
UNIVERSITÉ DE MONTRÉAL

MATHEMATICAL MODELING AND OPTIMIZATION APPROACHES FOR

SCHEDULING THE REGULAR-SEASON GAMES OF THE NATIONAL HOCKEY

LEAGUE

ELIVELTON FERREIRA BUENO

DÉPARTEMENT DE MATHÉMATIQUES ET DE GÉNIE INDUSTRIEL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

THÈSE PRÉSENTÉE EN VUE DE L’OBTENTION

DU DIPLÔME DE PHILOSOPHIÆ DOCTOR

(MATHÉMATIQUES DE L’INGÉNIEUR)

AOÛT 2014

© Elivelton Ferreira Bueno, 2014.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PolyPublie

https://core.ac.uk/display/213619248?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNIVERSITÉ DE MONTRÉAL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

Cette thèse intitulée :

MATHEMATICAL MODELING AND OPTIMIZATION APPROACHES FOR

SCHEDULING THE REGULAR-SEASON GAMES OF THE NATIONAL HOCKEY

LEAGUE

présentée par : BUENO Elivelton Ferreira

en vue de l’obtention du diplôme de : Philosophiæ Doctor

a été dûment acceptée par le jury d’examen constitué de :

M. ROUSSEAU Louis-Martin, Ph.D., président

M. GENDREAU Michel, Ph.D., membre et directeur de recherche

M. FERLAND Jacques, Ph.D., membre et codirecteur de recherche

Mme LAHRICHI Nadia, Ph.D., membre

M. TRICK Michael A., Ph.D., membre

iii

DEDICATION

To Carmelucia Ferreira Bueno

iv

ACKNOWLEDGMENTS

I would like to express my deep gratitude to Professor Michel Gendreau and Professor

Jacques Ferland, my research supervisors, for their guidance, encouragement and support

through all the ups and downs of this journey. My grateful thanks are also extended to

my other committee members, Professor Louis-Martin Rousseau, Professor Nadia Lahrichi,

and Professor Michael Trick, who were more than generous with their expertise and precious

time.

I owe thanks to Professor Marco Antonio Figueiredo Menezes, from the Pontifical Catholic

University of Goiás, who introduced me to Operations Research; and also to Professor Nelson

Maculan, from the Federal University of Rio de Janeiro, who encouraged me to dive deeper

into this striking field.

Many friends have helped me stay sane through these years of study in Montreal. Among

them, I would like to offer my special thanks to Dariusz Trzaniec and to the families of Emilia

Rei and José Tomé, who embraced me as their own.

I am also grateful to Leizer de Lima Pinto, who has been as a supportive brother to me,

and to the lovely Pŕıscila Valcácio, who was waiting for me when I did research and wrote.

Finally, I would like to thank the Brazilian National Council for the Improvement of

Higher Education (CAPES) for their financial support during three years of this research

study.

v

RÉSUMÉ

La Ligue nationale de hockey (LNH) est une association sportive professionnelle de hockey

sur glace regroupant des équipes du Canada et des États-Unis. Chaque année, la LNH

dois compter sur un calendrier de haute qualité concernant des questions économiques et

d’équité pour les 1230 matchs de sa saison régulière. Dans cette thèse, nous proposons le

premier modèle de programmation linéaire en nombres entiers (PLNE) pour le problème

de la planification de ces matchs. Basé sur la littérature scientifique en planification des

horaires sportifs, et aussi sur un raisonnement pratique, nous identifions et soulignons des

exigences essentielles et des préférences qui doivent être satisfaites par des calendriers de

haute qualité pour la LNH. La construction de tels calendriers, tout comme la planification

des horaires sportifs en général, s’avère une tâche très difficile qui doit prendre en compte des

intérêts concurrents et, dans plusieurs cas, subjectifs. En particulier, les expérimentations

numériques que nous décrivons dans cette étude fournissent des évidences solides suggérant

qu’une approche basée sur la PLNE est actuellement incapable de résoudre des instances de

taille réaliste pour le problème. Pour surmonter cet inconvénient, nous proposons ensuite

un algorithme de recherche adaptative à voisinage large (ALNS) qui intègre à la fois des

nouvelles stratégies et des heuristiques spécialisées provenant de la littérature scientifique.

Afin de tester cette approche, nous générons plusieurs instances du problème. Toutes les

instances sont basées sur les calendriers officiels de la LNH et, en particulier, utilisent les

dates de matchs à domicile de chaque équipe comme des dates de disponibilité de son aréna.

Dans les situations les plus difficiles, la disponibilité des arénas est rare ou est à son minimum.

Dans tous les cas, en ce qui concerne les indicateurs de qualité soulevés, l’algorithme ALNS a

été capable de générer des calendriers clairement meilleur que leur correspondants adoptés par

la LNH. Les résultats obtenus suggèrent que notre approche pourrait certainement permettre

aux gestionnaires de la LNH de trouver des calendriers de meilleur qualité par rapport à une

variété de nouvelles préférences.

vi

ABSTRACT

The National Hockey League (NHL) is a major professional ice hockey league composed of

30 teams located throughout the United States and Canada. Every year, the NHL must rely

on a high-quality schedule regarding both economic and fairness issues for the 1230 games of

its regular season. In this thesis, we propose the first integer linear programming (IP) model

for the problem of scheduling those games. Based both on the pertinent sports scheduling

literature and on practical reasoning, we identify and point out essential requirements and

preferences that should be satisfied by good NHL schedules. Finding such schedules, as many

other sports scheduling problems, is a very difficult task that involves several stakeholders

with many conflicting, and often subjective, interests. In fact, computational experiments

that we describe in this study, provide compelling evidence that an IP approach is currently

unable to solve instances of realistic size for the problem. To overcome such drawback, we

propose then an Adaptive Large Neighborhood Search (ALNS) algorithm that integrates

both novel strategies and specialized heuristics from the scientific literature. To test the

approach, we generate instances based on past NHL schedules and on a given number of arena-

available dates that are suitable for the home games of each team. In the most challenging

instances, availability of arenas is scarce or at its minimum. In all cases, regarding the

identified concerns, the ALNS algorithm was able to generate much better schedules than

those implemented by the NHL. Results obtained suggest that our approach could certainly

identify unnecessary weakness in NHL schedules, makes the NHL managers aware of better

schedules with respect to different requirements, and even lead them to consider other desired

features they might not have previously taken into account.

vii

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGMENTS . iv

RÉSUMÉ . v

ABSTRACT . vi

TABLE OF CONTENTS . vii

LIST OF TABLES . ix

LIST OF FIGURES . x

LIST OF APPENDICES . xi

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 LITERATURE REVIEW . 6

2.1 Basic terminology . 7

2.1.1 Round-robin tournaments . 7

2.2 Literature on the NHL scheduling problem . 10

2.3 Literature on time-constrained sports scheduling problems 13

2.3.1 Finding home-away patterns . 15

2.3.2 Optimizing breaks . 16

2.3.3 The Traveling Tournament Problem . 18

2.3.4 Typical constraints in sports scheduling 21

2.4 Literature on time-relaxed sports scheduling problems 24

2.4.1 The NBA scheduling problem . 25

CHAPTER 3 THE NHL SCHEDULING PROBLEM 31

3.1 The structure of the NHL . 31

3.2 The structure of the NHL regular season . 32

3.2.1 The availability of dates, teams, and arenas 33

3.3 The scheduling problem of the NHL regular season 34

3.3.1 The NHL scheduling problem in the literature 36

viii

CHAPTER 4 MATHEMATICAL MODELING . 39

4.1 Basic formulation . 39

4.1.1 Data of the problem . 39

4.1.2 Parameters of the model . 39

4.1.3 Variables . 40

4.1.4 Constraints . 41

4.2 Formulation for minimizing total travel distance 46

4.3 Computational experiments . 48

4.3.1 Models and parameters . 49

4.3.2 Problem instances . 50

4.3.3 Results for the partial-league instances 53

4.3.4 Results for the 2012 instances . 54

4.3.5 Results for the entire-league instances 55

CHAPTER 5 AN ADAPTIVE LARGE NEIGHBORHOOD SEARCH 60

5.1 Model . 60

5.2 Algorithm . 60

5.2.1 Controlling the master level of the algorithm 62

5.2.2 Constructing an initial solution . 64

5.2.3 Partially destroying a solution . 70

5.2.4 Repairing a partial solution . 75

5.3 Computational Experiments . 79

5.3.1 Constructing initial solutions . 80

5.3.2 Choosing the size of the current solution to destroy 83

5.3.3 Setting the ALNS parameters . 84

5.3.4 Solving other instances . 93

CHAPTER 6 CONCLUSION . 100

REFERENCES . 102

APPENDICES . 109

ix

LIST OF TABLES

Table 2.1 Length of home stands in official NHL schedules 12

Table 2.2 Length of road trips in official NHL schedules 13

Table 3.1 The current NHL structure . 32

Table 3.2 Constraint violations in official NHL schedules 37

Table 3.3 Constraints of the NHL scheduling problem in the literature 38

Table 4.1 Models for the computational experiments with CPLEX® 49

Table 4.2 Instances for the computational experiments 51

Table 4.3 Results for the partial-league instances without minimization of total

travel distance . 56

Table 4.4 Results for the partial-league instances with minimization of total travel

distance . 57

Table 4.5 Results for the 2012 instances with and without minimization of total

travel distance . 58

Table 4.6 Results for the 2012-13 season schedule of the Eastern Conference . . . 58

Table 4.7 Results for the entire-league instances without minimization of total

travel distance . 59

Table 5.1 Statistics on initial schedules . 80

Table 5.2 Results on different number of games being removed per LNS iteration 84

Table 5.3 Best-found solutions on different parameters settings for the ALNS . . 92

Table 5.4 Best-found solutions for instances with extra arena-available dates . . . 94

Table 5.5 Typical results for instances without extra dates 95

Table 5.6 Best-found schedules for instances without extra arena-available dates . 97

x

LIST OF FIGURES

Figure 5.1 Constraint violations in initial schedules 81

Figure 5.2 Selection probabilities for the destroy operators 88

Figure 5.3 Best-found solutions on different configurations of operators 98

Figure 5.4 Selection probabilities for the chosen operators 99

xi

APPENDIX

Appendix A PSEUDOCODE OF THE ALNS ALGORITHM 109

Appendix B FLEURENT’S HEURISTICS . 111

Appendix C DESTROY OPERATORS . 116

Appendix D REPAIR OPERATORS . 120

1

CHAPTER 1

INTRODUCTION

The National Hockey League (NHL), one of the four leading professional sports leagues

in North America, includes 30 teams located throughout the vast territories of the United

States and Canada. Every team plays 82 games, 41 at its own home arena and 41 away (at

arenas of its opponents), over slightly more than six months of the NHL regular season, which

usually starts in early October each year. By that time, a schedule for all the 1230 games

must already have been determined. As for any major sports league, the NHL must rely

on high-quality schedules in order to make games more attractive so as to increase revenues

from sources that include broadcasting rights and game attendance.

Obviously, good schedules should also take into account some fairness issues, such as

reduction of fatigue for players and minimization of travel distance for teams. Because of

many conflicting, and often subjective, interests from several stakeholders, including players’

association, fans, teams’ owners, media, and officials’ association, finding a good schedule for

the games of the NHL is a very difficult task.

In fact, sports scheduling problems in general are very challenging and many optimization

techniques have been used to deal with them. The recent annotated bibliography by Kendall

et al. (2010) references over 160 papers on sports scheduling, most of them having been

published in the past decade alone. Also, Knust (2014) maintains an up to date collection

of (currently more than 250 references) on different topics of sports scheduling and classifies

them according to different models, methods, and sports disciplines. Practical papers have

addressed many sports disciplines, such as soccer, baseball, golf, cricket, basketball, and ice

hockey. Overall, those works point out that both artificial and real-world instances of sports

scheduling problems are often surprisingly hard to be solved, even for leagues involving only

a few teams.

This thesis focuses on the task of scheduling the games of the NHL regular season. We

refer to that task as the NHL scheduling problem (the same term used in Costa, 1995).

Although the literature on practical studies of sports scheduling has widely dealt with cases

where, as for the NHL, a specific venue is associated to each team in the league, they have

often been limited to round-robin tournaments, which is not the general structure of the NHL

regular season. In fact, rather than every team playing all others a fixed number of times, an

NHL team usually plays more often against opponents located in its own geographical area.

And even though the exact number of games, and the places, that teams play one another are

2

determined beforehand, there is no predefined structure on the course of the games. Indeed,

during each week different teams may play different numbers of games, usually any number

in the range from two to five, and for any day, the number of games that the teams will

individually have played will in general be also different from each other. Therefore, the

round structure, so widely considered in other studies, is not suitable for the NHL scheduling

problem. In addition, unlike most cases in the sports scheduling literature, where the ideal

pattern for any team is usually to alternate between home and away games, it is allowed (and

even preferred) that an NHL team visits several opponents on the road without a return

to home. Such long “road trips” would thus lead to a reduction on the overall travelling

distances for the teams. Nevertheless, because the home locations of the NHL teams are

unevenly scattered throughout a vast region, some teams have to travel much further than

others in order to complete their individual schedules. This unfavorable situation for the most

geographically isolated teams could be somewhat aggravated or relieved, depending on how

games are scheduled for those teams. In practice, travel distance is then one of the issues to

be addressed in the NHL scheduling problem. In general, the requirements found in practical

studies of sports scheduling are related to economics and fairness. For example, Bartsch

et al. (2006) highlight the main issues dealt in several cases, including how well-distributed

the most attractive games are over the season, availability of arenas, and number of rest

days between two consecutive games. Nurmi et al. (2010) propose a framework for highly-

constrained sports scheduling problems where they enumerate 36 types of constraints found

in various sports leagues. Those constraints, however, cover only part of the requirements

for a good NHL schedule.

Despite the recent growing scientific interest in sports scheduling, only a few researchers

have addressed the NHL scheduling problem. The first systematic study leading to a success-

ful approach was carried out in the late 1980s by Fleurent (1987), which was then (partially)

reported in the paper by Ferland and Fleurent (1991). They developed a support system

made up of various specialized heuristic procedures to help an expert to schedule the games

in an interactive manner. They also present the first mathematical model for the problem.

Unfortunately, that model considers only certain aspects of their own description of the prob-

lem. And even though only binary variables were used, it turns out to be a non-linear model.

A few years later, Costa (1995) proposed a hybrid approach that combines Tabu Search and a

genetic algorithm in order to solve combinatorial optimization problems in general, and then,

he used the NHL scheduling problem to illustrate the effectiveness of his approach. In both

studies, the descriptions of the problem enumerate several issues regarding each team, such

as availability of arenas, number of games over a few consecutive days, duration and number

of away games in a row, number of days between games involving the same pair of oppo-

3

nents, and daily travel distances. On the whole, their strategy consists in allowing violations

of only some constraints and penalizing them in the objective function of a minimization

problem. However, comparing one study to the other, the constraints are not considered

in the same manner. In fact, there is no general agreement on a precise statement of the

problem, which is typical in practical cases of sports scheduling, since many complex goals

are often involved. In particular, Ferland and Fleurent (1991) give exceptional attention to

the availability of arenas, as some teams may hardly be able to provide the minimum number

of arena-available dates for its home games, and their approach never schedule a team to

play home on a day that has not been provided to the scheduler by that team. On the other

hand, Costa (1995) allows violations for the constraints on the availability of arenas, and

for example, regarding the 1993-94 regular season, when the NHL was formed by only 24

teams but every team already had to play 41 games at home, his best result shows that,

even though at least 56 arena dates (thus 15 “extra” dates) had been provided by each team,

more than a hundred games were surprisingly scheduled on days when the arena of the home

team was not available. Finally, in a more recent work, Craig et al. (2009) describe and

analyze a system that uses a multi-objective evolutionary algorithm to schedule the games

of the NHL regular season. The system is reported to produce a set of schedules that offer a

range of trade-offs across the following three objectives: minimizing the total distance that

all the teams must travel; avoiding the unfair situation where only one of the opponents in a

game must travel a long distance over a short period of time in order to play that game; and

minimizing streaks of either more than three home games or more than three away games

for a team. Their assumption that, in general, streaks longer than three should be avoided is

not completely consistent with the previous studies. Indeed, at least for long distance visits,

both Ferland and Fleurent (1991) and Costa (1995) engage in creating road trips made up

of as many as seven consecutive away games. In our view, however, the main limitation in

the study by Craig et al. (2009) is that they overlook essential constraints of the problem,

specially the availability of arenas. In particular, a team might be scheduled to play home

on any day of the regular season, and the only constraint they explicitly mention is that in

a feasible schedule a team cannot be assigned to play more than once a day.

This thesis revisits the NHL scheduling problem, describing some basic requirements for

good NHL schedules, and present two approaches that we are proposing to construct such

schedules. One approach is based on an integer linear programming (IP) formulation that

we are introducing for the NHL scheduling problem and uses a commercial state-of-the-art

solver to exactly solve instances of moderate size of the problem. The other approach is

an adaptive large neighborhood search (ALNS) to approximately solve instances of practical

size.

4

In particular, this thesis reinforce the importance of crucial issues that have been high-

lighted in the seminal work by Fleurent (1987), as for example the scarce availability of arena

dates to hold the home games of the teams. Some computational experiments on a C++

implementation that uses the solver CPLEX® are reported on several variants of the proposed

IP formulation. Such variants arise from different constraints being relaxed and their vio-

lations penalized in the objective function. Because, in general, those variants can enable

the solver to deal only with moderate size of instances of the problem, other computational

experiments are described on the ALNS as an alternative approach to solve instances of re-

alistic size. For this approach, another model is described, in which most of the constraints

are allowed to be violated during the solution process and a penalty value is introduced into

an objective function that evaluates the “cost” of a schedule as a weighted summation of the

constraint violations. The ALNS tries then to generate schedules that minimize the value of

the objective function. Unlike the approaches by Ferland and Fleurent (1991) and by Costa

(1995), where most of the requirements are treated as “hard” constraints (which must not be

violated), our strategy is then more flexible, allowing easier exploration of a wide variety of

schedules during the solution process. In addition, by penalizing violations of constraints in

the objective function, we can mimic different degrees of preferences with the use of different

penalty weights.

This thesis also describe the creation of several instances based on official NHL schedules.

The reported results are very promising as, in particular, the ALNS is able to solve to op-

timality all instances that have only six extra arena dates per team. It accounts that even

by only rescheduling the games to the same arena dates utilized in official NHL schedules,

in general, our solutions violate much fewer constraints of the model. But the results also

reinforce the importance of having (even just a few) extra arena dates per team. The final

remarks on this study mention our confidence that the ALNS approach is able to identify

unnecessary weakness in the NHL schedules, makes the NHL managers aware that the sched-

ules could be improved with respect to different requirements, and even lead them to consider

other desired features that they might not have previously taken into account.

The remainder of this thesis is organized as follows. In Chapter 2, we present some basic

terminology, and a short review of the literature about the NHL scheduling problem and also

about more general sports scheduling problems. We describe the NHL scheduling problem

in Chapter 3, specifying the constraints that we consider in this study. An IP formulation

is then proposed for each of those constraints in Chapter 4, and computational results are

reported on different models that are based on the proposed formulations. The generation of

the instances we have used in the experiments are also described in Chapter 4. In Chapter 5,

we propose an ALNS algorithm, which also includes a review of the heuristics introduced

5

by Fleurent (1987), and outline the results obtained with the ALNS for instances of realistic

sizes. Finally, in Chapter 6, we draw some concluding remarks and suggest future directions

for this study.

6

CHAPTER 2

LITERATURE REVIEW

The NHL scheduling problem considered in this thesis belongs to the broader field of sports

scheduling, which can be traced back over more than four decades. In general, problems in

sports scheduling are very challenging and they have attracted the interest of a number of

researchers from different fields, especially graph theory, combinatorial optimization, and

applied mathematics.

The annotated bibliography by Kendall et al. (2010) references over 160 papers on sports

scheduling, most of them having been published in the past decade alone. For pertinent

surveys, we refer the reader to Easton et al. (2004), which review the main issues that

have been considered in the literature prior to 2004; to Drexl and Knust (2007), which

survey graph-based models and introduce resource-based models; and to Rasmussen and

Trick (2008), which propose an unified terminology and review the literature on round-robin

tournaments.

Apart from that, Knust (2014) maintains an up to date collection of references (currently

with more than 250 papers) on different topics of sports scheduling and classifies them accord-

ing to different models, methods, and sports disciplines. The reported approaches include

integer programming (more than 60 papers), constraint programming (25), heuristics (16),

and metaheuristics (30). Practical papers have addressed several sports disciplines, such as

soccer (more than 30 papers), baseball (12), basketball (12), golf (6), cricket (6), and ice

hockey (6). Overall, those works point out that both artificial and real-world instances of

sports scheduling problems are often surprisingly hard to be solved, even for leagues involving

only a few teams.

In this chapter, we provide some basic terminology used in sports scheduling, and as a

way to highlight common issues and challenges arising in several practical applications, we

discuss a few problems that have been widely addressed in the related literature. We also

outline typical approaches reported on other studies and point out their relevance (or lack

thereof) to the scheduling of the NHL regular-season games. Although the NHL scheduling

problem is only described later on, in Chapter 3, we confront here all the past known studies

concerning this particular application.

On the whole, we focus on sports scheduling for league tournaments in which every team

(or club) is assumed to have an associated venue where games between two opposing teams

take place. Such is, of course, the case of the NHL scheduling problem, where every team is

7

considered to own a specific arena and each game is played at the arena of one of the two

opposing teams in the game. In particular, studies in other contexts, as that of the so-called

Balanced Tournament Design Problem (Lamken, 1990), in which all the teams share the

facilities holding the games are out of the scope of this thesis.

2.1 Basic terminology

For any particular game, the team that owns the venue where that game takes place is

said to be the home team, while its opponent is called the away team. A game is said to be a

home game with regard to the team that owns the venue where that game is to be held, but

it is called an away game with respect to the other team. A road trip (or simply trip) for a

team is a sequence of consecutive away games which that team plays without returning home

in-between. The team corresponding to a certain road trip is referred to as the traveling

team. Similarly, a sequence of consecutive home games (with no away game in-between) for

a team is called a home stand.

Sports scheduling problems are usually classified into two large groups: temporally con-

strained and temporally relaxed problems (Kendall et al., 2010). Here, we refer to them

as time-constrained and time-relaxed problems, respectively (as in, e.g., Knust, 2010). This

classification is based on the distribution of the games among the available time slots, the

so-called rounds, of the tournament. By definition, no team plays more than a single game

during each round. In the time-constrained problems the number of rounds is at its minimum

with respect to the existence of a feasible distribution of the games, which defines a compact

schedule. Each team plays then exactly one game in each round of a compact schedule for

a league with an even number of teams. On the other hand, in time-relaxed problems more

rounds than that minimum threshold is available, and a schedule is said to be relaxed for

such cases. If a team is not scheduled to play during a certain round then the team is said

to have a bye on that round.

As noted by Easton et al. (2004), nearly all the literature on the design of sport schedules

deals with models for round-robin tournaments, to which we draw considerable attention in

this chapter. There are of course other structures, as for example the Swiss tournament,

ladder, knockout and double elimination (Rokosz, 2000), but they are out of the scope of this

thesis.

2.1.1 Round-robin tournaments

A competition where the teams confront one another a fixed number of times is called a

round-robin tournament (RRT). In most tournaments, especially for major professional sports

8

leagues, each team plays two times against every other team (as noted by, e.g., Rasmussen

and Trick, 2008). This is particularly referred to as a double round-robin tournament, but

single, triple, and quadruple round-robin tournaments, where respectively one, three, and

four games are played by each pair of teams, also occur in several leagues around the world.

As an example, all national soccer championships in Europe uses an RRT during their

regular season (stage). In particular, among the 25 European soccer competitions for which

Goossens and Spieksma (2011) overview schedule formats, a total of 19, 4, and 2 competitions

follows a double, a triple, and a quadruple RRT, respectively.

Scheduling an RRT consists in determining the round and the venue in which every game

will be played. In its most common form, where the problem is time constrained, the basic

sports scheduling problem for a league can be stated as follows. Given a league consisting of

an even number n ≥ 2 of teams identified by the integers in the set T = {1, 2, . . . , n}, and

a tournament where each team must play ` ≥ 1 times against every other team, assign all

the n(n − 1)`/2 games of the tournament to its (n − 1)` rounds by determining, for each

k ∈ {1, 2, . . . , (n− 1)`} and for each i ∈ T , which opponent j ∈ T \ {i} plays against team i

in the kth round, and also determining whether i plays at home (so that j plays away at i’s

venue) or i plays away at j’s venue (so that j plays at home) in that round. In cases where

the league consists of an odd number n′ of teams, a “dummy team” n′ + 1 is introduced (as

to have n′ + 1 = n in the preceding statement), and an actual team is considered to have a

“bye” whenever it is assigned to play against n′ + 1.

While an RRT has the advantage of ensuring that all teams individually play the same

number of games, the number of teams in the league determines the length of the respective

season (in number of rounds). This might be seen as a drawback if the league consists of

either only a few or relatively many teams.

In a recent study, Larson and Johansson (2014) analyze the expansion of an RRT in which

adding a single game for each pair of teams as to preserve an RRT format would cause a too

high increase (50%) in the total number of games in the schedule. In particular, they report

that the 14 team owners in the Elitserien (the top Swedish handball league) considered its

traditional 26-game double RRT to be too short, but a possible 39-game triple RRT was

deemed too long. Elitserien decided then to expand its season by splitting the league into

two divisions of seven teams each, and by adopting a schedule where an intra-divisional single

RRT is played before starting a double RRT between all teams in the league. The first half

of that double RRT is, in turn, identical to the second half, except for the location of each

game, which alternates between the homes of the two corresponding teams. In the literature,

this is known as a mirrored tournament, a structure used, for instance, by several soccer

leagues in South America. A mirrored double RRT is usually addressed as two consecutive

9

tournaments, each one being a single RRT.

This asymmetric format, in which pairs of teams play different numbers of games be-

tween them if they are either from the same division or from two distinct divisions, occurs

in many sports leagues, especially in North America. Indeed, in all the leading major pro-

fessional sports leagues in the United States and Canada, which include the Major League

Baseball (MLB), the National Football League (NFL), the National Basketball Association

(NBA), and also the National Hockey League (NHL), the number of games for each pair of

teams is determined, among other factors (like the standings from the previous season), by

their respective conference and divisional alignment. Despite several motivations in favor of

an asymmetric format, including the benefit of minimizing travel distances for teams and

promote local rivalries (DePalma, 2004; Havard, 2014), the resulting “unbalanced schedules”

might rise concerns about the fairness of the competition (Lenten, 2013).

In the case of the NHL, changes in the number of games that teams play against each

other was extensively investigated by Fleurent and Ferland (1993) in response to expansions

of the NHL in the early 90s. They used IP to generate possible season structures for different

numbers of teams and numbers of games per team. Obviously, the focus of that study is then

part of the data provided for the NHL problem of this thesis.

Nowadays, because the number of teams is currently not the same for all divisions of the

NHL, the teams are especially susceptible to unfair schedules. To be more precise about the

structure of the league, the NHL teams are split into four divisions of either seven or eight

teams: two seven-team divisions form one conference, and two eight-team divisions form

another conference. As for the structure of the season, it is characterized as follows. The

teams in one conference play a double RRT against the teams in the other conference. The

teams in one division, which is inside a particular conference, play a triple RRT against the

teams in the other division inside the same conference. By contrast, the teams inside any

given division does not play an RRT: each team plays either four or five games against the

other teams in its own division. Apart from that, there is no particular sequence of rounds

associated to either intradivision or interdivisional games, and thus the NHL regular season

structure is different from the Elitserien structure that we mentioned earlier (Larson and

Johansson, 2014). Even the classical notion of “rounds” would be inaccurate in the context

of the NHL scheduling problem, as at any time before the end of the tournament the teams

will normally have played different numbers of games.

Despite the recent growing scientific interest in sports scheduling, very few researches

have been carried out on the NHL scheduling problem. Generally speaking, this problem

consists in creating schedules for the regular-season games of the NHL, which are subject to

several constraints involving unavailability of some arenas on most days, limitation on the

10

number of games a team can play over a few days, requirement of at least a certain number of

days between two games involving the same opposing teams, and minimization of traveling

distances, to mention but a few. While the NHL scheduling problem will be extensively

described only in Chapter 3, we address now the literature on this particular application in

sports scheduling.

2.2 Literature on the NHL scheduling problem

The first systematic study leading to a successful approach to scheduling the NHL games

was carried out in the late 1980s by Fleurent (1987), which is partially reported in the paper

by Ferland and Fleurent (1991). Their work was motivated by the disappointing experience

of Fraser (1982), who had developed a rather inflexible generator of road trips that is reported

to be unable to produce feasible schedules for all the NHL games.

In his study, Fraser (1982) had in fact concluded that “due to the unpredictability of

some constraints and the human relationships involved in others, its impractical to expect

that a computer program will ever produce a final schedule which would require no tuning

or adjustment” (as cited in Costa, 1995). To overcome this drawback, Ferland and Fleurent

(1991) highlight the importance of considering an approach which would allow an expert

to include in the scheduling process his own experience and all relevant requirements he

might have. They develop then a support system made up of various specialized heuristic

procedures to help a person to schedule the games in an interactive manner.

Their heuristics (which will be described in more detail in Chapter 5) can be outlined as

follows, where a “free game” is a game that has not yet been scheduled at a specific time of

the scheduling process.

— Forced-trip heuristic Schedule free games by first identifying long periods of days with

no arena-available dates for a team, and then, by assigning the respective team to visit,

in a single road trip, at most seven of its distant opponents exclusively during the

corresponding period of arena unavailability.

— Forced-home heuristic Schedule, for each road trip lasting more than one week, two

home games for the respective traveling team: one game on its last (latest) arena-

available date before the trip, and the other, on its first arena date after the trip.

— Free-trip heuristic Schedule all currently free games opposing teams based far from each

other by first identifying, for each team, at most three of its distant opponents to be

visited in a single trip, and then, by scheduling every one of those long-distance trips

on a period that does not violate the hard constraints of the problem and that contains

the minimum possible number of arena-available dates of the visiting team.

11

— Weekend-game heuristic Schedule as many free games as feasibly possible respectively

on Saturdays, on Fridays, and on Sundays, by trying not to schedule a team to play away

on a weekend containing some of its own arena-available dates, and by never putting

a team to play an away game within a period when it has already been scheduled to

visit distant opponents.

— Weekday-game heuristic Schedule as many free games as feasibly possible on weekdays

from Monday through Thursday, by trying not to schedule a team to play away on its

own arena-available dates, and by never assigning days from periods of long-distance

visits for the teams involved in the game being scheduled.

— Exchange heuristic Schedule as many free games as feasibly possible by allowing some

of the previously scheduled short-distance visits to be rescheduled on alternative days.

In addition, Ferland and Fleurent (1991) propose the first mathematical model for the

NHL scheduling problem. Unfortunately, that model does not consider all aspects of their

own description of the problem. For example, different requirements over road-trip games for

a team are not taken into account. And even though only binary variables are used, it turns

out to be a non-linear model that involves, for example, products of multiple variables.

A few years later, Costa (1995) proposed a hybrid approach that combines Tabu Search

and a genetic algorithm in order to solve combinatorial optimization problems in general,

and then, he used the NHL scheduling problem to illustrate the effectiveness of his approach.

In both of those research studies, the descriptions of the problem enumerate several issues

regarding each team, such as availability of arenas, number of games over a few consecutive

days, duration and number of away games in a row, number of days between games involving

the same pair of opposing teams, and travel distances. On the whole, their strategy consists

in allowing violations of some constraints but penalizing them in the objective function of a

minimization problem.

However, comparing one study to the other, the constraints are not considered in the

same manner. In fact, there is no general agreement on a precise statement of the problem,

which is typical in practical cases of sports scheduling, since many complex goals are often

involved in the process.

In particular, Ferland and Fleurent (1991) give exceptional attention to the availability of

arenas, as some teams may hardly be able to provide the minimum number of arena-available

dates for its home games, and their approach never schedules a team to play at home on a

day that has not been provided to the scheduler by that team. On the other hand, Costa

(1995) allows violations for the constraints on the availability of arenas.

As an example, regarding the 1993-94 regular season, when the NHL was formed by only

24 teams but every team already had to play 41 games at home, the best result by Costa

12

(1995) shows that, even though at least 56 arena dates (thus 15 “extra” dates) had been

provided by each team, more than a hundred games were surprisingly scheduled on days

when the arena of the home team was supposed not to be available.

Finally, in a more recent work, Craig et al. (2009) describe and analyze a system that uses

a multi-objective evolutionary algorithm to schedule the games of the NHL regular season.

The system is reported to produce a set of schedules that offer a range of trade-offs across

the following three objectives: minimizing the total distance that all the teams must travel;

avoiding the unfair situation where only one of the rivals in a game must travel a long distance

over a short period of time in order to play that game; and minimizing streaks of either more

than three home games or more than three away games for a team. In addition, as in Costa

(1995), they allow a team to be scheduled to play more than one game on the same day

during the solution process, but eventually discard any schedule where such infeasible setting

happens.

The assumption, in Craig et al. (2009), that streaks longer than three should be avoided

is not completely consistent with the previous studies. Indeed, at least for long distance visits

for a team, both Ferland and Fleurent (1991) and Costa (1995) engage in creating road trips

made up of as many as seven consecutive away games, which in turn seems more in line with

actual NHL schedules. Evidence for this is in tables 2.1 and 2.2.

In our view, however, the main limitation in the study by Craig et al. (2009) is that they

overlook essential constraints of the problem, specially the availability of arenas. A team

might, for instance, be scheduled to play home on any day of the regular-season period, and

the only constraint they explicitly mention is that in a feasible schedule a team cannot be

Table 2.1 Length of home stands in official NHL schedules Frequency of home stands by their
individual number of games (#g) in the official schedules of past seasons

#g 2009-10 2010-11 2011-12 2012-13 2013-14

1 214 (42.04%) 221 (45.29%) 216 (42.19%) 139 (40.29%) 236 (40.48%)
2 149 (29.27%) 147 (30.12%) 145 (28.32%) 104 (30.14%) 182 (31.22%)
3 75 (14.73%) 64 (13.11%) 88 (17.19%) 62 (17.97%) 86 (14.75%)
4 40 (7.86%) 27 (5.53%) 37 (7.23%) 22 (6.38%) 38 (6.52%)
5 21 (4.13%) 14 (2.87%) 14 (2.73%) 12 (3.48%) 31 (5.32%)
6 6 (1.18%) 10 (2.05%) 8 (1.56%) 3 (0.87%) 7 (1.20%)
7 4 (0.79%) 3 (0.61%) 2 (0.39%) 3 (0.87%) 2 (0.34%)
8 1 (0.20%) 2 (0.39%)
9 1 (0.17%)

10 1 (0.20%)

13

assigned to play more than once a day.

