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RÉSUMÉ 

L’interaction fluide-structure est observée dans la majorité des applications industrielles. 

L’interaction peut conduire à la génération de forces indésirables affectant les structures et causant 

de la fatigue ou des dommages. Une approche pour comprendre la dynamique fondamentale et la 

stabilité des sillages des cylindres consiste à réaliser des simulations utilisant les oscillations 

forcées. Deux aspects d’un tel écoulement sont considérés. Le premier concerne la dépendance des 

symétries de configuration de détachement tourbillonnaire avec l’amplitude des oscillations 

forcées, de la fréquence d’excitation et de la direction des oscillations. Les oscillations forcées, 

dépendantes de l’amplitude et de la fréquence des oscillations, entrainent la formation de 

différentes configurations de sillage présentant des symétries spécifiques. Les simulations 

numériques et les analyses de stabilité sont utilisées pour déterminer les modes instables du sillage 

et leurs bifurcations. L’oscillation forcée dans la direction d’écoulement d’un cylindre circulaire 

est étudié pour prédire les modes du sillage sur une plage déterminée d’amplitude et de fréquence. 

Les calculs numériques en deux dimensions des équations de Navier-Stokes sont réalisés en 

utilisant la méthode des conditions aux frontières périodiques forcées avec une plage de fréquence 

de forçage / [1 2]e sf f   ; couvrant les régimes d’excitations harmoniques et super-harmoniques 

avec des ratios d’amplitude dans la plage / [0 0.5]A D  . Les modes d’accrochage symétriques et 

asymétriques sont observés pour trois différents ratios d’amplitude et de fréquence d’oscillation. 

Le mode asymétrique 2S lorsque / 1e sf f   pour A/D=[0.35-0.5], le mode P+S à / 1.5e sf f   pour 

A/D=[0.175,0.5], et le mode S à / 2e sf f   pour A/D=[0.175,0.5] sont confirmés. À cause de la 

non-linéarité des equations de Navier-Stokes et de la complexité de la dimension infinie de la 

dynamique des fluides, les modes primaires sont calculés à l’aide de l’outil de décomposition 

orthogonale aux valeurs propres (POD). Une procédure de Galerkin est utilisée pour projeter les 

équations de Navier-Stokes dans un espace de dimension réduite incluant les deux premiers modes 

POD. Cette méthode réduit la taille du problème d’un espace de dimension infinie à un nombre fini 

de modes (degrés de liberté) représentant la dynamique du sillage. Les modes dominants du 

détachement tourbillonnaire sont invariants en fonction des groupes de symétrie. La théorie de la 

bifurcation équivariante est utilisée pour développer le modèle d’ordre inférieur en utilisant les 

propriétés de symétrie des modes principaux. Ainsi, la bifurcation équivariante et les théories des 

formes normales sont combinées avec des calculs numériques des équations de Navier-Stokes pour 



vi 

 

 

décrire précisément les propriétés spacio-temporelles des modes de sillage d’écoulement et de leurs 

bifurcations. Une analyse linéaire du modèle analytique de bas ordre aux environs du point de 

bifurcation est réalisée pour prédire les séquences de bifurcation observées sur les simulations. La 

bifurcation en double-tore pour l’excitation harmonique, le mode de compétition pour le cas super 

non-harmonique pour / 1.5e sf f   qui entraine le bris de la symétrie de réflexion et dans le cas 

super-harmonique pour   / 2e sf f   changeant la symétrie de réflexion de la function propre 

dominante sont tous fidèlement prédits par le modèle d’ordre réduit proposé. Les résultats présentés 

dans cette thèse se concentrent sur la compréhension de la physique des modes de détachement 

tourbillonnaire en fonction des ratios d’amplitude et de fréquence des oscillations forcées.  

Le second aspect considéré dans cette thèse est la stabilité des ondes en deux dimensions pour des 

perturbations tridimensionnelles avec Re=200. Les simulations tridimensionnelles sont réalisées 

dans le cas d’oscillations harmoniques forcées avec des amplitudes d’oscillation sélectionnées et 

les résultats sont comparés à ceux obtenus avec les simulations en deux dimensions. Les résultats 

correspondent bien avec le modèle 2D qui montre que l’hypothèse de l’onde 2D pour l’oscillation 

forcée en ligne est correcte. Le mouvement du cylindre empêche les instabilités tridimensionnelles 

de l’écoulement, ce qui le maintien en deux dimensions. Les deux simulations en 2D et 3D sont 

aussi réalisées pour évaluer l’influence du mouvement du cylindre sur la structure de l’onde et pour 

proposer un mécanisme physique de la suppression du détachement du tourbillon de Karman. Les 

modes asymétriques 2S et P+S, et le mode symétrique S ainsi que les modes quasi-statiques sont 

observés au niveau des résultats numériques. Il a été montré que le coefficient de portance diminue 

lorsque le mode symétrique se développe dans l’onde. La région d’accrochage pour différents cas 

est également déterminée. Il a été montré que la région d’accrochage s’élargit en augmentant le 

ratio de fréquence forcée. Basé sur le modèle à bas ordre et sur les résultats numériques, le 

mécanisme physique du détachement tourbillonnaire et des effets des oscillations sont expliqués. 
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ABSTRACT 

Fluid-structure interaction is encountered in most of the engineering and industrial flow 

applications. The interaction can lead to generation of undesirable forces acting on structures and 

causing fatigue or damage. One approach to understanding the fundamental wake flow dynamics 

and stability is to conduct simulations using forced oscillation of a cylinder. Two aspects of such a 

flow are considered. The first is the dependence of vortex shedding pattern symmetries on the 

forced oscillation amplitude, forcing frequency ratios and the direction of the oscillation relative to 

flow direction. The forced oscillation, depending on the amplitude and frequency of the oscillation, 

causes formation of various patterns which have specific symmetries. Numerical simulations and 

stability analysis are employed to determine the unstable wake flow modes and their bifurcations. 

The forced inline oscillation of a circular cylinder is studied to predict the wake modes over a 

prescribed range of amplitudes and frequencies. The two-dimensional numerical computations of 

the Navier-Stokes equations are performed using forced periodic boundary condition method in 

the range of forcing-to-shedding frequency ratios / [1 2]e sf f   ; covering the harmonic and 

superharmonic excitation regimes with amplitude ratio in the range / [0 0.5]A D  . Symmetric 

and asymmetric lock-on modes are observed for three different oscillation amplitudes and 

frequency ratios. The asymmetric 2S mode when / 1e sf f   for A/D=[0.35-0.5], P+S mode at 

/ 1.5e sf f   for A/D=[0.175,0.5] and S mode at / 2e sf f   for A/D=[0.175,0.5] are confirmed. 

Due to the nonlinearity of the Navier-Stokes equations and the complexity of the infinite 

dimensional flow dynamics, the primary modes are calculated by the proper orthogonal 

decomposition (POD) tool. A Galerkin procedure is the used to project the Navier-Stokes equations 

onto a low-dimensional space spanned by the first two POD modes. This method reduces the 

problem size from an infinite-dimensional space to a finite number of modes (degree-of-freedom) 

representing the wake dynamics. The vortex shedding dominant modes are invariant under their 

symmetry groups. The equivariant bifurcation theory is employed to develop the low order model 

using the symmetry properties of the primary modes. Thus, equivariant bifurcation and normal 

form theories are combined with numerical computations of the Navier-Stokes equations to 

precisely describe the spatio-temporal properties of the wake flow modes and their bifurcations. A 

linear analysis of the analytical low order model near the bifurcation point is performed to predict 

the bifurcation sequences observed in simulations. The torus-doubling bifurcation for harmonic 
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excitation, the mode competition for super non-harmonic case at / 1.5e sf f   which leads to the 

reflection symmetry breaking and for superharmonic case at   / 2e sf f   switching of the dominant 

eigenfunction reflection symmetry are all well predicted with the proposed reduced order model. 

The results presented in this Thesis are focused on the understanding the physics of the vortex 

shedding patterns (modes) with respect to the forced oscillation amplitude and frequency ratios.  

The second aspect considered in the Thesis is the stability of the two-dimensional wakes to three-

dimensional perturbations at Re=200. Three-dimensional simulations are performed for harmonic 

forced oscillation case at selected oscillation amplitudes and the results are compared to those 

obtained from two-dimensional simulations. The results are in good agreement with the 2D model 

which shows that the 2D wake assumption for the inline forced oscillation is correct. The cylinder 

motion inhibits the three-dimensional instabilities of the flow causing it to remain two dimensional. 

