
 

UNIVERSITÉ DE MONTRÉAL 

 

 

 

DIAGNOSIS OF MACHINING CONDITIONS BASED ON LOGICAL 

ANALYSIS OF DATA 

 

 

 

 

YASSER SHABAN 

DÉPARTEMENT DE MATHÉMATIQUES ET DE GENIE INDUSTRIEL 

ÉCOLE POLYTECHNIQUE DE MONTRÉAL 

 

 

 

THÈSE PRÉSENTÉE  EN VUE DE L’OBTENTION  

DU DIPLÔME DE  PHILOSOPHIAE DOCTOR  

(GÉNIE INDUSTRIEL) 

NOVEMBRE 2014 

 

 

© Yasser Shaban, 2014.  



 

 

UNIVERSITÉ DE MONTRÉAL 

 

ÉCOLE POLYTECHNIQUE DE MONTRÉAL 

 

 

 

 

Cette thèse intitulée: 

 

DIAGNOSIS OF MACHINING CONDITIONS BASED ON LOGICAL 

ANALYSIS OF DATA 

 

 

 

 

présentée par : SHABAN Yasser 

en vue de l’obtention du diplôme de : Philosophiae  Doctor  

a été dûment accepté par le jury d’examen constitué de : 

M. ADJENGUE  Luc-Désiré, Ph.D., président 

Mme YACOUT  Soumaya, D.Sc., membre et directeur de recherche 

M. BALAZINSKI  Marek, Docteur ès Sciences, membre et codirecteur de recherche  

M. ZDZISLAW Klim, Ph.D., membre 

M. TIAN Zhigang, Ph.D., membre 



iii 

 

DEDICATION 

 “Whoever follows a path in the pursuit of knowledge, GOD will make a path 

to paradise easy for him.” 

-Muhammad (pbuh)  

“Simplicity is the ultimate sophistication.” 

-Leonardo da Vinci 

“As complexity rises, precise statements lose meaning and meaningful 

statements lose precision.” 

-Lofti Zadeh 

“The more knowledge you accumulate, the more critical thinking you gain.” 

-Soumaya Yacout 

 

http://www.youtube.com/watch?v=Aa_-8AzUtcE
http://www.brainyquote.com/quotes/authors/l/leonardo_da_vinci.html


iv 

 

ACKNOWLEDGMENTS 

I am greatly indebted to my supervisor Soumaya Yacout. I feel grateful to her for taking time out 

of her busy schedule to answer my many questions. Without her guidance and her dedication, I 

doubt I would have been able to complete my Ph.D and write this thesis in such a proficient and 

timely manner. I admit that she is the best teacher ever I have had in my life and I feel honored to 

be one of her students. She simply knows how to bring out the best of me. She truly inspired me 

to work with sincerity and dedication, and even changed the trajectories of my thoughts. 

I would like to express my deep thanks to my co-supervisor Marek Balazinski, for his support, 

encouragement, and helpful suggestions. He has been helping and guiding me to the right 

direction to complete my thesis.  

I am also thankful to Luc-Désiré Adjengue, Zhigang Tian, Klim Zdzislaw and Jolanta Sapieha for 

agreeing to attend my Ph.D. defense as jury members and representative of the Dean. 

I would like to express my deep appreciation to my colleagues for their help and supporting.  I 

consider them not only colleagues, but valuable friends. 

I am heavily indebted to my family and specially my wife for their understanding, 

encouragement, and perseverance in spite of the circumstances that obliged us and being away 

during my Ph.D.  

 

  



v 

 

RÉSUMÉ 

Un élément clé pour un système d'usinage automatisé sans surveillance est le développement de 

systèmes de surveillance et de contrôle fiables et robustes. Plusieurs modèles mathématiques et 

statistiques, qui modélisent la relation entre les variables indépendantes et les variables 

dépendantes d’usinage, sont suggérés dans la littérature, en commençant par le modèle de Taylor 

jusqu’aux modèles de régression les plus sophistiqués. Tous ces modèles ne sont pas 

dynamiques, dans le sens que leurs paramètres ne changent pas avec le temps. Des modèles basés 

sur l'intelligence artificielle ont résolu de nombreux problèmes dans ce domaine, mais la 

recherche continue. Dans la présente thèse, je propose l'application d'une approche appelée 

Analyse Logique de Données  (LAD) pour prédire le sortant d’un processus d’usinage. Cette 

approche a démontré une bonne performance et des capacités additionnelles une fois comparée à 

la conception traditionnelle des expériences ou à la modélisation mathématique et statistique. Elle 

est aussi comparée dans cette thèse à la méthode bien connue des réseaux de neurones. Elle est 

basée sur l'exploitation des données saisies par des capteurs et l'extraction des informations utiles 

à partir de ces dernières. LAD est utilisé pour déterminer les meilleures conditions d'usinage, 

pour détecter l'usure de l'outil, pour identifier le moment optimal de remplacement de l’outil 

d’usinage, et pour surveiller et contrôler les processus d'usinage. Étant donné que les capteurs et 

les technologies de l'information sont tous les deux en expansion rapide et continue, il serait 

prévu qu'un outil d’analyse tels que LAD aidera à tracer un chemin  dans l'amelioration des 

processus d'usinage en utilisant les techniques de pointe afin de réduire considérablement le coût 

ces processus. Les résultats de mon travail pourraient avoir un impact important sur l'optimisation 

de ces  processus. 
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ABSTRACT 

A key issue for an unattended and automated machining system is the development of reliable 

and robust monitoring and controlling systems. Research in Artificial Intelligence-based 

monitoring of machining systems covers several issues and has solved many problems, but the 

search continues for a robust technique that does not depend on a statistical learning background 

and that does not have ambiguous procedures. In this thesis, I propose the application of an 

approach called Logical Analysis of Data (LAD) which is based on the exploitation of data 

captured by sensors, and the extraction of useful information from this data. LAD is used for 

determining the best machining conditions, detecting the tool wear, identifying the optimal 

replacement time for machining tools, monitoring, and controlling machining processes. LAD 

has demonstrated good performance and additional capabilities when it is compared to the 

famous statistical technique, Proportional Hazard Model (PHM), and the well known machine 

learning technique, Artificial Neural Network (ANN).   

Since sensors’ and information technologies are both expanding rapidly and continuously, it is 

expected that an analysis tool such as LAD will help in blazing a new trail in machining 

processes by using state of the art techniques in order to significantly reduce the cost of 

machining process.  
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INTRODUCTION 

Currently, manufacturing enterprises must compete in a global market with growing demands for 

better quality, greater choices of products with shorter products’ life-cycles, and reduced costs. 

Machining process exists in almost every manufacturing company. For many products, the 

machining process constitutes the critical step that determines whether products conform   to the 

quality specifications defined by the product design. Controlling this process is thus fundamental. 

We use knowledge discovery technique based on pattern recognition in order to monitor and 

control a machining process. We consider machining of composites material such as titanium 

metal matrix composites (TiMMCs) and Carbon Fiber Reinforced Polymer (CFRP). MMCs have 

light weight and high strength which are suitable for aerospace industries in order to improve the 

performance of an aircraft. Despite being expensive, MMCs have become viable in various fields 

such as biomedical and aerospace industries. CFRP is an important composite material. It has 

many applications in aerospace and automotive fields. We consider the three principal machining 

processes namely, turning, drilling and milling. 

General objectives 

 In this doctoral research, the first objective is the implementation of Logical Analysis of Data 

(LAD) on a machining process by monitoring the outputs of some experimental trials. By 

evaluating specific qualities such as surface roughness, delamination, hole circularity error in 

drilling, the machining conditions that lead to conforming products are found. By determining 

which conditions lead to conforming products or non-conforming products, a machining process 

mapping based on LAD is built. The measurements of machining forces are used to evaluate 

predict the quality and geometric profile of the machined part. Therefore, force monitoring is 

used in the diagnosis of the part accuracy.  The measurements of forces are used to evaluate the 

quality and geometric profile of the machined part. Two-class LAD model is applied in order to 

determine the best conditions for that machining process.  

We then propose a new process control technique, and we apply it to a routing process. The 

measured machining conditions are used to evaluate the quality and the geometric profile of the 

machined part. The machining conditions, whether controllable (time independent) or 

uncontrolled (time dependent) are used to control part accuracy and its quality by using LAD. By 

http://en.wikipedia.org/wiki/Turning
http://en.wikipedia.org/wiki/Drilling
http://en.wikipedia.org/wiki/Milling_(machining)
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detecting conjunctions of threshold values and characteristic patterns for these conditions, we use 

them to control the quality of a machined part at a specific accepted range. LAD is used in order 

to find the characteristic patterns that lead to conforming products and those which lead to 

nonconforming products. It is used for online control of a simulated routing process of CFRP. 

We apply it to the high speed routing of woven carbon fiber reinforced epoxy, and we compare 

the accuracy of LAD to that of an Artificial Neural Network (ANN), since it is probably the most 

known machine learning technique. By using experimental results, and based on the simulated 

model, we show how LAD is used to control the routing process by tuning autonomously the 

routing conditions. 

The second objective of this thesis is finding the optimal tool replacement when the cutting tool’s 

condition is degrading. First, we find the tool replacement time when a tool is used under 

constant machining conditions, namely the cutting speed, the feed rate, and the depth of cut, 

during turning MMCs. The Proportional Hazard Model (PHM) is used to model the tool’s 

reliability and hazard functions using Exakt software. Experimental data are obtained and used to 

construct and validate the PHM model, which is then used in decision making. Second, we find 

the optimal time to tool replacement when the tool is used under variable machining conditions, 

namely the cutting speed, and the feed rate.  PHM is used to find an optimal replacement 

function. Third, a new tool wear monitoring and alarm system that is based on LAD is presented. 

The system is a non-intrusive on-line device that measures the cutting forces and relates them to 

tool wear through learned patterns. It is developed during turning MMCs. Fourth, we show how 

to exploit condition monitoring data in machining operation in order to extract intelligent 

knowledge, and use this knowledge to determine the tool replacement time. We compare the 

results obtained when applying LAD to those obtained by using the well-known statistical PHM 

considering multi-objective optimization. 

In an automated manufacturing environment, monitoring of tool wear in the machining process is 

essential for avoiding tool failure, increasing machine utilization, and decreasing production cost. 

The third objective is finding the status of tool wear by applying a multi-class model to a 

machining process. By using experimental data, tool wear classes are found using Douglas-

Peucker algorithm. LAD is then used as a knowledge discovery technique to find a hidden 

correlation between machining variables which leads to detect and identify wear classes.   
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Logical Analysis of Data  

LAD is a data mining technique that can classify phenomena based on pattern recognition. LAD 

is applied in two consecutive phases:  a learning or training phase, and a testing or theory 

formation phase, in which part of the database is used to extract special features or patterns of 

some phenomena, and the rest of the database is used to test the accuracy of the previously 

extracted knowledge. LAD is based on supervised learning; this means that the database contains 

its classes. LAD was first proposed in (Crama et al. 1988). After many years, LAD become one 

of the most promising data mining methods developed to date for extracting knowledge from data  

(Han et al. 2011).  

In 2007, LAD was used in the field of industrial engineering  for the first time (Salamanca and 

Yacout 2007). After that, many studies researched the use of LAD in engineering applications. 

LAD methodology has certain advantages, such as: interpretability power and causality 

identification.  These make LAD very useful in addressing engineering problems. It has no 

restriction on the type of data. This makes LAD capable of handling different types of data 

simultaneously such as event data, condition monitoring data, or both. LAD is a non-statistical 

approach, thus there is no need to make certain assumptions regarding the posteriori class 

probabilities.  

Originality of research 

The originality and novelty of research is as follows: 

1. To the best of our knowledge, LAD has never been used in machining process 

applications for fault Diagnosis. 

2. A new method for machining process control based on LAD’s patterns is presented. The 

developed process controller can be used to control the machining process by tuning 

autonomously the machining conditions. 

3. A new method for tool wear monitoring alarm system is developed. The results show that 

tool wear monitoring with alarm system gives an accurate alarm for cutting tool 

replacement. 
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4. The tool wear monitoring with alarm system is developed during turning titanium metal 

matrix composites (TiMMCs). These composites are a new generation of materials which 

have proven to be viable in various industrial fields such as biomedical and aerospace, 

and they are very expensive. 

5. We showed how to exploit condition monitoring data in machining operation in order to 

extract intelligent knowledge, and use this knowledge to determine the cutting tool 

replacement time. 

6. A new tool wear multi-class detection method is presented. Based on experimental data, 

tool wear classes are defined using Douglas-Peucker algorithm, thus LAD is used in a 

situation of unsupervised learning, which is, to our knowledge, a first. 

7. Process Controller and Alarm System for Machining Operations (Pro-CASMO) is 

developed. Pro-CASMO is an invention for tool wear monitoring and machining process 

controller. It is composed of two modules: on-line tool wear monitoring with alarm 

system, and on-line machining process controller. cbmLAD (c. Software 2012),  a 

platform of PXI, and LabVIEW software were used to develop Pro-CASMO. By using 

the experimental results obtained under sequential different machining conditions, the 

on-line tool wear monitoring with alarm system (Pro-CASMO_Module#1) is developed. 

By using the experimental results, and based on a simulated model, the on-line 

machining process controller (Pro-CASMO_Module#2) is used to control the machining 

process by tuning autonomously the machining conditions. 

Literature review 

Previous research in the diagnosis of machining conditions has covered several topics and many 

possible solutions, but the search continues for a robust technique that does not depend on 

statistical learning and does not have ambiguous procedures. For example, in (Ho-Cheng and 

Dharan 1990) , the authors used  a fracture mechanics approach to find the optimal thrust force 

that reduces  delamination and improves the product quilty while drilling composite materials. 

This result does not take into consideration the possible interaction between the different force 

and the torque. In (Chen 1997), the author concluded  that thrust force and torque  are different 

with and without the onset of delamination for the drilling of CFRP composite laminates. In 
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addition, they found a step linear relationship between the delamination and the average thrust 

force for drilling unidirectional CFRP composite laminates with a carbide drill. (Rawat and Attia 

2009b, 2009a) introduced the concept of machinability maps of woven carbon fiber composites 

under high speed drilling conditions (up to 15,000 rpm) and established the effect of cutting 

conditions on the quality characteristics of drilled holes, namely delamination, geometric errors, 

and surface finish. They concluded that thrust and cutting force have considerable effect on 

quality maps. This work was further extended in (Attia 2011. ) in order to cover a speed range of 

up to 40,000 rpm. In (Zuperl et al. 2012), the authors used  neural networks and fuzzy logic  to 

control  the cutting force in the process of ball-end milling, and in order to maintain constant 

roughness. In (Bustillo and Correa 2012), the authors studied the optimization of roughness in 

deep drilling operations under high speed conditions. The cutting force, the cutting parameters, 

and the cooling system were considered input variables to Bayesian Networks. In (Tansel et al. 

2013), the authors used Torque-based Machining Monitor to estimate the remaining tool life and 

to detect the chatter from the torque signal. They concluded that this procedure was a good choice 

for monitoring procedure particularly when multiple spindles work simultaneously on the same 

work piece.  

Many Researches have been conducted on milling process control. They used artificial 

intelligence learning techniques in order to control machining process. For example, in (P. B. 

Huang 2014), The author developed an intelligent neural-fuzzy model for surface roughness 

monitoring system in  milling operations. He developed a decision-making system which 

analyzed the cutting forces and then responded with an accurate output. He concluded that his 

developed system can be used, in future, as an adaptive control system of the machining 

parameters in smart Computer Numerical Control (CNC) machine. In (Zhang et al. 2007), the 

authors used ANN to develop surface roughness adaptive control  in turning process. They used 

data from controllable cutting parameters such as feed rate, cutting speed, and depth of cut, and 

also uncontrollable monitored parameters such as vibration signals in order to develop neural-

networks-based surface roughness adaptive control system. Other researchers used other 

techniques,  for example, (Coker and Shin 1996) used ultrasonic sensing to control surface 

roughness during machining processes. (H. Wang and Huang 2006) used the concept of an 

Equivalent Fixture Error (EFE) to improve machining process control. Based on simulated data, 

they illustrated their concept. In (Du et al. 2012), the authors developed a robust approach for 
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root causes identification  in machining process using hybrid learning algorithm and engineering-

driven rules. In order to judge whether the process is in normal or abnormal condition, off-line 

pattern match relationships and on-line time series measurements were used. They validated the 

developed approach by using data from the real-world cylinder head of engine machining 

processes.    

Much research tried to improve tool life in several ways. For example, Klim et al (Klim et al. 

1996) proposed a  method to improve cutting tool life in machining using  the effect of feed 

variation on tool wear and tool life. By changing feed rate, the reliability function is changed, and 

thus the tool life is changed. The Weibull distribution was used to fit the data. The experiment 

was conducted under constant cutting speed. Balazinski and Mpako (M Balazinski and Mpako 

2000) proposed an improvement of tool life through using two discrete feed rates. The method 

depends on varying the feed rate throughout the cutting process. By varying the feed, the tool-

chip contact area increases, the tool wear rate decreases and consequently leads to improvement 

of the cutting tool life. The experiment was conducted under constant cutting speed. Lin and 

Shyu (Lin and Shyu 2000) concluded that using variable feed machining, and constant cutting 

speed, when drilling stainless steel is a significant method for improving the cutting tool life.  

Other researches tried to find the optimal replacement strategy by using PHM for modelling tool 

life, then using another technique to find optimal strategy. For example, Mazzuchi and Soyer 

(Mazzuchi and Soyer 1989) used  a PHM to assess machine tool reliability. Fully Bayesian 

analysis is used to find optimal machining conditions. Liu and Makis (H. Liu and Makis 1996) 

derived a formula to calculate the cutting tool reliability under variable cutting conditions. They 

used PHM while considering the machining conditions as covariates. In(P. H. Liu et al. 2001), 

the work was extended by developed algorithm based on stochastic dynamic programming for 

finding  the optimal tool replacement times in a flexible manufacturing system. Ding and He 

(Ding and He 2011) used a PHM by considering vibration signals as a time–dependent covariate. 

The author suggests that vibration signals are good indicators to tool wear. Reliability analysis 

based on feature extraction from tool vibration signals is introduced. They found remarkable 

relationship between the tool condition monitoring information and the life distribution of tool 

wear by using PHM. Other research used classical Weibull distribution to fit tool life distribution. 

For example, In (Vagnorius et al. 2010), the Weibull distribution is used to fit tool life 

distribution. The optimal replacement time for metal cutting is determined from a total time on 
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test (TTT) plot. Some researchers tried to improve the cutting tool life by changing feed rates 

while the cutting speed is constant (Klim et al. 1996; M Balazinski and Mpako 2000; Lin and 

Shyu 2000), others consider the PHM as good model for tool life representation(Mazzuchi and 

Soyer 1989; V Makis 1995; Tail et al. 2010). In most of these models, it was assumed that the 

machining conditions have significant effect over the entire tool life but finding tool replacement 

models is still unavailable.  

The tool wear in machining processes is analyzed by two approaches: Firstly, theoretical and 

numerical approach, such as state space methods and finite element method (FEM), and 

secondly, data-driven approach, such as artificial neural network (ANN) and fuzzy logic (Shi and 

Gindy 2007). Li (Li 2012) presented an exclusive review of tool wear estimation using theoretical 

analysis and numerical simulation technologies. Sick (Sick 2002) presented an exclusive review 

of indirect online tool wear monitoring in turning with ANN as an example of data-driven 

technique. By indirect, we mean that researchers usually measure covariates (variables) which are 

indirectly correlated with tool wear such as the cutting forces. These forces are measured on-line 

during machining process. There are hundreds of researches about tool wear monitoring system. 

Nevertheless, only a few systems found their way to real industrial application (Jemielniak 1999). 

The tool wear monitoring systems development is still on-going attempt (Sick 2002). Byrne et al 

(Byrne et al. 1995) presented a review about utilization of these systems in industry. Another 

review about commercial tool monitoring systems was done by  (Jemielniak 1999). 

Due to the availability of sensory signals, data-driven approach has received much attention to 

build on-line tool wear monitoring systems. Data-driven techniques need training stage to learn 

how to adjust adaptively to the data without statistical distribution. Once learning stage is 

accomplished and validated, the system can detect worn pattern correctly. (Damodarasamy and 

Raman 1993) developed an inexpensive system for classifying tool wear states using pattern 

recognition. Despite that the accuracy of classification was relatively small, they concluded that 

pattern recognition can be successfully used to predict the status of cutting tool wear. They 

combined the feed force, radial force and the root mean square of acoustic emission (AE) signals 

to predict the tool wear. In (Shi and Gindy 2007), the tool wear predictive model is presented by 

combination of least squares support vector machines and principal component analysis 

technique. The platform of PXI and LabVIEW were used to develop the system. (S 

Purushothaman and Srinivasa 1994) developed a model for classifying a worn-out tool and a 
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fresh tool. They used ANN for building a model. (Kang et al. 2007) developed a method of 

pattern recognition of tool wear based on discrete hidden Markov models. The results showed 

that the proposed method is effective. All techniques which used pattern recognition for 

classifying tool wear states are based on assumptions related to the data structure. In this work, 

the proposed technique, LAD is not based on any assumptions or statistical techniques. It is used 

for the first time in tool condition monitoring.  In this paper, our objective is to report and discuss 

the results obtained experimentally. 

The tool wear detection in machining processes  is estimated by two approaches: Continuous tool 

wear estimation and tool wear classification (Sick 2002). Researchers estimate tool wear 

continuously using data driven techniques e.g. (Marek Balazinski et al. 2002; Achiche et al. 

2002; Ren et al. 2008). (Sick 2002) presented an exclusive review of online tool wear detection in 

turning and found that  the majority of researches  considered tool wear detection based on tool 

wear classification. For example, (Damodarasamy and Raman 1993) used three  adjacent classes 

of tool wear in order to develop a detection tool wear model using pattern recognition. They 

concluded that pattern recognition can be used to detect the classes of cutting tool wear. (S 

Purushothaman and Srinivasa 1994) developed tool wear monitoring model by using two classes, 

worn-out tool and a fresh tool. They used Artificial Neural Networks (ANN) for building the 

model. (Ertunc and Oysu 2004) used five classes to develop tool wear monitoring system  using 

dynamic hidden Markov models. (Kang et al. 2007) developed tool wear monitoring model using 

pattern recognition based on discrete hidden Markov models.  A three classes cutting tool wear 

model is used. (Tobon-Mejia et al. 2012) used five classes in order to diagnose the wear’s 

progression. They used dynamic Bayesian networks’ technique. Although the continuous tool 

wear estimation gives a better picture of the tool wear progression, many  researchers consider 

that in practical situations the tool wear classification  is quite sufficient for allowing the operator 

to make  an informed  decision (Sick 2002). 
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CHAPTER 1 THESIS ORGANIZATION 

The research is divided in three parts as shown in figure 1-1. The research began by 

implementing LAD methodology on machining process, in part one. The two topics that are 

introduced are : diagnosis of machining process, and controlling of machining process. In chapter 

2, LAD is used to characterize the effect of cutting forces on the quality of a machined part made 

of CFRP material. LAD is used in order to map the machining conditions, in terms of force and 

torque that lead to conforming products and those which lead to nonconforming products. In 

chapter 3, a new process control technique is introduced in routing process of CFRP. The 

measured machining conditions are used to evaluate the quality and the geometric profile of the 

machined part. The machining conditions are then used to control part accuracy and its quality. 

LAD is used to finds the characteristic patterns which lead to conforming products and those that 

lead to nonconforming products. These patterns are used to control the quality of a machined part 

at specific range. By using experimental results, and based on a simulated model, we showed 

how LAD is used to control the routing process by tuning autonomously the routing conditions.  

As the research progressed, the problem of finding the optimal replacement time and replacement 

decision making is introduced in part two. This part consists of four chapters. Finding the tool 

replacement time when a tool is used under constant machining conditions, namely the cutting 

speed, the feed rate, and the depth of cut, during turning TiMMCs is introduced in chapter 4. 

Proportional Hazard Model (PHM) is used to model the tool’s reliability and hazard functions 

using Exakt software. Experimental data are obtained and used to construct and validate the PHM 

model, which is then used in decision making. In chapter 5, the problem evolved, we found the 

optimal time to tool replacement when the tool is used under variable machining conditions, 

namely the cutting speed, and the feed rate. Two optimality models for cost minimization and 

availability maximization are introduced. In chapter 6, a new tool wear monitoring and alarm 

system that is based on LAD is introduced. The system is a non-intrusive on-line device that 

measures the cutting forces and relates them to tool wear through learned patterns. It is developed 

during turning TiMMCs. We showed that the tool life can be increased by giving an alarm at the 

right moment. The proposed monitoring system is tested by using the experimental results 

obtained under sequential different machining conditions and validated by comparing it to the 

limit obtained when the statistical Proportional Hazard Model (PHM) is used. We finished part 



10 

 

two by showing how to exploit condition monitoring data in machining operations in order to 

extract intelligent knowledge, and use this knowledge to determine the cutting tool replacement 

time. The optimal tool replacement times were found by considering cost-availability 

optimization. 

Diagnosis of machining

Chapter 2 

Diagnosis of machining

Chapter 2 Part 1:

Implementation of 

LAD on machining

Part 1:

Implementation of 

LAD on machining

Controlling of machining

Chapter 3 (Paper 1)

Controlling of machining

Chapter 3 (Paper 1)

Under constant 

machining conditions

Chapter 4 (Paper 2)  

Under constant 

machining conditions

Chapter 4 (Paper 2)  

Part 2:

Optimal tool 

replacement  

Part 2:

Optimal tool 

replacement  

Under changeable 

machining conditions

Chapter 5 (Paper 3) 

Under changeable 

machining conditions

Chapter 5 (Paper 3) 

Comparison to cost-

availability  optimization

Chapter 7 (Paper 5)

Comparison to cost-

availability  optimization

Chapter 7 (Paper 5)

Cutting tool wear multi-

class detection 

Chapter 8 (Paper 6)

Cutting tool wear multi-

class detection 

Chapter 8 (Paper 6)

Part 3:

LAD multi-class

Part 3:

LAD multi-class

Tool wear alarm system

Chapter 6 (Paper 4)

Tool wear alarm system

Chapter 6 (Paper 4)

 

Figure 1-1: Thesis organization 

In the last part, part 3, a new tool wear multi-class detection method is presented. By using 

experimental data, tool wear classes are found using Douglas-Peucker algorithm. Logical 
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Analysis of Data (LAD) is then used as a knowledge discovery technique based on unsupervised 

data, in order to find a hidden correlation between machining variables which leads to the 

detection and and the identification of  wear classes. 
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CHAPTER 2 DIAGNOSIS OF MACHINING OUTCOMES BASED ON       

MACHINE LEARNING WITH LOGICAL ANALYSIS OF DATA 

2.1 Summary  

 Force is considered to be one of the indicators that best describe the machining process. 

Measured force can be used to evaluate the quality and geometric profile of the machined part. In 

this chapter, a combinatorial optimization approach is used to characterize the effect of force on 

the quality of a machined part made of Carbon Fiber Reinforced Polymers (CFRP) material. The 

approach is called Logical Analysis of Data (LAD) and is based on machine learning and pattern 

recognition. LAD is used in order to map the machining conditions, in terms of force and torque 

that lead to conforming products and those which lead to nonconforming products. In this 

chapter, the LAD technique is applied to the drilling of CFRP plates, and the results, based on 

data obtained experimentally, are reported. A discussion of the potential use of LAD in 

manufacturing concludes the chapter. 

2.2 Introduction 

In some industries such as aerospace, automotive and aircraft structure, the composite materials 

are the backbone of manufacturing due to their  structures or/and machinability characteristics 

(Rahman et al. 1999). The composite materials have unique mechanical properties, namely, high 

strength-to-weight ratio, high fracture toughness, and excellent corrosion resistance properties. 

