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MIMO COMMUNICATION SYSTEMS WITH RECONFIGURABLE ANTENNAS

VIDA VAKILIAN
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RÉSUMÉ

Les antennes reconfigurables sont capables d’ajuster dynamiquement les caractéristiques

de leur diagramme de rayonnement, par exemple, la forme, la direction et la polarisation,

en réponse aux conditions environnementales et exigences du système. Ces antennes peuvent

aussi être utilisées en conjonction avec des système à entrées multiples sorties multiples

(MIMO) pour améliorer davantage la capacité et la fiabilité des systèmes sans fil. Cette thèse

étudie certains des problèmes dans les systèmes sans fil équipés d’antennes reconfigurables et

propose des solutions pour améliorer la performance du système.

Dans les systèmes sans fil utilisant des antennes reconfigurables, la performance attei-

gnable par le système dépend fortement de la connaissance de la direction d’arrivée (DoA)

des signaux souhaités et des interférences. Dans la première partie de cette thèse, nous propo-

sons un nouvel algorithme d’estimation de la DoA pour les système à entrée simple et sortie

simple (SISO) qui possèdent un élément d’antenne reconfigurable au niveau du récepteur.

Contrairement à un système utilisant un réseau d’antennes conventionnelles à diagramme de

rayonnement fixe, où la DoA est estimée en utilisant les signaux reçus par plusieurs éléments,

dans le réseau d’antennes avec l’algorithme proposé, la DoA est estimée en utilisant des si-

gnaux reçus d’un élément d’antenne unique pendant qu’il balai un ensemble de configurations

de diagramme de rayonnement. Nous étudions aussi l’impact des différentes caractéristiques

des diagrammes de rayonnement utilisés, tels que la largeur du faisceau de l’antenne et le

nombre d’étapes de numérisation, sur l’exactitude de la DoA estimée.

Dans la deuxième partie de cette thèse, nous proposons un système de MIMO faible com-

plexité employant des antennes reconfigurables sur les canaux sélectifs en fréquence pour

atténuer les effets de trajets multiples et donc éliminer l’interférence entre symboles sans

utiliser la technique de modulation multiplexage orthogonale fréquentiel (OFDM). Nous étu-

dions aussi l’impact de la propagation et de l’antenne angulaire largeur de faisceau sur la

performance du système proposé et faire la comparaison avec la performance du système

MIMO-OFDM.

Dans la troisième partie de cette thèse, nous fournissons des outils analytiques pour analy-

ser la performance des systèmes sans fil MIMO équipés d’antennes reconfigurables au niveau

du récepteur. Nous dérivons d’abord des expressions analytiques pour le calcul de la matrice

de covariance des coefficients des signaux reçus empiétant sur un réseau d’antennes reconfi-

gurables en tenant compte de plusieurs caractéristiques de l’antenne tels que la largeur du

faisceau, l’espacement d’antenne, l’angle de pointage ainsi que le gain de l’antenne. Dans cette

partie, nous considérons un récepteur MIMO reconfigurable où le diagramme de rayonnement
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de chaque élément d’antenne dans le réseau peut avoir des caractéristiques différentes. Nous

étudions également la capacité d’un système MIMO reconfigurable en utilisant les expressions

analytiques dérivées.

Dans la dernière partie de la thèse, nous proposons une nouvelle technique de codage du

bloc tri-dimensionelle pour les systèmes reconfigurable MIMO-OFDM qui tirent partie des

caractéristiques de l’antenne reconfigurables pour améliorer la diversité de système sans fil

et de la performance. Le code en bloc proposé est capable d’extraire de multiple gains de

diversité, y compris spatiale, en fréquence et de diagramme de rayonnement. Afin d’obte-

nir la diversité de diagramme de rayonnement, nous configurons chaque élément d’antenne

d’émission pour basculer indépendamment son diagramme de rayonnement dans les direc-

tions sélectionnées en fonction de différents critères d’optimisation ; par exemple, la réduction

de la corrélation entre les différents états de rayonnement ou l’augmentation de la puissance

reçue. Le code en bloc quasi orthogonale proposé, qui est de taux unitaire et qui bénéficie de

trois types de diversité, améliore sensiblement les performances d’erreur binaire (BER) des

systèmes MIMO.
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ABSTRACT

Reconfigurable antennas are able to dynamically adjust their radiation pattern charac-

teristics, e.g., shape, direction and polarization, in response to environmental conditions

and system requirements. These antennas can be used in conjunction with multiple-input

multiple-output (MIMO) systems to further enhance the capacity and reliability of wireless

networks. This dissertation studies some of the issues in wireless cellular systems equipped

with reconfigurable antennas and offer solutions to enhance their performance.

In wireless systems employing reconfigurable antennas, the attainable performance im-

provement highly depends on the knowledge of direction-of-arrival (DoA) of the desired

source signals and that of the interferences. In the first part of this dissertation, we pro-

pose a novel DoA estimation algorithm for single-input single-output (SISO) system with a

reconfigurable antenna element at the receiver. Unlike a conventional antenna array system

with fixed radiation pattern where the DoA is estimated using the signals received by mul-

tiple elements, in the proposed algorithm, we estimate the DoA using signals collected from

a set of radiation pattern states also called scanning steps. We, in addition, investigate the

impact of different radiation pattern characteristics such as antenna beamwidth and number

of scanning steps on the accuracy of the estimated DoA.

In the second part of this dissertation, we propose a low-complexity MIMO system em-

ploying reconfigurable antennas over the frequency-selective channels to mitigate multipath

effects and therefore remove inter symbol interference without using orthogonal frequency-

division multiplexing (OFDM) modulation. We study the impact of angular spread and

antenna beamwidth on the performance of the proposed system and make comparisons with

that of MIMO-OFDM system equipped with omnidirectional antennas.

In the third part of this dissertation, we provide an analytical tool to analyze the per-

formance of MIMO wireless systems equipped with reconfigurable antennas at the receiver.

We first derive analytical expressions for computing the covariance matrix coefficients of the

received signals impinging on a reconfigurable antenna array by taking into account several

antenna characteristics such as beamwidth, antenna spacing, antenna pointing angle, and

antenna gain. In this part, we consider a reconfigurable MIMO receiver where the radiation

pattern of each antenna element in the array can have different characteristics. We, addi-

tionally, study the capacity of a reconfigurable MIMO system using the derived analytical

expressions.

In the last part of the dissertation, we propose a novel three dimensional block coding tech-

nique for reconfigurable MIMO-OFDM systems which takes advantage of the reconfigurable
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antenna features to enhance the wireless system diversity and performance. The proposed

block code achieves multiple diversity gains, including, spatial, frequency, and state by trans-

mitting a block code over multiple transmit antennas, OFDM tones, and radiation states.

To obtain the state diversity, we configure each transmit antenna to independently switch

its radiation pattern to a direction that can be selected according to different optimization

criteria, e.g., minimization of the correlation among different radiation states. The proposed

code is full rate and benefits from three types of diversity, which substanttially improves the

bit-error-rate (BER) performance of the MIMO systems.
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CHAPTER 1

Introduction

The next generation of wireless communication systems are expected to provide higher

data rates and better quality of services to a large number of users in response to their growing

demand for voice, data, and multimedia applications. To fulfill these demands, multiple-input

multiple-output (MIMO) antenna systems have been proposed, where multiple data streams

or codewords can be transmitted simultaneously. Although MIMO systems are capable of

providing the expected data rates theoretically, due to spatial correlation between antennas

this is not always achievable in practice. Over the past few years, studies have revealed

that reconfigurable antennas offer a promising solution to overcome this problem [1–11].

In a reconfigurable antenna system, the characteristics of each antenna radiation pattern

(e.g., shape, direction and polarization) can be changed by placing switching devices such

as microelectromechanical systems (MEMS), varactor diodes, or field-effect transistor (FET)

within the antenna structure [12–14]. As a result, a system employing reconfigurable antennas

is able to alter the propagation characteristics of the wireless channel into a form that leads

to signal decorrelation and hence the better system performance. Moreover, by designing a

proper coding technique, reconfigurable antenna systems are able to achieve an additional

diversity gain that can further improve the performance of wireless communication systems.

This type of antennas can have different applications in communication field, including mobile

and cellular systems, radar, and satellite communication. As an example, these antennas can

be used in the 802.11ad standard for 60 GHz wireless gigabit networks, where a directional

multi-gigabit beamforming protocol enables the transmitter and receiver to configure the

antenna radiation patterns in real-time [15]. In communication systems, an array of antenna

elements can be replaced by a single reconfigurable antenna for beamforming and beam

steering purposes. Thereby overall size, cost, and complexity of the system can be significantly

reduced.

1.1 Objectives and Contributions

The overall objective of this dissertation is to evaluate the performance of wireless sys-

tems equipped with reconfigurable antennas and propose new methods and algorithms to

improve their performance. To be more specific, in this dissertation, we first aim to develop

a DoA estimation algorithm that is able to estimate the DoA of the signals arriving at a
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single reconfigurable antenna. We then use the estimated DoA to configure the antenna

radiation pattern and compute the covariance matrix coefficients of the impinging signals at

the reconfigurable antenna array for this configuration. Considering the computed received

covariance coefficients, we select the optimal configuration for the antenna elements in the

array at the receiver side in order to maximize the system capacity. Finally, we propose a

new space-frequency-state block codes that can extract the maximum diversity gain for a

system equipped with reconfigurable antennas in frequency selective fading channels. Fig.

1.1 shows the flow of the works in this dissertation and describe the connection between the

aforementioned objectives.

Chapter 3
Developing a DoA estimation algorithm to 
estimate the DoA of the signals arrived at a 

single reconfigurable antenna element 

Chapter 5
1. Computing the covariance matrix 

coefficients of the impinging signals at the 
reconfigurable antenna elements in the receiver 

side for different antennas’ configuration by 
considering the estimated DoA

2. Selecting the optimal configuration for 
reconfigurable antenna elements in the array at 

the receiver based on computed covariance 
coefficients that maximizes the system 

performance 

Chapter 6
Proposing a new block coding scheme to 

achieve maximum diversity gain available in 
reconfigurable multiple antenna systems 

Figure 1.1 Flow of the main works of this dissertation

Below, we discuss the main contributions of this dissertation.
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• DoA estimation algorithm for a single-element reconfigurable antenna sys-

tem:

We develop a DoA estimation algorithm that estimates the DoA using the signal sam-

ples collected at different scanning steps corresponding to different radiation angles.

We measure the performance of the developed algorithm using an actual reconfigurable

antenna called CRLH-LWA in an anechoic chamber. Moreover, we evaluate the perfor-

mance of the DoA estimation algorithm in a clustered channel model. We also study

the impact of DoA estimation error on the BER performance of reconfigurable SISO

systems. This contribution has appeard in [16–18].

• Performance evaluation of reconfigurable MIMO systems in spatially corre-

lated frequency-selective fading channels:

We propose to use reconfigurable antennas in MIMO systems over frequency-selective

channels in order to mitigate multipath effects and therefore remove inter symbol inter-

ference (ISI) without using OFDM modulation technique. In the reconfigurable MIMO

system, each element in the MIMO array is able to dynamically change its beam di-

rection in a continuous manner. By integrating of these elements into an array, we

can have a system in which the elements steer their beams toward the selected clusters

and mitigate the signals coming from the undesired ones. As a result, the ISI can be

effectively suppressed. This contribution has appeared in [11].

• Closed-form expressions of covariance matrix coefficients of the signals im-

pinged at a reconfigurable antenna array:

We derive analytical expressions of the covariance matrix coefficients by taking into

account several antenna characteristics such as beamwidth, antenna spacing, antenna

pointing angle, and antenna gain. Unlike computing intensive numerical integrations to

directly evaluate the covariance matrix coefficients, the derived analytical expressions

converge rapidly and can be used, for example, in real-time wireless system imple-

mentations to quickly choose the optimal configuration for each reconfigurable antenna

element in the array, leading to significant performance improvement. Using the derived

expressions for covariance coefficients, we analyze the capacity of reconfigurable MIMO

systems and discuss its relation with the antennas radiation pattern configuration and

channel power angular spectrum characteristics. This contribution has appeared in [19].

• Space-Frequency-State block coding scheme for reconfigurable MIMO-OFDM

communication systems.

We propose a novel coding scheme for reconfigurable MIMO-OFDM systems that

achieves multiple diversity gains, including, space, frequency, and state. We construct

our proposed code based on the fundamental concept of rotated quasi-orthogonal space-
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time block codes (QOSTBC). By using the rotated QOSTBC, the proposed coding

structure provides rate-one transmission (i.e., one symbol per frequency subcarrier per

radiation state) and leads to a simpler maximum likelihood (ML) decoder. In order

to obtain state diversity, we configure each transmit antenna element to independently

switch its radiation pattern to a direction that can be selected according to different

optimization criteria, e.g., to minimize the correlation among different radiation states.

Moreover, we derive the maximum achievable level of diversity offered by reconfigurable

MIMO-OFDM systems with reconfigurable antennas at the transmitter. We also dis-

cuss about the optimal rotation angles for the proposed coding scheme that guarantee

full-diversity and maximum coding gain. This contribution has appeared in [20] and

a journal paper on this topic has been submitted to IEEE Transactions on Wireless

Communications.

1.2 Outline of the Dissertation

In the following, we introduces the basic organization of the dissertation.

In Chapter 2, we provide a synthesis review of the literature on the work related to

the thesis’s objectives. We also present some related background material that will be used

throughout this dissertation, including reconfigurable antennas, different diversity techniques,

reconfigurable channel model, space-time block coding, space-frequency coding for MIMO-

OFDM systems and space-switching schemes for transmitter-reconfigurable MIMO systems.

In Chapter 3, we introduce a direction-of-arrival (DoA) estimation algorithm for a single-

element reconfigurable antenna system. We also study the impact of DoA estimation error

on the error rate performance of reconfigurable antenna systems.

In Chapter 4, we propose to use reconfigurable antennas in MIMO systems over frequency-

selective fading channels in order to mitigate multipath effects and therefore remove inter

symbol interference without using OFDM modulation technique. We also compare the per-

formance of the reconfigurable MIMO system with conventional MIMO-OFDM system in the

spatial clustered channel model that takes into account the impact of the physical parameters

of wireless channels.

In Chapter 5, we derive closed-form expressions for computing covariance matrix coeffi-

cients of reconfigurable MIMO systems, which can be used in real-time wireless implementa-

tion to quickly choose the optimal configuration for each reconfigurable antenna element in

the MIMO array. Moreover, in Chapter 5, we analyze the capacity of reconfigurable MIMO

system using the derived close-form expressions.

In Chapter 6, we first present a system model for reconfigurable MIMO-OFDM systems in
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frequency-selective wireless channels. Then, we introduce space-frequency-state block codes

for reconfigurable MIMO-OFDM systems that enables the system to transmit codewords

across three dimensions. We also derive the maximum diversity and coding gains offered by

the proposed codes in reconfigurable MIMO-OFDM systems. Finally, we compare the per-

formance of the proposed coding scheme with the existing space-frequency codes for MIMO-

OFDM systems.
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CHAPTER 2

Literature review

In this chapter, we first provide a synthesis review of the work available in the literature

related to the thesis’s objectives. We then present some related background material that will

be used throughout this dissertation, including reconfigurable antennas, different diversity

techniques, coding techniques for MIMO systems, reconfigurable MIMO systems and coding

techniques for reconfigurable MIMO systems.

2.1 Related Works

One way to improve the system performance in a reconfigurable antenna system is to

steer the antennas’ radiation pattern toward the desired users and place nulls toward the

interferences. In such systems, the attainable performance improvement of the system highly

depends on the knowledge of the direction-of-arrival (DoA) of the desired source signal and

the interference signals. Therefore, DoA estimation plays a key role in wireless communication

systems equipped with reconfigurable antennas.

DoA estimation problem in conventional antenna array systems with fixed radiation pat-

tern has been extensively studied in the literature. One of the most well-known DoA esti-

mation technique is the multiple signal classification (MUSIC) algorithm that works based

on the eigenvalue decomposition of the signal covariance matrix [21]. The performance of

this algorithm is significantly impacted by different array characteristics, such as number of

elements, array geometry, and mutual coupling between the elements [22]. These issues can

be avoided if a single reconfigurable antenna element capable of beam-forming/steering is

employed instead of an array. Nevertheless, the classical MUSIC algorithm developed for

antenna array systems is not immediately applicable for this type of antenna. Several mod-

ified MUSIC DoA estimation algorithms have been proposed for reconfigurable antennas.

In [23], the reactance-domain MUSIC algorithm was proposed for the electronically steerable

passive array radiator (ESPAR) antenna which utilizes a single central radiator surrounded

with parasitic elements. A similar work for DoA estimation has been also reported in [24]

that uses a modified MUSIC algorithm for a two-port composite right/left handed (CRLH)

leaky-wave antenna (LWA) [25]. In the first part of this dissertation, we focus on developing

a DoA estimation algorithm for a single port reconfigurable antenna and investigating the

effect of different antenna parameters on the performance of the developed algorithm.
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Similar to conventional MIMO wireless systems, the performance of reconfigurable MIMO

is affected by the correlation between the signals impinging on the antenna elements [26]. The

correlation coefficients depend on several factors, including the signal spatial distribution, the

antenna array topology and the radiation pattern characteristics of each element in the ar-

ray. In general, these coefficients are computed using two main approaches, namely, numerical

and analytical solutions. Works in the first category focus on finding the signal correlation

through numerical schemes (e.g., numerical integrations and Monte-Carlo simulations) which

are computationally intensive and need long processing time to obtain the solutions [27–32].

In contrast, analytical expressions are computationally more reliable and require shorter pro-

cessing time. The authors in [33] derived exact expressions to compute the spatial correlation

coefficients for uniform linear arrays (ULA) with different spatial distribution assumptions on

signal angles of arrival/departure. A similar work was conducted in [34], where the authors

proposed closed-form expressions of the spatial correlation matrix in clustered MIMO chan-

nels. These works have considered omni-directional antenna elements in their derivation and

consequently overlooked the antenna radiation pattern characteristics. In [35], the authors

derived an analytical correlation expression for directive antennas with a multimodal trun-

cated Laplacian power azimuth spectrum (PAS). In their analysis, however, they have only

considered identical fixed directive radiation patterns for all elements. In the second part

of this dissertation, we therefore derive analytical expressions for computing the covariance

matrix coefficients of the received signals impinging on a reconfigurable antenna array where

the radiation pattern of each antenna element in the array can have different characteristics.

We also use those results to analyze the performance of MIMO wireless systems equipped

with reconfigurable antennas.

There are several works in the literature on designing efficient codes for reconfigurable

MIMO systems in order to take advantage of the antenna reconfigurability. In [6], authors

have proposed a MIMO system equipped with reconfigurable antennas at the receiver that

can achieve a diversity order equal to the product of the number of transmit antennas, the

number of receive antennas and the number of reconfigurable states of the receive antennas.

They have shown that this diversity gain is achievable only under certain channel propagation

conditions and using an appropriate coding technique. Later on, in [36] the authors extended

the concept by using reconfigurable elements at both transmitter and receiver sides. In their

work, they have introduced a state-switching transmission scheme, called space-time-state

block coding (STS-BC), to further utilize the available diversity in the system over flat fading

wireless channels. However, their coding scheme does not exploit the frequency diversity

offered by the multipath propagation channels between each transmit and receive antenna

pair. To obtain frequency diversity in multipath environment, a space-frequency (SF) block
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code was first proposed by the authors in [37], where they used the existing space-time (ST)

coding concept and constructed the code in frequency domain. Later works [38–43] also used

similar strategies to develop SF codes for MIMO-orthogonal frequency division multiplexing

(MIMO-OFDM) systems. However, the resulting SF codes achieved only spatial diversity,

and they were not able to obtain both spatial and frequency diversities. To address this

problem, a subcarrier grouping method has been proposed in [44] to further enhance the

diversity gain while reducing the receiver complexity. In [45], a repetition mapping technique

has been proposed that obtains full-diversity in frequency-selective fading channels. Although

their proposed technique achieves full-diversity order, it does not guarantee full coding rate.

Subsequently, a block coding technique that offers full-diversity and full coding rate was

derived [46,47]. However, the SF codes proposed in the above studies and other similar works

on the topic are not able to exploit the state diversity available in reconfigurable multiple

antenna systems. In the last part of the dissertation, we propose a novel three dimensional

block coding scheme for reconfigurable MIMO-OFDM systems which is full rate and benefits

from three types of diversity, including, spatial, frequency, and state.

2.2 Background Study

2.2.1 Fading

Multipath causes fading due to constructive and destructive interference of the transmit-

ted waves through different reflexions. In a fading channel, typical errors are mostly due to

the channel being in deep fade rather than the noise being large. If no line-of-sight (LOS)

component exists, the envelope of the received signal follows a Rayleigh distribution given

by [48]

fR(r) =
r

σ2
exp
(−r2

2σ2

)
, r ≥ 0 (2.1)

On the other hand, if a LOS between the transmitter and the receiver exists, then the

distribution of the envelope is given by a Ricean distribution [49],

fR(r) =
r

σ2
exp
(−(r2 +D2)

2σ2

)
I0

(Dr
σ2

)
, r,D ≥ 0 (2.2)

where D is the amplitude of the dominant LOS component and I0 is the modified Bessel

function of the first kind of order zero.
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2.2.2 Diversity Gain

In wireless communication systems, to combat the effects of fading and thereby improve

link reliability, various diversity techniques have been proposed [50–52]. Wireless commu-

nication channels offer various diversity resources such as: spatial diversity, time diversity,

frequency diversity, polarization diversity and pattern diversity.

– Spatial Diversity

Spatial diversity is the most widely implemented form of diversity technique which can

be used to mitigate the effects of fading by providing the receiver several replicas of the

transmitted signal received at different antenna positions experiencing different fading

conditions. Therefore, the probability that all paths will undergo the same amount of

fading, or even deep-fades, is reduced to a great extent.