Both two- and three-dimensional simulations are also performed to assess the influence of cylinder 

motion on the wake structure and to propose a physical mechanism for suppression of the Karman 

vortex shedding. The asymmetric 2S, P+S and symmetric S mode as well as quasi-steady patterns 

are observed in the numerical results. It is shown that the lift coefficient decreases as the symmetric 

mode develops in the wake. The lock-on region for various cases is also determined. It is shown 

that the lock-on region becomes larger by increasing the forcing frequency ratio. Based on the low 

order model and numerical results the physical mechanism of the vortex shedding and oscillation 

effects are explained. 
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CONDENSÉ EN FRANÇAIS 

Introduction 

L’écoulement transverse autour d’un cylindre circulaire a été étudié extensivement à cause de son 

importance pratique en ingénierie et sa signification fondamentale en mécanique des fluides. Le 

détachement tourbillonnaire induit des forces fluctuantes, qui causent des vibrations de la structure 

lorsque synchronisé avec la fréquence naturelle de la structure. Ce phénomène est désigné comme 

des vibrations induites par vortex (VIV) et peut conduire à de la fatigue ou des dommages 

structuraux. Les VIV sont observées dans plusieurs applications industrielles comme les gazoducs 

sous-marins, les colonnes montantes de forage et les câbles de ponts suspendus exposés aux 

courants marins ou aux vents. D’un point de vue scientifique, des phénomènes physiques différents 

comme la séparation, le détachement tourbillonnaire, la formation de configuration de sillage, la 

résonance et le chaos sont observés dans l’écoulement transverse autour d’un cylindre circulaire. 

La fréquence de vibration dans la direction de l’écoulement est deux fois celle de la vibration dans 

la direction perpendiculaire à l’écoulement. Le nombre de cycles de contraintes dus à l’oscillation 

en ligne est deux fois le nombre des oscillations transverses. De plus, les vibrations en ligne sont 

initiées à de petites vitesses et ont lieu plus souvent. Ainsi, les dommages de fatigue due aux 

vibrations en ligne et ses effets sur la fatigue dus aux vibrations transverses, sont les motivations 

pour mieux comprendre le mécanisme physique du phénomène purement en ligne de la VIV. Pour 

comprendre la dynamique de l’écoulement et sa stabilité, des simulations utilisant l’oscillation 

forcée d’un cylindre ont été utilisées afin d’étudier la réponse du sillage du mouvement induit. 

L’interaction entre le détachement tourbillonnaire et le mouvement de la structure peut entrainer 

des vibrations auto-induites du cylindre et changer la configuration du sillage. La configuration du 

sillage peut être utilisée pour identifier les instabilités globales qui se développent dans le sillage 

derrière le cylindre circulaire et suivre la dynamique de son comportement de simple à chaotique.  

Afin de mieux comprendre la dynamique du sillage, Williamson et Roshko, (1988) ont excité le 

sillage par des oscillations périodiques externes forcées. Cette approche est la clé pour comprendre 

l’interaction sillage-structure pendant les vibrations induites par vortex (VIV). Expérimentalement, 

l’oscillation forcée transverse est appliquée au cylindre à différentes amplitude et fréquence. 

Williamson et Roshko ont montré que les configurations de sillage sont dépendantes de la 

fréquence de forgeage, de l’amplitude (A/D), de la direction de l’oscillation et du nombre de 
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Reynolds. Ainsi, en changeant chacun des paramètres, différentes configurations ou modes définis 

par leurs symétries peuvent être observés; les modes sont nommés 2P, 2S, P+S et 2P+2S basés sur 

le nombre et la combinaison de tourbillons sur les côtés du cylindre par cycle forcé. Il y a eu des 

recherches expérimentales incluant des oscillations forcées dans le sens axial du sillage de 

l’écoulement avec des combinaisons différentes d’amplitude d’oscillations sans dimension A D  

et e sf f  avec ef  la fréquence d’excitation et sf  la fréquence naturelle de détachement. Griffin et 

Ramberg, (1976) ont été parmi les premiers à étudier le sillage de l’écoulement derrière un cylindre 

oscillant en ligne dans un écoulement non perturbé. Ils ont réalisé des simulations des oscillations 

forcées en ligne à travers une plage de ratios de fréquence [1.2,2.5]e sf f   pour Re=190. Ils ont 

montré que, durant les oscillations forcées, le détachement tourbillonnaire est affecté par le 

mouvement du cylindre ; d’où les changements de détachement de tourbillon pour osciller à une 

fréquence structurale, un phénomène connu comme un accrochage. À la fois, le accrochage 

primaire lorsque e sf f  et subharmonique avec 2s ef f  ont été observés. Deux modes 

asymétriques de détachement tourbillonnaire 2S et 2P ont été observés à basses amplitudes pour 

0.06 0.22A  . Le mode asymétrique 2S correspond à l’allée de tourbillon de Von Karman, tandis 

que dans le mode 2P, deux paires de tourbillons sont échappés par cycle. Ces structures 

d’écoulement correspondent aux modes A-I et A-III tels que catégorisés par Ongoren et Rockwell, 

(1988) qui ont étudié les configurations du sillage d’un cylindre en oscillation forcée avec un angle 

par rapport à la direction de l’écoulement et des amplitudes d’oscillation sans dimension de 0.13 

et 0.3 ainsi que des ratios de fréquences allant de 0.5 à 4.0. Deux modes de base, symétrique et 

antisymétrique, sont identifiés et classés en cinq sous-groupes. Le mode S correspond au 

détachement de tourbillon symétrique et les modes A-I, A-II, A-III et A-IV à la formation de 

tourbillons antisymétriques. Ongoren et Rockwell ont expliqué expérimentalement le changement 

entre les configurations de sillage et ont montré que les modes de détachement tourbillonnaire 

peuvent être symétriques, antisymétriques ou chaotiques en fonction de la fréquence de forçage et 

de l’amplitude d’oscillation.  

Les différentes configurations de sillage de tourbillon sont classées en fonction de leurs propriétés 

de symétrie. Les propriétés de symétrie des configurations de sillage peuvent être utilisées pour 

une étude analytique de détachement de tourbillon issue d’un mode d’ordre inférieur. Le modèle 

de Stuart-Landau a été initialement appliqué pour modéliser la bifurcation de Hopf conduisant aux 
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résultats du détachement asymétrique de Karman par Provansal, (1987a). Il a trouvé que le sillage 

périodique de Karman est le produit saturé temporel du sillage global et a suggéré que la théorie 

de la stabilité linéaire peut être appliquée pour trouver la fréquence de saturation au voisinage de 

la fréquence de seuil. Plus tard, Barkley et al., (2000) ont suggéré un scénario de bifurcation pour 

décrire le développement et l’interaction entre les deux modes tridimensionnels. Les équations en 

amplitude tronquées discrètes de Landau incorporent les termes de couplage des modes 

d’instabilité A et B, et satisfont les propriétés de symétries spatio-temporelles de chaque mode. 

Afin de modéliser la variation des fréquences des modes de transition, les équations couplées de 

Landau ont  ensuite été étendues dans le plan complexe par Sheard et al., (2003). Le modèle 

analytique pour étudier l’oscillation forcée en prenant en compte les propriétés de symétrie a été 

proposé pour la première fois par Mureithi, (2003; 2005). Il a utilisé la théorie de la symétrie 

équivariante pour étudier le sillage forcé de Von Karman. L’interaction non-linéaire du mode de 

Von Karman et du mode symétrique a été modélisée par la théorie de la bifurcation symétrique 

équivariante sous forme d’une paire d’équations discrètes en amplitude de bas ordre. Les 

coefficients des équations d’amplitude sont déterminés par analyse en décomposition orthogonale 

aux valeurs propres (POD) des résultats du CFD. Le mode forcé est considéré comme connu et ses 

effets sur le mode de détachement du tourbillon a été investigué.  