Machining of composites, particularly drilling, is extensively used in the production of riveted 

and bolted joints. Any defect arising during machining has a significant technical and economic 

impact. For many products, drilling constitutes the critical process that differentiates between 

conforming and non-conforming products according to quality characteristics defined by the 

product design. Controlling this process is thus fundamental (Haber et al. 2002; Benardos and 

Vosniakos 2002; Liang et al. 2004). Drilling composite materials is more difficult than drilling 

metals in general because of the non-homogeneous composition and abrasive behaviour of 

reinforcing fibres. The tool confronts  fibres and  matrix , whose response to the machining 

process could be completely versatile (Teti 2002). As such, the process of drilling composites 

needs to be characterized, and the process’ parameters optimized, in order to meet the design 

tolerances and to achieve defect-free components. 
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In (Ho-Cheng and Dharan 1990) , the authors used  a fracture mechanics approach to find the 

optimal thrust force that reduces  delamination while drilling   carbon fiber-epoxy laminates. This 

result does not take into consideration the possible interaction between the different force and the 

torque. In (Chen 1997), the author concluded  that thrust force and torque  are different with and 

without the onset of delamination for the drilling of Carbon Fiber Reinforced Polymer (CFRP) 

composite laminates. In addition, they found a step linear relationship between the delamination 

and the average thrust force for drilling unidirectional CFRP composite laminates with a carbide 

drill. (Rawat and Attia 2009b, 2009a) introduced the concept of machinability maps of woven 

carbon fiber composites under high speed drilling conditions (up to 15,000 rpm) and established 

the effect of cutting conditions on the quality characteristics of drilled holes, namely 

delamination, geometric errors, and surface finish. They concluded that thrust and cutting force 

have considerable effect on quality maps. This work was further extended in (Attia 2011. ) in 

order to cover a speed range of up to 40,000 rpm. In (Zuperl et al. 2012), the authors used  neural 

networks and fuzzy logic  to control  the cutting force in the process of ball-end milling, and in 

order to maintain constant roughness. In (Bustillo and Correa 2012), the authors studied the 

optimization of roughness in deep drilling operations under high speed conditions. The cutting 

force, the cutting parameters, and the cooling system were considered input variables to Bayesian 

Networks. In (Tansel et al. 2013), the authors used Torque-based Machining Monitor to estimate 

the remaining tool life and to detect the chatter from the torque signal. They concluded that this 

procedure was a good choice for monitoring procedure particularly when multiple spindles work 

simultaneously on the same work piece. Many researchers consider force and torque as the 

indicators that best describe the machining process. Cutting force and torque are used in 

modelling, optimization, and controlling the machining process. In this chapter, LAD is used to 

study the effects of uncontrollable machining conditions, force and torque, on the quality 

characteristics of composite materials when they are subjected to a machining process. The 

advantage of LAD is its capacity to capture possible correlations between force and torque, and 

the quality of output. LAD is based on pattern recognition and classification. It is not based on 

statistical technique, which means that it does not impose any assumptions related to the nature or 

structure of the data. In the following section, we introduce LAD and we   show how it is used in 

order to analyze and characterize the drilling process of carbon fiber reinforced material.   
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2.3 Introduction to Logical Analysis of Data 

An important development in Physical Asset Health Diagnosis (PAHD) is the introduction of 

techniques for data analysis, diagnosis and prognosis that depend mainly on the continuous 

development in the field of information technology. As sensor technology advances, users are 

collecting more data than ever before. Special techniques are needed in order to extract useful 

information out of this data. With the advancement in computer technology, it is now possible to 

manipulate large volumes of data and to extract valuable knowledge out of it.  LAD is an 

artificial intelligence technique that allows the classification of phenomena based on pattern 

recognition (Bennane and Yacout 2012). Characterization and classification are the major 

functions of artificial intelligence techniques (Choudhary et al. 2009) . LAD is applied in two 

consecutive phases, the learning or training phase, and the testing or the theory formation phase, 

where part of the database is used to extract special features or patterns of some phenomena, and 

the rest of the database is used to test the accuracy of the previously learned knowledge. We note 

that LAD is a technique based on supervised learning; this means that the database contains 

uncontrollable variables of the machining process and the corresponding output. In the process of 

drilling of composite materials, the output is the product’s final quality measured with respect to 

predefined specifications, specifically, inner and outer delamination, inner and outer hole 

diameter error, inner and outer hole circularity, and surface roughness. In this chapter, the 

controllable variables, namely speed ( ) and feed ( ) are constant. Their effects have been 

already studied in (Rawat and Attia 2009b, 2009a) and in (Yacout et al. 2012). The monitored 

uncontrollable variables are thrust force (Fz), cutting force (Fc), and torque (M). After the 

accomplishment of the two phases of training and testing, characteristic patterns which represent 

condition thresholds on the machining variables are found by the LAD. These patterns are used in 

order to produce a map that divides the machining variables’ space into conforming and 

nonconforming products.  This map can later be used to monitor the uncontrollable variables, and 

according to their combined values, action can be taken in order to avoid the spaces that lead to 

nonconforming products and to stay in the spaces leading to conforming ones. The practical 

consequence of this finding is that the mapping technique can be used in condition monitoring in 

order to predict the quality of outcomes and to give an alarm if the machining process is going 

into the nonconforming spaces. 
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The idea of LAD was first proposed in (Peter L Hammer 1986; Crama et al. 1988).  Research 

efforts have helped transform the approach into a  methodology for data analysis and applications 

in the medical, industrial and economics fields (Alexe et al. 2007). To extract features from a 

database and to recognize patterns, LAD divides the database into two sets; the first set is used to 

extract special features or patterns of some phenomena, while the second part is used for the 

testing phase of the previously learned theory (Soumaya Yacout 2010). If the accuracy is not 

satisfactory, then some of LAD’s parameters are changed, for example, the size of the training 

and testing data sets, the number of classes of outputs, the number and the nature of features, and 

the characteristics of the generated patterns. In (P.L. Hammer and Bonates 2006), a LAD 

overview is introduced by a group of researchers of RUTCOR at Rutgers University in USA. In 

(P.L. Hammer and Bonates 2006; Soumaya Yacout 2010) LAD methodology was compared to 

the most popular techniques of machine learning, such as  Support Vector Machine (SVM), 

Artificial Neural Networks (ANN), and other AI techniques. The same work had also been done 

in (Mortada et al. 2011). It was concluded that LAD is comparable, and in some cases 

outperformed comparable techniques.  

2.4 Methodology: Logical Analysis of Data 

LAD is used to extract knowledge from a dataset consisting of any type of observation; binary, 

numerical or nominal. Originally, LAD was used as a two-class (conforming   , nonconforming 

  ) classification technique  (Bores et al. 2000). The observations were classified as either 

positive (conforming)             or negative (non-conforming)               depending on 

whether they were observed when the process was producing non-conforming or conforming 

products. A special characteristic of LAD is the extraction of the collections of patterns which 

characterizes each class. These patterns represent interactions between variables (force and 

torque) in each class, positive or negative, separately. As such, the patterns are also called 

positive or negative depending on whether they describe phenomena found in the positive    or 

in the negative    set of observations. LAD is used as a pattern-based classifier if new 

observations that are not included in the original dataset need to be classified (Bores et al. 2000). 

In (E. Mayoraz and Moreira 1997) and (Moreira 2000) there are  two approaches on the extension 

of LAD to multi-class applications. In those works, the different methods that break down a 

multi-class classification problem (Polychotomy) into two-class problems (Dichotomies) are 
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described. LAD is used as a multi-class diagnostic technique for the detection and identification 

of faults (M.-A. Mortada et al. 2013). In this chapter we describe and apply the two- class LAD 

only. 

The main steps of the LAD are the binarization of data, pattern generation, and theory formation.  

Data binarization is the process of transformation of a database of any type into a Boolean 

database. There are many techniques for data binarization and research in this field is abundant 

(Eddy Mayoraz and Moreira 1999).  The binarization of a continuous numerical feature   , and 

the number of resulting binary attributes that replace it, are dependent on the number of distinct 

values of   in the training data set. The binarization procedure used in this chapter starts by 

ranking, in ascending order, all the distinct values of the numerical feature   as follows: 

                                  
   

   
   

     
   

                                                         (1) 

Where      the total number of distinct values of the feature    and   is the total number of 

observations in the training set. The cut-points     , where j is the number of cut points for each 

feature, are found between each pair of values that belong to different classes. By averaging these 

two values as shown in equation (2) the cut-points are calculated as follows: 

 

                                           
      

                                                                      (2) 

Where   
       and   

         or vice versa. A binary attribute b is then formed from each 

cut-point. Each cut-point      has a corresponding binary attribute      
 with defined value: 

                                     
 {

                   

                   
                                                              (3) 

 

The patterns generation procedure is the key building block in the LAD decision model. A 

positive pattern is defined as a conjunction of some binary attributes, which is true for at least one 

positive observation, and false for all negative observations in the training data set.  A negative 

pattern is defined similarly. The number of binary attributes used to define the pattern is called 

the degree of a pattern d. For example, pattern p of degree   is a conjunction of   attributes. That  

pattern covers an observation in the training set if and only if  it is true for that particular 
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observation (Bores et al. 2000). As such, if a pattern covers an observation, this means that this 

observation is from the same class to which the pattern belongs. There are many techniques for 

pattern generation, for example enumeration (Bores et al. 2000), heuristics (Peter L Hammer 

1986; P.L. Hammer and Bonates 2006),  and linear programming (Ryoo and Jang 2009). 

Theory formation is the final step in the LAD decision model. A discriminant function is 

formulated in equation (4) in order to generate a score ranging between -1 and 1. When the 

output of a discriminant function is a positive value that means that the tested observation O 

belongs to the positive class, and negative otherwise. Zero value means no classification is 

possible (M.-A. Mortada et al. 2011).  

                    ∑  
   

     ∑  
   

    

  

   

  

   

                                       

where        is the number of positive (negative) patterns,   
    (  

    )   is equal to 1 if 

pattern ( i ) covers observation O, and is equal to zero otherwise,   
    

    is the weight of the 

positive (negative) pattern   
    

  .  

 

For each new observation    the calculated value      varies between +1 and -1, where +1(-1) is 

an indication of the domination of the positive (negative) patterns, hence an indication that the 

observation belongs to the conforming (non-conforming) space. A zero or near zero value means 

that the observation cannot be classified in either class. 

Two measures of accuracy, ACCURACY and   (the quality of classification) are used.  

                                            
   

 
 

   

 
                                                                                                

Where the values (a) and (d) represent the proportion of observations, positive and negative, 

which are correctly classified. The values (e) and (f) represent the proportion of observations, 

positive and negative, which are not classified. Another measure is the ACCURACY = 
   

  
 , 

where    is the total number of correctly classified positive observations, B is the total number of 

correctly classified negative observations, and Mt is the total number of observations in the 

testing set. 
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2.5 Experiment and Results 

In this section LAD is used to characterize the machining process of Carbon Fiber Reinforced 

Polymers (CFRP) material in terms of force and torque. The experimental results presented in 

Table I were reported in (Rawat and Attia 2009b, 2009a) for a quasi-isotropic laminate 

comprising of 28 plies of woven graphite epoxy. The laminate was manufactured by autoclave 

molding with a cure time of 60 min at 260 F under 516.75 kPa autoclave pressure to produce a 

final cured thickness of 6.35 mm. A two-flute, 5 mm diameter drill with a 30o helix angle, 118o 

point angle, a fluted length of 44.5 mm, and a total length of the drill of 76.2 mm was used in the 

tests. The carbide grade of the drill used was ISO K10-K20 with approximately 7% cobalt as 

binder. The laminate was sandwiched between the front and back plates of the machining fixture 

shown in Figure 2-1. 

 

Figure 2-1: Experimental setup showing: (a) the fixture font plate, (b) the fixture back plate, (c) 

the force dynamometer and (d) the high speed slip ring, (Rawat and Attia 2009a) 

The experiment is performed at five different speeds ( ) with seven different feeds ( ), which 

results in 35 observations as summarized in Table 1. In each observation, the thrust force (Fz), 

the cutting force (Fc) and the torque (M) are monitored and measured. The force was recorded 

using a 9272-type Kistler dynamometer as shown in Figure 1. At each one of 35 observations, 

delamination at the hole entry and exit, hole circularity at entry and exit, hole diameter error at 

entry and exit, and surface roughness are measured. These characteristics of the machined part 

represent the quality of the drilling process (S. Yacout et al. 2012; Rawat and Attia 2009a). 

c) 

a) 

b) 

d) 
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Delamination at the hole entry and exit are defined by the parameter  in terms of the hole 

diameter Dh and the maximum delamination damage diameter Dm (Fig. 2-2(b)), where Dm 

DhDh. Figure 2-2 shows the delamination at entry for different speeds. 

 

Figure 2-2 : The observed damages by delamination at the end of tool life: (a) entry delamination, 

  = 15,000 rpm, (b) entry delamination,   = 12,000 rpm, 

The delamination is analyzed using the Olympus Model GZX 12 optical microscope. Hole 

circularity and diameter error are measured using a ‘‘Mitutoyo-Mach 806’’ coordinate measuring 

machine (CMM). Surface topography measurements were done in accordance with the 

International Standard IS0 4288:1996 using a Form Talysurf series 2 surface profilometer. The 

specifications of these qualities are as follows: 

Exit and entry delamination = 1.0 

Hole circularity at exit and at entry ≤ 0.2% 

Hole diameter error at exit and at entry  ≤ 0.02% 

Hole surface roughness ≤ 0.5 µm. 

 

The set of observations that satisfies (doesn’t satisfy) any of these specifications is called positive 

(conforming,     (negative (non-conforming,    ) 

 

 

 

 

(b)(a)

Dm

Dh
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Table 2.1: The experimental results 

Variables or attributes Quality outcomes 

No   

rpm 

103 

ƒ 

micron/ 

rev 

Fz 

N 

Fc 

N 

M 

N.mm 

 

 

Entry   

Delam. 

Exit  

Delam. 

Circul. 

 in % at  

Entry 

Circul. 

 in% at 

Exit 

Dim 

Error  

in% at 

Entry 

Dim 

Error 

 in% at  

Exit 

Surface 

rough. 

µm 

1 1.5 20 58.2 26.4 131.9 1 1 0.056 0.074 0.016 0.032 0.45 

2 5 20 54.3 20.8 103.8 1 1 0.128 0.112 0.02 0.138 1.19 

3 8.5 20 47 17.3 86.7 1 1 0.142 0.118 0.044 0.182 2.25 

4 12 20 36.5 14.7 73.6 1 1 0.402 0.202 0.072 0.088 3.28 

5 15 20 30.4 13.1 65.5 1.08 1.07 0.484 0.594 5.65 4.8 2.03 

6 1.5 60 77.5 39.4 196.8 1 1 0.072 0.108 -0.104 -0.006 0.6 

7 5 60 59 34.7 173.6 1 1 0.154 0.122 -0.104 -0.004 0.9 

8 8.5 60 46.5 28.4 142.1 1 1 0.158 0.136 -0.082 -0.026 0.72 

9 12 60 43.5 22 109.9 1 1 0.17 0.122 -0.052 0.038 0.82 

10 15 60 48 25.6 127.8 1 1 0.104 0.094 0.156 0.064 1.06 

11 1.5 100 78.5 53.1 265.5 1 1 0.086 0.168 -0.114 -0.084 0.97 

12 5 100 60 45 224.8 1 1 0.132 0.156 -0.104 -0.05 1.16 

13 8.5 100 67 43.5 217.7 1 1 0.156 0.152 -0.098 -0.034 0.99 

14 12 100 62.3 38.2 191 1 1 0.172 0.136 -0.068 0.014 1.2 

15 15 100 50 31.9 159.5 1 1 0.176 0.116 0.21 0.004 1.14 

16 1.5 200 103 64.1 320.3 1.25 1.08 0.128 0.136 -0.138 -0.052 1.43 

17 5 200 98 63.1 315.3 1.22 1.05 0.134 0.166 -0.12 -0.06 1.31 

18 8.5 200 93 50.8 254.2 1.22 1.05 0.164 0.2 -0.064 -0.04 1.82 

19 12 200 90 53.1 265.5 1.21 1.04 0.178 0.144 -0.064 -0.046 1.89 
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Table 2.2: The experimental results (continued) 

20 15 200 103 58.6 292.9 1.16 1.03 0.154 0.13 0.1 0.034 1.87 

21 1.5 400 200 108.2 540.8 1.29 1.11 0.16 0.216 -0.164 -0.074 1.62 

22 5 400 175.7 91 454.8 1.24 1.06 0.166 0.158 -0.11 -0.05 1.76 

23 8.5 400 162 87.2 435.8 1.25 1.06 0.182 0.22 -0.068 -0.07 2.24 

24 12 400 154 73 365.2 1.23 1.06 0.198 0.158 -0.048 -0.09 2.14 

25 15 400 140.2 71.1 355.7 1.16 1.05 0.208 0.136 0.09 -0.036 2.27 

26 1.5 600 370 141.3 706.5 1.33 1.22 0.172 0.25 -0.284 -0.116 2 

27 5 600 310 111.6 558.2 1.3 1.14 0.188 0.208 -0.144 -0.09 1.78 

28 8.5 600 260 99.5 497.3 1.27 1.1 0.204 0.152 -0.124 -0.136 2.78 

29 12 600 182.5 75.9 379.3 1.26 1.04 0.238 0.162 -0.09 -0.094 2.26 

30 15 600 145.5 87.9 439.6 1.16 1.05 0.312 0.152 0.03 -0.024 1.91 

31 1.5 800 570 164.8 823.9 1.48 1.24 0.178 0.198 -1.004 -1.09 2.49 

32 5 800 461.4 140.8 704.1 1.4 1.17 0.413 0.453 -0.968 -1.09 1.96 

33 8.5 800 310 118.4 591.8 1.38 1.11 0.556 0.244 -0.15 -0.068 3.04 

34 12 800 184 96.6 483 1.37 1.07 0.648 0.202 -0.084 -0.042 2.94 

35 15 800 147 76 380.1 1.35 1.05 0.756 0.184 0.036 -0.022 2.2 

 

2.6  Learning and validation 

Our objective is to use the data presented in Table 1 to train LAD to detect automatically and 

without human interference, the threshold values and characteristic patterns for machining 

conditions that lead to acceptable quality of drilled parts, and those that lead to unacceptable 

quality. In order to reach this objective the software cbmLAD (c. Software 2012) is trained by 

using the data obtained from the experimental results shown in Table 3.1. To study the effects of 

the uncontrollable variables on the quality of outcomes, and find the corresponding characteristic 
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patterns, only force and torque, i.e. the monitored variables are considered. The effects of speed 

and feed on the quality of outcomes were presented in (S. Yacout et al. 2012). These allow for the 

prediction of the quality of the outcome by monitoring force and  torque only over time. For each 

one of the seven quality characteristics, specifications divide the outcomes’ space into two 

distinct spaces, one for conforming products and one for nonconforming products. Set O of the 

thirty five observations is also divided into two sets of training, L, and testing, T. In this chapter, 

we present the results obtained when the training set is composed of 34 observations and testing 

is formed of the remaining observation. The process is repeated 35 times where each observation 

was chosen exactly once to constitute the testing set. The quality of classification is calculated as 

given in section 2. The results show that   = 99.4 %. The only wrong classification happened 

when the data point was unique, that is the knowledge contained in the observation that 

constitutes the test set was not repeated in any other observation. For example, from table 1, it 

can be seen that the specification for  surface roughness is satisfied in only one observation out of 

thirty five, at the combination (spindle speed=1500 rpm, feed=20 micron/rev). Obviously, when 

this observation constituted the testing set, the classification result was wrong since the training 

set, and consequently the learning process, did not contain any acceptable quality of surface 

roughness (Kohavi 1995).  This training and testing procedure is known as leave-one-out (or 

jackknifing) cross validation procedure, which is considered by many machine learning 

references as the best validation procedure when the amount of data for training and testing is 

limited (Ian H Witten and Frank 2011). This procedure is attractive for two reasons: first, the 

greatest possible amount of data is used for training, which presumably increases the chance that 

the classifier is an accurate one. Second, the procedure is deterministic: no random sampling is 

involved.  

We also conducted another well-known cross validation procedure which is the tenfold.  In this 

case, the data is divided randomly into 10 parts in which each class is represented in 

approximately the same proportion as in the full dataset. Each part is held out in turn and the 

learning process is trained on the remaining nine-tenths; then its error rate is calculated on the 

holdout (or testing) set. Thus, the learning procedure is executed a total of 10 times with different 

training sets.  The results show that   = 94.6 %.  
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2.7 Discussion 

Table 2.2. exhibits the patterns found by the software cbmLAD (c. Software 2012). The 

indicators are the uncontrollable variables: thrust force, cutting force and torque. The patterns that 

lead to conforming products are called positive, and those that lead to non-conforming products 

are called negative. The target is to map the conditions that lead to conforming products and 

those that lead to non-conforming products, in terms of force and torque. Patterns are generated 

for all seven qualities as shown in table 2. For example, the generated positive pattern for 

delamination illustrates the threshold boundary for conforming (positive) parts as (33.45<Thrust 

force, Fz<84.25) which means that as long as thrust force is between these thresholds, the 

machined part will be conforming to the required specification for delamination. This unique 

pattern is found in all positive observations from number 1 to number 4 and from number 6 to 15. 

We note that the negative observations 5, and 16 to 35, are not covered by this pattern. The 

patterns generated for nonconforming (negative) parts are twofold: the  negative pattern number 1 

(Thrust force,Fz >84.25), which covers the observations from number 16 to number 35, and the 

negative pattern number 2, (Thrust force,Fz < 33.45) which covers the observation number 5. In 

these two identified regions, machined parts are expected to be nonconforming to the 

delamination specifications. For the delamination quality characteristic, it may seem easy for 

anyone to distinguish between the positive and negative observation by looking at table 1, and by 

using only one attribute (Thrust force,Fz), but the generated map  problem  is more fragmented 

when we consider the others qualities since the regions where the products are conforming or 

nonconforming are not obviously separable. Nevertheless,  cbmLAD identifies and characterizes  

these regions perfectly and by using the lowest possible number of attributes. We also emphasize 

that the more uncontrollable variables we have, and the more our database increases in size, the 

more it will be impossible to do the mapping manually or graphically, thus the importance of 

using LAD. 

As an illustration, we plot the positive (●) and negative (○) observations, which are obviously 

non separable as shown in Figure 3-3, for entry and exit delamination 2-3(a), hole circularity at 

entry 2-3(b) , hole circularity at exit 2-3(c), hole diameter error at entry 2-3(d), hole diameter 

error at exit 2-3(e) and hole surface roughness 3-3(g). 



24 

 

 

Figure 2-3: Observation in (a) entry and exit delamination, (b) hole circularity at entry, (c) hole 

circularity at exit, (d) hole diameter error at entry, (e) hole diameter error at exit, and (g) hole 

surface roughness 

 

 

 

 

 

 

 

 a) b) 

c) d) 

e) g) 
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Table 2.3: Pattern found when, force and torque are considered 

 

In this chapter, detecting the thresholds values and characteristic patterns for machining 

conditions in term of uncontrollable variables, which are force and torque, using the LAD 

technique is presented. The key feature of the LAD is illustrated and its ability to detect 

characteristic patterns in the collected machining process data is shown. LAD technique is used 

in the diagnosis of machining outcomes by comparing each incoming new measurement to stored 

patterns. Because patterns are a conjunction of certain indicators’ values, they can be used to 

build a decision boundary for classification by providing important information to distinguish 
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observations which represent conforming products from those that are not. Experimental results 

are used as an illustrative example of the use of machine learning in order to monitor and detect 

the outcome of a machining process. This illustrative example was easy to visualize in 3D. In a 

more general case, when the number of indicators is greater than three, the generated patterns still 

give all the necessary and sufficient information in order to detect and to separate between the 

conditions that lead to conforming and nonconforming outcomes. LAD approach has the 

following advantages: 

1. As it is shown in the application that is presented in this chapter, LAD produced high accuracy 

even if the data are non-separable. The generated patterns cover every observation at least once. 

There is no approximation in the generated patterns, and the generated patterns are represented in 

terms of the uncontrollable variables. This cannot be obtained when using the most traditional 

design of experiment technique or regression model. 

2. LAD is not based on any statistical modelling. As such, any correlation between the 

uncontrollable variables, as well as the relation between the uncontrollable variables and the 

output, is reflected in the generated patterns. In contrast, although design of experiment can 

produce nonlinear models, isolated observations such as 4,5 and 31 in figure 3(c) will most 

probably be treated as outliers, and the results will be constrained by the obtained mathematical 

model. 

 3. LAD is dynamic; that is the attributes are monitored over time. This characteristic of LAD 

will be used in future work to detect any changes in the uncontrollable variables and to control 

the machining process on-line and in real time. LAD emphasizes the importance of keeping the 

historical data on the machining process. The larger the database is, the higher the chance of 

having a complete representation of the material’s response to different machining conditions.  

For completely new material, design of experiments give a starting database from which analysis 

can be performed, but as the database increases in size, LAD and machine learning offer a more 

technologically advanced tool for detecting .  

4. Over the past decades, quite complex modelling and experimentation was required to simulate 

the machining process. Modelling is based on assumptions and approximations. LAD is not 

limited by the search for a mathematical model to represent a complex machining process. It is 
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only limited by the computational capacity of a computer and the existence of data. Both 

conditions are in continuous development nowadays.    
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3.1 Abstract 

Carbon Fiber Reinforced Polymer (CFRP) is an important composite material. It has many 

applications in aerospace and automotive fields. The little information available about the 

machining process of this material, specifically when routing process is considered, makes the 

process control quite difficult. In this paper, we propose a new process control technique and we 

apply it to the routing process for that important material. The measured machining conditions 

are used to evaluate the quality and the geometric profile of the machined part. The machining 

conditions, whether controllable or uncontrollable are used to control part accuracy and its 

quality. We present a pattern-based machine learning approach in order to detect the 

characteristic patterns, and use them to control the quality of a machined part at specific range. 

The approach is called Logical Analysis of Data (LAD). LAD finds the characteristic patterns 

which lead to conforming products and those that lead to nonconforming products. As an 

example, LAD is used for online control of a simulated routing process of CFRP. We introduce 

the LAD technique, we apply it to the high speed routing of woven carbon fiber reinforced 

epoxy, and we compare the accuracy of LAD to that of an Artificial Neural Network (ANN), 

since the latter is the most known machine learning technique. By using experimental results, we 

show how LAD is used to control the routing process by tuning autonomously the routing 

conditions. We conclude with a discussion of the potential use of LAD in manufacturing. 

Keywords: Machining, Process Control, Logical Analysis of Data, CFRP, pattern recognition, 

knowledge extraction. 

3.2 Introduction 

The composite materials have special properties which make them the backbone of some 

industries such as aerospace, sporting, automotive and aircraft structure (Rahman et al. 1999). 

CFRP has very high modulus of elasticity, high tensile strength, low density, and high chemical 

stability. Most studies of CFRP are restricted to material properties and theoretical mechanics. 

Nowadays, the economic impact has an important consideration in manufacturing; therefore, it’s 

important to study the machining process control for CFRP because it affects the  production 

process (Ferreira et al. 1999). The machining of composite materials is more difficult than the 

machining of metals because they have non-homogeneous composition, and abrasive properties 

http://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagram&DokuWiki=5139e08bbfaaa2f63deca4cfc8a823ce
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of reinforcing fibers. The cutting tool confronts  fibers and  matrix  whose response to machining 

process could be completely different (Teti 2002). The complicated reaction of CFRP to 

machining, and consequently the defects which are introduced into the workpiece, in addition  to 

the special required specifications of the  machined part are the main reasons for the search of 

new techniques for process control.  

Milling is used frequently in manufacturing in order to produce, with composite materials, parts 

which have high accuracy and high surface quality  (Teti 2002), such as delamination, surface 

roughness and machined part dimensions (Davim and Reis 2005). Researches have been 

conducted on milling process control. They used artificial intelligence learning techniques in 

order to control machining process. For example, (Zuperl et al. 2012) used  ANN and fuzzy logic 

to control  the cutting force in the process of ball-end milling, and in order to maintain constant 

roughness. In (P. B. Huang 2014), The author developed an intelligent neural-fuzzy model for 

surface roughness monitoring system in  milling operations. He developed a decision-making 

system which analyzed the cutting forces and then responded with an accurate output. He 

concluded that his developed system can be used, in future, as an adaptive control system of the 

machining parameters in smart Computer Numerical Control (CNC) machine. In (Zhang et al. 

2007), the authors used ANN to develop surface roughness adaptive control  in turning process. 

