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RÉSUMÉ

Nous considérons un réseau d’agents multiples en interaction, et tel que chaque agent est
supposé posséder un état concernant une certaine quantité d’intérêt. Selon le contexte, les
états d’agents peuvent correspondre à des opinions, des valeurs, des estimés, des croyances,
des positions, des vitesses, etc. Ces états sont mis à jour selon un algorithme ou protocole
qui consiste en une règle d’interaction dictant la manière par laquelle les états d’un agent
donné influencent ou sont influencés par ceux de ses voisins. Les voisins sont définis à partir
d’un graphe sous-jacent de communication, ce dernier évoluant dans le temps de manière
soit endogène ou exogène. Un consensus du système est défini comme la convergence de
tous les états vers une valeur commune, lorsque le temps croît indéfiniment. La notion de
consensus apparaît dans de multiples domaines de recherche. En biologie, le consensus est
lié aux comportements émergents d’un ensemble d’oiseaux en vol, des bancs de poissons,
etc. En robotique et en automatique, les problèmes de consensus se présentent lorsque l’on
cherche à réaliser la coordination et la coopération d’agents mobiles (ex. robots et capteurs).
Cette question est particulièrement importante dans la mise en réseau de capteurs avec
nombreuses applications, soit en contrôle de l’environnement, ou dans un contexte militaire.
En économie, la recherche de consensus par rapport à un mécanisme commun d’ajustement
des prix constitue un autre exemple. En sociologie, l’émergence d’une langue commune dans
une société primitive est un comportement collectif au sein d’un système complexe. Un autre
comportement limite d’intérêt dans un système est celui où les états, plutôt que de converger
vers une seule valeur, se fractionnent en groupes distincts, avec des limites communes dans
le groupe mais distinctes d’un groupe à l’autre. Un tel comportement est appelé dans notre
thèse, consensus multiple.

Dans cette thèse, nous adressons deux objectifs de recherche en relation avec le com-
portement asymptotique des états d’agents dans un système multi-agent, possédant une dy-
namique mise à jour via un algorithme distribué de calcul de moyenne, de caractère général,
en temps continu ou discret. Le premier objectif visé est celui de l’identification de condi-
tions aussi faibles que possible, pour lesquelles le consensus unique ou multiple est garanti
inconditionnellement, c’est-à-dire pour toute valeur du temps initial ou encore des valeurs
initiales attribuées aux états. Contrairement au premier objectif centré sur la recherche de
convergence inconditionnelle, notre second objectif de recherche est celui de l’identification
d’ensembles particuliers de conditions initiales, non triviales toutefois, pour lesquelles un
consensus global est possible.

En particulier, nous nous intéressons à la caractérisation de coalitions d’agents dites
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“coalitions à éminences grises” (EGC). Un EGC est un regroupement possiblement très limité
d’individus dans un réseau, en mesure de mener “naturellement” la totalité du groupe à
converger vers un état commun arbitraire, simplement par un choix adéquat et concerté
de leurs états initiaux au sein de la coalition. Par “naturellement”, il est entendu que les
membres de la coalition ne peuvent avoir recours à des manipulations de la structure du
réseau, y compris celle de leurs propres interactions avec leurs voisins. Ils peuvent être
considérés comme des leaders dans l’ombre, non identifiables a priori par un titre ou une
position particuliers. Ils détiennent un potentiel d’influence totale sur le comportement des
autres individus dans le réseau. Notre investigation des EGC dans un réseau d’opinions est
centrée avant tout sur la caractérisation de la taille de la plus petite coalition EGC possible.
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ABSTRACT

We consider a network of multiple interacting agents, whereby each agent is assumed to
hold a state regarding a certain quantity of interest. Depending on the context, states may be
referred to as opinions, values, estimates, beliefs, positions, velocities, etc. Agent states are
updated based on an algorithm or protocol which is an interaction rule specifying the manner
in which individual agent states influence and are influenced by neighboring states. Neighbors
are defined via an underlying exogenously or endogenously evolving communication graph.
Consensus in the system is defined as convergence of all states to a common value, as time
grows large. The notion of consensus arises in many research areas. In biology, consensus is
linked with the emergent behavior of bird flocks, fish schools, etc. In robotics and control,
consensus problems arise when seeking coordination and cooperation of mobile agents (e.g.,
robots and sensors). This is, particularly, an important issue in sensor networking with wide
applications in environmental control, military applications, etc. In economics, seeking an
agreement on a common belief in a price system is another example of consensus. In sociology,
the emergence of a common language in primitive societies is a collective behavior within a
complex system. Another important limiting behavior of the system is one whereby agents,
instead of all converging to the same value, separate into multiple clusters with a uniform
limiting value within each cluster. Such behavior, in this thesis, is called multiple consensus.

In this thesis, we address two research objectives relating to the asymptotic behavior
of agent states in a multi-agent system, with dynamics updated via a general distributed
averaging algorithm in either continuous time or discrete time. The first issue is that of
identifying conditions, as weak as possible, under which consensus or multiple consensus is
guaranteed to occur unconditionally, i.e., irrespective of the time or values that states are
initialized at. In contrast to the first research objective centered on unconditional consensus,
our second research objective is that of identifying sets of particular, yet non-trivial, initial
agent conditions such that global consensus occurs.

In particular, we are interested in characterizing so-called éminence grise coalitions (EGC):
An EGC is a possibly small group of individuals in the network who are, “naturally”, capable
of leading the whole group to eventually agree on any desired value, by only choosing their
own initial values properly. What is meant by “naturally” is that the group in question does
not need to manipulate the nature of the network, and in particular, leaves all the interac-
tions between any two individuals including members of the group themselves untouched.
They could be thought of as hidden leaders, not specifically identifiable by title or position,
but who hold the potential of perfectly influencing the asymptotic behavior of individuals in
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the network. In investigating EGCs in a network of opinions, the size of its smallest EGC is
the main focus of our analysis.
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CHAPTER 1

INTRODUCTION

1.1 Background Information

A multi-agent system, in the most general sense, is a network of multiple interacting
agents. Each agent is assumed to hold a state regarding a certain quantity of interest. De-
pending on the context, states may be referred to as opinions, values, beliefs, positions,
velocities, or etc. States of agents are updated based on an algorithm or protocol which is
an interaction rule specifying the interaction between each agent and its neighbors. Global
consensus, or simply consensus, in the system is defined as convergence of all states to a
common value over time. Among all update algorithms in multi-agent systems, distributed
averaging algorithms are of great importance and have been discussed the most in the liter-
ature. Such algorithms impose that the state of each agent is updated according to a convex
combination of the current states of its neighbors and its own.

The notion of consensus arises in many research areas. In biology, consensus dynamics
are at the heart of the emergent behavior of bird flocks, fish schools, etc. Couzin et al. (2005);
Cucker and Smale (2007); Flierl et al. (1999). Consensus models can be employed to inter-
pret, analyze, and predict flocking aggregation behavior. In robotics and control, consensus
problems arise in relation to coordination objectives and cooperation of mobile agents (e.g.,
robots and sensors) Jadbabaie et al. (2003); Tsitsiklis et al. (1986), which are important is-
sues in sensor networks for environmental applications or potentially space exploration. In
economics, seeking an agreement on a common belief in a price system is another example of
consensus. In sociology, the emergence of a common language in primitive societies Cucker
et al. (2004) is a collective behavior within a complex system, while in the area of social
networks, consensus algorithms can shed light on the dynamics of opinion formation. Con-
sensus algorithms also have a rich history within computer science community Lynch (1996),
while formal study of consensus problems has been carried within the management science
community (see DeGroot (1974) and references therein).

In a multi-agent system, it is possible that agents separate into several clusters such that
consensus occurs within each cluster. In this case, multiple consensus is said to have occurred.
In other words, occurrence of multiple consensus is equivalent to the existence of individual
limits for the agent states such that the limits are not necessarily equal. Although not as
extensively studied as global consensus, multiple consensus has also been widely discussed in
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the literature (see Chatterjee and Seneta (1977); Lorenz (2005) for example).

1.2 Problem Definition

Consider a system composed of N agents that are labeled by numbers 1, . . . , N . Let
xi(t) be the scalar state of agent i at time t ≥ 0. Distributed averaging algorithms can
be defined in both continuous and discrete times. A general continuous time distributed
averaging algorithm is defined by:

ẋ(t) = A(t)x(t), t ≥ 0. (1.1)

where x(t) is the vector of states at each time instant t ≥ 0, and {A(t)} is the underlying
chain of the system. It is assumed that each matrix of underlying chain A(t) has zero row sum
and non-negative off-diagonal entries and each entry aij(t) of A(t) is a measurable function.
Consensus is now defined by the convergence of vector x(t) to a vector with equal components
as t→∞. Multiple consensus is also defined as the existence of a limit for xi(t) for each agent
i as time grows large. Indeed, the limits may differ for different agents. Coefficients aij(t)
can be either purely exogenous time-varying functions, or endogenous functions dictated by
the evolution of xi’s. The focus of this thesis is, first and foremost, on exogenously defined
underlying chains, although some of our results will also apply to endogenously evolving
consensus algorithms.

This work is motivated by the following two fundamental questions regarding the issue
of consensus:

Q.1 Under what conditions on the underlying chain of the system, consensus or multiple
consensus is guaranteed irrespective of the time and values that states are initialized?

Q.2 For a general underlying chain, having fixed the initial time, what is the set of initial
conditions resulting in the occurrence of consensus in the system?

Answering to Q.1 is our main objective in Chapters 3 and 4. Indeed, finding an answer
to Q.1 has been a challenge for several decades now. As suggested in Chatterjee and Seneta
(1977), the occurrence of consensus as sought in Q.1 is equivalent to a property of the
underlying chain called ergodicity. We now recall the definition of ergodicity of a chain. Let
Φ(t, τ), t ≥ τ ≥ 0, represent the state transition matrix of the system, i.e.,

x(t) = Φ(t, τ)x(τ), ∀t ≥ τ ≥ 0. (1.2)

Chain {A(t)} is said to be ergodic if for every τ ≥ 0, Φ(t, τ) converges to a matrix with
equal rows as t → ∞. Similarly, the occurrence of multiple consensus as desired in Q.1
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is equivalent to another property of underlying chain {A(t)} called class-ergodicity. Chain
{A(t)} is class-ergodic if for every τ ≥ 0, limt→∞Φ(t, τ) exists, but with in general distinct
rows.

The importance of Q.2, on the other hand, is not as clear as Q.1, at first sight, although it
is arguably a more fundamental question. Q.2 is a natural concern when the underlying chain
is endogenously generated in flocking models for example (see Cucker and Smale (2007)).
However, remember that we deal with exogenous systems in this work.

Indeed, the question arises as to whether it is possible, for a limited number of key
agents, to set their initial opinion/parameter assessment, in such a way that the (exogenously
evolving) network converges to a global consensus. Such an issue is important in negotiations,
or even the possible shaping or manipulation of public opinion by clever campaigning. In
Chapter 5, the notion of éminence grise coalition is developed to begin to answer Q.2.

As mentioned above, distributed averaging algorithms can also be defined in discrete time
as well. A general discrete time distributed averaging algorithm is defined by:

x(t+ 1) = A(t)x(t), t ≥ 0, (1.3)

where {A(t)}, the underlying chain of the network, is a chain of row-stochastic matrices, i.e.,
for each time instant t ≥ 0, all elements of A(t) are non-negative and the elements of each
row of A(t) add up to 1. The same questions can also be asked in the context of discrete
time consensus algorithms, and, in general, similar results will hold for both. However, as it
will become evident, the methods of proof can differ significantly.

1.3 Contributions

Consensus problems for distributed time-varying averaging algorithms have gained in-
creasing attention in various research communities. One of the fundamental problems re-
lated to consensus is the unconditional occurrence of consensus or multiple consensus via
distributed time-varying averaging algorithms, where by “unconditional”, we mean irrespec-
tive of time or values at which states are initialized. Such problem turn out to be equivalent
to ergodicity or class-ergodicity of the underlying chain of the system. Discovering necessary
and/or sufficient conditions for ergodicity and class-ergodicity of a time-varying chain of ma-
trices has been the aim of a significant body of literature. One of our two main objectives in
this thesis has been to extend, as far as possible, the existing results regarding the proposed
problem. Our contributions to this problem can be summarized as the following.

Balanced asymmetric chains. Balanced asymmetry is a property of a chain of stochas-
tic matrices defined in discrete time. Balanced asymmetry is a hybrid of notions of subsym-
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metry Bolouki and Malhamé (2011a), and cut-balance Hendrickx and Tsitsiklis (2011) which
were already very much discussed in the literature, and which are essentially point-wise verifi-
able properties of the underlying chain. We found, for balanced asymmetric chains, necessary
and sufficient conditions for ergodicity and class-ergodicity based on a dynamic notion pro-
posed by Touri and Nedić, that of absolute infinite flow, which is a property that can be
verified only when considering the chain as a whole. The notion of balanced asymmetry, on
its own, helped us subsume and generalize virtually all known convergence results thus far,
albeit not convergence rate issues which is thoroughly a different concern.

Applications to known models. We showed that our techniques, which are employed
to derive the convergence results on the exogenous averaging algorithms, together with the
results themselves, can also be applied to some well-known nonlinear models, such as the
Cucker-Smale model Cucker and Smale (2007) and the Hegselmann-Krause model Hegsel-
mann and Krause (2002). These nonlinear models can be viewed as endogenous averaging
algorithms, i.e., averaging algorithms with coefficients dynamically changing according to the
evolution of states in the network.

Connection to Sonin’s Decomposition-Separation Theorem. Our basic convic-
tion that the theory of inhomogeneous Markov chains could help understand the convergence
properties of consensus algorithms, which essentially depended on the properties of the under-
lying chain of the system, led us to employ the Sonin’s Decomposition-Separation Theorem
Sonin et al. (2008). The D-S Theorem together with the intuitions of Touri and Nedić (2014)
about the importance of Kolmogorov’s notion of absolute probability sequence, helped us
obtain a meaningful generalization of the notion of absolute infinite flow to so-called infinite
jet-flow.

A geometric framework. Attempts to understand the convergence mechanisms of
inhomogeneous Markov chains led us to our first geometric insights of the Markov chain
convergence as the intersection of decreasing convex hulls of appropriate sets of vertices. The
vertices of each set correspond to the rows of the state transition matrix of the system at a
certain time. This geometric interpretation was employed to extend our theorems, obtained
based on the D-S Theorem, to the continuous time case.

Centered on these geometric insights, we then explored a question which is often raised
for endogenously evolving consensus algorithms, such as the celebrated Cucker-Smale model
Cucker and Smale (2007): Are there particular sets of initial conditions which will guarantee
that the resulting consensus algorithm will converge unconditionally? Instead, the question
is raised here for an exogenously generated sequence of update matrices. The geometric
insights and the proposed question led us to defining the following notions and addressing
their related issues which has been our second main objective in this thesis:
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Éminence Grise Coalitions. It turns out that there exists a minimal subset of agents,
which by mere setting of their initial conditions (under the rather idealized condition that
they know where everyone else stands initially and the evolution of the network update
chain), can steer the complete set of agents towards a global consensus. Such agents may
be viewed as the consummate negotiators in a polarized environment, and we believe that
such results are important for the study of opinion dynamics. A subset of agents with that
property, even if it is not minimal, is called an éminence grise coalition, or simply EGC, in
this thesis. We extensively investigated the size of the minimal EGC in a system.

Rank of a chain. We extended the notion of rank, as defined for a matrix, to a chain
of matrices in both continuous and discrete time. We proved that the rank of the underlying
chain of a multi-agent system is equal to the size of the minimal EGC that the system admits.

1.4 Manuscript Overview

In this thesis, we analyze via two different points of view, the asymptotic behavior of the
states (or opinions) in a multi-agent system (an opinion network) with dynamics evolving
via a predefined distributed averaging algorithm evolving in either discrete or continuous
time. There are in general three items to consider when dealing with the limiting behavior
of agents in such a system: (i) the initial time at which the system starts to update, (ii) the
initial conditions (state values at the initial time), and (iii) the predefined update algorithm
which is uniquely characterized by a time-varying chain of stochastic matrices.

In Chapters 3 and 4, our point of view towards achieving global or multiple consensus
is via item (iii) and irrespective of items (i) and (ii). In other words, we seek chains of
stochastic matrices that guarantee occurrence of global or multiple consensus in the network
irrespective of the initial time or values at which states are initialized. More precisely, in
Chapter 3, based on the notions of “balanced asymmetry” and “unbounded interactions
graph” that we introduce in Section 3.3, and taking advantage of the notion of absolute
infinite flow defined in Touri and Nedić (2012a), we obtain a class of chains guaranteeing
global (or multiple) consensus to occur in the system. This class of (class-) ergodic chains
is characterized in Section 3.4. In Chapter 4, we address the same objective via a different
approach. This approach is based on exploring the connections between linear consensus
algorithms and the Decomposition-Separation (DS) Theorem Sonin et al. (2008) of Markov
chains. Using the D-S Theorem and the notion of “infinite jet-flow” defined in Section 4.3, we
introduce a larger class of (class-) ergodic chains in Section 4.5, leading to theoretical results
subsuming, to the best of our knowledge, all previous results in the literature as detailed in
Section 4.6.
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From a different point of view, in Chapter 5, we assume that there is absolutely no
assumption on the so-called underlying chain of the network, i.e., item (iii). Instead, given
an arbitrary time-varying underlying chain, and having fixed the initial time, we aim to
identify sets of initial state values leading to consensus (conditional consensus). The set of
such initial state vectors forms a vector space which has a close relationship with subgroups
of agents that, in a way, act as potential hidden leaders of the network. Such a subgroup
is called an “éminence grise coalition” (EGC) as explicitly defined in Section 5.3. The main
results of Chapter 5 are concerned with the development of a geometric insights leading to
the characterization of tight upper and lower bounds on the size of a minimal EGC.
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CHAPTER 2

LITERATURE SURVEY

The notion of consensus arises in many research areas. In biology, consensus dynamics
are at the heart of the emergent behavior of bird flocks, fish schools, etc. Couzin et al.
(2005); Cucker and Smale (2007); Flierl et al. (1999). Consensus models can be employed to
interpret, analyze, and predict flocking aggregation behavior. In robotics and control, con-
sensus problems arise in relation to coordination objectives and cooperation of mobile agents
(e.g. robots and sensors) Jadbabaie et al. (2003); Tsitsiklis et al. (1986), which are important
issues in sensor networks for environmental applications or potentially space exploration. In
economics, seeking an agreement on a common belief in a price system is another example of
consensus. In Sociology, the emergence of a common language in primitive societies Cucker
et al. (2004) is a collective behavior within a complex system, while in the area of social
networks, consensus algorithms can shed light on the dynamics of opinion formation. Con-
sensus algorithms also have a rich history within computer science community Lynch (1996),
while formal study of consensus problems has been carried within the management science
community (see DeGroot (1974) and references therein). Synchronization of coupled oscilla-
tors, i.e., reaching consensus on frequency of coupled oscillators, has been studied in physics,
biophysics, and neurobiology for decades now Ermentrout (1992); Graver et al. (1984); Stro-
gatz (2001). Since the body of work studying consensus problems is huge, in our literature
review, we focus on those publications which have been most directly relevant to our work.
We review, in the following, only a part of the literature on distributed averaging algorithms
and their variations.

Distributed averaging algorithms, as a kind of consensus algorithms, can be defined in
both discrete and continuous time domains. The discrete time version was first introduced
in DeGroot (1974). The author considered a group of k individuals in a team or committee,
where each individual has his own subjective probability distribution for the unknown value
of some parameter θ. Individuals seek an agreement on a subjective distribution of θ. The
algorithm is as the following. Let Fi(t) denote the distribution of θ believed by individual i
at discrete time t ≥ 0. For any t ≥ 0, individual i updates his distribution according to the
formula Fi(t + 1) = ∑

j aijFj(t), where interaction rates aij’s, 1 ≤ i, j ≤ k are non-negative
constants satisfying ∑k

j=1 aij = 1, ∀i = 1, . . . , k. Using Markov chains properties Doob
(1953), DeGroot obtained a sufficient condition for convergence of individuals’ distributions
to the same distribution, which is the average of initial distributions, due to the symmetry
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of the model. Three year later, Chatterjee and Seneta (1977) considered the same consensus
problem but with time-varying interaction rates. The authors found sufficient conditions for
(global) consensus via backward product of stochastic matrices. Beside that, the issue of
multiple consensus was also investigated in Chatterjee and Seneta (1977). Results of Chat-
terjee and Seneta (1977), regarding occurrence of consensus, were generalized in Bertsekas
and Tsitsiklis (1989); Tsitsiklis (1984); Tsitsiklis et al. (1986), i.e., more general conditions
for consensus to occur were given. Unlike Chatterjee and Seneta (1977); DeGroot (1974),
in the model considered in Bertsekas and Tsitsiklis (1989); Tsitsiklis (1984); Tsitsiklis et al.
(1986), communication links between individuals are not necessarily bidirectional. Sufficient
conditions for convergence in Bertsekas and Tsitsiklis (1989); Tsitsiklis (1984); Tsitsiklis et al.
(1986) can briefly be described as non-vanishing interaction rates and repeated connectivity
of communication graph.

In Jadbabaie et al. (2003), the authors proposed a simple consensus algorithm which
remains one of the main motivations for the current extensive research on consensus. The
model considered in Jadbabaie et al. (2003), which is a linearized version of the well-known
Viscek model Vicsek et al. (1995), describes the evolution of a system of k agents moving
in the plane with the same speed but different headings. Each agent updates his heading to
the average of its own heading and the headings of its neighbors. Hence, in this model, if
we define Ni(t) and ni(t) as the set and the number of agent i’s neighbors at time t ≥ 0, we
have aij(t) = 1/(1 + ni(t)) if agent j is a neighbor of agent i at time t or j = i. Otherwise,
aij(t) = 0. The authors of Jadbabaie et al. (2003) showed that consensus occurs if there
exists an infinite sequence of contiguous, nonempty, bounded, time-intervals [ti, ti+1), i ≥ 0,
starting at t0 = 0, with the property that across each interval, the k agents are linked together
(via a chain of neighbors). The authors employed Wolfowitz’s Theorem Wolfowitz (1963) on
product of stochastic matrices belonging to a finite set to show consensus. Therefore, the fact
that aij’s belong to a finite set, and the boundedness of time-intervals [ti, ti+1), i = 1, 2, . . .,
play an important role in their proof. Although Jadbabaie et al. (2003) also addressed a
leader-follower model in both discrete time and continuous time, its main discovery turned
out to be a special case of Tsitsiklis (1984); Tsitsiklis et al. (1986) (see Bertsekas and Tsitsiklis
(2007)). After Jadbabaie et al. (2003) was published, many authors aimed to generalize its
consensus results by employing different techniques Blondel et al. (2005); Hendrickx (2008);
Hendrickx and Blondel (2006); Li et al. (2004); Lorenz (2005); Moreau (2005). It was proved
in Blondel et al. (2005) that for consensus to occur, aij’s are not required to belong to a
finite set, and a uniform lower bound for non zero aij’s is sufficient. The authors employed
an extension of Wolfowitz Theorem (see Blondel et al. (2005)). In Moreau (2005), the author
showed that the boundedness of time intervals [ti, ti+1) is not necessary either. However, a
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uniform lower bound for non zero interaction rates still seemed to be necessary.
Recently, Hendrickx and Tsitsiklis (2013), and series of papers Touri and Nedić (2011,

2012a,b, 2014), independently generalized the previous results by introducing a class of chains
of stochastic matrices, the so-called cut-balanced chains 1. In the work of both groups, the
multiple consensus problem was also considered. Although the authors of Touri and Nedić
(2014) focus mainly on random chains, one can consider Corollary 4 of Touri and Nedić
(2014) as, prior to this manuscript, the most general result for deterministic chains, where a
uniform positive lower bound for all diagonal entries still appeared to be necessary.

Continuous time consensus protocols are more recent than their discrete time counter-
parts. According to Fax and Murray (2004); Jadbabaie et al. (2003); Lin et al. (2004); Moreau
(2003, 2004); Moreau et al. (2003); Olfati-Saber and Murray (2004); Ren and Beard (2004);
Ren et al. (2005a,b), a continuous time-varying consensus algorithm can be summarized as:

x′i(t) =
∑
j 6=i

aij(t)(xj(t)− xi(t)). (2.1)

This algorithm can be considered as a linear version of more complex synchronization models
Aeyels and Rogge (2004); Jadbabaie et al. (2004); Strogatz (2000). Some general results on
consensus for agents using protocol (2.1) were given in Moreau (2003, 2004); Moreau et al.
(2003); Ren and Beard (2004); Ren et al. (2005b). Sufficient conditions for consensus derived
in Moreau (2004), is the existence of a uniform lower bound for non-zero interaction rates,
and also a repeated connectivity of the communication graph, which is not bidirectional in
general. This sufficient condition for consensus is weaker than the one obtained in Ren and
Beard (2004); Ren et al. (2005b), since interaction rates do not necessarily belong to a finite
set. Prior to the current work, and to the best of our knowledge, the cut-balance assumption
appears to be the weakest assumption on the underlying chain of a linear continuous time
consensus protocol to guarantee the occurrence of consensus (see Hendrickx and Tsitsiklis
(2013)).

The literature on the subject of averaging algorithms has expanded in a number of direc-
tions. Here, we give a brief overview of a few of those research directions:

— Bounded confidence models. We have assumed, so far, that the set of each agent’s
neighbors in the network is determined by a predefined sequence of agent sets. In the
bounded confidence model, an agent’s neighbors, at any time instant, are those that lie
in the agent’s area of confidence. Two well-known algorithms, based on the explained
neighboring rule, are the HK model Hegselmann and Krause (2002); Krause (1997,
2000) and the DW model Deffuant et al. (2000); Weisbuch et al. (2002). The reader is

1. The cut-balance property is referred as the balancedness property in Touri and Nedić (2014).
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referred to Blondel et al. (2007, 2009) for an interesting study of the HK model, and
Lorenz (2007) for a thorough survey on the both models and their extensions.

— Gossip algorithms. In a gossip model, the frequency of information exchange is
controlled by an internal clock ticking according to a timing model. In each step, each
agent transmits its information (state) to another agent which is chosen randomly
from a predefined set of neighbors or the entire network. Then, the states are updated
via a gossip protocol (see Karp et al. (2000); Kempe and Kleinberg (2002)), which can
be viewed as an averaging algorithm. It is usually assumed that each agent can only
handle a single incoming transmission at a time Boyd et al. (2006); Dimakis et al.
(2010).

— Models with imperfect information exchange. In more realistic models, one
has to take into account the presence of noise and disturbance in the system. There
are several ways to represent noise and disturbance in a model. One instance is
consensus algorithms over networks with noisy links (see Acemoglu et al. (2008); Aysal
and Barner (2010); Cucker and Mordecki (2008); Huang and Manton (2007, 2009)).
Another example is consensus algorithms under quantization effects. Quantized effects
appear when the agents can only store and transmit quantized numbers instead of real
numbers (see Aysal et al. (2008); Carli et al. (2007, 2008); Kashyap et al. (2007); Nedic
et al. (2009)).