– Time Diversity

In time diversity, multiple versions of the signal are transmitted at different time

instants which are experiencing different fading conditions. Time diversity can be

achieved by interleaving and coding over different time slots that are separated by the

coherence time of the channel.

– Frequency Diversity

Frequency diversity offered by the frequency selective multipath fading channel and can

be obtained by spreading the code symbols across multiple frequency carriers that are

separated by the coherence bandwidth of the channel.

– Polarization Diversity

Polarization diversity is achieved by receiving the signals on orthogonally polarized

waves. The benefits of polarization diversity include the ability to locate the antennas

in the same place, unlike spatial diversity.

– Pattern Diversity

Pattern diversity exploits the difference in radiation pattern between the array elements

to decorrelate the sub-channels of the communication link [53–55]. This technique helps

to achieve independent fading by transmitting/receiving over different signal paths

at each antenna depending on the selected radiation pattern. Pattern diversity is a

promising solution for systems such as laptops and handsets where the array size is a

constraint.

2.2.3 Coding Techniques for MIMO Systems

In this section, we give an overview of the various emerging coding techniques developed

for MIMO communication systems, including orthogonal and quasi-orthogonal space-time
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block coding techniques.

Orthogonal Space-Time Block Codes

Space-time block code (STBC) is a technique used in wireless communications to trans-

mit a copy of a data stream in a number of antennas and over multiple time slots. STBC

was first introduced by Alamouti [50]. It provides rate-one and full-diversity and also has

a simple maximum-likelihood decoder structure, where the transmitted symbols can be de-

coded independently of one another. Thus, the decoding complexity increases linearly, not

exponentially, with the code size. The Alamouti structure for two transmit antennas is given

by

A
(
x1, x2

)
=

 x1 x2

−x∗2 x∗1

 , (2.3)

where x1 and x2 are indeterminate variables representing the signals to transmit. The Alam-

outi code was generalized to orthogonal designs by Tarokh [56]. The orthogonal space-time

block codes (OSTBC) for more than two transmit antennas, can provide full-diversity trans-

mission with linear decoding complexity but are not able to provide rate-one coding due to

their orthogonal structure constraint.

Quasi-Orthogonal Space-Time Block Codes

For more than two transmit antennas, OSTBC can not provide rate-one transmission.

To achieve rate one transmission, a new class of STBC’s referred to as quasi-orthogonal

space-time block codes structures were first introduced in [57]. Quasi-orthogonal designs

provide rate-one codes and pairwise ML decoding but fail to achieve full-diversity. The full-

diversity gain can however be achieved through appropriate constellation rotation [58–60]. A

rotated QOSTBC provides both full diversity and rate-one transmission and performs better

compared to OSTBC. In [57], the following QOSTBC structure has been proposed for the

indeterminate variables x1 , x2 , x3 and x4

C4

(
x1, x2, x3, x4

)
=

 A
(
x1, x2

)
A
(
x3, x4

)
−A∗

(
x3, x4

)
A∗
(
x1, x2

)
 , (2.4)

where A
(
xi, xj

)
is given in (2.3). In a rotated QOSTBC, half the symbols are chosen from

a rotated constellation to provide full-diversity. The rotation angle is chosen such that the

coding gain is maximized. The optimal rotation angle for BPSK, QPSK, 8-PSK and QAM

are π/2, π/4, π/8 and π/4, respectively. In general, the ML decoding for rotated QOSTBC’s
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is performed for two complex symbols (pair-wise ML decoding).

2.2.4 Reconfigurable MIMO Systems

MIMO communication systems can significantly improve the wireless communication per-

formance in rich scattering environments, however, in practice, placing multiple antennas in

handset or portable wireless devices may not be possible due to space and cost constraints.

To overcome this limitation, reconfigurable antennas can be a promising solution to improve

the performance of MIMO communication systems, especially in environments where it is

difficult to obtain enough signal decorrelation with conventional means (spatial separation

of antennas, polarization, etc.). Unlike conventional antenna elements in MIMO systems,

which have a fixed radiation characteristic, the reconfigurable antenna element in reconfig-

urable MIMO systems has the capability of changing its characteristics such as operating

frequency, polarization and radiation patterns. Therefore, using this type of antenna in wire-

less communication systems can enhance their performance by adding an additional degree

of freedom which can be obtained by changing the characteristics of the wireless propaga-

tion channels. Generally, reconfigurable antennas are divided into three categories including

frequency, polarization and radiation pattern reconfigurable antennas. Many innovative re-

configurable antennas have been proposed in recent years such as composite right/left-handed

leaky-wave antenna, electronically steerable parasitic array radiator [61], switchable MEMS

antennas such as PIXEL antenna [62], octagonal reconfigurable isolated orthogonal element

(ORIOL) antenna [63]. Reconfigurable antennas have been used to yield diversity gain in

SISO systems [64], [12] and also have been suggested for MIMO systems [1, 2, 4].

2.2.5 Coding Techniques for Reconfigurable MIMO Systems

In this section, we introduce a block coding technique proposed in [36] for reconfigurable

MIMO systems which is capable of achieving maximum spatial and state diversity gains by

coding across three dimensions: space, time and channel propagation state.

Space-Time-State Block Code

Consider a reconfigurable MIMO system with Mt transmit antennas and Mr receive an-

tennas. In this system, in each channel propagation state, the input bit stream is mapped

to the baseband modulation symbol matrices, Cp ∈ CT×Mt , where T denotes the duration

of each constellation matrix in time. The overall space-time-state (STS) codeword for all P
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channel propagation states, C ∈ CPT×PMt , is given by

C =


C1 0 · · · 0

0 C2 · · · 0

...
...

. . .
...

0 0 · · · CP

 , (2.5)

where Cp ∈ CT×Mt is the codeword transmitted during the p-th channel propagation state.

Then, the received signal, Yp ∈ CT×Mr , during the p-th channel propagation states can be

written as

Yp = CpHp + Np, (2.6)

where Hp ∈ CMt×Mr is the channel matrix and Np ∈ CT×Mr is a zero-mean Gaussian noise

matrix during the p-th state. The received signal matrix, Y ∈ CPT×Mr , over all radiation

states is given by

Y = CH + N, (2.7)

where

Y =
[
YT

1 YT
2 · · · YT

P

]T
,

H =
[
HT

1 HT
2 · · · HT

P

]T
,

N =
[
NT

1 NT
2 · · · NT

P

]T
,

For Mt = 2, the STS codeword defined in 2.5 can be written as

C =
1√
2P


A
(
S1,S2

)
0 · · · 0

0 A
(
S3,S4

)
· · · 0

...
...

. . .
...

0 0 · · · A
(
S2P−1,S2P

)

 , (2.8)
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where, A
(
S2p−1,S2p

)
for p ∈ {1, 2, · · · , P} is

A
(
x1, x2

)
=

 x1 x2

−x∗2 x∗1

 , (2.9)

and [
S1 S3 · · · S2P−1

]T
= Θ

[
s1 s3 · · · s2P−1

]T
, (2.10)[

S2 S4 · · · S2P

]T
= Θ

[
s2 s4 · · · s2P

]T
, (2.11)

where Θ = U × diag{1, ejθ1 , . . . , ejθP−1} and U is a P × P Hadamard matrix. The θi’s are

the rotation angles which are chosen to maximize the coding gain.

Now, as an example, let us consider P = 2 radiation states and Mt = 2 transmit antennas.

Then, the codeword C can be written as

C =
1

2

[
C1 0

0 C2

]
,

where C1 and C2 are given by

C1 =
1

2

 s1 + s̃3 s2 + s̃4

−s∗2 − s̃∗4 s∗1 + s̃∗3

 , (2.12)

C2 =
1

2

 s1 − s̃3 s2 − s̃4

−s∗2 + s̃∗4 s∗1 − s̃∗3

 , (2.13)

and s̃i = ejθ1si.
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CHAPTER 3

DoA Estimation for Reconfigurable Antenna Systems 1

DoA estimation algorithms in general can be classified into two main categories, namely

the conventional algorithms and the subspace algorithms [65]. The conventional algorithms,

e.g. the delay-and-sum method and the minimum variance distortionless look (MVDL)

method, generally estimate the DoA based on the largest output power in the region of

interest. The subspace algorithms, e.g. the MUSIC, root-MUSIC, MIN-NORM (minimum-

norm), and ESPRIT (estimation of signal parameters via rotational invariance techniques)

algorithms, estimate the DoA based on the signal and noise subspace decomposition prin-

ciple. Technically, the subspace algorithms have superior performance in terms of precision

and resolution compared to conventional algorithms. Various subspace-based DoA estimation

techniques have been proposed over the years. One of the most well-known DoA estimation

technique is the MUSIC algorithm that works based on the eigenvalue decomposition of the

signal covariance matrix [21]. The performance of this algorithm is significantly impacted by

different array characteristics, such as number of elements, array geometry, and the mutual

coupling between the elements [22]. These issues can be avoided if a single reconfigurable

antenna element capable of beam-forming/steering is employed instead of an array. For ex-

ample, phase synchronization which is one of the most important factor in the accuracy of

the MUSIC algorithm in conventional arrays will not be an issue with a reconfigurable an-

tenna [23], [66]. Nevertheless, the classical MUSIC algorithm developed for antenna array

systems is not immediately applicable for this type of antenna.

Several modified MUSIC DoA estimation algorithms have been proposed for reconfig-

urable antennas. In [23], the reactance-domain MUSIC algorithm was proposed for the

ESPAR antenna which utilizes a single central radiator with surrounding parasitic elements.

1. Part of the work presented in this chapter was published in:
• V. Vakilian, J.-F. Frigon, and S. Roy, ”Direction-of-Arrival Estimation in a Clustered Channel Model”,

Proc. IEEE Int. New Circuits and Systems Conf. (NEWCAS), Montreal, QC, Canada, June 2012.
pp. 313–316.

• V. Vakilian, J.-F. Frigon, and S. Roy, ”Effects of Angle-of-Arrival Estimation Errors, Angular Spread
and Antenna Beamwidth on the Performance of Reconfigurable SISO Systems”, in Proc. IIEEE Pacific
Rim Conf. on Commun., Computers and Signal Process. (PacRim), Victoria, B.C., Canada, Aug.
2011. pp. 515–519.

• V. Vakilian, H.V. Nguyen, S. Abielmona, S. Roy, and J.-F. Frigon, ”Experimental Study of Direction-of-
Arrival Estimation Using Reconfigurable Antennas”, Accepted for publication in proc. IEEE Canadian
Conf. on Elect. and Computer Eng. (CCECE), Toronto, ON, Canada, May 2014.
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A similar work for DoA estimation has been also reported in [24] that uses a modified MUSIC

algorithm for a two-port CRLH-LWA [25]. However, no further evaluation was carried out

on how configuring the antenna radiation patterns for signal observations can impact the

algorithm performance. In this chapter, we address the problem of DoA estimation using a

single reconfigurable antenna element and present simulation results of the developed algo-

rithm for different cases. Moreover, we investigate the impact of DoA estimation errors on

the performance of reconfigurable SISO systems. We also study the effect of angular spread

and antenna beamwidth on the reconfigurable antenna system performance.

3.1 Signal Model

Consider a single reconfigurable antenna element that is capable of changing its radiation

pattern direction for P different cases, where each radiation pattern case is called a radiation

state as shown in Fig. 3.1. Let g(θ, ψ) denote the antenna gain at incoming signal direction

θ ∈ [−π, π) and pointing angle ψ ∈ [−π, π) (the pointing angle is a reconfigurable parameter).

Suppose that this antenna element receives signals from K uncorrelated narrowband sources

s1(t), s2(t), · · · , sK(t) with the directions θ1, · · · , θK . The received signal during the p-th

radiation state, for p ∈ {1, 2, ..., P}, can be expressed as,

xp(t) =
K∑
k=1

g(θk, ψp)sk(t) + np(t), (3.1)

where g(θk, ψp) denotes the antenna gain at direction θk and pointing angle of the p-th

radiation state set to ψp, and np(t) is the zero-mean complex Gaussian noise at the receiver

with variance of σ2.

g(θk, ψp) depends on the structure of reconfigurable antennas. For ESPAR antenna, it

can be written as [23]

g(θk, ψp) = iTa(θk), (3.2)

where a(θk) = [1, ej
π
2
cos(θk−φ1), · · · , ej π2 cos(θk−φM )] is the steering vector for M parasitic ra-

diators elements, φm = (2π/M)(m − 1)(m = 1, · · · ,M) corresponds to the m-th element

position, and i is the RF current vector. For CRLH-LWA, g(θk, ψp) can be expressed as [67]

g(θk, ψp) =
Nc∑
n=1

I0e
−α(n−1)d+j(n−1)kod[sin(θk)−sin(ψp)], (3.3)

where Nc is the number of cell in the CRLH-LWA structure which corresponds to the antenna

length, α is the leakage factor, d is the period of the structure, k0 is the free space wavenumber,
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and ψp is the radiation angle of the unit cells. The radiation pattern of the CRLH-LWA for

four different radiation pattern states is shown in Fig. 3.2.

The received data vector over all possible P radiation pattern states x(t) ∈ CP×1 for a

single antenna element can be written as follows

x(t) = Gs(t) + n(t), (3.4)

where, s(t) ∈ CK×1 is the transmitted signal vector from the K sources, n(t) ∈ CP×1 is the

noise vector at the receiver for the P measurements, and G ∈ CP×K is the antenna gain

matrix which can be defined as

G =
[
g(θ1, ψ),g(θ2, ψ) · · · ,g(θK , ψ)

]
(3.5)

g(θk, ψ) =
[
g(θk, ψ1), g(θk, ψ2), · · · , g(θk, ψP )

]T
, (3.6)

where g(θk, ψp) is the radiation pattern of the reconfigurable antenna. We assume that N

snapshots of data samples are collected at t = 1, 2, · · · , N . We also consider that s(t) and

n(t) are uncorrelated and n(t) is a Gaussian noise vector with zero mean and correlation

matrix σ2I.

3.2 DoA Algorithm for a Single Reconfigurable Antenna Element

In this section, we propose a radiation pattern scan-MUSIC (RPS-MUSIC) algorithm

which is able to estimate the DoAs of multiple signals impinging on a single reconfigurable

antenna element. In the proposed algorithm, the signals are received by the reconfigurable

antenna while it switches over a set of radiation pattern configurations. Then, the receive

covariance matrix is calculated as a function of antenna radiation patterns. Once the data

covariance matrix is formed, the eigenvalue decomposition (EVD) is performed to decompose

the matrix to the signal and noise subspaces. We find the DoAs by searching for the incident

angles where the noise and signal subspaces are orthogonal to each other. Moreover, we pro-

pose another DoA estimation technique based on the cross-correlation between the received

signal power and power radiation pattern proposed in [68].

3.2.1 Radiation Pattern Scan-MUSIC Algorithm

In general, DoA estimation algorithms utilize the received signal on each element of an

antenna array to create the required correlation matrix. This method of creating correlation
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Figure 3.2 Radiation pattern of a reconfigurable antenna for four different radiation state

matrix is not applicable for a communication system with a single antenna element. To solve

this problem, the correlation can be created using the signal received by a single antenna

element from multiple radiation states. Fig. 3.2 shows the measured radiation pattern of a

reconfigurable antenna for four radiation states. Therefore, instead of observing signals from

different elements of an antenna array, signals are obtained from different antenna radiation

patterns. Hence, we are able to create a correlation matrix with only a single reconfigurable

antenna element. For the signal model in (3.4), the P × P covariance matrix can be written

in the following form

Rxx = E
[
x(t)xH(t)

]
= E

[
(Gs(t) + n(t))(Gs(t) + n(t))H

]
= GE

[
s(t)sH(t)

]
GH + E

[
n(t)nH(t)

]
= GRssG

H + σ2I, (3.7)

where Rss = E[s(t)sH(t)] is the K ×K covariance matrix of input signals, and E[·] and (·)H

denote the statistical expectation and complex conjugate transpose, respectively. Both the

signal and noise subspaces can be obtained by EVD of (3.7), where the decomposed signal

and noise subspaces can be denoted as

Rxx = QDQH =
[
Qs Qn

] [Ds 0

0 σ2I

] [
Qs Qn

]H
. (3.8)
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The matrix Q is partitioned into signal and noise subspaces denoted by Qs and Qn, respec-

tively. Qs is a P × K matrix whose columns are the K eigenvectors corresponding to the

signal subspace and Qn is a P × (P −K) matrix composed of the noise eigenvectors. The

matrix D is also partitioned into a K ×K diagonal matrix Ds whose diagonal elements are

the signal eigenvalues and a (P −K) × (P −K) scaled identity matrix σ2I whose diagonal

elements are the P ×K noise eigenvalues. After EVD of the received signal correlation ma-

trix, the RPS-MUSIC spectrum for a single reconfigurable antenna element can be computed

as follows,

PRPS−MUSIC(θ) =
gH(θ, ψ)g(θ, ψ)

gH(θ, ψ)QnQn
Hg(θ, ψ)

. (3.9)

where gH(θ, ψ) is defined in (3.6). Note that the noise subspace is orthogonal to the antenna

gain vector g(θ) at the DoA’s of the received signals and the RPS-MUSIC algorithm employs

this property by searching over θ for these incident angles of orthogonality.

3.2.2 Power Pattern Cross-Correlation Approach

As proposed in [68], the DoAs of the signals can be estimated by computing the cross-

correlation between the received signal power and power radiation pattern and then finding

the largest cross-correlation coefficient as an estimated DoA. In this section, we generalize

this algorithm to any reconfigurable antenna. For given P radiation pattern configurations,

the cross-correlation coefficient can be define as [68]

Γ(θ) =

∑P
p=1 Pψp(θ)P

R
ψp√∑P

p=1 Pψp(θ)
2

√∑P
p=1(PR

ψp
)2

, (3.10)

where Pψp(θ) is the power pattern of a reconfigurable antenna and PR
ψp

is the average received

signal power over N number of observations in the p radiation state and it can be expressed

as

PR
ψp =

1

N

N∑
t=1

|xψp(t)|2. (3.11)

Then, the DoA can be estimated as follow

θ̂ = arg max
θ

Γ(θ). (3.12)
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Figure 3.3 RPS-MUSIC spectrum for two sources with θ1 = −25◦ and θ2 = 35◦.

3.2.3 Numerical Results

In this section, we perform several simulations to numerically evaluate the performance

of the proposed RPS-MUSIC and power pattern cross correlation algorithms. In all the

simulations, we consider a single reconfigurable antenna at the transmitter with four radiation

states, where the pointing angles of these states are set to ψ1 = −40◦, ψ2 = −13◦, ψ3 = 13◦,

and ψ4 = 40◦.

Fig. 3.3 shows the RPS-MUSIC spectrum and the values of the estimated DoAs for

incident signals at θ1 = −25◦ and θ2 = 35◦. The spectrum calculated by using equation (3.9)

was averaged for 100 independent trials at the signal to noise ratio (SNR) of 20 dB and 10

snapshots (N = 10). From Fig. 3.3, it can be seen that the RPS-MUSIC algorithm performs

reasonably well and it is observed that the proposed algorithm is capable of resolving the two

sources.

In Fig. 3.4, the RMSE of DoA estimation versus the SNR for different number of snapshots

N is plotted in which, for each SNR, 1000 Monte Carlo trials are conducted. The radiation

patterns of these four states is shown in Fig. 3.2. We can observe from Fig. 3.4 that,

as expected, as the SNR increases, the RMSE decreases and also the performance of the

estimator improves as the number of observation increases.

Fig. 3.5 shows the RMSE of the DoA estimation for different number of snapshots N as

a function of the number of radiation pattern states P . In this simulation, we investigate the
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Figure 3.4 RMSE of RPS-MUSIC for different number of snapshots

Figure 3.5 RMSE of RPS-MUSIC versus different number of radiation states for different
number of snapshots
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Figure 3.6 RMSE of RPS-MUSIC for different number of radiation states and same amount
of information for all the states

DoA estimation performance versus the number of radiation states when the SNR is fixed at

10 dB and the antenna beamwidth is assumed to be 45◦. It can be noted that the RMSE

decreases with the increase in the number of radiation states. This is because increasing P for

the fixed number of snapshots, increases the total observing information used for estimating

the DoA.

Fig. 3.6 illustrates the RMSE of the DoA estimation versus the number of radiation states

P for different amount of measurements PN . In this simulation, the SNR is fixed at 10 dB

and the antenna beamwidth is assumed to be 45◦. Obviously, by increasing the amount of

information used for estimation, we can achieve better accuracy. However it is interesting to

observe that for a fixed total amount of measurements, it is better to increase the number of

radiation pattern states P than increasing the number of measurements done for a radiation

pattern state N . This comes from the added signal diversity obtained by using different

radiation patterns.

Fig. 3.7 illustrates the power spectrum of estimated DoA for a signal source at θ1 = 10◦

obtained using the power pattern cross correlation method. The spectrum calculated using

(3.12) at SNR = 10 dB with 10 samples. It can be observed that the spectrum is not as

sharp as the RPS-MUSIC. However, it’s measurement complexity is much lower since no

tight synchronization is required for power measurement.
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Figure 3.7 Power spectrum for one sources with θ1 = 10◦

3.3 Impact of DoA Estimation Errors on the BER Performance of Reconfig-

urable SISO Systems

In reconfigurable antenna systems, DoA estimation errors can significantly affect the

performance of the system. The impact of DoA estimation errors on the outage probability

of a wireless system has been investigated in [69]. In this reference, the authors have used

an antenna array beamformer to examine the impact of beamforming impairments, such

as DoA estimation errors, signal spatial spreads, antenna array perturbation, and mutual

coupling. It was then demonstrated that the outage probability increases due to the DoA

estimation errors. However, they considered the impact of DoA estimation errors on the

outage probability using a ULA.