They used data from controllable cutting parameters such as feed rate, cutting speed, and depth of 

cut, and also uncontrollable monitored parameters such as vibration signals in order to develop 

neural-networks-based surface roughness adaptive control system. Other researchers used other 

techniques,  for example, (Coker and Shin 1996) used ultrasonic sensing to control surface 

roughness during machining processes. (H. Wang and Huang 2006) used the concept of an 

Equivalent Fixture Error (EFE) to improve machining process control. Based on simulated data, 

they illustrated their concept. In (Du et al. 2012), the authors developed a robust approach for 

root causes identification  in machining process using hybrid learning algorithm and engineering-

driven rules. In order to judge whether the process is in normal or abnormal condition, off-line 

pattern match relationships and on-line time series measurements were used. They validated the 

developed approach by using data from the real-world cylinder head of engine machining 

processes. Due to the nonlinearity and complexity of milling process, traditional approaches fail 

to develop appropriate model to control the process (Haber et al. 2002). In (Landers et al. 2002), 

the authors concluded that the future of the milling process monitoring and control needs 
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techniques that can determine threshold values and characteristic patterns which can be used to 

control and tune autonomously the controllable machine conditions (feed, cutting speed, etc.), on-

line and off-line, in order to improve part accuracy.  

In this paper, we present a pattern-based machine learning technique called Logical Analysis of 

Data (LAD). We use this technique in order to discover and to understand the hidden correlation 

between the machining variables of CFRP. Information is extracted from experimental results, 

and is presented in the form of characteristic patterns. These are hidden rules that characterize the 

temporal evolution of the machining process. Subsequently, these rules are used in machining 

process control. In section 3.3, the experimental procedure and results are presented. LAD 

approach is presented in section 3.4 and a numerical example is introduced. In section 3.5, the 

learning process, from the obtained experimental data, is introduced and comparison between 

LAD and the ANN is presented. In section 3.6, a simulated machining process control is used for 

building online-decision making procedure using LAD. Concluding remarks are given in section 

3.7. 

3.3 Experiment Description  

The composition of the tested CFRP composite is quasi-isotropic laminate comprising 35 plies of 

8-harness satin woven graphite epoxy prepreg with a final cured thickness of 6.35 ± 0.02 mm. 

The tool materials is 6.35 mm, four-flute, solid carbide end mill. The equipment is a Makino 

A88Ɛ machining center. In order to reach a spindle speed up to 40,000 rpm, an IBAG spindle 

speed attachment, which has a 1 kW power, is used. The routing tests is performed using four 

values of Spindle speed (rpm): 10,000, 20,000, 30,000, and 40,000, three values of feed 

(mm/min): 250, 500, and 1,000, and three values of tool overhang lengths (  ):     =38 mm, 

    = 31 mm, and     = 24 mm. The experiments are repeated each 32 mm of cutting distance 

for three times. As such, we have three values of cutting distance ( ): 32, 64, and 96 mm. In total, 

we have three feed rates ( ), four cutting speed ( ), three overhang length (  ), and three cutting 

distances ( ); therefore, the total number of observations (experiments) is 108. This is a full 

factorial design of experiments. During slotting, the cutting forces are measured using a Kistler 

dynamometer 9255B, and the temperatures are measured using a FLIR ThermoVision A20M 

infra-red camera. For example, Trends for the feed force     , transverse force     , and axial 

force      for different speeds, feeds and tool overhang length          ) are shown in 
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Figure 3-1 The machined slots were characterized in terms of surface roughness, and 

delamination. The conforming specifications of these qualities are as follows: 

 Exit and entry delamination ≤1%. 

 Slot surface roughness right and left ≤ 1.2µm. 

Schematic of the experimental setup is shown in Figure 3-2.  A sample of the collected data are 

presented in Table 3.1. The observations that satisfy (don’t satisfy) any of these specifications are 

identified by 1(0) in Table 3.1. 
 

 
Figure 3-1: Trends for the feed force     , transverse force      , and axial force      for different speeds, feeds 

and tool overhang length          ) (Meshreki et al. 2012). 

 

 

 
Figure 3-2: Schematic of the experimental setup  
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Table 3.1: A sample of the experimental results  

Variables  Quality outcomes 

Controllable Uncontrollable(monitored) 

No 

 

 

 

 

(1) 

   

 rpm 

104 

 

 

(2) 

ƒ 

mm/min 

 

 

 

      (3) 

    

mm 

 

 

 

  (4) 

   

mm 

 

   

 

  (5) 

    

N 

 

 

 

(6) 

   

 N 

 

 

 

(7) 

   

 N 

 

 

 

(8) 

Tmean

   

 

 

 

(9) 

Entry 

Delam. 

 

 

 

(10) 

Exit 

Delam. 

 

 

 

(11) 

ID 

 

 

 

 

(12) 

Surface 

Rough. 

Right 

µm 

 

 

(13) 

Surface 

Rough. 

Left 

µm 

 

 

(14) 

ID 

 

 

 

 

(15) 

1 4 250 38 32 9.2 5.8 6.5 305 0.068 0.0900 0 5.950 5.48 0 

2 4 500 38 32 15.4 11.2 6.6 385 0.108 0.1009 0 6.520 6.33 0 

3 4 1000 38 32 25.5 20.5 11.5 438 0.126 0.1301 0 8.020 6.67 0 

4 3 250 38 32 12.8 9.4 4.9 319 0.122 0.1337 0 9.180 7.58 0 

: : : : : : : : : : : : : : : 

: : : : : : : : : : : : : : : 

25 4 250 24 32 18.4 5.7 3.2 305 0.001 0.001 1 0.85 1.03 1 

: : : : : : : : : : : : : : : 

: : : : : : : : : : : : : : : 

35 1 500 24 32 41.9 35.2 18.3 203 0.0016 0.0016 1 1.840 1.84 0 

36 1 1000 24 32 68.9 97.4 45.5 301 0.053 0.0157 0 2.53 3.61 0 

37 4 250 38 64 11.6 7.1 9.1 292 0.089 0.1009 0 5.80 5.32 0 

38 4 500 38 64 19.4 11.9 7.6 387 0.213 0.1301 0 6.70 5.82 0 

39 4 1000 38 64 36.2 25.9 12.2 452 0.414 0.1446 0 9.05 7.63 0 
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Table 3.2: A sample of the experimental results (continued) 

40 3 250 38 64 15.6 10.9 5.0 319 0.2176 0.1409 0 8.580 5.92 0 

: : : : : : : : : : : : : : : 

: : : : : : : : : : : : : : : 

50 4 500 31 64 20.7 11.4 5.7 342 0.1046 0.0499 0 4.540 4.58 0 

: : : : : : : : : : : : : : : 

: : : : : : : : : : : : : : : 

67 2 250 24 64 24.2 11.2 6.1 220 0.0098 0.0098 1 1.160 1.07 1 

: : : : : : : : : : : : : : : 

: : : : : : : : : : : : : : : 

74 4 500 38 96 24.1 15.0 5.5 460 0.1009 0.1082 0 7.040 5.68 0 

75 4 1000 38 96 42.0 27.6 12.2 519 0.2394 0.1373 0 7.910 6.44 0 

76 3 250 38 96 15.8 10.7 4.8 389 0.0499 0.1155 0 8.260 6.97 0 

: : : : : : : : : : : : : : : 

90 3 1000 31 96 42.3 31.3 15.3 441 0.1154 0.0754 0 7.340 4.89 0 

: : : : : : : : : : : : : : : 

100 3 250 24 96 23.2 8.0 4.9 281 0.0353 0.0170 0 1.140 1.02 1 

: : : : :     : : : : : : 

107 1 500 24 96 57.9 41.3 21.5 371 0.0016 0.0134 0 1.560 1.84 0 

108 1 1000 24 96 79.5 96.0 49.1 405 0.0317 0.0280 0 3.320 3.46 0 
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3.4  Logical analysis of data (LAD) 

3.4.1 The methodology 

LAD is a knowledge discovery approach that allows the classification of phenomena based on 

knowledge extraction and pattern recognition. It is applied in two consecutive phases, training or 

learning phase, where part of the database is used to extract special features or patterns of some 

phenomenon, and the testing or the theory formation phase, where the rest of the database is used 

to test the accuracy of previously learned knowledge. LAD uses a supervised learning technique; 

this means that the historical data or the database contains the variables and their corresponding 

outcomes or classes. For example, in Table 3.1, columns 2 to 9 are the variables, and columns 12 

and 15 are the classes. In this paper, we use a two-class LAD technique. A multi-class LAD 

technique can be found in (M.-A. Mortada et al. 2011, 2013).  After the two previously 

mentioned phases, new observations are introduced to LAD in order to be classified. This 

classification allows us to predict the quality outcome. The main advantages of LAD are: (1) 

LAD has explanatory power and causality identification which can be very useful in addressing 

machining process problems. This means that the user can track back any results, caused by a 

phenomenon or its effects, to its possible causes. This property appears particularly special, when 

LAD is compared to ANN which is characterized by the difficulty in determining the network 

structure and the number of nodes, and also the difficulty of interpreting the classification 

process. The ANN is a “black box” type of technique, which classifies new points without any 

explanations. (2) Unlike the statistical techniques which depend on distributions, and 

independence among variables, LAD is a non-statistical, non-approximate technique. LAD does 

not assume that the data belongs to any specific statistical distribution. (3) Unlike rules based on 

expert systems and expert knowledge, LAD extracts the knowledge hidden in the data. It then 

accumulates and preserves this knowledge which can be used at any time by the user, even if the 

human expertise is not available anymore. (4) No restriction concerning the type of data that 

LAD can deal with. LAD is capable of handling different types of data, whether nominal or 

numerical, discrete or continuous, simultaneously. 

LAD was proposed for the first time at the Rutgers University Center for Operations Research 

(RUTCOR) (Peter L Hammer 1986) . The main steps of the LAD are the binarization of data, the 

pattern generation, and the theory formation. The objective of data binarization is the 
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transformation of a database of any type into a Boolean database by using cut points technique.  

Many researchers presented different binarization techniques (Eddy Mayoraz and Moreira 1999). 

In this paper, we use the  binarization technique  that is presented in (Bores et al. 2000). The 

technique starts by ranking, in ascending order, all the distinct values   , of a variable,  then cut-

points   is inserted between each two values that belong to different classes. The cut-point is 

calculated as the average of the two values. A binary attribute is then formed from each cut-point 

such that: 

  {
               
               

 

The number of transitions between distinct values from two different classes, and vice versa, is 

equal to the number of cut-points which leads to the total number of binary attributes replacing a 

numerical variable. 

The objective of pattern generation is to find the characteristic patterns that differentiate between 

classes that are commonly called positive and negative. The positive (negative) class is a set, 

         of observations that belong to this class. Many techniques were proposed for pattern 

generation such as heuristics (Peter L Hammer 1986; P.L. Hammer and Bonates 2006), 

enumeration (Bores et al. 2000),column generation (Hansen and Meyer 2011) ,and linear 

programming(Ryoo and Jang 2009). In this paper, we follow the pattern generation technique 

which is proposed in (Ryoo and Jang 2009). The authors converted the pattern generation 

problem to a set covering problem, and solved it by a mixed integer linear programming (MILP) 

without any assumptions. Each positive observation      is represented as a Boolean 

observation vector                             . Each generated pattern    is associated with a 

Boolean pattern vector                              with size   , where n=   ,   is 

the size of a binary observation vector.  

A literal is a Boolean variable   or its negation  ̅ (Bores et al. 2000). A pattern   cannot include 

both the literal     and its negation  ̅  at the same time, thus the constraint          

                   must be respected. The number of literals used to define the pattern is called 

the degree of a pattern d. Pattern p of degree   is a conjunction of   literals; therefore, the pattern  

  is found after getting the Boolean pattern vector   which is the solution of the set-covering 

problem. For the generation of a positive pattern p+, that is a pattern that covers observations 
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which belong to the positive class,                  is the Boolean coverage vector whose 

number of elements equal to the number of positive observation   , and where    is equal to 0 if 

a pattern p+ covers  a positive observation i, and 1 otherwise. Minimizing Y means finding a 

positive pattern that covers the maximum number of observations of this class. Our objective is to 

find a pattern that covers a maximum number of positive observations. This pattern is 

subsequently used to characterize the positive class. It is an indication of the unknown outcome 

or class. In this optimization problem, the decision variables are the pattern vector  , the 

degree  , and the coverage vector  . By definition, a positive pattern cannot cover any negative 

observations, so the dot product of the pattern vector   and the observation      must be less 

than the degree   of the pattern    and for that reason the constraint∑     
  
                   

must be satisfied. Since the generated pattern doesn’t have to cover all the observations in    , 

the following constraint must be satisfied,  ∑     
  
                     . The set covering 

problem is repeated until all observations in one class are covered by a set of generated patterns 

such that each observation is covered by at least one pattern. In order to speed-up the pattern 

generation procedure, the newly-generated pattern must not be a subset of the set of patterns that 

have already been generated. Every generated pattern vector    is stored as vector   in the set   

containing all pattern vectors of the patterns generated previously. This condition can be 

formulated as: 

∑     
  
                     . 

In addition to the previously mentioned constraints, the problem can be summarized as follows: 

   
     

∑   
    

                  

                                                              

{
 
 

 
 

                                           
∑     

  
                                                 

                                                       

  {   }                                            

  {   } 
                                            

                                                       (1) 

After generation of the strongest pattern, which is the pattern that covers a maximum number of 

observations in the positive class, looping mechanism is used in order to generate an entire set of 

patterns that cover all the positive observations at least once.  The same process is then repeated 

to obtain the negative patterns by using the set    of negative observations. A theory is then 

formed and a decision model is obtained.  



38 

 

The theory formation is the final step in LAD. A discriminant function, such as the one given in 

equation (2), is formulated in order to calculate a score ranging between -1 and 1. When the 

output of a discriminant function has a positive (negative) value, this means that the tested 

observation belongs to the positive (negative) class. Zero value means the evidences are not 

enough in order to decide to which class an observation belongs (M.-A. Mortada et al. 2011).  

                                                   ∑   
   

     ∑   
   

      

   
  

                                                                    (2) 

Where        is the number of positive (negative) generated patterns,   
    (  

    )   is equal 

to 1 if pattern     covers observation O, and is equal to zero otherwise,   
    

    are the weights of 

the positive (negative) pattern   
    

    These weights are the proportion of observations covered 

by each pattern. They represent the power of each pattern. A strong pattern is the most powerful 

and cover the highest number of observations.   

3.4.2 Numerical Example 

In order to explain the LAD methodology, we introduce the following numerical example. We 

assume that we have the following seven observations, and the corresponding measured qualities 

such as the surface roughness or the delamination. The quality takes a label or class 1 (0) to 

represent conforming (non-conforming) specification. We assume that the machining conditions 

measurements’ are already changed to binary attributes b1 to b5, by using the procedure 

presented in section 3.1. We search for the combination of machining conditions, that are the 

characteristic patterns, which differentiate between parts which are conforming or non-

conforming to specifications. The seven observations are shown in Table 3.2 in columns 2 to 6. 

Each observation  =1 to 7 is associated with a Boolean observation vector  

                                          , where q= 10. These are the literals of the 

observations, as in columns 2 to 6, and their negations. The Boolean observation vectors are 

shown in Table 3.2. 
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Table 3.3: collected Boolean observation vectors and their classes 

No b1 b2 b3 b4 b5  ai ai,1 ai,2 ai,3 ai,4 ai,5 ai,6 ai,7 ai,8 ai,9 ai,10 class 

1 0 1 0 1 1  1 0 1 0 1 1 1 0 1 0 0 1 

2 1 1 0 1 0  2 1 1 0 1 0 0 0 1 0 1 1 

3 1 1 1 0 0  3 1 1 1 0 0 0 0 0 1 1 1 

4 1 0 1 0 0  1 1 0 1 0 0 0 1 0 1 1 0 

5 0 0 0 1 1  2 0 0 0 1 1 1 1 1 0 0 0 

6 1 1 0 1 1  3 1 1 0 1 1 0 0 1 0 0 0 

7 0 0 1 0 0  4 0 0 1 0 0 1 1 0 1 1 0 

 

             is the Boolean vector whose number of elements equal to the number of positive 

observations, and where    is equal to 0 if a pattern p covers the positive observation i, and 1 

otherwise. Minimizing   means finding a positive pattern that covers the maximum number of 

positive observations, that is the strongest pattern. 

Accordingly, the MILP for the pattern generation problem is formulated as follows:    

Minimum                         

S.t.  

                                                     

                                                    

                                                 

                                             

                                                            

          {   }                     {   },  

This MILP problem has three decision set of variables          and it can be solved by any 

MILP-solver (Linderoth and Lodi 2011). The strongest pattern was obtained as    

                      which means that   
       , and therefore the attributes’ values must be 

equal to (1, 0) at attributes        in order to be covered by this pattern. The pattern is of 

degree     , Y         which means that there is one positive observation (    ) that is not 

covered yet. In this small example, it is easy to see that from the three positive observations 1, 2, 
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and 3, observations 2 and 3 are covered by the pattern that is found, while observation 1 is not. 

The process of pattern generation is repeated in order to find a pattern that covers observation 1.  

In order to generate the   
  pattern, the observations which have been covered by   

   are 

removed. The remaining data set is given in Table 3.3 

Table 3.4: The remaining dataset after founding the first positive pattern 

No b1 b2 b3 b4 b5 ai ai,1 ai,2 ai,3 ai,4 ai,5 ai,6 ai,7 ai,8 ai,9 ai,10 class 

  1 0 1 0 1 1 1 0 1 0 1 1 1 0 1 0 0 1 

4 1 0 1 0 0 1 1 0 1 0 0 0 1 0 1 1 0 

5 0 0 0 1 1 2 0 0 0 1 1 1 1 1 0 0 0 

6 1 1 0 1 1 3 1 1 0 1 1 0 0 1 0 0 0 

7 0 0 1 0 0 4 0 0 1 0 0 1 1 0 1 1 0 

 

Let        , where Y is the Boolean vector whose number of elements equal to the number of 

positive observation. The MILP is as follows: 

Minimum        

S.t.  

                                                     

                                                 

                                             

                                                            

          {   }               {   }, 

By solving the MILP for the second iteration, the strongest pattern is                         

which means that   
          and therefore the attributes’ values are (0, 1) at 

attributes       .The pattern is of degree     , Y     which means that all the positive 

observations are covered. Since all the positive observations are covered by at least one pattern, 

the pattern generation procedure is stopped. The same procedure is repeated in order to generate 

the negative patterns. Finally the generated patterns are:  

Positive patterns:  
       with weight   

      and   
       with weight   

      

Negative patterns:  
     with weight   

       and   
        with weight   
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The interpretability power of LAD is obvious from the fact that any user can now go back to the 

collected observations and check the existence of these patterns and their coverage, as well as 

their signs and their meanings. The hidden knowledge discovery property is also obvious, since 

even in this small example, a human mind will not discover these patterns easily. This pattern 

discovery process is done by using the software cbmLAD (c. Software 2012; Bennane and 

Yacout 2012) . It took less than 1 second. Finally we note that the MILP is a procedure for 

pattern generation and discovery only. This means that LAD does not suppose any mathematical 

modeling of any relation between the variables. 

The discriminant function that generates a score ranging between -1 and 1 is as follow. 
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For example, for a new observation (1,0,0,1,0), the discriminant function is 
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   )        

The classification decision for this new observation is predicted to be the negative class. 

3.5 Peformance comparison 

3.5.1 The ANN technique 

ANN is the most famous and well known machine learning technique. It has high efficiency on 

adaptation and learning. For these reasons, it’s used widely as  modeling tool in machining 

process (Benardos and Vosniakos 2002; Çaydaş and Ekici 2012). An ANN is generally 

composed of three types of layers: an input layer which accepts the input attributes and has the 

number of neurons equal to the number of attributes, hidden layers which have some number of 

neurons, and an output layer that has one neuron. The number of hidden layers and its neurons 

depend on the nonlinearity of the model .All neurons in any layer are interconnected to the 

neurons of the pre and after layers through weighted links (Sharma et al. 2008). 

The input variables which are controllable and monitored uncontrollable, as well as the quality 

outcomes, that are the delamination and the surface roughness are shown in Figure 3-3 (A, B). 

We use four models. Model (A-1) has controllable variables as inputs, namely cutting speed, 

feed, tool overhang length, and cutting distance. The output is the delamination which can be 

conforming or non-conforming to specifications. Model (A-2) has controllable variables as 
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inputs, namely the cutting speed, feed, tool overhang length, and cutting distance. The output is 

the surface roughness which can be conforming or non-conforming. Model (B-1) has the 

monitored uncontrollable variables, namely the forces in three coordinates and the mean 

temperature, as inputs. The output is the delamination which can be conforming or non-

conforming. Model (B-2) has the monitored uncontrollable variables, namely the forces in three 

coordinates and mean temperature, as inputs. The output is the surface roughness which can be 

conforming or non-conforming.     

Input
Layer

Hidden
Layer

output
Layer

Quality
Outcomes

Cutting 
Speed

Feed

Cutting 
Disitance

Overhang 
Length

(A)
Input
Layer

Hidden
Layer

output
Layer

Quality
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Fx

Fy

Tmean

Fz

(B)

 
Figure 3-3: ANN models: (A) controllable variables model, (B) monitored uncontrollable variables model 

 

Unlike the LAD approach, the ANN is subjected to the overfitting phenomenon. In order to find a 

good model, we tried several ones and we retained the best (Russell et al. 1995). By the best, we 

mean that we choose the network architecture that gives the highest prediction accuracy in the 

validation test. This will be discussed in details in section 5. In this paper, we use the Weka data 

mining software (Hall et al. 2009). For the delamination analysis, the proportion of conforming 

observation to non-conforming is 12 to 96 which is, obviously, an unbalance between minority 

and majority classes. The Synthetic Minority Over-sampling Technique (SMOT) is applied to 

rebalance and  alter the class distribution(I.H. Witten et al. 2011). SMOT adjusted the relative 

frequency between two classes in the data to 48 to 96. The same technique is applied for surface 

roughness analysis to adjust the relative frequency from 6 to102 to 24 to102. For further reading 

about SMOT, we refer the reader to (Chawla et al. 2011). Table 3.4 shows the best obtained 

networks architecture.   
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The learning rate parameter takes a value between [0,1] in order to determine the step size, and 

hence how quickly the search converges. If it is either too large or too small, the search may 

overshoot and miss the minimum entirely, or slow the progress toward convergence. A 

momentum parameter term takes a value between [0,1]. It’s used to update the value of a new 

weight by small proportion which leads to smooth searching process. The confusion matrix is 

(      
     

), where    is the total number of correctly classified positive observations, H 

is the total number of correctly classified negative observations, and        is the number of 

positive (negative) observations. 

Table 3.5: ANN architectures for the four models. 

 

3.5.2 Validation and comparison 

The validation and the comparison  between different techniques  often represent a challenge for 

machine learning researchers (Wolpert 1996). Usually, two different learning techniques used for 

the same problem, and their results, are compared in order to decide which technique is better to 

use. By calculating the accuracy, which is obtained from cross-validation with several repetitions, 

the technique that has the higher accuracy is retained. This procedure is quite sufficient for 

comparison in many practical applications (I.H. Witten et al. 2011). In (P.L. Hammer and 

Bonates 2006; Soumaya Yacout 2010), LAD methodology was compared to the best reported 

results obtained by machine learning technique. The comparison was performed on a number of 

well-known problems which are conceived and kept in repositories in order to be used by 

researchers. The comparison was favorable to LAD technique (M. A. Mortada et al. 2009). In this 

paper, two qualities, namely the delamination and the surface roughness, are considered. For each 

one of the two qualities, the given specifications divide the outcomes space into two distinct 
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spaces, the space of conforming products (positive) and the space of nonconforming products 

(negative). We also divide the set O of the n observations into two sets of training, L, and testing, 

T. In this paper we present the results obtained when the training set is composed of (n-1) 

observations and the testing is formed of the remaining observation. To calculate the 

classification accuracy we repeated the training-testing process n times, where each observation 

was chosen exactly once to constitute the testing set. This training and testing procedure is known 

as leave-one-out (LOOC) cross validation procedure, which is considered by many machine 

learning references as the best validation procedure when the amount of data for training and 

testing is limited (Ian H Witten and Frank 2011). LOOC is a special case of K-fold cross 

validation, where (K=n), n is the total number of observations. This procedure is attractive for 

two reasons. First, the greatest possible amount of data is used for training, which presumably 

increases the chance that the classifier is an accurate one. Second, the procedure is deterministic, 

which means no random sampling is performed. For example, if we divide the training set to 

equal parts, 50% for learning and 50% for testing, we omit 50 % of limited number of 

observations from the learning process, which affects negatively this process. Moreover, we will 

need a sampling strategy in order to choose 50% of the observations. In this paper, we present the 

results obtained when the training set is composed of (n-1) observations, and the testing is formed 

on the remaining observation. The procedure is then repeated n times. Two measures of accuracy, 

ACCURACY and the quality of classification,   ) are used, where 

  
   

 
 

   

 
 

The values (a) and (b) represent the proportion of observations, positive and negative, which are 

correctly classified. The values (e) and ( ) represent the proportion of observations, positive and 

negative, which are not classified. Another measure is the ACCURACY = 
   

  
 , where    is the 

total number of correctly classified positive observations,   is the total number of correctly 

classified negative observations, and    is the total number of observations in the testing set. 

Table 3.5 shows the accuracy of the four models and the comparison between the accuracy of the 

ANN and the LAD techniques. 
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Table 3.6: Accuracy of the ANN and the LAD techniques. 

Model Quality outcome ID ANN  LAD  

ACCURACY   ACCURACY   

Controllable variables  

Delamination A-1 92.36 92.21 95.45 96.2 

Surface roughness A-2 0.95 0.92 96.1 94.3 

Monitoring  variables 

Delamination B-1 0.79 0.79 81.24 80.02 

Surface roughness B-2 0.70 0.83 86.2 88.22 

In general, all statistical models are biased in one way or another; therefore, the comparisons 

between learning algorithms that are using different priors is meaningless (Wolpert 1996). Here, 

we compare between two different techniques, the ANN and the LAD. LAD methodology was 

compared to the most popular techniques of machine learning, such as  Support Vector Machine 

(SVM), and  ANN (P.L. Hammer and Bonates 2006; Soumaya Yacout 2010). In general, if the 

comparison shows that one of the algorithms  has substantially high accuracy in comparison to 

the other, that algorithm should be used (Wolpert 1996). Obviously, it can be seen that the 

accuracy of LAD compares favorably with that of ANN. 

3.6 Process control system 

Our objective is to use the data presented in Table 3.1 in order to train LAD to detect 

automatically and without human interference, the threshold values and characteristic patterns for 

zones of machining conditions,  that lead to acceptable quality, and those that lead to 

unacceptable quality. Although LAD generates positive and negative patterns for each of the four 

problems, in the following machining process control we use only the positive patterns of Models 

(A-1) or (A-2), and only the negative patterns generated for Models (B-1) or (B-2). In order to 

reach this objective, the software cbmLAD (c. Software 2012) is trained by using the data 

obtained from the experimental results that are shown in Table 3.1. Table 3.6 shows the positive 

characteristic patterns for Models (A-1) and (A-2), and the negative characteristic patterns for 

Models (B-1) and (B-2), which are found by the software. 
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Table 3.7: The positive patterns obtained by LAD for problems (A-1) and (A-2), and the negative 

patterns obtained for problems (B-1) and (B-2). 

 

These generated patterns are used in the machining process control.  The generated positive 

patterns illustrate the threshold boundaries for the controllable conditions that will always lead to 

conforming (positive) parts. In our machining process control, the negative patterns that are 

formed with the uncontrollable variables are used to give an alarm indicating that the machining 

process is beginning to produce unacceptable products. For example, the generated negative 

patterns (1) for Model (B-2) is    >24.745. This means that as long as    is higher than 24.745 

the machined part will be non-conforming to the required specification of surface roughness. The 

same can be said for the negative pattern (5), which is    <14.91. These two constraints together 

illustrate the boundaries for the zone of    which should be avoided during the machining 

process. As we have explained, cbmLAD identifies and characterizes these regions perfectly and 

by using the lowest possible number of variables. To avoid the zones which are defined by the 

negative patterns, a simulated adaptive control loop is developed as shown in Figure 3-4.The 

generated patterns are incorporated in the machining process control which is shown in Figure 3-

4. 
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Figure 3-4: The machining process control 

 

The machining process control is an adaptive control loop with  an automatic adjustment of 

machining parameters, in our case the  feed and speed, in order to improve operation productivity 

and part quality (Liang et al. 2004). Due to machine design constraints and complexity of finding 

monitoring parameters constraints and thresholds, process control loop is not commonly available 

in CNCs. Nevertheless, it attracts many researchers due to its potential to significantly improve 

operation productivity and part quality (Liang et al. 2004).  In this paper, we assume that the 

machining process is monitored through sensors. Sensor’s measurements are analyzed by the 

software cbmLAD in order to detect and identify the characteristic patterns; the patterns are 

obtained from the experimental data. They are then used in order to build the adaptive control 

loop. In Figure 3-4, a schematic diagram shows the machining process control. It starts by an off-

line pattern generation by using cbmLAD. The generated patterns are transmitted to a “LAD On-

line Decision Making” unit.  The on-line loop starts by monitoring the uncontrollable variables. 

