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RÉSUMÉ

Le développement de nouveau matériaux composites peut s’avérer long et coûteux. Il

serait alors pertinent d’avoir des outils capables de prédire le comportement mécanique de

matériaux composites avant qu’ils ne soient réellement fabriqués. L’utilisation de tels outils

permettrait de réduire le temps et les coûts reliés aux tests de certification. Plusieurs méth-

odes analytiques existent pour prédire les propriétés mécaniques de composites. Les plus

connues sont la règle des mélanges et la théorie classique des laminés. Dans la plupart des

cas, ces méthodes fournissent des prédictions inexactes puisque qu’elles ne prennent pas en

considération toute l’information disponible reliée à la microstructure.

Les modèles d’homogénéisation analytiques prédisent les propriétés mécaniques effectives

de matériaux hétérogènes en utilisant des informations reliées à la microstructure (les pro-

priétés des phases, leur fraction volumique, la forme et l’orientation des renforts, etc.). Toute-

fois, il n’existe pas d’étude systématique et approfondie où l’on évalue la précision de ces

modèles pour une vaste gamme de propriétés mécaniques et géométriques des phases. Dans

le but de valider la performance des modèles analytiques, leurs prédictions doivent être com-

parées à celles obtenues par des méthodes numériques. Les différentes méthodes numériques

utilisées dans la littérature sont coûteuses en terme de temps de calcul, ce qui a limité la

gamme de composites étudiée. De plus, la plupart des études ont été réalisées sans avoir

rigoureusement déterminé le Volume Élémentaire Représentatif (VER).

L’objectif principal de cette thèse était de valider la performance des modèles

d’homogénéisation analytiques à prédire les propriétés mécaniques effectives et les statis-

tiques des champs locaux de composites renforcés par des fibres elliptiques aléatoirement

distribuées et orientées. Étant donnée qu’une grande campagne de validation était planifiée,

un outil numérique complètement automatisé a été développé. Ce dernier a traité deux étapes

indépendantes: i) la génération aléatoire des microstructures représentatives et ii) le calcul

exact des propriétés effectives.

Les microstructures représentatives ont été générées en utilisant une approche basée sur

la dynamique moléculaire. Un nouveau algorithme performant et efficace a été développé

dans le but de générer des arrangements constitués d’ellipsöıdes aléatoirement distribués et

orientés. L’algorithme proposé a été capable de générer tous les types d’ellipsöıdes à hautes

fractions volumiques et/ou rapports de forme. Les propriétés effectives et les statistiques

des champs locaux ont été obtenues avec précision en utilisant une technique basée sur les

Transformées de Fourier Rapides (TFR).

Les prédictions de l’outil numérique ont été comparées à celles des modèles
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d’homogénéisation analytiques les plus connus pour une vaste gamme de propriétés mé-

caniques des phases et de fractions volumiques et rapports de forme des fibres. La campagne

de validation a impliqué un rigoureux processus de détermination du VER et approximative-

ment 1800 différents composites à fibres elliptiques ont été étudiés.

Un domaine de validité a été attribué à chaque modèle analytique. Il a été montré

qu’aucun modèle ne se distingue des autres comme étant le plus précis sur toute la gamme de

propriétés mécaniques et géométriques des phases. Toutefois, si un seul modèle devait être

choisi pour prédire les propriétés effectives et les statistiques des champs locaux de composites

à fibres elliptiques aléatoirement distribuées et orientées, cette thèse recommande le modèle

de Lielens. En effet, ce modèle a fournit des prédictions précises dans la plupart des cas

étudiés.

Outre la validation complète et approfondie des modèles d’homogénéisation analytiques,

la principale contribution de cette thèse est le développement de deux modèles d’interpolation.

Ces modèles prédisent respectivement les propriétés effectives et les statistiques des champs

locaux de composites renforcés par des fibres elliptiques aléatoirement distribuées et orientées.

Ces modèles peuvent être une alternative aux modèles d’homogénéisation analytiques puisque

leur précision dépasse celle de tout autre modèle publié dans la littérature.
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ABSTRACT

The development of new composite materials can be a long and expensive process. It

would therefore be relevant to have predictive tools that can predict the mechanical behavior

of composites before their fabrication. Using these tools could lead to shorter certification

time and cost reductions. Several analytical approaches exist for predicting the mechanical

properties of composites. The best known are the Rule of Mixtures and the Classical Lami-

nation Theory. In most cases, both approaches lead to inaccurate predictions since they do

not take into account all the available information about the microstructure.

Analytical homogenization models rely on microstructural information (e.g., constituents

properties, volume fraction, shape, orientation, etc.) to predict the effective mechanical

properties of heterogeneous materials. However, no systematic and thorough study evaluates

the accuracy of these models for a wide range of constituents mechanical and geometrical

properties. In order to validate the performance of analytical models, their predictions should

be compared to those obtained by numerical methods. The different numerical methods

that have been used in the literature had a high computational cost, which has limited

the investigated range of composites. Furthermore, most numerical studies were performed

without conducting a rigorous Representative Volume Element (RVE) determination process.

The main purpose of this thesis was to validate the performance of analytical homoge-

nization models at predicting the effective mechanical properties and local field statistics of

randomly distributed and oriented ellipsoidal fibers reinforced composites. Since a large val-

idation campaign was planned, a fully automated numerical tool was developed. The latter

dealt with two independent steps: i) random generation of the representative microstructures

and ii) accurate computation of the effective properties.

The representative microstructures were generated using a molecular dynamics approach.

A new computationally-efficient algorithm was developed for generating packings of randomly

distributed and oriented ellipsoids. The proposed algorithm was able to generate all types

of ellipsoids with high volume fractions and/or aspect ratios. The effective properties and

local field statistics were accurately computed using a Fast Fourier Transforms (FFT) based

technique.

The predictions of the numerical tool were compared to those of the best known analyti-

cal homogenization models for a broad range of phases mechanical properties, fibers volume

fractions and aspect ratios. The validation campaign involved a thorough and rigorous RVE

determination process and approximately, 1800 different ellipsoidal fibers reinforced compos-

ites were studied.



viii

A validity domain was attributed to each analytical model. It was found that no analytical

homogenization model stands out of the others as being more accurate over the studied range

of phases mechanical and geometrical properties. However, if a single model was to be chosen

to predict the effective properties and local field statistics of ellipsoidal fibers reinforced

composites, this thesis recommend the Lielens’ model. Indeed, it was shown that this model

was suitable in most of the studied cases.

Besides the thorough and comprehensive validation of analytical homogenization models,

the main contribution of this thesis is the development of two interpolation models. These

models predict respectively the effective properties and the local field statistics of randomly

distributed and oriented ellipsoidal fibers reinforced composites. It was shown that these

models could be an alternative to analytical homogenization models since their accuracy is

the highest published so far.
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INTRODUCTION

Composite materials are increasingly used in the aerospace industry. For example, com-

posites represent 50% of the total mass of the recent B-737 Boeing aircraft. The development

of new composite materials can be expensive and time consuming. Simulation tools have been

used by numerous authors for reducing the breadth of experimental campaigns required to

obtain final products. Among various modeling techniques, homogenization relies on mi-

crostructural information to predict the effective mechanical properties of composites (the

number of phases, their mechanical properties, their volume fractions, their shapes and spatial

distributions, etc.).

In spite of the substantial benefits they offer, few analytical homogenization models are

used in industry. Instead, the industry relies mainly on the simple Rule of Mixtures and

on the Classical Lamination Theory, which lead in most cases to inaccurate predictions.

The industry is then constrained to use unnecessarily high safety factors, which hinders the

production of lightweight parts. This lack of confidence in predictive models is partly due

to the fact that analytical homogenization models have not been thoroughly validated or

verified.

Numerical homogenization is performed by simulating artificial loadings on microstruc-

tures that are representative of the bulk material. The response of the microstructure is

computed using numerical techniques such as the Finite Element Method (FEM) and the

Fast Fourier Transforms (FFT). Numerical homogenization offers the possibility of homog-

enizing any possible microstructure by modeling in detail the geometry of its constituents.

Therefore, numerical homogenization can compute accurate local fields, unlike analytical ho-

mogenization where local fields are approximated. Nevertheless, the applicability of such

an approach is limited due to its huge computational cost when dealing with complex mi-

crostructures (e.g., microstructures with high aspect ratio and/or volume fraction of fibers).

In order to assess the accuracy of analytical homogenization models, it is necessary to com-

pare their predictions to those obtained by numerical methods. Furthermore, these methods

should be fully automated if a large validation campaign is planned. Indeed, a comprehen-

sive performance evaluation requires generating an important database of accurate effective

properties. Therefore, it is of considerable interest to develop a robust and fully automated

procedure for generating this database in order to reduce user input.

The main objective of this thesis is to develop a fully automated numerical tool for

computing the exact mechanical properties of randomly distributed and oriented ellipsoidal

fibers reinforced composites. The development of a numerical tool requires two independent
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steps. First, representative microstructures of the composite should be randomly generated.

Then, the local fields and effective mechanical properties must be accurately computed. The

numerical tool is then used to validate the performance of existing analytical homogenization

models at predicting effective responses as well as local stress/strains distributions.

This thesis is organized as follows. Chapter 1 presents a literature review on the analyti-

cal and numerical homogenization methods applicable to randomly distributed and oriented

ellipsoidal fibers reinforced composites. This chapter also summarizes the works dealing with

numerical validation of analytical models and highlights the existing gaps. Chapter 2 intro-

duces the objectives of the thesis with respect to the findings of Chapter 1. The scientific

approach as well as the publication strategy are presented in Chapter 3. The four articles

resulting from this work are included in Chapters 4 to 7. Chapter 4 presents a rigorous study

on the validation of analytical homogenization models for the case of spherical particles re-

inforced composites. In Chapter 5, a new computationally-efficient algorithm for generating

random packings of hard ellipsoids is introduced. Chapter 6 studies thoroughly the accuracy

of analytical models at predicting the effective properties of composites reinforced by ran-

domly distributed and oriented ellipsoidal particles. Chapter 7 investigates the performance

of the analytical models at predicting the local field statistics. Chapter 8 discusses the rela-

tionships between the articles and Chapter 9 presents complementary work performed during

this project. The contributions from this thesis are finally summarized and topics for future

studies are recommended.
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CHAPTER 1

LITERATURE REVIEW

This Chapter introduces the basic principles of homogenization and presents the different

analytical and numerical homogenization methods applicable to composites reinforced by

randomly distributed and oriented ellipsoidal fibers. The various studies that have dealt

with numerical validation of analytical models are also presented. The survey is limited

to two-phase linearly elastic composites. Both matrix and reinforcements are assumed to

be isotropic. Reinforcements are axisymmetric, monodisperse and perfectly bonded to the

matrix.

1.1 Notations and conventions

Scalars and vectors are respectively denoted by letters (e.g., s, S, σ, Σ) and boldfaced

lower case Latin letters (e.g., s); second and fourth order tensors are respectively denoted

by boldfaced Greek letters (e.g., σ, Σ) and boldfaced upper case Latin letters (e.g., S). The

Einstein summation convention has been adopted, unless specified otherwise.

1.2 Analytical homogenization

1.2.1 Basic principles

Homogenization models are based on the separation of scales between the overall me-

chanical response of the composite, belonging to the macroscopic scale, and the mechanical

behavior of the heterogeneities, belonging to the microscopic scale (Bornert et al., 2001).

The purpose of homogenization is to derive the relationship between stress and strain at the

macroscopic scale (Σ and E) and those at the microscopic scale (σ(x) and ε(x)), as shown

in Figure 1.1. More specifically, homogenization computes the composite’s effective stiffness

tensor C̃, or compliance tensor S̃, such that:

Σ = C̃ : E (1.1a)

E = S̃ : Σ (1.1b)

It is possible to show that (Böhm, 1998):
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Figure 1.1 Illustration of the homogenization approach. Separation of scales between the
mechanical behavior of the heterogeneities (σ(x) and ε(x)), belonging to the microscopic
scale, and the overall mechanical response of the composite (Σ and E), belonging to the
macroscopic scale.

< ε(x) > = E (1.2a)

< σ(x) > = Σ (1.2b)

where < · > denotes an average over the volume:

< f(x) > =
1

V

∫
V

f(x)dV (1.3)

where V is the volume of the composite.

The relationship between the micro- and the macroscopic scale is given by the following

equations:

ε(x) = A(x) : E (1.4a)

σ(x) = B(x) : Σ (1.4b)

where A(x) and B(x) denote the strain localization and the stress concentration tensors,

respectively. The first moment of strains and stresses in phase “ i ” (i = 1 for the matrix and

i = 2 for the reinforcements) can be expressed as (Hill, 1963):

< ε >i = < A(x) >i : E = Ai : E (1.5a)

< σ >i = < B(x) >i : Σ = Bi : Σ (1.5b)

where < · >i denotes the volume average over phase “ i ” and Ai and Bi refer respectively to

the average strain localization and stress concentration tensors within the phase.
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Tensors Ai and Bi are related through Hill (1965):

< A(x) > = c1A1 + c2A2 = I (1.6a)

< B(x) > = c1B1 + c2B2 = I (1.6b)

where I is the fourth order identity tensor and ci is the volume fraction of phase “ i ”.

Using Eqs. (1.2) and (1.5), one can write (Böhm, 1998):

Σ = < σ(x) >

= c1< σ >1 + c2< σ >2

= c1 C1 : < ε >1 + c2 C2 : < ε >2

=
(
c1 C1 : A1 + c2 C2 : A2

)
: E

(1.7a)

and
E = < ε(x) >

= c1< ε >1 + c2< ε >2

= c1 S1 : < σ >1 + c2 S2 : < σ >2

=
(
c1 S1 : B1 + c2 S2 : B2

)
: Σ

(1.7b)

where Ci and Si denote respectively the stiffness and compliance tensor of phase “ i ”. Eqs.

(1.1) and (1.7) lead to the effective stiffness and compliance tensors as:

C̃ = c1 C1 : A1 + c2 C2 : A2 (1.8a)

S̃ = c1 S1 : B1 + c2 S2 : B2 (1.8b)

Using Eqs. (1.6), Eqs. (1.8) can be written as:

C̃ = C1 + c2

(
C2 −C1

)
: A2 (1.9a)

S̃ = S1 + c2

(
S2 − S1

)
: B2 (1.9b)

For the special case of randomly distributed and oriented reinforcements, Benveniste

(1987) has obtained the following expressions:

C̃ = C1 + c2

〈(
C2 −C1

)
: A2

〉
(1.10a)

S̃ = S1 + c2

〈(
S2 − S1

)
: B2

〉
(1.10b)

where 〈X〉 represents orientation averaging of a given tensor X, such as:
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〈
Xmnop

〉
=

1

2π2

π∫
−π

π∫
0

π/2∫
0

ωmqωnrωosωptXqrst sin(φ)dθdφdψ (1.11)

where θ, φ and ψ refer to the Euler angles and ω denotes the rotation tensor (Odegard et al.,

2003). Appendix A shows how to compute Eq. (1.11) analytically.

Eqs. (1.10) provide direct estimations for the effective tensors of composites reinforced by

randomly distributed and oriented inclusions based on the knowledge of A2 or B2. Given the

complexity of the problem, it is almost impossible to define accurately the tensors A2 and

B2. Thus, the difference between analytical homogenization models lies in the estimation of

these two tensors. These tensors are defined based on the assumptions introduced for each

model, as discussed in Section 1.2.2.

Knowing the effective tensors of a composite and its macroscopic response for a given

loading (i.e., Σ and E), it is possible to obtain the second order moments of stresses and

strains in each phase Castaneda and Suquet (1998):

< ε⊗ ε >i =
1

ci
E :

∂C̃

∂Ci

: E (1.12a)

< σ ⊗ σ >i =
1

ci
Σ :

∂S̃

∂Si
: Σ (1.12b)

Since the phases are isotropic, their stiffness and compliance tensors can be expressed as

follows:

Ci = 3κiJ + 2µiK (1.13a)

Si =
1

3
κ−1
i J +

1

2
µ−1
i K (1.13b)

where κi and µi denote respectively the bulk and shear moduli of phase “ i ”, while J and K

are the classical spherical and deviatoric projection tensors. Using Eqs. (1.12) and (1.13),

the following result can be obtained with the chain rule (Castaneda and Suquet, 1998):

1

ci
E :

∂C̃

∂κi
: E = 3 < ε⊗ ε >i :: J (1.14a)

1

ci
E :

∂C̃

∂µi
: E = 2 < ε⊗ ε >i :: K (1.14b)

1

ci
Σ :

∂S̃

∂κ−1
i

: Σ =
1

3
< σ ⊗ σ >i :: J (1.14c)
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1

ci
Σ :

∂S̃

∂µ−1
i

: Σ =
1

2
< σ ⊗ σ >i :: K (1.14d)

where κ−1
i and µ−1

i denote respectively the inverse of the bulk and shear moduli of phase “ i ”.

1.2.2 Analytical homogenization models

Voigt and Reuss bounds

In the Voigt model, it is assumed that the strain in each phase is equal to the macroscopic

strain E (i.e., A(x) = Ai = I). In the Reuss model, it is assumed that the stress in each phase

is equal to the macroscopic stress Σ (i.e., B(x) = Bi = I). These two models are therefore

insensitive to the shape and orientation of the reinforcements. Indeed, their predictions

depend only on the properties and the volume fraction of the phases. Furthermore, it can be

shown that the model of Voigt provides an upper bound while the model of Reuss provides

a lower bound on the mechanical properties of the composite (Bourgeois, 1994).

Eshelby’s problem

The Eshelby’s problem (Eshelby, 1957) is a pillar for most existing homogenization mod-

els. In this problem, an elliptical inclusion embedded in an infinite medium is considered, as

shown in Figure 1.2. Initially, the inclusion is free of stress and strain and then subjected

Stress-free strain

Figure 1.2 Illustration of the Eshelby’s inclusion problem. An elliptical inclusion embedded
in an infinite medium is subjected to a uniform stress-free strain ε∗. The resulting strain
field in the constrained inclusion is given by εc = SE : ε∗, where SE is the Eshelby’s tensor.
(Bourgeois, 1994).
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to a uniform stress-free strain ε∗ (as a thermal deformation for example) and becomes con-

strained by the surrounding medium. Eshelby has shown that the resulting strain field εc in

the constrained inclusion is uniform and is given by:

εc = SE : ε∗ (1.15)

where SE is the Eshelby’s tensor. This tensor depends on the mechanical properties of the

infinite medium as well as on the geometrical properties of the inclusion. Expressions of SE for

different inclusions shapes and material symmetries can be found in Mura (1987). Appendix

B provides the expressions of SE for spherical and ellipsoidal inclusions embedded in an

isotropic linearly elastic medium. For complex shapes and material symmetries, Eshelby’s

tensor can be numerically computed according to the methodology of Gavazzi and Lagoudas

(1990).

Dilute solution of Eshelby

The first homogenization model based on Eshelby’s theory assumes that the reinforce-

ments are embedded in an infinite medium having the properties of the matrix. It is also

assumed that the reinforcements are far from each other. Thus, this model is suitable for

composites having a low volume fraction of inclusions. The strain localization tensor for

Eshelby’s dilute solution is (Eshelby, 1957):

AEsh
2 =

[
I + SE

1 : C−1
1 :

(
C2 −C1

)]−1

(1.16)

where SE
1 is Eshelby’s tensor computed using the matrix mechanical properties.

Bounds of Hashin-Shtrikman

Hashin and Shtrikman (1961) have established tighter bounds than those of Voigt and

Reuss by using variational principles. These bounds apply to heterogeneous materials with

isotropic constituents that exhibit an overall isotropic behavior. The strain localization ten-

sors for the Hashin-Shtrikman lower (HSL) an upper (HSU) bounds are expressed by (Hashin,

1962; Hashin and Shtrikman, 1963):

AHSL
2 =

[
I + SE∗

1 : C−1
1 :

(
C2 −C1

)]−1

(1.17a)

AHSU
2 =

[
I + SE∗

2 : C−1
2 :

(
C1 −C2

)]−1

(1.17b)
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where SE∗
i denotes Eshelby’s tensor of a spherical inclusion embedded in a medium having

the mechanical properties of phase “ i ”.

Walpole (1966) reformulated the Hashin-Shtrikman bounds using energy principles. For

aligned reinforcements, the strain localization tensors for the Hashin-Shtrikman-Walpole

lower (HSWL) and upper (HSWU) bounds are expressed by (Walpole, 1966; Willis, 1977;

Weng, 1992):

AHSWL
2 =

[
I + SE

1 : C−1
1 :

(
C2 −C1

)]−1

(1.18a)

AHSWU
2 =

[
I + SE

2 : C−1
2 :

(
C1 −C2

)]−1

(1.18b)

where SE
i is Eshelby’s tensor computed using the properties of phase “ i ”.

Self-consistent model

The self-consistent model was originally developed for polycrystals and has been extended

to composites by the work of Budiansky (1965) and Hill (1965). This homogenization assumes

that the reinforcements are immersed in an equivalent homogeneous medium having the

effective properties of the composite. The strain localization tensor for the self-consistent

model is given by:

ASC
2 =

[
I + S̃E : C̃−1 :

(
C2 − C̃

)]−1

(1.19)

where S̃E is Eshelby’s tensor obtained by considering the effective composite as the infinite

media. Since S̃E and C̃ are initially unknown, the self consistent scheme is an implicit model

that is iteratively solved.

Generalized self-consistent model

Christensen and Lo (1979) have developed a three-phase model to predict the shear ef-

fective properties of composites reinforced by spherical and cylindrical reinforcements. This

model is based on the assumption that the inclusions are first immersed in the matrix and the

assembly is then embedded in the effective medium having the sought properties. The model

was subsequently reformulated by Benveniste (2008) and its application has been extended

to multi-phase composites. Unlike the self-consistent scheme, this model is explicit.

Mori-Tanaka model

The Mori-Tanaka model (Mori and Tanaka, 1973) was initially developed to determine

the average stress in the matrix of a composite having a high volume fraction of inclusions. In
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this model, the reinforcements are embedded in an infinite medium having the properties of

the matrix. The strain localization tensor for the Mori-Tanaka model is expressed as follows:

AMT
2 = T :

[
c1I + c2T

]−1

(1.20a)

where:

T = AEsh =
[
I + SE

1 : C−1
1 :

(
C2 −C1

)]−1

(1.20b)

Benveniste (1987) proposed a new formulation of the Mori-Tanaka model which is suit-

able for composites with randomly oriented fibers. He developed a model where orientation

averaging is directly performed on T. His estimate reads:

C̃Ben = C1 + c2

〈(
C2 −C1

)
: T
〉

:
[
c1I + c2

〈
T
〉]−1

(1.21)

It should be noted that this model delivers non-symmetric effective tensors for many mi-

crostructures (e.g., reinforcements with different aspect ratios) (Ferrari, 1991; Benveniste

et al., 1991), which is physically invalid. However, since this study deals with inclusions of

identical aspect ratios, Eq.(1.21) leads to symmetric tensors.

Lielens’ model

Lielens et al. (1998) have developed a model that interpolates nonlinearly between the

Hashin-Shtrikman-Walpole bounds for aligned reinforcements (Walpole, 1966; Willis, 1977;

Weng, 1992). More specifically, this model interpolates the inverse of the strain localization

tensor between the case where the stiffest phase is embedded in the more compliant phase and

that where the most compliant phase is embedded in the stiffest phase (Tucker and Liang,

1999). The strain localization tensor is given by:

ALI
2 = ÂLI :

[
c1I + c2Â

LI
]−1

(1.22a)

where:

ÂLI =

{(
1− vf

)[
Âlower

]−1

+ vf

[
Âupper

]−1
}−1

, (1.22b)

vf is the interpolation factor and is related to the inclusions volume fraction (Lielens et al.,

1998; Tucker and Liang, 1999):

vf =
1

2
c2(1 + c2) (1.22c)

Âlower and Âupper are computed as:
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Âlower = AHSWL
2 =

[
I + SE

1 : C−1
1 :

(
C2 −C1

)]−1

(1.22d)

Âupper = AHSWU
2 =

[
I + SE

2 : C−1
2 :

(
C1 −C2

)]−1

(1.22e)

Ponte-Castañeda and Willis model

Castaneda and Willis (1995) developed a model to estimate the effective properties by

using the variational formulation of Hashin and Shtrikman (1962a,b). In this model, the

reinforcements are embedded in spherical safety cells, as shown in Figure 1.3. The model is

physically valid if the spherical cells do not overlap. For a composite consisting of an isotropic

matrix and randomly oriented isotropic ellipsoidal inclusions, the effective stiffness tensor is

obtained as follows:

C̃PCW = C1

{
I− c2

[〈
APCW

〉−1
+ c2S

E∗

1

]−1
}

(1.23a)

where SE∗
1 is Eshleby’s tensor of a spherical inclusion computed using the matrix as the

infinite media. APCW is given by the following relation:

APCW = −
[
SE

1 −
(
C1 −C2

)−1
C1

]−1

(1.23b)

The range of physically valid volume fractions is limited to (Castaneda and Willis, 1995): 10

Figure 1.1 Model of PCW: randomly oriented ellipsoidal particles embedded in spherical
safety cells.

1/ρ2 where ρ is the aspect ratio of the fibers given by:

ρ = lf/df, (1.22)

where lf and df are the fiber length and diameter, respectively. For example, the volume

fraction limits are found to be only of 1% and 0.01% for fibers with an aspect ratio of 10 and

100, respectively.

Hu and Weng (2000b) compared the model of PCW to the bounds of Hashin and Shtrik-

man. They observed that the PCW estimations violate the rigorous bounds of Hashin and

Shtrikman for volume fractions higher than the physical limit of 1/ρ2. It is important to notice

also that the Double-Inclusion model (Hori and Nemat-Nasser, 1993) is equivalent to that of

PCW for the case of randomly oriented inclusions, as demonstrated in (Hu and Weng, 2000a).

1.1.2 Two-step methods

A general two-step homogenization procedure was originally proposed by Camacho et al.

(1990) and studied into more details by Pierard et al. (2004). In such methods, the RVE is

first decomposed into N discrete subregions where the fibers are aligned along a unique arbi-

trary direction and the volume fraction in each subregion is equivalent to that of the original

composite, as seen in Figure 1.2. The first step computes the properties of a subregion α

(α = 1, 2, . . . N) using a two phase homogenization model for aligned-fiber reinforced com-

Figure 1.3 Model of Ponte-Castañeda and Willis (PCW): randomly oriented ellipsoidal in-
clusions embedded in spherical safety cells.
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c2 ≤

1/R2 if R ≥ 1

1/R if R < 1
with R = a/b (1.24)

where R denotes the ellipsoids aspect ratio defined as the ratio between the length of the

radius along the symmetry axis (a) over the length of the equatorial radius (b). For example,

for ellipsoidal reinforcements with an aspect ratio of 10, the volume fraction limit is 1%. Hu

and Weng (2000) have shown that the Ponte-Castañeda and Willis model violates the bounds

of Hashin-Shtrikman for volume fractions higher than the physical limit given by Eq. (1.24).

1.3 Numerical homogenization

Numerical homogenization is used to accurately compute the local fields and the effective

properties of heterogeneous materials. For randomly distributed and oriented fibers reinforced

composites, numerical homogenization is performed in three steps:

1) A representative microstructure of the studied composite is randomly generated;

2) The local fields and the effective properties of the generated microstructure are

accurately computed;

3) Steps 1) and 2) are repeated within the Representative Volume Element (RVE)

determination process.

Existing algorithms for generating random microstructures are first described in the fol-

lowing sub-sections. Then, the different numerical techniques for computing the local fields

and the effective properties of a single microstructure are presented. The section summarizes

the different methods available in the literature for determining the RVE.

1.3.1 Generation of random microstructures

Random Sequential Adsorption (RSA) algorithm

The Random Sequential Adsorption (RSA) algorithm (Rintoul and Torquato, 1997) is

certainly the most widely used algorithm for generating random microstructures. At the

beginning of the computation, the position of a reinforcement is randomly selected. Then,

the position of another reinforcement is drawn and the contact is checked between both

reinforcements. If there is interference, the position of the second reinforcement is drawn

again until there is no contact with the first. The process is repeated until the desired

number of reinforcement and volume fraction are reached. Several authors have used this

algorithm and have struggled to reach high volume fractions (Segurado and Llorca, 2002;
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Fig. 3. “Spheres in box” morphology of a model with  = 0:25.

where T1 and T2 stand for the normal tractions acting on the cell faces contained,
respectively, in the planes X1 = L and X2 = L. Similarly, shear deformation is obtained
with Ũ3 = (1; 0; 0), Ũ1 = Ũ2 = (0; 0; 0).

The 0nite element simulations were performed with Abaqus=Standard (2001) within
the framework of the small displacements theory, and the materials were assumed
to behave as linear, elastic and isotropic solids. A standard model contained around
60,000 elements and 90,000 nodes, and each simulation took 3 h of CPU time on
a Compaq XP1000 workstation with 1 Gb of RAM. This mesh was 0ne enough to
represent accurately the geometry of the spheres, and the sphere volume fraction in the
discretized models was within 0.1% of the theoretical value. One model with = 0:45
was meshed using 100,000 elements and 150,000 nodes to check the accuracy of the
standard meshes. The di5erences in the elastic constants computed with the standard
and the re0ned meshes were below 0.25%.

4. Results and discussion

Many cubic unit cells containing 30 spherical particles were generated using the
algorithms presented in Section 2 for di5erent sphere volume fractions () in the range
0.10–0.5. Four of them were meshed for each sphere volume fraction, and subjected
to uniaxial tensile as well as shear deformation along the three axes of coordinates.
These analyses provided three independent values of the elastic and shear modulus for

Figure 1.4 Microstructure generated using Random Sequential Adsorption (RSA) algorithm.
Number of spheres = 30. Volume fraction = 25%. (Segurado and Llorca, 2002).

Barello and Lévesque, 2008; Kari et al., 2007b). In its simplest form, this algorithm can

generate volume fractions of approximately 30% for identical spherical particles. Moreover,

when the desired number of reinforcements is high, the computation time becomes important.

Figure 1.4 shows a microstructure generated using the RSA algorithm, including 30 spher-

ical particles with a volume fraction of 25% (Segurado and Llorca, 2002).

Modified RSA algorithm

An improved version of the RSA algorithm was proposed by Segurado and Llorca (2002).

A unit cell having a volume fraction lower than the desired value is first generated with

the RSA algorithm. The cell is then compressed in several steps and the reinforcements

positions and volumes are updated at each compression stage. However, this compression

leads to reinforcements interpenetration. It is therefore necessary to check for reinforcements

overlapping at each compression stage. If two reinforcements overlap, one of them is displaced

along a random vector. If the reinforcements are still in interference, the reinforcement

is placed in its original position and the process is repeated until the two inclusions no

longer intersect. The simulation continues until the target volume fraction is reached. This

modification in the RSA algorithm allows for denser packings than with the original version
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(around 50% for identical spherical particles). Nevertheless, the computation time remains

important.

Molecular dynamics algorithm

Lubachevsky and Stillinger (1990) proposed an algorithm based on molecular dynamics.

This algorithm was originally applied to discs (2D) and spheres (3D) (Lubachevsky et al.,

1991). The main idea of the algorithm is as follows. All inclusions are randomly created in

the unit cell but have a null volume. Each inclusion has also a random velocity vector. The

particles are then set in motion and their volumes gradually increase. Binary collisions are

checked at each iteration. When a binary collision occurs, the velocities of the two concerned

particles are updated according to the kinetic energy conservation principle. Furthermore,

if the unit cell must be periodic (see Section 1.3.2), collisions between particles and the cell

faces must be checked. Indeed, if a particle leaves the cell through a face, it must appear

from the opposite side to meet the periodicity conditions. The simulation stops when the

desired volume fraction is reached. This algorithm is more efficient than the RSA and the

modified RSA algorithms since it can generate very dense packings in a low computation

time. For example, a packing of 30 identical spheres with a volume fraction of 60% can be

generated in less than 10 seconds. It was also possible to reach a volume fraction of 74%

(Ghossein and Levesque, 2012), which is close to the theoretical maximum dense packing for

monodisperse spheres (≈ 74.05%). This type of algorithm is called event-driven molecular

dynamics (EDMD) where a sequence of discrete events are predicted and processed. Other

authors (Allen et al., 1989) have used a time-driven molecular dynamics (TDMD) approach

where time is divided into small increments and, at each step time, differential equations

based on Newton’s law are integrated. TDMD algorithm are much easier to implement than

EDMD but are far less efficient, especially for high densities.

Molecular dynamics algorithm for non spherical inclusions

The works of Lubachevsky and Stillinger have been extended by Donev et al. (2005a) to

the case of non spherical particles within an EDMD framework. In most cases, the collision

time between inclusions is computed numerically. Since this step requires numerous compu-

tations, Donev et al. introduced the near-neighbor list (NNL) concept to avoid computing

unnecessary collisions. Each particle has a bounding neighborhood and collision between a

pair of particles is checked if their bounding neighborhoods overlap. This method is very

useful for aspherical inclusions and speeds up considerably the algorithm. The latter was

applied to ellipses (2D) and ellipsoids (3D) (Donev et al., 2005b). To calculate the colli-
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Figure 5.1: (Left) Computer-generated packing of 1000 oblate ellipsoids with α = 1.9, close to the shape
of M&M’S Candiesr. (Right) Computer-generated packing of 1000 ellipses of aspect ratio α = 1.5, being
among the densest generated ellipse packings and almost as dense as the triangular disk crystal packing
(φ ≈ 0.906).

ellipsoids with β = 1/2. The jamming density eventually decreases again for higher aspect ratios, however,
we do not investigate that region in this work. The contact number also shows a rapid rise with α− 1, and
then plateaus at values somewhat below isostatic, Z̄ ≈ 10 for spheroids, and Z̄ ≈ 12 for nonspheroids (for
β = 1/4 and β = 3/4, as well as β = 1/2). In Section 5.9 we will need to revert to two dimensions (ellipses)
in order to make some analytical calculations possible. We therefore also generated jammed packings of
ellipses, and show the results in Fig. 5.3. Since monodisperse packings of disks always crystallize and do
not form disordered jammed packings, we used a binary packing of particles with one third of the particles
being 1.4 times larger than the remaining two thirds. The ellipse packings show exactly the same qualitative
behavior as ellipsoids, and an example packing is shown in Fig. 5.1.

Previous simulations for random sequential addition (RSA) [14], as well as gravitational deposition [38,
34], produce a similarly shaped curve, with a maximum at nearly the same aspect ratios α ≈ 1.5 (for both
prolate and oblate spheroids), but with substantially lower volume fractions (such as ϕ ≈ 0.48 for RSA). It
is interesting to note that for both spheroids and general ellipsoids Z̄ reaches a constant value close to the
isostatic prediction Z̄ = 2df (but still less), at approximately the aspect ratio for which the density has a
maximum. This supports the claim the density decrease for large α comes from exclusion volume effects at
constant coordination number [27]. In Section 5.9 we explain quantitatively why the density and contact
numbers rise sharply near the sphere point. Since the density increases for aspect ratios near unity and then
decreases for large aspect ratios, it is clear it must have a maximum. We do not yet understand why different
dimensions, different particle shapes [27], and packings as different as RSA and MRJ, show a maximum at
approximately the same aspect ratio 1.5 < α < 2.0.

Several interesting features can be noted in Fig. 5.2 concerning the variations of the density with changes
in the particle shape, and especially with variations in the skewness β. Firstly, we observe the same packing
density for ellipsoids with skewness β and their dual ellipsoids with skewness 1− β. In particular, to within
statistical and algorithmic variations, prolate and oblate ellipsoids have identical packing densities within
the ranges of aspect ratio we have studied (up to α ≈ 10, though for large aspect ratios our results are not
as accurate and we do not show them here). The self-dual ellipsoids with β = 1/2 show the highest packing
densities, and are in a sense most aspherical given a certain aspect ratio. Correspondence between prolate

119

Figure 1.5 Packing of oblate ellipsoids generated using the molecular dynamics algorithm
proposed by Donev et al. (2005a,b). Number of ellipsoids = 1000. Volume fraction = 70%.
Aspect ratio = 1.9. (Donev, 2006).

sion time between two ellipsoids, the authors made use of the overlap potentials (Perram

and Wertheim, 1985; Perram et al., 1996). The collision time tc between two moving ellip-

soids is the first root of the overlap potential F (t) that represents the maximum of a certain

parametric function f(t, λ):

tc = min(t)

such that F (t) = 0 and t ≥ 0

where F (t) = max
0≤λ≤1

f(t, λ)

(1.25)

Since the maximum of f(t, λ) cannot be computed analytically, the problem takes the form of

two optimization subproblems, which can make the algorithm less computationally-efficient.