Plusieurs recherches ont également été réalisées pour étudier l’effet de l’oscillation sur la transition 

du sillage en 3D. Williamson, (1996) a montré qu’au nombre de Reynolds de transition Re 200 , 

les effets de l’écoulement tridimensionnel apparaissent ce qui est montré par une discontinuité en 

hystérésis dans les valeurs du nombre de Strouhal. Il a été démontré que le caractère 

tridimensionnel du sillage du cylindre peut être retardé en forçant le cylindre à osciller à des 

amplitudes modérées. Koopman, (1967) et Griffin et Ramberg, (1976) ont montré que le sillage de 

l’écoulement est bidimensionnel à des amplitudes d’oscillation supérieures à 0.1D pour un nombre 

de Reynolds jusqu’à 300-400. Berger, (1967) a montré via une étude expérimentale qu’en 

appliquant une oscillation transverse contrôlée avec des fréquences synchronisées avec les 

fluctuations du sillage, un régime laminaire de détachement de tourbillon peut être étendu jusqu’à 

Re=300-350. Plus tard, Gioria et Meneghini, (2010) ont montré que le seuil d’amplitude pour 

lequel la tridimensionnalité est supprimée se situe dans des plages de 0.03 0.65D A D   pour 

Re=200.  



xii 

 

 

L’objectif général de ce travail est d’utiliser la bifurcation équivariante, la forme normale et les 

théories de stabilité avec des simulations numériques pour étudier la dynamique des sillages. Des 

simulations par ordinateur du sillage d’un cylindre d’écoulement soumis à des oscillations en ligne 

sont utilisées pour obtenir un aperçu physique du mécanisme responsable des diverses 

configurations de sillage et des bifurcations obtenus par combinaison de fréquence et d’amplitude 

de vibration. Les objectifs sont réalisés en trois phases. La première phase est l’excitation 

harmonique du cylindre à Re=200 et la réalisation d’analyse de stabilité pour trouver les 

bifurcations qui ont lieu dans le sillage associée à cette excitation. Le modèle d’ordre réduit de la 

vitesse-v calculée par POD est utilisé pour développer les équations modales d’amplitude à l’aide 

de la théorie de la bifurcation équivariante pour prédire la séquence de bifurcation correspondant à 

l’oscillation en ligne. Dans une seconde phase, les recherches ont été réalisées pour observer les 

configurations de sillage et construire la carte de la dynamique du coefficient de portance pour des 

combinaisons d’amplitude d’oscillation et des ratios de fréquences super non-harmonique et 

harmonique à Re=200. Aussi, le modèle analytique proposé dans la première phase prédit 

l’ensemble de bifurcations. Ceci aide à comprendre la façon dont les oscillations en ligne 

influencent la dynamique des sillages.  

Dans une troisième phase, afin de s’assurer que les résultats des simulations 2D sont fiables, des 

simulations 3D ont été réalisées pour un écoulement à Re=200 et un modèle de décomposition 

orthogonale aux valeurs propres a été développé pour trouver les modes primaires et leurs 

transitions causées par les oscillations forcées.  

Méthodologie 

Tel que mentionné précédemment, une approche utilisée dans ces travaux pour comprendre 

l’interaction fluide-structure consiste à contrôler le mouvement du cylindre, permettant d’examiner 

séparément la réponse du sillage.  

On réalise une simulation 2D du sillage de l’écoulement à Re=200 avec une condition d’entrée 

d’écoulement périodique pour calculer les champs de vitesse et de pression. L’approximation du 

cylindre infini et des conditions aux limites périodiques sont les hypothèses choisies pour résoudre 

les calculs non-linéaires des équations de Navier-Stokes pour le modèle 2D instationnaire. À cause 

du caractère non-linéaire et complexe des équations de Navier-Stokes, l’outil de POD est utilisé 

pour déterminer les degrés de liberté (ou modes) minimum requis pour représenter le champ de 
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l’écoulement. Les modes dominants calculés par la projection POD-Galerkin du champ de vitesse 

transverse sont utilisés pour obtenir un système d’équations différentielles ordinaires (ODE) sur le 

temps. Les deux premiers modes primaires qui existent pour diverses amplitudes d’oscillation sont 

employés pour modéliser la dynamique du sillage. Chacun de ces modes a ses propres propriétés 

de symétrie. Les symétries des fonctions propres spatiales correspondant aux modes dominants de 

vitesse-v sont appliquées aux équations maitresses du système pour développer les équations 

d’amplitude modale avec la théorie de la bifurcation. Les coefficients des équations d’amplitude 

sont calculés avec la méthode des moindres carrés utilisant les chronos des deux modes primaires, 

qui sont transformés en signaux complexes par la transformation de Hilbert. De plus, l’information 

sur la fréquence de saturation est incluse via les coefficients complexes. Les termes linéaires des 

équations d’amplitude sont affectés majoritairement par la variation de l’oscillation dans la 

direction de l’écoulement et ainsi considérés comme les paramètres de bifurcation. En changeant 

les paramètres de bifurcation, les équations en amplitude de bas ordre peuvent avoir différentes 

solutions avec moins de symétrie que la symétrie des équations originales. Ce type de bifurcation 

avec des symétries est désigné comme un mécanisme brisant la symétrie. Plus précisément, la 

théorie de la bifurcation équivariante est appliquée pour classer les solutions en fonction de leurs 

symétries. Finalement, l’analyse de la stabilité linéaire du modèle proposé est réalisée à l’aide d’une 

carte de Poincaré et les ensembles de bifurcations causés par les variations des paramètres de 

bifurcation sont également étudiés dans des graphiques d’Argand des multiplicateurs de Floquet. 

La séquence de bifurcations observée en CFD et  expérimentalement prédit par une analyse de 

bifurcation d’un modèle basé sur la symétrie. 

Enfin, la structure du sillage et le phénomène d’accrochage sont numériquement étudiés dans la 

région au voisinage du sillage pour Re=200 avec des amplitudes d’oscillation étendues jusqu’à 

0.5D et trois ratios de fréquences 1,1.5e sf f   et 2. Le sillage de l’écoulement avec la vitesse, les 

contours du tourbillon et les transitions des coefficients de portance pour chaque combinaison 

d’amplitude d’oscillation et de ratios de fréquences forcées sont étudiés et la région d’accrochage 

est déterminée. Le scénario de bifurcation est appliqué au  modèle analytique développé pour 

étudier la compétition des modes et déterminer les types de bifurcation et sélectionner le nombre 

d’onde des branches de solution. Les résultats sont comparés avec ceux obtenus numériquement.  
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Le sillage de l’écoulement tridimensionnel autour d’un cylindre circulaire forcé à osciller dans la 

direction d’un écoulement non perturbé est également étudié pour vérifier les résultats 2D. Les 

simulations numériques sont réalisées pour trois amplitudes d’oscillation sélectionnées A/D=0.0, 

0.175 et 0.5 avec une fréquence égale à la fréquence naturelle de détachement pour Re=200. Le 

modèle réduit de la vélocité transverse et le spectre de puissance du coefficient de portance sont 

employés pour analyser la dynamique de l’écoulement et des bifurcations qui ont lieu en fonction 

de l’oscillation en ligne du cylindre. Les résultats sont comparés avec les résultats 2D numériques 

précédemment obtenus afin de vérifier l’hypothèse du caractère bidimensionnel du sillage de 

l’écoulement à Re=200 en considérant l’oscillation en ligne. 

Résultats  

L’approche de travail a combiné la bifurcation équivariante et les théories de forme normale avec 

des simulations numériques pour découvrir les facteurs clés sous-jacents à la formation de 

différentes configurations de sillage. Divers modes de détachement tourbillonnaire sont formés en 

fonction de la combinaison d’une amplitude d’oscillation et d’une fréquence de forçage dans la 

direction de l’excitation. Le groupe de symétrie de l’écoulement de base détermine les 

caractéristiques de ces configurations bifurquées. Les principales contributions de cette thèse sont 

les suivantes:  

1. Développement d’équations d’amplitude modale, en prenant en compte les symétries de forme 

normale à l’aide de la théorie de la bifurcation équivariante, capable de prédire la dynamique en 

oscillation en ligne forcée des sillages d’un cylindre.  

2. Bifurcation et analyse de stabilité des équations couplées d’amplitude pour prédire les séquences 

de bifurcation observées dans les résultats CFD. 

Le premier article (chapitre 2) inclut les calculs numériques en 2D du sillage d’un cylindre forcé à 

des oscillations dans la direction de l’écoulement avec des fréquences harmoniques forcées et des 

amplitudes d’oscillation sélectionnées. Le modèle de bas ordre a aussi été développé pour réduire 

les degrés de liberté du problème considéré. La décomposition POD-Galerkin a été utilisée pour 

développer des modèles d’ordre réduit pour le champ de vitesse transverse dans le sillage d’un 

cylindre circulaire. Les fonctions propres de la vitesse v ont été ensuite calculées par l’approche 

POD en utilisant des photos du champ d’écoulement de la simulation CFD. Les modes dominants 

obtenus ainsi que leurs structures spatiales ont été utilisés pour modéliser les caractéristiques du 
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sillage sur une vaste plage d’amplitudes d’oscillation et de ratios de fréquences forcées. Deux 

modes primaires sont considérés invariants sous l’action d’un groupe de symétrie. Les symétries 

des modes primaires du sillage ont été appliquées pour développer un modèle analytique en 

utilisant la théorie de la bifurcation équivariante. La dynamique du sillage a été modélisée par un 

ensemble d’équations différentielles ordinaires qui ont apporté un regard analytique sur le 

mécanisme physique. Basé sur les résultats CFD, en augmentant l’amplitude d’oscillation, les 

modes  dominants atteignent un état quasi-périodique dans la région de transition et en augmentant 

plus tard l’amplitude forcée, deux ondes progressives subissent une bifurcation en double tore. Le 

mouvement du cylindre redynamise le mode asymétrique pour interagir avec le premier mode 

conduisant à la bifurcation en double-tore. Cependant, le mode S périodique doublement bifurqué 

a une plus grande amplitude que celle du mode asymétrique ce qui confirme le schéma de vitesse 

double-périodique symétrique transverse observé en simulation. La troisième harmonique du 

coefficient de portance existe dans la réponse du sillage d’écoulement à A/D=0.5 à cause du 

mouvement dans la direction de l’écoulement du cylindre. 