At each second, and by comparing the uncontrollable variables’ values to the negative 

characteristic patterns, which are stored in “LAD On-line Decision Making” unit, a decision is 
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made to whether change the values of the controllable values or to keep the current values. In the 

former case, the information is sent to the “Process Controller “unit in order to adjust the 

controllable variables to the nearest positive patterns’ zones. The adjusted variables are the inputs 

to the actuator and the spindle drive.  

In order to give a simulated example of the machining process control for the delamination 

quality, a simulated machining process control system is developed using labVIEW 8.5 software 

(Elliott et al. 2007). For example, we show in Figure 3-5 the front panels of Models (B-1) and 

(A-1). We use the negative patterns for the uncontrollable variables of Model (B-1), and the 

positive patterns for the controllable variables of Model (A-1), as shown in Table 3.6. The 

uncontrollable variables, which are the forces in three coordinates (   ,    ,   ) and the mean 

temperature Tmean, are monitored and  their values are sent to “LAD On-line Decision Making” 

unit every second in order to compare them to the stored negative patterns. A decision is then 

taken to either change the values of the controllable operating conditions in order to avoid the 

negative patterns’ zones, or to keep them as they presently are. “LAD On-line Decision Making” 

gives an alarm if the uncontrollable variables comply with one of the negative patterns in Model 

(B-1). If the alarm is given, the “Process Controller” selects one of the positive patterns in Model 

(A-1). The selection of a positive pattern is guided by the dynamics of the machining process. 

The new values of the controllable variables are found in the selected positive patterns, and are 

the inputs to the actuator and the spindle drive. Adaptive control loop is looping at every second 

until “LAD On-line Decision Making” alarm is off. Figure 3-6 shows the flowchart for the 

process control.  

In order to test the procedure that is described in the previous paragraph, a simulation model of 

the process control is developed. We assume that the correlation between controllable variable 

(speed    , feed (f), tool overhang length (  ), and cut distance (  ) and the monitoring variables 

(forces in three coordinates (  ,   ,   ) , mean temperature Tmean) for milling the CFRP 

composite material is represented by a simple multiple linear regression with a sample size (n) of 

108.  This assumption is only used in order to generate the values of the uncontrollable forces; in 

real life these values will be generated by the milling process itself, and they are captured by the 

sensors.  The equations obtained using Weka data mining software were as follow: 
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Figure 3-5: On-line machining process control for delamination quality using LabVIEW 
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Figure 3-6: Flow chart of process control. 

Since tool overhang length cannot be changed on-line, it was predefined and fixed before the 

simulation. According to the positive patterns 2 to 6 in Model (A-1), tool overhang length was 
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restricted to less than 27.5.  We chose an overhang length of                           , for 

our simulated example. This means that only these five positive patterns of Model (A-1) are 

available to the “Process Controller” in order to control the machining process, since the first 

pattern can be satisfied with TL higher than 27 as long as it is less than 34.5. The cutting distance 

is also a predefined input which is set by the user before starting the simulation, and has a 

predefined value in the range of          during the simulation runs. For testing the 

simulated process control, we run the simulation model at 

                                   were performed. The total number of simulated runs 

are thus are equal to 100. As an example, Table 3.7 shows the results of how the iterations 

terminate by selecting one of the four positive patterns of Model (A-1). The elapsed time to find 

the positive pattern depends on the initial conditions, the inertia of CNC machine, and the 

number of positive patterns that were generated off-line, in this example we have four positive 

patterns. Run No 1 terminates after 13 seconds, by finding the positive pattern number (5) in 

Model (A-1), and run No 2 terminates in 4 seconds and found pattern number (4). In this work, 

we considered the iteration step as one second. 

Table 3.8: Two runs of the simulated Process control using LabVIEW (continued) 

Run No 
Time 

sec 

Controllable machining conditions Uncontrollable (monitored) Pattern  

Overhang 

length  

mm 

cutting 

distance 

mm 

 

v 

          rpm 

 

 

ƒ 

             mm/min 

    

N 

   

N 

    

N 

Tmean 

  

R
u

n
 N

o
 1

 

1 24 96 15000 450.00 48.25 36.16 16.57 318.40 

N
eg

at
iv

e 
p

at
te

rn
s 2 24 96 26365 569.68 39.43 26.15 12.56 341.74 

3 24 96 15916 641.84 54.87 44.34 20.53 355.81 

4 24 96 23785 413.33 36.24 22.06 10.43 311.25 

5 24 96 30121 731.22 41.41 28.86 14.10 373.24 
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Table 3.8: Two runs of the simulated Process control using LabVIEW (continued) 

Run No 
Time 

sec 

Controllable machining conditions Uncontrollable (monitored) Pattern  

Overhang 

length  

mm 

cutting 

distance 

mm 

 

v 

          rpm 

 

 

ƒ 

             mm/min 

    

N 

   

N 

    

N 

Tmean 

  

6 24 96 27314 603.44 39.64 26.49 12.78 348.32 

7 24 96 21548 401.43 38.44 24.60 11.50 308.93 

8 24 96 30710 517.75 32.13 17.51 8.73 331.61 

9 24 96 19894 405.74 40.60 27.13 12.59 309.77 

10 24 96 28787 554.72 35.92 22.02 10.76 338.82 

11 24 96 33952 580.74 30.77 16.079 8.27 343.90 

12 24 96 23776 482.74 39.04 25.49 12.07 324.79 

13 24 96 32530 443.47 26.96 11.30 5.89 317.13 pattern 5 

(positive) 
14 24 96 32530 443.47 26.96 11.30 5.89 317.13 

R
u

n
 N

o
 2

 

1 24 75 15000 450.00 44.22 34.65 16.57 297.18 

N
eg

at
iv

e 
p

at
te

rn
s 

2 24 75 21888 327.78 31.04 18.98 9.57 273.35 

3 24 75 19682 335.56 34.00 22.45 11.07 274.87 

4 24 75 24661 259.35 24.96 11.72 6.29 260.01 pattern 4 

(positive) 
5 24 75 24661 259.35 24.96 11.72 6.29 260.01 
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3.7  Conclusion  

In this paper, LAD is applied to high speed routing of CFRP , and found the characteristic 

patterns that lead to conforming products and those which lead to nonconforming products, by 

exploiting the results obtained experimentally of a routing process of CFRP. LAD accuracy is 

compared to that of ANN. An on-line machining process control is developed by using the 

patterns that were found off-line. A simulated machining process control is implemented by using 

the experimental results, and LabVIEW software. The simulation model shows how LAD is used 

to control the routing process by tuning autonomously the routing conditions in order to always 

return to the machining zones defined by the positive patterns. 

For the areas of further research, we are presently working on incorporating the machining 

process control in a real computer numerical control (CNC) machine. The learning phase will be 

done off-line  by cbmLAD based on data obtained from sensors which are mounted to the CNC 

machine. At each unit of time, a new sensors’ reading is transmitted to the unit “LAD On-line 

Decision Making”. This latter works on-line in order to give and alarm each time a negative 

pattern of the uncontrollable variables is detected. The unit “Process Controller” searches on-line 

for a positive pattern of the controllable variables, then a decision to change the values of the 

controllable values or to keep the current values is taken. In the latter case, the actuator and the 

spindle execute the “Process Controller’s” command. We are also working on studying the 

effects of initiating the alarm based on the discriminant function of the new observation instead 

of on only the appearance of a negative pattern.  
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4.1 Abstract 

In machining of composite materials, little research has been conducted in the area of optimal 

replacement time of the cutting tool in terms of cost and availability. Due to the fact that tool 

failure represents about 20% of machine down-time, and due to the high cost of machining, 

optimization of tool replacement time is thus fundamental. Finding the optimal replacement time 

has also positive impact on product quality in terms of dimensions, and surface finish.  

In this paper, we are finding the tool replacement time when a tool is used under constant 

machining conditions, namely the cutting speed, the feed rate, and the depth of cut, during 

turning titanium metal matrix composites (TiMMCs). Despite being expensive, MMCs are a new 

generation of materials which have proven to be viable in various fields such as biomedical and 

aerospace industrial. Proportional Hazard Model (PHM) is used to model the tool’s reliability and 

hazard functions using Exakt software. Experimental data are obtained and used to construct and 

validate the PHM model, which is then used in decision making. The results are discussed and 

show that finding the optimal replacement time of the cutting tool is valuable in saving cost of 

machining process and maximizing the tool availability. 

Keywords 

Metal matrix composites, cost optimization, availability optimization. 

4.2 Introduction 

The economic factor’s impact on tool life in machining is considered very important (Klim et al. 

1996). Many researches tried to improve tool life by several ways such as using variable feeds 

during machining process (M Balazinski and Mpako 2000; Lin and Shyu 2000). The cutting tool 

cost dominates high percentage of the total machining cost. The tool cost represents around 25 

per cent of the total machining cost (Sakharov et al. 1990). For this reason, finding the time at 

which a tool should be replaced is thus fundamental.  The objective is to choose an optimal 

replacement time which results in low cost and high availability. If the tool is replaced earlier or 

later than necessary, valuable resources will be lost or products may be scrapped  (Tail et al. 

2010). Moreover, the tool replacement policy is one of the important aspects of tool management. 

Suitable tool management policy is important to reduce overall production costs (Jeang 1998). 



55 

 

  In (V Makis 1995), the author used a PHM with a time–dependent covariate considering tool 

wear to find the optimal tool replacement time. In (Klim et al. 1996), the authors presented the 

effect of feed variation on tool wear and tool life. They proposed a new method to improve 

cutting tool life in machining. In  (Tail et al. 2010), the authors used a PHM to model the tool’s 

reliability and hazard functions, The PHM offers a good model for data representation. The 

cutting speed is considered as the model’s covariate. In (Mazzuchi and Soyer 1989), the authors 

presented a PHM not only for modelling tool life, but also for evaluating the mechanisms 

attributed to the cause of tool failure. In (Ding and He 2011), they used a PHM for modelling  the 

cutting tool wear reliability analysis. Vibration signals which are indication to tool wear are used 

as model’s covariate. The PHM showed remarkable relationship between the tool condition 

monitoring information and the life distribution of tool wear. Many researchers consider the 

PHM as a good model for tool life. In most of these models, it was assumed that the tool wear has 

significant effect over the entire tool life. In this paper, the objective is to find the optimal 

replacement time which minimizes the cost and maximizes the availability during turning 

titanium metal matrix composites (TiMMCs). Ti-MMCs are a new generation of materials which 

have proven to be viable materials in various industrial fields such as biomedical and aerospace, 

and they are very expensive. The PHM is used to model the tool’s reliability and hazard functions 

using Exakt software. The tool wear degradation is taken as model’s covariate. In section 4.2, a 

brief description of the PHM is introduced, followed by the estimation of the model’s parameters 

and the covariate’s weight. In section 4.3, the optimal replacement policy for minimizing the cost 

and maximizing the availability is described. The decision rule which helps in decision making is 

introduced in section 4.4. In section 4.5, the experimental procedure which was carried out in 

order to collect data that is used for constructing the model is presented. The model developed 

and the final results are presented in section 4.6. Concluding remarks are given in section 4.7. 

4.3  Model description  

The PHM presents the failure rate as the product of a baseline failure rate      , which is 

dependent only on the age (cutting time) of the tool, and a positive function   that represents the 

tool wear     . The failure rate at time t is thus expressed as in equation (1): 

                            (      )        (    )                                                                     (1) 
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In this paper we consider a PHM with a baseline Weibull hazard function. The Weibull 

distribution is extensively used in modelling the time to failure due to its flexibility in modelling 

a variety of failure data. Using Weibull as a baseline function in modelling the tool failure was 

considered in (V Makis 1995; Tail et al. 2010; Mazzuchi and Soyer 1989) . This model is 

sometimes called the Weibull parametric regression model. It is given as follows: 
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Where    is the shape parameter,    is scale parameter, m is the number of covariates which have 

effect on the hazard rate, and   is the weight of each covariate. The covariates may be 

controllable variables such as cutting speed ( ), feed rate ( ), and depth of cut (  ), or 

uncontrollable (monitored) variables such as the cutting forces, the tool wear, and the 

temperatures. In this paper all controllable covariates are kept constant, so they will not affect the 

analysis of the model. The wear is the only covariate which will be monitored at discrete points 

of time through inspections and the appropriate model is given in equation (3), where m=1, 
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     {     }                                                    (3) 

     depicts the evolution of the covariate representing the wear which is monitored and 

measured at discrete intervals of time. It has a finite state space. In this paper we consider two 

sates; the normal and the failure states. This latter is defined by the tool maximum flank wear 

length (VBBmax) reaching a predefined level equal to 0.2 mm. The conditional survival function 

can thus be given as in equation (4),  

                  |             ( ∫       (    )  
 

 
)         ,                      (4) 

Where   is the random variable that represents the time to failure of the tool. When using 

Weibull distribution, equation (4) is given as follows: 

                                                           { (
 

 
)
 

      }                                                      (5) 
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The conditional survival function        and its derivative  ̇       (      )       are  used 

to estimate the parameters         by using maximum likelihood function (Banjevic et al. 2001). 

4.4 Optimal replacement Policy 

In 1978, Bergman (Bergman 1978) investigated the optimal replacement rule which is considered 

a control-limit value (   ). He found that it is optimal to replace either at failure time   or at 

  , the preventive replacement time, when the state variable has reached some threshold, 

whichever occurs first. The optimal stopping rule is written in equation (6).  

                                              
     {                 }                                                  (6) 

Where   is the difference between the failure replacement cost     and the preventive 

replacement cost  . According to the theory of renewal reward processes, the expected cost per 

unit time can be expressed as: 

                                          
                       

    
 

           

    
                                         (7) 

It has been shown that         
   is the optimal cost at which the                    and 

  
   is the optimal time to replace.         is the probability of failure replacement,         

is the probability of preventive replacement, and           {    }  is the expected 

replacement time. Optimal level    can be found by using the fixed-point iteration procedure 

(Banjevic et al. 2001; Viliam Makis and Jardine 1992) or by using Semi-Markovian Covariate 

Process (Bergman 1978). Similarly, we can represent the availability function as in equation (7). 

                                 
      

               
 

    

                              
                            (8) 

The optimal availability is achieved when                 , where   
   is the optimal time to 

replacement,    is the time required to perform the preventive replacement, and             

is the time required to perform failure replacement. We note that in equation (8),    is the 

difference between      , while in equation (6) it was the difference between the failure 

replacement cost and the preventive replacement cost.                                                
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4.5 Decision rule 

The important question in tool replacement policy is “Should we keep running or should we 

replace the tool now?”. The decision rule which can be derived from equation (6) gives the 

answer  to this question, by monitoring the tool wear at discrete time intervals (Banjevic et al. 

2001). From equation (6) we get:  

                                                                                                                                       (9) 
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)                                     (12) 

                                                                                                                                         (13) 

The function     =   (        )           can be consider as “warning level” function, 

applied to an “overall” covariate value      . 

4.6  Experiment description 

Workpiece material: A cylindrical bar of Ti-6Al-4V alloy matrix reinforced with 10-12% 

volume fraction of TiC ceramic particles is used. 

Tool material: TiSiN-TiAlN nano-laminate PVD coated grades (Seco TH1000 coated carbide 

grades) were utilized. 

Equipment: We used a 6-axis Boehringer NG 200, CNC turning center in order to conduct 

experiments, as shown in figure (4-1).  

Experimental details: Based on the recommendation of the tool supplier, the experiments have 

been conducted under the following constant cutting conditions: Cutting speed ( ) =60 m/min, 

feed rate ( ) =0.15 mm/rev, and depth of cut (  ) =0.2 mm. 
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Figure 4-1: The experiment setup 

Sequential inspections and turning tests are conducted for each tool in order to measure the wear. 

The wear is measured after each inspection by using an Olympus SZ-X12 microscope. The 

procedure continues until the tool wear threshold (            mm) is reached. The procedure 

is replicated for six tools. The collected data is shown in figure (4-2). 

  

Figure 4-2: Tool wear measurements for 6 tools 
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In order to calculate the time to failure    , the wear evolution between two measurements (    

,      ) is assumed to be linear as in figure (4-3). The     is found at tool wear         = 0.2 

mm by interpolating between (        ). For example, from Table (4.1), and by interpolating 

between the fifteenth and the sixteenth inspections, then by using equation (14), the time to 

failure is found to be 782.73 sec. This interpolation is repeated for six tools. The results for the 

six tools and their inspections’ results are given in Table (4.2). In this table,  ID means the 

identification for tool from 1 to 6, B-event means the beginning for a new tool, IN-event means 

inspection process(measuring the wear), and  EF-event means ending with failure (reaching the 

wear threshold).  

                                                             
   

   
 

       

   
                                                     (14)  
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Figure 4-3: Wear interpolating 
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Table 4.1: The experimental results showing the wear of tool number 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Inspection No Time (sec) VBB (mm) 

1 0 0 

2 53.7 0.055 

3 107.4 0.08 

4 161.1 0.0775 

5 214.8 0.09 

6 268.6 0.085 

7 322.3 0.0925 

8 376 0.0925 

9 429.5 0.1 

10 483 0.1125 

11 536.5 0.1125 

12 590 0.12 

13 643 0.1325 

14 697 0.14 

15 750 0.17 

16 804.1 0.22 
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Table 4.2: Times to failure and samples of wear value inspections for the six tools 

Tool 

ID 

Working 

Age 

sec 

Wear 

mm 

Event   Tool 

ID 

Working 

Age 

sec 

Wear 

mm 

Event 

1 0 0 B   4 0 0 B 

1 62.31 0.0525 IN   4 62.45 0.065 IN 

1 : : IN   4 : : IN 

1 : : IN   4 : : IN 

1 : : IN   4 : : IN 

1 498.47 0.1625 IN   4 686.69 0.195 IN 

1 542.97 0.1625 EF   4 691.14 0.195 EF 

2 0 0 B   5 0 0 B 

2 11.29 0.055 IN   5 62.38 0.0675 IN 

2 : : IN   5 : : IN 

2 : : IN   5 : : IN 

2 : : IN   5 : : IN 

2 590.88 0.194 IN   5 686.72 0.1775 IN 

2 599.54 0.194 EF   5 749.17 0.1775 EF 

3 0 0 B   6 0 0 B 

3 62.31 0.0675 IN   6 53.72 0.055 IN 

3 : : IN   6 : : IN 

3 : : IN   6 : : IN 

3 : : IN   6 : : IN 

3 560.93 0.1675 IN   6 750.63 0.17 IN 

3 611.61 0.1675 EF   6 782.73 0.17 EF 

4.7 Development the model and results 

By using the software Exakt (Banjevic et al. 2001), The PHM parameters are estimated, and the 

resulting hazard function is given as follows in equation (15): 



63 

 

 

 (      )  
 

 
(
 

 
)
   

        
     

     
(

 

     
)
     

                                                      (15) 

 

EXAKT offers Kolmogorov-Smirnov test (K-S test) to evaluate the model fit. The summary of 

goodness of fit test is automatically produced as in table (4.3).The test shows that the PHM offers 

a good modeling for the data. 

Table 4.3: Summary of goodness of fit test results 

Test Observed value P-value PHM Fits Data 

Kolmogorov- 

Smirnov 

0.378857 0.280343 Not rejected 

 

After determining The PHM the optimal replacement policy-cost analysis is performed. The 

optimal time to replacement   
    is calculated with a cost ratio of 2:1 (preventive replacement cost 

is estimated to be $100, and the failure replacement cost is $200, thus K is equal to $100). As 

shown in figure (4-4), the cost value on the curve consists of the sum of the red portion that 

represents the unplanned failures cost, and the green portion which represents the preventive 

maintenance cost. 

mk:@MSITStore:C:/Program%20Files%20(x86)/EXAKT/EXAKT.CHM::/ajw.html
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Figure 4-4: Condition-based replacement policy-cost analysis   

 Table (4.4) summarizes the information in figure (4-4). It compares the optimal cost        
   

= 0.154 $, and and the expected time between replacements, 719 sec of the optimal policy, with 

those ($0.26 and 784 sec) of the "run to- failure" policy. It quantifies the expected preventive and 

failure costs ($0.124 and $0.03 respectively) in the optimal policy, and the percentage of 

incidences (89.2% will be preventive actions and 10.8% will be failure replacement action) 

achieved when the optimal policy is used. Finally, the table shows that the optimal policy 

proposes more interventions, on the average every 719 sec for the optimal policy versus 784 sec 

for the policy of ‘run- to- failure, in order to achieve a net per unit time saving (of $0.1 or 40%). 
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Table 4.4: Summary of cost analysis 

 
Cost 

[$/sec] Preventive 

Repl.Cost 

[$/sec] 

Failure 

Repl.Cost 

[$/sec] 

Prev. 

Repl. 

[%] 

Failure 

Repl. 

[%] 

Expected 

time between 

Replacements 

Optimal 

Policy 

0.154076 0.124033 

(80.5%) 

0.0300427 

(19.5%) 

89.2 10.8 719.142 

Replacement 

Only At 

Failure 

0.255185 0 

(0.0%) 

0.255185 

(100.0%) 

0.0 100.0 783.746 

Saving 0.101109 

(39.6%) 

-0.124033 0.225142 -89.2 89.2 -64.6044 

 

Similarly, we found the optimal replacement policy that maximizes the availability. The optimal 

is conducted when the time required to preventive replacement,           , and the time 

required to failure replacement,          ). From the results shown in figure (4-5) and table 

(4.5), it is found that the optimal availability     
    is equal to 78.75%, and the and the expected 

time between replacements     sec for this optimal policy, while  the availability  and the time to 

replacement are equal to 59% and 784 sec, respectively, in  the "run to- failure" policy. 

Practically speaking, we "buy" high availability by paying for it with more frequent interventions. 
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Figure 4-5: Condition-based replacement policy-availability analysis   

Table 4.5: Summary of availabilty analysis 

 Availability 

[%] 

Preventive 

Downtime 

[%] 

Failure 

Downtime 

[%] 

Prev. 

Repl. 

[%] 

Failure 

Repl. 

[%] 

Expected 

time between 

Repl.[s] 

Optimal 

Policy 

78.75 

(664.68
*
)

 

17.99 

(84.69%) 

3.25 

(15.31%) 

94.9 5.1 843.994 

(179.318
**

) 

Replacement 

Only At 

Failure 

59.21 

(783.75
*
) 

0 

(0.0%) 

40.79 

(100.0%) 

0.0 100.0 1323.75 

(540
**

) 

Saving  (19.55%) -17.99 37.54 -94.9 94.9 -479.752 

* expected uptime, **expected downtime 

In practice, the costs of failure (                ), the planned inspection intervals 

         ) and the PHM model parameters are considered collectively in order to build the 

“warning level” function     =   (        )           as shown in figure (6). Once the 
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decision model is built, we can make a decision that will optimize the long-run maintenance cost 

for the tool, or the long run availability of the machine. By defining the tool working age and the 

composite covariate                      , the optimal decision  is to determine whether 

the tool should be replaced immediately (the red area in figure (4-6)),  or should we keep 

operating and be inspecting at the next inspection time ( the green area), or should we keep 

operating but expect to replace before the next inspection time ( the yellow area).  

Moreover, the model was examined by using the data from previous histories to see what the 

decision model would have recommended for failed tool. The data in table (4.1) for tool (ID=6) is  

as shown in figure (4-6). According to equation (12), the decision chart gives us alert “intervene 

immediately” at working age 750.63 sec (inspection number 15 in table (4.1)) because the 

composite covariates                                             . This 

point crosses the “warning level” function     . Obviously, in this case, the model was capable of 

predicting the best action to make perfectly. The optimal replacement decision gives ‘warning 

alert’ before the tool’s failure. We recapitulate the optimal decision policy in following words 

“the optimal policy suggests replacement at t for which                           “. 

 

Figure 4-6: Condition-based replacement policy-optimal decision. 
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4.8 Conclusion 

In this paper, experimental data were collected during turning titanium metal matrix composites 

(TiMMCs). The collected data were used to construct the PHM model which is then used to find 

optimal tool replacement time .The PHM offered a good modelling for the times to failure and 

tool wear degradation. The PHM models’ parameters and economic objectives were considered 

to build the optimal decision chart. The study concluded that the optimal replacement times either 

lead to a cost reduction of 40 percent in case of cost analysis or lead to an increase of 79 percent 

in the case of availability analysis. 

 

In future work, the tool wear will be monitored either directly by using a coupled device (CCD) 

camera which will follow the evolution of tool wear on-line, or indirectly by predicting the wear 

by monitoring the machining forces, and then by using a machine learning technique and then use 

it for decision making.  
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Overview of the article: 

To answer the important question in cutting tool replacement strategy: “Should we keep running 

or should we replace the tool now?”     

 Introduction 

The economic factor’s impact on tool life in machining is considered very important in tool 

management. Due to the fact that tool failure represents about 20 percent of machine down-time, 

and due to the high cost of machining, finding the time at which a tool should be replaced is thus 

fundamental. Many engineers tried to improve tool life by several ways such as using variable 

feeds during machining process. Their objective is to choose an optimal replacement time which 

results in low cost and high availability. If the tool is replaced earlier or later than necessary, 

valuable resources will be lost or products may be scrapped. Moreover, the tool replacement 

strategy is one of the important aspects of tool management. Suitable tool management strategy is 

important in order to reduce overall production costs. 

 

In this work, we are finding the tool replacement time when a tool is used under constant 

machining conditions, namely the cutting speed, the feed rate, and the depth of cut during turning 

titanium metal matrix composites (TiMMCs). Despite being expensive, metal matrix composites 

are a new generation of materials which have proven to be viable in various fields such as 

biomedical and aerospace. Proportional Hazard Model (PHM) is used to model the tool’s 

reliability and hazard functions using EXAKT software. Experimental data are obtained and used 

to construct and validate the PHM model, which is then used in decision making. The results are 

discussed and show that finding the optimal replacement time of the cutting tool is valuable in 

saving cost of machining process and maximizing the tool availability. 

Model description  

The Proportional Hazard Model (PHM) presents the failure rate as the product of a baseline 

failure rate in the form of a Weibull hazard function  which is dependent only on the age (cutting 

time) of the tool, and an exponential positive function that represents the conditions at which the 

process is functioning. These conditions are represented by covariates which may be controllable 
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variables such as cutting speed, feed rate, and depth of cut, or uncontrollable (monitored) 

variables such as the cutting forces, the tool wear, and the temperatures. This means that the 

failure rate of the cutting tool is not only dependent on its age, but it is also affected by the 

covariates.   

The Weibull distribution is extensively used in modelling the time to failure due to its flexibility 

in modelling a variety of failure data. This model is sometimes called the Weibull parametric 

regression model. We keep all controllable covariates constant, so they will not affect the 

analysis of the model. The wear is the only covariate that is monitored at discrete points of time 

through inspections.  In this paper, we consider two states; the normal and the failure states. The 

latter is defined by the tool flank wear length reaching a predefined threshold equals 0.2 mm. We 

now turn to the discussion of the tool replacement strategies. 

Optimal replacement Strategy 

In 1978, Bo Bergman investigated the optimal replacement rule which is considered a control-

limit value    . He found that it is optimal to replace a tool either at failure time or at the 

preventive replacement time, when the state variables, which are the age and the condition, have 

reached some threshold, whichever occurs first.  

 This rule depends on the ratio between the failure replacement cost and the preventive 

replacement cost. According to the theory of renewal reward processes, the expected cost per unit 

time can be expressed as: 

 
                                                                                                                           

                         
                                                                  

It has been shown that the threshold    is the optimal cost at which expected cost per unit time is 

minimal. The optimal threshold    can be found by using the fixed-point iteration procedure. 