— Models with time delays. There exists, in reality, a communication delay in the
network. The communication delay is described as the difference between the time at
which some information is transmitted and the time at which updates according to the
transmitted information take effect. Consensus in models with time delays has been
widely studied in literature. For instance, see Lin and Jia (2009a,b) for second-order
discrete and continuous models with time delays, Sun and Wang (2009b) for fixed
time delay, and Sun and Wang (2009a) for time-varying delays.
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CHAPTER 3

ARTICLE 1: LINEAR CONSENSUS ALGORITHMS BASED ON
BALANCED ASYMMETRIC CHAINS

Sadegh Bolouki and Roland P. Malhamé
Submitted to IEEE Transactions on Automatic Control, September 2013

3.1 Abstract

Multi-agent consensus algorithms, with update steps based on so-called balanced asym-
metric chains, are analyzed. For such algorithms, it is shown that (i) the empirical distri-
bution of state values converges asymptotically, (ii) the occurrence of consensus or multiple
consensus is directly related to the property of absolute infinite flow of the underlying update
chain. An example is provided to illustrate the novelty of the results.

3.2 Introduction

Consensus problems in multi-agent systems have gained increasing attention in various
research communities. Many of the consensus algorithms in the literature can be described
by linear update equations:

x(t+ 1) = A(t)x(t), t ≥ 0, (3.1)

where x(t) is a vector whose components are, without loss of generality, the scalar agent
states (the value of an unknown parameter or probability), and A(t) for every discrete time
instant t ≥ 0 is a row-stochastic matrix, i.e., elements of A(t) are all non-negative and each
row of A(t) sums to 1. For simplicity, in this paper, stochastic matrices refer to row-stochastic
matrices. Matrix A(t), t ≥ 0, is referred to as the matrix of interaction rates. Distributed
averaging algorithms were first introduced in DeGroot (1974). Later, Chatterjee and Seneta
(1977) considered the same class of consensus problems with time-varying interaction rates.
The authors found sufficient conditions for consensus by analyzing backward products of
stochastic matrices. Results of Chatterjee and Seneta (1977) were generalized in Bertsekas
and Tsitsiklis (1989); Tsitsiklis (1984); Tsitsiklis et al. (1986), whereby more general suffi-
cient conditions for consensus to occur were provided. Unlike Chatterjee and Seneta (1977);
DeGroot (1974), in the model considered in Bertsekas and Tsitsiklis (1989); Tsitsiklis (1984);
Tsitsiklis et al. (1986), communication links between individuals are not necessarily bidirec-
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tional. Briefly stated, sufficient conditions for the convergence in Bertsekas and Tsitsiklis
(1989); Tsitsiklis (1984); Tsitsiklis et al. (1986) are described by non-vanishing interaction
rates and continuously repeated connectivity of the integrated communication graph. As an
alternative model, Vicsek et al. (1995) considered a system of multiple agents moving in the
plane with the same constant speed but different headings which are updated according to
an averaging algorithm. Consensus was observed in simulations. The authors of Jadbabaie
et al. (2003) analyzed a linearized version of the Viscek model and provided conditions un-
der which consensus occurs. The authors showed that consensus occurs exponentially fast if
there exists an infinite sequence of contiguous, non-empty, bounded time-intervals [ti, ti+1),
i ≥ 0, starting at t0 = 0, with the property that across each such interval, any pair of agents
are linked together via a chain of neighbors. Following Jadbabaie et al. (2003), many au-
thors tried to generalize the consensus results using different techniques (see Hendrickx and
Tsitsiklis (2013) and references therein).

Recently, Hendrickx and Tsitsiklis (2013) and series of papers Touri and Nedić (2011,
2012a,b, 2014) independently generalized the previous results by introducing a class of chains
of stochastic matrices, the so-called cut-balanced chains 1. In the work of both groups, the
multiple consensus problem was also considered. Although the focus of Touri and Nedić
(2014) is mainly on random chains, one can consider Corollary 4 of Touri and Nedić (2014)
as, by far, the most general consensus result for deterministic chains. However, a uniform
positive lower bound for on-diagonal elements still appeared to be necessary.

In this note, by introducing a property of stochastic chains, herein called balanced asym-
metry, we derive equivalent conditions for consensus and multiple consensus to occur in a
class of multi-agent systems with dynamics (3.1). As will be shown, our results subsume
Corollary 4 of Touri and Nedić (2014) since no uniform positive lower bound for non-zero
interaction rates or self-interaction rates is required. In the process, we also establish that if
the balanced asymmetry property is satisfied, the histogram of state values asymptotically
converges to a fixed discrete distribution.

The rest of this paper is organized as follows. Essential notions that are required to state
the main results are defined and illustrated in Section 3.3. Main results on consensus and
multiple consensus are presented in Section 3.4. An example illustrating the specificity of
our results is discussed in Section 3.5. Concluding remarks end the paper in Section 3.6.

1. The cut-balance property is referred as the balancedness property in Touri and Nedić (2014).
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3.3 Useful Notions and Terminology

Throughout this article, we adopt the following notation. V is the set of agents and
N = |V| is the number of agents. The letter t stands for the discrete time index. x(t) =
[x1(t) · · ·xN(t)]′, t ≥ 0, is the vector of agent states, where prime (′) indicates the transpo-
sition. For every t ≥ 0, (1t, 2t, . . . , Nt) is a permutation of {1, 2, . . . , N} such that agent it
(1 ≤ i ≤ N) has the ith least state value among all agents at time t. zi(t) = xit(t) is the
ith least number among x1(t), . . . , xN(t). In particular, z1(t) and zN(t) are the state values
of agents associated with the least and the greatest state values at time t respectively. A(t),
t ≥ 0, is the matrix of interaction rates aij(t), 1 ≤ i, j ≤ N , and {A(t)} is the underlying
chain of the system of interest. The overbar (¯) on a subset indicates complementation of
the subset in the universal set of interest.

Definition 3.1. Consider a multi-agent system with dynamics (3.1). By consensus in system
(3.1), we mean that, irrespective of the time instant or values at which states are initialized,
all xi(t)’s, i = 1, . . . , N , converge to identical values as t goes to infinity.

We now define ergodicity according to Chatterjee and Seneta (1977). Let {A(t)} be a
chain of stochastic matrices. For t > τ ≥ 0, following Touri and Nedić (2011), denote
A(t, τ) , A(t− 1)A(t− 2) . . . A(τ).

Definition 3.2. Chatterjee and Seneta (1977) A chain {A(t)} of stochastic matrices is said
to be ergodic if and only if for every τ ≥ 0, limt→∞A(t, τ) exists and is equal to a matrix
with identical rows.

It is possible to show that the occurrence of consensus in a multi-agent system is equivalent
to ergodicity of the underlying chain of the system. This is how consensus and ergodicity
are related. Beside consensus, there is another important notion, multiple consensus, that
constitutes our focus in this work.

Definition 3.3. For a multi-agent system with dynamics (3.1), multiple consensus is said to
have occurred, if for every i, 1 ≤ i ≤ N , limt→∞ xi(t) exists, irrespective of the time instant
or values at which states are initialized.

To formulate multiple consensus as a property of chains of stochastic matrices, we intro-
duce class-ergodicity as follows.

Definition 3.4. A chain {A(t)} of stochastic matrices is class-ergodic if and only if for every
τ ≥ 0, A(t, τ) converges as t→∞. Moreover, i, j ∈ V are said to belong to the same ergodic
class of chain {A(t)} if the ith and the jth rows of limt→∞A(t, τ) are identical for every
τ ≥ 0.
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Note that ergodic classes form an equivalence class on V . Note also that if {A(t)} in
dynamics (3.1) is class-ergodic, multiple consensus occurs. The converse is also true since
the ith column of A(t, τ) is equal to x(t) when states vector x is initialized at time τ by
the initial value ei, in which all of the components equal to zero, but the ith one equal to
1. Therefore, multiple consensus occurs in a system with dynamics (3.1) if and only if chain
{A(t)} is class-ergodic. In the rest of this section, we provide essential notions that are
employed to state our main results.

3.3.1 l1-approximation

The following is an equivalent definition of l1-approximation first defined in Touri and
Nedić (2012a).

Definition 3.5. Chain {A(t)} is said to be an l1-approximation of chain {B(t)} if∑∞t=0 ‖A(t)−
B(t)‖ is finite, where for convenience only, the norm, throughout this note, refers to the max
norm, i.e., the maximum of the absolute values of the matrix elements.

It is not difficult to show that l1-approximation is an equivalence relation in the set of
chains of stochastic matrices.

Proposition 3.1. Touri and Nedić (2012a) Let chain {A(t)} be an l1-approximation of chain
{B(t)}. Then, the two chains have the same ergodic classes. In particular, {A(t)} is ergodic
(class-ergodic) if and only if {B(t)} is.

3.3.2 Absolute Infinite Flow

Definition 3.6. Touri and Nedić (2012b) A chain {A(t)} of stochastic matrices is said to
have the absolute infinite flow property if the following holds:

∞∑
t=0

( ∑
i∈S(t+1)

∑
j∈S̄(t)

aij(t) +
∑

i∈S̄(t+1)

∑
j∈S(t)

aij(t)
)

=∞, (3.2)

for every sequence {S(t)} of proper subsets of V = {1, . . . , N} with the same cardinality.
Note that if A(t) is a matrix of order 1, i.e., N = 1, the absolute infinite flow property is
trivially satisfied.

In Touri and Nedić (2012b), the authors showed that the absolute infinite flow property
is a necessary condition for ergodicity. In addition, they prove the necessity and sufficiency
of the absolute infinite property for ergodicity of chains of doubly stochastic matrices.
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3.3.3 Balanced Asymmetry

Definition 3.7. Chain {A(t)} of stochastic matrices is said to be balanced asymmetric if
there exists M ≥ 1 such that for any two non-empty subsets V1 and V2 of V with the same
cardinality: ∑

i∈V1

∑
j∈V̄2

aij(t) ≤M
∑
i∈V̄1

∑
j∈V2

aij(t), ∀t ≥ 0. (3.3)

We now mention the following non-trivial subclasses of balanced asymmetric chains.

1. Chains of doubly stochastic matrices. It can be shown that all chains of doubly stochas-
tic matrices are balanced asymmetric with M = 1.

2. Chains possessing the following two properties:
self-confidence. There exists δ > 0 such that aii(t) ≥ δ, for every i = 1, . . . , N , and
t ≥ 0.
cut-balance. Hendrickx and Tsitsiklis (2013)Touri and Nedić (2014) There existsK ≥ 1,
such that for every S ⊂ V :

∑
i∈S

∑
j∈S̄

aij(t) ≤ K
∑
i∈S̄

∑
j∈S

aij(t), ∀t ≥ 0. (3.4)

Indeed, inequalities (3.4) and (3.3) are equivalent when V1 is identical to V2, while if
V1 6= V2, then V1 ∩ V̄2 and V̄1 ∩ V2 are both non-empty. As a result, and given the
assumed self-confidence property, both sums in inequality (3.3) are bounded below by
δ. In addition, both sums are bounded above by N − 1 for any non-empty Vi, i = 1, 2.
Thus, the chain is balanced asymmetric with M = max{K, (N − 1)/δ}.

Remark 3.1. Balanced asymmetry is a stronger condition than cut-balance although the
latter, together with self-confidence, becomes stronger than the former.

Remark 3.2. For those chains that are l1-approximation of balanced asymmetric chains, the
absolute infinite flow property can be simplified as the following:

∞∑
t=0

∑
i∈S̄(t+1)

∑
j∈S(t)

aij(t) =∞, (3.5)

for any sequence {S(t)} of subsets of V, with the same cardinality. This can be easily seen
by combining relations (3.2) and (3.3).

3.3.4 Unbounded Interactions Graph

The unbounded interactions graph induced by a chain is an important notion in this
article, especially in the analysis of class-ergodicity. The following is the discrete time version
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of the definition of the unbounded interactions graph given in Hendrickx and Tsitsiklis (2013).

Definition 3.8. For underlying chain {A(t)} of linear algorithm (3.1), we form a directed
graph GA = {V , E}, in which (i, j) ∈ E if and only if ∑∞t=0 aij(t) = ∞. GA is called the
unbounded interactions graph induced by {A(t)}.

Noticing that balanced asymmetry is a stronger condition than cut-balance, following a
proof quite similar to that of Theorem 1 (b) of Hendrickx and Tsitsiklis (2013), one can
establish the following proposition.

Proposition 3.2. Let {A(t)} be a chain with unbounded interactions graph GA. If {A(t)}
is balanced asymmetric, every weakly connected component of GA is strongly connected.

According to Proposition 3.2, under the balanced asymmetry condition, the unbounded
interactions graph can be partitioned into strongly connected components, herein called
islands.

3.4 Convergence Results

Recalling the definition of zi(t) as the ith least number among x1(t), . . . , xN(t), we first
state a theorem on the limiting behavior of states in a multi-agent system associated with a
balanced asymmetric chain.

Theorem 3.1. Consider a multi-agent system with dynamics (3.1). Assume that chain
{A(t)} is balanced asymmetric. Then, limt→∞ zi(t) exists for every i ∈ V.

Proof. For future needs, we shall prove the existence of limt→∞ zi(t) for a more general case,
i.e., when {A(t)} is an l1-approximation of a balanced asymmetric chain with an arbitrary
fixed bound M . To this aim, we use a technique similar to the one we adopted previously
in proving Theorem 2 of Bolouki and Malhamé (2011b). Note that this technique was also
independently discovered by Hendrickx and Tsitsiklis (see Hendrickx and Tsitsiklis (2013)).
According to the definition of zi(t), we have z1(t) ≤ z2(t) ≤ · · · ≤ zN(t), ∀t ≥ 0. Moreover,
since agent states are updated via a convex combination of their current states, z1(t) is a
non-decreasing function of t, and zN(t) is a non-increasing function of t. Thus,

z1(0) ≤ zi(t) ≤ zN(0), ∀i ∈ V , ∀t ≥ 0. (3.6)

As a result, both zi(t) and xi(t) are uniformly bounded from above and below. Defining
L , zN(0)− z1(0), we have:

xi(t)− xj(t) ≤ L, ∀i, j ∈ V ,∀t ≥ 0. (3.7)



17

Now, let {B(t)} be a balanced asymmetric chain that is an l1-approximation of {A(t)}. Let
A(t) = B(t) + P (t), ∀t ≥ 0. Denote ‖P (t)‖ , pt, t ≥ 0, and p′t ,

∑t−1
k=0 pk, t > 0 with

p′0 = 0. Note that p′t remains bounded, according to the definition of l1-approximation. Set
M ′ = 2M , and recalling L , zN(0)− z1(0), define function sr(t) for every r, 1 ≤ r ≤ N , by:

sr(t) ,
r∑
i=1

M ′−i(zi(t) +Np′tL). (3.8)

In the following, we show that limt→∞ sr(t) exists for every r = 1, . . . , N . Since sr is a linear
combination of zi’s with bounded coefficients, and p′t is bounded, it is bounded. Moreover,

sr(t+ 1)− sr(t) ≥M ′−N
r−1∑
k=1

 N∑
i=k+1

k∑
j=1

bit+1jt

 (zk+1(t)− zk(t))
 ≥ 0 (3.9)

(see (29) and the argument leading to (29) in Bolouki and Malhamé (2012a) for details).
Hence, sr(t) is non-decreasing. From boundedness and monotonic increasing behavior of sr,
we obtain that limt→∞ sr(t) exists for every r = 1, . . . , N . Furthermore, defining s0 ≡ 0, (3.8)
implies:

zi(t) = M ′i(si(t)− si−1(t))−Np′tL. (3.10)

Thus, the convergence of zi’s is immediately implied from the convergence of si, si−1, and
p′i.

The convergence of zi(t)’s in Theorem 3.1 implies that the histogram of state values
asymptotically converges to a fixed discrete distribution. In the next two theorems, we
address the issues of consensus (ergodicity) and multiple consensus (class-ergodicity).

Theorem 3.2. If chain {A(t)} is balanced asymmetric, then {A(t)} is ergodic if and only if
it has the absolute infinite flow property.

Proof. The necessity of the absolute infinite flow property has been proved in Touri and
Nedić (2012b). Here, we show that if chain {A(t)} has the absolute infinite flow and the
balanced asymmetry properties, then {A(t)} is ergodic, or equivalently, consensus occurs in
system (3.1). Without loss of generality, we assume that states are initialized at t = 0. The
main part of the proof is common with the proof of Theorem 3.1. According to Theorem 3.1,
we know that limt→∞ zi(t) exists for every i ∈ V . Let us define ∀i ∈ V : z∗i = limt→∞ zi(t).
From the definition of zi’s, we have:

z∗1 ≤ z∗2 ≤ · · · ≤ z∗N . (3.11)
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Since z1(t) and zN(t) are respectively the least and the greatest values of states at time t,
consensus occurs if and only if limt→∞(zN(t)− z1(t)) = 0, or equivalently z∗1 = z∗N . Assume
that this does not happen, or equivalently, z∗1 < z∗N . We aim to show that applying the
absolute infinite flow property in inequality (3.9) when r = N (while identifying a with b in
(3.9)), leads to an unbounded sN(t), which would be a contradiction. Since z∗1 < z∗N , from
inequalities (3.11), we conclude that there exists p, 1 ≤ p ≤ N − 1, such that z∗p < z∗p+1. If
we define ε , (z∗p+1 − z∗p)/2 > 0, there exists T ≥ 0 such that:

z∗p+1(t)− z∗p(t) > ε, ∀t ≥ T. (3.12)

On the other hand, for balanced asymmetric chains, the absolute infinite flow property re-
duces to (3.5). From (3.5), we conclude that for any sequence S(t) of subsets of V of the
same cardinality:

∞∑
t=T

∑
i∈S̄(t+1)

∑
j∈S(t)

aij(t) =∞, (3.13)

since ∑T−1
t=0

∑
i∈S̄(t+1)

∑
j∈S(t) aij(t) is finite. If in (3.13) we set S(t) = {1t, 2t, . . . , rt}, we

obtain:
∞∑
t=T

N∑
i=r+1

r∑
j=1

ait+1jt =∞. (3.14)

On the other hand, we note that according to the proof of Theorem 3.1, limt→∞ sr(t) exists
for every r = 1, . . . , N . Therefore, we can write:

lim
t→∞

sr(t)− sr(0) =
∞∑
t=0

(sr(t+ 1)− sr(t)) . (3.15)

Relations (3.15) and (3.9) yield:

limt→∞ sr(t)− sr(0) ≥ ∑∞t=0

{
M ′−N ∑r−1

k=1

[(∑N
i=k+1

∑k
j=1 ait+1jt

)
(zk+1(t)− zk(t))

]}
= M ′−N ∑r−1

k=1

[∑∞
t=0

(∑N
i=k+1

∑k
j=1 ait+1jt

)
(zk+1(t)− zk(t))

]
.

(3.16)

Setting r = N we obtain:

lim
n→∞

sN(t)− sN(0) ≥M ′−N
N−1∑
k=1

 ∞∑
t=0

 N∑
i=k+1

k∑
j=1

ait+1jt

 (zk+1(t)− zk(t))
 . (3.17)

From the above inequality, recalling that zk+1(t) ≥ zk(t), and keeping only terms correspond-
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ing to k = p and t ≥ T in the RHS, we obtain:

lim
t→∞

sN(t)− sN(0) ≥M ′−N
∞∑
t=T

 N∑
i=p+1

p∑
j=1

ait+1jt

 (zp+1(t)− zp(t)) . (3.18)

Inequalities (3.12) and (3.18) imply:

lim
t→∞

sN(t)− sN(0) ≥ ε.M ′−N
∞∑
t=T

N∑
i=p+1

p∑
j=1

ait+1jt . (3.19)

From (3.14), we know that the RHS of inequality (3.19) is unbounded. Thus, the LHS is
unbounded, and so is sN(t), which is a contradiction. This completes the proof.

Theorem 3.3. Let chain {A(t)} be balanced asymmetric. Then, {A(t)} is class-ergodic if and
only if the absolute infinite flow property holds over each island of the unbounded interactions
graph induced by {A(t)}. Furthermore, in case of class-ergodicty, the islands form the ergodic
classes of {A(t)}.

Proof. To prove the sufficiency of the condition, we adopt the same technique as used in
Touri and Nedić (2012a) and form a new chain {B(t)} of the unbounded interactions graph
GA by eliminating interactions between each agent within an island and agents of other
islands at all times. From the definition of islands, it is immediately implied that {B(t)} is
an l1-approximation of {A(t)}. According to Proposition 3.1, it suffices to prove that {B(t)}
is class-ergodic. The system with {B(t)} as its underlying chain can be decomposed into
subsystems corresponding to islands, as there is no communication between islands at all.
It is straightforward to verify that each subchain of {B(t)} corresponding to a subsystem is
an l1-approximation of a balanced asymmetric chain with the absolute infinite flow property.
Thus, Theorem 3.2 and Proposition 3.1 imply that each subchain is ergodic, and as a result,
{B(t)} is class-ergodic.

We now prove the converse property. More specifically, we assume that {A(t)} is class-
ergodic and balanced asymmetric, and prove that the absolute infinite flow property holds
inside each island of GA. Once again we form chain {B(t)} from {A(t)} by eliminating all
interactions between agents of distinct islands. Since {B(t)} is an l1-approximation of {A(t)},
Proposition 3.1 implies that {B(t)} is class-ergodic as well. It is sufficient now to show that
the absolute infinite flow property holds inside islands of the unbounded interactions graph
induced by chain {B(t)}. Define subchains of {B(t)} corresponding to islands. We shall
show that each island subchain is ergodic. Thus, consider an arbitrary initial state for each
subsystem and by concatenating these states, form an initial vector y(0) for the original
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system:
y(t+ 1) = B(t)y(t), t ≥ 0. (3.20)

Since {B(t)} is assumed class-ergodic, multiple consensus occurs in system (3.20). Let I be
an arbitrary island. We wish to show that agents of I belong to the same consensus cluster.
Assume that, on the contrary, there exists an island I containing agents corresponding to
distinct consensus clusters. We proceed with the exact same proof of Theorem 3.2, identifying
this time y with x in the theorem, and taking advantage of inequality (3.19) by setting p as
follows: since members of island I do not belong to the same cluster, I can be partitioned
into non-empty I1 subsets and Ī1 such that

lim
t→∞

yi(t) < lim
t→∞

yj(t), ∀i ∈ I1, j ∈ Ī1. (3.21)

Recalling that {B(t)} is an l1-approximation of a balanced asymmetric chain, the ordered
limits {z∗k}1≤k≤N in Theorem 3.1 exist. Set p equal to the maximum index k such that:

z∗k ≤ max{ lim
t→∞

yi(t)|i ∈ I1}, (3.22)

and follow steps (3.15) to (3.19) in the proof of Theorem 3.2. Since, by the definition of the
island I,

∞∑
t=0

∑
i∈Ī1,j∈I1

bij(t) =∞, (3.23)

the RHS of inequality (3.19) is unbounded as in the proof of Theorem 3.2, which is a con-
tradiction. Therefore, all agents contained in every island end up in the same consensus
cluster. Since the initial state was arbitrary, we obtain that every subchain is ergodic. From
ergodicity and balanced asymmetry of each subchain, we conclude that the absolute infinite
flow property holds for each subchain, i.e., inside each island.

As a result of Theorem 3.3, the following result, stated and proved previously in Touri and
Nedić (2014), provides a sufficient condition for class-ergodicity of a chain of row stochastic
matrices. Recall definitions of self-confidence and cut-balance properties from Part 3.3.3.

Theorem 3.4. If chain {A(t)} is self-confident and cut-balanced, it is also class-ergodic.

Proof. See Theorem 3 of Bolouki and Malhamé (2012b) for the proof.

3.5 An Illustrative Example

We first note that most of known models, such as the HK model Hegselmann and Krause
(2002), the JLM model Jadbabaie et al. (2003), and the Cucker-Smale model Cucker and
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Smale (2007) are self-confident and cut-balanced. Therefore, from Theorem 3.4, they are
class-ergodic. Further results on ergodicity of these models can be found in our earlier work
Bolouki and Malhamé (2012b). In the rest of the section, using our Theorem 3.3, we discuss
a less restricted version of the JLM model Jadbabaie et al. (2003), whereby self-confidence no
longer holds. Indeed, the parameter considered in Jadbabaie et al. (2003) is the heading of
each agent. If we write θi(t) as the heading of an arbitrary agent i at moment t, the classical
JLM model describing evolution of headings can be formulated as:

θi(t+ 1) = 1
di(t)

∑
j∈Di(t)

θj(t), (3.24)

where Di(t) and di(t) denote respectively the set of neighbors and their number for agent i at
time t. It is also assumed that (i) i ∈ Di(t), ∀t ≥ 0, which guarantees the model has the self-
confidence property with δ = 1/N , (ii) interaction links are undirected, which guarantees the
cut-balance property, with boundM = 2/N , of the model. These two properties immediately
result in the occurrence of multiple consensus with no further assumptions. However, we wish
to investigate a the JLM model in which the self-confidence assumption, i.e., i ∈ Di(t), is
removed. Note that the links are still assumed to be undirected. Therefore, for every i, j ∈ V ,
aij(t) = 1/di(t) if j ∈ Di(t), and aij(t) = 0 otherwise. Let undirected graph Gt(V , Et)
represent the interactions of the system at time t ≥ 0. For a simple graph, a 2-factor is
defined as a spanning subgraph made of a collection of vertex-disjoint cycles of the graph.
Although Gt(V , Et) may not be a simple graph, as it may contain self-loops, we use the same
definition of 2-factor, while treating self-loops as cycles of length 1.

Theorem 3.5. For the JLM model (A.1), where i is not necessarily in Di(t), multiple con-
sensus occurs if Gt(V , Et) has a 2-factor for every t ≥ 0. Moreover, in case of multiple
consensus, consensus clusters are the islands of the unbounded interactions graph induced by
the underlying chain of the system.