Figure 1.5 shows a packing generated using the molecular dynamics algorithm proposed

by Donev et al. (2005a,b). The packing contains 1000 oblate ellipsoids with an aspect ratio

of 1.9 and a volume fraction of 70% (Donev, 2006).

1.3.2 Local fields and effective properties of a single microstructure

Several numerical methods can be used to compute the local fields and the effective prop-

erties of a 3D microstructure. The most known techniques are the Finite Element Method
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(FEM) and the Fast Fourier Transforms (FFT). In this section, a brief description of these

two methods is presented. A listing of some other numerical methods can be found in Böhm

(1998) and Pierard (2006).

Finite Element Method (FEM)

The FEM is certainly the most widely used technique for computing the local stress and

strain fields of a given microstructure (Llorca et al., 2000; Bohm et al., 2002; Segurado and

Llorca, 2002; Kari et al., 2007b; Barello and Lévesque, 2008; Klusemann and Svendsen, 2010;

Cojocaru and Karlsson, 2010; El-Mourid et al., 2012; Pahlavanpour et al., 2013; Moussaddy

et al., 2013b). In this method, a unit cell is meshed with elements and boundary conditions

are applied. The problem is then solved and the stress and strain fields are obtained in each

element. The required mesh size depends on the number of reinforcements within the unit

cell, their volume fraction and aspect ratio, as well as the mechanical properties contrasts

between the inclusions and the matrix.

Figure 1.6 shows the meshing of two different unit cells. The first (Figure 1.6a) contains

randomly distributed spherical particles while the second (Figure 1.6b) contains randomly

distributed voids. The volume fraction in both cells is 20%.

The main advantage of the FEM is that it allows for a non-uniform discretization of the
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4.1 Comparison with FE-results

Before we compare these well-known homogenization methodswith the ESCS and IDD estimate, first the so far
obtained results are compared with Finite-Element simulations. For this purpose RVEs with randomly distributed
inclusions are generated for different volume fractions using the software DIGIMAT. The model is generated by
successively placing randomly distributed equally sized spheres into the matrix material until the desired volume
fraction with the desired number of spheres or voids is reached. If a randomly placed sphere intersects another
already placed sphere, it is attempted to place that particular sphere differently using yet another random generator.
The resulting models with spherical inclusion are shown in Figure 13 and with spherical voids in Figure 14. The
FE simulations were done with the software ABAQUS/Standardapplying linear displacement boundary conditions
to three faces of the model such that these are fixed in their respective normal direction so that every degree of
freedom is fixed on one single face. The displacement is applied on another face in its normal direction.

Figure 13: RVE with randomly distributed spherical inclu-
sion of a volume fractionc = 0.2

Figure 14: RVE with randomly distributed voids of a
volume fractionc = 0.2

In Figure 15 the results of the different homogenization methods are compared for a stiffness ratioEI/EM = 10
with the obtained results from the FE-simulation up to a inclusion volume fraction ofc = 0.35. It can be stated
that for the case of spherical isotropic inclusion the Lielens method shows the best agreement for higher inclusion
volume fractions which was also earlier found by Pierard et al. (2004). But as seen from Figure 16 with increasing
stiffness ratioEI/EM, the FEM-results yields to a softer behavior as the Lielens method but it still predicts the
best agreement compared to the other methods.
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4.1 Comparison with FE-results

Before we compare these well-known homogenization methodswith the ESCS and IDD estimate, first the so far
obtained results are compared with Finite-Element simulations. For this purpose RVEs with randomly distributed
inclusions are generated for different volume fractions using the software DIGIMAT. The model is generated by
successively placing randomly distributed equally sized spheres into the matrix material until the desired volume
fraction with the desired number of spheres or voids is reached. If a randomly placed sphere intersects another
already placed sphere, it is attempted to place that particular sphere differently using yet another random generator.
The resulting models with spherical inclusion are shown in Figure 13 and with spherical voids in Figure 14. The
FE simulations were done with the software ABAQUS/Standardapplying linear displacement boundary conditions
to three faces of the model such that these are fixed in their respective normal direction so that every degree of
freedom is fixed on one single face. The displacement is applied on another face in its normal direction.

Figure 13: RVE with randomly distributed spherical inclu-
sion of a volume fractionc = 0.2

Figure 14: RVE with randomly distributed voids of a
volume fractionc = 0.2

In Figure 15 the results of the different homogenization methods are compared for a stiffness ratioEI/EM = 10
with the obtained results from the FE-simulation up to a inclusion volume fraction ofc = 0.35. It can be stated
that for the case of spherical isotropic inclusion the Lielens method shows the best agreement for higher inclusion
volume fractions which was also earlier found by Pierard et al. (2004). But as seen from Figure 16 with increasing
stiffness ratioEI/EM, the FEM-results yields to a softer behavior as the Lielens method but it still predicts the
best agreement compared to the other methods.
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(b)

Figure 1.6 Meshing of a unit cell. (a) Randomly distributed spherical particles with a volume
fraction of 20%. (b) Randomly distributed voids with a volume fraction of 20%. (Klusemann
and Svendsen, 2010).
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microstructure permitting different levels of mesh refinements in different parts of the unit

cell. Moreover, different shapes of elements (e.g., cubic, tetrahedrons) can be used, enabling

the representation of reinforcements with complex shapes. However, despite the robustness

of the FEM, it cannot be fully automated since the meshing operation usually requires user

input, especially for large volume fractions and/or aspect ratios.

Fast Fourier Transforms (FFT)

Moulinec and Suquet (1998) have proposed an algorithm based on Fast Fourier Transforms

(FFT) that computes the local fields in composites. The algorithm consists of discretizing

the microstructures into voxels and solving, in each voxel, the constitutive law in Fourier

space. The constitutive law is iteratively solved until the stress and strain fields converge

within a prescribed tolerance. The main advantage of this technique is that it does not

require meshing, and therefore has the potential to be completely automated. However, the

FFT-based technique requires a uniform discrectization of the microstructure into equal size

voxels. Therefore, the number of voxels required to adequately represent microstructures with

high aspect ratio and/or volume fraction of fibers could become very important. Moreover,

this method converges slowly for high mechanical properties contrast between the matrix and

reinforcements.

Eyre and Milton (1999) proposed an accelerated version of this algorithm by applying it

to electrostatic problems. The main advantage of this new version is that it converges faster

for high mechanical properties contrasts. However, the computational cost of an iteration in

the accelerated scheme is important when compared to that of the basic scheme. This is due

to the fact that at each iteration, the FFT function is called three times in the accelerated

scheme against twice in the basic scheme.

The common point in the previous algorithms lies in the fact that convergence is impos-

sible for infinite mechanical properties contrasts between reinforcements and matrix (rigid

inclusions, porous phases, etc.). In order to solve this issue, Michel et al. (2000, 2001) pro-

posed a modification to the basic scheme by introducing a Lagrange multiplier. The authors

applied their new algorithm to voided materials and to rigidly reinforced composites. Con-

vergence was reached in both cases.

In order to optimize the computation time, Moulinec and Suquet (2003a) proposed the

following:

� For low mechanical properties contrasts, the basic scheme should be used;

� For high contrasts, the accelerated scheme of Eyre and Milton should be used;

� For infinite contrasts, the algorithm based on augmented Lagrangian should be used.
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Effective properties of a single microstructure

Whatever the numerical method used to compute the local fields, the effective properties

are derived from the volume averaged stresses and strains:

Σ = < σ(x) > = C̃ :< ε(x) > = C̃ : E (1.26)

where < · > denotes an average over the volume, which is equivalent to an average over all

elements (FEM) or voxels (FFT-based technique). Using the major and minor symmetry

properties of elasticity tensors, Eq. (1.26) can be written in a matrix notation as:

Σ11

Σ22

Σ33√
2Σ23√
2Σ13√
2Σ12


=



C̃1111 C̃1122 C̃1133

√
2C̃1123

√
2C̃1113

√
2C̃1112

C̃2211 C̃2222 C̃2233

√
2C̃2223

√
2C̃2213

√
2C̃2212

C̃3311 C̃3322 C̃3333

√
2C̃3323

√
2C̃3313

√
2C̃3312√

2C̃2311

√
2C̃2322

√
2C̃2333 2C̃2323 2C̃2313 2C̃2312√

2C̃1311

√
2C̃1322

√
2C̃1333 2C̃1323 2C̃1313 2C̃1312√

2C̃1211

√
2C̃1222

√
2C̃1233 2C̃1223 2C̃1213 2C̃1212





E11

E22

E33√
2E23√
2E13√
2E12


(1.27)

The six columns of the effective elastic tensor can be computed by independently applying six

orthogonal macroscopic deformation states E on the unit cell (e.g., three pure longitudinal and

three pure shear deformations). For example, to calculate the first column, a deformation is

applied in the first principal direction (E11). The five other columns are determined similarly.

Thus, six independent simulations are required to find the complete stiffness tensor.

For the case of randomly distributed and oriented ellipsoidal fibers reinforced composites,

the effective medium is considered quasi-isotropic (Benveniste, 1987) and hence, is defined

by two independent moduli: the effective bulk modulus κ̃ and the effective shear modulus µ̃.

These moduli can be computed from C̃ using the following relations:

κ̃ =
C̃mmnn

9
(1.28a)

µ̃ =
3C̃mnmn − C̃mmnn

30
(1.28b)

Note that Eqs. (1.28) rely on the invariant components of C̃ (i.e., Cmmnn and Cmnmn).

Boundary conditions

Homogenization using FEM can be performed under any set of boundary conditions. Ap-

plying different boundary conditions on the same microstructure can yield different effective
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properties. By choosing appropriate boundary conditions, one can compute more accurate

estimations of the effective properties.

Uniform traction boundary conditions are given by (Huet, 1990):

σ(x) · n = Σ · n ∀x ∈ V S (1.29)

where V S is the surface of the volume element and n is the normal vector at position x on

V S. Uniform displacement boundary conditions are such that (Huet, 1990):

u(x) = E · x ∀x ∈ V S (1.30)

where u(x) is the displacement vector.

Huet (1990) has shown that uniform traction boundary conditions underestimate the

effective properties and more precisely lead to a lower bound, while uniform displacement

boundary conditions overestimate the effective properties and lead to an upper bound.

On the other hand Gusev (1997) and Kanit et al. (2003) have shown that periodic bound-

ary conditions deliver more accurate estimations of the effective properties for a smaller

computational effort. Periodic boundary conditions can be applied on the microstructure by

assuming the following relation (Michel et al., 1999):

u(x) = E · x+ u∗(x) (1.31)

where u∗(x) is a periodic fluctuation that takes the same value at a pair of homologous points

located on opposite faces of the unit cell (i.e., two points that share two of their coordinates).

Periodic boundary conditions are an integral part of the FFT-based technique. However,

applying periodic boundary conditions in the FEM is a more complex process. First, like in

the FFT formulation, the unit cell must be periodic, i.e., a particle that intersects a face of

the unit cell continues from the opposite face (see Figure 1.6a). Second, the meshing must

also be periodic. A periodic mesh implies that exactly homologous nodes should be located

at each two opposite faces. The periodic conditions could be then applied by coupling the

displacement of each pair of homologous nodes (Bohm et al., 2002; Barello and Lévesque,

2008):

u(x2)− u(x1) = E : (x2 − x1) (1.32)

where x1 and x2 denotes the coordinates of homologous nodes located on opposites faces.

This can be achieved by applying Multi-Points Constraints (MPCs) on each pair of homolo-

gous nodes.
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1.3.3 RVE determination

Numerous works dealt with the definition of RVE (Hill, 1963; Sab, 1992; Drugan and

Willis, 1996; Gusev, 1997; Kanit et al., 2003; Ostoja-Starzewski, 2006). The suggested defi-

nitions are based on the microstructure morphology and/or its physical behavior. The RVE

definitions may be different depending on the application domain. Since the aim of homog-

enization is to compute accurate effective properties, the works as in those of Kanit et al.

(2003); Kari et al. (2007a); Barello and Lévesque (2008); Moussaddy et al. (2013b); Pahla-

vanpour et al. (2013, 2014) have adopted the physical RVE definition in which a RVE is a

volume element that computes the same target properties as the bulk material (Gusev, 1997).

In theory, a volume element is exactly representative of a random media when it contains

an infinity of heterogeneities (Ostoja-Starzewski, 2002). For a finite volume, the RVE cannot

be reached exactly but with a predefined error tolerance. Kanit et al. (2003) proposed a

RVE definition which is not characterized by a single finite volume, but by an ensemble of r

random finite volumes containing N heterogeneities each. As a first step, r random volume

elements are generated and the target properties of each are computed. All generated volume

elements have the same microstructural properties (i.e., constituents properties, inclusions

volume fraction, inclusions aspect ratio, and number of represented heterogeneities). The

required number of realizations r is determined using a criterion based on the confidence

interval of the target properties (Kanit et al., 2003):

CI
[
Z̄
]

Z̄
≤ εr (1.33)

where Z̄ is the arithmetic mean of the target property Z over r realizations, CI
[
Z̄
]

is the

width of the confidence interval of Z̄ and εr is a predefined tolerance.

The procedure is then repeated for increasing numbers of heterogeneities (while keep-

ing constant the other microstructural properties). Several criteria have been proposed

to determine the required number of heterogeneities N to reach the RVE (Gusev, 1997;

Ostoja-Starzewski, 1999; Terada et al., 2000; Kanit et al., 2003; Stroeven et al., 2004; Ostoja-

Starzewski, 2006; Trias et al., 2006). The stability criterion is the most commonly used. It

is based on the stability of the ensemble average of the target property over increments of N

(Gusev, 1997): ∣∣Z̄(N2) − Z̄(N1)
∣∣

Z̄(N1)
≤ εN with N2 > N1 (1.34)

where Z̄(Nj) refers to the arithmetic mean of the desired property Z for an ensemble of volume

elements containing Nj heterogeneities each, while εN is a given tolerance.

The value of N for which this criterion is met depends on the applied boundary conditions.
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to estimate the apparent thermal conductivity kapp of the considered material, as a function of the size of the

domain. The chosen thermal conductivities of the phases are

ðk1; k2Þ ¼ ð2:44 W=mK; 0:0244 W=mKÞ ð58Þ
generating a contrast c ¼ k1=k2 ¼ 100.

The numerical results are obtained for three boundary conditions: uniform temperature gradient at the

boundary (UGT), uniform heat flux at the boundary (UHF) and periodic boundary conditions (PERI-
ODIC). Fig. 8 gives the mean apparent conductivities and associated variances as a function of the domain
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Fig. 7. Mean values and intervals of confidence on the mean value for the bulk modulus kapp (a) and shear modulus lapp (b), as a

function of domain size (P1 ¼ 70%). Three different types of boundary conditions are considered. For clarity, the errorbars are slightly

shifted around each studied domain size.
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Figure 1.7 Effective bulk modulus of a voronöı microstructure as a function of the volume
size V measured by the number of grains included. Three types of boundary conditions
are considered: periodic (PERIODIC), uniform displacement (KUBC) and uniform traction
(SUBC) boundary conditions. For clarity, the error bars are slightly shifted around each
studied volume size V. (Kanit et al., 2003).

Figure 1.7 shows the variation of the effective bulk modulus of a voronöı microstructure as

a function of the volume size measured by the number of grains included (Kanit et al.,

2003). Three types of boundary conditions were studied: periodic, uniform displacement

and uniform traction boundary conditions. It is observed that the convergence of effective

properties was reached faster under periodic boundary conditions.

Moussaddy et al. (2013b) showed that the stability criterion does not provide accurate

results when the fibers aspect ratio is higher than 30. The authors proposed another criterion

to determine the required number of heterogeneities N : the averaging variations criterion.

First, the arithmetic and the harmonic means of the target property Z over r realizations

are computed:

Z̄ =
1

r

r∑
k=1

Zk (1.35a)

¯̄Z =

(
1

r

r∑
k=1

1

Zk

)−1

(1.35b)

where Zk is the target property of the kth realization.
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The average property is then computed by averaging both means:

Ẑ =
Z̄ + ¯̄Z

2
(1.36)

It is possible to demonstrate that:
¯̄Z ≤ Ẑ ≤ Z̄ (1.37)

Equality in Eq. (1.37) is met only if all realizations lead to the same value of Z. The averaging

variations criterion states that the difference between Ẑ and any of Z̄ and ¯̄Z must be within

a given tolerance:

max

(
|Ẑ − Z̄|
Ẑ

,
|Ẑ − ¯̄Z|
Ẑ

)
≤ εN (1.38)

1.4 Numerical works and validation of analytical models

Very few studies dealt with the validation of analytical homogenization models for the case

of randomly distributed and oriented fibers reinforced composites. This section summarizes

the different works that evaluate the accuracy of analytical models at predicting the effective

mechanical properties, as well as the local field statistics.

1.4.1 Prediction of the effective mechanical properties

Spherical particles reinforced composites

Spherical particles reinforced composites are the most studied microstructures in the liter-

ature. Several authors have studied the case of isotropic elastic spheres randomly distributed

in an isotropic elastic matrix and compared their numerical predictions against various ana-

lytical models estimates (Gusev, 1997; Llorca et al., 2000; Segurado and Llorca, 2002; Pierard

et al., 2004; Marur, 2004; Segurado and LLorca, 2006; Sun et al., 2007; Kari et al., 2007b;

Klusemann and Svendsen, 2010; Cojocaru and Karlsson, 2010). Others authors have investi-

gated the case of isotropic elastic spherical particles distributed in an isotropic elastoplastic

matrix (Bohm and Han, 2001; Han et al., 2001; Bohm et al., 2002). Barello and Lévesque

(2008) have evaluated the accuracy of homogenization models for the case of linearly vis-

coelastic spherical particles reinforced composites with incompressible phases.

The common point in all these works is that only the effect of the particles volume frac-

tion on the homogenization models accuracy has been studied. Most authors have varied

the spheres volume fraction up to 60% and compared their numerical results to the ana-

lytical models predictions. No study has investigated the effect of the phases mechanical

properties contrast on the analytical models performance. Indeed, the numerical simulations
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Figure 15: Comparison of homogenization results for
effective Young’s modulusE∗ with FEM-results for
EM = 21 GPa,EI = 210 GPa andν = 0.25.

FEM

EI/EM[−]

5

5 10 15 20

1

2

3

4

00

6

7

E
∗ /
E

M
[−

]

Voigt
Reuss
SCS
HS
LIE

Figure 16: Comparison of homogenization results for
effective Young’s modulusE∗ with FEM-results for
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4.2 Investigation of ESCS and IDD approach
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Now investigating the ESCS and IDD method, in order to verifythe implementation of both approaches. Therefore
the effective Young’s modulusE∗ is calculated for an isotropic matrix containing sphericalholes, to compare
these results with results obtained by Zheng and Du (2001). Figure 17 shows the resulting effective Young’s
modulusE∗ over the void porosityc for ν = 0. For comparison, we also plot the corresponding self-consistent
scheme, Lielens method, Hashin-Shtrikman, Voigt and Reussbounds as well as the numerical results obtained from
FEM-simulations. The Reuss bound as well as the Hashin-Shtrikman lower bound and Lielens method provide
inappropriate results, so that they are not useful for vanishing stiffness of one phase. The self-consistent scheme
also predicts a very soft behavior, where the maximum permitted porosity isc = 0.5. The ESCS method does not
predict a complete loss of stiffness atc = 1 which is of course inappropriate. Here it is clear that this method is
only valid for small void porosityc.
It can be seen that the IDD method agrees perfectly with the Mori-Tanaka method or Hashin-Shtrikman upper
bound, respectively. Zheng and Du (2001) showed that the IDDmethod provides for the most materials the best
agreement with numerical simulations, especially forc → 1. The here presented results agree quite well with their
reported results.

Therefore in the following the behavior of the ESCS and IDD method is investigated regarding isotropic homo-
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Figure 1.8 Effective Young’s modulus of spherical particles reinforced composites for different
inclusions volume fractions. (a) Comparison between the FEM results and the predictions of
the Third Order Approximation (TOA), the generalized self-consistent model (GSC) and the
Mori-Tanaka model (MT). Phases properties contrast: 23.(Segurado and Llorca, 2002). (b)
Comparison between the FEM results and the Voigt-Reuss bounds, the Hashin-Shtrikman
bounds (HS) and the predictions of the self-consistent scheme (SCS) and the Lielens’ model
(LIE). Phases properties contrast: 10.(Klusemann and Svendsen, 2010).

were performed for a fixed value of contrast (typically between 5 and 60), which does not

allow to define rigorously a validity domain for each analytical model. Moreover, most stud-

ies have considered the same contrast for the bulk and shear moduli (i.e., κ2/κ1 = µ2/µ1),

which leads to constituents with identical Poisson’s ratio. This assumption has restricted the

studied range of microstructures.

Figure 1.8 presents the results of two studies where the performance of analytical homog-

enization models at predicting the effective Young’s modulus of spherical particles reinforced

composites was evaluated (Segurado and Llorca, 2002; Klusemann and Svendsen, 2010). The

authors compared their FEM results to the predictions of several analytical models for dif-

ferent spheres volume fractions.

The first study (Figure 1.8a) reveals that the predictions of the Third Order Approx-

imation (TOA) and the generalized self-consistent model (GSC) were the most accurate.

The authors concluded that Mori-Tanaka (MT) predictions were accurate only for volume

fractions lower than 30%. The second study (Figure 1.8b) reveals that the Lielens’ model

delivered the most accurate estimates. However, since the numerical computations were lim-
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ited to a volume fraction of 35%, it was not possible to generalize this statement for higher

volume fractions.

Furthermore, the effect of the phases mechanical properties contrast on the analytical

models accuracy was not deeply investigated. Indeed, the comparisons were performed for

a fixed value of contrast (23 in the first study and 10 in the second). Different conclusions

could be drawn for higher properties contrasts.

Fibers reinforced composites

No study rigorously and thoroughly dealt with the evaluation of analytical models accu-

racy for short fiber reinforced composites over a wide range of phases mechanical properties,

fibers volume fractions and aspect ratios, in three dimensions. Tucker and Liang (1999)

compared the predictions of a limited number of models against finite element simulations

for aligned fibers reinforced composites. Other works have studied the case of Randomly

Oriented Fiber Reinforced Composites (ROFRC) (Bohm et al., 2002; Lusti and Gusev, 2004;

Kari et al., 2007a; Hua and Gu, 2013; Mortazavi et al., 2013; Moussaddy, 2013). Some of

these studies dealt with a very narrow range of fibers aspect ratio (≤ 5) (Bohm et al., 2002;

Hua and Gu, 2013). Others have limited their works to low reinforcements volume fractions

(≤ 3%), and eluded the rigorous evaluation of the RVE (Lusti and Gusev, 2004; Mortazavi

et al., 2013).

In their study on aligned short-fiber composites, Tucker and Liang (1999) found that Lie-

lens’ and Mori-Tanaka models provided the best predictions of effective properties. However,

their numerical simulations did not allow to choose the most accurate model since they were

limited to a volume fraction of 20% and a phases properties contrast of 30.

Bohm et al. (2002) compared their numerical results to the self-consistent scheme and

Mori-Tanaka/Benveniste model for the case of a metal matrix reinforced by randomly ori-

ented short fibers. They found a good agreement between the numerical and analytical

predictions. Nevertheless, their analysis was performed on three random microstructures

without determining rigorously the RVE.

Duschlbauer et al. (2006) studied the case of composites reinforced by planar random

fibers. The authors showed that Mori-Tanaka/Benveniste model was adequate for predicting

the thermoelastic properties of such composites, but it was the only investigated model.

Furthermore, their work was limited to a volume fraction of 21%, an aspect ratio of 10 and

a phases properties contrast less than 10.

In their work on microstructures with randomly dispersed short fibers, Kari et al. (2007a)

found that the self-consistent model provided the best estimates of the effective properties.

However, their simulations were performed with a phases properties contrast of 6.4, which
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did not allow to deeply investigate the models performance.

Moussaddy (2013) found that Lielens’ model was the best suited model to predict the

effective bulk modulus of ROFRC for volume fractions over 5%. The author also showed

that no model accurately predicted the effective shear moduli for volume fractions over 5%.

However, his study was limited to the case where fibers were completely stiffer than the

matrix (i.e., κ2 ≥ κ1 and µ2 ≥ µ1). The other cases were not investigated.

1.4.2 Prediction of the local field statistics

The capabilities of analytical homogenization models at predicting local field statistics

have been studied by a limited number of authors. The approach typically consisted of

computing local fields for specific microstructures submitted to specific load cases, comput-

ing scalar equivalent stresses/strains and compare them with those predicted by analytical

models. For example, Moulinec and Suquet (2003b); Brenner and Masson (2005); Idiart and

Castaneda (2007b); Rekik et al. (2007); Buryachenko (2011); Doghri et al. (2011); Corcolle

et al. (2012); Lahellec and Suquet (2013) studied composites while Idiart et al. (2006); Idiart

and Castaneda (2007b); Rekik et al. (2007); Idiart et al. (2009); Rekik et al. (2012) were

interested in rigidly reinforced and porous composites. Other studies dealt with the com-

putation of intragranular field fluctuations in polycrystals (Lebensohn et al., 2004, 2005b,a,

2007; Castelnau et al., 2006, 2008; Brenner et al., 2009; Montagnat et al., 2013).

However, all of the above-mentioned studies focused on very specific microstructures sub-

mitted to very specific load cases, which led to load dependent conclusions (see Appendix C

for more details). Such approaches could provide erroneous observations and cannot, there-

fore, be used to draw general conclusions regarding the accuracy of analytical models at

predicting local field statistics.
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CHAPTER 2

OBJECTIVES AND RATIONALE

2.1 Rationale of the thesis

Based on the literature review, the rationale of this thesis can be explained as follow:

� No rigorous and comprehensive study has evaluated the performance of exiting an-

alytical homogenization models at predicting the effective mechanical properties of

randomly distributed and oriented ellipsoidal fibers reinforced composites, for a wide

range of phases mechanical properties, fibers volume fractions and aspect ratios.

� In the few works that dealt with the evaluation of analytical models accuracy, only

the effect of the fibers volume fraction and/or aspect ratio has been studied. No

study has investigated the effect of the phases mechanical properties contrast on the

homogenization models accuracy.

� Numerical homogenization studies were limited to low volume fractions and/or as-

pect ratios due to the challenges related to the random generation process. Al-

though the molecular dynamics algorithm proposed by Lubachevsky and Stillinger

(1990) works well when generating packings of hard spherical particles, there is no

computationally-efficient algorithm that can generate packings of hard ellipsoids at

high volume fractions and aspect ratios. Indeed, the algorithm proposed by Donev

et al. (2005a) has a high computational cost since the determination of binary col-

lisions times relied on two optimization subproblems, which makes the algorithm

less efficient. Developing a new computationally-efficient algorithm becomes then

necessary to extend the range of achievable microstructures.

� Most numerical studies were performed without conducting a rigorous RVE deter-

mination process due its computational burden. Published works deal with a limited

number of volume elements without performing a statistical analysis to ensure that

the RVE was achieved. It is therefore possible to question the validity of some

published results.

� No study has validated the analytical models performance at predicting local field

statistics by using a load independent approach. In all studies, numerical field statis-

tics were computed for microstructures submitted to specific load cases and com-

pared to those predicted by analytical models. Statements and conclusions were
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therefore load dependent, and the presented results cannot be used as a benchmark

for evaluating the accuracy of analytical models at predicting the local field statistics.

2.2 Objectives of the thesis

The main objective of this thesis is to validate the accuracy of analytical homogenization

models at predicting the effective mechanical properties and the local field statistics of ran-

domly distributed and oriented ellipsoidal fibers reinforced composites. This main objective

is divided into three specific objectives:

1) Assessment of analytical models at predicting the effective properties of

spherical particles reinforced composites

The objective is to find the most suitable analytical model to predict the effective

properties of randomly distributed spherical particles reinforced composites, depend-

ing on the phases mechanical properties contrast and spheres volume fraction. A

fully automated numerical tool was developed and the effective properties were ac-

curately computed for a wide range of phases mechanical properties and particles

volume fractions. The predictions of the numerical tool were compared to the ana-

lytical models estimates and a validity domain was attributed to each model.

2) Assessment of analytical models at predicting the effective properties of

ellipsoidal fibers reinforced composites

The objective is to study the performance of analytical homogenization models at

predicting the effective properties of randomly distributed and oriented ellipsoidal

fibers reinforced composites. First, a new computationally-efficient algorithm able

to generate random packings of hard ellipsoids at high volume fractions and aspect

ratios was developed. The algorithm was then integrated in the numerical tool devel-

oped previously and the effective properties of ellipsoidal fibers reinforced composites

were computed for a wide range of phases mechanical and geometrical properties.

Comparisons between numerical and analytical predictions quantified the effect of

the phases mechanical properties contrast, the fibers volume fraction and the fibers

aspect ratio on the analytical models accuracy.

3) Assessment of analytical models at predicting the local field statistics of

ellipsoidal fibers reinforced composites

The objective is to evaluate the accuracy of analytical models at predicting the lo-

cal field statistics of randomly distributed and oriented ellipsoidal fibers reinforced

composites (including spherical and ellipsoidal particles), and more specifically the

intraphase first and second order moments. First, load independent properties di-
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rectly related to the first and second order moments were defined. These load in-

dependent properties were then computed numerically for a wide range of phase

mechanical properties contrasts, fibers volume fractions and aspect ratios. The nu-

merical results were compared to the predictions of a range of analytical models and

the most suitable model to predict the intraphase first and second order moments

was identified.
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CHAPTER 3

SCIENTIFIC APPROACH

Four research articles were prepared in order to achieve the objectives stated in Chapter

2. The following lines describes each article as well as its context with respect to the three

specific objectives.

3.1 Article 1: A fully automated numerical tool for a comprehensive validation

of homogenization models and its application to spherical particles rein-

forced composites

This paper presents a fully automated numerical tool for computing the accurate effective

properties of two-phase linearly elastic composites reinforced by randomly distributed spher-

ical particles. Virtual microstructures were randomly generated using an algorithm based on

molecular dynamics. Composites effective properties were computed using a technique based

on Fast Fourier Transforms (FFT). The predictions of the numerical tool were compared to

those of analytical homogenization models for a broad range of phases mechanical properties

contrasts and spheres volume fractions.

The main contributions and findings of this paper are:

� A new fully automated numerical tool that can compute accurately the effective

properties of randomly distributed spherical particles reinforced composites.

� A database that contains the effective properties of 320 different spherical parti-

cles reinforced composites. In due course, this database might replace analytical

homogenization models.

� A rigorous assessment of several analytical homogenization models for the case of

spherical particles reinforced composites.

� None of the tested analytical models provides accurate estimates for the whole stud-

ied range of contrasts and volume fractions.

� No analytical homogenization model stands out of the others as being more accurate

over the investigated range of volume fractions and contrasts.

This article was published in the “International Journal of Solids and Structures”, volume

49, issues 11–12, pages 1387–1398 in March 2012. This journal publishes research in the field
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of the mechanics of solids and structures. This article was written almost entirely by the

author of this thesis.

3.2 Article 2: Random generation of periodic hard ellipsoids based on molecular

dynamics: a computationally-efficient algorithm

This paper presents a computationally-efficient algorithm for generating random periodic

packings of hard ellipsoids. The algorithm is based on molecular dynamics where the ellipsoids

are set in translational and rotational motion and their volumes gradually increase. Binary

collision times are computed by simply finding the roots of a nonlinear function. In addition,

an original and efficient method to compute the collision time between an ellipsoid and a

cube face is proposed. The algorithm can generate all types of ellipsoids (prolate, oblate and

scalene) with very high aspect ratios (i.e., > 10).

The main contributions and findings of this paper are:

� The binary collision times are computed by simply finding the roots of a nonlinear

function, which is a more efficient and simple technique than that presented by

Donev et al. (2005a,b).

� The paper puts more emphasis on periodic packings and presents a novel and efficient

technique to compute the collision time between an ellipsoid and a cell face.

� The necessary steps for processing the impact between two ellipsoids are well estab-

lished and can be used for any types of ellipsoids (prolate, oblate, scalene).

� It is the first time that ellipsoids packings with high aspect ratios (i.e., > 10) are

presented in the literature.

� The algorithm is comprehensive and well documented. Detailed pseudo-codes are

given so the algorithm can be easily implemented by other researchers.

This article was published in the “Journal of Computational Physics”, volume 253, pages

471–490 in July 2013. This journal treats the computational aspects of physical problems

and presents techniques for the numerical solution of mathematical equations arising in all

areas of physics. This article was written almost entirely by the author of this thesis.

3.3 Article 3: A comprehensive validation of analytical homogenization models:

the case of ellipsoidal particles reinforced composites

This paper presents a rigorous and exhaustive evaluation of the analytical homogenization

models accuracy for the case of randomly distributed and oriented ellipsoidal fibers reinforced
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composites. Artificial random microstructures were generated using a molecular dynamics

algorithm. Numerical effective properties were computed using a Fast Fourier Transforms

(FFT) based technique. The numerical predictions were compared to those of the analytical

models for a wide range of phases mechanical properties, fibers volume fractions and aspect

ratios. The validation campaign involved a rigorous Representative Volume Element (RVE)

determination process and approximately, 66000 simulations were performed.

The main contributions and findings of this paper are:

� Similar results were obtained for prolate and oblate ellipsoidal fibers. In both cases,

the analytical models show similar trends and have almost the same accuracy.

� Contrasts between phases mechanical properties are the most influential parameters

on the analytical models accuracy, followed by the fibers volume fraction.

� In the investigated range of properties, Lielens’ is the most accurate model provided

that the ellipsoids are stiffer than the matrix.

� For microstructures with high fibers aspect ratio, the Mori-Tanaka/Benveniste model

could be an alternative to Lielens’ model when predicting the effective shear modulus,

especially when the fibers are not completely stiffer than the matrix (i.e., κ2 ≤ κ1

and µ2 ≥ µ1).

� A new interpolation model has been developed and it can be seen as a substitute to

analytical models.

This article was published in“Mechanics of Materials”, volume 75, pages 135–150 in April

2014. This journal publishes research on general constitutive behavior of advanced technolog-

ical and natural materials as well as on macroscopic predictions based on microscopic models.

This article was written almost entirely by the author of this thesis.

3.4 Article 4: Homogenization models for predicting local field statistics in

ellipsoidal fibers reinforced composites: Comparisons and validations

This paper validates the performance of analytical homogenization models at predicting

the local field statistics in randomly distributed and oriented ellipsoidal fibers reinforced

composites. The numerical validation was based on a newly introduced load independent

metric, which allowed to formulate general conclusions. A large validation campaign was

conducted and the Representative Volume Element (RVE) was rigorously determined for

each combination of phases mechanical properties, fibers volume fraction and aspect ratio.

The load independent properties computed numerically were compared to those predicted by

a range of analytical models.
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The main contributions and findings of this paper are:

� The accuracy of analytical homogenization models is more sensitive to the fibers

volume fraction than to their aspect ratio when predicting the first and second order

moments.

� For low mechanical properties contrasts, Mori-Tanaka and Mori-Tanaka/Benveniste

are the most suitable models to predict the first order moments as well as the intra-

matrix second order moments. For high contrasts, Lielens’ model provides the most

accurate predictions.

� Regarding the intra-fiber second order moments, the predictions of the self-consistent

scheme are the most accurate in the investigated range of contrasts and volume

fractions, provided that the fibers aspect ratio is low. For fibers with high aspect

ratio, Lielens’ model has the highest accuracy among the studied models.

� A new interpolation model that delivers accurate estimates of the mean and covari-

ance tensors of the intraphase stress fields.

This article was submitted to the “International Journal of Solids and Structures” on

July 16, 2014. This journal publishes research in the field of the mechanics of solids and

structures. This article was written almost entirely by the author of this thesis.
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CHAPTER 4

ARTICLE 1: A FULLY AUTOMATED NUMERICAL TOOL FOR A

COMPREHENSIVE VALIDATION OF HOMOGENIZATION MODELS AND

ITS APPLICATION TO SPHERICAL PARTICLES REINFORCED

COMPOSITES

E. Ghossein and M. Lévesque (2012). International Journal of Solids and Structures, 49

(11–12), pp. 1387–1398.