Similarly, we can represent the availability function as: 

                                                                          
      

               
                                                         (2) 

The optimal availability is achieved by finding the expected time between replacements in the 

optimal strategy, which depends on the time required to perform the preventive replacement, and   

the time required to perform failure replacement. The important question in tool replacement 

strategy is “Should we keep running or should we replace the tool now?” To answer this 
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question, we need to monitor the tool wear and age at discrete time intervals and compare them 

with a decision rule.  

We note that in both strategies of optimal cost and optimal availability, it is expected that some 

failure will still occur. This means that even if a preventive maintenance is adopted, some failures 

will still occur because of the randomness nature of the degradation and the failure in most 

machines. 

Experiment description 

In defining the decision rule in a practical setting, we set up an experiment using titanium metal 

matrix composites. A cylindrical bar of Ti-6Al-4V alloy matrix reinforced with 10-12% volume 

fraction of TiC ceramic particles is used. TiSiN-TiAlN nano-laminate PVD coated grades (Seco 

TH1000 coated carbide grades) are utilized as cutting tools. We used a 6-axis Boehringer NG 

200, CNC turning center in order to conduct experiments. Based on the recommendation of the 

tool supplier, the experiments have been conducted under the following constant cutting 

conditions: Cutting speed equals 60 m/min, feed rate equals 0.15 mm/rev, and depth of cut equals 

0.2 mm.                                                                                              

 Sequential inspections and turning tests are conducted for each tool in order to measure the tool 

flank wear. The wear is measured after each inspection by using an Olympus SZ-X12 

microscope. The procedure continues until the tool flank wear threshold is equal to 0.2 mm. The 

procedure is replicated for six tools. The collected data is shown in Figure (4-7), where each 

curve represents one of the six tools, and each point represents an inspection reading. The cutting 

tool failure is defined by the tool flank wear length reaching a predefined threshold equal to 0.2 

mm 
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Figure 4-7: Tool wear measurements for 6 tools 

 

In order to calculate the time to failure, the wear evolution between two measurements around 0.2 

mm is assumed to be linear. The time to failure is found by interpolating at tool wear equals 0.2 

mm. For example, from Table (4.6), and by interpolating between the fifteenth and the sixteenth 

inspections, the time to failure is found to be 782.73 sec. This interpolation is repeated for the six 

tools. The times to failure for the six tools are equal to 542.97, 599.94, 611.61, 691.14, 749.17, 

and 782.73 sec respectively. 
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Table 4.6: The experimental results showing the wear of tool number 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Development of the model and results 

By using the software EXAKT, PHM is constructed by statistically analyzing the wear data, 

along with the corresponding age of the tools that were removed due to failure. EXAKT is 

originally designed to be integrated into a plant’s maintenance information system to optimize its 

Inspection 

No 

Time (sec) wear(mm) 

1 0 0 

2 53.7 0.055 

3 107.4 0.08 

4 161.1 0.0775 

5 214.8 0.09 

6 268.6 0.085 

7 322.3 0.0925 

8 376 0.0925 

9 429.5 0.1 

10 483 0.1125 

11 536.5 0.1125 

12 590 0.12 

13 643 0.1325 

14 697 0.14 

15 750 0.17 

16 804.1 0.22 
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condition based maintenance (CBM) activities. In 1997, A. K. S. Jardine and V. Makis at the 

University of Toronto developed the first version of EXAKT, and rapidly earning attention as a 

CBM-optimizing software. The PHM parameters are estimated, and the resulting hazard function 

is given as the following equation: 

     

     
(
    

     
)
     

            

Hazard function is also called hazard rate or failure rate. It is defined as the instantaneous 

potential per unit time for the failure to occur, given that the tool has survived up to certain time. 

This means that Hazard function is a probability of the failing at any given instance. The hazard 

is a rate rather than a probability and it takes value between 0 and infinity, and depends on 

whether time is measured in seconds, minutes, hours. The important question in forming our 

decision policy is “which hazard level should we intervene?”. We wish to choose a hazard level 

intervention point that results in low cost or high availability. 

 

EXAKT offers Kolmogorov-Smirnov test to evaluate the model fit. The test shows that the PHM 

offers a good modeling for the data. After determining the PHM, the optimal replacement 

strategy-cost analysis is performed. The expected time between replacements in the optimal 

strategy is calculated with a cost ratio of 2:1, preventive replacement cost is estimated to be $100, 

and the failure replacement cost is $200, thus the difference between the failure and preventive 

replacement costs is equal to $100. Table (4.7) summarizes the results of the cost optimization’s 

analysis. It compares the optimal cost per unit time, 0.154 $/sec, which is the quotient of division 

of equation (1). The numerator of equation (1) equals ($100*0.892+$ 200*0.108); the 

denominator of equation (1) equals 719 sec, which is the expected time between replacements, in 

the optimal strategy, with those (0.255 $/sec and 784 sec) of the "run to-failure" strategy, that is 

without any preventive maintenance. The optimal strategy quantifies the expected preventive and 

failure costs (0.124 $/sec and $0.03$/sec respectively) and the percentage of incidences (89.2% 

of preventive actions and 10.8% of failure replacement action) achieved when this optimal 

strategy is used. The expected preventive replacement cost (0.124$/sec) is calculated by dividing 

the product of preventive replacement cost and preventive replacement probability (100*0.892) 

by the expected time between replacements (719). Similarly, the failure replacement cost (0.03 
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$/sec) in column 4, Table (4.7), is calculated.  Finally, the table shows that the optimal strategy 

proposes more interventions; on the average every 719 sec for the optimal strategy versus 784 sec 

for the strategy of ‘run- to- failure, in order to achieve a net per unit time saving (of $0.101 or 

40%). The optimal intervene hazard is found to be 0.154076 /sec in cost analysis. We note again 

that in any preventive maintenance strategy, there will be some unplanned replacements due to 

failure. In an optimal strategy, these incidences of failure replacement and the incidence of 

preventive replacements represent the strategy that will lead to the minimal cost per unit time. 

Table 4.7: Summary of cost analysis 

 Cost 

[$/sec] 

Preventive 

Replacement 

Cost 

[$/sec] 

Failure 

Replacement 

Cost 

 [$/sec] 

Preventive 

Replacement 

[%] 

Failure 

Replacement 

[%] 

Expected 

time between 

Replacements 

Optimal 

Strategy 

0.154 0.124 

(80.5%) 

0.03 

(19.5%) 

89.2 10.8 719 

Replacement 

Only At 

Failure 

0.255 0 

(0%) 

0.255185 

(100%) 

0 100 784 

Saving 0.101 

(40%) 

-0.124033 0.225142 -89.2 89.2 -65 

 

Similarly, the availability analysis relies on replacement times. It’s assumed that replacement 

costs are negligible. The expected time between replacements is calculated when the time 

required to preventive replacement equals 160 sec, and the time required to failure replacement 

equals 540 sec. From the results shown in Table (4.8), it is found that the optimal percentage 

availability (up time=664.68 sec) is equal to 78.75% of the total uptime and downtime (843.994 

sec) as in equation (2) , and the percentage of incidences (94.9% of preventive actions and 5.1% 

of failure replacement actions) achieved when the optimal strategy is used, while the percentage 

availability (uptime=784 sec) is  59.21% of the total uptime and downtime (1323.75sec), 

respectively, in the "run to-failure" strategy. The down time is the sum of two parts; the first part 
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is preventive replacement time multiply by preventive replacement probability, and the second 

term is failure replacement time multiply by failure replacement probability. For example, in 

optimal strategy, the down time equals 179.318 which calculated by (160*0.949+540*0.051). 

The percentage of preventive down time (17.99%) in column 3, Table (4.8), is calculated when 

the product of preventive replacement time and preventive replacement probability (160*0.949) 

is dividing by the total uptime and downtime (843.994 sec). The percentage of preventive down 

time can also be considered as 84.69% when the product of preventive replacement time and 

preventive replacement probability (160*0.949) is dividing by only the down time (179.318). 

Similarly, the failure downtime percentages in column 4, Table (4.8), are calculated. These 

results represent an availability savings of 19.54%. Practically speaking, we "buy" high 

availability by paying for it with more frequent interventions. The optimal intervene hazard is 

found to be 0.269 /sec in availability analysis.  

Table 4.8: Summary of availabilty analysis 

 Availability 

[%] 

Preventive 

Downtime 

[%] 

Failure 

Downtime 

[%] 

Preventive 

Replacement 

[%] 

Failure 

Replacement 

[%] 

Expected time 

between 

Replacements 

[s] 

Optimal 

Strategy 

78.75 

(664.68
*
)

 

17.99 

(84.69%) 

3.25 

(15.31%) 

94.9 5.1 843.994 

(179.318
**

) 

Replacement 

Only At 

Failure 

59.21 

(784
*
) 

0 

(0%) 

40.79 

(100%) 

0 100 1323.75 

(540
**

) 

Saving  (19.54%) -17.99 37.54 -94.9 94.9 -479.752 

* expected uptime, **expected downtime 

In practice, the preventive replacement cost is equal to $100, the failure replacement cost is equal 

to $200, and the planned inspection interval equals 60 sec. The PHM model parameters are 

considered collectively in order to build the “warning level” function as shown in Figure (4-8). 

Once the decision model is built, we can make a decision that will optimize the long-run 

maintenance cost for the tool, or the long run availability of the tool. By defining the tool 
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working age and the composite covariate, the optimal decision is to determine whether the tool 

should be replaced immediately (the red area in Figure (4-8)), or kept operating until the next 

inspection time (the green area), or kept operating but expected to be replaced before the next 

inspection time (the yellow area).  

Moreover, the model was examined by using historical data to see what the decision model 

would have recommended for failed tool. The data in Table (4.6) for tool 6 is shown in Figure (4-

8). The decision chart gives us the alert of “intervene immediately” at working age 750.63 sec 

(inspection number 15 in Table (4.6)) because the composite covariates is equal to       

                       when cutting time equals 750.63 sec. This point crosses the 

“warning level” function. Obviously, in this case, the model was capable of predicting the best 

action to take. The optimal replacement decision gives a ‘warning alert’ before the tool’s failure. 

We recapitulate the optimal decision strategy in following words “the optimal strategy suggests 

replacement at time t for which                           “. 

 

Figure 4-8: Condition-based replacement strategy-optimal decision. 

In summary, we collected experimental data during turning titanium metal matrix composites 

(TiMMCs) to construct the PHM model which was then used to find optimal tool replacement 

time.  The PHM offered a good modelling for the times to failure and tool wear degradation. The 
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PHM models’ parameters and economic objectives were considered to build the optimal decision 

chart. The study concluded that the optimal replacement times either lead to a cost reduction of 

40 percent in case of cost analysis or lead to an increase of 79 percent in the case of availability 

analysis. Since sensor and information technologies are both expanding rapidly and continuously, 

it is expected that these analyses will reduce the cost of the machining process. Results from this 

work are expected to have an impact in the future of optimization of machining processes, 

especially in biomedical, aerospace and aviation industries. 

 

In future work, the tool wear will be monitored either directly by using a coupled device (CCD) 

camera which will follow the evolution of tool wear on-line, or indirectly by predicting the wear 

by monitoring the machining forces, and then by using a machine learning technique, the data 

will be  used  for decision making.  
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5.1 Abstract 

Little practical results are known about the cutting tool optimal replacement time, specifically for 

machining of composite materials. Due to the fact that tool failure represents about 20% of 

machine down-time, and due to the high cost of machining, in particular when the work piece’s 

material is very expensive, optimization of tool replacement time is thus fundamental. Finding 

the optimal replacement time has also positive impact on product quality in terms of dimensions, 

and surface finish. In this paper, two new contributions to research on tool replacement are 

introduced. First, tool replacement mathematical models are proposed. These models are used in 

order to find the optimal time to tool replacement when the tool is used under variable machining 

conditions, namely the cutting speed, and the feed rate.  Proportional Hazards Models (PHM) are 

used to find an optimal replacement function. Second, this model is obtained during turning 

titanium metal matrix composites (TiMMCs). These composites are a new generation of 

materials which have proven to be viable in various industrial fields such as biomedical and 

aerospace, and they are very expensive. Experimental data are obtained and used in order to 

develop and to validate the PHM models, which are then used to find the optimal replacement 

conditions. 

Keywords 

Optimal tool replacement, metal matrix composites, cost optimization, availability optimization. 

5.2  Introduction 

Ti-MMCs inherit outstanding characteristics such as low weight, high mechanical and physical 

properties, high stiffness and strength. Although very expensive, MMCs are a new generation of 

materials which have proven to be viable in various fields such as biomedical and aerospace 

industrial. Finding the optimal tool replacement time in machining Ti-MMCs is important in 

order to decrease the scrapped products and thus the cost of machining, and/or to increase the tool 

life, and thus to increase the availability of the cutting tool. Replacing the tool only at failure may 

leave undesired effects on the product’s quality characteristics, namely the dimensions and the 

surface finish. This may lead to scrapping the product. The poor tool condition may cause the 

waste of subsequent production resources and the loss of customer’s goodwill (Hui and Leung 
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1994). In general, the determination of the optimal replacement time is considered  an important 

economic factor in machining (Klim et al. 1996). 

The cutting tool cost represents  around 25 percent of the total machining cost (Sakharov et al. 

1990; Gray et al. 1993). The cutting  tool failure represents about 20% of machine down-time 

(Liang et al. 2004), replacing cutting tool earlier or later than necessary will cause either loss of 

valuable resources  or products may be scrapped (Tail et al. 2010). Moreover, the tool 

replacement policy is one of the important aspects of tool management (Jeang 1998). For these 

reason, finding the time at which the tool should be replaced is fundamental. Much research tried 

to improve tool life in several ways. For example, Klim et al (Klim et al. 1996) proposed a  

method to improve cutting tool life in machining using  the effect of feed variation on tool wear 

and tool life. By changing feed rate, the reliability function is changed, and thus the tool life is 

changed. The Weibull distribution was used to fit the data. The experiment was conducted under 

constant cutting speed. Balazinski and Mpako (M Balazinski and Mpako 2000) proposed an 

improvement of tool life through using two discrete feed rates. The method depends on varying the 

feed rate throughout the cutting process. By varying the feed, the tool-chip contact area increases, 

the tool wear rate decreases and consequently leads to improvement of the cutting tool life. The 

experiment was conducted under constant cutting speed. Lin and Shyu (Lin and Shyu 2000) 

concluded that using variable feed machining, and constant cutting speed, when drilling stainless 

steel is a significant method for improving the cutting tool life.  

Other researches tried to find the optimal replacement strategy by using PHM for modelling tool 

life, then using another technique to find optimal strategy. For example, Mazzuchi and Soyer 

(Mazzuchi and Soyer 1989) used  a PHM to assess machine tool reliability. Fully Bayesian 

analysis is used to find optimal machining conditions. Liu and Makis (H. Liu and Makis 1996) 

derived a formula to calculate the cutting tool reliability under variable cutting conditions. They 

used PHM while considering the machining conditions as covariates. In(P. H. Liu et al. 2001), 

the work was extended by developed algorithm based on stochastic dynamic programming for 

finding  the optimal tool replacement times in a flexible manufacturing system. Ding and He 

(Ding and He 2011) used a PHM by considering vibration signals as a time–dependent covariate. 

The author suggests that vibration signals are good indicators to tool wear. Reliability analysis 

based on feature extraction from tool vibration signals is introduced. They found remarkable 

relationship between the tool condition monitoring information and the life distribution of tool 
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wear by using PHM. Other research used classical Weibull distribution to fit tool life distribution. 

For example, In (Vagnorius et al. 2010), the Weibull distribution is used to fit tool life 

distribution. The optimal replacement time for metal cutting is determined from a total time on 

test (TTT) plot. 

Some researchers tried to improve the cutting tool life by changing feed rates while the cutting 

speed is constant (Klim et al. 1996; M Balazinski and Mpako 2000; Lin and Shyu 2000), others 

consider the PHM as good model for tool life representation(Mazzuchi and Soyer 1989; V Makis 

1995; Tail et al. 2010). In most of these models, it was assumed that the machining conditions 

have significant effect over the entire tool life but finding tool replacement models is still 

unavailable. The objective of this paper is to find tool replacement optimization models which 

can be used in order to minimize the cost or maximize the availability during turning titanium 

metal matrix composites (TiMMCs) under variable conditions. The PHM is used to model in 

order to find these models. The Cutting speed ( ) and the feed rate ( ) are treated as the models’ 

covariates. In section 2, a brief description of the PHM of a tool operating in variable conditions 

is introduced. In section 3, the optimal replacement policy for minimizing the cost and 

maximizing the availability is described. In section 4, the experimental procedure which was 

carried out in order to collect data that is used for constructing the model is presented. The model 

developed and the final results are presented in section 5. Practical use and sensitivity analysis 

are given in section 6. Concluding remarks are given in section 7. 

5.3 Model description of a tool operating in varying conditions 

In 1907, Taylor (Taylor 1907) developed the classical relationship between tool-life     and 

cutting speed    .The Taylor tool life equation is       , where         are experimental 

constants which depend on the machining conditions,  the material of cutting tool and the part. 

The Taylor’s equation shows that the tool-life is inversely proportional to cutting speed.  Taylor’s 

extended equation including machining conditions namely, the cutting speed   and the feed   is 

given in(Mazzuchi and Soyer 1989).This equation has the following form : 

                                                                                                                                          (1) 

Where       are positive constants. Taylor’s extended equation considers only the machining 

parameters but fails to consider the aging and the progressive wear of the tool’s effect (Mazzuchi 
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and Soyer 1989). In order to take into consideration the tool’s age, the tool life,   is considered a 

random variable. Due to the flexibility of the Weibull distribution, it is extensively used in 

modelling the tool life. The Weibull failure rate for a tool in constant operating conditions, that is 

the speed and feed, is given as follows: 
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)
   

                                                                               (2) 

Where    is the shape parameter,    is scale parameter, In  PHM , the failure rate of the cutting 

tool  is not only dependent the age of the tool, but is also affected by covariates which describe 

the machining conditions(Mazzuchi and Soyer 1989) . Based on (2), The PHM consists of the 

failure rate as the product of a baseline failure rate       , which is dependent only on the age of 

the tool, and on an exponential expression which is the linear sum of          represents the 

covariates of the machining conditions. The failure hazard rate at time     is expressed as in 

equation (3):  

                                         
 

 
(
 

 
)
   

     {∑   
 
   }                                                         (3) 

Using the Weibull model as a baseline function in modelling the tool failure was considered in (V 

Makis 1995; Tail et al. 2010; Mazzuchi and Soyer 1989). This model is sometimes called the 

Weibull parametric regression model. The covariates are the cutting speed ( ) and the feed rate 

( ). The model is given in equation (4), where m=2, 
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)
   

                                                                 (4)           

In this paper, we consider two sates; the normal and the failure states. This latter is defined by the 

tool wear reaching a predefined level               .The survival function can thus be given 

as in equation (5),  

               |      {       }     { ∫         
 

 
}      { (

 

 
)
 

        }    (5) 

Where        is the cumulative hazard function. The survival function        and its derivative 

 ̇                   are  used to estimate the parameters             by using maximum 

likelihood (ML) function(Banjevic et al. 2001). 
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5.4 Optimal replacement Policy 

The classical age replacement strategy recommends replacement the cutting tool at failure, that is 

when the tool wear threshold is reached, or when it reaches a certain age which   minimizes the 

cost per unit time. In the classical strategy, the effect of the covariates are not taken into account. 

In this paper, the effect of the cutting speed ( ) and the feed rate ( ) are taken into consideration. 

The failure hazard rate of the cutting tool is a non-decreasing monotonic function, so the control-

limit is  used to find the minimum expected cost per unit time(Aven and Bergman 1986; Viliam 

Makis and Jardine 1992). The control-limit is a control-limit value (   ). The optimal stopping 

rule is given in equation (6). The stopping rule is often used in condition based maintenance 

CBM as an alarm when uncontrollable covariates reach predefined states. In this paper, it is used 

As follows: 

                                             {             }                                                             (6) 

Where     is the preventive replacement time,   is the difference between the failure replacement 

cost     and the preventive replacement cost  . According to the theory of renewal reward 

processes, the expected cost per unit time can be expressed as 

                                   
                       

    
 

           

    
                                               (7) 

       
   is the optimal cost at which the                    and   

   is the optimal time to 

replace.         is the probability of failure replacement,         is the probability of 

preventive replacement, and           {    }  is the expected replacement time. Optimal 

level    can be found by using the fixed-point iteration procedure (Banjevic et al. 2001; Viliam 

Makis and Jardine 1992) or by using Semi-Markovian Covariate Process(Bergman 1978).  

Similarly, we represent the availability function as in equation (8). 

                             
      

               
 

    

                              
                                  (8) 

When         is the availability. The optimal availability is achieved at   
    the optimal time to 

replacement,    is the time required to perform the preventive replacement, and             

is the time required to perform failure replacement. We note that in equation (8),    is the 
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difference between      , while in equation (6) it is the difference between the failure 

replacement cost and the preventive replacement cost.                                               

The objective is to find   .The replacement function is derived when    is obtained and the 

machining conditions, namely the cutting speed ( ), and the feed rate ( ) are known. The 

replacement function is derived from equation (6) as follow:  

 

                                                                                                                                         (9) 
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)
   

         
  

 
                                             (10) 

                                                                          
            

  
                                               (11) 

                                                                       (
     

  
)                                    (12) 

                                                                                                                                           (13) 

     was defined as a warning function in (Banjevic et al. 2001). The function     =   (      

  )           can be consider as “replacement” function. By calculating an “overall” 

covariate value   , the optimal time to replacement   
   is obtained. 

5.5 Description of the Experiment 

Equipment: A 6-axis Boehringer NG 200, CNC turning center is used in order to conduct 

experiments, as shown in figure (5-1). Tool material: TiSiN-TiAlN nano-laminate PVD coated 

grades (Seco TH1000 coated carbide grades) is used. Workpiece material: A cylindrical bar of 

Ti-6Al-4V alloy matrix reinforced with 10-12% volume fraction of TiC ceramic particles is used. 

Experimental details: The experiments were conducted using full factorial designs with two-

factors, two-level (              and                   ), and using one center point 

(           and              ). Full factorial designs are the most conservative of all 

design types because we try all combinations of the factor settings. Table (5.1) shows the design 

of the experiment in a coded form. Table (5.2) shows all combination of cutting conditions. There 

are 5 runs which were done randomly. Each run was replicated at least 5 times.   
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Table 5.1 : The coded design of experiment             Table 5.2: The design of experiment 

           Factor      

Run                 

Cutting 

Speed 

Feed 

Rate 

Depth 

of Cut 

1 -1 -1 1 

2 1 -1 1 

3 -1 1 1 

4 1 1 1 

5 0 0 0 

 

 

Figure 5-1:The experimental setup 

The cutting tool  fails when the tool becomes dull and no longer operates within acceptable 

quality(Gray et al. 1993). The common way of quantifying the tool time to failure is to put a limit 

on the maximum acceptable flank wear,       . For each tool, sequential inspections were 

conducted in order to measure the wear. The wear is monitored at discrete points of time through 

inspections. The wear is measured after each inspection by using an Olympus SZ-X12 

microscope. The procedure continues until the tool wear threshold (               ) is 

reached. The procedure is replicated for 28 tools.  

      Factor      

Run                

Cutting 

Speed 

(m/min) 

Feed Rate 

(mm/ rev) 

Depth of Cut 

(mm) 

 

4 80 0.35 0.2  

3 40 0.35 0.2  

1 40 0.15 0.2  

2 80 0.15 0.2  

5 
60 0.25 0.2 
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Figure (5-2) shows the wear interpolation procedure in order to calculate the time to failure    , 

the wear evolution between two measurements (    ,      ) is assumed to be linear.     is 

calculated when tool wear threshold (               ) is reached. For example, from Table 

(5.3), by interpolating between the fourteenth inspection at (           ) and the fifteenth 

inspection at (               , and by using equation (14), the time to failure is found to be 

1623.3 sec. This interpolation is repeated for 28 tools. The results for the 28 tools are given in 

Table (5.4).  

                                                             
   

   
 

       

   
                                                     (14)  
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Figure 5-2:Wear interpolating 
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Table 5.3:The experimental results showing the wear of tool 1-1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Inspection 

No 

Time(sec) VB(mm) 

1 0 0 

2 120 0.0525 

3 240 0.06 

4 360 0.065 

5 480 0.0725 

6 600 0.0875 

7 720 0.1075 

8 840 0.1125 

9 960 0.12 

10 1050 0.125 

11 1170 0.135 

12 1290 0.165 

13 1410 0.175 

14 1530 0.1825 

15 1650 0.205 
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Table 5.4: Times to failure TTF for the 28 tools 

Tool ID 

Run-replication 

Time to failure 

sec 

Speed    

m/min 

Feed    

mm/rev 

Tool ID 

Run-

replication 

Time to 

failure 

sec 

Speed    

m/min 

Feed    

mm/rev 

1-1 1623.3 40 0.15 3-5 1230 40 0.35 

1-2 2087 40 0.15 3-6 1006 40 0.35 

1-3 1770 40 0.15 4-1 121.4 80 0.35 

1-4 1524 40 0.15 4-2 87.5 80 0.35 

1-5 1560 40 0.15 4-3 135 80 0.35 

2-1 295 80 0.15 4-4 135 80 0.35 

2-2 267.5 80 0.15 4-5 121.7 80 0.35 

2-3 281.2 80 0.15 4-6 102.5 80 0.35 

2-4 225.3 80 0.15 5-1 233.5 60 0.25 

2-5 252.7 80 0.15 5-2 192 60 0.25 

3-1 1240 40 0.35 5-3 265 60 0.25 

3-2 1002 40 0.35 5-4 190 60 0.25 

3-3 1320 40 0.35 5-5 160 60 0.25 

3-4 1263.3 40 0.35 5-6 185 60 0.25 

5.6 Development the model and results 

The PHM parameters are estimated using Exakt software (Banjevic et al. 2001). The resulting 

hazard function is given as follows in equation (15): 

       
 

 
(
 

 
)
   

         
    

     
(

 

     
)
    

                                                         (15) 

The covariate parameters   = 0.195 and   = 10.86 are the multipliers for cutting speed ( ) and 

the feed rate ( ) respectively in the hazard function. A small value for    parameter does not 
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mean that cutting speed ( )  has a small effect on the hazard function because the covariate 

parameter is multiplied by the covariate value which can be large(EXAKT help Version 4.20.1 

  2007). In order to distinguish between statistically significant and non- significance covariates, a 

formal statistical test is needed. In figure (5-3), statistical Wald test shows in column 5 that the 

cutting speed is more significant than feed rate.  

 

Figure 5-3:Summary of estimated parameters (based on ML method). 

In order to know how the cutting speed and the feed rate affect the hazard rate, a simple 

normalization procedure is done. Since the cutting speed and the feed are in the range 

        and             , respectively,the normalization of the  “overall” covariate will be as 

follow: 

                                                                                   ,                 (16) 

                                                                    ,                 , and 

                                                                                              

                 are called regression coefficients (Montgomery 2007). In our model, it is 

obvious that the effect of cutting speed on cutting tool life is approximately four times more than 

the effect of feed rate.  

In order to validate the model, Kolmogorov-Smirnov test (K-S test) and logarithmic reliability 

function analysis are done.  (K-S test) evaluates the model fit. The test checks the null hypothesis 

that the        in equation (5) is distributed exponentially(P. H. Liu et al. 2001). The summary of 

goodness of fit test is automatically produced in EXAKT as in table (5.5).The test shows that the 

PHM offers a good modeling for the data. 

 

mk:@MSITStore:C:/Program%20Files%20(x86)/EXAKT/EXAKT.CHM::/ajw.html
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Table 5.5: Summary of goodness of fit test results 

Test Observed value P-value PHM Fits Data 

Kolmogorov- 

Smirnov 

0.2266 0.0965714 Not rejected 

 

Figure (5-4) shows the analysis of the logarithmic reliability function (log minus log plot) 

(Kalbfleisch and Prentice 2011). From equation (5), the linear equation for each run will be as 

follow: 

                                          [   (      )]                                             (17)          

The logarithmic reliability function in equation (17) is linear in         and for each run, 

corresponding functions are parallel (Tail et al. 2010).  It is concluded, now, that the PHM-

model’s assumption is satisfied and presented the reliability functions of the cutting tool in the 

range of the cutting speed and the feed rate  

 

Figure 5-4: logarithmic reliability function plot for each run 

Based on equation (15), the failure rates are plotted for each run in figure (5-5). The effect of 

machining conditions on the failure risk is clear when we compare between different runs. For 

example, by comparing between run 1 and run 2 which have the same feeds rates and but 

different speeds,  and also by comparing between run 2 and run 4 which have the same speeds 
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and different feed rates, obviously, the effect of cutting speed is much higher than the effect of 

feed rate.  