Proof. Assume that Gt has a 2-factor for every t ≥ 0. For every S ⊂ V , let DS(t), t ≥ 0,
denote the set of agents each of which is connected to at least one member of S at time
t. It is easy to verify that the existence of a 2-factor in Gt implies that for every S ⊂ V ,
either DS(t) = S or |DS(t)| > |S|. We wish to take advantage of Theorem 3.3 to establish
the result by showing that the balanced asymmetry property is satisfied. Let V1 and V2

be two subsets of V with the same cardinality. If DV1(t) = V2, then V1 = V2. Therefore,
DV2(t) = V1 as well. Thus, inequality (3.3) holds for any M , as both sides are zero. If
DV1(t) 6= V2, then DV2(t) 6= V1 as well. Therefore, both summations in (3.3) are non-zero.
Moreover, the summations are bounded below by 1/N and bounded above by N (total sum
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of interaction rates). Thus, (3.3) is satisfied for M = N2. To complete the proof, keeping
Theorem 3.3 in mind, we show that the absolute infinite flow property holds over each island
of the unbounded interactions graph induced by the underlying chain of the system. Let I
be an arbitrary island. We know that there is some finite time T > 0 past which all islands
are isolated since the interaction weights, whenever non-zero, are bounded below by 1/N .
Let {S(t)}t≥0 be an arbitrary sequence of equal cardinality subsets of V inside I. Since I is
isolated for t > T , DS(t)(t) ⊂ I for t > T . On the other hand, the existence of a 2-factor in
Gt implies DS(t)(t) = S(t) or DS(t)(t)| > |S(t)|. The absolute infinite flow property over I is
now proved considering the following two cases:
Case I: DS(t+1)(t + 1) 6= S(t) occurs infinitely often. As a result, S̄(t) ∩ DS(t+1)(t + 1) 6=
∅ happens infinitely many times after time T , and every time ∑i∈S(t+1)

∑
j∈I\S(t) aij(t) is

bounded below by 1/N . This leads to the satisfaction of (3.2) over I.
Case II: DS(t+1)(t + 1) 6= S(t) does not occur infinitely often. Thus, there exists a finite
time T1 > 0 such that DS(t+1)(t + 1) = S(t), ∀t > T1. Therefore, S(t + 1) = S(t) = S,
∀t > T1. Otherwise, |S(t + 1)| < |S(t)| which is impossible by the assumption on the
sequence cardinality. In this case, the absolute flow property holds due to the connectivity
of island I. Otherwise, S would be an island inside I, which would be a contradiction.

Noticing that the existence of a single island in Theorem 3.5 results in consensus, we have
the following corollary.

Corollary 3.1. For the JLM model (A.1), where i is not necessarily in Di(t), consensus
occurs if both the followings are satisfied: (i) Gt(V , Et) has a 2-factor for every t ≥ 0, (ii)
there exist an infinite sequence of non-empty, bounded time-intervals [ti, ti+1), i ≥ 0, starting
at t0 = 0, with the property that across each such interval, any pair of agents are linked
together via a chain of neighbors.

Remark 3.3. If we made the self-confidence assumption in the JLM model, there would exist
a trivial 2-factor (consisting of N disjoint self-loops) in Gt(V , Et). As a result, the occurrence
of multiple consensus would immediately be implied from Theorem 3.5.

Remark 3.4. One can define a 2-factor of a directed graph as a spanning subgraph made of
a collection of vertex-disjoint directed cycles of the graph. By this definition, Theorem 3.5,
with its current proof, also holds for the case in which Gt(V , Et) is directed.

3.6 Conclusion

In this note, we have focused on a class of linear distributed averaging algorithms in
discrete time, such that the underlying non-homogeneous update Markov chain satisfies a
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property called balanced asymmetry. Under the balanced asymmetry assumption, we estab-
lished that, asymptotically, states of agents involved in the consensus algorithm keep taking
their values within a fixed set of limiting values of cardinality at most N .

We then considered the unbounded interactions graph and its islands as introduced in
Hendrickx and Tsitsiklis (2013) for continuous time consensus algorithms. under the bal-
anced asymmetry assumption, we obtained a necessary and sufficient condition for the above
limiting values to become limits of individual agent states. We established that the number
of potential consensus clusters is equal to the number of islands, and consensus over an island
occurs if and only if the absolute infinite flow property (Touri and Nedić Touri and Nedić
(2012b)) holds over that island. Finally, we displayed the applicability of our results to a
number of well-known consensus models in the literature and developed a generalization of
the JLM model requiring the tools in this note for its analysis. In future work, we shall
investigate the impact of the number of agents increasing to infinity on all of our results.
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CHAPTER 4

ARTICLE 2: CONSENSUS ALGORITHMS AND THE
DECOMPOSITION-SEPARATION THEOREM

Sadegh Bolouki and Roland P. Malhamé
Submitted to IEEE Transactions on Automatic Control, September 2014

4.1 Abstract

Convergence properties of time inhomogeneous Markov chain based discrete and continu-
ous time linear consensus algorithms are analyzed. Provided that a so-called infinite jet flow
property is satisfied by the underlying chains, necessary conditions for both consensus and
multiple consensus are established. A recent extension by Sonin of the classical Kolmogorov-
Doeblin decomposition-separation for homogeneous Markov chains to the inhomogeneous
case is then employed to show that the obtained necessary conditions are also sufficient when
the chain is of class P∗, as defined by Touri and Nedić. It is also shown that Sonin’s theorem
leads to a rediscovery and generalization of most of the existing related consensus results in
the literature.

4.2 Introduction

Linear consensus algorithms and their convergence properties have gained increasing at-
tention in the past decade. They were first introduced in DeGroot (1974), where the author
considered the case when the interactions rates between any two agents are time-invariant.
Later, more general cases were considered in Bertsekas and Tsitsiklis (1989); Blondel et al.
(2005); Chatterjee and Seneta (1977); Hendrickx (2008); Hendrickx and Blondel (2006); Jad-
babaie et al. (2003); Li et al. (2004); Moreau (2005); Tsitsiklis (1984); Tsitsiklis et al. (1986).
The authors aimed at identifying sufficient conditions for consensus to occur, i.e., for states
to asymptotically converge to the same value. Beside consensus, multiple consensus has been
the subject of many articles, e.g., Bolouki and Malhamé (2012a); Hendrickx and Tsitsiklis
(2013); Lorenz (2005); Touri and Nedić (2012a, 2014). Multiple consensus refers to the case
when each agent state converges, as time grows large, to an individual limit which may or
may not be different from the individual limits of other agent states. Considering the work on
linear consensus algorithms, Bolouki and Malhamé (2012a); Hendrickx and Tsitsiklis (2013);
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Touri and Nedić (2014) appear to provide the most general sufficient conditions for the oc-
currence of consensus or multiple consensus in a multi-agent system with dynamics described
by a linear consensus algorithm.

In this paper, we deal with the limiting behavior of a general linear consensus algorithm
in both discrete and continuous time. Let V = {1, . . . , N} be the set of agents. In discrete
time, we consider an N -agent system with linear update equation:

x(t+ 1) = A(t)x(t),∀t ≥ 0. (4.1)

In (4.1), t indicates the discrete time index, x(t) = [x1(t) · · ·xN(t)]′, t ≥ 0, is the vector
of agent states, where prime (′) indicates the transposition, A(t), t ≥ 0, is the matrix of
interaction rates aij(t), 1 ≤ i, j ≤ N , and {A(t)} is the underlying chain or transition chain
of the system, which is a chain of (N × N) row-stochastic matrices, i.e, for every t ≥ 0,
all elements of A(t) are non-negative and each row of A(t) sums up to 1. Throughout the
paper, for simplicity, we refer to a row-stochastic matrix as a stochastic matrix. Since A(t)
is a stochastic matrix for every t ≥ 0, sequence {x(t)}, by definition, forms a backward
Markov chain with transition chain {A(t)} (notice the evolution is described by a right hand
multiplication by a column vector instead of the usual left hand multiplication by a row
vector). Although we mainly focus on the discrete time case in this work, we shall extend
our results to the continuous time case.

If all components of x(t) asymptotically converge to the same limit, irrespective of the
time index t or the values at which they are initialized, unconditional global consensus,
or simply, unconditional consensus, is said to occur. Furthermore, if there exists a fixed
partition of the N agents such that unconditional consensus occurs for the corresponding
subvectors of x(t), then unconditional multiple consensus is said to occur. The subsets in
the partition are then said to form consensus clusters. It is well known that under dynamics
(4.1), unconditional consensus is equivalent to ergodicity of chain {A(t)} (see Chatterjee and
Seneta (1977)), i.e., the property that backward products converge to matrices with identical
rows. Furthermore, Bolouki and Malhamé (2012a) and Touri and Nedić (2012b) establish
that a consensus algorithm with update chain {A(t)} will induce multiple consensus if {A(t)}
is so-called class-ergodic, i.e., for every t0 ≥ 0, the product A(t)A(t− 1) · · ·A(t0) converges,
as t → ∞. For class-ergodic chains, set V can be partitioned into ergodic classes, whereby
i, j in V belong to the same ergodic class if the difference between the ith and jth rows of
matrix product A(t)A(t − 1) · · ·A(t0) vanishes, as t → ∞. Under multiple consensus, the
agent indices within the ergodic classes are the same as those within consensus clusters.

Sonin, in his so-called Decomposition-Separation (D-S) Theorem Sonin et al. (2008),
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suggests an elegant and illuminating physical interpretation of the dynamics in (4.1), which
we now report for completeness: Start with a forward propagating Markov chain with (N×N)
transition matrices P (t) and associated sequence of probability distribution vectors m(t):

m′(t+ 1) = m′(t)P (t), ∀t ≥ 0. (4.2)

Interpret mi(t), i ∈ V , t ≥ 0, as the volume of some liquid, say water for example, in a cup i
(out of N cups), at time t ≥ 0, while pij(t)mi(t) is the volume of liquid transferred from cup
i to cup j at time t ≥ 0 (see Fig. 4.1).

Figure 4.1 A physical interpretation of a Markov chain.

The volume of liquid in cup i, ∀i ∈ V , is assumed to be initialized as mi(0) at time
zero. Now, let xi(t), i ∈ V , t ≥ 0, be the concentration of a certain substance, such as sugar,
alcohol, etc., within the liquid of cup i at time t. We first assume that the volume of each cup
is non-zero at all times in order to make the concentration well-defined. Moreover, assume,
for every i ∈ V , that xi(t) is initialized as xi(0) at time zero. It is not difficult to show that,
for every i ∈ V , and t ≥ 0:

xi(t+ 1) =
∑
j∈V pji(t)mj(t)xj(t)

mi(t+ 1) . (4.3)

Let:
x(t) ,

[
x1(t) · · ·xN(t)

]′
, (4.4)

and (N ×N) matrix A(t), with elements aij(t), i, j ∈ V , be defined by:

aij(t) = pji(t)mj(t)/mi(t+ 1),∀t ≥ 0. (4.5)

From (4.3), (4.4), and (4.5), we conclude that:

x(t+ 1) = A(t)x(t),∀t ≥ 0. (4.6)
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Since A(t) is stochastic for every t ≥ 0 (check (4.5)), {x(t)} forms a backward Markov chain,
with transition chain {A(t)}, as in (4.1). Removing the non-zero volume assumption, {A(t)}
is constructed in such a way that elements of A(t), t ≥ 0, satisfy:

mi(t+ 1)aij(t) = mj(t)pji(t),∀i, j ∈ V ,∀t ≥ 0. (4.7)

The D-S Theorem, Sonin et al. (2008), describes the limiting behavior of both m(t) and x(t),
as t grows large. However, to take advantage of the D-S Theorem in a general consensus
algorithm (4.1), one has to, first, answer the following questions: Starting with a backward
propagating Markov chain generated by {A(t)}, is it always possible to find an associated
forward propagating Markov chain, with distribution vector {m(t)}, generated by a transition
chain {P (t)}, satisfying an equation of the form (4.7)? And how, if so? As discussed in this
paper, due to the existence of a so-called absolute probability sequence for {A(t)}, as proved
in fundamental work Kolmogoroff (1936), one could show the existence of the desired chains
satisfying (4.7). More specifically, any absolute probability sequence {m(t)} admitted by
{A(t)}, would help construct a forward propagating sequence of transition matrices, via
(4.7).

In this paper, it is established that, based on the D-S Theorem, all these previous results
can be subsumed. Furthermore, inspired by Touri and Nedić (2012b), and recalling the notion
of jets in Markov chains from Blackwell (1945), we introduce a property of chains resulting in
necessary conditions for the unconditional occurrence of consensus or multiple consensus in
(4.1). We also establish that, under an additional assumption, that is the chain being in the
so-called Class P∗ Touri and Nedić (2014), these necessary conditions also become sufficient.

In addition to the notation defined in the beginning of this section, we adopt the following
notation throughout the paper. Letter t stands for either discrete or continuous time indices
according to context. Φ(t, τ), t, τ ≥ 0, represents the state transition matrix of the considered
system, which can be defined in either the discrete time domain, as in (4.1), or the continuous
time domain, as we will see later on. Moreover, Φi(t, τ) and Φi,j(t, τ), 1 ≤ i, j ≤ N , denote
the ith column and the (i, j)th element (intersection of ith row and jth column) of Φ(t, τ)
respectively, while Φ′i(t, τ) refers to the ith column of Φ′(t, τ) (the prime acts first), which is
also the transpose of the ith row of Φ(t, τ). For an arbitrary vector v ∈ RN , and 1 ≤ i ≤ N ,
vi denotes the ith element of v. The overline (¯) on a subset indicates complementation of
the subset in the universal set of interest.

The rest of the paper is organized as follows. In Section 4.3, we state necessary conditions
for class-ergodicity and ergodicity of a chain. The D-S Theorem, and its application in a
general linear consensus algorithm, are discussed in Section 4.4. In Section 4.5, based on the
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D-S Theorem, we analyze the convergence properties of chains in Class P∗. It is shown, in
Section 4.6, that this analysis leads to a generalization of most of the existing results in the
literature on convergence properties of linear consensus algorithms. A geometric approach
is introduced in Section 4.7 that applies to both discrete and continuous time consensus
protocols. From the geometric framework built, we extend our analysis to the continuous
time case in Section 4.8. Concluding remarks end the paper in Section 4.9.

4.3 The Infinite Jet-Flow Property

Inspired by Blackwell (1945), as reported in Sonin et al. (2008) and Touri and Nedić
(2012b), in this section, we introduce a property of chains of stochastic matrices, herein
called the infinite jet-flow property, leading to necessary conditions for ergodicity and class-
ergodicity of the chain.

Definition 4.1. For a given subset V ′ of finite set V = {1, . . . , N}, a jet J in V ′ is a sequence
{J(t)} of subsets of V ′. A jet J in V ′ is called proper if ∅ 6= J(t) ( V ′, ∀t ≥ 0 (see Fig.
4.2). Moreover, for a jet J , jet-limit J∗ denotes the limit of the sequence {J(t)}, as t grows
large, if it exists, in the sense that the sequence becomes constant after a finite time. When
the elements of the sequence are all identical to a subset S of V, the jet will be referred to as
jet S.

Figure 4.2 Example of a proper jet J in V = {1, 2, 3, 4, 5}: J(0) = {1, 2, 3, 5}, J(1) = {1, 5},
J(2) = {2}, J(3) = {2, 5}, . . .

Definition 4.2. A tuple of jets (J1, . . . , J c) is a jet-partition of V, if (J1(t), . . . , J c(t)) is a
partition of V for every t ≥ 0.
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Definition 4.3. Let chain {A(t)} of stochastic matrices be given. For any two disjoint jets
Js and Jk in V, UA(Js, Jk), or simply U(Js, Jk), when no ambiguity results, denotes the total
interactions between the two jets over the infinite time interval, as defined by:

U(Js, Jk) = ∑∞
t=0

[∑
i∈Js(t+1)

∑
j∈Jk(t) aij(t)

+∑
i∈Jk(t+1)

∑
j∈Js(t) aij(t)

]
.

(4.8)

Moreover, UA(t)(Js, Jk), or simply, Ut(Js, Jk), denotes the interactions between the two jets
at time t. More specifically,

Ut(Js, Jk) = ∑
i∈Js(t+1)

∑
j∈Jk(t) aij(t)

+∑
i∈Jk(t+1)

∑
j∈Js(t) aij(t).

(4.9)

Definition 4.4. The complement of jet J in V, denoted by V\J , or simply, J̄ , is the jet
defined by the set sequence {V\J(t)}.

Definition 4.5. A chain {A(t)} of stochastic matrices is said to have the infinite jet-flow
property over subset V ′ of V if, for every proper jet J in V ′, U(J,V ′\J) is unbounded. If
V ′ = V, chain {A(t)} is simply said to have the infinite jet-flow property.

Example 4.1. The following chain {A(t)}t≥0 is an example of chains with the infinite jet-
flow property:

A(t) =


1 0 0

1− 1
t+1 0 1

t+1

0 0 1

 , if t is even, (4.10)

and

A(t) =


1 0 0
1
t+1 0 1− 1

t+1

0 0 1

 , if t is odd. (4.11)

It is not easy, at this stage, to show that chain {A(t)} defined by (4.10–4.11) has the infinite
jet-flow property. In Lemma 4.2 stated later in the paper, we suggest a way to check the
infinite jet-flow property of a chain that implies the infinite jet-flow property of {A(t)} defined
by (4.10–4.11).
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Example 4.2. Chain {A(t)}t≥0 defined by:

A(t) =


1 0 0

1− 1
(t+1)2 0 1

(t+1)2

0 0 1

 , if t is even, (4.12)

and

A(t) =


1 0 0
1

(t+1)2 0 1− 1
(t+1)2

0 0 1

 , if t is odd, (4.13)

is an example of chains for which the infinite jet-flow property is not satisfied. More specifi-
cally, if we define jet J by:

J(t) =

{1} if t is even

{1, 2} if t is odd
(4.14)

then we have:
U(J,V\J) =

∞∑
t=0

1
(t+ 1)2 < ∞, (4.15)

which shows that the infinite jet-flow property does not hold.

In the following proposition, we state a sufficient condition for the infinite jet-flow property
to hold.

Definition 4.6. Touri and Nedić (2014) For a chain {A(t)} of stochastic matrices, we define
its infinite flow graph, GA(V , E), by an undirected graph of size N , such that:

E = {(i, j)|i, j ∈ V , i 6= j,
∞∑
t=0

(aij(t) + aji(t)) =∞}. (4.16)

The set of nodes of each connected component of GA(V , E) is called an island of {A(t)}.
Moreover, chain {A(t)} is said to have the infinite flow property if and only if GA(V , E) is
connected.

The following theorem states a necessary condition for class-ergodicity of chain {A(t)} of
stochastic matrices.

Theorem 4.1. A chain {A(t)} of stochastic matrices is class-ergodic only if the infinite
jet-flow property holds over each island of {A(t)}.

Proof. Assume that, on the contrary, {A(t)} is class-ergodic, yet some proper jet J , in an
island I of {A(t)}, is such that UA(J, I\J) is bounded. Recall, from Definition 4.1, that by
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a proper jet in I, we mean ∅ 6= J(t) ( I, ∀t ≥ 0. Since UA(J, I\J) is bounded and I is an
island of {A(t)}, we conclude that UA(J,V\J) is bounded as well. Recalling the definition
of l1-approximation from Touri and Nedić (2012a), a chain {B(t)} is an l1-approximation of
chain {A(t)} if:

∞∑
t=0
‖A(t)−B(t)‖ <∞, (4.17)

where for convenience only, the norm refers to the max norm, i.e., the maximum of the
absolute values of the matrix elements. We now form chain {B(t)}, an l1-approximation of
chain {A(t)}, by eliminating interactions between J and V\J at all times. From (Touri and
Nedić, 2012a, Lemma 1), it is known that l1-approximations do not influence the ergodic
classes of a chain. Therefore, {B(t)} will remain class-ergodic with the same ergodic classes
as {A(t)}. Also, the islands of B(t) are the same as those of A(t). On the other hand,
UB(J,V\J) = 0. Given two distinct arbitrary constants, α1 and α2, let states of a multi-
agent system, yi(t), i ∈ V , evolve via dynamics y(t+ 1) = B(t)y(t), ∀t ≥ 0, and be initialized
at: yi(0) = α1 if i ∈ J(0), and yi(0) = α2 otherwise. Since there is no interaction between
J and V\J at any time, we conclude that for every t ≥ 0, we have: yi(t) = α1 if i ∈ J(t),
and yi(t) = α2 otherwise. Since {B(t)} is class-ergodic, limt→∞ yi(t) exists for every i ∈ V
and the consensual agents can be grouped into clusters sharing the same limit and forming
an ergodic class. Since the elements in {J(t)} are always associated with the same value of
y for any t, they will asymptotically belong to a fixed limiting cluster S∗ , namely agents for
which yi(t) converges to α1. Since J is a proper jet in I, we have: ∅ 6= S∗ ( I. Consider,
now, jet S∗ on island I. S∗ is essentially the limiting jet J∗ of J . Since the island structure
is common for chains {A(t)} and {B(t)}, we know that UB(J∗, I\J∗) is unbounded. This is
in contradiction with UB(J, I\J) ≤ UB(J,V\J) = 0, which completes the proof.

Later in this paper, we shall establish the sufficiency of the infinite jet-flow property in
Theorem 4.1, provided {A(t)} is in Class P∗, as defined in Touri and Nedić (2014). We now
note that the infinite flow property of {A(t)}, which is a necessary condition for ergodicity
of {A(t)} according to Touri and Nedić (2011), is equivalent to the existence of a single
island. Thus, Theorem 4.1 immediately results in the following corollary which is a necessary
condition for ergodicity of chain {A(t)} of stochastic matrices.

Corollary 4.1. A chain {A(t)} of stochastic matrices is ergodic only if it has the infinite
jet-flow property.

Corollary 4.1 provides a more restrictive necessary condition for ergodicity of a chain
than Theorems 1 and 2 of Touri and Nedić (2012b). For instance, from Corollary 4.1, we
conclude that the chain of Example 4.2 is not ergodic since it does not have the infinite
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jet-flow property. However, this cannot be concluded from Theorem 1 and 2 of Touri and
Nedić (2012b).

On the other hand, we notice that the infinite jet-flow property is not sufficient for er-
godicity. For instance, one can verify that the chain of Example 4.1 is not ergodic while the
infinite jet-flow property holds.

Definition 4.7. A jet J in V is called an independent jet if the total influence of J̄ on J is
finite over the infinite time interval, i.e.,

∞∑
t=0

∑
i∈J(t+1)

∑
j∈J̄(t)

aij(t) <∞. (4.18)

The following theorem, which is a generalization of Corollary 4.1, states yet another
necessary condition for ergodicity of chain {A(t)} of stochastic matrices.

Theorem 4.2. A chain {A(t)} of stochastic matrices is ergodic only if no two disjoint in-
dependent jets in V exist.

Proof. Assume that on the contrary, there exist two disjoint independent jets J1 and J2 in
V . Similar to the proof of Theorem 4.1, form chain {B(t)}, an l1-approximation of {A(t)},
by eliminating the influence of J̄s on Js, s = 1, 2, at all times. Recall that {A(t)} and
{B(t)} will share the same ergodicity properties. Let states of a multi-agent system, yi(t),
1 ≤ i ≤ N , evolve via dynamics y(t + 1) = B(t)y(t), ∀t ≥ 0, and be initialized such that
for every i ∈ Js(0) (s = 1, 2), yi(0) = αs, where α1 6= α2. Then, for every t ≥ 0, we have:
yi(t) = αs, ∀i ∈ Js(t) (s = 1, 2). Since α1 6= α2, consensus does not occur. Consequently,
chain {B(t)} and thus {A(t)} could not possibly be ergodic.

As an example, for chain {A(t)} of Example 4.1, jet {1} and jet {3} are two disjoint
independent jets in V = {1, 2, 3}. Thus, Theorem 4.2 implies that {A(t)} is not ergodic.

Remark 4.1. The following argument explains why Theorem 4.2 generalizes Corollary 4.1.
Without the infinite jet-flow property, there exists a jet J such that U(J,V ′\J) is bounded.
Thus, both jets J and V\J are independent jets. On the other hand, jet J and V\J are
disjoint. Thus, infinite jet-flow is a weaker condition than the non-existence of any two
disjoint independent jets.

4.4 Relationship to the D-S Theorem

Consider a multi-agent system with states evolving according to linear algorithm (4.1),
where {A(t)} is a chain of stochastic matrices. Based on the work of Kolmogorov in Kol-
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mogoroff (1936), we know that for every chain {A(t)}t≥0, there exists a sequence {π(t)}t≥0

of probability distribution vectors, called absolute probability sequence, such that

π′(t+ 1)A(t) = π′(t),∀t ≥ 0. (4.19)

The transition chain {P (t)} of the forward propagating chain associated with {A(t)} and
{π(t)} as in (4.7), must be such that:

πi(t)pij(t) = πj(t+ 1)aji(t),∀i, j ∈ V ,∀t ≥ 0. (4.20)

More specifically, if πi(t) 6= 0, then:

pij(t) = πj(t+ 1)aji(t)/πi(t), (4.21)

while if πi(t) = 0, for some i and t ≥ 0, we choose pij(t)’s non-negative, arbitrarily such that:

N∑
j=1

pij(t) = 1. (4.22)

Note that in the former case (πi(t) 6= 0), (4.22) is automatically satisfied, implying that P (t)
is a stochastic matrix for every t ≥ 0. It is easy to see that:

π′(t)P (t) = π′(t+ 1),∀t ≥ 0. (4.23)

Thus, {π(t)} forms the probability distribution vector of an inhomogeneous forward propa-
gating Markov chain. Let V (Js, Jk) denote the total flow between two arbitrary jets Js and
Jk in V over the infinite time interval as defined by:

V (Js, Jk) = ∑∞
t=0

[∑
i∈Jk(t)

∑
j∈Js(t+1) rij(t)

+∑
i∈Js(t)

∑
j∈Jk(t+1) rij(t)

]
,

(4.24)

where
rij(t) = πi(t)pij(t) = πj(t+ 1)aji(t). (4.25)

Value rij(t) can be interpreted as the absolute joint probability of being in i at time t and j at
time t+ 1. Recalling U from (4.8), we note that for every Js, Jk in V , V (Js, Jk) ≤ U(Js, Jk).
Sonin, in his elegant work Sonin et al. (2008), characterizes the limiting behavior of the
two sequences {π(t)} and {x(t)} (evolving via (4.1)) in the so-called D-S Theorem as the
following.
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Theorem 4.3. (Sonin’s D-S Theorem) There exists an integer c, 1 ≤ c ≤ N , and a decompo-
sition of V into jet-partition (J0, J1, . . . , J c), Jk = {Jk(t)}, 0 ≤ k ≤ c, such that irrespective
of the particular time or state at which xi’s are initialized,

(i) For every k, 1 ≤ k ≤ c, there exist constants π∗k and x∗k, such that limt→∞
∑
i∈Jk(t) πi(t) =

π∗k and limt→∞ xit(t) = x∗k for every sequence {it}, it ∈ Jk(t). Furthermore,

lim
t→∞

∑
i∈J0(t)

πi(t) = 0. (4.26)

(ii) For every distinct k, s, 0 ≤ k, s ≤ c: V (Jk, Js) <∞.

(iii) This decomposition is unique up to jets {J(t)} such that limt→∞
∑
i∈J(t) πi(t) = 0 and

V (J,V\J) <∞ for any {π(t)}.

We shall take advantage of the Sonin’s D-S Theorem to characterize the asymptotic
behavior of a class of chains of stochastic matrices in the following section.

4.5 Convergence in Class P∗

In this section, we apply Sonin’s D-S Theorem to chains in class P∗ as first defined in
Touri and Nedić (2014).