L’interaction non-linéaire entre les modes symétriques et asymétriques était qualitativement 

prédite par le modèle analytique. Les paramètres linéaires de bifurcation ont été changés par le 

mouvement du cylindre conduisant à briser la symétrie de la bifurcation. La compétition modale 

entre ces deux modes a été étudiée lorsqu’ils bifurquent simultanément. Dans l’analyse de la 

stabilité linéaire, la transition des modes primaires a été étudiée par le mouvement des 

multiplicateurs de Floquet dans le diagramme d’Argand. La paire complexe-conjugué des 

multiplicateurs de Floquet croise l’axe réel des valeurs négatives et coupe le cycle unitaire à -1 

confirmant la bifurcation en double-tore. De plus, l’analyse de stabilité des équations couplées en 

amplitude a été réalisée dans une carte de Poincaré où deux ondes stables progressives subissent la 

bifurcation en double-tore. Les modes bifurqués ont des symétries spatiales similaires mais des 

nombres d’onde différents. Ce modèle peut prédire les séquences de bifurcation observées dans les 

résultats CFD. Par conséquent, les symétries et longueurs d’onde de chaque mode ont été 

caractérisés et le mécanisme physique expliquant les instabilités expliqué.  

3. Identification des régions d’accrochage et de diverses configurations de détachement 

tourbillonnaire en stimulant l’oscillation forcée en ligne d’un cylindre circulaire dans la plage de 
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fréquences / [1 2]e sf f    constituant les régions d’excitation harmonique et superharmonique 

avec des ratios d’amplitude appartenant à la plage / [0 0.5]A D  . 

4.  Analyse de bifurcation des équations d’amplitude pour prédire la séquence de bifurcations qui 

se produit en fonction de la combinaison d’amplitude d’oscillation et des fréquences de forçage.  

Avec une méthodologie identique dans le second article présenté au chapitre 3, les simulations des 

excitations forcées dans la direction de l’écoulement super non-harmoniques et super-harmoniques 

ont été réalisées. Les diverses configurations du détachement tourbillonnaire ont été observés avec 

différentes fréquences forcées et des amplitudes d’oscillation au sein de la région d’identification 

d’accrochage en utilisant les plans de phase et le spectre de puissance du coefficient de portance. 

Dans le cas de l’excitation harmonique, l’écoulement de base subit une bifurcation de Hopf à 

A/D=0.175 et puisque la seconde fréquence est inférieure à la fréquence principale, le phénomène 

de domination a été observé. À A/D=0.5 la transition d’un état quasi-périodique à un état 

d’accrochage se produit lorsque le mode dominant conserve la symétrie spatial de l’écoulement de 

base à la moitié de la fréquence de détachement. Pour des ratios de fréquences de forces 

irrationnelles / 1.5e sf f  , la région d’accrochage devient plus large que celle du cas de l’excitation 

harmonique et couvre A/D=0.175. La compétition entre les modes primaires symétrique and 

antisymétrique conduit à casser la symétrie de réflexion et le mode P+S bifurque du mode 

d’interaction. Dans le cas d’une excitation super-harmonique avec / 2e sf f  , le mode symétrique 

S remplace le mode de base asymétrique 2S alors que le mode de vitesse-v change du mode 

symétrique au mode asymétrique. L’accrochage apparait également avec une plage d’amplitude 

d’oscillation de  [0.175-0.5]. L’analyse de bifurcation du modèle analytique prédit la symétrie des 

modes primaires, la longueur d’onde du mode dominant et les séquences de bifurcation ainsi que 

des résultats numériques CFD. Cependant, la fréquence du second mode n’a pas de correspondance 

dans le cas super-harmonique. Dans ce cas, plus de deux paramètres de bifurcation sont impliqués 

ce qui montre la complexité de l’interaction des modes. Aussi, le changement de configuration du 

détachement tourbillonnaire affecte significativement la force agissant sur le cylindre alors que 

l’amplitude du coefficient de portance est diminuée dans la configuration symétrique. 

5. Étude de la stabilité des sillages bidimensionnels par rapport à des perturbations 

tridimensionnelles à Re=200 à l’aide d’une analyse POD tridimensionnelle du sillage d’un cylindre 

circulaire forcé dans la direction de l’écoulement. 
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Pour finir, l’instabilité secondaire du sillage de l’écoulement a été considérée dans le troisième 

article présenté au chapitre 4. La simulation tridimensionnelle du sillage de l’écoulement à Re=200 

utilisant le modèle SST a été réalisée pour étudier l’effet du mouvement du cylindre sur le 

détachement du tourbillon. Les simulations tridimensionnelles montrent que la dynamique du 

sillage de l’écoulement demeure presque bidimensionnelle à Re=200.  Il a été montré que la 

vibration du cylindre améliore la corrélation dans la direction de l’envergure des tourbillons et 

supprime les instabilités tridimensionnelles. Ceci suggère que le mouvement du cylindre a un effet 

stabilisant sur l’écoulement et que les simulations bidimensionnelles apportent de bons résultats et 

que le sillage de l’écoulement peut être considérée comme bidimensionnel.  

Recommandations pour les travaux futurs 

La fréquence dominante de la vitesse transverse est une bonne représentation de la fréquence de 

détachement tourbillonnaire à l’exception du cas super-harmonique pour A/D=0.5. Puisqu’il y a 

un couplage non-linéaire entre écoulement en ligne et vitesse transverse, peut-être que le 

composant de tourbillon est plus représentatif pour l’identification de la fréquence de détachement 

puisqu’il contient à la fois les effets des vitesses u et v. Bien que les excitations forcées harmonique 

et super-harmonique du sillage d’écoulement sont étudiées, il reste à étudier un certain nombre de 

problèmes. Le premier est celui de la région d’excitation subharmonique dans laquelle d’après des 

études précédentes, il semble que le détachement tourbillonnaire dévierait des axes horizontaux et 

donc l’écoulement deviendrait doublement périodique. Ainsi, si le sillage de l’écoulement est 

périodique en deux dimensions alors le double-treillis devrait être utilisé pour modéliser la 

dynamique du sillage de l’écoulement. Une autre limite de cette recherche qui demeure une 

recommandation pour des travaux futurs  est la caractérisation des instabilités secondaires dans le 

sillage de l’écoulement à des nombres de Reynolds plus élevés. À des nombres de Reynolds plus 

élevés, l’effet tridimensionnel se manifeste et les effets dans la direction d’envergure peuvent 

changer la structure du sillage de l’écoulement, donc l’utilisation d’un modèle temporel n’est pas 

suffisante à cause de dislocations spatiales et un modèle de Ginzburg-Landau devrait être employé. 

Aussi, des expériences peuvent être réalisées sur une plage élargie de ratios de fréquences et 

d’amplitudes d’oscillation dans la direction en ligne qui conduit à une cartographie des modes de 

sillage pour réaliser le graphique de Griffin.  
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INTRODUCTION 

The flow past a circular cylinder has been studied extensively due to its practical importance in 

engineering and fundamental significance in fluid mechanics. The vortex shedding induces forces 

that may result in transverse and inline oscillations. This phenomenon is known as vortex induced 

vibration (VIV). VIV occurs in a large variety of engineering fields such as civil and mechanical 

engineering where cylindrical structures are commonly used. Examples are undersea pipelines, 

drilling risers, transmission lines and suspension bridges cables exposed to ocean or wind currents. 

If the vortex shedding frequency is close to the natural frequency of the structure, the resulting 

resonance can generate large amplitude oscillations causing structural failure. The stresses acting 

on the pipes due to the vibrations lead to accumulation of fatigue damage. On the scientific side, 

different physical phenomena, such as flow separation, vortex shedding, pattern formation, 

resonance and chaos are observed in the flow around a circular cylinder. Thus an accurate 

understanding of the physics of VIV is needed.  

The inline vibration frequency is twice the cross flow frequency, which means that the number of 

stress cycles due to inline oscillation is double the number for transverse oscillation. The inline 

vibrations are also initiated at lower velocity. Thus, the inline oscillation fatigue damage and its 

effect on the cross flow motion and hence fatigue damage in transverse direction, are the 

motivations to study the pure inline VIV phenomena by forced streamwise excitation. 