In this section, we analyze the effect of DoA estimation errors on the BER performance

of systems, employing a single reconfigurable antenna at the receiver and an omni-directional

antenna at the transmitter. As a first step, we assume perfect knowledge of the direction-of-

arrival at the receiver. Then, we compute the average BER performance of the system based

on this information. Next, we investigate the BER of the system when the DoA is estimated

with an error. Moreover, we evaluate the effect of angular spread and antenna beamwidth

on the system performance. We use the practical clustered channel model, validated in [70],

which currently is being utilized in different wireless standards such as the IEEE 802.11n
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Technical Group (TG) [71] and 3GPP Technical Specification Group (TSG) [72]. In this

model, groups of scatterers are modeled as clusters around transmit and receive antennas.

3.3.1 BER Analysis for a Reconfigurable SISO System

Consider a SISO system equipped with an omni-directional antenna at the transmitter,

and a reconfigurable antenna at the receiver as shown in Fig. 3.8. Let hn(t) be the channel

between transmitter and receiver for the n-th cluster where each cluster has M multipaths.

Then, the impulse response for the n-th cluster can be given by [73]

hn(t) =
1√
M

M∑
m=1

√
gr(θnm)αnm(t)δ(t− τn)

=
M∑
m=1

hnm(t)δ(t− τn), (3.13)

where hnm(t) = 1√
M

√
gr(θnm)αnm(t), M is the number of paths per cluster, αnm(t) is the complex

gain of the m-th multipath (the αnm(t) are zero mean unit variance independent identically-

distributed (i.i.d.) complex random variables), and gr(θ
n
m) is the reconfigurable antenna gain

at the direction θnm = θnDoA+ϑnm where θnDoA is the mean direction-of-arrival of the nth cluster

and ϑnm is the deviation of the paths from mean DoA. The ϑnm are modeled as i.i.d. Gaussian

random variables, with zero mean and variance σ2
DoA. Furthermore, the αnm(t) and ϑnm are

independent. For the analysis presented in this section, we approximate the radiation pattern

of reconfigurable antennas, gr(θ), by a parabolic function which can be expressed as [74]

gr(θ) =
2π

B3dB

100.1A(θ), (3.14)

where A(θ) = −η
(
θ−θp
B3dB

)2

in dB, η is a constant (set to 12 in [74]), B3dB is the 3dB recon-

figurable antenna beamwidth in radians, and θp is the antenna pointing angle. For the ideal

case considered in this section we have θp = θDoA.

The received signal can be written as

y = hx+ z

=
1√
M

M∑
m=1

√
gr(θm)αmx+ z

=
M∑
m=1

hmx+ z (3.15)
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Figure 3.8 System model for the RE-SISO system with a reconfigurable antenna at the receiver

where y is the received signal, x is the transmitted signal, z is a zero mean complex AWGN

with unit variance, and hm = 1√
M

√
gr(θm)αm are i.i.d. complex random variables.

Since h =
∑M

m=1 hm is a sum of independent random variables, based on the the central

limit theorem (CLT) for a large number of multipaths, h can reasonably be modeled as a

zero-mean Gaussian random variable with variance σ2
h = Mvar[hm], where var[hm] can be

computed as follows

var[hm] =
1

M
(E[(

√
gr(θm)αm)2]− E[

√
gr(θm)αm]2)

=
1

M
(E[gr(θm)]) =

2π

MB3dB

√
2cσ2 + 1

, (3.16)

where c = ln 10 is a constant and σ2 =
0.1ησ2

DoA

B2
3dB

(see Appendix A). Using (3.16), the variance

of h can be defined as follows:

σ2
h =

2π√
0.2cησ2

DoA +B3dB

. (3.17)

Note that the variance of the channel coefficient is a function of the variance of the DoA and

the antenna beamwidth.

Now, let us define the average error probability for a BPSK modulation with respect to

the channel statistics as follows

p̄e = Eh
[
Q
(√

2|h|2SNR
)]
, (3.18)
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where SNR is the average received signal-to-noise ratio, Q(x) denotes the Gaussian-Q func-

tion Q(x) = 1√
2π

∫∞
x

exp(−t2/2)dt and |h|2 is exponentially distributed. Therefore, direct

integration of (3.18) yields

p̄e =
1

2

(
1−

√
σ2
hSNR

1 + σ2
hSNR

)
. (3.19)

3.3.2 BER Analysis for a Reconfigurable SISO System with DoA Estimation

Error

The received signal in (3.15) with taking DoA estimation errors into consideration becomes

as follows

y = h̃x+ z

=
1√
M

M∑
m=1

√
g̃r(θm)αmx+ z

=
M∑
m=1

h̃mx+ z, (3.20)

where h̃ is the channel coefficient when the DoA is estimated with a fixed error of θErr and

g̃r(θ) is the antenna gain which can be written as

g̃r(θ) =
2π

B3dB

10
−0.1η

(
θ−θ̂p
B3dB

)2

, (3.21)

where θ̂p = θDoA + θErr. By expanding θ̂p in the above expression, we get

g̃r(θ) =
2π

B3dB

10
−0.1η

(
θ−(θDoA+θErr)

B3dB

)2
= βgr(θ), (3.22)

where β = 10
−0.1η

[(
θErr
B3dB

)2
−2

(θ−θDoA)θErr
B2
3dB

]
. Therefore, the variance of h̃m can be computed as

follows,

var[h̃m] =
1

M
(E[(

√
g̃r(θm)αm)2]− E[

√
g̃r(θm)αm]2)

=
1

M
(E[g̃r(θm)])

=
2π

MB3dB

√
2cσ2 + 1

e
(
µ

σ2
)2

4(ln 10+1/2σ2)
− µ2

2σ2 , (3.23)
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Figure 3.9 Effect of DoA estimation errors on the average bit error rate

where µ = −
√

0.1ηθErr
B3dB

and σ2 =
0.1ησ2

DoA

B2
3dB

. Therefore, the variance of h̃ can be defined as

σ2
h̃

= Mvar[h̃m]. (3.24)

Then, by using (3.19) the average BER for BPSK modulation is given by

p̄e =
1

2

(
1−

√
σ2
h̃
SNR

1 + σ2
h̃
SNR

)
. (3.25)

3.3.3 Simulation Results

In this section, we perform several simulations to investigate the impact of DoA estimation

errors on the performance of reconfigurable SISO systems. We also study the effect of angular

spread and antenna beamwidth on the system performance.

Fig. 3.9 illustrates the BER versus signal to noise ratio (SNR). In this simulation, we set

the antenna beamwidth at B3dB = 20◦ and angular spread at σDoA = 5◦. From this figure,

we can observe that the theoretical results exactly match the Monte-Carlo simulations with

1000 trials per simulation, validating the analysis. It also can be observed that the BER

increases as the DoA estimation error increases. It is interesting to note that even though
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Figure 3.10 Average bit error rate performance of the RE-SISO system versus angular spread
for different amounts of DoA estimation errors at SNR= 20dB

the DoA estimation error is as large as the half beamwidth of the radiation pattern, the BER

performance of the reconfigurable systems still outperforms a traditional system with a fixed

omni-directional antenna.

Fig. 3.10 depicts the BER performance of the reconfigurable SISO (RE-SISO) system

versus angular spread (AS) for different DoA errors and fixed antenna beamwidth. We

observe that in the case of perfect DoA estimation (θErr = 0), the average BER increases

as the angular spread increases. This is expected since as the angular spread increases we

are receiving fewer multipaths in the middle of the radiation pattern where the gain is the

largest. On the other hand, in the presence of a significant estimation error, the average

BER initially decreases as a function of the angular spread. This is due to the fact that the

number of multipaths impinging in the misaligned radiation pattern increases as a function

of the angular spread.

Fig. 3.11 also illustrates the impact of direction-of-arrival estimation error on the per-

formance of the reconfigurable antenna system. As shown in the figure, for all AS values,

the performance loss increases as the DoA errors increase. It can be observed that the BER

performance of the system with smaller AS is better than the BER of the system with greater

AS in the case of small DoA error. This is due to the fact that the antenna receives almost

all the multipaths from scatterers near to its maximum gain when the AS is small. However,

as the figure illustrates, the situation is reversed for large DoA error since most of the mul-
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tuipaths are tightly clustered and imping on the low gain sides of the misaligned radiation

pattern. Therefore, it is important to improve the direction-of-arrival estimation error for

channel with small angular spread.

The impact of antenna beamwidth is examined in Fig. 3.12 when the angular spread

is fixed at 5◦ and the DoA estimation error is varied from 0 to 20 degrees. As expected,

for small values of DoA estimation error, the most directive antenna yields the lowest BER,

profiting directly from the higher antenna gain. However, for large DoA error, the antenna

with wider beamwidth has a better BER performance due to the higher received signal energy

as compared to a narrow misaligned beam which will miss most of the energy. In fact it can

be observed that a system with a narrow beam is much more sensitive to estimation errors

than for a system with a large beamwidth antenna.

3.4 Experimental Study of DoA Estimation Using Reconfigurable Antennas

In this section, we present the DoA estimation experiment for the RPS-MUSIC algorithm

done in an anechoic chamber.

3.4.1 Measurement Setup

The measurement setup is illustrated in Fig. 3.13, where the antenna at the transmitter

is a horn antenna and at the receiver the antenna is a single element CRLH-LWA which

provides electronically controllable radiation patterns. Furthermore, we use a Lyrtech MIMO

advanced development system which is a baseband-to-RF solution and consists of several

signal processing platforms, such as the VHS-ADC for analog-to-digital conversion (ADC),

the VHS-DAC for digital-to-analog conversion (DAC), the SignalMaster Quad for baseband

signal processing, and the Quad Dual Band RF Transceiver for up and down conversion [75].

At the transmitter, the data is first generated using an Agilent signal generator, and then

the resulting baseband signal is split into in-phase (I) and quadrature (Q) components. These

components are then converted to analog using the Lyrtech VHS-DAC. Next, using the Quad

Table 3.1 Experimental parameters

Parameters Value

RF frequency 2.4 GHz
Modulation QAM
Tx antenna Horn antenna
Rx antenna CRLH-LW antenna
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Figure 3.13 The measurement setup for one-source DoA estimation in an anechoic chamber.

Table 3.2 Different cases for radiation states

Case
ψp -50 -40 -20 -15 -5 +5 +15 +20 +40 +50

1 × ×
2 × ×
3 × × × ×
4 × × × ×
5 × × × ×
6 × × × ×
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Figure 3.14 Power spectrum for DoA of 0◦ with P = 2

Dual Band RF Transceiver which is a four-channel RF analog front-end, the analog signal is

upconverted to the carrier frequency of 2.4 GHz and transmitted over the air. At the receiver,

the signal is captured by the CRLH-LW antenna at different radiation states and sent to the

RF front-end to down-convert the RF signal to baseband. Then, the baseband analog signal

is sampled by the Lyrtech VHS-ADC. The resulting sampled streams are stored in real time

on memory boards and transferred offline to a PC for estimating the DoA. The experimental

parameters are shown in Table 3.1.

3.4.2 Experimental Results

To validate the performance of the introduced DoA estimation algorithm for the recon-

figurable antenna, we conducted several experiments in an anechoic chamber. Figs. 3.14 and

3.15 show the power spectrum for DoAs of 0◦, and 30◦, respectively. The results illustrated

in these figures are obtained using P = 2 radiation states which have been chosen from Table

3.2. The first column in this table shows cases 1 to 6, that correspond to different choices

for number of radiation states and their pointing angles. For each case, we estimates the

DoA using only the radiation states which are identified by cross-marks. Figs. 3.14 and 3.15

illustrate the results of the DoA estimation for case 1 and 2. From these figures, it can be

observed that the DoA can be estimated accurately if the two chosen radiation states are
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Figure 3.15 Power spectrum for DoA of 30◦ with P = 2
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Figure 3.16 Power spectrum for DoA of 30◦ with P = 4
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sufficiently far apart. For case 1, the two radiation states are very close and there is a large

overlap in their radiation patterns. Consequently, the algorithm fails to estimate the DoA

properly and creates large fluctuations in the power spectrum. We also observe similar results

for other two-radiation state cases. The conclusion is that as the angular distance between

the radiation states increases, the estimation accuracy increases.

Fig. 3.16 depicts the power spectrum obtained using P = 4 radiation states. The DoA to

be estimated is 30◦. In this experiment, we consider two scenarios to investigate the impact of

antenna radiation states on the estimated DoA. In the first scenario, we fix the two radiation

states’ pointing angles at −15 and +15 and change the other two. In the second scenario,

we fix the two radiation states’ pointing angles at −20 and +20 and change the other two

radiation states. In terms of power fluctuation over the spectrum, the later scenario performs

better because the overlapping radiation patterns between the radiation states is smaller than

the first scenario.

3.5 Conclusion

In this chapter, we studied the DoA estimation problem in a single-element reconfigurable

antenna system and experimentally evaluated its performance using MUSIC algorithm. We

examined the effect of number of radiation states on the accuracy of the estimated DoA. We

particularly considered different choices of the radiation states for estimating the DoA. We

found out that as the angular distance between the radiation states increases, the estimation

accuracy increases. Furthermore, we analyzed the BER performance of a reconfigurable

SISO system employing an omnidirectional antenna at the transmitter and a reconfigurable

antenna at the receiver. The impact of different parameters, including the DoA estimation

error, angular spread and antenna beamwidth, on the BER of the reconfigurable SISO system

was examined. Simulation results showed that the BER of the reconfigurable SISO system

with fixed antenna beamwidth and angular spread increases due to error in DoA estimation.

Moreover, it was shown that with small DoA estimation error, the system with smaller

angular spread has a better performance than that with larger angular spread. However,

for large DoA estimation error, this relationship is reversed. We also examined the BER

performance of the system for different values of antenna beamwidth. While the BER of

the system with narrower beamwidth has a better performance with small DoA estimation

error, it is observed that with large DoA estimation error the system with wider beamwidth

outperforms the system with narrow beamwidth.
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CHAPTER 4

Performance Evaluation of Reconfigurable MIMO Systems in Spatially

Correlated Frequency-Selective Fading Channels 1

In the reconfigurable MIMO system, antennas at the transmitter and/or receiver are

capable of changing their radiation properties such as frequency, polarization, and radia-

tion pattern. In [6], it has been shown that the maximum achievable diversity offered by

RE-MIMO systems employing reconfigurable antennas at the receiver only over flat fading

channels, is equal to the product of number of transmit antennas, number of receive anten-

nas and the number of states that the reconfigurable antennas can be configured. Moreover,

in [36], a novel transmission scheme called space-time-state block code was proposed to ex-

ploit maximum diversity gain offered by a RE-MIMO system. However, these previous works

have not addressed the frequency-selectivity problem of fading channels in a MIMO system

equipped with reconfigurable antennas.

One conventional solution to frequency-selectivity problem of the wireless channel in

MIMO systems is to use OFDM modulation which transforms the frequency-selective channel

into a set of flat-fading channels. However, OFDM modulation generally requires an accurate

synchronization, has high peak-to-average power ratio (PAPR), and demands high compu-

tational power due to multiple inverse fast Fourier transform and fast Fourier transform

operations.

In this chapter, we propose a lower complexity MIMO system employing reconfigurable

antennas at the receiver side with electronically controllable radiation patterns over the

frequency-selective channels to mitigate multipath effects and therefore remove inter sym-

bol interference without using OFDM modulation technique. In the proposed system, we

assume that each element in the MIMO array is able to dynamically change its beam direc-

tion in a continuous manner from backfire to endfire. As an example of such element, we

can refer to the CRLH-LWA which can provide electronically controllable dynamic radiation

patterns with high directivity [76]. By integration of these elements in an array, we can have

a system in which the elements steer their beams toward the selected clusters and attenuate

the signals coming from the undesired clusters. As a result, the ISI can be effectively sup-

1. Part of the work presented in this chapter was published in:
• V. Vakilian, J.-F. Frigon, and S. Roy, ”Performance Evaluation of Reconfigurable MIMO Systems in

Spatially Correlated Frequency-Selective Fading Channels”, Proc. IEEE Veh. Technol. Conf., Quebec
City, QC, Canada, Sept. 2012. pp. 1–5.
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pressed. Moreover, the STS-BC transmission scheme can be used in the RE-MIMO systems

to achieve the same diversity order as space-time block coded MIMO-OFDM systems. To

show the superiority of the proposed system, the bit-error rate performance of the coded

RE-MIMO is compared with the performance of STBC-MIMO-OFDM system in the spatial

clustered channel model that takes into account the impact of most of the physical parameters

of wireless channels.

4.1 Spatial Channel Model

In this chapter, we consider a spatial channel model (SCM) which is a statistical-based

model developed by 3GPP for evaluating MIMO system performance in urban micro-cell,

urban macro-cell and suburban macro-cell fading environments [74]. This model takes into

account the impact of several physical parameters of wireless channels such as direction-of-

arrival, direction-of-departure (DoD), path power, antenna radiation patterns, angular and

delay spread. The channel coefficient between transmitter antenna i and receiver antenna j

for the l-th cluster, l ∈ {1, 2, · · · , L}, is given by

hi,j(l) =

√
Pl
M

M∑
m=1

αml

√
gti(θ

m
l )e k0dt(i−1) sin(θml )

×
√
grj (φ

m
l )e k0dr(j−1) sin(φml ), (4.1)

where  =
√
−1 is the imaginary unit, Pl is the power of the l-th cluster which is normal-

ized so that the total average power for all clusters is equal to one, M is the number of

unresolvable multipaths per cluster that have similar characteristics, k0 = 2π/λ is the free

space wavenumber, where λ is the free-space wavelength, dt and dr are the antenna spacing

between two elements at the transmitter and receiver side, respectively, αml is the complex

gain of the m-th multipath of the l-th path (the αml are zero mean unit variance independent

identically-distributed (i.i.d) complex random variables), gti(θ
m
l ) is the gains of i-th transmit

antenna, and grj (φ
m
l ) is the gain of j-th receive antenna. θml and φml are the DoD and DoA

for the m-th multipath of the l-th cluster, respectively, and can be given by

θml = θl,DoD + ϑml,DoD, (4.2)

φml = φl,DoA + ϑml,DoA, (4.3)
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where θl,DoD and φl,DoA are the mean DoD and the mean DoA of the lth cluster, respectively.

The ϑml,DoD and ϑml,DoA are the deviation of the paths from mean DoD and DoA, respectively.

The ϑml,DoD and ϑml,DoA are modeled as i.i.d. Gaussian random variables, with zero mean and

variance σ2
DoD and σ2

DoA, respectively.

The channel impulse response between transmit antenna i and receive antenna j can then

be modeled as

hi,j(τ) =
L∑
l=1

hi,j(l)δ(τ − τl), (4.4)

where τl is the l-th cluster delay, and hi,j(l) is the complex amplitude of the l-th cluster

defined in (4.1).

4.2 Space-Time-State coded RE-MIMO System in Frequency-Selective Chan-

nels

In this section, we consider a RE-MIMO system equipped with Mt omni-directional an-

tenna elements at the transmitter and Mr directive reconfigurable antenna elements with P

radiation pattern scan-step at the receiver. We assume that the mean DoA of the clusters

are known at the receiver and in each radiation pattern scan-step, the reconfigurable antenna

element steers toward a cluster as shown in Fig.4.1.