Definition 4.8. (Touri and Nedić, 2014, Definition 3) Chain {A(t)} is said to be in class
P∗ if it admits an absolute probability sequence uniformly bounded away from zero, i.e., there
exists p∗ > 0 such that

πi(t) ≥ p∗,∀i ∈ V ,∀t ≥ 0. (4.27)

For chains in Class P∗, it is immediately implied that in the jet decomposition of the D-S
Theorem, there is no jet J0. Otherwise, limt→∞

∑
i∈J0(t) πi(t) would be bounded away from

zero by at least p∗, which is in contradiction with the D-S Theorem. Therefore, there is a
jet-partition of V into jets J1, . . . , J c, such that for every k = 1, . . . , c, limt→∞ xit(t) = x∗k,
for every sequence {it}, where it ∈ Jk(t). Thus, we have the following proposition for chains
in Class P∗.

Proposition 4.1. Consider a multi-agent system with dynamics (4.1), where chain {A(t)}
is in Class P∗. Then, the set of accumulation points of states is finite.

Proof. Obvious if we note that {x∗k|1 ≤ k ≤ c} form the set of accumulation points of
states.

Lemma 4.1. If {A(t)} ∈ P∗, then for every two jets J1 and J2 in V, V (J1, J2) =∞ if and
only if U(J1, J2) =∞.
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Proof. The result is obvious if one notes that

p∗U(J1, J2) ≤ V (J1, J2) ≤ U(J1, J2). (4.28)

Theorem 4.4. A chain {A(t)} in Class P∗ is class-ergodic if and only if the infinite jet-flow
property holds over each island of {A(t)}. In case of class-ergodicity of {A(t)}, islands are
the ergodic classes of {A(t)}, and constitute the jet limits in the jet decomposition of {A(t)}.
Moreover, these limits are attained in finite time.

Proof. We first assume that chain {A(t)} in P∗ is class-ergodic. Then, Theorem 4.1 implies
that the infinite jet-flow property holds over each island of the chain. We now show that if
{A(t)} ∈ P∗ is class-ergodic, islands are the ergodic classes of {A(t)}. Let us call an agent
i ∈ V , a prime member of jet Jk if i ∈ Jk(t) for infinitely many times. Having defined
the prime membership, there exists some Sonin’s jet-decomposition of {A(t)} such that each
agent becomes the prime member of a unique jet. To obtain such a jet-decomposition, start
with an arbitrary jet-decomposition and let any two jets with a common prime member
merge. The merging process results in a Sonin’s jet-decomposition with the desired property.
Jets of such decomposition have the property that they become time-invariant after a finite
time. Thus, the jet-limits exist for each jet and are ergodicity classes of {A(t)}. If i and j
belong to the same jet-limit, they are in the same island since they are in the same ergodic
class of {A(t)} (Touri and Nedić (2012a), Lemma 2). Conversely, assume that i and j are
neighbors in the infinite flow graph, i.e., ∑∞t=0(aij(t) + aji(t)) = ∞. If i and j were to
belong to different jet-limits Js∗ , Jk∗ , then U(Js, Jk) would be unbounded. Thus, based on
Lemma 4.1, V (Js, Jk) would be unbounded as well, which contradicts property (ii) in the
D-S theorem. Therefore, every two neighbors in the infinite flow graph belong to the same
jet-limit. Consequently, every i and j in the same island must be in the same jet-limit.

To prove the sufficiency, we assume that the infinite jet-flow property holds over each
island. Let (J1, . . . , J c) be a Sonin’s jet-decomposition, and limt→∞ xit(t) = x∗k for every
sequence {it}, where it ∈ Jk(t) (for every k, 1 ≤ k ≤ c). Let I be an arbitrary island. We
aim to show that, for every i ∈ I, limt→∞ xi(t) exists. To this aim, keeping in mind that the
aim is achieved is one of jets J1, . . . , J c contains island I after some finite time, we follow
three steps. Pick an arbitrary jet Jk among J1, . . . , J c.

Step 1: We show that, infinitely often, we have: I ∩ Jk(t) = ∅ or I ∩ Jk(t) = I, where ∅
denotes the empty set. Indeed, assume instead that this behavior occurs only a finite number
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r of times, denoted t1, . . . , tr. We form a proper jet J in I such that:

J(t) = I ∩ Jk(t), if t 6= ti, 1 ≤ i ≤ r. (4.29)

Since the infinite jet-flow property holds over I, U(J, I\J) is unbounded. On the other hand,
except for a finite number of time indices t = ti, 1 ≤ i ≤ r, Ut(J, I\J) ≤ Ut(Jk,V\Jk). This
implies that U(Jk,V\Jk) is unbounded, and, according to Lemma 4.1, so is V (Jk,V\Jk).
This is in contradiction with the D-S Theorem. Therefore, I ∩ Jk(t) = ∅ or I happens
infinitely many times. This means that either one or both of the events I ∩ Jk(t) = ∅ and
I ∩ Jk(t) = I occurs infinitely often.

Step 2: We show that there are at most a finite number of times such that I ⊆ Jk(t) and
I 6⊆ Jk(t+ 1). Indeed, denote:

ε ,
1
3 min{|x∗s − x∗l | |1 ≤ s 6= l ≤ c}, (4.30)

there exists Tε ≥ 0 such that:

|xi(t)− x∗l | < ε,∀l = 1, . . . , c, ∀i ∈ J l(t),∀t ≥ Tε. (4.31)

For some given t ≥ Tε assume that: I ⊆ Jk(t) and I 6⊆ Jk(t + 1). Then, there exists i ∈ I
such that i ∈ Jk(t)\Jk(t+ 1). In view of (4.1), (4.30), and (4.31), we then have:

|
∑

j 6∈Jk(t)
aij(t)(xj(t)− xi(t))| ≥ ε. (4.32)

On the other hand,
|∑j 6∈Jk(t) aij(t)(xj(t)− xi(t))|

≤ ∑j 6∈Jk(t) aij(t)|xj(t)− xi(t)|

≤ L
∑
j 6∈Jk(t) aij(t),

(4.33)

where
L , max{xj(0)− xi(0), |i, j ∈ V}. (4.34)

Note that L remains an upper bound of |xj(t)− xi(t)|, ∀t ≥ 0, since states are updated via
a convex combination of previous states. Eqs. (4.32) and (4.33) imply:

∑
j 6∈Jk(t)

aij(t) ≥ ε/L. (4.35)
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Therefore, since i ∈ I:

∑
l∈I

∑
j 6∈I

alj(t) ≥
∑
j 6∈I

aij(t) ≥
∑

j 6∈Jk(t)
aij(t) ≥ ε/L. (4.36)

Since U(I,V\I) <∞, inequality (4.36) can only occur for finitely many times t. This shows
that if I ⊆ Jk(t) happens infinite times, then there exists T such that I ⊆ Jk(t) for every
t ≥ T . Consequently, limt→∞ xi(t) exists, ∀i ∈ I, and is equal to x∗k. Therefore, assume that
for a fixed island I, I ⊆ Jk(t) happens only a finite number of times for every k, 1 ≤ k ≤ c.
Thus, from the result of Step 1, I ∩ Jk(t) = ∅ must happen infinite times, for every k,
1 ≤ k ≤ c.

Step 3: We show that if I ∩ Jk(t) = ∅ happens infinite times, for every k, 1 ≤ k ≤ c,
then, the following contradiction occurs: For every k, 1 ≤ k ≤ c, there exists Tk ≥ 0 such
that I ∩ Jk(t) = ∅, ∀t ≥ Tk. The proof is established by induction on k. With no loss of
generality, assume that x∗1 < · · · < x∗k. (k = 1): Recalling ε and Tε from (4.30) and (4.31),
assume that for a fixed t ≥ Tε we have I ∩J1(t) = ∅ and I ∩J1(t+ 1) 6= ∅. Thus, there exists
i ∈ I such that i ∈ J1(t+ 1)\J1(t). Therefore,

∑
j∈J1(t)

|aij(t)(xj(t)− xi(t))| ≥ ε. (4.37)

Noting that J1(t) ⊆ V\I, by repeating steps (4.32)-(4.36), we conclude that there are at
most finitely many times at which I ∩ J1(t) = ∅ and I ∩ J1(t + 1) 6= ∅. This together with
the fact that I ∩ J1(t) = ∅ happens infinite times, shows that there exists T1 ≥ 0 such that
I ∩ J1(t) = ∅, ∀t ≥ T1.
k−1→ k (1 < k ≤ c): Assume that for a fixed t ≥ max{Tl|1 ≤ l < k}, we have I∩Jk(t) = ∅
and I ∩ Jk(t+ 1) 6= ∅. Thus, there exists i ∈ I such that i ∈ Jk(t+ 1)\Jk(t). Therefore,

∑
j∈
⋃k

l=1 J
l(t)

|aij(t)(xj(t)− xi(t))| ≥ ε. (4.38)

Once again, we note that ⋃kl=1 J
l(t) ⊆ Ī, and repeat steps (4.32)-(4.36) to show that there

exists Tk ≥ 0 such that I ∩ Jk(t) = ∅, ∀t ≥ Tk.

Corollary 4.2. A chain {A(t)} ∈ P∗ is ergodic if and only if it has the infinite jet-flow
property.

Since convergence of states occurs inside each jet Jk, 1 ≤ k ≤ c, for multiple consensus
to occur unconditionally (class-ergodicity of {A(t)}), it suffices that for each jet of the D-S
Theorem jet decomposition, its jet-limit exists.
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4.6 Relationship to Previous Work

4.6.1 Weakly Aperiodic Chains in Class P∗

In this section of the paper, we see how the weak aperiodicity property, as defined in
Touri and Nedić (2014), guarantees that the infinite jet-flow property holds over each island.
In accordance with Touri and Nedić (2014), weak aperiodicity of a chain is defined as follows:

Definition 4.9. A chain {A(t)} of stochastic matrices is said to be weakly aperiodic if there
exists γ > 0 such that for every distinct i, j ∈ V and each t ≥ 0, there exists l ∈ V such that

ali(t).alj(t) ≥ γaij(t). (4.39)

Lemma 4.2. Let {A(t)} be a chain of stochastic matrices in Class P∗ that is weakly aperiodic.
Then, the infinite jet-flow property holds over each island of {A(t)}. In particular, in presence
of a single island, the infinite jet-flow property holds for chain {A(t)}.

Proof. Let {A(t)} be weakly aperiodic, I be an arbitrary island of {A(t)}, and J be an
arbitrary jet in I. If jet-limit J∗ exists, since I is a connected component of the infinite flow
graph, U(J∗, I\J∗) is unbounded. Consequently, U(J, I\J) is unbounded and the lemma
holds. Thus instead, assume that for jet J , the jet-limit does not exist. Therefore, for
infinitely many times t, we must have: J(t + 1) 6⊆ J(t). Let t be fixed and J(t + 1) 6⊆ J(t).
Thus, there exists i ∈ J(t + 1)\J(t). From the weak aperiodicity property of {A(t)} (see
(4.39)), for every j ∈ J(t), there exists l ∈ V such that:

γaij(t) ≤ ali(t).alj(t)≤ min{ali(t), alj(t)}

≤ Ut(J,V\J),
(4.40)

where Ut is defined in (4.9). The reason for the last inequality is that, whether l ∈ J(t + 1)
or l 6∈ J(t+ 1), one of ali(t), alj(t) appears in Ut(J,V\J). Hence,

∑
j∈J(t)

γaij(t) ≤ |J(t)|Ut(J,V\J). (4.41)

On the other hand, ∑
j∈J(t) γaij(t) = γ

∑
j∈J(t) aij(t)

= γ
(
1−∑j 6∈J(t) aij(t)

)
≥ γ (1− Ut(J,V\J)) .

(4.42)
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Relations (4.41) and (4.42) imply:

Ut(J,V\J) ≥ γ/(γ + |J(t)|) > γ/(γ +N). (4.43)

Since (4.43) holds for infinitely many times t, U(J,V\J) = ∑∞
t=0 Ut(J,V\J) is unbounded,

and so is U(J, I\J) (since J is a jet in I, and I is an island).

Theorem 4.4 and Lemma 4.2 immediately imply the following corollary which is the
deterministic counterpart of Theorem 4 of Touri and Nedić (2014).

Corollary 4.3. Every weakly aperiodic chain in Class P∗ is class-ergodic.

Note that an equivalent definition of weak periodicity is as follows.

Definition 4.10. A chain {A(t)} of stochastic matrices is weakly aperiodic if there exists
γ > 0 such that for every distinct i, j ∈ V and each t ≥ 0, there exists l ∈ V such that

min{ali(t), alj(t)} ≥ γaij(t). (4.44)

To achieve class-ergodicity under the P∗ class assumption, the number of times in which
an agent moves from a jet to another must be finite. Indeed, let

ε ,
1
3 min{|x∗s − x∗k| |1 ≤ k 6= s ≤ c}. (4.45)

Then, there exists Tε such that for every t ≥ Tε,

|xi(t)− x∗k| < ε,∀i ∈ Jk(t). (4.46)

If agent i moves from a jet, say J1, to another jet, say J2, at time t (i ∈ J1(t) ∩ J2(t + 1)),
we must have:

|
∑

j 6∈J1(t)
aij(t)(xj(t)− xi(t))| ≥ ε. (4.47)

On the other hand,
|∑j 6∈J1(t) aij(t)(xj(t)− xi(t))|

≤ ∑j 6∈J1(t) aij(t)|xj(t)− xi(t)|

≤ L
∑
j 6∈J1(t) aij(t),

(4.48)
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where L is defined in Eq. (4.34). Eqs. (4.47) and (112) imply:

∑
j 6∈J1(t)

aij(t) ≥ ε/L. (4.49)

Thus, there exists j 6∈ J1(t) such that

aij(t) ≥
ε

L(N − 1) . (4.50)

Now, from the definition of weak aperiodicity, we know that there exists l ∈ V such that
min{ali(t), alj(t)} ≥ γaij(t) ≥ γε/L(N − 1). Note that i and j are in different jets at time
t. Thus, l cannot be in the same jet with both i and j at time t. Therefore, at least one
of ali(t), alj(t) indicates an interaction between a jet and its complement. Since both values
are bounded below by γε/L(N − 1), the sum of interactions between jets Jk’s and their
complements is at least γε/L(N − 1) at time t. On the other hand, from the D-S Theorem,
we now that the total sum of flows between jets and their complements is finite over the
infinite time interval. Since {A(t)} is of Class P∗, the total sum of interactions between the
jets and their complements must be finite as well. Hence, the number of times that the sum
of interactions is at least γε/L(N − 1), must be finite. Therefore, there are finite times in
which an agent moves from a jet to another, and the jets become time-invariant after a finite
time. It is straightforward to see that the time-invariant jets are connected components of
the infinite flow graph.

4.6.2 Self-Confident and Cut-Balanced Chains

Definition 4.11. Bolouki and Malhamé (2012a) A chain {A(t)} of stochastic matrices is
self-confident with bound δ if aii(t) ≥ δ, ∀i ∈ V, ∀t ≥ 0.

Definition 4.12. Hendrickx and Tsitsiklis (2013) A chain {A(t)} of stochastic matrices is
cut-balanced with bound K if for every V1 ⊆ V and t ≥ 0:

∑
i 6∈V1

∑
j∈V1

aij(t) ≤ K
∑
i∈V1

∑
j 6∈V1

aij(t). (4.51)

Proposition 4.2. Bolouki and Malhamé (2012a); Touri and Nedić (2014) If chain {A(t)}
is self-confident and cut-balanced, then it is class-ergodic and the islands form the ergodic
classes of {A(t)}.

Proof. Assume that {A(t)} has self-confidence and cut-balance properties with bounds δ and
K respectively. The chain being self-confident and cut-balanced, it in Class P∗ (see (Touri and



41

Nedić, 2014, Theorem 7) where self-confidence is referred to as strong aperiodicity). Thus,
from Theorem 4.4, it is sufficient to show that for an arbitrary island I and an arbitrary
proper jet J in I, we have U(J, I\J) =∞ (that is the infinite jet flow property holds island-
wise). Indeed, if jet-limit J∗ exists, unboundedness of U(J, I\J) is immediately implied
from unboundedness of U(J∗, I\J∗) in view of the definition of islands. Otherwise, there are
infinitely many instants t such that J(t) 6= J(t+ 1). At every such t, there exists i ∈ I such
that i ∈ (J(t)\J(t+ 1))∪ (J(t+ 1)\J(t)). Therefore, recalling (4.9), Ut(J, I\J) ≥ aii(t) ≥ δ.
Since there are infinitely many such times, U(J, I\J) is unbounded.

4.6.3 Balanced Asymmetric Chains

Definition 4.13. Bolouki and Malhamé (2012a) A chain {A(t)} of stochastic matrices is
said be balanced asymmetric with bound M , if for every subsets V1,V2 ⊆ V of the same
cardinality, and for every t ≥ 0:

∑
i 6∈V1

∑
j∈V2

aij(t) ≤M
∑
i∈V1

∑
j 6∈V2

aij(t). (4.52)

Proposition 4.3. Every balanced asymmetric chain is in Class P∗.

To prove Proposition 4.3, we need the following lemma.

Lemma 4.3. Let A be an (N ×N) balanced asymmetric matrix with bound M . Then, there
exists a permutation matrix PN×N such that the product PA is self-confident with bound
δ = 4/(MN2 + 4N − 4).

Proof. Form a bipartite-graph H(V , E) from A with N nodes in each part. Let V1 and V2,
each a copy of V , be sets of nodes of the two parts of H. For every i ∈ V1 and j ∈ V2, connect
i to j if aij ≥ δ = 4/(MN2 + 4N − 4). We wish to show that H has a perfect matching. By
Hall’s Marriage Theorem (Bondy and Murty, 1976, Theorem 5.2), it suffices to show that for
every subset K ⊆ V1, we have |D(K)| ≥ |K| where

D(K) = {j ∈ V2|∃i ∈ K s.t. (i, j) ∈ E}. (4.53)

Indeed, assume that on the contrary, there exists K ⊆ V1 such that k′ = |D(K)| < |K| = k.
Let K = {c1, . . . , ck} and D(K) = {d1, . . . , dk′}. Define K′ ( K by K′ = {c1, . . . , ck′}. We
now have: ∑

i∈K′

∑
j 6∈D(K)

aij < k′(N − k′)δ ≤ δN2/4. (4.54)
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On the other hand,

∑
i 6∈K′

∑
j∈D(K) aij ≥

∑
i∈K\K′

∑
j∈D(K) aij

= (k − k′)−∑i∈K\K′
∑
j 6∈D(K) aij

≥ (k − k′)− (k − k′)(N − k′)δ

≥ 1− (N − 1)δ.

(4.55)

Since K′, D(K) ( V are of identical cardinalities, the balanced asymmetry property of A
together with (4.54) and (4.55) imply that

1− (N − 1)δ < δMN2/4. (4.56)

Thus, δ > 4/(MN2 +4N −4), which is a contradiction. Therefore, H has a perfect matching
and consequently, there exists a permutation τ such that aτ(i),i ≥ δ, ∀i. Thus, the permutation
matrix P with eτ(i) as its ith row, where ej denotes a row vector of length N with 1 in the
jth position and 0 in every other position, is such that the product PA is self-confident with
δ.

Proof of Proposition 4.3: Let {A(t)} be a balanced asymmetric chain with bound M .
Set: δ = 4/(MN2 + 4N − 4). We recursively define sequence {P (t)} of permutation matrices
as follows: From Lemma 4.3, we know that there exists a permutation matrix P (0) such
that the product P (0)A(0) is self-confident with δ. Find permutation matrix P (t), t ≥ 1,
such that the product P (t)A(t)P ′(t − 1) is self-confident with δ. Note that the existence of
P (t) is implied by Lemma 4.3, taking into account the fact that the product A(t)P ′(t− 1) is
balanced asymmetric with bound M , since the columns of the product are a permutation of
the columns of A(t), itself a balanced asymmetric matrix with bound M . Hence, if we define
chain {B(t)} by:

B(t) = P (t)A(t)P ′(t− 1), (4.57)

then, {B(t)} has both the self-confidence and balanced asymmetry properties. Since bal-
anced asymmetry is stronger than cut-balance, chain {B(t)} is both self-confidence and
cut-balanced. Thus, from Touri and Nedić (2014), we conclude that chain {B(t)} belongs
to the set P∗. Furthermore, it is straightforward to show that if {π(t)} is an absolute prob-
ability sequence adapted to chain {B(t)}, then {π(t)P (t − 1)}, where P (−1) = IN×N , is
an absolute probability sequence adapted to chain {A(t)}. This immediately implies that
{A(t)} ∈ P∗.

The class property P∗ implies that absolute probabilities are uniformly bounded away
from zero, and as a result, that there is no J0 in the jet decomposition of the D-S Theorem.
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Therefore, we again consider only J1, . . . , J c as the jet decomposition.

Proposition 4.4. If {A(t)} is balanced asymmetric, then the cardinality of each jet in the
jet decomposition of the D-S Theorem, becomes time-invariant after a finite time.

Proof. Let {A(t)} be balanced asymmetric with bound M . It suffices to show that there
are finite times in which cardinality of a jet, in the jet decomposition of the D-S Theorem,
increases by at least 1. In the following, we see what happens when the cardinality of a
jet, say Jk, increases. Assume that for a fixed t ≥ 0, we have |Jk(t + 1)| > |Jk(t)|. For an
arbitrary i ∈ Jk(t+ 1), let T ( Jk(t+ 1) be such that i 6∈ T and |T | = |Jk(t)|. Thus by the
balanced asymmetry property,

∑
j∈Jk(t) aij(t)≤

∑
l 6∈T

∑
j∈Jk(t) alj(t)

≤M
∑
l∈T

∑
j 6∈Jk(t) alj(t)

≤M
∑
l∈Jk(t+1)

∑
j 6∈Jk(t) alj(t).

(4.58)

Therefore, ∑
i∈Jk(t+1)

∑
j∈Jk(t) aij(t)

≤ |Jk(t+ 1)|.M ∑
i∈Jk(t+1)

∑
j 6∈Jk(t) aij(t).

(4.59)

On the other hand, ∑
i∈Jk(t+1)

∑
j∈Jk(t) aij(t)

= |Jk(t+ 1)| −∑i∈Jk(t+1)
∑
j 6∈Jk(t) aij(t).

(4.60)

Eqs. (4.59) and (4.60) together imply:

∑
i∈Jk(t+1)

∑
j 6∈Jk(t)

aij(t) ≥
|Jk(t+ 1)|

1 +M |Jk(t+ 1)| ≥
1

1 +M
. (4.61)

Once again, since the cumulative interaction between Jk and J̄k must be finite over the
infinite time interval because of the D-S Theorem and in view of the class property P∗,
(4.61) can occur only for finitely many times t, and this completes the proof.

An immediate corollary of Proposition 4.4 is as follows.

Corollary 4.4. Bolouki and Malhamé (2012a) Consider a multi-agent system with dynamics
(4.1), where {A(t)} is balanced asymmetric. Then, zi(t) converges for every i ∈ V, as t goes
to infinity, where zi(t) is the ith least value among x1(t), . . . , xN(t).

Definition 4.14. Touri and Nedić (2012b) A chain {A(t)} of stochastic matrices is said to
have the absolute infinite flow property, if for every jet J in V with a time-invariant size,
U(J,V\J) is unbounded.
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Proposition 4.5. Bolouki and Malhamé (2012a) If {A(t)} is balanced asymmetric, then,
{A(t)} is class-ergodic if and only if the absolute infinity property holds over each island of
{A(t)}. Furthermore, in case of class-ergodicity, islands are the ergodic classes of {A(t)}.

Proof. From Proposition 4.3, we know that {A(t)} ∈ P∗. Therefore, taking advantage of
Theorem 4.4, it suffices to show that absolute infinite flow and infinite jet-flow properties
are equivalent on each island. Obviously, the former is implied by the latter. We prove the
converse as follows: Let the absolute infinite flow property hold over each island. Assume
that I is an arbitrary island of {A(t)} and J is an arbitrary jet in I. If the cardinality of jet J
becomes time-invariant after a finite time, unboundedness of U(J, I\J) is immediately implied
from the absolute infinite flow property over I. Otherwise, the cardinality of J increases
infinitely many times by at least 1. In this case, from the proof of Proposition 4.4 (see
(4.61)), we know that V (J,V\J) is unbounded, and consequently U(J,V\J) is unbounded
following Lemma 4.1. Moreover,

U(J,V\J) + U(I\J,V\I) = U(J, I\J) + U(I,V\I), (4.62)

and since U(I,V\I) is bounded because I is an island, unboundedness of U(J,V\J) implies
that U(J, I\J) =∞. This completes the proof.

Corollary 4.5. Bolouki and Malhamé (2012a) If chain {A(t)} is balanced asymmetric, then
it is ergodic if and only if it has the absolute infinite flow property.

4.7 A Geometric Approach towards Consensus Algorithms

In this section, we introduce a geometric framework for a general linear consensus algo-
rithm, that not only interprets the notions of jets and the ocean as explained in the previous
sections, but serves an alternative proof of our results stated in the previous sections, and
furthermore, as will be shown in the next section, extends them naturally to the continuous
time case.

Let Φ(t, τ), t, τ ≥ 0, be the state transition matrix of discrete time model (4.1), i.e.,

Φ(t, τ) = A(t− 1)A(t− 2) · · ·A(τ). (4.63)

Therefore,
x(t) = Φ(t, τ)x(τ), ∀t, τ ≥ 0. (4.64)

For every t ≥ τ ≥ 0, assume that Ct,τ is the convex hull of the columns of Φ′(t, τ). Note
that each column of Φ′(t, τ) is a stochastic vector representing a point in RN , and Ct,τ is a
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polytope in RN if we consider points and segments in RN as polytopes with one and two
vertices respectively.

Lemma 4.4. For every t2 ≥ t1 ≥ τ , we have: Ct2,τ ⊂ Ct1,τ , i.e., polytope Ct1,τ contains
polytope Ct2,τ .

Proof. From (4.63), we have:

Φ′(t2, τ) = Φ′(t1, τ)Φ′(t2, t1). (4.65)

Since Φ(t2, t1) is a stochastic matrix, each column of Φ′(t2, τ) is a convex combination of
columns of Φ′(t1, τ). Therefore, every column of Φ′(t2, τ) lies in Ct1,τ , and the lemma is
proved.

Lemma 4.4 shows that for a fixed τ ≥ 0, Ct,τ shrinks as t grows. A projection of nested
polytopes Ct,τ ’s on a two-dimensional space is shown in Fig 4.3.

Figure 4.3 An example of nested polygons converging to a triangle.

It is to be noted that when underlying chain {A(t)} of dynamics (4.1) is ergodic, the
nested polygons will converge to a point in RN . In general, one concludes that for every
τ ≥ 0, limt→∞Ct,τ exists and is also a polytope in RN . Let Cτ be the limiting polytope with
cτ vertices. It is clear that 1 ≤ cτ ≤ N . One can show that cτ is a non-decreasing function
of τ (see Section 5.9.2) and becomes constant after some finite time. We assume, without
loss of generality, that cτ is equal to constant c, ∀τ ≥ 0. It is worth mentioning that the
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choice of letter c here, that also represents the number of jets in the jet decomposition of the
Sonin’s D-S Theorem in this paper, for the number of vertices of limiting polytope C0, is not
accidental, as it will be shown, in the current section, that the two numbers are equal.