Objectives 

The goal of the present work is to use the equivariant bifurcation, normal form and stability theories 

coupled with numerical simulations to study the wake flow dynamics. Computational simulations 

of the wake flow subjected to inline cylinder motion are employed to obtain physical insight into 

the mechanisms responsible for the various pattern formations bifurcated from the combination of 

varying frequency and amplitude of vibration. The objectives are achieved in three phases. The 

first is the harmonic excitation of the wake flow at Re=200 and stability analysis to determine the 

bifurcations and transitions of the wake associated with the inline excitation. A reduced order 

model of the v-velocity calculated from POD modes is used to develop the modal amplitude 

equations using equivariant bifurcation theory. The model serves to predict the sequence of 

bifurcation corresponding to the inline oscillation. In the second phase, the investigations have 
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been performed on the wake patterns and a map of the lift coefficient dynamics for combination of 

oscillation amplitude and super non-harmonic and harmonic forcing frequency ratios at Re=200. 

The set of bifurcations are predicted by the analytical model proposed in the first phase. This helps 

to understand how inline oscillation influences the wake dynamics.  

In the third phase, to ensure that the results of the two-dimensional simulations are reliable, three 

dimensional simulations are carried out for flow at Re=200 and proper orthogonal decomposition 

performed to find the primary modes and their transition due to the forced oscillation. The results 

confirm the validity of the 2D investigations.  

Outline of the dissertation 

As previously mentioned, the approach used in this work aimed at understanding the fluid-structure 

interaction by controlling the motion of the cylinder, allowing the wake response to be examined 

separately. The forced oscillation results provide insights useful in the prediction of the motion of 

the free oscillating cylinder. The results exhibit the hydrodynamic forces acting on the cylinder for 

combinations of oscillation amplitudes and frequencies in the regime where pure inline VIV is 

encountered. This chapter contains the objectives and outline of the work. Chapter 1 gives some 

background information on the phenomenon of vortex shedding, its importance in fluid-structure 

interaction and vortex induced vibration. The different vortex shedding patterns generated 

corresponding to the parameters such as Reynolds number for free vibration and forcing frequency 

ratio, oscillation amplitude for forced vibrations are described. Chapter 1 also gives an overview 

of the works related to the forced vibration of the circular cylinder and studies of the deduced 

patterns considering their symmetry properties for both the inline and cross flow excited vibrations. 

In the first paper presented in Chapter 2, two-dimensional simulations of the wake flow for periodic 

inlet flow representing harmonic excitation are carried out to compute the velocity and pressure 

fields. The infinite-cylinder approximation and periodic boundary conditions are the assumptions 

considered in solving the nonlinear Navier-Stokes equations for the unsteady 2D model of forced 

excitation. Since the Navier-Stokes equations are nonlinear and complex, the proper orthogonal 

decomposition (POD) tool is used to determine the minimum degrees-of-freedom (or modes) 

required to represent the flow field. The dominant modes calculated by POD-Galerkin-projection 

of the transverse velocity field are used to obtain a system of ordinary differential equations (ODE) 

in time. The amplitude and frequency variation cause formation of various vortex patterns. These 
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patterns have unique symmetry properties. The symmetries of the vortex shedding patterns play an 

important role in the analysis of the nonlinear dynamics that has been observed, including different 

solution branches formed due to the varying amplitude and frequency of the oscillation. The 

symmetry of observed patterns is applied to the governing equations of the system that produce 

them. The dominant v-velocity modes with corresponding symmetric spatial eigenfunctions 

representing the wake dynamics are used to develop the modal amplitude equations through 

symmetry-equivariant theory. The low order amplitude equations can have different solution 

branches with less symmetry than the symmetry of the original equations with respect to the 

bifurcation parameter values. This type of bifurcation with symmetries is known as symmetry-

breaking. More precisely, the equivariant bifurcation theory is applied to classify solutions with 

respect to their symmetries. Finally, the linear stability analysis of the proposed model is performed 

in Poincare space and the set of bifurcations due to the bifurcation parameter variation are also 

investigated in the Argand plot of the Floquet multipliers.  

The results of the second paper are presented in Chapter 3. This chapter contains the various vortex 

shedding patterns that are observed for the combination of oscillation amplitudes and forcing 

frequency ratios. The oscillation amplitude variation with frequency ratio changes at fixed 

Reynolds number cover the motion parameter space responsible for different patterns.  The 

magnitude of the lift coefficient can be investigated to describe the changes of the force related to 

the pattern switching caused by the streamwise motion of the cylinder. The presence of higher 

harmonics of the lift coefficient during harmonic excitation and the reduction of the lift coefficient 

magnitude in the forced superharmonic oscillation by switching from asymmetric to symmetric 

patterns are also reported in the second paper. Applying the equivariant bifurcation theory to the 

proposed model corresponding to determining the different wake configurations and bifurcations 

is also outlined. In general, different possible solutions can emerge from the homogenous state with 

respect to the symmetries of the model. The bifurcation analysis is applied to the newly developed 

analytical model to study the mode competition and determine the types of bifurcations and 

wavenumber selection of the solution branches. The main findings from the comparison of the 

results of analytical model with CFD are presented.  

The third paper contains 3D simulations of the wake flow presented in Chapter 4. The three-

dimensional simulations are done to verify the 2D results. The reduced transverse velocity model 
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and power spectrum of the lift coefficient are used to analyze the wake dynamics and bifurcations 

occurring with respect to the cylinder inline oscillation. The results are validated by comparing 

with the obtained 2D numerical studies. It is shown in this chapter that the cylinder motion has a 

stabilization effect on the wake dynamics and delays the secondary transition to three-dimensional 

flow. Thus two-dimensional simulations are enough to model the temporal instability of the wake 

flow at Re=200. Chapter 5 draws the conclusions and presents some discussions on future research. 

The mathematical formulation of POD, introduction to bifurcation and linear stability analysis and 

derivation of the invariants and equivariant functions of the amplitude equations are presented in 

Appendices A, B and C.  
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  LITERATURE REVIEW 

1.1 The phenomenon of vortex shedding and flow regimes 

Flow approaching a circular cylinder is forced to deviate from its uniform straight path to move 

around the cylinder. At very low Reynolds numbers, the flow is tangent to the surface of the 

cylinder and streamlines are symmetric. At Re<4, the flow field is steady and known as creeping 

flow. As Reynolds number increases, inertia force effects increase in comparison to viscous forces. 

As the inner boundary layer has lower velocity, it is more sensitive to the pressure gradient and 

thus the stagnation or reverse flow starts from this region. The boundary layer separates due to the 

adverse pressure gradient generated because of the divergent geometry of the flow on the rear side 

of the cylinder. The vorticity in the boundary layer is fed into the shear layer forcing the latter to 

roll up into a vortex. Thus, the shear layer is formed as shown in Figure 1-1. In the same way, a 

vortex rotating in the opposite direction is formed on the other side of cylinder. 

 

Figure 1-1: Flow separation structure (Sumer and Fredsøe, 2006). 

For 5<Re<40, the boundary layers separate on both sides of the cylinder and form vortices with 

opposite directions, however boundary layer remains laminar as shown in Fig 1-3(a). Beyond 

Re=40, the kinetic energy of the flow is not high enough to overcome the downstream pressure 

field. The pair of vortices is unstable to small perturbations. One vortex therefore grows larger than 

the other and could draw the weak one across the wake as shown in Figure1-2. The smaller vortex 

cuts off the larger vortex’s boundary layer, which causes the larger vortex to be shed as a free 

vortex, which is convected downstream by a local flow velocity. 
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Figure 1-2: Vortex Shedding from sides of cylinder (Sumer and Fredsøe, 2006). 

Following convection of the free vortex, a new vortex starts to form and this process continues 

periodically. The flow Hopf bifurcation to a time-periodic state in which the vortices shed on 

opposite sides of the cylinder periodically is the primary instability leading to the so called Karman 

wake. Both vortex street and boundary layer over the cylinder are laminar in this flow regime. In 

the laminar regime, the vortex shedding dynamics is similar to a simple harmonic oscillator. This 

regime was first modeled using the Landau equation showing the supercritical Hopf bifurcation 

leading to the Karman wake. The wake is two-dimensional for 47<Re<190. The non-dimensional 

shedding frequency called the Strouhal number is defined as  

 ,vf D
St

U
  (1.1) 

St  is a function of Reynolds number for a fixed cylinder (Provansal et al., 1987a).  

For 200 Re 300  , as shown in Figure 1-3(d), transition to turbulence starts in the wake region, 

although the boundary layer over the cylinder is completely laminar. Increasing Reynolds number 

causes this transition to move upstream (Bloor, 1964). For 5300 Re 3 10   , which is called the 

subcritical regime, the wake is completely turbulent, however, the boundary layer over the cylinder 

remains still laminar, as depicted in Figure 1-3(e). The reason being that the turbulence intensity is 

not strong enough to reach the separation point. Between 5 53 10 Re 3.5 10    , the transition 

point reaches the separation point, but perturbations remain weak on both sides of the cylinder. By 

increasing Re, transition starts from the separation point on one side of the cylinder and moves 

upstream over the cylinder toward the stagnation point. As the boundary layer separation point is 

turbulent on one side and laminar on the other, the flow regime becomes more asymmetric. This 

asymmetric flow regime causes the generated lift force to be asymmetric as well and so its direction 

changes alternately. This region shown in Figure 1-3(f) is called the critical regime.  