 

Figure 5-5: Hazard rate curves for each run 

After determining The PHM, the optimal replacement policy-cost analysis is performed. The 

optimal replacement function is calculated with a cost ratio r = 2 (preventive replacement cost is 

estimated to be $100, and the failure replacement cost is $200, thus K is equal to $100). As 

shown in figure (5-6), the optimal time to replacement   
    can be calculated. The function 

    =   (        )                            is the replacement function, applied to 

an “overall” covariate value                   . 

 

 

Figure 5-6: Optimal replacement function-cost analysis 
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Similarly, we find the optimal replacement function that maximizes the availability. The optimal 

time to replacement   
   is then calculated. The time required to perform preventive 

replacement,           , and the time required to perform failure replacement,          ). 

As shown in figure (5-7), the function     =   (        )                           is 

the replacement function, applied to an “overall” covariate value                   . 

 

Figure 5-7: Optimal replacement function-availability analysis   

In practice, finding optimal replacement policy is generalized. Figure (5-8) shows the sequence of 

finding the optimal replacement   
    in both cases of cost analysis or availability analysis. For 

example, in cost analysis, the procedure is as follows: 

1. Extract the event (tool failure) by sequential inspections for any machining process. 

2. Collect the experimental data in order to build the model  by estimating the parameters of 

the PHM model. 

3. Check the goodness of fit using, for example, Kolmogorov-Smirnov test. 

4. Find        
     hich is the optimal cost where                    , and then find 

the replacement function,     =   (        )           for a  known  costs 

         . 

5. Calculate   
   for current machining conditions (  and  ) by defining the composite 

covariate                     and using the replacement function. 
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Figure 5-8: Finding the optimal replacement time in cost and availability analysis 

5.7 Practical use and sensitivity analysis 

The replacement function is used for a single cutting tool in multitasked machining process under 

variable machining conditions.  For example, the user  may use the tool for machining a part with 

machining conditions (           and              ) for 200 sec, then he/she may want 

to use the same tool for a second machining process with machining conditions (       

    and              ). The question is “Can he/she use this tool for the second machining 

process and for how long he/she can use this tool before replacing it with a new one in order to 

get the cost optimality”. Figure (5-9) answers this question. The first machining process starts at 

point 1 while            and continues horizontally until point 2 (              Since Point 2 
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is below the replacement function curve, the user can used the tool for the second machining 

process which will start at point 3 while          and can go horizontally until it touch the 

replacement function curve (point 4), which gives the optimal time to replacement     
  

           .  The optimal remaining time for the second machining process is    
      

            Obviously, that example shows how user can follow the status of the cutting tool by 

knowing its cutting speed      feed (   , and working age.  
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Figure 5-9:Optimal replacement example-cost analysis 

 

Sensitivity analysis is performed on the cost ratio (r). Figure (5-10) shows the cost ratio 

sensitivity when r = 2 to r = 5. Obviously, the optimal time to replacement is decreasing when the 

cost ratio (r) is increasing. This is very logical because as the difference between the failure 

replacement cost and the preventive replacement cost gets higher, the more frequent preventive 

replacement should be done, thus the new optimal time to replacement will be less than the 

original one, in order to minimize the cost per unit time.  
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Figure 5-10: The cost ratio sensitivity 

5.8 Conclusion 

In this paper, we have introduced two new contribution to the research on tool replacement based, 

which are two optimality models for cost minimization and availability maximization, and we 

applied it to a new generation of composites, namely the TiMMCs. Experimentally, data were 

collected during turning titanium metal matrix composites (TiMMCs) under variable machining 

conditions. The collected data were used to construct the PHM model. The PHM offered a 

statistically good model for the problem. An optimal replacement function was obtained and built 

into a simple chart. While changing the machining conditions, we showed how the user can find 

the optimal time to replacement that optimizes either the machining cost or the availability per 

unit time.  
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6.1 Abstract 

This paper presents a new tool wear monitoring and alarm system that is based on Logical 

Analysis of Data (LAD). LAD is a data-driven combinatorial optimization technique for 

knowledge discovery and pattern recognition. The system is a non-intrusive on-line device that 

measures the cutting forces and relates them to tool wear through learned patterns. It is developed 

during turning titanium metal matrix composites (TiMMCs). These are a new generation of 

materials which have proven to be viable in various industrial fields such as biomedical and 

aerospace. Since they are quite expensive, our objective is to increase the tool life by giving an 

alarm at the right moment .The proposed monitoring system is tested by using the experimental 

results obtained under sequential different machining conditions. External and internal factors 

that affect the turning process are taken into consideration. The system’s alarm limit is validated 

and is compared to the limit obtained when the statistical Proportional Hazard Model (PHM) is 

used. The results show that the proposed system that is based on using LAD detects the worn 

patterns and gives a more accurate alarm for cutting tool replacement.   

Keywords 

Tools wear monitoring, metal matrix composites, Logical Analysis of Data, pattern recognition.  

6.2 Introduction 

In the published literature, tool wear in machining processes is analyzed by two approaches: 

Firstly, theoretical and numerical approach, such as state space methods and finite element 

method (FEM), and secondly, data-driven approach, such as artificial neural network (ANN) and 

fuzzy logic (Shi and Gindy 2007). Li (Li 2012) presented an exclusive review of tool wear 

estimation using theoretical analysis and numerical simulation technologies. Sick (Sick 2002) 

presented an exclusive review of indirect online tool wear monitoring in turning with ANN as an 

example of data-driven technique. By indirect, we mean that researchers usually measure 

covariates (variables) which are indirectly correlated with tool wear such as the cutting forces. 

These forces are measured on-line during machining process. There are hundreds of researches 

about tool wear monitoring system. Nevertheless, only a few systems found their way to real 

industrial application (Jemielniak 1999). The tool wear monitoring systems development is still 

on-going attempt (Sick 2002). Byrne et al (Byrne et al. 1995) presented a review about utilization 
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of these systems in industry. Another review about commercial tool monitoring systems was 

done by  (Jemielniak 1999). 

Due to the availability of sensory signals, data-driven approach has received much attention to 

build on-line tool wear monitoring systems. Data-driven techniques need training stage to learn 

how to adjust adaptively to the data without statistical distribution. Once learning stage is 

accomplished and validated, the system can detect worn pattern correctly. (Damodarasamy and 

Raman 1993) developed an inexpensive system for classifying tool wear states using pattern 

recognition. Despite that the accuracy of classification was relatively small; they concluded that 

pattern recognition can be successfully used to predict the status of cutting tool wear. They 

combined the feed force, radial force and the root mean square of acoustic emission (AE) signals 

to predict the tool wear. In (Shi and Gindy 2007), the tool wear predictive model is presented by 

combination of least squares support vector machines and principal component analysis 

technique. The platform of PXI and LabVIEW were used to develop the system. (S 

Purushothaman and Srinivasa 1994) developed a model for classifying a worn-out tool and a 

fresh tool. They used ANN for building a model. (Kang et al. 2007) developed a method of 

pattern recognition of tool wear based on discrete hidden Markov models. The results showed 

that the proposed method is effective. All techniques which used pattern recognition for 

classifying tool wear states are based on assumptions related to the data structure. In this work, 

the proposed technique, LAD is not based on any assumptions or statistical techniques. It is used 

for the first time in tool condition monitoring.  In this paper, our objective is to report and discuss 

the results obtained experimentally. 

In the following experiments, the workpiece material is Ti-MMCs which have been well 

employed in various industrial fields such as biomedical and aerospace. The high strength 

associated with Ti-MMCs leads to rapid cutting tool wear rate. The poor condition of the tool 

may leave bad effect over the dimensions and the surface finish of the product causing it to be 

scrapped. The scrapping of product increases the machining process’ cost, especially when the 

workpiece material is very expensive which is the case of Ti-MMCs. On the other hand, 

replacing the cutting tool earlier  than necessary will cause the loss of valuable resources (Tail et 

al. 2010). In general, and regardless of the tool replacement costs, the implementation of accurate 

on-line tool wear monitoring provides a cost-effective solution to the problem of determining the 

best tool replacement moment.  
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In this paper, we differentiate between two types of covariates; internal (diagnostic) covariates, 

which carry direct information about the wear process, and external (environmental or/and 

machining conditions) covariates, which affect the wear process (W. Wang 2004; Kalbfleisch and 

Prentice 2011; Banjevic et al. 2001). In machining, external covariates may be controllable, and 

has predefined determined path such as cutting speed, feed rate, depth of cut, tool geometry, 

contact angle, tool material, and workpiece material (H. Liu 1997). External covariates may also 

be uncontrollable such as the ambient temperature and air humidity in the laboratory(W. Wang 

and Hu 2006). Internal covariates are observed by on-line monitoring of time dependant factors 

such as cutting forces, cutting temperatures, progressive wear, acoustic emissions and vibration 

signals. Combination of internal and external covariates was used before in order to develop 

accurate model. Azouzi and Guillot (Azouzi and Guillot 1997) show that the combination of feed 

rate, depth of cut,  radial force, and feed force in turning process provided accurate  model in on-

line estimation of surface roughness and dimensional deviations. Their fusion model was built 

using neural network.  

In this paper, we implement tool wear monitoring system based on LAD during turning TiMMCs 

under variable conditions. The platform of PXI and LabVIEW were used to develop the tool wear 

alarm system. In section 6.3, a brief description of LAD is introduced. In section 6.4, the 

experimental procedure which is peformed in order to collect the data that is used for 

constructing the system is presented. In section 6.5, knowledge extraction and learning from the 

data is carried out in order to train the system. The Proportional Hazards statistical model (PHM) 

is presented in section 6.6. In section 6.7, the on-line alarm system that is based on LAD is 

described, and a comparison with the PHM alarm function is made. Discussion and concluding 

remarks are given in section 6.8. 

6.3 Logical analysis of data (LAD) 

LAD is a data-driven combinatorial optimization technique that allows the classification of 

phenomena based on pattern recognition. LAD is applied in two consecutive stages, training or 

learning stage, and the testing or the theory formation stage. In learning stage, a part of the data is 

used to extract special patterns of some phenomena. In testing stage, the remainder of the data is 

used to test the accuracy of the previously learned knowledge. LAD is based on supervised 

learning; this means that the data used in the learning stage must be labeled before analysis. That 
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is, each observation belongs to a known class. In this work, we have two classes of cutting tool: 

worn-out tool, and a fresh tool. Each observation carries the values of the covariates and a label. 

The covariates are internal and external. The internal covariates are the radial force (  ), the feed 

force (  ), and the cutting force (  ). The external covariates are the cutting speed ( ), and the 

feed rate ( ). After accomplishment of the two phases of learning and testing, worn patterns, 

which represent the worn-out tool condition, and fresh patterns which represent the normal 

condition are found by LAD. The worn patterns are used in order to develop tool wear 

monitoring model. This model is later incorporated in the platform of PXI and LabVIEW in order 

to monitor the tool wear on-line, and to give an alarm when the tool worn patterns are detected.  

In (P.L. Hammer and Bonates 2006) , LAD overview is introduced by the group of researchers at 

Rutgers University. LAD methodology was compared to other techniques of machine learning 

(P.L. Hammer and Bonates 2006; Soumaya Yacout 2010). It was concluded that LAD has certain 

advantages over other techniques. For example, since it is a non-statistical approach; it does not 

need any prior assumptions regarding the posteriori class probabilities. It also has the advantage 

of giving the user the ability to track back any results (phenomena or effects) to its possible 

causes.  It is often used as two-class classification technique (Bores et al. 2000). The observations 

are classified as either positive (fresh,             or negative (worn-out,              LAD 

generates collections of patterns which characterizes each class. These patterns represent 

interactions between variables (internal and external covariates) in each class, fresh or worn out, 

separately. The patterns are called worn patterns when they describe the worn-out tool condition, 

and fresh patterns when they describe normal wear condition After the learning stage, LAD can 

classify any new observations that are not included in the original dataset (Bores et al. 2000).  

LAD has three steps: binarization of data, pattern generation, and theory formation. Data 

binarization is the process of transformation of data into a Boolean database. The binarization 

step involves the transformation of the training data to binary data using a binarization technique 

which is discussed in (Bores et al. 2000). This technique substitutes each numerical variable by at 

least one binary attribute. For example, binarization of a continuous numerical variable    is done 

by ranking, in ascending order, all the distinct values of the numerical variable   as follows: 

                        
   

   
   

     
                                                                                       (1) 
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Where   the total number of is distinct values of the variable   and   is the total number of 

observations in the training set. The cut-points      , where j is the number of cut points for each 

variable, are found between each pair of values that belong to different classes. By using equation 

(2), the cut-points are calculated as follows: 

                              
      

                                                                                                  (2) 

Where   
       and   

         or vice versa. A binary attribute b is then formed from each 

cut-point. Each cut-point         has a corresponding binary attribute      
 with defined value:  

                            
 {

                   

                   
                                                                                      (3) 

The second step of LAD consists of pattern generation. It is the key building block in LAD 

knowledge extraction. There are many techniques for pattern generation such as enumeration 

(Bores et al. 2000), heuristics (Peter L Hammer 1986; P.L. Hammer and Bonates 2006), and 

linear programming (Ryoo and Jang 2009). Here, We follow the pattern generation technique 

which has been proposed in (Ryoo and Jang 2009), The authors convert the pattern generation 

problem to a set covering problem which is solved by mixed integer linear programming (MILP). 

It should be noted that using linear programming to generate patterns does not mean that LAD 

uses a mathematical linear model in order to separate between the worn and the fresh conditions. 

The LAD based knowledge extraction technique is highly non-linear, and can extract knowledge 

from highly non separable data (M.-A. Mortada et al. 2011). A positive (negative) pattern is 

defined as a conjunction of some of binary attributes which is true for at least one positive 

(negative) observation and false for all negative (positive) observations in the training data set. 

The number of binary attributes used to define the pattern is called the degree of a pattern. For 

example, pattern p of degree   is a conjunction of   attributes. A pattern covers an observation in 

the training set if and only if  it is true for that particular observation (Bores et al. 2000).  

Theory formation or testing stage is the final step in the LAD decision model. A discriminant 

function, such as the one given in equation (4), is formulated to generate a score ranging between 

-1 and 1. When the output of a discriminant function is a negative value that means that the tested 

observation belongs to the negative class, and positive otherwise. Zero value means that LAD 

cannot   classify the observation (M.-A. Mortada et al. 2011).  
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                     ∑  
   

     ∑  
   

    

  

   

  

   

                                                                                     

Where        is the number of positive (negative) patterns that are generated,   
    (  

    )   

is equal to 1 if pattern ( i ) covers observation O, and is equal to zero otherwise,   
    

    is the 

weight of the positive (negative) pattern    
    

   . The weight represents the proportion of 

observations that are covered by the pattern. High weight indicates that the pattern covers higher 

number of observation, thus it is a better indicator of the class to which the observation belongs. 

The calculated value of      of any new observation gives an indication to whether the 

observation belongs to fresh or worn-out class. In order to measure the accuracy, the quality of 

classification ( ) is used.  

                                           

                                       
   

 
 

   

 
                                                                                                                

Where the values (a) and (b) represent the proportion of observations, positive and negative, 

which are correctly classified. The values (c) and (e) represent the proportion of observations, 

positive and negative, which are unclassified. 

6.4 Description of the Experiment 

The experiment was conducted in the machining laboratory at École Polytechnique de Montréal. 

As shown in figure (6-2), A 6-axis Boehringer NG 200, CNC turning center is used in order to 

conduct experiments. A TiSiN-TiAlN nano-laminate PVD coated grades (Seco TH1000 coated 

carbide grades) is used. A cylindrical bar of Ti-6Al-4V alloy matrix reinforced with 10-12% 

volume fraction of TiC ceramic particles is used. Cutting forces are measured using 3-component 

dynamometer. Forces directions during turning are shown in figure (6-1). The signals are passing 

through Multichannel charge amplifier and then collect by national instruments acquisition board 

(PXI 1000B). The experiments were conducted using full factorial design with two-factors, two-

level speed (                and                         ), and using one center point 

(           and              ). Table (6.1) shows the design of the experiment .There 

are five runs which were done randomly. Each run was replicated at least 5 times. Each 

replication uses a new tool on which sequential inspections are performed in order to measure the 
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wear. The wear is measured at discrete points of time through inspections using an Olympus SZ-

X12 microscope. The procedure continues until the tool wear reached predefined threshold 

(               ). This procedure is repeated for 28 tools.    

 

Figure 6-1: Forces directions during turning 

Table 6.1: Design of experiment 

Run Cutting 

Speed 

( )  

(m/min) 

Feed Rate 

( ) 

 (mm/ rev) 

Depth 

of Cut 

 (mm) 

Number of 

replications  

 1 40 0.15 0.2 5 

2 80 0.15 0.2 5 

3 40 0.35 0.2 6 

4 80 0.35 0.2 6 

5 60 0.25 0.2 6 
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Figure 6-2: Schematic diagram of experimental setup 

6.5 Knowledge extraction and learning 

The cutting tool is failed when the tool is getting dull and no longer operates with acceptable 

quality (Gray et al. 1993). Predefining threshold on the maximum acceptable flank wear 

                is a common way of quantifying the tool time to failure. The cutting tool 

fails after reaching the worn-out stage. The majority of publications classify tool wear only in 

two classes (Sick 2002). Two classes classification is all what we need if only fresh and 

significantly worn-out tools are our concern. Adjacent wear classes are defined by putting 

classification limit. In this work, we put the classification limit as                As such, 

0.5 mm is kept as safety margin between fresh and worn-out stages. The same idea was taken by 

Rangwala (Rangwala 1988). He considered a classification limits to distinguish between fresh 

and worn-out tools. That classification limit is also chosen because, in some cases where the 

velocity is high, progressive wear is rapidly evolving and there is just one observation for wear 

value above 0.15 mm (i.e. before the tool fails).  
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Figure 6-3: Wear classification and failure threshold 

Table 6.2: Experimental data of tool 1, replication 2 

Inspection 

(observation) 

No 

(  ) 

Tool ID 

Run-replication 

Time 

sec 

Wear 

 

mm 

Class 

 

{1,2} 

Speed 

    

m/min 

Feed 

    

mm/rev 

Radial 

force 

(  ) 

N 

Feed 

force 

(  ) 

N 

Cutting 

force 

(  ) 

N 

1 1-2 140 0.070 1 40 0.15 140.2 52.7 108.1 

2 1-2 280 0.080 1 40 0.15 152.1 56.6 106.8 

3 1-2 440 0.090 1 40 0.15 155.6 62.9 122 

4 1-2 580 0.095 1 40 0.15 158.1 61.9 122.1 

5 1-2 720 0.103 1 40 0.15 172.1 66.3 125 

6 1-2 860 0.108 1 40 0.15 194 72.1 128.9 

7 1-2 1000 0.113 1 40 0.15 215.1 75.9 139 

8 1-2 1140 0.115 1 40 0.15 244.6 71.1 135.2 
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Table 6.3: Experimental data of tool 1, replication 2 (continued) 

9 1-2 1280 0.120 1 40 0.15 268.5 77.7 143.4 

10 1-2 1420 0.140 1 40 0.15 318.6 106.8 167.1 

11 1-2 1492 0.145 1 40 0.15 319.9 84.1 160.7 

12 1-2 1632 0.153 2 40 0.15 340.5 86.5 164.4 

13 1-2 1772 0.160 2 40 0.15 354.2 88.7 167.5 

14 1-2 1912 0.165 2 40 0.15 391 102.7 176.7 

15 1-2 2112 0.21 2 40 0.15 467.10 103.40 169.80 

Figure (6-3) shows the failure threshold and the classification limit. We have two classes: fresh 

tool          , and worn-out tool             Data is collected for each replication (tool) and then 

classified into one of the two classes. For example, table (6.2) shows the classified experimental 

data of tool 1-2. This classification procedure is repeated for the 28 tools.  

The software cbmLAD (c. Software 2012) is used, in order to extract the positive and negative 

patterns from the collected data, and then to train LAD to detect automatically the worn patterns, 

. The data from column 5 to column 10, in table (6.2), for 28 tools is used to find worn pattern 

using LAD technique. The variables are the external and internal covariates: cutting speed ( ), 

feed rate ( ), radial force (  ), feed force (  ), and cutting force (  ), as shown in Table (6.3). 

Table 6.4: Worn patterns 
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The data is also divided into two distinct spaces, one for fresh tool (class 1) when      

        , and one for worn-out tool (class 2) when              . Set O of the 273 

observations is also divided into two sets of training, L, and testing, T. In this paper, tenfold cross 

validation procedure is conducted. As such, all the data (273 observations) is divided randomly 

into 10 sets of data, in which each class is represented in approximately the same proportion as in 

the full dataset. Each part is held out in turn, and the learning process is applied on the remaining 

nine-tenths of the data; then the quality of classification is calculated on the holdout (or testing) 

set. Thus, the learning procedure is repeated 10 times with different training sets. The results 

show that the quality of classification    = 97.2 %. Table (6.3) exhibits the worn patterns found 

by the software cbmLAD (c. Software 2012). The obtained five worn patterns are pure pattern. 

By pure, we mean that all five worn patterns don’t cover any observation in fresh tool space. 

These patterns will lead us to build the on-line tool wear alarm system that is described in section 

6. 

6.6 The Statistical Proportional Hazards Model (PHM)  

A Proportional Hazards Model (PHM) of the wear process is developed from the obtained 

experimental data. The alarm limit which is obtained from this model is compared to LAD on-

line alarm system. Many researchers consider the PHM a good model for cutting tool life 

representation (Mazzuchi and Soyer 1989; V Makis 1995; Tail et al. 2010). In order develop the 

PHM, time to failure for each tool is required. We calculate the time to failure     by 

interpolating between two measurements around the failure threshold.     is calculated when 

tool wear threshold (               ) is reached. For example, in Table (6.2), experimental 

results show wear evolution of tool 1-2 and by interpolating between the fourteenth inspection at 

(                          ) and the fifteenth inspection at (                 

        , the time to failure is found to be 2087 sec. This interpolation is repeated for the 28 

tools. The results are given in Table (6.4). 
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Table 6.5: Times to failure for the 28 tools 

Tool ID 

Run- 

replication 

Time to  

failure 

sec 

 Tool ID 

Run- 

replication 

Time to  

failure 

sec 

 Tool ID 

Run- 

replication 

Time to  

failure 

sec 

 Tool ID 

Run- 

replication 

Time to  

failure 

sec 

1-1 1623.3  2-3 281.2  3-5 1230  4-6 102.5 

1-2 2087  2-4 225.3  3-6 1006  5-1 233.5 

1-3 1770  2-5 252.7  4-1 121.4  5-2 192 

1-4 1524  3-1 1240  4-2 87.5  5-3 265 

1-5 1560  3-2 1002  4-3 135  5-4 190 

2-1 295  3-3 1320  4-4 135  5-5 160 

2-2 267.5  3-4 1263.3  4-5 121.7  5-6 185 

 

The concept of a PHM is that the failure rate of the cutting tool is not only dependent on the age 

of the tool, but is also affected by the internal and external covariates. As such, the failure rate 

consists of the product of a baseline failure rate       , which is dependent only on the age of the 

tool, and a positive exponential function                {∑   
 
    ∑   

 
   }   where 

        represent the number of external and internal covariates, respectively,         

represent the values of each external and internal covariate respectively, and         represent 

the weight of each external and internal covariate. In general, the PHM is used to incorporate the 

internal and external covariates into the reliability modelling (H. Liu 1997; W. Wang 2004). The 

failure hazard rate at time      is expressed as in equation (6):  

 

                                                                                                                        (6) 

We consider the Weibull distribution as a baseline function. It is used extensively in modelling 

the tool failure (V Makis 1995; Tail et al. 2010; Mazzuchi and Soyer 1989). The failure hazard 

rate is written as: 
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   }                                           (7) 

Where    is the shape parameter,    is scale parameter. The conditional survival function can thus 

be given as in equation (8).       

                                       |        { ∫           
 

 
}                                        (8) 

The conditional survival function          , and its derivative  ̇                         

are  used to estimate the parameters                by using the maximum likelihood 

function(Banjevic et al. 2001). EXAKT software estimates the PHM parameters as shown in 

figure (6-4).   

 

 

Figure 6-4: Summary of estimated parameters (based on ML method) 

The column entitled “Sign.” indicates whether the corresponding covariate was found to be 

significantly related to failure so the “Parameter” is significant (Y), or otherwise non-significant 

(NS). The cutting speed ( ), the radial force (  ), and the cutting force (  ), are designated as 

significant (at this point in the analysis), while the feed ( ), and the feed force (  ) are not. Note 

that the feed force (  ) has the lowest Wald Test result which represents the relative probability 

that feed force (  ) has no significant impact on the risk of failure. The Wald Test is used to test 

if an independent variable has a statistically significant relationship with the risk of failure 

(dependant variable). The PHM model with all significant variables is found by eliminating the 

variables whose impact on the probability of failure is low. The final PHM model is shown in 

figure (6-5)  
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Figure 6-5: The model with only the significant variables (the best model to be used) 

In the final PHM, the external covariate is the cutting speed ( ). The internal covariates are the 

radial force (  ), and the cutting force (  ). The resulting hazard function is given in equation (9), 

where        .  

 

                                          
 

 
(
 

 
)
   

                                                              (9)    

                          
    

      
(

 

      
)
    

                                

The PHM concluded that the effects of the radial force and the cutting force are higher than the 

effect of the feed force on the progressive flank tool wear. This same conclusion was reached by 

the results of  Huang and Liang in (Y. Huang and Liang 2005).  EXAKT produces also the 

Kolmogorov-Smirnov test which evaluates the model fit. The summary of this goodness of fit 

test is shown in table (6.5).The test shows that the PHM offers a good modeling for the data. 

Table 6.6: Summary of goodness of fit test results 

Test Observed value P-value PHM Fits Data 

Kolmogorov- 

Smirnov 

0.200435 0.186612 Not rejected 

EXAKT gives a control-limit,       which  is used in order to find the minimum expected 

machining cost per unit time (Aven and Bergman 1986; Viliam Makis and Jardine 1992). . The 

optimal stopping rule, in equation (10), is often used in condition based maintenance (CBM) as 

an alarm to when the tool should be replaced. 

                                                 {               }                                                   (10) 
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where     is the preventive replacement time. The expected cost per unit time is expressed as: 

                                
                       

    
 

           

    
,                                               (11) 

where    is the preventive replacement cost, and        is the failure replacement cost. 

       
   is the optimal cost at which the                     and   

   is the optimal time to 

replace the tool.         is the probability of a replacement due to failure ,               is 

the probability of a preventive replacement.           {    }  is the expected replacement 

time. Optimal level    can be found by using the fixed-point iteration procedure (Banjevic et al. 

2001; Viliam Makis and Jardine 1992), or by using Semi-Markovian Covariate Process 

(Bergman 1978). The warning function is derived when    is obtained. The warning function is 

derived from equation (10) as follow:  

                                                                                                                                     (12) 
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                                                                                                               (15) 

                                                             ,                                                                              (16) 

where      (
     

  
)                   , and      =             is the warning 

function (Banjevic et al. 2001).  

6.7 LAD on-line alarm system development and comparison with 

the PHM alarm function 

 

The target is to build tool wear alarm system in order to detect the worn-out condition of the 

cutting tool, based on external and internal covariates’ measurements. In figure (6-6), a schematic 

diagram shows how LAD on-line alarm system works. Off-line analysis is done in order to obtain 

the worn patterns as shown in section 4. In other words, the learning stage is done off-line. The 

worn patterns are then incorporated in LabVIEW software to build the alarm system. The 
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operator defines the suitable cutting speed in the range of (                   and the feed 

rate in the range                         ). The cutting forces are measured during the 

turning process, and are transmitted to the alarm system. Upon the appearance of any worn 

pattern, the cutting tool should be replaced by the operator. Color-coded lamp instructs operator 

either to continue with the turning process, or to stop and change tool. 