In the RE-MIMO system, the radiation pattern of received reconfigurable antenna at p-th

scan-step is approximated in this section by a parabolic function that can be expressed as [17]

grj (φ
m
l , ψ

p
j ) =

2π

B3dB

100.1A(φml ,ψ
p
j ), (4.5)

where A(φml , ψ
p
j ) = −η

(
φml −ψ

p
j

B3dB

)2

in dB, η is a constant (set to 12 in [74]), B3dB is the 3dB

reconfigurable antenna beamwidth in radians, and ψpj is the j-th received antenna pointing

angle during p-th step. Therefore, the channel coefficient defined in (4.1) becomes a function

of the antenna pointing angle and can be rewritten as

hpi,j(l, ψ
p
j ) =

√
Pl
M

M∑
m=1

αml

√
gti(θ

m
l )e k0dt(i−1) sin(θml )

×
√
grj (φ

m
l , ψ

p
j )e

k0dr(j−1) sin(φml ). (4.6)

We assume a block fading channel, where the fading coefficients are time-invariant over

each scan-step, and change independently from one scan-step to another. Each scan-step is
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Figure 4.1 RE-MIMO system with Mt = 2, Mr = 2 and L = 2 clusters.

composed of K blocks of T time slots. To have a fair comparison with MIMO-OFDM, we

consider K = Nc/T , where Nc is the number of OFDM subcarriers. At each scan-step p and

time slots t in the k-th data block, the transmit codeword vector for the Mt antennas can be

defined as,

cp(t, k) = [cp1(t, k), cp2(t, k), · · · , cpMt
(t, k)] ∈ C1×Mt (4.7)

where, cpi (t, k), for i = 1, · · · ,Mt, is the transmitted symbol at the p-th scan-step from i-

th transmit antenna during t-th time slot of k-th block. At time t and scan-step p, the

received antenna j is pointing to the mean DoA of a cluster such that ψpj = φl′,DoA, where

l′ ∈ {1, 2, · · · , L}. In this scenario, the received signal by antenna j within k-th block is given

by

ypj (t, k) =

mainlobe︷ ︸︸ ︷√
Esc

p(t, k) hpj(l
′, ψpj )

+
∑
l 6=l′

√
Esc

p(t, k) hpj(l, ψ
p
j )︸ ︷︷ ︸

sidelobe

+zpj (t, k), (4.8)

where Es is the average energy per symbol at each transmit antenna, zj(t, k) is a zero mean

complex AWGN at receive antenna j and time instant t with variance σ2
n/2 per dimension.
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In (4.8), hpj(l, ψ
p
j ) ∈ CMt×1 is the channel vector given by

hpj(l, ψ
p
j ) , [hp1,j(l, ψ

p
j ), h

p
2,j(l, ψ

p
j ), · · · , h

p
Mt,j

(l, ψpj )]
T . (4.9)

After T time slots, the overall received signal during p-th scan-step and k-th block can be

defined as T ×Mr matrix, as below

Yp(k) , [yp1(k),yp2(k), · · · ,ypMr
(k)], (4.10)

where

ypj (k) , [ypj (1, k), ypj (2, k), · · · , ypj (T, k)]T . (4.11)

(4.10) can be computed as

Yp(k) =
L∑
l=1

√
EsC

p(k) Hp(l,ψp) + Zp(k), (4.12)

where

Hp(l,ψp) , [hp1(l, ψp1),hp2(l, ψp2), · · · ,hpMr
(l, ψpMr

)], (4.13)

ψp , [ψp1, ψ
p
2, · · · , ψ

p
Mr

], (4.14)

Cp(k) , [c(1, k)T , c(2, k)T , · · · , c(T, k)T ]T , (4.15)

Zp(k) , [zp1(k), zp2(k), · · · , zpMr
(k)]. (4.16)

The codeword transmitted over all P scan-steps can be expressed as

C , diag{C1,C2, · · · ,CP}, (4.17)

where Cp , [CpT (1),CpT (2), · · · ,CpT (K)]T is the transmitted codeword during one scan-

step. In this case, the received signal over over all P scan-steps Y ∈ CPKT×Mr is given

by

Y =
L∑
l=1

√
EsC H(l,ψ) + Z, (4.18)
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where

H(l,ψ) , [H1(l,ψ1)T ,H2(l,ψ2)T , · · · ,HP (l,ψP )T ]T , (4.19)

ψ , [ψ1,ψ2, · · · ,ψP ], (4.20)

Z , [Z1,Z2, · · · ,ZP ]. (4.21)

Now, as an example, consider a 2 × 2 RE-MIMO system in a two-cluster channel model

with STS-BC scheme at the transmitter and reconfigurable antennas with P = 2 scan-steps

at the receiver which is equal to the number of the clusters. In this scenario, in the first

scan-step, the pointing angle of the first and second reconfigurable antenna elements at the

receiver are ψ1
1 = φ1,DoA and ψ1

2 = φ2,DoA, respectively, and in the next step, they will be

ψ2
1 = φ2,DoA and ψ2

2 = φ1,DoA. In this case, we define a vector containing the received signals

at two consecutive scan-steps over the k-th block that can be expressed as Y1(k)

Y2(k)

 =

 C1(k) 0

0 C2(k)

 H1(l,ψ1)

H2(l,ψ2)

+

 Z1(k)

Z2(k)

 , (4.22)

where Cp(k) is a quasi-orthogonal space-time-state block code given by [36] which can be

represented as

C1(k) =

 sk1 + s̃k3 sk2 + s̃k4

−
(
sk2 + s̃k4

)∗ (
sk1 + s̃k3

)∗
 ,

C2(k) =

 sk1 − s̃k3 sk2 − s̃k4
−
(
sk2 − s̃k4

)∗ (
sk1 − s̃k3

)∗
 , (4.23)

where sk1 and sk2 belong to a constellation A and s̃k3 and s̃k4 belong to the rotated constellation

eθA, where θ is the optimal rotation angle and is equal to π/2 for BPSK. (4.22) can be

decoupled into received signals from mainlobe and sidelobe. If we have more than two

clusters and we to use the codeword built based on two scan-steps, then at the receiver, we

configure the antenna to receive the signal from the two strongest clusters.

At the receiver, due to the independence of different blocks of data corresponding to

different values of k, the ML decoding is reduced into independent ML decoding per block.

In this case, ML decoding is performed to estimate the transmitted symbol by solving the

following optimization problem
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Figure 4.2 MIMO-OFDM system with Mt = 2, Mr = 2 and L = 2 clusters.

arg min
P∑
p=1

||Yp(k)−Cp(k)Hp(l,ψ)||2F , (4.24)

where ||.||F denotes the Frobenius norm.

4.3 Space-Time Coded MIMO-OFDM System

In this section, we consider the MIMO-OFDM system with Mt omni-directional transmit

antennas, Mr omni-directional receive antennas, and Nc subcarriers illustrated in Fig. 4.2.

The frequency response of the channel impulse response defined in (4.4), is given

Hi,j(e
 2π
Nc
n) =

L∑
l=1

hi,j(l)e
− 2π

Nc
τln, n = 0, 1, · · · , Nc − 1 (4.25)

At the transmitter, we consider STBC scheme to encode information and produce the code-

word cb(n) , [cb1(n), cb2(n), · · · , cbMt
(n)], where cbi(n) is the coded symbol transmitted from

the i-th antenna on the b-th OFDM symbols and n-th subchannel. At the receiver, after

the cyclic prefix removal and FFT, the frequency domain of the received signal at the j-th

receive antenna and n-th subcarrier, where n = 0, 1, · · · , Nc − 1 and b = 1, 2, · · · , B, can be

written as
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ybj(n) =
Mt∑
i=1

√
Esc

b
i(n)Hb

i,j(e
 2π
Nc
n) + zbj(n), (4.26)

where zbj(n) is the additive white Gaussian noise at the n-th subcarrier and the b-th OFDM

symbol duration with variance σ2
n/2 per dimension. We assume that the channel is quasi-

static and remains constant for B OFDM symbols Hb(n) = H(n) ∈ CMt×Mr . Therefore, the

received signal during b-th OFDM symbol duration Yb ∈ CNc×Mr can be given as

Yb =
√
EsC

bH + Zb, (4.27)

where

Cb , diag{cb(0), cb(1), · · · , cb(Nc − 1)}, (4.28)

H , [HT (0),HT (1), · · · ,H(Nc − 1)]T . (4.29)

Using Alamouti code [50], the transmission codeword for Mt = 2 transmit antenna and

B = 2 OFDM symbols can be expressed as

C1 = diag
{

[s1, s2], · · · , [s2Nc−1, s2Nc ]
}
, (4.30)

C2 = diag
{

[−s∗2, s∗1], · · · , [−s∗2Nc , s
∗
2Nc−1]

}
. (4.31)

Now, let y
j
(n) , [y1

j (n) y2
j (n)]T be the signal received by j-th antenna during two consec-

utive OFDM symbols over the n-th subcarrier. Also, assume perfect channel information

at the receiver. In this case, the ML decoding can be performed by solving the following

minimization problem

arg min
Mr∑
j=1

|y
j
(n)− c(n)Hj(n)|2, (4.32)

where

c(n) =

 s2n+1 s2n+2

−s∗2n+2 s∗2n+1

 , (4.33)
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is the transmitted codeword during two consecutive OFDM symbols over the n-th subcarrier

and Hj(n) is the j-th column of channel matrix H(n).

4.4 Simulation Results

In order to compare the performance of RE-MIMO with MIMO-OFDM systems, the

BER is computed by Monte Carlo simulations, while the same throughput and transmission

power are considered for both systems. For all simulations, BPSK modulation is applied and

the maximum likelihood decoding with perfect channel state information at the receiver is

implemented. Furthermore, a two-cluster channel model according to (4.1), is considered in

which each cluster is composed of M = 20 unresolvable multipaths. For RE-MIMO system,

we consider two reconfigurable antenna elements at the transmitter where each element has

two radiation pattern scan-steps and two omni-directional antennas at the receiver (Mt =

Mr = 2, P = 2). We also perform simulations using the STS-BC given by (4.22). For

MIMO-OFDM system, we consider two omni-directional antennas at the transmitter and

two omni-directional antennas at the receiver (Mt = Mr = 2) and Nc = 64 subcarriers.

Moreover, we use Alamouti coding scheme at the transmitter. For both RE-MIMO and

MIMO-OFDM system, the inter-element spacing at the receiver and transmitter, is equal to

λc/2, where λc = c/fc is the wavelength of the transmitted signal, fc is the carrier frequency,

and c is the light speed. The simulation parameters are listed in Table 4.1.

Fig. 4.3 shows the BER versus SNR for coded RE-MIMO and MIMO-OFDM system

for various value of received angular spread (σDoA) and reconfigurable antenna beamwidth

(B3dB). From this figure, it can be observed that the diversity order is preserved in RE-

MIMO system. Moreover, it is evident from the figure that for smaller angular spread at the

receiver, the RE-MIMO systems perform extremely well, specially for narrower beamwidth,

thanks to the power gain provided by directional reconfigurable antenna. However, for larger

angular spread, the performance of the RE-MIMO system degrades due to much stronger

contribution of undesired multipath components.

Fig. 4.4 depicts the bit error rate performance of coded RE-MIMO and MIMO-OFDM

systems with different received angle spread values. In this simulation, we set the reconfig-

urable antenna beamwidth at B3dB = 35◦ and SNR= 10 dB. From this figure, we observe that

the BER performance of RE-MIMO system highly depends on the angular spread. When the

angle spread is smaller than 18 degree, the RE-MIMO system outperforms the MIMO-OFDM

system.
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Table 4.1 Simulation parameters for the proposed RE-MIMO and MIMO-OFDM systems

Simulation parameters
Carrier frequency (fc) 3.484 GHz
Reconfigurable antenna Beamwidth (B3dB) 35&45◦

Number of Tx and Rx antennas (Nt,Nr) (2, 2)
Number of scan-steps (P ) 2
Number of subcarriers (Nc) 64
Number of clusters (L) 2
Number of multipaths per cluster (M) 20
Cluster delay (τ1, τ2) (0.46, 0.89) µs
Cluster power (P1, P2) (0.53, 0.47)
Cluster direction-of-departure (θ1,DoD, θ2,DoD) (6.6617◦,−3.4544◦)
Cluster direction-of-arrival (φ1,DoA, φ2,DoA) (10◦, 45◦)
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Figure 4.3 Average BER vs. SNR for RE-MIMO and MIMO-OFDM systems with Mt = 2,
Mr = 2, L = 2, and angular spread of 10◦.
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Figure 4.4 Average BER vs. received angular spread for RE-MIMO and MIMO-OFDM
systems with Mt = 2, Mr = 2, and L = 2 clusters.

4.5 Conclusion

In this chapter, we evaluated the performance of the space-time-state block-coded RE-

MIMO system in the spatially correlated frequency-selective fading channels. We also stud-

ied the impact of angular spread and antenna beamwidth on the performance of the system.

Moreover, we compared the BER performance of the proposed system with that of MIMO-

OFDM system. Simulation results show that as the angular spread decreases, the RE-MIMO

system outperforms the MIMO-OFDM system. Furthermore, we observed the same conclu-

sion for the antenna beamwidth, i.e., the performance of the RE-MIMO system improves as

the antenna beamwidth decreases. Therefore, the proposed RE-MIMO represents a low com-

plexity alternative to a MIMO-OFDM system and can even outperform it in certain channel

environments and system configurations.
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CHAPTER 5

Covariance Matrix and Capacity Evaluation of Reconfigurable Antenna Array

Systems 1

Over the past few years, studies have revealed that reconfigurable antennas can be used

in conjunction with MIMO technology to further enhance the system capacity and reduce

the deleterious effects of interference sources in wireless systems [1,3–11,77]. Unlike a phased

array antenna (PAA) where the reconfigurable radiation pattern is created by properly feeding

each element in the array, in a reconfigurable antenna array, each element can independently

adjust its radiation pattern characteristics [78]. A reconfigurable antenna array, for example,

can be used in the 802.11ad standard to replace the PAA for 60 GHz wireless gigabit networks,

where a directional multi-gigabit beamforming protocol enables the transmitter and receiver

to configure the antenna radiation patterns in real-time [15].

Similar to conventional MIMO wireless systems, the performance of a reconfigurable

MIMO wireless system is affected by the correlation between the signals impinging on the

antenna elements [26]. The correlation coefficients depend on several factors, including the

signal spatial distribution, the antenna array topology and the radiation pattern characteris-

tics of each element in the array. In general, these coefficients are computed using two main

approaches, namely, numerical and analytical solutions. Works in the first category focus

on finding the signal correlation through numerical schemes (e.g., numerical integrations and

Monte-Carlo simulations) which are computationally intensive and need long processing time

to obtain the solutions [27–32]. In contrast, analytical expressions are computationally more

reliable and require shorter processing time.

The authors in [33] derived exact expressions to compute the spatial correlation coefficients

for ULA with different spatial distribution assumptions on signal angles of arrival/departure.

A similar work was conducted in [34], where the authors proposed closed-form expressions

of the spatial correlation matrix in clustered MIMO channels. These works have considered

omni-directional antenna elements in their derivation and consequently overlooked the an-

tenna radiation pattern characteristics. In [35], the authors derived an analytical correlation

expression for directive antennas with a multimodal truncated Laplacian power azimuth spec-

trum (PAS). In their analysis, however, they have only considered identical fixed directive

1. Part of the work presented in this chapter was published in:
• V. Vakilian, J.-F. Frigon, and S. Roy, ”Closed-Form Expressions for the Covariance Matrix of a Re-

configurable Antenna System”, IEEE Trans. Wireless Commun., vol. 13, pp. 3452-3463, June 2014.
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radiation patterns for all elements.

In this chapter, we derive analytical expressions of the covariance matrix coefficients of

the received signals at the antenna array by taking into account several antenna character-

istics such as beamwidth, antenna spacing, antenna pointing angle, and antenna gain. In

particular, we consider the more realistic and practical scenario where the radiation pattern

of each antenna element in the array has different characteristics. This is in contrast with

previous works where all antenna elements have the same radiation patterns, which is not

applicable for advanced RE-MIMO systems employing independent reconfigurable antennas.

Part of the challenge in derivation of analytical expressions comes from the fact that due to

the continuous and independent beam steering feature of each antenna element, there are

numerous configurations for which the correlation coefficients need to be found. We derive

analytical expressions for computing these coefficients for all possible configurations. Un-

like computing intensive numerical integrations to directly evaluate the covariance matrix

coefficients, the analytical expressions derived in this chapter converge rapidly and can be

used, for example, in real-time RE-MIMO wireless system implementations to quickly choose

the optimal configuration for each reconfigurable antenna element in the array, leading to

the highest system performance. This is a significant gain for practical implementations of

communication systems using reconfigurable antenna arrays. We furthermore use the derived

analytical expressions to analyze the capacity of RE-MIMO systems equipped with recon-

figurable antennas and discuss its relation with the antennas radiation pattern configuration

and channel power angular spectrum characteristics.

5.1 Modeling and Problem Formulation

Consider a reconfigurable antenna array with Nr elements, where the radiation pattern

of the m-th element can be characterized using the following parabolic function [74]:

gm(φ,Θm) = max
[
Gme

−αm(φ−ψm)2 , gcm

]
. (5.1)

In this model, Θm = [ψm, Gm, Bm] is a vector of parameters related to the antenna radiation

pattern, ψm denotes the pointing angle of the antenna (i.e., the azimuth angle with maximum

gain), Gm is the antenna gain, Bm is the 3-dB antenna beamwidth, φ ∈ [ψm − π, ψm + π)

represents the azimuth angle, αm = (η ln 10)/(10B2
m) with η = 12, and gcm is the constant

gain of the antenna sidelobe. To simplify the notation, we use

gpm = Gme
−αm(φ−ψm)2 (5.2)
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to refer to the parabolic part of the antenna radiation pattern.

Let x(k, φ) denote the impinging signal that has a PAS defined as follows:

p(φ) = Ek|φ
[
|x(k, φ)|2

]
, (5.3)

where p(φ) is a multimodal truncated Laplacian PAS [79]. In the multimodal PAS, each

mode represents a resolvable multipath signal reflecting from a given cluster over the space.

We express the multimodal truncated Laplacian PAS with L modes as

p(φ) =
L∑
l=1

pl(φ), (5.4)

where pl(φ) is the truncated Laplacian distribution of the l-th mode, given by

pl(φ) =


bl√
2σl
e−
√

2|φ−φl0|/σl , for φ ∈ [φl0 −4l, φ
l
0 +4l),

0, otherwise,
(5.5)

in which φl0 is the DoA of the l-th mode, σl is the standard deviation of the PAS, 0 ≤ 4l ≤ π

is the truncation angle, and bl = Pl/
(
1− e−

√
24l/σl

)
is the PAS normalization factor. In this

representation, Pl is chosen such that
∑L

l=1 Pl = 1.

Fig. 5.1 illustrates the geometry of a plane wave signal impinging on two reconfigurable

elements. The dashed and the solid parabolic curves represent the radiation pattern of the

m-th and n-th elements, respectively. The dotted-dashed line shows the PAS of the arriving

signal from the l-th mode. As illustrated in this figure, φci is the intersect angle, where the

parabolic part of the radiation pattern crosses the constant part and can be computed as

φci = Bi

√
gci [dB]

η
, (5.6)

where gci [dB] is the sidelobe gain in dB.

We assume that the signal received by the m-th antenna at time instant k is expressed

by

rm(k,Θm) = x(k, φ)
√
gm(φ,Θm)ejk0dr(m−1) sin(φ), (5.7)

where x(k, φ) is the impinging wave signal with multimodal truncated Laplacian distribution,

k0 = 2π/λ is the free-space wavenumber, λ is the free-space wavelength, and dr is the antenna

spacing at the receiver sides.
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Figure 5.1 PAS and the reconfigurable antenna radiation patterns

5.2 Closed-Form Expressions for Covariance Matrix Coefficients

In this section, we derive analytical expressions to compute the covariance matrix of the

signals received by the reconfigurable antenna array. Let us define Θ = [Θ1 . . .ΘNr ] as the

vector of reconfigurable parameters for all receive antennas. Then, the (m,n)-th coefficient

of Rr(Θ) ∈ CNr×Nr , for m 6= n, can be expressed as

[Rr]m,n(Θm,Θn) = Ek,φ
{
rm(k,Θm)r∗n(k,Θn)

}
− Ek,φ

{
rm(k,Θm)

}
E
{
r∗n(k,Θn)

}
, (5.8)

where

Ek,φ
{
rm(k,Θm)r∗n(k,Θn)

}
= Ek,φ

{
|x(k, φ)|2

√
gm(φ,Θm)

√
gn(φ,Θn)ejk0(m−n)drsin(φ)

}
,

(5.9)

and

Ek,φ
{
ri(k,Θi)

}
= Ek,φ

{
x(k, φ)

√
gi(φ,Θi)e

jk0dr(i−1) sin(φ)
}
, i ∈ {m,n}. (5.10)

Since x(k, φ) is zero mean in any azimuth φ and independent of antenna characteristics,

e.g., beamwidth, gain and pointing angle, Ek,φ
{
ri(k,Θi)

}
, for i ∈ {m,n}, becomes zero and

subsequently, (5.8) can be rewritten as
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[Rr]m,n(Θm,Θn) = Ek,φ
{
rm(k,Θm)r∗n(k,Θn)

}
= Eφ

{
Ek|φ

[
|x(k, φ)|2

]√
gm(φ,Θm)

√
gn(φ,Θn)ejk0(m−n)drsin(φ)

}
, (5.11)

=

∫ √
gm(φ,Θm)

√
gn(φ,Θn)ejk0dr(m−n) sin(φ)p(φ) dφ. (5.12)

By replacing (5.5) in the above equation, we can compute the covariance coefficient as follows:

[Rr]m,n(Θm,Θn) =
L∑
l=1

bl√
2σl

∫ φl0+4l

φl0−4l

√
gm(φ,Θm)

√
gn(φ,Θn)ejk0dr(m−n) sin(φ)pl(φ) dφ,

=
L∑
l=1

bl√
2σl

[Rl
r]m,n(Θm,Θn). (5.13)

Considering the following identity [80],

ejDr sin(φ) = J0(Dr) + 2
∞∑
k=1

J2k(Dr) cos(2kφ) + 2j
∞∑
k=0

J2k+1(Dr) sin[(2k + 1)φ]. (5.14)

where Dr = k0dr(m − n) and Jm(·) is the Bessel function of the first kind of order m, the

expression in (5.13) can be rewritten as

[Rl
r]m,n(Θm,Θn) = J0(Dr)Λ

l,k
o (Θm,Θn)

+ 2
∞∑
k=1

J2k(Dr)Λ
l,k
c (Θm,Θn)

+ 2j
∞∑
k=0

J2k+1(Dr)Λ
l,k
s (Θm,Θn). (5.15)

In this expression, Λl,k
o (Θm,Θn) (the index k is arbitrary and only included to conform with

the two other functions), Λl,k
c (Θm,Θn) and Λl,k

s (Θm,Θn) are defined as:

Λl,k
o (Θm,Θn) =

∫ φl0+4l

φl0−4l

√
gm(φ, ψm)

√
gn(φ, ψn)pl(φ)dφ, (5.16)

Λl,k
c (Θm,Θn) =

∫ φl0+4l

φl0−4l
cos[2kφ]

√
gm(φ, ψm)

√
gn(φ, ψn)pl(φ)dφ, (5.17)

Λl,k
s (Θm,Θn) =

∫ φl0+4l

φl0−4l
sin[(2k + 1)φ]

√
gm(φ, ψm)

√
gn(φ, ψn)pl(φ)dφ. (5.18)
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The (m,m)-th element of Rr(Θ) can be computed as

[Rr]m,m(Θm,Θm) = E
{
|x(k, φ)|2gm(φ,Θm)

}
=

∫
gm(φ,Θm)p(φ) dφ (5.19)

=
L∑
l=1

bl√
2σl

[Rl
r]m,m(Θm,Θm), (5.20)

where [Rl
r]m,m(Θm,Θm) is given by

[Rl
r]m,m(Θm,Θm) =

∫ φl0+4l

φl0−4l
gm(φ,Θm)pl(φ) dφ

= Ξl(Θm), (5.21)

To arrive at analytical expressions for the covariance coefficients, Λl,k
i (Θm,Θn), i ∈ {o, s, c}

and Ξl(Θm) in (5.15) and (5.21), respectively, need to be analytically computed. As shown

in Fig. 5.1, the PAS and the radiation patterns are discontinuous functions. To evaluate

the functions Λl,k
i (Θm,Θn) and Ξl(Θm), we therefore need to separate the different cases

depending on how the PAS and the radiation patterns overlap. We assume that the antennas

are ordered such that ψm < ψn and gci = β for all i ∈ {1, · · · , Nr}. We also assume that

the radiation patterns of both reconfigurable antennas overlap (ψn − φc < ψm + φc). The

results that we present below could be readily extended to non-overlapping radiation patterns

using the same strategy. Due to the parabolic decrease in the radiation pattern gain and the

exponential PAS decrease, the tail-end effects on the covariance coefficients are neglected.