Let v1, . . . , vc be the c vertices of C0. Assume that {0t} is a sequence of agents, i.e., 0t ∈ V
for every t ≥ t0.

Theorem 4.5. If sequence {0t}t≥0, 0t ∈ V, ∀t ≥ 0, is such that the distance between Φ′0t(t, 0)
and set {v1, . . . , vc} does not converge to zero as t grows large, then:

inf{π0t(t) | t ≥ 0} = 0. (4.66)

Proof. We know that vector vi, 1 ≤ i ≤ c, lies outside of the convex hull of vectors vj’s,
j 6= i. Let wi be the nearest point to vi, on the convex hull of vj’s, j 6= i. For a small
ε′ > 0, draw a hyperplane, distant ε′ from vi, crossing segment viwi and orthogonal to it. Let
u(t) , Φ′0t(t, 0). For a sufficiently small ε′, there exists a subsequence of {u(t)} such that
vi and the elements of the subsequence lie on opposite sides of the hyperplane for every i,
1 ≤ i ≤ c. Otherwise, the distance between {u(t)} and set {v1, . . . , vc} would converge to
zero. Define:

ε′1 , min{|vi − wi| | 1 ≤ i ≤ c}, (4.67)

and:
ε , min{ε′, ε′1/4}, (4.68)

and for an arbitrary constant δ, 0 < δ < 1, let:

ε1 , δε/(2N) (4.69)

We summarize the rest of the proof, since it is very similar to the proof of Lemma 5.7, from
(5.25) to (5.35). We know that for a sufficiently large time T ≥ 0, if t ≥ T , every vector in
Ct,0 lies within an ε1-distance of C0. For every i, 1 ≤ i ≤ c, draw a hyperplane li, parallel
to the hyperplane drawn previously, distant ε from vi, crossing segment viwi. Draw also a
hyperplane mi, parallel to li, on the other side of vi, distant ε1 from vi (see Fig. 4.4).

Define for every i, 1 ≤ i ≤ c:

Si = {j ∈ V |Φ′j(T, 0) lies in strip margined by li,mi}. (4.70)
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Figure 4.4 Planes li and mi are orthogonal to segment viwi.

One can show that, Si’s, 1 ≤ i ≤ c, are disjoint non-empty sets. Define also:

S0 = V \
c⋃
j=1

Sj. (4.71)

As mentioned above, there exists a subsequence of {u(t)} such that vi and the elements of the
subsequence lie on the opposite sides of li (note that ε ≤ ε′) for every i = 1, . . . , c. Without
loss of generality, assume that {u(T )} belongs to that subsequence (otherwise, choose T1 > T

such that u(T1) belongs to that subsequence, and replace T by T1 in the argument). Hence,
S0 6= ∅, and Si ’s partition agent set V . Similar to the proof of Lemma 5.7, we have the
following inequality (equivalence of (5.35)):

∑
j 6∈Si

(ui)j ≤ 2δ/(2N + 1) < δ/N. (4.72)

Consequently, ∑
j∈S0

(ui)j ≤
∑
j 6∈Si

(ui)j < δ/N. (4.73)

Thus, for every i ∈ V and j ∈ S0:

inf{Φi,j(t, T ) | t ≥ T} < δ/N. (4.74)
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Consequently,
inf{

∑
i∈V,j∈S0

Φi,j(t, T ) | t ≥ T} < Nδ/N = δ. (4.75)

Since we have:

πj(T ) = π(t)Φj(t, T ) =
∑
i∈V

πi(t)Φi,j(t, T ) ≤
∑
i∈V

Φi,j(t, T ), (4.76)

from (4.75) we conclude that:
πj(T ) < δ, ∀j ∈ S0. (4.77)

We recall that S0 includes one of the elements of sequence {0t}, i.e., 0T . Hence, π0T (T ) <
δ. Recall also that δ was chosen arbitrarily. By letting δ go to zero, we conclude that
inf{π0t(t) | t ≥ 0} = 0, and the theorem is proved.

Remark 4.2. We explain, in the following, that there is a one-to-one correspondence between
the vertices of limiting polytope C0 and jets J1, . . . , J c of the Sonin’s jet decomposition.

Recall, from Section 4.4, that how we employed the absolute probability sequence of chain
{A(t)} to construct a forward propagating Markov chain from the given backward one. Now,
let Jk be an arbitrary jet among J1, . . . , J c. Let, also, {kt} be a sequence inside jet Jk, i.e.,
kt ∈ Jk(t), ∀t ≥ 0. Since, due to the D-S Theorem, limt→∞ xkt(t) exists irrespective of what
x(0) is, limt→∞Φ′kt(t, 0) exists as well, and is irrespective of how the sequence is chosen. We
aim to show that limt→∞Φ′kt(t, 0) is one of v1, . . . , vc. Since the volume of Jk(t) converges to
a non-zero constant, as t→∞, one can form a sequence {kt} inside jet Jk, i.e., kt ∈ Jk(t),
∀t ≥ 0, such that:

lim inf{πkt(t) | t ≥ 0} > 0. (4.78)

One way to form such a sequence is to pick, at each time instant, the cup in Jk that has the
maximum volume. From Theorem 4.5 and inequality (4.78), we conclude that the distance
between Φ′kt(t, 0) and set {v1, . . . , vc}, the vertices of limiting polytope C0, must vanish as t
grows large. Thus, limt→∞Φ′kt(t, 0) is belongs to set {v1, . . . , vc}.

It is also clear that if sequences {st} and {kt} are in two disjoint jets Js and Jk respec-
tively, limt→∞Φ′st(t, 0) and limt→∞Φ′kt(t, 0) cannot converge to the same vertex of C0, since
otherwise, merging the two jets would violate the uniqueness of the Sonin’s jet decomposition.

4.8 Consensus in the Continuous Time Case

One may define a general linear consensus algorithm in continuous time as follows:

ẋ = A(t)x(t), t ≥ 0, (4.79)
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where x(t) is the vector of opinions at each time instant t ≥ 0 and {A(t)} is the underlying
chain of the system. It is assumed that each matrix of underlying chain A(t) has zero row
sum and non-negative off-diagonal elements and each element aij(t) of A(t) is a measurable
function. These constraints on the underlying chain suggest a view of A(t) as the evolution
of the intensity matrix of a time inhomogeneous Markov chain. We shall use in this section, a
continuous time version of the geometric framework developed in Section 4.7, in convergence
analysis of agents in a network with continuous time dynamics (4.79), particularly when
underlying chain {A(t)} is in a continuous time version of Class P∗.

Let Φ(t, τ), t, τ ≥ 0, represent the state transition matrix of system associated with (4.79),
i.e.,

x(t) = Φ(t, τ)x(τ), ∀t ≥ τ ≥ 0. (4.80)

Note that similar to the discrete time case, Φ(t, τ) is a stochastic matrix for every t ≥ τ ≥
0. More specifically, Φi,j(t, τ) can be considered as transition probability of a backward
propagating inhomogeneous Markov chain. In particular, for every t2 ≥ t1 ≥ τ ≥ 0, we have:

Φi,j(t2, τ) =
∑
k

Φi,k(t2, t1)Φk,j(t1, τ), (4.81)

with the conditions:
Φi,j(t, τ) ≥ 0, (4.82)∑
j

Φi,j(t, τ) = 1, (4.83)

Φi,j(t, t) = δij, (4.84)

where δij is the Kronecker symbol.
Underlying chain {A(t)} is said to be ergodic if for every τ ≥ 0, Φ(t, τ) converges to a

matrix with equal rows as t → ∞. Similar to the discrete time case, ergodicity of {A(t)}
is equivalent to the occurrence of unconditional consensus in (4.79). Moreover, {A(t)} is
class-ergodic if for every τ ≥ 0, limt→∞Φ(t, τ) exists, but with possibly distinct rows. Chain
{A(t)} is class-ergodic if and only if multiple consensus occurs in (4.79) unconditionally.
Recall that the associated state transition matrix associated with (4.79) can be expressed via
the Peano-Baker series (see (Brockett, 1970, Section 1.3)):

Φ(t, τ) = IN×N +
∫ t
τ A(σ1)dσ1

+
∫ t
τ A(σ1)

∫ σ1
τ A(σ2)dσ2dσ1

+
∫ t
τ A(σ1)

∫ σ1
τ A(σ2)

∫ σ2
τ A(σ3)dσ3dσ2dσ1

+ · · · ,

(4.85)
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where IN×N denotes the N × N identity matrix. Remember that state transition matrix
Φ(t, τ) is invertible for every t ≥ τ ≥ 0.

Furthermore, once again, based on Kolmogoroff (1936), we know that for every state
transition matrix Φ(t, τ), t, τ ≥ 0, there exists an absolute probability sequence {π(t)},
t ≥ 0, such that:

π(τ) = π(t)Φ(t, τ), ∀t, τ ≥ 0. (4.86)

Having recalled the state transition matrix and the absolute probability sequence for the
continuous time model (4.79), we can now carry out a continuous time version of the geometric
framework developed in Section 4.7. Once again, for every t ≥ τ ≥ 0, assume that Ct,τ is the
convex hull of columns of Φ′(t, τ), or equivalently transposed rows of Φ(t, τ). Remember that
each column of Φ′(t, τ) is a stochastic vector as in the discrete time case. Now, note that
Lemma 4.4 holds for the continuous time as well, since its proof remains valid assuming that
the time indices refer to continuous time. Therefore, we again assume that limiting polytopes
Cτ ’s, τ ≥ 0, exist. Let cτ be the number of vertices of Cτ . We show in the following that, cτ ,
τ ≥ 0, is constant (unlike the discrete time case in which cτ was monotonic increasing with
respect to τ). Assume that τ2 ≥ τ1 ≥ 0 are two arbitrary time instants. We wish to show
that cτ1 = cτ2 . Define linear operator φτ2,τ1 : RN → RN by:

φτ2,τ1(v) , Φ′(τ2, τ1)v, ∀v ∈ RN . (4.87)

Note now that from properties of state transition matrices, for t ≥ τ2 ≥ τ1 ≥ 0, we have:

Φ′(t, τ1) = Φ′(τ2, τ1)Φ′(t, τ2). (4.88)

Therefore, in view of (4.88) by taking t to infinity, the vertices of Cτ2 are uniquely mapped
to vectors in RN which because of the linearity of map (4.87), will play the role of vertices
for the generation of convex hull Cτ1 . Also, it is not difficult to show that the images of
vertices of Cτ2 must remain vertices of Cτ1 , for if one of the images of a vertex of Cτ2 , say v,
turned out to be a convex combination of other vertices of Cτ1 , this would also be true for the
inverse images of these vertices (also vertices of Cτ2 due to invertibility of matrix Φ′(τ2, τ1)),
and v would then fail to be a vertex of Cτ2 . In conclusion, Cτ1 and Cτ2 will have the same
number of vertices, and (4.87) constitutes a one to one map between corresponding pairs of
vertices. One may now use the same argument to extend Theorem 4.5 to the continuous time
case while t0, the initial time in Theorem 4.5, can be chosen arbitrarily here (recall that for
Theorem 4.5 to be true, Ct0 must have had the maximum number of vertices among all Cτ ’s,
and since cτ is constant for τ ≥ 0 in the continuous time case, t0 can be chosen arbitrarily).
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We now aim to take advantage of Theorem 4.5 to address the limiting behavior of system
(4.79) when underlying chain {A(t)} is in Class P∗.

Lemma 4.5. For every j ∈ V,

πj(τ) ≤ inf
{∑
i∈V

Φi,j(t, τ) | t ≥ τ

}
. (4.89)

Proof. Obvious, since for every t ≥ τ :

πj(τ) = π(t)Φj(t, τ) =
∑
i∈V

πi(t)Φi,j(t, τ) ≤
∑
i∈V

Φi,j(t, τ). (4.90)

Adopting the same definition of Class P∗ as in the discrete time case (see Section 4.5),
we state the following lemma.

Lemma 4.6. A state transition matrix Φ(t, τ), t, τ ≥ 0, associated with (4.79), is in Class
P∗ if and only if for every j ∈ V:

inf
{∑
i∈V

Φi,j(t, τ) | t ≥ τ

}
> 0. (4.91)

Proof. The only if part is an immediate result of Lemma 4.5, and the if part is a result of
the way the existence of the absolute probability sequence can be obtained in Kolmogoroff
(1936) by always choosing to initialize agent probabilities on finite intervals with a uniform
distribution.

Let the infinite flow graph of a continuous time chain {A(t)} is defined according to
Definition 4.6 by replacing summation with integral. The following theorem describes the
convergence properties of system (4.79) when the underlying chain is in Class P∗.

Theorem 4.6. If state transition matrix Φ(t, τ), t, τ ≥ 0, is in Class P∗, then multiple con-
sensus occurs unconditionally in system (4.79). Moreover, the number of consensus clusters
is equal to the number of the components of the infinite flow graph of the transition chain.
In particular, consensus occurs unconditionally if and only if the infinite flow property holds.

The following theorem clarifies that Theorem 4.6 generalizes continuous time consensus
results of Hendrickx and Tsitsiklis (2013).
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Theorem 4.7. If transition chain {A(t)} in (4.79) is cut-balanced, then state transition
matrix Φ(t, τ), t ≥ τ ≥ 0, is in Class P∗.

Proof. Let {A(t)} be cut-balanced with bound K. Assume that Φ(t, τ), t ≥ τ ≥ 0, is the
state transition matrix associated with (4.79). In view of Lemma 4.6, our aim is to show
that: 1/Ne′ΦA(t, τ) ≥ p∗e′, for some p∗ > 0, where e′ =

[
1 · · · 1

]
, and the inequality is to

be understood element-wise.
Assume that α = sup{−aii(t′) | i ∈ V , τ ≤ t′ ≤ t}. Let chain B be such that B(t′) =

A(t′) + 2αI, ∀τ ≤ t′ ≤ t, where I is the identity matrix. It is easy to verify that:

ΦB(t, τ) = e2α(t−τ)ΦA(t, τ). (4.92)

Moreover, by construction, on-diagonal elements of B(t′), τ ≤ t′ ≤ t, are greater than or
equal to α. Note that B(t′) (τ ≤ t′ ≤ t) is not a stochastic matrix; instead each of its
rows sums up to 2α. We calculate in the following, 1/Ne′ΦB(t, τ). Therefore, from the
Peano-Baker series (4.85), the expression:

1
N
e′
∫ t

τ
B(σ1)

∫ σ1

τ
B(σ2) · · ·

∫ σk−1

τ
B(σk)dσk · · · dσ1 (4.93)

is of interest. Expression (4.93) is equal to:

(2α)k
N

e′
∫ t

τ

B(σ1)
2α

∫ σ1

τ

B(σ2)
2α · · ·

∫ σk−1

τ

B(σk)
2α dσk · · · dσ1, (4.94)

which is also equal to:

(2α)k
∫ t

τ

∫ σ1

τ

∫ σk−1

τ

1
N
e′
B(σ1)

2α
B(σ2)

2α · · · B(σk)
2α dσk · · · dσ1. (4.95)

Note that B(t′)/2α is a sequence of transition matrices which generates a Markov chain
which is both cut-balanced and self-confident, and hence in Class P∗ ((Touri and Nedić,
2014, Theorem 7)). As a result, there exists a positive p∗ such that:

1
N
e′
B(σ1)

2α · B(σ2)
2α · · · · · B(σk)

2α ≥ p∗e′. (4.96)

Inequality (4.96) implies that expression (4.95), and consequently expression (4.93), is greater
than or equal to (2α)kp∗(t − τ)k/k!. Now, if we write 1/Ne′ΦB(t, τ) as sum of expressions
like (4.93), we have:

1/Ne′ΦB(t, τ) ≥
∞∑
k=0

(2α)kp∗(t− τ)k
k! = p∗e2α(t−τ). (4.97)
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Thus,
1/Ne′ΦA(t, τ) ≥ p∗e2α(t−τ).e−2α(t−τ) = p∗, (4.98)

and from Lemma 4.6 the theorem is proved.

4.9 Conclusion

We considered a general linear distributed averaging algorithm in both discrete time and
continuous time. Following Touri and Nedić (2012b), and recalling the notion of jets from
Blackwell (1945), we introduced a property of chains of stochastic matrices, more precisely,
the infinite jet-flow property in the discrete time case. The latter property is shown to
be a strong necessary condition for ergodicity of the chain. Moreover, for the chain to be
class-ergodic, the infinite jet-flow property must hold over each connected component of the
infinite flow graph, as defined in Touri and Nedić (2014).

We then illustrated the close relationship between Sonin’s D-S Theorem and convergence
properties of linear consensus algorithms. By employing the D-S Theorem, we showed in
the discrete time case that the necessary conditions found earlier are also sufficient in case
the chain is in Class P∗ Touri and Nedić (2014). We argued that the obtained equivalent
conditions for ergodicity and class-ergodicity of chains in Class P∗ can subsume the previous
related results in the literature, Bolouki and Malhamé (2012a); Hendrickx and Tsitsiklis
(2013); Touri and Nedić (2014) in particular.

A geometric approach was then introduced to interpret the jets in the D-S Theorem.
The approach turned out to be a powerful method to rediscover our aforementioned results,
and also to extend them to the continuous time case. In future work, we shall attempt an
extension of our results to the case when the number of agents increases to infinity, although
the D-S Theorem holds only if N is finite.
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CHAPTER 5

ARTICLE 3: EMINENCE GRISE COALITIONS: ON THE SHAPING OF
PUBLIC OPINION

Sadegh Bolouki, Roland P. Malhamé, Milad Siami, and Nader Motee
Submitted to IEEE Transactions on Control of Network Systems, September 2014

5.1 Abstract

We consider a network of evolving opinions. It includes multiple individuals with first-
order opinion dynamics defined in continuous time and evolving based on a general exoge-
nously defined time-varying underlying graph. In such a network, for an arbitrary fixed
initial time, a subset of individuals forms an éminence grise coalition, abbreviated as EGC,
if the individuals in that subset are capable of leading the entire network to agreeing on any
desired opinion, through a cooperative choice of their own initial opinions. In this endeavor,
the coalition members are assumed to have access to full profile of the underlying graph of the
network as well as the initial opinions of all other individuals. While the complete coalition
of individuals always qualifies as an EGC, we establish the existence of a minimum size EGC
for an arbitrary time-varying network; also, we develop a non-trivial set of upper and lower
bounds on that size. As a result, we show that, even when the underlying graph does not
guarantee convergence to a global or multiple consensus, a generally restricted coalition of
agents can steer public opinion towards a desired global consensus without affecting any of
the predefined graph interactions, provided they can cooperatively adjust their own initial
opinions. Geometric insights into the structure of EGC’s are given. The results are also ex-
tended to the discrete time case where the relation with Decomposition-Separation Theorem
is also made explicit.

5.2 Introduction

In this paper, we are mainly concerned with the occurrence of consensus in networks
of individuals with opinions updated via a class of continuous time weighted distributed
averaging algorithms characterized in general by an exogenous underlying chain of opinion
update matrices, which behave like intensity matrices of a continuous time Markov chain.
In such networks, consensus is said to occur if all opinions converge to the same value
as time grows large. Furthermore, Multiple consensus is said to occur if each individual’s
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opinion asymptotically converges to an individual limit. It is well known that such asymptotic
behaviors relate directly to the properties of the Markov chain which underlies the opinion
update dynamics. More specifically, the underlying chain of an opinion network may be such
that consensus or multiple consensus occurs unconditionally, i.e., irrespective of the values of
initial opinions of the individuals in the network. The unconditional occurrence of consensus
is proved to be equivalent to ergodicity of the underlying chain Chatterjee and Seneta (1977).
There is a similar correspondence between the unconditional occurrence of multiple consensus
and class-ergodicity of the underlying chain Bolouki and Malhamé (2013); Touri and Nedić
(2012b).

Ergodic and class-ergodic chains, i.e., chains leading to unconditional consensus or mul-
tiple consensus, have attracted an increasing attention in the literature in the past decade.
Researchers of many different fields including robotics, social networks, economics, biology,
etc., have been particularly interested in conditions under which a consensus algorithm guar-
antees consensus or multiple consensus to occur for an arbitrary choice of initial opinions.
It is generally accepted that the earliest work on this class of opinion formation models was
done in DeGroot (1974). The model was defined in discrete time, and the considered un-
derlying chain was time-invariant. Later, more general cases were considered in Chatterjee
and Seneta (1977), where the authors also made explicit the relationship between consensus
and ergodicity of the underlying chain. Some of the earliest significant results on consensus
date back to Bertsekas and Tsitsiklis (1989); Tsitsiklis (1984); Tsitsiklis et al. (1986). In-
terest in distributed consensus for agents moving in space was triggered by the numerical
experiments in Vicsek et al. (1995) where a nonlinear algorithm was proposed for modeling
evolution of multi-agent systems in discrete time. In this model, agents are assumed to have
the same speed but different headings, and states are headings of agents. Using simula-
tions, convergence to some kind of consensus (emerging behavior) was displayed in Vicsek
et al. (1995). A linearized version of the model in Vicsek et al. (1995) was considered in
Jadbabaie et al. (2003), where sufficient conditions for consensus based on analyzing infinite
products of stochastic matrices, consistent with those of Bertsekas and Tsitsiklis (1989); Tsit-
siklis (1984); Tsitsiklis et al. (1986) are established. Following Jadbabaie et al. (2003), many
works have focused on identifying the largest class of underlying update chains for which
consensus occurs unconditionally. Because of their close relationship to our current work, we
mention in particular Blondel et al. (2005); Bolouki and Malhamé (2011a,b, 2012a,b); Hen-
drickx and Blondel (2006); Hendrickx and Tsitsiklis (2013); Li et al. (2004); Lorenz (2005);
Moreau (2005); Touri and Nedić (2011, 2012a,b, 2014). In addition, Bolouki and Malhamé
(2011a,b, 2012a,b, 2013); Hendrickx and Tsitsiklis (2013); Lorenz (2005); Touri and Nedić
(2012a,b, 2014) also addressed the unconditional multiple consensus problem, or equivalently
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class-ergodicity of the underlying chain. For the continuous time case, Hendrickx and Tsit-
siklis (2013) appears to provide the most general results thus far on consensus and multiple
consensus. On the other hand, in our recent work Bolouki and Malhamé (2013), inspired by
Touri and Nedić (2014) and Sonin et al. (2008), and to the best of our knowledge, we have
identified for the discrete time case, the largest class to date of ergodic and class-ergodic
chains.

In contrast to the above papers, which are concerned with “unconditional” consensus,
the current paper aims at providing some answers to the following questions: What if the
underlying chain is not ergodic? How can consensus still be achieved in a network with
absolutely no assumption on the underlying chain? In other words, for a network with a
general time-varying underlying opinion update chain, having fixed the initial time, what
can be said about particular (non-trivial) choices of initial opinions leading to a possible
consensus? Geometric insights on the nature of the “march” towards consensus allow one
to realize that such choices of initial opinion vectors form a vector space the dimension of
which is related to the characteristics of the underlying chain. The fact that such initial
opinion vectors form a vector space suggests the existence of a possibly small subgroup of
individuals in the network who are naturally capable of leading the whole group to eventually
agree on any desired value only by collectively adjusting their own initial opinions. The word
“naturally” here refers to the fact that the subgroup does not need to manipulate the nature of
the network, and particularly leaves all the interactions between any two individuals including
themselves untouched. They act like hidden leaders, or “éminences grises”, not identifiable
by title or position, yet who can, given time, thoroughly shape the ultimate public opinion.
A subgroup with such leadership property is referred to as an Éminence Grise Coalition, or
simply EGC, in this work. The EGC’s that a network admit are determined by the properties
of the underlying chain of the network only. While it is trivial to establish the existence of at
least one largest EGC, namely the universal coalition of individuals, one of our main points of
interest in this work is to characterize the size and identity of the smallest coalition that can
achieve public opinion shaping. Tight bounds on the size of that coalition are also of interest.
The reasons why such individuals may want to act as a coalition can be multiple. Two such
possibilities are: (i) They have been identified as key decision makers by a knowledgeable
negotiator, have collectively agreed on a bargaining position, yet need to steer their peers
towards the collective agreement, (ii) A shady opinion manipulator has identified them as
key decision makers and has succeeded in “buying out” their collaboration.

The rest of the paper is organized in such a way that no confusion arises between the
continuous time and the discrete time cases. We explicitly deal with the continuous time
case in the largest part of the paper, that is Sections 5.3–5.8, and discuss the discrete time
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case in Section 5.9. More specifically, we explicitly state the problem setup in Section 5.3,
where we introduce the notion of rank of a chain of matrices which is shown to be equal
to the size of the smallest EGC of the network. In Section 5.4, a geometric framework is
developed to interpret the notion of rank of a chain and also obtain an upper bound for the
rank, or equivalently the size of the smallest EGC of a consensus algorithm. This geometric
framework proves to be useful in dealing with both the continuous time and the discrete time
cases. We establish in Section 5.5, lower bounds on the rank based on the existing notions
in the literature, namely the so-called infinite flow graph and unbounded interactions graph
of a chain. The rank of time-invariant chains is discussed in Section 5.6. We address a large
class of time-varying chains, the so-called Class P∗, and their rank in particular, in Section
5.7. It is shown that chains of the the two classes discussed in Sections 5.6 and 5.7, are
examples of chains for which the bounds on rank obtained earlier in Sections 5.4 and 5.5
are actually attained. Full-rank chains, namely chains with rank equal to the size of the
network are characterized in Section 5.8. In the process of characterizing full-rank chains,
we also discover another upper bound on rank. In Section 5.9, we extend our analysis of the
continuous time case to the discrete time case. As will be shown, the size of the smallest
EGC is equal to the number of jets in the jet decomposition of the Sonin Decomposition
Separation Theorem (see Bolouki and Malhamé (2013); Sonin et al. (2008)). Concluding
remarks and suggestions of future work end the paper in Section 7.

5.3 Notions and Terminology

The notions, preliminaries, and notation described in this section are for the purposes
of the continuous time part of this paper, i.e., Sections 5.3–5.8, although some may be
consistent with the contents of Section 5.9, the discrete time analysis. Let N be the number
of individuals and V = {1, . . . , N} be the set of individuals. Assume that t stands for the
continuous time index. Let a time-varying chain {A(t)}t≥0 of square matrices of size N be
such that each matrix A(t), t ≥ 0, has zero row sum and non-negative off-diagonal entries
and each entry aij(t) of A(t), i, j ∈ V , is a measurable function. Continuous time chains of
matrices, that we deal with in this paper, are assumed to have these properties. According
to these constraints, A(t) can be viewed as the evolution of the intensity matrix of a time
inhomogeneous Markov chain. Let dynamics of an opinion network be described by the
following continuous time distributed averaging algorithm:

ẋ(t) = A(t)x(t), t ≥ t0, (5.1)
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where t0 ≥ 0 is the initial time and x(t) ∈ RN is the vector of opinions at each time instant
t ≥ t0. Thus, xi(t) is the scalar opinion of individual i at time t ≥ t0. Chain {A(t)}t≥0, or
simply {A(t)}, is referred to as the underlying chain of the network with dynamics (5.1).

