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RÉSUMÉ 

L’évaluation de la qualité d’images de la rétine est une étape importante dans le diagnostic 

automatisé des maladies de l'œil.  La précision du diagnostic est dépendante de ce critère, car une 

mauvaise qualité de l'image peut empêcher l'observation de caractéristiques importantes de l'oeil 

et des manifestations pathologiques. Un algorithme robuste est donc nécessaire afin d'évaluer la 

qualité des images dans une base de données. Les méthodes existantes sont généralement basées 

sur des paramètres de qualité d'image génériques ou des critères structurels. L’évaluation de la 

qualité de l'image en fonction de paramètres génériques exploite la plupart des paramètres tels 

que les caractéristiques de contraste, netteté, éclairage, et la texture. Ces méthodes évitent 

généralement les procédures de segmentation des structures de l'oeil. Le grand avantage de ces 

méthodes est leur faible complexité de calcul par rapport à celles mises au point sur la base de 

critères structurels. En revanche, les systèmes basés sur des critères structurels exigent 

l'identification de structures anatomiques, y compris le disque optique et le réseau vasculaire de 

la macula. Ces méthodes ont tendance à manquer de robustesse lorsqu'elles traitent des images 

de mauvaise qualité. Bien que les algorithmes d'évaluation de la qualité de l'image 

précédemment développé montrent de bonnes performances, ils ont été mis en place sur 

différentes bases de données en s'appuyant sur des critères différents. Une nouvelle mesure est 

donc nécessaire. 

Nous avons développé un algorithme d'évaluation de la qualité de l'image rétinienne basée sur 

l'extraction de caractéristiques génériques sans segmentation a priori de l’image. La nouveauté 

de cet algorithme est sa simplicité et son faible coût de calcul, ainsi que sa capacité à s’adapter 

sur la région d'intérêt locale. Les caractéristiques génériques sont constituées de la netteté locale, 

le ratio de bordure, les caractéristiques de texture et l’histogramme de couleur. La probabilité 

cumulée de flou métrique de détection et l'algorithme de codage de longueur variable ont été 

utilisés pour mesurer la netteté et les caractéristiques texturales, respectivement. Les 

caractéristiques extraites sont combinés pour évaluer la convenance de l'image à des fins de 

diagnostic. Basé sur le fait que les experts médicaux se concentrent davantage sur certaines 

structures anatomiques telles que la macula et le disque optique, nous avons décidé de comparer 

les approches globales et locales. Un « support vector machine » avec un « kernel » de fonctions 
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de base radiales a été utilisé comme un classificateur non linéaire afin de classer les images pour 

les groupes utilisables et non-utilisables. La méthodologie développée a été appliquée sur 100 

images avec des tailles différentes classées par un expert médical. L'expert a évalué 50 images 

comme mesurable et 50 comme non-mesurable. Les résultats indiquent un très bon accord entre 

les prédictions de l'algorithme proposé et le jugement de l'expert médical: la sensibilité et la 

spécificité de l'approche locale sont respectivement 94% et 92% alors qu'il était de 87% et 89% 

pour l'approche globale.  
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ABSTRACT 

Retinal image quality assessment is an important step in automated eye disease diagnosis. 

Diagnosis accuracy is highly dependent on the quality of retinal images, because poor image 

quality might prevent the observation of significant eye features and disease manifestations. A 

robust algorithm is therefore required in order to evaluate the quality of images in a large database. 

Existing algorithms for estimating the retinal image quality are generally based on generic image 

quality parameters or structural criteria. Image quality assessment based on generic parameters 

mostly exploits parameters such as contrast, sharpness, illumination, and texture features. These 

methods generally avoid eye structure segmentation procedures. The great advantage of these 

methods is their low computational complexity compared to those developed based on structural 

criteria. In contrast, systems based on structural criteria require identification of anatomical 

structures including the optic disc, macula and vascular network. These methods tend to lack in 

robustness when dealing with poor quality images. Although previously developed image quality 

assessment algorithms shows good performances, they have been implemented on different 

databases and relying on different criteria and a new metric is required to be developed.   

We developed an algorithm for retinal image quality assessment based on the extraction of generic 

features without images segmentation. The novelty of this algorithm is its simplicity and low 

computational cost and also its capability to apply on local region of interest associated with 

retinal images. The generic features consisting of local sharpness, edge ratio, textural features and 

color histogram were measured. The cumulative probability of blur detection metric and the run-

length encoding algorithm were used to measure the sharpness and textural features respectively. 

The extracted features are combined to evaluate the image suitability for diagnosis purposes. 

Based on the fact that medical experts focus more on some anatomical structures such as macula 

and optic disc, we decided to compare global and local approaches. A support vector machine with 

radial basis functions was used as a nonlinear classifier in order to classify images to gradable and 

ungradable groups. The developed methodology was applied on 100 images with various sizes 

graded by a medical expert. The expert evaluated 50 images as gradable and 50 as ungradable. The 

results indicate a very good agreement between the proposed algorithm’s predictions and the 
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medical expert’s judgment: the sensitivity and specificity for the local approach are respectively 

94% and 92% while it was 87% and 89% for the global approach.  
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CHAPTER 1 INTRODUCTION 

Eye diseases affect a large number of human beings and their prevalence is expected to 

increase in the near future [1] [2]. Proper detection and treatment of eye diseases prevents visual 

loss in more than 50% of patients [3]. Retinal images have been demonstrated to be very efficient 

tools for disease diagnosis. For instance, medical experts use ophthalmology photos taken from 

the retina in order to diagnose eye and systemic diseases. Eye diseases such as Diabetic 

Retinopathy (DR) and Age-related Macular Degeneration (AMD) manifest themselves on the 

retina. They are detectable by analysis of retinal images and may be treatable if detected at an 

early stage. Retinal images are typically captured using digital fundus photography. Factors such 

as operating personnel’s level of experience, patient head or eye movement and blinking can 

significantly influence the quality of retinal fundus images. They might reduce image quality and 

therefore cause several undesirable effects such as uneven illumination, poor contrast, blurriness 

and poor visibility. Misalignment can result in the incorrect estimation of the position of 

important anatomical features such as the macula and optic disc.  

1.1 Motivation 

Photos of poor quality might lead to incorrect automatic diagnosis of a disease and the 

grading of its severity. Thus, an expert must first visually classify the images as gradable or 

ungradable. A retinal image is deemed ungradable if it is impossible to make a reliable clinical 

judgment regarding the presence or the type of disease. Figure 1.1 shows examples of one 

gradable and three ungradable retinal images. Visual analysis of large databases of retinal images 

is a time consuming task that can be spread among a large number of experts. However, this may 

lead to inter-variability between results in the quality assessment or in the diagnosis provided by 

different experts. Automatic analysis of retinal images is thus a possible solution for the shortage 

of human experts and for reproducible clinical assessment. Moreover, in order to better 

understand the cause and progress of diseases, one may need to analyze many images over a long 

period of time. Automated retinal images quality analysis can reduce the need for human 

intervention and provide better conditions for more studies, hence increasing the functionality of 

retinal disease diagnosis [4].  
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Figure 1.1: Gradable and ungradable retinal images. (a) Gradable, (b) Blur, (c) Low contrast, (d) 

Poor visibility of macula region and uneven illumination 

1.2 Objectives 

The main objective of this thesis is to propose an automatic image quality assessment 

approach to classify retinal images as gradable or ungradable. This general objective is divided 

into six specific objectives that together achieve the overall goal of the project.  

i. Develop an algorithm to identify a region of interest for further analysis. Under this

objective, the project will result in an algorithm to remove irrelevant image information in

color retinal images that consist of a circular region (foreground) on a black background.

ii. Propose an approach to measure generic features containing textural, local sharpness,

edge ratio and color histogram features. These extracted features are used for the

classification of the images as gradable or ungradable.

(a) (b) 

(c) (d) 
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iii. Propose a feature selection technique to reduce the dimensionality of the features vector

by selecting only a subset of measured features. The goal of feature selection is to

improve the effectiveness and efficiency of the classification.

iv. Construct an algorithm capable of classifying images as gradable or ungradable,

according to measurements performed in the previous stages.

v. Evaluate the sensitivity and specificity of the algorithm based on experimental (visual)

observations of eye experts.

vi. Evaluate the proposed method on a region including the main anatomical structures. Since

experts commonly consider the macula and optic disc regions as the most useful portions

of retinal images, we investigated the difference between a local and a global assessment

approaches.

1.3 Thesis outline 

This thesis is organized as follows. Chapter 2 introduces necessary medical background and 

presents information on structure of human eye, the retinal image acquisition process and retinal 

manifestations of systemic and eye diseases. Chapter 3 presents a literature survey and presents 

some recent approaches on retinal image quality assessment. Chapter 4 describes the different 

steps of the proposed methodology and provides some theoretical principles. Chapter 5 presents 

the datasets used in this study and the obtained results. These results are then discussed. The 

thesis ends with concluding remarks in Chapter 6. 
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CHAPTER 2 MEDICAL BACKGROUND AND 

RETINAL IMAGE ACQUISITION 

This chapter presents brief reviews of the eye structure, of retinal manifestations of systemic and 

eye diseases, and of retinal imaging. 

2.1 Eye Anatomy  

The eye is made up of several structures whose collaborative action makes it possible for 

us to see. Several structures that compose the human eye can easily be seen by looking into a 

mirror (see Figure 2.1): 

Figure 2.1: Front view of eye structures (waiting for permission) [5] 

Iris: The iris is the colored part of the eye; it controls the amount of light entering the eye. The 

iris’ color of each person is inherited from their parents.  

Pupil: The pupil is the hole at the center of the iris that allows light to enter the eye. 

Sclera: The sclera is the white part of the eye and it protects the outer layer of the eye. 

The internal structure of the eye is essentially made up from a number of optical components and 

neural components shown in . In order to introduce these internal eye structures, let us assess the 

action of seeing. 
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Figure 2. 2: Side view of eye structures (waiting for permission) [5] 

In general in order to see, light reflects off an object and enters the eye. The light first touches a 

thin veil of tears that coats the front of the eye and continues its way through the cornea. The 

cornea helps to focus the light. On the other side of the cornea is a watery fluid called the 

aqueous humor. It keeps a constant pressure within the eye. Then light passes through the pupil. 

The iris controls the amount of light entering the eye by shrinking or widening. The light then 

continues through the lens. Depending on the distance of the object from the eye, the lens 

changes its shape in order to change the focal distance of the eye. Then light beams through the 

center of the eye known as the vitreous humor that surrounds the retina on which the light is 

focused. The retina is a light-sensitive tissue located at the back of the eye (). There are two types 

of nerve cells in the retina: rods and cones. The retina contains approximately 6.5 million cones 

and 120 million rods. The cones cells have their highest concentration in the macula. The cones 

cells give the brain the ability to see color and fine detail of objects while the rods cells give the 

brain the ability of seeing in dark places; they are not sensitive to the color of object. These two 

types of nerve cells convert light into electrical impulses (signals). These signals are sent from 

the photoreceptors of the retina to a nerve bundle that is called the optic nerve. The signals are 

sent by the optic nerve to the visual center in the back of the brain, allowing one to see an image. 

It is important to notice that the point of departure of the optic nerve through the retina does not 

have any rods or cones, and thus is a blind spot (optic disc). Also in the retina, there are two other 

important components, namely the macula and fovea (Figure 2.3). The fovea is located in the 
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center of the macula region. This tiny area is responsible for the sharpest vision and has a very 

high concentration of cones [6]. 

Figure 2.3: Retinal image components 

2.2 Retinal Manifestations of Systemic and Eye Diseases 

Retinal manifestations of systemic and eye disease are diagnosable by analyzing retinal 

images. These diseases are characterized through lesions which appear on the retina.    

The diabetes disease can damage nerve cells and also small and large blood vessels, and 

consequently damage the heart, brain, kidneys and eyes, and results in a retinal complication of 

diabetes called diabetic retinopathy [7]. 

Diabetic Retinopathy: Diabetic retinopathy is the most common diabetic eye disease and a 

leading cause of blindness. Diabetic retinopathy can be developed in anyone who has diabetes. 