In chapters 3 and 5 of this thesis we explore in more details the research studies by Ferland

and Fleurent (1991) and by Costa (1995), including our remarks on their models for the NHL

scheduling problem and also on the solution approaches they proposed to solve it.

To provide a more general context for the NHL problem of our study, we review in the

remaining of this chapter a number of scientific publications in sports scheduling.

2.3 Literature on time-constrained sports scheduling problems

By far, most of the studies on sports scheduling either deals with leagues that play some

time-constrained RRT as their regular-season schedules, or addresses a number of fundamen-

tal questions regarding such well-structured tournaments. Although the whole structure of

the NHL regular season does not induce a compact schedule, the literature on both practical

and theoretical aspects do provide us with insights into solving the NHL scheduling problem.

In line with the most fundamental aspects, Easton et al. (2004) highlight the direct analogy

between latin squares and single RRT (and thus mirrored double RRT). A latin square of

order n is an n×n array filled with the elements from the set S = {1, 2, . . . , n}, such that each

element appears exactly once in each row and exactly once in each column. Reductions of

part of the extensive studies on latin squares to single RRT scheduling are presented in Easton

(2003), providing some important results with regard to, e.g., the scheduling of tournaments

with fixed games, which is one of the most common constraints found in practical applications

(Easton et al., 2004). Specifically, Easton (2003) uses the NP-completeness results on partially

completed latin squares in Easton and Gary Parker (2001) to show that a single RRT with

Table 2.2 Length of road trips in official NHL schedules Frequency of road trips by their
individual number of games (#g) in the official schedules of past seasons

#g 2009-10 2010-11 2011-12 2012-13 2013-14

1 253 (47.83%) 262 (50.38%) 255 (47.93%) 165 (46.35%) 295 (48.60%)
2 132 (24.95%) 133 (25.58%) 130 (24.44%) 96 (26.97%) 131 (21.58%)
3 77 (14.56%) 73 (14.04%) 77 (14.47%) 50 (14.04%) 93 (15.32%)
4 35 (6.62%) 29 (5.58%) 45 (8.46%) 24 (6.74%) 59 (9.72%)
5 18 (3.40%) 18 (3.46%) 15 (2.82%) 13 (3.65%) 20 (3.29%)
6 11 (2.08%) 4 (0.77%) 7 (1.32%) 6 (1.69%) 6 (0.99%)
7 2 (0.38%) 1 (0.19%) 2 (0.38%) 1 (0.28%) 2 (0.33%)
8 1 (0.19%) 1 (0.16%)
9 1 (0.19%) 1 (0.28%)

14

fixed games can be scheduled in polynomial time only for a very few special cases, as the

problem is NP-complete even i) if on average each team has two games scheduled; or ii) if

all but three rounds are completely scheduled and every team has at most three unscheduled

games.

A latin square of order n, with n even, is closely related to 1-factorization of a complete

graph Kn, which is, in turn, equivalent to an edge coloring of Kn and also to a decomposition

of Kn into perfect matchings. Therefore, another analogy (probably more popular) occurs

between an RRT and an edge coloring of Kn with n − 1 colors (Easton et al., 2004). To

be more precise, an oriented coloring of the graph Kn, which is defined by a 1-factorization

of Kn together with an orientation, completely defines a schedule for the single RRT: each

node k in the graph correspond to a team k ∈ {1, 2, . . . , n} in the league and an arc (i, j)

represents the game to be played by team i against team j, at the venue of team j, on the

specific round represented by each 1-factor (and thus by each color). Several research studies

focus on graph-based models, including de Werra (1980, 1981, 1982, 1985, 1988), Knust and

von Thaden (2006), Schreuder (1980, 1992) and Van Weert and Schreuder (1998).

Although Combinatorics has efficient methods for some special situations (Easton, 2003;

Hamiez and Hao, 2004), scheduling an RRT normally becomes a very hard combinatorial

problem when additional constraints, such as arena availability or travel distances, are con-

sidered. Furthermore, researches in general have provided compelling evidence that develop-

ing appropriate models in sports scheduling is as much of an issue as the choice of solution

methodologies to be employed (Trick, 2005; Kendall et al., 2010) .

In particular, traditional approaches often decompose the problem into at least the fol-

lowing two phases:

(i) determining the opponent of every team in each round; and

(ii) determining which team in every match plays at home (so that its opponent is the one

to play away) in each round.

Such phases have been sequentially solved both in the order we present them as well as in

the reverse order. Indeed, Knust (2014) lists 12 references (e.g., Trick, 2001; Elf et al., 2003;

Miyashiro and Matsui, 2005; Post and Woeginger, 2006; Brouwer et al., 2008; Cheung, 2008)

that uses a first-schedule-then-break (FSTB) approach, which first deals with phase (i), and

then, with phase (ii); and 20 references (e.g., Schreuder, 1992; Nemhauser and Trick, 1998;

Henz, 2001; Miyashiro et al., 2003; Rasmussen and Trick, 2007; Briskorn, 2008a; Knust and

Lücking, 2009; Larson and Johansson, 2014) that uses a first-break-then-schedule (FBTS)

approach, which proceed from phase (ii) to phase (i), instead. In those terms, a “break”

refers to the occurrence of a round when a team shifts to a an away game after having played

at home in the previous round, or the team shifts to a home game after an away game.

15

Decomposition approaches like that have benefited from fundamental progress in the

design of models and algorithms for some specially-created sports scheduling problems. In

general, triggered by real-world applications, such rather theoretical problems gave rise to

most of the current literature on sports scheduling, which normally does not take into account

many of the complex issues that appear in practice. In particular, the problems are often

easy to state, either by some mathematical formulation (specifying a few types of constraints

and, more often than not, an objective function) or by no more than a descriptive definition.

This allows researchers to focus not only on the development of appropriate models but also

in the improvement of solution methodologies which, in turn, may provide inspiration for

dealing with practical problems, including others than those in sports scheduling.

Throughout the following subsections, we present an informal description of some of the

most investigated problems in the sports scheduling literature, and we also point out a number

of contributions to each of them. In particular, the examples we mention here include both

studies that focus “only” on constructing a feasible schedule and studies that try to find the

best schedule with regard to a certain evaluation function.

2.3.1 Finding home-away patterns

A home-away pattern (HAP) is a sequence of home games, away games, and byes related

to a particular team and according to which the team plays during the tournament. Such a

pattern is often represented by a vector with an entry for each round containing either an

H, an A, or a B to indicate that the team has, in the corresponding round, a home game,

an away game, or a bye, respectively. Regarding the construction of a schedule for n teams,

an HAP set is a set of exactly n home-away patterns, each one associated with a particular

team.

Obviously, creating an HAP set in order to have a corresponding RRT schedule requires

to satisfy certain constraints (enforcing, for example, a proper pairing of the patterns). An

HAP set for which an RRT schedule exists is said to be feasible. And the task of determining

whether a given HAP set is feasible is known as the HAP Set Feasibility Problem (Briskorn,

2008a). Researches have been conducted to establish necessary and sufficient conditions

for the feasibility of a given HAP set to different types of tournaments (de Werra, 1980,

1988; Schreuder, 1992; Van Weert and Schreuder, 1998; Easton et al., 2001; Miyashiro et al.,

2003; Lim et al., 2006; Briskorn, 2008b). However, sufficient conditions for general HAP set

feasibility remain unknown.

16

2.3.2 Optimizing breaks

The number of consecutive games played away (at home likewise) by any given team is

strongly related to fairness among all the teams in a tournament (de Werra, 1981) and also

to attractiveness of the games (Bartsch et al., 2006; Drexl and Knust, 2007). Therefore,

the lengths of both sequences of Hs and sequences of As in an HAP is especially relevant in

virtually any sports scheduling problem. When a team plays either two consecutive games

at home or two consecutive games away, that team is said to have a break in the last of the

corresponding two rounds. Ideally, the course of games played by any given team would be

alternated between home and away games as regularly as possible.

Minimizing breaks is the first objective in sports scheduling (Kendall et al., 2010). Lower

bounds on the number of breaks have been stated, notably by de Werra (1981), for different

kinds of tournaments. In particular, while it is possible to construct an RRT without any

break for an odd number of teams, an RRT for n teams has at least n− 2 breaks if n is even.

Theoretical results and efficient (polynomial) methods on generating an RRT schedule with

minimum number of breaks are well known when no additional constraints are considered

(de Werra, 1981, 1988; Schreuder, 1992; Van Weert and Schreuder, 1998).

However, no efficient method is currently known when a cost is associated to each assign-

ment of a game to a round and the goal is to find a schedule having that minimum number

of breaks while minimizing the sum of the costs of the assignments (Briskorn, 2008b). For

this special case, Briskorn and Drexl (2007) develop and apply, at first, a branch-and-price

approach (with slightly disappointing results), and then, a heuristic variant of the same ap-

proach that is reported to provide good solutions for random instances (yet limited to no

more than 10 teams).

In virtually all practical applications, schedules with the minimum number of breaks we

just mentioned (i.e., n − 2 for n teams) normally does not satisfy many kinds of requests.

Examples of such requests are presented by Nemhauser and Trick (1998) for the basketball

competition of the Atlantic Cost Conference (ACC), which includes restrictions on the place

where certain teams can play on a given round and restrictions on the order in which specific

opponents are visited by a team. Inspired by the works of Russell and Leung (1994) and of

Schreuder (1992), they solved the scheduling problem of the ACC through a combination of

IP and complete enumeration. In fact, Nemhauser and Trick (1998) used a rather typical

decomposition approach that at first generates feasible home-away (and bye) patterns by

enumeration; after, uses IP to find pattern sets for “placeholder teams”; next, uses also

IP to find timetables for placeholders; and then, assigns actual teams to placeholders by

complete enumeration. For each one of these four phases, a certain part of the constraints of

the problem was taken into consideration. Shortly later, a similar decomposition approach

17

was used by Henz (2001) with the crucial difference that all the phases were then solved

only through CP. Comparing to the results from Nemhauser and Trick (1998) for the ACC

1997-98 season, in which around 24 hours were needed to create all the feasible schedules,

this change in the approach led Henz (2001) to obtain the same schedules in less than one

minute. Almost all this drastic reduction in solution time was achieved in the last phase alone,

when assigning teams to placeholders. In order to solve the same problem, as well as other

variants of it with break minimization, Rasmussen and Trick (2007) proposed an algorithm

that iterates between those four phases where, for a certain iteration, only a limited number

of the patterns are generated and Benders cuts arising from infeasibilities identified in other

phases are used to generate new patterns. The algorithm was applied to problems on both

mirrored and non-mirrored schedules, with and without place constraints, and is reported

to excel in performance compared to previous approaches. Later on, Rasmussen (2008) also

succeed in scheduling soccer games for a triple RRT of the Danish Football Association

through the same logic-based Benders approach.

Among other sports-scheduling applications involving minimization of breaks, we mention

the construction of a double RRT schedule for the “Serie A” of the Italian Major Football

League by Della Croce and Oliveri (2006). They report to be able to generate several sched-

ules by adapting the decomposition approach of Nemhauser and Trick (1998), which, in the

first phase, generates an HAP set that satisfies several constraints (some of them related to

cable television requirements); in the second phase, produces a corresponding RRT schedule

with placeholder teams; and, in the third phase, assigns actual teams to the placeholders

in that schedule. Also, Van Hentenryck and Vergados (2005) propose a simulated annealing

algorithm that is reported to find optimal solutions very quickly for large instances (e.g., 28

teams).

Related to this context, many studies involve finding a schedule that minimizes the num-

ber of breaks for the special situation in which, on every round, the opponent for each team

is already known. Namely, given an opponent schedule, which is a timetable with the rows

individually associated to the teams, and the columns to the rounds, such that every entry

specifies the opponent of the respective team on the corresponding round, the Break Mini-

mization Problem (which we refer to as BMP) consists in finding an associated feasible HAP

set that results in a schedule with the minimum number of breaks. Some authors (e.g., Trick,

2011) uses the acronym CBMP to refer to a more general constrained problem where the

minimization of breaks is not necessarily subject to a certain opponent schedule, but to any

kind of constraint instead.

The BMP has been widely addressed in sports scheduling papers. Whether embedded

in more general models or in practical applications, it normally appears in the two-phase

18

decomposition approach we mentioned earlier (p. 14), in which all the games (matching of

teams) are assigned in one phase (i), while the place for each game is only determined in the

other phase (ii).

An extensive study about the BMP (and also about some of its variations, which include

new constraints) is conducted by Régin (2001) through the use of a CP approach that involves

global constraints with which efficient filtering algorithms are associated. He was able to

solve instances of up to 20 teams. Based on the discoveries of that study, Trick (2001)

presents an IP model for the BMP that is reported to be at least competitive with Régin’s

CP model. He was able to solve instances of up to 22 teams. Elf et al. (2003) transform

the BMP into a maximum cut problem in an undirected graph and then apply a branch-

and-cut algorithm to both randomly-generated instances and the real-world instance of the

Bundesliga 1999-2000 (the first national German soccer league). They were able to solve

instances of up to 26 teams. Miyashiro and Matsui (2006) and Suzuka et al. (2007) formulate

the problem as a maximum restricted cut and a maximum 2-satisfiability problems, and

apply the approximation algorithm by Goemans and Williamson (1995), which is based on a

positive semidefinite programming relaxation. They were able to solve instances of up to 40

teams.

Despite the advantages of having a schedule with minimum number of breaks, longer

sequences of consecutive away games would imply fewer road trips for a team and thus

reduced traveling distances in total. Therefore, in some contexts, normally where venues are

located far from each other (as in the NHL problem), it is preferable to have a large number

of breaks, so as to minimize traveling distances. Russell and Leung (1994) are the first to

consider the problem of finding a HAP set that maximizes the number of breaks for a given

opponent schedule. But breaks minimization and breaks maximization were first treated

together by Miyashiro and Matsui (2005). In particular, these two problems are shown to

be equivalent for a single RRT if the opponent schedule is known beforehand: an optimal

solution for one problem can be directly constructed from an optimal solution for the other

one.

Urrutia and Ribeiro (2006) and Rasmussen and Trick (2007) deal with maximization

of breaks in special cases of the Traveling Tournament Problem, which we describe in the

following subsection.

2.3.3 The Traveling Tournament Problem

The duration of a tournament might be too short for teams to play according to the

highly-alternating HAP of a schedule with only a few breaks. This is especially the case

when, as in the NHL, there are venues located very far from each other. Due to obvious

19

economic issues and possibly to players’ fatigue (Smith et al., 2000), only trying to alternate

home games and away games as much as possible may not be suitable for some sports leagues

around the world (Oberhofer et al., 2010). In fact, in order to reduce traveling distances (and

times), a team should have as many consecutive away games as possible, considering it goes

directly from one opponent’s venue to that of the next one without returning home before

the corresponding breaks.

Inspired by a real-world sports scheduling problem that requires minimization of travel-

ing distances, namely the scheduling of the Major League Baseball (MLB) regular season,

Easton et al. (2001) introduces the Traveling Tournament Problem (TTP). Given the dis-

tances between each pair of venues, a lower bound l and an upper bound u on the number

of consecutive home and consecutive away games, the TTP consists in scheduling a double

RRT for n teams that minimizes the total distance traveled during the tournament by all

teams, subject to the constraint that every team must play between l and u consecutive away

games and between l and u consecutive home games. Typical values for l and u are 1 and

3, respectively. As noted by Trick (2011), most of the studies on the TTP also include the

so-called no-repeater constraint, which imposes that if a team i plays at home against a team

j in one round then j must not play at home against i in the next round. Obviously, as in

the NHL problem of this thesis, every team on a TTP is assumed to have its own venue at its

home city, where it begins and ends the travels over all the tournament. In addition, every

time a team plays two consecutive away games, it travels directly from the venue of its first

opponent to that of the second one.

Since it was first announced, in 2001, some variants of the TTP have been proposed in

order to capture further requirements in sports scheduling applications, and also, to stimulate

researchers on the development of new approaches. Among such variants, we mention the

Timetable Constrained Distance Minimization Problem (TCDMP), introduced by Rasmussen

and Trick (2006), and the TTP with Predefined Venues (TTPPV), proposed by Melo et al.

(2007). The TCDMP can be defined as follows: given an opponent schedule (timetable)

for a double RRT, the distances between each pair of venues, and a lower bound and an

upper bound on the number of consecutive away games and consecutive home games, find

a corresponding feasible HAP set which minimizes the total distance traveled during the

tournament by all teams. Therefore, the TCDMP is a generalization of the BMP, which we

defined earlier (p. 17), where distances are now considered in the objective function, instead

of breaks (Rasmussen and Trick, 2009). As for the TTPPV, it can be defined as follows: given

the venue where each game of a single RRT will take place and the distances between any

pair of venues, find a schedule in which the total distance traveled by all teams is minimized

and no team plays more than three consecutive away games or more than three consecutive

20

home games.

The TTP and its variants are among the most studied problems in the sports scheduling

literature. Indeed, the classification of pertinent literature by Knust (2014) currently list

almost 50 papers that deals with the TTP. Numerous benchmark instances and best-found

results are presented on the TTP website http://mat.gsia.cmu.edu/TOURN/. In particular,

the “NL instances” introduced by (Easton et al., 2001) were inspired in the National League

(one of the two leagues constituting the MLB), and today, are probably the best-know class

of TTP instances. Although the TTP is very simple to state and typical instances are

made up from quite little data, it has proved to be very difficult to solve. Even for a very

small number of teams, TTP instances have challenged many researchers in combinatorial

optimization. In fact, in its original form, only instances with as few as 10 teams have been

solved to optimality. Curiously, for example, the classic NL8 instance (with 8 teams) was

only solved to provable optimality for the first time by Irnich (2010), almost 10 years after it

was first announced.

Several state-of-the-art algorithms have been systematically applied in order to determine

either improved lower bounds or better objective function values for benchmark instances of

the TTP. The first algorithms, which combine CP and IP approaches, were proposed by Eas-

ton et al. (2001, 2003) and Easton (2003). They were able to find an optimal solution for the

NL8 without the non-repeater constraint by means of a parallel implementation of a branch-

and-price algorithm in which an IP approach solves the master problem and a CP approach

solves the pricing problem. Later on, Irnich (2010) revisited that CP-based branch-and-

price, reformulated its pricing problem as a shortest-path problem over an extended network,

and implemented new branching techniques, which led him to obtain several improved lower

bounds and some optimal solutions for previously unsolved TTP instances, including the NL8

(with the non-repeater constraint). Around the same time, Uthus et al. (2009) presented a

remarkable work in which a parallelized DFS* (a variant of a depth-first branch-and-bound

search that keeps all heuristic estimates in memory) is able to find past known optimal solu-

tions much faster than previous approaches and to greatly improve the lower bounds of larger

TTP instances. More recently, those same authors (Uthus et al., 2012) also proposed a new

approach based on iterative-deepening A* (a greedy best-first-search guided by a heuristic

strategy) that is able to find past known optimal solutions even faster than their DFS* and

that turns out to be the first approach to find optimal solutions to all 10-team instances

(including the NL10) of the four TTP classes to which it was applied.

21

2.3.4 Typical constraints in sports scheduling

Although each sports scheduling problem has its own set of constraints and objectives,

the literature often come up with common requirements found in different studies. In 2010,

on the occasion of the International MultiConference of Engineers and Computer Scientists, a

dozen of authors (Nurmi et al., 2010) proposed a framework for sports scheduling problems as

an attempt to establish a common ground for the development of benchmark instances which

would allow researchers to evaluate and compare their solution approaches. In particular,

Nurmi et al. (2010) outline 36 typical constraints inspired from both theoretical and real-

world problems. For the sake of clarity, the statements for those constraints are reproduced

bellow.

— Structural requirements:

C01. There are at most R rounds available for the tournament.

C02. A maximum of m games can be assigned to round r.

C03. Each team plays at least m1 and at most m2 games at home.

C22. Two teams play against each other at home and in turn away in 3RR or more.

— Home-away requirements:

C04. Team t cannot play at home in round r.

C05. Team t cannot play away in round r.

C06. Team t cannot play at all in round r.

C07. There should be at least m1 and at most m2 home games for teams t1, t2, . . . on the

same day.

C08. Team t cannot play at home on two consecutive calendar days.

C09. Team t wants to play at least m1 and at most m2 away tours on two consecutive calendar

days.

C23. Team t wishes to play at least m1 and at most m2 home games on weekday1, m3 −m4

on weekday2 and so on.

— Special-game requirements:

C10. Game h-team against a-team must be preassigned to round r.

C11. Game h-team against a-team must not be assigned to round r.

C24. Game h-team against a-team cannot be played before round r.

C25. Game h-team against a-team cannot be played after round r.

C34. Game h-team against a-team can only be carried out in a subset of rounds r1, r2, r3,

— Break requirements:

22

C12. A break cannot occur in round r.

C13. Teams cannot have more than k consecutive home games.

C14. Teams cannot have more than k consecutive away games.

C15. The total number of breaks must not be larger than k.

C16. The total number of breaks per team must not be larger than k.

C17. Every team must have an even number of breaks.

C18. Every team must have exactly k number of breaks.

C35. A break of type A/H for team t1 must occur between rounds r1 and r2.

— Tournament-quality requirements:

C19. There must be at least k rounds between two games with the same opponents.

C20. There must be at most k rounds between two games with the same opponents.

C21. There must be at least k rounds between two games involving team t1 and any team

from the subset t2, t3,

C26. The difference between the number of played home and away games for each team must

not be larger than k in any stage of the tournament (a k-balanced schedule).

C27. The difference in the number of played games between the teams must not be larger

than k in any stage of the tournament (in a relaxed schedule).

C36. The carry-over effects value must not be larger than c.

— Strength-group requirements:

C28. Teams should not play more than k consecutive games against opponents in the same

strength group.

C29. Teams should not play more than k consecutive games against opponents in the strength

group s.

C30. At most m teams in strength group s should have a home game in round r.

C31. There should be at most m games between the teams in strength group s between

rounds r1 and r2.

C32. Team t should play at least m1 and at most m2 home games against opponents in

strength group s between rounds r1and r2.

C33. Team t should play at least m1 and at most m2 games against opponents in strength

group s between rounds r1 and r2.

In general, a benchmark instance for a highly-constrained sports scheduling problem can

then be characterized by standard information, which includes the number of teams, the type

of RRT, and among the constraints from the list above, the sets of both hard and soft con-

straints taken into account, with their respective parameters. Obviously, these 36 constraints

23

do not cover all the constraints that might appear in many real-world sports scheduling

problems. In particular, they are not inclusive enough to allow a complete specification of

an instance for the NHL scheduling problem, as we will point out in the next chapter.

In their survey on round-robin scheduling, Rasmussen and Trick (2008) characterize the

following eight common types of constraints, for which we identify some possible relations to

the constraints in Nurmi et al. (2010).

— Place constraints Constraints enforcing certain teams to play at home or away on

specific rounds. They arise, for example, from unavailability of venues, and in general,

can be specified by C04.

— Top-team and bottom-team constraints Constraints imposing that teams from a similar

strength group must have their games somewhat evenly distributed through all the

rounds, or that certain teams should not play consecutive games against opponents

from a similar strength group. They can usually be specified by the statements from

C28 to C33.

— Break constraints Constraints ensuring that no breaks occur on certain rounds. They

can be stated by C12.

— Game constraints Constraints fixing or forbidding certain games on particular rounds.

They can be specified by C10 or C11.

— Complementary constraints Constraints imposing that certain teams must not be as-

signed to home games that would be simultaneously played on any particular round.

They arise, for example, when two teams share the same venue as home. Although

Nurmi et al. (2010) does not directly specify any particular constraint for this case,

such constraints could be stated by C31 with a “strength group” s being the set of

corresponding teams, m = 1, and r1 and r2 being the first and the last rounds, respec-

tively.

— Geographical constraints Constraints enforcing the games to be, on any round, some-

what evenly distributed throughout all regions of the tournament. They could also be

stated by C31 with a “strength group” s being the set of teams with venues in a specific

region, m being a reasonable number of games, and r1 and r2 being the first and the

last rounds, respectively.

— Pattern constraints Constraints over the HAP of each team ensuring, for example, that

the number of consecutive games at home (or away) stays within a certain range, or

yet that all teams have the same number of breaks in their HAPs. Such constraints

can usually be specified by the statement from C12 to C18, and by C35.

24

— Separation constraints Constraints imposing lower and upper bounds on the number of

rounds between consecutive games involving the same pair of teams. Obviously, they

arise from an attempt to evenly spread such games through the whole period of the

tournament, and in general, can be specified by the statements from C19 to C21.

2.4 Literature on time-relaxed sports scheduling problems

Nearly all the scientific literature on sports scheduling has focused on the study of compact

schedules. This predominance of researches on time-constrained problems may be due to

both the rather neat structure of a compact schedule and their high popularity among major

professional sports around the world.

In non-commercial leagues, however, time-relaxed schedule is the most widely adopted

structure (Knust, 2010). The regular seasons of both the NHL and the National Basketball

Association (NBA) are two rare examples of major tournaments in which the number of days

“available” for potential assignments of games is much larger than the number of games to be

played by a team. In particular, teams may play different numbers of games during a certain

week, and the number of weekly games are often unevenly spread throughout the season.

Scheduling for non-commercial leagues normally requires special attention not only to the

limited access to sports facilities for the home games of each team, but also to the sporadic

availability of sportsmen. In fact, in such contexts, a team is usually able to provide only a

relatively small number of potential dates for its home games, while many other dates may

not be available for away games, either.

In a recent work, Knust (2010) deals with non-commercial sports league scheduling. A

time-relaxed schedule is to be found for a double RRT with several hard constraints, including

unavailability of teams to play away on certain dates, and also soft constraints, including

minimization of breaks. In particular, the tournament is assumed to be made up of two half

series, one after the other, and every team must play once at home in one series and once away

in the other series against each other team. Either half series refers thus to a single RRT. In

addition, regarding each team, the number of home games must not differ by more than one

from the number of away games. This restriction over a single RRT defines a balanced home-

away assignment for the matches (Knust and von Thaden, 2006). The paper presents two

formulations for the problem, one as an IP model and the other as a multi-mode resource-

constrained project scheduling problem, and a two-phase heuristic algorithm is proposed.

In the first phase of the algorithm, a balanced home-away assignment for the matches is

determined with an implementation of connected neighborhood structures introduced with

theoretical results by Knust and von Thaden (2006). In the second phase, an adapted genetic

25

algorithm for resource-constrained project scheduling problems is used, and then, matches

are reassigned to different days as an attempt to evenly distribute the games over the whole

season. The heuristic is reported to be very efficient for a number of benchmark instances

and was then used to schedule two seasons of regional table-tennis leagues in Germany.

Knust (2010) mentions trying to solve, with a similar two-phase approach, time-constrained

problems subject to a hard constraint enforcing the number of breaks to be at their minimum,

but feasible solutions were only found for a few instances. This might indicate that the

approach is not well suited for the special structure of time-constrained problems, even so

the minimum-break requirement seems too restrictive.

For other studies on scheduling non-commercial leagues, we refer to Schönberger et al.

(2000) and to Schönberger et al. (2004), where similar tournaments (also for a table-tennis

league in Germany) are scheduled by Genetic Algorithms and by CP approaches.

Another example of real-world tournament that gives rise to a time-relaxed schedule is

the 1992 World Cup of Cricket. Addressed by Armstrong and Willis (1993), the problem

consists in scheduling a single RRT for 9 teams, such that every team plays its corresponding

8 games in a period of 26 days, and for which 19 venues scattered over a large geographical

area (in Australia and New Zealand) are available. Among the many constraints taken into

account, some are related to long traveling distances and others to several requirements from

TV broadcasting. The paper presents an IP formulation, but due to both its large number

of constraints (which turned out to be impractical for that time) and the need for having a

more flexible approach, heuristic procedures are proposed to solve the problem. Implemented

in a spreadsheet package (Lotus 1-2-3), such heuristic procedures allow a user to sequentially

assign games to days in an interactive manner.

It seems that no other sport scheduling in the literature share so many identical issues

with the NHL scheduling of this thesis as that of the NBA regular season. Therefore, we

devote the following subsection specifically to studies on the scheduling of games for the

NBA.

2.4.1 The NBA scheduling problem

Like the NHL, the NBA currently consists of 30 teams, each one playing 82 games (41

at home and 41 away) according to a relaxed schedule for its regular season. The NBA

features two 15-team conferences of three 5-team divisions each. Also, the teams are scattered

throughout a vast geographical area in North America, 29 of them in the United States and

one in Canada.

To our knowledge, the problem of scheduling the NBA regular season has been studied at

least on two occasions: in 1980 in a paper by Bean and Birge, and in 2009 in a Ph.D. thesis

26

by Bao. Generally speaking, the approach by Bean and Birge (1980) is quite practical and

had, in fact, been applied to actual instances of at least four NBA regular seasons. It has

probably served as an important baseline for the approach that Fleurent (1987) proposed later

on for the NHL scheduling problem. The study by Bao (2009), on the other hand, follows

an approach that is more in line with the researches on time-constrained problems that we

mentioned earlier. He points out several types of constraints for the NBA scheduling problem,

and for each type, he proposes both IP and CP formulations, which are implemented into a

commercial solver and individually tested on randomly-generated instances. The remaining

of this subsection is our review on these two studies.

Bean and Birge (1980) develop schedules for some seasons in the 1980’s, when the NBA

consisted of only 22 teams but each team had already to play 82 games in a period of around

170 days. The NBA scheduling problem of that time was to assign 902 games to dates of

the regular season, such that a number of constraints were satisfied and the total traveling

distance was minimized. In their paper, they mention that a typical arena used by an NBA

team was usually available only on about 30% of the days of the season, and that this turned

out to be the most difficult constraint they had to deal with.

To provide some insight about the size and complexity of the problem, Bean and Birge

(1980) present a mathematical formulation of a modified problem in which the season would

consist of exactly 82 days and the teams would play every day of this fictional season. Of

course, a solution for the problem would now be a compact schedule. In their model, the

constraints are linear equalities and the objective function is also linear, all of them expressed

in terms of four-index variables xijkl ∈ {0, 1} for any triple of teams i, j, k, and every day

l. One such variable, xijkl, is set to value 1 only if team i is assigned to travel from the

city of team j to the city of team k to play a game on day l. Clearly, the model has then

O(n4) variables. The objective function, whose value is to be minimized, is the sum of the

daily traveling distances of all the teams, and the constraints impose the following structural

requirements: i) for each pair of teams, a specific number of games must be played during

the season; ii) if a visiting team is in a city to play, the respective home team must also

be there; iii) all teams start the season at their own city and half of them go to visit the

others in the first day; and iv) if a team leaves one city then it must have played in that

city on the preceding day. Regarding the seasons in the 1980’s, the model entails almost 42

thousand constraints and more than 800 thousand variables. For the current seasons, where

30 teams play 82 games per team, it would have almost 78 thousand constraints and more

than 2 million variables. Bean and Birge (1980) claim thus that finding a solution even for

such simplified unrealistic formulation would be extremely difficult at the time.

They propose then a two-phase heuristic approach for the NBA scheduling problem. In

27

the first phase, road trips with up to five away games for each team are created, and in the

second phase, those trips are combined into a feasible schedule for the entire league. To be

more precise, the approach can be outlined as follows.

— Phase I: Generating road trips This phase is similar to a classic savings heuristic orig-

inally proposed for routing problems by Clarke and Wright (1964). In particular, the

following saving measure is used, for each team k, to select the opponents, i and j, to

be visited during a same road trip for k:

sk(i, j) = dist(i, k) + dist(k, j)− dist(i, j)

where dist(·, ·) is the distance between the cities of the respective pair of teams. The

feasible road trips of each team k are generated by first creating every road trip, r =

(k, l, k), made up of a single away game against team l, and then, by repeating the

following steps, where a feasible road trip is always limited to at most five games.

Step 1) Calculate the saving, sk(i, j), for each pair of teams, i and j. Step 2) Create a

list with all (i, j)-pairs sorted in a non-increasing order of their savings. Step 3) Make

a single pass through that ordered list and for each pair at hand, (i, j), merge the road

trip that contains one of the corresponding teams, i, with the road trip that contains

the other team, j, into a new feasible road trip if no more than five games are involved

and if one team is at the end of one trip and the other team is at the begin of other

trip, i.e., if the forms of those two trips are either (k, . . . , i, k) and (k, j, . . . , k), or

(k, . . . , j, k) and (k, i, . . . , k).

— Phase II: Scheduling road trips In this phase, the heuristic firstly sorts all road trips by

their total traveling distances, and subsequently, try to schedule them, from the longest

to the shortest ones, into periods in which the corresponding traveling team has the

least arena-available dates. When the road trip at hand cannot be feasibly scheduled,

it is divided into two or more partial road trips, which in turn are to be scheduled with

the same “sort-and-schedule” strategy, but only after all the current road trips have

been considered. This iterative process continues until only road trips made up of a

single game remain unscheduled. The games in such road trips are then individually

scheduled to a feasible day that minimizes the increase in overall traveling distance.

This two-phase heuristic was adapted later on by Fleurent (1987) for the NHL scheduling

problem. This shall become evident to the reader in Chapter 5, especially when we describe

the “forced-trip heuristic” and the “free-trip heuristic”, which generates road trips with games

to be played far from the city of the corresponding traveling team.

Bean and Birge (1980) report that their heuristic alone was able to find feasible schedules

28

for the NBA games. But since optimality was not guaranteed, they mention to have eventually

used “switching algorithms” in an attempt to further reduce the overall traveling distance.

Such algorithms would find the best feasible dates for each game, while considering fixed the

rest of the schedule. They are, however, reported to lead to only few improvements over the

initial feasible schedule. In spite of its rather vague description, it appears that this strategy

was similar to the “exchange heuristics” used later on by Fleurent (1987) (which is described

in Ferland and Fleurent, 1991, as well).

More recently, Bao (2009) has also tackled the NBA scheduling problem in a chapter of

his Ph.D. thesis. He claims that a schedule for the NBA regular season must satisfy nu-

merous constraints, and then, he presents several of them. In particular, each constraint is

formulated both by means of Integer Programming and by means of Constraint Program-

ming. Computational results obtained with IBM ILOG CPLEX® 11.2 and with IBM ILOG CP

Optimizer® 2.1 (for the IP and the CP models, respectively) are compared between them with

regard to running time, as well as number of branch nodes (from the IP solver) and number

of failed branches (from the CP solver).

The experiments have been individually conducted for each type of constraints added

to a basic formulation that only considers the structural requirements of the problem. The

instances submitted to the solvers have been generated for even numbers of teams varying

from 6 to 30. In each instance, the number of days provided by Bao (2009) is equal to the

double of the corresponding number of games that every team has to play. The following is

our informal description of those experiments, which, to provide an idea of how challenging

the problem turned out to be under each type of constraint, also includes some of the main

reported results. Bao (2009) limits each experiment to 30 minutes and uses a personal

computer running Windows® XP with 2.2GHz Duo Core CPU and 1GB of RAM.