Assume that Φ(t, τ), t ≥ τ ≥ 0 denotes the state transition matrix associated with chain
{A(t)}. Therefore, for the network with dynamics (5.1), we must have:

x(t) = Φ(t, τ)x(τ), ∀t ≥ τ ≥ t0. (5.2)

From (Brockett, 1970, Section 1.3), the Peano-Baker series of state transition matrix Φ(t, τ),
t ≥ τ ≥ 0, associated with chain {A(t)} is expressed as:

Φ(t, τ) = IN×N +
∫ t
τ A(σ1)dσ1

+
∫ t
τ A(σ1)

∫ σ1
τ A(σ2)dσ2dσ1

+
∫ t
τ A(σ1)

∫ σ1
τ A(σ2)

∫ σ2
τ A(σ3)dσ3dσ2dσ1

+ · · · ,

(5.3)

where IN×N denotes the identity matrix of size N . Remember that state transition matrix
Φ(t, τ) is invertible for every t ≥ τ ≥ 0.

We use the following notation throughout this paper: Φi(t, τ) and Φi,j(t, τ), 1 ≤ i, j ≤
N , denote the ith column and the (i, j)th element of Φ(t, τ) respectively. Moreover, the
transposition of a matrix is indicated by the matrix followed by prime (′). We emphasize
that Φ′i(t, τ) refers to the ith column of Φ′(t, τ) (prime acts first). For an arbitrary vector
v ∈ RN , and 1 ≤ i ≤ N , vi denotes the ith element of v. Vectors of all zeros and all ones in
RN are indicated by 0N and 1N respectively. For an arbitrary subset S ⊂ V , V\S denotes
the complement of S in V .

Remark 5.1. Notice that Φi,j(t, τ), t ≥ τ ≥ 0, for a fixed τ , can be viewed as a transition
probability in a backward propagating inhomogeneous Markov chain. In particular, for every
t2 ≥ t1 ≥ τ ≥ 0, we have:

Φi,j(t2, τ) =
∑
k

Φi,k(t2, t1)Φk,j(t1, τ), (5.4)

with the conditions:
Φi,j(t, τ) ≥ 0, (5.5)∑
j

Φi,j(t, τ) = 1, (5.6)

Φi,j(τ, τ) = δij, (5.7)
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where δij is the Kronecker symbol.

5.3.1 Éminence Grise Coalition

Definition 5.1. For an opinion network with dynamics (5.1), a subgroup of individuals
S ⊂ V is said to be an Éminence Grise Coalition if for any arbitrary x∗ ∈ R and any
initialization of opinions of individuals in V\S, there exists an initialization of opinions of
individuals in S such that limt→∞ x(t) = x∗.1N , i.e., all individuals asymptotically agree on
x∗. The term Éminence Grise Coalition may also be referred to as acronym EGC.

From another point of view that also justifies the selection of the term Éminence Grise
Coalition, an EGC of a network with dynamics (5.1) is a subgroup of individuals who are
capable of leading the whole group towards a global agreement on any desired ultimate
opinion only by properly initializing their own opinions, with the assumption that they are
aware of the underlying chain of the network and initial opinions of the rest of individuals.

Lemma 5.1. In an opinion network with dynamics (5.1), a subset S ⊂ V is an EGC if and
only if for any initialization of opinions of individuals in V\S, there exists an initialization
of opinions of individuals in S such that limt→∞ x(t) = 0N .

Proof. The “only if” part is obvious by setting x∗ = 0 in Definition 5.1. Conversely, assume
that S ⊂ V has the property that for any initialization of individuals in V\S, there exists an
initialization of individuals in S such that all opinions asymptotically converge to zero. To
show that S is an EGC according to Definition 5.1, let arbitrary x∗ ∈ R be the desired value
of agreement and assume that for every i ∈ V\S, the opinion of individual i is initialized at
x̂i ∈ R, where x̂i is arbitrary. We seek an initialization of opinions of individuals in S leading
to an asymptotic agreement of all individuals on x∗. For a moment, let us assume that for
every i ∈ V\S, the opinion of individual i was initialized at x̂i−x∗. For such an initialization,
by the assumption on S, there would be an initialization of opinions of individuals in S, say
at x̂i for each individual i ∈ S, such that all opinions would asymptotically converge to zero.
In other words, if the individual opinions in the network with dynamics (5.1) were initialized
as:

xi(0) =

x̂i − x
∗ if i ∈ V\S

x̂i if i ∈ S
(5.8)

then, limt→∞ x(t) = 0N . Now, the following initialization, which is basically a translation of
the previous initialization by x∗, will lead to an agreement on x∗:

xi(0) =

x̂i if i ∈ V\S

x̂i + x∗ if i ∈ S
(5.9)
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Agreement on x∗ is easily proved from the previous agreement on zero and noticing that
translations are preserved in consensus dynamics (5.1) since Φ(t, t0), for every t ≥ t0, has
an eigenvector 1N corresponding to eigenvalue 1. Thus, for an arbitrary initialization of
individuals in V\S, we found an initialization of individuals in S such that all opinions
asymptotically converge to the desired value x∗, which completes the proof.

Our primary objective in this work is characterizing the smallest EGC in an opinion
network with dynamics described by (5.1). In particular, the size of the smallest EGC is of
interest.

5.3.2 Rank of a Chain

We now define several operators for chains of matrices. Bold style is used for chain
operators in this paper to distinguish them from matrix operators that are in roman style.
Let {A(t)} be a chain of matrices and Φ(t, τ), t ≥ τ ≥ 0 be its associated state transition
matrix.

Definition 5.2. The null space of chain {A(t)} at time τ ≥ 0, denoted by nullτ (A), is
defined by:

nullτ (A) ,
{
v ∈ RN | lim

t→∞

(
Φ(t, τ)v

)
= 0N

}
. (5.10)

It is straightforward to show that nullτ (A) is a vector space for every τ ≥ 0.

Lemma 5.2. The dimension of vector space nullτ (A), τ ≥ 0, is independent of τ .

Proof. Let τ2 > τ1 ≥ 0 be two arbitrary time instants. Define linear operator φτ2,τ1 : RN →
RN by:

φτ2,τ1(v) , Φ(τ2, τ1)v, ∀v ∈ RN . (5.11)

Noticing that Φ(τ2, τ1) is invertible, it is not difficult to see that operator φτ2,τ1 creates a one-
to-one correspondence between the two vector spaces nullτ1(A) and nullτ2(A). As a result,
the two vector spaces are of equal dimensions.

Definition 5.3. The constant dimension of nullτ (A), τ ≥ 0, which is independent of τ , is
called nullity of chain {A(t)} and is denoted by nullity(A). Moreover, the rank of chain
{A(t)} is defined by:

rank(A) , N − nullity(A). (5.12)

The following theorem suggests that one can investigate the size of the smallest EGC via
the notion of rank.
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Theorem 5.1. For an opinion network with dynamics described by (5.1), the size of the
smallest EGC is rank(A).

Proof. To simplify the proof, let r , rank(A) and h be the size of the smallest EGC. Our
aim is to show that r = h. Equivalently, we prove, in the following, that h ≤ r and r ≤ h.

(h ≤ r): We show that there is an EGC of size r. From Lemma 5.1, it suffices to show
that there exists a subset S ⊂ V of size r with the property that for any initialization of the
opinions of individuals in V\S, there exists an initialization of the opinions of individuals
in S such that all opinions asymptotically converge to zero. Note that nullt0(A) is a vector
space with dimension nullity(A) = N − r. Let β1, . . . , βN−r be a basis of nullt0(A). Notice
that the column-rank of matrix [

β1| · · · |βN−r
]

(5.13)

is N−r, and so is its row-rank. Thus, matrix (5.13) hasN−r linearly independent rows. Note
that the choice of the N−r linearly independent rows is not necessarily unique. Assume that
i1, . . . , iN−r are the indices of N − r independent rows of matrix (5.13). It is straightforward
to show that subset S ⊂ V defined by:

S = V\{i1, . . . , iN−r}, (5.14)

has the desired property.
(r ≤ h): Since there exists an EGC of size h, there are N − h individuals such that no

matter what their initial opinions are, there is an initial opinion vector that results in all
opinions asymptotically going to zero, or equivalently, an initial opinion vector that belongs
to nullt0(A). Thus, vector space nullt0(A) has dimension greater than or equal to N − h,
i.e., N − r ≥ N − h.

Remark 5.2. Another point of interest regarding the issue of consensus, that we will not
further discuss in this work, is that of the nature of the set of initial opinion vectors leading
to consensus in the network with dynamics (5.1); more precisely:

{x(t0)| ∃x∗ ∈ R : lim
t→∞

x(t) = x∗.1N}, (5.15)

It is straightforward to see that set (5.15) is the vector space generated by nullt0(A) and 1N .
Consequently, vector space (5.15) has dimension nullity(A) + 1.

Keeping Theorem 5.1 in mind, we focus on the notion of rank in the rest of the paper.
In the following, we give the continuous time version of the definition of l1-approximation
initially introduced in Touri and Nedić (2012a) for discrete time chains.
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Definition 5.4. Chain {A(t)} is said to be an l1-approximation of chain {B(t)} if:
∫ ∞

0
‖A(t)−B(t)‖dt <∞, (5.16)

where for convenience only, the norm refers to the max norm, i.e., the maximum of the
absolute values of the matrix elements.

It is not difficult to show that l1-approximation is an equivalence relation in the set of
chains that are candidates of the underlying chain of an opinion network. The importance
of the l1-approximation notion in this work comes from the following lemma. The proof is
eliminated due to its similarity to the proof of (Touri and Nedić, 2012a, Lemma 1).

Lemma 5.3. The rank of a chain is invariant under an l1-approximation.

5.3.3 Ergodicity and Class-Ergodicity

Several other definition related to chains of matrices will be needed and are given as
follows.

Definition 5.5. Chain {A(t)} is said to be ergodic if for every τ ≥ 0, its associated state
transition matrix Φ(t, τ) converges to a matrix with equal rows as t→∞.

From Chatterjee and Seneta (1977), we know that ergodicity of {A(t)} is equivalent to
the occurrence of unconditional consensus in (5.1).

Definition 5.6. Chain {A(t)} is class-ergodic if for every τ ≥ 0, limt→∞Φ(t, τ) exists but
has possibly distinct rows.

It is known that chain {A(t)} is class-ergodic if and only if multiple consensus occurs
in (5.1) unconditionally (see Bolouki and Malhamé (2013); Touri and Nedić (2012b)). We
define, in what follows, the ergodicity classes of a chain according to Touri and Nedić (2012a).

Definition 5.7. For an opinion network with state transition matrix Φ(t, τ), t ≥ τ ≥ 0, two
individuals i, j ∈ V are said to be mutually weakly ergodic if and only if for every τ ≥ 0:

lim
t→∞
‖Φ′i(t, τ)− Φ′j(t, τ)‖ = 0. (5.17)

It is easy to see that the relation of being mutually weakly ergodic is an equivalence
relation on V . The equivalence classes of this relation are referred to as ergodicity classes in
this paper. Indeed, these equivalence classes form a partitioning of V , and while in some cases
they may simply be singletons, they can always be defined for an arbitrary chain {A(t)}.
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If chain {A(t)} is class-ergodic, i.e,. limt→∞Φ′i(t, τ) exists for every i ∈ V and τ ≥ 0, then
i, j ∈ V are in the same ergodicity class if limt→∞Φ′i(t, τ) = limt→∞Φ′i(t, τ), for every τ ≥ 0.
We refer to the ergodicity classes of a class-ergodic chain as ergodic classes.

5.4 A Geometric Interpretation of the Rank

In this Section, we employ a geometric approach to analyze the asymptotic properties of
a chain of matrices . This approach, which can be used for both the continuous and discrete
time cases, will help us to (i) geometrically interpret the rank of a general time-varying chain,
(ii) identify an upper bound for the rank, and (iii) investigate the limiting behavior of a large
class of time-varying chains, namely Class P∗ as discussed in Section 5.7.

For time-varying chain {A(t)}t≥0, define Ct,τ , t ≥ τ ≥ 0 as the convex hull of points
in RN corresponding to the columns of the transpose of associated state transition matrix
Φ(t, τ). Note that Ct,τ is a polytope, with no more than N vertices, in RN . We recall that
each column of Φ′(t, τ) is a stochastic vector, i.e., its elements are non-negative and add up
to 1. We now have the following lemma regarding convex hull Ct,τ .

Lemma 5.4. For every t2 ≥ t1 ≥ τ , we have: Ct2,τ ⊂ Ct1,τ , i.e., polytopes Ct,τ , for an
arbitrary fixed τ , form a monotone decreasing sequence of polytopes in RN .

Proof. Note that:
Φ(t2, τ) = Φ(t2, t1)Φ(t1, τ), (5.18)

or equivalently,
Φ′(t2, τ) = Φ′(t1, τ)Φ′(t2, t1) (5.19)

Since Φ′(t2, t1) is a column-stochastic matrix, relation (5.19) implies that each column of
Φ′(t2, τ) is a convex combination of the columns of Φ′(t1, τ). Therefore, each column of
Φ′(t2, τ) lies in or on Ct1,τ , and the lemma is proved.

Lemma 5.4 shows that for a fixed τ ≥ 0, polytopes Ct,τ ’s, t ≥ τ , are nested in RN . An
example of these nested polytopes projected on a two-dimensional subspace of RN is depicted
in Fig. 5.1.

Note that for every τ ≥ 0, limt→∞Ct,τ exists and is also a polytope in RN due to the
existence of a uniform upper bound, namely N , on the number of vertices of the nested
polytopes. Let Cτ denote the limiting polytope and cτ be the number of its vertices.

Lemma 5.5. cτ , τ ≥ 0, is independent of τ .
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Figure 5.1 Nested polygons converging to a triangle.

Proof. Assume that τ2 ≥ τ1 ≥ 0 are two arbitrary time instants. Define linear operator
φ′τ2,τ1 : RN → RN by:

φ′τ2,τ1(v) , Φ′(τ2, τ1)v, ∀v ∈ RN . (5.20)

Note now that from (5.19), for t ≥ τ2 ≥ τ1 ≥ 0 we have:

Φ′(t, τ1) = Φ′(τ2, τ1)Φ′(t, τ2). (5.21)

Therefore, in view of (5.21) by taking t to infinity, the vertices of Cτ2 are uniquely mapped
to vectors in RN which because of the linearity of map (5.20), will play the role of vertices
for the generation of convex hull Cτ1 . Also, it is not difficult to show that the images of
vertices of Cτ2 must remain vertices of Cτ1 , for if one of the images of a vertex of Cτ2 , say v,
turned out to be a convex combination of other vertices of Cτ1 , this would also be true for the
inverse images of these vertices (also vertices of Cτ2 due to invertibility of matrix Φ′(τ2, τ1)),
and v would then fail to be a vertex of Cτ2 . In conclusion, Cτ1 and Cτ2 will have the same
number of vertices, and (5.20) constitutes a one to one map between corresponding pairs of
vertices.

Let integer c be the constant value of cτ , τ ≥ 0. We will show later in this section that c
is equal to rank(A). To prove this, we first state the following two lemmas.

Lemma 5.6. rank(A) is equal to the dimension of the vector space generated by the vectors
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corresponding to the vertices of Cτ , for every τ ≥ 0.

Proof. It suffices to prove Lemma 5.6 for τ = 0. Let v1, . . . , vc ∈ RN be the c vertices of C0.
It is easy to see that for any u ∈ RN :

u ∈ N0(A) ⇐⇒ v′iu = 0, ∀i, 1 ≤ i ≤ c. (5.22)

It implies that the dimension of the vector space generated by v1, . . . , vc is N − nullity(A),
which proves the lemma.

Lemma 5.7. For every τ ≥ 0, the vectors corresponding to the vertices of Cτ are linearly
independent.

Proof. It is sufficient to prove the lemma for τ = 0, i.e., to show that the vertices of C0,
namely v1, . . . , vc, are linearly independent. Assume that α1, . . . , αc ∈ R are such that:

c∑
i=1

αivi = 0. (5.23)

We note that vector vi, 1 ≤ i ≤ c, must lie outside of the convex hull of vectors vj’s, j 6= i,
for otherwise it would not qualify as a vertex. For every i, 1 ≤ i ≤ c, let wi be the projection
of vi on the convex hull of vj’s, j 6= i. Define the following positive numbers:

ε ,
1
4 min{‖vi − wi‖ | 1 ≤ i ≤ c}, (5.24)

and:
ε1 , ε/(2N). (5.25)

Because C0 is the limit of Ct,0 as t goes to infinity, there must exist a sufficiently large time
T ≥ 0, such that for t ≥ T , every point in Ct,0 lies within an ε1-distance of C0. As depicted
in Fig. 5.2, for every i, 1 ≤ i ≤ c, let li be the hyperplane in RN distant ε from vi, crossing
segment viwi and orthogonal to it. Let also mi be the hyperplane which is parallel to li, on
the other side of vi, distant ε1 from vi.

Define for every i, 1 ≤ i ≤ c:

Si = {j ∈ V |Φ′j(T, 0) lies in the strip margined by li,mi}. (5.26)

Note that by the assumption, every point in CT,0, including Φ′j(T, 0), lies within an ε1-distance
of C0. Therefore, Φ′j(T, 0) must lie on the same side of mi as vi does. In other words, Φ′j(T, 0)
either lies in the strip margined by li and mi or lies on the side of li opposite to vi (below li
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Figure 5.2 Planes li and mi are orthogonal to segment viwi.

in Fig. 5.2). This implies that Si, 1 ≤ i ≤ c, is non-empty. Indeed otherwise, Φ′j(T, 0) would
lie below li in Fig. 5.2 for every j resulting in CT,0 also lying below li, which would be a
contradiction since CT,0 must contain C0 and vi in particular. One can also show that Si’s,
1 ≤ i ≤ c, are pairwise disjoint sets. More specifically, one can show that any point of CT,0
that lies in the intersection of any two of sets Si’s cannot be within ε-distance of C0, and
since ε > ε1, this would violate the defining property of T . C0 being the limit of shrinking
convex hulls Ct,0’s, it follows that for i = 1, . . . , c, there exists sequences {it} of individuals
such that Φ′it(t, 0) converges to vi. Therefore, after some finite time, we have the following
inequality:

‖Φ′it(t, 0)− vi‖ < ε1. (5.27)

Without loss of generality, we can assume that the inequality (5.27) holds for every t ≥ T

(otherwise, we would proceed by replacing T with T ′, T ′ > T , such that inequality (5.27)
holds for every t ≥ T ′). We have for every t ≥ T :

Φ′it(t, 0) = Φ′(T, 0)Φ′it(t, T )

= ∑
j∈V Φit,j(t, T )Φ′j(T, 0)

= ∑
j 6∈Si Φit,j(t, T )Φ′j(T, 0) +∑

j∈Si Φit,j(t, T )Φ′j(T, 0).

(5.28)
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We now show that for every i, 1 ≤ i ≤ c, the following two inequalities must hold:

∑
j 6∈Si

Φit,j(t, T ) < 2/(2N + 1), (5.29)

∑
j∈Si

Φit,j(t, T ) > 1− 2/(2N + 1). (5.30)

To prove (5.29) and (5.30), we use (5.28) to find a lower bound for the distance from Φ′it(t, 0),
t ≥ T , to hyperplane mi as drawn in Fig. 5.2. Remember that if j ∈ Si, then, Φ′j(T, 0) lies in
the strip margined by mi and li, while if j 6∈ Si, then, Φ′j(T, 0) lies below li in Fig. 5.2. For
a fixed i, 1 ≤ i ≤ c, let η ,

∑
j 6∈Si Φit,j(t, T ). Φ(t, T ) being row-stochastic, it immediately

follows that ∑j∈Si Φit,j(t, T ) = 1− η. Using (5.28), we now conclude that:

η(ε1 + ε) + (1− η).0 (5.31)

is a lower bound for the distance from Φ′it(t, 0), t ≥ T , to hyperplane mi. This distance, on
the other hand, is upper bounded by 2ε1 since inequality (5.27) is satisfied for every t ≥ T .
Thus, we must have:

η(ε1 + ε) + (1− η).0 < 2ε1, (5.32)

which immediately results in η < 2/(2N + 1) (remember that ε = 2Nε1), and inequalities
(5.29) and (5.30) follow. Now remember by construction that limt→∞Φ′it(t, 0) = vi where vi
is a given vertex of C0. Furthermore, noting that:

Φ′it(t, 0) = Φ′(T, 0)Φ′it(t, T ), (5.33)

and taking limits on both sides as t goes to infinity, it follows that limt→∞Φ′it(t, T ) is the
image of a vertex of C0 and therefore (following the proof of Lemma 5.5) is itself a vertex of
CT , say ui. Considering (5.30) again, and taking limits as t→∞, one can conclude:

∑
j∈Si

(ui)j ≥ 1− 2/(2N + 1), (5.34)

and consequently: ∑
j 6∈Si

(ui)j ≤ 2/(2N + 1). (5.35)

Inequality (5.34) can be established for i = 1, . . . , c, where ui, i = 1, . . . , c are the vertices of
CT . Recalling linear operator φτ2,τ1 from (5.20) one can write for some permutation σ over
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set {1, . . . , c}:
ui = Φ′(T, 0)vσ(i), ∀i, 1 ≤ i ≤ c, (5.36)

Combining relations (5.23) and (5.36) yields:

c∑
i=1

ασ(i)ui = 0, (5.37)

If we now assume that k, 1 ≤ k ≤ c, is such that:

|ασ(k)| = max
1≤i≤c

{|αi|} , α, (5.38)

Now noting that (5.34) and (5.35) hold only for the vertex ui which is the image of vi, and
that the Si’s are disjoint sets of agents, one can write the following:

0 = |∑j∈Sk
∑c
i=1 ασ(i)(ui)j|

= |∑j∈Sk ασ(k)(uk)j +∑
j∈Sk

∑
i 6=k ασ(i)(ui)j|

≥ |ασ(k)|.|
∑
j∈Sk(uk)j| −

∑
i 6=k

(
|ασ(i)|.

∑
j∈Sk(ui)j

)
≥ |ασ(k)|.|

∑
j∈Sk(uk)j| −

∑
i 6=k

(
|ασ(i)|.

∑
j 6∈Si(ui)j

)
≥ α(1− 2/(2N + 1))− α(c− 1).2/(2N + 1) = α(2(N − c) + 1)/(2N + 1)

> 0,

(5.39)

which is a contradiction. Thus, we must have α = 0, which means αi = 0, ∀i, 1 ≤ i ≤ c.
This proves the lemma.

Theorem 5.2. rank(A) is equal to c, i.e, the constant value of cτ , τ ≥ 0, where cτ is the
number of vertices of limiting polytope Cτ .

Proof. Theorem 5.2 is an immediate result of Lemmas 5.6 and 5.7.

Combining Theorems 5.1 and 5.2 result in the following corollary.

Corollary 5.1. The size of the smallest EGC of a network with dynamics (5.1) is c.

Lemma 5.8. c is less than or equal to the number of ergodicity classes.

Proof. Recall limiting polytope C0 with vertices v1, . . . , vc from earlier in the section. Re-
member, from the proof of Lemma 5.7, that for i = 1, . . . , c, there exists sequences {it} of
individuals such that Φ′it(t, 0) converges to vi. Let:

ε2 = 1
3 min{‖vi − vj‖ |i, j ∈ V , i 6= j}. (5.40)
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By definition of ergodicity classes, there exists T ≥ 0 such that for every t ≥ T , for a fixed
τ , and for every i, j in the same ergodicity class, we have:

‖Φ′i(t, τ)− Φ′j(t, τ)‖ < ε2. (5.41)

On the other hand, there exists T ′ > 0 such that for every t ≥ T ′, and i = 1, . . . , c, we have:

‖Φ′it(t, 0)− vi‖ < ε2. (5.42)

Therefore, for every t ≥ T ′, and i 6= j, 1 ≤ i, j ≤ c, we must have:

3ε2 ≤ ‖vi − vj‖ ≤ ‖vi − Φ′it(t, 0)‖+ ‖Φ′it(t, 0)− Φ′jt(t, 0)‖+ ‖Φ′jt(t, 0)− vj‖

< ε2 + ‖Φ′it(t, 0)− Φ′jt(t, 0)‖+ ε2,
(5.43)

where the first inequality above is a result of (5.40), the second inequality is the triangle
inequality, and the third inequality is a consequence of (5.42). From (5.43), we now have:

‖Φ′it(t, 0)− Φ′jt(t, 0)‖ > ε2, ∀t ≥ T ′. (5.44)

Taking (5.41) into account, from (5.44) we conclude that it and jt cannot be in the same
ergodicity class for every t ≥ max{T, T ′}. Thus, there are at least c distinct ergodicity
classes, and the lemma is proved.

Corollary 5.2. For an arbitrary chain {A(t)}, rank(A) is less than or equal to the number
of ergodicity classes of {A(t)}.

Corollary 5.3. For an opinion network with dynamics (5.1), the size of the smallest EGC
is upper bounded by the number of ergodicity classes of {A(t)}.

Remark 5.3. In case {A(t)}, the underlying chain of a network with dynamics (5.1), is class-
ergodic, the occurrence of multiple consensus in the network is guaranteed, and the number
of ergodic classes becomes equal to the number of consensus clusters. Yet this number may be
larger than the size of the smallest EGC of the network. In other words, there may exist an
EGC in which some of the consensus clusters have no representative. As a simple illustrative
example, consider system (5.1) of three individuals with a fixed underlying chain:

A(t) =


0 0 0

1/3 −1 2/3
0 0 0

 , ∀t ≥ 0. (5.45)
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We then have:

lim
t→∞

x(t) =


x1(t0)

(x1(t0) + 2x3(t0))/3
x3(t0)

 . (5.46)

Notice also that for the corresponding state transition matrix we have:

lim
t→∞

Φ(t, τ) =


1 0 0

1/3 0 2/3
0 0 1

 , ∀τ ≥ 0. (5.47)

Therefore, each individual forms a consensus cluster, i.e., there are three consensus clusters.
However, subgroup {1, 3} with size two, is an EGC of the network. In other words, starting
at an arbitrary initial time t0 ≥ 0, irrespective of the initial opinion of individual 2, an
agreement on value x∗ is achieved if individuals 1 and 3 initialize their opinions at x∗.

5.5 Lower Bounds on the Rank of chains

In this section, we clarify how the underlying chain of a network with dynamics (5.1)
imposes lower bounds on the size of its smallest EGC, which is equal to rank(A). We recall
the following definition from Bolouki and Malhamé (2012a); Hendrickx and Tsitsiklis (2013).

Definition 5.8. The unbounded interactions graph of a chain {A(t)}, H1(V , E1), is a fixed
directed graph such that for every distinct nodes i, j ∈ V, (i, j) ∈ E1 if and only if:

∫ ∞
0

aji(t)dt =∞. (5.48)

In other words, a link is drawn from i to j if the total influence of individual i on individual
j is unbounded over the infinite time interval.