This approximation is justified by the close agreement between the analytical and numerical

evaluation results.

Remark 5.1: In this work, we compute the covariance matrix coefficients for the case where

only the receiver side is equipped with reconfigurable antennas. However, since the method

to compute the transmit and receive correlation matrix is the same [34], the results presented

in this chapter can also be used to compute the transmit-side covariance matrix by replacing

the arrival PAS with the departure PAS.

Let us first define fo(φ) = 1, fs(φ) = sin[(2k + 1)φ], fc(φ) = cos(2kφ), and the following

functions for i ∈ {o, s, c}:

figcmgcnpL(A,B) =

∫ B

A

fi(φ)βe
−
√
2(φl0−φ)
σl dφ (5.22)
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figcmgcnpR(A,B) =

∫ B

A

fi(φ)βe
−
√
2(φ−φl0)
σl dφ (5.23)

figpmgcnpL(A,B) =

∫ B

A

fi(φ)
√
β
√
Gme−αm(φ−ψm)2

× e−
√
2(φl0−φ)
σl dφ (5.24)

figpmgcnpR(A,B) =

∫ B

A

fi(φ)
√
β
√
Gme−αm(φ−ψm)2

× e−
√
2(φ−φl0)
σl dφ (5.25)

figpmgpnpL(A,B) =

∫ B

A

fi(φ)
√
Gme−αm(φ−ψm)2

×
√
Gne−αn(φ−ψn)2e

−
√
2(φl0−φ)
σl dφ (5.26)

figpmgpnpR(A,B) =

∫ B

A

fi(φ)
√
Gme−αm(φ−ψm)2

×
√
Gne−αn(φ−ψn)2e

−
√
2(φ−φl0)
σl dφ (5.27)

figcmgpnpL(A,B) =

∫ B

A

fi(φ)
√
β
√
Gne−αn(φ−ψn)2

× e−
√

2(φl0−φ)
σl dφ (5.28)

figcmgpnpR(A,B) =

∫ B

A

fi(φ)
√
β
√
Gne−αn(φ−ψn)2

× e−
√

2(φ−φl0)
σl dφ. (5.29)

In Appendix C, we evaluate the above integrals for computing Λl,k
i (Θm,Θn).

Depending on the angle of incidence, φ, and the pointing angle of each reconfigurable

antenna element, ψi, for i ∈ {m,n}, different integration areas emerge. Below, we evaluate

Λl,k
i (Θm,Θn) for all possible cases.

1) φl0 +4l < ψm − φc
As illustrated in Fig. 5.1, in this case, the PAS is in the far left and completely out of the

scope of the parabolic part of the m-th reconfigurable antenna radiation pattern. We then

have:

Λl,k
i (Θm,Θn) = figcmgcnpL(φl0 −4l, φ

l
0) + figcmgcnpR(φl0, φ

l
0 +4l). (5.30)

2) φl0 < ψm − φc < φl0 +4l

In this case, only half of the PAS is within the parabolic part of the radiation pattern of the

reconfigurable antenna m. The PAS may be covered with the radiation pattern of antenna
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n. We then have:

Λl,k
i (Θm,Θn) = figcmgcnpL

(
φl0 −4l, φ

l
0

)
+ figcmgcnpR

(
φl0, ψm − φc

)
+ figpmgcnpR

(
ψm − φc,min(φl0 +4l, ψn − φc)

)
+ figpmgpnpR

(
min(φl0 +4l, ψn − φc),min(φl0 +4l, ψm + φc)

)
+ figcmgpnpR

(
min(φl0 +4l, ψm + φc),min(φl0 +4l, ψn + φc)

)
+ figcmgcnpR

(
min(φl0 +4l, ψn + φc), φ

l
0 +4l

)
. (5.31)

3) ψm − φc < φl0 < ψn − φc
In this case, both halves of the PAS are within the parabolic part of the radiation pattern of

the antenna m. Obviously, the PAS is also within the coverage of antenna n. We then have:

Λl,k
i (Θm,Θn) = figcmgcnpL

(
φl0 −4l,max(φl0 −4l, ψm − φc)

)
+ figpmgcnpL

(
max(φl0 −4l, ψm − φc), φl0

)
+ figpmgcnpR

(
φl0,min(φl0 +4l, ψn − φc)

)
+ figpmgpnpR

(
min(φl0 +4l, ψn − φc),min

(
φl0 +4l,min(φl0 +4l, ψm + φc)

))
+ figcmgpnpR

(
min(φl0 +4l, ψm + φc),min(φl0 +4l, ψn + φc)

)
+ figcmgcnpR

(
min(φl0 +4l, ψn + φc), φ

l
0 +4l

)
, (5.32)

4) ψn − φc < φl0 < ψm + φc

In this case, both halves of the PAS are within the parabolic part of the radiation pattern of

both antennas. We then have:

Λl,k
i (Θm,Θn) = figcmgcnpL

(
φl0 −4l,max(φl0 −4l, ψm − φc)

)
+ figpmgcnpL

(
max(φl0 −4l, ψm − φc),max(φl0 −4l, ψn − φc)

)
+ figpmgpnpL

(
max(φl0 −4l, ψn − φc), φl0

)
+ figpmgpnpR

(
φl0,min(φl0 +4l, ψn + φc)

)
+ figcmgpnpR

(
min(φl0 +4l, ψm + φc),min(φl0 +4l, ψn + φc)

)
+ figcmgcnpR

(
min(φl0 +4l, ψn + φc), φ

l
0 +4l

)
, (5.33)
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5) ψm + φc < φl0 < ψn + φc

In this case, both halves of the PAS are within the parabolic part of the radiation pattern of

the reconfigurable antenna n. The PAS may be covered with the radiation pattern of antenna

m. We then have:

Λl,k
i (Θm,Θn) = figcmgcnpL

(
φl0 −4l,max(φl0 −4l, ψm − φc)

)
+ figpmgcnpL

(
max(φl0 −4l, ψm − φc),max(φl0 −4l, ψn − φc)

)
+ figpmgpnpL

(
max(φl0 −4l, ψn − φc),max(φl0 −4l, ψm + φc)

)
+ figcmgpnpL

(
max(φl0 −4l, ψm + φc), φ

l
0

)
+ figcmgpnpR

(
φl0,min(φl0 +4l, ψn + φc)

)
+ figcmgcnpR

(
min(φl0 +4l, ψn + φc), φ

l
0 +4l

)
, (5.34)

6) φl0 −4l < ψn + φc < φl0

In this case, only half of the PAS is within the parabolic part of the radiation pattern of the

reconfigurable antenna with larger pointing angle. We then have:

Λl,k
i (Θm,Θn) = figcmgcnpL

(
φl0 −4l,max(φl0 −4l, ψm − φc)

)
+ figpmgcnpL

(
max(φl0 −4l, ψm − φc),max(φl0 −4l, ψn − φc)

)
+ figpmgpnpL

(
max(φl0 −4l, ψn − φc),max(φl0 −4l, ψm + φc)

)
+ figcmgpnpL

(
max(φl0 −4l, ψm + φc), ψn + φc

)
+ figcmgcnpL

(
ψn + φc, φ

l
0

)
+ figcmgcnpR

(
φl0, φ

l
0 +4l

)
, (5.35)

7) φl0 −4l > ψn + φc

In this case, the PAS is completely out of the scope of the parabolic part of the reconfigurable

antenna radiation pattern with larger pointing angle. We then have:

Λl,k
i (Θm,Θn) = figcmgcnpL(φl0 −4l, φ

l
0) + figcmgcnpR(φl0, φ

l
0 +4l). (5.36)

As explained previously, the computation of Ξl(Θm) involves evaluating integrals that cor-

respond to PAS areas which are impacted with only one of the antenna radiation patterns.
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Let us first define the following functions:

gcmgcmpL(A,B) =

∫ B

A

βe
−
√
2(φl0−φ)
σl dφ, (5.37)

gcmgcmpR(A,B) =

∫ B

A

βe
−
√
2(φ−φl0)
σl dφ, (5.38)

gpmgpmpL(A,B) =

∫ B

A

Gme
−αm(φ−ψm)2e

−
√
2(φl0−φ)
σl dφ, (5.39)

gpmgpmpR(A,B) =

∫ B

A

Gme
−αm(φ−ψm)2e

−
√
2(φ−φl0)
σl dφ. (5.40)

The analytical evaluation of these functions are given in Appendix D. Below, we evaluate

Ξl(Θm) for all possible cases depending on DoA and pointing angle of each reconfigurable

antenna element.

1) φl0 +4l < ψm − φc
In this case, the PAS is on the far left and completely out of the scope of the parabolic part

of the radiation pattern. We then have:

Ξl(Θm) = gcmgcmpL(φl0 −4l, φ
l
0) + gcmgcmpR(φl0, φ

l
0 +4l). (5.41)

2) φl0 < ψm − φc < φl0 +4l

In this case, only half of the PAS is within the parabolic part of the radiation pattern of the

reconfigurable antenna on the right-hand side. We then have:

Ξl(Θm) = gcmgcmpL

(
φl0 −4l, φ

l
0

)
+ gcmgcmpR

(
φl0, ψm − φc

)
+ gpmgpmpR

(
ψm − φc,min(φl0 +4l, ψm + φc)

)
+ gcmgcmpR

(
min(φl0 +4l, ψm + φc), φ

l
0 +4l

)
. (5.42)

3) ψm − φc < φl0 < ψm + φc

In this case, both halves of the PAS are within the parabolic part of the radiation pattern of
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the reconfigurable antenna. We then have:

Ξl(Θm) = gcmgcmpL

(
φl0 −4l,max(φl0 −4l, ψm − φc)

)
+ gpmgpmpL

(
max(φl0 −4l, ψm − φc), φl0

)
+ gpmgpmpR

(
φl0,min(φl0 +4l, ψm + φc)

)
+ gcmgcmpR

(
min(φl0 +4l, ψm + φc), φ

l
0 +4l

)
. (5.43)

4) φl0 −4l < ψm + φc < φl0

In this case, only half of the PAS is within the parabolic part of the radiation pattern of the

reconfigurable antenna on the right-hand side. We then have:

Ξl(Θm) = gcmgcmpL

(
φl0 −4l,max(φl0 −4l, ψm − φc)

)
+ gpmgpmpL

(
max(φl0 −4l, ψm − φc), ψm + φc

)
+ gcmgcmpL

(
ψm + φc, φ

l
0

)
+ gcmgcmpR

(
φl0, φ

l
0 +4l

)
. (5.44)

5) φl0 −4l > ψm + φc

In this case, the PAS is completely out of the scope of the parabolic part of the radiation

pattern on the right-hand side. We then have:

Ξl(Θm)

= gcmgcmpL(φl0 −4l, φ
l
0) + gcmgcmpR(φl0, φ

l
0 +4l). (5.45)

Remark 5.2: In this work, we only considered steering the antennas in azimuth plane. How-

ever, (5.1) can be extended to consider both vertical and horizontal steering of the radiation

pattern. For this purpose, the channel model has to be extended to include the elevation

power angular spectrum. In the cases where a two-dimensional Laplacian or a general double

exponential functions can model the incoming signal distribution [81], a similar methodology

as the one presented in this section can then be followed to obtain series expressions for the

covariance matrix coefficients. However, the number of cases to be considered will increase

as there is an extra variable to consider.
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5.2.1 Computer Experiments

In this section, we evaluate the derived analytical expression for covariance matrix co-

efficient between two reconfigurable antenna elements. This expression is a function of the

antenna spacing, both antennas pointing angle, angular spread, and angle of arrival. The

analytical results obtained from the derived expression are validated by comparing with the

results computed from the numerical integration of (5.12) and (5.19). In Fig. 5.4, Fig. 5.6,

and Fig. 5.7, the unmarked lines correspond to the analytical results, while the marks corre-

spond to the numerical integration. Unless indicated otherwise, we assumed in this section

and Section 5.3 that dr = λ and that the radiation pattern of both antennas have similar

characteristics with gain G1 = G2 = 1 and a sidelobe level of gc1 [dB] = gc2 [dB] = −20 dB.

Moreover, the truncation angle 4l is set to be π.

Although the covariance matrix coefficient in (5.15) is defined as an infinite series, only

a limited number of terms k in the sum are required to adequately converge. This is due

to the fact that the Bessel function of order k for typical values of antenna spacing quickly

converges to zero as k increases. To show that the series converge for a finite number of

terms, we have plotted the Bessel function of the first kind versus Dr for different integer

orders, k, in Fig. 5.2. Note that the Bessel function Ji(Dr), for i ∈ {2k, 2k+ 1}, is a function

of antenna spacing, dr, since:

Dr = k0(m− n)dr (5.46)

In practice, the distance between antenna elements is chosen to satisfy:

λ

4
≤ dr ≤ 4λ, (5.47)

and therefore

1

2
(m− n)π ≤ Dr ≤ 8(m− n)π. (5.48)

For antenna spacing dr = λ
2
, and two adjacent antenna elements, we obtain Dr = π. In

this scenario, as illustrated in Fig. 5.2, J2k(Dr) becomes negligible for k ≥ 4 and J2k+1(Dr)

becomes negligible for k ≥ 2. Therefore, only three and two terms of the sum are needed for

computing J2k(Dr) and J2k+1(Dr), respectively. The worse case scenario is when Dr takes

its largest value which corresponds to the distance between the first and the last antenna

elements in the array.

To illustrate the analytical expressions convergence properties, we plotted in Fig. 5.3, for

different angular spreads, the absolute value of the covariance coefficient versus the number

of terms used in the summation. The solid black line shows the computed values using
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numerical integration. As can be observed, the number of summation terms required to

accurately compute the covariance is limited and decreases as the angular spread increases.

Fig. 5.4 shows the absolute value of the covariance coefficient versus the normalized

spacing between two antenna elements for different angular spreads. In this case, both

reconfigurable antennas steer their radiation patterns toward the mean DoA φ1
0 = 20◦, and

the beamwidth for both antennas is set to B1 = B2 = 70◦. As shown in this figure, the

results obtained from the analytical expression match with that of the numerical integration,

thus validating our derivation. It can be observed that the spatial covariance decreases as

angular spread or antenna spacing increases due to reduced covariance between the received

signals at different antenna elements.

Fig. 5.5 depicts the 3D plot of the absolute value of the covariance coefficient as a

function of the second antenna radiation pattern pointing angle, ψ2, and side lobe level, β2,

(the analytical results have also been validated with simulation results, but the later have

not been included in the figure for clarity). The first antenna steers its radiation pattern

toward the mean DoA of the cluster (ψ1 = φ1
0 = 0◦) and its side lobe level is fixed to β1 = -20

dB. It can be observed that, as expected, the spatial covariance is maximized when the two

antennas steer their patterns in the same direction. Furthermore, the covariance between the

antenna elements increases as the side lobe increases.

Fig. 5.6 shows the absolute value of the covariance when both pointing angles vary in

opposite directions with a mean DoA φ1
0 = 0◦ and for B1 = B2 = 45◦. At the left end of the

figure, both reconfigurable antenna elements steer toward the angle of incidence and then we

let the pointing angle steer away from the mean DoA in opposite directions such that the

overlap between the two radiation patterns decreases. The results validate our analysis for

the case where both antennas steer at different angles relative to the DoA.

In Fig. 5.7, the absolute value of the covariance is plotted versus the radiation pattern

pointing angles (ψ1, ψ2) for a bi-modal truncated Laplacian PAS with DoAs of φ1
0 = 0◦ and

φ2
0 = 45◦ for B1 = B2 = 70◦. One of the reconfigurable antenna elements steers its radiation

pattern toward the first cluster mode (ψ1 = φ1
0) and the other one changes its radiation

pattern direction (ψ2) from −60◦ to 60◦. As expected, the covariance value is at its lowest

when the second antenna is pointing toward the second cluster at 45◦.

5.3 Reconfigurable MIMO Channel Capacity

In this section, we show how the derived analytical expressions of the covariance matrix

coefficients can be used to study the capacity of a RE-MIMO wireless communication system

equipped with reconfigurable antennas at the receiver. This case study also demonstrates
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how, based on a PAS estimation obtained for example using the RPS-MUSIC DoA estimation

algorithm presented in Chapter 3, the receiver can optimize the antenna configuration to

maximize the link throughput. For the numerical results, we assume that the transmitter is

surrounded by uniformly distributed scatterers, meaning that the radiating signals from the

transmitter side are uncorrelated.

The ergodic channel capacity for the RE-MIMO system with no channel state information

at the transmitter is given by [82]

C = E

{
log2

[
det
(
INr +

γ

Nt

H(Θ)H(Θ)H
)]}

, (5.49)

where γ is the average signal-to-noise-ratio (SNR), and H(Θ) is the channel matrix when

the array of receive antennas is configured according to Θ = [Θ1 . . .ΘNr ].

Let us define v as the vector of eigenvalues of the covariance matrix. Then, the closed-form

ergodic capacity can be expressed as [83],

C = Nr!HNr,Nt(v)
Nr∑
k=1

det

[
(Nt − j)!
v
−(Nt−j+1)
i

[eNt/(viγ)

ln 2

Nt−j∑
p=0

1

p!

p∑
l=0

(
p

l

)(
− Nt

viγ

)p−l
Γ
(
l,
Nt

viγ

)]σkj]
Nr×Nr

(5.50)

where Nt is the number of antenna elements at the transmitter, Γ(s, x) is the incomplete

gamma function, σkj denotes the Kronecker delta function, and HNr,Nt(v) is

HNr,Nt(v) =

(
det
[
(−1)Nr−jvNt−Nr+ji

])−1

n!πn(1−n)Γ̃n(Nt)Γ̃n(Nr)

[
Nr−1∏

p=Nr−n

p!

]
. (5.51)

In (5.51), Γ̃m(a) is the complex multivariate gamma function given by

Γ̃m(a) = π
1
2
m(m−1)

m∏
i=1

Γ(a− i+ 1). (5.52)

where Γ(.) is the gamma function.

5.3.1 Computer Experiments

In order to calculate the system capacity, the correlation coefficients are computed using

both analytical expressions (5.13) and (5.15) and numerical integration (5.12). In the results

presented in this section, the unmarked lines correspond to the analytical results, while the
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Figure 5.8 Ergodic channel capacity of a 2× 2 RE-MIMO system versus antenna beamwidth
for different angular spread values.

marks correspond to the results obtained by numerical integration.

Fig. 5.8 shows the ergodic capacity of a RE-MIMO system versus antenna beamwidth

for different angular spreads and mean DoA φ1
0 = 10◦. For this scenario, we consider that

the antenna gain is inversely proportional to the beamwidth (i.e., Gi = 1/Bi) and that both

antennas point to the mean DoA (ψ1 = ψ2 = φ1
0). It can be observed that the RE-MIMO

capacity increases when the angular spread decreases. Although the covariance coefficient

increases as the angular spread decreases (see Fig 5.4), with a lower angular spread more

multipath energy gets focused in the angle where the antenna has a higher gain. The lat-

ter phenomenon compensates the MIMO capacity decrease due to the covariance increase,

which leads to the observed increase in capacity. Similarly, as the beamwidth decreases, the

covariance increases but the antenna gain also increases which leads to an improved average

SNR and thus a capacity increase.

Figs. 5.9 and 5.10 show the ergodic capacity in low and high SNR (γ = 5 and 20 dB),

respectively, for a bi-modal PAS scenario. We consider φ1
0 = −40◦, φ2

0 = 40◦, P1 = −1.7, and

P2 = −5 dB. It can be observed that at low SNR, the system achieves the highest capacity

when both reconfigurable antennas are approximatively pointing to the strongest path. A

second local optimum is observed when the second antenna points to the second path. On

the other hand, at high SNR, the maximum capacity is achieved when each antenna points

to a different path. This is due to the fact that at low SNR, the system is power limited and
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Figure 5.11 Ergodic channel capacity of a 2×2 RE-MIMO system with 2◦ beamwidth antennas
at SNR= 20dB for a channel model with φ1

0 = −152◦, φ2
0 = −147◦, AS1 = 33◦, AS2 = 37◦,

P1 = −1.7 dB, and P2 = −5 dB.

therefore pointing both antennas at the strongest path provides the required power increase.

By contrast, at high SNR, it is better to improve the usage of the degrees of freedom which is

achieved by decreasing the covariance by pointing at the different paths (see Fig. 5.7). Note

that the highest capacity is not exactly achieved when the antenna points directly at the DoA

due to the compromise that exists between power increase and covariance decrease. Those

results clearly illustrate how the analytical results presented in this chapter can be used to

optimally configure in real-time the antenna parameters of a MIMO system as a function of

the estimated channel parameters.

In Fig. 5.11, we consider the capacity of a 2 × 2 RE-MIMO system for a channel model

with overlapping clusters with close DoA. This channel model is derived from the 60 GHz

channel models considered for 802.11ad test scenarios [84]. It is observed that a very narrow

beamwidth of about 2◦ is required to achieve some decorrelation between the two clusters

separated by 5◦.

5.4 Conclusion

In this chapter, we derived analytical expressions for computing the covariance matrix

coefficients of the received signals impinging on a reconfigurable antenna array. The derived
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expressions were validated using a numerical integration method. We investigated the impact

of radiation pattern characteristics and array configurations on the covariance coefficients.

We also studied the capacity of a reconfigurable MIMO system using the derived analytical

expressions. We showed how the results presented in this chapter can be used to quickly

choose the optimal configuration for each reconfigurable antenna element in the array.