— Structure A single RRT is to be scheduled, such that only the essential constraints for

such a tournament are taken into account, i.e., every team plays each of the others

exactly once and no team plays more than one game per day. Feasible solutions for all

the instances with up to 30 teams are found both by IP (in as long as 2.56 seconds)

and by CP (in no more than 0.76 second).

— Interconference games A double RRT is to the scheduled for the interconference games,

which are evenly divided into two conferences, such that every team plays once at

home against each opponent. In the NBA, the structure of the interconference games

is indeed a double RRT. While IP finds feasible solutions for the instances with up to

30 teams (in no more than 22 seconds), CP solves only instances with up to 22 teams

(in less than 4 minutes), failing to solve the instances with 26 or more teams (in 30

minutes).

29

— Intradivision games A quadruple RRT is to be scheduled, such that every team plays

twice at home against each opponent. In the NBA, the structure of the intradivision

games is indeed a quadruple RRT for each division (which currently involves five teams).

Only instances with up to 10 teams were submitted to the solvers, and both IP and

CP easily find feasible solutions (in no more than 0.17 second).

— Consecutive games A single RRT is to be scheduled, such that: no team plays at home

on two consecutive days; no team plays more than two games on three consecutive days;

and no team plays more than five games on eight consecutive days. Feasible solutions

for all instances with up to 30 teams were found both by IP (in less than 3 seconds)

and by CP (in as long as 2.3 minutes).

— Consecutive byes A single RRT is to be scheduled, such that: any team plays at least

two games per week and at least one game during every five days. Feasible solutions

for all instances with up to 30 teams were found both by IP (in as long as 4 minutes)

and by CP (in less than 20 seconds).

— TV schedules A single RRT is to be scheduled for instances in which about 20% of

the games are considered as being “attractive games”, such that: no more than a given

number of attractive games are played on a same day; at least a certain number of

attractive games are played on each of the days in a given special set of days; and every

team plays at least two games per week. Feasible solutions for all instances with up to

30 teams were found both by IP (in no more than 0.41 second) and by CP (in no more

than 0.91 second).

— HAP sets A single RRT is to be scheduled according to a given (feasible) HAP set.

While IP finds feasible solutions for instances with up to 30 teams (in no more than

8.5 minutes), CP solves only instances with up to 14 teams (in less than 0.03 second)

and fails to solve the instances with 18 or more teams (in 30 minutes).

— Arena availability A single RRT is to be scheduled for instances in which the arena of

any team is available only on about 33% of the days. While IP finds feasible solutions

for instances with up to 30 teams (in less than 2.3 seconds), CP solves only instances

with up to 14 teams (in as long as 27 seconds), failing to solve the instances with 18 or

more teams (in 30 minutes).

— Forbidden assignments A single RRT is to be scheduled for instances where, for each

day, certain particular games should not be assigned. In the NBA, this occurs when,

for example, a team requests not to have certain games on a particular day. Feasible

solutions for all instances with up to 30 teams were found both by IP (in no more than

0.63 second) and by CP (in no more than 1.08 seconds).

30

— Complementary home games A single RRT for up to 30 teams is to be scheduled, such

that exactly two given teams never play at home on a same day. In the NBA, this

constraint occurs because two teams (the LA Lakers and the LA Clippers) share the

same arena for their home games. Feasible solutions for all instances with up to 30

teams were found both by IP (in no more than 0.03 second) and by CP (in as long as

1.17 seconds).

— Assignment-value maximization A single RRT is to be scheduled for instances where a

fixed value (between 0 and n2 for a problem with n teams) is given for each potential

game-day assignment, and the sum of the values for the actual assignments in a feasible

solution is to be maximized. While IP finds optimal solutions for instances with up

to 30 teams (in less than 2 seconds), CP fails to solve even the instances with only 6

teams (in 30 minutes). This contrasting result is somehow expected, since the solvers

are dealing with an optimization problem in this particular experiment.

— Back-to-back games A single RRT is to be scheduled, such that every team plays a

same given small number of back-to-back games. Only instances with up to 10 teams

were submitted to the solvers, and both IP (in no more than 34 seconds) and CP (in

as long as 14 minutes) find feasible solutions.

— Weekend games A single RRT is to be scheduled, such that every team plays a same

given small number of games on weekends (Fridays, Saturdays, and Sundays). Only

instances with up to 24 teams are solved by IP (in as long as 29.6 minutes); and although

solutions are found for instances with 20, 24, and 28 teams (in just 0.38 second), CP

fails to solve (in 30 minutes) almost 40% of the instances with up to 30 teams.

— Bounded traveling distances A single RRT is to be scheduled, such that the total trav-

eling distance for each team remains within a particular given range. Both IP and CP

fail to find feasible solutions, even for those with only as few as 6 teams.

It is important to notice that all these experiments have been undertaken one at a time,

which might be suitable on providing insights into the development of decomposition ap-

proaches as those we mentioned earlier for minimizing breaks. In particular, Bao (2009) does

not test models integrating into a same formulation the different types of constraints.

31

CHAPTER 3

THE NHL SCHEDULING PROBLEM

The NHL scheduling problem consists in assigning a playable day to each game of the

NHL regular season by not imposing more than one single daily game for any team. The

game-day assignments should obviously satisfy several other constraints that are imposed

either by the NHL, or individually, by the teams. Although the requirements, the goals, and

even the structure of the NHL may change from one season to another, we will try to establish

the most essential components of a good NHL schedule in the present days. In particular,

all the factors taken into account in the pertinent literature that are relevant nowadays are

being considered in this thesis.

In this chapter, we present the structure of the NHL and the structure of its regular

season. The requirements and goals for an NHL schedule are described, and then, compared

with those in the literature on the same problem.

3.1 The structure of the NHL

The NHL is currently formed by 30 franchised member clubs, which we refer to as teams,

that are located throughout the vast territories of the United States and Canada. The teams

are distributed into two conferences which, over the past years before 2013, has individually

aggregated three divisions of five teams each. Since the 2013-14 season, however, the NHL

teams are split into four divisions of either seven or eight teams: two eight-team divisions

form the Eastern Conference, and two seven-team divisions form the Western Conference.

This structure is shown in Table 3.1.

Because the NHL operates as a franchise system, the term “division” refers to a group of

teams arranged not by their competitive level but by other factors, which may include their

geographical locations, their rivalries, and their time zones. In particular, the teams within

any specific division usually have their individual venues (for which we adopt the standard

term arenas), located in the same geographical region. But overall, the distances between

the home arenas of two NHL teams range from only a few miles to as much as 2700 miles

(about 4500 km). Furthermore, comparing to the case of the Eastern Conference, the arenas

in the Western Conference are, for the most part, located much farther from each other. This

fact normally results in longer travel times for the Western teams, which could be somewhat

aggravated or relieved, depending on the schedule of games assigned to them.

32

Table 3.1 The current NHL structure The NHL teams disposed by their respective division
and conference.

Western Conference Central Division Pacific Division

CHI Chicago Blackhawks ANA Anaheim Ducks
COL Colorado Avalanche ARZ Arizona Coyotes
DAL Dallas Stars CGY Calgary Flames
MIN Minnesota Wild EDM Edmonton Oilers
NSH Nashville Predators LAK Los Angeles Kings
STL Saint-Louis Blues SJS San Jose Sharks
WPG Winnipeg Jets VAN Vancouver Canucks

Eastern Conference Atlantic Division Metropolitan Division

BOS Boston Bruins CAR Carolina Hurricanes
BUF Buffalo Sabres CBJ Columbus Blue Jackets
DET Detroit Red Wings NJD New Jersey Devils
FLA Florida Panthers NYI New York Islanders
MTL Montreal Canadiens NYR New York Rangers
OTT Ottawa Senators PHI Philadelphia Flyers
TBL Tampa Bay Lightning PIT Pittsburgh Penguins
TOR Toronto Maple Leafs WSH Washington Capitals

In general, changes in the NHL structure occur (when they do) on a very small scale from

one year to the next. In the early 2013, however, a new NHL structure with the 30 teams

distributed into only four divisions was proposed, which is now being implemented for at

least three NHL regular seasons, starting at the 2013-14 season (Rosen, 2013). A method for

changing sports leagues structures, which falls outside the scope of this thesis, is proposed

by Macdonald and Pulleyblank (2014), specially for the case of the NHL, as an attempt to

enable the construction of better schedules with regard to the total travel distance for the

whole league.

3.2 The structure of the NHL regular season

The NHL regular season usually starts in the first week of October each year and runs

until mid-April. During that period, a total of 1230 games are played. Each game is a match

between a home team, which is the owner of the arena where the game is held, and an away

team (or likewise referred to as visiting team). Exactly 82 regular season games are played

by every NHL team, 41 at home and the other 41 games on the road (or equivalently, away).

33

All those games will have been completely specified by the time a schedule is designed.

For each NHL regular season between 2008 and 2013, for example, every team played

24 intradivisional games (against the other four teams in its own division), 40 interdivi-

sional games in its own conference (against the 10 teams from the other divisions), and

18 extra-conferencial games (against the 15 teams from the other conference). Specifically,

the intradivisional games for any team consisted of six games against each of the other four

teams in its own division, where three of them were held at home, and the three others,

away. With respect to the interdivisional games, a team played four times, two at home

and two away, against every single extra-divisional rival in its own conference. Finally, the

remaining 18 games for any team consisted of one game against each of the 15 teams in the

other conference and three wild-card games versus three of those teams.

At the present, however, every team plays two games against each team outside its con-

ference, and three games against each team inside its conference but outside its division.

In addition, every team plays either four or five games against the other teams in its own

division.

As mentioned earlier, the aggregation of teams into the two conferences and their different

divisions is substantially related to the geographical distribution of the arenas of those teams.

In particular, because teams within the same division are often located in the same region,

the NHL regular season structure indicates that teams based within the same region usually

play between themselves more often than those located farther from each other. Hence, most

of the games give rise to trips over relatively short distances. The total distance that a team

must travel, however, strongly depends on the whole schedule for the regular season.

3.2.1 The availability of dates, teams, and arenas

Even though the NHL regular season runs from early October to mid-April, there are some

dates during that period of around 190 days on which no game scheduling is allowed. Indeed,

several constraints are imposed either by the NHL or by any of its member clubs to the dates

suitable for having a game. Firstly, the NHL managers usually specify a few dates that must

be excluded from the playable dates. Such restriction often arises from some holidays or

special events like the Winter Olympic Games and the NHL All-Star Game. These events

alone typically shut out from consideration between seven and fourteen days at the midway

point of the regular season. Secondly, it may happen that a team is not available to play at

some specific date because of an exceptional event to which the club is locally committed, for

example. So the individual availability of the teams may also be an important concern when

designing an NHL schedule. Finally, the factor to which the pertinent scientific literature,

specially Ferland and Fleurent (1991), gives the most attention is the availability of arenas.

34

Although every team has its corresponding arena where home games take place, the building

housing an arena may also be used for a variety of other entertainments. In fact, an arena

might be assumed to be unavailable for a certain day if any major event is occurring in the

same city or region where a club is based on, which could inhibit interest of fans or causes

public safety concerns, for example.

The availability of arena differs from one team to the other and some clubs may hardly be

able to provide the minimum number of feasible dates for home games required by the NHL

managers. Costa (1995) mentions the case of the 1993-94 regular season, when the number

of home games per team changed to 41 and the NHL managers asked each club to provide at

least 56 (thus 15 extra) arena dates for the scheduling of those games. He reports that such

dates may not be enough to yield a reasonable schedule. According to Ferland and Fleurent

(1991), this is the main reason why an NHL schedule design usually follows through several

months of mutual discussions and arrangement of dates.

3.3 The scheduling problem of the NHL regular season

Here, we describe the NHL scheduling problem in a rather informal manner. A mathe-

matical model with integer variables will be proposed in Chapter 4.

Because several games are played almost every day of the NHL regular season, the stan-

dard meaning of “bye” in the sports scheduling literature (Kendall et al., 2010) will be used

for the NHL scheduling problem. So a team is said to have a bye on a certain day if that

team is not scheduled to play on that day.

Moreover, we define a road trip (or simply trip) for an NHL team as a sequence of all its

away games scheduled to a period with no home games for that team and during which it

has no more than two byes (off days) between two consecutive games. Whenever a road trip

has more than one game, the corresponding travelling team plays then at least one game for

each three consecutive days within that road trip period.

We denote by a@h a game where a team a plays against a team h in the arena of h, and

by [a@h: d] the scheduling of the game a@h on a day d, or equivalently, the assignment of a

day d to the game a@h. An NHL schedule can then be seen as a set of game-day assignments

for the corresponding season.

We enumerate and define below the constraints for the NHL scheduling problem that

have been taken into account in this study. For each constraint, we also specify how the

corresponding violations are being counted for our evaluations of NHL schedules.

In addition to the (hard) constraint that a team can never be scheduled to play more

than one game a day, which we refer to as C0, and also to the (hard) constraint that the

35

games must be scheduled exclusively on playable dates provided by the NHL, we consider

the following nine constraints, and respective violation counting, for the NHL scheduling

problem:

C1 Arena availability for home games A team should play at home only when its arena is

available. Here, we count one violation for each game a@h scheduled to a day d that is

not an arena date provided by the home team, h.

C2 Number of games over three days A team should not play more than two games during

any three consecutive days. Here, we count one violation for each sequence of three

consecutive days, from a day d to day d+ 2, during which a team t is scheduled to play

three games.

C3 Number of games over five days A team should not play more than three games during

any five consecutive days. Here, we count one violation for each sequence of five con-

secutive days, from a day d to day d + 4, during which a team t is scheduled to play

more than three games.

C4 Daily travel distance A team should not travel more than 900 miles to play games on

two consecutive days if those games are to be held in the arenas of two teams from

different divisions. Here, we count one violation for each time a team t is scheduled to

play on two consecutive days, d and d + 1, and the respective games are to be held in

two arenas (possibly including the arena of t) that are both more than 900 miles away

from each other and belong to teams from different divisions.

C5 Number of games in a week A team should play at least two games in each week, from

Sunday to Saturday. Here, we count one violation for each team t and each week w

where t is not scheduled to play at least two games within the period from Sunday to

Saturday. Weeks that involve Christmas and NHL All-Star game, or Olympic Games,

are not counted.

C6 Number of days between revisits Games should be at least 14 and 30 days apart when

related to the same intradivisional and interdivisional matches, respectively. Here, we

count one violation for each pair of days d1 and d2 assigned to a match a@h (same

ordered away-home pair of teams), such that the condition d2−d1 < δ holds for δ = 14

if a and h belong to the same division, or for δ = 30 if a and h belong to different

divisions.

C7 Number of games in a trip A team should play no more than seven games during a

trip. Here, we count one violation for each team t and a corresponding trip r(t) during

which t is scheduled to play more than seven games.

36

C8 Duration of a trip A trip should last no more than 14 days. Here, we count one violation

for each team t and a corresponding multi-game trip r(t) during which t is scheduled

to play a first away game on day dr1 and a last away game on day dr2, and the condition

dr2 − dr1 ≥ 14 holds.

C9 Number of days between two trips Two consecutive trips for a team should be separated

by at least three days between them if that team travels more than 900 miles both from

the last game in the first trip to home, and from home to the first game in the second

trip; otherwise, the two trips should be separated by at least two days. Here, we count

one violation for each team t and two corresponding consecutive trips, r1(t) and r2(t),

where the last game in r1(t) is scheduled to be played on day dr1 in the arena of team

h1, and the first game in r2(t) is scheduled to be played on day dr2 in the arena of team

h2, such that dr2 − dr1 ≤ 3 holds if the distance between h1 and h2 is farther than 900

miles, or dr2 − dr1 ≤ 2 holds, otherwise.

The number of constraint violations in the last five official NHL schedules are shown in

Table 3.2. Overall, these numbers seem to indicate that at least some of the constraints listed

above (especially C4, C5, and C6) might not be as relevant today as they had been in the

past. On the other hand, these constraints are highly related to two common concerns in the

sports scheduling literature, namely traveling distances and flow of the games (in an ideal

situation, the games would be evenly spread throughout the whole season).

In accordance with Ferland and Fleurent (1991), we refer to a game to be scheduled (while

not scheduled to any day), as a free game. A schedule where an NHL playable day has been

assigned to every free game is referred to as a complete schedule. The basic problem of this

thesis can then be stated as follows. Given the free games for an NHL regular season, the

corresponding set D of playable dates provided by the NHL, and the set Dt ⊆ D of arena

dates for each NHL team t, the NHL scheduling problem in this thesis consists in scheduling

every free game a@h to a playable date d ∈ D, as to build a complete schedule having the

minimum number of violations (if any) of the constraints from C1 to C9.

3.3.1 The NHL scheduling problem in the literature

The constraints we enumerated in the preceding subsection are essentially the same as

those that have been considered in the academic literature on the NHL scheduling problem. In

particular, only the constraints C7, C8 and C9 are not taken into account in the mathematical

model introduced by Fleurent (1987). That model deals with all the constraints from C0

to C6 as hard constraints, which cannot be violated, except for C3, which is treated as a

soft constraint and for which violations are allowed but penalized in the objective function.

The general description of the NHL scheduling problem in Fleurent (1987), however, does

37

include the constraint C7 and also a constraint enforcing a team to be scheduled to play at

home on its first arena date after a trip of more than seven days. Those two constraints

are, in fact, characterized as hard constraints in that description of the problem. Apart

from the violations of C3, the objective function of the mathematical model referred above

incorporates, in a weighted sum, both the number of games to be played on weekdays (from

Monday to Thursday) and the total distance to be travelled by all teams of the league. In

this thesis, among the specified constraints, we denote the set of hard constraints considered

in the model by Fleurent (1987) as

CF = {C0,C1,C2,C4,C5,C6}.

With regard to the work by Costa (1995), the constraints from C0 to C3 are treated as

soft constraints, and the ones from C4 to C8 are considered hard constraints, except for C5,

which is not mentioned by the author. In particular, during the solution process, violations

for the constraint C0 are actually allowed only for the cases where either two away games or

two home games are scheduled on the same day for a team. However, at the end of Costa’s

evolutionary approach, which holds a population of schedules in each iteration, any final

solution violating C0 is rejected.

As noticed in the preceding chapter, Craig et al. (2009) do not mention other constraints

than C0. However, they penalize any road trip made up of more than three games, and both

C7 and C8 could then be interpreted as soft constraints in their work.

Table 3.2 Constraint violations in official NHL schedules For each constraint (ctr), number
of violations in the actual NHL schedules of the last five seasons.

ctr 2009-10 2010-11 2011-12 2012-13 2013-14

C1 0 0 0 0 0
C2 0 0 0 0 0
C3 3 3 0 0 0
C4 12 14 9 10 10
C5 6 16 19 3 8
C6 87 66 75 88 33
C7 1 0 1 1 1
C8 1 0 1 2 0
C9 0 0 0 0 0

Total 110 99 105 104 52

38

On the whole, Table 3.3 summarises the constraints that had (and that had not) been

considered in the literature. Although none of those references has explicitly defined the

constraint C9, it has been motivated by our attempt to mimic a more realistic representation

of consecutive road trips in NHL schedules. In fact, our definition of trip introduced in the

preceding subsection is based on the approach for generating road trips that was used in

Ferland and Fleurent (1991). Specifically, that approach does not allow a team to have byes

made up of three or more consecutive days in the course of a single road trip. With regard

to Costa (1995), this requirement was relaxed by one day, as he tries to avoid byes of four or

more consecutive days during a road trip.

Table 3.3 Constraints of the NHL scheduling problem in the literature Comparison of the
constraints (ctr) in this thesis (C0,C1, . . . ,C9) with those that are, or that are not (×), taken
into account in Craig et al. (2009) (CWB-2009), in Costa (1995) (C-1995), in Ferland and
Fleurent (1991) (FF-1991), and in Fleurent (1987) (F-1987). Some of the constraints have
been treated as hard constraints, and others as soft constraints. In particular, with regard to
the (soft*) constraint C0 in C-1995, only violations where either two away games or two home
games are scheduled to the same day for a team are allowed during the solution process; but
as well as in CWB-2009, any final solution that violates C0 is rejected.

ctr F-1987 FF-1991 C-1995 CWB-2009

C0 hard hard soft* soft*
C1 hard hard soft ×
C2 hard hard soft ×
C3 soft soft soft ×
C4 hard hard hard ×
C5 hard hard × ×
C6 hard hard hard ×
C7 × × hard soft
C8 × × hard soft
C9 × × × ×

The surprisingly high number of violations for the constraints C4 and C6 in the most

recent NHL schedules (see Table 3.2) does not support, nowadays, the assumption that these

constraints should be considered as hard constraints with the same parameter values (900

miles in the description of C4, and 14 and 30 days in the description of C6) that were used

by Ferland and Fleurent (1991) and by Costa (1995) in the 1990s.

In the next chapter, we first formulate the NHL scheduling problem as an integer linear

programming and then, we present some computational results obtained from a commercial

state-of-the-art solver on different configurations of hard and soft constraints.

39

CHAPTER 4

MATHEMATICAL MODELING

In this chapter, we propose the first integer linear programming model for the NHL

scheduling problem which takes into account all its constraints considered in the literature,

in addition to the minimization of total travel distance for the league. Some computational

results obtained from a commercial state-of-the-art solver on several variants of the model

are also reported.

Section 4.1 specifies the data of the problem, the parameters for the model, and the

mathematical formulations that cover all the constraints enumerated in the previous chapter.

The formulation for minimizing total travel distance will be presented in Section 4.2.

4.1 Basic formulation

In this section, we present a formulation for each constraint of the problem, which leads

to a feasibility model with O(n2m) variables for n teams and m days.

4.1.1 Data of the problem

The data of the problem are the following:

— n: number of teams in the league;

— m: number of calendar days in the regular season period;

— T = {1, 2, . . . , n}: set of teams in the league;

— D = {1, 2, . . . ,m}: set of calendar days in the regular season period;

— Dt = {dt1, dt2, . . . , dtmt
}: set of arena-available days for each team t ∈ T ;

— Ga,h: number of games (visits) for each match a@h, where a, h ∈ T ; and

— dist(t′, t′′): distance between the arenas of teams t′ and t′′, for all t′, t′′ ∈ T .

4.1.2 Parameters of the model

Based on the description of the constraints of the problem in the preceding chapter, the

following are the parameters for the model:

— δV Va,h : minimum number of days between (re)visits for the match a@h, where a, h ∈ T ;

— ξDD: maximum daily travel distance for a team;

40

— ξAB: maximum number of consecutive “away byes” (during a same trip);

— ξAG: maximum number of away games in any road trip for a team;

— ξAD: maximum duration, in number of days, of any road trip for a team;

— ξWG: minimum number of games per week for a team;

— δRRfar : minimum number of days between two consecutive road trips for a team that has

to travel long distances (more than ξDD) both back home from the last game in the

first trip and from home to the first game in the second trip;

— δRRnear: minimum number of days between two road trips for a team; that has to travel

short distances (no more than ξDD) both back home from the last game in the first trip

and from home to the first game in the second trip.

In particular, ξDD, on the maximum daily distance, can be seen as a threshold beyond

which a distance is considered “too far” for a team to travel in order to play back-to-back

games.

4.1.3 Variables

For any two teams a, h ∈ T and any day d ∈ D, let xAa,d,h be a binary variable defined as

xAa,d,h =

1 if team a plays away on day d at the arena of team h,

0 otherwise.

In addition, for any team t ∈ T and any day d ∈ D, let xHt,d, x
B
t,d, and xLt,d be binary

variables defined as

xHt,d =

1 if team t plays home on day d,

0 otherwise;

xBt,d =

1 if team t does not play (has a bye) on day d,

0 otherwise;

xLt,d =

1 if team t has at least (ξAB + 1) byes in a row, starting on day d,

0 otherwise.

In the descriptions that follow, we might refer to xAa,d,h, x
H
t,d, x

B
t,d, and xLt,d as away, home,

bye, and long-bye variables, respectively.

41

4.1.4 Constraints

We now present the formulation of each constraint of the problem with a short informal

description for each of them to (hopefully) make the model easier to understand.

Restricting a team to play at most one game per day On any day d ∈ D, exactly

one of the following cases must happen for any team t ∈ T :

1) t plays an away game (at the arena of a single opponent);

2) t plays a home game;

3) t does not play any game.

In our model, this is represented by the following constraints:∑
h∈T\{t}

xAt,d,h + xHt,d + xBt,d = 1 ∀t ∈ T , ∀d ∈ D (4.1)

Linking host and visiting team If a team t ∈ T plays home on a day d ∈ D then

some other team a ∈ T must be visiting t on day d. This is represented by the following

constraints:∑
a∈T\{t}

xAa,d,t − xHt,d = 0 ∀t ∈ T , ∀d ∈ D (4.2)

Fixing non-meaningful “self-visit” variables For any team t ∈ T and any day d ∈ D,

the variable xAt,d,t is set to 0.

xAt,d,t = 0 ∀t ∈ T , ∀d ∈ D (4.3)

Linking variables xBt,d and xLt,d For any team t ∈ T and any day d ∈ D, such that

d <= m− ξAB, the variable xLt,d should be set to 1 if and only if t does not play from day d

to day d+ ξAB, which can be written as the logical connective

xLt,d = 1 ⇐⇒ xBt,d = xBt,d+1 = xBt,d+2 = · · · = xBt,d+ξAB = 1.

The idea is that xLt,d = 1 indicates that day d is not within a road trip period for team t and,

in particular, if t plays away on the previous day, d − 1, then it must return home before

playing the next game (even when this is also an away game). In terms of linear inequalities,

42

we add then the following constraints to the model:

xLt,d ≤ xBt,d ∀t ∈ T , ∀d ∈ {1, 2, . . . ,m− ξAB} (4.4)

xLt,d ≤ xBt,d+1 ∀t ∈ T , ∀d ∈ {1, 2, . . . ,m− ξAB} (4.5)

xLt,d ≤ xBt,d+2 ∀t ∈ T , ∀d ∈ {1, 2, . . . ,m− ξAB} (4.6)

...

xLt,d ≤ xBt,d+ξAB ∀t ∈ T , ∀d ∈ {1, 2, . . . ,m− ξAB} (4.7)

xLt,d ≥
ξAB∑
k=0

xBt,d+k − ξAB ∀t ∈ T , ∀d ∈ {1, 2, . . . ,m− ξAB} (4.8)

Setting the number of games for each pair of teams For each two teams a ∈ T and

h ∈ T , exactly a given number Ga,h of games must be scheduled for the match a@ h:∑
d∈D

xAa,d,h = Ga,h ∀a ∈ T , ∀h ∈ T (4.9)

Constraint C1 (arena availability for home games) Every home variable for a non arena-

available day of a team is fixed to value 0:

xHt,d = 0 ∀t ∈ T , ∀d ∈ D \Dt (4.10)

Constraint C2 (maximum number of games over three days) Every sequence of three days

for a team is forced to have at least one bye:

2∑
k=0

xBt,d+k ≥ 1 ∀t ∈ T , ∀d ∈ D, d ≤ m− 2 (4.11)

Constraint C3 (maximum number of games over five days) Every sequence of five days

for a team is forced to have at least two byes:

4∑
k=0

xBt,d+k ≥ 2 ∀t ∈ T , ∀d ∈ D, d ≤ m− 4 (4.12)

43

Constraint C4 (maximum daily travel distance) For any two consecutive days, at least one

of every two variables corresponding to two distant arenas is forced to take value 0:

xAt,d,h′ + xAt,d+1,h′′ ≤ 1 ∀t ∈ T , ∀d ∈ D \ {m}, ∀h′, h′′ ∈ T , dist(h′, h′′) > ξDD (4.13)

xHt,d + xAt,d+1,h′ ≤ 1 ∀t ∈ T , ∀d ∈ D \ {m}, ∀h′ ∈ T , dist(t, h′) > ξDD (4.14)

xAt,d,h′ + xHt,d+1 ≤ 1 ∀t ∈ T , ∀d ∈ D \ {m}, ∀h′ ∈ T , dist(h′, t) > ξDD (4.15)

Constraint C5 (minimum number of games in a week) Regarding every week of the season,

say w, at least ξWG bye variables corresponding to the days, d1
w, d

2
w, . . . , d

7
w, of that week are

forced to take value 0:

xBt,d1w + xBt,d2w + . . .+ xBt,d7w ≤ 7− ξWG ∀t ∈ T , ∀w ∈ {1, 2, . . . , bn/7c} (4.16)

Constraint C6 (minimum number of days between revisits) Regarding every match a@h,

for each interval of 1 + δV Va,h days, no more than one away variable is allowed to take value 1:

δV V
a,h∑
k=0

xAa,d+k,h ≤ 1 ∀a, h ∈ T , ∀d ∈ D, d ≤ m− δV Va,h (4.17)

Constraint C7 (maximum number of games in a trip) The idea behind the formulation of

this constraint is the following. Consider at first the definition of road trip from the previous

chapter (p. 34), which allows no more than two byes between two consecutive games during

the same trip (i.e., ξAB = 2), and consider also that a trip must have no more than seven

games (i.e., ξAG = 7). In this case, any trip that violates constraint C7 has at least eight

games. And any trip with eight games lasts between eight days (when there is one game for

each day) and 22 days (when there is one game for each three, ξAB + 1, consecutive days).

Therefore, to prevent trips from having eight or more games, every sequence of ` days, with

` ∈ {8, 9, . . . , 22}, must have at least `−7 byes or at least one “trip breaker” (a home game or

a bye lasting more than two days), which can be expressed by the following linear inequalities:

`−1∑
k=0

(
xBt,d+k + (`− 7)xHt,d+k + (`− 8)xLt,d+k

)
≥ `− 7 ∀t ∈ T , ∀d ∈ D, d ≤ m− `.

For the general case, given the parameters ξAG and ξAB, every sequence of ` days for a

team, with ` ∈ {1 + ξAG, . . . , 1 + ξAG· (ξAB + 1)}, must have at least `− ξAG byes or at least

44

one “trip breaker” (a home game or a bye longer than ξAB days):

`−1∑
k=0

(
xBt,d+k + (`− ξAG)xHt,d+k + (`− ξAG − 1)xLt,d+k

)
≥ `− ξAG (4.18)

∀t ∈ T , ∀d ∈ D, d ≤ m− `.

Constraint C8 (maximum number of days in a trip) The idea on the formulation of this

constraint is similar to the previous one, on C7, as we look at the shortest sequences of days

that would potentially violates the constraint C8. At first, we describe the formulation for the

particular case from the previous chapter (p. 34), where a trip should last no more than 14

days (ξAD = 14) and away byes should last no more than two days (ξAB = 2). Regarding any

given team, we impose here that if a team t has an away game on day d (i.e., xHt,d + xBt,d = 0)

and another away game on day d + 14 (i.e., xHt,d+14 + xBt,d+14 = 0) then at least one “trip

breaker” (a home game or a bye lasting more than two days) must exist between those two

away games. Similar restriction is imposed on days d and d + 15, and also on days d and

d + 16. We point out that, because two games in the same trip are never separated by

more than two days, such restrictions on periods of 15, 16, and 17 days are enough to cover

any trip that would potentially last more than 14 days (and then violates C8). Hence, if a

team has two away games separated by `− 2 days, with ` ∈ {15, 16, 17}, the following linear

inequalities must hold:

xHt,d + xBt,d +
`−2∑
k=1

(
xHt,d+k + xLt,d+k

)
+ xHt,d+`−1 + xBt,d+`−1 ≥ 1

∀t ∈ T , ∀d ∈ D, d ≤ m− `.

For the general case, given the parameters ξAD and ξAB, if a team has away games on

days d and d+`−1, with ` ∈ {ξAD+1, . . . , ξAD+ξAB +1}, then at least one “trip breaker” (a

non-zero home variable or a non-zero long-bye variable) must exist between those two away

games:

xHt,d + xBt,d +
`−2∑
k=1

(
xHt,d+k + xLt,d+k

)
+ xHt,d+`−1 + xBt,d+`−1 ≥ 1 (4.19)

∀t ∈ T , ∀d ∈ D, d ≤ m− `.

Constraint C9 (minimum number of days between two trips) The basic idea on the for-

mulation of this constraint is to look at each short period of days that would potentially

violate constraint C9 for a team and specify some inequalities preventing such violations from

45

actually happening. In particular, given a traveling team t and the set Ft of all its opponents

located far from its own home arena, we look at each period of less than δRRfar days, say from

day d to day d + q, with q ∈ {1, . . . , δRRfar − 1}, and whenever t has no away games but one

“trip breaker” (a home game or a long bye) during those q days, we impose that t is not

scheduled to play away on both day d − 1 and day d + q + 1 against its opponents in Ft.

Obviously, the idea is similar when considering only the opponents located close to the arena

of the traveling team under consideration.

As an example, considerer the description of C9 in the previous chapter (p. 36), where we

have δRRfar = 3 and δRRnear = 2. Because away byes last no more than two days (ξAB = 2), the

formulation of C9 comes down to only the following two cases.

— Preventing a team of having away games on days d and d+ 2 when it has a home game

on day d+ 1:∑
h∈T\{t}

xAt,d,h + xHt,d+1 +
∑

h∈T\{t}
xAt,d+2,h ≤ 2,

for each t ∈ T and each d ∈ D with d < m− 2.

— Preventing a team of having away games on days d and d+ 3 when it has, in total, at

least one home game on days d+ 1 and d+ 2:

2 ·
∑
h∈Ft

xAt,d,h + xHt,d+1 + xHt,d+2 + 2 ·
∑
h∈Ft

xAt,d+3,h ≤ 4,

for each t ∈ T and each d ∈ D with d < m− 3, where Ft = {h ∈ T : dist(h, t) > 900}.

For the general case, regarding a traveling team t ∈ T , any two away games t@h′ and

t@h′′ that are respectively the last game and the first game of two consecutive road trips for t

must be scheduled at least δRRfar days apart from each other if both the distances between h′

and t, and between t and h′′, are far (more than ξDD miles), or at least δRRnear days apart from

each other, otherwise. In particular, if the arenas of both h′ and h′′ are far from the arena

of t, we impose then the following constraints:

q ·
∑
h∈Ft

xAt,d,h +

q∑
k=1

(
xHt,d+k + xLt,d+k − (q − 1)·

∑
h∈T

xAt,d+k,h

)
+ q ·

∑
h∈Ft

xAt,d+q+1,h ≤ 2q

(4.20)

∀t ∈ T , q ∈ {1, . . . , δRRfar − 1},∀d ∈ D, d < m− q,

Ft = {h ∈ T : dist(h, t) > ξDD}.