Definition 5.9. A subset S ′ ⊂ V is called a s-root of H1(V , E1) if for every node i ∈ V, we
have i ∈ S ′ or there exists j ∈ S ′ such that i is reachable from j.

Theorem 5.3. LetH1(V , E1) be the unbounded interaction graph associated with chain {A(t)}.
Then, rank(A) is greater than or equal to the size of the smallest s-root of H1(V , E1).

Proof. Form a chain {B(t)} from chain {A(t)} by eliminating all influences that individual
i ∈ V gets from individual j ∈ V if (j, i) 6∈ E1. More specifically, for every i 6= j ∈ V and
t ≥ 0, we have:

bij(t) =

aij(t) if (j, i) ∈ E1

0 if (j, i) 6∈ E1

(5.49)
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and bii(t) = −∑j 6=i bij(t), for every i ∈ V and t ≥ 0. Since chain {B(t)} is an l1-approximation
of chain {A(t)}, from Lemma 5.3, the two chains share the same rank. Notice also that the
two chains share the same unbounded interactions graph. Thus, it suffices to prove Theorem
5.3 for chain {B(t)}. Consider an opinion network with underlying chain {B(t)}:

ẏ(t) = B(t)y(t), t ≥ t0, (5.50)

where y(t) ∈ RN is the vector of opinions. Since rank(B) is the size of the smallest EGC
of the network with dynamics (5.50), it is sufficient to show that every EGC of the network
with dynamics (5.50) is a s-root of H1. Assume, on the contrary, that subset S ⊂ V is an
EGC which is not a s-root of H1. Define:

n(S) , S ∪ {i | i ∈ V , ∃j ∈ S : i is reachable from j in H1} (5.51)

Since S is not a s-root, n(S) ( V . From the definition of n(S), it is easy to see that there is
no link from n(S) to V\n(S) in H1. According to the way that chain {B(t)} was constructed,
this means that n(S) has zero influence on V\n(S) at any time instant. Thus, since S ⊂ n(S),
individuals in S cannot, in general, lead individuals in V\n(S) to agreeing on an arbitrary
value x∗. For instance, given a desired consensus value x∗, if the opinions of individuals in
V\n(S) are all initialized at value x∗+ 1, they will never change, and consequently, they will
never converge to x∗. Thus, S is not an EGC, which completes the proof.

An important special case of Theorem 5.3 is described in the following. Let us first define
the continuous time counterpart of the infinite flow graph of a chain according to Touri and
Nedić (2011).

Definition 5.10. The infinite flow graph H2(V , E2) of a given chain {A(t)}, is an undirected
graph formed as follows: for two distinct nodes i, j ∈ V, draw a link between i and j in H2,
if and only if: ∫ ∞

0
(aij(t) + aji(t))dt =∞ (5.52)

We now have the following lower bound on the rank of a chain which is a special case of
Theorem 5.3.

Corollary 5.4. rank(A) is greater than or equal to the number of connected components of
the infinite flow graph associated with {A(t)}.
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5.6 Rank of Time-Invariant (TI) chains

Let {A(t)} be a TI chain, i.e., A(t) = Â, ∀t ≥ 0, where Â is a fixed matrix with the
property that each of its rows adds up to zero and its off-diagonal elements are non-negative.
Assume that rank(Â) and nullity(Â) represent the rank and the nullity of Â. Notice that
roman style is used for matrix operators as opposed to the chain operators so as to avoid any
ambiguity. For state transition matrix Φ(t, τ) associated with TI chain {Â}, we have:

Φ(t, τ) = eÂ(t−τ), t ≥ τ ≥ 0. (5.53)

Note that Â is marginally stable and has all negative eigenvalues but one eigenvalue zero
with algebraic multiplicity nullity(Â). Thus, limt−τ→∞Φ(t, τ) exists, and the limit has eigen-
value zero with algebraic multiplicity rank(Â) and eigenvalue one with algebraic multiplicity
nullity(Â). Hence:

rank(A) = nullity(Â). (5.54)

Employing a graph theoretic approach, treating Â as the Laplacian of its associated weighted
directed graph, nullity(Â) represents the size of the smallest s-root of the graph (see Fig.
5.3).

1 2 3

4 5 6 7

98

1 2

3 4

Figure 5.3 Unweighted underlying graph of two TI linear algorithms. {2} (left) and either of
{2}, {5}, and {6} (right) are the smallest s-roots.

Since an unweighted version of the graph described above serves as the unbounded in-
teractions graph associated with TI chain {A(t)}, A(t) = Â, ∀t ≥ 0, we have the following
corollary.

Corollary 5.5. For a TI chain {A(t)}, the lower bound provided in Theorem 5.3 is achieved.
More specifically, rank(A) is size of the smallest s-root of the unbounded interactions graph
associated with {A(t)}.
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Remember that any TI chain {A(t)} is class-ergodic and the number of ergodic classes
provides an upper bound for rank(A) according to Corollary 5.2. For example, for the
underlying graphs depicted in Fig. 5.3, the number of ergodic classes are 4 (left) and 6
(right).

The graph interpretation of the notion of rank explains the following two properties:

(i) For any TI chain {A(t)} and α > 0:

rank({αA(t)}) = rank({A(t)}). (5.55)

(ii) For any two TI chains {A(t)} and {B(t)},

rank({A(t) +B(t)}) ≤ min
{

rank({A(t)}), rank({B(t)})
}
. (5.56)

Remark 5.4. While Statement (i) seems to hold for any time-varying chain {A(t)} as well,
there exist time-varying chains {A(t)} and {B(t)} that do not satisfy Statement (ii). This
means that more interactions between agents may surprisingly increase the size of the smallest
EGC of a network. The following is an example; let:

A(t) =


−1 1 0
0 0 0
0 0 0

 if t ∈ [22k − 1, 22k), k ∈ N, (5.57)

and,

A(t) =


0 0 0
0 −1 1
0 0 0

 if t ∈ [22k, 22k+1 − 1), k ∈ N, (5.58)

and A(t) = 03×3 elsewhere. Let also:

B(t) =


0 0 0
0 0 0
0 1 −1

 if t ∈ [22k+1 − 1, 22k+1), k ∈ N, (5.59)

and,

B(t) =


0 0 0
1 −1 0
0 0 0

 if t ∈ [22k+1, 22k+2 − 1), k ∈ N, (5.60)

and B(t) = 03×3 elsewhere. Note that at every time instant either A(t) or B(t) is 03×3. It
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is easy to see that both {A(t)} and {B(t)} are ergodic chains. More specifically, for every
τ ≥ 0, we have:

lim
t→∞

ΦA(t, τ) =
[
0 0 1

] [
1 1 1

]′
, (5.61)

and,
lim
t→∞

ΦB(t, τ) =
[
1 0 0

] [
1 1 1

]′
. (5.62)

Therefore, rank(A) = rank(B) = 1. However, one can show that rank({A(t) +B(t)}) = 2.
More precisely, subgroup {1, 3} forms the smallest EGC of the network with underlying chain
{A(t) +B(t)}.

5.7 Rank of chains in Class P∗

From the fundamental work Kolmogoroff (1936), it is known that for every state transition
matrix Φ(t, τ), t ≥ τ ≥ 0, associated with a chain {A(t)}, there exists a sequence of stochastic
row vectors {π(t)}, called an absolute probability sequence, such that:

π(τ) = π(t)Φ(t, τ), ∀t, τ, t ≥ τ ≥ 0. (5.63)

Remember that by a stochastic vector, we mean a vector with elements adding up to 1. We
may now extend (Touri and Nedić, 2014, Definition 3) to the continuous time case in the
following.

Definition 5.11. A chain {A(t)} is said to be in Class P∗ if its associated state transition
matrix Φ(t, τ), t ≥ τ ≥ 0 admits an absolute probability sequence {π(t)} such that for some
constant p∗ > 0:

π(t) > p∗, ∀t ≥ 0. (5.64)

It is possible to characterize chains of Class P∗ more concretely. To do so, we first state
the following lemma.

Lemma 5.9. For every j ∈ V,

πj(τ) ≤ inf
{∑
i∈V

Φi,j(t, τ) | t ≥ τ

}
. (5.65)

Proof. Obvious, since for every t ≥ τ :

πj(τ) = π(t)Φj(t, τ) =
∑
i∈V

πi(t)Φi,j(t, τ) ≤
∑
i∈V

Φi,j(t, τ). (5.66)
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We now have the following lemma that provides an alternative definition of chains in
Class P∗.

Lemma 5.10. A chain {A(t)} is in Class P∗ if and only if for its state transition matrix
Φ(t, τ), t ≥ τ ≥ 0, we have:

inf
t,τ

{∑
i∈V

Φi,j(t, τ) | t ≥ τ ≥ 0
}
> 0, ∀j ∈ V . (5.67)

Proof. The “only if” part is an immediate result of Lemma 5.9, and the “if” part is a result
of the way an absolute probability sequence can be obtained in Kolmogoroff (1936) by always
choosing to initialize agent probabilities on finite intervals with a uniform distribution.

Lemma 5.10 roughly implies that the underlying chain of a system is in Class P∗, if and
only if the opinion of any individual, at any time, continues to have influence on the formation
of individuals’ opinions at all future times. We now state a theorem on the class-ergodicity
of chains in Class P∗ (see Theorem 4.6 of Chapter 4).

Theorem 5.4. Every chain {A(t)} in Class P∗ is class-ergodic. Furthermore, the number
of ergodic classes is equal to the number of connected components of the infinite flow graph
of chain {A(t)}.

Theorem 5.4 implies that if chain {A(t)} is in Class P∗, the upper bound provided for
its rank in Corollary 5.2 is equal the lower bound provided in Corollary 5.4. Therefore, both
bounds become equal to rank(A).

Corollary 5.6. The rank of a chain in Class P∗ is determined by the number of connected
components of the infinite flow graph associated with the chain.

5.8 Full-Rank chains

One can characterize chains with maximum possible rank as the following.

Theorem 5.5. A chain {A(t)} is full-rank, i.e., rank(A) = N if and only if {A(t)} is an
l1-approximation of the neutral chain, i.e., the chain of matrix 0N×N .

Proof. The sufficiency is immediately implied using Lemma 5.3 and taking into account that
the neutral chain is full-rank. To prove the necessity, assume that {A(t)} is full-rank. We
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may now once again take advantage of our geometric framework developed in Section 5.4
based on the associated state transition matrix. Recall that c is defined by the number of
vertices of limiting polytope Cτ for an arbitrary τ ≥ 0. Since rank(A) = c, we conclude that
c = N . Letting v1, . . . , vN be the N vertices of C0, for a permutation σ over {1, . . . , N}, we
must have:

lim
t→∞

Φ′(t, 0) =
[
vσ(1)| · · · |vσ(N)

]
, (5.68)

since each column of Φ′(t, 0) is a continuous function of t such that its distance from
{v1, . . . , vN} vanishes as t grows large. Recalling:

Φ(t, 0) = Φ(t, τ)Φ(τ, 0), ∀t ≥ τ ≥ 0, (5.69)

and taking into account that, based on Lemma 5.7, the columns of the RHS of relation (5.68)
are linearly independent stochastic vectors, for a sufficiently large T ≥ 0, Φ(t, τ) is arbitrarily
close to the N × N identity matrix for every t ≥ τ ≥ T . In particular, Φ(t, τ) has positive
diagonal elements (well away from zero) for every t ≥ τ ≥ T . Form chain {B(t)} from {A(t)}
by eliminating all interactions between individuals over time interval [0, T ). Then, the state
transition matrix associated with chain {B(t)} has positive diagonal elements all the times.
Recalling Lemma 5.10, we conclude that chain {B(t)} is in Class P∗. On the other hand,
chain {B(t)} is an l1-approximation of chain {A(t)} due to boundedness of interactions over
time interval [0, T ). Consequently, rank(B) = rank(A) = N . Theorem 5.4 now implies that
rank(B) = N is the number of connected components of the infinite flow graph associated
with chain {B(t)}. This completes the proof since the two chains share the same infinite flow
graph.

Assume that the infinite flow graph of chain {A(t)}, i.e., H2(V , E2), has h2 connected
components. Form chain {B(t)}, which is an l1-approximation of {A(t)} by eliminating all
interactions between distinct connected components. Since the subchain corresponding to
each connected component is full-rank if and only if it contains a single node, the following
proposition follows from Lemma 5.3, that provides an upper bound for rank(A).

Proposition 5.1. Let {A(t)} be a time-varying chain with infinite flow graph H2. Then:

rank(A) ≤ N − h′2, (5.70)

where h′2 is the number of connected components of H2 containing two or more nodes.
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5.9 Discrete Time Analysis

In this section, we turn our attention to the case in which the opinions of the individuals
are updated at discrete time instants. Our aim is to characterize EGC’s in a network for
the discrete time case. To this aim, we adopt, with a slight modification, the same approach
followed in the continuous time case, i.e., an approach based on the notion of rank. After we
define the rank of a discrete time chain, we carry out the discrete time counterpart of our
statements in Sections 5.3–5.8.

Remember that in this section, time variables t, τ, t0, etc. refer to the discrete time indices.
Let {A(t)}t≥0 be a time-varying chain of row-stochastic square matrices of size N . A row-
stochastic matrix, or simply stochastic matrix, is a matrix with non-negative elements and the
property that its each row elements sum up to 1 . Discrete time chains of matrices, that we
deal with in this paper, are assumed to be chains of stochastic matrices. Indeed, A(t) can be
viewed as the transition matrices of a time inhomogeneous Markov chain. Let dynamics of an
opinion network be described by the following discrete time distributed averaging algorithm:

x(t+ 1) = A(t)x(t), t ≥ t0, (5.71)

where t0 ≥ 0 is the initial time, x(t) ∈ RN is the vector of opinions at each time instant
t ≥ t0, and chain {A(t)}t≥0, or simply {A(t)}, is the underlying chain of the network.

The notion of EGC in a network of individuals with discrete time dynamics (5.71) is
defined consistently with Definition 5.1. More specifically, for an opinion network with dy-
namics (5.71), an EGC refers to a subgroup of individuals who are able to lead the whole
group to asymptotically agreement on any desired value by cooperatively and properly choos-
ing their own initial opinions, based on an awareness of underlying chain {A(t)} as well as
the initial opinions of the rest of individuals. Notice that Lemma 5.1, with a similar proof,
also holds for a network with dynamics (5.71). In the following, by extending the notions
of null space, nullity, and rank to discrete time chains, we exploit the relationship between
the characterization of an EGC in a network, size of the smallest EGC, and properties of the
underlying chain of the network.

For the sake of notational consistency, let Φ(t, τ), t ≥ τ ≥ 0, be the state transition
matrix associated with discrete time chain {A(t)}. State transition matrix Φ(t, τ) satisfies
relation (5.2). we also have:

Φ(t, τ) = A(t− 1) · · ·A(τ), ∀t > τ ≥ 0, (5.72)

and Φ(t, t) = IN×N , ∀t ≥ 0. Define the null space of discrete time chain {A(t)} at an
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arbitrary time instant τ ≥ 0, nullτ (A), consistently with its continuous time version, i.e.,
Definition 5.2. nullτ (A), τ ≥ 0, is again a vector space. However, since the state transition
matrix in the discrete time case may be singular at times, unlike the continuous time case,
the dimension of nullτ (A), denoted by dim(nullτ (A)), can vary as τ grows. However, it is
not difficult to show that dim(nullτ (A)) is non-increasing with respect to τ . We now have
the following theorem on the size of the smallest EGC of a network with dynamics (5.71).
The proof is eliminated as it is similar to the proof of Theorem 5.1.

Theorem 5.6. For an opinion network with dynamics (5.71), the size of the smallest EGC
is N − dim(nullt0(A)).

Since dim(nullτ (A)) is non-increasing with respect to τ , from Theorem 5.6, we conclude
that initializing the network with dynamics (5.71) at a later time results in a greater or
equal size of its smallest EGC. Notice now that dim(nullt0(A)) is an integer-valued operator
bounded below by zero. Thus, dim(nullτ (A)) becomes constant after a finite time. Define
the nullity of chain {A(t)}, nullity(A), by that constant:

nullity(A) , lim
τ→∞

dim(nullτ (A)). (5.73)

Define now the rank of chain {A(t)}, rank(A), as in continuous time, by rank(A) = N −
null(A). The following corollary, to be viewed as the discrete time counterpart of Theorem
5.1, is an immediate result of Theorem 5.6 and the definition of rank(A).

Corollary 5.7. If a network with dynamics (5.71) is initialized at a sufficiently large time,
the size of its smallest EGC is rank(A), where a sufficiently large time refers to some time
after the RHS of (5.73) has converged.

In the rest of this section, we focus on the notion of rank of a chain. We recall the
definition of l1-approximation of a discrete time chain from Touri and Nedić (2012a).

Definition 5.12. Chain {A(t)} is said to be an l1-approximation of chain {B(t)} if:

∞∑
t=0
‖A(t)−B(t)‖ <∞, (5.74)

where for convenience only, the norm refers to the max norm, i.e., the maximum of the
absolute values of the matrix elements.

It can be shown that, rank, as we defined it for the discrete time case, is invariant under
an l1-approximation, i.e., Lemma 5.3 holds for the discrete time case as well.
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5.9.1 Rank via Sonin Decomposition-Separation Theorem

We aim to address in this subsection, the rank of a discrete time chain of stochastic
matrices via an approach based on the Sonin D-S Theorem Bolouki and Malhamé (2013);
Sonin et al. (2008). Some preliminaries are required first. According to Blackwell (1945) as
reported in Sonin et al. (2008), the definition of jet will be recalled. It plays a crucial role in
our discrete time arguments.

Definition 5.13. Given the set of individuals V = {1, . . . , N}, a jet J in V is a sequence
{J(t)} of subsets of V. A jet J in V is called a proper jet if ∅ 6= J(t) ( V, ∀t ≥ 0.
Complement of jet J = {J(t)} in V, denoted by J̄ is also a jet in V expressed by sequence
{V\J(t)}. For a fixed subset S ⊂ V, jet S refers to a jet which is equal to S at all time
instants.

Definition 5.14. A tuple of jets (J1, . . . , J c) is a jet-partition of V, if (J1(t), . . . , J c(t))
forms a partition of V for every t ≥ 0.

Consider a multi-agent system with states evolving according to linear algorithm (5.71).
Based on the work Kolmogoroff (1936), we know that discrete time chain {A(t)} admits an
absolute probability sequence {π(t)} which propagates backwards in time:

π′(t+ 1)A(t) = π′(t),∀t ≥ 0. (5.75)

From chain {A(t)}, construct chain {P (t)} of stochastic matrices satisfying:

πi(t)pij(t) = πj(t+ 1)aji(t),∀i, j ∈ V ,∀t ≥ 0. (5.76)

More specifically, if πi(t) 6= 0, then set:

pij(t) = πj(t+ 1)aji(t)/πi(t), (5.77)

while if πi(t) = 0 for some i ∈ V and t ≥ 0, choose non-negative pij(t)’s arbitrarily such that:

N∑
j=1

pij(t) = 1. (5.78)

Note that in the former case (πi(t) 6= 0), (5.78) is automatically satisfied, implying that P (t)
is a stochastic matrix for every t ≥ 0. It is easy to see that:

π′(t)P (t) = π′(t+ 1),∀t ≥ 0, (5.79)
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indicating that {π(t)} can now be viewed as a non homogeneous forward propagating Markov
chain.

Definition 5.15. Let the total flow between two arbitrary jets Js and Jk in V over the infinite
time interval, denoted by V (Js, Jk), be defined as:

V (Js, Jk) ,
∞∑
t=0

 ∑
i∈Jk(t)

∑
j∈Js(t+1)

rij(t) +
∑

i∈Js(t)

∑
j∈Jk(t+1)

rij(t)
 , (5.80)

where
rij(t) = πi(t)pij(t) = πj(t+ 1)aji(t). (5.81)

From a Markov chain point of view, value rij(t) can be interpreted as the absolute joint
probability of being in state i at time t and state j at time t+ 1.

Theorem 5.7. (Sonin D-S Theorem) There exists an integer c, 1 ≤ c ≤ N , and a decom-
position of V into jet-partition (J0, J1, . . . , J c), Jk = {Jk(t)}, such that irrespective of the
particular time or values at which xi’s are initialized,

(i) For every k, 1 ≤ k ≤ c, there exist real constants π∗k and x∗k, such that:

lim
t→∞

∑
i∈Jk(t)

πi(t) = π∗k, (5.82)

and:
lim
t→∞

xit(t) = x∗k, (5.83)

for every sequence {it}, it ∈ Jk(t). Furthermore, limt→∞
∑
i∈J0(t) πi(t) = 0.

(ii) For every distinct k, s, 0 ≤ k, s ≤ c: V (Jk, Js) <∞.

(iii) This decomposition is unique up to jets {J(t)} such that for any {π(t)} we have:

lim
t→∞

∑
i∈J(t)

πi(t) = 0, (5.84)

and:
V (J,V\J) <∞. (5.85)

Theorem 5.8. The unique jet decomposition of V with respect to chain {A(t)} in the Sonin
D-S Theorem, consists of jet J0 and rank(A) other jets.

Proof. Theorem 5.8 is an immediate result of Remark 4.2 of Chapter 4, combined with
Theorem 5.9, that will be stated later in the paper.
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5.9.2 A Geometric Interpretation

We developed, in Section 5.4, a geometric framework, that interprets the rank of the
underlying chain of a network, based on the state transition matrix of the network, i.e,
Φ(t, τ). A similar argument can be made for the discrete time case, with the state transition
matrix expressed as (5.72). The only difference here is that cτ , which is the number of vertices
of limiting polytope Cτ , is not invariant as τ grows. As a matter of fact, it can be shown
that:

cτ = N − dim(Nτ (A)). (5.86)

Therefore, cτ is a non-decreasing function of τ and becomes constant after a finite time since
it is bounded above by N . In correspondence to Theorem 5.2, we have the following theorem:

Theorem 5.9. For the number of the vertices of limiting polytope Cτ , τ ≥ 0, i.e., cτ :

lim
τ→∞

cτ = rank(A). (5.87)

Consequently, there exist t0 ≥ 0 such that cτ is equal to rank(A) for every τ ≥ t0.

Proof. (5.87) is easily obtained by taking the limit of both sides of (5.86) as t→∞.

Similar to the continuous time case, we define ergodicity classes of a discrete time chain as
equivalence classes resulted by the relation of being weakly mutually ergodic (see Definition
5.7). It can be shown, similar to the proof of Lemma 5.8, that cτ for every τ ≥ 0 is less
than or equal to the number of ergodicity classes (note that ergodicity classes are defined
irrespective of the initial time). This, together with Theorem 5.9, implies that the number
of ergodicity classes being an upper bound for the rank, i.e., Corollary 5.2, also holds in the
discrete time case.

5.9.3 Lower Bounds

We stated, in Theorem 5.3 and Corollary 5.4, lower bounds on the rank of a continuous
time chain. The discrete time counterparts of these theorems are subsumed through an
approach employing the notion of jets.

Definition 5.16. For a jet J in V, let Uin(J) denote the total influence of J̄ on J over the
infinite time interval:

Uin(J) =
∞∑
t=0

∑
i∈J(t+1)

∑
j 6∈J(t)

aij(t). (5.88)
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Theorem 5.10. For a discrete time chain {A(t)}, rank(A) is greater than or equal to the
maximum number of disjoint jets, say J , each of which satisfying:

Uin(J) <∞. (5.89)

Proof. The proof of Theorem 5.10 is similar to that of Theorem 5.3. For chain {A(t)}, let
J1, . . . , Jd be d disjoint jets. Form a chain {B(t)} from chain {A(t)} by eliminating all
interactions between any two distinct jets among J1, . . . , Jd over the infinite time interval.
Since {B(t)} is an l1-approximation of {A(t)}, the two chains share the same rank, as well
as the same collections of disjoint jets. Therefore, it is sufficient to prove Theorem 5.10 for
chain {B(t)}. Note that for chain {B(t)}, for every s 6= k, 1 ≤ s, k ≤ d, we have:

∞∑
t=0

 ∑
i∈Js(t+1)

∑
j∈Jk(t)

bij(t) +
∑

i∈Jk(t+1)

∑
j∈Js(t)

bij(t)
 = 0. (5.90)

We now consider an opinion network with underlying chain {B(t)}. Keeping Theorem 5.1
in mind, it suffices to show that the size of the smallest EGC of the opinion network defined
over chain {B(t)} is at least d. Consider a particular EGC of the opinion network defined
over chain {B(t)}. By definition, that particular EGC is able to create global consensus
under certain circumstances for infinitely many choices of initial time. Let t0 ≥ 0 be one of
those infinitely many possible choices of initial time. Relation (5.90) means that for any jet
among J1, . . . , Jd, say Js, the opinions of individuals in Js(t), ∀t ≥ t0, only depend on the
opinion of individuals in Js(t0). Therefore, that particular EGC must contain at least one of
the individuals in Js(t0) or else it would have no control on the opinion of individuals in jet
Js at any future time. Thus, the size of that particular EGC is greater than or equal to d,
which is the number of disjoint jets J1, . . . , Jd. This proves the theorem.

Theorem 5.10 would serve as the discrete time counterpart of Theorem 5.3, if the choice
of jets were limited to the time-invariant jets.

We skip the analysis of time-invariant discrete time chains, since it is no different from
its continuous time counterpart.

5.9.4 Rank of Discrete Time Chains in Class P∗

We, first, briefly discuss the limiting behavior of a discrete time chain {A(t)} in Class P∗

from two viewpoints: (i) The Sonin D-S theorem; (ii) The geometric viewpoint. Given that
{A(t)} belongs to Class P∗, there is a representation of Sonin’s jet decomposition without a
J0 jet. Therefore, each individual lies within ∪ck=1J

k(t) for any t ≥ 0, with c being equal to
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rank(A). Thus, the opinion of each individual stays arbitrarily close to set {x∗k | 1 ≤ k ≤ c},
with size rank(A), as t grows large. Considering now the geometric viewpoint, we focus on
limiting polytopes Cτ as discussed in Section 5.9.2. For the discrete time case, it was pointed
out that the number of vertices of Cτ is non-decreasing and becomes constant past a finite
time t0 ≥ 0, with rank(A) being that constant. As proved in Chapter 4, if {A(t)} is in Class
P∗, for every arbitrary fixed τ ≥ t0, every column of Φ′(t, τ) stays arbitrarily close to the
rank(A) vertices of Cτ as t grows large. Since x(t) = Φ(t, τ)x(τ), each column i of Φ′(t, τ)
(row i of Φ(t, τ)) is in correspondence with the opinion of an individual i. Thus, columns of
Φ′(t, τ) staying arbitrary close to the rank(A) vertices of Cτ as t → ∞, leads to the same
conclusion from the other point of view, that is the opinions staying arbitrary close to a
set of rank(A) (generally distinct) values. Thus, to sum up, although convergence of each
individual’s opinion is not guaranteed here unlike the continuous time case, there is a finite
number of accumulation points for the opinions over the infinite time interval, and that finite
number is rank(A).