Diabetic retinopathy damages the blood vessels in the retina and can cause vision loss. Diabetic 

retinopathy is classified into two types: 

I. Non-proliferative diabetic retinopathy (NPDR) is the early stage of the disease. In 

NPDR, the blood vessels in the retina are weakened and lead to leaking fluid into the 

retina, which may then lead to swelling of the macula (Figure 2.4). 
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II. Proliferative diabetic retinopathy (PDR) is the more advanced form of the disease. In

an attempt to improve blood circulation in the retina, fragile blood vessels begin to

grow in the retina. These fragile, abnormal blood vessels leads to leaking fluid into the

back of the eye and block vision. PDR can cause severe vision loss and even

blindness.

Figure 2.4:  Effect of non-proliferative diabetic retinopathy on retina. Yellow spots are exudates 

and red dots are leaking blood (waiting for permission) [8] 

In diabetic retinopathy, at first the vision doesn’t change, but over time, diabetic retinopathy can 

get worse and cause vision loss [9]. Figure 2.5 shows the normal vision and vision of a person 

with diabetic retinopathy. 

(a)        (b) 

Figure 2.5:  Effect of diabetic retinopathy in human vision: 

(a) normal vision (b) vision of person with diabetic retinopathy (permission obtained from 

authors) [10] 
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Other manifestations of eye diseases can be detected on retinal images: 

Cardiovascular Disease: Hypertension is one of the factors in cardiovascular disease. 

Hypertension can cause the thinning of the arteries and the widening of the veins, which 

increases the risk of stroke and myocardial infarction. Cardiovascular disease manifests itself in 

the retina such as arterial and venous occlusions, cotton wool spots and choroidal infarcts visible 

as deep retinal white spots. The cotton wool spots are conspicuous lesions on the retina that 

appear as yellow-white spots.  The venous occlusion is a blockage of the small veins that carry 

blood away from the retina [7].  

Glaucoma: Glaucoma is a condition that causes damage to the eye's optic nerve by excess fluid 

pressure in the eyeball, which will cause loss of vision (Figure 2.6). Without treatment, glaucoma 

can cause total blindness within a few years. Early diagnosis from retinal image analysis may 

minimize the risk of visual loss that [7, 9].  

(a)                                                  (b) 

Figure 2.6:  Effect of Glaucoma in human vision: 

(a) normal vision (b) vision of person with glaucoma (permission obtained from authors) [10] 

The optic nerve head changes in the early stages of glaucoma. The cup to disc ratio is a criteria 

used in order to determine the risk of glaucoma. The average value for cup to disc ratio is 0.3. A 

large cup is a potential sign of glaucoma. The whitish area in the center of the optic disc is known 

as cup. Figure 2.7 shows a normal sized cup on the left and a large cup on the right damaged by 

glaucoma.  
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(a)                                      (b) 

Figure 2.7:  Effect of glaucoma on the optic disc: 

(a) normal optic disc, (b) optic disc damaged by glaucoma (waiting for permission) [11] 

 Age-Related Macular Degeneration: Age-Related Macular Degeneration (AMD) is a common 

eye condition and a leading cause of vision loss among people aged 50 and older. It causes 

damage to the macula. There are two types of AMD: dry and wet. The dry form is more common 

and affects about 90% of patients with AMD. The wet form is much less common, but it 

progresses more quickly and is more severe [9].  

 Wet AMD occurs when new abnormal blood vessels start to grow in an area, such as the

macula, where they are not supposed to be. These new blood vessels are very fragile and

often leaking fluid that can cause damage to the macula rapidly.

 Dry AMD is an early stage of the disease. It occurs when the light-sensitive cells in the

macula slowly break down. Dry AMD generally affects both eyes and patients may see a

blurred spot in the center of their vision.

Figure 2.8 shows a dry form of AMD on the left and a wet form of AMD on the right. 
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(a)                                                     (b) 

Figure 2.8:  Effect of Age-Related Macular Degeneration on macula region: 

(a) dry AMD, (b) wet AMD (waiting for permission) [12] 

AMD leads to a blurred area near the center of vision or it may develop blank spots in the central 

vision, and also objects may not appear as bright as they used to be. Figure 2.9 shows the normal 

vision and vision of person with AMD. 

(a)        (b) 

Figure 2.9:  Effect of AMD in human vision: 

(a) normal vision (b) simulated vision of person with AMD (permission obtained from authors) 

[10]  

2.3 Retinal Imaging Modalities 

There are various approaches to visualize the retina including fluorescein angiography 

(FA), optical coherence tomography (OCT) and fundus imaging. Each of these modalities has its 

own advantage and disadvantage. Ophthalmologists usually use each of these approaches in 

conjunction with another to provide sufficient diagnosis. Each of these modalities are described 

in the following. 
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The FA use camera and spatial dye to visualize the blood vessels of retina (Figure 2.10 (a)). In 

this imaging modality, a florescent dye is injected into bloodstream that fluorescein leaks from 

damaged retinal vessels. This can be useful for diagnosis of macular edema, diabetic retinopathy 

and venous occlusions. Some complications may happen when using FA such as transient 

nausea, vomiting and pruritis.  

The OCT uses reflected infrared light to take cross-section pictures of the retina with high 

resolution (Figure 2.10 (b)). With OCT, each of the retina’s distinctive layers can be seen. This 

can be useful to diagnose many conditions, including diabetic retinopathy and macular 

degeneration [7]. The OCT cannot illustrate entire extent of surface over which puckering may 

occur. 

 Fundus imaging still remains an important imaging modality. A fundus image is a color picture 

of the interior components of the eye, including the retina, optic disc and macula (as shown in 

Figure 2.3). The fundus images are used for diagnosis eye disease including diabetic retinopathy, 

glaucoma and age-related macular degeneration. Although fundus imaging is widely used, it is 

not suitable for fundus tomography. 

Figure 2.10 : retinal images taken by (a) fluorescein angiography [13], (b) optical coherence 

tomography (waiting for permission) [14]  

http://en.wikipedia.org/wiki/Retina
http://en.wikipedia.org/wiki/Optic_disc
http://en.wikipedia.org/wiki/Macula
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Fundus images are taken by a digital fundus camera (Figure 2.11). The operator focuses and 

aligns the fundus camera and the required fundus image is created. The alignment, i.e. centering 

the eye horizontally and vertically, is done by moving the camera stage and high adjustment ring, 

respectively. The pupil must be located on the central circle on the monitor. The pupil is made to 

appear perfectly round by moving the camera joystick forward and backward to a position in 

which proper alignment is achieved. Nowadays, using modern cameras, the alignment is 

accomplished automatically. Retinal imaging is painless and takes a few seconds to be 

completed.   

Figure 2.11: Fundus camera (permission obtained from authors) [10] 

Fundus cameras are commonly characterized by their angle of view. A typical camera having 30° 

angle of view provides a magnification of 2.5 , and those with wide angle of view (between 45° 

and 140°) provide magnification factors between    and 0.5 . A range of narrow angle of view 

is less than 20°, which provide relatively a higher retinal magnification. Figure 2.12 shows some 

examples of retina fundus obtained with different angles of view. Most of the digital cameras 

come with adjustable magnification. Higher magnification allows a narrow angle of view as well 

as a more detailed image, which is quite useful when there are more anatomical features in the 

shot. 
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Figure 2.12: (a) A scheme of angle of view; retinal image captured by angle of view of (b) 20°  

(c) 40° and (d) 60° (waiting for permission) [15] 

Retinal imaging can help ophthalmologist to diagnose eye diseases such as diabetic 

retinopathy and macular degeneration (as described in Section 2.2). The provided image may also 

help the physician to diagnose whether a disease is getting worse or treatment is effective. 

Furthermore, a digital photography can be enhanced, saved and retrieved very easily. It can be 

transferred electronically to a trained optical technician or retinal specialist so as to detect disease 

of a patient at a remote location.  

For the purpose of ensuring a reliable diagnosis and a valid automated processing, one 

should have sufficient image quality. In fact, photos of poor quality should not be further used for 

diagnosis. The quality of the captured images may highly vary, since the operating personnel’s 

level of experience differs from one person to another. There are number of factors that may 

cause fundus images to be classified as having low visual quality: 
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 Lashes/Blink: Patient’s eye blinking during image acquisition may cause eyelashes or an

eyelid to be imaged during image acquisition. Lashes or a partial blink may lead to

shadow or bright reflectance in the retinal image (Figure 2.13 (a)).

 Haze: Haze is a white/yellow halo that appears at the edge of a retinal image and may

extend toward the center of image (Figure 2.13(b)). Haze can be a consequence from

incorrect camera alignment.

 Dust: Dirty lens may produce blurred retinal images and may lead to white dots with

varying sizes on the retinal images (Figure 2.13 (c)).

 Uneven illumination over macula/optic disc: Retinal images are classified as

ungradable images if the macula or the optic disc region is lightly/darkly shadowed or

totally obscured. Figure 2.13 (d) shows an example of invisibility of macula region.

 Blurriness: Patient’s head or eye movement might lead to out-of focus images, iris

appearing in the image and uneven illumination. Also, movement of imaging system or

defocus aberration may cause blurred retinal images. Figure 2.13 (e) shows an example of

a blurred retinal image.

 Arc: Incorrect distances of patient and camera might cause arc shape to appear on the

image. This arc can obscure even more than half of the retinal images (Figure 2.13 (f)).
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Figure 2.13 : Examples of ungradable retinal images due to (a) patient’s eye blinking, (b) 

incorrect camera alignment, (c) dirty lens, (d) poor visibility of macula, (e) patient movement, (f) 

Incorrect distances of patient and camera 

2.4 Conclusion 

Retinal images are used for diagnose eye diseases such as diabetic retinopathy, glaucoma and 

macular degeneration. Automatic diagnosis must be robust enough to establish the disease’s 

existence and to classify it. The performance of automated methods strongly depends on the 

quality of the images. Factors such as operating personnel’s level of experience, patient head or 

eye movement and blinking can significantly influence the quality of retinal fundus images. 

Photos of poor quality might lead to incorrect diagnosis of eye disease and the grading of its 

severity. Thus, an expert must first classify the images as gradable or ungradable. A retinal image 

is deemed ungradable when it is difficult or impossible to make a reliable clinical judgment 

regarding the presence and type of disease it contains. Major factors that reduce image quality 

include uneven illumination, poor contrast, blurriness and poor visibility of important 

components such as the macula and optic disc. Challenge of this project is to detect these factors 

indicating an image of poor quality.  
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CHAPTER 3 LITERATURE REVIEW 

This chapter presents the body of knowledge necessary to build a state-of-the-art for 

retinal image quality assessment, aimed at assisting automated retinal image classification. 

Firstly, section 3.1 broadly describes image quality assessment techniques and their types. 

Section 3.2 is devoted to the state-of-art for retinal image quality assessment. 

After reading this chapter, the reader should have a good idea of the state-of-the art in retinal 

image quality assessment, how they are built as well as the challenges to overcome in order to 

provide useful approaches for retinal image quality assessment. 

3.1 Image quality assessment 

Images can be distorted during preliminary acquisition process, compression, restoration and 

displaying. Image Quality Assessment (IQA) plays a significant role in several image 

applications. IQA in medical fields can be used in term of how well desired information can be 

extracted from the image. Images with acceptable quality are those that can display the image 

contents sufficiently. Hence, IQA is an important step before image analysis. 

For several years, IQA has been performed based on subjective evaluation. In fact, The quality of 

fundus images is normally evaluated by human experts. That process is therefore very expensive, 

tedious and slow. While objective IQA evaluation compute the quality of image automatically. 

The goal of objective method is to evaluate the quality of an image as closely as to the human 

judgment. Objective IQA methods can be classified into three categories: Full-Reference IQA 

(FR-IQA), Reduced-Reference IQA (RR-IQA) and No-Reference IQA (NR-IQA). 

3.1.1 Full-reference IQA: 

The FR-IQA method evaluates the quality of an image by comparing with a reference image, 

which is assumed to be high quality. The simplest FR-IQA is the Mean Squared Error (MSE). 