4.1 Abstract

This paper presents a fully automated numerical tool for computing the accurate effective

properties of two-phase linearly elastic composites reinforced by randomly distributed spher-

ical particles. Virtual microstructures were randomly generated by an algorithm based on

molecular dynamics. Composites effective properties were computed using a technique based

on Fast Fourier Transforms (FFT). The predictions of the numerical tool were compared to

those of analytical homogenization models for a broad range of phases mechanical properties

contrasts and spheres volume fractions. It is found that none of the tested analytical models

provides accurate estimates for the whole range of contrasts and volume fractions tested.

Furthermore, no analytical homogenization models stands out of the others as being more

accurate for the investigated range of volume fractions and contrasts. The new fully auto-

mated tool provides a unique means for computing, once and for all, the accurate properties

of composites over a broad range of microstructures. In due course, the database generated

with this tool might replace analytical homogenization models.

4.2 Introduction

Determination of composites’ effective elastic properties is a classical solid mechanics

problem. Homogenization models estimate or bound the mechanical properties of compos-

ites using information related to the properties of the constituent phases, their geometry

and their spatial distribution. The bounds of Hashin and Shtrikman (1963) (HSB), the

self-consistent scheme (SCS) (Budiansky, 1965; Hill, 1965), the Mori-Tanaka (MT) model

(Mori and Tanaka, 1973; Benveniste, 2008), the general self-consistent scheme (GSCS) of

Christensen and Lo (1979), the second-order estimates (2OE), the three-point bounds (3PB)

and the third order approximation (TOA) proposed by Torquato (1991, 1998), the model of
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Lielens et al. (1998), the effective self-consistent scheme (ESCS) and the interaction direct

derivative (IDD) developed by Zheng and Du (2001), are some examples.

These models predictive capabilities have been evaluated numerically by numerous au-

thors, for very specific and limited configurations (see Section 4.3.3). However, to the knowl-

edge of the authors, no study focused on conducting a systematic and thorough evaluation

of existing homogenization models’ accuracy. As a result, the range of microstructures over

which homogenization models deliver predictions of given accuracies is not rigorously de-

fined. A comprehensive performance evaluation requires generating an important database

of “accurate” effective properties. It is of considerable interest to develop a robust and fully

automated procedure for generating this database in order to reduce user input.

The main objective of this paper is to present a fully automated numerical tool for val-

idating the performance of analytical homogenization models for composites reinforced by

randomly distributed spherical particles. The paper is organized as follows: Section 4.3

reviews the different methods for generating random microstructures and computing com-

posites effective properties. Section 4.4 presents the algorithms implemented in this study

for generating randomly distributed spherical particles microstructures. Section 4.5 presents

the code used to calculate the effective properties. The methodology adopted to conduct

the validation campaign is introduced in Section 4.6. A comprehensive validation of several

homogenization models is carried out in Section 4.7. The predictions of these models are

compared to the numerical predictions of the validation tool, followed by a discussion and

analysis of the results.

Unless specified otherwise, the following convention has been adopted: scalars and vectors

are respectively denoted by lower case letters (i.e. a, α) and boldfaced lower case latin letters

(i.e. a); second and fourth order tensors are respectively denoted by boldfaced lower case

greek letters (i.e. α) and boldfaced upper case latin letters (i.e. A).

4.3 Background

4.3.1 Generation of random microstructures

Most artificial microstructures found in the literature were generated using the Random

Sequential Adsorption (RSA) algorithm (Rintoul and Torquato, 1997). In this algorithm, the

position of the first reinforcement is randomly generated. The position of a second reinforce-

ment is subsequently drawn. If both reinforcements are in contact, the second reinforcement

position is redrawn until it does not interfere with the first. The process is repeated until

the desired volume fraction and number of reinforcements are reached. Several authors have

used this algorithm and had difficulties to reach high volume fractions (> 30%). Some au-



35

thors (Segurado and Llorca, 2002; Kari et al., 2007b; Barello and Lévesque, 2008) developed

improved versions of the RSA algorithm to reach higher volume fractions, at the expense of

an increased computational cost.

Lubachevsky and Stillinger (1990) proposed an algorithm based on molecular dynamics

and they applied it for disks and spheres (Lubachevsky et al., 1991). The basic ideas of

their algorithm are as follows. All particles are initially created but they all have a null

volume. The spherical particles are put in motion and their radius increases throughout the

computation. The spheres can collide with each other or with the faces of the cell. The

simulation ends when the desired volume fraction is reached. This algorithm can achieve

high volume fractions, up to the theoretical dense packing, for a low computational cost.

4.3.2 Computation of composites effective properties.

Finite element method is the most commonly used numerical method for obtaining com-

posites effective properties. The technique consists of meshing a Representative Volume

Element (RVE) of the microstructure, imposing boundary conditions and solving for the

stresses and strains. The effective properties are computed from the relation between the

volume averaged stress and strain tensors. Although this method has been successfully used

by many authors (see Table 4.1), it cannot be fully automated since the meshing operation

usually requires user input.

Moulinec and Suquet (1998) have proposed an alternative method involving Fast Fourier

Transforms (FFT). The method relies on the solution of Lippman-Schwinger equation

(Kröner, 1972) in Fourier space. The solution of this equation determines the stress and

strain fields in the composite. The effective properties are then computed as with the finite

element method. An accelerated version of this algorithm was proposed by Eyre and Milton

(1999). This technique has two main advantages. First, it does not require any meshing, and

hence, has the potential to be automated. Second, it is much faster than the finite element

method for linearly elastic problems (Michel et al., 1999). In addition, the method imposes

periodic boundary conditions, which allows it to efficiently converge towards the RVE (Kanit

et al., 2003).

If random microstructures are considered, the effective properties of different composites

should be evaluated according to the rigorous procedure presented by Kanit et al. (2003). In

this procedure, for given numbers of represented reinforcements, several microstructures are

randomly generated and the effective properties are computed for each of them. The number

of simulations is considered adequate when the effective properties are known within a given

confidence interval, whose width is below a certain threshold. The process is repeated for

an increasing number of reinforcements and the RVE is obtained when the average effective
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properties converge.

4.3.3 Summary of existing works on the effective properties of spherical particles

reinforced composites

Table 4.1 summarizes the various studies which dealt with effective properties computa-

tion for randomly distributed spherical particles reinforced composites using finite element

method. Only the case of two-phase composites with perfect interphase and non-overlapping

spheres was considered. For each case, the type of microstructure studied, the range of

volume fractions and constituent phases mechanical properties contrasts are specified. The

Table 4.1 Summary of previous study dealing with the computation of randomly distributed
spherical particles reinforced composites’ effective properties

Author(s) Microstructure studied
Volume
fractions

Contrasts
E2/E1

Analytical models

Gusev (1997). Isotropic elastic matrix and
spheres*

26.78% 23 Not available.

Llorca et al.
(2000).

Isotropic elastic matrix and
spheres*

up to 50% 4 & 60 MT, SCS, GSCS.

Bohm and Han
(2001).

Isotropic elastic spheres in an
isotropic elastoplastic matrix*

20% 6 HSB, 3PB, 2OE, MT,
GSCS.

Han et al.
(2001).

Isotropic elastic spheres in an
isotropic elastoplastic matrix*

20% 6 HSB, 3PB, MT, SCS,
GSCS.

Bohm et al.
(2002).

Isotropic elastic spheres in an
isotropic elastoplastic matrix*

15% 6 HSB, 3PB, MT, SCS,
GSCS.

Segurado and
Llorca (2002).

Isotropic elastic matrix and
spheres

up to 50% 23 & ∞ MT, GSCS, TOA.

Pierard et al.
(2004).

Isotropic elastic matrix and
spheres*

15 to 52% 23 Voigt, Reuss, HSB, MT,
Lielens.

Marur (2004). Isotropic elastic matrix and
spheres*

up to 40% 23 Three-phase model
(TPM).

Segurado and
LLorca (2006).

Isotropic elastic matrix and
spheres*

15% 6 MT, SCS, TOA.

Sun et al. (2007). Isotropic elastic matrix and
spheres

10 to 60% 44 HSB, MT.

Kari et al.
(2007b).

Isotropic elastic matrix and
spheres

10 to 60% 6 HSB, 3PB, MT, SCS,
GSCS, TOA.

Barello and
Lévesque (2008).

Incompressible isotropic
viscoelastic matrix and
spheres

10 to 25% 10 & 100 MT, SCS, TOA.

Klusemann and
Svendsen (2010).

Isotropic elastic matrix and
spheres

up to 35% up to 20
& ∞

Voigt, Reuss, HSB, MT,
SCS, Lielens, ESCS, IDD.

Cojocaru and
Karlsson (2010).

Isotropic elastic matrix and
spheres

5 to 25% 6 HSB, SCS.
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contrast is defined as E2

E1
, where E is Young’s modulus and subscripts 2 and 1 refer to the

reinforcing and matrix phases, respectively. For clarity, the contrast values were rounded

up to the unit. The symbol “*” in the field “Microstructure studied ” means that the paper

partially focused on determining the effective properties of composites reinforced by spherical

particles. The models listed in the “Analytical models ” column are those against which the

authors compared their predictions.

Table 4.1 reveals that most authors studied the effect of the volume fraction on analytical

homogenization models accuracy. Very few studies dealt with the effect of the mechanical

properties contrast on homogenization models accuracy. In addition, all the authors consid-

ered constituents having very similar Poisson’s ratios.

4.4 Random generation of periodic spherical particles

The algorithm for generating the random microstructures used in this study is inspired

on that proposed by Lubachevsky and Stillinger (1990). The algorithm was implemented

in MATLAB. A fixed number of particles having a null volume were created in a unitary

cube at the beginning of the computation. A random velocity vector was also assigned to

each particle. The spheres were then put in motion and their radius increase according to a

growth rule. The goal of the algorithm was to compute the time at which either one of the

following events occurred: collision between two spheres (Algorithm 4.2) or collision between

one sphere and at least one of the cell faces (Algorithm 4.3). If two particles collided, their

new respective velocity were computed using the kinetic energy principle (Algorithm 4.4).

However, spheres hitting one of the cell faces were copied periodically on the opposite faces

(4.5) in order to meet the periodicity requirement of Moulinec and Suquet’ (1998) algorithm.

The computation ended when the desired volume fraction was reached.

Algorithm 4.1 presents the main program that calls Algorithms 4.2 to 4.5 (see Appendix

4.A). In addition, the following paragraphs detail the various subroutines. Detailed descrip-

tions are given, so that the code can be reproduced by other researchers. In the algorithm

description, the following convention is adopted, unless otherwise specified: a symbol with

an index represents a unique entity for each sphere (i.e., αi). A symbol with a superscript

represents an entity that changes from one calculation step to another (i.e., αn).

4.4.1 Detection of binary collisions

The collision time t between two particles i and j satisfies the following equation:

‖∆rn + ∆vnt‖ =
[
(Rn

i +Rn
j ) + (ai + aj)t

]
(4.1)
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where

∆rn = rni − rnj (4.2a)

∆vn = vni − vnj (4.2b)

Eq. (4.1) leads to a quadratic equation in t, of the form:

αt2 + 2βt+ γ = 0 (4.3)

where

α = ‖∆vn‖2 − (ai + aj)
2 (4.4a)

β = ∆rn ·∆vn − (Rn
i +Rn

j )(ai + aj) (4.4b)

γ = ‖∆rn‖2 − (Rn
i +Rn

j )2 (4.4c)

The various steps for determining the next collision time between two spheres are summarized

in Algorithm 4.2.

4.4.2 Detection of collisions with the cube cell faces

Collision times must be computed between each sphere i and the cube faces that do not

intersect i. The collision time between a sphere and a cell face is given by the following

equation:

τik =


[
Rn
i − rni (k)

][
vni (k)− ai

]−1

for k ∈ {1, 2, 3}[
L− rni (k − 3)−Rn

i

][
vni (k − 3) + ai

]−1

for k ∈ {4, 5, 6}
(4.5)

where rni (m) and vni (m) refers respectively to the mth term of vectors rni and vni . Eq. (4.5)

computes the collision time with faces located at x1 = 0, x2 = 0 and x3 = 0 (k = 1, k = 2

and k = 3 respectively) and with faces located at x1 = L, x2 = L and x3 = L (k = 4, k = 5

and k = 6 respectively). The steps required to compute the next collision time between a

particle and a cubic cell face are outlined in Algorithm 4.3.

4.4.3 Post-collision particles velocities update

Figure 4.1 shows two colliding spheres. Their velocities before collision are divided into

two components: one parallel and one perpendicular to the line connecting their centers. The
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Figure 4.1 Two colliding spheres.

perpendicular components are preserved during the collision. The parallel components are

interchanged while adding the effect of the radius growth rate. The spheres velocities after

collision are computed by adding respectively the new parallel and perpendicular components.

Details of the procedure are presented in Algorithm 4.4.

4.4.4 Creation of periodic particles following their collision with the cubic cell

faces

When a sphere i collides with one or more cube faces, periodic spheres must be created

on opposite sides. The number of periodic spheres created depends on the number of faces

that intersect the sphere i. Each periodic particle has a position vector denoted by prn+1
i and

a velocity vector denoted by pvn+1
i . Each periodic sphere has the same velocity as particle

i but is offset from it by a vector h. h = (a, b, c) where a, b and c can take the values of

{0, L,−L}, depending on which face the periodic particle appears. More details are given in

Algorithm 4.5.

4.4.5 Examples of random microstructures

For illustration purposes, assemblies of 100 spheres with a volume fraction of 50% were

generated in less than 25 seconds using MATLAB 2011a on an Intel i7 Quad Core, 1.60 GHz,



40

Figure 4.2 A packing of 1000 spherical particles randomly distributed in a periodic unit cell.
Volume fraction = 40%. For presentation purposes, the parts of the spheres outside the cell
were cut.

8 GB RAM. The algorithm also reached a volume fraction of 74% which approaches the

theoretical maximum dense packing arrangement for spheres of identical size ( π
3
√

2
≈ 74.05%).

Figure 4.2 shows 1000 identical spherical particles randomly distributed in an elementary cube

for a volume fraction of 40%.

4.5 Determination of composites effective properties with FFT

The effective properties properties were determined using the algorithm proposed in

(Moulinec and Suquet, 1998; Michel et al., 1999) and accelerated by the works of Eyre and

Milton (1999). The following subsections present the outline of this algorithm.

4.5.1 Discretization of the microstructure

The microstructure was discretized into N ×N ×N cubic voxels. Only the parts of the

spheres inside the cell were considered. A material was assigned to each voxel. The rule of

arbitration has been chosen as follows. Nine points uniformly distributed were considered

in each voxel. If the majority of the points belonged to a sphere, then the entire voxel was

assigned the mechanical properties of the spherical particles. Otherwise, the voxel had the

properties of the matrix. Then, the volume fraction of voxels belonging to the spheres was

computed. The discretization was adjusted until the volume fraction reached the microstruc-
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(a) (b)

Figure 4.3 Discretization of an elementary volume containing 30 spherical reinforcements for
a volume fraction of 50%. (a) 32× 32× 32 voxels. (b) 128× 128× 128 voxels.

ture’s volume fraction, within a certain accuracy. Convergence in terms of voxels number is

discussed in detail in Section 4.5.

Figure 4.3 shows an example of discretized microstructures with two different grids. In

Figure 4.3a, the resolution is 32× 32× 32 and the relative error on the volume fraction was

0.16%. However, in Figure 4.3b, a resolution of 128 × 128 × 128 led to a relative error on

volume fraction of 4.77× 10−4%.

4.5.2 Calculation of effective properties

The main steps of the algorithm used for computing the effective properties of composites

are presented here. Algorithm 4.6 lists the various operations implemented in this study.

Specific information is given in the following paragraphs. For more details, consult (Moulinec

and Suquet, 1998; Michel et al., 1999; Eyre and Milton, 1999).

In this algorithm, xd represents the coordinates of voxels in real space while ξd repre-

sents the wave numbers in Fourier space. The Fast Fourier Transforms and its inverse are

respectively represented by FFT and FFT −1. Two types of errors were used to assess con-

vergence: the equilibrium error (εeq) calculated in Fourier space and the compatibility error

(εcomp).

In the algorithm, C0 denotes the stiffness tensor of the reference material computed

from κ0 and µ0 which represent respectively the bulk and shear modulus of the reference
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material (see Moulinec and Suquet (1998) for more details). A Green operator was that for

an isotropic elastic reference material and was given as in Fourier space (Mura, 1987):

G0
ijkl(ξ) =

1

4µ0‖ξ‖2
(δkiξlξj + δliξkξj + δkjξlξi + δljξkξi)−

λ0 + µ0

µ0 (λ0 + 2µ0)

ξiξjξkξl
‖ξ‖4

(4.6)

where λ0 is the Lamé modulus of the reference material and δ denotes Kronecker’s delta.

Composites’ homogenized properties were computed from the volume averaged stresses

and strains. These two entities are related according the following equation:

< σ(x) > = C̃ : < ε(x) > (4.7)

where < · > means an average over the volume and C̃ is the unknown effective tensor.

For each realization, C̃ was not strictly isotropic because a finite number of spheres was

simulated. Consequently, the effective bulk and shear modulus for each realization were

obtained as follows:

µ̃ =
C̃1212 + C̃1313 + C̃2323

3
(4.8a)

κ̃i = C̃iiii −
4

3
µ̃ for i ∈ {1, 2, 3} (4.8b)

κ̃1+i+j = C̃iijj +
2

3
µ̃ for (i, j) ∈

{
(1, 2), (1, 3), (2, 3)

}
(4.8c)

κ̃ =
1

6

6∑
i=1

κ̃i (4.8d)

The algorithm’ implementation was validated by comparing its predictions against those

obtained by finite elements (not shown here). Identical results (within 0.9%) were obtained.

4.5.3 Parallelization of the algorithm

Effective properties were computed by imposing 6 orthogonally different displacement

strain field (when expressed as per the modified Voigt notation). For example, the first column

was determined by imposing a strain in the first principal direction (ε11). The other five

columns were computed in an equivalent manner. Thus, Algorithm 6 can be called six times

independently, which renders its parallelization computationally-efficient. The computation

time was divided by almost 6 when computations were performed on 6 independent workers.

Table 4.2 provides the approximate computation time as a function of the number of

voxels, for µ1 = κ1 = 1 and µ2 = κ2 = 10. The microstructure contained 60 spheres with a
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Table 4.2 Approximate computation time as a function of the number of voxels. µ1 = κ1 = 1
and µ2 = κ2 = 10. Number of spheres = 60. Volume fraction = 30%. Calculations were
performed using MATLAB 2011a on an Intel(R) Xeon(R) Dual Core, 2.40 GHz, 48 GB RAM
and parallelized on 6 local workers.

Voxels number
Computation time (seconds)

Discretization Calculation of effective properties Total

32× 32× 32 0.62 1.36 1.98

64× 64× 64 2.49 10.51 13.00

128× 128× 128 16.96 104.42 121.38

volume fraction of 30%. Calculations were performed using MATLAB 2011a on an Intel(R)

Xeon(R) Dual Core, 2.40 GHz, 48 GB RAM and parallelized on 6 local workers.

4.6 Validation campaign

The accuracy of homogenization models was evaluated for composites made of an isotropic

matrix reinforced with isotropic spherical particles. Four parameters were defined: ρ1 = µ2
µ1

,

ρ2 = κ1
µ1

, ρ3 = κ2
µ1

and νf . ρi represent the normalized contrast with respect to the matrix shear

modulus and νf represent the spheres volume fraction. ρi took values of {1, 10, 100, 1000}
while νf took values of {0.1, 0.2, 0.3, 0.4, 0.5}. Effective properties were therefore obtained for

320 different materials. For each combination of these variables, three types of convergence

were studied. First, the convergence of the stress and strain fields was checked for each realiza-

tion. Second, statistical confidence intervals on the mean effective properties were computed

for each given number of particles represented. For a fixed number of spheres, the number of

realizations was increased until the width of the confidence interval was below a prescribed

threshold. Third, the RVE was determined by increasing the number of spheres and by com-

paring the confidence intervals of the respective effective properties. Implementation of these

three convergences are described in the following subsections.

4.6.1 Convergence of the stress/strain fields

A convergence analysis in terms of number of voxels was performed. A tolerance of 2%

was used on the effective shear and bulk modulus as a criterion of convergence. Let N be

the number of voxels along the cube side. N was initially set to N = 32 and doubled. If the

results converged for N = 64, the simulation stopped. If convergence was not reached, N

was increased to N = 128. For the tested range of contrasts and volume fraction, most cases

converged with 1283 voxels or less.
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(a) (b)

Figure 4.4 (a) Compact arrangement with a volume fraction of spheres equal to π
3
√

2
(≈

74.05%). (b) Compact arrangement diluted to 50% volume fraction of spheres.

However there were cases in which 1283 voxels were not sufficient. It was therefore neces-

sary to discretize the microstructure with 2563 voxels. This discretization requires consider-

able computational resources. In order to avoid running calculations for such large models,

the following approach was defined. For each combination of contrasts where convergence did

not occur at 1283 voxels, a convergence analysis was performed on a compact microstructure

where νf = 50%. To obtain this microstructure, the most compact arrangement was con-

sidered with a volume fraction of spheres equal to π
3
√

2
≈ 0.74 (see Figure 4.4a). Then, this

arrangement was diluted into the matrix until the volume fraction of spheres reached 50%,

as shown in Figure 4.4b. It was assumed that this type of microstructure was the worst case

because the stress and strain fields present high gradients. Therefore, it was assumed that if

convergence in terms of voxels was reached for this type of microstructure, it would also be

reached for any other random microstructures with a spheres volume fraction lower than or

equal to 50%, for the same values of ρi.

For the combinations of {ρi, νf} where convergence was not reached for 1283 voxels, con-

vergence was tested on the compact microstructure for N = {128, 160, 256}. If convergence

occurred at N = 160, 1603 voxels were used for the generated random microstructures. If

convergence was reached at N = 256, microstructures were discretized in 2563 voxels. For

most cases, a discretization of 1603 voxels was sufficient. Only 6 cases out of the 320 required

2563 voxels to converge.
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4.6.2 Effective properties convergence

The mechanical properties were computed using the methodology proposed by Kanit et al.

(2003). For each number of spheres, the number of simulations n was considered sufficient if

the following inequality was satisfied:

max
x=κ̃, µ̃

T n−1
(1−α/2) Sx

x̄
√
n

≤ 0.01 (4.9)

where T is the quantile of the Student distribution with (n− 1) degrees of freedom, S is an

estimate of the standard deviation of x and (1 − α) is the desired confidence level. For this

study, 1−α = 0.95. It should be noted that in each case, a minimum of six simulations were

realized.

4.6.3 Convergence of the RVE

The procedure described in Section 4.6.2 was repeated for an increasing number of spheres.

The RVE was defined as the number of represented spheres above which the effective property

did not significantly change, in statistical terms, with the computed confidence intervals of

Section 4.6.2. The final effective properties were those calculated for the RVE.
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Figure 4.5 Effective properties as a function of the number of represented reinforcements (15,
30, 45 and 60 spheres). µ1 = κ1 = 1, µ2 = κ2 = 10 and νf = 0.3. The error bars represent a
95% confidence interval on the mean value.
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For illustration purposes, Figure 4.5 shows the mean effective moduli, along with their

95% confidence intervals, as a function of the number of represented reinforcements for a

typical case (µ1 = κ1 = 1, µ2 = κ2 = 10 and vf = 0.3).

4.7 Results and discussion

Properties κ̃ and µ̃ computed with the numerical tool (NT) for several contrasts and vol-

ume fractions were compared to the predictions of several analytical homogenization models:

Mori-Tanaka (MT), self-consistent scheme (SCS), general self consistent scheme(GSCS), Lie-

lens and third order approximation (TOA). MATLAB built-in cubic spline interpolation was

used to interpolate between the 320 generated data points. This interpolation was used in

the following plots.

The results are shown for the case where the reinforcements are stiffer than the matrix

(κ2 ≥ κ1 and µ2 ≥ µ1) and for the case where (κ2 ≤ κ1 and µ2 ≥ µ1). For each case, the

shear modulus of the matrix was set to 1 and results are presented for volume fractions of

10%, 30% and 50% .

4.7.1 Spheres stiffer than the matrix (κ2 ≥ κ1 and µ2 ≥ µ1)

For this case, κ1 was set to 1 and contrasts ρ1 and ρ3 were simultaneously varied from 1

to 1000. This led to constituents with constant Poisson’s ratio.

For a volume fraction of 10% (Figure 4.6), predictions are satisfactory for all the studied

models. For κ̃, SCS and Lielens provide the most accurate predictions. For µ̃, SCS seems to

be the most accurate model.

Figure 4.7 shows that the model predictions deviate from the accurate solution when the

volume fraction of spheres is 30%, especially for high contrasts. In this area, MT, GSCS and

TOA models underestimate the accurate solution while the SCS overestimates it. For low

contrasts (ρ1,3 ≤ 70 for κ̃ and ρ1,3 ≤ 20 for µ̃), TOA is the most accurate. However, for high

contrasts (ρ1,3 ≥ 70 for κ̃ and ρ1,3 ≥ 20 for µ̃), Lielens is the most accurate model.

The same behavior is observed when the volume fraction of spherical particles is 50%

(Figure 4.8). However, the predictions of SCS diverge very rapidly when the contrasts ratios

increase. SCS is not adequate for predicting the properties of such composites with high

contrasts and volume fractions. For low contrasts (ρ1,3 ≤ 10), all models lead to similar

predictions while for high contrasts (ρ1,3 ≥ 70 for κ̃ and ρ1,3 ≥ 40 for µ̃), it seems that Lielens

delivers predictions having less discrepancy. It is interesting to note that all models except

SCS predict a plateau when ρ1,3 ≥ 100. This is not the case for the accurate solution.
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4.7.2 Spheres stiffer than the matrix in terms of shear only (κ2 ≤ κ1 and µ2 ≥ µ1)

For this case, κ2 was set to 1 and contrasts ρ1 and ρ2 were simultaneously varied from 1 to

1000. Therefore, the Poisson’s ratios of the two phases are not identical and their difference

increases with increasing contrast.

It is important to note that, for this specific case, the predictions of Lielens are not

shown in the plots. Indeed, our implementation of Lielens model relies on an interpolation

between the strain localization tensors used for computing Hashin and Shtrikman lower and

upper bounds (see Eqs. (25) and (26) in (Lielens et al., 1998)). When the matrix is more

compliant than the reinforcements (i.e. when µ1 ≤ µ2 and κ1 ≤ κ2 simultaneously), the

lower bound corresponds to the estimation of Mori-Tanaka. When the matrix is stiffer than

the reinforcements (i.e. when µ1 ≥ µ2 and κ1 ≥ κ2 simultaneously), the upper bound

corresponds to the Mori-Tanaka estimation. As a result, if the matrix is more compliant

than the reinforcements, the Lielens estimation will always be stiffer than that of Mori-

Tanaka and if the matrix is the stiffest part, the Lielens estimation will be more compliant

than that of Mori-Tanaka. However, when the matrix is neither more compliant or stiffer

than the reinforcements (i.e. when µ1 ≤ µ2 and κ1 ≥ κ2 or µ1 ≥ µ2 and κ1 ≤ κ2) Lielens

model becomes inapplicable. For example, consider the case where µ1 ≤ µ2 and κ1 ≥ κ2.

Consider further that the Mori-Tanaka estimation is computed with µm, µf , κm and κf where

subscripts m and f refer to the matrix and fiber phases, respectively. Then, for this specific

case, the upper Hashin-Shtrikman Bound (HSB) would be computed with the Mori-Tanaka

estimation by setting µm = µ2, µf = µ1, κm = κ1 and κf = κ2 and the lower HSB would

be computed with the Mori-Tanaka estimation be setting µm = µ1, µf = µ2, κm = κ2 and

κf = κ1. The two HSB are computed for materials that do not really exist because they

are a combination of both the matrix and reinforcement properties. Therefore, for the cases

where the matrix is neither more compliant or stiffer than the reinforcements, Lielens model

doest not make physical sense. As a result, for theses cases, the predictions of Lielens model

were not compared with the accurate solution.

Figure 4.9 shows that for a volume fraction of 10%, all models are accurate. For high

contrasts (ρ1,2 ≥ 70 for κ̃ and ρ1,2 ≥ 30 for µ̃), most models deliver inaccurate predictions. In

this area, MT, GSCS and TOA underestimate the effective properties. For this low volume

fraction of spheres, SCS is the most accurate model. To better understand the difference in

behavior between both plots in Figure 4.9, µ2 was set to 10 and only ρ2 was varied from 1 to

1000, as shown in Figure 4.10. For κ̃, a behavior similar to that of Figure 4.9a was observed.

µ̃ remained almost constant as a function of κ1. µ̃ is therefore fairly insensitive to a variation

of κ1. The opposite behavior was observed when κ1 was fixed instead of µ2 (not shown here).

Therefore, the shape shown in Figure 4.6a is typical of the case where κ2 ≥ κ1 while that of
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Figure 4.9a is typical of the case where κ2 ≤ κ1. It should be noted that cases where µ2 ≤ µ1

were not studied in this work and further works are needed to confirm that plots similar to

that of Figure 4.9a would be obtained for these cases.

Similar behavior is observed in Figure 4.11 where the volume fraction of spheres is 30%.

However, SCS is less accurate at this volume fraction than it was at 10%. For κ̃, TOA is the

most accurate model, while for µ̃, GSCS is the closest to the interpolation curve.

When the spheres and the matrix are in equal proportions (Figure 4.12), the predictions

of SCS diverge rapidly from the interpolation curve. The behavior of this model is therefore

similar to that shown in Figure 4.8. For low contrasts (ρ1,2 ≤ 30 for κ̃ and ρ1,2 ≤ 70 for µ̃),

TOA is the most accurate model for the two effective moduli. However, for high contrasts

(ρ1,2 ≥ 70), predictions of GSCS are the closest to the accurate effective shear modulus. For

κ̃, there is no model that accurately represents the accurate solution. Finally, it is important

to note that the accurate effective properties do not reach a plateau in the investigated range

of contrasts while all models (except SCS) predict a convergence of properties for ρ1,2 ≥ 500.

4.7.3 Maximum relative error induced by each analytical model

Tables 4.3 and 4.4 present the maximum relative error made by each analytical model

when predicting respectively κ̃ and µ̃. This relative error ε was computed as:

ε = max
i∈{1,2,...,320}

∣∣∣∣fmi − f eif ei

∣∣∣∣ (4.10)

where f refers to either κ̃ or µ̃, superscripts m and e denote respectively the predictions of

the analytical models and the numerical tool, while subscript i refers to one of the predictions

Table 4.3 Maximum relative error (ε) induced by each analytical model when predicting κ̃ for
320 different combinations of contrasts ratios and spheres volume fractions (except for Lielens
model where only 200 cases were considered). [a, b, c] means that {ρ1, ρ2, ρ3} = {10a, 10b, 10c}.

Models

Volume fractions

10% 20% 30% 40% 50%

ε [a, b, c] ε [a, b, c] ε [a, b, c] ε [a, b, c] ε [a, b, c]

MT 17% [3, 3, 0] 24% [3, 3, 0] 31% [3, 3, 0] 40% [3, 3, 0] 52% [3, 3, 0]

SCS 4% [1, 3, 0] 18% [2, 3, 0] 45% [2, 3, 0] 97% [2, 3, 0] 588% [3, 0, 3]

GSCS 17% [3, 3, 0] 24% [3, 3, 0] 31% [3, 3, 0] 40% [3, 3, 0] 52% [3, 3, 0]

Lielens 1% [3, 0, 3] 5% [0, 0, 3] 12% [0, 0, 3] 23% [0, 0, 3] 42% [0, 0, 3]

TOA 15% [3, 3, 0] 20% [3, 3, 0] 26% [3, 3, 0] 35% [3, 3, 0] 47% [3, 3, 0]
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Table 4.4 Maximum relative error (ε) induced by each analytical model when predicting µ̃ for
320 different combinations of contrasts ratios and spheres volume fractions (except for Lielens
model where only 200 cases were considered). [a, b, c] means that {ρ1, ρ2, ρ3} = {10a, 10b, 10c}.

Models

Volume fractions

10% 20% 30% 40% 50%

ε [a, b, c] ε [a, b, c] ε [a, b, c] ε [a, b, c] ε [a, b, c]

MT 6% [3, 3, 3] 17% [3, 3, 3] 32% [3, 3, 3] 53% [3, 3, 3] 72% [3, 3, 3]

SCS 2% [3, 3, 3] 5% [2, 3, 1] 29% [3, 3, 2] 291% [3, 3, 3] 930% [3, 3, 3]

GSCS 5% [3, 3, 3] 12% [3, 3, 3] 19% [3, 2, 2] 28% [3, 3, 3] 45% [3, 0, 3]

Lielens 8% [3, 3, 0] 17% [3, 3, 0] 25% [3, 3, 0] 41% [3, 3, 3] 60% [3, 3, 3]

TOA 4% [3, 3, 3] 11% [3, 3, 3] 22% [3, 3, 3] 41% [3, 3, 3] 61% [3, 3, 3]

among the 320 generated data points (except for Lielens model where only 200 cases were

considered).

The relative errors are rounded to the unit. For each volume fraction, the combination of

contrasts for which the maximum error was induced is specified. The tables show that the

error made by each model increases with the volume fraction. In addition, errors are always

induced for high contrasts.

When considering κ̃, if ε < 10% was defined as an acceptable threshold, only Lielens and

SCS scheme for a volume fraction of 10% would meet the criteria for the whole ranges of

specified contrasts. For a volume fraction of 20%, only Lielens meet the accuracy criteria.

It is seen that Lielens leads to the lowest value of ε for all studied volume fractions. Thus,

for predicting κ̃, Lielens model is the most accurate model provided that the spheres are

completely stiffer than the matrix.

As for µ̃, and for ε < 10%, all models meet the criteria when the volume fraction is

10%. This is not the case for a volume fraction of 20% where only SCS satisfies the accuracy

criteria. In addition, it is shown that SCS leads to the lowest value of ε for volume fractions

of 10% and 20%, while GSCS leads to the lowest ε for volume fractions of 30%, 40% and

50%.

This shows that no analytical homogenization model stands out of the others as being

more accurate over the whole range of volume fractions and contrasts investigated.

4.7.4 Computations of validity domains for specific models

It is of considerable interest to identify the range of contrasts and volume fractions for

which a given analytical homogenization model delivers predictions where ε is below a pre-
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scribed threshold. For example, when κ1 = µ1 = 1, Figure 4.13 shows the range of κ2 and µ2

for which ε ≤ 0.1, for both κ̃ and µ̃ and for different volume fractions. It should be noted that

for this very specific case, ε ≤ 0.1 for volume fractions of 10% and 20%, for the whole range

of contrasts studied. For higher volume fractions, Figure 4.13 shows that the area covered

by the range of validity decreases as the volume fraction increases.

Similarly, Figure 4.14 compares the range of validity of MT and TOA models for ε ≤ 0.1,

for a volume fraction of 50% and for κ1 = µ1 = 1. It can be seen that TOA outperforms MT

in this specific case.

These simple analyses exemplify the usefulness of generating an important database of

artificial composites. Similar comparisons could be generated for identifying the most suitable

model under specific conditions.

4.8 Conclusion

The contributions of this study are as follows:

� A fully automated numerical tool that can generate random microstructures consti-

tuted of randomly distributed spheres into a matrix and compute their mechanical

effective properties.

� Computation of the effective properties for 320 different spherical particles reinforced

composites over a broad range of contrasts and volume fractions.

� A rigorous validation of several analytical homogenization models for the case of

spherical particles reinforced composites.

The interpolation algorithm is computationally-efficient and combining it with an ex-

panding database will most likely lead to more accurate predictions than any other existing

analytical homogenization model. In due course, this database could be an alternative to

homogenization models for specific microstructures.

Generating the 320 data points presented in this paper required approximately 6 months

of computations on an average of 3 multi-core computers. Indeed, around 16,800 different

simulations were performed for accurately computing the 320 effective properties (taking into

account all the convergence analysis performed). The authors seek collaborations with other

researchers in order to expand their database. Ongoing works are dealing with the case of

random ellipsoids. Other microsctructures could also be studied.

If many teams worldwide unite their efforts in a concerted manner, effective properties for

a wide range of composites will be computed, once and for all. Such an intensive verification

of analytical homogenization models could provide the required confidence levels for their

widespread integration in high technology industry.
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Appendix 4.A Algorithms pseudo-code

Algorithm 4.1 Main Program

1: Define a cube of side L oriented along x1−x2−x3 axes. Set a corner as origin.