67

CHAPTER 6

Full-Diversity Full-Rate Space-Frequency-State Block Codes for Reconfigurable

MIMO Systems 1

An additional type of diversity known as multipath or frequency diversity is offered in

frequency-selective fading channels. To achieve spatial and frequency diversity, a space-

frequency code has been designed for a MIMO-OFDM system in [39]. In particular, SF

codes use the two dimensions of space (antenna) and frequency tones (subcarriers) to enhance

the system performance. It has been proved that a MIMO-OFDM system can achieve a

maximum diversity gain equal to the product of the number of its transmit antennas, the

number of its receive antennas and the number of multipaths present in the frequency selective

channel considering a full rank channel correlation matrix. The design criteria to achieve such

diversity gains are presented in [39, 40, 85]. Space-time coded OFDM was first introduced

in [37] by using space-time trellis codes over frequency tones. In [86], the authors introduced

a space-frequency-time coding method over MIMO-OFDM channels. They used trellis coding

to code over space and frequency and space-time block codes to code over OFDM blocks. The

authors used the Alamouti block code structure [50] for the case of two transmit antennas

and proposed to use Orthogonal Space-Time Block Code (OSTBC) structures introduced

in [56] for larger numbers of transmit antennas. It is worthwhile to mention that in the

case of more than two transmit antennas, OSTBC can provide at most a rate of 3/4 and

we are thus not able to have rate-one transmission with OSTBC. In [44], the authors point

out the analogy between antennas and frequency tones and based on capacity calculation,

propose a grouping method that reduces the complexity of code design for MIMO-OFDM

systems. The idea of subcarrier grouping is further pursued in [85] and [87] with precoding

and in [88] with bit interleaving. In [45], a repetition mapping technique has been proposed

that obtains full-diversity in frequency-selective fading channels. Although their proposed

technique achieves full-diversity order, it does not guarantee full coding rate. Subsequently,

a block coding technique that offers full-diversity and full coding rate was derived [46, 47].

1. Part of the work presented in this chapter was published in:
• V. Vakilian, J.-F. Frigon, and S. Roy, ”Space-Frequency Block Code for MIMO-OFDM Communication

Systems with Reconfigurable Antennas”, Proc. IEEE Global Commun. Conf. (GLOBECOM), Atlanta,
GA, USA, Dec. 2013.

• V. Vakilian, J.-F. Frigon, and S. Roy, ”Full-Diversity Full-Rate Space-Frequency-State Block Codes
for MIMO-OFDM Communication Systems with Reconfigurable Antennas”, Submitted for publication
in IEEE Trans. Wireless Commun.



68

However, the SF codes proposed in the above studies and other similar works on the topic are

not able to exploit the radiation pattern state diversity available in reconfigurable multiple

antenna systems.

In this chapter, we propose a coding scheme for reconfigurable MIMO-OFDM systems

that achieves multiple diversity gains, including, space, frequency, and radiation pattern state.

Basically, the proposed scheme consists of a code that is sent over transmit antennas, OFDM

tones, and radiation states. In order to obtain radiation state diversity, we configure each

transmit antenna element to independently switch its radiation pattern to a direction that

can be selected according to different optimization criteria, e.g., to minimize the correlation

among different radiation states or increase the received power. We construct our proposed

code based on the fundamental concept of rotated quasi-orthogonal space-time block codes

[58,60,89]. By using the rotated QOSTBC, the proposed coding structure provides rate-one

transmission (i.e., one symbol per frequency subcarrier per radiation state) and leads to a

simpler ML decoder. As the simulation results indicate, our proposed code outperforms the

existing space-frequency codes substantially.

6.1 System Model for Reconfigurable MIMO-OFDM Systems

Consider a MIMO-OFDM system with Mt reconfigurable elements at the transmitter

where each of these elements is capable of electronically changing its radiation pattern and

creating P different radiation states as shown in Fig. 6.1. In this system, we assume the

receiver antenna array consist of Mr omni-directional elements with fixed radiation patterns.

Moreover, we consider an Nc-tone OFDM modulation and frequency-selective fading channels

with L propagation paths between each pair of transmit and receiver antenna in each radiation

state. The channel gains are quasi-static over one OFDM symbol interval. The channel

impulse response between transmit antenna i and receive antenna j in the p-th radiation

state can be modelled as

hi,jp (τ) =
L−1∑
l=0

αi,jp (l)δ(τ − τl,p), (6.1)

where τl,p is the l-th path delay in the p-th radiation state, and αi,jp (l) is the complex amplitude

of the l-th path between the i-th reconfigurable transmit antenna and the j-th receive antenna

in the p-th radiation state. The average total received power is normalized to one.

The frequency response of the channel at the n-th subcarrier between transmit antenna i
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and receive antenna j in the p-th radiation state is given by

H i,j
p (n) =

L−1∑
l=0

αi,jp (l)e−2πn∆fτl,p , (6.2)

where ∆f = 1/Ts is the subcarrier frequency spacing and Ts is the OFDM symbol duration.

The space-frequency codeword transmitted during the p-th radiation state, Cp ∈ CMt×Nc , can

be expressed as

Cp =


c1
p(0) c1

p(1) · · · c1
p(Nc − 1)

c2
p(0) c2

p(1) · · · c2
p(Nc − 1)

...
...

. . .
...

cMt
p (0) cMt

p (1) · · · cMt
p (Nc − 1)

 , (6.3)

where cip(n) denotes the data symbol transmitted by transmit antenna i on the n-th subcarrier

during the p-th radiation state.

At the receiver, after cyclic prefix removal and FFT, the received frequency domain signal

of the n-th subcarrier and p-th radiation state at the j-th receive antenna can be written as
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rjp(n) =

√
Es
Mt

Hj
p(n)cp(n) + zjp(n), (6.4)

where

Hj
p(n) =

[
H1,j
p (n), H2,j

p (n), · · · , HMt,j
p (n)

]
, (6.5)

and cp(n) is the n-th column of Cp matrix defined in (6.3), zjp(n) is the additive complex

Gaussian noise with zero mean and unit variance at the n-th subcarrier, and Es is the energy

normalization factor.

The received signal during the p-th radiation state rp = [rTp (0) rTp (1) · · · rTp (Nc − 1)]T

with rp(n) = [r1
p(n) r2

p(n) · · · rMr
p (n)]T , can be written as

rp =

√
Es
Mt

Hpcp + zp, (6.6)

where

Hp =
[
H1T

p ,H
2T

p , · · · ,HMT
r

p

]T
, (6.7)

Hj
p = diag{Hj

p(0), Hj
p(1), · · · , Hj

p(Nc − 1)} (6.8)

is the channel matrix, cp = vec(Cp) is the transmitted codeword, and zp ∈ CNcMr×1 is the

noise vector during the p-th radiation state.

6.2 Quasi-Orthogonal Space-Frequency Block Codes

In [39], the authors showed that there is no guarantee to achieve the multipath diversity

gain of a frequency selective fading channel by applying the existing orthogonal space-time

block codes to frequency domain. In this section, we introduce a space-frequency block

coding technique based on quasi-orthogonal designs which is able to exploit any desired level

of multipath diversity.

Each QOSF codeword, CSF ∈ CMt×Nc , is a concatenation of some matrices Gm that can

be expressed as

CSF = [G1TG2T · · ·GMT

0TNc−MLMt
], (6.9)

where M = b Nc
LMt
c and 0N is the all-zeros N×N matrix. In this expression, 0N will disappear

if Nc is an integer multiple of LMt. In this work, for simplicity, we assume Nc = LMtq, for
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some integer q. Each Gm matrix, m ∈ {1, 2, · · · ,M}, takes the following form:

Gm = col{X1, X2, · · · , XL} ∈ CLMt×Mt , (6.10)

where Xl is the Mt × Mt block coding matrix which is equivalent to an Alamouti code

structure for Mt = 2. To maintain simplicity in our presentation, we design the code for

Mt = 2 transmit antennas, however, extension to Mt > 2 is possible by following the similar

procedure with a QOSTBC. In the case of having two transmit antennas, Xl = A
(
x1, x2

)
,

where

A
(
x1, x2

)
=

 x1 x2

−x∗2 x∗1

 , (6.11)

is the Alamoutti OSTBC and therefore Gm can be expressed as

Gm =


A(Sm1 ,Sm2 )

A(Sm3 ,Sm4 )

...

A(Sm2L−1,Sm2L)

 . (6.12)

where Smi is a set of combined symbols, defined as follows[
Sm1 Sm3 · · · Sm2L−1

]T
= Θ

[
sm1 sm3 · · · sm2L−1

]T
,[

Sm2 Sm4 · · · Sm2L
]T

= Θ
[
sm2 sm4 · · · sm2L

]T
, (6.13)

where {sm1 , · · · , sm2L} is a block of symbols belonging to a constellation A,

Θ = U× diag{1, ejθ1 , . . . , ejθL−1},

and U is a L× L Hadamard matrix. The θi’s are the rotation angles.

6.3 Quasi-Orthogonal Space-Frequency-State Block Codes

In this section, we present our proposed quasi-orthogonal space-frequency-state (QOSFS)

coding scheme illustrated in Fig. 6.1 for a reconfigurable antenna system, where each antenna

elements can independently change its radiation pattern direction. In particular, we construct

the code based on the principle of a quasi-orthogonal coding structure for an arbitrary number

of transmit antennas and radiation pattern states.
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6.3.1 Code Structure

The QOSFS codeword over all P radiation states can be represented as

C = diag
{
C1, C2, · · · , CP

}
, (6.14)

where Cp is given in (6.3). The received signals over all radiation states is defined by r =

[rT1 rT2 · · · rTP ]T ∈ CPNcMr×1 and can be represented by

r =

√
Es
Mt

Hc + z, (6.15)

where H = diag{H1, H2, · · · , HP} ∈ CPNcMr×PNcMt is the overall channel matrix, c =

dvec(C) ∈ CPNcMt×1, and z = [zT1 zT2 · · · zTP ]T ∈ CPNcMr×1 is the noise vector. 2 In each

radiation state, we consider a coding strategy where the Mt×Nc QOSFS codeword Cp given

in (6.3) is a concatenation of M = bNc/LMtc Gm
p ∈ CLMt×Mt codewords as follows:

Cp = [G1T

p G2T

p · · ·GMT

p 0Mt×Nc−MLMt ], (6.16)

In the following, for simplicity and without loss of generality, we assume Nc = LMtq, for

some integer q. Each Gm
p matrix, m ∈ {1, 2, · · · ,M}, is a space-frequency codeword which

takes the following form:

Gm
p = col{Gm

(p−1)L+1, Gm
(p−1)L+2, · · · , Gm

(p−1)L+L}, (6.17)

where Gm
i is an Mt×Mt space block coding matrix which is equivalent to an Alamouti code

structure for Mt = 2. To maintain simplicity in our presentation, we design the code for

Mt = 2 transmit antennas, however, extension to Mt > 2 is possible by following a similar

procedure using rotated QOSTBC [58,60,89]. For the case ofMt = 2, we have Gm
i = A(x1, x2)

is the Alamouti block code

A(x1, x2) =

 x1 x2

−x∗2 x∗1

 . (6.18)

and therefore Gm
p can be expressed as

2. Suppose that A = diag
{
A1,A2, · · · ,Ap

}
is a block diagonal matrix of size pm× pn. Then, dvec(A) =[(

vec(A1)
)T
,
(
vec(A2)

)T
, · · · ,

(
vec(AN )

)T ]T
with size of pmn× 1.
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Gm
p =


A(Sm2(p−1)L+1,Sm2(p−1)L+2)

A(Sm2(p−1)L+3,Sm2(p−1)L+4)

...

A(Sm2pL−1,Sm2pL)

 . (6.19)

In (6.19), Smi is a set of combined symbols, computed as[
Sm1 Sm3 · · · Sm2PL−1

]T
= Θ

[
sm1 sm3 · · · sm2PL−1

]T
,[

Sm2 Sm4 · · · Sm2PL
]T

= Θ
[
sm2 sm4 · · · sm2PL

]T
, (6.20)

where {sm1 , · · · , sm2PL} is a block of symbols belonging to a constellation A, Θ = U ×
diag{1, ejθ1 , . . . , ejθPL−1} and U is a PL × PL Hadamard matrix. The θi’s are the rotation

angles. Different optimization strategies can be used to find the optimal values of rotation

angles θi’s, such that they maximize the coding and diversity gains. The objective function in

this optimization is defined as the minimum Euclidean distance between constellation points.

6.4 Example of a Space-Frequency-State Block Code

As an example, consider a reconfigurable MIMO-OFDM system with Mt = 2 transmit

antennas, P = 2 radiation states, and L = 2 multipaths. In this scenario, the transmitted

codewords C1 and C2 are constructed according to (6.16) and given as:

C1 =
1

4

 S1
1 −S1∗

2 S1
3 −S1∗

4 · · · SM1 −SM∗2 SM3 −SM∗4

S1
2 S1∗

1 S1
4 S1∗

3 · · · SM2 SM∗1 SM4 SM∗3

 (6.21)

C2 =
1

4

 S1
5 −S1∗

6 S1
7 −S1∗

8 · · · SM5 −SM∗6 SM7 −SM∗8

S1
6 S1∗

5 S1
8 S1∗

7 · · · SM6 SM∗5 SM8 SM∗7

 (6.22)
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The entries of Cp are computed using (6.20). As a result, we obtain CT
1 as

s1
1 + s̃1

3 + ŝ1
5 + š1

7 s1
2 + s̃1

4 + ŝ1
6 + š1

8

−s1∗
2 − s̃1∗

4 − ŝ1∗
6 − š1∗

8 s1∗
1 + s̃1∗

3 + ŝ1∗
5 + š1∗

7

s1
1 − s̃1

3 + ŝ1
5 − š1

7 s1
2 − s̃1

4 + ŝ1
6 − š1

8

−s1∗
2 + s̃1∗

4 − ŝ1∗
6 + š1∗

8 s1∗
1 − s̃1∗

3 + ŝ1∗
5 − š1∗

7

...
...

sM1 + s̃M3 + ŝM5 + šM7 sM2 + s̃M4 + ŝM6 + šM8

−sM∗2 − s̃M∗4 − ŝM∗6 − šM∗8 sM
∗

1 + s̃M
∗

3 + ŝM
∗

5 + šM
∗

7

sM1 − s̃M3 + ŝM5 − šM7 sM2 − s̃M4 + ŝM6 − šM8
−sM∗2 + s̃M

∗
4 − ŝM∗6 + šM

∗
8 sM

∗
1 − s̃M∗3 + ŝM

∗
5 − šM∗7



, (6.23)

and CT
2 as 

s1
1 + s̃1

3 − ŝ1
5 − š1

7 s1
2 + s̃1

4 − ŝ1
6 − š1

8

−s1∗
2 − s̃1∗

4 + ŝ1∗
6 + š1∗

8 s1∗
1 + s̃1∗

3 − ŝ1∗
5 − š1∗

7

s1
1 − s̃1

3 − ŝ1
5 + š1

7 s1
2 − s̃1

4 − ŝ1
6 + š1

8

−s1∗
2 + s̃1∗

4 + ŝ1∗
6 − š1∗

8 s1∗
1 − s̃1∗

3 − ŝ1∗
5 + š1∗

7

...
...

sM1 + s̃M3 − ŝM5 − šM7 sM2 + s̃M4 − ŝM6 − šM8
−sM∗2 − s̃M∗4 + ŝM

∗
6 + šM

∗
8 sM

∗
1 + s̃M

∗
3 − ŝM∗5 − šM∗7

sM1 − s̃M3 − ŝM5 + šM7 sM2 − s̃M4 − ŝM6 + šM8

−sM∗2 + s̃M
∗

4 + ŝM
∗

6 − šM∗8 sM
∗

1 − s̃M∗3 − ŝM∗5 + šM
∗

7



, (6.24)

where s̃i = ejθ1si, ŝi = ejθ2si, and ši = ejθ3si. Note that the above codeword provides rate-one

transmission (i.e., one symbol per OFDM tone per radiation state).

6.5 Error Rate Performance for Space-Frequency-State Block Codes

Consider two distinct SFS codewords C and C̃. The pairwise error probability (PEP) for

QOSFS codes can then be written as

P (C→ C̃|H) = Q
(√ γ

2Mt

||H dvec(C− C̃)||2
)
. (6.25)
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By defining Y = H dvec(C− C̃) and using the Chernoff bound Q(x) ≤ e−x
2/2, (6.25) can be

rewritten as

P (C→ C̃|H) ≤ e
− γ

4Mt
||Y||2

. (6.26)

By averaging (6.26) over all channel realizations, we then obtain [90]

P (C→ C̃) ≤
(

2r − 1

r

)( r∏
i=1

λi(CY)−1

)(
γ

Mt

)−r
, (6.27)

where r and λi(CY) are, respectively, the rank and the i-th eigenvalue of the covariance

matrix of Y defined as CY = E
{
YYH

}
. The covariance matrix CY is a PNcMr × PNcMr

matrix that is given, as derived in Appendix E, by

CY =

L−1∑
l=0

diag
{
X1, · · · ,Xp

}
Rh(l)diag

{
X∗1, · · · ,X∗p

}
(6.28)

where

Xi =
[
IMr ⊗Ωτl,i(Ci − C̃i)

T
]
,

Ω = diag
{
ωk
}Nc−1

k=0
with ω = e−(2π/Nc)

Rh(l) = E
{
h(l)hH(l)

}
∈ PMtMr × PMtMr,

h(l) =
[
h1(l),h2(l), · · · ,hP (l)

]T
,

hp(l) =
[
h1
p(l),h

2
p(l), · · · ,hMr

p (l)
]
,

hjp(l) =
[
α1,j
p (l), α2,j

p (l), · · · , αMt,j
p (l)

]
. (6.29)

6.6 QOSFS Code Design Criteria

In this section, we find the maximum achievable diversity order and coding gain of the

space-frequency-state coding technique proposed in section 6.3.

6.6.1 Maximum Diversity Order

Theorem 6.1 Having a full rank correlation matrix, the maximum diversity order achiev-

able by the QOSFS block code is LPMtMr.

Proof. As can be seen from the PEP expression (6.27), the maximum achievable diversity

order of the QOSFS block coding is determined by the minimum rank of the covariance

matrix CY over all codeword pairs {C, C̃}. To compute the rank of the covariance matrix
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defined in (6.28) for a codeword pairs {C, C̃}, we rewrite it as [91]

CY = F(C, C̃)RhFH(C, C̃), (6.30)

where the PNcMr×LPMtMr F(C, C̃) matrix and the LPMtMr×LPMtMr Rh matrix, are

given by

F(C, C̃) =
[
(C− C̃)T ,

(
(IP ⊗Ω)(C− C̃)T

)
,

· · · , IMr ⊗
(

(IP ⊗ΩL−1)(C− C̃)T
)]
, (6.31)

Rh = diag
{

Rh(0),Rh(1), · · · ,Rh(L− 1)
}
. (6.32)

In (6.31), I(C, C̃) ∈ CPNc×LPMt is

I(C, C̃) = diag
{
I(C1, C̃1), I(C2, C̃2), · · · , I(CP , C̃P )

}
, (6.33)

where

I(Cp, C̃p) =
[
(Cp − C̃p)

T , Ω(Cp − C̃p)
T , · · · ΩL−1(Cp − C̃p)

T
]
, (6.34)

with Ω defined in (6.29). As it is defined in (6.14), C and C̃ are block diagonal matrices

with diagonal blocks Cp and C̃p, respectively. And Cp and C̃p are constructed using (6.16)

from matrices Gm
p and G̃m

p , respectively. For two distinct codewords C and C̃, there exists

at least one index m0 (1 ≤ m0 ≤ M) such that Gm0
p 6= G̃m0

p for all p, for a properly chosen

rotation matrix Θ. Without loss of generality, we assume that Gm
p = G̃m

p for any m 6= m0

since the rank of F(C, C̃) does not decreases if Gm
p = G̃m

p for some m 6= m0. Now, let us

define F(Gm0 , G̃m0) ∈ CLPMtMr×LPMtMr as follows:

F(Gm0 , G̃m0) = IMr ⊗ I(Gm0 , G̃m0), (6.35)

where

I(Gm0 , G̃m0) = diag
{
I(Gm0

1 , G̃m0
1 ), I(Gm0

2 , G̃m0
2 ), · · · I(Gm0

P , G̃m0
P )
}
, (6.36)

and

I(Gm0
p , G̃m0

p ) =
[
(Gm0

p − G̃m0
p ), Ω(Gm0

p − G̃m0
p ), · · · ΩL−1(Gm0

p − G̃m0
p )
]
. (6.37)
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We also define

λi
(
F(Gm0 , G̃m0)FH(Gm0 , G̃m0)

)
,

as the i-th eigenvalue of
(
F(Gm0 , G̃m0)FH(Gm0 , G̃m0)

)
and λi

(
Rh

)
as the i-th eigenvalue of

Rh, which are the eigenvalues arranged in increasing order. Applying Ostrowski’s Theorem 3

[92, p. 283], we then have that

λi

(
F(Gm0 , G̃m0)RhFH(Gm0 , G̃m0)

)
= ζiλi(Rh), (6.38)

where ζi is a nonnegative real number such that

λmin

(
F(Gm0 , G̃m0)FH(Gm0 , G̃m0)

)
≤ ζi ≤ λmax

(
F(Gm0 , G̃m0)FH(Gm0 , G̃m0)

)
. (6.39)

Thus, the eigenvalues of CY have a relation with the eigenvalues of
(
F(Gm0 , G̃m0)FH(Gm0 , G̃m0)

)
,

which is a submatrix of CY obtained by deleting an equal number of its rows and columns.