The MSE is the averaged squared difference between the intensity of a reference image and a 

distorted image. It is computed pixel by pixel, by adding up the squared differences of all pixels 

intensity and dividing by the total pixel count. 
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For images A = {      } and B = {     }, with    and    as pixels intensities: 

          
          

 

 

   

(3. 1) 

where N is the number of pixels. 

Peak Signal-to-Noise Ratio (PSNR) is a popular FR-IQA. PSNR is the ratio between the 

reference signal and the distorted signal in an image, given in decibels. The higher the PSNR, the 

closer the distorted image is to the reference. For a reference image A = {     } and a 

distorted image B = {     }, PSNR is calculated by:  

                   
    

        
  (3. 2) 

where MAX is the maximum possible intensity pixel value. 

The other method is the Structural SIMilarity (SSIM) index proposed by Wang et al. [16] which 

combines the luminance, contrast and structure in order to measure image quality. The SSIM 

between two images x and y of size N×N is calculated by the following equation: 

                               (3. 3) 

where luminance comparison function       , contrast comparison function        and 

structural comparison function        are defined by: 
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and          
 

   
                 

   is covariance matrix between image x and image y and 

   ,    and    are small constants. 

Although the SSIM index is a very useful index in many experiments in some cases the measured 

quality does not match properly with the subjective assessment method. Wang et al.[17] 

introduced a Multi-Scale SSIM (MS-SSIM) approach in order to improve the SSIM method. In 

the MS-SSIM method low pass filtering and downsampling is applied iteratively and the original 

image is indexed as scale 1 and the finest scale M is obtained after M − 1 iterations. At each scale 

j, the given image contrast and structure is compared using   (x, y) and   (x, y) respectively. The 

luminance comparison is performed only at scale M and is represented as   (x, y). The overall 

quality is evaluated by combining the measurements over scales. However, determining an 

appropriate reference for retinal images is quite difficult, since natural large variety of retinal 

images may be obtained from image acquisition.  

3.1.2 Reduced-Reference IQA (RR-IQA): 

In the RR-IQA methods the reference image is not completely available. Instead, certain features 

are extracted from the reference image and these features are employed to help evaluate the 

quality of the test image. Several methods have been proposed for RR-IQA: Wang et al. [18] 

proposed RR-IQA in which they used the wavelet transform domain based on natural image 

statistic model. They used the Kullback Leibler Distance (KLD) between the probability 

distributions of wavelet coefficients of the distorted and reference images as a measure of image 

quality. A Generalized Gaussian Distribution (GGD) model is employed to summarize the 

marginal distribution of wavelet coefficients of the reference image, so that only a relatively 

small number of features are needed for quality assessment. Soundarajan et al. [19] proposed a 

method for quality assessment based on Reduced-Reference Entropic Differences (RRED). This 

method measures differences between the entropies of wavelet coefficients of reference and 

distorted images for image quality evaluation. One of the remarkable features of the RRED 

indexes is that this method does not depend on any parameters to be trained on databases. 

However, similar to the FR-IQA acquiring an appropriate reference for retinal images is not 

simple. In addition, using features to develop a final quality score is much more difficult than FR-

IQA.   
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3.1.3 No-reference IQA (NR- IQA):   

NR-IQA or blind IQA is much more difficult to implement, because quality assessment should be 

performed without using any reference. Most of NR- IQA relies on learning procedures to 

estimate image quality from training samples, for which human subjective quality scores are 

available. These methods contain two step frameworks: first step is extraction of features most of 

which are Natural Scene Statistics (NSS) and second step is model regression in machine 

learning such as logistical regression, probabilistic model, Support Vector Regression (SVR) and 

Neural Network (NN).  

Moorthy et al. [20] proposed blind image quality index (BIQI), in which, the generalized 

Gaussian distribution is used to describe the distorted image. The distorted images are then 

classified into five different distortion categories (noise, blur, JPEG, JPEG2000 and fast fading) 

using Support Vector Machine (SVM). The final image quality is then calculated by SVR for 

each distortion category. Saad M.A. et al. [21] introduced BLIINDS BLind Image Integrity 

Notator using Discrete cosine transformation Statistics index which is a NR-IQA method. 

BLIINDS extract four image statistic features from the discrete cosine transformation (DCT) 

coefficient. Image is first divided into blocks and generalized Gaussian distribution is fitted to 

each block of DCT coefficients. Model parameters retrieved from each block are pooled across 

space to retrieve features representative of visual quality. Probabilistic model based on 

multivariate generalized Gaussian density is then applied for mapping computed features to 

image quality. Even though NR-IQA is potentially a useful approach (since there is no need for 

refrences), creating an algorithm for predicting visual quality, particularly without any 

information about original image, is difficult.  

3.2 Retinal Image Quality Assessment 

Existing algorithms for estimating retinal image quality are usually NR-IQA developed relying 

on image histogram analysis [22, 23], generic image quality parameters [24, 25], structural 

criteria [26-28] or both generic and structural image quality criteria [29, 30]. Image quality 

assessment based on generic features mostly exploits contrast, sharpness, illumination and texture 

features. These methods generally avoid eye structure segmentation procedures. The great 

advantage of these methods is their low computational complexity compared to those developed 
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based on structural criteria. Systems based on structural criteria require the identification of 

anatomical structures including the optic disc, macula and vascular network. These methods tend 

to lack in robustness when dealing with poor quality images. 

3.2.1 Retinal IQA with Histogram based Methods 

In 1999, the first approach was presented by Lee et al. [22]. They proposed a method based on 

measure of similarity between a template histogram and histogram of a given retinal image. They 

selected a set of 20 images (from a set of 360 images) with perfect quality (as desired images) 

and obtained their average intensity histogram, which were referred to as template intensity 

histogram. The quality index Q was then obtained by convolving the template histogram with the 

intensity histogram of a given image. The index Q is between 0 and 1, such that Q=0 means the 

image is ungradable and Q=1 means the image is gradable. However, the paper not include any 

result. In 2001, Lalonde et al. [23] demonstrated that measuring similarity of images histograms 

is not sufficient for quality assessment of retinal images. In fact, they found some ungradable and 

gradable retinal images with similar histograms shapes. Hence, they presented a different 

histogram based method that was based on two criteria: 

1. Distribution of the edge magnitudes in the image (dedge).

2. Local distribution of pixel intensity (dintensity).

With regard to the first criterion, they found that distributions of edge magnitude of gradable 

retinal images have shapes that are similar to a Rayleigh distribution with smooth fall as the 

intensity increases. In contrast, distribution of edge magnitude of ungradable retinal images has 

shapes that are similar to a Rayleigh distribution but fall rapidly as the intensity increases, as 

Figure 3.1 shows. They used this criterion in order to measure the focus of image, since a sharper 

image has higher edges magnitudes. The second criterion, inspired from histogram of Lee et al. 

[22], considers a region based approach instead of global approach. They segment the global 

histogram into uniform region by standard histogram splitting algorithm from Ohlander et al. 

[31].  
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Figure 3.1: Examples of gradable (left) and ungradable (right) retinal images with the 

corresponding edge distributions (waiting for permission) [23]  

This criterion is used in order to measure the illumination of images since gradable images 

should not have many dark and light pixels. By considering these two criteria, Lalonde et al. [23] 

tried to find the best decision border to classify images into three different categories: “Good”, 

“Fair” and “Bad”.  Their results for 40 retinal images are shown in Figure 3.2. As shown in 

Figure 3.2, both criteria are able to discriminate good and bad retinal images. However, this 

method was implemented on only 40 retinal images that are not enough for evaluating the 

efficiency of the method.  



22 

Figure 3.2: Scatter plot showing the separability of the three classes “Good”, “Fair” and “Bad” 

retinal images (waiting for permission) [23] 

3.2.2 Retinal IQA based on Generic Image Quality Parameters 

In 2009, Bartling et al. [24] developed a quality assessment method based on two generic image 

quality parameters: sharpness and illumination. Firstly, the images were converted to 8-bit gray 

scale and resized to a common resolution of 1024 pixels in width. Afterwards, the images were 

divided into smaller squares with       pixels, each square assessed separately.  

The sharpness degree was measured on only sub-image squares having sufficient structural 

content. Evaluation of structural content was initiated by applying a Laplacian operator and the 

standard deviation of the pixel values was then calculated. The resulting value is an estimation of 

degree of structure content in each sub-image square. Sub-image squares with sufficient 

structural content were chosen based on an empirically determined threshold. These sub-image 

squares were then analysed in term of the spatial frequencies, since high spatial frequencies 

correspond to sharp image. Hence, Bartling et al. [24] used two dimensional discrete wavelet 
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transform (DWT2) using eight element Daubechies wavelet function. Finally, the mean value of 

all sub-image sharpness values was considered as the final value of the sharpness of the retinal 

image. Bartling et al. measured the image illumination through measuring image contrast and 

image brightness. These two parameters were measured individually in each sub-image square. 

They generated two weighting functions so as to measure image contrast and image brightness. 

Hence, contrast was calculated by using standard deviation of the pixel intensity with respect to 

its relevant weighting function. The image brightness was measured by using mean intensity 

value of each sub-image square with respect to its relevant weighting function. The final value of 

sub-image illumination was measured by simple addition of both measures. Sub-image squares 

classified by two groups (acceptable and not acceptable) based on their value of illumination. 

This classification was performed by an empirically determined threshold. Finally, the 

illumination of the whole image was determined by dividing the total number of acceptable sub-

image squares by total number of sub-image squares. This value is between 0 and 1. 

Score for retinal image quality was defined by the combined quality parameters (sharpness value 

multiplied by illumination value). Images based on their score were classified in four groups (not 

acceptable, acceptable, good and very good). This retinal quality measurement method was 

applied on 1000 retinal images and also, six independent observers classified these images into 

the corresponding quality groups. Hence, by comparing automatic and human quality scores, the 

Kappa values [32] were calculated. The median Kappa value was 0.64. The result showed that 

their method was not efficient enough such that the obtained results were not in agreement with 

medical expert judgment. 

In 2009, Davis et al. [25] developed a retinal image quality assessment procedure based on 

seventy computationally simple features. They divided a retinal image into seven regions as 

shown in Figure 3.3. They converted the image from RGB color space to CIELab [33] image 

space. Hence, features were calculated in each color channel of CIELab space and extracted from 

each region. All features used by Davis et al. are listed in Table 3.1. These features were 

calculated in order to evaluate the color, luminance and contrast of the retinal image. They used 

first Quartile and third Quartile in order to evaluate the color image.  They also applied mean 

intensity, skewness and kurtosis features in order to assess image luminance. The mean intensity 

feature was used for characterizing dark and light image. The skewness feature is a measure of 

asymmetry of the intensity histogram and kurtosis is a measure of whether the histogram of pixel 
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intensities is peaked or flat. Moreover, they evaluated image contrast by using variance of the 

intensity, generic contrast and entropy features from Haralick features and spatial frequency. 

Figure 3.3: The regions where the features are calculated (waiting for permission) [25] 

 Table 3.1:List of features used by David et al. 

Mean intensity Skewness Entropy Spatial frequency 1
st
 Quartile

Median Variance Kurtosis 8 Haralick features 3
rd

 Quartile

They used variance of the intensity because of the fact that low variance tends to reflect low 

contrast, and the reason of using entropy is the fact that high contrast images have the largest 

entropy value. Partial Least Squares (PLS) was used for quality assessment, in which 398 images 

from the University of Iowa database [34] including 200 good quality images and 198 bad quality 

images were used in order to assess the procedure performance. They achieved 100% sensitivity 

and 96% specificity for identifying ungradable images. Satisfactory results can be obtained even 

though this method uses simple features. The only drawback of this method, however, is that it 

uses so many features (357 features) and does not use a feature selection algorithm. 
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3.2.3 Retinal IQA based on Structural Criteria 

In 2003, Usher et al. [26] developed a first retinal image quality assessment method based on eye 

structures. They developed unique features for retinal image quality assessment. They noticed 

that higher visibility of retinal vessel implies higher retinal image quality. In fact, in a blurred 

image, the small vessels are not visible and also if the illumination of a retinal image is uneven, 

parts of the vascular network are not visible. Hence, they used a vessel segmentation algorithm 

within the macula region and measured the area of detected vessels. They classified images into 

two groups of good and bad quality by using a threshold value while this threshold value was 

empirically obtained. The algorithm was tested on a dataset of 1746 retinal images and it 

achieved 84.3% sensitivity and 95.0% specificity. The major problem of this method occurs 

when dealing with the distorted retinal images having some undetectable vessels outside one 

optic disc diameter (1DD) around the macula, while the vessels within this region are clear and 

sharp [35].  