 

           
                                                  

                
    On-line analysis

      Off-line analysis

Worn Patterns

LAD On-line
Alarm System SpeedCutting Forces 

cbmLAD Historical
Data

Feed

Operator

Keep Working Change Tool

ONOFF

Turning Machine

  

Figure 6-6: Schematic diagram for LAD on-line alarm system 

The platform of PXI and LabVIEW were used to develop the on-line alarm system. The on-line 

alarm system detects the first appearance of a worn pattern, and gives alarm to the operator 

instructing him/her to stop the turning process and replace the cutting tool. The detected worn 

pattern number, and the tool working age are also indicated to the operator through labVIEW 

front panel. Color-coded lamp is incorporated to the front panel to alarm the operator when any 

worn pattern is detected. Additionally, the acquired forces data, the cutting tool working age, and 

the detected patterns are saved to the hard disk, with an automatically generated filename 

according to the time and date. Figure (6-7) shows a snapshot of the on-line alarm system front 

panel. 
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Figure 6-7: On-line alarm system front panel. 

28 cutting tools (replications) were used to collect the data as discussed earlier and the data for 

each tool were stored. One replication from each of the 5 runs was chosen for testing the on-line 

alarm system. Replications (1-5), (2-5), (3-6), (4-6), and (5-6) were used for validation. For each 

replication, the covariates’ measurements are transmitted to LAD’ alarm system. The system has 

the worn patterns stored during the off-line learning stage. For each transmitted set of 

measurements the system search for worn patterns until color-coded lamp turns to red, when 

worn pattern is detected. Data report is automatically generated and saved. The report shows the 

tool working age, the detected worn pattern, and the corresponding covariates’ values. At these 

values, the value of flank wear is listed in table (6.6). All data shows that the alarm system 

detects worn patterns before reaching the predefining threshold on the maximum flank 

wear                 and around the classification limit of 0.15 mm.     
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Table 6.7: Replacement decision for PHM-model and LAD alarm 

System’s alarm readings Validation Comparison 

Tool 

ID 

 

Run-

replication 

Speed 

    

m/min 

Feed 

    

mm/rev 

Radial 

force 

 (  ) 

N 

Feed  

force 

(  ) 

N 

Cutting 

 force 

(  ) 

N 

LAD on-line alarm 

system 

PHM- model 

Working age 

sec 

TTF 

 

Experimental 

sec 

Working 

age 

sec 

Wear 

mm 

Worn 

Pattern 

NO 

r=2 r=1.5 r=1 

1-5 40 0.15 401.2 68.3 145.2 1380 0.172 2 597 1020 937.7 1560 

2-5 80 0.15 408.7 81.6 144.1 220 0.155 2 9 16 937.7 252.7 

3-6 40 0.35 528.3 96.6 227.7 910 0.16 1 199 340 937.7 1006 

4-6 80 0.35 522.4 139.6 243.2 90 0.15 1 5 9 937.7 102.5 

5-6 60 0.25 368.1 91.3 97.5 135 0.153 2,3,4 72 123 937.7 185 

 

Table (6.6) shows also the remplacement decision for the PHM based on its warning function. 

Each row has details of the detected worn pattern and corresponding values of machining 

conditions, cutting forces, cutting tool working, and flank wear value. In order to compare these 

results, the recommended optimal time to replacement is calculated by using the covariates’ 

values in each row. The recommended optimal replacement time according to certain covariates’ 

values using PHM (columns 10 and 11 in table (6.6)) are calculated using equation (17) which is 

derived from equation (16). 

                                            
       {

     

   
}                                                                                      (17) 

For example, in replication (1-5), if the cutting speed is (          ), the radial force is 

(          ), and the cutting force is (          ),    is 10.57. According to equation (17), 

and considering a cost ratio r=2 (preventive replacement cost     is $100, and the failure 

replacement cost       is $200),   
   will be 597 sec., where                        . 

Similarly,   
    1020 sec when r=1.5 (      ,           ), and          .  
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When r=1, the warning function      is meaningless because     . As such, the expected 

replacement time      becomes the replacement time only at failure which is calculated from 

equation (11) as                            
                        = 937.7 sec.  

6.8  Discussion and Conclusion 

In order to compare LAD’s alarm system to the PHM statistical warning function, we compare 

between columns 7,  10, 11, 12, and 13. For example in replication (1-5), the  tool’s working age 

when the alarm was given is 1380 sec, the PHM warning time when r=1 is 937.7 sec, and the real 

experimental time to failure is 1560 sec. LAD used 88.46% of the tool life  and the PHM used 

38.26%when r=2, and used 65.38% when r=1.5.  LAD is not affected by the value of cost ratio. 

In contrast, the statistical model will be more conservative when cost ratio is increasing because 

the statistical optimal time to replacement is decreasing. When the cost ratio is increasing, in 

order to minimize the cost per unit time, more frequent preventive replacement is recommended. 

When r=1, that is the cost effect is eliminated, the PHM recommended the run to failure, and in 3 

cases out of 5 the tool failed before that time. This means that when we omit the effect of the cost 

ratio (putting r=1) and the warning function in the statistical PHM, LAD alarm system is still 

more accurate, in the sense that it is closer to reality. 

The tool working ages for the 5 replications are listed in table (6.6) for both the LAD alarm’s 

system and the statistical PHM. In both LAD and PHM models, run (2-5) and run (4-6) have very 

low replacement time (columns, 7 10, and 11).This concludes that using carbides tool is not 

recommended when  machining MMC at high speed, the same conclusion was also found before 

in (Kannan et al. 2006; Tomac et al. 1992). All five replications show that the statistical model is 

more conservative than LAD’s alarm system based on pattern recognition. By conservative, we 

mean that PHM is replacing the cutting tool earlier than necessary, and consequently will cause 

loss of the valuable resource.  

Moreover, we compare the five replications in EXAKT decision charts when r=2. Decision chart 

is built by plotting warning function. By defining the tool working age and the composite 

covariate   , the optimal decision is to determine whether the tool should be replaced 

immediately (the red area in figure (6-8)), or should be kept operating and be inspecting at the 

next inspection time (the green area), or should we keep operating but expect to replace before 
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the next inspection time (the yellow area). Each replication was examined by using the previous 

experimental data in order to compare graphically between what the PHM decision model would 

have recommended for replacement tool and what LAD’s alarm system would have 

recommended for replacement tool. The decisions are shown in figure (6-8).  In figure (6-8-f), all 

LAD alarm decisions for the five tools are above the warning function      (the blue curve). This 

means that LAD gives an alarm to change the cutting tool at a higher working age than the 

statistical model. Obviously, in these cases, the LAD alarm system was capable of making the 

best action at the right moment. By best action we mean that replacement occurs before tool’s 

failure and without losing much resource.  

We recapitulate the discussion in the following: Statistical warning function      is plotted to 

differentiate between two decisions’ areas the green area for ‘keep working’, and the red area for 

‘replace immediately’). Both decisions are based on the assumption of a statistical goodness of fit 

of a suitable hazard function, and the costs’ ratio. LAD alarm points which are given in red in 

figure (6-8-f), are based on pattern recognition. As such, LAD replacement decision gave 

warning alarm before the tool wear reached the maximum flank wear                 and 

without losing valuable resource due to early replacement. LAD can detect worn patterns on-line 

and in real time by monitoring covariates over time. In order to give accurate results, the only 

important requirement for using LAD is the availability of a database that represents accurately 

the phenomena under study. This is also a valid requirement for any statistical analysis and 

modelling. 

In this paper, a new on-line tool wear alarm system based on LAD is developed. The alarm 

system is constructed based on data collected during turning titanium metal matrix composites 

(TiMMCs), under changeable machining conditions.The platform of PXI and LabVIEW were 

used to develop the alarm system. The LAD alarm system is validated by comparing it to the 

PHM warning function. The results show that the proposed alarm system detects the worn 

patterns and gives ‘warning alarm’ in order to replace the cutting tool at a working age that is 

relatively closer to the actual observed failure time. 

In future work, the performance of the alarm system will be improved by including additional 

variables, such as vibration signal, acoustic emissions, and cutting temperatures. In order to 

distinguish between different tool wear phases, a multi-class LAD technique will be tested. The 
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quality of the detected patterns will be improved, and non-pure patterns which can cover more 

than one class will be used, and give more details about the characteristics of LAD’s patterns. 

Moreover, cbmLAD and our alarm system will be incorporated in a computer numerical control 

(CNC) machine; therefore, the learning stage can be done on-line thereby eliminating the need 

for off-line analysis.     
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A)PHM decision and LAD alarm decision for tool 1-5 B)PHM decision and LAD alarm decision for tool 2-5

C)PHM decision and LAD alarm decision for tool 3-6 D)PHM decision and LAD alarm decision for tool 4-6

E)PHM decision and LAD alarm decision for tool 5-6  F)LAD alarm decision for five tools

LAD alarm LAD alarm

LAD alarm
LAD alarm

LAD alarm

 

Figure 6-8: Replacement decision for PHM-model and LAD alarm (r=2) 



121 

 

CHAPTER 7 ARTICLE 5:  TOOL REPLACEMENT BASED ON 

PATTERN RECOGNITION WITH LOGICAL ANALYSIS OF DATA 

Yasser Shaban, Soumaya Yacout, Marek Balazinski 

Accepted in:  

The 61
st
 Annual Reliability and Maintainability Symposium (RAMS2015) 

  



122 

 

7.1 Summary and conclusion 

While traditional maintenance cost optimization is based on finding the reliability, and thus the 

probability of failure over time, in this paper, we show how to exploit condition monitoring data 

in machining operation in order to extract intelligent knowledge, and use this knowledge to 

determine the tool replacement time. This work is motivated by the increasing use of sensors in 

general, and specifically in condition monitoring. We show how the large volume of data that is 

now available in many industrial sites can give indications to the machining’s operator in order to 

replace the tool. We use a methodology called Logical Analysis of Data (LAD). This 

methodology enables us to extract meaningful patterns that describe the state of the tool’s wear, 

based on monitoring and measuring the cutting forces. Unlike the traditional experts’ rule-based 

methods, the extracted patterns are not based on experts’ opinion, but on information and hidden 

relations between the monitored forces.  

We apply our methodology on data obtained from experiments that are conducted in the 

laboratory. The experimental data are collected during a turning process of titanium metal matrix 

composites (TiMMCs).  These are new generation of materials which have proven to be viable in 

various industrial fields such as biomedical and aerospace, and they are very expensive.  

In order to validate our methodology, we compare the results obtained when applying LAD to 

those obtained by using the well-known statistical Proportional Hazards Model (PHM). Findings 

and conclusion are given in the paper. 

7.2 Introduction 

TiMMCs have light weight and high strength which are suitable for aerospace industry to 

improve performance of aircraft. TiMMCs have high wear resistance, and they cause high wear 

rate on cutting tools. Progressive tool wear is the main cause of tool failure. Due to the fact that 

tool failure represents about 20% of machine down-time, and due to the high cost of machining, 

finding optimal tool replacement time is thus fundamental. The poor condition of the tool may 

leave negative effect on product quality in terms of dimensions, and surface finish. Therefore, 

product may be scrapped. When the material is very expensive such as Ti-MMCs, product 

scrapping causes an increase in the cost of machining. If the tool is replaced earlier than 

necessary, valuable resources will be lost (Tail et al. 2010).  
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Some researchers developed statistical methods based on pattern recognition to classify and 

monitor tool wear states. For example, (Damodarasamy and Raman 1993) developed a system for 

classifying tool wear states using pattern recognition. (Kang et al. 2007) developed a method of 

pattern recognition of tool wear based on discrete hidden Markov models. (S Purushothaman and 

Srinivasa 1994) developed a model for classifying a worn-out tool and a fresh tool using 

Artificial Neural Networks (ANN). 

Using PHM in modeling cutting tool life is presented in (Shaban et al.). Many researchers 

consider internal covariates to model cutting tool life. Cutting forces, cutting temperatures, 

progressive wear, acoustic emissions and vibration signals are considered as internal covariates. 

For example, (H. Liu and Makis 1996) used PHM while considering the machining conditions as 

covariates, and they derived a formula to assess  the tool reliability under variable cutting 

conditions. (P. H. Liu et al. 2001) used the PHM and stochastic dynamic programming for 

finding  the optimal tool replacement times in a flexible manufacturing system. Tail et al (Tail et 

al. 2010)  used a PHM to model the tool’s reliability and hazard functions considering cutting 

speed as the model’s covariate.  

In this paper, the objective is to develop decision policy in cutting tool replacement using 

condition monitoring data in machining operation. We consider pattern-based technique using 

LAD, and we compare it to three statistical-based optimization models, namely cost optimization, 

availability optimization, and cost-availability optimization. In section 2, the experimental 

procedure is presented. In section 3, LAD is introduced. In section 4, the optimal replacement 

policies, and the decision rule are discussed.  

7.3  Experiment description 

The experiments were conducted in machining laboratory at École Polytechnique de Montréal. 

Experiment details are shown in table (7.1). Cutting forces signals are measured using 3-

component dynamometer, which is connected to multichannel charge amplifier. The signals are 

then collected by national instruments acquisition board (PXI 1000B). In order to ensure 

adequate tool life, we limited the experiments to low cutting speed during turning metal matrix 

composites with carbides tools. The experiments were conducted, at low constant cutting speed 

(           , small constant depth of cut (          , and two feed rate (  
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            and              ). At each feed rate, five experiments with five new tools 

were done. Figure (7-1) shows the experimental setup.  

Table 7.1:Experiment details 

Workpiece 

material 

A cylindrical bar of Ti-6Al-4V 

alloy matrix reinforced with 10-

12% volume fraction of TiC 

ceramic particles 

Tool 

material 

TiSiN-TiAlN nano-laminate 

PVD coated grades (Seco 

TH1000 coated carbide grades) 

Equipment A 6-axis Boehringer NG 200, 

CNC turning center 

In figure 2, for each of the ten tools that are used, the wear and the forces are measured at 

sequential inspection points. At each inspection, the wear is measured by using an Olympus SZ-

X12 microscope, and measured forces are recorded. For example, the experimental data of tool 

number 9, when            and               is shown in table (7.2), where 11 

sequential inspection points are considered. This procedure continues until the tool wear reaches 

a predefined threshold of               . This procedure is replicated for the ten tools. The 

collected data for the ten tools is shown in figure (7-2). 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-1: The experiment setup 
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In order to calculate the time to failure        when               the wear evolution is 

interpolated linearly between the two values adjacent to              . By interpolation, 

the     for each tool is calculated. For example, from Table (7.2), and by interpolating between 

the tenth and the eleventh inspections,     is found to be 1230 sec. This interpolation is repeated 

for the ten tools. The results for the ten tools are given in table (7.3). 

 

 

Figure 7-2: Tool wear measurements for 10 tools 
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Table 7.2: Experimental data of tool number 9 

Inspection 

No 

 

Time 

sec 

Wear 

 

mm 

Radial 

force 

(  ) 

N 

Feed 

force 

(  ) 

N 

Cutting 

force 

(  ) 

N 

1 100 0.0575 143.4 46.5 176.4 

2 220 0.07 165 54.7 186 

3 340 0.07 180 64 194 

4 460 0.07 192.1 68 203 

5 560 0.072 203.9 64.5 202.1 

6 680 0.095 215.5 62.1 185.8 

7 800 0.115 247.3 64.1 192.4 

8 920 0.132 292.4 70.4 201.4 

9 1020 0.16 342.5 68.7 203.8 

10 1140 0.177 420.4 78.4 231.9 

11 1260 0.207 485 94.2 247.7 
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Table 7.3: Times to failure for the 10 tools 

(         ), 

(             ) 

(         ), 

(             ) 

Tool 

ID 

Time to 

failure 

sec 

Tool 

ID 

Time to 

failure 

sec 

1 1623.3 6 1240 

2 2087 7 1320 

3 1770 8 1263.3 

4 1524 9 1230 

5 1560 10 1006 

7.4 Logical Analysis of Data (LAD) 

LAD is a combinatorial pattern recognition and classification technique. It is based on an 

artificial intelligence approach since it is applied in two consecutive stages, learning or training 

stage, and the testing stage. The main steps of the LAD are the binarization of data, the pattern 

generation, and the theory formation.  Data binarization is the process of transformation of a data 

of any type into a Boolean database. The patterns generation procedure is the key building block 

in the LAD decision model. LAD is originally a two-class classification method, positive and 

negative class.  A positive pattern is defined as a conjunction of some binary attributes, which is 

true for at least one positive observation and false for all negative observations in the training 

data set.  A negative pattern is defined conversely. There are many techniques for pattern 

generation, for example enumeration, heuristics, and mixed linear programming (Ryoo and Jang 

2009).Theory formation is the final step in the LAD decision model. A discriminant function is 

formulated in equation (1) in order to generate a score ranging between -1 and 1. When the 

output of a discriminant function is a positive value that means that the tested observation O 
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belongs to the positive class, and negative otherwise. Zero value means no classification is 

possible (M.-A. Mortada et al. 2011). 

                        ∑  
   

     ∑  
   

    

  

   

  

   

                      

where        is the number of positive (negative) patterns,   
    (  

    )   is equal to 1 if 

pattern ( i ) covers observation O, and is equal to zero otherwise,   
    

    is the weight of the 

positive (negative) pattern   
    

  . For new observation    the calculated value      varies 

between +1 and -1, where +1(-1) is an indication of the domination of the positive (negative) 

patterns.  , the quality of classification, is formulated in equation (2). 

                                         
   

 
 

   

 
                                  

where          represent the proportion of observations, positive and negative, which are 

correctly classified respectively.         represent the proportion of observations, positive and 

negative, which are not classified respectively. 

7.5  Optimal replacement & decision rule 

In order to make an accurate comparison between LAD pattern recognition–based optimization, 

and the statistically-based optimization using a the PHM, we use the same wear states 

identification which is used by EXAKT software(Banjevic et al. 2001). This software develops a 

PHM. The tool wear is divided into five states which are used to construct the transition 

probability matrix. Each state represents particular stage in cutting tool wear progression. The 

wear states are considered as initial wear, slight wear which is regular state of wear, moderate 

wear which is micro breakage state of wear, severe wear which is fast wear state, and worn-out 

which is tool breakage. The flank wear bands are selected using the covariate distributions, and 

are not equally spaced. The last wear band, worn-out, does not contain many sample values (not 

more than 10%) which is considered reasonable as the highest state usually represents the most 

dangerous state. First band contains roughly 10% of the data values, second band 40%, third band 

30%, and forth band 10%. 

 In pattern-based optimization, we reduce the problem into two-class which are normal- and 

critical class as shown in figure (7-3).   
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Initial wearInitial wear Slight wear Moderate wearModerate wear Severe wearSevere wear Worn-outWorn-out

Normal condition class Critical classCritical class

Statistical-based

Pattern-based

Flank wear (mm) 0 0.07 0.11 0.14 0.16 0.2

 

Figure 7-3: Tool wear identification on statistical-based and pattern-based 

7.5.1 Pattern-based Optimization. 

We used LAD to find the time to replacement    
    for each tool     when the wear reached worn-

out state, that is the critical class. This class has special patterns which describe worn-out state. 

These patterns describe interactions between covariates which are feed rate ( ), radial force (  ), 

feed force (  ), and cutting force (  ) in critical class. The software cbmLAD is used to generate 

these patterns from the collected data. The data for the 10 tools contains 137 observations. This 

data is used to generate patterns that are representative of the two defined classes; the normal and 

the critical. The generated patterns for the critical class are Pattern 1, which is (   

                                       ), Pattern 2 is (         ), Pattern 3 is 

(                 ). These patterns are detected only when the tool is worn-out, and they are 

never seen in the normal state.    
    is the time when any of these three patterns appears. It is 

recorded for each tool in table (7.4), with the corresponding values of covariates and the observed 

patterns’ number. Obviously, the results show that    
    is different for each tool, since the wear 

propagation is a stochastic process. All the observations are divided into two sets of learning and 

testing. Then, tenfold cross validation procedure is conducted to validate and calculate the quality 

of classification.   is found to be equal to 93.16 %. This means that in 93.16% of the 

observations, cbmLAD was able of defining correctly the state of the tool, either normal or worn-

out, based on the detected patterns. 
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Table 7.4: replacement time for 10 tools based on LAD 

Tool 

ID 

  

   
    

sec 

Wear 

 

mm 

Radial 

force 

(  ) 

N 

Feed 

force 

(  ) 

N 

Cutting 

force 

(  ) 

N 

critical  

Pattern  

No 

1 1290 0.1650 342.5 122.1 149.2 1 

2 1772 0.1600 354.2 88.7 167.5 2 

3 1410 0.1600 387.1 108.3 190.2 1,3 

4 1380 0.1800 423.8 77.3 150.5 1 

5 1380 0.1725 401.2 68.2 145.2 3 

6 1050 0.1775 381.3 109.7 209.1 1,3 

7 1210 0.1675 540.5 170.9 249.1 2 

8 1050 0.1675 367.3 81.6 216.7 3 

9 1020 0.1600 342.5 68.7 203.8 1 

10 910 0.1600 528.3 96.6 227.7 2 

7.5.2 Statistical-based Optimization. 

 PHM is used in order to model the experimental data. The concept of PHM is that the failure rate 

of cutting tool depends on the age of the tool and covariates. The failure rate is represented as the 

product of a baseline failure, which depends on the age of the tool, and a positive function, 

    {∑   
 
   } , that represents the effect of covariates on failure rate. Where   represents the 

number of covariates,   represents the value of each covariate, and   represents the weight of 

each covariate. In this work, the baseline is considered Weibull hazard function. The failure 

hazard rate at time      is given as follows: 

                           
 

 
(
 

 
)
   

     {∑   
 
   }               (3)                                         

Where    is the shape parameter,    is scale parameter, the conditional survival function is given 

as in equation (4),                             
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                         { (
 

 
)
 

    {∑   
 
   }                      (4) 

The conditional survival function        and its derivative  ̇       (      )       are  used 

to estimate the parameters         by using maximum likelihood function (Banjevic et al. 2001). 

EXAKT software is used to estimate the PHM model and its parameters. The covariates are feed 

rate ( ), radial force (  ), feed force (  ) and cutting force (  ). All combinations are examined and 

tested. The best model with significant variables is found by eliminating the variables whose 

impact on the probability of failure is low and making comparison between obtained models. The 

best model is showed as in equation (5) when radial force is taken as the model’s covariate.  

                   
 

 
(
 

 
)
   

     
    

    
(

 

    
)
    

               (5)                                        

Kolmogorov-Smirnov test (K-S test)  evaluates the model fit. The test shows that the PHM offers 

a good modeling for the data with P-value equal to 0.889842.  

7.5.2.1 Cost Optimization 

The cost function is given as follows:                            

                            
                     

    
                            (6)                                                               

where   is the failure time,    is the preventive replacement time,    is the failure replacement 

cost, and    is the preventive replacement cost. The optimal cost is achieved when 

                 , and where   
   is the optimal time to replace.         is the probability of 

preventive replacement,         is the probability of failure replacement, and       

     {    }  is the expected replacement time.        , and        , and     is the 

difference between replacement costs includes the extra costs due to the consequences of failure 

replacement. The cost analysis gives the minimum cost (                  associated with the 

optimal risk level to intervene (                   In order to minimize cost, cutting tool 

should be replaced at   
                 when the optimal hazard rate is                  .  

7.5.2.2 Availability Optimization 

The availability function is as follows: 

      
      

               
 

mk:@MSITStore:C:/Program%20Files%20(x86)/EXAKT/EXAKT.CHM::/ajw.html
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                       (7)                 

 

Availability ( ) is the percentage of time that cutting tool is available for machining. The optimal 

availability is achieved when                 , where   
   is the optimal time to replacement, 

           is the preventive replacement time, and            is the failure replacement 

time.    is the difference between replacement times  that includes the extra time due to the 

consequences of failure replacement. The availability analysis shows the optimal risk level to 

intervene at (             In order to maximize availability, cutting tool should be replaced at 

  
               when the optimal hazard rate is                  .  

7.5.2.3 Cost-availability Optimization 

cost-availability optimization is the combination of cost and availability optimization. We 

minimize the cost per unit time while taking into our consideration replacement costs, 

replacement times and costs of downtimes. For example,                                    

        , where    is the fixed cost,   is the cost per unit time, and   is the down time. 

 

                                               
                                   

                         
                      (8)     

 

The values of replacement costs in cost analysis                  , the values of 

replacement times  in availability analysis            ,             , and the cost per unit 

time during downtimes                are used to find the optimal replacement time. The cost 

and availability analysis shows the optimal risk level to intervene (                  In order 

to maximize availability and minimize cost simultaneously, cutting tool should be replaced at 

  
                 when the optimal hazard rate is                 .  

7.6 Decision Rule 

The decision rule gives us the optimal time to replacement when considering cost and/or 

availability analysis, and the  decision of tool replacement  or to keep  working  and monitoring 

the covariate (radial force) at discrete time intervals (Banjevic et al. 2001). The optimal 

replacement decision is shown as in equation (9), 
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      {                 }                (9)                                                           

Where (   ) is a control-limit value and    is the optimal level which was found in section 4.2. 

  is the difference between replacement costs    and    in cost analysis, the difference between 

replacement times           in availability analysis, and the difference between total replacement 

costs including downtime costs in the combination of cost and availability analysis. The warning 

level function which helps to make replacement decision is derived. 

                        
    

 
(
 

 
)
   

    
  

 
                                       (10)                                                   

                     (
     

  
)                                      (11) 

The function     =   (        )           is consider as warning level function, applied to 

an overall covariate value         . The warning level function      is built for each policy. 

By monitoring the radial force at discrete time intervals, the composite covariate           

          is calculated, and by defining the tool working age,      is calculated. As such, we can 

make a decision that will optimize the long-run maintenance cost and/or availability. In figure (7-

4), the optimal decision is to determine whether the tool should be replaced immediately, if it 

information point is above the curve, or should we keep operating and inspect at the next 

inspection time. This case is represented by all the points that are under the curve. The three 

curves in figure (7-4) represent the three optimization functions of cost, availability, and cost-

availability. 
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Figure 7-4: Replacement decisions 
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To summarize, the optimal policy suggests replacement at time (t) for which                

        in the cost analysis (blue curve), and replacement at   for which                

        in the availability analysis (red curve), and suggests replacement at   for 

which                        in cost-availability analysis (green curve). In contrast, in 

pattern-based technique, optimal decision is made when the tool wear start the worn-out state, the 

critical state, and a worn-out pattern is observed in black points. At this moment, the tool should 

be replaced immediately. For example, replacement decisions for the ten tools are shown in table 

(7.5) and figure (7-4). In most cases, 6 out of 10, pattern-based technique recommends 

replacement later than statistical techniques, that is above the curves, and closer to the actual 

failure. This means that  pattern-based technique saves tool’s valuable resource. For example, 

tool number 7, the statistical -based suggests replacement at 684.6 sec, 584.3 sec, and 649.8 sec 

in cost analysis, availability analysis, and in cost-availability analysis respectively, while pattern–

based analysis suggests replacement at 1210 sec and the tool fails at 1320 sec.  For the remaining 

4 tools under the curves, statistical techniques recommends “keep working”   while the tool wear 

reaches the critical state, which means that the pattern-based technique is  still accurate, in the 

sense that it is close to reality. For example, tool number 9, the statistical optimal policy suggests 

replacement after failure while pattern–based analysis suggests replacement before failure. This 

paper presents a pattern-based technique using LAD in order to blaze a new trail in optimal 

replacement techniques. 
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Table 7.5: replacement times comparison for ten tools 

 

Tool 

ID 

  

Replacement Times-based  (sec)     

sec Cost Availability Cost - 

availability 

Pattern-

based 

1 1638.9 1398.9 1555.7 1290 1623.3 

2 1556.5 1328.6 1477.5 1772 2087 

3 1346.3 1149.2 1278.0 1410 1770 

4 1145.2 977.5 1087.0 1380 1524 

5 1265.2 1079.9 1200.9 1380 1560 

6 1381.2 1179.0 1311.1 1050 1240 

7 684.6 584.3 649.8 1210 1320 

8 1469.1 1254.0 1394.5 1050 1263.3 

9 1638.9 1398.9 1555.7 1020 1230 

10 722.4 616.6 685.7 910 1006 
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8.1 Abstract 

This paper presents a new tool wear multi-class detection method. Based on experimental data, 

tool wear classes are defined using Douglas-Peucker algorithm. Logical Analysis of Data (LAD) 

is then used as a machine learning, pattern recognition technique for double objective of detecting 

the present tool wear class based on the recent sensors’ readings of the time dependant machining 

variables, and deriving novel information about the role of machining variables by doing patterns 

analysis. LAD is data driven technique which relies on combinatorial optimization and pattern 

recognition. The accuracy of LAD is compared to Artificial Neural Network (ANN), since ANN 

is the most familiar machine learning technique. The proposed method is applied on experimental 

data which are gathered under various machining conditions. The results show that the proposed 

method detects the tool wear class correctly and with high accuracy.   