The next flow regime where 5 63 10 Re 1.5 10     is called supercritical. In this region, as shown 

(a) (b) 
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in Figure 1-3(g), the boundary layer separation is completely turbulent on both sides of the cylinder, 

but transition to a turbulent boundary layer remains incomplete, so the turbulent transition region 

is located between the separation point and the stagnation point. The boundary layer in this case, 

is partly laminar and partly turbulent. The next regime in the region of 6 61.5 10 Re 4.5 10     is 

called the upper-transition regime. In this regime, as shown in Figure 1-3(h), turbulence penetrates 

in the boundary layer structure on one side of the cylinder completely, while on the other side it is 

partly laminar and partly turbulent.  

 

Figure 1-3: Flow regimes over a smooth cylinder (Sumer and Fredsøe, 2006). 
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Finally at the region where 6Re 4.5 10   the boundary layer over the cylinder becomes completely 

turbulent on both sides. This regime as shown in Fig 1-3(i) is called the transcritical regime 

(Roshko, 1961; Schewe, 1983).  

1.2 Secondary instabilities in the wake 

As mentioned above, for Re>190, the wake becomes unstable to infinitesimal three-dimensional 

fluctuations and the vortices are no longer two-dimensional. This transition is known as a 

secondary instability and is the beginning of the route to turbulence in the wake. The limits of these 

instabilities were identified by discontinuities in the curve of Strouhal number versus Reynolds 

number of Figure 1-4 where different three-dimensional structures observed. 

 

Figure 1-4: Experimental curve of Strouhal number vs. Reynolds number (Williamson, 1996). 

The first mode, called A, undergoes subcritical bifurcation around Reynolds number 190 with 

spanwise wavelength 4 diameters. The second mode, called B, bifurcates through supercritical 

route around Reynolds number 260 with spanwise wavelength close to 1 diameter. The vortex 

dislocations were observed in the range of 160<Re<230 in conjunction with mode A. But once 

mode B structures started to develop in the wake, these dislocations disappeared. Thus, the 

discontinuities in the St versus Re plot correspond to the presence of different three-dimensional 

structures in the wake. Both modes A and B as shown in Figure 1-5 had distinct spatio-temporal 

symmetries.  
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Figure 1-5: Flow visualization and sketch of symmetries of modes A and B (Leweke and 

Williamson, 1998; Williamson, 1996).  

The nonlinear response of the wake around the cylinder to three-dimensional perturbations, which 

leads to the modes A and B with specific symmetry were observed in numerical computations 

given in Figure 1-5 and 1-6.  

 

Figure 1-6: Iso-surfaces of streamwise vorticity obtained from PIV measurements showing the 

symmetries of modes A and B. Light grey surfaces represent the positive vorticity and dark grey 

represent negative vorticity (Leweke and Williamson, 1998). 
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The numerical stability analysis of the periodic wake of a circular cylinder was performed by 

Floquet theory using a Galerkin-projection to get the reduced order model of flow through the 

transition regime 140<Re<300. The stability computations determine the structure of the critical 

eigenmode (Floquet mode) that drives the instability. The two-dimensional wake instability leading 

to the formation of critical Floquet mode corresponds to Mode A at Re=188.5 was investigated. 

The second branch of modes called B which arises from the instability at Re= 259 was predicted 

by the Floquet stability analysis (Barkley and Henderson, 1996). These results were supported by 

previous experiments (Brede et al., 1996). A simple phenomenological model based on the Landau 

and Ginzburg-Landau equations to describe the three-dimensional instabilities were also developed 

by Noack and Eckelman, (1994). 

The base flow is a superposition of rotation and strain of the vortex cores as shown in Figure 1-7 

where streamlines are ellipses. The flow is an exact solution of the Navier-Stokes equations. Then, 

two length-scales of the wake are the core size of Karman vortices and the width of the braids 

between the rollers shown in Figure 1-8. The ratio of vortex core size to shear layer thickness is 

equal to core shear layer A Bδ / δ λ / λ , which suggests that there may be a connection between the two 

wake feature and modes A and B. A perturbation of the flow displaces the center of rotation in the 

direction of maximum stretching and causes instability associated with mode A. There is also a 

stagnation point in the braid shear layer, which represents hyperbolic flow. In the braid region, the 

flow again results from superposition of rotation and strain, but contrary to the elliptic flow, the 

strain dominates over the rotation. In experiments, mode B vortex structures are observed in the 

hyperbolic flow region. 

 

Figure 1-7: Streamline of the flow, shows elliptical shape of vortex core and also stagnation point 

in the flow (Leweke and Williamson, 1998; Williamson, 1996). 
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Figure 1-8: Spanwise vorticity of the 2-D wake flow at Re=200 that shows flow features (Leweke 

and Williamson, 1998; Williamson, 1996). 

Thus, mode A originates from an elliptical instability in the wake cores while mode B results from 

a hyperbolic instability in the braid shear layers. As shown in Figure 1-9 the spanwise-periodic 

deformation of the core vorticity causes streamwise stretching in the braid regions. Since the wake 

has spanwise vortices with opposite signs, the sign of the streamwise vorticity will also alternate. 

Therefore the resulting pattern has a different sign of streamwise vorticity on either side of the 

wake. This transition from two-dimensional wake to mode A is hysteretic. 

 

Figure 1-9: Physical mechanism of mode A vortex loops production (Carmo, 2009).  

The streamwise vorticity of mode B generated at a given cycle induces waviness at the subsequent 

shear layer due to the Biot-Savart induction as shown in Figure 1-10. This waviness is combined 

with the strain field to form additional streamwise vorticity in phase with that generating the 

waviness; Thus the streamwise vortex from a previous braid has the same sign as the vortex in the 
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subsequent braid. This determines the symmetry of mode B shown in Figure 1-5.  

 

Figure 1-10: Physical mechanism of mode B streamwise vortices formation in the braid shear 

layer (Carmo, 2009). 

The transition from two-dimensional to three-dimensional states due to the secondary instabilities 

can be modeled by combination of two self-excited global modes. The flow velocity perturbations 

 u x, t  can then be expressed as 

        0 1u x, t U t φ x, t A(t)φ x, t   (1.2) 

where 0φ  is the primary and 1φ  is the secondary instability mode. Both 0φ  and 1φ  are assumed to 

be time periodic with unit norm. The time-dependent amplitudes are given by U(t) and A(t). The 

primary instability mode 0φ  is assumed to be at a finite-amplitude 0U  and the amplitude of the 

secondary instability is given by  A t te  where    is the growth rate. When 0   the flow is 

linearly stable and for 0   the instability starts. The energy transfer from two-dimensional 

primary mode to mode A is deduced directly from the nonlinear form of the Navier-Stokes 

equations. 

 
2 j

n 0 0 j n

j 1

U U α A




   (1.3) 

where nA  is the amplitude of the secondary mode A, and 0U  is the amplitude of the primary mode 

of the two-dimensional wake. The evolution of An near the linear instability can be expresses as 

n 1 1 nA μ A  , where 1μ nexp T  is the linear growth rate and nT  is the length of period number n

. The saturated amplitude and frequency relation of mode A are calculated from 
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2 j

n 1 1 1j n n

j 1

A (μ α A )A






   (1.4(a)) 

 
2 j

n 0 0 j n

j 1

f f γ A




   (1.4(b)) 

The coefficients are function of the bifurcation parameter ( ) /cr crRe Re Re   where crRe is the 

critical Reynolds number for the onset of vortex shedding. Near the threshold the linear growth 

rate is approximately 1
1

μ
μ 1

d

d
  . In this regime 1jα  is assumed constant since their variations 

are 
2( )O . Negative 11α  leads to a subcritical bifurcation of mode A. At Re=260 and spanwise 

length of L 0.822d , the other secondary instability mode B is formed via supercritical bifurcation 

with no frequency shift. The regions of instability for modes A and B are presented in Figure 1-11. 

There is a good agreement between computations based on linear theory and experimental 

measurements of the critical Reynolds number and wavelength (Barkley and Henderson, 1996; 

Williamson, 1996). 

 

Figure 1-11: Curves of Neutral stability for 2-D Karman vortex with respect to spanwise 

perturbations. Upper region relates to long-wavelength instabilities starts at Re=190, lower region 

corresponds to short-wavelength, initiated at Re=260 (Barkley and Henderson, 1996). 