In 2006, Niemeijer et al. [27] developed a method based on image structure clustering (ISC). The 

proposed method aimed at obtaining a set of clusters using filterbanks to describe the local image 

structures. The features used in the final system consist of 5 bins of normalized histogram of 

image structure clusters in R, G and B color space. In fact, 20 features were extracted from each 

retinal image and features selection was employed in order to reduce the feature set. The 

Sequential Forward Floating System (SFFS) [36] algorithm was used for feature selection. 1000 

retinal images including 500 images with normal quality and 500 images with low quality were 

used for the training step. They tested 1000 retinal images with different classifier methods such 

as SVM, Quadratic Discriminate Classifier (QDC)[37], k-Nearest Neighbor Classifier 

(kNNC)[37] and Linear Discriminate Classifier (LDC)[37]. The best result was obtained from 

SVM classifier without using feature selection algorithm. They achieved an area under the 

Receiver Operating Characteristic (ROC) of 0.9968 which is close to optimal. The result shows 

that this method can verify retinal image quality well but the authors reported a running time for 

an each image of approximately 30 seconds, therefore the software had not been optimized.  

In 2006, Fleming et al. [28] developed a retinal image quality assessment method based on two 

aspects: image clarity and field definition. They calculated the total length of vessels as a 

measure to describe the clarity of retinal image. Therefore, they applied a vessels segmentation 
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algorithm within a region centered on the fovea instead of the whole image. The second aspect 

discussed was field definition. An image was defined as having adequate field definition if it 

respects all of the constraints listed in Table 3.2: 

Table 3.2: Field definition metric and constraints required for adequate field definition 

Field Definition Metric Constraint 

         , the distance between optic disc and the edge of the 

circular image 
                 

            , the distance between fovea and the edge of the 

circular image. 
                    

          , the angle of the line joining the center of the optic 

disc to the fovea 
                      

          the length of the vessel arcades                

They used disc diameter (DD) as a dimensional unit (246 pixels). Hence, for the purpose of 

implementing field definition aspect, retinal components segmentations are necessary. The 

Hough transform was applied to detect arcade vessel by employing semielliptical template. And 

also the Hough transform was applied to detect the optic disc with a circular template. The fovea 

was detected by identifying maximum cross-correlation between the image and predefined fovea 

template.   

They employed 1039 retinal images which were graded by a medical expert for image clarity and 

field definition. They reported a sensitivity of 100% and specificity of 90.9% for the detection of 

inadequate image clarity, a sensitivity of 95.3% and specificity of 96.4% for the detection of 

inadequate field definition and a sensitivity of 99.1% and specificity of 89.4% for the detection of 

inadequate overall quality. According to the obtained results this method enables to classify 

retinal images in two groups:  good and bad quality.  In 2008, Giancardo et al. [38] presented a 

method inspired from the method of Niemeijer et al. [27]. They only focused on eye vessels as 

shown in Figure 3.4. 
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Figure 3.4: Feature vector composition reported by Giancardo et al.[38], (a) Original Image, (b) 

Mask detected and fitted ellipse (dashed line), (c) Vessel Segmentation, (d) Local window in 

polar coordinates and (e) Color histogram (waiting for permission) [38] 

The mathematical morphology method presented by Zana and Klein [39] was used in order to 

detect the visible eye vessels. Afterward, as shown in Figure 3.4 (d), the retinal image was 

divided into eighteen polar windows. The vessel density of each window was computed by 

Equation  and was stored in the feature vector.  

               
           

           

(3. 7) 

Moreover, 5 bins normalized histogram in RGB color spaces were stored in the feature vector. 

The obtained feature vector was considered as the input of a classifier algorithm. Four different 

classifier methods were compared: Support Vector Machines (SVM) and K-Nearest Neighbour 

(KNN). The employed dataset consisted of 84 macula centered fundus images from which 24 

images (12 “Good” and 12 “Poor”) were extracted and used for training phase. These images 
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were classified by medical expert in 4 classes: “Good”, “Fair”, “Poor” and “Outliers” in order to 

evaluate performance of the method. Table 3.3 shows the accuracy obtained for each classifier. 

Table 3.3: Performance comparison between Giancardo et al.’s method and 

Niemeijer et al approach 

Actual Class 

Classifier Good Fair Poor Outlier 

SVM (Linear) 100% 83% 0% 11% 

SVM (Radial) 100% 91% 0% 11% 

KNN (k=1) 100% 66% 0% 11% 

KNN (k=8) 100% 83% 0% 66% 

ISC, SVM (Radial) Niemeijer et al. 83% 41% 0% 0% 

These results show that Giancardo et al.’s method is suitable for good quality images. However, 

it cannot be used as a reliable strategy for outlier and poor quality images, since the method is 

based on vessel segmentation being prone to error when dealing with these kinds of images. The 

time consumed for quality assessment of each retinal image was around 4 seconds on a 2.4 GHz 

machine (with 2 GB of memory).  

In 2011, Hunter et al. [40] proposed a retinal image quality assessment method based on 

measuring contrast and quantity of visible blood vessels. The contrast between the fovea region 

and retina background was calculated. The amount of contrast (   was considered as the first 

indicator of retinal image quality assessment. Hence, the contrast  calculated between the average 

intensity of region with ten pixels radius (    ) and a doughnut-shaped region with an inner 

and an outer radii        and      . The visibility of small blood vessels within one Disc 

Diameter (1DD) of the fovea was considered as a second indicator of quality assessment. Hence, 

the fovea was first located by the algorithm presented by Lowell et al. [41]. The retinal vessels 

were then segmented by using previously proposed algorithm of Hunter et al.[42]. Therefore, a 

vascular metric was defined by: 
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(3.8) 

where        , S is the number of vascular segment,    is the number of pixels in the segment, 

   is the local contrast with local background retina and   is the average distance of pixels from 

the macula center. 

The overall image quality was measured by: 

     (3.9) 

These images were first classified in five groups by medical experts. Table 3. 4 shows the range 

of   for five quality categories. The thresholds were empirically determined to minimize the 

category error using a reference set of 100 images categorized by medical expert. Hunter et al. 

used 200 retinal images with 760×570 pixels in order to evaluate the developed method. They 

achieved 100% sensitivity and 93% specificity. 

This method focused only on the macula region, and not on the other eye components such as 

clarity of optic disc. Information about computation time for this methodology was not reported. 

3.2.4 Retinal IQA based on Generic and Structural Criteria 

In 2010, Paulus et al. [29] introduced a new approach, for evaluating retinal image quality based 

on both generic and structural criteria. They focused on structural information of relevant 

Table 3. 4: Range of   for five quality categories [40] 

Category Minimum Maximum 

1 331 - 

2 101 330 

3 36 100 

4 6 35 

5 0 5 
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component but without using segmentation method. They applied k-mean clustering on the pixels 

intensity in order to incorporate structural criteria. They chose k=5 for clustering approach 

empirically. Afterwards, two types of features i.e. cluster size and inter cluster differences were 

calculated in order to measure the recognazibility and differentiability of important components. 

Moreover, a sharpness metric was used to calculate the number of sharp edges and average 

strength of edges in order to evaluate edges’ strength and detect how clearly the components are 

separated from each order. The sharpness metric was defined as bellow:   

   
            

   
(3.10) 

   
     

 
   

 
   

            
       

                     

                   
   (3.11) 

where    is the number of sharp edges,    is the average strength of edges,     is the gradient 

magnitude image that are normalized into range [0;1] and n and m are the input image sizes. 

To incorporate generic image quality, three Haralick features [43] were used. They used energy 

feature in order to describe image homogeneity, entropy feature as a description of common 

image sharpness and contrast feature. Five measured size of cluster, ten inter cluster differences, 

two sharpness metrics and three Haralick features were combined in one feature vector. 

Afterward, SVM with radial basis function was used as a classifier approach. The leave-one-out 

strategy was used to evaluate the functionality of the method. The data set used for evaluation 

step contained 301 retinal images (65 images with bad quality and 236 images with good 

quality). They tested different combination of features. The best performance was achieved when 

using the combination of clustering and sharpness metric and Haralick features as shown in Table 

3. 5. This method is based on combination of generic and structural features and exploits the best 

set of generic features such as sharpness and textural features. Although this method analyzes the 

structural components, it does not use any segmentation algorithm. In 2012, Yu et al. [30] 

proposed an algorithm based on local and global features including two main steps. The first one 

was features extraction, in which the global histogram features, textural features and vessel 

density as well as local sharpness metric were extracted from retinal images. The vessel densities 

were measured in order to evaluate the sharpness of dark vessels because the vessel segmentation 
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methods are sensitive to blurry vessels. The retinal vessels were segmented using previously 

proposed algorithm of Yu et al. [44]. 

Table 3. 5: Performance of Paulus et al. method using different features [29] 

Features Sensitivity Specificity 

Haralick 90.7% 89.7% 

Sharpness 46.2% 79.4% 

Clustering 89.2% 86.3% 

Clustering+ sharpness 87.7% 86.4% 

Haralick+ sharpness 95.4% 91.0% 

Haralick+ clustering 93.9% 90.4% 

Haralick+ clustering+ sharpness 96.9% 91.7% 

The vessel segmentation method was applied after adaptive histogram equalization and 

illumination correction to remove uneven illumination and enhance the contrast in retinal images. 

The ratio of the area of segmented vessel over the area of retinal images was calculated as the 

vessel density feature. Histogram features were extracted from RGB color spaces in order to 

describe brightness, contrast and lightness homogeneity of the image. Histogram features were 

variance, mean, skewness, kurtosis and the first three CDF quartiles. Five Haralick features 

consisting in entropy, contrast, correlation, energy and homogeneity were used in order to 

incorporate textural features. A local sharpness was measured by Cumulative Probability of Blur 

Detection (CPBD) proposed by Narvekar et al.[45]. The second step was image classification 

based on the extracted features. A Partial Least Square (PLS) classifier was used in order to 

classify images in two groups: good and bad quality. A data set consisting of 1884 retinal images 

(4752  3168) was used for evaluation step. For system validation leave-one-out cross-validation 

method was applied. Different feature sets and combination of all features were tested as reported 

in Table 3. 6. The best classification performance was achieved by a combination of all features 

(95.8% of AUC). The blurriness feature led to better performance than other feature sets. This 

method integrated global texture features, histogram features and vessel density with a local 
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sharpness metric. The main disadvantage of this method is that no feature reduction was applied 

which may lead to overfitting. The vessel segmentation algorithm was applied in order to 

measure vessel density, which tends to lack in robustness when dealing with poor image quality. 

Table 3. 6: Results of the classifier using different features for total 1884 images 

Feature sets Area under curve (AUC) 

Histogram 82.2% 

Haralick 72.3% 

Blurriness (including vessel density and 

CPBD metrics) 
92.6% 

All features 95.8% 

3.3 Conclusion 

Although all reported approaches in the literature indicate great performance scores, it is not 

simple to compare the obtained results of one approach to those of another. This is due to the fact 

that, each method may employ different database or different quality metrics for estimating their 

performance. In addition, it has been reported that two specialists might have different opinion 

regarding the quality of an image. There is no globally admitted retinal images quality 

assessment approach so far in the literature. Furthermore, some approach exploits either 

segmentation of retinal structure for quality assessment. However, since the segmentation-based 

approaches are error-prone, this methodology may increase the probability of error. A retinal 

image quality assessment approach based on generic image quality features is developed in this 

thesis.  
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CHAPTER 4 METHODOLOGY 

The proposed retinal image quality evaluation method includes five processing steps. The first 

step is related to retinal image preprocessing. The second and third steps consist of extracting the 

generic features and selecting the most relevant features, respectively. In the fourth step, the 

selected features are fed to a Support Vector Machine (SVM) for classification. In the fifth step a 

performance evaluation study is carried out to compare local and global quality assessment 

results of the proposed method.  