Keywords 

Tools wear detection, logical analysis of data, pattern recognition. 

8.2  Introduction 

In the scientific literature, the tool wear detection in machining processes  is estimated by two 

approaches: Continuous tool wear estimation and tool wear classification (Sick 2002). 

Researchers estimate tool wear continuously using data driven techniques e.g. (Marek Balazinski 

et al. 2002; Achiche et al. 2002; Ren et al. 2008). (Sick 2002) presented an exclusive review of 

online tool wear detection in turning and found that  the majority of researches  considered tool 

wear detection based on tool wear classification. For example, (Damodarasamy and Raman 1993) 

used three  adjacent classes of tool wear in order to develop a detection tool wear model using 

pattern recognition. They concluded that pattern recognition can be used to detect the classes of 

cutting tool wear. (S Purushothaman and Srinivasa 1994) developed tool wear monitoring model 

by using two classes, worn-out tool and a fresh tool. They used Artificial Neural Networks 

(ANN) for building the model. (Ertunc and Oysu 2004) used five classes to develop tool wear 

monitoring system  using dynamic hidden Markov models. (Kang et al. 2007) developed tool 

wear monitoring model using pattern recognition based on discrete  hidden Markov models.  A 

three classes cutting tool wear model is used. (Tobon-Mejia et al. 2012) used five classes in order 

to diagnose  the wear’s progression. They used dynamic Bayesian networks’ technique.  
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Although the continuous tool wear estimation gives a better picture of the tool wear progression, 

many  researchers consider that in practical situations the tool wear classification  is quite 

sufficient for allowing the operator to make  an informed  decision (Sick 2002). In this paper we 

present a novel tool wear classification approach. Since all the previously mentioned methods for 

tool wear detection and classification share one common disadvantage, which is the use of 

statistical techniques that impose some statistical assumptions, such as the prior distribution, or 

the independence of machining variables. In this paper, we introduce a new technique that 

doesn’t rely on any statistical assumptions. The technique is called Logical Analysis of Data 

(LAD), which is a machine learning pattern recognition data-driven approach.  As many machine 

learning approach, LAD is applied in two steps; first the training step at which LAD learns about 

the wear process from the experimental results, then the application step in which LAD detect the 

wear class based on the learning acquired in the previous step. Since LAD is a supervised 

learning technique, the experimental results are characterized by their corresponding classes. In 

this paper, this is accomplished by using the  Douglas-Peucker (DP) algorithm(Douglas and 

Peucker 1973).  

 

The progressive wear is monotonically increasing; therefore, it’s very important to define 

adjacent wear classes in order to see how wear classes are actually considered when machining 

process are carried out (Sick 2002). Another importance of wear classification that flank wear 

limit which is always used as indication for cutting tool life is not the same when cutting tool is 

used  in rough and finish cut (Damodarasamy and Raman 1993). For example, if we have 5 

classes of wear, the first and second classes can represent the wear limit for finish cuts while third 

and fourth classes can represent the wear limit for rough cut, and finally the fifth class can 

represent the tool failure.  

This paper is organized as follows: In section 8.3, the methodology of LAD is introduced. The 

experimental procedure and wear classification method are presented in section 8.4. In section 

8.5, results and discussion are introduced. Concluding remarks are given in section 8.6. 
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8.3  Logical analysis of data (LAD) 

LAD is knowledge discovery technique first developed  by Peter  Hammer in 1986 (Peter L 

Hammer 1986; Crama et al. 1988). LAD allows the classification of phenomena based on pattern 

recognition. To generate patterns, two consecutive phases are applied, training or learning phase, 

and the testing or the theory formation phase. In the learning phase, part of the dataset is used to 

extract hidden patterns. In testing phase, the remainder of the dataset is used to test the accuracy 

of the previously learned knowledge from the extracted patterns. The methodology of LAD is 

composed of three steps: Data binarization, pattern generation, and theory formation.  

Data binarization 

In data binarization, the dataset is transformed into a Boolean dataset. The binarization step 

involves the transformation of variables’ values to binary attributes  using a binarization 

technique which is discussed in (Bores et al. 2000).   Here, the variables are the machining 

conditions. For example, we consider that     is a continuous numerical variable. To transform    

into binary attributes, we start by ranking the numerical values,  ,  of   in ascending order, as 

follows: 

                                                 
   

   
   

     
   

                                              (1) 

 

Where   the total number of is distinct values of the variable   and   is the total number of 

observations in the training set. The cut-point      is found between each pair of values that 

belong to different classes. The cut-point is calculated by averaging these two values as shown in 

equation (2): 

 

                                                        
      

                                                            (2) 

 

Where   
   

 and   
     

 belong to different classes. A binary attribute   is then formed from each 

cut-point. Each cut-point      has a corresponding binary attribute      
 with defined values as in 
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equation (3). The number of binary attributes that represent the continuous variable    is thus 

equal to the number of cut-points. 

 

                                                   
 {

                   

                   
                                                    (3) 

 

Pattern generation 

Pattern is hidden rules that describe one class of wear and not the others. Here, the class refer to a 

specific cutting tool wear stage. A pattern is defined as a conjunction of literals which is true for 

at least one observation in a specific class and false for all observations in other classes in the 

training dataset. A literal is a Boolean variable   or its negation  ̅ (Bores et al. 2000).     is a 

binary attribute in the training set and can be represented by a literal    or its negation   ̅  .  If 

     then     is true and if       then     is false. Similarly,  ̅  is true when      and false 

when     . The number of literals used to define the pattern is called the degree of a pattern  . 

Pattern   of degree   is a conjunction of   literals. For example, consider a binarized data set 

consisting of five binary attributes                 . A conjunction of literals   ̅         ̅  is 

said to be a pattern of degree 4 in a specific class if at least one observation in that class has the 

respective values (0,1,1,0) for attributes               and no observation in all the other classes 

has these values. A pattern covers a certain observation in the training set if and only if  it is true 

for that particular observation (Bores et al. 2000). 

There are many techniques for pattern generation such as enumeration (Bores et al. 2000), 

heuristics (Peter L Hammer 1986; P.L. Hammer and Bonates 2006), and linear programming 

(Ryoo and Jang 2009). In this paper we follow the pattern generation technique which has been 

proposed in (Ryoo and Jang 2009). In that paper the pattern generation problem is converted to a 

set covering problem, and then solved by a mixed integer linear programming (MILP) technique. 

It should be noted that using that technique to generate patterns does not mean that LAD based 

decision model is linear. In the MILP problem, it is assumed that each generated pattern     is 

associated with a Boolean pattern vector   (                        ) with size    
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where       , and   is the size of the binary observation vector. The elements of the Boolean 

pattern vector   is restricted to the following conditions: 

 

                                                                                                                    (4) 

In other words, if      then the literal    is included in pattern  . Similarly, if         then 

literal  ̅   is included in pattern  . A pattern   cannot include both the literal     and its negation  ̅  

at the same time. The pattern    can be deduced after getting the Boolean pattern vector   as a 

solution of the set-covering problem. For example, if the Boolean pattern vector   

                     , it  means that         ,     , and The pattern degree         

 

For the generation of a pattern    which belongs to class   , where   is the class number, 

                 is the Boolean coverage vector whose number of elements equal to the 

number of observation    in class   , and where    is equal to 0 if a pattern     covers the 

observation i and 1 otherwise in   . Minimizing Y means finding pattern which belongs to    

that covers the maximum number of observations of this class. Each observation      is 

represented as a Boolean observation vector                                           such that  

       if the binary attribute        and          if     , and    is the set of observations 

in class m. 

 

The MILP objective is to minimize Y. This means to minimize the number of observations in    

, which are not covered, since each observation in the training dataset must be covered by at least 

one pattern in order to differentiate the observations of each class. In this optimization problem, 

the decision variables are the pattern vector  , the degree  , and the coverage vector  . The 

constraints for that optimization problem are as follows:  

By definition, a pattern    must not cover any observations in any class other than    . For that 

reason, the dot product of the pattern vector   and the observation      must be less than the 

degree   of the pattern  , where     is the set of all the observations in the training dataset that 

are not in    :  
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∑    

  

   

                                                                           

The generated pattern should cover at least one observation     , but not necessarily all the 

observations in       This condition can be formulated for each observation as: 

∑    

  

   

                                                                         

The newly-generated pattern must not be a subset of any of the patterns that have already been 

generated. Every generated pattern vector   is stored as vector   in the set    containing all 

pattern vectors of the patterns generated previously for the set   : 

∑    

  

   

                                                                     

All previous steps can be summarized as follows: 

The objective function 

   
     

∑   
    

                  

   

{
 
 
 

 
 
 

                                                          

∑    

  

   

                                     

                                                      

  {   }                                               

  {   } 
                                                   

           

As a result, the linear set-covering problem mentioned previously generates the strongest pattern. 

A strongest pattern covers a maximum number of observation which others pattern can’t do. An 

iterative mechanism is needed to generate an entire set of patterns belongs to   . The same 

procedure is repeated in order to generate the patterns which belong to other classes. 

Theory formation 
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The discriminant function used in the multi-class LAD approach different from the classical one 

which is used  in two-class LAD decision model. In the two-class LAD approach, the output of 

discriminant function is between -1 and 1. Positive output means the tested observation belongs 

to the positive class, and negative otherwise. Zero value means no classification is possible (M.-

A. Mortada et al. 2011). Here, in multi-class, output sign of a discriminant function is no longer 

sufficient to classify a new unknown observation. A single separator between class    and all 

other classes is built, As such,   different two-class classifiers are built, where     is the total 

number of classes. Let    be the  th classifier separating observations in class    and 

observations in   , not in   . For each new observation   the calculated value        is given a 

score for each class. Therefore, a new observation belongs to the class with the highest score. 

If       has the same value for two or more different classes, then the observation   is 

unclassified. 

Discriminant function      is formulated  as following (Herrera and Subasi) :  

                 
       

                        

Where       ∑                 
,    is corresponding pattern in set    covers observation O, 

and      is the coverage rate of that pattern                 with respect to the 

observations of class. Pattern         if it covers observation   and zero otherwise.  

 

 

The accuracy (  ) of classification is  

    
∑   
 
 

  
 , 

where     is the total number of correctly classified observations in class  , and    is the total 

number of observations in the testing set. 

8.4  Experiment description and wear classification  

The experiments were conducted on a conventional lathe TUD-50. A CSRPR 2525 tool holder 

equipped with a TiN–AL2O3–TiCN coated sintered carbide insert SNUN 120408 was used in the 

tests. AISI 1045 steel was used as workpiece material. A six cuts with different cutting variables 
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were conducted sequentially in order to remove six parts as shown in figure (8-1). The values of 

the machining controllable variables are shown in figure (8-1), where   is the feed rate in    

   , and   is the machining time. The feed force (  ), and cutting force (  ) are the uncontrollable 

machining variables which have values that depend on the wear. They were measured by using a 

Kistler 9263 dynamometer. The cutting speed was selected to ensure approximately the same 

share in tool wear. The two tools that were used had a soft, cobalt-enriched layer of substrate 

under the coating. Their tool life ends after this coating wore through. Two identical tools were 

used. With tool 1, 10 cycles, of six cuts each, were performed until the flank wear     reached 

approximately       . After each cycle, the tool wear was measured and its value corresponding 

to single cut was linearly interpolated. The collected data contains 71 observations for tool 1.  For 

example, table (8.1) shows the collected data of cut 5 in tool 1 experiment. In the tool 2, failure of 

the coating resulted in chipping of the cutting edge at the end of 9th cycle. At this moment, flank 

wear was about        . The collected data for tool 2 contains 66 observations. Figure (8-3) 

shows the feed and the cutting forces, vs. the tool wear in tool 1 and 2. The legend in each graph 

indicates the feed ( ) in mm/rev and the depth of cut       in mm for each cut. The feed force 

(  ) is independent of feed rate ( ), but being affected by the depth of cut (   ) and the tool wear. 

The cutting force (  ) depends on depth of cut (   ) and feed rate ( ), while being weakly 

affected by tool wear.  As such, we don’t need information about the depth of cut (   ) to define 

the tool wear class. Here, tool wear class is defined by using three machining variables: feed rate 

( ), cutting force (  ), and feed force (  ). 
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Figure 8-1: Six cuts with different cutting variables 
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As discussed in (Ertunc and Oysu 2004; Tobon-Mejia et al. 2012), the tool wear is classified  into 

five classes.  Each class represents particular state in cutting tool wear progression. The five wear 

classes are: (1) the initial wear, (2) the slight wear which is the regular state of wear, (3) the 

moderate wear which is the micro breakage state of wear, (4) the severe wear which is the fast 

wear state, and (5) the worn-out which is tool breakage state. LAD is based on supervised 

learning; this means that all the observations should be labeled by a class number before analysis. 

Here, this is accomplished by using the DP algorithm. DP line simplification algorithm is a well-

known method to approximate 2D lines which was originally implemented in (Douglas and 

Peucker 1973). DP algorithm computes recursive construction of path hull, scaled by a tolerance 

factor ( ), around all points by choosing a minimum of key points. For example, in figure (8-2-

A), the first path hull is constructed around five points. Each circle is drawn with radius equal to 

tolerance factor ( ). The approximated line in blue is constructed between two blue points which 

are called key points. Point 2 is outside of the path hull; therefore, the path hull should be refined. 

In figure (8-2-B), the second step carries on by dividing the first path hull into two path hulls 

which contain three key points, points 1, 3, and 5. Since all points are inside the two path hulls, 

the algorithm is terminated with two approximated lines.  

1

2

3

4
5

1

2

3

4
5

A) The first path hull B) The last path hull

 

Figure 8-2: recursion steps for DP algorithm 

DP algorithm is used to find the tool wear classes from collected experimental data and 

distinguish between adjacent cutting tool wear classes. The algorithm is used with tolerance 

factor ( ) equal to 0.008 in order to find the tool wear classes from tool 1 experiment with its 71 

observations and tool 2 experiment with its 66 observations. All the observations of experiments 

1 and 2 are shown in figure (8-4) by the points in red and in blue. The blue points are the key 

points. The link between those key points will be the line simplification class, approximated line. 

The key points are considered as indications for adjacent tool wear classes. By using Python 
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software (Software), wear classes are obtained as: class 1                class 2       

                class 3                         class 4             

          class 5                The mean value is taken for two blue points when the tool 

wear moves from class to another. For example, in class 4, starting values of tool wear are  

            in experiment 1 and              in experiment 2. So, the starting tool 

wear value for class 4 is 0.1749 mm.   

 

Figure 8-3: The feed forces and the cutting forces vs. the tool wear at six combinations of feed 

rate and depth of cut representing the six cuts. 



147 

 

 1 2 3 4 5

W
e

a
r 

(m
m

)

Tool life (min)

experiment 1 

experiment 2 

 

Figure 8-4: Wear classes classification 
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Table 8.1: Experimental data of cut 5 (tool 1,         mm) 

Observation 

No 

 

Wear 

(VB) 

mm 

Class 

 

{1 to 5} 

Feed 

    

mm/rev 

Cutting 

force 

(  ) 

N 

Feed 

force 

(  ) 

N 

1 0.080 1 0.33 1037 308 

2 0.080 1 0.33 993 312 

3 0.113 1 0.33 1032 334 

4 0.135 2 0.33 1051 349 

5 0.148 3 0.33 1032 363 

6 0.148 3 0.33 1070 365 

7 0.158 3 0.33 1044 405 

8 0.158 3 0.33 1112 423 

9 0.168 3 0.33 1089 447 

10 0.168 3 0.33 1053 430 

11 0.215 4 0.33 1082 499 

12 0.220 4 0.33 1099 507 

13 0.268 5 0.33 1088 523 

14 0.272 5 0.33 1125 542 

15 0.455 5 0.33 1120 941 

16 0.470 5 0.33 1177 1018 
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8.5 Results and discussion.    

Our objective is to use the experimental data in order to train LAD to identify the tool wear class 

by finding hidden patterns that are specific to each class.  These patterns are represented in terms 

of the controllable and the uncontrollable machining variables, which are the feed rate (  , the 

feed force (  ), and cutting force (  ), respectively. Each pattern is a hidden rule that is found in 

the experimental data, and which is specific to a certain class. The data from columns 4,5, and 6, 

in table (8.1), for all the cuts of the two experiments, that are the 137 observations from 

experiments 1 and 2, are  used in order to train LAD. We have five classes of cutting tool. Each 

observation contains variables and label. The variables are:  feed rate ( ), cutting force (  ), and 

feed force (  ). The label is the class number in column 3, for each observation. Table (8.2) 

exhibits the patterns found by the software cbmLAD (c. Software 2012).  

Table 8.2: patterns found by the software cbmLAD 
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By analyzing the results shown in table (8.2), we were able of illustrating class identifiers of 

some machining variables. A variable is called class identifiers when it distinguishes the wear 

class by, and only, with its value, regardless other variables. For example, class 3 which is the 

moderate wear class is classified by the value of cutting forces only i.e.               . 

Conversely, all other patterns for other classes do not include this value.  This simply means that 

cutting forces is a “class identifier" of class 3. Similarity, feed force can be used as class 

identifier of class 1 or class 5 during machining process. Feed rate cannot be used as class 

identifier for any class. The class identifiers are shown in table (8.3). 

To measure the importance of the machining variables on tool wear classification, the frequency 

of their inclusion in the patterns appearing in each class, is calculated. For example, cutting force 

(  ) appears in four of the five patterns of the class 1, thus the frequency is 80 %. The frequencies 

of all three variables; the feed rate, the feed force and the cutting force in the five classes are 

shown in table (8.3). According to the average of the variable frequencies, the most influential 

variable on tool wear classification is the feed force (  ). And, the less influential variable on tool 

wear classification is the feed rate ( ). This finding is conforming to the machining perspective 

and experimental results. 

Table 8.3: machining variables’ frequencies and class identifiers in each of the five classes 
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8.5.1 Validation and comparison 

As many machine learning techniques, the experimental observations are divided into two sets; a 

training set and a testing set. The testing set is used in order to verify the quality of the learning 

process. The number of observations in each set is decided in a trade-off process (Russell et al. 

1995). To find an accurate classifier, we need to use as much of the data as possible for the 

training. In contrast, to find an accurate estimate of the accuracy, we need to use as much of the 

data as possible for testing. For example, when we use the traditional partitioning of the dataset, 

we divide the dataset to equal parts, that is ½ for learning and ½ for testing; therefore, we lose 50 

% of the limited number of observations. This affects negatively the learning step. In this paper, 

we tried different training/testing percentages. We present the results obtained when ten-fold 

cross validation is considered. Cross-validation technique is needed if we are to avoid peeking at 

the test set (Russell et al. 1995). A ten-fold cross validation procedure is a well-known technique 

which is performed by dividing all the observations randomly into 10 parts in which each class is 

represented in approximately the same proportion as in the full dataset. One part, that is 10%, is 

held out and is considered the testing set, T, and the learning process is trained on the remaining 

nine parts, that is 90%, L.  The classification accuracy is calculated on the holdout, that is the 

testing set. The learning procedure is executed a total of 10 times with the 10 different training 

sets. This procedure is chosen because the largest possible volume of data is used for training. 

This increases the chance that the classifier found is an accurate one. 

After the application of this learning and testing procedure, the average accuracy (  ) of learning 

is found to be equal to 85.13 %. Table (8.4) shows the results of the testing procedure applied to 

the training/testing dataset. 
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Table 8.4: the results of testing procedure 

K-fold number Training set 

observations 

Test set observations Accuracy 

1 15 to 137 1 to 14 85.714 % 

2 1 to 14 & 29 to 137 15 to 28 85.9 % 

3 1 to 28 & 43 to 137 29 to 42 65.142 % 

4 1 to 42 & 57 to 137 43 to 56 85.14 % 

5 1 to 56 & 71 to 137 57 to 70 91.71 % 

6 1 to 70 & 85 to 137 71 to 84 86.7 % 

7 1 to 84 & 98 to 137 85 to 97 87.22 % 

8 1 to 97 & 112 to 137 98 to 111 94.51 % 

9 1 to 111 & 126 to 137 112 to 125 79.72 % 

10 1 to 125 126 to 137 89.52 % 

The average 

accuracy (  ) 

  85.13 % 

ANN is used widely as  modeling technique in machining process (Shaban et al.), and tool wear 

detection (S Purushothaman and Srinivasa 1994; Srinivasan Purushothaman 2010; G. Wang and 

Cui 2013). An ANN is composed of three types of layers, namely input layer, hidden layer(s), 

and output layer. In figure (8-5), the input layer accepts the inputs, which are the three machining 

variables: feed rate ( ), cutting force (  ), and feed force (  ). The number of neurons equal to the 

number of variables. The output layer has five neurons which represent the five wear classes. The 

number of hidden layers and its neurons depend on the nonlinearity of the model. The 

mathematical model of an artificial neuron’s behavior mimics mathematical model of  brain’s 

activity (Russell et al. 1995). All neurons in any layer are interconnected and sending stimulating 

signal to the neurons of the pre and after layers through weighted links.  
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Figure 8-5: ANN architecture 

After testing several neural network architecture, we retained the network architecture that gives 

the highest prediction accuracy in the validation test (Russell et al. 1995). The tuning parameters 

in neural network are the number of hidden layers, number of neurons in each layer, the learning 

rate, and the momentum parameter. There are no clear rules to select these parameters. Learning 

rate parameter and momentum parameter term take a value between [0, 1].  The value of learning 

rate helps the quick converge. The momentum parameter is used to update the value of a new 

weight by small proportion which leads to smooth searching process. The learning happens via 

an iterative feedback mechanism where the Back-Propagation (BP) is used to update and adjust 

the weights dynamically. BP is the most commonly used mechanism due to its superior strength 

in pattern recognition and its reasonable speed.  

 

In this paper, we use the Weka data mining software (Hall et al. 2009) in order to find the best 

network structure. The common approach is to try several architecture and keep the best (Russell 

et al. 1995). The best network architecture which has the highest learning accuracy is found as 

shown in figure (8-5).It has one hidden layer of 4 neurons, a learning rate of 0.3, and a 

momentum of 0.2. The confusion matrix is found as follows:  
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where    is the total number of correctly classified observations in class  , and   
  is the 

number of incorrectly classified observations which belong to class m and are classified as class  , 

  ≠  . For example, in the first row,        is the total number of correctly classified 

observations in class 1, and   
    is the number of incorrectly classified observations in class 1, 

and which are classified as class 3. The accuracy (  ) of learning is found to be: 

    
∑   
 
 

  
=
            

   
       

By using hold-out cross validation to measure the accuracy in LAD and ANN, it can be seen that 

the accuracy of LAD compares favourably with that of the ANN. After being trained, and by 

analyzing the sensors’ new readings, LAD is capable of predicting the wear class based on the 

patterns found in each new observation that is not included in the original dataset. Based on the 

value      in equation (12), the new observation belongs to the class with the highest score. 

8.6 Conclusion 

In this paper we have proposed a new tool wear class detective method based on pattern 

recognition with Logical Analysis of Data (LAD). LAD is a supervised learning data mining 

technique; therefore, Douglas-Peucker algorithm is used in order to find the tool wear classes 

from collected experimental data and distinguish between adjacent cutting tool wear classes. 

Based on multi-class LAD classification algorithm, the tool wear classes are defined by finding 

hidden patterns that are specific to each class. By analyzing the generated patterns, class 

identifiers of some machining variables and the influence of machining variables on tool wear 

classification are found. The accuracy of LAD is evaluated and validated by comparison to ANN. 

LAD shows better classification accuracy for tool wear. 

In future work, tool wear class detective method can be used to indicate cutting tool life when 

cutting tool is used in rough and finish cut. The method can be improved by including additional 
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variables, such as vibration signal, acoustic emissions, and cutting temperatures. This method can 

be incorporated in Computer Numerical Control (CNC) machine therefore the learning class can 

be done on-line.     
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GENERAL DISCUSSION 

In this thesis, Logical Analysis of Data (LAD) is applied on different machining processes for 

determining the best machining conditions, detecting the tool wear, identifying the optimal 

replacement time for machining tools, monitoring, and controlling machining processes. LAD 

has demonstrated good performance and additional capabilities when it was compared to an ANN 

model, and to a statistical PHM. The research conclusions are as follows: 

 LAD produced high accuracy in detecting the thresholds values and characteristic patterns 

for machining conditions even if the data are non-separable. LAD technique is used in the 

diagnosis of machining outcomes by comparing each incoming new measurement to the 

stored patterns.  

 LAD is used to control the machining process by tuning autonomously the routing 

conditions.  

 LAD is used to develop alarm system based on experimental data, under changeable 

machining conditions. The results show that the proposed alarm system detects the worn 

patterns and gives ‘warning alarm’ in order to replace the cutting tool at a working age 

that is relatively closer to the actual observed failure time than the statistical PHM. 

 LAD is used to develop a new tool wear class detection method. Douglas-Peucker 

algorithm is used to distinguish between adjacent cutting tool wear classes. Then, LAD as 

a supervised learning data mining technique is used to generate decision functions.  

 

Finally, due to the availability of sensory signals, LAD is shown to reduce the cost of machining 

process, by detecting accurately the time to tool replacement. The following points are my future 

perspectives for LAD applications in machining. 

 cbmLAD and process control technique can be incorporated in computer numerical 

control (CNC) machine; therefore, the learning phase can be done on-line thereby 

eliminating the need for off-line analysis. The idea of online control of a simulated 

routing process can be used as a prototype for many industries’ applications. 
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 Tool wear class detection method can be used to indicate cutting tool life when cutting 

tool is used in rough and finish cut. The method can be improved by including additional 

variables, such as vibration signal, acoustic emissions, and cutting temperatures. 

Moreover, tool wear classes can be identified using different methods of clustering 

instead of Douglas-Peucker algorithm and comparing results to DP algorithm.    

   

 The performance of the alarm system can be improved by including additional variables, 

such as vibration signal, acoustic emissions, and cutting temperatures. The quality of the 

detected patterns will be improved, and non-pure patterns which can cover more than one 

class can be used, and give more details about the characteristics of LAD’s patterns. 

Moreover, cbmLAD and tool wear monitoring alarm system will be incorporated in a 

computer numerical control (CNC) machine; therefore, the learning stage can be done on-

line thereby eliminating the need for off-line analysis. 
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CONCLUSION 

In this thesis, implementation of LAD on a machining process by detecting the thresholds values 

and characteristic patterns for machining conditions in term of uncontrollable variables using the 

LAD technique is presented. A simulated machining process control is implemented by using the 

experimental results, and LabVIEW software. The simulation model shows how LAD is used to 

control the routing process by tuning autonomously the routing conditions in order to always 

return to the machining zones defined by the positive patterns. LAD accuracy is compared to that 

of ANN. An on-line machining process control is developed by using the patterns that were 

found off-line.  

A new tool wear monitoring and alarm system that is based on LAD is presented. The alarm 

system is a non-intrusive on-line device that measures the cutting forces and relates them to tool 

wear through learned patterns. It is developed during turning titanium metal matrix composites 

(TiMMCs).The proposed monitoring system is tested by using the experimental results obtained 

under sequential different machining conditions. External and internal factors that affect the 

turning process are taken into consideration. The system’s alarm limit is validated and is 

compared to the limit obtained when the statistical Proportional Hazard Model (PHM) is used. 

The results show that the proposed system that is based on using LAD detects the worn patterns 

and gives a more accurate alarm for cutting tool replacement. We also show how to exploit 

condition monitoring data in machining operation in order to extract intelligent knowledge, and 

use this knowledge to determine the tool replacement time. Finally, a new tool wear multi-class 

detection method is presented. Based on experimental data, tool wear classes are defined using 

Douglas-Peucker algorithm. LAD is then used as a machine learning, pattern recognition 

technique for double objective of detecting the present tool wear class based on the recent 

sensors’ readings of the time dependant machining variables, and deriving novel information 

about the role of machining variables by doing patterns analysis. The accuracy of LAD is 

compared to ANN. 

It is expected that an analysis tool such as LAD will help in blazing a new trail in machining 

processes by using state of the art techniques in order to significantly reduce the cost of 

machining process. I hope the results of my work will have an impact in the future of 

optimization of machining processes. 
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