1 and −∞ 

and the closer it is to one, the better. AVE also varies between 0 to +∞, and the close it is to zero 

the better. 
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Table 3: Quality index comparison for WBE and area ratio 

Quality Index WBE Area ratio 

Nash–Sutcliffe model efficiency coefficient  0.981 0.705 

Absolute volume error 0.08 0.263 

 

 

Figure 3: Comparison of reconstructed natural flow using WBE and area ratio 

 

Comparing the results from the WBE and area ratio methods with available filtered flow data series 

shows that the area ratio method underestimated low flows and overestimated peaks. This shows 

that while the over and under estimations may compensate each other and the method provides a 

good estimation of annual flow, the method's performance is not good enough for daily NF 

reconstructing. Results of the WBE method follow the same trend as filtered flow, but are noisier, 

especially during low flow. This noise could be related to applying raw input data instead of 

validated input data in the WBE method. The calculated quality indexes for two methods support 

the results of visual comparison. The Nash–Sutcliffe model efficiency coefficient is much better 

for WBE, indicating that this model is more successful in high flow estimations. Moreover, 

absolute volume error is lower for the WBE, showing that this model provides greater certainty in 

flow data trend approximation.  
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The greater reliability of WBE results confirms the efficiency of the proposed method selection 

algorithm. The algorithm considers all aspect of NF reconstructing and clearly points out the 

advantages and disadvantages of the different methods.  

 

Conclusion And Recommendations 

Knowing the values of surface flow in each basin is important for water planning and management 

and for hydraulic design. This information is also helpful in estimating water availability, 

designing flood-warning systems, and conducting studies based on historical flow data. Limited 

or low quality flow data results in noticeable uncertainty in water management plans and hydraulic 

design. Methods are required to increase the quality of data through data reconstructing and 

decrease the likelihood of error in management and design.  

The literature review accomplished in the first part of this paper revealed important differences in 

flow reconstructing methods with regard to their flexibility, requiring input data, output time step 

and uncertainty. Also, different factors such as climate and the length of the reconstructing period 

were found to be important factors in the appropriateness of different flow reconstructing methods. 

However, none of the studies in the review provided a methodology for selecting a flow 

reconstructing method that considered all these factors. This paper thus undertook to categorize 

the different methods into three groups — hydrologic models, hydraulic methods and regression-

based methods — and then into subgroups. An algorithm was developed to support a method 

selection based on the factors mentioned and on the advantages and disadvantages of each 

subgroup of NF reconstructing methods. This algorithm helps to select a proper data reconstructing 

method in each particular case. Lastly, the applicability of this procedure was tested by applying 

it to a case study. Results showed that the WBE was the most appropriate method of flow 

reconstructing for the Outardes basin, given the requirements of the case study. Comparison of the 

results achieved with this method and with a regression-based method (area ratio) confirmed 

WBE’s ability to produce more reliable results and supported the efficiency of the algorithm. 
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Abstract 

Abstract: Because natural flow (NF) values are either not directly measured or have the potential 

to contain considerable error, when deemed necessary, the reconstruction of a reliable NF series is 

ostensibly important. Selecting the appropriate method depends on available data. For a time 

period before reservoir construction (pre-reservoir construction period), the only available data for 

ungauged basins came from the neighboring basins and simulated flow used in a rainfall-runoff 

model. A new Kalman-based method developed in this paper looks to reconstruct the NF series 

using the state fusion technique, which is then compared with the area ratio method, the 

maintenance of variance (Move) type III method, and the multivariable regression method using 

different quality indexes (QIs). In the perspective of the post-reservoir construction period, when 

hydrometric data (i.e., turbine flow, water level in the reservoir, and discharged flow) is collected 

in an ungauged basin (with no flow measurements), a new water balance equation (WBE)-based 

method is recommended for reconstructing and filtering the NF data using an optimization 

technique that would then be compared with the classic WBE that implements different QIs. DOI: 

10.1061/ (ASCE)HE.1943-5584.0000977. © 2014 American Society of Civil Engineers.  

 

Author keywords: Water balance equation; Stochastic method; Deterministic method; Natural 

flow estimation; Data filtering; Ungauged basins; Kalman filter; Maintenance of variance; Area 

ratio; Multivariable regression. 
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Introduction 

Since Natural Flow (NF) values are either not directly measured or have the potential to contain 

considerable error, when deemed necessary, the reconstruction of a reliable NF series is evidently 

important. In fact, a locally and regionally reliable reconstructed NF would be helpful for flow 

prediction, water resource management and planning, frequency analyses, system simulation, and 

climate change along with extreme event studies.  

Although, rainfall-runoff models are the most usual models to reconstruct the NF in gauged basins, 

the options are much more limited in ungauged basins. Logistic models (i.e. area ratio, Move, 

Regression method) are the simple regression based methods which are mostly developed on the 

premise of available flow data from neighbouring basins. However, their reliability varies because 

even neighbouring basins are not identical in terms of climate and physical characteristics. Classic 

WBE is also a simple method which can be applied in the ungauged basins where hydrometric 

data are available. This equation can be written for the basin or reservoir as a closed hydraulic 

system. Since the results of this model are very sensitive to quality of input data, they are usually 

noisy and uncertain. In this paper, a new Kalman filter method added with stochastic and 

deterministic WBE based methods are recommended to reconstruct and filter NF values. These 

methods are developed to remove the noise from NF data series and improve their certainty.  

Thus, the objectives of the present project can be summarized as: i) determining the NF 

reconstructing methods which can be applicable under real conditions in ungauged basins, and ii) 

improving the classic WBE and Kalman filter methods in order to remove the noise from NF 

values and predict the results (the uncertainties caused by wind are not considered in this paper). 

The definition of NF in this paper is the runoff caused by effective rainfall. This NF can be 

calculated using classic WBE as follow: 

 

NF=Qout- Qin+ (ΔS/Δt)         (1) 

 

where Qout,n is the output discharge from the reservoir number n (Rn), ΔS the storage volume 

changes in the reservoir number n, Qin,n the input discharge to reservoir number n, and NFn the 

unknown NF value (which includes all the losing terms) to reservoir number n. 
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As illustrated in Figure 1, Qin,n is the regulated outflow from the upstream reservoir (if there is 

one), Qout,n-1, which is the summation of turbine flow from the reservoir number n-1 (Qtr,n 1) and 

discharged/spilled flow from reservoir number n-1 (Qsp,n-1).  

 

 

 

 

 

 

Figure 1: Schematic of three reservoirs in series 

 

Literature review 

Depending on the goal of project and available data, several methods have been developed to 

reconstruct the NF. The selection of method highly depends on available data which can be 

different before or after the existing of reservoir in the basins. Thus, the study of these models is 

performed for the two Pre- and Post-Reservoir Construction periods. Nevertheless, some methods 

such as rainfall-runoff methods (Karamouz et al. 2011a, Karamouz, et al. 2011b, Hernandez-

Henriquez et al. 2010) are applicable independent of the reservoir existence but usually need to be 

calibrated. HSAMI (Nicol 2010 and Bisson 1995) is a rainfall-runoff model, which allows the 

physical process of weather in the watershed to be reproduced based on WBE. The input data are 

weather parameters including five categories: evaporation, vertical flow, horizontal flow, surface 

runoff and snow. From the input data, this model simulates the daily flow at the outlet of the 

catchment. 

 

Pre-Reservoir Construction Period 

For the pre-reservoir time period, WBE can be written for the whole basin as a closed system if 

there is available data. In cases where limited data are available, the use of simple flow 

reconstructing methods is unavoidable. For example, the flow series can be extended by weighting 

Qin,n 

NFn+1 

Rn Rn+1 Rn-1 

Qin,n+1 

NFn 

Qtr,n Qtr,n-1 

Qsp,n Qsp,n-
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the observed stream flow at one or more neighbouring gauged basins. This weight is the ratio of 

the catchment areas of the basin of interest to the gauged basins (Hughes and Smakhtin 1996, 

Schreider et al. 1997). Jones et al. (2004) developed a regression between the logarithms of river-

flow, soil moisture and effective precipitation, which is precipitation minus actual evaporation, 

and Wen (2009) tried to reconstruct flow by relating discharge time series to rainfall and maximum 

temperature. This regression can also be developed between short-term flow data series from the 

basin and long-term flow data from a nearby basin (e.g. Hernandez-Henriquez et al. 2010, 

Dastorani et al. 2010). All these methods can be put in a group called regression based methods. 