4.1 Preprocessing 

Before analysing quality of retinal images, preprocessing operations are performed for a given 

image. Figure 4.1 shows the typical operations associated to preprocessing.  

Figure 4.1: Preprocessing steps 

The retinal images, consisting of different sizes and taken from different cameras, are used as 

input data of the preprocessing step. Image masking is used in order to label corresponding pixels 

of both retinal and background area throughout the image. The resulting mask is then exploited 

for image cropping, that is removing irrelevant image information such as useless borders. The 

image masking and cropping stages are detailed in the following section.  
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4.1.1 Image masking 

A retinal image consists of a colored circular region (foreground) on a black background. It is 

important to distinguish background from foreground, as this preprocessing stage enables 

eventually to obtain more reliable results from the image quality assessment algorithm. Different 

algorithms have been previously developed for image masking, which are based on simple 

thresholding [46-48] or region growing [38]. 

The image masking algorithm developed in this study includes the following steps: 

 Extract from a given RGB image color the red channel, as the red channel provides higher

contrast between background and foreground.

 Reduce the noise by applying a median filter with mask size    . The mask size was 

determined empirically.

 Convert the gray scale smooth image into a binary image based on an empirically

determined threshold (    ).

 Apply morphological open operation on the binary image. Binary image may includ some

noise at background and around the boundary of the retina. Hence, the morphological

open processing is performed to removes any noises such that noise-free (sharp) edges are

obtained. The kernel size for this morphological open operation is      pixels that was

obtained empirically.

This results in an image for which the foreground and background pixels are specified by white 

and black colors, respectively, as shown in Figure 4.2 (b).  

(a)                                                            (b) 

Figure 4.2: (a) Orginal color retinal image and (b) masked retinal image 
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4.1.2 Image cropping 

Cropping the retinal image reduces image size, as illustrated in Figure 4.3 (b) and therefore leads 

to a reduction in computation cost. Image mask created in the previous stage is used as input for 

the cropping process. The relative mask of each image is used in order to find the minimum 

bounding box around the retina. The algorithm starts searching from the left side of image mask, 

row by row, to find nonzero pixels which correspond to the border of retinal region. This process 

is repeated from the right side, to find the right border. Figure 4.3 (b) shows a typical cropped 

retinal image. 

(a)                                                      (b) 

Figure 4.3: (a) original retinal image and (b) cropped retinal image 

4.2 Generic features extraction 

In this step, generic features consisting of local sharpness, edge ratio, textural features and color 

histogram were measured. The cumulative probability of blur detection metric was used to 

measure the sharpness feature. The edge ratio feature was used to detect uneven illumination in 

the images. To incorporate texture analysis the run length [49] and co-occurrence [43] matrices 

were computed to determine the most efficient method for retinal texture analysis. The color 

information was used in order to detect overexposed or underexposed images.  
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4.2.1 Sharpness feature 

Sharpness is an important factor for retinal image quality assessment. Retinal images might be 

blurred during acquisition by multiple reasons and the most common are:  

 Motion: blurriness of an image due to movement of the eye, patient or imaging system.

 Lens: dirty lens setting would produce blurred retinal images.

 Defocus aberration: blurriness of a retinal image due to incorrect focus.

Figure 4.4 shows one example of sharp retinal image and three example of blurred retinal image. 

Figure 4.4: Sharp retinal image. (b) Blurred retinal image due to incorrect lens focus. (c) Blurred 

retinal image due to motion blur. (d) Blurred retinal image due to dirty lens 
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In this work, we evaluate sharpness with the Cumulative Probability of Blur Detection (CPBD)

[45]. Blur estimation begins by applying edge detection. Marziliano et al. [50], tested the Sobel 

operator by including vertical and horizontal edges. They concluded that vertical edges did not 

provide any significant improvement in the results. Afterwards, the images are divided into 8×8 

blocks. Depending on the edge information in each block, they are classified as edge or non-edge 

blocks. The blocks containing a number of edge points larger than 10% of the total number of 

pixels in the block are considered as edge blocks. Non edge blocks are not processed further. The 

rows of each edge block are scanned in order to calculate edge width       for each edge 

pixel     . For pixels corresponding to an edge location, the start and the end positions of the un-

threshold edge are defined as the locations of the local extrema close to the edge. As shown in 

Figure 4.5, the width of the edge is given by the distance between the end and the start positions. 

Figure 4.5: One row of the blurred image 

An example of a row in an image is illustrated in Figure 4.5 for the edge location   , the width 

is the difference between local maxima and minima around the edge (     ).  
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The Just Noticeable Blur (JNB) edge width is obtained depending on the local contrast of the 

block using the following equation: 

          
          
          

 (4.1)  

where C is the contrast, defined as the magnitude of the difference between the maximum and 

minimum intensities around the edge. The value of this parameter was obtained empirically [45] 

and tested for different medical images[30, 51].The probability of blur detection       at each 

edge pixel is expressed as follows:  

                     
     

        
 

 

  (4.2) 

where the value of       was obtained experimentally [45],          is the JNB edge width 

and       is the measured width of the edge     If the actual width of the edge is the same as the 

JNB edge width, then                  According to Narvekar and Karam [45], for images 

including blurred images with uniform and non-uniform saliency content and JPEG2000 

compressed images, blur is not detected over an edge if        63%. A normalized histogram 

of blur detection probability is obtained, which gives the probability density function of      . 

Finally, the Cumulative Probability of Blur Detection (CPBD) is calculated by the following 

equation: 

                   

          

          

       

 

(4.3) 

where          denotes the value of the probability distribution function for a given       [45]. 

4.2.2 Edge ratio feature 

The edge ratio is used as another feature, since some hazy or foggy retinal images (Figure 4.6 (b)) 

may appear as ungradable images while the relevant edges are sharp. Figure 4.6 compares two 

sharp images that are classified as gradable (a) and ungradable (b) images. For this reason, the 

edge ratio feature is used to detect uneven illuminations. Figure 4.6 (d) and (c) also show the 
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corresponding edge maps. As it is shown in the figure ungradable image (d) includes much lower 

edges when compared with the gradable image (c). 

The edge ratio began with Canny edge detection method. The Canny edge detector is an edge 

detection operator that uses a multi-stage algorithm to detect a wide range of edges in images 

[52]. The images are then divided into 8× 8 blocks. The edge ratio is the ratio of number of 

blocks having edge pixels more than a certain threshold to the overall number of blocks 

(Equation (4.4)).  

           
                      

                        
(4.4) 

where, edge blocks are blocks with edge pixels larger than 10% of the total number of pixels in 

the block. The range of edge ratio is between 0 and 1 such that 1 represents the best quality result 

and 0 shows the bad quality.   

Figure 4.6: Gradable (a) and ungragable (b) images and corresponding edge maps (c and d) 
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4.2.3 Texture analysis 

The required information in a retinal image can be extracted from its texture content. 

Consequently, the potential of using computerized image texture analysis for retinal image 

quality assessment was investigated. Selecting an appropriate feature extraction technique is a 

challenging aspect which can affect the quality assessment. Therefore, the two methods of feature 

extraction i.e. run-length matrix (RLM) [49] and co-occurrence matrix [43] were implemented 

and compared. Both methods are explained in details in Appendix 1.  

The run-length matrix   is defined as follows. Each element          represents the number of 

runs with pixels of gray level intensity   and length   along the directions   {0°, 45°, 90°, 

135°}. 

Figure 4.7: Run length matrix calculation of small neighborhood image for four different 

directions 
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Figure 4.7 shows an example of a run length matrix calculation. Figure 4.7 (a) contains a small 

image with 6 × 6 pixels and Figure 4.7 (b) shows the corresponding run length matrixes for four 

directions. For instance              means there are 4 pixels with same intensity value of 3 

with a run length of 2 for direction 90°.  

In this study, the final feature was then obtained by computing the mean value of all directions. 

The size of the matrix   was m by n, where m was the maximum gray level intensity in the retinal 

image and n was equal to the possible maximum run length. Table 4.1 lists eleven considered 

RLM features. 

  Table 4.1: Run length features 

Short run emphasis (SRE) 
Long run low gray level 

emphasis (LRLGE) 

Short run low gray level 

emphasis (SRGE) 

Long run emphasis (LRE) 
Long run high gray level 

emphasis (LRHGE) 

Short run high gray level 

emphasis (SRHGE) 

High gray-level run emphasis 

(HGRE) 

Run-length non-

uniformity (RLN) 
Run percentage (RP) 

Low gray-level run emphasis 

(LGRE) 

Grey level non-

uniformity (GLN) 

Features derived from a co-occurrence matrix        are effective for describing textural 

properties [43, 53]. Haralick [43] proposed a number of useful texture features that can be 

computed from the co-occurrence matrix. Table 4.2 lists 13 considered Haralick features. They 

were calculated with distance     (as described in Appendix 1) and averaged for four 

directions {0°, 45°, 90°, 135°}.   is an   by   matrix, where   is the maximum gray level 

intensity in the retinal image. Figure 4.8 shows an example for constructing a co-occurrence 

matrix for a small region of retinal image (    pixels) with four grey levels, computed using 

d=1 and    . 
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Table 4.2: Haralick features 

Energy Sum average 
Difference 

variance 
Inverse difference moment 

Contrast Sum variance 
Difference 

entropy 

Information measure of 

correlation I 

Correlation Sum entropy  
Information measure of 

correlation II 

Sum of squares : 

variance 
Entropy   

 

Figure 4.8 (a) contains a small region within the image (indicated by red contour) and the value 

of gray level intensity value associated with each cell. Figure 4.8 (b) contains the co-occurrence 

matrix calculated from the center pixel of the matrix (marked by a red letter) in (a). i and j in 

matrix (b) correspond to the intensity values. Each cell of co-occurrence matrix        contains 

number of times the gray level intensity values i and j have been neighbors in matrix (a).  For 

example, assuming that d=1 and θ =  ,          means that there are 3 pixels with intensity 

value of 1 that are in the neighborhood of pixels with 0 intensity value.  

 

Figure 4.8: Local co-occurrence matrix calculation (a) small neighborhood image of size 5 × 5 

centered at a pixel marked in red letter; (b) the corresponding co-occurrence matrix  
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4.2.4 Color features 

We use color information to represent aspects in the quality evaluation that cannot be entirely 

measured by previous features. In this part the Hue Saturation Value (HSV) color space is used 

instead of RGB. Figure 4.9 shows HSV models.  

Figure 4.9: HSV color space (waiting for permission) [54] 

 The Hue (H) is defined as pure spectrum color. For example all tints, tones and shades of

blue have the same Hue. The values of Hue are between 0 and 360.

 The Saturation (S) describes the purity of the hue. A pure color has a saturation of 1 and

tints of a color have saturations less than 1.

 The Value (V) refers to the lightness or darkness of a color. A dark color has lower

amount of value (close to 0) and with increasing the lightness this value increases to 1.

The HSV color space represents the same way that humans perceive color. Colors in relation to 

the primary colors are defined in the other models, except for HSV. Humans can clearly 

categorize the colors used in HSV, which is normally different from those in RGB.  

In this study, firstly, images were converted from RGB color space into HSV color space and the 

histogram of each layer was then obtained. The index of maximum frequency is used as a feature 

and is normalized between zero and one. Figure 4.10 shows three histograms of a gradable retinal 

image.  



44 

Figure 4.10: Three histograms hue, saturation and value of the gradable retinal image 

The saturation and value indexes are used as features so as to detect the overexposed or 

underexposed images. As shown in Figure 4.11 the indexes of saturation for overexposed images 

((c) and (d)) are close to zero and the indexes of value for underexposed images ((a) and (b)) are 

close to zero while saturation and value indexes associated with normal images ((e) and (f)) are in 

the range of [0.5 – 1].  

The reason of not using the hue index as feature is that people with different ethnic origins have 

different pigmentation on the retina; Figure 4.12 shows different gradable retinal images that 

belong to different ethnic origins.  
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Figure 4.11: illustrate saturation and value indexes of different image quality  
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Figure 4.12: Different retinal images that belong to different ethnic origins 

4.3 Feature selection 

Using a large number of features may affect the classification performance. Feature selection is 

the process of selecting a subset of features that minimizes the classification error. We needed to 

perform feature selection in order to select the best set of textural features. Generally, feature 

selection methods are categorized into three groups: filter, wrapper and embedded methods [55]. 