The nonlinear interaction between modes A and B was studied as a possible scenario for the 

bifurcation to three-dimensional flow in the wake of a circular cylinder for Reynolds number up to 

300. This scenario was based on the amplitude equations. The amplitude equations were developed 
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based on the Landau equation by considering the symmetries of mode A and B. The A and B modes 

symmetries are  

 

   

   

   

x, y, z, t x, y, z, t T / 2 ,

x, y, z, t x, y, z, t T / 2 ,

x, y, z, t x, y, z, t T / 2 .

A A

A A

A A

u u

v v

w w

  

   

  

 (1.5(a)) 

 

   

   

   

B

B

B

x, y, z, t x, y, z λ / 2, t T / 2 ,

x, y, z, t x, y, z λ / 2, t T / 2 ,

x, y, z, t x, y, z λ / 2, t T / 2 .

B B

B B

B B

u u

v v

w w

   

    

   

 (1.5(b)) 

Thus, mode A has the spatio-temporal symmetry consisting of reflection symmetry with evolution 

of half a period while mode B is invariant under the combination of reflection in y, translation in 

z  by Bl λ / 2  and evolution of half a period. Assuming that there exist a point both modes occur 

simultaneously, together with the wavelength ratio of A and B modes and their symmetries, the 

general form of the amplitude equations can be obtained. Invariants1 and equivariants2 satisfying 

the symmetry properties of interaction of mode A and B are defined. The general evolution 

equation is 

  
2 1 2

1 , , ( , , )
m

n n n nA p a b c A q a b c A B


    (1.6(a)) 

   2

n 1 n n nB , , B ( , , )A Bmr a b c s a b c    (1.6(b)) 

where p, q, r and s are arbitrary real polynomial functions including invariants. The general form 

of the equations truncated to third order as 

 
2 2

1 1 1

A A A

n n n n n nA A A A B A       (1.7(a)) 

 
2 2

1 1 1

B B B

n n n n n nB B B B A B       (1.7(b)) 

The Floquet multipliers 
A  and 

B  are obtained from linear relations 

                                                 

1 Invariant: a property of a class of mathematical objects that remains unchanged when transformations of a certain 

type are applied to the objects. 

2 Equivariant: In mathematics, an equivariant map is a function between two sets that commutes with the action of a 

group. 

http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Function_(mathematics)
http://en.wikipedia.org/wiki/Set_(mathematics)
http://en.wikipedia.org/wiki/Group_action
http://en.wikipedia.org/wiki/Group_action
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   1 0.0091( 189)A Re Re     (1.8(a)) 

   1 0.021( 259)B Re Re     (1.8(b)) 

By knowing the Floquet multipliers, the Landau coefficients can be determined from the direct 

numerical computations. Linearizing equation (1.7(b)) about 0nB  , the coupling coefficient 
1

B  

can be calculated. The coupling term 
1

A  in the absence of mode A, 0nA   is calculated in the 

similar way. The model represented the destabilizing effect of mode A on mode B and stabilizing 

effect of mode B on mode A. The existence of mode B below the linear instability Re=259 and the 

energy shift between modes over a range of Reynolds number were also predicted. The low order 

nonlinear modes interaction model considers amplitude effects, so phase of the modes are not 

considered in interaction phenomenon and assumed to be fixed; however, results have a good 

agreement with experiments, showing that the dynamics of the mode amplitudes have main role in 

mode interaction as shown in Figure 1-12 (Barkley et al., 2000).  

 

Figure 1-12: Bifurcation diagram of amplitude equations, Solid lines indicate stable states and 

dash lines transition case of A, B and A+B interaction case. 2-D branch has A=B=0 (Barkley et 

al., 2000). 

This model was later extended to predict the Strouhal-Reynolds number profile over the three-

dimensional transition including the frequency information by adding the complex coefficients to 

the model.  

     
2 2 4

1 1 1 1 2 21 1 (1 )A A A A A A A AdA
Re i A ic A A id B A ic A A

dt
               (1.9(a)) 
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2 2

1 1 1 11 1B B B B B BdB
Re i B ic B B id A B

dt
            (1.9(b)) 

where A  is the complex amplitude of the perturbation and  A ARe i   is the eigenvalue obtained 

from the linear stability analysis, called a Floquet exponent. The lower order coefficients of the 

equations were calculated from three-dimensional numerical simulations, whereas the higher order 

coefficients were taken from experimental data using the method of Barkely. This model accurately 

predicts the discontinuous nature of the curve of St. versus Re plotted in Figure 1-4. The shedding 

frequencies of both modes are well predicted by the model for Re≤260. For higher Reynolds 

number, the Strouhal number observed in experiments differs from the predicted one by this model, 

probably due to the longer spanwise instabilities that lower the shedding frequency value (Sheard 

et al., 2003). 

1.3 VIV and flow pattern properties 

As noted above, the anti-symmetric vortex shedding induced by destabilizing the wake, causes the 

velocity and pressure perturbations around the cylinder, which generate forces in the inline -drag- 

and transverse directions – lift. When vortices are shed in the wake, the lift forcing frequency equals 

the frequency of vortex shedding. This is expected since from each side of the cylinder one vortex 

is shed once per cycle while the drag frequency is twice the frequency of the lift force since the 

vortices induce identical perturbations in the drag direction. Due to the existence of these forces 

imposed by the vortex shedding of the flow, the cylinder vibrates. This vibration, which is the 

structural response, is called vortex-induced vibration (VIV). Since the movement of the cylinder 

alters the flow field and the flow field is in turn responsible for the forces exerted on the cylinder, 

VIV is a strongly nonlinear phenomenon. When the fluid velocity increases, it reaches a range 

where the vortex shedding frequency approaches the natural frequency of the cylinder eventually 

leading to synchronization so called Lock-on. 

Different regimes with specific symmetry properties exist for the flow behind the cylinder. For low 

Reynolds numbers the flow is steady and a Karman vortex street is formed, in which a single vortex 

is shed in each half a cycle and so is called the 2S mode. The 2S-mode of shedding, coupled with 

the cylinder motion where energy transfers between cylinder and flow may lead to an even more 

dynamic and organized motion with unique symmetry properties.  



17 

 

 

In the free vibration case, a small increase of flow speed leads to large changes in the cylinder 

oscillation amplitude accompanied by a change in the pattern of vortex shedding. This switching 

between modes and amplitude variation makes studying the free vibration a difficult problem. 

Understanding the fluid forces associated with VIV requires an understanding of the wake structure 

behind the cylinder. Thus, the forced oscillation study is an effective method for prediction of the 

free vibration dynamics by mapping the wake behind the cylinder. Forced excitation in the 

transverse direction leads to formation of different wake modes showing the relation between the 

cylinder controlled motion and the wake structure. The map shown in Figure 1-13 defines various 

wake patterns with respect to the amplitude of oscillations and reduced velocities. The 2S mode, 

as mentioned above, is the Karman vortex street. The 2P form represents a pair of vortices shed 

each half cycle and P+S is a state where a pair of vortices and a single one are shed each cycle 

(Williamson and Roshko, 1988). Changes in the phase of the lift force due to the cylinder motion 

results in a change in the direction or magnitude of the energy transfer which leads to a different 

mode shape (Blackburn and Henderson, 1999). 

 

Figure 1-13: Different regimes for vortex wake modes showing the 2S, 2P, and P+S mode 

regimes at Re=1000 (Williamson and Govardhan, 2008). 

Streamwise excitation can also have a significant effect of the flow pattern. Since the drag 

fluctuation induced by the wake has a frequency twice that of the fluctuating lift, the streamwise 

oscillation has lower amplitude and higher frequency, which may cause a comparable impact on 
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the fatigue life of the structure. In some cases there is a phase shift between the vortex shedding 

and the structural motion which alters the level of energy transfer to and from the structure and 

may explain the pattern deduced from the mode competition. 

The different flow patterns for the inline forced oscillations in the lock-on region describe the 

nonlinear behavior of the flow which is affected by the combination of /A D  and /e sf f . The lock-

on region covers the /e sf f  and /A D  ranges from 1.74 to 2.2 and 0.06 to 0.12, respectively. As a 

result of the various combinations of amplitude and frequency ratio one or more complex 

phenomena such as hysteresis, bifurcation and synchronization may occur leading to different flow 

patterns, similarly to the transverse forced oscillation case. The two different flow patterns 

corresponding to A-I and A-III modes were investigated. A-I consists of one row of single vortices 

and A-III one row of vortex pairs as shown in Figure 1-14 (Griffin and Ramberg, 1976). 

 

Figure 1-14: Typical flow structures of the streamwise forced flow (Griffin and Ramberg, 1976). 

Later, flow patterns for / 0.5 0.67A D    and 0 1/ 3.e sf f    were observed and categorized in 

five modes as shown in Figure 1-14. These modes are designated as S-I, A-I, A-III and S-II 

(Ongoren and Rockwell, 1988). The dependence of the flow structure on frequency ratio and 

amplitude are presented in Figure 1-15. Apart from Re, initial conditions such as turbulence level, 

roughness of cylinder may affect the flow pattern. 
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Figure 1-15: Flow structure dependence on e sf f and A/D (Ongoren and Rockwell, 1988). 