Considering the available data in our case study, area ratio and linear multiple regression are 

relevant, and were compared to other methods (Kalman and Move III). 

Maintenance of variance (Move) is another method of extending flow measurements. This method 

preserves both mean and variance, and is thus superior to linear regression models, where variance 

and mean are important in uncertainty estimation (Koutsoyiannis and Efstratiadis, 2007). The 

Move technique (Hirsch 1982), developed to solve the problem of variance underestimation in 

linear least squares regression of the logarithmic flows, has been tested by several researchers to 

extend the flow series. For example, Moog and Whiting and Thomas (1999) used Move to extend 

the flow series of the Snake River (U.S), and replaced the logarithmic transformation by the more 

general Box-Cox scaled power transformation to generate more linear, constant-variance 

relationship for the Move extension. The results of their study show some improvements in flow 

estimation, especially during low flow.  

Different types of Move method are explained by Vogel and Stedinger (1985). All reconstructing 

of the flow is based on a linear regression (𝑦�̂� = 𝑎 + 𝑏𝑥𝑖) in which a and b are calculated in a 

special way. Move type III takes a different approach to defining a and b (Matalas and Jacob 1964) 

by forcing the mean and variance of produced values to equal the expected values, given y1,…yn1, 

and x1,…xn1+n2 (where nl is the length of the short record, and nl + n2 is the length of the long 

record). This technique is also implemented in this paper to reconstruct the pre-reservoir NF and 

compare with the other methods. 

Kalman filter is the other method that can be instituted when data series are noisy (Noriega 1992). 

When more than one data series is available, two types of multi-sensor data fusion (combination 

of two or more measurement data series of n values) of the Kalman filter are relevant (Zhou et al. 



201 

 

2010). One of them begins by fusing the measurements and then filters the fused data series using 

the Kalman method. Common measurement fusion methods involve simply merging the multi-

sensor data or combining them based on minimum mean square error estimates. The other one first 

filters the data series using a Kalman filter and then fuses them. State estimate covariance matrices 

are used in state-vector fusion; however, the state estimates from different estimators are usually 

dependent. A different method of fusing the filtered data series is developed in this paper. This 

new method was established to reconstruct the NF for the pre-reservoir period and its performance 

was compared to results from other methods. 

 

Post-Reservoir Construction Period 

Classic WBE for a reservoir as a closed hydraulic system is a common method (e.g. Shiau and Lee 

2005) of NF reconstructing in ungauged basins. Although many researchers have attempted to 

estimate the losing terms such as infiltration (Joshi and Tambe 2010, Telis 2001) and evaporation 

(i.e. Yeung 2005, Gunter et al. 2004, Hamon 1961, Sivapragasam et al. 2009, and Parasuraman et 

al. 2007), they remain a source of uncertainty. Thus, this equation can be simplified using Equation 

1. This simplification, along with input data uncertainty, causes noisy and even negative values of 

reconstructed NF. Filtering and validating the reconstructed flow, however, would improve the 

quality of reconstructed NF. Perreault (2011) suggested a WBE-based optimization model 

estimating the hourly NF and minimizing noise and different errors. This optimization model was 

expressed as follows: 
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where Qin is the input flow to the reservoir (which is the released flow from the upstream reservoir), 

Qout the output flow from the reservoir (which is the summation of turbine and spilled flows), 

)inf(nV  minimum volume of the reservoir during the nth hour, and )sup(nV maximum volume of the 

reservoir during the nth hour. NF,  ,  ,  , and )0(volume  are variables. )0(volume  signifies the 

volume of the reservoir at the first hour, NF points to the NF entering the reservoir during nth hour, 

 is WBE error, and  ,   are the variation of NF during the 2 and 3 consequent days respectively. 

In Equation 2 C, p, q,  , and time interval of dn=1+end hour-start hour represent the model’s 

parameters. In this equation C, p, q, and   are the parameters to allocate the weight to the variables 

and dn marks the number of days for which the WBE is solved. Thus, the objective function is 

minimizing the NF variation and WBE error, the first two constrains force the volume(0) to stay 

between minimum and maximum measured volume and the second two constrains control the 

range of WBE.
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Although the Perreault model produces better measurement of NF than classic WBE, it still 

presents some deficiencies. Results are still noisy during low flow. Also, the model was developed 

to calculate hourly flow and is not very good at estimating longer time steps such as daily flow. 

Moreover, two fixed values of C coefficient were selected for winter and summer, and were 

deemed the best C coefficients for each season regardless of the year and the reservoir. Still, 

Perreault’s model presents a large advantage over the classic WBE. The model includes windows 

with the length of dn and all flow values in a window are estimated considering that set of flow 

values. But these windows do not move and the days near the boundary of windows are affected 

by poor boundary conditions, including the assumption of variables like  and  equal to zero for 

the first and last time step of each window. Also, the length of the window is considered as a fixed 

value, which begs the question about how sure can we be that this window size is best for all 

seasons, all years, and all reservoirs.  

Several methods are available to determine the parameters of optimization models. Some of these 

are neural network (Cheng et al. 2009, Chu 1992), Genetic algorithm (GA), and stochastic methods 

(Shalev-Shwartz and Tewari 2011). Different types of GA have been widely used to solve the 

optimization models over the last decade (e.g. Deb 2000, Deb 2002).  

In this paper, a posterior deterministic GA is one of the methods engaged to determine the 

parameters of the optimization model. This posterior GA is capable of automatically selecting a 

few best parameter sets (PSs) likely to be the most realistic. The other method used in this paper 

to choose parameter sets is a stochastic method that considers the probability of best PSs to define 

the final PS.  

The main objectives of this paper can be stated as follows:  

1) Develop a new state fusion Kalman filter to reconstruct the pre-reservoir NF values; 

2) Compare the Kalman method we developed to the Move III, area ratio, and multivariate 

regression; 

3) Reconstruct and filter the daily post-reservoir NF using the Modified Perreault model to 

change the time scale from hourly to daily, while preserving the concept of minimizing 

different errors; 

4) Define the parameters of the model automatically using deterministic and stochastic 

methods. 
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5) Compare the model with classic WBE. 

 

Data stationarity 

It is important to analyse whether or not the presence of stationarity in the flow series is created 

artificially by the reconstruction method. Stationarity of a data series implies homogeneity in the 

sense that the series behaviour is not dependent on time and its statistical properties stay the same 

over time. More precisely, in the case of stationarity, joint probability distribution of the process 

remains unchanged over time. However, it is common to employ a simple stationarity test, which 

tells if the mean and variance of a data series are constant or not. Although there are some means 

to evaluate the stationarity of a time series, it is also visible at its time plot: A time series would be 

stationary if its time plot appears similar at different points along the time axis (Nagpaul 2005). 

Perreault et al. (1996) assessed the stationarity of average annual aggregate flow using a Bayesian 

procedure to detect change in mean annual series of flow, and found three different groups with 

three different averages. Given the limited information available in their project, it was difficult to 

distinguish between non-stationarity of the mean and the presence of sustained deviations caused 

by the autocorrelation. Despite the results obtained from the precipitation series, which support the 

presence of a change in the average, it is difficult to deduce the non-stationarity of the average in 

the series of annual flow.  

Turner and Twieg (2005) divided the data series into S equal segments of size N, and then 

administered T-statistic with 2N-2 degree of freedom to compare the segment means and F-statistic 

with N-1 degree of freedom to compare the segment variances. They defined a Wide Sense 

Stationary (WSS) index based on the results of F-test and T-test and assumed that the data series 

would be stationary if WSS exceeded 0.9.  

Mann–Kendall (e.g. Cunderlik and Burn 2003), Dickey–Fuller, and Augmented Dickey–Fuller 

(ADF) (e.g. Oh 2005) are some of the tests designed to evaluate the stationarity of data. 