46

Similarly, if the arena of either h′ or h′′ is close to the arena of t, we impose then the following

constraints:

q ·
∑
h∈Ft

xAt,d,h +

q∑
k=1

(
xHt,d+k + xLt,d+k − (q − 1)·

∑
h∈T

xAt,d+k,h

)
+ q ·

∑
h∈T\Ft

xAt,d+q+1,h ≤ 2q

(4.21)

and

q ·
∑

h∈T\Ft

xAt,d,h +

q∑
k=1

(
xHt,d+k + xLt,d+k − (q − 1)·

∑
h∈T

xAt,d+k,h

)
+ q ·

∑
h∈Ft

xAt,d+q+1,h ≤ 2q

(4.22)

∀t ∈ T , q ∈ {1, . . . , δRRnear − 1},∀d ∈ D, d < m− q,

Ft = {h ∈ T : dist(h, t) > ξDD}.

4.2 Formulation for minimizing total travel distance

In this section, we present a formulation that involves the minimization of total travel

distance, which, compared to the basic formulation from the preceding section, results in

a much higher number of variables and constraints. In particular, the resulting model has

O(n3m) variables for n teams and m days, which is in line with other sports scheduling

formulations in the literature (Trick, 2005; Ribeiro, 2012).

The formulation introduced in the preceding section is essentially based on the place that

every team must be on each day of the season. In order to solve the NHL scheduling problem

with minimization of total travel distance, we add then to the basic formulation new variables

that, regarding every team, account for the sequence of moves from one place to another.

In fact, the new variables can be described, for each ` ∈ {1, 2, . . . , ξAB + 1}, as follows:

y`t,d,h′,h′′ =

1 if team t is at the home location of team h′ on day d

and moves to the home location of team h′′ on day d+ `,

0 otherwise,

for any teams t, h′, h′′ ∈ T , and any day d ∈ D such that d ≤ m− `. In particular, indices h′

and h′′ can both refer to team t itself.

Generally speaking, for any ` ∈ {1, 2, . . . , ξAB}, having y`t,d,h′,h′′ = 1 indicates that t plays

at the arena of h′ on day d and then plays at the arena of h′′ on day d + `. However, in

47

addition to that case, if ` = ξAB + 1 then having y`t,d,h′,h′′ = 1 might also indicate that either

t plays at the arena of h′ on day d and then has a forced home bye on day d+ ` (team t must

return home due a long-bye period), or t has a forced home bye on day d and then plays at

h′′ on day d+ ` (team t leaves home after a long-bye period).

These new variables are linked to those in the basic formulation by mean of the following

constraints, which are logically grouped for easy understanding.

— two consecutive away games:

y`t,d,h′,h′′ ≥ xAt,d,h′ +
`−1∑
k=1

xBt,d+k + xAt,d+`,h′′ − ` (4.23)

∀t, h′, h′′ ∈ T , t 6= h′, t 6= h′′, ` ∈ {1, . . . , ξAB + 1},∀d ∈ D, d ≤ m− `;

— home game and then away game:

y`t,d,t,h′ ≥ xHt,d +
`−1∑
k=1

xBt,d+k + xAt,d+`,h′ − ` (4.24)

∀t, h′ ∈ T , t 6= h′, ` ∈ {1, . . . , ξAB + 1},∀d ∈ D, d ≤ m− `;

— away game and then home game:

y`t,d,h′,t ≥ xAt,d,h′ +
`−1∑
k=1

xBt,d+k + xHt,d+` − ` (4.25)

∀t, h′ ∈ T , t 6= h′, ` ∈ {1, . . . , ξAB + 1},∀d ∈ D, d ≤ m− `;

— away game and then long-bye period (forced home bye):

y`t,d,h′,t ≥ xAt,d,h′ +
`−1∑
k=1

xBt,d+k + xBt,d+` − ` (4.26)

∀t, h′,∈ T , t 6= h′, ` = ξAB + 1,∀d ∈ D, d ≤ m− `;

— long-bye period (forced home bye) and then away game:

y`t,d,t,h′ ≥ xBt,d +
`−1∑
k=1

xBt,d+k + xAt,d+`,h′ − ` (4.27)

∀t, h′,∈ T , t 6= h′, ` = ξAB + 1,∀d ∈ D, d ≤ m− `;

48

— first game (away) within the first ξAB + 1 days of the season:

y`t,`,t,h′ ≥
`−1∑
d=1

xBt,d + xAt,`,h′ − `+ 1 (4.28)

∀t, h′,∈ T , t 6= h′, ` ∈ {1, . . . , ξAB + 1}; and

— last game (away) within the last ξAB + 1 days of the season:

y`t,m−`+1,h′,t ≥ xAt,m−`+1,h′ +
m∑

d=m−`+2

xBt,d − `+ 1 (4.29)

∀t, h′,∈ T , t 6= h′, ` ∈ {1, . . . , ξAB + 1}.

Hence, in particular, the trip that a team travels from home for an away game in the first

ξAB +1 days of the season is taken into account in (4.28), and the trip that a team travels for

an away game in the last ξAB + 1 days of the season to home is taken into account in (4.29).

Finally, with the y variables, minimizing the total travel distance comes down to the

following straightforward linear objective function:

minimize

ξAB+1∑
`=1

n∑
t=1

m−∑̀
d=1

n∑
h′=1

n∑
h′′

dist(h′, h′′) · y`t,d,h′,h′′ . (4.30)

4.3 Computational experiments

In this section, we report several results from an implementation of the preceding math-

ematical model in a commercial state-of-the-art solver, namely the IBM ILOG CPLEX® 12.6.

In fact, all the models resulting from the relaxation of any of the constraints described in

the preceding section have been implemented in C++ and use the Concert Technology C++

API of CPLEX®. Here, by “relaxation” we mean either the omission of constraints or the

addition of artificial variables to the constraints and corresponding penalty in the objective

function. It was run under Linux on a 3.07GHz Intel(R) Xeon(R) X5675 processor (only one

processor was used) with 94.5G of RAM. For each experiment, the maximum time which

CPLEX® was allowed to run had been set (through the parameter IloCplex::TiLim) to 48

hours, and the number of threads had also been limit to a single one (through the parameter

IloCplex::Threads). Test were performed on different values for the MIP emphasis param-

eter (MIPEmphasis), but because it had no noticeable impact in the quality of the overall

results, we limit this reporting to those obtained with this parameter set as balanced, which

orients the search for a solution toward both optimality and integer feasibility.

49

4.3.1 Models and parameters

The results reported in this chapter are limited to four models and two settings of pa-

rameters. Furthermore, every combination model-and-parameters was tested both with and

without minimization of total travel distance. We use the term MinDist to denote the pres-

ence of minimization of distance in the model at hand. Each model refers to only a particular

subset of constraints being relaxed, but always penalized in the objective function. And each

setting of parameters fix different values for the revisit-gap parameters in the models.

To be more precise, the models we refer to are characterized by the following description,

which is summarized in Table 4.1.

Model I This model relaxes only the constraint C5 on the minimum number of games to be

played by a team during every week of the season.

Model II In addition to C5, this model relaxes the constraints C7, C8, C9 on the maximum

number of games per trip, on the maximum duration for a trip, and on the minimum

number of days between two consecutive trips for a team.

Model III In addition to the previous relaxations, on C5, C7, C8, and C9, this model relaxes

the constraints C4 and C6, on the daily travel distance and on the minimum number of

days between two games involving the same pair of teams in the same place (the revisit

gap).

Model IV This model relaxes all the nine constraints, from C1 to C9 in our descriptions of

the problem.

Table 4.1 Models for the computational experiments with CPLEX® Characterization of the
models with regard to each constraint of the problem.

Constraint Model I Model II Model III Model IV

C1 : arenaAvailability hard hard hard soft
C2 : max2GamesOver3Days hard hard hard soft
C3 : max3GamesOver5Days hard hard hard soft
C4 : maxDistancePerDay hard hard soft soft
C5 : minNGamesPerWeek soft soft soft soft
C6 : minNDaysBetweenRevisits hard hard soft soft
C7 : maxNGamesPerTrip hard soft soft soft
C8 : maxNDaysPerTrip hard soft soft soft
C9 : minNDaysBetweenTrips hard soft soft soft

In all these models, the objective function is to be minimized, as it is defined by a weighted

50

summation of variables representing the violation of the relaxed constraints, in addition

to the total distance (when MinDist is considered in the model). For the computational

experiments, we have set the weight (penalty parameter) wi for the violation of a constraint

Ci to the following values: w1 = 10 000, w2 = 1 000, w3 = 100, w5 = 1, and wi = 10 for each

constraint Ci with i ∈ {4, 6, 7, 8, 9}.
As for the parameters, we report results for two settings, LGap and SGap, which differ only

on the values for the revisit gaps. Indeed, both settings use the following values: ξDD = 900,

ξAB = 2, ξAG = 7, ξAD = 14, ξWG = 2, δRRfar = 3, and δRRnear = 2; and they differ on the revisit

gaps (δV Va,h) as follows:

Long revisit gaps (LGap) The minimum number of days between two games (revisits) for

each match is set to 13 and to 29 for intra-division and for interdivisional revisits,

respectively, as in Fleurent (1987).

Short revisit gaps (SGap) The minimum number of days between two games (revisits) for

each match is set to only 5 and to only 11 for intra-division and for interdivisional

revisits, respectively.

4.3.2 Problem instances

The data for the NHL scheduling problem are made up by specifying 1) the arrangement

of the League (comprising the distance between each pair of arenas), 2) the structure of

the regular season (with all the games that must be scheduled), and 3) the arena dates for

each team. As we have already stated, changes in the structures of both the League and its

regular season usually occur (when they do) on a very small scale from one year to the next.

On the other hand, the availability of arenas is expected to be quite irregular over different

seasons. To our knowledge, no such data are openly available, even for the past years. We

have decided, therefore, to create our own test problems, which we categorize into the three

following classes.

Entire-league instances Instances in this class were generated by keeping all home dates

in an actual NHL schedule and adding to it some extra arena-available dates. Such dates

were randomly chosen from the corresponding regular-season period. We denote these

instances by NHLα-βγ, where α refers to the starting year of the concerning season;

β is the number of extra arena dates per team; and γ is a letter to identify different

instances for the same year (α) and number of extra dates (β). For example, NHL13-4a

stands for a particular instance identified by a and having 4 additional home dates per

team with regard to the NHL schedule of the 2013-14 regular season. Given any official

NHL schedule, the only two parameters in our instance generator for this class are the

51

Table 4.2 Instances for the computational experiments Information about some of the problem
instances used in this thesis: numbers of conferences (#confs), divisions (#divs), teams
(#teams), games in a complete schedule (#games), games per team (#tgames), home games
per team (#hgames), and extra arena-available dates per team (#edays).

Instance #confs #divs #teams #games #tgames #hgames #edays

Entire-league instances
NHL09-00a 2 6 30 1230 82 41 0
NHL10-00a 2 6 30 1230 82 41 0
NHL11-00a 2 6 30 1230 82 41 0
NHL13-00a 2 4 30 1230 82 41 0
NHL09-04a 2 6 30 1230 82 41 4
NHL10-04a 2 6 30 1230 82 41 4
NHL11-04a 2 6 30 1230 82 41 4
NHL13-04a 2 4 30 1230 82 41 4
NHL09-08a 2 6 30 1230 82 41 8
NHL10-08a 2 6 30 1230 82 41 8
NHL11-08a 2 6 30 1230 82 41 8
NHL13-08a 2 4 30 1230 82 41 8

Partial-league instances
NHL11-1208-76 1 2 8 304 76 38 3
NHL13-1208-76 1 2 8 304 76 38 3
NHL11-1208-74 1 2 8 296 74 37 4
NHL13-1208-74 1 2 8 296 74 37 4
NHL11-1208-72 1 2 8 288 72 36 5
NHL11-1210-74 1 2 10 370 74 37 4
NHL13-1212-76 1 2 12 456 76 38 3
NHL11-1312-78 1 3 12 468 78 39 2
NHL11-1312-72 1 3 12 432 72 36 5
NHL13-1216-74 1 2 16 592 74 37 4
NHL13-2416-78 2 4 16 624 78 39 2
NHL13-2416-74 2 4 16 592 74 37 4
NHL11-2624-74 2 6 24 888 74 37 4
The 2012 instances

NHL12-1315a 1 3 15 360 48 24 0
NHL12-1315b 1 3 15 360 48 24 0

number and the “type” of extra dates per team. The type parameter indicates the dates

within the regular-season period that are the candidates to become extra dates for the

instance being generated. In fact, this parameter specifies which of the following two

52

strategies is applied: (1) the extra dates are chosen, for any team t, only among those

days when t had not been scheduled to play (neither home nor away) in the actual

NHL schedule; or (2) the extra dates are selected among any non-home dates (even

those when t had been scheduled to play away) in the actual NHL schedule. This is

based upon the rationale that finding a solution for the instances in which all the new

dates, regarding the actual NHL schedule, are indeed extra dates may be easier than

scheduling games for instances in which some NHL away dates had also been selected as

“extra” dates. Evidences for such premise is to be gathered throughout the experiments

reported in this thesis. We refer to those two types of dates as true-extra dates and

pseudo-extra dates, respectively.

Partial-league instances Instances in this class are formed by only some randomly chosen

subset of the teams from the League. The home dates in the corresponding actual NHL

schedule for the chosen teams are taken as arena-available dates in these instances. But

the numbers of games to be scheduled are changed. They are proportionally increased

for each pair of teams until every team would have to play in this “partial league”

almost the same number of games it plays in the actual schedule. Obviously, even with

such small artificial leagues, the idea is to mimic the unavailability of arena dates from

the real situation, where a limited number of dates are reported to be available for the

home games of many teams.

The 2012 instances There are only two instances in this class, named NHL12-1315a (for the

Eastern Conference schedule) and NHL12-1315b (for the Western Conference schedule),

each one made up from the 15 teams (and their home dates) on the NHL 2012-13

season for a particular conference. The actual schedule for that season, during which

only 720 games were played, is in fact formed by two independent schedules, one for

each conference. In particular, no game was played between a team from the Eastern

Conference and another from the Western Conference during that shortened season due

to a labour dispute that started in 2012 and lasted for a few months.

Table 4.2 outline some information about the instances of these three classes that we use

for the computational experiments reported in this chapter.

We must remark that some instances also provide a few pre-scheduled games if the cor-

responding actual NHL schedule includes some special games that are not supposed to be

rescheduled. Examples of such games are Première games (which are played in Europe),

Winter Classic games (which are usually fixed in the middle of the season), Stadium Series

games, and Heritage Classic games. Furthermore, only days that in the corresponding actual

schedule have at least one scheduled game are considered as “playable days” in our instances.

In particular, our implementations does not schedule games to special days that involves, for

53

example, Christmas holidays, All Star game week, and Olympic break. In addition, for a

team that, in the beginning of the season, plays a Première game, no game is scheduled in a

period of at least four days after the last of those games (in Europe).

The results are grouped by class of instances throughout the following subsections. We

start reporting on the partial-league instances, which are expected to be somewhat less dif-

ficult to solve than the entire-league instances.

4.3.3 Results for the partial-league instances

Results for the partial-league instances are presented in tables 4.3 and 4.4 respectively

for the cases with and without minimization of total travel distance. These tables show the

running times and output solution status from CPLEX® on the four models (different relaxed

constraints) with the two revisit-gap configurations we mentioned earlier. For a model in

which a particular constraint has been relaxed, the reference to the constraint, Ci, is enclosed

between brackets, [Ci], on the top of the tables. The results are separated into two groups:

one for each configuration of the revisit-gap parameters, which are either long (LGap) or short

(SGap). The solution status (Sol) indicates whether (feas) or not (–) a feasible solution, not

necessarily the optimal (opt), has been found within the time limit of 48 hours.

An inspection of the solution statuses in Table 4.3 indicates that, for large revisit gaps,

73% of the instances have been solved either to proved optimality (42%) or at least to

feasibility (31%). That proportion is much larger for short revisit gaps (96%), where almost

all instances were solved to optimality. Even though the short revisit gaps were intended

to facilitate the search for feasible solutions with regard to the C6 constraints, the results

on short revisit gaps are quite remarkable, particularly for instances with 16 and 24 teams,

which have no more than four extra arena dates per team.

As for the experiments involving the minimization of total travel distance (MinDist),

although slightly more instances are solved to feasibility for the small than for the large revisit-

gap configuration, the results in Table 4.4 show that the solver is somewhat disappointing

in this case. In fact, by a deeper inspection of the feasible solutions from this part of the

experiments and by comparing them with the corresponding feasible solutions referred in

Table 4.3, we noticed that even though the total distances have indeed decreased for most

of the cases, in general it happened to the price of higher number of constraint violations.

Exception to this disappointing effect did occur with Model I, where only the C5 constraints

are allowed to be violated. Indeed, the total distance on every feasible solution in Table 4.4

for Model I with parameters SGap+MinDist happens to be between 4 and 16% lower than

the distance on the corresponding (optimal) solutions without minimization of distance from

Table 4.3. And this, at the price of no more than three additional violations of C5 in the

54

same comparison.

Now, comparing the overall results in these two tables indicates that the models involving

MinDist are indeed much more difficult to be solved than their corresponding configurations

without considering the total distance. In fact, solutions (not necessarily optimal) were found

only for 38% of the instances when the models incorporate MinDist, as opposed to more than

84% for the other case. This is somewhat in agreement with what we expected, because, in

particular, the models with MinDist involves a huge number of additional constraints and

variables.

In both tables, the results also suggest that shorter values for the revisit-gap parameters

make the problems easier for CPLEX® to solve them. In practice, when sequentially schedul-

ing the games, once a game for a particular match is scheduled, imposing larger revisit gaps

reduces the range of remaining feasible days for other games of the same match. In a MIP

solver, however, it could be expected that such reduction in the number of possible assign-

ments would speed up the search for a solution, which does not seem to occur in the case of

CPLEX® for any of our experiments in this chapter.

We also notice that, when we compare the results on the different models, these experi-

ments support the general idea that solving such problems becomes less difficult when more

(hard) constraints are present in the model, as in general it reduces the solution space of the

problem.

4.3.4 Results for the 2012 instances

The 2012 instances are especially interesting for the application of our models in this

chapter, as they are entirely based in the official NHL schedule while having numbers of

games and teams that, considering the results in the preceding subsection, can probably be

dealt with by our C++ CPLEX® implementations. Here, we also test the models I to IV,

each one with the two configurations of revisit gaps, LGap and SGap, with and without

minimization of total distance (MinDist). The corresponding running times and output

solution status from CPLEX® are outlined in Table 4.5.

A first look at the results in this table reveals that the Western Conference instance,

NHL12-1315b, seems surprisingly more difficult to solve than the other one, NHL12-1315a,

which was solved to proved optimality on all models without MinDist, and at least to feasi-

bility when total distance is to be minimized. In particular, regarding the models I and II,

a feasible (optimal) solution was only found for the short revisit-gap configuration on Model

II during 48 hours of search.

To further explore these results, we now focus in the instance NHL12-1315a for the partic-

ular case of Model III. Table 4.6 shows the constraint violations for the corresponding found

55

solutions, in addition to the increase in the total travel distance regarding the actual NHL

schedule. Here, we notice that no constraint is violated by the optimal solutions obtained

both for the easier case of small revisit gap and for the more realistic long revisit gap. But

when minimization of total distance had been incorporated in those cases, some violations did

occur in the best-found solutions. As for the value of the total distance, the particular case

of the large revisit gap configuration also resulted in a worse solution than in the correspond-

ing case without MinDist. This might suggest that, in general, the bigger models involving

MinDist would need much more than 48 hours to possibly obtain reasonable solutions with

respect to the total travel distance.

4.3.5 Results for the entire-league instances

Different from some rather promising results obtained for the previous classes of instances,

CPLEX® failed to solve (in 48 hours) almost all the instances of this more realistic class. In

fact, as shown in Table 4.7, CPLEX® was only able to solve five instances of the entire-

league class through the most constrained models, I and II, for the “easier” short revisit-gap

configuration without minimization of distance.

Curiously, all but one of the instances solved have no extra arena dates, which seems to

suggest that, as expected, the search has been favored by the smaller search space of these

cases.

56

Table 4.3 Results for the partial-league instances without minimization of total travel distance
Running times and output solution status from CPLEX® on four different models. For a
model in which a particular constraint has been relaxed, the reference to the constraint, Ci,
is enclosed between brackets, [Ci], on the top of the table. The results are separated into
two groups: one for each configuration of the revisit-gap parameters, which are either long
(LGap) or short (SGap). The solution status (Sol) indicates whether (feas) or not (–) a
feasible solution, not necessarily the optimal (opt), has been found within the time limit of
48 hours.

Model I Model II Model III Model IV

C1 C2 C3 C1 C2 C3 C1 C2 C3 [C1] [C2] [C3]
C4 [C5] C6 C4 [C5] C6 [C4] [C5] [C6] [C4] [C5] [C6]
C7 C8 C9 [C7] [C8] [C9] [C7] [C8] [C9] [C7] [C8] [C9]

Param. LGap
Instance Time Sol Time Sol Time Sol Time Sol

NHL11-1208-76 – – – – – feas – feas
NHL13-1208-76 – – – – – feas – feas
NHL11-1208-74 18h41m14s opt 11m5s opt 46h42m25s opt – feas
NHL13-1208-74 15h6m0s opt – feas – feas – feas
NHL11-1208-72 – – – – – feas – feas
NHL11-1210-74 30m16s opt 19m54s opt 4h45m14s opt – feas
NHL13-1212-76 15h13m55s opt 1h22m46s opt – feas 6h58m9s opt
NHL11-1312-78 45h41m40s opt 14h48m50s opt – feas – –
NHL11-1312-72 46h6m36s opt 1h51m32s opt 44h21m34s opt 18h52m23s opt
NHL13-1216-74 2h5m58s opt 4h26m53s opt 9h26m46s opt 47h55m22s opt
NHL13-2416-78 – – – – – feas – –
NHL13-2416-74 – – – feas – feas – –
NHL11-2624-74 11h49m29s opt 41h8m32s opt – – – –

Param. SGap
Instance Time Sol Time Sol Time Sol Time Sol

NHL11-1208-76 1m50s opt 2m13s opt 8m22s opt 13m46s opt
NHL13-1208-76 3m17s opt 5m44s opt 40m45s opt 1h35m13s opt
NHL11-1208-74 1m5s opt 2m58s opt 7m25s opt 33m52s opt
NHL13-1208-74 1m20s opt 5m46s opt 13m24s opt 54m25s opt
NHL11-1208-72 1m42s opt 4m44s opt 1h2m55s opt 3h47m9s opt
NHL11-1210-74 7m20s opt 8m15s opt 14m22s opt 2h3m23s opt
NHL13-1212-76 18m45s opt 45m58s opt 2h28m56s opt 31h39m27s opt
NHL11-1312-78 16m3s opt 41m0s opt 2h16m24s opt 3h27m45s opt
NHL11-1312-72 18m0s opt 57m40s opt 1h40m0s opt 4h17m50s opt
NHL13-1216-74 38m32s opt 1h16m44s opt 4h45m52s opt – feas
NHL13-2416-78 – – 4h23m27s opt – feas – feas
NHL13-2416-74 2h40m32s opt 5h39m17s opt 16h29m31s opt – feas
NHL11-2624-74 12h54m23s opt 40h40m18s opt 40h53m7s opt – –

57

Table 4.4 Results for the partial-league instances with minimization of total travel distance
Running times and output solution status from CPLEX® on four different models. For a
model in which a particular constraint has been relaxed, the reference to the constraint, Ci,
is enclosed between brackets, [Ci], on the top of the table. The results are separated into two
configurations of the revisit-gap parameters: long (LGap) and short (SGap). The solution
status (Sol) indicates whether (feas) or not (–) a feasible solution, not necessarily the optimal
(opt), has been found within the time limit of 48 hours.

Model I Model II Model III Model IV

C1 C2 C3 C1 C2 C3 C1 C2 C3 [C1] [C2] [C3]
C4 [C5] C6 C4 [C5] C6 [C4] [C5] [C6] [C4] [C5] [C6]
C7 C8 C9 [C7] [C8] [C9] [C7] [C8] [C9] [C7] [C8] [C9]

Param. LGap+MinDist
Instance Time Sol Time Sol Time Sol Time Sol

NHL11-1208-76 – – – – – feas – feas
NHL13-1208-76 – – – – – feas – feas
NHL11-1208-74 – – – – – feas – feas
NHL13-1208-74 – – – – – feas – feas
NHL11-1208-72 – – – – – feas – feas
NHL11-1210-74 – – – feas – feas – –
NHL13-1212-76 – – – – – – – –
NHL11-1312-78 – – – – – feas – –
NHL11-1312-72 – – – – – feas – –
NHL13-1216-74 – – – – – – – –
NHL13-2416-78 – – – – – – – –
NHL13-2416-74 – – – – – – – –
NHL11-2624-74 – – – – – – – –

Param. SGap+MinDist
Instance Time Sol Time Sol Time Sol Time Sol

NHL11-1208-76 – feas – feas – feas – feas
NHL13-1208-76 – feas – feas – feas – feas
NHL11-1208-74 – feas – feas – feas – feas
NHL13-1208-74 – – – feas – feas – feas
NHL11-1208-72 – – – feas – feas – feas
NHL11-1210-74 – feas – feas – feas – feas
NHL13-1212-76 – – – – – – – –
NHL11-1312-78 – feas – – – – – –
NHL11-1312-72 – feas – feas – feas – –
NHL13-1216-74 – – – – – – – –
NHL13-2416-78 – – – – – – – –
NHL13-2416-74 – – – – – – – –
NHL11-2624-74 – – – – – – – –

58

Table 4.5 Results for the 2012 instances with and without minimization of total travel distance
Running times and output solution status from CPLEX® on four different models. In each
case, two configurations of the revisit-gap parameters, LGap and SGap, has been tested with
(MinDist) and without minimization of distance. The solution status (Sol) indicates whether
(feas) or not (–) a feasible solution, not necessarily the optimal (opt), has been found within
the time limit of 48 hours.

Model I Model II Model III Model IV

C1 C2 C3 C1 C2 C3 C1 C2 C3 [C1] [C2] [C3]
C4 [C5] C6 C4 [C5] C6 [C4] [C5] [C6] [C4] [C5] [C6]
C7 C8 C9 [C7] [C8] [C9] [C7] [C8] [C9] [C7] [C8] [C9]

Instance NHL12-1315a

Parameters Time Sol Time Sol Time Sol Time Sol

LGap 4h17m36s opt 2h13m11s opt 4h24m18s opt 2h39m58s opt
SGap 15m56s opt 9m4s opt 55m20s opt 41m10s opt
LGap+MinDist – feas – feas – feas – feas
SGap+MinDist – feas – feas – feas – feas

Instance NHL12-1315b

Parameters Time Sol Time Sol Time Sol Time Sol

LGap – – – – – feas – feas
SGap – – 8h59m43s opt – feas – feas
LGap+MinDist – – – – – feas – feas
SGap+MinDist – – – – – feas – feas

Table 4.6 Results for the 2012-13 season schedule of the Eastern Conference Constraint
violations and travel distance on the results from Table 4.5 on Model III for the instance
NHL12-1315a. The column ∆Dist refers to the difference between the total travel distance
for the corresponding solution and the travel distance for the actual NHL 2012-13 schedule
of the Eastern Conference, which is 268034 miles.

Model III Number of violations

Parameters Sol C1 C2 C3 [C4] [C5] [C6] [C7] [C8] [C9] ∆Dist

LGap opt 0 0 0 0 0 0 0 0 0 +40492
SGap opt 0 0 0 0 0 0 0 0 0 +33661
LGap+MinDist feas 0 0 0 18 0 9 0 0 2 +50244
SGap+MinDist feas 0 0 0 2 0 0 0 0 0 +33344

59

Table 4.7 Results for the entire-league instances without minimization of total travel distance
Running times and output solution status from CPLEX® on four models (different constraint
relaxations) with one revisit-gap configuration (short). For a model in which a particular
constraint has been relaxed, the reference to the constraint, Ci, is enclosed between brackets,
[Ci], on the top of the table. The solution status (Sol) indicates whether (feas) or not (–) a
feasible solution, not necessarily the optimal (opt), has been found within the time limit of
48 hours.

Model I Model II Model III Model IV

C1 C2 C3 C1 C2 C3 C1 C2 C3 [C1] [C2] [C3]
C4 [C5] C6 C4 [C5] C6 [C4] [C5] [C6] [C4] [C5] [C6]
C7 C8 C9 [C7] [C8] [C9] [C7] [C8] [C9] [C7] [C8] [C9]

Instance Time Sol Time Sol Time Sol Time Sol

NHL09-00a 11h31m opt 36h25m opt – – – –
NHL10-00a 33h49m opt 33h26m opt – – – –
NHL11-00a 15h40m opt 36h5m opt – – – –
NHL13-00a 10h47m opt – – – – – –
NHL09-04a – – – – – – – –
NHL10-04a 39h26m opt – – – – – –
NHL11-04a – – – – – – – –
NHL13-04a – – – – – – – –
NHL09-08a – – – – – – – –
NHL10-08a – – – – – – – –
NHL11-08a – – – – – – – –
NHL13-08a – – – – – – – –

60

CHAPTER 5

AN ADAPTIVE LARGE NEIGHBORHOOD SEARCH

The results outlined in the preceding chapter support the general idea in the sports

scheduling literature that a problem like the scheduling of the NHL games might require more

specialized optimization approaches (Schaerf, 1999; Trick, 2011). Therefore, in this chapter,

we propose an algorithm that integrates both classic and novel optimization techniques into

an Adaptive Large Neighborhood Search (ALNS), which is well-suited for tightly-constrained

problems and has provided outstanding results for transportation and other scheduling prob-

lems (Pisinger and Ropke, 2010; Kovacs et al., 2012).

In the following sections, we describe our ALNS algorithm for the NHL scheduling prob-

lem, which includes a review of the heuristics introduced by Fleurent (1987) and computa-

tional experiments on setting the parameters of the algorithm, and present some results for

several instances we have introduced in the preceding chapter.

5.1 Model

Here, we consider a model where the constraints enumerated in Chapter 3 for the NHL

scheduling problem are all soft constraints. In addition to the essential constraints that, for

example, does not allow more than one game for a team on one day, this model consists

basically of an objective function defined by a weighted sum of the number of violations for

the nine constraints, C1, C2, . . . , C9. Indeed, in this chapter, the objective function value, or

simply cost, with regard to a solution (schedule) S for the NHL scheduling problem is given

by

f(S) =
9∑
i=1

wifi(S),

where fi(S) is the number of violations of the constraint Ci in the schedule S, and wi is the

corresponding non-negative weight (or penalty).

5.2 Algorithm

The Adaptive Large Neighborhood Search (ALNS) algorithm that we propose in this

thesis for the NHL scheduling problem follows the framework introduced by Ropke and

Pisinger (2006), which is an extension of the Large Neighborhood Search (LNS) given by Shaw

61

(1998). The ALNS is also essentially based on the ruin and recreate paradigm presented

by Schrimpf et al. (2000).

Generally speaking, that framework is made up of repeated attempts to improve a cer-

tain solution, referred to as the current solution, which must initially be either provided or

generated from scratch. Each of those attempts defines an iteration of the ALNS during

which part of the current solution is modified and the resulting new solution is evaluated to

be either rejected or accepted to become the “current” solution for the next iteration.

Indeed, during each ALNS iteration, two kinds of algorithms are systematically applied

to the current solution: first, one that relax part of the solution, and then, another algorithm

that re-optimizes the problem over the relaxed part in attempt to obtain a better whole

solution. These partial-relaxation and re-optimization algorithms are well known in the

ALNS literature as destroy operator and repair operator, respectively.

In general, an ALNS provides a number of operators, each one implementing a different

strategy, either for destroying or for repairing a solution. As suggested by Ropke and Pisinger

(2006), the approach might become more robust on the whole when alternating between

different destroy and repair operators, as one operator may be more effective than another

on different instances of the problem.

One destroy and one repair operators are selected at the beginning of each iteration in a

random weighted manner according to their individual performance as the search progresses.

The idea is to make the most promising operators more likely to be chosen (and applied)

through the iterations of the ALNS.

In our ALNS, all the destroy and repair operators are heuristics. Every destroy operator

set games free by canceling some game-day assignments in the current solution, or equiv-

alently, “removes” certain games from the current schedule. In the same way, every repair

operator assigns a day to each free game, or equivalently, “inserts” the free games back into

the current schedule—hopefully on different (and better) days than before. This might ex-

plain why, from an application point of view, the literature often refers to the destroy and

repair operators as removal and insertion operators, respectively.

We now present the design decisions on the solution acceptance criteria, and on the

selection of operators and the adjustment of their weights, which control the master level of

the ALNS. In the next subsections, we then address a multi-heuristic approach to construct

an initial solution for the problem, and describe the operators that we propose either for

partially destroying an NHL schedule or for repairing it to a complete schedule.

62

5.2.1 Controlling the master level of the algorithm

Basically, our ALNS algorithm consists of the construction of an initial solution (Sinit)

and a loop that, while not all constraints of the problem are satisfied, tries to improve the

current solution (Scurr) through a fixed number of iterations.

Here, we first present the solution acceptance criteria for each iteration of the algorithm;

and then, we describe the strategies for the adaptive layer of the search, which controls

the choice of the operators according to their individual performance in past iterations. An

outline, with a pseudo-code, of the master level of the algorithm is presented in Appendix A.1.

Solution acceptance criteria

We have chosen to use the acceptance criteria from Simulated Annealing, which has been

widely used in the ALNS literature. Therefore, during each iteration of our ALNS, after a

destroy and a repair operators have been applied, the new solution is accepted whenever its

cost is not worse (not higher) than the cost of the current solution; and otherwise, the new

solution is accepted with a certain probability. The worse the new solution is, the less likely it

is to be accepted. In addition, this probability is proportional to a control parameter known

as the temperature, which is slightly decreased as the ALNS advances.

To be more precise, we initially set an initial temperature T0 to a high value, and then,

for each iteration k of the ALNS, the temperature is lowered according to a cooling schedule

defined by Tk+1 = c Tk, where c, such that 0 < c < 1, is known as the cooling factor. If Scurr,

with cost f(Scurr), is the current solution, and Stemp, with cost f(Stemp), is the temporary

solution generated by the corresponding pair of destroy and repair operators, then Stemp is

accepted whenever the condition f(Stemp) ≤ f(Scurr) holds; otherwise, the temporary solution

is accepted with probability e−(f(Stemp)−f(Scurr))/Tk , which depends on the current temperature,

Tk, and on the corresponding increase in the cost, f(Stemp)− f(Scurr).

Using the strategy of Ropke and Pisinger (2006), instead of providing the initial tem-

perature as a parameter to the ALNS, a more meaningful parameter, the start temperature

control parameter (which we denote by τ), is used to calculate the temperature according to

an evaluation of the initial solution at hand.