Now reconsider jet-partition (J1, . . . , J c) in the Class P∗ based jet-decomposition of the
Sonin D-S Theorem. According to the Sonin D-S Theorem, for every two jets Jk and Js, we
have:

V (Jk, Js) <∞. (5.91)

Recalling (5.81) and taking into account that πj(t + 1) in (5.81) is greater than or equal
to some p∗ > 0 since chain {A(t)} has been assumed to be in Class P∗, inequality (5.91)
implies that the total interaction between any two jets Jk and Js is finite over the infinite
time interval, i.e.,

∞∑
t=0

 ∑
i∈Jk+1(t)

∑
j∈Js(t)

aij(t) +
∑

i∈Js+1(t)

∑
j∈Jk(t)

aij(t)
 <∞. (5.92)

Fix an arbitrary k, and consider the set of inequalities obtained as s 6= k goes from 1 to c in
(5.92). Adding the c−1 obtained inequalities of type (5.92), and noting that J1, . . . , J c is a jet
partition of V , we conclude that the total interaction between Jk and J̄k, and in particular the
total influence of J̄k over Jk, is also finite over the infinite time interval. Therefore, for each
of disjoint jets J1, . . . , J c, say Jk, Vin(Jk) <∞ (see (5.89)). Thus, recalling rank(A) = c, we
conclude that the lower bound provided in Theorem 5.10 is achieved for discrete time chains
in Class P∗.

5.9.5 Full-Rank Chains

One characterizes full-rank discrete time chains according to the following theorem.
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Theorem 5.11. A discrete time chain {A(t)} is full-rank, i.e., rank(A) = N if and only if
{A(t)} is an l1-approximation of a permutation chain, i.e., a chain of permutation matrices.

Proof. The proof of Theorem 5.11, which is the discrete time version of Theorem 5.5, is
omitted since the proofs of the two theorems are very similar.

5.10 Conclusion

We considered a network of multiple individuals with opinions updated via a general
time-varying continuous or discrete time linear algorithm. The notion of EGC, an acronym
associated with Éminence Grise Coalition, in the network was defined as follows. Given the
time that network starts to update, an EGC is a subgroup of individuals who, cooperatively,
can manage to create a global consensus on any desired opinion in the network only by
adequately setting their initial opinions assuming that they are aware of the underlying chain
of the network as well as the rest of individuals initial opinions. The size of the smallest EGC
can be treated as a characteristic of the underlying update chain of the network. We then
introduced an extension of the notion of rank, from an individual matrix related notion to
one related to a Markov chain in continuous or discrete time. A key result is that the rank
of the underlying chain of a network is also the size of its smallest EGC in the continuous
time case. The same holds in the discrete time case provided the initial time is “sufficiently
large” in a sense made precise in the paper. Geometrically, and associated with the chain,
one can define a monotone decreasing convex hulls (polytopes) generated by an underlying
sequence of vertices. The rank of the chain is the limiting number of linearly independent
vertices in the sequence of polytopes, which is reached in finite time.

The continuous time case is peculiar in the sense that the rank (number of linearly
independent vertices) of the elements of the polytopic sequence remains constant, while it is
monotonically increasing in the discrete time case. This, in turn, makes consensus behavior
somewhat simpler in continuous time than in discrete time. A collection of upper and lower
bounds on the rank was also established. These two bounds are shown to be equal to the
rank for both time invariant chains (possibly not in Class P∗), as well as for Class P∗ chains
in the time inhomogeneous case.

From a practical standpoint, this work establishes the rather intuitive result that the
less “natural” dissension exists in an opinion network, the easier it is to steer the network
towards global consensus. In cases where an “average” amount of natural dissonance exists,
then the theory points at the need to minimally “infiltrate” identifiable dissenting clusters
and work from the inside so to speak to steer the global opinion to a consensus. Success
in doing so hinges on an ability to enlist key agents cooperation given that they must act
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as a “grand coalition” of key agents. This in turn opens the door to games over opinion
networks whereby key agents might choose to break up into smaller coalitions and work
towards conflicting goals. This will be the subject of future research. Another direction for
future research is that of developing simple algorithms to identify key agents in the opinion
network. Finally, a question of mathematical interest is the following:

Given an arbitrary non-ergodic time-varying chain, what is the sparsest time-invariant
chain such that sum of the two chains becomes ergodic? There seems to be a relationship
between the sparsity index of the corresponding graph of the sparsest time-invariant chain
and the rank of the time-varying chain.
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CHAPTER 6

GENERAL DISCUSSION

Consensus problems for distributed time-varying averaging algorithms have gained in-
creasing attention in various research communities. One of the fundamental problems re-
lated to consensus is the unconditional occurrence of consensus or multiple consensus via
distributed time-varying averaging algorithms, where by “unconditional”, we mean irrespec-
tive of time or values at which states are initialized. Such problem turn out to be equivalent
to ergodicity or class-ergodicity of the underlying chain of the system (see Bolouki and
Malhamé (2013); Chatterjee and Seneta (1977); Touri and Nedić (2012b)). Discovering nec-
essary and/or sufficient conditions for ergodicity and class-ergodicity of a time-varying chain
of matrices has been the aim of a significant body of literature in the past decade (see Blon-
del et al. (2005); Hendrickx and Blondel (2006); Hendrickx and Tsitsiklis (2013); Jadbabaie
et al. (2003); Li et al. (2004); Lorenz (2005); Moreau (2005); Touri and Nedić (2011, 2012a,b,
2014)). One of our two main objectives in this thesis has been to extend, as far as possible,
the existing results regarding the proposed problem. Our contributions to this problem can
be summarized as the following.

Balanced asymmetric chains. Balanced asymmetry is a property of a chain of stochas-
tic matrices defined in discrete time. Balanced asymmetry is a hybrid of notions of subsym-
metry Bolouki and Malhamé (2011a), and cut-balance Hendrickx and Tsitsiklis (2011) which
were already very much discussed in the literature, and which are essentially point-wise verifi-
able properties of the underlying chain. We found, for balanced asymmetric chains, necessary
and sufficient conditions for ergodicity and class-ergodicity based on a dynamic notion pro-
posed by Touri and Nedić, that of absolute infinite flow, which is a property that can be
verified only when considering the chain as a whole. The notion of balanced asymmetry, on
its own, helped us subsume and generalize virtually all known convergence results thus far,
albeit not convergence rate issues which is thoroughly a different concern.

Applications to known models. We showed that our techniques, which are employed
to derive the convergence results on the exogenous averaging algorithms, together with the
results themselves, can also be applied to some well-known nonlinear models, such as the
Cucker-Smale model Cucker and Smale (2007) and the Hegselmann-Krause model Hegsel-
mann and Krause (2002). These nonlinear models can be viewed as endogenous averaging
algorithms, i.e., averaging algorithms with coefficients dynamically changing according to the
evolution of states in the network.
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Connection to Sonin’s Decomposition-Separation Theorem. Our basic convic-
tion that the theory of inhomogeneous Markov chains could help understand the convergence
properties of consensus algorithms, which essentially depended on the properties of the under-
lying chain of the system, led us to employ the Sonin’s Decomposition-Separation Theorem
Sonin et al. (2008). The D-S Theorem together with the intuitions of Touri and Nedić (2014)
about the importance of Kolmogorov’s notion of absolute probability sequence, helped us
obtain a meaningful generalization of the notion of absolute infinite flow to so-called infinite
jet-flow.

A geometric framework. Attempts to understand the convergence mechanisms of
inhomogeneous Markov chains led us to our first geometric insights of the Markov chain
convergence as the intersection of decreasing convex hulls of appropriate sets of vertices. The
vertices of each set correspond to the rows of the state transition matrix of the system at a
certain time. This geometric interpretation was employed to extend our theorems, obtained
based on the D-S Theorem, to the continuous time case.

Centered on these geometric insights, we then explored a question which is often raised
for endogenously evolving consensus algorithms, such as the celebrated Cucker-Smale model
Cucker and Smale (2007): Are there particular sets of initial conditions which will guarantee
that the resulting consensus algorithm will converge unconditionally? Instead, the question
is raised here for an exogenously generated sequence of update matrices. The geometric
insights and the proposed question led us to defining the following notions and addressing
their related issues which has been our second main objective in this thesis:

Éminence Grise Coalitions. It turns out that there exists a minimal subset of agents,
which by mere setting of their initial conditions (under the rather idealized condition that
they know where everyone else stands initially and the evolution of the network update
chain), can steer the complete set of agents towards a global consensus. Such agents may
be viewed as the consummate negotiators in a polarized environment, and we believe that
such results are important for the study of opinion dynamics. A subset of agents with that
property, even if it is not minimal, is called an éminence grise coalition, or simply EGC, in
this thesis. We extensively investigated the size of the minimal EGC in a system.

Rank of a chain. We extended the notion of rank, as defined for a matrix, to a chain
of matrices in both continuous and discrete time. We proved that the rank of the underlying
chain of a multi-agent system is equal to the size of the minimal EGC that the system admits.
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CHAPTER 7

CONCLUSION

In this thesis, we have proposed novel approaches towards analysis of the limiting behavior
of the state vector in a network of multiple agents with dynamics updated via a predefined
distributed averaging algorithm. To determine the asymptotic behavior of agents in such a
network, three items must be taken into account:

(i) the initial time at which the agents start to update their states.

(ii) the initial conditions, i.e., the state values at the initial time.

(iii) the predefined (exogenously given) update algorithm.

Our first interest has been to identify the largest class of discrete and continuous time update
algorithms, for which global consensus or multiple consensus within the network is achieved
“unconditionally”. Unconditional convergence refers to convergence irrespective of the values
or time at which states of agents are initialized (items (i) and (ii)). Since each distributed
averaging algorithm is uniquely defined by a chain of row-stochastic matrices (the so-called
underlying chain of the network), guaranteeing the occurrence of unconditional global or
multiple consensus can be considered as a property of the underlying chain. More specifically,
(class-) ergodicity of the underlying chain is equivalent to the occurrence of global (multiple)
consensus in the network (see Bolouki and Malhamé (2013); Chatterjee and Seneta (1977);
Touri and Nedić (2012b)).

In the first attempt to characterize the largest class of discrete time (class-) ergodic chains,
using only elementary methods, and by developing the notion of “balanced asymmetry” in
chains of stochastic matrices, we rediscovered and, although not significantly, generalized
the previous classes of (class-) ergodic chains in the literature (most notably Hendrickx and
Tsitsiklis (2013); Touri and Nedić (2014)).

We then exploited the relationship between ergodicity (class-) ergodicity of chains of
stochastic matrices and the Sonin’s Decomposition-Separation Theorem Sonin et al. (2008).
The D-S Theorem and the work Kolmogoroff (1936) on the existence of an absolute probabil-
ity sequence for an arbitrary Markov chain, helped us define the notion of “infinite jet-flow”,
as a generalization of (absolute) infinite flow (see Touri and Nedić (2011, 2012a)), and obtain
a larger class of (class-) ergodic chains.

Developing a geometric framework, we verified (class-) ergodicity of the obtained class of
chains. This geometric framework, which is based on the associated state transition matrix
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of the network, helped us extend our previous results to the continuous time case. En route
to find the the correct extension, we again employed Kolmogorov’s work Kolmogoroff (1936)
that proves the existence of an absolute probability sequence for both discrete and continuous
time Markov chains.

One can think of our second interest in this thesis as the complement of our first interest.
We assume now that, items (i) and (ii) above are to be tuned with the goal of achieving
consensus, while there is absolutely no assumption on the update algorithm, i.e., item (iii).
More precisely, given a chain of stochastic matrices as the underlying chain of the network,
starting at an arbitrary initial time t0, what is the set of initial conditions resulting in
global consensus? This set proves to be a vector space with a dimension that is obtained
by our geometric approach and (in the discrete time case) the D-S Theorem. The set of
initial conditions resulting in global consensus led us to define the notion of “éminence grise
coalition” (EGC) which resembles as a group of hidden leaders within the network. Using
our previous arguments and results in (class-) ergodicity analysis of chains, the geometric
framework in particular, we have addressed the size of the smallest EGC of a network.
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APPENDIX A

APPLICATION TO SOME KNOWN MODELS

In this chapter, we apply our main theorems of Chapter 3 to chains corresponding to
different types of models and consensus algorithms found in the literature in order to analyze
when their transition chains become ergodic or class-ergodic.

A.1 JLM Model

The parameter considered in the JLM model Jadbabaie et al. (2003) is the heading of
each agent. If we write θi(t) as the heading of agent i at moment t, the model describing
evolution of headings is

θi(t+ 1) = 1
1 + di(t)

[θi(t) +
∑

j∈Di(t)
θj(t)], (A.1)

where Di(t) and di(t) denote respectively the set and the number of neighbors of agent i at
time t. It is also assumed that for each t ≥ 0, if j ∈ Di(t), then i ∈ Dj(t) too (undirected
communication graph). Assuming that {A(t)} is the transition chain of the JLM model, one
concludes:

aij(t) =

1/(di(t) + 1) if j ∈ Di(t) or j = i,

0 else.
(A.2)

In Jadbabaie et al. (2003), the authors proved that a sufficient condition for consensus to
occur is existence of an infinite sequence of contiguous, nonempty, bounded, time-intervals
[ti, ti+1), i = 0, 1, . . ., such that across each such interval, the N agents are linked together.

In the following, we wish to apply Theorems 3.2 and 3.4 to the transition chain of the JLM
model. To take advantage of Theorem 3.4, we show that in the JLM model, the transition
chain is both self-confident and cut-balanced. Note that:

aii(t) = 1/(1 + di(t)) ≥ 1/N. (A.3)

This proves self-confidence of the chain. To prove cut-balancedness, it suffices to show that
the chain is subsymmetric. If at time t ≥ 0, we have j 6∈ Di(t), then i 6∈ Dj(t) either.
Therefore aij(t) = aji(t) = 0 (consistent with the subsymmetry requirement). If j ∈ Di(t)



97

then i ∈ Dj(t) also. In this case, since

1 ≤ di ≤ N − 1 and 1 ≤ dj ≤ N − 1, (A.4)

it is easy to conclude from (A.1) that aij(t) and aji(t) both lie in the interval [1/2, 1/N ].
Therefore, the subsymmetry condition holds by setting M = N/2. Thus, from Theorem 3.4,
we conclude that the chain is class-ergodic. In other words, in the JLM model, unconditional
multiple consensus occurs without any additional assumption.

We also note that the chain is balanced asymmetric as well, since self-confidence and
cut-balancedness imply balanced asymmetry. Thus, from Theorem 3.2, we obtain that the
absolute infinite flow property of the transition chain is necessary and sufficient for the
ergodicity of the chain. On the other hand, since the chain is self-confident, the absolute
infinite flow property is equivalent to the infinite flow property. Hence, in the JLM model,
the infinite flow property is necessary and sufficient for ergodicity of the transition chain.

Graph interpretation of the infinite flow property in the JLM model is as follows. Due to
the subsymmetry property of the JLM model, if agent i is influence by agent j infinitely many
times, then j is also influence by i infinitely many times. Therefore, in this case, the strong
interactions graph can be considered as an undirected graph. The infinite flow property is
now equivalent to connectivity of the strong interactions graph.

Another equivalent condition to the infinite flow property, that is more similar to the
condition derived in Jadbabaie et al. (2003), is existence of an infinite sequence of contiguous
and non empty time-intervals [ti, ti+1), i ≥ 0, with the property that across each such interval,
the N agents are linked together. Note that the boundedness of the time-intervals is not
required unlike the argument of Jadbabaie et al. (2003). More importantly, the condition
derived here is not only sufficient, but also necessary for ergodicity of the chain (unconditional
occurrence of consensus in the model). On the other hand, unlike Jadbabaie et al. (2003),
without extra conditions, no statement can be made about the speed of convergence to
consensus.

A.2 Models with Finite Range Interactions

The HK model Hegselmann and Krause (2002) is an example of endogenous models
with finite range interactions. These models are special cases of first order models in which
interaction rates depend directly on states. In these models, agent i receives information from
agent j if and only if the distance between the two agents is less than some pre-specified level
Ri, which is in general different for distinct agents. We define in the following, the interaction
rates between agents. For every agent i, we set a decaying function fi : R≥0 → R≥0 that
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vanishes at Ri, and define:
aij = fi(‖xi − xj‖)∑N

k=1 fi(|xi − xk|)
. (A.5)

Let us consider a particular case of models defined above. Assume that agents have the
same range of connectivity, i.e., Ri = R for every i, and use identical decaying functions, i.e.,
fi = f . In the Krause model, f(x) = 1 for 0 ≤ x < R and f(x) = 0 elsewhere.

It can be proved that in this case, the transition chain is self-confident with δ = 1/N .
It can also be shown as follows that the transition chain is subsymmetric. If at time t ≥ 0,
agents i and j do not communicate, then aij(t) = aji(t) = 0. If the two agents communicate,
then f(|xi(t)− xj(t)|) > 0. Using (A.5), we have:

aij(t)
aji(t)

=
∑N
k=1 f(|xj(t)− xk(t)|)∑N
k=1 f(|xi(t)− xk(t)|)

. (A.6)

Noting that f is non-increasing and f(|xi(t) − xi(t)|) = f(|xj(t) − xj(t)|) = f(0), we con-
clude that the RHS of (A.6) lies in interval [1/N,N ]. Hence, subsymmetry is established
by setting M = N2. The chain being both self-confident and subsymmetric, it is also cut-
balanced. Thus, according to Theorem 3.4, the chain is class-ergodic, i.e., unconditional
multiple consensus occurs.

A.3 The C-S model

The C-S (Cucker-Smale) model Cucker and Smale (2007) is an example of endogenous
consensus models with interaction rates remaining strictly positive. We apply our results to
a generalized version of the C-S model Cucker and Smale (2007) that describes evolution of
positions xi’s and velocities vi’s in a bird flock, in a three dimensional Euclidian space:

xi(t+ 1) = xi(t) + hvi(t),

vi(t+ 1) = vi(t) +∑
j 6=i f(‖xi(t)− xj(t)‖)(vj(t)− vi(t)),

(A.7)

where f : R≥0 → R≥0 is a non increasing function. Note that in this model, the limiting
behavior of velocities is of interest. We have:

aij(t) = f(‖xi(t)− xj(t)‖), ∀i 6= j, (A.8)

and:
aii(t) = 1−

∑
j 6=i

f(‖xi(t)− xj(t)‖), ∀i. (A.9)
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Clearly, the transition chain in this algorithm is symmetric. To establish self-confident, we
assume that f(x) < 1/N for any x ≥ 0. By this assumption, we have aii(t) > 1/N for every
i = 1, . . . , N and t ≥ 0. Therefore, the chain becomes self-confident. The combination of
self-confidence and cut-balancedness of the chain allows an application of Theorem 3.4 to
yield the following result.

Theorem A.1. Consider the system with dynamics described by (A.7). If f(x) < 1/N for
any x ≥ 0, then the transition chain is class-ergodic, and consequently, unconditional multiple
consensus occurs.

To state the consensus result for the generalized C-S model, we define parameters Mx

and Mv calculated from initial positions and velocities:

Mx = max
i,j
{‖xi(0)− xj(0)‖|1 ≤ i < j ≤ N}, (A.10)

Mv = max
i,j
{‖vi(0)− vj(0)‖|1 ≤ i < j ≤ N}. (A.11)

Theorem A.2. For the multi-agent system with dynamics described by Eq. (A.7), assume
that f(x) has the following property:

f(x) < 1/N, ∀x ≥ 0. (A.12)

Assume also that
Mv <

N

3h

∫ ∞
Mx

f(y)dy. (A.13)

Then, all agents’ velocities converge to a common value. Moreover, there exists a non negative
number R such that for every i, j, 1 ≤ i, j ≤ N ,

‖xi(t)− xj(t)‖ ≤ R, ∀t ≥ 0 (A.14)

Unlike the models described previously, Theorem A.2 is not an immediate result of The-
orems 3.2 and 3.4. However, to prove Theorem A.2, we employ a technique similar to that
used in the proof of Theorem 3.2 in Bolouki and Malhamé (2012b).

Proof. For every i = 1, . . . , N , let vi1(t), vi2(t), vi3(t) be components of vi(t), i.e.,

vi(t) = [vi1(t) vi2(t) vi3(t)]′. (A.15)
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It is straight forward to verify that vir’s (r = 1, 2, 3) satisfy for straightforwardly identifiable
coefficients aij, the same update equation as vi’s do, i.e.,

vir(t+ 1)− vir(t) =
∑
j 6=i

aij(t)(vjr(t)− vir(t)). (A.16)

One can rewrite (A.16) as the following:

vir(t+ 1) =
1−

∑
j 6=i

aij(t)
 vir(t) +

∑
j 6=i

aij(t)vjr(t). (A.17)

Let us define zir(t) : R≥0 → R, 1 ≤ i ≤ N , r = 1, 2, 3 from vir(t)’s as follows. At every time
t ≥ 0, zir(t) is equal to the ith least number among v1r(t), . . . , vNr(t).

Note that the coefficients in the RHS of (A.17) are all positive and add up to 1. This
means that vir(t+ 1) is a convex combination of the values v1r(t), . . . , vNr(t). Thus, for every
r, 1 ≤ r ≤ 3, interval [z1r(t), zNr(t)], which is the smallest interval containing all the values
vir(t)’s, shrinks during time. Particularly, this shows that vir(t), and consequently zir(t), are
bounded for every i = 1, . . . , N and r = 1, 2, 3. For consensus to occur, we require that
interval [z1r(t), zNr(t)] converges to a point for every r, 1 ≤ r ≤ 3. In the following, we
investigate how these intervals shrink with time. Let us define:

z(t) =
3∑
r=1

(zNr(t)− z1r(t)). (A.18)

We know that:
xi(t)− xj(t) = (xi(0)− xj(0)) + h

t−1∑
τ=0

(vi(τ)− vj(τ)). (A.19)

Thus,

‖xi(t)− xj(t)‖ ≤ ‖xi(0)− xj(0)‖+ h
t−1∑
τ=0
‖vi(τ)− vj(τ)‖. (A.20)

However,

‖vi(τ)− vj(τ)‖ ≤
3∑
r=1
|vir(τ)− vjr(τ)| ≤

3∑
r=1

(zNr(τ)− z1r(τ)) , z(τ). (A.21)

Eqs. (A.10), (A.20), and (A.21) imply:

‖xi(t)− xj(t)‖ ≤Mx + h
t−1∑
τ=0

z(τ). (A.22)
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From f being non increasing, we obtain:

f(‖xi(t)− xj(t)‖) ≥ f(Mx + h
t−1∑
τ=0

z(τ)). (A.23)

Note that the RHS of (A.23) is independent of i and j. Defining:

g(t) = Mx + h
t−1∑
τ=0

z(τ), (A.24)

(A.23) implies
aij(t) ≥ f(g(t)), ∀i, j, ∀t ≥ 0. (A.25)

Recalling (A.17), it is straightforward to verify that all the coefficients in the RHS of (A.17)
lie between f(g(t)) and 1 − (N − 1)f(g(t)). Thus, as the sum of coefficients is 1, to find
a lower bound for the value of vir(t + 1), we put higher weights on lower valued vjr’s, in
particular, 1 − (N − 1)f(g(t)) on the least one, which is z1r(t) and f(g(t)) on the rest of
them. Hence, we conclude:

vir(t+ 1) ≥
(

1− (N − 1)f(g(t))
)
z1r(t) +

N∑
j=2

f(g(t))zjr(t). (A.26)

As a result,

z1r(t)
(

1− (N − 1)f(g(t))
)
z1r(t) +

N∑
j=2

f(g(t))zjr(t). (A.27)

Using the opposite process to build an upper bound for the value of vir(t+ 1), we obtain:

zNr(t) ≤
(

1− (N − 1)f(g(t))
)
zNr(t) +

N−1∑
j=1

f(g(t))zjr(t). (A.28)

Subtracting (A.27) from (A.28) implies:

zNr(t+ 1)− z1r(t+ 1) ≤
(

1−Nf(g(t))
)(
zNr(t)− z1r(t)

)
. (A.29)

By adding up Eq. (A.29) for r = 1, 2, 3, we obtain

z(t+ 1) ≤
(

1−Nf(g(t))
)
z(t), (A.30)

or equivalently,
z(t+ 1)− z(t) ≤ −Nf(g(t))z(t). (A.31)
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We now note that hz(t) = g(t + 1) − g(t). Since f is non increasing and g(t + 1) − g(t) =
hz(t) ≥ 0, we have:

f(g(t))z(t) = f(g(t)).g(t+ 1)− g(t)
h

≥ 1
h

∫ g(t+1)

g(t)
f(y)dy. (A.32)

Eqs. (A.31) and (A.32) imply:

z(t+ 1)− z(t) ≤ −N
h

∫ g(t+1)

g(t)
f(y)dy. (A.33)

The above equation holds for every t ≥ 0. If we substitute variable t in Eq. (A.33) with t′

and sum it up for t′ = 1, . . . , t− 1. We obtain

z(t)− z(0) ≤ −N
h

∫ g(t)

g(0)
f(y)dy. (A.34)

Recalling the definition of g(t) we conclude:

z(t)− z(0) ≤ −N
h

∫ Mx+h
∑t−1

τ=0 z(τ)

Mx

f(y)dy. (A.35)

If consensus does not occur, then ∑∞τ=0 z(τ) diverges. Thus by taking t to infinity and noting
that limt→∞ z(t) exists as z(t) is non-increasing and non-negative, if consensus did not occur,
(A.35) would be modified as:

lim
t→∞

z(t)− z(0) ≤ −N
h

∫ ∞
Mx

f(y)dy. (A.36)

On the other hand, according to our assumption (A.13), we know that:

z(0) = ∑3
r=1(zNr(0)− z1r(0)) = ∑3

r=1 maxi,j{(vir(0)− vjr(0)}

≤ ∑3
r=1 maxi,j{(‖vi(0)− vj(0)‖} = 3Mv <

N
h

∫∞
Mx

f(y)dy.
(A.37)

Eqs. (A.36) and (A.37) together imply that:

lim
t→∞

z(t) < 0, (A.38)

which is a contradiction, since z(t) is non-negative. Hence, consensus must occur and more-
over, ∑∞t=1 z(t) converges. Recalling (A.22) we conclude that ‖xi(t) − xj(t)‖ is bounded for
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every i, j, i.e., there is R ≥ 0 such that:

‖xi(t)− xj(t)‖ ≤ R, ∀i, j, ∀t ≥ 0. (A.39)

Applying Theorem A.2 to the extended C-S model (A.7) with:

f(x) = K

(σ2 + x2)β , (A.40)

results in the following corollary.

Corollary A.1. Let the dynamics of a multi-agent system be described by (A.7) with f

defined by (A.40). Assume that K/σ2β < 1/N . Then, under either of the following two
conditions, agents velocities converge to a common value:

1. β ≤ 1/2,

2. β > 1/2 and
Mv <

NK

3h(2β − 1)(Mx + σ)2β−1 , (A.41)

where Mx and Mv are defined by (A.10) and (A.11) respectively.
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