Kwiatkowski-Phillip-Schmidt-Shin (KPSS) is another method developed for data with short 

memory, though Lee and Schmidt (1996) deployed it to assess the stationarity of long-memory 

data and found it to be adequate.  

http://www.sciencedirect.com/science/article/pii/S0022169403000623
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In this paper, a state fusion Kalman filter is applied to estimate the pre-reservoir NF data series. 

This method is compared with some logistic methods for the same time period. Also, a 

deterministic and stochastic based WBE is formed to reconstruct the NF after reservoir 

construction. The quality of reconstructed flow is then evaluated using different QIs before and 

after reservoir construction. Then the stationarity of data is checked and regional analysis 

accomplished to ensure coherence between local flow and regional flow. 

 

Methodology 

Pre-Reservoir Construction Period 

Since WBE is not applicable before a reservoir is built and the only available data for this period 

comes from neighbouring basin flow and flow simulated by HSAMI (the simulated flow values 

using this model are available for the current project), few regression based methods are set up for 

this time period. The applied regression based methods are common simple methods of flow 

reconstructing. We laid out the new Kalman-based method to reconstruct the NF series using the 

state vector fusion method.  

 

Multivariable regression 

One method for extending NF into the period before reservoir construction is through multivariate 

regression. In this model, a linear regression is arranged between the flow as a dependent value 

and logarithmic scaled neighbouring basin flow and logarithmic simulated flow by HSAMI as the 

independent variables. Here the neighbouring basin flow is scaled using the surface area ratio. This 

regression was utilized based on the calibration period (the post-reservoir years when NF is 

reconstructed using methods described under the title “Post-Reservoir Construction Period”) and 

then used to reconstruct the flow for the pre-reservoir years.  
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Area ratio 

In the area ratio method, the neighbouring basin’s flow is the only flow that has been used to 

reconstruct NF. In this method the flow of neighbouring basin is multiplied by a ratio of the basin’s 

surface to the neighbouring basin’s surface. 

 

Move III 

Move III is a linear regression using a specific method for calculating the slope and constant value 

of regression to extend a data series. The logarithmic values are used to develop this model.  

 

Kalman Filter 

In the state vector fusion Kalman method we developed, measured data series are first filtered 

using a Kalman filter (Equations 3 and 4) method; the filtered data series is then fused (Equation 

5). In this work, the SSM Matlab toolbox is used to filter the NF series and an optimization model 

is fashioned to fuse the filtered data series. The formulation of this model is as follows: 

 

)(1 HSAMIyKalmanY            (3) 

)(2 nbyKalmanY            (4) 

)( 2

2

2

1  Minimize           (5) 

 

Subject to: 

yY  111   
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where HSAMIy is simulated flow by HSAMI, nby  refers to the scaled flow from the neighbouring 

basin (neighbouring basin’s flow multiplied by area ratio), Y1 and Y2 are filtered flow using the 

Kalman filter, y is shown as the fused flow (reconstructed flow), 
1 and 

2 are the coefficients of 



207 

 

fused flow, and 
1  and 

2  are the errors. This optimization model tries to minimize the difference 

between fused flow (y) and available filtered flow data series (Y1 and Y2).  

The neighbouring basin which is adopted in this method is selected from watersheds for which 

measured flow series are available. The basin is chosen based on the similarity of its size and its 

flow trend to case-study (similarity to simulated flow by HSAMI). 

The three quality indices to evaluate the soundness of reconstructed pre-reservoir flow are 

Normalized Nash (NN), Consistency Coefficient (CC), and Normalized Tortuosity (NT) as 

follows: 
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where 
obsiQ  is the observed flow in case-study basin (simulated flow by HSAMI is considered as 

observed flow to calculate NASH) in day i, 
caliQ  the reconstructed flow by developed model for 
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day i, 
iNBF  the flow of ith day in the neighbouring basin, terms a  and b  are the differences 

discharges of the days i+1 and i of the selected neighbouring basin and calculated flows 

respectively, n marks the number of days that the trend of both calculated flow (
caliQ ) and 

neighbouring basin flow ( NBF ) is increasing or decreasing, N counts the total number of days, 

and T represents tortuosity. The neighbouring basin is selected from watersheds for which 

measured flow series are available. This selection is based on i) the similarity of flow trend (from 

HSAMI) and neighbouring basin and ii) the size similarity of neighbouring basin to the interested 

basin. The reasons for selecting these QIs are explained later under the title of “Quality evaluation 

of reconstructed NN”. 

. 

Post-Reservoir Construction Period 

Deterministic method 

In this paper, the Perreault optimization model is modified to calculate the daily NF and minimize 

noise and errors. Like Perreault’s model, the new optimization estimates the NF of ungauged 

basins by solving the WBE for each reservoir, and a single quadratic objective function is used to 

minimize the error of WBE and decrease the variation of NF over continuous days. One of the 

strengths of this model over the classic WBE is that it calculates and filters flow values at the same 

time. The modified Perreault model is written as follows: 
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where 
simnQ  is the simulated flow by rainfall-runoff model for day n, d is a vector of weights defined 

by the user, and RVn is the volume of water in the reservoir at the beginning of nth day. NF,  ,  , 

a , and   are the variables and C, p, q,  , and time interval of dn=end day-start day are parameters. 

Unlike the Perreault model, here the time interval is a moving window. Every time the optimization 

problem is solved, the NF is calculated for all days in the window, but the only flow that is kept is 

from the day located in the middle of window. In this way, every reconstructed NF value is 

calculated considering the effects of nearby days. This represents a significant advantage over 

classic WBE, which calculates each day’s flow value independently, and the Perreault model, 

which considers a non-moving window and estimates uncertain flow values for the first and last 

time step of each interval. As can be seen in the objective function (Equation 9), 
simnQ  is entered as 

an external signal to the model. That is, the model tries to get close to this simulated flow (by 

HSAMI) by the weight of d.  

To evaluate the effects of five parameters of the optimization model on results, the model has been 

solved using several combinations of parameters and it is concluded that the model is very sensitive 

to dn, C, and   changes. Moreover, it is understood that these parameters are not constant during 

a year. They depend on the season or, more precisely, on the temperature. 

To select a proper parameter set for each time period, each year is split into segments. The 

cumulative HSAMI flow data series is calculated and segment starts are considered as the points 

where the slope of the NF series shows considerable change. The number of segments is kept at 
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less than 8 for each year to avoid unnecessary complexity. Then, a GA model is applied to select 

the most reliable parameters for each segment. 

The algorithm of the proposed method is presented in Figure 2. It provides an automatic method 

for calculating and filtering daily flow data. The algorithm benefits from GA (Whitley 1994) to 

define the parameters of the optimization method (bolded boxes are the GA’s steps numbered from 

1 to 9). Since the NFs are calculated for ungauged basins, it is difficult to define a reliable quality 

index to determine the certainty of reconstructed NF. Thus, a GA with a posterior approach was 

used to define all parameters. The posterior GA is created by solving the GA for different d 

coefficient. As can be seen in Figure 2, for each segment (which is a specific time period in a year) 

and each predefined d coefficient (defining the level of similarity between calculated NF and 

simulated flow using HSAMI), the GA finds the best coefficient sets. This approach allows for 

more than one parameter set and thus more than one reconstructed NF series and can select among 

those.  

Step 1 defines the preliminary parameters (genes). GA has five genes of , p, q, c, dn (five 

parameters) initialized for each segment and each d value (Box 1). Step 2 defines the fitness of 

each parameter set (Box 2). To do so, the optimization model must be solved using the parameters 

selected in Step 1 to estimate the NF series and then estimate their quality indices and consider 

their fitness. The selected quality index is the Nash–Sutcliffe coefficient (1970), which compares 

measured and calculated data. Since no measured flow is available for the area, the simulated flow 

by HSAMI is considered as the observed flow. Step 3 selects half the initial population with higher 

fitness as parents of next generation using the tournament method (Box 3). Step 4 completes cross-

over between each random pair of parents (Box 4), and Step 5 undertakes mutation by the chance 

of 2 percent (Box 5). 