Indeed, we first evaluate the initial solution, Sinit, with a slightly modified cost function, f̂ ,

that is also a weighted sum of the constraint violations, but without the terms corresponding

to the first two constraints (the “most costly” ones). And then, the initial temperature is set

to a value such that, at the beginning of the algorithm, a temporary solution causing a cost

increase of exactly τ% of f̂(Sinit) would be accepted with probability 0.5.

In addition, because we have chosen to run the ALNS for a fixed and relatively large

63

number of iterations, we also compute the cooling factor, instead of following the strategy

by Ropke and Pisinger (2006), which provides the cooling factor as another parameter to the

algorithm. In fact, we set the cooling factor, c, which controls the constant rate of decrease

in the temperature parameter to a value such that a temporary solution one unit worse

than the current solution would have only 1% of chance of being accepted at the last ALNS

iteration. The cooling factor depends thus on the initial temperature and on the (typically

large) maximum number of ALNS iterations, and its value is usually very close to 1.0. This

results in only a slight decrease in the temperature from one iteration to the next.

Operator selection

As previously mentioned, during each iteration of the ALNS, two operators are selected:

one for destroying part of the current solution and another for repairing it. The selection of

operators is implemented by first assigning to each operator a weight that represents its past

performance on the problem instance being solved. Then that weight is used to associate a

probability of selection with each individual operator. In fact, the probability of an operator

being chosen is proportional to its weight, as the ALNS uses a roulette wheel selection.

To be more precise, if ωi is the weight of a destroy operator i, its probability of being

selected is ωi/
∑

o∈I− ωo, where I− is the set of destroy operators provided to the ALNS. The

strategy for selecting a repair operator is identical to that of a destroy operator.

Weight adjustment

During the search, if all the operators (either for destroying or for repairing) had the same

weight, then every operator would have, at any time, the same probability of being selected.

The ALNS, however, has an adaptive layer that automatically adjusts the weights associated

to operators in order for those weights to mimic the performance of the operators in earlier

iterations.

In our implementation, as suggested by Ropke and Pisinger (2006), the weights are indeed

systematically recalculated at the end of every certain number of iterations. The whole search

is split into blocks of consecutive iterations called segments. All the segments have the same

number of iterations, which defines the segment size, a parameter that is provided to the

ALNS.

According to the performance of the operators during a segment, a score is assigned to

each of them. At the end of a segment, the weight of every operator (and thus its selection

probability) is then computed as a weighted sum of its score during the segment and its

overall score since the beginning of the search.

64

To be more precise, let s be an ALNS segment, and let o be an operator that is selected

at least once through the iterations of the segment s. In order to compute the weight of the

operator o for the next segment, a score πo is set to zero at the beginning of the segment s

and might then be increased by a certain amount each time the operator o is applied through

s. The increment amount depends on the quality of the (temporary) solution obtained after

the corresponding destroy and repair operators have been applied.

We have chosen to use three score adjustment parameters, σbes, σbet, and σacc, to specify

the amounts by which the score may be increased. Indeed, at any iteration when o is applied

during the segment s, the score πo increases by σbes if the cost of the resulting solution is the

best (lowest) found since the beginning of the search; otherwise, πo increases either by σbet

if the resulting solution cost is better than the cost of the current solution, or by σacc if the

resulting solution is accepted by the ALNS but its cost is worse than the cost of the current

solution. The score is not changed if the resulting solution is not accepted.

When the end of the segment s is reached, and the operator o had been applied θo times

and gained a total of πo as score during that segment, the weight of o for the next segment

is computed as ωo (1 − ρ) + ρ(πo/θo), where ρ, such that 0 ≤ ρ ≤ 1, is the reaction factor

controling the degree of change on the current weight, ωo, in response to the “smoothened”

score obtained by the operator o.

5.2.2 Constructing an initial solution

In order to provide a complete NHL schedule at the beginning of the ALNS algorithm,

we propose a construction approach that implements the heuristics introduced by Fleurent

(1987). They were originally intended to be used in an interactive manner by an expert

scheduler that would call any of the corresponding procedures whenever needed during the

scheduling process. But Fleurent (1987) also proposes an implementation that calls the

heuristic procedures in a specific order, without any interaction with the user. Since the

game-day assignments in Fleurent’s heuristics need to satisfy most of the constraints of the

problem, that approach alone may not be able to fully schedule the free games (at least not

for the hardest instances, with none or too few extra arena dates per team). We are therefore

proposing to construct an initial NHL schedule by first applying those heuristics as suggested

by Fleurent (1987), and then, if there still are free (missing) games, by scheduling them with

a basic greedy approach that evaluates the incremental cost associated with every possible

day for each game being scheduled. This might then yield a reasonable NHL schedule from

which to start our search for an improved solution.

Fleurent’s heuristics will be individually described in the next subsections (and outlined

in Appendix B.1). Before that, we outline the whole construction approach by the steps

65

informally stated below, where the heuristics we mention refer to those introduced by Fleurent

(1987) and, to stay in line with their original conception, a “feasibly-possible scheduling” is

a game-day assignment that satisfies all the constraints in the set CF , except perhaps C5 on

the minimum number of games per week, where CF = {C0,C1,C2,C4,C5,C6}.

Step 1. Schedule forced trips. Apply the forced-trip heuristic to schedule as many free games

as feasibly possible by first identifying long periods of days with no arena dates for a

team, and then, by assigning the respective team to visit, in a single trip, at most

seven of its distant opponents exclusively during the corresponding period of arena

unavailability.

Step 2. Schedule forced home games. Apply the forced-home heuristic to schedule, for each

trip lasting more than one week, two home games for the respective traveling team:

one game on its last (latest) arena date before the trip, and the other, on its first arena

date after the trip.

Step 3. Schedule free trips. Apply the free-trip heuristic to schedule all current free games

opposing teams based far from each other by first identifying, for each team, at most

three of its distant opponents to be visited in a single trip, and then, by scheduling

every one of those long-distance trips on a period that does not violate the constraints

in CF and that contains the minimum possible number of arena dates of the visiting

team.

Step 4. Schedule forced home games. Apply the forced-home heuristic to have, for each trip

lasting more than seven days, a home game scheduled on the last and on the first arena

day of the traveling team before and after that trip, respectively.

Step 5. Schedule weekend games. Apply the weekend-game heuristic to schedule as many

free games as feasibly possible respectively on Saturdays, on Fridays, and on Sundays,

by trying not to schedule a team to play away on a weekend containing some of its own

arena dates, and by never putting a team to play an away game within a period when

it has already been scheduled to visit distant opponents.

Step 6. Schedule weekday games. Apply the weekday-game heuristic to schedule as many

free games as feasibly possible on weekdays from Monday through Thursday, by trying

not to schedule a team to play away on its own arena dates, and by never assigning days

from periods of long-distance visits for the teams involved in the game being scheduled.

Step 7. Exchange games. Apply the single exchange heuristic, and then the double exchange

heuristic, to schedule as many free games as feasibly possible by allowing some of the

previously scheduled short-distance visits to be rescheduled on alternative days.

66

Step 8. Schedule the remaining free games. Select at random every remaining free game

and schedule it in a greedy manner on a day that, besides not violating the constraint

C0 (no more than one game a day for a team), produces the lowest incremental cost.

We now describe each of the heuristics initially proposed by Fleurent (1987). To antic-

ipate, they have been adapted as some of the operators for our ALNS, which is described

later in this chapter. For a more precise description of each of them, which outlines the steps

they perform, see Appendix B.1.

Forced-trip heuristic

The forced-trip heuristic tries to generate as many trips as feasibly possible, each one

made up exclusively of games taking place during a long period of consecutive days with no

arena dates for the respective traveling team. The overall idea is straightforward. In order

to preserve dates for eventual subsequent allocations of home games by other heuristics, no

team is scheduled to play away on days when its own arena is available. Furthermore, in

the course of any trip being generated, the visiting team only plays against several distant

opponents, which in turn, should ideally be located in the same geographical area. This aims

to reduce the total distance traveled by the teams during the entire regular season.

The strategy on preserving home dates is directly related to forced trips, which are trips

taking place entirely during a period when the arena of the traveling team is not available

(Ferland and Fleurent, 1991). Because the schedule is intended to be feasible with regard to

the constraints in CF (including the arena availability constraint), when applying the forced-

trip heuristic, the only games scheduled for a team between two of its consecutive arena dates

are then games to be played away. Moreover, the corresponding opponents on those games

must be located farther than a given threshold distance (900 miles) from the arena of the

traveling team and, as we have anticipated, they should be based in the same geographical

area.

In an attempt to satisfy this goal, the following saving measure is used when selecting the

teams to be visited during a forced trip:

sa(h1, h2) = dist(h1, a) + dist(a, h2)− dist(h1, h2),

where a is the traveling team, h1 and h2 are two potential consecutive away opponents, and

dist(·, ·) is the distance between the corresponding pair of teams.

A large value for this measure, which was used by Clarke and Wright (1964) in a classical

algorithm for vehicle routing problems, suggests that indeed the two corresponding opponents

are located close to each other when compared to their distances to the arena of the traveling

67

team.

Basically, the heuristic starts building a new trip whenever it finds a team that can visit

two distant opponents on a single two-game trip scheduled between two of its consecutive

arena dates (which would rather be widely separated from each other) without violating

the constraints in CF . Then, it attempts to extend the trip for no more than seven games

scheduled only to the current period of arena unavailability for the traveling team. Indeed,

the heuristic tries to schedule that same team to directly visit other distant opponents both

before and after the (so far two-game) trip. Each away game appended to the trip is selected

as to maximize the saving measure defined above, and the constraints in CF must be satisfied

all the time.

Forced-home heuristic

The forced-home heuristic tries to schedule home games to the begin and to the end of

every long-lasting trip for a team. Indeed, the goal is to schedule, for each trip lasting more

than seven days, the respective traveling team to play home at its first arena date just before

the trip and at its first arena date after the trip. Every game-day assignment must satisfy

the constraints in CF . The heuristic seeks, as a priority, to schedule games for which the

arena of the visiting team is not available at the day being assigned; and in case of tie, the

game corresponding to the visit of the nearest opponent is chosen to be scheduled.

Free-trip heuristic

The free-trip heuristic, as the forced-trip heuristic, generates for each team, trips that

are made up exclusively of games to be played against distant opponents. In this case,

however, trips are individually generated by first determining a short promising sequence of

away games, and only then, by trying to assign suitable days to the respective games. In

other words, once an appropriate new trip is identified, the heuristic is “free” to choose any

promising period when it must take place, with the condition that the constraints in CF are

not violated.

The overall goals when generating every free trip are twofold: (1) to schedule a team to

visit distant opponent located nearby in a same area so as to reduce the total travel distance;

and (2) to preserve as many arena dates of the traveling team as possible, even though such

dates are now allowed to be taken, if necessary.

At first, a team a having the highest number of distant (more than 900 miles) away games

remaining to be scheduled is chosen as the traveling team. Because it may be too hard to

find a suitable period of days for a trip with many games, the free trips are made up of only

68

two or only three games. The first two distant opponents, h1 and h2, to be visited by a in

the free trip, r(a), being generated are chosen as to maximize sa(h1, h2), the saving defined

earlier. A third opponent, h3, is then appended to r(a) if the value sa(h3, h
′) is maximized

with h′ = h1 or with h′ = h2, among all distant opponents that a must still be scheduled to

visit. Finally, the heuristic tries to schedule the free trip r(a) to a period having the least

number of arena dates for the traveling team, a.

Weekend-game heuristic

The weekend-game heuristic tries to schedule as many of the short-distance visits as

possible exclusively to weekend days as this is assumed to be a promising factor to increase

spectator attendance at home games. Every game-day assignment satisfies the constraints

in CF and no game is scheduled to a period when either of the respective teams has already

been assigned to visit distant opponents.

The heuristic is based on a specific set of “target days”, which is successively characterized

(in this order) by all Saturdays, all Sundays, and all Fridays of the regular season period. For

each of those sets, the heuristic seeks, whenever possible, to select a target day and a free

game that yield a feasible game-day assignment where two non-distant teams oppose each

other without involving any long-distance trip period for either of them.

The actual assignments are, furthermore, based only on the arena availability of the visit-

ing team during the respective weekend. Indeed, at any time, a game is scheduled exclusively

on a target day when the arena of the visiting team, with regard to the corresponding three

weekend days, is either (i) completely unavailable, (ii) available only on one day which is

not the target day, (iii) available only on the target day itself, or (iv) available only on the

other two (non-target) days. These four required conditions define the “levels of preference”

that are successively taken into account when selecting game-day pairs for the assignments;

on each of those levels, the goal is to carry out as many feasible assignments satisfying the

corresponding condition as possible.

Weekday-game heuristic

The weekday-game heuristic tries to schedule the remaining free games to weekdays from

Monday through Thursday. As for the preceding heuristic, the game-day assignments satisfy

the constraints in CF and no game is scheduled to a period when either of the respective

teams has already been assigned to visit distant opponents.

In order to avoid wasting arena dates by scheduling a team to play away when its own

arena is available, the heuristic adopts a strategy that is based on the Vogel Approximation

69

Method (Reinfeld and Vogel, 1958), which is a well-known simple procedure for obtaining a

feasible solution to the classical transportation problem.

Indeed, a game-day assignment cost is initially calculated for each pair of free game and

corresponding feasible day (when, in particular, the arena of the home team is available).

This cost is directly proportional to the number of teams for which the respective arena

is available at the same day. Furthermore, a large penalty is added to the cost whenever

that day is also available for the visiting team. Subsequently, the two less costly potential

assignments for each game are taken and the difference between their costs is computed. This

difference between the two lowest cost for every free game can be seen as a measure of the

current “regret” for failing to schedule the game on its less costly feasible day. Finally, the

heuristic selects a game with the largest regret and assigns to it the corresponding feasible

day having the smallest cost. After each assignment, the costs and the regrets are updated

for all the free games involving either of the just-scheduled teams and for which that same

day is also implicated in one of their respective (two) less costly potential assignments.

Exchange heuristics

Two exchange heuristics are presented in Fleurent (1987). Both heuristics try to schedule

the free games by allowing some of the previously scheduled games to be rescheduled on

alternative days.

Whenever possible, free games are scheduled on days that violate no constraints in CF .

However, for each iteration when no feasible day is available, the approach considers only

the days that have already been assigned to other games involving either of the two teams

in the current free game. One of those days is then selected if by just removing some of its

previously scheduled game, it becomes feasible for the current game scheduling (in particular,

the home and the away teams would still have only a single game to play on the chosen day).

Every time this happens, the heuristic replaces the corresponding scheduled game on the

selected day by the free game at hand and immediately tries to reschedule the removed game

on another feasible day. This defines a new recursive level of the approach. If no feasible day

is found for the removed game, the heuristic backtracks to the preceding level, reschedules

that game on its last cancelled day, and tries to schedule the original free game on another

day. For practical reasons, a parameter might be provided to specify the maximum number

of levels that the heuristic can go through when attempting to schedule a free game.

In fact, it may also happen that the most promising day for a certain game scheduling

by exchanges is a day when both the home and the away teams in the current free game

have already been scheduled to play against other opponents. From this fact arises the

difference between the two proposed exchange heuristics: while one allows two games to be

70

simultaneously cancelled from a same day, the other does not. Indeed, if no feasible day is

already available, the called single exchange heuristic tries to find a day from which removing

only one game would turn that day into a feasible candidate for the current free game to

take place. On the other hand, whenever that same strategy fails, the called double exchange

heuristic seeks to carry out the scheduling of the game by removing from a certain day

exactly two games involving the teams in the current free game if it then yield a feasible

assignment. Both heuristics backtrack when either no promising day is found or a given

maximum recursive level is reached.

We now propose a number of destroy operators to be provided to the ALNS for the NHL

scheduling problem.

5.2.3 Partially destroying a solution

In this subsection, we propose 15 operators to partially destroy the schedules through the

iterations of the ALNS for the NHL scheduling problem. Each of these operators is a heuristic

that cancels a given number of game-day assignments in the current schedule. What makes

the heuristics different from each other are the criteria for choosing the games to be removed

from the schedule. In particular, when selecting its target games, a removal operator may use

a specific level of greediness (or randomness); and some operators may, for example, adopt a

more systematic approach of destruction than others.

Here, we divide the destroy operators into five groups, as follows:

1. random-based removal

01 – Random-based removal

2. structure-based removals

02 – Divisional removal

03 – Intradivisional removal

04 – Interdivisional removal

05 – Conferential removal

06 – Intraconferential removal

07 – Interconferential removal

3. neighboring-based removals

08 – Day-neighboring removal

09 – Place-neighboring removal

4. critical removals

71

10 – Arena-critical removal

11 – Sequential greedy removal

12 – Cost-critical removal

5. trip-based removals

13 – Short-trip removal

14 – Close-trips greedy removal

15 – Scattered-trip removal

In general, the amount that an operator is allowed to destroy in a solution has substantial

impact on the quality of the solutions produced by an ALNS algorithm (Pisinger and Ropke,

2007). In particular, for most of the operators we propose here, the number of game-day

assignments satisfying the selection criteria of the operator being applied to the schedule

at hand might be too high for all them to be removed and eventually reinserted (by some

repair operator) in an effective manner. We introduce then the following strategy, which

comparing to the seminal work by Ropke and Pisinger (2006), can be seen as an intensification

mechanism that is being integrated into the ALNS framework. Except for the operators 10 –,

11 –, 12 –, and 13 –, all the destroy operators will first choose a certain number of game-day

assignments in the current schedule and try to evaluate the advantage of cancelling each of

them, prior to proceeding with a rather few game removals.

The choice of the target assignments, which are the candidates to be eventually cancelled

by the corresponding operator, is based on the specific strategy of each heuristic. On the

other hand, when actually removing games from a schedule, the same greedy-based strategy

is used by all those operators. This strategy consists in given a higher priority to target-

assignment cancellations that individually leads to the best (maximum) reduction on the

objective function value; and, in case of tie, the arena dates of the respective home and away

teams are also taken into account.

To be more precise, the cancellation of a game-day assignment will rely on a function

that combines, in a weighted manner, both the incremental cost of the cancellation and the

effectiveness of that assignment for the corresponding home and away teams regarding their

arena availabilities. Let that function be denoted by f– and let its value for removing an

assignment [a@h: d] from a schedule S be defined as

f–(a, h, d) = 5 f∆
– (a, h, d) + Āa,h,d,

where f∆
– (a, h, d) is the corresponding removal incremental cost, namely, f(S \ {[a@h: d]})−

f(S); and Āa,h,d, which we refer to as the arena-utility value for having the day d assigned

72

to the game a@h, is a constant given by

Āa,h,d =

1 if d is provided by a but not by h;

2 if d is provided neither by a nor by h;

3 if d is provided both by a and by h;

4 if d is provided by h but not by a.

The strategy is then to remove from a schedule a given number of target games having the

lowest values of the function f–. Obviously, this is an attempt to cancel assignments causing

to most violations of constraints, while trying to release arena dates for teams that have been

scheduled to play away in the current schedule when their own arena is available.

In the remainder of this subsection, we describe every one of the destroy operators enumer-

ated above. Suppose that any of those operators is a procedure to which at least the following

three parameters are given: S, a complete schedule (from the current ALNS iteration); n̂,

the maximum number of game-day assignments to be selected from S as candidates for the

cancellations; and ñ, the number of assignments to be actually cancelled in the schedule S.

Consider also that any complete schedule is made up of exactly n game-day assignments, and

the condition 0 < ñ < n̂ ≤ n holds (otherwise, if ñ ≥ n̂ then all the corresponding target

assignments could be cancelled with no need for evaluating them beforehand).

In addition to the descriptions that follows, Appendix C.1 outlines the steps performed

by each destroy operator.

Random-based removal

At first, we propose a destroy operator in which the target games are chosen at random

among all games in the current schedule. Indeed, the Random-based removal (01 –) is a

heuristic that starts by choosing at random n̂ target assignments in the current schedule,

evaluates by f– the extended incremental cost of each of them, and then cancels ñ target

assignments having the lowest values of f–.

Structure-based removals

We now propose six destroy operators in which the target games for each operator are

chosen at random among a specific subset of games that is determined only by the structure

of the NHL. In particular, such subset does not depend on the game-day assignments in

the current schedule. As for the preceding operator, once n̂ target games have been chosen,

those games are evaluated by f–, and the ñ target games in S yielding the lowest extended

incremental cost are removed.

73

The first three of these operators choose their n̂ target games by taking into account

the NHL divisions of the home and away teams in each game. Namely, the Divisional

removal (02 –) removes only games individually involving at least one team from a division

that is randomly chosen beforehand; the Intradivisional removal (03 –) removes only games

individually involving both home and away teams from a division that is also randomly chosen

in advance; and the Interdivisional removal (04 –) removes only games individually involving

teams from two divisions that are also chosen at random when the operator begins.

The other three structure-based destroy operators choose their n̂ target games by taking

into account the NHL conferences of the home and away teams on each game. Indeed,

the Conferential removal (05 –) removes only games individually involving at least one team

from a conference that is chosen beforehand; the Intraconferential removal (06 –) removes

only games individually involving both home and away teams from a conference that is also

randomly chosen in advance; and the Interconferential removal (07 –) removes only games

individually involving teams from different conferences.

Neighboring-based removals

We now propose two destroy operators in which the target games are chosen either by a

neighboring area where they are scheduled to take place or by a neighboring day when they

are planned to occur.

At first, both operators randomly choose a time-window defined by a certain number of

consecutive days in the schedule. The n̂ target game-day assignments are then selected from

within that time-window only. However, while the target of the Day-neighboring removal

(08 –) is made up by all the games assigned to that period of days, the target assignments in

the Place-neighboring removal (09 –) are, in addition, restricted to games to be played within

a geographic region that is also chosen at random each time the operator is applied. Finally,

both operators cancel the ñ target games in S with the lowest values of f–.

Critical removals

We now propose three destroy operators where the target games are chosen by some more

careful evaluation which can involve incremental costs, arena-utility values, and conflicting

games for promising reassignments. Here, given a constraint Ci, with i ∈ {0, 2, 3, 4, 6, 7, 8, 9},
we say that two games in a certain schedule are Ci-conflicting games if together they are

involved in some violation for Ci.

One of these operators removes a given number of games from the schedule in a sequen-

tially greedy fashion. Indeed, at each iteration, the Sequential greedy removal (11 –) selects

74

and removes from the schedule the current worst game-day assignment regarding the incre-

mental cost of its cancellation (the lower, the worst) and, in case of tie, also regarding its

arena-utility value (the lower, the worst).

The other two critical destroy operators, Arena-critical removal (10 –) and Cost-critical

removal (12 –), can also be seen as iterative procedures. In this case, however, each iteration

is made up of three basic steps. In the first step, a poorly assigned game (regarding the

specific evaluation adopted by each operator) is selected and removed from the schedule.

Then, in the second and third steps, a promising day for the just-removed game is chosen,

and some other assignments may also be cancelled as an attempt to turn that day into a

better candidate for a possible eventual reassignment to the game removed in the first step.

Indeed, the operator 10 – cancels, during the first and second steps, two assignments

having the worst arena-utility value, such that the visiting team of the game removed in the

second step is the host team of the game removed in the first one. In addition, the second

game is removed from a promising day for the first-removed game, a day that, in particular,

satisfies the constraint on the minimum gap for revisits (C6). On the other hand, the operator

12 – cancels, in the first step, the worst current assignment regarding the incremental cost

and (in case of tie) also regarding the arena-utility value. Then, in the second step, this

operator identifies a day that does not violate the constraint on the minimum gap for revisits

(C6) and that has the lowest number of conflicting games for the game removed in the first

step. Finally, in the third step, both operators use an anticipation strategy that removes up

to two Ci-conflicting games (if any) for the current potential reassignment (which is entirely

hypothetical, as these are operators for removals only), regarding every constraint Ci, with

i = 0, 1, 2, 3, 4, in this order.

Trip-based removals

Finally, we propose three destroy operators where the choice of the target games is based

on the trips induced by the current schedule.

The first of these operators, the short-trip removal (13 –), can be seen as an iterative

procedure where each iteration is made up of three basic steps. In the first step, a trip

having the least number of games is chosen and all its games are removed from the schedule.

Regarding each of those games, the operator identifies, in the second step, a promising day

(out from the former trip period) for a potential reassignment that satisfies the constraint

on the minimum span for revisits (C6) and that has the lowest corresponding number of

conflicting games. In case of tie, the choice of that day is also given by the minimum

incremental cost on the objective function. Then, in the third step, the same anticipation

strategy used by the preceding (critical) operator is applied in order to remove up to two

75

conflicting games (if any) for each potential reassignment.

The other two trip-based removals explicitly create a set of n̂ target game-day assignments

before removing ñ of them in a greedy fashion with regard to their respective incremental cost

and (in case of tie) arena-utility values. At the beginning, however, both operators identify

a period of days from which the target games are chosen. Such period of days is somehow

related to poorly-defined trips. Indeed, the close-trips removal (14 –) initially selects the two

consecutive trips (for the same team) having the lowest number of days between them. On

the other hand, the scattered-trip removal (15 –) selects, at the beginning, a long-lasting trip

(defined by a given threshold) that has relatively few games. In the case of the operator

14 –, the target games are selected by the minimum arena-utility value among all the games

scheduled during the period of the two corresponding chosen trips and also during the days

between them. In the operator 15 –, the target games are also chosen by the minimum arena-

utility value, but they are selected among all the games scheduled during the period of the

“scattered” trip chosen at the start. Finally, both operators cancel the ñ target games having

the lowest values of f–.

We now propose some repair operators to be provided to the ALNS for the NHL scheduling

problem.

5.2.4 Repairing a partial solution

In this subsection, we propose five operators to repair the partial schedules through the

iterations of the ALNS for the NHL scheduling problem. Every operator is a heuristic that,

at each ALNS iteration, is able to insert the free games into the current partial schedule.

Here, we say that a day d is a free day for a game a@h if neither team a nor team h is

currently scheduled to play on day d of the schedule at hand.

We divide the repair operators into four groups, as follows:

1. greedy-based insertions

01+ Single-evaluation greedy insertion

02+ Updated-evaluation greedy insertion

2. regret-based insertions

03+ Max-regret insertion

3. exchange-based insertion

04+ Single-exchange insertion

4. Fleurent’s approach-based insertion

05+ Fleurent’s approach-based insertion

76

Except for the operators 03+ and 05+, the assignment of days to free games will rely on

a function that combines, in a weighted manner, both the insertion incremental cost and the

effectiveness of the assignment for the respective home and away teams with regard to their

arena availabilities. Let that function be denoted by f+ and let its value for the potential

scheduling of a game a@h on a day d of a schedule S be defined as

f+(a, h, d) = 5 f∆
+(a, h, d)− Āa,h,d,

where f∆
+(a, h, d) is the corresponding insertion incremental cost, namely, f(S∪{[a@h: d]})−

f(S); and Āa,h,d is the arena-utility value for having the day d assigned to the game a@h, as

defined in Subsection 5.2.3.The strategy is then to schedule free games on free days leading to

the lowest values of the function f+. Obviously, this is an attempt to favor the assignments

leading to the least violations of constraints, while trying to save arena dates for teams that

are being scheduled to play away when their own arena is available.

In addition to the descriptions that follows, Appendix D.1 outlines the steps performed

by each repair operator.

Greedy-based insertion

The first repair operator that we propose is a heuristic where free games are successively

chosen at random and scheduled in a greedy manner to free days. The operator, which we

refer to as Single-evaluation greedy insertion (01+), can be seen as a two-phase approach

that first tries to schedule as many games as possible exclusively to days when the arena of

the respective home team is available, and then schedules the possible remaining free games

to other days on the current schedule. In both phases, days are assigned to games in the

following way. At the beginning, the extended incremental cost determined by f+ is evaluated

for each pair of free game and corresponding free day on the current partial schedule. Then,

free games are sequentially scheduled to their respective best free days regarding those costs.

So, every time that a game is chosen, the heuristic immediately seeks to find (and to assign)

a corresponding free day with the lowest cost that was determined at the beginning.

The second repair operator is also a greedy-based heuristic. In this case, however, free

games are successively chosen in decreasing order of the number of free games to be played

at home for each team. Moreover, every time a free game is chosen, the heuristic seeks to

assign to it the corresponding best free day on the current (updated) schedule. This operator,

which we refer to as Updated-evaluation greedy insertion (02+), can also be seen as a two-

phase approach that first tries to schedule as many games as possible exclusively to days

when the arena of the respective home team is available, and then schedules the possible

77

remaining free games to other days in the current schedule. In both phases, free games are

successively scheduled to their respective best free days, which leads to the lowest extended

incremental cost at the moment of the assignment.

Regret-based insertion

Our third repair operator, which we refer to as Max-regret insertion (03+), is a regret-

based heuristic where the first goal consists in avoiding assignments that “waste” arena dates

for the respective away teams. As for the previous repair operators, the insertions rely on a

specific evaluation to determine the cost of each possible game-day assignment. However, the

main factor in this evaluation, which also involves the corresponding incremental cost, refers

to a large penalty if a team was scheduled to visit an opponent on a day when its own arena

is available. Generally speaking, the idea is to schedule the free games in decreasing order of

the “regret” for failing to assign the first less costly day to a game and eventually having to

assign its second less costly day instead. Although this is essentially identical to the weekday

games heuristic described on Subsection 5.2.2, the possible assignments are evaluated in a

rather refined manner by taking the change in the objective function value into account and

by also considering the number of games that are free for the corresponding day at the time

of the evaluation.

To be more precise, the cost, in operator 03+, of scheduling a free game a@h on a corre-

sponding arena-feasible date d that is free in a partial schedule S is defined as follows:

fA+(a, h, d) = M1Aa,d +M2 f
∆
+(a, h, d) + |G̃(d)|,

where M1 and M2 are large constants, such that M1 � M2; Aa,d is equal to 1 if the day d

is also provided by the away team a, and equal to 0 otherwise; f∆
+(a, h, d) is the incremental

cost of assigning d to a@h, namely, f(S∪{[a@h: d]})−f(S); and |G̃(d)|, which can be seen as

a “competitiveness” factor for d, is the current number of free games that are arena-feasible

(it would satisfy C1) for the day d.

Exchange-based insertion

We now propose a repair operator that sequentially chooses the free games in decreasing

order of the number of corresponding visits to be scheduled and try to schedule them by

single exchanges. Although essentially similar to the single-exchange heuristic addressed in

Subsection 5.2.2, we consider three fundamental modifications when selecting a promising

day for the free game at hand. The first modification consists in preventing exchanges with

games that were already scheduled before the heuristic started. This aims to stay in line with

78

the idea that, during each iteration of the ALNS framework, the corresponding non-destroyed

part of the solution remains fixed. The second modification refers to the range of the days

that are evaluated for the free games when no feasible day is available. Now, a candidate

is a day that would allow a feasible assignment by first removing a single game currently

scheduled on any day (possibly other than the candidate itself). Thus, the difference here is

that a conflicting assignment with regard to any constraint is now taken into account for a

possible exchange (rescheduling), instead of being restrict to an assignment that would only

violate C0. The third modification refers to the selection of a day. Whenever a tie occurs

(where for each candidate day there is only one conflicting game in the schedule), the arena-

utility values of both the intended assignment and the corresponding conflicting game in the

schedule are taken into account.

Indeed, the Single-exchange insertion (04+) selects all free games, one at a time, in

decreasing order of their quantity for the same away-home pair of teams. For each selected

free game ã@h̃, the heuristic proceed as follows. If feasible days are available, ã@h̃ is scheduled

on a feasible day d̂ leading to the highest arena-utility value, Āã,h̃,d̂. Otherwise, the heuristic

only considers as candidates those days on which scheduling ã@h̃ would result in a single

conflicting game somewhere in the current schedule. Among such candidates, ã@h̃ is then

scheduled on a day d̂ that maximizes the respective arena-utility difference, Āã,h̃,d̂ − Āa′,h′,d′ ,
where a′@h′, currently scheduled on a day d′ (which is not necessarily equal to d̂), is the

conflicting game for the assignment of d̂ to ã@h̃. The heuristic then reschedules, in a recursive

manner, the game a′@h′ on another day. Whenever it fails to find a candidate under those

conditions, or whenever the maximum recursive level is reached, the free game at hand is

scheduled on the corresponding free day leading to the lowest extended incremental cost,

determined by f+, with respect to the current (partial) schedule.

Fleurent’s approach-based insertion

Finally, we propose a repair operator that tries to schedule the free games by apply-

ing a slightly modified version of the approach by Fleurent (1987). Indeed, the Fleurent’s

approach-based insertion (05+) is an adaptation of five (out of seven) heuristics addressed in

Subsection 5.2.2 on the generation of an initial solution. Although the heuristics are applied

in the order suggested by Fleurent (1987), no game exchange is performed by this operator,

neither is a forced-home scheduling.

The first modification in the original heuristics refers to the generation of forced trips,

but they are still composed of long-distance visits only. In fact, the forced-trip heuristic is

split into two phases: at the beginning, it tries to create as many new two-game trips as

possible, and only then, it attempts to extend any long-distance trip in the current schedule.

79

The free-trip heuristic is applied with no modifications. But both the weekend-game and

the weekday-game heuristics are changed. They are now applied to all free games, instead

of only those referring to short-distance visits, and also, a game may be scheduled within a

period for some long-distance trip. In addition, when applying the weekday-game heuristic,

which is based on evaluations of “regrets”, the cost of assigning a feasible day for a free game

now relies only on the free games that are feasible for that day at the time of the evaluation.

Finally, because all the assignments are required to be feasible on the Fleurent’s heuristics,

it may occur that some free games can not be inserted by them into the current schedule. In

this case, the same greedy approach as that of the “Max-regret insertion (03+)” is applied in

order to complete the schedule.

The next section reports the computational experiments on our implementation of the

ALNS algorithm.

5.3 Computational Experiments

We now describe the experiments conducted when calibrating the ALNS from the preced-

ing section and report some results on several instances of the NHL scheduling problem. The

calibration is based on the quality of the solutions that the approach is able to produce. All

the solutions are evaluated exclusively by their respective costs, but in some cases, the corre-

sponding number of constraint violations are also reported. For that matter, the weights in

the objective function (5.1) were set as follows: w1 = 10 000, w2 = 1 000, w3 = 10, w4 = 10,

and wi = 1 for each constraint Ci with i ∈ {5, 6, . . . , 9}. Therefore, regarding the actual

NHL schedules referred in Table 3.2, the costs for the last five seasons, starting with the

2009-10 season, are 245, 252, 186, 194, and 142, respectively. Obviously, our goal is to design

schedules that attain the minimum total cost, which is zero as objective function value, by

satisfying all the constraints of the problem.

For all the experiments, the ALNS algorithm was implemented in the object-oriented lan-

guage COMET™ and run under Linux on a 2.2 GHz Dual AMD Opteron Processor 275 (where

only one processor was used) with 8 GB of RAM. By taking advantage of the constraint-based

architecture of COMET™ for local search, we were able to quickly evaluate the impact, for

each constraint, on the number of violations resulting from every game removal (or insertion).