Filter methods score the features individually and select features with high scores. Wrapper 

methods score feature subsets with using a predictive model. Each feature set is used to train a 

model, which is then tested on the remaining subset. The number of mistakes made on the test set 

gives the score for that subset. In the embedded methods, an optimal subset of features is 

searched by combining feature selection with learning algorithms. Filter methods are fast and 

simple and also robust against overfitting. Wrapper methods can in principle find the most useful 

subset of features, but are prone to overfitting. Embedded methods are embedded in and specific 

to a model [56]. Hence, we used filter based feature selection. There are a lot of feature selection 

approaches based on filter methods, such as Laplacian score [57], Fisher’s score [58], ReliefF 

[59], Trace Ratio criterion [60] and Hilbert Schmidt Independence Criterion (HSIC) [61]. Among 

these, the Fisher’s score is one of the most widely used because of its simplicity and good 

performance [62]. Hence, we used the Fisher’s score [58] for sorting the features. The advantage 
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of this method is its simplicity and effectiveness. Fisher’s score computes a rank for each feature 

independently, so that the rank of the  -th feature is computed using the following equation: 

     
      

 
      

   

       
 
   

   

(4. 5) 

where    is the size of  -th class (       ) and    is the mean value of the  -th feature obtained 

from the whole data set and   
 
 and   

 
 are the mean and standard deviation of  -th class 

associated to the  -th feature. After sorting features by means of this method, a number of 

appropriate features (n) should be selected based on the accuracy of the classification results. The 

strategy of obtaining the optimal number of features (n) is described in section 4.4.2.   

4.4 Classification 

As the main objective in this thesis was to classify images into two groups of gradable and un-

gradable, a Support Vector Machine (SVM) with a radial basis function kernel was used as a 

classifier. Some common kernel functions are used for SVM include the linear kernel, the 

polynomial kernel and the Gaussian kernel. The linear kernel cannot handle the case may not be 

possible classified data linearly. The Polynomial kernel is a non-stationary kernel. It is well 

suited for problems where all data are normalized. The number of hyperparameters influences the 

complexity of model selection[63]. The polynomial kernel has more parameter than Gaussian 

kernel. The Gaussian kernel is known as radial basis function (RBF), RBF is one of the most 

popular kernel functions with convincing performance and is a reasonable to choice.  Figure 4.13 

shows the proposed procedure of an iteration of 10-fold cross validation used for classification. 

The FS process, as described in the previous section, is implemented before the classification 

(step 1 in Figure 4.13) for reducing the dimension of the features vector. It should be mentioned 

that the FS can implemented inside each cross validation iteration during classification [64]. The 

classification procedure consists of different steps that are detailed in the following sections.  

4.4.1 Training and testing data selection 

Training and testing data selection is shown as step 2 in Figure 4.13. A classification process 

usually involves separating training data set from testing data set. A common strategy is to 

separate the whole data set into two parts: the first part is considered as training data set and the 
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second part that is supposed to be unknown test data. The prediction accuracy obtained from the 

unknown data set reflects more precisely the performance of classification process, since it 

classifies an independent data set. An improved version of this procedure is known as k-folds 

cross-validation. A common choice for k-folds cross-validation is k=10. So the 10-fold cross 

validation technique was used for the classification in this study. As shown in Figure 4.13 (step 

2), the whole data set was divided into 10 folds, such that a single fold is considered as test data 

(1 fold) and the remaining folds are considered as training and validation data (9 folds).  

Figure 4.13: Classification steps 

4.4.2 Determining optimum parameters 

Steps 3-7 in Figure 4.13 include determining the optimum number of features n and kernel 

parameters    . The features are sorted in the feature selection step, as described in the previous 

sections. For the purpose of reducing the feature vector dimension and particularly increasing the 

classification accuracy the optimum number of features should be determined. Moreover, the 

accuracy of an SVM model depends on the selection of the kernel parameters    . We applied a 
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‘grid-search’ on n, C and   to determine optimum values of these parameters across the specified 

search range. Various sets of (n, C,  ) values were tried and the one with the best cross-validation 

accuracy was picked. We found that trying exponentially growing sequences of C and   is a 

practical method to identify good parameters (C=   ,     ,     ,     and   =          , 

         ). In addition, the range of n was between 1 and the number of sorted texture features. 

A total of 308 combinations were totally tested.  Table 4.3 shows determining optimum 

parameters steps. 

Table 4.3: Determining optimum parameters steps 

Step The process carried out in each step 

3 Divided data set into two parts (60 images for training and 30 image for validating) 

4 Using a sets of (n, C,    on training data to produce SVM model 

5 SVM model validation 

6 Saving the result (n, C,   and accuracy) from step 5 

- Repeating steps 4 to 6 until all sets of (n, C,     are evaluated 

7 Finding the best n, C and   corresponding to maximum accuracy 

4.4.3 Evaluation 

Steps 8-10 in Figure 4.13 describe the evaluation process. The optimum parameters C and   were 

used to train the whole training set (90 images) so as to produce a model for classifying test data 

set. Afterward, the developed optimum model was tested on unknown test set (10 images). The 

accuracy of the optimum model was then calculated.  As shown in Figure 4.14, in a 10-fold cross 

validation technique the whole data set was divided into two parts: test (1 fold) and training (9 

folds) data sets. The cross-validation process is then repeated 10 times (number of folds), for 

which each of the 10 subsets used exactly once as the test data. So, Steps 1 to 10 in classification 

were repeated 10 times and the results were averaged and the final accuracy was calculated. 
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Figure 4.14: Procedure of 10-fold cross validation 

4.5 Local and global evaluation 

We evaluated the global and the local performance of our proposed method. In the global 

approach, we applied the developed algorithm to the whole image whereas in the local approach 

only the macula and optic disc regions are considered as regions of interest (ROI). For the 

purpose of localizing these two regions it was assumed that the images were centered on the 

macula. The input retinal image was divided into 8×8 sub-regions, through which the macula and 

optic disc region were determined. As shown in Figure 4.15, for a right eye, the region specified 

by yellow border contains the macula and optic disc.  

Figure 4.15 Region of interest in a typical retinal image of the right eye
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CHAPTER 5 RESULTS AND DISCUSSION 

This chapter presents the results associated with classification of retinal images into gradable and 

ungradable using different combinations of features and for global and local regions of interest.  

5.1 Data set 

The proposed method was evaluated using a data set consisting of 100 retinal images with 

different sizes. A medical expert classified 50 images as gradable and 50 images as ungradable. 

They were represented in RGB color space with 8 bits per color and were encoded in JPEG.  

5.2 Experimental results 

In this section the performance of the proposed method was assessed using a accuracy and two 

known statistical measures of classification i.e. sensitivity and specificity. These measures are 

used in order to evaluate the performance of binary classifiers, and are computed by the 

following equations: 

         
     

           
(5. 1) 

            
  

     
(5.2) 

            
  

     
(5.3) 

where    is the number of poor quality images classified correctly,    is the number of good 

quality images classified correctly,    is the number of poor quality images classified as good 

quality images and    is the number of good quality images classified as poor quality images. 
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5.3 Classification strategies 

As described in section 4.4, the 10-folds cross-validation strategy was used in order to estimate 

performance of the learned model form available data using one algorithm. In other words, cross-

validation used to evaluate the generalizability of the algorithm.  

The database was divided into 10 folds. In each iteration, 1 fold (5 gradable images and 5 

ungradable images) were considered as test set and the remaining folds were divided into two 

parts of 3 and 6 folds as validation and training sets, respectively. In each iteration, training and 

validation data sets were used so as to select the most appropriate RLM features and determine 

SVM kernel parameters. The test set was exploited as unseen data for evaluating the performance 

of the proposed method. 

5.4 Texture features selection 

An experiment procedure was conducted to compare the performance of the proposed method 

depending on using the RLM or Haralick texture features. We compared the results obtained with 

11 RLM and 13 Haralick features described in section 4.2.3. The required features were extracted 

from the whole retinal image. In the experimentations, an SVM with Radial Basis Function 

(RBF) kernel was used as classifier and the results of classification were compared with those 

from a medical expert. The optimum SVM parameters (  and  ) that were explained in section 

5.7 were used. Table 5.1 shows the results of classification obtained using the RLM and Haralick 

texture features.  

Table 5.1 : Effectiveness of the Run Length Matrix and Haralick texture features 

Features ROI Accuracy Sensitivity Specificity 

Haralick texture Whole image 74% 60% 88% 

RLM Whole image 83% 84% 82% 

In this case, the texture features extracted from the RLM led to a sensitivity significantly higher 

than when using Haralick texture features. Hence, the RLM features were chosen for the 

remaining experiments. 
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5.5 RLM’s direction selection 

As described in section 4.2.3, the RLM (          is calculated in the most common directions 

( ), i.e. 0, 45, 90, 135. This step aimed at finding the best direction for retinal texture analysis 

and therefore retinal quality assessment. Hence, each direction was taken into consideration 

separately and was evaluated. The SVM with RBF kernel used the optimum SVM parameters 

(  and  ). The accuracy of the RLM in different directions is reported in Table 5.2. 

Table 5.2 : The accuracy of RLM in different directions 

              Average of features values 

from four directions 

Accuracy 82% 81% 80% 82% 83% 

The obtained results show that, using the average of features values from four directions for 

retinal texture analysis, leads to higher accuracy of classification. 

5.6 Feature selection 

An experiment was conducted to select the most appropriate RLM features among the 11 features 

listed in Table 4.1. For feature selection, we applied the procedure described in section 4.3. We 

used a training set including 60 images (6 folds) and a validation set including 30 images (3 

folds) that was selected from the database. It should be noted that in each fold there are 5 

gradable and 5 ungradable retinal images. Based on the Fisher score method, a list of texture 

features (RLM features) was obtained. Then, in each iteration a set of features delivering higher 

accuracy of classification was identified. The feature selection process was repeated for each 

iteration of the cross validation. Table 5.3. presents the selected RLM features for 10 different 

iterations. In this experiment also the optimum SVM parameters were used as explained in 

section5.7. 
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Table 5.3: Selected RLM features in each iteration 

Iteration Features selected 

1 SRE LGRE HGRE LRHGE SRLGE  

2 SRE LGRE HGRE LRHGE SRLGE  

3 SRE LGRE HGRE LRHGE RP RLN 

4 SRE LGRE HGRE LRHGE SRLGE  

5 SRE LGRE HGRE LRHGE SRLGE  

6 SRE LGRE HGRE LRHGE SRLGE  

7 SRE LGRE HGRE LRHGE SRLGE  

8 SRE LGRE HGRE LRHGE RP RLN 

9 SRE LGRE HGRE LRHGE SRHGE LRLGE 

10 SRE LGRE HGRE LRHGE SRLGE  

Finally, a set of features that was dominant (i.e. was repeated more than the other sets) was 

selected as the best set of features. Hence, five RLM features including SRE, LGRE, HGRE, 

LRHGE, SRLGE were selected as best subset textures features. 

5.7 SVM kernel parameters adjustment 

The accuracy of an SVM is strongly dependent on the values of its parameters   and  . A grid 

search strategy was used to select optimal values of these parameters in the set {10
-3

, 10
-2

, 10
-1

, 1, 

10, 10
2
, 10

3
}  For this step, the same 60 images were used as a training set and 30 images were 

used as validation set. We performed the classification with the RLM features, sharpness, edge 

ratio, color histogram features described in section 4.2. After training with the training data the 

classifier with the highest validation accuracy was picked for testing step. It should be noted that 

the optimum number of texture features n and SVM parameters   and   were obtained at the 

same time. Table 5.4 reports the resulting parameters for each of the 10 iterations of the cross 

validation. 
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Table 5.4: The best obtained parameters of  SVM in the each iteration 

Iteration 1 2 3 4 5 6 7 8 9 10 

C 10 100 1 100 10 10 10 100 1 100 

  10 100 1 10 10 10 10 1000 1 10 

n 5 5 6 5 5 5 5 6 6 5 

As it can be observed, the optimum value at C and   was 10, since this value was reported more 

than the other values during iteration for these parameters.  The optimum number of texture 

features n was 5. 