2: Define a number of spheres, noted by N and a desired volume fraction, noted by Vf .
3: for each sphere i do

4: Assign a random position vector r0
i .

5: Assign a random velocity vector v0
i .

6: Assign a radius R0
i = 0 and radius growth rate ai = 0.1.

7: end for

8: Initialize time t0 = 0 and actual volume fraction V0 = 0.

9: while Vn < Vf do

10: Compute tc using Algorithm 4.2.

11: Compute ts using Algorithm 4.3.

12: Compute ∆tn = min(tc, ts).

13: Move all spheres to time tn+1 = tn + ∆tn.

14: for each particle i do

15: Update the position: rn+1
i = rni + vni ∆tn.

16: Update the radius: Rn+1
i = Rn

i + ai∆t
n.

17: end for

18: if ∆tn = tc then

19: Update the velocities of the concerned particles using Algorithm 4.4.

20: else if ∆tn = ts then

21: Create periodic image(s) of the concerned particle using Algorithm 4.5.

22: end if

23: Compute the new volume fraction: Vn+1 = 1
L3

N∑
i=1

4
3
π(Rn+1

i )3.

24: end while

25: Perform a scaling by reducing the spheres radii in order to reach Vn+1 = Vf .
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Algorithm 4.2 Detection of binary collisions

1: for each pair of particles i and j (including periodic images) do

2: Compute ∆rn and ∆vn using Eqs. (4.2).

3: Compute α, β and γ using Eqs. (4.4).

4: if (β ≤ 0 or α < 0) and β2 − αγ ≥ 0 then

5: τij = α−1
[
− β −

√
β2 − αγ

]
.

6: else if (β > 0 and α ≥ 0) or β2 − αγ < 0 then

7: No collision.

8: end if

9: end for

10: Select the minimum time tc = min(τij).

Algorithm 4.3 Detection of collisions with the cube cell faces

1: for each particle i do

2: for k = 1→ k = 6 do

3: if particle i does not intersect the kth face of the cube then

4: Compute τik using Eqs. (4.5).

5: end if

6: end for

7: Keep only positive times.

8: end for

9: Select the minimum time ts = min(τik).
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Algorithm 4.4 Post-collision particles velocities update

1: Assume that i and j are the spheres that collided.

2: Compute unit vector: u = (rn+1
i − rn+1

j ) / ‖rn+1
i − rn+1

j ‖.
3: Decompose the velocity of each particle into two components: (‖v) and (⊥v).

4: ‖vnz = (vnz · u)u and ⊥vnz = vnz − ‖vnz where z = {i, j}.
5: Compute the new velocity for each particle:

6: vn+1
i =

[‖vnj + (ai + aj)u
]

+ ⊥vni .

7: vn+1
j =

[‖vni − (ai + aj)u
]

+ ⊥vnj .

8: if particle i has P periodic images (P 6= 0) then

9: for p = 1→ p = P do

10: pvn+1
i = vn+1

i .

11: end for

12: end if

13: if particle j has Q periodic images (Q 6= 0) then

14: for q = 1→ q = Q do

15: qvn+1
j = vn+1

j .

16: end for

17: end if

Algorithm 4.5 Creation of periodic particles following their collision with the cubic cell faces

1: Suppose that particle i collided with m faces.

2: if m = 1 then

3: P = 1.

4: else if m = 2 then

5: P = 3.

6: else if m = 3 then

7: P = 7.

8: end if

9: Create P periodic images of sphere i.

10: for p = 1→ p = P do

11: prn+1
i = rn+1

i + h.

12: pvn+1
i = vn+1

i .

13: end for
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Algorithm 4.6 Computing the effective properties using FFT

1: Initialize the strain field ε0(xd) = ψ, ∀xd ∈ V , where ψ denotes the average tensor of

the periodic strain field to be imposed.

2: Compute κ0 = −√κ1κ2 and µ0 = −√µ1µ2.

3: Compute C0 using κ0 and µ0.

4: Compute G0 using Eq. (4.6).

5: Let C(xd) be the stiffness tensor of a given voxel.

6: Initialize εeq = 1 and εcomp = 1.

7: while max(εeq, εcomp) > 10−4 do

8: if εcomp < 10−4 then

9: σn(xd) = C(xd) : εn(xd).

10: σ̂n = FFT (σn).

11: Compute εeq = ‖σ̂n(0)‖−1
√
< ‖ξd · σ̂n(ξd)‖2 > where < · > represents an

average over all voxels.

12: end if

13: τ n(xd) =
(
C(xd) + C0

)
: εn(xd).

14: τ̂ n = FFT (τ n).

15: ε̂ncomp(ξd) = G0(ξd) : τ̂ n(ξd), ∀ξd 6= 0 and ε̂ncomp(0) = ψ.

16: εncomp = FFT −1(ε̂ncomp).

17: Compute εcomp = ‖ψ‖−1
√
< ‖εn(xd)− εncomp(xd)‖2 >.

18: εn+1(xd) = εn(xd)− 2
(
C(xd)−C0

)−1
: C0 :

(
εncomp(xd)− εn(xd)

)
.

19: end while
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Figure 4.6 Comparison between the mechanical properties predicted with the numerical tool
(NT) and those predicted by analytical models: Mori-Tanaka (MT), self-consistent scheme
(SCS), general self-consistent scheme (GSCS), Lielens and third order approximation (TOA).
The volume fraction of inclusions is 10%. µ1 = κ1 = 1. (a) Normalized bulk modulus. (b)
Normalized shear modulus.
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Figure 4.7 Comparison between the mechanical properties predicted with the numerical tool
(NT) and those predicted by analytical models: Mori-Tanaka (MT), self-consistent scheme
(SCS), general self-consistent scheme (GSCS), Lielens and third order approximation (TOA).
The volume fraction of inclusions is 30%. µ1 = κ1 = 1. (a) Normalized bulk modulus. (b)
Normalized shear modulus.



58

10
0

10
1

10
2

10
3

1

2

3

4

5

6

7

8

9

10

µ2

µ1
,
κ2

µ1

κ̃ µ
1

 

 
NT

Interpolation

MT

SCS

GSCS

Lielens

TOA

(a)

10
0

10
1

10
2

10
3

1

2

3

4

5

6

7

8

9

10

µ2

µ1
,
κ2

µ1

µ̃ µ
1

 

 
NT

Interpolation

MT

SCS

GSCS

Lielens

TOA

(b)

Figure 4.8 Comparison between the mechanical properties predicted with the numerical tool
(NT) and those predicted by analytical models: Mori-Tanaka (MT), self-consistent scheme
(SCS), general self-consistent scheme (GSCS), Lielens and third order approximation (TOA).
The volume fraction of inclusions is 50%. µ1 = κ1 = 1. (a) Normalized bulk modulus. (b)
Normalized shear modulus.



59

10
0

10
1

10
2

10
3

0

5

10

15

20

25

30

µ2

µ1
,
κ1

µ1

κ̃ µ
1

 

 
NT

Interpolation

MT

SCS

GSCS

TOA

(a)

10
0

10
1

10
2

10
3

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

µ2

µ1
,
κ1

µ1

µ̃ µ
1

 

 
NT

Interpolation

MT

SCS

GSCS

TOA

(b)

Figure 4.9 Comparison between the mechanical properties predicted with the numerical tool
(NT) and those predicted by analytical models: Mori-Tanaka (MT), self-consistent scheme
(SCS), general self-consistent scheme (GSCS) and third order approximation (TOA). The
volume fraction of inclusions is 10%. µ1 = κ2 = 1. (a) Normalized bulk modulus. (b)
Normalized shear modulus.
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Figure 4.10 Comparison between the mechanical properties predicted with the numerical tool
(NT) and those predicted by analytical models: Mori-Tanaka (MT), self-consistent scheme
(SCS), general self-consistent scheme (GSCS) and third order approximation (TOA). The
volume fraction of inclusions is 10%. µ1 = κ2 = 1 and µ2 = 10. (a) Normalized bulk
modulus. (b) Normalized shear modulus.
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Figure 4.11 Comparison between the mechanical properties predicted with the numerical tool
(NT) and those predicted by analytical models: Mori-Tanaka (MT), self-consistent scheme
(SCS), general self-consistent scheme (GSCS) and third order approximation (TOA). The
volume fraction of inclusions is 30%. µ1 = κ2 = 1. (a) Normalized bulk modulus. (b)
Normalized shear modulus.
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Figure 4.12 Comparison between the mechanical properties predicted with the numerical tool
(N.T) and those predicted by analytical models: Mori-Tanaka (MT), self-consistent scheme
(SCS), general self-consistent scheme (GSCS) and third order approximation (TOA). The
volume fraction of inclusions is 50%. µ1 = κ2 = 1. (a) Normalized bulk modulus. (b)
Normalized shear modulus.
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Figure 4.13 Mori-Tanaka (MT) range of validity for ε ≤ 10% and for κ1 = µ1 = 1. The arrow
indicates the validity domain. (a) Validity range on the effective bulk modulus. (b) Validity
range on the effective shear modulus.
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Figure 4.14 Range of validity of Mori-Tanaka (MT) and third order approximation (TOA)
for ε ≤ 10%, for a volume fraction of 50% and for κ1 = µ1 = 1. The arrow indicates the
validity domain. (a) Validity range on the effective bulk modulus. (b) Validity range on the
effective shear modulus.
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CHAPTER 5

ARTICLE 2: RANDOM GENERATION OF PERIODIC HARD ELLIPSOIDS

BASED ON MOLECULAR DYNAMICS: A

COMPUTATIONALLY-EFFICIENT ALGORITHM

E. Ghossein and M. Lévesque (2013). Journal of Computational Physics, 253, pp. 471–490.

5.1 Abstract

This paper presents a computationally-efficient algorithm for generating random periodic

packings of hard ellipsoids. The algorithm is based on molecular dynamics where the ellipsoids

are set in translational and rotational motion and their volumes gradually increase. Binary

collision times are computed by simply finding the roots of a nonlinear function. In addition,

an original and efficient method to compute the collision time between an ellipsoid and a

cube face is proposed. The algorithm can generate all types of ellipsoids (prolate, oblate and

scalene) with very high aspect ratios (i.e., > 10). It is the first time that such packings are

reported in the literature. Orientations tensors were computed for the generated packings

and it has been shown that ellipsoids had a uniform distribution of orientations. Moreover,

it seems that for low aspect ratios (i.e., ≤ 10), the volume fraction is the most influential

parameter on the algorithm CPU time. For higher aspect ratios, the influence of the latter

becomes as important as the volume fraction. All necessary pseudo-codes are given so that

the reader can easily implement the algorithm.

5.2 Introduction

Random packings are found in several physics and engineering fields. Several studies relied

on random packings to simulate the behavior of molecular fluids (Gray et al., 1984; Kolafa

and Nezbeda, 1987). They are also widely used in numerical homogenization of random

media (Torquato, 2002; Ghossein and Levesque, 2012) where periodic boundary conditions are

usually imposed since they lead to smaller Representative Volume Elements (RVEs) (Kanit

et al., 2003). When the effective properties are computed from the finite element technique,

the imposition of periodic boundary conditions requires the unit cell to be periodic. In this

case, the random packings must also be periodic.

Several types of random packings were studied in the literature : hard spherical particles

(Ghossein and Levesque, 2012; Segurado and Llorca, 2002; Barello and Lévesque, 2008), cylin-
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ders (Iorga et al., 2008; Redenbach and Vecchio, 2011), ellipsoids (Man et al., 2005; Bezrukov

and Stoyan, 2006; Buchalter and Bradley, 2007), spherocylinders (Allen et al., 1989; Williams

and Philipse, 2003; Zhao et al., 2012), etc. Following the work of Lubachevsky and Stillinger

(1990), algorithms based on molecular dynamics (MD) have become increasingly popular

due to their computational efficiency with respect to algorithms where the particles are gen-

erated sequentially (Rintoul and Torquato, 1997). Algorithms that generate random pack-

ings of spherical particles are now well established (Lubachevsky et al., 1991; Lubachevsky,

1991). They rely on simple equations and, in most cases, analytical solutions exist. This is

not the case for non-spherical models where numerical methods are usually needed. Donev

et al. (2005a) proposed an efficient algorithm that relies on the near-neighbor list (NNL)

method to improve the binary collisions computation time. This algorithm was tested for

generating random packings that contain ellipses and ellipsoids (Donev et al., 2005b). How-

ever, the technique used to determine the collision time between two ellipsoids may not be

computationally-efficient. Indeed, the collision time between two moving ellipsoids is the first

non-zero time value for which the maximum of a certain function is equal to zero. Since the

maximum of this function is computed numerically, the problem could be computationally

expensive. In addition, the authors considered periodic packings but without detailing the

method for computing the collision between an ellipsoid and a cell face.

The aim of this paper is to present a fully detailed computationally-efficient algorithm for

generating random periodic packings of hard ellipsoids. Special emphasis is put on obtaining

a computationally efficient algorithm that can deal with general ellipsoids.

The paper is structured as follows: Section 5.3 reviews the different techniques for gen-

erating random packings. Section 5.4 presents some preliminaries on the mathematical rep-

resentation of an ellipsoid oriented in space. The random generation algorithm is detailed

in Section 5.5. Section 5.6 describes the method for evaluating the orientations dispersion

of random ellipsoids. The performance of the algorithm is discussed in Section 5.7. Several

examples of random packings are also presented.

The following convention has been adopted, unless specified otherwise: scalars are denoted

by lower case letters (i.e. a, α); column vectors and matrices are respectively denoted by

boldfaced lower case letters (i.e. a, α) and boldfaced upper case Latin letters (i.e. A). “× ”

denotes a vector product.

5.3 Background

5.3.1 Existing algorithms for generating random packings

The Random Sequential Adsorption (RSA) algorithm (Rintoul and Torquato, 1997) is
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certainly the most widely used algorithm for generating random packings. At the beginning

of the computation, the position of a particle is randomly selected. Then, the position of

another particle is drawn and the contact is checked between both particles. If there is

interference, the position of the second particle is drawn again until there is no contact with

the first. The process is repeated until the desired number of particles and volume fraction

are reached. Several authors (Segurado and Llorca, 2002; Barello and Lévesque, 2008; Kari

et al., 2007b) have used this algorithm and have struggled to reach high volume fractions.

In its simplest form, this algorithm can generate volume fractions of approximately 30% for

identical spherical particles.

An improved version of the RSA algorithm was proposed by Segurado and Llorca (2002).

A unit cell having a volume fraction lower than the desired value is first generated with

the RSA algorithm. The cell is then compressed in several steps and the particles positions

and volumes are updated at each compression stage. However, this compression leads to

particles interpenetration. It is therefore necessary to check for particles overlapping at each

compression stage. If two particles touch, one of them is displaced along a random vector.

If the particles are still in interference, the particle is placed in its original position and

the process is repeated until the two inclusions no longer intersect. The simulation continues

until the target volume fraction is reached. This modification in the RSA algorithm allows for

denser packings than with the original version (around 50% for identical spherical particles).

Lubachevsky and Stillinger (1990) proposed an algorithm based on molecular dynamics.

This algorithm was originally applied to discs (2D) and spheres (3D) (Lubachevsky et al.,

1991). The main idea of the algorithm is as follows. All inclusions are randomly created in

the unit cell but have a null volume. Each inclusion has also a random velocity vector. The

particles are then set in motion and their volumes gradually increase. Two types of events are

checked at each iteration: binary collisions and collisions between particles and the cell faces.

When a binary collision occurs, the velocities of the two concerned particles are updated

according to the kinetic energy conservation principle. However, if a particle leaves the cell

through a face, it must appear from the opposite side to meet the periodicity conditions.

The simulation stops when the desired volume fraction is reached. This algorithm is more

efficient than the RSA and the modified RSA algorithm since it can generate very dense

packings in a low computation time. For example, a packing of 30 identical spheres with a

volume fraction of 62% can be generated in less than 10 seconds. It was also possible to reach

a volume fraction of 74% (Ghossein and Levesque, 2012), which is close to the theoretical

maximum dense packing for spheres of identical size (≈ 74.05%). This type of algorithm

is called event-driven molecular dynamics (EDMD) where a sequence of discrete events are

predicted and processed. Other authors (Allen et al., 1989) have used a time-driven molecular
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dynamics (TDMD) approach where time is divided into small increments and, at each step

time, differential equations based on Newton’s law are integrated. TDMD algorithm is much

easier to implement than EDMD but is far less efficient, especially for high densities.

The works of Lubachevsky and Stillinger have been extended by Donev et al. (2005a) to

the case of non spherical particles within an EDMD framework. In most cases, the collision

time between inclusions is computed numerically. Since this step requires numerous compu-

tations, Donev et al. introduced the near-neighbor list (NNL) concept to avoid computing

unnecessary collisions. Each particle has a bounding neighborhood and collision between a

pair of particles is checked if their bounding neighborhoods overlap. This method is very

useful for very aspherical inclusions and speeds up considerably the algorithm. The latter

was applied to ellipses (2D) and ellipsoids (3D) (Donev et al., 2005b). To calculate the colli-

sion time between two ellipsoids, the authors made use of the overlap potentials (Perram and

Wertheim, 1985; Perram et al., 1996). The collision time between two moving ellipsoids is the

first root of the overlap potential F (t) that represents the maximum of a certain parametric

function f(t, λ), i.e., F (t) = max
0≤λ≤1

f(t, λ). Since the maximum of f(t, λ) cannot be computed

analytically, the problem takes the form of two optimization subproblems, which can make

the algorithm less computationally-efficient.

Wang et al. (2001) have developed an algebraic condition for defining the relative configu-

ration of two static ellipsoids (separate, tangent or overlapping). Choi et al. (2003, 2009) have

used this condition to develop a continuous collision detection algorithm based on the Bézier

clipping technique. However, their algorithm is only applicable to ellipsoids moving under

rational motions (motions defined by rational function of time). Jia et al. (2011) extended

their work for ellipsoids moving under arbitrary motions by using a symbolic approach. In

this method, the collision time between two ellipsoids is computed by finding the roots of a

function. This technique is discussed in Section 5.5.2.

5.3.2 Orientation tensor

Random packings of ellipsoids are characterized by an Orientation Distribution Function

that provides the probability of an inclusion to be oriented along a given vector. The nature

(e.g. isotropic, transversely isotropic) of an ODF can be characterized with orientation

tensors.

In a global coordinate system Oe1e2e3, the orientation of each ellipsoid is defined by its

two Euler angles, θ and φ (it is assumed that the ellipsoids have an axis of revolution). θ is

the angle between e3 and the ellipsoid’s major axis, while φ is the angle between e1 and the

projection of the ellipsoid’s major axis in the Oe1e2 plane. All possible orientations can be

described when 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π.
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The second-order orientation tensor of a packing containing N ellipsoids is computed as

follows (Advani and Tucker, 1987) :

Tmn =
〈
wimw

i
n

〉
(5.1a)

where 
wi1 = sin θi cosφi

wi2 = sin θi sinφi

wi3 = cos θi

(5.1b)

and 〈·〉 denotes the unweighted average over the N ellipsoids. It should be noted that tr(T) =

1. In the case of isotropic packings, the orientation tensor is equal to 1
3
I, where I is the identity

matrix.

5.4 Representation of an ellipsoid

In this section, the mathematical representation of an ellipsoid is defined. The methodol-

ogy used to determine the configuration of an ellipsoid at time (t+∆t) from its configuration

at time t is also presented.

5.4.1 Static ellipsoid

Let i be an ellipsoid oriented in space and defined in a global coordinate system Oe1e2e3.

Let vector ri(t) denote the position of the ellipsoid’s center O′ at time t. Let the local coordi-

nate system Oe′1e
′
2e
′
3 be aligned along the principal axes of i. The equation of the ellipsoid

in its local coordinate system can be written as :

x′
>
A′

i
(t)x
′ = 0 (5.2a)

where

A′
i
(t) =



(
ai(t)

)−2

0 0 0

0
(
bi(t)

)−2

0 0

0 0
(
ci(t)

)−2

0

0 0 0 −1

 (5.2b)

and ai(t), b
i
(t) and ci(t) represent the length of the semi-principal axes. It should be noted that

x′ = {x1, x2, x3, w}> are the homogeneous coordinates of a point in space. It is the equivalent

of the point x′ =
{
x1
w
, x2
w
, x3
w

}>
in Cartesian coordinates.
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The mathematical representation of i in the global system is obtained with rotation

matrices. Normalized quaternions are used for this purpose instead of Euler angles because

they are more stable numerically (Eberly, 2002) . The orientation of i at time t can be

defined as a rotation of an angle Ωi
(t) around an axis oriented along a unit vector ui(t). The

quaternion of i, consisting of a scalar αi(t) and a vector ψi
(t), is written as follows :

qi(t) =
[
αi(t) ,ψ

i
(t)

]
=

[
cos

Ωi
(t)

2
,

(
sin

Ωi
(t)

2

)
ui(t)

]
(5.3)

Since
∥∥ui(t)∥∥ = 1,

∥∥qi(t)∥∥ =
(
αi(t)
)2

+
∥∥ψi

(t)

∥∥2
= 1 (i.e. the quaternion qi(t) is normalized).

Quaternions have the property that if the ellipsoid undergoes a motion defined by the

quaternion q1 =
[
α1 ,ψ1

]
, followed by a movement defined by the quaternion q2 =

[
α2 ,ψ2

]
,

the total motion of the ellipsoid can be summarized in a single quaternion q12, such that :

q12 = [α12 ,ψ12] =
[
α1α2 −ψ1

>ψ2 , α1ψ2 + α2ψ1 −ψ1 ×ψ2

]
(5.4)

The rotation matrix can be obtained from the quaternion as follows :

Ri
(t) =

[
2
(
αi(t)
)2 − 1

]
I + 2ψi

(t)ψ
i
(t)

>
+ 2αi(t)S

i
(t) (5.5a)

where I is the identity matrix and Si(t) is given by :

Si(t) =


0 −ψi(t)[3] ψi(t)[2]

ψi(t)[3] 0 −ψi(t)[1]

−ψi(t)[2] ψi(t)[1] 0

 (5.5b)

where ψi(t)[k] refers to the kth term of vector ψi
(t).

In homogeneous coordinates, the transition from Oe′1e
′
2e
′
3 to Oe1e2e3 is performed

directly by combining rotation and translation :

x = Mi
(t) x

′ (5.6a)

where

Mi
(t) =

Ri
(t) ri(t)

0> 1

 ⇔
(
Mi

(t)

)−1

=


(
Ri

(t)

)>
−
(
Ri

(t)

)>
ri(t)

0> 1

 (5.6b)
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Using Eqs. (5.2a) and (5.6a), the ellipsoid equation in the global coordinate system becomes:

x>Ai
(t) x = 0 (5.7a)

where

Ai
(t) =

(
Mi

(t)

)−>
A′

i
(t)

(
Mi

(t)

)−1

(5.7b)

where
(
Mi

(t)

)−>
denotes the inverse of

(
Mi

(t)

)>
.

5.4.2 Moving and growing ellipsoid

Let i be an ellipsoid whose configuration at a given time t is determined by its posi-

tion vector ri(t), its quaternion qi(t) and the lengths of its semi-principle axes
{
ai(t), b

i
(t), c

i
(t)

}
.

Moreover, i has linear and angular velocity vectors, denoted respectively by vi and ωi. The

objective is to find the configuration of ellipsoid i at time (t + ∆t), i.e. ri(t+∆t), q
i
(t+∆t) and{

ai(t+∆t), b
i
(t+∆t), c

i
(t+∆t)

}
, while considering that i grows gradually over the time. The new

position of the ellipsoid’s center at that instant is given by :

ri(t+∆t) = ri(t) + vi∆t (5.8)

The new lengths of the semi-principle axes are :
ai(t+∆t) = ai(t) + ai0∆t

bi(t+∆t) = bi(t) + bi0∆t

ci(t+∆t) = ci(t) + ci0∆t

(5.9)

where ai0, bi0 and ci0 represent the semi-principle axes growth rates.

During the time interval ∆t, the ellipsoid has rotated by an angle Ωi = ‖ω‖∆t about an axis

oriented along the unit vector ui = ω/‖ω‖. The quaternion associated with this motion,

denoted by q∆t, can be written as :

qi∆t =
[
αi∆t ,ψ

i
∆t

]
=

[
cos

(∥∥ωi
∥∥∆t

2

)
,

(
sin

(∥∥ωi
∥∥∆t

2

))
ωi∥∥ωi
∥∥
]

(5.10)

Using Eq. (5.4), the quaternion at time (t+ ∆t) becomes:

qi(t+∆t) =
[
αi(t+∆t) ,ψ

i
(t+∆t)

]
=

[
αi(t)α

i
∆t −ψi

(t)

>
ψi

∆t , α
i
(t)ψ

i
∆t + αi∆tψ

i
(t) −ψi

(t) ×ψi
∆t

] (5.11)
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By knowing the position and the quaternion at time (t + ∆t), it is possible to deduce the

rotation matrix Ri
(t+∆t) and the transition matrix Mi

(t+∆t) from Eqs. (5.5) and (5.6b). Finally,

the equation of the ellipsoid in the coordinate system Oe1e2e3 at time (t+ ∆t) is given by:

x>Ai
(t+∆t) x = 0 (5.12a)

where

Ai
(t+∆t) =

(
Mi

(t+∆t)

)−>
A′

i
(t+∆t)

(
Mi

(t+∆t)

)−1

(5.12b)

The matrix A′i(t+∆t) is calculated with Eq. (5.2b) using the lengths of the semi-principal axes

at time (t+ ∆t) obtained with Eq. (5.9)

The algorithm we implemented to define the state of an ellipsoid at time (t + ∆t) from

its state at time t is presented in Appendix 5.A (see Algorithm 5.2).

5.5 Proposed new algorithm

5.5.1 Algorithm outline

At the beginning of the simulation, N ellipsoids are randomly created into a cube of

side L. The ellipsoids volumes are initially null. Each ellipsoid has a random linear and

angular velocity, as well as a random quaternion (i.e. orientation). The semi-principle axes

growth rates {a0, b0, c0} are chosen such that b0 = a0/R1 and c0 = a0/R2, where R1 and

R2 denotes respectively the two aspect ratios that are input in the algorithm. It was found,

after trials and errors, that a0 = 0.1 led to good results. The elliptical particles are then put

in translational and rotational motion and their volumes gradually increase. At each step,

two types of collisions are checked and computed: binary collision between two ellipsoids and

collision between a particle and a cube face. If the first type of collision occurs, the linear and

angular velocities of the involved particles are updated. However, if an ellipsoid intersects a

cube face, its periodic image is created on the opposite side. The algorithm stops when the

volume fraction Vf is reached.

The principal steps of the algorithm are summarized in Algorithm 5.1.

5.5.2 Collision times between ellipsoids

Overlap detection between two static ellipsoids

Let i and j be two ellipsoids at time t with the respective equations x>Ai
(t) x = 0 and

x>Aj
(t) x = 0. Introduce the characteristic equation of i and j as :
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det(λAi
(t) + Aj

(t)) = p1(t)λ
4 + p2(t)λ

3 + p3(t)λ
2 + p4(t)λ+ p5(t) = 0 (5.13)

Algorithm 5.3 details the computation of coefficients pk(t) from matrices Ai
(t) and Aj

(t) (Choi

et al., 2009).

Eq. (5.13) is a 4th-order polynomial and has therefore four roots. Wang et al. (2001)

showed that two of the roots are always real and negative. In addition, the authors have

established a relationship between the nature of the other two roots and the configuration of

the two ellipsoids. They have shown that :

i) i and j are separate if Eq. (5.13) admits two negative and two positive roots.

ii) i and j are externally tangent if Eq. (5.13) admits two negative roots and a double

positive root.

iii) i and j overlap in all other cases.

Therefore, the next collision time between two moving ellipsoids is the first moment

where condition ii) is met. The problem takes the form of an eigenvalue optimization and

can be relatively challenging to solve. It would be more efficient to determine the relationship

between the coefficients pk which ensures the presence of a positive double root.

Jia et al. (2011) have identified a relationship between the coefficients pk(t) and the ellip-

soids configuration (separate, externally tangent or overlap). The technique is based on the

Sylvester-Habicht matrix of the characteristic equation and its first derivative (Basu et al.,

2006). Five coefficients {η1(t), η2(t), η3(t), η4(t), η5(t)} are computed from the coefficients pk(t)

(see Algorithm 5.4). The configuration of ellipsoids i and j at time t is then determined

according to the value of ηk(t). All possible combinations of ηk(t) are summarized in Table

5.1 (see (Jia et al., 2011) for more details).

Table 5.1 Relation between the coefficients ηk(t) and the ellipsoids configuration at time t.

Cases η1(t) η2(t) η3(t) η4(t) η5(t) Ellipsoids configuration

1 = 0 > 0 > 0 > 0 separate

2 > 0 > 0 > 0 separate

3 = 0 > 0 < 0 > 0 externally tangent

4 = 0 = 0 < 0 > 0 externally tangent

5 For all other cases overlap
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Computing the first collision time between two moving ellipsoids

Table 5.1 shows that η1 = 0 when two ellipsoids are externally tangent. Algorithm 5.5

details the implementation of function η1(t+∆t) that provides the value of coefficient η1 for

any value of ∆t. Once the function η1(t+∆t) is implemented, the procedure to compute the

first collision time is as follows. First, all the roots of η1(t+∆t) are computed numerically. This

can be done with the algorithm of (Brent, 2002) which combines the bisection method, the

secant method and the inverse quadratic interpolation. Then, all computed values of ∆t are

sorted in ascending order and the collision time tc is the smallest ∆t value that satisfies case

3 or 4 in Table 5.1.

This technique is very efficient since computing the roots of function η1(t+∆t) is usually

very fast, and in most cases, there are only two.

Contact point between the two ellipsoids

Once tc is computed, it is possible to find the four roots of the characteristic equation

det(λAi
(t+tc)+Aj

(t+tc)) = 0, corresponding to the eigenvalues of the matrix
(
Ai

(t+tc)

)−1

Aj
(t+tc).

Among these four roots, there is a positive double root denoted by λ0. The homogeneous

coordinates of the point of contact xc are the solution of the following equation (Choi et al.,

2009) : (
λ0A

i
(t+tc) −Aj

(t+tc)

)
xc = 0 (5.14)

where xc corresponds to the eigenvector of the matrix
(
Ai

(t+tc)

)−1

Aj
(t+tc) associated with the

eigenvalue λ0.

Improving the computation time of binary collisions

At each iteration, all binary collision times are saved. During an iteration, the collision

time between two ellipsoids is calculated only if the velocities of at least one ellipsoid have

changed since the last iteration or if one ellipsoid is a new periodic image that was created

in the previous iteration. Indeed, if the velocities of a pair of ellipsoids has not changed,

the collision time between this pair can be derived from the collision time obtained at the

previous iteration. It suffices to subtract from the latter the time spent between the last two

iterations.

Furthermore, the algorithm for finding the next binary collisions can be improved if it

is possible to avoid computing collisions that are unlikely to occur. First, the concept of

bounding spheres is introduced. Two ellipsoids cannot collide if their respective bounding

spheres will never overlap. At time t, the bounding sphere of ellipsoid i, denoted by BSi,
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has the same position ri(t) and the same linear velocity vi as the latter. The radius and

the radius growth rate of BSi are respectively given by Ri
(t) = max

(
ai(t), b

i
(t), c

i
(t)

)
and Ri

0 =

max
(
ai0, b

i
0, c

i
0

)
. Two bounding spheres BSi and BSj are in contact if :∥∥∥ri(t) − rj(t)∥∥∥ ≤ Ri

(t) +Rj
(t) (5.15)

If Eq. (5.15) is satisfied, the collision time between the two bounding spheres, denoted

by tBSc , is set to 0. Otherwise, the collision time between BSi and BSj is given by (Ghossein

and Levesque, 2012) :

tBSc =


γ−1

1

[
− γ2 −

√
γ2

2 − γ1γ3

]
if (γ2 ≤ 0 or γ1 < 0) and γ2

2 − γ1γ3 ≥ 0

No collision if (γ2 > 0 and γ1 ≥ 0) or γ2
2 − γ1γ3 < 0

(5.16a)

where 
γ1 =

∥∥∥vi − vj∥∥∥2

−
(
Ri

0 +Rj
0

)2

γ2 =
(
ri(t) − rj(t)

)>(
vi − vj

)
−
(
Ri

(t) +Rj
(t)

)(
Ri

0 +Rj
0

)
γ3 =

∥∥∥ri(t) − rj(t)∥∥∥2

−
(
Ri

(t) +Rj
(t)

)2

(5.16b)

Collision between ellipsoids i and j is computed only if BSi and BSj overlap or will collide

after a certain time. The main advantage of using the bounding spheres method is that the

collision between two spheres is computed analytically unlike ellipsoids where the collision

time is obtained numerically. In addition, the algorithm stores the minimum collision time

(tmin) obtained whenever a pair of ellipsoids has been checked. Therefore, the computation

of collisions between ellipsoids i and j is performed if the collision time between BSi and

BSj is lower than the minimum time stored, i.e. tBSc < tmin.

The algorithm uses also the near-neighbor list (NNL) concept introduced by Donev et al.

(2005a). The neighborhood of an ellipsoid i, denoted by Ni, is also an ellipsoid which is

concentric with i and has the same parameters as the latter. The only difference lies in the

length of the semi-principle axes of Ni which are equal to
{
µai(t), µb

i
(t), µc

i
(t)

}
, where µ is a

scale factor. The value of µ was set to 1.2 in the algorithm. It is possible to reduce the value of

µ during the course of the simulation such that µ→ 1 near the jamming point. The collision

between a pair of ellipsoids i and j is checked only if their respective neighborhood Ni and

Nj overlap or are externally tangent. This reduces considerably the number of collisions to

compute. Overlap between Ni and Nj at time t is checked analytically by computing their

five coefficients ηk(t) using Algorithm 5.5 and by deducing their configuration with Table 5.1.

Algorithm 5.6 details the next binary collision time computation while considering the
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bounding spheres and the NNL concepts. The algorithm provides also the coordinates of the

contact point xc.

5.5.3 Collision time between ellipsoids and the cube faces

Intersection between a stationary ellipsoid and a cube face

Let i be an ellipsoid at time t defined by the equation x>Ai
(t) x = 0. Ai

(t) can be written

as :

Ai
(t) =

 Bi
(t)

1
2
di(t)

1
2
di(t)
>

F i
(t)

 (5.17)

where Bi
(t) is a 3× 3 matrix and di(t) is a 3× 1 vector. The ellipsoid equation becomes :

x>Bi
(t) x+ di(t)

>
x+ F i

(t) = 0 (5.18)

where x denotes Cartesian coordinates. It should be noted that Bi
(t) is symmetric and positive

definite since Eq (5.18) is the equation of an ellipsoid.

Computation of the intersection equation between i and a cube face xk = β (k ∈ {1, 2, 3}
and β ∈ {0, L}) can be accomplished through a change of variables from 3D coordinates (x)

to 2D coordinates (x∗). The transformation can be written as follows :

x = Px∗ + p (5.19a)

where 

x = {x1, x2, x3}>

x∗ = {xl, xm}>

P = [el, em]

p = βek

l,m ∈ {1, 2, 3} ; l < m ; l 6= k 6= m (5.19b)

For example, if the cube face equation is x1 = L, Eq. (5.19a) becomes :
x1

x2

x3

 =

0 0

1 0

0 1

{x2

x3

}
+


L

0

0

 (5.20)

Combination of Eqs. (5.18) and (5.19a) yields the portion of i that intersect the cube’s

face and leads to :
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g(t)(x
∗) = x∗>Bi ∗

(t) x
∗ + di ∗(t)

>
x∗ + F i ∗

(t) = 0 (5.21a)

where 
Bi ∗

(t) = P>Bi
(t) P

di ∗(t) = 2P>Bi
(t) p+ P>di(t)

F i ∗
(t) = p>Bi

(t) p+ di(t)
>
p+ F i

(t)

(5.21b)

The intersection of an ellipsoid with a plane is an ellipse, a point or the empty set. To

determine the nature of the intersection, it is necessary to identify the number of solutions

that satisfy Eq. (5.21a). Since Bi ∗
(t) is positive definite, g(t)(x

∗) is a quadratic convex function

which has a global minimum. The minimum of the function, denoted by x∗min, is derived by

setting ∇x∗

[
g(t)(x

∗)
]

= 0 and leads to :

x∗min = −1

2

(
Bi ∗

(t)

)−1

di ∗(t) (5.22)

The minimum value of g(t)(x
∗), denoted by g†(t), is therefore given by :

g†(t) = g(t)(x
∗
min) = −1

4
di ∗(t)
>
(
Bi ∗

(t)

)−1

di ∗(t) + F i ∗
(t) (5.23)

The intersection type depends on the value of g†(t) :

i) If g†(t) < 0, g(t)(x
∗) crosses zero at various points. Therefore Eq. (5.21a) has several

solutions and the intersection is an ellipse.

ii) If g†(t) = 0, g(t)(x
∗) crosses zero at a single point. Therefore Eq. (5.21a) has a unique

solution and the intersection is a point.

iii) If g†(t) > 0, g(t)(x
∗) does not cross zero. Therefore Eq. (5.21a) has no solution and

the intersection is the empty set.