Steps 3 to 5 are then performed m times (m=number of iterations defined by the user) to optimize 

the parameters. The result of the current segment and d are saved and Steps 1 to 6 will be done for 

the next d value of the current segment. At the end there will be d estimated NF series for each 

segment. Considering all combinations of these d series in n segments gives s=dn reconstructed 

NF series for each year. Among these s series, the graph that best matches the regional flow or the 

graph that is most logical according to upstream and downstream basin flow, (if there is one) can 

be selected. Here, the best graph is selected based on five quality indices and trend similarity to 

http://link.springer.com/search?facet-author=%22Darrell+Whitley%22
http://en.wikipedia.org/wiki/Nash%E2%80%93Sutcliffe_model_efficiency_coefficient
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NF calculated by classic WBE. First, few graphs with higher quality indices are selected and the 

final graph will be selected visually from among them. The final graph should be smoother than 

other graphs and should not display over or under-estimations in comparison with classic WBE. 

These five quality indices are the same ones explained later under the title of “Quality evaluation 

of reconstructed NN”.  
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Figure 2: Schematic of the proposed Deterministic based Method to reconstruct daily NF for the 

Post-Reservoir Construction Period 
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Stochastic method 

The parameters of the optimization model were also defined using a stochastic method. This time, 

the objective function (Equation 9) was changed by removing parameters p and q, the external 

signal (Qsimn) and, consequently, the last item of the objective function. Equation 10 presents this 

modification.  

 

))(( 222

)( 



endday

startdayn

endday

startdayn

endday

startdayn

n CMinimize 

      (10) 

 

A stochastic multi objective model method is then developed to define the parameters of this model 

( , C, dn =end day-start day). The advantage of this method is that more than one index is applied 

to evaluate the soundness of the data series and the probability of different parameter sets is taken 

into account.  

As in the deterministic method, each year is split into segments and the model’s parameters are 

defined for each segment. Then, the 8-step stochastic based WBE is completed as in Figure 3 for 

each segment.  

Step 1: One hundred random initial parameter sets are produced (Fig 3, Box 1).  

Step 2: The optimization model is solved with each parameter set and related NF series are 

produced. Thus, at the end of this step, one hundred flow data series are in hand (Fig 3-box 2). 

Step 3: The fitness of each reconstructed NF series from Step 2 is defined (Fig 3-box 3). Since the 

model is multi-objective, more than one index is applied to evaluate the soundness of the series. 

The weighted summation of three normalized criteria is considered as a single index in this model 

and is maximized .This index is as follows: 

 

CCWNAVEWNNWbenefit  321                                                                             (11) 

where: 

)
1

1
(

AVE
NAVE


                                                                                                                   (12) 
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where W1, W2, W3 are the weights defining by the user, NN, and CC are defined using Equations. 

6 and 7 respectively, NAVE is normalized absolute volume error, and
WBEiQ  is the calculated flow 

by WBE for the day i. This index has the advantage of considering different factors in defining the 

fitness of each data series. The reason and advantages of selecting each of these QIs are explained 

under the title “Quality evaluation of reconstructed NN”. 

Step 4: To narrow down the number of parameter sets, the 10 sets with higher fitness are selected 

(Fig 3-box 4). 

Step 5: First the probability of 10 parameter sets from Step 4 are defined as follow (Kalakrishnan 

et al. 2011): 

 

10,...,2,1),
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exp(  j
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j

j                                                                                          (13) 

 

where P (ps j) is the probability of jth parameter set, and jbenefit  is the fitness related to this 

parameter set (from Step 3).  

Then, one parameter set is estimated using these 10 probabilities (Equation 13) as a mother 

parameter set of the next iteration (Fig 3, Box 5). Here the parameter sets with higher probabilities 

have more weight in the mother parameter set definition.  
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where Cn, 
n , and dnn form the parent parameter set of the next iteration, Cj is the C coefficient 

of jth parameter set, j is the   Coefficient of jth parameter set, and dnj is the dn parameter of jth 

parameter set. The optimization model is solved using this new parameter set and the related fitness 

is defined. 

Step 6: If the difference between defined fitness in Step 5 and fitness from the last iteration is 

greater than a predefined value (Fig 3, Box 6), it is assumed that the desired conversion has not 

been reached and we proceed to Step 7. Otherwise the iteration is stopped by going straight to Step 

8. 

Step 7: One hundred new parameter sets are produced (Fig 2, Box 7) based on the mother 

parameter set calculated in Step 5. To do this, each parameter is selected randomly from a specific 

range around the mother parameter (defined in Step 5). 

Step 8: When the desired conversion is reached, the final flow data series is reconstructed based 

on the last parameter set defined in Step 5.  

 

 

 

 

 

 

 

 

 

Figure 3: Schematic of the Stochastic based WBE Method 
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Quality evaluation of reconstructed NF 

Five QIs are used to evaluate the degree of excellence of reconstructed flow with the proposed 

methods. These five criteria are: 

 

6) NN (Equation 6) 

7) CC (Equation 7) 

8) NAVE (Equation 12) 

9) 
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where SFR is specific flow ratio, SFWBE and SFcal are specific flow calculated using WBE and 

reconstructed NF respectively, and A is the surface of the basin.  

These criteria have been developed to evaluate the quality of the reconstructed flow to meet the 

needs of different users. These needs include: calibration of deterministic hydrologic model for 

flow forecasting or probable maximum flood estimation (PMF); and local and regional flood 

analysis for dam safety. NN is calculated based on simulated flow by the hydrologic model HSAMI 

and considers the effects of meteorological factors on flow. This means that those Qcal series that 

best respect the coherence between climate and flow have a higher NN index and are more reliable 

for flow predictions and PMF estimation. NAVE penalizes any over- or under-estimation. SFR 

penalizes NF series that are not successful in closing the water balance budget, and NT penalizes 

noisy data series. Also, CC compares the similarity of the reconstructed flow trend and the 

neighbouring basin’s flow trend and penalizes reconstructed flow that does not respect regional 

integrity. This QI can be useful for those concerned with flood safety in the area. All of these 

indices vary between 0 and 1 and values closer to one indicate better quality. 
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Confidence in quality can be increased by checking whether the reconstructed NF is stationary and 

homogeneous. The KPSS stationarity test is applied here. This test is a null hypothesis that a data 

series is stationary around a deterministic trend (Kwiatkowski et al. 1992). Also, a regional 

analysis is done to assess the coherency of reconstructed series quantiles obtained from a local 

frequency analysis with the quantiles of neighbouring basins. To do this, the reconstructed flow in 

the case study is compared to 19 neighbouring gauged basins. First, the annual peak flows of each 

basin are sorted in descending order and then the probability of each flow is defined using the 

Weibul formula (Equation 16). A lognormal distribution with three parameters is then fitted to 

peak flow (LN3) of the NF series.  

 

1


n

m
f            (16) 

 

where f is the probability, m is the rank of the value and n is the total number of observations.  

A power regression is then developed between the basin’s area and the values of LN3 of a 2-year 

return period as follows: 

 

baAFQ             (17) 

 

where FQ is fitted line to values of LN3 of a 2-year return period, a and b are parameters, A is the 

basin’s area. The residuals from this equation are plotted in Q-Q plot, scale location plot, and 

residual versus fitted plot to evaluate the coherence of reconstructed peak flows with regional ones. 

 

Conclusion 

NF reconstructing is done in two parts, pre-reservoir and post-reservoir time period, using different 

methods. A Kalman-based method is developed to reconstruct the flow for pre-reservoir years and 

is compared with regression based methods: Move III, area ratio, and Multivariable regression. 
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For the post-reservoir years, however, the deterministic and stochastic based WBE are developed 

to improve the results of classic WBE. The quality of reconstructed flow before and after reservoir 

construction is measured using different quality indices and regional coherence is evaluated based 

on 19 gauged basins in the area. Part 2 of this paper is presented as a Case Study paper dealing 

with the execution of these new methods for three sub-basins of different sizes in Quebec (Canada). 
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APPENDIX 3 – ARTICLE 3: NATURAL FLOW RECONSTRUCTING IN 

UNGAUGED BASINS USING NEW KALMAN FILTER AND WATER 

BALANCE BASED METHODS (PART 2:CASE STUDIES, RESULTS, AND 

DISCUSSION) 

 

By Ana Hosseinpour, Leslie Dolcine, and Musandji Fuamba. Published at Journal of 

Hydrologic Engineering, ASCE 

 

Abstract 

During the pre-reservoir years, when limited data (neighbouring basin flow and simulated flow) 

are available for ungauged basins, simple methods are relevant to reconstruct natural flow (NF). 