5.8 Classification results 

The classification was performed with an SVM whose parameters were as given in Table 5.4. 

The complete annotated database of 100 images was used for the evaluation using a 10-fold cross 

validation strategy. The 10 retinal images were used as test set (unseen set) and the remaining 

images were used as training set. In this step, having best features (selected RLM features, one 

sharpness, one edge ratio and two color histogram features) and optimum parameters from the 

previous, the resulting SVM model in the training step was applied on a test set. The final result 

presents an average of the value obtained from the accuracies of ten iterations. Table 5.5 presents 

the classification accuracy in each iteration as well as final result obtained from average accuracy 

of ten iterations. 

Table 5.5: Accuracy of the proposed method in each iteration 

Iteration 1 2 3 4 5 6 7 8 9 10 

Accuracy 80 90 90 70 90 90 90 100 70 90 

               
                              

  
    

A direct comparison with results reported in the literature is difficult to make. For example [26] 

and [28] employed different classification i.e. good / bad quality istead of gradable / ungradable. 

Figure 5.1 shows example of images from our database with bad quality but that have been as 

garable by medical expert. 
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5.9 Comparison of global and local approaches 

We compared the performance of the local and global approaches described in section 4.5. The 

same SVM parameters presented in Table 5 were used. For the global approach, the five RLM 

features, one sharpness, one edge ratio and two color histogram features were extracted from the 

whole image. In the local approach, the same six features were extracted from the most important 

region including the optic disc and macula. Both approaches were tested on the whole database. 

Table 5.6 summarizes the performance of the algorithm for the global and local approaches.  

From Table 5.6, it can be concluded that the proposed method is more accurate when only the 

optic disc and macula regions are considered for quality assessment rather than the whole image. 

Analyzing portions of the image outside of the mentioned region might adversely affect the 

efficiency of our algorithm. Hence, the estimations can be more accurate when ignoring this 

region and focusing only on the macula and optic regions. Accordingly, the predictions are in 

very good agreement with the medical expert. I believed that, the results indicate that the 

proposed method is robust enough to classify retinal images according to their quality.  

Figure 5.1: Examples of bad quality images but classified as gradable by medical expert 
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Table 5.6: Accuracy, sensitivity and specificity of classification resulting from the global and local 

approaches 

ROI Accuracy Sensitivity Specificity 

Whole image 86% 87% 89% 

Optic disc and macula regions 93% 94% 92% 

5.10 Features classification performance 

The performance of each feature was calculated. Five cases were considered: the five selected 

RLM features, sharpness, edge ratio and color histogram features separately and also a 

combination of the all features. In this experiment the SVM with RBF kernel function was used 

and 60, 30 and 10 retinal images were used as training, validation and testing set respectively. 

The accuracy, sensitivity and specificity of classification obtained from different combinations of 

features are presented in Table 5.7. As it can be seen from the results, the five RLM features and 

color histogram features are efficient features when considered solely. However, the combination 

of sharpness, edge ratio and color leads to more accurate results. Finally, the most satisfactory 

results were obtained when combination of all features is used in classification. 

Table 5.7 : Sensitivity and specificity of each class of features 

Features Accuracy Sensitivity Specificity 

Five RLM selected features 85% 82% 88% 

Sharpness 73% 60% 86% 

Edge ratio 71% 70% 72% 

Color histogram 81% 72% 90% 

Sharpness +   Edge ratio 74% 62% 86% 

Sharpness +   Edge ratio + color 90% 88% 92% 

Combination of all features 93% 94% 92% 
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5.11  Computational efficiency of algorithm 

The computation time is an important factor and it should be as low as possible. We measured 

processing time of the proposed algorithm for each retinal image size. The time consumed for 

training was not taken into account, because this is typically performed offline. The proposed 

algorithm was implemented by Matlab® and the tests were performed on a desktop computer 

with an Intel® core ™2 CPU 6600@2.4 GHz and equipped with 4GB of RAM. In this 

experiment, we used 5 retinal images with different resolution classified based on the optimum 

parameters found from previous experiment. Figure 5.2 shows the corresponding processing time 

for different size of images. 

Figure 5.2 : The time consumed for processing different size of images 

As it can be seen the Figure 5.2, computation of time is quite dependent on resolution of image. 

Images with high resolution need more time.  Table 5.8  presents the time consumed for different 

phases of algorithm applied on an image with 2074  1556 pixels resolution. As it can be 

observed, RLM metric needs more computational time compared with the other phases; whereas 

the classification is the fastest phase. Although RLM features needs more calculation time than 

other features, they are efficient features for retinal image quality assessment (see Table 5.7). 
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Table 5.8: Time consumed for different phases of algorithm 

Algorithm phases sequence Time (s) 

Preprocessing  1.38 

Sharpness + EBR 0.94 

Color histogram  1.30 

RLM 11.73 

Classification 0.06 

5.12 Alternative experiment  

As second experimental procedure, 30 retinal images (15 gradable and 15 ungradable) were used 

for training data and 30 retinal images (15 gradable and 15 ungradable) as test data. All features 

(RLM, sharpness, color, EBR) were extracted and combined in a vector feature. The SVM with 

RBF kernel was used as classifier. The 10-fold cross validation with grid search strategy were 

used in order to determine optimum parameters of c,  and n. as shown in Table 5.9 

Table 5. 9: The best obtained parameters 

Parameters c   n 

Optimum amount 10 1 3 

Table 5.10 is also showing optimum texture feature set associated to this experiment. 

Table 5. 10: RLM features selected 

Features selected SRLGE SRE SRHGE 

The accuracy, sensitivity and specificity of classification obtained from combinations of features 

are presented in Table 5.11 

Table 5. 11 : Accuracy, sensitivity and specificity of the second experiment 

features ROI Accuracy sensitivity specificity 

Selected RLM, sharpness, 

color histogram, EBR 

Optic disc and macula 

regions 
93% 93% 93% 
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CONCLUSION 

An automated image quality assessment algorithm was developed for classifying retinal 

images as gradable or ungradable. We used the no-reference image quality assessment technique 

because a unique reference image is not often available for image quality assessment. The 

proposed method relies on learning procedures to estimate image quality from training samples 

by measuring some generic features. The generic features include: sharpness, edge ratio, color 

histogram and texture. The retinal images should be sharp for a more accurate diagnosis. 

However, the single sharpness factor is not sufficient for diagnosing because there are a lot of 

sharp images that are graded as ungradable images. Hence, we used another feature called edge 

ratio feature. The edge ratio feature calculates the ratio of edge blocks to all blocks in each image, 

in order to distinguish over/under exposed images. Since sharpness and edge ratio features do not 

provide color information of image, color histogram features were used. Moreover, textural 

features were used so as to assess the information about the spatial arrangement of intensities in a 

retinal image. This study showed that using a large number of features might lead to overfitting, 

and therefore applying feature selection was necessary. Five texture features were selected as the 

most robust set of textural feature in order to classify input images.  

One of the goals of this project was to classify images as fast as possible by avoiding structural 

segmentation algorithms which are time consuming. Moreover, image quality assessment 

procedures based on eye structural segmentation tend to be complex and are not robust, 

especially when dealing with low quality images. 

According to the advice of ophthalmologist, the macula and optic regions are the most important 

regions in order diagnostic of eye diseases.  Hence, we confirmed that the macula and optic disk 

regions are the most important regions for quality assessment. Exploiting only the macula and 

optic disc regions of interest, as a representative of the whole image, improved the performance 

of measurements in term of accuracy and time. The sensitivity and specificity were improved by 

7% and 3% respectively.  

Since the computational time is one of the important factors in image quality assessment, we 

developed a simple and fast algorithm. Moreover, ROI utilization can help to reduce the time 
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consumption. Also in this study, we compared two textural features, i.e. RLM and Haralik; the 

acquired results show that Haralik features are faster than RLM while the texture features 

extracted from RLM have significantly higher sensitivity than Haralik texture features. On the 

other hand, the accuracy of classification was improved by 9% when using RLM. Since the 

accuracy was more important than time consumption, the RLM features were chosen for the 

experiments. 

The final classification led to an automated estimation of retinal images quality with high 

accuracy: sensitivity (94%) and specificity (92%). This indicates a very good agreement between 

the algorithm’s prediction and medical expert’s judgment. 

As future work, the first aspect to follow is to test the proposed method using a larger data set in 

order to evaluate the performance of the method more accurately. The second aspect would be to 

develop an extra algorithm for automatic determination of the region of interest instead of a semi- 

automatic method.  
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APPENDIX    A - TEXTURE ANALYSIS 

Texture analysis is commonly exploited in medical image interpretation. Information in a 

retinal image can be deduced based on its textures. Therefore, we investigated the potential of 

using computerized image texture analysis to retinal image quality assessment. Efficient feature 

extraction is one of the most significant aspects of texture analyzing in quality assessment. In 

order to perform texture analysis for retinal image quality assessment the co-occurrence matrices 

has been widely used. Therefore, we implemented both run-length [49] and co-occurrence 

matrices [43] and compared their performances.    

The co-occurrence matrix disclosed the spatial distribution of certain properties in the texture 

image. In [65-67] it was shown that features based on the co-occurrence matrix are able to 

provide prediction of quality. 

A.1. Co-occurrence Matrix 

A co-occurrence matrix, p, is an     matrix, where n is the number of gray-levels within 

images. The matrix is as an accumulator so that        counts the number of pixel pairs having 

the intensities i and j. Pixel pairs are defined by a distance (d) and direction (   which can be 

represented by a displacement vector          , where dx represents the number of pixels 

moved along the x-axis, and    represents the number of pixels moved along the y-axis of the 

image slice. The co-occurrence matrix containing the relative frequencies            counting 

the neighborhood of each gray value to each other gray value in certain distance and direction. 

                                

                                             
(A. 1) 

where each   value is the number of times that:                                  and 

      append simultaneously in the image. 

                                     are defined similarly: 
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(A.2) 

                                 

                                           
(A.3) 

                                  

                       

                                   

(A.4) 

According to the previous formulas gray-levels co-occurrence matrix depends on different 

parameters: 

 Number of grey levels: The number of gray levels used to simplify and reduce the size of the

matrix.

 Distance (d): the co-occurrence matrix stores the number of times that a certain pair of pixels

is found in the image. Normally the pair of pixels is just neighbors, but the matrix could also

be computed analyzing the relation between non-consecutive pixels. Thus a distance between

pixels must be previously defined.

 Angle    : angle to match interest distance and its neighbor. The most common directions are 

0, 45, 90, 135.

It is very important to decide what parameters will be used in order to obtain good features 

descriptor. Features derived from co-occurrence matrices are effective for describing textural 

properties. Haralick has proposed a number of useful texture features that can be computed from 

the co-occurrence matrix. Haralick features contain the relative frequencies        counting the 

neighborhood of each gray value to each other gray value in directions                    . 

These features are defined to emphasize texture properties statically. 13 Haralick texture features 

formula have been introduced in the below. In the following equations    refers to number of 

distinct gray levels in the image. 
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1. Energy feature is also called Uniformity feature. It measures the textural uniformity in the

range. The highest energy value is for constant image

                

  

 

  

 

(A. 5) 

2. Contrast feature measures of the intensity contrast between a pixel and neighbor over an

image. It is the difference between the highest and the lowest values of adjacent pixels.

                      

  

   

  

   

           

    

   

 (A. 6) 

3. Correlation feature is a measure of gray tone linear dependencies on the neighboring

pixels. This feature return a measure how correlated the pixel is to its neighbor whole of

image.

              
                  

    

  

   

  

   

(A. 7) 

where μ
x
, μ

y
, σ

x 
and σ

y 
are the means and standard deviations of p

x 
and p

y 

4. Entropy feature measures the randomness of gray level distribution. The entropy will be

maximum value when all       ’s are equal, or in the other word the value of this feature

will be highest value when the image is not textually uniform. Entropy inversely is

correlated to energy.