We therefore have that [93]

λi(CY) ≥ λi

(
F(Gm0 , G̃m0)RhFH(Gm0 , G̃m0)

)
. (6.40)

Replacing λi
(
F(Gm0 , G̃m0)RhFH(Gm0 , G̃m0)

)
by (6.38), we get for any codeword pair

λi(CY) ≥ ζiλi
(
Rh

)
. (6.41)

Therefore, the rank of the covariance matrix for any codeword pairs is given by

r(CY) = r
(
Rh

)
, (6.42)

and the diversity order offered by the SFS code is

d = r
(
Rh

)
. (6.43)

The PEP computed in (6.27) can be rewritten as

P (C→ C̃) ≤ (
γ

4Mt

)−r(Rh)

r(Rh)∏
i=1

λ−1
i

(
Rh

)
. (6.44)

Therefore, the maximum diversity gain offered by the proposed QOSFS block code in the

3. Suppose that A and S be n× n matrices with A Hermitian and S nonsingular. Let the eigenvalues of
A and SSH be arranged in increasing order. For each i = 1, 2, · · ·n there exists a nonnegative real number
θi such that 0 < λ1(SSH) ≤ θi ≤ λi(SSH) and λi(SASH) = θiλi(A).
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case of having a full rank equivalent channel matrix Rh is given by

max d = r
(
F(Gm0 , G̃m0)RhFH(Gm0 , G̃m0)

)
= r(Rh) = LPMtMr. (6.45)

6.6.2 Coding Gain

The minimum coding gain can be defined as the product of the non-zero eigenvalues of

the matrix CY over all pairs of codewords, which can be written as

Gc =

r(Rh)∏
i=1

λi(F(Gm0 , G̃m0)RhFH(Gm0 , G̃m0))

=

r(Rh)∏
i=1

ζiλi
(
Rh

)
. (6.46)

6.7 Optimal Rotation Angles

In this section, we find the optimal rotation angles θi’s such that full-diversity and maxi-

mum coding gain can be achieved for the proposed QOSFS coding scheme. For simplicity, in

this section, we consider Mt = 2 for the development and provide the extension of the final

results for Mt > 2 at the end. Consider two QOSFS distinct codewords as follows,

C = diag{C1,C2, · · · ,CP} ∈ CPMt×PNc ,

C̃ = diag{C̃1, C̃2, · · · , C̃P} ∈ CPMt×PNc , (6.47)

where Cp and C̃p are constructed using (6.16) from matrices Gm
p and G̃m

p , respectively. As

defined in (6.19), Gm
p and G̃m

p are constructed from sets of combined symbols,

{Sm2(p−1)L+1, · · · ,Sm2pL}, (6.48)

{Vm2(p−1)L+1, · · · ,Vm2pL}, (6.49)

corresponding to two sets of distinct symbols respectively denoted by

{sm1 , sm2 , · · · , sm2PL}, (6.50)

{vm1 , vm2 , · · · , vm2PL}. (6.51)
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As we discussed in Section 6.6.1, the diversity order of the QOSFS block code for these

two distinct codewords is determined by the minimum rank of covariance matrix CY ∈
CPNcMr×PNcMr , defined in (6.30). With Rh = I, the minimum rank of CY is equal to the

minimum rank of F(C, C̃)FH(C, C̃), where its minimum rank can be determined by using

the minimum rank of I(C, C̃). To achieve the minimum rank of I(C, C̃), we assume that

there exists at least one index m0(1 ≤ m0 ≤ M) such that Gm0
p 6= G̃m0

p , ∀p ∈ {1, 2, · · · , P}.
Without loss of generality, we assume that Gm

p = G̃m
p for any m 6= m0 since the rank of

I(C, C̃) does not decreases if Gm
p = G̃m

p for some m 6= m0. Now, let us define for this case

the full-rank part of I(C, C̃) by I(Gm0 , G̃m0) ∈ C2PL×2PL given as,

I(Gm0 , G̃m0) = diag
{
I(Gm0

1 , G̃m0
1 ), I(Gm0

2 , G̃m0
2 ), · · · I(Gm0

P , G̃m0
P )
}
, (6.52)

where

I(Gm0
p , G̃m0

p ) =
[
(Gm0

p − G̃m0
p ), Ω(Gm0

p − G̃m0
p ), · · · ΩL−1(Gm0

p − G̃m0
p )
]
. (6.53)

I(Gm0
p , G̃m0

p ) ∈ C2L×2L can be written as,

Dm0

2(p−1)L+1 Dm0

2(p−1)L+2 · · · Dm0

2(p−1)L+1 Dm0

2(p−1)L+2

−Dm0∗
2(p−1)L+2 Dm0∗

2(p−1)L+1 · · · −ωL−1Dm0∗
2(p−1)L+2 ωL−1Dm0∗

2(p−1)L+1

Dm0

2(p−1)L+3 Dm0

2(p−1)L+4 · · · ω2(L−1)Dm0

2(p−1)L+3 ω2(L−1)Dm0

2(p−1)L+4

...
...

. . .
...

...

Dm0
2pL−1 Dm0

2pL · · · ω2(L−1)(L−1)Dm0
2pL−1 ω2(L−1)(L−1)Dm0

2pL

−Dm0∗
2pL Dm0∗

2pL−1 · · · −ω(L−1)(2L−1)Dm0∗
2pL ω(L−1)(2L−1)Dm0∗

2pL−1


(6.54)

where Dm0
i = Sm0

i − V
m0
i which for i ∈ {1, 3, · · · , 2PL− 1} is given by,

Dm0
i = ui+1/2,1d

m0
1 + ui+1/2,2e

jθ1dm0
3 + · · ·+ ui+1/2,PLe

jθPL−1dm0
2PL−1, (6.55)

and for i ∈ {2, 4, · · · , 2PL} is given by,

Dm0
i = ui/2,1d

m0
2 + ui/2,2e

jθ1dm0
4 + · · ·+ ui/2,PLe

jθPL−1dm0
2PL, (6.56)
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where uk,l is the entry of Hadamard matrix U in the k-th row and l-th column and dm0
i =

sm0
i − v

m0
i . For the QOSFS code, the coding gain can be computed as follows,

det
{

(Gm0−G̃m0)H(Gm0 − G̃m0)
}

=
P∏
p=1

det
{

(Gm0
p − G̃m0

p )H(Gm0
p − G̃m0

p )
}

=
P∏
p=1

2L∑
l=1

|Sm0

2(p−1)L+l − V
m0

2(p−1)L+l|
2

=
P∏
p=1

2L∑
l=1

|Dm0

2(p−1)L+l|
2, (6.57)

Note that the minimum non-zero coding gain is achieved when one of the sets below is zero:

{Dm0
1 , Dm0

3 , · · · , Dm0
2PL−1},

{Dm0
2 , Dm0

4 , · · · , Dm0
2PL}.

As an example, for the QOSFS codewords shown in (6.23) and (6.24), we get

det
{

(Gm0−G̃m0)H(Gm0 − G̃m0)
}

=
(
|Dm0

1 |2 + |Dm0
2 |2 + |Dm0

3 |2 + |Dm0
4 |2

)2

×
(
|Dm0

5 |2 + |Dm0
6 |2 + |Dm0

7 |2 + |Dm0
8 |2

)2
.

For this QOSFS code, the minimum coding gain is achieved when one of the Dm0
i for i ∈

{1, 2, 3, 4} and one of the Dm0
j for j ∈ {5, 6, 7, 8} are non-zeros. As it can be observed from

(6.55), if Dm0
1 = 0 then Dm0

i = 0 for i ∈ {3, 5, 7}. Also as it is given in (6.56), if Dm0
2 = 0 then

Dm0
i = 0 for i ∈ {2, 4, 6}. Moreover, if Dm0

1 6= 0 then Dm0
i 6= 0 for i ∈ {3, 5, 7} and if Dm0

2 6= 0

then Dm0
i 6= 0 for i ∈ {2, 4, 6}. Therefore, the minimum coding gain is achieved when one of

the sets {Dm0
1 , Dm0

3 , Dm0
5 , Dm0

7 } or {Dm0
2 , Dm0

4 , Dm0
6 , Dm0

8 } is zero. Without loss of generality,

we assume {Dm0
2 , Dm0

4 , · · · , Dm0
2PL} = 0. Then, (6.54) can be rewritten as Ī(Gm0

p , G̃m0
p ) defined
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as follows:

Dm0

2(p−1)L+1 0 · · · Dm0

2(p−1)L+1 0

0 Dm0∗
2(p−1)L+1 · · · 0 ωL−1Dm0∗

2(p−1)L+1

Dm0

2(p−1)L+3 0 · · · ω2(L−1)Dm0

2(p−1)L+3 0

...
...

. . .
...

...

Dm0
2pL−1 0 · · · ω2(L−1)(L−1)Dm0

2pL−1 0

0 Dm0∗
2pL−1 · · · 0 ω(L−1)(2L−1)Dm0∗

2pL−1


. (6.58)

As it can be observed from (6.58), any even and odd columns of Ī(Gm0
p , G̃m0

p ) are independent.

This relation also holds for Ī(Gm0 , G̃m0), which is given by,

Ī(Gm0 , G̃m0) = diag
{
Ī(Gm0

1 , G̃m0
1 ), Ī(Gm0

2 , G̃m0
2 ), · · · Ī(Gm0

P , G̃m0
P )
}
. (6.59)

Therefore, we define two new matrices: one is constructed from the odd rows and odd columns

of Ī(Gm0 , G̃m0), denoted ĪO(Gm0 , G̃m0) ∈ CPL×PL, and the second one is constructed from

the even rows and even columns of Ī(Gm0 , G̃m0), denoted ĪE(Gm0 , G̃m0) ∈ CPL×PL. These

matrices are given below,

ĪO(Gm0 , G̃m0) = diag{Dm0
1 , Dm0

3 , · · · , Dm0
2PL−1}(Ip ⊗W), (6.60)

ĪE(Gm0 , G̃m0) = diag{Dm0∗
1 , Dm0∗

3 , · · · , Dm0∗
2PL−1}(Ip ⊗W). (6.61)

In (6.60) and (6.61), W is

1 1 1 · · · 1

1 ω2 ω4 · · · ω2(L−1)

1 ω4 ω8 · · · ω4(L−1)

...
...

...
. . .

...

1 ω2(L− 1) ω4(L− 1) · · · ω2(L−1)(L−1)


. (6.62)

The determinant of Ī(Gm0 , G̃m0) ∈ C2PL×2PL can be computed as,

det
(
Ī(Gm0 , G̃m0)

)
= det

(
ĪO(Gm0 , G̃m0)

)
det
(
ĪE(Gm0 , G̃m0)

)
(6.63)
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where

det
(
ĪO(Gm0 , G̃m0)

)
= Dm0

1 Dm0
3 · · ·Dm0

2PL−1detP (W) (6.64)

det
(
ĪE(Gm0 , G̃m0)

)
= Dm0∗

1 Dm0∗
3 · · ·Dm0∗

2PL−1detP (W). (6.65)

Now, the optimal rotation angles has to be chosen such that the code provides full-diversity

and maximal coding gain. As it can be observed from (6.63), to achieve full-diversity of

2PL, both ĪO(Gm0 , G̃m0) and ĪE(Gm0 , G̃m0) matrices have to be full-rank. To meet this

requirement, the first and second terms in (6.64) and (6.65) need to be non-zero. The second

term in both equations is non-zero because of assuming N > 2L. In order to have a non-zero

first term, the rotation angles have to be chosen to satisfy the following condition:

|Dm0
i | = |ui+1/2,1d

m0
1 + ui+1/2,2e

jθ1dm0
3 + · · ·+ ui+1/2,PLe

jθPL−1dm0
2PL−1| 6= 0,

i = 1, 3, · · · , 2PL− 1. (6.66)

Also, to maximize the coding gain, the following optimization problem needs to be solved,

max
θ1,··· ,θPL−1

min
d1,d3,··· ,d2PL−1

|D1D3 · · ·D2PL−1|. (6.67)

The constraint in (6.66) and the optimization problem in (6.67) for choosing optimal rotation

angles can be generalized for Mt > 2 as,

|Dm0
i | = |ui+1/2,1d

m0
1 + ui+1/2,2e

jθ1dm0
Mt+1 + · · ·+ ui+1/2,PLe

jθPL−1dm0

MtPL−(Mt−1)| 6= 0,

i = 1,Mt + 1, · · · ,MtPL− (Mt − 1).

(6.68)

max
θ1,··· ,θPL−1

min
d1,dMt+1··· ,dMtPL−(Mt−1)

|D1DMt+1 · · ·DMtPL−(Mt−1)|. (6.69)

Figs. 6.2-6.4 show the values for the minimum determinant versus the rotation angles

for P = 1 radiation state and for BPSK, QPSK, and 8PSK constellations. For example, for

8PSK constellation, the optimal rotation angle for the proposed SFS-BC is π/8.
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Figure 6.2 Optimal rotation angle for BPSK constellation
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Figure 6.3 Optimal rotation angle for QPSK constellation
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Figure 6.4 Optimal rotation angle for 8PSK constellation

6.8 Simulation Results

In this section, we provide simulation results for both conventional and reconfigurable

MIMO-OFDM systems in two different channel models: 2-ray equal power channel model

and clustered channel model. In the reconfigurable MIMO-OFDM system, we assume that at

the transmitter the antenna elements in the array are capable of dynamically changing their

radiation pattern directions. In contrast, the conventional MIMO-OFDM system uses omni-

directional antenna elements with fixed radiation pattern at both transmitter and receiver

ends. For both systems, we consider Mt = 2 antennas at the transmitter and Mr = 1 antenna

at the receiver and an OFDM modulation technique with Nc = 128 subcarriers as well as a

cyclic prefix equal to or longer than the maximum channel delay spread. In our simulations,

we consider that the receiver has perfect channel state information. We also assume that the

symbols are chosen from a BPSK constellation, leading to a spectral efficiency of 1 bit/sec/Hz

if the cyclic prefix overhead is ignored. The average symbol power per transmit antenna is

set to be Es = 1/Mt and the noise variance is σ2
n = 1/γ. Furthermore, for a reconfigurable

antenna system, we assume the same delay spread for both radiation states (i.e., τl,1 = τl,2).

The powers of all paths in each radiation state are normalized such that
∑L−1

l=0 σ
2
l,p = 1.

For our proposed QOSFS scheme, the rotation angles are chosen as θi = iπ/PL for BPSK

constellation.
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6.8.1 2-Ray Channel Model

In this part, we present simulation results for a 2-ray equal power channel model. The

channel coefficients αi,jp (l) are zero-mean identically-distributed Gaussian random variables

with a variance of σ2
l,p. We assumed that they are independent for each multipath, transmit

antenna and radiation state.

Fig. 6.5 shows BER performance of the proposed code for a delay spread of τ = 5µs. As

shown in this figure, the proposed code outperforms those of [46] and [47]. In particular, at

a bit error rate of 10−5, the performance improvement compared to [46] and [47] is nearly

7 and 6 dB, respectively. This performance improvement demonstrates the superiority of

our proposed scheme which is due to the extra radiation pattern diversity gain offered by

the use of reconfigurable antenna elements. Fig. 6.6 depicts the BER performance of the

proposed code for a delay spread of τ = 20µs. As shown in this figure, at a BER of 10−5,

our proposed coding scheme outperforms the codes presented in [46] and [47] by about 6 and

4 dB, respectively. It can be observed from the figure that the proposed scheme provides a

diversity gain of LPMtMr = 8 while QOSF code proposed in [47] is capable of achieving a

diversity of LMtMr = 4. Compared to the results in Fig. 6.5, it can be seen that as delay

spread increases, the BER performance improves. This is due to benefiting from lower corre-

lation between subcarriers, and therefore higher frequency diversity in multipath propagation

channels. Remark 6.1: In large delay spread, the frequency response of the channel may vary

rapidly and therefore adjacent subcarriers experience different fading with high probability,

whereas in small delay spread cases, the frequency response of the channel varies slowly and

adjacent subcarriers may experience similar fading. Therefore, a distributed subcarrier ap-

proach [94] will improve the system diversity when the delay spread in the system is small.

It follows that employing such approach will improve the BER value illustrated in Fig. 6.5,

such that the performance difference between Figs. 6.5 and 6.6 will be significantly reduced.

Fig. 6.7 shows the performance of the QOSFS block code for various number of radiation

states (P = 1, 2, 3 or 4). From this figure, we observe that higher diversity and coding

gains can be extracted as the number of radiation states increases. However, note that the

decoding complexity also increases with the number of radiation states.

In Fig. 6.8, the BER performance of the QOSFS block code has been plotted versus the

number of radiation pattern states for SNR = 9 dB and two different delay spread values.

By increasing the number of radiation pattern states, we are able to extract higher levels

of diversity and achieve higher coding gains. However, the decoding complexity increases

correspondingly. Therefore, we conclude that considering the complexity of the system, it

may not be worthwhile to increase the total number of radiation states beyond 5 states in a

rich scattering environment.
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Figure 6.5 BER vs. SNR for a reconfigurable multi-antenna system with Mt = 2, P = 2,
Mr = 1 in a 2-ray channel with a delay spread of 5µs
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6.8.2 Clustered Channel Model

In this part, we first recall the spatial channel model which is a statistical-based model

proposed for evaluating MIMO system performance in urban micro-cell, urban macro-cell

and suburban macro-cell fading environments [74]. Then, we evaluate the performance of the

QOSFS block code for this channel model.

The channel coefficient between transmitter antenna i and receiver antenna j for the l-th

cluster during the p-th radiation state, l ∈ {0, 1, · · · , L− 1}, is given by

αi,jp (l) =

√
Pl
M

M∑
m=1

βlm

×
√
gti(φ

l
m,Θ

p
i,t)e

k0dt(i−1) sin(φlm)

×
√
grj (θ

l
m,Θ

p
j,t)e

k0dr(j−1) sin(θlm), (6.70)

where Pl is the power of the l-th cluster which is normalized so that the total average power

for all clusters is equal to one, M is the number of unresolvable multipaths per cluster that

have similar characteristics, βlm is the complex gain of the m-th multipath for the l-th path

(the βlm are zero-mean unit-variance i.i.d complex random variables), gti(φ,Θ) is the gain

of the i-th reconfigurable transmit antenna element with configuration parameters Θ at the

AoD φ, and grj (θ,Θ) is the gain of the j-th reconfigurable receive antenna element with

configuration parameters Θ at the AoA θ, Θp
i,t = [ψpi , Gi, Bi] is a vector of reconfiguration

parameters related to the antenna radiation pattern, ψpi denotes the pointing angle of the

antenna at the p-th radiation state (i.e., the azimuth angle with maximum gain), Gi is the

antenna gain, Bi is the 3-dB antenna beamwidth, k0 = 2π/λ is the free space wavenumber,

where λ is the free-space wavelength, dt and dr are the antenna spacing between two elements

at the transmitter and receiver side, respectively. φlm and θlm are the AoD and AoA for the

m-th multipath of the l-th cluster, respectively, and can be given by

φlm = φl,AoD + ϑlm,AoD, (6.71)

θlm = θl,AoA + ϑlm,AoA, (6.72)

where φl,AoD and θl,AoA are the mean AoD and the mean AoA of the lth cluster, respectively.

The ϑlm,AoD and ϑlm,AoA are the deviation of the paths from mean AoD and AoA, respectively.

The ϑml,AoD and ϑml,AoA are modeled as i.i.d. Gaussian random variables, with zero mean and

variance σ2
AoD and σ2

AoA, respectively.

In this work, we consider non-reconfigurable omnidirectional antenna elements at the
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Figure 6.9 BER vs. SNR for a reconfigurable multi-antenna system with Mt = 2, P = 2,
Mr = 1 in a clustered channel with a delay spread of 5µs.

receiver side with grj (θ,Θ) = 1 and reconfigurable antenna elements at the transmitter with

gti(φ
m
l ,Θ

p
i,t) that can be approximated by a parabolic function as [74]:

gti(φ,Θ
p
i,t) = max

[
Gie

−αi(φ−ψi)2 , gci

]
, (6.73)

where φ ∈ [ψm−π, ψm +π) represents the azimuth angle, αi = (η ln 10)/(10B2
i ) with η = 12,

and gci is the constant gain of the antenna sidelobe.

Fig. 6.9 provides the BER performance of the proposed QOSFS code in a clustered

channel model with L = 2 clusters and a delay spread of τ = 5µs. Note that for the

QOSFS code, the channel is considered to be independent from one state to another. For the

reconfigurable MIMO-OFDM system, we consider φ1,AoD = 10◦, φ2,AoD = −10◦, θ1,AoA = 30◦,

θ2,AoA = −30◦ for the first state, and φ1,AoD = 30◦, φ2,AoD = −30◦, θ1,AoA = 20◦, θ2,AoA =

−20◦ for the second state. Moreover, the angular spread is set to 10 degrees at the transmitter

and 5 degrees at the receiver. For these simulations, the radiation pattern of both antennas

are assumed to have similar characteristics with gain Gi = 360/Bi (i ∈ {1, 2}), beamwidth

B1 = B2 = {50◦, 10◦}, and a sidelobe level of gc1 [dB] = gc2 [dB] = −20 dB. The antennas’

pointing angles are ψ1
1 = 10◦, ψ1

2 = −10◦, ψ2
1 = 30◦ and ψ2

2 = −30◦. As demonstrated in this

figure, the proposed QOSFS coding scheme achieves higher diversity and coding gains in a
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Figure 6.10 BER vs. SNR for a reconfigurable multi-antenna system with Mt = 2, P = 2,
Mr = 1 in a clustered channel with a delay spread of 5µs.

clustered environment as compared to the QOSF code presented in [47]. It can be seen that

the QOSF and QOSFS codes provide lower diversity gain compared to the results in Fig.

6.5. This is due to the correlation between the signals arriving at the receiver introduced by

the clusters. In Fig. 6.9, we also study the impact of antenna beamwidth on the average bit

error rate performance of the proposed QOSFS code. As seen in the figure, as the antenna

beamwidth gets narrower the antenna gain increases and therefore yields to a lower BER

results. Furthermore, the narrower beamwidth decreases the decorrelation which slightly

improves the diversity gain.