On the other hand for the post-reservoir years, when hydrometric data (water level in the reservoir, 

turbine flow, and discharged flow) are available for ungauged basins, the classic Water Balance 

Equation (WBE) method is usually employed to determine NF. However, applying classic 

methods still produce noisy and unreliable flow data series. 

In an attempt to produce more reliable NF data, new methods are proposed and described in Part 

1 of this paper: the State Fusion Kalman Filter method (Pre-Reservoir Construction Period) and 

the Deterministic WBE Method and the Stochastic WBE Method (Post-Reservoir Construction 

Period). This paper which is presented as Part 2 deals with the execution of these new methods for 

three sub-basins of different sizes in Quebec (Canada). Obtained results are then compared against 

those produced by the use of the current methods of NF reconstructing: Area Ratio Method, 

Maintenance of variance (Move) type III Method, and Multivariable Regression Method (Pre-

Reservoir Construction Period), and the classic WBE Model (Post-Reservoir Construction Period). 

This comparative analysis shows the capability of proposed methods for improving the constructed 

data series with improved results that do not contain any negative flow. They are less noisy, 

perfectly matched with regional flows, and are reliable enough for frequency analyses. Since these 

NF values include evaporation, infiltration, and other losing terms of a closed hydraulic system, 

with more studies needed in order to define the contribution of each of them. 
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Introduction 

This is Part 2 of the paper on Natural Flow Reconstructing Using Kalman Filter and Water Balance 

Based Methods. It presents three case studies, results and discussion in accordance to the 

application of proposed methods largely described in Part 1. 

 

Methodology 

To begin, few classic methods like Multiple Regression (Hughes and Smakhtin 1996, Schreider 

and Demuth. 1997, Jones et al. 2004), Area Ratio, and Move Type III (Vogel and Stedinger 1985) 

are introduced in this work to reconstruct the NF for the Pre-Reservoir construction period. The 

classic WBE method is utilized to reconstruct the NF for the post-reservoir period. Secondly, the 

proposed new Kalman Filter method is employed in the reconstructing of the NF for the Pre-

Reservoir construction period as well as the proposed stochastic WBE method and deterministic 

WBE method which are also used for the Post-Reservoir construction. Details of these new 

methods are presented in Part 1 (Hosseinpour et al. 2013). 

The used case studies are selected in the Outardes basin that is located in the Province of Quebec. 

The main objective of this application is to determine the capability of proposed methods to 

improve the quality of reconstructed and filtered NF series. This quality would then be evaluated 

using different Quality Indexes (Normalized Nash, Consistency Coefficient, Normalized Absolute 

Volume Error, Specific Flow Ratio, and Normalized Tortuosity). Finally, the Kwiatkowski-

Phillip-Schmidt-Shin (KPSS) test was chosen to evaluate the stationarity of reconstructed NF 

values. 

 

Case Studies Description 

The Province of Quebec is one of the main sources for available surface water in Canada found in 

numerous lakes, reservoirs and rivers. The method for reconstructing NF developed in this paper 

is meant to be suitable to all basins in the province. However, the Outardes basin (Fig. 1), with its 
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three reservoirs has been selected as the subject of this case-study. The reason behind this selection 

is that in comparing with the other basins of area, i) this basin has a simple structure by having its 

reservoirs arranged in series; ii) the reservoirs possess less complicated hydraulic systems from 

the numbering and types of the gates and turbines perspective; and iii) the basin includes reservoirs 

of different sizes and characteristics.  

As shown in Figure 1, Outardes envelopes three sub-basins designated as Outardes 4, Outardes 3, 

and Outardes 2. Outardes 3 is a small basin located downstream of Outardes 4, which is a big 

watershed with a large reservoir, and Outardes 2 is situated downstream from Outardes 3. Among 

the three sub-basins of the Outardes watershed, Outardes 3 is the most challenging reservoir 

because it is the smallest, and is highly affected by any changes in released flow from the large 

reservoir at Outardes 4. Any increase or decrease of discharged flow from Outardes 4 would 

seriously affect the water level in Outardes 3 resulting in fluctuations that make it difficult to 

estimate NF values in this basin. The data is thus deemed to be very noisy. Characteristics of each 

of these basins are shown in Table 1. All the hydrologic and hydraulic data relating to these 

reservoirs, including the simulated flow using HSAMI (Nicol 2010 and Bisson 1995), are taken 

from the HQ’s database. 

 

Table 1: Characteristics of case study basins 

Characteristic Outardes 4 Outardes 3 Outardes 2 

Basin area (km2) 17119 485 1302 

Maximum reservoir volume (hm3) 10940.44 14.72 16.21 

Average long-term minimum temperature (°C) -6.76 -3.71 -3.06 

Average long-term maximum temperature (°C) 4.38 7.08 6.84 

Average long-term rainfall (cm/day) 0.17 0.18 0.19 

 

Pre-Reservoir Construction Period 

The four methods of Multiple Regression, Area Ratio, Move Type Three and Kalman Filter are 

exercised in a Case Study (Fig 1) to reconstruct and filter the NF series for the time period before 



226 

 

reservoir construction in the Outardes 4 basin. This time period includes the years of 1960 to 1968; 

and the reservoir which was built in 1969. Among the gauged basins of area, Moisie is most similar 

to Outardes 4 and is named to evaluate the quality of reconstructed flow. Two other gauged rivers 

— Romaine and Outardes — are used as secondary neighbouring basins for the purposes of the 

same type of evaluation. Moisie and La Romaine’s flow data series were obtained from CEHQ 

(2013), while the flow data series for the Outardes River for the years 1960 to 1969 was made 

available from the Hydro-Quebec database. 
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Figure 1: Location of the Outardes Basin in Quebec (a and b), and sub-basins of Outardes 4, 

Outardes 3 (in darker color), and Outardes 2 (c) (a: https://maps.google.ca, b: 

www.wikipedia.org) 

b 

c 

Outardes 2 

Outardes 3 

Outardes 4 

a 

http://www.wikipedia.org/
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Post- reservoir period 

Both deterministic and stochastic methods are significant to reconstruct and filter the NF series 

and to be compared with classic WBE and HSAMI for the time period after reservoir construction 

in Outardes 4, 3, and 2 basins. Among the gauged basins in the area, Moisie is most similar to 

Outardes 4, while Godbout is most similar to Outardes 3 and Outardes 2. These basins are explored 

in assessing the quality of reconstructed NF in the Outardes basins. The daily flow data for these 

stations are taken from CEHQ (2013). 

In order to perform regional analyses, flow data from the gauged basins are gathered and compared 

to data from Outardes 4, Outardes 3 and Outardes 2. The information from these gauged data is 

presented in Table 2. The flow data series for these rivers are all accessible from CEHQ (2013). 