We have implemented such rather high-level abstraction through the definition of invariants

and differentiable objects for the NHL scheduling problem, following the notions described

in Van Hentenryck and Michel (2009).

The subsections that follows describe the experiments that we have conducted in order to

set the main parameters of the ALNS and report some results obtained for several instances

80

of the problem. In particular, close attention is paid to the choice of a configuration formed

by the most promising operators among those proposed in the last section.

In the preceding chapter (p. 50), we have described our generation of instances for the

NHL scheduling problem. In particular, some of those outlined in Table 4.2 will now be used

for the calibration phase of the ALNS, and then, results on others will be reported at the

end of this chapter.

At first, we evaluate the schedules generated by our implementation of the procedures

proposed in Fleurent (1987).

5.3.1 Constructing initial solutions

As mentioned earlier, an initial solution must be provided before starting the ALNS it-

erations. In order to do so in the case of the NHL scheduling problem, we implemented

the heuristic procedures first proposed by Fleurent (1987), which are described in Subsec-

tion 5.2.2.

Table 5.1 Statistics on initial schedules Evaluations on the schedules constructed from scratch
by our implementation of Fleurent’s heuristics (described in Subsection 5.2.2) for instances
of the 2009-10 and 2010-11 regular seasons (’09 and ’10, respectively). The multi-heuristic
approach was applied 16 times for each one of 21 instances per season: one instance with no
extra dates, 10 instances with 4 extra dates per team, and 10 instances with 8 extra dates per
team. The table shows the minimum (min), the arithmetic mean (avg), and the maximum
(max) costs (f(·)) and violations (#viols) for each season (Season) and each number of extra
arena dates (NExtraDays).

Season NExtraDays min avg max

f(·)

’09
0 293 273 348 126.06 398 654
4 89 338 116 250.95 154 185
8 42 772 72 165.87 109 986

’10
0 267 398 313 694.07 357 462
4 88 255 108 063.46 144 410
8 38 544 58 483.27 82 367

#viols

’09
0 386 434.13 494
4 369 471.18 564
8 270 349.71 474

’10
0 348 403.47 454
4 379 446.86 581
8 226 296.17 395

81

’0
9

’1
0

’0
9

’1
0

’0
9

’1
0

’0
9

’1
0

’0
9

’1
0

’0
9

’1
0

’0
9

’1
0

’0
9

’1
0

’0
9

’1
0

0
3
0

6
0

9
0

1
2
0

1
5
0

1
8
0

2
1
0

2
4
0

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9 #
vi
o
ls

(a
)

In
st

an
ce

s
w

it
h

n
o

ex
tr

a
d

at
es

’0
9

’1
0

’0
9

’1
0

’0
9

’1
0

’0
9

’1
0

’0
9

’1
0

’0
9

’1
0

’0
9

’1
0

’0
9

’1
0

’0
9

’1
0

0
3
0

6
0

9
0

1
2
0

1
5
0

1
8
0

2
1
0

2
4
0

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9 #
vi
o
ls

(b
)

In
st

a
n
ce

s
w

it
h

4
ex

tr
a

d
a
te

s
p

er
te

a
m

’0
9

’1
0

’0
9

’1
0

’0
9

’1
0

’0
9

’1
0

’0
9

’1
0

’0
9

’1
0

’0
9

’1
0

’0
9

’1
0

’0
9

’1
0

0
3
0

6
0

9
0

1
2
0

1
5
0

1
8
0

2
1
0

2
4
0

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9 #
vi
o
ls

(c
)

In
st

a
n
ce

s
w

it
h

8
ex

tr
a

d
a
te

s
p

er
te

a
m

F
ig

u
re

5.
1

C
on

st
ra

in
t

vi
ol

at
io

n
s

in
in

it
ia

l
sc

he
du

le
s

N
u
m

b
er

of
co

n
st

ra
in

t
v
io

la
ti

on
s

in
th

e
sc

h
ed

u
le

s
co

n
st

ru
ct

ed
fr

om
sc

ra
tc

h
b
y

ou
r

im
p
le

m
en

ta
ti

on
of

th
e

h
eu

ri
st

ic
p
ro

ce
d
u
re

s
fi
rs

t
p
ro

p
os

ed
b
y

F
le

u
re

n
t

(1
98

7)
.

T
h
e

p
ro

ce
d
u
re

w
as

ap
p
li
ed

16
ti

m
es

to
ea

ch
of

th
e

21
se

le
ct

ed
in

st
an

ce
s

of
ev

er
y

se
as

on
:

(a
)

on
e

in
st

an
ce

w
it

h
n
o

ex
tr

a
d
at

es
,

(b
)

10
in

st
an

ce
s

w
it

h
4

ex
tr

a
d
at

es
p

er
te

am
,

an
d

(c
)

10
in

st
an

ce
s

w
it

h
8

ex
tr

a
d
at

es
p

er
te

am
.

T
h
e

b
ox

p
lo

ts
in

d
ic

at
e,

fo
r

ea
ch

co
n
st

ra
in

t
C
i,
i
∈
{1
,2
,.
..
,9
},

an
d

fo
r

ea
ch

se
as

on
(’
09

an
d
’1
0)

,
th

e
d
eg

re
e

of
d
is

p
er

si
on

in
th

e
n
u
m

b
er

of
co

n
st

ra
in

t
v
io

la
ti

on
s

on
th

e
sa

m
p
le

so
lu

ti
on

s
su

m
m

ar
iz

ed
on

T
ab

le
5.

1.
T

h
e

n
u
m

b
er

of
v
io

la
ti

on
s

in
th

e
co

rr
es

p
on

d
in

g
ac

tu
al

N
H

L
sc

h
ed

u
le

is
il
lu

st
ra

te
d

b
y

th
e

“d
ia

m
on

d
”

sh
ap

e
.

82

For any instance created as explained in the preceding subsection, our implementation

was able to build from scratch a complete schedule by assigning for each team no more than

one game per day, but usually resulting in a large number of constraint violations. The whole

construction approach can be seen as a two-stage process where violations for the constraints

in CF are not allowed during the first stage, except perhaps for C5 (on the minimum number

of games per week), and during the second stage, the games that might remain free are

sequentially scheduled by now allowing violations for any constraint, except C0. Thus, the

first stage of the process is the same as proposed in Fleurent (1987). In both cases, the

heuristic procedures are called exactly in the order they are presented in Subsection 5.2.2

(p. 64), which is in accordance with both Fleurent (1987) and Ferland and Fleurent (1991)

for the case of the batch-mode (when all games are scheduled without any interaction with

the user). Indeed, initially, all free games that individually oppose two distant teams are

scheduled at first through the generation of forced trips, which preserves all the arena dates

for the respective visiting team, and then, through the generation of free trips, which might

sacrifice some of those dates. Subsequently, other free games are scheduled, first to dates that

fall on a weekend, and then, to other dates, but never involving any long-distance trip period

for the teams in the respective game. And finally, exchange heuristics are used to schedule

games that might still remain free. As suggested by Fleurent (1987), the maximum recursive

level for the single and for the double exchange heuristics were set to 12 and 3, respectively.

Typical ranges of costs and total number of constraint violations observed for initial

solutions are shown in Table 5.1. In addition, Fig. 5.1 illustrates, with a boxplot for each

constraint, the degree of dispersion in the number of violations in the sample solutions that

had been summarized in Table 5.1. These results, which evaluate initial schedules for the

2009-10 and 2010-11 seasons, refer to 16 runs of the whole construction process for each

instance. A total of 21 instances per season, including the one with no extra dates and those

with 4 and with 8 extra dates per team, were used in this experiment. In particular, over a

sample of 16 runs for each instance with no extra dates, the number of constraint violations

and the cost for individual schedules generated were, in all cases, higher than 340 and 250 000,

respectively.

When compared to the evaluations for the actual NHL schedules from Table 3.2, these

results might be very disappointing. Even for our “easiest” instances, which are made up of 8

extra dates per team, all the generated solutions is by far worse than the actual corresponding

schedules. In fact, a high number of the most costly constraints (as C1, C2, and C3) is being

violated in these cases.

These results illustrate thus the typical (rather poor) quality of the initial schedule pro-

vided to our ALNS. We now evaluate the best-found schedule when varying the number of

83

games that a destroy operator removes from the current schedule at each iteration of the

algorithm.

5.3.2 Choosing the size of the current solution to destroy

Our ALNS algorithm comprises 20 operators, each one having a specific overall goal: 15

of them to partially destroy a complete schedule and the remaining five operators to repair a

partial schedule. During each iteration of the algorithm, a destroy operator removes a certain

number of games from the current schedule and a repair operator must insert all them back

into the schedule. The number of games that a destroy operator is allowed to remove must

be provided beforehand and, intuitively, may have a substantial impact on the quality of

the solutions produced by the algorithm (as investigated by Pisinger and Ropke, 2007, on

variants of the vehicle routing problem, for example).

In this section, we report the experiments we performed on different number of games

being removed by the destroy operators. The algorithm was run with all the available op-

erators being uniformly applied through a fixed number of iterations. In other words, at

any iteration, every destroy operator had the same selection probability among the destroy

operators (01 –, 02 –, . . . , 15 –), and every repair operator had the same selection probability

among the repair operators (01+, 02+, . . . , 05+). Hence, the adaptive layer was not used and

the approach can be seen as a Large Neighborhood Search (LNS) algorithm, in this case.

Table 5.2 shows some statistics on the best-found solutions generated by the LNS for 11

instances of the 2010-11 regular season. The algorithm was run 10 times for the hardest

instance, with no extra dates, and 5 times for every one of the 10 instances with 8 extra

dates per team. For each run, an initial solution was generated from scratch. The table lists

the minimum (min), the arithmetic mean (avg), and the maximum (max) costs of the best-

found solutions for each number of games (#games) that was individually removed by the

15 destroy operators through 150 000 LNS iterations with all the available operators being

uniformly applied. The last 3 rows of the table refer to a random selection, before each LNS

iteration, of an integer value in the interval shown in the first column. On the whole, these

experiments comprise several quantities of removed games ranging from 10 to 40.

Unlike the case of the initial solutions from the preceding subsection (see Table 5.1), the

evaluations on most of the experimental outcomes in Table 5.2 are somewhat comparable

to those of the actual NHL schedule. In particular, when the destroy operators are set to

remove 20 games, the costs of the corresponding sample solutions, even for the instance with

no extra dates, are lower than the cost (252) of the actual schedule.

Based on these results, the number of games to be removed by any destroy operator was

fixed to 20 for all the other experiments we report in this chapter.

84

Table 5.2 Results on different number of games being removed per LNS iteration Evaluations
on the best-found solutions generated by our LNS for 11 instances of the 2010-11 regular
season. The algorithm was run 10 times for the hardest instance, with no extra dates, and
5 times for every one of the 10 instances with 8 extra dates per team. The table shows the
minimum (min), the arithmetic mean (avg), and the maximum (max) costs of the best-found
solutions for each number of games (#games) removed by any one of the 15 destroy operators
through 150 000 LNS iterations with all the available operators being uniformly applied. The
last 3 rows of the table refer to a random selection, before each LNS iteration, of an integer
value in the interval shown in the first column.

No extra dates 8 extra dates

#games min avg max min avg max

10 1 470 7 522.80 21 525 0 0.38 3
15 269 694.80 1 285 0 0.28 2
18 161 234.00 273 0 0.36 2
20 130 165.75 214 0 0.26 2
25 133 204.00 264 0 0.50 2
30 121 186.60 283 0 0.84 4
40 191 330.25 424 0 2.66 7

16-24 211 238.00 260 0 0.44 2
18-26 199 236.80 299 0 0.44 2
20-28 162 229.00 321 0 0.34 3

The implementation of the ALNS admits several different choices of algorithm control

parameters. In the following subsections, we highlight the main computational experiments

performed when calibrating the algorithm.

5.3.3 Setting the ALNS parameters

The parameters to be provided to the master level of our ALNS algorithm (see Ap-

pendix A.1) are the maximum number of iterations, Kmax
alns ; the segment size, Kseg; the start

temperature control parameter, τ ; the score adjustment parameters, σbes, σbet, and σacc; the

reaction factor, ρ; the set of destroy operators, I−, and the set of repair operators, J+, with

their respective initial weights, ωo ∀o ∈ I− ∪J+. There are evidences, both from preliminary

results and from the literature, that the values for most of those parameters are generaliz-

able to different instances and, in some cases, even to different problems. Indeed, Ropke

and Pisinger (2006), for example, obtained remarkable results for several variants of vehicle

routing problems with the same post-tuning values of parameters.

85

The overall strategy we use here to set the ALNS parameters is the same as that of Ropke

and Pisinger (2006). Initially, we have identified an initial setting, and then, one parameter

at time was modified while keeping the others fixed, and the modification leading to solutions

with the best average cost was chosen for the subsequent parameter adjustments.

The computational experiments reported in the course of this subsection were individu-

ally carried out by applying the ALNS eight times to each tuning instance. The cost, and

occasionally the number of constraint violations, for the corresponding best-found schedules

will be summarized by their minimum (min), arithmetic mean (mean), and maximum (max)

values. In most cases, those values will be graphically depicted as boxplots, which also in-

cludes the lower quartile, the median, and the upper quartile. The setting of parameters will

always be based on the average costs of the best-found schedules. So, for each experiment,

the setting corresponding to the smallest average cost will be chosen.

Tuning instances and initial solutions

The results in Table 5.1 show that our implementation of the approach by Fleurent (1987)

constructs initial solutions that have a rather wide range of values. However, preliminary

results that we have obtained while implementing the ALNS (including those from the pre-

ceding experiment) showed no relation between the quality of the initial solution and the

quality of the best-found solution (even considering just as few as 10 000 iterations). Also

during the developing phase, our tests provided compelling evidence that different runs of

the ALNS for the same instance and starting at the same initial solution will mostly produce

(best-found) schedules with slightly distinct values. We have then decided to select only nine

instances for all the experiments in this section. They were, however, carefully chosen as to

represent different levels of difficulties. In fact, our choice consists of one instance with no

extra dates, four instances with four extra dates per team, and four instances with eight extra

dates per team. To be more precise, the tuning instances that we selected are the following:

NHL10-0a, and for each γ ∈ {a, b, f, g}, NHL10-4γ and NHL10-8γ, all them referring to the

2010-11 regular season. In addition, the same initial solution associated with every instance

was provided to the experiments. The initial solutions were chosen among those evaluated

in Subsection 5.3.1 as to have their respective costs close to the corresponding mean value in

Table 5.1. Obviously, this choice of solutions is intended to represent a typical initial schedule

generated by our implementation. The overall idea is to keep the different tuning steps under

the same circumstances regarding both the tuning instances and the initial solutions.

86

Solution acceptance and stopping criteria

As mentioned in Subsection 5.2.1, our ALNS algorithm iterates until either a schedule Scurr

with no violation of constraints is generated or a given maximum number of iterations, Kmax
alns ,

is attained. Because of the strategic nature of the NHL scheduling problem, computational

time is not a major issue. So, after a number of ad hoc experiments performed during the

development phase, we have chosen to set Kmax
alns to 150 000 iterations, which allowed us to

obtain all results we report in the remainder of this chapter in no more than 195 minutes

(3.25 hours) for each run of the algorithm.

The acceptance criteria we use are those from Simulated Annealing. Therefore, the new

(temporary) solution, Stemp, obtained during an iteration k of the ALNS is accepted when-

ever its cost, f(Stemp), is not worse than the cost, f(Scurr), of the current solution, Scurr;

and otherwise, the new solution is accepted with a probability that is exponentially pro-

portional to the quotient of the corresponding increase in the cost, f(Stemp) − f(Scurr), and

the current value of the temperature parameter, Tk. As in Ropke and Pisinger (2006), we

systematically decrease the temperature at every single iteration of the ALNS. Indeed, the

temperature is slightly decreased by using the cooling schedule Tk+1 = c Tk with a constant

cooling factor, c, that is close to 1.0. However, instead of following the strategy by Ropke

and Pisinger (2006), which provides the cooling factor as a parameter, we set it to a value

such that, at the last ALNS iteration, a temporary solution one unit worse than the cur-

rent solution would have only 1% of chance of being accepted. So we set the constant c to

(T0 (− ln(0.01)))(−1/Kmax
alns), where T0 is the initial temperature. This, in turn, is computed as

(τ/100)(f̂(Sinit)/(− ln(0.5))), where τ is the start temperature control parameter provided

to the ALNS and f̂(Sinit) is the weighted sum
∑9

i=3wifi(Sinit) of the number of violations,

fi(Sinit), of every constraint Ci, for i ∈ {3, 4, . . . , 9}, in the initial solution, Sinit. For all

the experiments, we have chosen to set τ = 5.0. Therefore, if Stemp is the new (temporary)

solution at the beginning of the ALNS and Stemp induces a cost increasing f(Stemp)− f(Sinit)

that is equal to 5% of the “modified cost” f̂(Sinit) then Stemp is accepted (to become the

new Scurr) with probability 0.5. The cooling factor in our experiments have always been into

the range from 0.999954 to 0.999958, which as expected, results in a slower decrease of the

temperature through the ALNS iterations than in the case reported by Ropke and Pisinger

(2006), where the cooling rate was set to 0.999750 and the algorithm was run for no more

than 25 000 iterations.

We now evaluate the effectiveness of the 20 operators that we proposed in the subsections

5.2.3 and 5.2.4.

87

Screening the proposed operators

As mentioned earlier, Pisinger and Ropke (2007) state that, when developing an ALNS,

the choice between a number of possible operators is not a matter of “either-or” but rather

“both-and”. Indeed, Ropke and Pisinger (2006) claim that the more (reasonable) operators

are provided to their ALNS, the better it performs. However, the literature that follows the

same ALNS framework usually reports to apply much fewer operators that we are proposing

in this thesis. Our main goal now is, thus, to systematically examine the performance of our

ALNS over different configurations for the 20 operators that we have described earlier. In

particular, we try to identify a subset of those operators that will, hopefully, outperforms the

20-operator configuration. We also compare the adaptive version of the approach (ALNS)

with its static version (LNS), where each operator has a fixed selection probability through

the iterations of the search.

For the experiments on the ALNS, we have set the parameters for the adaptive layer

as (Kseg, σbes, σbet, σacc, ρ) = (200, 7, 3, 1, 0.1), which was based on preliminary results. The

values for the score adjustment parameters are then in line with Pisinger and Ropke (2010)

as the condition σbes ≥ σbet ≥ σacc ≥ 0 holds. This is based upon the rationale that σbes, σbet,

and σacc are respectively associated to conditions that are arranged in decreasing order of

preference with regard to the quality of the new solution. For example, if it is the case that

the solution generated during an ALNS iteration is a (so far) best solution, then the increase

σbes in the scores of the corresponding destroy and repair operators are higher than it would

be for any other case.

Ideally, the design of an ALNS algorithm involves both operators that succeed in providing

either diversification or intensification through the search. As it is the case in Ropke and

Pisinger (2006), the literature on ALNS often proposes operators that individually tends

to be very imprecise heuristics, even so, they are able to produce outstanding results when

appropriately integrated into an ALNS framework.

Here, we screen our operators in a subtractive manner where, starting from a configuration

with all the 20 operators being provided, some apparently less effective operators are excluded

through successive computational experiments. Because the number of destroy operators

proposed in this thesis is relatively high, we first try to identify (and exclude) more than one

operator at time, so as to speed up the process. In fact, by keeping track of the adapted

selection probability of each operator through the ALNS iterations, and then by excluding

the three lowest-scored operators at once, we were able to reduce the number of destroy

operators from 15 to only six operators and yet obtain solutions with better average cost for

the tuning instances.

To be more precise, the first phase of this screening process was based on the range

88

01 –

02 –

03 –

04 –

05 –

06 –

07 –

08 –

09 –

10 –

11 –

12 –

13 –

14 –

15 –

0 5 10 15 20 25(%)

(a) All 15 destroy operators

01 –

02 –

03 –

04 –

05 –

06 –

07 –

08 –

09 –

10 –

11 –

12 –

13 –

14 –

15 –

0 5 10 15 20 25(%)

(b) Only 12 destroy operators

01 –

02 –

03 –

04 –

05 –

06 –

07 –

08 –

09 –

10 –

11 –

12 –

13 –

14 –

15 –

0 5 10 15 20 25(%)

(c) Only 9 destroy operators

Figure 5.2 Selection probabilities for each destroy operator through the ALNS iterations Statis-
tics on the values of the adapted selection probabilities which was tracked at the end of every
10 000 ALNS iterations. All the 5 repair operators are available, and three configurations of
destroy operators are individually investigated. In the case (a), all 15 destroy operators are
available. In the case (b), only 12 destroy operators are available (operators 03 –, 09 –, and 12 –

had been excluded). And in the case (c), only 9 destroy operators are available (operators
04 –, 13 –, and 15 – had also been excluded). For each case, the ALNS was applied 8 times to
9 instances of the 2010-11 regular season: one instance with no extra dates, 4 instances with
4 extra dates per team and other 4 instances with 8 extra dates per team. Thus, the boxplots
indicate, for each operator, the degree of dispersion in the selection probabilities tracked at
every 10 000 iterations over 72 runs (8 runs × 9 instances) of 150 000 iterations of the ALNS
algorithm.

of selection probabilities that are illustrated in the three charts (a, b, and c) of Fig. 5.2

(p. 88). This figure summarizes, in a boxplot for each destroy operator, the range of values

of the adapted selection probabilities tracked at the end of every 10 000 ALNS iterations. At

the first iteration, in all cases, the same selection probability had been assigned to all the

destroy operators available for the respective experiment. The ALNS was run eight times

on each tuning instance for at most 150 000 iterations, and during the search, the available

operators were individually selected according to their respective earned scores. To be more

precise, the Fig. 5.2a refers to the experiment where the initial weight parameters for the

operators were set as ωo = 1 ∀o ∈ I− ∪ J+, and thus, any destroy operator and any repair

operator started with 6.67% and 20% of chance of being selected, respectively. As can be

seen from Fig. 5.2a, all selection probabilities turned out to be under 25% for the destroy

operators. On the other hand, these results seem to indicate that some destroy operators

did not substantially contribute to the generation of good solutions through the search. So,

based in Fig. 5.2a, we decided to exclude the operators 03 –, 09 –, and 12 –, which are the

three destroy operators with the worst average selection probabilities: 2.99%, 4.26%, and

89

1.18%, respectively (far below their initial chance of being selected, 6.67%). Fig. 5.2b refers

to the experiment with only 12 destroy operators and initial weight parameters set as ωo = 0

∀o ∈ Ĩ−3 = {03 –, 09 –, 12 –}, and ωo = 1 ∀o ∈ J+ ∪ I−12, with I−12 = I− \ Ĩ−3 . As in the

preceding case, we inspected the probabilities in Fig. 5.2b and then excluded still the new

three worst average-scored operators, which are the operators 04 –, 13 –, and 15 – (with average

selection probabilities of 6.08%, 4.55%, and 6.25%, respectively). Next, we proceeded with

the experiment involving only nine destroy operators and the initial weight parameters set

as ωo = 0 ∀o ∈ Ĩ−6 = Ĩ−3 ∪ {04 –, 13 –, 15 –}, and ωo = 1 ∀o ∈ J+ ∪ I−9 , with I−9 = I− \ Ĩ−6 .

For this case, the boxplots on the selection probabilities are given in Fig. 5.2c. One more

time, we excluded the three worst average-scored destroy operators, 10 –, 11 –, and 14 – (with

average selection probabilities of 7.56%, 9.34%, and 8.64%, respectively). The experiments

on the remaining six destroy operators resulted in a rather more uniform dispersion of the

adapted selection probabilities, which does not provide a reasonable evidence for identifying

any particularly underperforming operator.

Our criterion on excluding those nine destroy operators, and thus reducing their number

from 15 to only six operators, was completely based on the adapted selection probabilities

that were sampled through the ALNS iterations. So it is certainly plausible that we now

evaluate the quality of the solutions generated by the experiments in each of the preceding

cases. We summarize the cost of the best-found solutions for the experiments on 15, 12,

9, and 6 available destroy operators on the top of Fig. 5.3 with the labels I−, I−12, I−9 , and

I−6 , respectively. The results in Fig. 5.3 (p. 98) are arranged, from the top to the bottom,

in the order that the experiments were conducted and they are divided into two charts

(a and b) each one referring to a particular number of extra dates (0 and 4, respectively)

in the tuning instances. The instances with 8 extra dates per team (for which no results

are reported in Fig. 5.3) were generally solved to optimality by all the configurations we are

describing here. On the whole, the configuration with the 15 destroy operators (I−) were only

fully outperformed (with regard to the average cost) by the configuration with six destroy

operators (I−6). In particular, the top part of Fig. 5.3 shows that the average cost of the

solutions produced by the configuration with 12 operators (I−12) are the worst among the four

preceding experiments. In addition, while the 6-operator configuration (I−6) resulted in the

lowest average cost on every number of extra dates, the ALNS is apparently more robust for

the hardest instance, with no extra dates (Fig. 5.3a), when all the 15 destroy operators are

provided to the algorithm.

At this point of our search for a good configuration of the operators, the best average-

cost solutions had then been produced by the configuration with six destroy operators, I−6 =

{01 –, 02 –, 05 –, 06 –, 07 –, 08 –}, and all the five repair operators, J+ = {01+, 02+, 03+, 04+, 05+}.

90

We aim now to evaluate yet another number of configurations in a subtractive manner that

exclude one operator at time and choose the configuration resulting in the best average cost,

until no improvement is obtained with this process.

The boxplots labeled by I−6 \{o−}, with every o− ∈ I−6 , in Fig. 5.3 illustrate the dispersion

in the cost of the best-found solutions when the destroy operator o− is not provided to the

ALNS but only the other five operators in I−6 . The corresponding results show that the

experiment where the operator 07 – was not available was the one to provide solutions with

the lowest average cost to the tuning instances. In fact, the configuration with I−5 = I−6 \{07 –}
provided the (so far) best solutions, compared to the previous experiments. In addition, these

results provide compelling evidence that among the operators in I−6 , the presence of the

operators 01 –, 02 –, and 06 – was particularly important in producing better overall solutions.

In the same way, the boxplots labeled by I−5 \{o−}, with every o− ∈ I−5 , in Fig. 5.3 summarize

the quality of the best-found solutions when the destroy operator o− was not provided to the

ALNS. In this case, despite the rather good overall results on excluding the operator 08 –,

no average cost in this experiment turned out to be better than the one from our preceding

choice, with I−5 = {01 –, 02 –, 05 –, 06 –, 08 –}. Contrary to what might have been expected,

this “best” configuration of destroy operators does not include any of the critical removals

(10 –,11 –,12 –). In fact, it is rather surprising that a configuration made up of operators among

the most naive ones that we have proposed turned out to be the configuration to provide the

best average results. Apparently, this could be attributed both to the greedy-based strategy

that evaluates the target assignments before cancelling only the “worst” of them and to the

relatedness of the target assignments defined by the selection criterion of the other operators

(except the random-based removal 01 –).

We then evaluated, in the same subtractive manner, the repair operators. As for the

destroy operators, they remained unchanged: only the five operators in I−5 were provided,

all them with the same initial weight. The results indicated by a label J+ \ {o+}, with

every o+ ∈ J+, in Fig. 5.3 summarize the costs of the best-found solutions when the repair

operator o+ was not provided to the ALNS but only the other four operators in J+. As can

be seen, a better average cost were obtained by the exclusion of the repair operator 01+.

The subsequent experiments, indicated by J+
4 \ {o+}, with every o+ ∈ J+

4 , show that no

further single exclusion of repair operators resulted in a more effective configuration than the

preceding choice, with J+
4 = {02+, 03+, 04+, 05+}.

Therefore, based on the strategy we have adopted, our choice of operators for all the

experiments that follows is given by I−5 = {01 –, 02 –, 05 –, 06 –, 08 –} as the set of destroy

operators and J+
4 = {02+, 03+, 04+, 05+} as the set of repair operators provided to the

algorithm.

91

The three experiments reported at the bottom of Fig. 5.3 refer to the evaluation for non-

adaptive versions of the algorithm (LNS), where the selection probabilities were individually

fixed through the search, and only the preceding choice of operators, I−5 ∪J+
4 , were provided.

Indeed, for the results labeled by uniform, the same weight had been assigned to all the

operators in I−5 ∪ J+
4 , so that, for each iteration, the chance of every destroy operator and

every repair operator to be selected was 20% and 25%, respectively. For the other two cases,

the setting of selection probabilities was based on statistics for the adapted probabilities

from the previous best configuration (labeled by J+
4 in Fig. 5.3). In fact, in the experiments

indicated by avg10K and by avgklast, the selection probabilities were set as the average of the

corresponding adapted probability that had been tracked respectively at all 10 000-iteration

blocks and at the last iteration alone. These adapted probabilities are illustrated in Fig. 5.4

both for all 10 000-iteration blocks (labeled by A) and for the last ALNS iteration alone

(labeled by L). We observe from Fig. 5.4 that a quite small dispersion had occurred on

the adapted selection probabilities of most operators in the (so far) best configuration. It

could then be speculated that the average upon those probabilities for each operator would

be the ideal choice for the respective selection probabilities through all the iterations of the

algorithm. However, inspection of Fig. 5.3 indicates that neither avg10K nor avgklast was able

to fully outperform the configuration used in J+
4 . Consequently, regarding the average cost of

the best-found solutions, these results reinforce the overall superiority of the adaptive version

(ALNS) over the static version (LNS) of our algorithm for the NHL scheduling problem.

In all the next experiments, we have then decided to apply the adaptive version of the

algorithm (ALNS) with only the operators in I−5 ∪ J+
4 being provided, where in the course

of the first iterations (first segment), every destroy operator and every repair operator are

selected with 20% and 25% of chance, respectively.

Adjustment of selection probabilities

As described earlier, the selection probabilities for the operators in our ALNS are adjusted

though the search according to the following five parameters: the segment size, Kseg, that

defines the number of ALNS iterations during which scores are added up for each operator; the

score adjustment parameters, σbes, σbet, and σacc, that stipulate, at the end of each iteration,

the different degrees of “rewards” for the performance of the operators according to the type

of new-found solution (best, better, accepted, respectively); and the reaction factor, ρ, that

specifies, at the begin of a new segment, how sensitive the updating of any operator weight

must be to the corresponding score gathered during the preceding segment. We now report

the experiments that we have conducted on evaluating different settings for those parameters.

Ou strategy can be divided into two parts as follows. At first, we kept the same reaction

92

Table 5.3 Best-found solutions on different parameters settings for the ALNS Statistics on
the cost of the best-found solution over 150 000 ALNS iterations for three cases of score
adjustment parameters, σ = (σbes, σbet, σacc, σrej), three cases of reaction factor, ρ, and three
cases of segment size, Kseg. Only 5 destroy operators (01 –, 02 –, 05 –, 06 –, and 08 –) and 4
repair operators (02+, 03+, 04+, and 05+) were provided. The ALNS was applied 8 times
to 9 instances of the 2010-11 season, which are investigated by number of extra dates: one
instance with no extra dates; 4 instances with 4 extra dates per team; and other 4 instances
with 8 extra dates per team. The table shows, for each number of extra dates, the minimum
(min), the arithmetic mean (avg), and the maximum (max) best-found values over 72 runs
(8 runs × 9 instances) of the ALNS with the corresponding setting of parameters. For each
instance, the same initial solution was provided.

Instances

ALNS parameters no extra dates 4 extra dates 8 extra dates

(σbes, σbet, σacc) ρ Kseg min avg max min avg max min avg max

(33, 9, 13) 0.1
100 66 116.70 184 0 1.20 4 0 0.10 1
200 59 104.30 146 0 1.50 6 0 0.05 1

(33, 13, 9) 0.1
100 79 96.00 120 0 1.30 3 0 0.05 1
200 65 91.50 122 0 0.95 3 0 0.00 0

(7, 3, 1)

0.1
100 79 99.80 132 0 0.95 3 0 0.10 1
200 49 89.50 118 0 0.90 2 0 0.00 0
400 55 93.10 144 0 0.90 3 0 0.05 1

0.3
100 57 94.50 149 0 1.30 3 0 0.00 0
200 44 93.60 136 0 0.95 4 0 0.05 1
400 64 93.10 129 0 0.75 2 0 0.00 0

0.5
100 63 99.30 139 0 1.25 3 0 0.05 1
200 54 93.60 134 0 1.15 4 0 0.00 0
400 61 102.90 147 0 1.15 3 0 0.05 1

factor as before, ρ = 0.1, while evaluating all combinations of two cases for the segment size,

K
(1)
seg = 100 and K

(2)
seg = 200, and three cases for the vector of score adjustment parameters,

σ(1) = (33, 9, 13), σ(2) = (33, 13, 9), and σ(3) = (7, 3, 1). Next, we kept the best among those

options for score adjustment parameters, while evaluating all combinations of three cases for

the reaction factor, ρ(1) = 0.1, ρ(2) = 0.3, and ρ(3) = 0.5, and also three cases for the segment

size, K
(1)
seg = 100, K

(2)
seg = 200, and K

(3)
seg = 400.

The settings σ(1), ρ(1), and K
(1)
seg are those from Ropke and Pisinger (2006), which in

particular, somewhat unexpectedly, attribute a higher score increment (13) to “worse” new-

93

accepted solutions than (9) to new solutions that are “better” with regard to the current

solution. Because the setting σ(1) is not fully consistent with the condition σbes ≥ σbet ≥
σacc ≥ 0 suggested in Pisinger and Ropke (2010) we are then including the setting σ(2) into

our evalutions. Comparing to our implementation, there is however, one particularity to

the adjustments of scores in Ropke and Pisinger (2006): both σ
(1)
bet and σ

(1)
acc are only used

for cases where the new solution has not been accepted before. As mentioned earlier, the

settings σ(3) and K
(2)
seg , which we have used for previous experiments in this thesis, were based

in preliminary results obtained during the implementation of our approach. In addition, ρ(2)

and ρ(3), as well as K
(1)
seg and K

(3)
seg , were thought as being reasonable choices to evaluate the

impact of a relatively small, medium, and large values for those parameters in the quality of

the best-found solutions.

Table 5.3 summarizes the results on those experiments, which are divided by number

of extra dates in the respective tuning instances. On the whole, the results does not seem

to indicate any particular overall outstanding setting among those we are evaluating. In

fact, Table 5.3 seems to suggest that our ALNS for the NHL scheduling problem is not very

sensitive to the choice of adjustment parameters. Comparing the results on σ(1) and σ(2),

however, provides some evidence that, contrary to the case in Ropke and Pisinger (2006),

attributing decreasing rewards respectively to best, better, and accepted new solutions is quite

more effective in our approach for the NHL scheduling problem.