                             

  

   

  

   

 (A. 8) 

5. Variance feature measure dissimilarity of image. The value of variance feature reaches

the maximum value when discrepancy between the gray level value and their mean

increases.
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6. Inverse difference moment is also called as Homogeneity. It measures image

homogeneity. In other word it measures the spatial closeness of the distribution of

element in the co-occurrence matrix to diagonal co-occurrence diagonal matrix.

Homogeneity and contrast are correlated but inversely, it means homogeneity decreases if

contrast increases while energy is kept constant.

                            
 

        
       

  

   

  

   

 (A. 10) 

The rest of the Haralick features are derived from those listed above. 

7. Sum Average (SA)

                     

    

   

 (A. 11) 

8. Sum Entropy

                                 

    

   

 (A. 12) 

9. Sum variance

                     

   

   

        (A. 13) 

10. Difference variance

                        

  

   

  

   

 (A. 9) 
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 (A. 14) 

11. Different Entropy:

                                       

    

   

 
(A. 15) 

12. Information Measure of Correlation 1 (IMC 1) :

      
        

           (A. 16) 

13. Information Measure of Correlation 2 (IMC 2) :

                           
 
 (A. 17) 

where   and   are the coordinates (row and column) of an entry in the co-occurrence matrix, and  

        is the probability of co-occurrence matrix coordinates summing to             are 

the entropies of    and   .                           . 

                              
  

              
 
     

 
         

 
     

 
    

  
 

A.2.   Run Length Matrix 

The Run Length Matrix (RLM) is another way for extracting higher order statistical texture 

features. Sequential pixels with the same intensity in a certain direction represent a run and run 

length is the number of pixels in a run. RLM extracts statistical texture features and provides a 

quantitative description of the features from image. The run-length matrix   is defined as follows. 

Each element        represents the number of runs with pixels of gray level intensity i and run 

length j along the directions  0 °, 45 °, 90 °, 135°. The size of the matrix   is m by n, where m is 

the maximum gray level in the image and n is equal to the possible maximum run length.  
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Five basic features that are extracted from RLM proposed by Galloway [68] as follows: In the 

following equations    refers to the total number of runs and   is the number of gray levels.   is 

the number of run length. The number of runs of pixels that have gray level   and length group   is 

represented by       .  

1) Short Run Emphasis (SRE): Measures the distribution of short runs. The SRE is highly 

depend on the occurrence of short runs and is expected large for fine textures. 

     
 

  
   

      

  

 

   

 

   

 (A. 18) 

2) Long Run Emphasis (LRE): Measures the distribution of long runs. The LRE is highly 

depend on the occurrence of long runs and is expected large for coarse textures. 

    
 

  
             

 

   

 

   

 (A. 19) 

3) Grey level Non-uniformity (GLN): Measures the similarity of the gray level value throughout 

the image. The GLN is low if the gray level values are similar in all over the image.  

    
 

  
          

 

   

 

 
 

   

 (A. 20) 

 

4) Run Length Non-uniformity (RLN): Measures the similarity of the length of runs all over the 

image. The RLN is expected small if the run lengths are similar all over the image. 

    
 

  
          

 

   

 

  

   

 (A. 21) 

5) Run Percentage (RP): Measures the homogeneity and distribution of runs of image. 



73 

   
  

        
(A. 22) 

Chu et al. [69] proposed two another features in order to distinguish textures that are similar SRE 

and LRE features but in different gray level distribution of the runs. 

6) Low Gray-Level Run Emphasis (LGRE)

     
 

  
  

      

  

 

   

 

   

(A. 23) 

7) High Gray-Level Run Emphasis (HGRE)

     
 

  
           

 

   

 

   

(A. 24) 

Dasarathy et al.[70] were introduced four another features that are combine statistical measure of 

gray level and run length. 

8) Short Run Low Gray-Level Emphasis (SRLGE)

      
 

  
  

      

     

 

   

 

   

(A. 25) 

9) Short Run High Gray-Level Emphasis (SRHGE)

      
 

  
  

         

  

 

   

 

   

(A. 26) 

10) Long Run Low Gray-Level Emphasis (LRLGE)

      
 

  
  

         

  

 

   

 

   

(A. 27) 

11) Long Run High Gray-Level Emphasis (LRHGE)
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 (A. 28) 
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APPENDIX B - CLASSIFICATION 

There are a lot of classifier algorithms, such as Support Vector Machine (SVM), K 

Nearest Neighbors (K-NN), Naive Bayes (NB). In this study, a SVM with a radial basis function 

kernel was used as a classifier.  

Support Vector Machine Classifier: The SVM is a popular supervised machine learning that 

produces a linear boundary to achieve maximum separation between two classes of subjects by 

kernel function of the input features for each subject. The SVM algorithm was proposed by 

Corinna Cortes and Vladimir Vapnik[71]. 

Support Vector Machine Classifier Formulation: Training data represented as vectors      

for each of l data points with their respective class label            . where   is p-

dimensional Euclidian space. 

The SVM are based on the concept of linear decision function. Linear decision functions consist 

of decision boundary that is hyperplane separating the two different regions of the space. Figure 

A.1 shows in the 2D space the data separated by line (hyperplane). This line formulated by 

       to separated data into two classes. The decision function f(x), assign the correct class 

label to each data point. SVM use a decision function of the form: 

                   (A. 29) 

 where <w,x> is the inner product of w and x, w is the hyperplan normal vector and b is as the 

bias.  

The best hyperplane for an SVM means the one with the largest margin between the two classes. 

The vectors that define the hyperplane are the support vectors. 
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Figure A.1:  A seprating hyperplan (H) 

Support Vector Machine Separable Case: Figure A.1 shows a hyperplan that separate positive 

(blue points) and negative (red points) examples, each such hyperplane (w, b) is a classifier that 

correctly separates all patterns from the training set: 

       
                       
                       

 (A. 30) 

For all points from the hyperplane H (            ), the b/|w| determined the offset of the 

hyperplan from the origin along the normal vector w. We consider the patterns from the class -1 

that satisfy the equality             ; and also the patterns from the class +1 satisfy the 

equality               . The distance between hyperplanes (margin) is calculated as following: 

 

   
               

         

          

                

            

 

   
          

 

   

(A. 31) 
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From these considerations it follows that the identification of the optimum separation hyperplane 

is performed by maximizing 2/||w||, which is equivalent to minimizing ||w||
2
/2. This is

optimization problem. Thus, the SVM optimization problem is:  

   
   

 
 

 
                                  (A. 32) 

where               is the 2-norm of  ,        is the dot product between   and  . 

By introducing Lagrange multipliers  , the problem can be expressed as follow: 

   
   

   
   

 
 

 
                        

 

   

      (A. 33) 

Using the fact that             and         
 
    , one can show that the problem of the SVM 

reduces to the following optimization problem: 

         
 

 
           

   

   

 

   

(A. 34) 

According to Lagrange theory, to obtain the optimum, it is enough to maximize the Lagrange 

with respect to   . 

          
 

 
           

   

   

 

   

                        

 

   

     (A. 35) 

Thus, the decision function f(x) calculated by equation (A. 36)  

                       

 

   

  (A. 36) 

Support Vector Machine Non-separable Case: The goal of SVM is produce hyperplane that 

completely separates the vectors into two non-overlaping classes but in some case may not be 
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possible classified data linearly. In this case as shown in Figure A.2, SVM find hyperplane that 

maximizes the margin and minimized the misclassifications (soft-margin method). This method 

uses slack variable   , which allow data to violate the margin.  

Figure A.2 : Maximum-margin hyperplane and minimum misclassification 

The penalty for this violation is controlled by the cost parameter C. The soft margin SVM 

optimization can be then defined as: 

   
     

 
 

 
             

 

   

                                                   (A. 37) 

Variable C is trades-off margin width and misclassifications. The choice of C is important step of 

classification because it directly affects the generalization ability of the learned models. 

By using Lagrange multipliers  , the problem of optimization can be expressed as follow: 

   
     

   
   

 
 

 
           

 

   

                           

 

   

 

   

      (A. 38) 

http://en.wikipedia.org/wiki/Lagrange_multiplier
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with         . 

Kernel Trick: Some binary classification problems do not have a simple hyperplane as a useful 

separating criterion. SVM handles this by applying the kernel function (        ) to map data 

into a higher dimensional space by the function   to make it possible to perform the linear 

separation (Figure A.3). Furthermore               
       is called kernel function. Thus, 

the decision function reformulated as Equation (A. 39). 

                        

 

   

 (A. 39) 

  

 

Figure A.3 :  Mapping data onto another space in order to classify data linearly 

Some common Kernel functions include the linear kernel, the polynomial kernel and the 

Gaussian kernel. Below is a simple list with their formula.  

 The linear kernel:              
    . 

 The Gaussian kernel:              
              

 The polynomial kernel:                       
 
     . 

Here           are kernel parameters. 
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The simplest kernel function is linear kernel. It is given by the common inner product <x,y> plus 

an optional constant c. The SVM using a linear kernel are often equivalent to their non-kernel. 

So, this kernel cannot handle the case may not be possible classified data linearly. The 

Polynomial kernel is a non-stationary kernel. It is well suited for problems where all data are 

normalized. The number of hyperparameters influences the complexity of model selection[63]. 

The polynomial kernel has more parameter than Gaussian kernel. The Gaussian kernel is known 

as radial basis function (RBF), RBF is one of the most popular kernel functions with convincing 

performance and is a reasonable to choice.  

Cross-Validation: 

Cross-Validation (CV) is a statistic method of evaluating algorithm, by dividing data into two 

parts: one used for train a model and other part use for validate the model.  

K-fold Cross-Validation: The basic form of CV is k-fold cross-validation. In k-fold cross-

validation, data divided into k equal parts or folds. One fold used for validation and k-1 folds 

used for training data which training and validation data are performed k times. Final result is the 

average value obtained from the accuracies of the k iteration. Figure A. 4 shows an example with 

k=5. 

Figure A. 4:  Procedure of 5-fold cross validation 
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Leave-one-out cross-validation: Leave-one-out cross-validation (LOOCV) is the same as k-fold 

cross validation where k equals the number of whole data. Hence, in the each iteration of 

LOOCV one single data used as validate data and remaining data used for training.  

There are two goals for using CV: 

 Performance estimation  

 Adjustment training model parameters. 

Performance estimation: The SVM classification task involves separating data into training and 

testing sets. A common strategy is to segment dataset into two segments: train and test data. This 

procedure avoids the overlap between training data and test set but the results are highly 

dependent on the choice for the training or testing segment. To deal with these challenges and 

utilize the available data to the as much as possible, CV is used. In other words, CV allows for all 

data to be used to estimate performance of algorithm. The Accuracy indicator is used to evaluate 

the performance of algorithm. Accuracy is defined as: 

         
     

           
 (A. 40) 

where   - true positive,   - false positive,   -false negative and   - true negative counts. The 

accuracy indicator evaluates how a certain classifier predict label of test data. 

Adjustment training model parameters: A Support Vector Machine (SVM) with a Radial Basis 

Function (RBF) kernel was used as a classifier. There are two parameters for an RBF kernel: C 

and  . It is not known beforehand which C and   are best for a given problem. The accuracy of 

an SVM model depends on the selection of C and  .  

The parameter C controls the trade-off between maximization of the margin width and 

minimizing the number of misclassified points in the training set[72]. In other words choice of C 

directly affects the generalization ability of learned model. Increasing the value of C increases 

penalty for misclassifying points that leads to overfitting. Conversely selecting small C value 

increases the margin that may lead to misclassified points in the training set. Figure A.5 shows an 

example that demonstrates the dependency of the soft-margin SVM on different C values. 

Although the data is linearly separable, when C is small (left panel), the margin increased and 

there are 2 misclassification that leads to failure in learning. When the C value is increased (right 
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panel), a narrow margin is obtained. The resulting decision boundary leads to correct 

classification of the training data, but the small margin creates a more accurate model that may 

not generalize well. 

Figure A.5:  Effect of SVM parameter (C) 

For selecting small Gaussian parameter ( ) the decision boundary is nearly linear. When   value 

increased the flexibility of the decision boundary increases that leads to overfitting [73].  