 

Table 2: Characteristics of gauged basins used for regional analyses 

Basin Name Latitude Longitude Start-End Year Number Area (km2/100) 

Godbout 49.55222 -68.09611 1975-2007 2 15.7 

Moisie 50.59028 -66.31861 1965-2007 41 190 

Magpie 51.14889 -64.97389 1979-2007 28 72.3 

Romaine 50.52167 -64.04056 1957-2006 49 130 

Natashquan 50.72083 -62.18944 1982-2007 25 156 

Saint-Paul 52.28556 -58.00306 1968-2007 39 66.3 

Petit Saguenay 48.31694 -70.085 1975-1998 23 7.36 

Chicoutimi 48.52278 -71.35278 1950-2000 50 33.9 

Aux Ecorces 48.30722 -72.08056 1972-2000 28 11.1 

Pikauba 48.57139 -71.63861 1970-2000 30 4.95 

Metabetchouane 48.63417 -72.65833 1965-2000 35 22.8 

Ouiatchouan 48.34528 -72.41 1967-2000 33 5.62 

Petite Peribonca 49.36167 -72.08361 1975-2000 25 10.9 

Ashuapmushuan1 49.14917 -72.82139 1963-2000 37 153 

Ashuapmushuan2 49.46778 -73.6 1963-2000 37 111 

Mistassibi1 49.50944 -72.35472 1961-2002 41 93.2 

Mistassini2 49.49056 -72.45583 1963-2000 37 98.7 

Manouane 50.47056 -71.55028 1980-2000 20 17.17 

Valin 48.82361 -71.6275 1975-2000 25 7.46 

Ste-Marguerite-1 48.45333 -70.52167 1977-1997 20 11 
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Results Presentation 

Pre-reservoir period 

Four methods of reconstructing the pre-reservoir flow are compared in this paper, including 

multiple regression, area ratio, Move type three, and Kalman filter. These methods are germane to 

reconstruct the NF for the Outardes 4 reservoir from 1960 to 1968, when the only available data 

originated from the neighbouring basin flow and simulated flow by HSAMI. The multiple 

regression method operates with a linear regression based on the NF as a dependent variable, and 

logarithmic scaled neighbouring basin flow and simulated flow by HSAMI as the independent 

variables for the calibration period. The regression is then carried out to reconstruct the flow for 

the years prior to 1969 validation period (1960-1978). Two thirds of the period for which 

calculated NF using classic WBE is available (1969-2011) is considered as the calibration period 

(1979 to 2011) and the rest (1960-1978) is regarded as validation period. 

Both the area ratio and Move III methods work in the same calibration and validation period. For 

the Move III method, HSAMI flow and neighbouring basin (Moisie) flow are considered in turn 

as independent variables. The results derived from the application of these methods over five years 

are presented in Figures 2 to 6. Figures 4 to 6 show results of the model following reservoir 

construction, but provide helpful information on the performance of the different models, as their 

value as a reference flow can be compared to flow calculated by classic WBE. 

The quality of reconstructed pre-reservoir flows is assessed at the Moisie basin and tested using 

three QIs: normalized Nash (NN), normalized tortuosity (NT), consistency coefficient (CC). To 

avoid bias in this quality evaluation, CC is calculated by the means of the measured flow in the 

neighbouring Romaine and Outardes rivers. Assuming that the models that work better after 

reservoir construction would also perform better before the reservoir has been built; the quality of 

reconstructed NF post reservoir was reviewed engaging these three QIs plus normalized absolute 

volume error (NAVE) and specific flow ratio (SFR). The calculated QIs based on different 

methods of pre-reservoir NF reconstructing are presented in Table 3.  

Table 3 shows that each method has particular advantages. For example, Kalman has high CC 

before 1969, area ratio has shown good consistency after 1969, and multiple regression method 

has high NAVE post-reservoir construction. However, Move III generally has the best individual 
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QI, and best average pre- and post-reservoir QI. This can also be recognized in Figures 4 to 6, 

which compare the models to regular WBE. In these figures, area ratio method overestimates the 

NF in comparison with WBE; this also happens with the Kalman method in some years (see Figure 

4) and causes lower NAVE. This is why these two methods have higher Specific Flow (SF) and 

lower SFR than other methods. According to Table 3, all the methods have lower SF post reservoir, 

which could be related to changes of precipitation rate during the time. According to rainfall and 

snow data records in the area, after 1969 daily average rainfall decreased 0.7 percent and daily 

average snowfall decreased 17.2 percent. 

 

  

Figure 2: Comparison of different methods of NF reconstructing for Outardes 4 (1966) 
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Figure 3: Comparison of different methods of NF reconstructing for Outardes 4 (1968) 

 

Figure 4: Comparison of different methods of NF reconstructing for Outardes 4 (1970) 
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Figure 5: Comparison of different methods of NF reconstructing for Outardes 4 (1971) 

 

  

Figure 6: Comparison of different methods of NF reconstructing for Outardes 4 (1981) 
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Table 3: Comparison of QIs for a few NF models during Pre/Post-Reservoir Construction 

Periods 

 NF 

Methods 
 Reservoir Name AVE NT SFR NN CC 

Average 

QI 

SF 

(m3/s/km2) 

Kalman 

Pre-RC -Outardes river  0.850  0.744 0.564 0.719 
0.0241 

Pre-RC -Romaine river  0.850  0.744 0.677 0.757 

Post-RC -Romaine river 0.699 0.864 0.941 0.802 0.741 0.809 0.023 

Area Ratio 

Pre-RC -Outardes river  0.808  0.588 0.529 0.642 
0.0256 

Pre-RC -Romaine river  0.808  0.588 0.630 0.675 

Post-RC -Romaine river 0.677 0.82 0.87 0.657 0.997 0.804 0.0242 

Regression 

Pre-RC -Outardes river  0.868  0.798 0.573 0.746 
0.0238 

Pre-RC -Romaine river  0.867  0.650 0.592 0.703 

Post-RC -Romaine river 0.702 0.876 0.925 0.850 0.791 0.829 0.0230 

Move III 

 x=HSAMI 

Pre-RC -Outardes river  0.876  0.842 0.581 0.766 
0.0226 

Pre-RC -Romaine river  0.876  0.842 0.622 0.780 

Post-RC -Romaine river 0.7 0.886 0.97 0.885 0.704 0.829 0.0219 

Move III 

x=Moisie 

Pre-RC -Outardes river  0.875  0.803 0.529 0.736 
0.0228 

Pre-RC -Romaine river  0.875  0.803 0.630 0.769 

Post-RC -Romaine river 0.684 0.883 0.986 0.859 0.997 0.882 0.0214 

Note: (1) Pre-RC =Pre-Reservoir Construction = 1960 to1969 

(2) Post-RC = Post-Reservoir Construction=1969 to 1978 

(3) SF = Specific Flow 

 

Post-reservoir construction period 

Deterministic WBE model 

As was expounded upon in the first part of this paper (Part 1, Figure 2), each year was split into 

no more than 8 segments. Then, the d coefficient was collected from 

{150,100,80,50,20,15,10,7,5,1,0} because a d coefficient amounting to more than 150 did not 

change the results. Thus, for each segment and each d value, one parameter set was selected by 

genetic algorithm (GA) and NF values series were determined based on this parameter set. 
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Therefore, at the end, 11 NF values series were available for each segment, each of them based on 

a different weight of Qsim. Note that Qsim itself could not be considered as a NF series because it 

showed deficiencies, especially during high flow. Weighted values were observed during different 

time steps of the year to take advantage of periods that displayed good quality.  

Defining the parameters of the model using GA for d coefficients in each segment required a few 

steps. Step 1 involved initializing the parameters of the model, which was done for all GAs (n=10) 

using random values in a predefined range. The ranges of these parameters (1<dn<21, 0<γ<15, 

0<c<10000, 0<p<1000, 0<q<1000) were determined empirically.   

In Step 2, the optimization model was solved using the initial parameters and Steps 3 to 6 were 

repeated to improve and finalize these initial parameters.  

Figure 7 provides a sample of results from the deterministic optimization model solved with 

different d coefficient for Outardes 4-2008. As illustrated, there is more than one graph for each 

year and the decision manager can single out the most appropriate one according to different 

quality indices (QIs) and visual comparison with regular WBE. Generally, the few graphs which 

had considerably higher-quality indices (CC, NN, NT, NAVE, and SFR) were elected. The graph 

that was smoother and more reliable was then chosen based on visual comparison (this is the graph 

which is named deterministic in Figures 8 to 16). This graph should follow the general trend of 

reconstructed flow by WBE. It is important to keep in mind that the smoother graph is not 

necessarily the better flow series. For example, some smooth graphs underestimate or overestimate 

the flow, while noise is completely removed, they should not be positioned as the final graph. An 

example of smooth but underestimated flow is highlighted with red circles in Figure 7. 