First collision time between an ellipsoid and a cube face

The collision time between an ellipsoid i and a cube face can be computed by determin-

ing the first value ts such that g†(t+ts) = 0. First, the function g†(t+∆t) is implemented (see

Algorithm 5.7). The roots of g†(t+∆t) are then computed using the Brent algorithm and the

smallest ∆t value corresponds to the next collision time.

Improvement of the next collision time computation efficiency

As in the case of binary collisions, the collision time between an ellipsoid and a cube face
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is computed only if the velocities of the ellipsoid have changed since the previous iteration. It

is also possible to improve the performance of the algorithm by using the concept of bounding

spheres. An ellipsoid i cannot collide with a cube face if its bounding sphere BSi will never

touch this face. At time t, BSi is in contact with the cube face xk = β if :
ri(t)[k]−Ri

(t) ≤ β if β = 0

ri(t)[k] +Ri
(t) ≥ β if β = L

(5.24)

If Eq. (5.24) is satisfied, the collision time between BSi and the cube face xk = β, denoted

by tBSs , is set to 0. Otherwise, tBSs is given by (Ghossein and Levesque, 2012) :

tBSs =


[
Ri

(t) − ri(t)[k]
][
vi(t)[k]−Ri

0

]−1

if β = 0[
β −Ri

(t) − ri(t)[k]
][
vi(t)[k] +Ri

0

]−1

if β = L

(5.25)

Given that the algorithm stores the minimum time (tmin) obtained whenever a collision be-

tween an ellipsoid and a cube face has been processed, the collision between an ellipsoid i

and a cube face xk = β is computed only if tBSs < tmin.

Algorithm 5.8 details the computation of the next collision time between an ellipsoid and

a cube face while considering the bounding sphere concept.

5.5.4 Updating linear and angular velocities after impact

Let i and j be two ellipsoids that collide at time t = tc. The linear (vi− and vj−) and

angular (ωi− and ωj−) velocities before collision are known. The objective is to determine

the linear and angular velocities after impact, i.e. vi+, vj+, ωi+ and ωj+. A system of 12

equations should be defined in order to find these 12 unknowns. Friction is assumed negligible

at the contact surface.

First, the unit normal vector n at the contact point xc is computed. n is defined as going

from i to j (see Figure 5.1) and is given by :

n =
∇
(
x>Ai

(t) x
)∥∥∥∇(x>Ai

(t) x
)∥∥∥ =

2Bi
(t)xc + di(t)∥∥∥2Bi
(t)xc + di(t)

∥∥∥ (5.26)

where Bi
(t) and di(t) are computed from Eq. (5.17).

Two other unit vectors t1 and t2 are defined such that t1, t2 and n form an orthonormal

basis in R3. The kinematics theory used to model the impact is based on the linear and
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Figure 5.1 Two colliding ellipsoids at time tc − δt. n is defined as going from i to j. Vector
t2 (not shown) is perpendicular to n and t1 such that t1 × t2 = n.

angular momentum conservation and is detailed below.

Ellipsoid mass and moment of inertia

Assuming a unit density, the mass and the moment of inertia of an ellipsoid i are given

by :

mi
(t) =

4

3
πai(t)b

i
(t)c

i
(t) (5.27a)

H′
i
(t) =

mi
(t)

5


(
bi(t)

)2

+
(
ci(t)

)2

0 0

0
(
ai(t)

)2

+
(
ci(t)

)2

0

0 0
(
ai(t)

)2

+
(
bi(t)

)2

 (5.27b)

The moment of inertia given by Eq. (5.27b) is expressed in the ellipsoids local coordinate

system. The rotation matrix Ri
(t) can be used to calculate the moment of inertia expression

in the global coordinate system as :
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Hi
(t) = Ri

(t)H
′i
(t)

(
Ri

(t)

)>
(5.28)

Governing equations

For each ellipsoid, the linear momentum along t1 and t2 is conserved during the impact.

This allows to write the following four equations :

mr
(t)v

r+>t1 = mr
(t)v

r−>t1 r = {i, j} (5.29a)

mr
(t)v

r+>t2 = mr
(t)v

r−>t2 r = {i, j} (5.29b)

In addition, the total linear momentum along n is conserved :

mi
(t)v

i+>n+mj
(t)v

j+>n = mi
(t)v

i−>n+mj
(t)v

j−>n (5.30)

Furthermore, the angular momentum about the contact point xc is conserved during the

impact for each ellipsoid. It is then possible to define six new equations :

Hr
(t)ω

r+ +mr
(t)

[
(rr(t) − xc)× vr+

]
= Hr

(t)ω
r− +mr

(t)

[
(rr(t) − xc)× vr−

]
r = {i, j} (5.31)

The last equation is obtained by applying the coefficient of restitution along n while consid-

ering the effect of the ellipsoids growth rate. This equation can be written as :

vc+>n = −e
(
vc−

>
n
)
− 2
[

max
(
ai0, b

i
0, c

i
0

)
+ max

(
aj0, b

j
0, c

j
0

)]
(5.32a)

where e = 1 for a perfect elastic collision. vc− and vc+ denote the closing velocities of the

contact point of i with respect to that of j, before and after collision respectively :
vc− =

[
vi− + ωi− × (xc − ri(t))

]
−
[
vj− + ωj− × (xc − rj(t))

]
vc+ =

[
vi+ + ωi+ × (xc − ri(t))

]
−
[
vj+ + ωj+ × (xc − rj(t))

] (5.32b)

Eqs. (5.29), (5.30), (5.31) and (5.32) form a system of 12 linear equations that can be

easily solved to obtain vi+, vj+, ωi+ and ωj+.

Algorithm 5.9 summarizes the steps needed to compute the velocities after collision.

5.5.5 Post-collision with the cube faces: creation of periodic ellipsoids

When an ellipsoid intersects with a cube face, its periodic image must appear on the

opposite side. The number of periodic images varies depending on the number of faces that
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intersect ellipsoid i. Each periodic image of i has the same quaternion and the same linear

and angular velocities as i. The offset between i and one of its periodic particles is given by

the vector βek, where β ∈ {L,−L} and k ∈ {1, 2, 3}, depending on which face the periodic

particle appears.

Algorithm 5.10 describes the creation of periodic particles when an ellipsoid is in contact

with one or more cube faces.

5.6 Orientations distributions of the generated packings

Orientation tensors were computed using Eqs (5.1) to verify the orientations distributions

in the generated packings. θ and φ were obtained from the quaternions. If an ellipsoid i has

the quaternion qi =
[
αi ,ψi

]
, its angles θi and φi are given by:

θi =
π

2
− sin−1

(
2
(
αiψi[2]− ψi[1]ψi[3]

))
(5.33a)

φi = tan2−1
(

2
(
αiψi[3] + ψi[1]ψi[2]

)
, 1− 2

(
ψi[2]

2
+ ψi[3]

2))
(5.33b)

Define the ratio ρn = λnmax/λ
n
min, where λmax and λmin denotes respectively the maximum

and minimum eigenvalue of the orientation tensor and n a given realization of a random

packing. Let ρ̄ be the average value of the ρn. In the sequel, an ensemble of packings was

considered isotropic when ρ̄ ≈ 1 since ρn ≥ 1.

5.7 Results and discussion

5.7.1 Examples of ellipsoids packings

Figures 5.2, 5.3, 5.4 and 5.5 show several examples of periodic packings generated with

the algorithm presented in this paper. Figure 5.2a shows a packing containing 100 prolate

ellipsoids (R1 = R2 = 3) with a volume fraction of 40%. Prolate ellipsoids are also shown in

Figure 5.2b, but where the aspect ratios are much higher (R1 = R2 = 40) and Vf = 10%.

Figure 5.3 presents two examples of oblate ellipsoids. Figure 5.3a shows a packing containing

100 ellipsoids occupying 40% of the space and with aspect ratios R1 = 3 and R2 = 1 while

Figure 5.3b illustrates a packing containing 50 ellipsoids particles with aspect ratios R1 = 20

and R2 = 1 and a volume fraction of 15%. The algorithm can also generate ellipsoids that

do not have an axis of revolution (asymmetric or scalene ellipsoids) as shown in Figure 5.4.

Figure 5.4a shows 100 scalene ellipsoids with a volume fraction of 30% and aspect ratios of

R1 = 2 and R2 = 5. Figure 5.4b shows a packing containing 1000 asymmetric ellipsoids at

a volume fraction of 20% where R1 = 4 and R2 = 0.5. Finally, it is possible to generate
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ellipsoids particles with random aspect ratios. Figure 5.5a shows 50 polydisperse ellipsoids

with a volume fraction of 30% and where R1 and R2 range from 1 to 5. Figure 5.5b illustrates

a packing of 125 ellipsoids occupying 20% of the space and where 0.1 ≤ R1, R2 ≤ 2.

5.7.2 Orientations dispersion in the generated packings

The distribution of the packings were characterized with the orientation tensors. Two

cases were considered. In the first, the ellipsoids had aspect ratios R1 = 2 and R2 = 2 and

the volume fraction was set to 30%. In the second case, the ellipsoids occupied 10% of the

space and had higher aspect ratios : R1 = 10 and R2 = 10. For each case, six ellipsoids

numbers N were studied, namely {10, 25, 50, 100, 200, 500}.
Figure 5.6 shows the evolution of the ratio ρ̄ as a function of N and 10 realizations.

For both cases, it can be seen that ρ̄ → 1 when N is large enough. In addition, the 95%

confidence intervals are tighter as N increases. This shows that the packings generated by

the algorithm are totally random and the ellipsoids orientations dispersion is uniform, even

for higher aspect ratios. This will remain true even if R1, R2 > 10. Indeed, when the aspect

ratios are high, it is necessary to generate smaller particles to obtain a uniform orientations

distribution, and therefore, a greater number of particles for a fixed volume fraction.

5.7.3 Algorithm performance

Table 5.2 gives the maximum volume fraction reached as a function of aspect ratios R1 and

R2 for prolate and oblate ellipsoids. During a simulation, it is considered that the maximum

volume fraction is reached when the increase in the latter, after 50 successive iterations, is less

Table 5.2 Maximum volume fraction reached as a function of aspect ratios R1 and R2. For
each case, the minimum number of ellipsoids necessary to obtain a uniform distribution of
orientations is given. Approximative CPU times (averaged over 10 runs) are also indicated.

R1

Prolate ellipsoids (R2 = R1) Oblate ellipsoids (R2 = 1)

Vf N tCPU (s) Vf N tCPU (s)

2 60% 30 54.3 60% 30 52.7

5 55% 45 69.9 55% 45 65.2

10 30% 90 48.6 30% 60 39.3

20 20% 175 112.5 20% 75 47.8

30 10% 175 104.9 10% 90 53.7

40 10% 310 181.3 10% 100 92.8



83

than 0.1%. It is obvious that the maximum volume fraction reached decreases when the aspect

ratios increase. In addition, the volume fractions limit values are identical for both prolate

and oblate ellipsoids. When R1, R2 ≤ 10, results are similar to those reported by Donev et al.

(2005b). However, the authors did not present any results for which R1, R2 > 10. This is the

first time that such results are reported in the literature.

Table 5.2 also provides, for each packing, the minimum number of particles required to

obtain a uniform distribution of orientations. These values have been determined by varying

the number of particles and by computing, for each number, the ratio ρn for each of the 10

random realizations. The number of particle N was considered sufficient when ρ̄ was close to

1 (see Sections 5.6 and 5.7.2 for more details). An average CPU time (tCPU) is also given for

each combination of aspect ratios and volume fraction.

Donev et al. (2005b) reported that the binary collision computation took about 2 ms using

Fortran 95 on a 1666 MHz Athlon running Linux. The proposed algorithm uses about 0.07

ms per ellipsoid binary collision using MATLAB 2011a on an Intel i7 Quad Core, 1.60 GHz,

8 GB RAM. The time saving between the two algorithm is much more important than the

improvement in terms of processor. This is due to the fact that in the proposed algorithm, the

collision time is obtained by finding the zero of a function while in that proposed by Donev

et al, the collision time is obtained by solving two optimization subproblems. Finally, the

proposed algorithm takes about 0.02 ms to compute the collision time between an ellipsoid

and a cube face.

To better evaluate the influence of various parameters on the algorithm computation time,

Figures 5.7, 5.8, and 5.9 show the variation of CPU time (averaged over 10 runs) with the

number of particles, the volume fraction and the aspect ratio. Results are only presented for

prolate ellipsoids since similar results were obtained for oblate ellipsoids. Figure 5.7 shows

tCPU as a function of the number of ellipsoids, for different combinations of volume fractions

and aspect ratios. It seems that tCPU varies linearly (on a log-log scale) with N , for N > 100.

The average slope for the five different combinations is 1.5. Thus, tCPU ∝ N1.5. Figure 5.8

shows tCPU as a function of the volume fraction, for a fixed aspect ratio (R1 = R2 = 2). A

trend similar to that shown in Figure 5.7 is observed, whatever the number of particles N .

However, the average slope is approximately 2.6, which means that tCPU ∝ Vf 2.6. Therefore,

tCPU seems to be more sensitive to the volume fraction than to the number of particles (for

the studied ranges). On the other hand, Figure 5.9 shows that when R1 ≤ 10, tCPU ∝ R1
0.6.

However, for high aspect ratios (i.e., R1 > 10), tCPU ∝ R1
2.8. One could conclude that the

aspect ratio has a negligible effect on the CPU time when its value is low (i.e. ≤ 10). This

parameter becomes as dominant as the volume fraction when its value is quite high (i.e.,

> 10).
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5.8 Conclusion

The main contribution of this paper is a detailed computationally-efficient MD algorithm

for generating random packings of periodic ellipsoids. The specific contributions of this paper

are :

� The binary collision times are computed by simply finding the roots of a nonlinear

function, which is a more efficient and simple technique than that presented by

Donev et al. (2005a,b).

� The paper puts more emphasis on periodic packings and presents a novel and efficient

technique to compute the collision time between an ellipsoid and a cell face.

� The necessary steps for processing the impact between two ellipsoids are well estab-

lished and can be used for any types of ellipsoids (prolate, oblate, scalene).

� It is the first time that ellipsoids packings with high aspect ratios (i.e., R1, R2 > 10)

are presented in the literature.

� The algorithm is comprehensive and well documented. Detailed pseudo-codes are

given so the algorithm can be easily implemented by other researchers.

Computation of the orientation tensors has shown a uniform dispersion of the ellipsoids

orientations in the generated packings.

Finally, packings generated with this algorithm will be used in numerical homogenization

where it would be possible to study the effect of fibers orientation and aspect ratios on the

mechanical effective properties of ellipsoidal (i.e., 3D) particles reinforced composites.
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Appendix 5.A Algorithms pseudo-code

Algorithm 5.1 Main Algorithm.

Input: N , R1, R2, Vf
Output: {a, b, c}, r and q of all ellipsoids

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1: Define a cube of side L. Set a corner as origin.

2: for i = 1→ N do

3: Assign a random position vector ri(0).

4: Assign a random quaternion vector qi(0) =
[
αi(0) ,ψ

i
(0)

]
.

5: Assign a random linear
(
vi(0)

)
and angular

(
ωi(0)

)
velocity vector.

6: Assign the semi-principle axis growth rate ai0 = 0.1.

7: Compute bi0 = ai0/R1 and ci0 = ai0/R2.

8: end for

9: Initialize the actual volume fraction V(0) = 0.

10: while V(t) < Vf do

11: Compute tc using Algorithm 5.6.

12: Compute ts using Algorithm 5.8.

13: Compute ∆t = min(tc, ts).

14: for i = 1→ N do

15: Move the particle i from time t to time (t+ ∆t) using Algorithm 5.2.

16: end for

17: if ∆t = tc then

18: Update the velocities of the concerned particles using Algorithm 5.9.

19: else if ∆t = ts then

20: Create periodic image(s) of the concerned particle using Algorithm 5.10.

21: end if

22: Compute the new volume fraction: V(t+∆t) =
1

L3

N∑
i=1

4

3
πai(t+∆t)b

i
(t+∆t)c

i
(t+∆t).

23: t← t+ ∆t.

24: end while

25: Perform a scaling by reducing
{
ai(t+∆t), b

i
(t+∆t), c

i
(t+∆t)

}
in order to reach V(t+∆t) = Vf .
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Algorithm 5.2 Moving an ellipsoid i between time t and time (t+ ∆t)

Input: ri(t), q
i
(t) =

[
αi(t) ,ψ

i
(t)

]
, vi, ωi,

{
ai(t), b

i
(t), c

i
(t)

}
,
{
ai0, b

i
0, c

i
0

}
, ∆t

Output:
{
ai(t+∆t), b

i
(t+∆t), c

i
(t+∆t)

}
, ri(t+∆t), q

i
(t+∆t), Ai

(t+∆t), Ri
(t+∆t), Mi

(t+∆t)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1: Compute the new position ri(t+∆t) using Eq. (5.8).

2: Compute ai(t+∆t), b
i
(t+∆t) and ci(t+∆t) using Eq. (5.9).

3: Compute the quaternion qi∆t using Eq. (5.10).

4: Compute the quaternion qi(t+∆t) using Eq. (5.11).

5: Compute Ri
(t+∆t) and Mi

(t+∆t) using Eqs. (5.5) and (5.6b).

6: Compute A′i(t+∆t) using Eq. (5.2b).

7: Compute Ai
(t+∆t) using Eq. (5.12b).

Algorithm 5.3 Computing the coefficients pk(t) of Eq. (5.13) for ellipsoids i and j

Input: Mi
(t),
{
ai(t), b

i
(t), c

i
(t)

}
, Aj

(t).

Output: pk(t)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1: Compute C =
(
Mi

(t)

)>
Aj

(t)

(
Mi

(t)

)
.

2: Let δ1 =
(
1/ai(t)

)2
, δ2 =

(
1/bi(t)

)2
and δ3 =

(
1/ci(t)

)2
.

3: Compute p1(t) = −δ1δ2δ3.

4: Compute p2(t) = −
(
δ2δ3C11 + δ1δ3C22 + δ1δ2C33 − δ1δ2δ3C44

)
.

5: Compute p3(t) = δ1δ2

(
C33C44 − C34C43

)
+ δ2δ3

(
C11C44 − C14C41

)
+ δ1δ3

(
C22C44 −

C24C42

)
+ δ1

(
C23C32 − C22C33

)
+ δ2

(
C13C31 − C11C33

)
+ δ3

(
C12C21 − C11C22

)
.

6: Compute p4(t) =

δ1

(
C22C33C44 − C22C34C43 − C33C42C24 − C44C32C23 + C32C24C43 + C42C23C34

)
+

δ2

(
C11C33C44 − C11C34C43 − C33C14C41 − C44C13C31 + C31C14C43 + C41C13C34

)
+

δ3

(
C11C22C44 − C11C24C42 − C22C14C41 − C44C12C21 + C21C14C42 + C41C12C24

)
+

C11C23C32 + C22C13C31 + C33C12C21 − C11C22C33 − C21C13C32 − C31C12C23.

7: Compute p5(t) = det
(
Aj

(t)

)
.
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Algorithm 5.4 Computing the coeffcients ηk(t) for ellipsoids i and j

Input: pk(t)

Output: ηk(t)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1: Compute p̄1 = −p2(t)/(4p1(t)), p̄2 = p3(t)/(6p1(t)), p̄3 = −p4(t)/(4p1(t)) and p̄4 =

p5(t)/p1(t).

2: Compute β1 =
(
p̄4 − p̄1p̄3

)
+ 3
(
p̄2

2 − p̄1p̄3

)
.

3: Compute β2 = −p̄3

(
p̄3 − p̄1p̄2

)
− p̄4

(
p̄2

1 − p̄2

)
− p̄2

(
p̄2

2 − p̄1p̄3

)
.

4: Compute η1(t) = β3
1 − 27β2

2 .

5: Compute η2(t) = −9
(
p̄3 − p̄1p̄2

)2
+ 27

(
p̄2

1 − p̄2

)(
p̄2

2 − p̄1p̄3

)
− 3
(
p̄4 − p̄1p̄3

)(
p̄2

1 − p̄2

)
.

6: Compute η3(t) = β1

(
p̄3 − p̄1p̄2

)
− 3p̄1β2.

7: Compute η4(t) = −
(
p̄4 − p̄1p̄3

)
.

8: Compute η5(t) =
(
p̄2

1 − p̄2

)
.

Algorithm 5.5 Function ηk(t+∆t) for ellipsoids i and j

Input: ∆t

Output: ηk(t+∆t)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1: Compute
{
ai(t+∆t), b

i
(t+∆t), c

i
(t+∆t)

}
and Mi

(t+∆t) for ellipsoid i using Algorithm 5.2.

2: Compute Aj
(t+∆t) for ellipsoid j using Algorithm 5.2.

3: Compute pk(t+∆t) using Algorithm 5.3.

4: Compute
{
η1(t+∆t), η2(t+∆t), η3(t+∆t), η4(t+∆t), η5(t+∆t)

}
using Algorithm 5.4.
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Algorithm 5.6 Finding the next binary collision time (Part 1)

Input:
{
a(t), b(t), c(t)

}
,
{
a0, b0, c0

}
, r(t), q(t), v, ω of all ellipsoids

Output: tc, xc

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1: Set tmin = realmax and µ = 1.2.

2: for i = 1→ N − 1 (including periodic ellipsoids) do

3: for j = i+ 1→ N (including periodic ellipsoids) do

4: if vi or vj have changed since last iteration then

5: Compute Rr
(t) = max

(
ar(t), b

r
(t), c

r
(t)

)
and Rr

0 = max
(
ar0, b

r
0, c

r
0

)
where r = {i, j}.

6: Compute tBSc using Eqs. (5.15) and (5.16).

7: if 0 ≤ tBSc < tmin then

8: Define ellipsoids Ni and Nj using µ.

9: Compute ηk(t) for Ni and Nj using Algorithm 5.5 (use ∆t = 0).

10: if Ni and Nj are externally tangent or overlap then

11: test1 = true.

12: else

13: test1 = false.

14: end if

15: else

16: test1 = false.

17: end if

18: if test1 = true then

19: Define the function η1(t+∆t) using Algorithm 5.5.

20: Compute all roots of η1(t+∆t): ∆t1 < ∆t2 < . . . < ∆tn.

21: test2 = false.

22: for p = 1→ n do

23: Compute ηk(t+∆tp) for i and j using Algorithm 5.5.

24: if
{
η1(t+∆tp) = 0, η2(t+∆tp) > 0, η3(t+∆tp) < 0 and η5(t+∆tp) > 0

}
or{

η1(t+∆tp) = 0, η2(t+∆tp) = 0, η4(t+∆tp) < 0 and η5(t+∆tp) > 0
}

then

25: Compute tmin = min(∆tp, tmin).

26: test2 = true.

27: break

28: end if

29: end for
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Algorithm 5.6 Finding the next binary collision time (Part 2)

30: if test2 = false then

31: Return No collision between i and j.

32: end if

33: else

34: Return No collision between i and j.

35: end if

36: else

37: Deduce the binary collision time ∆t from last iteration.

38: Compute tmin = min(∆t, tmin).

39: end if

40: end for

41: end for

42: Set tc = tmin.

43: Compute Ai
(t+tc) and Ai

(t+tc) using Algorithm 5.2.

44: Compute the eigenvalues of matrix
(
Ai

(t+tc)

)−1

Aj
(t+tc).

45: Search for the double positive eigenvalue λ0.

46: Compute xc using Eq. (5.14).

Algorithm 5.7 Function g†(t+∆t) between an ellipsoid i and a cube face xk = β

Input: ∆t

Output: g†(t+∆t)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1: Compute Ai
(t+∆t) using Algorithm 5.2.

2: Deduce Bi
(t+∆t), d

i
(t+∆t) and F i

(t+∆t) using Eq. (5.17).

3: Compute P and p using Eq. (5.19b).

4: Compute Bi ∗
(t+∆t), d

i ∗
(t+∆t) and F i ∗

(t+∆t) using Eq. (5.21b).

5: Compute g†(t+∆t) using Eq. (5.23).
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Algorithm 5.8 Finding the next collision time between an ellipsoid and a cube face

Input:
{
a(t), b(t), c(t)

}
,
{
a0, b0, c0

}
, r(t), q(t), v, ω of all ellipsoids

Output: ts

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1: Set tmin = realmax.

2: for i = 1→ N do

3: Compute Ri
(t) = max

(
ai(t), b

i
(t), c

i
(t)

)
and Ri

0 = max
(
ai0, b

i
0, c

i
0

)
.

4: for k = 1→ 3 do

5: for β = {0, L} do

6: if vi has changed since last iteration then

7: if particle i does not intersect the cube face xk = β then

8: Compute tBSs using Eqs. (5.24) and (5.25).

9: if 0 ≤ tBSs < tmin then

10: Define the function g†(t+∆t) using Algorithm 5.7.

11: Compute all n roots of g†(t+∆t): ∆t1 < ∆t2 < . . . < ∆tn.

12: if n 6= 0 then

13: Compute tmin = min(∆t1, tmin).

14: else

15: Return No collision between i and xk = β.

16: end if

17: else

18: Return No collision between i and xk = β.

19: end if

20: end if

21: else

22: Deduce the collision time ∆t from last iteration.

23: Compute tmin = min(∆t, tmin).

24: end if

25: end for

26: end for

27: end for

28: Set ts = tmin.
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Algorithm 5.9 Computing velocities after impact at time t = tc

Input: ri(t), r
j
(t), q

i
(t), q

j
(t), v

i−, vj−, ωi−, ωj−,
{
ai(t), b

i
(t), c

i
(t)

}
,
{
aj(t), b

j
(t), c

j
(t)

}
,
{
ai0, b

i
0, c

i
0

}
,{

aj0, b
j
0, c

j
0

}
, xc

Output: vi+, vj+, ωi+, ωj+

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1: Compute Ar
(t), Rr

(t) using Algorithm 5.2, where r = {i, j}.
2: Compute n using Eq. (5.26).

3: Compute t1 and t2 such that t1 × t2 = n.

4: Compute mr
(t) and H′r(t) using Eq. (5.27a) and (5.27b), where r = {i, j}.

5: Compute Hr
(t) using Eq. (5.28), where r = {i, j}.

6: Define the linear equations system using Eqs. (5.29), (5.30), (5.31) and (5.32).

7: Solve the equations system to find vi+, vj+, ωi+ and ωj+.

8: if ellipsoid i has P i periodic image(s) (P i 6= 0) then

9: for p = 1→ P i do

10: vp = vi+.

11: ωp = ωi+.

12: end for

13: end if

14: if ellipsoid j has P j periodic image(s) (P j 6= 0) then

15: for p = 1→ P j do

16: vp = vj+.

17: ωp = ωj+.

18: end for

19: end if
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Algorithm 5.10 Creation of periodic images following the collision between a particle and the
cube faces at time t = ts

Input: ri(t), q
i
(t), v

i, ωi,
{
ai(t), b

i
(t), c

i
(t)

}
,
{
ai0, b

i
0, c

i
0

}
Output: Periodic particles of ellipsoid i

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1: Suppose that particle i collided with m faces.

2: if m = 1 then

3: P i = 1.

4: else if m = 2 then.

5: P i = 3.

6: else if m = 3 then

7: P i = 7.

8: end if

9: Create P i periodic image(s) of ellipsoid i.

10: for p = 1→ P i do

11: rp(t) = ri(t) + βek where β ∈ {L,−L} and k ∈ {1, 2, 3}.
12: qp(t) = qi(t).

13: vp = vi.

14: ωp = ωi.

15: end for
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(a) (b)

Figure 5.2 Random packings of prolate ellipsoids. (a) N = 100, R1 = 3, R2 = 3, Vf = 40%.
(b) N = 300, R1 = 40, R2 = 40, Vf = 10%.

(a) (b)

Figure 5.3 Random packings of oblate ellipsoids. (a) N = 100, R1 = 3, R2 = 1, Vf = 40%.
(b) N = 50, R1 = 20, R2 = 1, Vf = 15%.
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(a) (b)

Figure 5.4 Random packings of scalene ellipsoids. (a) N = 100, R1 = 2, R2 = 5, Vf = 30%.
(b) N = 1000, R1 = 4, R2 = 0.5, Vf = 20%.

(a) (b)

Figure 5.5 Random packings of polydisperse ellipsoids. (a) N = 50, 1 ≤ R1, R2 ≤ 5, Vf =
30%. (b) N = 125, 0.1 ≤ R1, R2 ≤ 2, Vf = 20%.
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Figure 5.6 Ratio ρ̄ as a function of the ellipsoids number N . Each point represents the mean
value obtained for 10 random realizations. 95% confidence intervals are shown.
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Figure 5.7 CPU time (averaged over 10 realizations) as a function of the ellipsoids number
(prolate).
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Figure 5.8 CPU time (averaged over 10 realizations) as a function of the volume fraction for
prolate ellipsoids. R1 = 2, R2 = 2.
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Figure 5.9 CPU time (averaged over 10 realizations) as a function of the aspect ratio for
prolate ellipsoids. Vf = 10%.
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CHAPTER 6

ARTICLE 3: A COMPREHENSIVE VALIDATION OF ANALYTICAL

HOMOGENIZATION MODELS: THE CASE OF ELLIPSOIDAL PARTICLES

REINFORCED COMPOSITES

E. Ghossein and M. Lévesque (2014). Mechanics of Materials, 75, pp. 135–150.

6.1 Abstract

This paper presents a rigorous and exhaustive evaluation of the analytical homogenization

models accuracy for the case of randomly distributed and oriented ellipsoidal fibers reinforced

composites. Artificial random microstructures were generated using a molecular dynamics

(MD) algorithm. Numerical effective properties were computed using a Fast Fourier Trans-

forms (FFT) based technique. The numerical predictions were compared to those of the

analytical models for a wide range of phases mechanical properties, fibers volume fractions

and aspect ratios. The validation campaign involved a rigorous Representative Volume El-

ement (RVE) determination process and approximately, 66000 simulations were performed.

The results show that the analytical models accuracy is more sensitive to the mechanical

properties contrasts than to the fibers volume fraction and aspect ratio. Among all the

studied models, Lielens’ model remains the most accurate, especially for high contrasts and

volume fractions. For high aspect ratio fibers, Lielens’s model and Beveniste’s interpretation

of the Mori-Tanaka model provide similar estimates, especially when predicting the effective

shear modulus. In this case, the latter could be an alternative to Lielens’ model, especially

for composites where the fibers are not completely stiffer than the matrix. All conclusions of

this study apply to both prolate and oblate ellipsoidal fibers.

6.2 Introduction

Homogenization models rely on microstructural information (e.g., constituents properties,

volume fractions, shapes, orientations, etc.) to predict the effective properties of heteroge-

neous materials. Several analytical homogenization models have been developed for predict-

ing the mechanical properties of ellipsoidal fibers reinforced composites, such as the dilute

solution of Eshelby (Eshelby, 1957), the Hashin-Shtrikman bounds (Hashin, 1962; Hashin and

Shtrikman, 1963), the self-consistent scheme (Budiansky, 1965; Hill, 1965), the Mori-Tanaka
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model (Mori and Tanaka, 1973; Benveniste, 1987), the model of Ponte Castaneda and Willis

(Castaneda and Willis, 1995) and Lielens’ model (Lielens et al., 1998), among others.

To the knowledge of the authors, no study rigorously and thoroughly dealt with the

performance evaluation of these models for a wide range of phases mechanical properties,

fibers volume fractions and aspect ratios, in three dimensions. Tucker and Liang (1999)

compared the predictions of a limited number of models against finite element simulations

for aligned fibers reinforced composites. Other works have studied the case of Randomly

Oriented Fiber Reinforced Composites (ROFRC) (Bohm et al., 2002; Lusti and Gusev, 2004;

Kari et al., 2007a; Mortazavi et al., 2013; Moussaddy et al., 2013a) and spherical particles

reinforced composites (Bohm and Han, 2001; Pierard et al., 2004; Marur, 2004; Kari et al.,

2007b; Klusemann and Svendsen, 2010; Cojocaru and Karlsson, 2010; Ghossein and Levesque,

2012). Several researchers were also interested in the validity domains of micromechanical

models when predicting the elastic properties of microstructures with aligned and randomly

oriented clay platelets (Sheng et al., 2004; Hbaieb et al., 2007; Figiel and Buckley, 2009;

Pahlavanpour et al., 2013). These studies dealt with a very narrow range of fiber/matrix

rigidity contrasts, i.e., Young’s modulus of the fibers divided by the Young’s modulus of the

matrix, for isotropic constituents, lower than 30 (Bohm and Han, 2001; Pierard et al., 2004;

Marur, 2004; Sheng et al., 2004; Kari et al., 2007a,b; Cojocaru and Karlsson, 2010) and fibers

aspect ratio, i.e., length divided by diameter inferior to 5 (Bohm et al., 2002; Hua and Gu,

2013). Furthermore, some authors have limited their work to low reinforcements volume

fractions (≤ 3%), and eluded the rigorous evaluation of the Representative Volume Element

(RVE) (Lusti and Gusev, 2004; Mortazavi et al., 2013).

The aim of this paper is to rigorously and thoroughly validate the performance of analyti-

cal homogenization models for two-phase composites reinforced by randomly distributed and

oriented ellipsoidal fibers with a fully automated numerical procedure based on Fast Fourier

Transforms (FFT) (Moulinec and Suquet, 1998). The paper is organized as follows: Section

6.3 presents a literature review on analytical and numerical homogenization. The first part

reviews the different analytical homogenization models for predicting the elastic properties

of ellipsoidal particles reinforced composites. The second presents the main algorithms used

in the literature for generating random microstructures, as well as the different numerical

techniques for computing their effective properties. Section 6.4 summarizes the algorithms

implemented in the numerical tool for generating ellipsoidal fibers reinforced microstructures.

The algorithm used to compute the effective properties is presented in Section 6.5. Section

6.6 describes the methodology adopted for the validation campaign. A rigorous and compre-

hensive validation of several homogenization models is performed in Section 6.7. Effective

properties predicted by analytical models are compared to those obtained numerically. A
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discussion and analysis of the results concludes the paper.

The Einstein summation convention has been adopted, unless specified otherwise. Lower

case letters (e.g., a, α) and boldfaced lower case Latin letters (e.g., a) denote respectively

scalars and vectors; boldfaced lower case Greek letters (e.g., α) and boldfaced upper case

Latin letters (e.g., A) denote respectively second and fourth order tensors.

6.3 Background

6.3.1 Analytical homogenization models

The overall elasticity tensor of a two-phase composite is given by:

C̃ = C1 + c2

〈(
C2 −C1

)
: A
〉

(6.1)

where Ci and ci denote respectively the stiffness tensor and the volume fraction of phase “i”

while A denotes the strain-localization tensor related to each model. Subscripts “1” and “2”

refer to the matrix and fibers, respectively, and 〈M〉 represents orientation averaging of a

given tensor M, such as:

〈
Mijkl

〉
=

1

2π2

π∫
−π

π∫
0

π/2∫
0

ωimωjnωkoωlpMmnop sin(φ)dθdφdψ (6.2)

where θ, φ and ψ refers to the Euler angles and ω denotes the rotation tensor (Odegard et al.,

2003).

The strain-localization tensor for Eshelby’s dilute solution is (Eshelby, 1957):

AEsh =
[
I + S1 : C−1

1 :
(
C2 −C1

)]−1

(6.3)

where I is the identity tensor. S1 is Eshelby’s tensor computed using the matrix mechanical

properties and depends on the ellipsoidal fibers aspect ratios.