Table 5.3 also shows that, regarding the hardest instance (with no extra dates), our initial

setting (σ(3), ρ(1), and K
(2)
seg) resulted in the lowest average cost (89.5) and the second lowest

overall cost (49) for the best-found solutions. In addition, that setting solved to optimality

all tuning instances with 8 extra dates per team.

Therefore, we decided to keep the parameters on the adjustment of selection probabilities

as

(Kseg, σbes, σbet, σacc, ρ) = (200, 7, 3, 1, 0.1)

for the results on other instances, which are reported in the following subsection.

5.3.4 Solving other instances

We now report the results obtained by applying the ALNS algorithm to the entire-league

instances described in Subsection 4.3.2 (p. 50). The parameters on the master level of the

algorithm were set as follows: (σbes, σbet, σacc) = (7, 3, 1) for the adjustment of operator scores;

ρ = 0.1 for the reaction factor; Kseg = 200 for the segment size; and Kmax
alns = 150 000 for the

maximum number of ALNS iterations. Only five destroy operators (01 –, 02 –, 05 –, 06 –, and

08 –) and four repair operators (02+, 03+, 04+, and 05+) were provided, and an initial schedule

94

Table 5.4 Best-found solutions for instances with extra arena-available dates Statistics on
the cost of the best-found solution over 150 000 ALNS iterations when the initial solution is
built from scratch. The results refer to 10 instances (a, b, . . . , j) on two and on four extra
arena-available dates per team for the 2010-11 season. The table shows, for each instance,
the minimum (min), the arithmetic mean (avg), and the maximum (max) best-found costs
over 8 runs of the ALNS algorithm. Instances with either 6 or 8 extra arena dates per team
were all solved to optimality (with no constraint violations).

2 extra dates 4 extra dates

α γ min avg max min avg max

2 010 a 1 1.25 3 0 0.38 1
b 1 1.75 2 0 0.38 1
c 1 2.75 4 0 0.38 1
d 0 1.50 3 0 0.25 1
e 1 2.00 3 0 0.13 1
f 0 2.88 4 0 0.63 1
g 1 3.00 5 0 1.00 2
h 0 1.38 4 0 0.63 2
i 0 2.63 6 0 0.63 1
j 2 3.00 4 0 0.25 1

all 0 2.21 6 0 0.46 2

was generated from scratch for each run of the algorithm.

As mentioned in Chapter 3, the arena availability is by far the most critical factor in the

construction of schedules for the NHL regular season. It is then logical to assume that, in

particular, the less extra dates an instance has, the more difficult it is to find a high-quality

schedule for it. This would suggest that even our “easiest” instances (with 8 extra dates per

team) are substantially more difficult to solve than those addressed either by Fleurent (1987)

or by Costa (1995), where the instances are reported to have at least 15 extra arena dates per

team. On the other hand, because no further information about the instances addressed in

those works is available, we believe that any attempt to rigorously compare those instances

with ours would be rather misleading. In fact, it may happen that the difficulty of our

instances are somewhat attenuated by the fact of having been generated from an already-

known fairly good solution: the corresponding actual NHL schedule.

Tables 5.4 and 5.5 present some statistics on the cost of the best-found solution in our

computational experiments for the 2010-11 season, which turns out to fairly represent the

typical solutions our ALNS have provided on the entire-league instances.

95

Table 5.5 Typical results for instances without extra dates Statistics on the constraint vio-
lations and on the costs of the best-found solution over 150 000 ALNS iterations when the
initial solution is built from scratch. The results refer to the instance NHL10-00a of the 2010-
11 regular season with no extra arena-available dates. The table shows the minimum (min),
the arithmetic mean (avg), and the maximum (max) number of constraint violations (ctr)
and costs (f(·)) on the best-found solutions over 8 runs of the ALNS algorithm. Constraint
violations and cost are also show for the corresponding actual NHL schedule (NHL’).

α ctr min avg max NHL’

2 010 C1 0 0.00 0 0
C2 0 0.00 0 0
C3 0 0.13 1 3
C4 4 7.38 10 14
C5 0 0.13 1 16
C6 6 10.00 19 66
C7 0 0.00 0 0
C8 0 0.00 0 0
C9 0 0.25 1 0

#viols 10 17.88 27 99
f(·) 46 85.38 120 252

The results are divided into two parts as follows: Table 5.4 refers to the instances with

extra arena dates, and Table 5.5 refers to the instances where only the 41 home dates in

the corresponding actual NHL schedule were provided. In particular, Table 5.5 also presents

the number of violations for each constraint of the problem, regarding both the solutions

provided by the ALNS algorithm and the respective actual NHL schedules.

On the whole, the results reinforce the importance of having extra arena dates in order

for our ALNS to find, within the considered number of iterations, NHL schedules that violate

no constraints of the problem. Indeed, all the instances with either 6 or 8 extra arena dates

per team (which it is not shown in the tables) were solved to optimality (with no constraint

violations). Moreover, the statistics on this sample of eight schedules per instance for the

2010-11 season show that the numbers of violations are on average only 2.21 and 0.46 for the

cases where each team provided 2 and 4 extra arena dates, respectively.

It is important to notice that the violations reported in Table 5.4 can only refer to the

“cheapest” constraints, to which we have set a one-unit penalty weight (or cost) per violation.

When only the minimum number of arena dates (41) is provided by each team, table 5.5

shows, however, that the number of violations in the schedules generated by the ALNS

96

algorithm ranges from 10 to 27, with cost varying between 46 and 120. Although these

violations and costs are worse (higher) than those for the other instances (Table 5.4), they

are significantly better (lower) than the violations (99) and the cost (252) for the actual

2010-11 NHL schedule. Interestingly, the algorithm was thus able to reschedule the games

on the same arena dates that had actually been used by every team and yet violates much

fewer constraints of the problem.

As shown by Table 5.6, similar comparative remarks could be drawn about the results

for the instances of other seasons. In particular, however, some schedules have presented

slightly more violations than those for the 2010-11 season. For example, we have noticed that

slightly worse schedules were generated for the 2009-10 season. But that was not completely

unexpected, and it could be attributed to the fact that fewer playable dates were available

for this particular season, as the XXI Winter Olympic Games had shut out nearly two weeks

from the regular-season schedule in January of 2010.

On the whole, our results seem to be significantly better than those reported in Costa

(1995). In particular, with regard to the 1993-94 season, when the NHL was formed by only

24 teams but every team already had to play 41 home games, Costa’s best result refer to a

schedule that, even though at least 15 extra dates had been provided by each team, exactly

105 games were scheduled on days when the arena of the respective home team was not

available. In addition, that schedule causes two violations for the constraints C2 and C3, and

it also presents 33 occurrences of a team having byes made up of more than three consecutive

days in the course of a single road trip. With respect to our best schedules, even for the

instances with no extra arena dates, none of those requirements were violated.

97

Table 5.6 Best-found schedules for instances without extra arena-available dates Constraint
violations on the best-found solutions by the ALNS for the entire-league instances without
extra arena-available dates, and violations on the corresponding official NHL schedules.

Number of violations

Season By C1 C2 C3 C4 C5 C6 C7 C8 C9

’09 ALNS 0 0 0 10 3 12 0 0 0
NHL 0 0 3 12 6 87 1 1 0

’10 ALNS 0 0 0 4 0 6 0 0 0
NHL 0 0 3 14 16 66 0 0 0

’11 ALNS 0 0 0 5 4 8 0 0 0
NHL 0 0 0 9 19 75 1 1 0

’12 ALNS 0 0 0 9 1 21 0 0 0
NHL 0 0 0 10 3 88 1 1 0

’13 ALNS 0 0 0 0 3 8 0 0 0
NHL 0 0 0 10 8 33 1 1 0

98

I
−

I
− 1
2
=

I
−
\{

0
3
–
,0

9
–
,1

2
–
}

I
− 9

=
I
− 1
2
\{

0
4
–
,1

3
–
,1

5
–
}

I
− 6

=
I
− 9
\{

1
0
–
,1

1
–
,1

4
–
}

I
− 6
\{

0
1
–
}

I
− 6
\{

0
2
–
}

I
− 6
\{

0
5
–
}

I
− 6
\{

0
6
–
}

I
− 5

=
I
− 6
\{

0
7
–
}

I
− 6
\{

0
8
–
}

I
− 5
\{

0
1
–
}

I
− 5
\{

0
2
–
}

I
− 5
\{

0
5
–
}

I
− 5
\{

0
6
–
}

I
− 5
\{

0
8
–
}

J
+ 4

=
J
+
\{

0
1
+
}

J
+
\{

0
2
+
}

J
+
\{

0
3
+
}

J
+
\{

0
4
+
}

J
+
\{

0
5
+
}

J
+ 4
\{

0
2
+
}

J
+ 4
\{

0
3
+
}

J
+ 4
\{

0
4
+
}

J
+ 4
\{

0
5
+
}

u
n
if
o
rm

a
vg
1
0
K

a
vg
kl
a
st

4
5

6
5

8
5

1
0
5

1
2
5

1
4
5

1
6
5

1
8
5

2
0
5

ω
o
∀o
∈

I
− 5
∪
J
+ 4

f
(·)

(a
)

In
st

an
ce

w
it

h
n

o
ex

tr
a

d
a
te

s

I
−

I
− 1
2
=

I
−
\{

0
3
–
,0

9
–
,1

2
–
}

I
− 9

=
I
− 1
2
\{

0
4
–
,1

3
–
,1

5
–
}

I
− 6

=
I
− 9
\{

1
0
–
,1

1
–
,1

4
–
}

I
− 6
\{

0
1
–
}

I
− 6
\{

0
2
–
}

I
− 6
\{

0
5
–
}

I
− 6
\{

0
6
–
}

I
− 5

=
I
− 6
\{

0
7
–
}

I
− 6
\{

0
8
–
}

I
− 5
\{

0
1
–
}

I
− 5
\{

0
2
–
}

I
− 5
\{

0
5
–
}

I
− 5
\{

0
6
–
}

I
− 5
\{

0
8
–
}

J
+ 4

=
J
+
\{

0
1
+
}

J
+
\{

0
2
+
}

J
+
\{

0
3
+
}

J
+
\{

0
4
+
}

J
+
\{

0
5
+
}

J
+ 4
\{

0
2
+
}

J
+ 4
\{

0
3
+
}

J
+ 4
\{

0
4
+
}

J
+ 4
\{

0
5
+
}

u
n
if
o
rm

a
vg
1
0
K

a
vg
kl
a
st

0
1

2
3

4
5

6

ω
o
∀o
∈

I
− 5
∪
J
+ 4

f
(·)

(b
)

In
st

a
n
ce

s
w

it
h

4
ex

tr
a

d
a
te

s
p

er
te

a
m

F
ig

u
re

5.
3

B
es

t-
fo

u
n

d
so

lu
ti

on
s

on
di

ff
er

en
t

co
n

fi
gu

ra
ti

on
s

of
op

er
at

or
s

S
ta

ti
st

ic
s

on
th

e
co

st
s

of
th

e
b

es
t-

fo
u
n
d

so
lu

ti
on

s
ov

er
15

0
00

0
(A

)L
N

S
it

er
at

io
n
s.

T
h
e

co
m

p
u
ta

ti
on

al
ex

p
er

im
en

ts
w

er
e

co
n
d
u
ct

ed
in

th
e

or
d
er

th
ey

ap
p

ea
r,

fr
om

th
e

to
p

to
th

e
b

ot
to

m
,

b
ot

h
fo

r
th

e
(a

)
in

st
an

ce
w

it
h

n
o

ex
tr

a
d
at

es
an

d
fo

r
th

e
(b

)
in

st
an

ce
s

w
it

h
4

ex
tr

a
d
at

es
.

A
t

th
e

b
eg

in
n
in

g
(l

ab
el
I
−

),
al

l
th

e
20

op
er

at
or

s,
I
−
∪
J

+
,

w
er

e
p
ro

v
id

ed
,

b
u
t

op
er

at
or

s
h
av

e
b

ee
n

su
cc

es
si

ve
ly

ex
cl

u
d
ed

(a
s

in
d
ic

at
ed

b
y

th
e

re
sp

ec
ti

ve
se

t-
th

eo
re

ti
c

d
iff

er
en

ce
)

u
n
ti

l
on

ly
n
in

e
op

er
at

or
s

re
m

ai
n
ed

,
w

h
ic

h
ar

e
I
− 5

=
{0
1
–
,0
2
–
,0
5
–
,0
6
–
,0
8
–
}

an
d
J

+ 4
=
{0
2+
,0
3+
,0
4+
,0
5+
}.

A
ll

re
su

lt
s

re
fe

r
to

th
e

ad
ap

ti
ve

ve
rs

io
n

of
th

e
al

go
ri

th
m

(A
L

N
S
),

ex
ce

p
t

fo
r

th
e

la
st

th
re

e
ex

p
er

im
en

ts
(i

n
th

e
b

ot
to

m
of

ea
ch

ch
ar

t)
.

F
or

ea
ch

ex
p

er
im

en
t,

th
e

al
go

ri
th

m
w

as
ap

p
li
ed

8
ti

m
es

to
fi
ve

in
st

an
ce

s
of

th
e

20
10

-1
1

se
as

on
:

on
e

in
st

an
ce

w
it

h
n
o

ex
tr

a
d
at

es
an

d
fo

u
r

in
st

an
ce

s
w

it
h

4
ex

tr
a

d
at

es
p

er
te

am
.

T
h
u
s,

th
e

b
ox

p
lo

ts
in

d
ic

at
e,

fo
r

ea
ch

co
n
fi
gu

ra
ti

on
of

op
er

at
or

s,
th

e
d
eg

re
e

of
d
is

p
er

si
on

in
th

e
co

st
s

of
th

e
b

es
t-

fo
u
n
d

so
lu

ti
on

s
ov

er
40

ru
n
s

(8
ru

n
s
×

5
in

st
an

ce
s)

of
15

0
00

0
it

er
at

io
n
s

fo
r

th
e

(A
)L

N
S
.

99

A L A L A L A L A L A L A L A L A L

5
1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

0
1
–

0
2
–

0
5
–

0
6
–

0
8
–

0
2
+

0
3
+

0
4
+

0
5
+

(%
)

(a
)

In
st

an
ce

w
it

h
n

o
ex

tr
a

d
at

es

A L A L A L A L A L A L A L A L A L

1
0

1
5

2
0

2
5

3
0

3
5

0
1
–

0
2
–

0
5
–

0
6
–

0
8
–

0
2
+

0
3
+

0
4
+

0
5
+

(%
)

(b
)

In
st

a
n
ce

s
w

it
h

4
ex

tr
a

d
a
te

s
p

er
te

a
m

A L A L A L A L A L A L A L A L A L

1
0

1
5

2
0

2
5

3
0

3
5

0
1
–

0
2
–

0
5
–

0
6
–

0
8
–

0
2
+

0
3
+

0
4
+

0
5
+

(%
)

(c
)

In
st

a
n
ce

s
w

it
h

8
ex

tr
a

d
a
te

s
p

er
te

a
m

F
ig

u
re

5.
4

S
el

ec
ti

on
pr

ob
ab

il
it

ie
s

fo
r

th
e

ch
os

en
op

er
at

or
s

th
ro

u
gh

th
e

A
L

N
S

it
er

at
io

n
s

S
ta

ti
st

ic
s

on
th

e
va

lu
es

of
th

e
ad

ap
te

d
se

le
ct

io
n

p
ro

b
ab

il
it

ie
s

tr
ac

ke
d

at
th

e
en

d
of

ev
er

y
10

00
0

A
L

N
S

it
er

at
io

n
s

(A
)

an
d
,

in
p
ar

ti
cu

la
r,

at
th

e
la

st
A

L
N

S
it

er
at

io
n

al
on

e
(L

).
O

n
ly

5
d
es

tr
oy

op
er

at
or

s
(0
1
– ,
02

– ,
05

– ,
06

– ,
an

d
08

–)
an

d
4

re
p
ai

r
op

er
at

or
s

(0
2+

,
03

+
,
04

+
,

an
d
05

+
)

w
er

e
p
ro

v
id

ed
.

T
h
e

A
L

N
S

w
as

ap
p
li
ed

8
ti

m
es

to
9

in
st

an
ce

s
of

th
e

20
10

-1
1

se
as

on
,

w
h
ic

h
ar

e
in

d
iv

id
u
al

ly
in

ve
st

ig
at

ed
:

(a
)

on
e

in
st

an
ce

w
it

h
n
o

ex
tr

a
d
at

es
,

(b
)

4
in

st
an

ce
s

w
it

h
4

ex
tr

a
d
at

es
p

er
te

am
,

an
d

(c
)

ot
h
er

4
in

st
an

ce
s

w
it

h
8

ex
tr

a
d
at

es
p

er
te

am
.

T
h
u
s,

th
e

b
ox

p
lo

ts
in

d
ic

at
e,

fo
r

ea
ch

op
er

at
or

,
th

e
d
eg

re
e

of
d
is

p
er

si
on

in
th

e
se

le
ct

io
n

p
ro

b
ab

il
it

ie
s

tr
ac

ke
d

ov
er

72
ru

n
s

(8
ru

n
s
×

9
in

st
an

ce
s)

of
th

e
A

L
N

S
al

go
ri

th
m

.

100

CHAPTER 6

CONCLUSION

In this thesis, we have revisited the NHL scheduling problem, which consists in scheduling

the regular-season games of the National Hockey League. Some basic requirements for a good

NHL schedule were identified, and then, we proposed the first integer linear programming (IP)

model for exactly solving the problem and also an adaptive large neighborhood search (ALNS)

for solving instances of practical size. In particular, we have reported some computational

results for instances of moderate size that were obtained from a commercial state-of-the-art

solver with several variants of the IP model, where different constraints have been relaxed and

their violations penalized in the objective function. Promising results for instances of realistic

size that were generated by the ALNS have also been reported. Indeed, the ALNS was able to

find schedules that satisfy all essential requirements even for the most challenging instances

of the problem where, in particular, the availability of arena is scarce or at its minimum. Such

results reinforce the original idea that high-quality solutions for tightly-constrained problems

can be achieved by a combination of rather naive (and often individually ineffective) heuristics

into an ALNS framework.

As we have mentioned in the literature review, the focus of studies on sports scheduling

has often been the minimization of travel distances. In such cases, distances are somewhat

used as measure of travelling costs and players fatigue. This can be controversial as most

travels are done by air, and then, in particular, fatigue would be more due to poor quality of

the travel experience than long distance itself. Moreover, some particular game scheduling

may result in a slightly longer travelling distance for the teams involved but, for example, have

the advantage of the game being scheduled during a weekend, which could increase spectator

attendance or broadcasting revenue, and thus fairly compensate some possible “extra” travel

cost. And also, because the home locations of the NHL teams are so unevenly distributed

throughout a vast region, care should be taken as not only try to minimize the overall travel

distance at the expense of aggravating the particular situation of the most geographically

isolated teams. Therefore, although we recognize that travels are indeed one of the concerns

in the NHL scheduling problem, in the case of the ALNS, we have considered them only

implicitly by the use of the saving measure in the generation of both forced and free trips.

Our ALNS algorithm for the NHL scheduling problem is well suited for the cases where

some games have been scheduled beforehand. In fact, all the results that we have reported

in this thesis take into account that, in particular, the NHL regular season currently includes

101

a few games played in Europe, and also other special games, at predetermined dates that

cannot be changed.

We are confident that by involving the expert scheduler into a detailed formulation of the

problem and into the implementation of other specialized heuristics in the ALNS framework

would enable computers to assist the designing of much better schedules than the NHL might

have conceived as being possible. In fact, the reported results suggest that our approach

could enable the NHL managers to identify unnecessary weakness in their schedules, and

could certainly assist them in finding high-quality schedules with respect to a variety of new

preferences.

Starting in the 2013-14 season, the NHL adopted a new structure, which distributes the

30 teams into only two eight-team divisions and two seven-team divisions. Furthermore, the

teams are now playing under a new regular-season structure, yet a team still plays 41 home

games. It would be useful to investigate the impact of such changes in the quality of the

schedules that our approach is able to produce with regard to the essential requirements we

have considered in this thesis and possibly other preferences and measures on fairness issues

for the teams.

102

REFERENCES

ARMSTRONG, J. and WILLIS, R. J. (1993). Scheduling the Cricket World Cup – a case

study. The Journal of the Operational Research Society, 44, 1067–1072.

BAO, R. (2009). Time Relaxed Round Robin Tournament and the NBA Scheduling Problem.

Ph.D. thesis, Mechanical Engineering, Cleveland State University. Cleveland, United States.

BARTSCH, T., DREXL, A. and KRÖGER, S. (2006). Scheduling the professional soccer

leagues of Austria and Germany. Computer & Operations Research, 33, 1907–1937.

BEAN, J. C. and BIRGE, J. R. (1980). Reducing Travelling Costs and Player Fatigue in

the National Basketball Association. Interfaces, 10, 98–102.

BRISKORN, D. (2008a). Feasibility of home-away-pattern sets for round robin tournaments.

Operations Research Letters, 36, 283–284.

BRISKORN, D. (2008b). Sports Leagues Scheduling: Models, Combinatorial Properties,

and Optimization Algorithms. Lecture Notes in Economics and Mathematical Systems, 603.

Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg.

BRISKORN, D. and DREXL, A. (2007). A branch-and-price algorithm for scheduling sport

leagues. Journal of the Operations Research Society, 60, 89–93.

BROUWER, A. E., POST, G. F. and WOEGINGER, G. J. (2008). Tight bounds for break

minimization in tournament scheduling. Journal of Combinatorial Theory, Series A, 115,

1065–1068.

CHEUNG, K. K. H. (2008). Solving mirrored traveling tournament problem benchmark

instances with eight teams. Discrete Optimization, 5, 138–143.

CLARKE, G. and WRIGHT, J. W. (1964). Scheduling of vehicles from a central depot to

a number of delivery points. Operations Research, 12, 568–581.

COSTA, D. (1995). An evolutionary tabu search algorithm and the NHL scheduling problem.

INFOR, 33, 161–178.

CRAIG, S., WHILE, L. and BARONE, L. (2009). Scheduling for the National Hockey

League Using a Multi-objective Evolutionary Algorithm. In A. Nicholson and X. Li, editors,

AI 2009: Advances in Artificial Intelligence, Springer Berlin Heidelberg, vol. 5866 of Lecture

Notes in Computer Science, book section 39. Pages 381–390.

DE WERRA, D. (1980). Geography, games and graphs. Discrete Applied Mathematics, 2,

327–337.

103

DE WERRA, D. (1981). Scheduling in Sports. In P. Hansen, editor, North-Holland Math-

ematics Studies, North-Holland, vol. 59. Pages 381–395.

DE WERRA, D. (1982). Minimizing irregularities in sports schedules using graph theory.

Discrete Applied Mathematics, 4, 217–226.

DE WERRA, D. (1985). On the multiplication of divisions: the use of graphs for sports

scheduling. Networks, 15, 125–136.

DE WERRA, D. (1988). Some models of graphs for scheduling sports competitions. Discrete

Applied Mathematics, 21, 47–65.

DELLA CROCE, F. and OLIVERI, D. (2006). Scheduling the Italian Football League: an

ILP-based approach. Computers & Operations Research, 33, 1963–1974.

DEPALMA, T. J. (2004). Betting market efficiency in the National Hockey League: An

analysis of expansion seasons. Ph.D. thesis, Faculty of Economics, University of Delaware.

Delaware, United States.

DREXL, A. and KNUST, S. (2007). Sports league scheduling: graph- and resource-based

models. Omega, 35, 465–471.

EASTON, K., NEMHAUSER, G. and TRICK, M. (2001). The Traveling Tournament

Problem Description and Benchmarks. In T. Walsh, editor, Principles and Practice of

Constraint Programming — CP 2001, Springer Berlin Heidelberg, vol. 2239 of Lecture Notes

in Computer Science, book section 43. Pages 580–584.

EASTON, K., NEMHAUSER, G. and TRICK, M. (2003). Solving the traveling tourna-

ment problem: a combined integer programming and constraint programming approach. In

E. Burke and P. De Causmaecker, editors, Practice and Theory of Automated Timetabling

IV (PATAT 2002). Spring-Verlag, vol. 2740. Pages 100–109.

EASTON, K., NEMHAUSER, G. and TRICK, M. (2004). Sport Scheduling. In J. Y.-T.

Leung, editor, Handbook of Scheduling: Algorithms, Models, and Performance Analysis,

CRC Press, book section 52. Pages 1139–1157.

EASTON, K. K. (2003). Using integer programming and constraint programming to solve

sports scheduling problems. Ph.D. thesis, Georgia Institute of Technology, Georgia, United

States.

EASTON, T. and GARY PARKER, R. (2001). On completing latin squares. Discrete

Applied Mathematics, 113, 167–181.

ELF, M., JÜNGER, M. and RINALDI, G. (2003). Minimizing breaks by maximizing cuts.

Operations Research Letters, 31, 343–349.

104

FERLAND, J. A. and FLEURENT, C. (1991). Computer aided scheduling for a sport

league. INFOR, 29, 14–25.

FLEURENT, C. (1987). Méthodes heuristiques pour la conception de calendriers sportifs.

Master’s thesis, Département d’informatique et de recherche opérationnelle, Université de

Montréal. Montreal, Quebec.

FLEURENT, C. and FERLAND, J. A. (1993). Allocating games for the NHL using Integer

Programming. Operations Research, 41, 649–654.

FRASER, W. (1982). The role of computer simulation in building the National Hockey

League Schedule. Technical report, IBM Canada Limited.

GOEMANS, M. X. and WILLIAMSON, D. P. (1995). Improved Approximation Algorithms

for Maximum Cut and Satisfiability Problems Using Semidefinite Programming. J. ACM,

42, 1115–1145.

GOOSSENS, D. and SPIEKSMA, F. (2011). Soccer schedules in Europe: an overview.

Journal of Scheduling, 15, 651–651.

HAMIEZ, J.-P. and HAO, J.-K. (2004). A linear-time algorithm to solve the Sports League

Scheduling Problem (prob026 of CSPLib). Discrete Applied Mathematics, 143, 252–265.

HAVARD, C. T. (2014). Glory Out of Reflected Failure: The examination of how rivalry

affects sport fans. Sport Management Review, 17, 243–253.

HENZ, M. (2001). Scheduling a Major College Basketball Conference–Revisited. Operations

Research, 49, 163–168.

IRNICH, S. (2010). A new branch-and-price algorithm for the traveling tournament problem.

European Journal of Operational Research, 204, 218–228.

KENDALL, G., KNUST, S., RIBEIRO, C. C. and URRUTIA, S. (2010). Scheduling in

sports: An annotated bibliography. Computers & Operations Research, 37, 1–19.

KNUST, S. (2010). Scheduling non-professional table-tennis leagues. European Journal of

Operational Research, 200, 358–367.

KNUST, S. (2014). Classification of Literature on Sports Scheduling. Webpage

http://www.inf.uos.de/knust/sportlit_class/sportlit_class.html. Last checked

on May 10, 2014.

KNUST, S. and LÜCKING, D. (2009). Minimizing costs in round robin tournaments with

place constraints. Computers & Operations Research, 36, 2937–2943.

KNUST, S. and VON THADEN, M. (2006). Balanced home-away assignments. Discrete

Optimization, 3, 354–365.

105

KOVACS, A. A., PARRAGH, S. N., DOERNER, K. F. and HARTL, R. F. (2012). Adaptive

large neighborhood search for service technician routing and scheduling problems. Journal

of Scheduling, 15, 579–600.

LAMKEN, E. R. (1990). Generalized Balanced Tournament Designs. Transactions of the

American Mathematical Society, 318, 473–490.

LARSON, J. and JOHANSSON, M. (2014). Constructing Schedules for Sports Leagues

with Divisional and Round-robin Tournaments. Journal of Quantitative Analysis in Sports,

10, 119–129. doi:10.1515/jqas-2013-0090.

LENTEN, L. J. A. (2013). Measurement of Competitive Balance in Confer-

ence and Divisional Tournament Design. Journal of Sports Economics, 1–23.

doi:10.1177/1527002512471538.

LIM, A., RODRIGUES, B. and ZHANG, X. (2006). A simulated annealing and hill-climbing

algorithm for the traveling tournament problem. European Journal of Operational Research,

174, 1459–1478.

MACDONALD, B. and PULLEYBLANK, W. (2014). Realignment in the NHL, MLB, NFL,

and NBA. Journal of Quantitative Analysis in Sports, 10, 225–240. doi:10.1515/jqas-

2013-0070.

MELO, R. A., URRUTIA, S. and RIBEIRO, C. C. (2007). Scheduling Single Round Robin

Tournaments with Fixed Venues. In 3rd Multidisciplinary International Conference on

Scheduling: Theory and Applications (MISTA’07). Pages 431–438.

MIYASHIRO, R., IWASAKI, H. and MATSUI, T. (2003). Characterizing feasible pattern

sets with a minimum number of breaks. In E. Burke and P. De Causmaecker, editors, Prac-

tice and Theory of AutomatedTimetabling IV, Springer-Verlag, Berlin Heidelberg, LNCS

2740. Pages 78–99.

MIYASHIRO, R. and MATSUI, T. (2005). A polynomial-time algorithm to find an equitable

home-away assignment. Operations Research Letters, 33, 235–241.

MIYASHIRO, R. and MATSUI, T. (2006). Semidefinite programming based approaches to

the break minimization problem. Computers & Operations Research, 33, 1975–1982.

NEMHAUSER, G. and TRICK, M. (1998). Scheduling a Major College Basketball Confer-

ence. Operations Research, 46, 1–8.

NURMI, K., GOOSSENS, D., BARTSCH, T., BONOMO, F., BRISKORN, D., DURAN, G.,

KYNGÄS, J., MARENCO, J., RIBEIRO, C., SPIEKSMA, F. ET AL. (2010). A framework

for a highly constrained sports scheduling problem. In Proceedings of the International

MultiConference of Engineers and Computer Scientists. vol. 3. Pages 1991–1997.

106

OBERHOFER, H., PHILIPPOVICH, T. and WINNER, H. (2010). Distance matters in

away games: Evidence from the German football league. Journal of Economic Psychology,

31, 200–211.

PISINGER, D. and ROPKE, S. (2007). A general heuristic for vehicle routing problems.

Computers & Operations Research, 34, 2403–2435.

PISINGER, D. and ROPKE, S. (2010). Large Neighborhood Search. In M. Gendreau and

J.-Y. Potvin, editors, Handbook of Metaheuristics, Springer US, vol. 146 of International

Series in Operations Research & Management Science. Pages 399–419.

POST, G. and WOEGINGER, G. J. (2006). Sports tournaments, home-away assignments,

and the break minimization problem. Discrete Optimization, 3, 165–173.

RASMUSSEN, R. and TRICK, M. (2006). The Timetable Constrained Distance Minimiza-

tion Problem. In J. C. Beck and B. Smith, editors, Integration of AI and OR Techniques

in Constraint Programming for Combinatorial Optimization Problems, Springer Berlin Hei-

delberg, vol. 3990 of Lecture Notes in Computer Science, book section 15. Pages 167–181.

RASMUSSEN, R. and TRICK, M. (2009). The timetable constrained distance minimization

problem. Annals of Operations Research, 171, 45–59.

RASMUSSEN, R. V. (2008). Scheduling a triple round robin tournament for the best Danish

soccer league. European Journal of Operational Research, 185, 795–810.

RASMUSSEN, R. V. and TRICK, M. A. (2007). A Benders approach for the constrained

minimum break problem. European Journal of Operational Research, 177, 198–213.

RASMUSSEN, R. V. and TRICK, M. A. (2008). Round robin scheduling – a survey. Eu-

ropean Journal of Operational Research, 188, 617–636.

RÉGIN, J.-C. (2001). Minimization of the number of breaks in sports scheduling problems

using constraint programming. In E. C. Freuder and R. J. Wallace, editors, Constraint pro-

gramming and large scale discrete optimization, American Mathematical Society, Rutgers,

New Jersey, vol. 57 of DIMACS Series in Discrete Mathematics and Theoretical Computer

Science. Pages 115–130.

REINFELD, N. V. and VOGEL, W. R. (1958). Mathematical programming. Englewood

Cliffs, N. J. : Prentice-Hall.

RIBEIRO, C. C. (2012). Sports scheduling: Problems and applications. International

Transactions in Operational Research, 19, 201–226.

ROKOSZ, F. M. (2000). Procedures for structuring and scheduling sports tournaments:

elimination, consolation, placement, and round-robin design. C.C. Thomas, Springfield, Ill.,

third edition.

107

ROPKE, S. and PISINGER, D. (2006). An adaptive large neighborhood search heuristic for

the pickup and delivery problem with time windows. Transportation Science, 40, 455–472.

ROSEN, D. (2013). Realignment plan approved by Board of Governors. Webpage

http://www.nhl.com/ice/news.htm?id=660138. Last checked on July 3, 2014.

RUSSELL, R. A. and LEUNG, J. M. Y. (1994). Devising a cost effective schedule for a

baseball league. Operations Research, 42, 614–625.

SCHAERF, A. (1999). Scheduling sport tournaments using constraint logic programming.

Constraints, 4, 43–65.

SCHÖNBERGER, J., MATTFELD, D. C. and KOPFER, H. (2000). Automated timetable

generation for rounds of a table-tennis league. In Evolutionary Computation, 2000 – Pro-

ceedings of CEC2000. vol. 1. Pages 277–284.

SCHÖNBERGER, J., MATTFELD, D. C. and KOPFER, H. (2004). Memetic Algorithm

timetabling for non-commercial sport leagues. European Journal of Operational Research,

153, 102–116.

SCHREUDER, J. (1992). Combinatorial aspects of construction of competition Dutch

professional football leagues. Discrete Applied Mathematics, 35, 301–312.

SCHREUDER, J. A. M. (1980). Constructing timetables for sport competitions. Mathe-

matical Programming Study, 13, 58–67.

SCHRIMPF, G., SCHNEIDER, J., STAMM-WILBRANDT, H. and DUECK, G. (2000).

Record breaking optimization results using the ruin and recreate principle. Journal of

Computational Physics, 159, 139–171.

SHAW, P. (1998). Using constraint programming and local search methods to solve vehicle

routing problems. Principles and Practice of Constraint Programming - Cp98, 1520, 417–

431.

SMITH, D. R., CIACCIARELLI, A., SERZAN, J. and LAMBERT, D. (2000). Travel

and the home advantage in professional sports. / Avantage du terrain par rapport a un

deplacement pour les sportifs professionnels. Sociology of Sport Journal, 17, 364–385.

SUZUKA, A., MIYASHIRO, R., YOSHISE, A. and MATSUI, T. (2007). The home-away

assignment problems and break minimization/maximization problems in sports scheduling.

Pacific Journal of Optimization, 3, 113–133.

TRICK, M. (2001). A schedule-then-break approach to sports timetabling. In E. Burke

and W. Erben, editors, Practice and Theory of Automated Timetabling III, Springer Berlin

Heidelberg, vol. 2079 of Lecture Notes in Computer Science. Pages 242–253.