 

Stochastic WBE model 

Since the deterministic model does not favour the probability of different parameter sets and 

defines the parameters based on only one quality index (Nash), a stochastic model was also 

endorsed to solve these problems and determine more reliable parameters for the optimization 

model. This stochastic method defined the best parameter set founded on the probability of 

different sets and the soundness of each parameter set based on three quality indices (NN, NAVE, 
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and CC). Note that CC was calculated using Moisie as the neighbouring basin for Outardes 4 and 

Godbout as the neighbouring basin for Outardes 3 and Outardes 2. 

This stochastic model is capable of producing one hundred random parameter sets in such a way 

that dn changes from 1 to 10 and each dn values is repeated exactly 10 times, C changes from 0 to 

10000, and γ changes from 0 to 10. These parameter sets were then made to solve the optimization 

model (Part 1, Equation 10) and were ranked according to their related QIs. Since the model is 

multi-objective, more than one quality index is stated to appraise the soundness of the series. The 

weighted summation of NN, NAVE, and CC are the criteria used in ranking the parameter sets. 

The weights of these indices were defined through trial and error. For our Case Study w1=w2=1 

(Part 1, Equation 11) and w3 changes according to the season. It is usually 1 or 0.5 during low 

flow and 10 or more during the rest of the year. These weights are almost the same for each year 

at one basin, which makes the job easier. Ten parameter sets with higher QIs are then drawn to 

define the probable mother parameter set of the next iteration. In each iteration, one hundred new 

parameter sets were formed on top of the mother parameter set of the previous iteration. To do 

this, one hundred C, γ, and dn parameters were generated in the ranges of Cn±100, γn ± 2 and 

dnn±2 respectively (Cn, 𝛾𝑛, and dnn belong to the mother parameter set). These ranges are big 

enough to avoid being trapped in a local optimum point and maintain parameter variety, yet small 

enough to merge rapidly. The parameters were finalized when the QI (“benefit” calculated using 

Part 1, Equation 11) of two consequent iterations was less than 0.001. This certainty would be 

regarded sufficient variable in this case. 
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Figure 7: Comparison of daily NF (m3/s) by classic WBE and deterministic based 

optimization model solved with different d coefficient for Outardes 4-2008 

 

 

Figure 8: comparison of deterministic WBE, stochastic WBE, and classic WBE (Outardes 4-
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Figure 9: comparison of deterministic WBE, stochastic WBE, and classic WBE (Outardes 4-

2009) 

  

Figure 10: Comparison of deterministic WBE, stochastic WBE, and classic WBE (Outardes 4-

2011) 
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Figure 11: Comparison of deterministic WBE, stochastic WBE, and classic WBE (Outardes 3-

2005) 

 

Figure 12: Comparison of deterministic WBE, stochastic WBE, and classic WBE (Outardes 3-

2009) 
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Figure 13: Comparison of deterministic WBE, stochastic WBE, and classic WBE (Outardes 3-

2011) 

 

Figure 14: Comparison of deterministic WBE, stochastic WBE, and classic WBE (Outardes 2-

2005) 

-40

-20

0

20

40

60

80

100

1

1
4

2
7

4
0

5
3

6
6

7
9

9
2

1
0
5

1
1
8

1
3
1

1
4
4

1
5
7

1
7
0

1
8
3

1
9
6

2
0
9

2
2
2

2
3
5

2
4
8

2
6
1

2
7
4

2
8
7

3
0
0

3
1
3

3
2
6

3
3
9

3
5
2

3
6
5

N
F

 (
m

3
/s

)

day

Classic WBE

deterministic model

stochastic model

-50

0

50

100

150

200

250

1

1
2

2
3

3
4

4
5

5
6

6
7

7
8

8
9

1
0
0

1
1
1

1
2
2

1
3
3

1
4
4

1
5
5

1
6
6

1
7
7

1
8
8

1
9
9

2
1
0

2
2
1

2
3
2

2
4
3

2
5
4

2
6
5

2
7
6

2
8
7

2
9
8

3
0
9

3
2
0

3
3
1

N
F

 (
m

3
/s

)

day

Classic WBE

deterministic model

stochastic model



240 

 

 

Figure 15: Comparison of deterministic WBE, stochastic WBE, and classic WBE (Outardes 2-

2009) 

 

Figure 16: Comparison of deterministic WBE, stochastic WBE, and classic WBE (Outardes 2-

2011) 
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Results Discussion 

The reconstructed NF series for Outardes 4, Outardes 3, and Outardes 2 for certain recent years 

are presented in Figures 8 to 16. The calculated flow using classic WBE is compared to 

reconstructed flow using developed deterministic and stochastic-based optimization models. As 

shown in these figures, the methodology (both stochastic and deterministic method) efficiently 

improved the NF estimation when measured against the classic WBE. No negative value is seen 

for NF reconstructed using developed methods, and they are much smoother than classic WBE. 

Five quality indexes — NN, CC, NAVE, SFR, and NT — were also intended to grade the 

excellence of reconstructed NF. The QIs on three methods of flow reconstructing (classic WBE, 

deterministic WBE, and stochastic WBE) for the past six years in the three sub-basins of Outardes 

are summarized in Table 4. WBE has consistently lower QIs than the other two. This lower quality 

is also clear in Figures 8 to 16, where reconstructed flows using deterministic and stochastic 

models are much smoother and more realistic (i.e. they include no negative flow) than classic 

WBE.  

On average, the deterministic and stochastic methods improved the NN, CC, and NT with the same 

rate for Outardes 4 and Outardes 2. In Outardes 3, however, these QIs are respectively improved 

61, 17, and 162 percent under the deterministic method and 52, 17, and 184 percent under the 

stochastic method. Essentially, this means that the stochastic model produces smoother NF series 

and the deterministic model better compliments meteorological conditions, which is not surprising 

given that Qsim is entered as the external signal in the deterministic model (Part 1, Equation 6). 

Comparing the quality of two deterministic and stochastic methods shows that in Outardes 3 the 

average NAVE is 0.84 and 0.66, respectively, supported in these methods. The two models also 

have almost the same average NAVE in Outardes 4 and Outardes 2. The average SFR is always 

better when using the stochastic method, reflecting its success in closing the water balance budget. 

It can also be concluded from Table 4 that both the deterministic and stochastic methods have 

lower QIs in Outardes 3 than in Outardes 4 and Outardes 2, which may be related to the small 

dimensions of the reservoir and its location downstream from a big reservoir. This reservoir is 

significantly affected by any little change in released flow from Outardes 4. However, the greatest 

improvement resulted from bringing to bear the developed model in Outardes 3. As seen in the 
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QIs listed in Table 4, the Improvement Ratio (IR) is higher in Outardes 3 than in the two other 

sub-basins. The improvement Ration is defined by Equation 1 as follow: 

 

IR = ( 100
model Stochasticor  model ticDeterminis QI

 WBEQI - model Stochasticor  model ticDeterminis QI
 )    (1) 

 

Generally, the difference between stochastic and deterministic method is more substantial during 

the years when the NF data series is noisier (for example Outardes 3-2009) which mostly 

coresponds to the years before 2000. 

In order to accurately evaluate the quality of reconstructed NF, compared to regional flow, the 

histogram of local reconstructed NF is first compared to regional histograms as shown in Figure 

17. The latter shows the scaled reconstructed NF (using deterministic WBE) of the three basins of 

the Case Study compared with the gauged basins of the area for the year 2007. Results show that 

local flows seem totally in line with regional flows: no considerable under- or over-estimation is 

seen in the graphs. The local NF also appeared stationary in KPSS test, which means that 

reconstructed flow has the same characteristics during this time. This stationary data in 

reconstructed flow is valuable for frequency analyses. 