The strain-localization tensor for the self-consistent model is given by (Budiansky, 1965;

Hill, 1965):

ASC =
[
I + S̃ : C̃−1 :

(
C2 − C̃

)]−1

(6.4)

where S̃ is Eshelby’s tensor obtained by considering the effective composite as the infinite

media. Since S̃ and C̃ are initially unknown, the self consistent scheme is an implicit model

that is iteratively solved.

In the Mori-Tanaka model, A is written as (Mori and Tanaka, 1973):
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AMT = T :
[
c1I + c2T

]−1

(6.5a)

where:

T = AEsh =
[
I + S1 : C−1

1 :
(
C2 −C1

)]−1

(6.5b)

Weng (1992, 1990, 1984) has shown that for ellipsoidal reinforcements, the Mori-Tanaka

model is equivalent to the Hashin-Shtrikman-Walpole lower bound (Walpole, 1966; Willis,

1977; Weng, 1992).

Benveniste (1987) proposed a new formulation of the Mori-Tanaka model which is suitable

for composites with randomly oriented fibers. He developed a one-step method where the

orientation averaging is directly performed on tensor T. His estimate reads:

C̃Ben = C1 + c2

〈(
C2 −C1

)
: T
〉

:
[
c1I + c2

〈
T
〉]−1

(6.6)

It should be noted that this model delivers non-symmetric effective tensors for many mi-

crostructures (e.g., reinforcements with different aspect ratios) (Ferrari, 1991; Benveniste

et al., 1991), which is physically invalid. However, since this study deals with inclusions of

identical aspect ratios, Eq.(6.6) leads to symmetric tensors.

Lielens et al. (1998) have developed a model that interpolates nonlinearly between the

Hashin-Shtrikman-Walpole bounds for aligned reinforcements (Walpole, 1966; Willis, 1977;

Weng, 1992). More specifically, this model interpolates the inverse of the strain-localization

tensor between the case where the stiffest phase is embedded in the more compliant phase and

that where the most compliant phase is embedded in the stiffest phase (Tucker and Liang,

1999). A is given by:

ALI = ÂLI :
[
c1I + c2Â

LI
]−1

(6.7a)

where:

ÂLI =

{(
1− vf

)[
Âlower

]−1

+ vf

[
Âupper

]−1
}−1

, (6.7b)

vf is the interpolation factor and is related to the inclusions volume fraction (Lielens et al.,

1998; Tucker and Liang, 1999):

vf =
1

2
c2(1 + c2) , (6.7c)

Âlower and Âupper are computed as:

Âlower =
[
I + S1 : C−1

1 :
(
C2 −C1

)]−1

(6.7d)

Âupper =
[
I + S2 : C−1

2 :
(
C1 −C2

)]−1

(6.7e)
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where S2 is Eshelby’s tensor computed by using the fibers properties as the infinite media.

6.3.2 Numerical homogenization

Random microstructures generation

Most artificial random microstructures found in the literature were generated by the Ran-

dom Sequential Adsorption (RSA) algorithm (Rintoul and Torquato, 1997), and its modifica-

tions (Segurado and Llorca, 2002). The main disadvantage of this algorithm is the difficulty

to generate microstructures with high number of fibers and volume fraction in a reasonable

computational time (Segurado and Llorca, 2002; Barello and Lévesque, 2008). Lubachevsky

and Stillinger (1990) proposed an algorithm based on molecular dynamics (MD) that can

achieve high volume fractions, up to the theoretical packing limit, for spherical particles in

a very short computation time (Ghossein and Levesque, 2012). Donev et al. (2005b) relied

on the principles of MD algorithms to generate random packings of elliptical (2D) and el-

lipsoidal (3D) particles. Ghossein and Levesque (2013) have proposed a modified version of

their algorithm that can generate all types of ellipsoids (prolate, oblate, scalene) with high

aspect ratios (i.e., > 10) in a computationnally efficient manner.

Computation of composites effective properties

Most of the published works dealing with the computation of composites effective prop-

erties relied on the Finite Element Method (FEM) (Llorca et al., 2000; Bohm et al., 2002;

Segurado and Llorca, 2002; Kari et al., 2007b; Barello and Lévesque, 2008; Klusemann and

Svendsen, 2010; Cojocaru and Karlsson, 2010; El-Mourid et al., 2012; Pahlavanpour et al.,

2013; Moussaddy et al., 2013b). However, this technique cannot be fully automated since the

meshing operation usually requires user input, especially for large volume fractions and/or

aspect ratios.

Moulinec and Suquet (1998) have proposed an algorithm that computes the effective

properties of composites based on Fast Fourier Transforms (FFT). The algorithm consists of

discretizing the microstructures into voxels and solving, in each voxel, the constitutive law

in Fourier space. The mechanical properties are then deduced from the volume averaged

stresses and strains over all the voxels. The technique was accelerated by the work of Eyre

and Milton (1999). The advantage of this method stems from its rate of convergence and the

fact that it does not require meshing. Furthermore, this method imposes periodic boundary

conditions, which allows it to efficiently converge towards the RVE (Kanit et al., 2003).
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(a) (b)

Figure 6.1 (a) Random microstructure containing 1000 prolate ellipsoids. Volume fraction
= 30%. R1 = R2 = 3. (b) Random microstructure containing 50 oblate ellipsoids. Volume
fraction = 15%. R1 = 20, R2 = 1.

6.4 Generation of periodic ellipsoidal particles volume elements

The algorithm of Ghossein and Levesque (2013) was used to generate a wide range of

microstructures. Two aspect ratios were defined: R1 = ai/bi and R2 = ai/ci, where {ai, bi, ci}
denote the semi-principal axes length of ellipsoid i. A minimal distance of 10−3L was imposed

between two ellipsoids, where L is the cube’s length. Figure 6.1a shows a periodic packing

1000 prolate ellipsoids with a volume fraction of 30% and an aspect ratio of 3 (R1 = R2 = 3).

Figure 6.1b shows a periodic packing containing 50 oblate ellipsoids with an aspect ratio of

20 (R1 = 20, R2 = 1) and a volume fraction of 15%. These two packings were generated in

less than 20 seconds on an Intel i7 Quad Core running at 1.60 GHz and with 8 GB of RAM.

6.5 Computation of composites effective properties using FFT

The effective properties of the generated microstructures were computed using the tech-

nique of Moulinec and Suquet (1998) and accelerated with the algorithm of Eyre and Milton

(1999).

The microstructure was discretized into N×N×N cubic voxels. For each voxel, a material

was assigned by adopting the following rules of arbitration: the position of 9 points uniformly
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(a) (b)

Figure 6.2 Discretization of a random microstructure on a grid of 256×256×256 voxels. Num-
ber of ellipsoids = 60. Volume fraction = 40%. R1 = R2 = 5. (a) Generated microstructure.
(b) Discretized microstructure.

distributed was verified. If most of the points belonged to an ellipsoid, then the properties

of the ellipsoidal fibers were assigned to the voxel. Otherwise, the voxel was considered to

be matrix. Figure 6.2 shows an example of discretization of a random composite containing

60 prolate ellipsoids with a volume fraction of 40% and an aspect ratio of 5. 256× 256× 256

voxels were used to represent the microstructure.

The effective properties were derived from the volume averaged stresses and strains. The

complete details of the numerical implementation of the algorithms for computing the stresses

and strains fields can be found in (Ghossein and Levesque, 2012). The effective stiffness tensor

C̃ was computed from:

< σ(x) > = C̃ :< ε(x) > (6.8)

where < · > denotes an average over the volume. The six columns of the stiffness tensor (in

modified Voigt notation) were computed independently by imposing a periodic strain field

in a particular direction. For example, to calculate the first column, a periodic deformation

was applied in the first principal direction (ε11). The five other columns were determined

similarly. Since the algorithm had to be called six times independently, the calculations have

been parallelized on six local workers using an Intel(R) Xeon(R) Dual Core running at 2.40

GHz and with 48 GB of RAM.



105

Following the determination of C̃, the effective bulk and shear moduli were computed as:

κ̃ =
C̃iijj

9
(6.9a)

µ̃ =
3C̃ijij − C̃iijj

30
(6.9b)

Eqs. (6.9) were used to take into account all the components of C̃ since the latter was not

strictly isotropic.

6.6 Validation campaign

Macroscopically isotropic composites made of randomly oriented isotropic ellipsoidal fibers

distributed into an isotropic matrix were considered. A wide range of mechanical properties,

volume fractions and fibers aspect ratios were studied. Table 6.1 summarizes all the studied

combinations of volume fractions and aspect ratios.

For each combination of aspect ratio and volume fraction, three mechanical properties

contrasts were simulated, namely: ρ1 = µ2
µ1

, ρ2 = κ1
µ1

and ρ3 = κ2
µ1

, where the ρi were varied

independently and took the values of {1, 10, 50, 100}.
The mechanical properties were evaluated according to the methodology of Kanit et al.

(2003). The size of the RVE was determined for each combination of contrasts, volume

fraction and aspect ratio as follows. Mechanical properties were computed for several random

realizations having the same constituent properties, fibers aspect ratio, fibers volume fraction

and the same number of represented ellipsoids. The number of simulations n was considered

sufficient when the half width of a 95% confidence interval was less than 1% of the average

value of the sought property. This is equivalent to satisfy the following inequality:

Table 6.1 Studied range of aspect ratios and volume fractions for prolate and oblate ellipsoidal
fibers.

Prolate (R1 = R2) Oblate (R2 = 1)

Aspect ratios Volume fractions (%) Aspect ratios Volume fractions (%)

R1 = R2 = 2 {10, 20, 30, 40, 50} R1 = 2 {10, 20, 30, 40, 50}
R1 = R2 = 5 {10, 20, 30, 40} R1 = 5 {10, 20, 30}
R1 = R2 = 10 {10, 20} R1 = 10 {10, 20}
R1 = R2 = 20 {10} R1 = 20 {10}
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max
x= κ̃, µ̃

T n−1
1−α/2 Sx

x̄
√
n
≤ 0.01 , n ≥ 6 (6.10)

where T is the quantile of the Student distribution with (n− 1) degrees of freedom, S is an

estimate of the standard deviation of x and (1−α) is the confidence level (i.e., 1−α = 0.95).

The procedure was repeated for increasing numbers of ellipsoids (while keeping constant

the constituent properties, fibers volume fraction and aspect ratio). Starting with volume

elements containing 15 particles each, 15 ellipsoids were added between each volume element

size until the mean of the effective properties converged to an approximate asymptotic value

(less than 2% variation from one ellipsoids number increment to the next). The RVE was then

reached and the resulting mechanical properties were considered to be the exact properties

of the composite. Moussaddy et al. (2013b) showed that this procedure provides accurate

results when the fibers aspect ratio is lower than 30, which is the case in this study.

Based on the distribution and orientations of the reinforcements, the RVE should be

isotropic. Moussaddy et al. (2013b) have demonstrated that the convergence of properties

over volume element size increments, as describe above, can lead to erroneous results for

large aspect ratio fibers. They have demonstrated that relying on a deviation from isotropy

criterion led to a much more robust evaluation of effective properties. Several methods have

been proposed in the literature for computing the deviation from isotropy. Some authors

considered only the independent terms of the stiffness tensors (i.e., C̃1111, C̃1122 and C̃1212)

(Zener and Siegel, 1949; Chung and Buessem, 1967; Spoor et al., 1995; Ranganathan and

Ostoja-Starzewski, 2008) while others have proposed formulations that do not take into ac-

count the vanishing terms (Bucataru and Slawinski, 2009; Moussaddy et al., 2013b). This can

lead to inaccuracy in the isotropy error measurement since these terms are not necessarily

zero in the homogenized tensor C̃.

The deviation from isotropy was calculated for all the volume elements computed in

this work as a validation for the results delivered by the convergence of effective properties

described above. The deviation from isotropy of tensor C̃ was evaluated by using the following

methodology. First, an isotropic stiffness tensor was calculated from the effective moduli κ̃

and µ̃ as:

C∗ = 3κ̃J + 2µ̃K (6.11a)

where J and K are the isotropic projectors. The deviation from isotropy of C̃, denoted by

δiso, was then computed as:
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δiso =

6∑
i=1

|λi|

6∑
i=1

λ∗i

(6.11b)

where λi and λ∗i denote respectively the eigenvalues of
(
C̃−C∗

)
and C∗ (in modified Voigt

notation). This methodology was adopted since it takes into account all the terms of C̃. In

addition, δiso is related to the strain energy mean error since it relies on the eigenvalues.

In total, 1472 different ellipsoidal fibers reinforced composites were studied and approx-

imately 66000 simulations were performed. δiso was computed for each realization. Figure

6.3 shows the statistical distribution of δiso. If all 66000 simulations are considered (Figure

6.3a), δiso has a mean and maximum value of 2.4% and 11.2%, respectively. Theses values

are reduced respectively to 1.3% and 5.2% if only the realizations at RVE size are exam-

ined (about 20000 simulations, including 13000 at a contrast of 100) (Figure 6.3b). Figure

6.3 provides also the 99th percentile of δiso. For all the simulations, δ99th

iso = 7.6%, whereas

δ99th

iso = 3.9% for only those at the RVE. These results show that the stiffness tensors obtained

in this campaign are almost isotropic and were considered as acceptable for this work.

It should be noted that for each combination of contrasts, volume fraction, aspect ratio

and number of fibers, a convergence analysis in terms of number of voxels was performed when

computing the effective properties with the FFT method. N was initially set to N = 32 and

doubled until both effective moduli converged. A tolerance of 2% was used as a criterion

of convergence. This convergence analysis was performed for the first 6 realizations. The

largest required value of N was then used for all the other generated microstructures having

the same combination of mechanical and geometrical properties.

6.7 Results and discussion

The predictions of the dilute solution of Eshelby (Eshelby), the model of Mori-Tanaka

(MT), the self-consistent scheme (SCS), Lielens’ model and the model of Benveniste

(MT/Benveniste) were compared to the exact solution given by the numerical tool (NT).

Furthermore, the numerical results were interpolated using a MATLAB built-in cubic spline

interpolation. The Hashin-Shtrikman bounds (HSB) are also shown in the plots to verify

that the numerical and analytical predictions lie between these bounds. Results are shown

for the case of prolate and oblate ellipsoidal fibers.

It should be noted that the accuracy of the Ponte Castaneda and Willis (PCW) model

was not studied in this paper. It has been shown that this model has a limited range

of allowable volume fractions (c2 ≤ 1/R2
1 for prolate ellipsoids and c2 ≤ 1/R1 for oblate
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ellipsoids) (Castaneda and Willis, 1995). When exceeding the volume fraction limit, the

PCW model violates the bounds of Hashin-Shtrikman (Hu and Weng, 2000).

6.7.1 Prolate ellipsoidal fibers

For all cases studied in this section, κ1 was set to 1 and contrasts ρ1 and ρ3 were varied

simultaneously from 1 to 100.

Figure 6.4 shows the results for a volume fraction of 10% and an aspect ratio of 2. It can

be seen that every model delivers acceptable predictions, even for high mechanical properties

contrasts. The figure suggests that Lielens’ model delivers the most accurate predictions for

κ̃ and the SCS provides the most accurate estimates for µ̃.

Figure 6.5 shows the results for the same types of ellipsoids but for a volume fraction

of 30%. It can be seen that the dilute solution of Eshelby deviates from the accurate solu-

tion. The other models deliver accurate estimates for low contrasts (ρ1,3 ≤ 10). For higher

contrasts, Lielens’s model is the only accurate model. MT and MT/Benveniste models un-

derestimate while the SCS overestimates the effective properties.

The same trend is observed when the inclusions volume fraction reaches 50%, as depicted

in Figure 6.6. However, the SCS diverges rapidly when ρ1,3 ≥ 10. Thus, it seems that the SCS

is not an appropriate model to predict the properties of dense ellipsoidal particles reinforced

microstructures. All models led to accurate predictions for ρ1,3 ≤ 10. When 10 ≤ ρ1,3 ≤ 50,

Lielens’s model remains the most accurate among the studied models. However, for higher

contrasts (ρ1,3 ≥ 50), no model provides acceptable estimates. Moreover, all models, except

the SCS, predict a plateau, which is not the case for the numerical solution. It should

be noted that similar results were reported for the case of spherical particles reinforced

composites (Ghossein and Levesque, 2012) and for cylindrical fibers of very high aspect

ratios (Moussaddy et al., 2013a).

Figures 6.7 and 6.8 show the results for aspect ratios of 10 and 20, respectively, and

for volume fractions of 10%. For both cases, all models, except the SCS, provide accurate

estimates for κ̃ and µ̃, even when ρ1,3 ≥ 50. The SCS is only accurate when ρ1,3 ≤ 30. It

is interesting to note that, for both aspect ratios, the numerical and analytical predictions

do not reach a plateau in the investigated range of contrasts. Further works are needed to

determine the contrasts at which an asymptotic effective property is reached.

According to these results, it seems that the accuracy of the analytical models is more

sensitive to the fibers volume fraction than to their aspect ratio. However, the contrasts

between the fibers and the matrix remain the most influent parameters on the homogenization

models performance. Indeed, when the contrasts are low (i.e., ≤ 10), the analytical models

predict the effective properties accurately, even for high volume fractions (up to 50%).
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6.7.2 Oblate ellipsoidal fibers

The same analysis as that performed for the prolate ellipsoids was performed for the

oblate ellipsoids.

Figures 6.9 to 6.13 show trends very similar to those obtained for the case of prolate

ellipsoids. In overall, Lielens’s model seems to be the most accurate model. Furthermore, the

contrasts between the phases are the most influential parameters on the analytical models

performance, followed by the fibers volume fraction. The only difference found is that for an

aspect ratio of 10 and 20 (Figures 6.12 and 6.13), the effective properties reach a plateau for

a contrast value around 100, which was not the case for prolate ellipsoids.

6.7.3 Maximum relative error for each analytical model

Tables 6.2 and 6.3 provide the maximum relative error ε induced by each homogenization

model when predicting the effective moduli κ̃ and µ̃. ε was computed as:

ε = max
i∈{1,2,...,1472}

∣∣∣∣pana
i − pnum

i

pnum
i

∣∣∣∣ (6.12)

where p denotes either κ̃ or µ̃, “num” and “ana” refers respectively to the numerical and

analytical predictions, while subscript i refers to one of the predictions among the 1472

different microstructures studied in this work. For Lielens’ model, ε was computed only for

the cases where κ2 ≥ κ1 and µ2 ≥ µ1 since this model is only valid when the fibers are stiffer

than the matrix (Ghossein and Levesque, 2012).

The relative errors are rounded to the unit. The values of contrasts ρi for which ε was

induced are specified for each combination of volume fraction and aspect ratio. Results are

only presented for prolate ellipsoids since similar values were obtained for oblate particles.

Tables 6.2a and 6.2b provide the maximum errors as a function of the particles volume

fraction for κ̃ and µ̃. The ellipsoids aspect ratio was set to 2. In both cases, the error made

by each model increases with the volume fraction. Moreover, errors always occur for high

contrasts. For both moduli, if ε < 10% was defined as an acceptable threshold, all studied

models would meet the accuracy criteria for a volume fraction of 10%. When the inclusions

volume fraction is 20%, only Lielens’ and the SCS meet the criteria. For a volume fraction

greater than 30%, the accuracy criteria is not met by any model. From the results presented

in Tables 6.2, Lielens’ model seems to be the most accurate model when predicting κ̃ and µ̃,

provided that the ellipsoids are stiffer than the matrix.

Tables 6.3a and 6.3b present the maximum errors as a function of the ellipsoids aspect

ratio. The volume fraction was fixed to 10%. For all models, the error increases with the
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aspect ratio but not as significantly as observed in Tables 6.2a and 6.2b. If the SCS is excluded

from the analysis, the maximum error is 15% in the studied range of properties. This shows

that the ellipsoids aspect ratio has less influence on the models accuracy than the volume

fraction. It is interesting to note that, for high aspect ratios (i.e., ≥ 10), the predictions of

MT and MT/Benveniste are no longer similar, especially when predicting µ̃. Among these

two models, MT/Benveniste seems more suitable for composites reinforced by fibers of high

aspect ratios. This finding is relevant since MT and MT/Benveniste have been used in the

literature under the name of Mori-Tanaka without specifying which of the two models has

been used. This study clarifies the differences between the two models and identifies the

best suited model for randomly oriented ellipsoidal particles reinforced composites. Finally,

Lielens’ and MT/Benveniste models have similar accuracies when predicting µ̃. As for κ̃,

Lielens’ is the most accurate model.

6.7.4 Comparison with other studies

It should be noted that some of the observations made in this paper have been reported

in other studies, but none has succeeded to prove them definitively. In their study on aligned

short-fiber composites, Tucker and Liang (1999) found that Lielens’ and MT models provided

the best predictions of effective properties. However, their numerical simulations did not allow

to choose the most accurate model among these two since their computations were limited

to a volume fraction of 20% and a rigidity contrast of 30.

Bohm et al. (2002) compared their numerical results to the SCS and MT/Benveniste model

for the case of a metal matrix reinforced by randomly oriented short fibers. They found a good

agreement between the numerical and analytical predictions. Nevertheless, their analysis was

performed on three random microstructures without determining rigorously the RVE.

Duschlbauer et al. (2006) studied the case of composites reinforced by planar random

fibers. The authors showed that MT/Benveniste was adequate for predicting the thermoelas-

tic properties of such composites, but it was the only investigated model. Furthermore, their

work was limited to a volume fraction of 21%, an aspect ratio of 10 and a rigidity contrasts

less than 10.

In their work on microstructures with randomly dispersed short fibers, Kari et al. (2007a)

found that the SCS provided the best estimates of the effective properties. However, their

simulations were performed with a Young’s modulus contrast of 6.4, which did not allow to

deeply investigate the models performance. Indeed, the results presented in this paper show

that for this range of contrasts, all models provide accurate predictions and the difference

between their estimations is negligible.

Moussaddy et al. (2013a) found that Lielens’ model was the best suited model to pre-
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dict the effective bulk modulus of ROFRC for volume fractions over 5%, which is also the

case for ellipsoidal fibers reinforced composites. However, the authors showed that no model

accurately predicted µ̃ for volume fractions over 5%. Since their study was limited to the

case where fibers were completely stiffer than the matrix, it is possible to question the va-

lidity of this statement. Indeed, their works did not allow them to observe that MT and

MT/Benveniste models have no longer the same accuracy when κ2 ≤ κ1 and µ2 ≥ µ1, and

that the latter could replace Lielens’s model for this specific type of composites, especially

when predicting µ̃.

6.8 Conclusion

The main conclusions of this study are:

� Similar results were obtained for prolate and oblate ellipsoidal fibers. In both cases,

the analytical models show similar trends and have almost the same accuracy.

� Contrasts between phases mechanical properties are the most influential parameters

on the analytical models accuracy, followed by the fibers volume fraction.

� In the investigated range of properties, Lielens’ is the most accurate model provided

that the ellipsoids are stiffer than the matrix.

� For microstructures with high fibers aspect ratio, MT/Benveniste could be an alter-

native to Lielens’ model when predicting µ̃, especially if the fibers are not completely

stiffer than the matrix (i.e., κ2 ≤ κ1 and µ2 ≥ µ1).

If a single model was to be chosen for predicting the effective properties of ellipsoidal fibers

reinforced composites, this study suggests that it should be Lielens’ model. For low aspect

ratios (i.e., ≤ 2), its accuracy is 9% for volume fractions up to 20% and rigidity contrasts up

to 100. For low volume fractions (i.e., ≤ 10%), Lielens’ model is accurate to 7% for aspect

ratios up to 20 and mechanical properties contrasts up to 100.

Furthermore, an interpolation model has been developed in this paper and it can be seen

as a substitute to analytical models. Its numerical execution is as quick as analytical models

but its accuracy is the highest published so far.
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Table 6.2a Relative error (ε) of each analytical model as a function of the ellipsoids volume
fraction. The given values correspond to the maximum errors induced when predicting κ̃ for
1472 different ellipsoidal particles reinforced composites. R1 = R2 = 2. [a, b, c] means that
{ρ1, ρ2, ρ3} = {10a, 10b, 10c}.

Models

Volume fractions

10% 20% 30% 40% 50%

ε(%) [a, b, c] ε(%) [a, b, c] ε(%) [a, b, c] ε(%) [a, b, c] ε(%) [a, b, c]

MT 9 [2, 2, 0] 14 [2, 2, 0] 18 [2, 2, 0] 32 [2, 2, 0] 53 [2, 2, 0]

MT/Ben. 9 [2, 2, 0] 14 [2, 2, 0] 18 [2, 2, 0] 32 [2, 2, 0] 53 [2, 2, 0]

SCS 1 [2, 0, 2] 9 [2, 0, 2] 30 [2, 0, 2] 56 [2, 0, 2] 69 [2, 0, 2]

Lielens 1 [0, 0, 2] 5 [0, 0, 2] 12 [0, 0, 2] 23 [0, 0, 2] 40 [0, 0, 2]

Eshelby 4 [2, 0, 2] 12 [2, 0, 2] 23 [2, 0, 2] 46 [2, 0, 2] 53 [2, 0, 2]

Table 6.2b Relative error (ε) of each analytical model as a function of the ellipsoids volume
fraction. The given values correspond to the maximum errors induced when predicting µ̃ for
1472 different ellipsoidal particles reinforced composites. R1 = R2 = 2. [a, b, c] means that
{ρ1, ρ2, ρ3} = {10a, 10b, 10c}.

Models

Volume fractions

10% 20% 30% 40% 50%

ε(%) [a, b, c] ε(%) [a, b, c] ε(%) [a, b, c] ε(%) [a, b, c] ε(%) [a, b, c]

MT 4 [2, 2, 2] 11 [2, 2, 2] 22 [2, 2, 2] 43 [2, 2, 2] 61 [2, 2, 2]

MT/Ben. 4 [2, 2, 2] 11 [2, 2, 2] 22 [2, 2, 2] 43 [2, 2, 2] 61 [2, 2, 2]

SCS 1 [2, 2, 2] 8 [2, 2, 2] 31 [2, 2, 2] 70 [2, 2, 2] 93 [2, 2, 2]

Lielens 3 [2, 2, 2] 6 [2, 2, 2] 13 [2, 2, 2] 29 [2, 2, 2] 46 [2, 2, 2]

Eshelby 6 [2, 2, 2] 18 [2, 2, 2] 34 [2, 2, 2] 56 [2, 2, 2] 75 [2, 2, 2]
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Table 6.3a Relative error (ε) of each analytical model as a function of the ellipsoids aspect
ratio. The given values correspond to the maximum errors induced when predicting κ̃ for
1472 different ellipsoidal particles reinforced composites. Volume fraction = 10%. [a, b, c]
means that {ρ1, ρ2, ρ3} = {10a, 10b, 10c}.

Models

Aspect ratios

R1 = R2 = 2 R1 = R2 = 5 R1 = R2 = 10 R1 = R2 = 20

ε(%) [a, b, c] ε(%) [a, b, c] ε(%) [a, b, c] ε(%) [a, b, c]

MT 9 [2, 2, 0] 10 [2, 2, 0] 12 [2, 2, 0] 14 [2, 2, 0]

MT/Ben. 9 [2, 2, 0] 9 [2, 2, 0] 10 [2, 2, 0] 12 [2, 2, 0]

SCS 1 [2, 0, 2] 6 [2, 0, 2] 14 [2, 0, 2] 30 [2, 0, 2]

Lielens 1 [0, 0, 2] 2 [0, 0, 2] 2 [0, 0, 2] 3 [0, 0, 2]

Eshelby 4 [2, 0, 2] 6 [2, 0, 2] 7 [2, 0, 2] 7 [2, 0, 2]

Table 6.3b Relative error (ε) of each analytical model as a function of the ellipsoids aspect
ratio. The given values correspond to the maximum errors induced when predicting µ̃ for
1472 different ellipsoidal particles reinforced composites. Volume fraction = 10%. [a, b, c]
means that {ρ1, ρ2, ρ3} = {10a, 10b, 10c}.

Models

Aspect ratios

R1 = R2 = 2 R1 = R2 = 5 R1 = R2 = 10 R1 = R2 = 20

ε(%) [a, b, c] ε(%) [a, b, c] ε(%) [a, b, c] ε(%) [a, b, c]

MT 4 [2, 2, 2] 5 [2, 2, 2] 8 [2, 2, 2] 15 [2, 2, 2]

MT/Ben. 4 [2, 2, 2] 5 [2, 2, 2] 6 [2, 2, 2] 7 [2, 2, 2]

SCS 1 [2, 2, 2] 3 [2, 2, 2] 11 [2, 2, 2] 23 [2, 2, 2]

Lielens 3 [2, 2, 2] 3 [2, 2, 2] 6 [2, 2, 2] 7 [2, 2, 2]

Eshelby 6 [2, 2, 2] 7 [2, 2, 2] 9 [2, 2, 2] 9 [2, 2, 2]
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Figure 6.3 Statistical distribution of the deviation from isotropy δiso. The dashed line repre-
sents the 99th percentile. (a) Case where all the 66000 realizations are considered. (b) Case
where only the realizations at RVE size are considered (about 20000 simulations).
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Figure 6.4 Comparison between the mechanical properties obtained with the numerical tool
(NT) and those predicted by the analytical models: Hashin-Shtrikman Bounds (HSB), Mori-
Tanaka (MT), Benveniste model (MT/Benveniste), self-consistent scheme (SCS), Lielens and
the dilute solution of Eshelby (Eshelby). Volume fraction = 10%. R1 = R2 = 2. κ1 = µ1 = 1.
(a) Normalized effective bulk modulus. (b) Normalized effective shear modulus.
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Figure 6.5 Comparison between the mechanical properties obtained with the numerical tool
(NT) and those predicted by the analytical models: Hashin-Shtrikman Bounds (HSB), Mori-
Tanaka (MT), Benveniste model (MT/Benveniste), self-consistent scheme (SCS), Lielens and
the dilute solution of Eshelby (Eshelby). Volume fraction = 30%. R1 = R2 = 2. κ1 = µ1 = 1.
(a) Normalized effective bulk modulus. (b) Normalized effective shear modulus.



117

1 10 50 100
0

5

10

15

µ2

µ1
,

κ2

µ1

κ̃ µ
1

 

 
NT
Interpolation
HSB
MT
MT/Benveniste

SCS
Lielens
Eshelby

(a)

1 10 50 100
0

2

4

6

8

10

12

µ2

µ1
,

κ2

µ1

µ̃ µ
1

 

 
NT
Interpolation
HSB
MT
MT/Benveniste

SCS
Lielens
Eshelby

(b)

Figure 6.6 Comparison between the mechanical properties obtained with the numerical tool
(NT) and those predicted by the analytical models: Hashin-Shtrikman Bounds (HSB), Mori-
Tanaka (MT), Benveniste model (MT/Benveniste), self-consistent scheme (SCS), Lielens and
the dilute solution of Eshelby (Eshelby). Volume fraction = 50%. R1 = R2 = 2. κ1 = µ1 = 1.
(a) Normalized effective bulk modulus. (b) Normalized effective shear modulus.



118

1 10 50 100
1

1.2

1.4

1.6

1.8

2

2.2

2.4

µ2

µ1
,

κ2

µ1

κ̃ µ
1

 

 
NT
Interpolation
HSB
MT
MT/Benveniste

SCS
Lielens
Eshelby

(a)

1 10 50 100
1

1.2

1.4

1.6

1.8

2

2.2

µ2

µ1
,

κ2

µ1

µ̃ µ
1

 

 
NT
Interpolation
HSB
MT
MT/Benveniste

SCS
Lielens
Eshelby

(b)

Figure 6.7 Comparison between the mechanical properties obtained with the numerical tool
(NT) and those predicted by the analytical models: Hashin-Shtrikman Bounds (HSB), Mori-
Tanaka (MT), Benveniste model (MT/Benveniste), self-consistent scheme (SCS), Lielens and
the dilute solution of Eshelby (Eshelby). Volume fraction = 10%. R1 = R2 = 10. κ1 = µ1 =
1. (a) Normalized effective bulk modulus. (b) Normalized effective shear modulus.
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Figure 6.8 Comparison between the mechanical properties obtained with the numerical tool
(NT) and those predicted by the analytical models: Hashin-Shtrikman Bounds (HSB), Mori-
Tanaka (MT), Benveniste model (MT/Benveniste), self-consistent scheme (SCS), Lielens and
the dilute solution of Eshelby (Eshelby). Volume fraction = 10%. R1 = R2 = 20. κ1 = µ1 =
1. (a) Normalized effective bulk modulus. (b) Normalized effective shear modulus.
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Figure 6.9 Comparison between the mechanical properties obtained with the numerical tool
(NT) and those predicted by the analytical models: Hashin-Shtrikman Bounds (HSB), Mori-
Tanaka (MT), Benveniste model (MT/Benveniste), self-consistent scheme (SCS), Lielens and
the dilute solution of Eshelby (Eshelby). Volume fraction = 10%. R1 = 2, R2 = 1. κ1 =
µ1 = 1. (a) Normalized effective bulk modulus. (b) Normalized effective shear modulus.
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Figure 6.10 Comparison between the mechanical properties obtained with the numerical tool
(NT) and those predicted by the analytical models: Hashin-Shtrikman Bounds (HSB), Mori-
Tanaka (MT), Benveniste model (MT/Benveniste), self-consistent scheme (SCS), Lielens and
the dilute solution of Eshelby (Eshelby). Volume fraction = 30%. R1 = 2, R2 = 1. κ1 =
µ1 = 1. (a) Normalized effective bulk modulus. (b) Normalized effective shear modulus.
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Figure 6.11 Comparison between the mechanical properties obtained with the numerical tool
(NT) and those predicted by the analytical models: Hashin-Shtrikman Bounds (HSB), Mori-
Tanaka (MT), Benveniste model (MT/Benveniste), self-consistent scheme (SCS), Lielens and
the dilute solution of Eshelby (Eshelby). Volume fraction = 50%. R1 = 2, R2 = 1. κ1 =
µ1 = 1. (a) Normalized effective bulk modulus. (b) Normalized effective shear modulus.
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Figure 6.12 Comparison between the mechanical properties obtained with the numerical tool
(NT) and those predicted by the analytical models: Hashin-Shtrikman Bounds (HSB), Mori-
Tanaka (MT), Benveniste model (MT/Benveniste), self-consistent scheme (SCS), Lielens and
the dilute solution of Eshelby (Eshelby). Volume fraction = 10%. R1 = 10, R2 = 1. κ1 =
µ1 = 1. (a) Normalized effective bulk modulus. (b) Normalized effective shear modulus.
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Figure 6.13 Comparison between the mechanical properties obtained with the numerical tool
(NT) and those predicted by the analytical models: Hashin-Shtrikman Bounds (HSB), Mori-
Tanaka (MT), Benveniste model (MT/Benveniste), self-consistent scheme (SCS), Lielens and
the dilute solution of Eshelby (Eshelby). Volume fraction = 10%. R1 = 20, R2 = 1. κ1 =
µ1 = 1. (a) Normalized effective bulk modulus. (b) Normalized effective shear modulus.
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CHAPTER 7

ARTICLE 4: HOMOGENIZATION MODELS FOR PREDICTING LOCAL

FIELD STATISTICS IN ELLIPSOIDAL FIBERS REINFORCED

COMPOSITES: COMPARISONS AND VALIDATIONS

E. Ghossein and M. Lévesque. Submitted to the International Journal of Solids and Struc-

tures on July 16, 2014.

7.1 Abstract

This paper validates the performance of analytical homogenization models at predicting

the local field statistics in randomly distributed and oriented ellipsoidal fibers reinforced

composites. The numerical validation was based on a newly introduced load independent

metric, which allowed to formulate general conclusions. A large validation campaign was

conducted and the Representative Volume Element (RVE) was rigorously determined for

each combination of phases mechanical properties, fibers volume fraction and aspect ratio.

The load independent properties computed numerically were compared to those predicted by

a range of analytical models. The study revealed that the original Benveniste’s interpretation

of the Mori-Tanaka scheme led to the most accurate first order moments and intra-matrix

second order moments, provided that the mechanical properties contrast between fibers and

matrix are low. For higher contrasts, Lielens’ model delivers the most accurate estimates.

The self-consistent scheme is the most suited model to predict the intra-fiber second order

moments when the fibers aspect ratio is low. For fibers with high aspect ratio, Lielens’ model

could be an alternative to the self-consistent scheme. Furthermore, an interpolation model

has been developed and it has been shown to predict accurately the mean and covariance

tensors of the intraphase stress fields.