Fig. 6.10 shows the BER performance of the QOSFS and QOSF codes in a clustered

channel for two different angular spread values at the transmitter. The proposed QOSFS

code demonstrates a superior performance over the QOSF code, especially for larger angular

spreads. It also can be observed from this figure that the QOSFS and QOSF codes exploit

higher diversity and coding gains as the angular spread increases. The reason is that larger

angular spread leads to lower correlation between the channel realizations.

Fig. 6.11 provides the BER performance of the proposed code in a clustered channel model

with L = 2 clusters for a delay spread of τ = 5µs. For the QOSFS code, we consider that the

cluster parameters such as, AoD, AoA and the complex gain of all unresolvable multipaths are
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Figure 6.11 BER vs. SNR for a reconfigurable multi-antenna system with Mt = 2, P = 2,
Mr = 1 in a clustered channel with a delay spread of 5µs.

maintained at the same values for both radiation state (i.e., we have a block fading channel

over the different radiation pattern states). In fact, only the antenna pointing angles, ψpi ,

are changed form one state to another. For these simulations, we consider φ1,AoD = 20◦,

φ2,AoD = −20◦, θ1,AoA = 20◦, θ2,AoA = −20◦ for both radiation states. The angular spread is

set to be 10 degrees at the transmitter and 5 degrees at the receiver. Moreover, we assume

that the radiation pattern of both antennas have similar characteristics with gainGi = 360/Bi

(i ∈ {1, 2}), beamwidth B1 = B2 = 30◦, and a sidelobe level of gc1 [dB] = gc2 [dB] = −20

dB. ψ1
1 = 10◦, ψ1

2 = −30◦, ψ2
1 = 30◦ and ψ2

2 = −10◦. It is interesting to note that at low

SNR values, the QOSFS gets less coding gain compared to QOSF code due to the fact that

each antenna only captures one cluster, but as the SNR increases the QOSFS achieves higher

diversity gain and therefore provides a better BER performance.

6.9 Conclusion

We proposed a quasi-orthogonal space-frequency-state coding technique for MIMO-OFDM

systems using antennas with reconfigurable radiation patterns. The proposed code is con-

structed based on the principle of quasi-orthogonal space-frequency coding scheme and con-

sists of a block of transmitted symbols expanding over space, frequency, and radiation pat-
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tern state dimensions. We evaluated the diversity and coding gains of the proposed code,

and provide the criteria to select the code rotation angles to optimize the code performance

and achieve maximum diversity. We provided simulation results to demonstrate the perfor-

mance of the proposed coding scheme and make comparisons with that of previous SF coding

schemes. In these experiments, it has been shown that the proposed code provides additional

diversity and coding gains compared to the previously designed SF codes in MIMO-OFDM

systems.
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CHAPTER 7

Conclusion

We here summarize the work in this dissertation and discuss some of the foreseeable future

research directions that this research may lead to.

7.1 Summary

In this dissertation, we first introduced a DoA estimation algorithm for a single-element

reconfigurable antenna system. We then evaluated the performance of this algorithm in an

anechoic chamber using an actual reconfigurable antenna called CRLH-LWA. We examined

the effect of number of scanning steps on the accuracy of the estimated DoA. From the

results, we observed that the DoA can be estimated accurately if the two chosen scanning

steps are sufficiently far apart. In the case of having two scanning steps where they are

very close and there is a large overlap in their radiation patterns, the algorithm fails to

estimate the DoA properly and creates large fluctuations in the power spectrum. Moreover,

we examined the impact of the DoA estimation error on the BER of the reconfigurable SISO

system. Simulation results showed that the BER of the RE-SISO system with fixed antenna

beamwidth and angular spread increases due to error in DoA estimation. Furthermore, it

was shown that with small DoA estimation error, the system with smaller angular spread

has a better performance than that with larger angular spread. However, for large DoA

estimation error, this relationship is reversed. We also examined the BER performance of

the system for different values of antenna beamwidth. While the BER of the system with

narrower beamwidth has a better performance in small DoA estimation error, it is observed

that in large DoA estimation error the system with wider beamwidth outperforms the system

with narrower bandwidth.

In the following part of the dissertation, we proposed a low-complexity MIMO system

employing reconfigurable antennas with electronically controllable radiation patterns over

the frequency-selective channels to mitigate multipath effects and therefore remove inter

symbol interference without using OFDM modulation technique. We studied the impact of

angular spread and antenna beamwidth on its performance and make comparison with that

of MIMO-OFDM system. We observed that as the angular spread decreases, the proposed

RE-MIMO outperforms the MIMO-OFDM system. We also showed that the performance of

the RE-MIMO system improves as the antenna beamwidth decreases.
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In the next part of this dissertation, we derived analytical expressions for computing

covariance matrix coefficients of the received signals impinging on a reconfigurable antenna

array. The derived expressions were validated using a numerical integration method. We

investigated the impact of radiation pattern characteristics and array configurations on the

covariance coefficients. We also studied the capacity of a reconfigurable MIMO system using

the derived analytical expressions. We showed how the presented results can be used to

quickly choose the optimal configuration for each reconfigurable antenna element in the array.

In the last part of this dissertation, we proposed a space-frequency coding technique for

MIMO-OFDM systems using antennas with reconfigurable radiation patterns. The proposed

code is constructed based on the principle of quasi-orthogonal coding scheme and consists

of a block of transmitted symbols expanding over space, frequency, and radiation state di-

mensions. We provided simulation results to demonstrate the performance of the proposed

coding scheme and make comparisons with that of the previous SF coding schemes. In these

experiments, it has been shown that the proposed code provides additional diversity and

coding gains compared to the previously designed SF codes in MIMO-OFDM systems.

The developed algorithms and schemes in this dissertation can be used in 5th genera-

tion (5G) of wireless communication systems. As an example, our proposed block coding

technique in Chapter 6 can be deployed in millimeter-wave wireless gigabit networks, where

directional beamforming with real-time radiation pattern configuration and OFDM modula-

tion are considered as key technologies to improve the BER performance of the system in an

open-loop mode. The analytical expressions derived in Chapter 5 can be adopted in 5G to

find the optimal radiation configuration at the receiver to enhance the system capacity. The

correlation coefficients information obtained using the derived expressions can also be shared

with the transmitter in a closed-loop system to find a superior transmission state, which can

be utilized for the proposed space-frequency-state block code in Chapter 6.

In summary, in this dissertation, we achieve our stated general objectives by evaluating the

performance of reconfigurable antenna systems and proposing new methods and algorithms

to improve the system performance.

7.2 Future Works

A number of possible extensions of the research presented in this dissertation are briefly

described below:

– In this dissertation, we derived the closed-form expressions for computing covariance

matrix coefficients of the received signals at a reconfigurable antenna array. Using these

expressions, we studied the capacity of a reconfigurable MIMO system for different ra-
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diation pattern states. The future research direction in this area can be defined as to

develop an optimal selection algorithm to choose the optimal configuration for each

reconfigurable antenna element in the array that maximizes the system capacity based

on the computed correlation coefficients using derived close-form expressions.

– Throughout this dissertation, we considered in the theoretical analysis a parabolic func-

tion model for the radiation pattern of a reconfigurable antenna. In this model, the

antenna only steers in azimuth plane. Another extension of this work is to include

vertical cuts as well which is needed for millimeter wave communications standard as

beam steering will be required for both vertical and horizontal cuts. In this respect, the

channel model also needs to be extended to include elevation power angular spectrum.

In cases where a two-dimensional Laplacian or a general double exponential functions

can model the incoming signal distribution, a similar methodology as the one presented

in this dissertation can then be followed to obtain series expressions for the covariance

matrix coefficients. However, the number of cases to be considered will increase as there

is an extra variable to consider.

– In this dissertation, we focused on designing three dimensional block codes. One ex-

tension of this work is to consider the generalization of three dimensional block codes

to n dimensional block codes where n is greater than three. Assume n = 4 which adds

another orthogonal resource to the three dimensional channel model introduced in this

dissertation. A simple method of designing four dimensional block codes based on the

three dimensional block codes presented in this dissertation, is to apply a repetition

coding over the forth orthogonal dimension.

– Throughout this dissertation, we have incorporated coherent detection schemes which

require the knowledge of channel information at the receiver. However, due to the

presence of multiple propagation at both the transmitter and the receiver, the channel

estimation problem is more complicated and costly compared to a non-reconfigurable

MIMO system. Novel channel estimation methods and techniques are required to make

efficient channel estimation for reconfigurable MIMO systems possible.
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APPENDIX A

Computing Channel Variance

In this appendix, we compute the variance of hm in (3.16). Let us rewrite (3.14) as

gr(x) =
2π

B3dB

10
−0.1η( x

B3dB
)2

(A.1)

where x ∼ N (0, σ2
DoA). Then,

gr(y) =
2π

B3dB

10−y
2

(A.2)

where y ∼ N (0, σ2) where σ2 =
0.1ησ2

DoA

B2
3dB

. Thus, the expected value of gr(y) can be written as

E[gr(y)] =

∫ ∞
−∞

gr(y)pY (y)dy

=
1√
2πσ

∫ ∞
−∞

2π

B3dB

10−y
2

e−y
2/2σ2

dy

=

√
2π

B3dBσ

∫ ∞
−∞

e−y
2[(1/loge)+(1/2σ2)]dy

=
2π

B3dBσ
√

2/loge+ 1/σ2

=
2π

B3dB

√
2cσ2 + 1

(A.3)
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APPENDIX B

Computing Channel Variance with Imperfect DoA Estimation

In this appendix, we compute the variance of h̃m in (3.23). Using (3.22), the antenna gain

under imperfect DoA estimation can be written as

g̃r(x) =
2π

B3dB

10
−0.1η(

x−θErr
B3dB

)2
(B.1)

where x ∼ N (0, σ2
DoA). Then,

g̃r(y) =
2π

B3dB

10−y
2

(B.2)

where y ∼ N (µ, σ2). Thus, the expected value of g̃r(y) can be written as

E[g̃r(y)] =

∫ ∞
−∞

g̃r(y)pY (y)dy

=
1√
2πσ
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−∞

2π
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dy
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√
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where A = (1/loge+ 1/2σ2), B = µ
σ2 and C = µ2

2σ2 . Then,
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where c = 1
loge

is a constant.
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APPENDIX C

Derivation of Equations (5.22)-(5.29)

In this appendix, we derive the analytical expressions of (5.22)-(5.29) for computing

Λl,k
i (Θm,Θn).

fogcmgcnpL(A,B) = β(
σl√

2
)e

√
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fogpmgcnpL(A,B) =
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}∣∣∣B
A

(C.9)

whereX =
(
√

2 + j(2k + 1)σl + αmψmσl)
2 − 2

√
2αmσlφ

l
0 − α2

mσ
2
l ψ

2
m

2αmσ2
l

andY =
αmσlφ− (

√
2 + j(2k + 1)σl + αmψmσl)√

2αmσ2
l

fogpmgcnpR(A,B) =

√
Gmβπ

αm

{
exp[X] erf[Y ]

}∣∣∣B
A

(C.10)

whereX =
(
√

2− αmψmσl)2 + 2
√

2αmσlφ
l
0 − α2

mσ
2
l ψ

2
m

2αmσ2
l

andY =
αmσlφ+ (

√
2− αmψmσl)√

2αmσ2
l

fcgpmgcnpR(A,B) =

√
Gmβπ

αm
<
{

exp[X] erf[Y ]
}∣∣∣B
A

(C.11)

whereX =
(
√

2− j2kσl − αmψmσl)2 + 2
√

2αmσlφ
l
0 − α2

mσ
2
l ψ

2
m

2αmσ2
l

andY =
αmσlφ+ (

√
2− j2kσl − αmψmσl)√

2αmσ2
l
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fsgpmgcnpR(A,B) =

√
Gmβπ

αm
=
{

exp[X] erf[Y ]
}∣∣∣B
A

(C.12)

whereX =
(
√

2− j(2k + 1)σl − αmψmσl)2 + 2
√

2αmσlφ
l
0 − α2

mσ
2
l ψ

2
m

2αmσ2
l

andY =
αmσlφ+ (

√
2− j(2k + 1)σl − αmψmσl)√

2αmσ2
l

fogpmgpnpL(A,B) =

√
GmGnπ

2(αm + αn)

{
exp[X] erf[Y ]

}∣∣∣B
A

(C.13)

whereX =
(
√

2 + (αmψm + αnψn)σl)
2 − 2

√
2(αm + αn)σlφ

l
0

2(αm + αn)σ2
l

− (α2
mψ

2
m + α2

nψ
2
n + αmαn(ψ2

m + ψ2
n))σ2

l

2(αm + αn)σ2
l

andY =
(αm + αn)σlφ− (

√
2 + (αmψm + αnψn)σl)√

2(αm + αn)σ2
l

fcgpmgpnpL(A,B) =

√
GmGnπ

2(αm + αn)
<
{

exp[X] erf[Y ]
}∣∣∣B
A

(C.14)

whereX =
(
√

2 + j2kσl + (αmψm + αnψn)σl)
2 − 2

√
2(αm + αn)σlφ

l
0

2(αm + αn)σ2
l

− (α2
mψ

2
m + α2

nψ
2
n + αmαn(ψ2

m + ψ2
n))σ2

l

2(αm + αn)σ2
l

andY =
(αm + αn)σlφ− (

√
2 + j2kσl + (αmψm + αnψn)σl)√
2(αm + αn)σ2

l

fsgpmgpnpL(A,B) =

√
GmGnπ

2(αm + αn)
=
{

exp[X] erf[Y ]
}∣∣∣B
A

(C.15)

whereX =
(
√

2 + j(2k + 1)σl + (αmψm + αnψn)σl)
2

2(αm + αn)σ2
l

− 2
√

2(αm + αn)σlφ
l
0 − (α2

mψ
2
m + α2

nψ
2
n + αmαn(ψ2

m + ψ2
n))σ2

l

2(αm + αn)σ2
l

andY =
(αm + αn)σlφ− (

√
2 + j(2k + 1)σl + (αmψm + αnψn)σl)√

2(αm + αn)σ2
l
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fogpmgpnpR(A,B) =

√
GmGnπ

2(αm + αn)

{
exp[X] erf[Y ]

}∣∣∣B
A

(C.16)

whereX =
(
√

2− (αmψm + αnψn)σl)
2

2(αm + αn)σ2
l

+
2
√

2(αm + αn)σlφ
l
0 − (α2

mψ
2
m + α2

nψ
2
n + αmαn(ψ2

m + ψ2
n))σ2

l

2(αm + αn)σ2
l

andY =
(αm + αn)σlφ+ (

√
2− (αmψm + αnψn)σl)√

2(αm + αn)σ2
l

fcgpmgpnpR(A,B) =

√
GmGnπ

2(αm + αn)
<
{

exp[X] erf[Y ]
}∣∣∣B
A

(C.17)

whereX =
(
√

2− j2kσl − (αmψm + αnψn)σl)
2

2(αm + αn)σ2
l

+
2
√

2(αm + αn)σlφ
l
0 − (α2

mψ
2
m + α2

nψ
2
n + αmαn(ψ2

m + ψ2
n))σ2

l

2(αm + αn)σ2
l

andY =
(αm + αn)σlφ+ (

√
2− j2kσl − (αmψm + αnψn)σl)√
2(αm + αn)σ2

l

fsgpmgpnpR(A,B) =

√
GmGnπ

2(αm + αn)
=
{

exp[X] erf[Y ]
}∣∣∣B
A

(C.18)

whereX =
(
√

2− j(2k + 1)σl − (αmψm + αnψn)σl)
2

2(αm + αn)σ2
l

+
2
√

2(αm + αn)σlφ
l
0 − (α2

mψ
2
m + α2

nψ
2
n + αmαn(ψ2

m + ψ2
n))σ2

l

2(αm + αn)σ2
l

andY =
(αm + αn)σlφ+ (

√
2− j(2k + 1)σl − (αmψm + αnψn)σl)√

2(αm + αn)σ2
l

fogcmgpnpL(A,B) =

√
Gnβπ

αn

{
exp[X] erf[Y ]

}∣∣∣B
A

(C.19)

whereX =
(
√

2 + αnψnσl)
2 − 2

√
2αnσlφ

l
0 − α2

nσ
2
l ψ

2
n

2αnσ2
l

andY =
αnσlφ− (

√
2 + αnψnσl)√

2αnσ2
l
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fcgcmgpnpL(A,B) =

√
Gnβπ

αn
<
{

exp[X] erf[Y ]
}∣∣∣B
A

(C.20)

whereX =
(
√

2 + j2kσl + αnψnσl)
2 − 2

√
2αnσlφ

l
0 − α2

nσ
2
l ψ

2
n

2αnσ2
l

andY =
αnσlφ− (

√
2 + j2kσl + αnψnσl)√

2αnσ2
l

fsgcmgpnpL(A,B) =

√
Gnβπ

αn
=
{

exp[X] erf[Y ]
}∣∣∣B
A

(C.21)

whereX =
(
√

2 + j(2k + 1)σl + αnψnσl)
2 − 2

√
2αnσlφ

l
0 − α2

nσ
2
l ψ

2
n

2αnσ2
l

andY =
αnσlφ− (

√
2 + j(2k + 1)σl + αnψnσl)√

2αnσ2
l

fogcmgpnpR(A,B) =

√
Gnβπ

αn

{
exp[X] erf[Y ]

}∣∣∣B
A

(C.22)

whereX =
(
√

2− αnψnσl)2 + 2
√

2αnσlφ
l
0 − α2

nσ
2
l ψ

2
n

2αnσ2
l

andY =
αnσlφ+ (

√
2− αnψnσl)√

2αnσ2
l

fcgcmgpnpR(A,B) =

√
Gnβπ

αn
<
{

exp[X] erf[Y ]
}∣∣∣B
A

(C.23)

whereX =
(
√

2− j2kσl − αnψnσl)2 + 2
√

2αnσlφ
l
0 − α2

nσ
2
l ψ

2
n

2αnσ2
l

andY =
αnσlφ+ (

√
2− j2kσl − αnψnσl)√

2αnσ2
l

fsgcmgpnpR(A,B) =

√
Gnβπ

αn
=
{

exp[X] erf[Y ]
}∣∣∣B
A

(C.24)

whereX =
(
√

2− j(2k + 1)σl − αnψnσl)2 + 2
√

2αnσlφ
l
0 − α2

nσ
2
l ψ

2
n

2αnσ2
l

andY =
αnσlφ+ (

√
2− j(2k + 1)σl − αnψnσl)√

2αnσ2
l
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APPENDIX D

Derivation of Equations (5.37)-(5.40)

In this appendix, we derive the analytical expressions of (5.37)-(5.40) for computing

Ξl(Θm).

gpmgpmpL(A,B) =

√
G2
mπ

2αm

{
exp[X] erf[Y ]

}∣∣∣B
A

(D.1)

whereX =
(
√

2 + 2αmψmσl)
2 − 4

√
2αmσlφ

l
0 − 4α2

mσ
2
l ψ

2
m

4αmσ2
l

andY =
2αmσlφ− (

√
2 + 2αmψmσl)√

4αmσ2
l

gpmgpmpR(A,B) =

√
G2
mπ

2αm

{
exp[X] erf[Y ]

}∣∣∣B
A

(D.2)

whereX =
(
√

2− 2αmψmσl)
2 + 4

√
2αmσlφ

l
0 − 4α2

mσ
2
l ψ

2
m

4αmσ2
l

andY =
2αmσlφ+ (

√
2− 2αmψmσl)√

4αmσ2
l

gcmgcmpL(A,B) = β(
σl√

2
)e

√
2(φ−φl0)
σl

∣∣∣B
A

(D.3)

gcmgcmpR(A,B) = −β(
σl√

2
)e
−
√
2(φ−φl0)
σl

∣∣∣B
A

(D.4)
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APPENDIX E

Derivation of (6.28)

In this appendix, we compute the covariance matrix of the received signal given in 6.28.

Since Y = H dvec(C− C̃), the covariance matrix can be computed as:

CY = E
{
H dvec(C− C̃) dvecH(C− C̃)HH

}
= E



y1

...

yP

[ yH1 · · · yHP
] (E.1)

where

yp = col
{
y1
p,y

2
p, · · · ,yMr

p

}
yjp = Hj

p vec(Cp − C̃p). (E.2)

In the above equation, we have that

E
{
ymi (ynj )H

}
= E

{
Hm
i vec(Cp − C̃p) vecH(Cp − C̃p)(H

n
j )H
}

= E




cTp (0)
(
Hm
i (0)

)T
...

cTp (Nc − 1)
(
Hm
i (Nc − 1)

)T
[(Hn

j (0)
)∗

c∗p(0),

· · · ,
(
Hn
j (Nc − 1)

)∗
c∗p(Nc − 1)

]}
. (E.3)

In (E.3), E
{(

Hm
i (u)

)T (
Hn
j (s)

)∗}
can be computed as follows:

E
{(

Hm
i (u)

)T (
Hn
j (s)

)∗}
=

L−1∑
l=0

e−j2π(u−s)∆f(τl,i−τl,j)E
{(

hmi (l)
)T (

hnj (l)
)∗}

. (E.4)
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By replacing (E.4) in (E.3), we get (E.5) as

E
{
ymi (ynj )H

}
=

L−1∑
l=0

E




cTp (0)
(
hmi (l)

)T
...

ω(Nc−1)τl,icTp (Nc − 1)
(
hmi (l)

)T


[(
hnj (l)

)∗
c∗p(0), · · · ,

(
hnj (l)

)∗
c∗p(Nc − 1)ω−(Nc−1)τl,i

]}
=

L−1∑
l=0

Ωτl,i(Ci − C̃i)
T E
{(

hmi (l)
)T (

hnj (l)
)∗}

(Cj − C̃j)
∗(Ωτl,j)∗ (E.5)

where Ω is defined in (6.29).
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