108

TRICK, M. (2005). Formulations and Reformulations in Integer Programming. In R. Barták

and M. Milano, editors, Integration of AI and OR Techniques in Constraint Programming

for Combinatorial Optimization Problems, Springer Berlin Heidelberg, vol. 3524 of Lecture

Notes in Computer Science, chapter 27. Pages 366–379.

TRICK, M. (2011). Sports Scheduling. In P. van Hentenryck and M. Milano, editors, Hybrid

Optimization, Springer New York, vol. 45 of Springer Optimization and Its Applications.

Pages 489–508.

URRUTIA, S. and RIBEIRO, C. C. (2006). Maximizing breaks and bounding solutions to

the mirrored traveling tournament problem. Discrete Applied Mathematics, 154, 1932–1938.

UTHUS, D., RIDDLE, P. and GUESGEN, H. (2009). DFS* and the Traveling Tournament

Problem. In W.-J. Hoeve, J. Hooker, D. Uthus, P. Riddle and H. Guesgen, editors, Integra-

tion of AI and OR Techniques in Constraint Programming for Combinatorial Optimization

Problems, Springer Berlin Heidelberg, vol. 5547 of Lecture Notes in Computer Science. Pages

279–293.

UTHUS, D., RIDDLE, P. and GUESGEN, H. (2012). Solving the traveling tournament

problem with iterative-deepening A*. Journal of Scheduling, 15, 601–614.

VAN HENTENRYCK, P. and MICHEL, L. (2009). Constraint-Based Local Search. The

MIT Press.

VAN HENTENRYCK, P. and VERGADOS, Y. (2005). Minimizing breaks in sport schedul-

ing with local search. In Proceedings of the Fifteenth International Conference on Automated

Planning and Scheduling (ICAPS) 2005. vol. 1. Pages 22–29. June 5-10, 2005, Monterey,

California, United States.

VAN WEERT, A. and SCHREUDER, J. (1998). Construction of basic match schedules for

sports competitions by using graph theory. In E. Burke and M. Carter, editors, Practice

and Theory of Automated Timetabling II, Springer Berlin Heidelberg, vol. 1408 of Lecture

Notes in Computer Science, book section 13. Pages 201–210.

109

APPENDIX A

PSEUDOCODE OF THE ALNS ALGORITHM

A.1 Pseudocode of the ALNS algorithm

The main features of the ALNS algorithm we propose for the NHL Scheduling Problem

can be summarized as stated in Algorithm 1. It essentially consists of the construction of an

initial solution (Sinit) and a loop that, while not all constraints are satisfied (or equivalently

while f(Sbest) > 0), tries to improve the current solution (Scurr) through a fixed number of

iterations (with k varying from 0 to Kmax
alns − 1). The parameters provided to the algorithm

are the maximum number of iterations, Kmax
alns ; the segment size, Kseg; the start temperature

control parameter, τ ; the score adjustment parameters, σbes, σbet, and σacc; the reaction

factor, ρ; the set of destroy operators, I−, and the set of repair operators, J+, with their

respective initial weights, ωo ∀o ∈ I− ∪ J+. In order for us still to focus on the master

level of the approach, the statement of the algorithm evokes three “external” procedures

(denoted with a typewriter style font), which we describe in a rather informal way. On

line 1, a complete schedule is constructed as the initial solution, Sinit, by the procedure

constructInitialSolution(). This procedure implements the multi-heuristic approach

proposed by Fleurent (1987), which we describe in the next subsection. In the body of the

loop (from lines 9 to 33), one destroy operator and one repair operator are initially selected

by two calls, on lines 9 and 10, to the procedure selectOperator(·), whose argument can

be seen as a vector of weights for the random weighted selection among the corresponding

candidate operators. That procedure implements thus the strategy on the operator selection

explained earlier. The just-selected pair of destroy and repair operators are applied to the

current solution by the procedure applyOperators(·) on line 11. The resulting destroyed-

and-repaired solution is then either accepted or rejected by the procedure acceptSA(·), on

line 12, which implements the solution acceptance criteria from Simulated Annealing. In

particular, the initial temperature, T0, and the cooling factor, c, are calculated as being equal

to (τ/100)(f̂(Sinit)/(− ln(0.5))) and (T0 (− ln(0.01)))(−1/Kmax
alns), respectively, where f̂(Sinit) is

the weighted sum
∑9

i=3wifi(Sinit) of the number of violations, fi(Sinit), of every constraint

Ci, for i ∈ {3, 4, . . . , 9}, in the initial solution, Sinit. The other parts of Algorithm 1 keep

track of the best-found solution, Sbest, and adjust the scores of the operators, which are used

to recalculate the operator weights (and thus their selection probabilities) at the end of each

Kseg iterations defining an ALNS segment.

110

Algorithm 1: ALNS for the NHL Scheduling Problem

parameters: Kseg, σbes, σbet, σacc, ρ, Kmax
alns , τ ,

I−, J+, ωo ∀o ∈ I− ∪ J+

1 Sinit ← constructInitialSolution()

2 foreach o ∈ I− ∪ J+ do
3 πo ← 0; θo ← 0

4 T0 ← (τ/100)(f̂(Sinit)/(− ln(0.5)));

5 c← (T0 (− ln(0.01)))(−1/Kmax
alns)

6 k ← 0; kseg ← 0
7 Scurr ← Sinit; Sbest ← Sinit

8 while k < Kmax
alns and f(Sbest) > 0 do

9 i← selectOperator(ωo ∀o ∈ I−)
10 j ← selectOperator(ωo ∀o ∈ J+)

11 Stemp ← applyOperators(i, j, Scurr)
12 if acceptSA(f(Stemp)− f(Scurr), Tk) then
13 Scurr ← Stemp

14 σ′ ← σacc
15 else
16 σ′ ← 0

17 if f(Stemp) < f(Sbest) then
18 Sbest ← Stemp

19 σ′ ← σbes
20 else
21 if f(Stemp) < f(Scurr) then
22 σ′ ← σbet

23 πi ← πi + σ′; πj ← πj + σ′

24 θi ← θi + 1; θj ← θj + 1
25 if kseg < Kseg then
26 kseg ← kseg + 1
27 else
28 kseg ← 0
29 foreach o ∈ I− ∪ J+ : θo > 0 do
30 ωo ← (1− ρ)ωo + ρ(πo/θo)
31 πo ← 0; θo ← 0

32 Tk+1 ← c Tk
33 k ← k + 1

34 return Sbest

111

APPENDIX B

FLEURENT’S HEURISTICS

B.1 Fleurent’s heuristics

In the heuristics by Fleurent (1987), a “feasibly possible” scheduling is a game-day assign-

ment that satisfies all the constraints in the set CF = {C0,C1,C2,C4,C5,C6}, except perhaps

C5 on the minimum number of games per week.

B.1.1 Forced-trip heuristic

The forced-trip heuristic generates as many forced trips as feasibly possible. Every forced

trip is generated by repeating the following description. At first, the heuristic scans all teams

with at least two distant (more than 900 miles) away games to be scheduled, and chooses the

longest period of consecutive days with neither arena-available nor already-assigned dates for

a team. Let the chosen period be denoted by [dl, du] and the corresponding team by a. To

anticipate, a will be the team to play away on the undertaken trip generation. In order to

actually start building up the new trip, the heuristic selects two days, d1 and d2, both from

within [dl, du], and two distant opponents, h1 and h2, that allows the team a to play away in

the course of a single trip against h1 and h2 on days d1 and d2, respectively, without violating

any constraint in CF (except perhaps C5 on the minimum number of games per week). If

more than one choice is identified, the selection of those two days and two opponents is one

that maximizes the saving measure value sa(h1, h2) = dist(h1, a) + dist(a, h2)− dist(h1, h2).

It then carries out the corresponding game-day assignments for the visiting team, a, to create

a trip r(a), which is then formed by only two away games.

Next, the heuristic attempts to extend the trip r(a) by trying to schedule the team a to

directly visit other distant rivals both before having played against h1 on day d1 and after

having played against h2 on day d2. In fact, it first tries to extend the end of the trip r(a),

whenever d2 (the current last game day of r(a)) is far enough from du + 1 (the next arena-

available date of team a) to possibly allow at least one more feasible away game to be played

before a returns home, with no violation of the constraints in CF . If this is the case and

suitable rival exists, a team h3 is selected as to maximize the saving value sa(h2, h3), and a

is scheduled to visit h3 on a day d3, which now becomes the last game day of the trip r(a).

Such end-of-trip augmentation process is repeated until there exists no more distant rivals

with arena dates yielding an away game scheduling for a at the end of the same trip, without

112

violating the constraints in CF .

The process on extending the begin of the trip is essentially the same as that for the

end. Indeed, the heuristic attempts to schedule new feasible away games for a by trying to

select distant rivals which maximizes the saving measure defined above, but the course of the

assignments now goes backward from d1 (the current first game day of r(a)) to day dl (the

first non arena date for a on the selected period for the current trip generation).

B.1.2 Forced-home heuristic

The forced-home heuristic selects all the long-lasting trips in decreasing order of their

duration, and tries to schedule free games by repeating the following steps for each trip r(t)

where a team t starts playing a game on day dr1 and finishes playing some other game on day

dr2, such that the condition dr2 − dr1≥7 holds.

Step 1. Schedule a home game before the current long-lasting trip. At first, regarding only

the arena dates of the team t that are before the day dr1, identify the day d1 that is

the closest day to dr1, and then, among the home games for t that can be scheduled on

d1 with no violation of constraints in CF , schedule on d1 the free game for which, if

possible, the visiting rival of t does not have d1 as one of its arena dates. In case of tie,

prefer a rival located the closest to the arena of team t.

Step 2. Schedule a home game after the current long-lasting trip. At first, regarding only

the arena dates of the team t that are after the day dr2, identify the day d2 that is the

closest day to dr2, and then, among the home games for t that can be scheduled on

d2 with no violation of constraints in CF , schedule on d2 the free game for which, if

possible, the visiting rival of t does not have d2 as one of its arena dates. In case of tie,

prefer a rival located the closest to the arena of team t.

B.1.3 Free-trip heuristic

The free-trip heuristic tries to schedule all remaining games that individually opposes two

distant teams by repeating the following steps on generating a single trip with no more than

three games, where any condition of feasibility refers to the constraints in CF only:

Step 1. Select a visiting team. Choose a team a with the highest number of distant (more

than 900 miles) away games remaining to be scheduled, and let T̃a be the set of the

respective (distant) rivals.

Step 2. Determine a sequence of away games. Among the teams in T̃a, select two rivals, h1

and h2, to be visited by a in a row, such that the saving measure value sa(h1, h2) =

dist(h1, a) + dist(a, h2)− dist(h1, h2) is the maximum over all pairs of teams from T̃a.

113

Identify, also, a third opponent h3 ∈ T̃a \ {h1, h2} that provides the new largest saving

value sa(h3, h
′), where h′ is any team, other than h3, from T̃a (perhaps even h1 or h2);

and let now r be the sequence of teams given by the following conditional definition:

r = (h1, h2, h3) if h′ = h2; or r = (h3, h1, h2) if h′ = h1; or r = (h1, h2) otherwise.

Step 3. Assign dates to the games. Recursively try to schedule the team a to play away

against its rivals in the sequence r, as follows. Initially, assign any feasible day to the

first corresponding game so as to define a single-game trip. Then, try to extend the

trip by sequentially scheduling a to visit the other teams in the order they appear in r.

Clearly, from the definition of a trip, any pair of those consecutive games must take

place within a period of three days. At each attempt to schedule a game, if none of

the potential days allows an assignment without violating the constraints in CF then,

before to proceed, backtrack by canceling the last successful scheduled game and trying

to assign another feasible day to it. If the whole recursive approach does not find

any feasible period for the current free trip then apply it to: either the sequence r in

inverse order if it has not been tried before; or a modified sequence in which the team

geographically closest to a is discarded. On the contrary, determine all possible periods

of assignment for the current trip and schedule its respective games to the period having

the least number of arena dates for the travelling team, a.

B.1.4 Weekend-game heuristic

For each pair of a team t and a weekend day d, let the “cost” of scheduling t to play away

on day d be defined as c(t, d) = 3δtd + 2δtd′ + 2δtd′′ , where d′ and d′′ are the other two days

(aside from d) in the weekend of d, and δtd̂ is equal to 1 if the day d̂ is an arena date of team

t, and it is equal to 0 otherwise. The weekend-game heuristic initially carries out the steps

below for the set D of the regular season days that fall on a Saturday.

Step 1. Create a set of promising games for every target day. For each day d ∈ D, generate

the set G̃d of every free game ã@h̃ where a team ã must visit a non-distant (not farther

than 900 miles) rival h̃ and such that all the following conditions are satisfied: (1) d

yields an assignment with no violation of the constraints in CF ; (2) d is not within any

long-distance trip period for neither ã nor h̃; and (3) d is either unavailable for ã or it

is the only day available for ã among the three days of the corresponding weekend.

Step 2. Sequentially schedule games to target days for each level of preference regarding the

visiting team availability. Whenever possible, select (at random if more than one) a

target day d ∈ D and a free game ã@h̃ in G̃d such that c(ã, d) is the minimum over all

dates in D and their respective promising games; remove ã@h̃ from G̃d; and assign d to

114

ã@h̃ if it does not violate any constraint in CF .

The heuristic repeats then these same steps two more times over different target days of the

regular season period: first for D as the Fridays, and finally, for D as the Sundays.

B.1.5 Weekday-game heuristic

The weekday-game heuristic carries out the following steps, where any condition of feasi-

bility refers to the constraints in CF only:

Step 1. Generate a set of feasible days for the free games. Initially, create the set G̃ of all free

games between non-distant (not farther than 900 miles) rivals. Then, for each ã@h̃ ∈ G̃,

generate the set D(ã@h̃) of feasible weekdays (from Monday through Thursday) which

are not within any long-distance trip period for neither ã nor h̃.

Step 2. Define the costs of the potential assignments. Compute, for each pair of a free game

ã@h̃ ∈ G̃ and a feasible day d ∈ D(ã@h̃), a game-day assignment cost c([ã@h̃: d]) as

nH(d) +M if the arena of ã is available on day d, and as nH(d) otherwise, where nH(d)

is the amount of teams that have d as one of their arena dates, and M is any big

constant (the amount of teams in the League, for example).

Step 3. Evaluate the regrets for the free games. Compute, for each game ã@h̃ ∈ G̃, the

regret p(ã@h̃) as the difference between the costs c([ã@h̃: d′′]) and c([ã@h̃: d′]), where d′

and d′′ are two days in D(ã@b̃) corresponding to the first and to the second less costly

assignments for ã@h̃, respectively. If only one day happens to be feasible for a game

then make the corresponding regret equal to the assignment cost.

Step 4. Sequentially schedule games to weekdays. Whenever possible, select (at random if

more than one) a free game ã@h̃ ∈ G̃ such that the regret p(ã@h̃) is the maximum

over all free games in G̃; and assign the day d′ to ã@h̃, where d′, which is involved in

the computing of p(ã@h̃), yields the first less costly assignment for ã@h̃. After every

assignment of a day d′ to a game ã@h̃, update the costs and the regrets for each game

in G̃ that involves either ã or h̃ and for which the day d′ is also implicated in one of its

respective (two) less costly assignments.

B.1.6 Exchange heuristics

Both the single and the double exchange heuristics are presented as a recursive proce-

dure on which every call to itself returns an output status indicating whether or not the

respective game scheduling has been achieved. Given a partial schedule, the following two

definitions regarding the potential assignment of a day d to a free game ã@h̃ must be con-

sidered beforehand. We say that any scheduled game on day d is a C0-conflicting game for

115

the assignment [ã@h̃: d] if, and only if, the scheduled game involves at least one of the teams

ã and h̃. Moreover, given a non-negative integer q ≤ 2, a day d is a q-interchange feasible

day for ã@h̃ if (1) there is no conflicting game for [ã@h̃: d], but if so, (2) there are at most q

conflicting games for [ã@h̃: d] and they are scheduled to that same day, d. Naturally, when

a day d is a q-interchange feasible day for ã@h̃, no constraint of the problem is violated if d

is assigned to the game ã@h̃ by first canceling all respective C0-conflicting games that d may

contain. The single and the double exchange heuristics, therefore, schedule games respec-

tively to 1-interchange and to 2-interchange feasible days. Indeed, whether q = 1 or q = 2,

the corresponding exchange heuristic can be seen as a recursive procedure that for each free

game ã@h̃ carries out the following steps, where lmax is a given maximum recursive level and

any condition of feasibility refers to the constraints in CF only:

Step 1. Try to find a promising day d for the game ã@h̃. If all q-interchange feasible days for

the game ã@h̃ have already been considered (on possible previous “calls” to the current

procedure) then return “fail”; otherwise, set d as any day selected at random among all

the q-interchange feasible days for the game ã@h̃ that minimize the respective number

of conflicting games and that have not yet been selected for ã@h̃. Go to Step 2.

Step 2. Assign the day d to the game ã@h̃ if it is feasible. Schedule the game ã@h̃ on the

day d if there is no conflicting game for [ã@h̃: d] and return “success”; otherwise, go to

Step 3.

Step 3. Schedule ã@h̃ on d and cancel any respective C0-conflicting game if a new recursive

level is allowed. If l = lmax then return “fail”; otherwise, let G′([ã@h̃: d]) be the set of

C0-conflicting games for [ã@h̃: d], cancel every C0-conflicting game a@h ∈ G′([ã@h̃: d]),

assign d to ã@h̃, and then go to Step 4.

Step 4. Recursively call the current procedure for the cancelled C0-conflicting games for

[ã@h̃: d]. For each cancelled game a@h ∈ G′([ã@h̃: d]), call the current procedure (go to

Step 1) with ã@h̃ and l being replaced by a@h and l + 1, respectively. After all those

calls have finished (by a “return”), go to Step 5.

Step 5. Undo all changes that might have been done by the Step 4 if it has failed to resched-

ule any of the cancelled C0-conflicting games for [ã@h̃: d]. If every recursive call from

the Step 4 has returned success as final status then return “success”; otherwise, remove

the game ã@h̃ from the day d and undo all changes (new assignments and new cancel-

lations) that might have been done on the partial schedule by the Step 4 when trying

to reschedule some C0-conflicting game in G′([ã@h̃: d]), and then go to Step 1.

116

APPENDIX C

DESTROY OPERATORS

C.1 Destroy operators

Let f– be a function that evaluates the extended incremental cost of removing a game-day

assignment [a@h: d] from a schedule S as

f–(a, h, d) = 5 f∆
– (a, h, d) + Āa,h,d,

where f∆
– (a, h, d) is the corresponding removal incremental cost, namely, f(S \ {[a@h: d]})−

f(S); and Āa,h,d, which we refer to as the arena-utility value for having the day d assigned

to the game a@h, is a constant given by

Āa,h,d =

1 if d is provided by a but not by h;

2 if d is provided neither by a nor by h;

3 if d is provided both by a and by h;

4 if d is provided by h but not by a.

Regarding this evaluation, the lower is the value f–(a, h, d), the “worse” is the assignment

[a@h: d], so the better is its removal from S. In addition, let f∆
+(a, h, d) be the insertion

incremental cost for assigning a day d to a game a@h, namely, f(S ∪ {[a@h: d]})− f(S).

Given a schedule S with n game-day assignments, and the integers n̂ and ñ, such that

0 < ñ < n̂ ≤ n, the destroy operators in our ALNS algorithm perform the instructions that

we informally state below.

C.1.1 Random-based removal

Random-based removal (01 –) Initially, form a set Ŝ of target game-day assignments by

choosing at random n̂ assignments from the schedule S. Then, remove from S the ñ

target assignments in Ŝ with the lowest extended incremental cost determined by the

values of f–.

117

C.1.2 Structure-based removals

Divisional removal (02 –) Initially, select at random an NHL division, T ′D. Then, form a

set Ŝ of target game-day assignments by choosing at random n̂ assignments from the

current schedule, S, such that each chosen assignment involves at least one team from

the division T ′D. Finally, remove from S the ñ target assignments in Ŝ with the lowest

extended incremental cost determined by the values of f–.

Intradivisional removal (03 –) Initially, select at random an NHL division, T ′D. Then, form

a set Ŝ of target game-day assignments by choosing at random n̂ assignments from

the current schedule, S, such that both teams on each chosen assignment are from the

division T ′D. Finally, remove from S the ñ “worst” target assignments, which are the

assignments in Ŝ with the lowest values of f–.

Interdivisional removal (04 –) Initially, select at random two NHL divisions, T ′D and T ′′D.

Then, form a set Ŝ of target game-day assignments by choosing at random n̂ assign-

ments from the current schedule, S, such that each chosen assignment involves a team

from the division T ′D and a team from the division T ′′D. Finally, remove from S the ñ

target assignments in Ŝ with the lowest extended incremental cost determined by the

values of f–.

Conferential removal (05 –) Initially, select at random an NHL conference, T ′C . Then, form

a set Ŝ of target game-day assignments by choosing at random n̂ assignments from

the current schedule, S, such that each chosen assignment involves at least one team

from the conference T ′C . Finally, remove from S the ñ target assignments in Ŝ with the

lowest extended incremental cost determined by the values of f–.

Intraconferential removal (06 –) Initially, select at random an NHL conference, T ′C . Then,

form a set Ŝ of target game-day assignments by choosing at random n̂ assignments from

the current schedule, S, such that both teams on each chosen assignment are from the

conference T ′C . Finally, remove from S the ñ target assignments in Ŝ with the lowest

extended incremental cost determined by the values of f–.

Interconferential removal (07 –) Initially, form a set Ŝ of target game-day assignments by

choosing at random n̂ assignments from the current schedule, S, such that the two teams

on each chosen assignment are not from the same conference. Finally, remove from S

the ñ target assignments in Ŝ with the lowest extended incremental cost determined

by the values of f–.

118

C.1.3 Neighboring-based removals

Day-neighboring removal (08 –) Initially, select at random a day d′ from the regular season.

Then, given a positive integer q, form a set Ŝ of target game-day assignments by

selecting all assignments involving the days from d′ to d′ + q on the current schedule,

S. Finally, remove from S the ñ target assignments in Ŝ with the lowest extended

incremental cost determined by the values of f–.

Place-neighboring removal (09 –) Initially, select at random a day d′ from the regular season

and a team t′ from the League. Then, given a positive integer q, form a set Ŝ of

target game-day assignments by selecting the n̂ assignments on the current schedule,

S, involving the geographically closest arenas to the arena of the team t′, and restrict

to the period from d′ to d′ + q. Finally, remove from S the ñ target assignments in Ŝ

with the lowest extended incremental cost determined by the values of f–.

C.1.4 Critical removals

Arena-critical removal (10 –) Repeat the following three steps until at least ñ games have

been removed from the schedule S: (1) firstly, select at random and then cancel an

assignment [ã@t′: d′] having the minimum arena-utility value over all the current as-

signments; (2) similarly, select and then cancel some assignment [t′@h̃: d′′] having the

minimum arena-utility value among the current assignments that has t′ as the visiting

team on a day d′′ that, regarding the game ã@t′, does not violate the constraint C6 on

the minimum span for similar consecutive visits; (3) eventually, select and remove up

to two Ci-conflicting games (if any) for the possible assignment of d′′ to ã@t′, regarding

every constraint Ci, with i = 0, 1, 2, 3, 4, in this order.

Sequential greedy removal (11 –) Sequentially remove a total of ñ games from the schedule S

by cancelling, at each time, the game-day assignment with the currently lowest extended

incremental cost determined by the value of f–.

Cost-critical removal (12 –) Repeat the following three steps until at least ñ games have

been removed from the schedule S: (1) firstly, select and then cancel some assignment

[ã@h̃: d̃] with the lowest extended incremental cost determined by the value of f– over all

the current assignments; (2) secondly, among the days provided by the team h̃, select a

C6-feasible day d′ for ã@h̃ having the minimum number of conflicting games on S for the

possible assignment of d′ to ã@h̃ and, in case of tie, leading to the minimum insertion

incremental cost, which is given by the corresponding value of f∆
+ ; (3) eventually, select

and remove up to two Ci-conflicting games (if any) for the possible assignment of d′ to

ã@h̃, regarding every constraint Ci, with i = 0, 1, 2, 3, 4, in this order.

119

C.1.5 Trip-based removals

Short-trip removal (13 –) Repeat the following three steps until at least ñ games have

been removed from the schedule S: (1) firstly, select at random a trip r̃ having the

minimum number of games and remove all them from the schedule; (2) secondly, for

each game ã@h̃ removed from the trip r̃, select, among the days provided by the team

h̃, a C6-feasible day d′ for ã@h̃ having the minimum number of conflicting games on

S for the possible assignment of d′ to ã@h̃ and, in case of tie, yielding the minimum

incremental cost on the objective function, which is given by the corresponding value

of f∆
+ ; (3) eventually, select and remove up to two Ci-conflicting games (if any) for

the assignment of d′ to ã@h̃, regarding every constraint Ci, with i = 0, 1, 2, 3, 4, in this

order.

Close-trips removal (14 –) Initially, select from S two consecutive trips, r̃1 and r̃2, for the

same visiting team, that minimize the number of days between the end of trip r̃1 and the

begin of r̃2; Then, form a set of target game-day assignments by choosing the n̂ current

assignments with the minimum arena-utility value on S, among the games (for any pair

of teams) scheduled to days between the begin of trip r̃1 and the end of r̃2; Finally,

remove from S the ñ target assignments in Ŝ with the lowest extended incremental cost

determined by the values of f–.

Scattered-trip removal (15 –) Initially, given a positive integer q, select from S a trip r̃ with

at least q days long and that maximizes the ratio of its number of days to its number of

games; Then, form a set of target game-day assignments by choosing the n̂ assignments

with the minimum arena-utility value on S, among the games (for any pair of teams)

scheduled to days between the begin and the end of the trip r̃; Finally, remove from

S the ñ target assignments in Ŝ with the lowest extended incremental cost determined

by the values of f–.

120

APPENDIX D

REPAIR OPERATORS

D.1 Repair operators

Let f+ be a function that evaluates the extended incremental cost of inserting a game-day

assignment [a@h: d] in a schedule S as

f+(a, h, d) = 5 f∆
+(a, h, d)− Āa,h,d,

where f∆
+(a, h, d) is the corresponding insertion incremental cost, namely, f(S∪{[a@h: d]})−

f(S); and Āa,h,d is the arena-utility value for having the day d assigned to the game a@h, as

defined in Appendix C.1. Regarding this evaluation, the lower is the value f+(a, h, d), the

“better” is the insertion of the assignment [a@h: d] in the schedule S. In addition, let Dt be

the set of arena dates provided by a team t, and regarding a schedule S, let a day d be called

a free day for a game a@h if neither the team a nor the team h is currently scheduled to play

on day d of the schedule S.

Given a partial schedule and a set of free games, the repair operators in our ALNS

algorithm perform the instructions that we informally state below.

D.1.1 Greedy-based insertions

Single-evaluation greedy insertion (01+) Initially, evaluate by f+the extended incremental

cost of each pair of free game ã@h̃ and arena-feasible day d ∈ Dh̃ that is a free day for

ã@h̃ in the current schedule. Then, select in a random order all the free games and, for

each selected game ã@h̃, proceed as follows: (1) verify whether there are days from Dh̃

that are still free for ã@h̃ in the current schedule, and if so, (2) select among them a

day d′ for which the respective cost evaluated at the beginning of the heuristic is the

lowest, and (3) update the current schedule by assigning d′ to ã@h̃. Finally, if not all

the free games have been scheduled then repeat this approach by considering all free

days (instead of only the arena-feasible days, Dh̃) in the current schedule.

Updated-evaluation greedy insertion (02+) Select all the free games, one at a time, by first

choosing a team h̃ with the maximum number of free home games and then choosing

a team ã with the maximum number of free away games among which at least one is

against h̃. Each time a game ã@h̃ is selected, proceed as follows: (1) verify whether there

121

are days from Dh̃ that are still free for ã@h̃ in the current schedule, and if so, (2) select

among them a day d′ leading to the lowest extended incremental cost determined by

the value of f+with respect to the current schedule, and (3) update the schedule by

assigning d′ to ã@h̃. If not all the free games have been scheduled then repeat this

approach by considering all free days (instead of only the arena-feasible days, Dh̃) in

the current schedule.

D.1.2 Regret-based insertion

Let fA+(a, h, d) be a function that evaluates the cost of scheduling a free game a@h to a

corresponding arena-feasible date d that is free on a partial schedule S as

fA+(a, h, d) = M1Aa,d +M2 f
∆
+(a, h, d) + |G̃(d)|,

where M1 and M2 are large constants, such that M1 � M2; Aa,d is equal to 1 if the day d

is also provided by the away team a, and equal to 0 otherwise; f∆
+(a, h, d) is the incremental

cost of assigning d to a@h, namely, f(S∪{[a@h: d]})−f(S); and |G̃(d)|, which can be seen as

a “competitiveness” factor for d, is the current number of free games that are arena-feasible

(it would satisfy C1) for the day d.

Max-regret insertion (03+) Whenever there is still any free game, proceed as follows:

(1) evaluate the regret value of each free game as the difference between its two lowest

costs of fA+, which are provided by two corresponding arena-feasible dates that turns

out to be free days in the current schedule; (2) select a free game ã@h̃ for which the

regret value is the maximum over all free games; and (3) update the current schedule

by assigning to ã@h̃ the respective lowest-cost day (with regard to the function fA+).

D.1.3 exchange-based insertion

Let ã@h̃ be a free game and let D′(ã@h̃) be its set of 1-exchange feasible days, which are

either feasible days for ã@h̃ or days that would become feasible by first removing a single

(conflicting) game currently scheduled on any day. If feasible days are available, the current

free game is scheduled to a day d̂ ∈ D′(ã@h̃) that maximizes the corresponding arena-utility

value, Āã,h̃,d̂; otherwise, only days that would result in a single conflicting game are considered.

In this case, the current free game is assigned to a day d̂ ∈ D′(ã@h̃) that maximizes, over

all 1-exchange feasible days, the respective arena-utility difference, Āã,h̃,d̂ − Āa′,h′,d′ , where

the game a′@h′, currently scheduled on a day d′ (which is not necessarily equal to d̂), is the

conflicting game for the assignment of d̂ to ã@h̃.

122

Single-exchange insertion (04+) Select all the free games, one at a time, in decreasing

order of their quantity for the same away-home pair of teams. Try to insert each

selected game ã@h̃ in the current schedule, S, by calling the single-exchange procedure

while considering the 1-exchange feasible days with regard to all the constraints of

the problem and selecting the most promising day as the one that (1) maximizes the

arena-utility value over feasible days (if any) or (2) maximizes the difference between

the arena-utility value for a 1-exchange feasible day and the arena-utility value for the

corresponding conflicting game in S (otherwise). Eventually, apply the strategy from

Updated-evaluation greedy insertion (02+) whenever no 1-exchange feasible day exists

for a free game.

D.1.4 Fleurent’s approach-based insertion

Fleurent’s approach-based insertion (05+) Initially, apply the forced-trip heuristic but, in-

stead of building one entire trip at a time, proceed as follows. At first, create trips

made up of exactly two long-distance visits, such that each visit is scheduled during a

period with no other game between two consecutive arena-available dates for the corre-

sponding away team. After having created as many of such “partial” trips as possible,

try to extend the current long-distance trips by only scheduling free games that define

long-distance visits. Subsequently, apply the free-trip heuristic with no modifications.

Then, apply the weekend-game heuristic to all the free games (not only those con-

cerning long-distance visits) by trying to schedule them on any free weekend day that

provides a feasible assignment, even if it is a day within a period of a long-distance

trip for the respective teams. Finally, apply the weekday-game heuristic to all the free

games (not only those concerning long-distance visits) by trying to schedule them to

any free weekday that provides a feasible assignment, even if it is a day within a period

of a long-distance trip for the respective teams. In addition, replace the nH(d) from the

weekday-game heuristic, which is the amount of teams that are available on a day d,

by the number of free games that are actually feasible candidates for d at the moment

of each evaluation. Eventually, apply the strategy from Max-regret insertion (03+) if

there still is any free game.

	DEDICATION
	ACKNOWLEDGMENTS
	RÉSUMÉ
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF APPENDICES
	1 INTRODUCTION
	2 LITERATURE REVIEW
	2.1 Basic terminology
	2.1.1 Round-robin tournaments

	2.2 Literature on the NHL scheduling problem
	2.3 Literature on time-constrained sports scheduling problems
	2.3.1 Finding home-away patterns
	2.3.2 Optimizing breaks
	2.3.3 The Traveling Tournament Problem
	2.3.4 Typical constraints in sports scheduling

	2.4 Literature on time-relaxed sports scheduling problems
	2.4.1 The NBA scheduling problem

	3 THE NHL SCHEDULING PROBLEM
	3.1 The structure of the NHL
	3.2 The structure of the NHL regular season
	3.2.1 The availability of dates, teams, and arenas

	3.3 The scheduling problem of the NHL regular season
	3.3.1 The NHL scheduling problem in the literature

	4 MATHEMATICAL MODELING
	4.1 Basic formulation
	4.1.1 Data of the problem
	4.1.2 Parameters of the model
	4.1.3 Variables
	4.1.4 Constraints

	4.2 Formulation for minimizing total travel distance
	4.3 Computational experiments
	4.3.1 Models and parameters
	4.3.2 Problem instances
	4.3.3 Results for the partial-league instances
	4.3.4 Results for the 2012 instances
	4.3.5 Results for the entire-league instances

	5 AN ADAPTIVE LARGE NEIGHBORHOOD SEARCH
	5.1 Model
	5.2 Algorithm
	5.2.1 Controlling the master level of the algorithm
	5.2.2 Constructing an initial solution
	5.2.3 Partially destroying a solution
	5.2.4 Repairing a partial solution

	5.3 Computational Experiments
	5.3.1 Constructing initial solutions
	5.3.2 Choosing the size of the current solution to destroy
	5.3.3 Setting the ALNS parameters
	5.3.4 Solving other instances

	6 CONCLUSION
	REFERENCES
	APPENDICES
	A.1 Pseudocode of the ALNS algorithm
	B.1 Fleurent's heuristics
	B.1.1 Forced-trip heuristic
	B.1.2 Forced-home heuristic
	B.1.3 Free-trip heuristic
	B.1.4 Weekend-game heuristic
	B.1.5 Weekday-game heuristic
	B.1.6 Exchange heuristics

	C.1 Destroy operators
	C.1.1 Random-based removal
	C.1.2 Structure-based removals
	C.1.3 Neighboring-based removals
	C.1.4 Critical removals
	C.1.5 Trip-based removals

	D.1 Repair operators
	D.1.1 Greedy-based insertions
	D.1.2 Regret-based insertion
	D.1.3 exchange-based insertion
	D.1.4 Fleurent's approach-based insertion