7.2 Introduction

Homogenization models predict the effective mechanical behavior of heterogeneous materi-

als using the properties and the statistical description of their constituents. Several microme-

chanical models have been developed in the literature (Eshelby, 1957; Hashin, 1962; Hashin

and Shtrikman, 1963; Budiansky, 1965; Hill, 1965; Mori and Tanaka, 1973; Christensen and

Lo, 1979; Benveniste, 1987; Torquato, 1991; Castaneda and Willis, 1995; Torquato, 1998)

and their capacities at accurately evaluating effective properties of linearly elastic materials
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have been rigorously evaluated (Ghossein and Levesque, 2012; Ghossein and Lévesque, 2014).

Homogenization models can also compute first order moments (spatial average) and second

order moments (related to the standard deviation and co-variance) of local stress or strain

fields. It has been shown by numerous authors (Castañeda, 1991, 1996, 2002a,b; Castaneda

and Suquet, 1998; Idiart and Castaneda, 2007a,b; Lahellec and Suquet, 2007a,b; Rekik et al.,

2007, 2012) that adding first and second order moments information into nonlinear homog-

enization schemes can significantly improve their performances. It would therefore be of

interest to evaluate the performances of existing homogenization schemes at predicting local

field fluctuations.

The capabilities of analytical homogenization models at predicting local field moments

have been studied by a limited number of authors. The approach typically consisted of

computing local fields with detailed models where the microstructure was explicitly repre-

sented, computing scalar equivalent stresses/strains for specific load cases and compare them

with those predicted from analytical models. For example, Moulinec and Suquet (2003b);

Brenner and Masson (2005); Idiart and Castaneda (2007b); Rekik et al. (2007); Buryachenko

(2011); Doghri et al. (2011); Corcolle et al. (2012); Lahellec and Suquet (2013) studied com-

posites while Idiart et al. (2006); Idiart and Castaneda (2007b); Rekik et al. (2007); Idiart

et al. (2009); Rekik et al. (2012) were interested in rigidly reinforced and porous composites.

Other studies dealt with the computation of intragranular field fluctuations in polycrystals

(Lebensohn et al., 2004, 2005b,a, 2007; Castelnau et al., 2006, 2008; Brenner et al., 2009;

Montagnat et al., 2013).

All of the above-mentioned studies focused on very specific microstructures submitted

to very specific load cases, which led to load dependent conclusions. Such analyses cannot,

therefore, be used to draw general conclusions regarding the accuracy of specific models at

predicting local fields statistical moments.

The aim of this paper is to compare and validate the accuracy of analytical homogenization

models at predicting the intraphase field fluctuations in randomly oriented and distributed

ellipsoidal fibers reinforced composites. The approach relies on a new load independent metric

that allows for drawing general conclusions. The load independent properties are first defined.

A numerical technique is then implemented to compute these specific properties for a single

microstructure. Finally, a large validation campaign is conducted by sweeping a wide range

of phases mechanical and geometrical properties, and by comparing the properties obtained

numerically to those predicted by analytical homogenization models.

The paper is structured as follow: Section 7.3 recalls the fundamental equations for de-

termining the first and second order moments, and summarizes the different numerical tech-

niques for computing the local fields in two-phase composites. The numerical approach used
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in this work to compute the load independent properties is detailed in Section 7.4 while

Section 7.5 describes the numerical validation campaign. Section 7.6 performs a thorough as-

sessment of several analytical homogenization models by comparing their local field statistics

estimations to those obtained numerically. A discussion and an analysis conclude the paper.

Scalars and vectors are respectively denoted by letters (e.g., s, S, σ, Σ) and boldfaced

lower case Latin letters (e.g., s); second and fourth order tensors are respectively denoted by

boldfaced Greek letters (e.g., σ, Σ) and boldfaced upper case Latin letters (e.g., S). Einstein

summation convention has been adopted, unless specified otherwise.

7.3 Background

7.3.1 Governing equations

Suppose that a two-phase composite is subjected to a macroscopic stress Σ or a macro-

scopic strain E. The purpose of homogenization is to compute the composite’s effective

stiffness tensor C̃ or compliance tensor S̃ such that:

Σ = C̃ : E (7.1a)

E = S̃ : Σ (7.1b)

It is possible to show that (Böhm, 1998):

< ε(x) > = E (7.2a)

< σ(x) > = Σ (7.2b)

where ε(x) and σ(x) are the local strain and stress fields, respectively, and < · > denotes

an average over the volume. The relationship between the micro- and the macroscopic scale

is given by the following equations:

ε(x) = A(x) : E (7.3a)

σ(x) = B(x) : Σ (7.3b)

where A(x) and B(x) denote the strain localization tensor and the stress concentration

tensor, respectively. The first moment of strains and stresses in phase “ i ” (i = 1 for the

matrix and i = 2 for the fibers) can be expressed as:

< ε >i = < A(x) >i : E = Ai : E (7.4a)

< σ >i = < B(x) >i : Σ = Bi : Σ (7.4b)
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where < · >i denotes the volume averaging over phase “ i ” and Ai and Bi refer respectively

to the average strain localization tensor and stress concentration tensor within the phase.

For the very specific case of two-phase composites, tensors Ai and Bi are related since:

< A(x) > = c1A1 + c2A2 = I (7.5a)

< B(x) > = c1B1 + c2B2 = I (7.5b)

where I is the fourth order identity tensor and ci is the volume fraction of phase “ i ”. In

addition, by using Eqs. (7.1) and (7.4), one can write:

< σ >i = Bi : Σ = Bi :
(
C̃ : E

)
=
(
Bi : C̃

)
: E (7.6a)

= Ci : < ε >i = Ci :
(
Ai : E

)
=
(
Ci : Ai

)
: E (7.6b)

Eqs. (7.6a) and (7.6b) lead to:

Bi : C̃ = Ci : Ai ⇐⇒ Bi = Ci : Ai : S̃ (7.6c)

where Ci refers to the stiffness tensor of phase “ i ”. Eqs. (7.5) and (7.6c) show that A1, B1

and B2 can be deduced from A2. Thus, the accuracy of homogenization models for evaluating

the intraphase first moment of stresses and strains depends solely on their performance at

predicting A2. The latter depends only on the microstructure properties and is independent

of the loading. The expression of A2 for different analytical models can be found in (Ghossein

and Lévesque, 2014).

Castaneda and Suquet (1998) showed that:

< ε⊗ ε >i =
1

ci
E :

∂C̃

∂Ci

: E (7.7a)

< σ ⊗ σ >i =
1

ci
Σ :

∂S̃

∂Si
: Σ (7.7b)

The stiffness and compliance tensors of an isotropic material can be expressed as:

Ci = 3κiJ + 2µiK (7.8a)

Si =
1

3
κ−1
i J +

1

2
µ−1
i K (7.8b)

where κi and µi denote the bulk and shear moduli of phase “ i ”, respectively, and J and K

are the classical spherical and deviatoric projection tensors. Combination of Eqs. (7.7) and
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(7.8), and use of the chain rule leads to (Castaneda and Suquet, 1998):

1

ci
E :

∂C̃

∂κi
: E = 3 < ε⊗ ε >i :: J (7.9a)

1

ci
E :

∂C̃

∂µi
: E = 2 < ε⊗ ε >i :: K (7.9b)

1

ci
Σ :

∂S̃

∂κ−1
i

: Σ =
1

3
< σ ⊗ σ >i :: J (7.9c)

1

ci
Σ :

∂S̃

∂µ−1
i

: Σ =
1

2
< σ ⊗ σ >i :: K (7.9d)

Eqs. (7.9) show that second order moments are directly related to the first derivative of the

effective tensors with respect to the phases properties. These derivatives solely depend on

the microstructure and are therefore load independent.

7.3.2 Computation of local fields in heterogeneous materials

The Finite Element Method (FEM) has been the most commonly used technique for

computing the local fields in heterogeneous materials (Llorca et al., 2000; Bohm et al., 2002;

Segurado and Llorca, 2002; Kari et al., 2007b; Barello and Lévesque, 2008; Klusemann and

Svendsen, 2010; Cojocaru and Karlsson, 2010; El-Mourid et al., 2012; Pahlavanpour et al.,

2013; Moussaddy et al., 2013b). The method consists of meshing a unit cell and computing

the local fields when it is submitted to an external load. Despite its robustness, FEM cannot

be fully automated since the meshing operation usually requires user input, especially for

fibers with high volume fractions and/or aspect ratios.

Moulinec and Suquet (1998) have proposed an alternative technique based on Fast Fourier

Transforms (FFT). The technique consists of discretizing the microstructures into voxels and

solving, in each voxel, the constitutive law in Fourier space. The main advantage of this

approach is that it does not require meshing, and therefore has the potential to be completely

automated. The details of this technique can be found in (Ghossein and Levesque, 2012).

7.4 Computation of load independent properties for a single microstructure

Load independent properties related to first and second order moments have been defined

in Section 7.3.1. The following section describes how these properties were computed numer-

ically for a single microstructure. It should be noted that local stress and strain fields were

computed in this study using the FFT-based technique.
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(a) (b)

Figure 7.1 Generation and discretization of a single microstructure on a grid of 256×256×256
voxels. Number of prolate fibers = 45. Volume fraction = 20%. Aspect ratio = 10. (a)
Generated microstructure. (b) Discretized microstructure.

7.4.1 Generation and discretization of a random microstructure

Each microstructure was randomly generated by using the molecular dynamics algorithm

proposed by Ghossein and Levesque (2013). Each microstructure was then discretized into

N ×N ×N cubic voxels, each of which had 9 points evenly distributed. The stiffness tensor

of each voxel, denoted by C(xp), was obtained by adopting the following rules of arbitration:

C(xp) =

C1 if 5 points or more belonged to a fiber

C2 otherwise
(7.10)

Figure 7.1a shows an example of a generated random microstructure containing 45 prolate

ellipsoidal fibers with an aspect ratio of 10 and a volume fraction of 20%. The aspect ratio

of an axisymmetric ellipsoidal fiber is defined as the ratio between the length of its radius

along the symmetry axis and the length of its equatorial radius. Figure 7.1b shows the

discretization of the same microstructure on a grid of 256× 256× 256 voxels.

7.4.2 Load independent properties related to the first order moments

Assuming that the generated microstructure is isotropic , A2 is also isotropic and can be
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written as:

A2 = αJ + βK (7.11)

Therefore, Eq. (7.4a) becomes:

< ε >2 =
(
αJ + βK

)
: E = αJ : E + βK : E (7.12a)

Then

< ε >2 = α

(
E11 + E22 + E33

)
3

1 0 0

0 1 0

0 0 1



+
β

3

2E11 − E22 − E33 3E12 3E13

3E12 2E22 − E11 − E33 3E23

3E13 3E23 2E33 − E11 − E22

 (7.12b)

A unit macroscopic axial strain field was applied along the first principal direction (i.e.,

Eij = 1 for i = j = 1 and Eij = 0 otherwise). Let ε† be the intra-fiber first moment of

strains obtained under this specific loading, i.e., the average of the strain field over all the

voxels belonging to the fibers. Since the microstructure was assumed to be isotropic, the

intra-fiber average shear strains were almost null (i.e., ε†ij ≈ 0 for i 6= j). Therefore, Eq.

(7.12b) becomes: ε
†
11 0 0

0 ε†22 0

0 0 ε†33

 =
α

3

1 0 0

0 1 0

0 0 1

 +
β

3

2 0 0

0 −1 0

0 0 −1

 (7.13)

α and β can be deduced from Eq. (7.13):

α = ε†11 + ε†22 + ε†33 (7.14a)

β = ε†11 −
ε†22 + ε†33

2
(7.14b)

Given that the microstructure was almost isotropic, the same values of α and β would have

been obtained if the macroscopic strain field was applied along the second or third principal

direction. Indeed, a maximum variation of 0.6% was observed between two different principal

directions, for both α and β.
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7.4.3 Load independent properties related to the second order moments

Writing the effective tensors as:

C̃ = 3κ̃J + 2µ̃K (7.15a)

S̃ =
1

3
κ̃−1J +

1

2
µ̃−1K (7.15b)

the first-order derivatives that appear in Eqs. (7.9) become:

∂C̃

∂κi
= 3

∂κ̃

∂κi
J + 2

∂µ̃

∂κi
K (7.16a)

∂C̃

∂µi
= 3

∂κ̃

∂µi
J + 2

∂µ̃

∂µi
K (7.16b)

∂S̃

∂κ−1
i

=
1

3

∂κ̃−1

∂κ−1
i

J +
1

2

∂µ̃−1

∂κ−1
i

K (7.16c)

∂S̃

∂µ−1
i

=
1

3

∂κ̃−1

∂µ−1
i

J +
1

2

∂µ̃−1

∂µ−1
i

K (7.16d)

In this study, only the derivatives that appear in Eqs (7.16c) and (7.16d) were computed

since the derivatives in Eqs (7.16a) and (7.16b) can be easily deduced. Indeed, using the

chain rule, one can show that:

∂y

∂x
=

(
∂y

∂y−1

)(
∂y−1

∂x−1

)(
∂x−1

∂x

)
=

(
− y2

)(∂y−1

∂x−1

)(
− 1

x2

)

=

(
y

x

)2
∂y−1

∂x−1

with

y ∈
{
κ̃, µ̃

}
x ∈

{
κi, µi

} (7.17)

Define δyx as:

δyx =
∂y−1

∂x−1
(7.18)

The evaluation of Eqs. (7.16c) and (7.16d) therefore required computing:

δκ̃κi =
∂κ̃−1

∂κ−1
i

, δµ̃κi =
∂µ̃−1

∂κ−1
i

, δκ̃µi =
∂κ̃−1

∂µ−1
i

, δµ̃µi =
∂µ̃−1

∂µ−1
i

These derivatives were obtained numerically as follows. First, the FFT-based algorithm

was implemented for computing the effective properties of a single microstructure. The
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algorithm took as inputs the phases moduli and outputted the effective moduli (see (Ghossein

and Levesque, 2012) for more details about this algorithm). It can be represented by a black-

box function, such as: [
κ̃−1, µ̃−1

]
= F

(
κ−1
i , µ−1

i

)
(7.19)

The derivatives were then computed according to a second order central finite difference

scheme:

[
δκ̃κi , δ

µ̃
κi

]
=
F
(
κ−1
i + h, µ−1

i

)
−F

(
κ−1
i − h, µ−1

i

)
2h

(7.20a)

[
δκ̃µi , δ

µ̃
µi

]
=
F
(
κ−1
i , µ−1

i + h
)
−F

(
κ−1
i , µ−1

i − h
)

2h
(7.20b)

where h is the modulus step. It was found after trials and errors that h = 10−4 provided

accurate and converged results.

According to Eqs. (7.20), the FFT-based algorithm had to be called 8 times in total

(4 times per phase) in order to compute the load-independent derivatives for a single mi-

crostructure.

7.4.4 Convergence in terms of number of voxels

Let Φ be a vector containing the load-independent properties that have been defined and

computed in the previous sections:

Φ =
{
α, β, δκ̃κi , δ

µ̃
κi
, δκ̃µi , δ

µ̃
µi

}
with i ∈ {1, 2} (7.21)

The procedure for computing Φ was repeated for an increasing number of voxels until

convergence. Starting with N = 32, the value of N was doubled until the following inequality

was satisfied:

max
Φ

(
Φ2N − ΦN

ΦN

)
≤ 0.02 (7.22)

where ΦN refers to the set of properties computed with N3 voxels. A tolerance of 2% was

used as a convergence criterion.

7.5 Validation campaign

7.5.1 Studied microstructures

A wide range of mechanical and geometrical properties was studied for randomly ori-
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Table 7.1 Studied combinations of aspect ratios and volume fractions for prolate and oblate
fibers.

Aspect ratios
Volume fractions (%)

Prolate fibers Oblate fibers

1 {10, 20, 30, 40, 50}
2 {10, 20, 30, 40, 50} {10, 20, 30, 40, 50}
5 {10, 20, 30, 40} {10, 20, 30}
10 {10, 20} {10, 20}
20 {10} {10}

ented and distributed isotropic ellipsoidal fibers into an isotropic matrix. Prolate and oblate

ellipsoidal fibers with different aspect ratios and volume fractions were considered. All com-

binations of geometrical properties are summarized in Table 7.1.

For each combination of volume fraction and aspect ratio, the mechanical properties

contrast ρ = κ2
κ1

= µ2
µ1

was varied and took the values of {1, 10, 50, 100}.

7.5.2 Representative Volume Element determination

The load-independent properties were evaluated as follows. For each combination of

contrast, aspect ratio and volume fraction, the size of the Representative Volume Element

(RVE) was determined according to the methodology of Kanit et al. (2003). For the same

number of represented fibers, Φ was computed for several random realizations. The number

of simulations n was considered sufficient when the half width of a 95% confidence interval

over each item of Φ was less than 2% of the corresponding property average, as per:

max
Φ

T n−1
1−α/2 SΦ

Φ̄
√
n
≤ 0.02 , n ≥ 6 (7.23)

where T is the Student distribution quantile with (n− 1) degrees of freedom, (1− α) is the

confidence level (i.e., 1− α = 0.95) and SΦ is an estimate of the standard deviation of Φ.

The procedure was repeated for an increasing volume element size (or number of fibers).

Starting with volume elements having the same size as the RVE obtained by Ghossein and

Lévesque (2014) when computing the effective moduli κ̃ and µ̃ (for the same combination

of contrast, aspect ratio and volume fraction), 15 fibers were added between each volume

element size. The RVE was reached when Φ converged with less than 2% variation from one



135

volume element size to the next.

7.6 Results and discussion

The numerical predictions of the intraphase first and second order moments were com-

pared to the predictions of the dilute solution of Eshelby (Eshelby), the model of Mori-

Tanaka, the self-consistent scheme (SCS), Lielens’ model and the model of Benveniste

(MT/Benveniste). The numerical results were interpolated using a MATLAB built-in cu-

bic spline interpolation. Results are only shown for the case of prolate fibers since similar

predictions were obtained for oblate fibers. For all cases, κ1 and µ1 were set to 1 and contrast

ρ was varied from 1 to 100.

7.6.1 Prediction of the intra-fiber first order moments

Figure 7.2 shows the predictions of the spherical and deviatoric components of the local-

ization tensor A2 (α and β, respectively) for a volume fraction of 10% and an aspect ratio of

1 (spherical particles). Every analytical model provided accurate predictions for both com-

ponents, even for high mechanical properties contrasts. The difference between numerical

and analytical predictions is negligible. However, significant discrepancies were observed for

volume fractions of 50%. It can be seen in Figure 7.3 that the dilute solution of Eshelby

underestimates α and β while they are overstimated by the SCS. It seems that neither model

is suitable for predicting the intraphase first order moments for composites with high fibers

volume fractions. For low contrasts (i.e., ρ ≤ 10), MT and MT/Benveniste models deliver

the most accurate predictions. For high contrasts (i.e., ρ ≥ 10), Lielens’ model is the most

accurate.

Figure 7.4 shows the results for an aspect ratio of 20 and a volume fraction of 10%. In the

studied range of contrasts, all analytical models deliver accurate estimates for α and β. The

SCS deviates slightly from the numerical predictions when ρ ≥ 10. However, its accuracy

remains acceptable, even when ρ = 100.

From the results shown in Figures 7.2, 7.3 and 7.4, it seems that the fibers volume

fraction is the most influent parameter on the analytical models accuracy when predicting

the intraphase first order moments. Indeed, when the volume fraction is low (i.e., 10%),

the analytical homogenization models provide accurate estimates for α and β, even for high

aspect ratios and contrasts. Moreover, independently of the fibers aspect ratio and volume

fraction, MT and MT/Benveniste estimates are the closest to the numerical predictions when

ρ ≤ 10, while Lielens’ model has the highest accuracy when ρ ≥ 10.
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7.6.2 Prediction of the intra-matrix second order moments

Figure 7.5 shows the predictions for δκ̃κ1 , δ
µ̃
κ1

, δκ̃µ1 and δµ̃µ1 for spherical particles with a

volume fraction of 10%. For ρ ≤ 10, every model predicts accurately δκ̃κ1 and δµ̃κ1 , except the

dilute solution of Eshelby (Figures 7.5a and 7.5b). For ρ ≥ 10, only the SCS and Lielens’

model provide acceptable estimates for δκ̃κ1 and δµ̃κ1 . It is important to note that δµ̃κ1 is

negligible when compared to δκ̃κ1 (δκ̃κ1 ≈ 100 δµ̃κ1). The same behavior is observed in Figures

7.5c and 7.5d. Indeed, δκ̃µ1 follows a similar trend as δµ̃κ1 , while δµ̃µ1 and δκ̃κ1 have the same

tendency. The only difference is that the SCS is slightly more accurate than Lielens’ model

when predicting δµ̃µ1 for high contrasts (ρ ≥ 10).

For an aspect ratio of 1 and a volume fraction of 50%, Figure 7.6 shows that the SCS

underestimates δκ̃κ1 , δ
κ̃
µ1

, and δµ̃µ1 , while they are overstimated by Lielens’ model. Except for

δµ̃κ1 , the predictions of MT and MT/Benveniste are the most accurate when ρ ≤ 10. When

ρ ≥ 10, Lielens’ model delivers the most accurate predictions. For δµ̃κ1 (Figure 7.6b), it seems

that the dilute solution of Eshelby is the closest to the numerical predictions. However, for

the same range of contrasts, the values of δµ̃κ1 are low when compared to those of δκ̃κ1 , δ
κ̃
µ1

,

and δµ̃µ1 . Therefore, the contribution of δµ̃κ1 in the evaluation of the intra-matrix second order

moments is negligible when compared to the contribution of the other derivatives.

Figure 7.7 shows that every analytical model predicts accurately the four derivatives when

ρ ≤ 10, for ellipsoidal particles with an aspect ratio of 20 and a volume fraction of 10%. For

high contrasts, the SCS deviates from the numerical solution, especially for δµ̃κ1 and δκ̃µ1 . The

accuracy of the other models remains acceptable, Lielens’ model being the most accurate.

As observed for the first order moments, the homogenization models accuracy is more

sensitive to the fibers volume fraction than to their aspect ratio when predicting δκ̃κ1 , δ
µ̃
κ1

, δκ̃µ1
and δµ̃µ1 . For low contrasts, MT and MT/Benveniste are the most suited models to predict

the intra-matrix second order moments. For high contrasts, it seems that Lielens’ model

provides the most accurate estimates.

7.6.3 Prediction of the intra-fiber second order moments

Figure 7.8 shows the numerical and analytical estimates for δκ̃κ2 , δ
µ̃
κ2

, δκ̃µ2 and δµ̃µ2 for a

volume fraction of 10% and an aspect ratio of 1. Every analytical model provided accurate

predictions when ρ ≤ 10, except the dilute solution of Eshelby, for δκ̃κ2 and δµ̃µ2 . No analytical

model predicts accurately δκ̃κ2 and δµ̃µ2 when ρ ≥ 60 and ρ ≥ 20, respectively. However, in

both cases, the predictions of the SCS are the closest to the numerical solution. It should

be noted that all models reached a plateau for high contrasts, which is not the case for the

numerical solution. On the other hand, according to Figures 7.8b and 7.8c, only the SCS
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estimates accurately δµ̃κ2 and δκ̃µ2 when ρ ≤ 10. For all other models, δµ̃κ2 = δκ̃µ2 ≈ 0 for the

studied range of contrasts. However, the SCS deviates from the numerical predictions when

ρ ≥ 20, but remains the most accurate among the studied models.

When the volume fraction of the spherical particles reaches 50%, Figures 7.9a and 7.9d

show that MT and MT/Benveniste models are the most accurate for predicting δκ̃κ2 and δµ̃µ2
when ρ ≤ 10. Nevertheless, the estimates of the SCS and Lielens’ model are still within

acceptable margins. For higher contrasts, all analytical models reached a plateau, except the

SCS. The latter follows the same trend as the numerical solution and is the only model that

provides acceptable estimates of δκ̃κ2 and δµ̃µ2 . The same observation can be made in Figures

7.9b and 7.9c. It can be seen that the SCS provides the most accurate predictions of δµ̃κ2 and

δκ̃µ2 among all the studied models.

When the fibers aspect ratio reaches 20 (with a volume fraction of 10%), all analytical

models except the SCS predict the four derivatives with a high accuracy and for the entire

range of mechanical properties contrasts. Among these models, Lielens’ is slightly the most

accurate. The SCS predictions for δκ̃κ2 , δ
µ̃
κ2

, δκ̃µ2 and δµ̃µ2 are acceptable for ρ ≤ 40. Significant

discrepancies are observed when ρ ≥ 40.

According to these results, and as observed in Sections 7.6.1 and 7.6.2, the influence of

the fibers aspect ratio on the analytical models accuracy is negligible when compared to that

of the fibers volume fraction. Moreover, for fibers with low aspect ratio, the SCS seems to

be the most suitable model to predict the intra-fiber second order moments. This is valid for

the entire range of volume fractions. For ellipsoidal particles with high aspect ratio, Lielens’

model provided the most accurate estimates.

7.6.4 Prediction of the stress fields using the interpolation model

The objective of this section is to evaluate the accuracy of the interpolation model at

predicting the stress fields in a composite subjected to a given complex loading. Two com-

posites were studied. The first (composite A) was reinforced with ellipsoidal fibers having

an aspect ratio of 3 and a volume fraction of 35%. The mechanical properties contrast was

ρ = 80. In the second (composite B), the fibers had an aspect ratio of 15 and a volume

Table 7.2 Mechanical and geometrical properties of composites A and B.

Number of fibers Volume fraction Aspect ratio Contrast ρ

Composite A 90 35% 3 80

Composite B 120 15% 15 40
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fraction of 15%. For this composite, ρ = 40. For each composite, the size of the RVE was

determined according to the methodology described in Section 7.5.2. It was found that the

RVE of composite A contained 90 fibers while that of composite B contained 120 fibers. The

properties of both composites are summarized in Table 7.2.

A complex loading was represented by a macroscopic strain field. It was randomly chosen

and is given by:

E =

 3 −5 −2

−5 1 2

−2 2 0.5

 (7.24)

The intraphase stress fields were computed numerically. A microstructure having the

same size as the RVE was randomly generated for each composite, namely microstructures

A and B. The stress fields were computed with the FFT-based technique and the first and

second order moments were simply deduced in each phase (i.e., < σ >num
i and < σ⊗σ >num

i ,

where “num” stands for “numerical”).

The intraphase first and second order moments of the stress fields were also determined

analytically, as follows. First, the load-independent properties Φ were computed for each

composite by using the interpolation model. A2 was computed using Eq. (7.11) and A1 was

deduced from Eq. (7.5a). Knowing A1 and A2, the first moment of stress in each phase was

computed as:

< σ >ana
i = Ci :

(
Ai : E

)
(7.25)

where “ana” stands for “analytical”.

In a second step, the intraphase second moment of stresses was computed using Eq.(7.7b),

which can be written as (see Appendix 7.A):

< σmn ⊗ σop >ana
i =

1

ci
Σ :

1

3

(
3δκ̃κi

Jmnop
+

2δκ̃µi
Kmnop

)
J +

1

2

(
3δµ̃κi

Jmnop
+

2δµ̃µi
Kmnop

)
K

 : Σ (7.26)

where Σ is the macroscopic stress that can be deduced from the applied macroscopic strain

E and the effective stiffness tensor C̃ (see Eq. (7.1a)). C̃ was computed by using the

interpolation model developed in (Ghossein and Lévesque, 2014), which provides the effective

moduli for any given combination of mechanical properties contrast, fibers volume fraction

and aspect ratio.

Knowing the first and second order moments in each phase, it was possible to obtain the

mean (Mi) and covariance (Vi) tensors of the intraphase stress fields, both numerically and

analytically:



139

Table 7.3 Relative errors (in %) between the mean (Mi) and covariance (Vi) tensors obtained
numerically for microstructures A and B and those predicted analytically by the interpolation
model.

Error on Mi (εMi
) Error on Vi (εVi

)

Microstructure A
Matrix 1.7% 2.0%

Fibers 1.5% 2.1%

Microstructure B
Matrix 1.3% 2.6%

Fibers 1.9% 2.3%

M
num/ana
i = < σ >

num/ana
i (7.27a)

V
num/ana
i = < σ ⊗ σ >

num/ana
i − < σ >

num/ana
i ⊗ < σ >

num/ana
i (7.27b)

Table 7.3 provides the relative errors between tensors Mi and Vi obtained numerically for

microstructures A and B and those predicted analytically by the interpolation model. This

errors were computed as:

εMi
= max
{m,n}∈ {1,2,3}

∣∣∣∣∣M
num
mn/i −Mana

mn/i

Mnum
mn/i

∣∣∣∣∣ (7.28a)

εVi
= max
{m,n,o,p}∈ {1,2,3}

∣∣∣∣∣V
num
mnop/i − Vana

mnop/i

Vnum
mnop/i

∣∣∣∣∣ (7.28b)

where εMi
and εVi

denote the relative error for tensors Mi and Vi, respectively.

Table 7.3 shows that the interpolation model predicted accurately the intraphase stress

fields for both microstructures. Indeed, the maximum error on tensor Mi was 1.9% while

that on tensor Vi was 2.6%.

Although one complex loading and two microstructures were considered in this study, it

should be noted that similar results were obtained for any loading and for any microstructure

within the studied range of mechanical and geometrical properties.

7.6.5 Effect of Poisson’s ratio on the analytical models accuracy

The validation campaign was performed by fixing κ2
κ1

= µ2
µ1

. In this case, fibers and matrix

have the same Poisson’s ratio, which is not representative of real composites. Two new com-

posites of varying Poisson’s ratios were studied so as to cover a range of potentially realistic

applications. The first composite (composite C) was reinforced with ellipsoidal particles hav-



140

ing an aspect ratio of 2 and a volume fraction of 50% (fibers with high volume fraction) while

the second composite (composite D) was reinforced with ellipsoidal particles having an aspect

ratio of 20 and a volume fraction of 10% (fibers with high aspect ratio). For both composites,

the mechanical properties contrasts were fixed as follows: µ2/µ1 = 131.8, κ1/µ1 = 9.7 and

κ2/µ1 = 120.8. These values were chosen so that fibers and matrix had a Poisson’s ratio of

0.1 and 0.4, respectively.

The load independent properties were computed numerically and compared to the analyt-

ical models predictions for both composites and the relative error induced by each analytical

model was determined as follows:

εp =

∣∣∣∣∣pana − pnum

pnum

∣∣∣∣∣ (7.29)

where p denotes one of the load independent properties included in Φ. The obtained results

are shown in Tables 7.4a and 7.4b, respectively for composites C and D. The relative errors

are rounded to the unit.

Tables 7.4a and 7.4b show that Lielens’ is the most accurate model to predict the first

order moments as well as the intra-matrix second order moments, for both composites C and

D. By assuming that δµ̃κ1 is negligible when compared to the other derivatives (see Section

7.6.2), the maximum error induced by Lielens’ model was 10%. These results agree well

with those obtained in Sections 7.6.1 and 7.6.2, where it has been shown that Lielens’ is the

most suitable model for predicting the first order moments and the intra-matrix second order

moments for high mechanical properties contrasts.

Table 7.4a Relative error (in %) induced by each analytical model when predicting the first
and second order moments of ellipsoidal particles reinforced composites. Aspect ratio = 2.
Volume fraction = 50%. Mechanical properties: µ2/µ1 = 131.8, κ1/µ1 = 9.7, κ2/µ1 = 120.8.

Models

First order
moments

Intra-matrix
second order moments

Intra-fiber
second order moments

α β δκ̃κ1 δµ̃κ1 δκ̃µ1 δµ̃µ1 δκ̃κ2 δµ̃κ2 δκ̃µ2 δµ̃µ2

MT 6 5 18 15 38 24 43 100 100 63

MT/Ben. 6 5 18 15 38 24 43 100 100 63

SCS 94 95 98 76 73 82 22 9 11 24

Lielens 3 4 6 31 8 8 36 100 100 58

Eshelby 24 21 221 12 98 166 70 100 100 79
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Table 7.4b Relative error (in %) induced by each analytical model when predicting the first
and second order moments of ellipsoidal particles reinforced composites. Aspect ratio = 20.
Volume fraction = 10%. Mechanical properties: µ2/µ1 = 131.8, κ1/µ1 = 9.7, κ2/µ1 = 120.8.

Models

First order
moments

Intra-matrix
second order moments

Intra-fiber
second order moments

α β δκ̃κ1 δµ̃κ1 δκ̃µ1 δµ̃µ1 δκ̃κ2 δµ̃κ2 δκ̃µ2 δµ̃µ2

MT 4 3 5 13 12 4 7 7 8 7

MT/Ben. 3 3 4 11 11 4 7 6 8 7

SCS 14 16 72 58 62 48 27 41 40 49

Lielens 2 2 3 9 10 4 6 4 6 6

Eshelby 7 5 6 15 16 6 9 9 9 9

Tables 7.4a and 7.4b show that the SCS provides the most accurate predictions for the

intra-fiber second order moments in composite C, with a maximum error of 24%. Lielens’

model delivers the most accurate estimates with a maximum error of 6% for the same quanti-

ties in composite D. These results are consistent with those obtained in Section 7.6.3. Indeed,

the SCS has the highest accuracy when the fibers aspect ratio is low (e.g., composite C) while

Lielens’ is the most suitable model for fibers with high aspect ratio (e.g., composite D).

Thus, the same conclusions were obtained even if fibers and matrix had significantly

different Poisson’s ratios.

7.7 Conclusion

The main conclusions of this study are:

� The accuracy of analytical homogenization models is more sensitive to the fibers

volume fraction than to their aspect ratio when predicting the first and second order

moments.

� For low mechanical properties contrasts, MT and MT/Benveniste are the most suit-

able models to predict the first order moments as well as the intra-matrix second

order moments. Lielens’ model provides the most accurate predictions for high con-

trasts.

� The predictions of the SCS are the most accurate at predicting the intra-fiber second

order moments in the investigated range of contrasts and volume fractions, provided

that the fibers aspect ratio is low. For fibers with high aspect ratio, Lielens’ model
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has the highest accuracy among the studied models.

Moreover, an interpolation model has been developed. This model delivers accurate

estimates of the mean and covariance tensors of the intraphase stress fields, and that for

any microstructure subjected to a complex loading.
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Canadian Foundation for Innovation.