A regression is then developed between the basin surface and quantiles (0.5, 0.80, 0.9, 0.95, 0.98, 

0.99) of annual peak flows of basins after fitting a log normal distribution with three parameters 

as (see Part 1, Equation 17): 

FQ = 20.04A0.871  , R² = 0.93 

Lastly, scale location, Normal Q-Q plot, and residual versus fitted plots are drawn (Figures 18 to 

20) to complete the regional analyses. In Figures 18 to 20, the obtained values from local frequency 

analysis of the three basins (Outardes 4, Outardes 3, and Outardes 2) are exhibited with red points. 

From these figures, it can be interpreted that the local basins have peak flows totally comparable 

to those of neighbouring basins. The reconstructed flows are reliable for local and regional 

frequency analyses because: 
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 The three basins (red points) do not disturb the linear relationship in normal Q-Q plot 

(Figure 18). 

 They maintain the scattering in scale-location plot (Figure 19) and do not cause any pattern 

in this plot. 

 They maintain the random scattering of residuals around zero and the constancy of 

residuals. This means they do not cause residual increases or decreases in the fitted values 

in a pattern. 
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Figure 17: Comparison of hydrograph of local scaled reconstructed flow with regional flow 
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Figure 18: Normal Q-Q plot 

  

Figure 19: Scale location plot 
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Figure 20: Residual versus fitted value plot 

 

Conclusion and Recommendations 

Since limited information is available about natural flow in the pre-reservoir period, the challenge 

is to select the best method of flow reconstructing between Kalman, Move III, area ratio and 

multivariable regression. Although each method produces smooth and nonnegative flows, they do 

vary in quality. Looking at their QIs and visual comparisons, it is evident that area ratio is a weak 

model for data reconstruction. The other methods, however, perform differently at different times 

of the year. Generally, Move III (x=HSAMI) has higher QIs than the others but this does not hold 

true year-round nor does it in every year. For example, the Kalman method produced better results 

for the year 1971. The best way to calculate natural flow for the pre-reservoir period is to compare 

the quality of reconstructed NF for each time segment and then apply the method that performed 

best for that segment. An alternative is to calculate the weighted NF for each segment based on 

the defined QI for each method. 

In this paper, a new optimization model has been proposed and employed in the reconstruction of 

daily NF of ungauged basins containing a reservoir. The new optimization model has been solved 

using a posterior deterministic GA and a stochastic method that automatically define the model’s 
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parameters. Application of this method to the Outardes Basin (Quebec, Canada) shows that it is 

highly capable of improving the result of the classic WBE Model. The results do not contain any 

negative flow, they are less noisy, perfectly matched with regional flows, and are reliable enough 

for frequency analyses. Table 3 and Figures 8 to 16 enable us to conclude that the performance of 

the model depends on the particular case and on the time of year. Hence, as with the pre-reservoir 

period, two approaches are relevant to finalizing the NF: choosing the best method for that segment 

based on the average calculated QI for that segment, or calculating the weighted NF for each 

segment based on the defined QI for each method. 

Although the proposed model works much better than the classic WBE Model for every reservoir 

size, there are still some deficiencies. These problems are more visible in small reservoirs 

(Outardes 3) and those affected by upstream reservoirs changes. These problems are caused by: 

 Model uncertainty: This model does not determine specifically the effects of wind on the 

reservoir. Also, the effects of lamination are not contemplated for calculating the delayed 

flow from upstream reservoir in Outardes 3 and 2. 

 Input data uncertainties: Since the input data is not validated, some uncertainties in the 

results cannot be avoided.  

Since these NF values include evaporation, infiltration, and other losing terms of a closed hydraulic 

system, more studies are required so as to define the contribution of each of them. 
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Table 4: Different QIs for three methods of flow reconstructing after reservoir in Outardes 4, Outardes 3, and Outardes 2  

  Deterministic WBE model Stochastic WBE model Classic WBE 

  O 4 IR O 3 IR O 2 I R O 4 IR O 3 IR O 2 IR O 4 O 3 O 2 

NN 

2
0
0

5
 

0.885 7.4 0.821 31.4 0.828 14.0 0.860 4.4 0.798 27.7 0.806 11.0 0.824 0.625 0.726 

CC 0.682 23.1 0.635 20.5 0.641 9.8 0.617 11.4 0.611 15.9 0.617 5.7 0.554 0.527 0.584 

NAVE 0.900  0.808  0.801  0.905  0.661  0.797     

SFR 0.972  0.916  0.995  0.999  0.934  0.999     

NT 0.772 33.3 0.491 109.8 0.551 68.5 0.759 31.1 0.507 116.7 0.542 65.7 0.579 0.234 0.327 

average 0.842  0.734  0.763  0.828  0.702  0.752     

NN 

2
0
0

7
 

0.864 7.2 0.841 114.0 0.731 28.0 0.852 5.7 0.744 89.3 0.806 41.2 0.806 0.393 0.571 

CC 0.627 13.4 0.570 11.3 0.638 25.8 0.660 19.3 0.575 12.3 0.617 21.7 0.553 0.512 0.507 

NAVE 0.888  0.812  0.713  0.889  0.631  0.797     

SFR 0.969  0.921  0.984  0.999  0.939  0.999     

NT 0.819 33.2 0.623 181.9 0.711 88.1 0.819 33.2 0.669 202.7 0.748 97.9 0.615 0.221 0.378 

average 0.834  0.753  0.755  0.844  0.712  0.793     

NN 

2
0
0

8
 

0.808 2.0 0.650 33.2 0.875 16.7 0.801 1.1 0.676 38.5 0.811 8.1 0.792 0.488 0.750 

CC 0.645 19.2 0.631 19.1 0.648 15.7 0.642 18.7 0.631 19.1 0.639 14.1 0.541 0.530 0.560 

NAVE 0.920  0.884  0.783  0.924  0.700  0.773     

SFR 0.968  0.921  0.984  0.999  0.940  0.998     

NT 0.773 26.1 0.525 162.5 0.509 70.8 0.755 23.2 0.637 218.5 0.536 79.9 0.613 0.200 0.298 

average 0.823  0.722  0.760  0.824  0.717  0.751     

NN 

2
0
0

9
 

0.880 5.9 0.808 52.5 0.899 22.1 0.862 3.7 0.754 42.3 0.843 14.5 0.831 0.530 0.736 

CC 0.611 13.1 0.616 22.2 0.616 14.7 0.622 15.2 0.636 26.2 0.605 12.7 0.540 0.504 0.537 

NAVE 0.901  0.873  0.759  0.907  0.693  0.758     

SFR 0.969  0.921  0.984  0.999  0.939  0.997     

NT 0.775 27.5 0.628 182.9 0.646 85.1 0.786 29.3 0.605 172.5 0.640 83.4 0.608 0.222 0.349 

average 0.827  0.769  0.781  0.835  0.725  0.769     

NN 

2
0
1

0
 

0.519 10.7 0.773 80.6 0.714 29.8 0.499 6.4 0.733 71.3 0.664 20.7 0.469 0.428 0.550 

CC 0.551 3.6 0.559 14.5 0.625 15.7 0.559 5.1 0.600 23.0 0.674 24.8 0.532 0.488 0.540 

NAVE 0.901  0.808  0.719  0.911  0.657  0.706     

SFR 0.969  0.921  0.984  0.999  0.939  0.997     

NT 0.814 24.5 0.485 142.5 0.576 94.6 0.772 18.0 0.588 194.0 0.588 98.6 0.654 0.200 0.296 

average 0.751  0.709  0.723  0.748  0.704  0.726     

NN 

2
0
1

1
 

0.916 1.9 0.883 54.9 0.840 15.1 0.913 1.6 0.838 47.0 0.845 15.8 0.899 0.570 0.730 

CC 0.600 10.1 0.637 15.4 0.632 17.5 0.627 15.0 0.599 8.5 0.591 9.9 0.545 0.552 0.538 

NAVE 0.936  0.864  0.736  0.929  0.660  0.733     

SFR 0.969  0.921  0.985  0.999  0.938  0.998     

NT 0.773 24.5 0.611 195.2 0.628 96.9 0.763 22.9 0.624 201.4 0.644 101.9 0.621 0.207 0.319 

average 0.839  0.783  0.764  0.846  0.732  0.762     

Note : O2=Outardes 2, O3=Outardes 3, O4=Outardes 4 
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