143

Appendix 7.A Demonstration of Equation (7.26)

Eq. (7.7b) can be written as:

< σmn ⊗ σop >i =
1

ci
Σ :

∂S̃

∂Smnop/i
: Σ (7.30)

Since:

S̃ =
1

3
κ̃−1J +

1

2
µ̃−1K , (7.31)

it is possible to write:

∂S̃

∂Smnop/i
=

1

3

∂κ̃−1

∂Smnop/i
J +

1

2

∂µ̃−1

∂Smnop/i
K (7.32a)

=
1

3

(
∂κ̃−1

∂κ−1
i

∂κ−1
i

∂Smnop/i
+
∂κ̃−1

∂µ−1
i

∂µ−1
i

∂Smnop/i

)
J

+
1

2

(
∂µ̃−1

∂κ−1
i

∂κ−1
i

∂Smnop/i
+
∂µ̃−1

∂µ−1
i

∂µ−1
i

∂Smnop/i

)
K (7.32b)

=
1

3

(
δκ̃κi

∂κ−1
i

∂Smnop/i
+ δκ̃µi

∂µ−1
i

∂Smnop/i

)
J

+
1

2

(
δµ̃κi

∂κ−1
i

∂Smnop/i
+ δµ̃µi

∂µ−1
i

∂Smnop/i

)
K (7.32c)

Since:

Smnop/i =
1

3
κ−1
i Jmnop +

1

2
µ−1
i Kmnop =⇒


∂κ−1

i

∂Smnop/i
=

3

Jmnop

∂µ−1
i

∂Smnop/i
=

2

Kmnop

(7.33)

Eq. (7.32c) becomes:

∂S̃

∂Smnop/i
=

1

3

(
3δκ̃κi

Jmnop
+

2δκ̃µi
Kmnop

)
J +

1

2

(
3δµ̃κi

Jmnop
+

2δµ̃µi
Kmnop

)
K (7.34)

Therefore, Eq. (7.30) can be written as:
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< σmn ⊗ σop >i =
1

ci
Σ :

1

3

(
3δκ̃κi

Jmnop
+

2δκ̃µi
Kmnop

)
J +

1

2

(
3δµ̃κi

Jmnop
+

2δµ̃µi
Kmnop

)
K

 : Σ (7.35)

which corresponds to Eq. (7.26).
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Figure 7.2 Comparison between the intra-fiber first order moments obtained with the numer-
ical tool (NT) and those predicted by the analytical models: Mori-Tanaka (MT), Benveniste
model (MT/Benveniste), self-consistent scheme (SCS), Lielens and the dilute solution of Es-
helby (Eshelby). Volume fraction = 10%. Aspect ratio = 1 (prolate ellipsoids). κ1 = µ1 = 1.
(a) Spherical component of tensor A2 (α). (b) Deviatoric component of tensor A2 (β).
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Figure 7.3 Comparison between the intra-fiber first order moments obtained with the numer-
ical tool (NT) and those predicted by the analytical models: Mori-Tanaka (MT), Benveniste
model (MT/Benveniste), self-consistent scheme (SCS), Lielens and the dilute solution of Es-
helby (Eshelby). Volume fraction = 50%. Aspect ratio = 1 (prolate ellipsoids). κ1 = µ1 = 1.
(a) Spherical component of tensor A2 (α). (b) Deviatoric component of tensor A2 (β).
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Figure 7.4 Comparison between the intra-fiber first order moments obtained with the numer-
ical tool (NT) and those predicted by the analytical models: Mori-Tanaka (MT), Benveniste
model (MT/Benveniste), self-consistent scheme (SCS), Lielens and the dilute solution of Es-
helby (Eshelby). Volume fraction = 10%. Aspect ratio = 20 (prolate ellipsoids). κ1 = µ1 = 1.
(a) Spherical component of tensor A2 (α). (b) Deviatoric component of tensor A2 (β).
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Figure 7.5 Comparison between the intra-matrix second order moments obtained with the
numerical tool (NT) and those predicted by the analytical models: Mori-Tanaka (MT), Ben-
veniste model (MT/Benveniste), self-consistent scheme (SCS), Lielens and the dilute solu-
tion of Eshelby (Eshelby). Volume fraction = 10%. Aspect ratio = 1 (prolate ellipsoids).
κ1 = µ1 = 1. (a) δκ̃κ1 . (b) δµ̃κ1 . (c) δκ̃µ1 . (d) δµ̃µ1 .
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Figure 7.6 Comparison between the intra-matrix second order moments obtained with the
numerical tool (NT) and those predicted by the analytical models: Mori-Tanaka (MT), Ben-
veniste model (MT/Benveniste), self-consistent scheme (SCS), Lielens and the dilute solu-
tion of Eshelby (Eshelby). Volume fraction = 50%. Aspect ratio = 1 (prolate ellipsoids).
κ1 = µ1 = 1. (a) δκ̃κ1 . (b) δµ̃κ1 . (c) δκ̃µ1 . (d) δµ̃µ1 .
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Figure 7.7 Comparison between the intra-matrix second order moments obtained with the
numerical tool (NT) and those predicted by the analytical models: Mori-Tanaka (MT), Ben-
veniste model (MT/Benveniste), self-consistent scheme (SCS), Lielens and the dilute solu-
tion of Eshelby (Eshelby). Volume fraction = 10%. Aspect ratio = 20 (prolate ellipsoids).
κ1 = µ1 = 1. (a) δκ̃κ1 . (b) δµ̃κ1 . (c) δκ̃µ1 . (d) δµ̃µ1 .
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Figure 7.8 Comparison between the intra-fiber second order moments obtained with the
numerical tool (NT) and those predicted by the analytical models: Mori-Tanaka (MT), Ben-
veniste model (MT/Benveniste), self-consistent scheme (SCS), Lielens and the dilute solu-
tion of Eshelby (Eshelby). Volume fraction = 10%. Aspect ratio = 1 (prolate ellipsoids).
κ1 = µ1 = 1. (a) δκ̃κ2 . (b) δµ̃κ2 . (c) δκ̃µ2 . (d) δµ̃µ2 .
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Figure 7.9 Comparison between the intra-fiber second order moments obtained with the
numerical tool (NT) and those predicted by the analytical models: Mori-Tanaka (MT), Ben-
veniste model (MT/Benveniste), self-consistent scheme (SCS), Lielens and the dilute solu-
tion of Eshelby (Eshelby). Volume fraction = 50%. Aspect ratio = 1 (prolate ellipsoids).
κ1 = µ1 = 1. (a) δκ̃κ2 . (b) δµ̃κ2 . (c) δκ̃µ2 . (d) δµ̃µ2 .
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Figure 7.10 Comparison between the intra-fiber second order moments obtained with the
numerical tool (NT) and those predicted by the analytical models: Mori-Tanaka (MT), Ben-
veniste model (MT/Benveniste), self-consistent scheme (SCS), Lielens and the dilute solu-
tion of Eshelby (Eshelby). Volume fraction = 10%. Aspect ratio = 20 (prolate ellipsoids).
κ1 = µ1 = 1. (a) δκ̃κ2 . (b) δµ̃κ2 . (c) δκ̃µ2 . (d) δµ̃µ2 .
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CHAPTER 8

GENERAL DISCUSSION

8.1 Clarification on some aspects

Following the jury’s comments, this section aims to provide further clarification and ex-

planations on the difference between exact solution and numerical solution as well as on the

validation of homogenization models using experimental data.

8.1.1 Exact solution vs numerical solution

An exact solution of a physical problem can be obtained only in simple cases (simple mi-

crostructures and boundary conditions). For the case of randomly distributed and oriented

fibers reinforced composites, it is not possible to obtain the exact solution for the effective

properties. Therefore, a numerical model should be used. It can be shown that once the

convergence is reached, the numerical solution approaches the exact solution within an ac-

ceptable tolerance for engineering applications. Since the difference between both solutions

is relatively low, it is possible to consider the numerical solution as an exact solution and

use it as a benchmark for computing the accuracy of analytical models. However, from a

mathematical point of view, a numerical solution is not an exact solution. It would therefore

be more appropriate to use the term “accurate solution” or “converged solution” to designate

the numerical solution.

8.1.2 Validation of homogenization model using experimental data

To validate an analytical model, one should compare its predictions to experimental ob-

servations. However, analytical homogenization models studied in this thesis rely on certain

assumptions including:

� The fibers are perfectly ellipsoidal;

� The fibers orientations distribution is perfectly random;

� The fibers are perfectly bonded to the matrix (perfect interphase).

In an experimental model, it is not possible to guarantee that these assumptions are

met. For instance, the fibers may not be perfectly ellipsoidal and randomly oriented into

the matrix. Therefore, comparison between analytical models and experimental observations
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could led to erroneous conclusions. In this case, a numerical model would be more appropriate

to establish comparisons and conclusions since it can reproduce the same assumptions made

for analytical models.

The word “validation” may bring confusion in this thesis since no experimental data were

used. To avoid any ambiguity, it should be noted that by “validating a model”, the author’s

main objective was to compute its accuracy and validity domain in terms of mechanical

properties contrasts, fibers volume fraction and fibers aspect ratio.

8.2 The most suitable analytical homogenization model

This study presented a rigorous and comprehensive evaluation of the performance of

analytical models at predicting the effective mechanical properties and local field statistics

of randomly distributed and oriented ellipsoidal particles reinforced composites, for a broad

range of phases mechanical properties, fibers volume fractions and aspect ratios.

For the specific case of spherical particles reinforced composites, it has been shown that

Lielens’ model delivers the most accurate predictions of the effective moduli, provided that the

spheres are completely stiffer than the matrix (i.e., κ2 ≥ κ1 and µ2 ≥ µ1). If the particles are

not completely stiffer than the matrix, the self-consistent scheme is the most accurate model

for low spheres volume fractions (i.e., < 20%). For higher volume fractions, the generalized

self-consistent model provides the most accurate estimates.

For the general case of ellipsoidal fibers, Lielens’ is the most accurate homogenization

model for predicting the effective properties, provided that the fibers are completely stiffer

than the matrix. Otherwise, the model of Benveniste could be an alternative to the Lielens’

model, especially when predicting the effective shear modulus of microstructures with high

ellipsoids aspect ratios.

On the other hand, it was found that none of the tested analytical models predicts ac-

curately the local field statistics for the whole investigated range of phases mechanical and

geometrical properties. Regarding the first order moments and the intra-matrix second order

moments, the Mori-Tanaka model and the Benveniste’s model have the highest accuracy for

low rigidity contrasts while Lielens’ is the most accurate model for high contrasts. As to the

intra-fiber second order moments, the self-consistent scheme is the most suitable model for

fibers with low aspect ratios whereas Lielens’ model provides the most accurate estimates for

fibers with high aspect ratios.

The results obtained in this thesis highlighted the fact that no analytical homogenization

model stands out of the others as being more accurate over the investigated range of mechan-

ical properties contrasts, fibers volume fractions and aspect ratios. However, if a single model
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was to be chosen for predicting the effective properties and the local field statistics of ellip-

soidal fibers reinforced composites, this study suggests that it should be Lielens’ model. Al-

though it is a simple nonlinear interpolation between the Hashin-Shtrikman-Walpole bounds,

it was found that Lielens’ model provides the most accurate predictions in most cases.

8.3 The interpolation models

All numerical results generated during this project were saved into a database. Approxi-

mately, 1800 different ellipsoidal fibers reinforced composites were studied. These numerical

results were used to build two interpolation models. The first model predicts the effective

properties while the second model predicts the local field statistics. These interpolation

models can be seen as a substitute to analytical homogenization models. Their numerical

execution is as quick as analytical models but their accuracy is the highest published so far,

provided that the properties of the phases are within the investigated range of mechanical

and geometrical properties:

� A phases mechanical properties contrast between 1 and 100;

� A fibers volume fraction between 0% and 50%;
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Figure 8.1 Investigated range of geometrical properties for prolate and oblate ellipsoidal fibers:
ellipsoids aspect ratio as a function of the ellipsoids volume fraction.
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� A fibers aspect ratio between 1 and 20 (prolate or oblate fibers).

More specifically, the investigated range of geometrical properties is illustrated in Figure 8.1,

for both prolate and oblate ellipsoidal particles. The figure shows the ellipsoids aspect ratio

as a function of the ellipsoids volume fraction.

8.4 A fully automated numerical tool

Besides the validation of analytical homogenization models, this project led to the de-

velopment of a fully automated numerical tool able to compute accurate local fields and

effective properties of linearly isotropic composites reinforced by randomly distributed and

oriented ellipsoidal fibers. The user inputs the phases mechanical properties, the fibers vol-

ume fraction, the fibers aspect ratio as well as the confidence level (for computing confidence

intervals). The numerical tool generates random microstructures representatitve of the stud-

ied composite and computes the effective properties and local field statistics using a rigorous

RVE determination process. More specifically, the numerical tool can:

� Compute the mechanical properties as well as the stress and strain fields of a single

microstructure submitted to a given loading. The microstructure can be either gen-

erated randomly or provided by the user by specifying the position and orientation

of each fiber.

� Compute the effective mechanical properties and local field statistics of a given

composite. The tool generates as many microstructures required to reach the RVE.

Convergence analysis in terms of number of realizations and volume element size

is performed automatically. The tool outputs the required properties with their

confidence interval.

This numerical tool can be used by other researchers who wish to compute the effective

properties of specific composites and/or validate their homogenization models.
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CHAPTER 9

COMPLEMENTARY WORK: EXTENSION TO THE CASE OF

CYLINDRICAL FIBERS

This chapter presents the modifications that should be made in the numerical tool to

deal with cylindrical fibers reinforced composites. The only difference lies in the random

generation process since the technique for computing the effective properties and local field

statistics remains the same. In the following, two molecular dynamics algorithms are pro-

posed. The first algorithm generates randomly distributed unidirectional cylindrical fibers

while the second algorithm generates randomly distributed and oriented cylindrical fibers.

9.1 Randomly distributed unidirectional cylindrical fibers

The algorithm is based on that proposed in Chapter 4. The cylinders are generated in

a cube of side L oriented along the e1e2e3-axes. It is assumed that the cylinders remain

parallel during the simulation and their longitudinal axis is oriented along the e2-axis. At

each step of the simulation, each cylinder A has the following parameters: a position vector

(rA), a velocity vector (vA), a radius (RA) and its growth rate (RA
0 ), a length (lA) and its

growth rate (lA0 ). The ratio lA0 /(2R
A
0 ) must be equal to the aspect ratio provided by the user.

Three subroutines need to be modified: computation of binary collisions (Algorithm 4.2),

computation of collisions with the cell faces (Algorithm 4.3) and update of post-collision

particles velocities (Algorithm 4.4).

9.1.1 Computation of binary collisions

Let A and B be two cylinders in space. Two types of binary collisions can occur: an

out-of-plane collision, i.e., along the e2-axis, and an in-plane collision, i.e., in the e1e3-plane.

Two parameters δ1 and δ2 must be computed, both being a function of the time t. The first

is the distance between the two cylinders in the e1e3-plane. It is calculated as follows:

δ1(t) =

√(
rA[1]− rB[1] +

(
vA[1]− vB[1]

)
t
)2

+
(
rA[3]− rB[3] +

(
vA[3]− vB[3]

)
t
)2

−
(
RA +RB +

(
RA

0 +RB
0

)
t
)

(9.1a)

where rA[k] and vA[k] refer respectively to the kth term of vectors rA and vA. δ2 represents
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the distance between the two cylinders along e2-axis. It is given by:

δ2(t) =
∣∣∣rA[2]− rB[2] +

(
vA[2]− vB[2]

)
t
∣∣∣−( lA + lB +

(
lA0 + lB0

)
t

2

)
(9.1b)

The next collision time between cylinders A and B is the smallest positive value tc such

that δ1(tc) ≤ 0 and δ2(tc) ≤ 0. To find the time tc, the roots of δ1(t) and δ2(t) should be

computed first, i.e., find t1 and t2 such that δ1(t1) = 0 and δ2(t2) = 0. If the quadratic

equation δ1(t1) = 0 has no solution, there will never be a collision between the two cylinders.

Otherwise, if t1 exist, three cases must be considered. If t1 > t2 and δ2(t1) ≤ 0, an in-plane

collision occurs at time tc = t1. If t1 ≤ t2 and δ1(t2) ≤ 0, an out-of-plane collision occurs at

time tc = t2. In all other cases, there is no collision between the cylinders.

9.1.2 Computation of collisions with the cube cell faces

For each cylinder A, a collision time with each cube face should be calculated. The six

collision times are obtained as follows:

tk =



(
rA[2k − 1]−RA

)(
RA

0 − vA[2k − 1]
)−1

k = {1, 2} (e1 = 0 , e3 = 0)(
L− rA[2k − 5]−RA

)(
RA

0 + vA[2k − 5]
)−1

k = {3, 4} (e1 = L , e3 = L)(
rA[2]− lA/2

)(
lA0 /2− vA[2]

)−1

k = 5 (e2 = 0)(
L− rA[2]− lA/2

)(
lA0 /2 + vA[2]

)−1

k = 6 (e2 = L)

(9.2)

The next collision time between cylinder A and a cube face corresponds to the smallest value

of tk obtained from Eq. (9.2).

9.1.3 Velocities update after a binary collision

The update of velocities depends on the type of collision. If an in-plane collision occurs,

the velocities update procedure is the same as for a collision between two circles or spheres (see

Algorithm 4.4). If an out-of-plane collision occurs, only the e2-component of the velocities is

affected. The respective e2-components of the two cylinders are exchanged while considering

the length growth rate. The computation of the post-collision velocities is performed as

follows:

vA+[2] = vB−[2] +

(
lA0 + lB0

2

)
uAB (9.3a)
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vB+[2] = vA−[2]−
(
lA0 + lB0

2

)
uAB (9.3b)

where

uAB =
rA[2]− rB[2]∣∣∣rA[2]− rB[2]

∣∣∣ = 1 or (−1) (9.3c)

It should be noted that v− and v+ denote respectively the velocities before and after the

binary collision.

9.1.4 Example of a random packing

Figure 9.1 shows an example of a random packing containing 30 randomly distributed

unidirectional cylindrical particles with an aspect ratio of 6 and a volume fraction of 50%.

9.2 Randomly distributed and oriented cylindrical fibers

Generating randomly distributed and oriented cylindrical fibers using a molecular dynam-

ics algorithm is not obvious. Indeed, computing binary collisions between two particles under

translational and rotational motions is more complex for cylinders than for ellipsoids. This

is due to the fact that the surface gradient of an ellipsoid is continuous, which is not the case

for a cylinder.

Figure 9.1 30 unidirectional cylindrical particles randomly distributed in a periodic unit cell.
Volume fraction = 50%. Aspect ratio = 6.
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It is possible to overcome this issue by generating first a packing containing randomly

distributed and oriented axisymmetric ellipsoidal fibers (prolate or oblate) using the algorithm

developed in Chapter 5. Once the simulation is complete, the cylinders particles are then

embedded in the generated ellipsoids. This ensures that there is no overlapping between

the cylinders. However, the bounding ellipsoids must occupy the smallest possible space for

performance matters. In other words, each cylinder must occupy the highest possible volume

in its bounding ellipsoid.

Figure 9.2 shows a 2D representation of a cylinder embedded in an axisymmetric ellipsoid.

The ellipsoid and the cylinder are coaxial. The equation of the ellipsoid in its local coordinate

system Oxyz is given by:
x2

a2
+
y2

b2
+
z2

b2
= 1 (9.4)

where a refers to the length of the ellipsoid’s first semi-principal axis and b refers to the length

of the ellipsoid’s second and third semi-principal axis (axisymmetric ellipsoid).

For a given length l, the cylinder’s cross section corresponds to the ellipsoid’s cross section

at x = l/2. The equation of this cross section can be obtained from Eq. (9.4):

y2 + z2 = b2

(
1− l2

4a2

)
(9.5)

Figure 9.2 2D representation of a cylinder embedded in an axisymmetric ellipsoid. The
ellipsoid and the cylinder are coaxial and Oxyz denotes their local coordinate system (z is
not shown). The maximum volume that the cylinder can have represents approximately 77%
of the ellipsoid’s volume.
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From Eq. (9.5), one can deduce the radius of the cylinder:

R = b

√
1− l2

4a2
(9.6)

The volume of the cylinder for a given length l is expressed as follows:

V (l) = πR2l = πb2l

(
1− l2

4a2

)
(9.7)

The aim is to find the value of l, denoted by l∗, for which V (l) is maximal. This can be

done by finding the value of l for which the derivative of V (l) is zero:

dV (l)

dl

∣∣∣∣
l= l∗

= πb2

(1− l∗2

4a2

)
− l∗2

2a2

 = 0 ⇐⇒ l∗ =
2a
√

3

3
(9.8)

The radius, aspect ratio and volume of the optimal cylinder can be deduced from Eqs.

(9.6), (9.7) and (9.8):

R∗ = b

√
1− l∗2

4a2
=

b
√

6

3
(9.9a)

l∗

2R∗
=

√
2

2

a

b
(9.9b)

V ∗ = V (l∗) = πb2l∗

(
1− l∗2

4a2

)
=

4
√

3

9
πab2 (9.9c)

Eqs. (9.9) state that the aspect ratio of the optimal cylinder is equal to 70.7% (
√

2/2) of the

ellipsoid’s aspect ratio. Furthermore, the volume of the optimal cylinder represents 77.0%

(4
√

3/9) of the ellipsoid’s volume.

For example, in order to generate randomly distributed and oriented cylindrical fibers

with an aspect ratio of 10 and a volume fraction of 45%, the following methodology should

be adopted. First, a packing containing randomly distributed and oriented ellipsoidal fibers

with an aspect ratio of 14.1 (10×2/
√

2) and a volume fraction of 58.5% (45×9/4
√

3) must be

generated using the algorithm developed in Chapter 5. Knowing the length of the ellipsoids,

the length and radius of the cylinders can be computed using Eqs. (9.8) and (9.9). The

cylinders are then optimally embedded in the generated ellipsoids, so that they have the

desired aspect ratio and volume fraction.
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CONCLUSION AND RECOMMENDATIONS

A through and exhaustive study was performed to validate the performance of analytical

homogenization models at predicting the mechanical behavior of randomly distributed and

oriented ellipsoidal fibers reinforced composites. The validation was performed at two levels.

First, the accuracy of analytical models at predicting the effective mechanical properties was

evaluated. In a second step, this study assessed the performance of analytical models at

estimating the local field statistics, and more specifically the first and second order moments

of stresses and strains.

A fully automated numerical tool was developed. The representative microstructures

were randomly generated using a molecular dynamics algorithm. For the specific case of

spherical particles, the algorithm of Lubachevsky and Stillinger was used. As for the case

of ellipsoidal particles, a new computationally-efficient algorithm was developed since the

available algorithms in the literature have a high computational cost. The originality of the

new developed algorithm lies in the fact that binary collision times between two moving

ellipsoids are computed by simply finding the roots of a nonlinear function. The algorithm

can generate all types of ellipsoids packings (prolate, oblate and scalene) with very high

aspect ratios.

The effective properties and local field statistics of the generated microstructures were

obtained by using a Fast Fourier Transforms (FFT) based technique. A wide range of phases

mechanical properties, fibers volume fractions and aspect ratios was swept, and approximately

1800 different ellipsoidal fibers reinforced composites were studied. For each combination of

phases mechanical and geometrical properties, the size of the Representative Volume Element

(RVE) was determined rigorously.

The predictions of the numerical tool were compared to those of the best known analytical

homogenization models: the dilute solution of Eshelby, the self-consistent scheme, the gen-

eralized self consistent scheme, the Mori-Tanaka model, the Benveniste’s model, the Third

Order Approximation and the Lielens’ model. Comparisons between numerical and analytical

predictions allowed to attribute a validity domain for each analytical model. Furthermore,

the influence of the phases mechanical properties contrast, fibers volume fraction and fibers

aspect ratio on the analytical models accuracy was investigated.

It was found that Lielens’ model delivers the most accurate effective properties predictions,

provided that the inclusions are completely stiffer than the matrix. If this condition is not

met, the self-consistent and the generalized self-consistent schemes are the most accurate

models for the case of spherical particles, respectively for low and high volume fractions. For
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the case of ellipsoidal fibers, the model of Benveniste provides the most accurate estimates,

especially for high aspect ratios.

As for the local field statistics, a novel and original load independent approach was pro-

posed to evaluate the accuracy of analytical models. This approach was based on the compu-

tation of load independent properties directly related to the first and second order moments.

It was found that the Mori-Tanaka and Benveniste’s models provide the most accurate pre-

dictions of the first order moments and intra-matrix second order moments, provided that

the mechanical properties contrast is low. For high contrasts, Lielens’s is the most accurate

model. On the other hand, the self-consistent scheme is the most suitable model to predict

the intra-fiber second order moments, provided that the fibers aspect ratio is low. For high

aspect ratios, Lielens’ model delivers the most accurate estimates.

Although no analytical model stands out of the others as being more accurate over the

investigated range of mechanical and geometrical properties, this study suggests that Lielens’

model remains the best suitable model since it delivers the most accurate predictions in most

cases. This study also reveals that the mechanical properties contrast is the most influential

parameter on the analytical models accuracy, followed by the fibers volume fraction. Indeed,

the models accuracy is not very sensitive to the fibers aspect ratio.

Finally, two interpolation models were developed in this thesis. The first models predicts

the effective moduli while the second model estimates the local field statistics. It has been

shown that both models have the highest accuracy published so far and can be seen as a

substitute to analytical homogenization models.

Limitations and recommendations for future studies

This thesis was limited to the case of two-phase linearly elastic composites reinforced by

axisymmetric and monodisperse ellipsoidal fibers. It was also assumed that the reinforcements

were perfectly bonded to the matrix. The following lines suggest some recommendations for

future studies.

� Take into consideration the interphase between fibers and matrix

It would be interesting to evaluate the performance of analytical homogenization

models by taking into account the interphase between fibers and matrix. One could

study the influence of the thickness and mechanical properties of the interphase on

the analytical models accuracy. A new numerical tool could be developed for the

case of coated inclusions and validity domains could be computed for the different

analytical three-phase models available in the literature.

For this purpose, the FFT-based technique should be modified to take into consider-
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ation the presence of a third phase. A rigorous rule of arbitration should be defined

during the discretization process, so that the correct properties are assigned to each

voxel.

� Investigate the case of scalene and/or polydisperse ellipsoidal fibers

Only the case of axisymmetric ellipsoidal particles were considered in this study

(spheres, prolate ellipsoids and oblate ellipsoids). Investigating the case of scalene

ellipsoidal particles could be interesting. It should be noted that there is no analytical

expression of Eshelby’s tensor for scalene ellipsoids. It must be computed numerically

using the methodology of Gavazzi and Lagoudas (1990). Therefore, the numerical

execution of analytical homogenization models becomes slower, making the use of

interpolation models more attractive.

Furthermore, one could study the case of polydisperse particles. The effect of the

particles size distribution on the analytical models accuracy could be investigated.

It would also be possible to consider the case of microstructures where each particle

has a random aspect ratio (see Figure 5.5).

� Extension of the numerical tool to the case of cylindrical fibers

Extend the numerical tool for computing the effective mechanical properties of ran-

domly distributed and oriented cylindrical fibers. The only difference with the cur-

rent tool lies in the random generation process (see Chapter 9). Generating randomly

distributed and oriented cylindrical particles using a molecular dynamics algorithm

is more complex than generating ellipsoidal particles. Indeed, computing binary col-

lisions between two cylindrical particles under translational and rotational motions

is not trivial since the surface gradient of a cylinder is not continuous (unlike an

ellipsoid).

Using this numerical tool, one could study the aspect ratio threshold from which

ellipsoidal and cylindrical fibers would have the same mechanical behavior.

� Extension to other families of composites

This thesis was limited to linearly elastic composites with isotropic phases. As part

of future studies, it would be interesting to investigate other types of material sym-

metries (e.g., transverse isotropy, orthotropy, cubic symmetry, etc.) with linear and

nonlinear viscoelastic phases. In fact, many composite structures used in aerospace

have a viscoelastic behavior (e.g., polymer matrix composites used in engine compo-

nents). Validating the performance of analytical models for these different families

of composites could be of interest to the industry since it can incorporates these

models in early stages of design.
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� Investigate the higher order moments

This thesis was limited to the computation of the first and second order moments.

The interpolation model developed in Chapter 7 can predict the intraphase first

and second order moments, but cannot provide the intraphase stress and strain

field distributions. Indeed, since the latter are not Gaussian, higher order moments

are required to reconstruct the real distributions. Further studies are needed to

investigate the higher order moments and thus to develop a model able to predict

the intraphase field distributions. This model could be very useful to predict damage

in composites.
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(2008). Micromechanical modeling of the viscoplastic behavior of olivine. Journal of Geo-

physical Research, 113.

CASTELNAU, O., BRENNER, R. and LEBENSOHN, R. (2006). The effect of strain

heterogeneity on the work hardening of polycrystals predicted by mean-field approaches.

Acta materialia, 54, 2745–2756.

CHOI, Y., CHANG, J., WANG, W., KIM, M. and ELBER, G. (2009). Continuous collision

detection for ellipsoids. Visualization and Computer Graphics, IEEE Transactions on, 15,

311–325.

CHOI, Y., WANG, W. and KIM, M. (2003). Exact collision detection of two moving

ellipsoids under rational motions. 2003 IEEE International Conference on Robotics and

Automation. IEEE, vol. 1, 349–354.

CHRISTENSEN, R. M. and LO, K. H. (1979). Solutions for effective shear properties in

three phase sphere and cylinder models. Journal of the Mechanics and Physics of Solids,

27, 315 – 330.

CHUNG, D. and BUESSEM, W. (1967). The elastic anisotropy of crystals. Journal of

Applied Physics, 38, 2010–2012.

COJOCARU, D. and KARLSSON, A. (2010). On the effective elastic properties of macro-

scopically isotropic media containing randomly dispersed spherical particles. Journal of En-

gineering Materials and Technology, Transactions of the ASME, 132, 0210111 – 02101111.
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EL-MOURID, A. E., GANESAN, R. and LÉVESQUE, M. (2012). Comparison between an-

alytical and numerical predictions for the linearly viscoelastic behavior of textile composites.

Mechanics of Materials, 58, 69–83.

ESHELBY, J. (1957). The determination of the elastic field of an ellipsoidal inclusion, and

related problems. Proceedings of the Royal Society of London. Series A, Mathematical and

Physical Sciences, 241, 376–396.

EYRE, D. and MILTON, G. (1999). A fast numerical scheme for computing the response of

composites using grid refinement. European Physical Journal, Applied Physics, 6, 41 – 47.

FERRARI, M. (1991). Asymmetry and the high concentration limit of the mori-tanaka

effective medium theory. Mechanics of Materials, 11, 251–256.

FIGIEL, L. and BUCKLEY, C. (2009). Elastic constants for an intercalated layered-

silicate/polymer nanocomposite using the effective particle concept–a parametric study us-

ing numerical and analytical continuum approaches. Computational Materials Science, 44,

1332–1343.

GAVAZZI, A. and LAGOUDAS, D. (1990). On the numerical evaluation of eshelby’s tensor

and its application to elastoplastic fibrous composites. Computational Mechanics, 7, 13–19.



171

GHOSSEIN, E. and LEVESQUE, M. (2012). A fully automated numerical tool for a com-

prehensive validation of homogenization models and its application to spherical particles

reinforced composites. International Journal of Solids and Structures, 49, 1387 – 1398.

GHOSSEIN, E. and LEVESQUE, M. (2013). Random generation of periodic hard ellipsoids

based on molecular dynamics: A computationally-efficient algorithm. Journal of Computa-

tional Physics, 253, 471 – 490.
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APPENDIX A

ORIENTATION AVERAGING OF A TENSOR

The orientation averaging of a given tensor X is given by:

〈
Xmnop

〉
=

1

2π2

π∫
−π

π∫
0

π/2∫
0

ωmqωnrωosωptXqrst sin(φ)dθdφdψ (A.1)

where θ, φ and ψ refer to the Euler angles and ω denotes the rotation tensor. Norris (1985)

and Benveniste (1987) have shown that Eq. (A.1) can be computed analytically. If all possible

orientations are considered, 〈X〉 is isotropic and can be expressed as:

〈X〉 = αJ + βK (A.2)

where J and K refer to the classical spherical and deviatoric projection tensors, respectively.

α and β are given by:

α =
1

3
Xmmnn (A.3a)

β =
1

5
(Xmnmn − α) (A.3b)
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APPENDIX B

ESHELBY’S TENSOR FOR SPHERICAL AND ELLIPSOIDAL INCLUSIONS

B.1 Eshelby’s tensor for a spherical inclusion

The Eshelby’s tensor for a spherical inclusion embedded in an infinite medium is given

by (Bourgeois, 1994):

SE =
3κ0

3κ0 + 4µo
J +

6(κ0 + 2µ0)

5(3κ0 + 4µ0)
K (B.1)

where κ0 and µ0 refer respectvely to the bulk and shear moduli of the infinite medium, while

J and K are the classical spherical and deviatoric projection tensors.

B.2 Eshelby’s tensor for an ellipsoidal inclusion

The Eshelby’s tensor for an ellipsoidal inclusion embedded in an infinite medium and

oriented along the third principal direction is given by (Bourgeois, 1994):

SE
1111 = SE

2222 =
3R2

8(1− ν0)(R2 − 1)
+

1

4(1− ν0)

[
1− 2ν0 −

9

4(R2 − 1)

]
γ(R) (B.2a)

SE
3333 =

1

2(1− ν0)

1− 2ν0 +
3R2 − 1

R2 − 1
−
[

1− 2ν0 +
3R2

R2 − 1

]
γ(R)

 (B.2b)

SE
1122 = SE

2211 =
1

4(1− ν0)

 R2

2(R2 − 1)
−
[

1− 2ν0 +
3

4(R2 − 1)

]
γ(R)

 (B.2c)

SE
1133 = SE

2233 = − R2

2(1− ν0)(R2 − 1)
+

1

4(1− ν0)

[
3R2

R2 − 1
− (1− 2ν0)

]
γ(R) (B.2d)

SE
3311 = SE

3322 = − 1

2(1− 2ν0)


[

1− 2ν0 +
1

R2 − 1

]
+

[
1− 2ν0 +

3

2(R2 − 1)

]
γ(R)

 (B.2e)

SE
1212 =

1

4(1− ν0)

 R2

2(R2 − 1)
+

[
1− 2ν0 −

3

4(R2 − 1)

]
γ(R)

 (B.2f)



182

SE
3131 = SE

3232 =
1

4(1− ν0)

1− 2ν0 −
R2 + 1

R2 − 1
− 1

2

[
1− 2ν0 −

3(R2 + 1)

R2 − 1

]
γ(R)

 (B.2g)

where ν0 is the Poisson’s ratio of the infinite medium and R is the aspect ratio of the ellipsoidal

inclusion. R is defined as the ratio between the length of the radius along the symmetry axis

and the length of the equatorial radius. γ(R) is expressed as:

γ(R) =



R

(R2 − 1)3/2

[
R(R2 − 1)1/2 − cosh−1(R)

]
if R > 1

R

(1−R2)3/2

[
cos−1(R)−R(1−R2)1/2

]
if R < 1

(B.3)

It should be noted that SE has the minor symmetry property (i.e., SE
mnop = SE

nmop = SE
mnpo =

SE
nmpo.
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APPENDIX C

NORMALIZATION OF THE FIRST AND SECOND ORDER MOMENTS

The aim of this appendix is to show that the first and second order moments can be

normalized (i.e., load independent) only for very specific load cases. The proof is developed

for 2D microstructures but the same reasoning applies for 3D microstructures.

Suppose that a 2D microstructure is subjected to a macroscopic strain E. Define:

� σ11 the stress field obtained under a unit uniaxial loading in the first principal

direction (i.e., E11 = 1 and E22 = E12 = 0);

� σ22 the stress field obtained under a unit uniaxial loading in the second principal

direction (i.e., E22 = 1 and E11 = E12 = 0);

� σ12 the stress field obtained under a unit pure shear loading (i.e., E12 = 1 and

E11 = E22 = 0).

Under an arbitrary loading E11 = γ11, E22 = γ22 and E12 = γ12, the stress field can be

obtained using the superposition principle:

σ = γ11σ
11 + γ22σ

22 + γ12σ
12 (C.1)

The stress first order moment in phase “ i ” is given by:

< σ >i = < γ11σ
11 + γ22σ

22 + γ12σ
12 >i (C.2a)

= γ11< σ
11 >i + γ22< σ

22 >i + γ12< σ
12 >i (C.2b)

Eq. (C.2b) shows that the intraphase stress first order moment can be normalized (i.e., obtain

a metric that depends only on < σ11 >i, < σ22 >i and < σ12 >i) only for the following

specific load cases:

� γ22 = γ12 = 0 or γ11 = γ12 = 0 (uniaxial loading);

� γ11 = γ22 = 0 (pure shear loading);

� γ11 = γ22 = γ12;

� γ11 = γ22 and γ12 = 0 or γ11 = γ12 and γ22 = 0 or γ22 = γ12 and γ11 = 0.

In all other cases, the stress first order moment cannot be normalized and is therefore load
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dependent.

The intraphase stress second order moment is given by:

< σ ⊗ σ >i = <
(
γ11σ

11 + γ22σ
22 + γ12σ

12
)
⊗
(
γ11σ

11 + γ22σ
22 + γ12σ

12
)
>i (C.3a)

= γ2
11< σ

11 ⊗ σ11 >i + γ2
22< σ

22 ⊗ σ22 >i + γ2
12< σ

12 ⊗ σ12 >i

+ γ11γ22< σ
11 ⊗ σ22 >i + γ11γ12< σ

11 ⊗ σ12 >i

+ γ22γ11< σ
22 ⊗ σ11 >i + γ22γ12< σ

22 ⊗ σ12 >i

+ γ12γ11< σ
12 ⊗ σ11 >i + γ12γ22< σ

12 ⊗ σ22 >i (C.3b)

Eq. (C.3b) shows that the intraphase stress second order moment can be normalized only

for the following specific load cases:

� γ22 = γ12 = 0 or γ11 = γ12 = 0 (uniaxial loading);

� γ11 = γ22 = 0 (pure shear loading).

Indeed, normalization is possible if one can obtain a metric that depends only on

< σ11 ⊗ σ11 >i, < σ22 ⊗ σ22 >i and < σ12 ⊗ σ12 >i (without the coupled terms, i.e.,

< σmn ⊗ σop >i with m 6= o or n 6= p).

In conclusion, the stress first and second order moments can be normalized only for uni-

axial and pure shear loadings. In all other cases, the stress first and second order moments

cannot be normalized and are therefore load dependent. It should be noted that this state-

ment also applies for the strain first and second order moments.
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