For forced inline oscillations, as the frequency of oscillation is increased with all other parameters 

remaining fixed, a transition from an antisymmetric to a symmetric flow pattern is observed. At 

higher forcing amplitudes, this transition regime is chaotic which results from a competition 

between antisymmetric and symmetric shedding modes. Later, quantitative inline oscillations at 

Re=190, 1.7/ 4 2.2e sf f    and / 0.06 0.012A D    were performed showing that the lock-on 

region widens with increasing A/D (Griffin and Ramberg, 1974). 

Wake spatio-temporal symmetry is dependent on the forcing to natural shedding frequency ratio 

and amplitude of oscillation. Thus, symmetry plays an important role in the dynamics of the forced 

flow. Later, discrete low order amplitude equations based on the symmetry-equivariant theory were 

developed to explain the nonlinear dynamics of the wake mode interaction. The vortex-structure 

interaction was studied by introducing known perturbations with specific symmetry and 

investigating their effects on the wake dynamics. The evolution equation was defined by 

considering the symmetries of the two dominant modes. The first Karman shedding mode has 

spatio-temporal symmetry 2Z (κ,π)  meaning that the it is invariant for the combination of 

reflection with half a cycle translation while the second is the forcing mode with symmetry 

mD (κ,2π / m) , which is the combination of reflection and translation symmetry in wavelength. 

The required parameters of the low order model were determined from the POD decomposition of 

the temporal velocity field of the CFD results. A qualitative analysis of these equations at Re=200 
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and 1000 predicted the expected bifurcations deduced from symmetry breaking such as period-

doubling by changing the inline amplitude of the oscillation. It was also observed that a strong 

subharmonic lock-on occurs at the ratio where the forcing over vortex shedding frequency is in the 

range of 1 / 2m n  . Possible changes in the wake symmetry of harmonic forcing were supported 

by numerical and experimental results (Mureithi, 2003; Mureithi and Rodriguez, 2005). 
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 ARTICLE 1: BIFURCATION AND STABILITY ANALYSIS 

WITH THE ROLE OF NORMAL FORM SYMMETRIES ON THE 

HARMONIC STREAMWISE FORCED OSCILLATION OF THE 

CYLINDER WAKE 

 

Nabatian N. and Mureithi N. W. (2014) submitted to “International Journal of bifurcation and 

chaos” in March 27, 2014. 

Abstract  

The vortex shedding over a cylinder is affected by the cylinder oscillation. The dynamics of the 

cylinder wake subjected to the harmonic inline oscillation is investigated in this work. 2D 

numerical computations are performed for Re=200 to find the effect of inline oscillation amplitude 

on the vortex structure and flow pattern which lead to the variation of cylinder lift, drag and wake 

shedding Strouhal number. Two primary modes of the transverse velocity field are considered to 

model and predict the nonlinear interaction of 2D vortex shedding modes. The normal form 

symmetries have the main role in the pattern formation. The interaction of two steady modes in the 

presence of 
1(2)O S  symmetry is described by equivariant bifurcation theory. More precisely the 

equivariant bifurcation theory is applied to classify the solutions with respect to their symmetries. 

Considering the symmetries, the mode interaction amplitude equations are developed with the 

frequency saturation information included by the addition of complex coefficients. The present 

model is expanded up to 7th power, in order to include the spatio-temporal effects. The coefficients 

of the amplitude equations are obtained from 2D simulations of the cylinder wake flow.  

The physical significant effect of the inline cylinder oscillation on the wake dynamics is captured 

by the variation of the two linear coefficients of the model. The model describes the development 

and interaction of the two primary modes of the forced excitation at different oscillation 

amplitudes. The bifurcation analysis of this model predicts the bifurcation sequences occur due to 

the variation of the two linear bifurcation parameters affected by cylinder oscillation. Similarly to 

the numerical results, as the amplitude of oscillation increases, two limit cycles of the model 

undergo the symmetry-breaking bifurcation leading to a quasi-periodic state. For 0.5A D  , the 
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quasi-periodic state undergoes a torus doubling bifurcation. The dominant frequency of the 

bifurcated S mode matches the lift coefficient shedding frequency for 0.5A D   obtained from 

the numerical computation. The modulated travelling waves bifurcated from the model have mode 

S as the basic v-velocity mode which verifies the symmetric period-doubled quasi-steady transverse 

velocity pattern observed in CFD simulation. The final part is a complete stability analysis of the 

coupled amplitude equations describing mode interaction in the Poincare map. The presented 

model can accurately predict the bifurcation sequence of the forced cylinder wake dynamic 

transitions investigated in the numerical results.  

Keywords: Normal form symmetry; equivariant bifurcation theory; torus doubling bifurcation. 

2.4 Introduction 

The wake behind a cylinder is created via a Hopf bifurcation in the first instability region (Leweke 

and Williamson, 1998; Ryan et al., 2005; Williamson, 1996). The forces generated from vortex 

shedding can oscillate the structure. The amplitude oscillation usually excites the two primary 

modes of the wake. Two global modes can occur: a reflection symmetric mode in which the pair 

of vortices shed symmetrically and the Karman mode which has spatio-temporal symmetry. The 

symmetric mode is intrinsically unstable and is quickly replaced by Karman mode, unless it is 

stabilized by cylinder motion. The interaction between the vortex shedding and structure motion 

can lead to self-excited vibration of the cylinder and changing of the wake pattern. The wake pattern 

formation can be used to identify the global instabilities that develop in the wake behind a circular 

cylinder and follow its dynamics from simple to chaotic behavior. According to the complex 

dynamics of the fluid-structure interaction, the cylinder motion can be controlled to study the wake 

response to the prescribed motion. 

Thus, the forced oscillation of the wake is an approach to study the cylinder oscillation effect on 

the wake pattern. The periodic vortex street created due to the wake instability is saturated.  Thus, 

for Reynolds number not too far above the critical Reynolds number, the changes of the shedding 

frequency and Re are smooth, suggesting that linear Floquet instability theory is applicable for 

vortex shedding dynamic analysis (Barkley and Henderson, 1996; Ding et al., 2003; Park et al., 

1994; Wooden and Sinha, 2007). The nonlinear interaction of the wake modes was modeled using 

Stuart-Landau equation by Provansal et a1.,(1987b). The Landau coefficients were calculated from 
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the 2D simulations (Le Gal et al., 2001). 

To better understand the wake dynamics, Williamson and Roshko, (1988) excited the wake by 

external periodic forcing. This approach is the key to understanding the wake-structure interaction 

during vortex induced vibration (VIV). In experiments, the known transverse forced oscillation is 

subjected to the cylinder at different forcing amplitude and frequency ranges. Williamson and 

Roshko showed that the vortex shedding patterns are dependent on the forcing frequency, 

amplitude (A/D), direction of oscillation and Reynolds number. Therefore, by changing each 

parameter different modes defined by their symmetries may be observed; the modes were labeled 

2P, 2S, P+S and 2P+2S based on the number and combination of the vortices shed on the sides of 

the cylinder per forcing cycle. They also observed the transition from 2S to 2P mode which causes 

a half period shift between the cylinder motion and fluid forces (Lam et al., 2010; Lentini et al., 

2006). 

Barkley et al., (2000) proposed the equivariant bifurcation scenario for development of the coupled 

evolution amplitude equations describing the 3D wake mode interaction. The higher order terms 

may have some complicated spatio-temporal effects on dynamics, which were ignored in their 

model. Later, Sheard et al., (2003) expanded the amplitude equations by coupled Landau equations 

including frequency information by the addition of complex coefficients. The model predicts the 

nature of the Strouhal–Reynolds number profile of the circular cylinder wake at transition deduced 

from the interaction of 3D wake modes (Blackburn et al., 2004b; Blackburn et al., 2004c). 

Mureithi et al., (2003) used the symmetry-equivariant theory to study the forced Karman wake. 

The nonlinear interaction of the Karman and symmetric mode is modeled by symmetry equivariant 

bifurcation theory in the form of a pair of low order discrete amplitude equations. A qualitative 

analysis of these equations shows that the Karman mode bifurcation is affected by the forced 

amplitude ratio. Both subharmonic and superharmonic excitations of the Karman wake were 

studied experimentally. A quantitative analysis was also done by numerical simulation of the 2D 

wake model. Mureithi and Rodriguez, (2005) performed CFD computations of the wake flow 

undergoing periodic excitation. The dominant modes were determined by proper orthogonal 

decomposition (POD) analysis (Borggaard et al., 2007; Cao et al., 2001; Konstantinidis et al., 2007; 

Noack et al., 2003; Rowley, 2005) and coefficients of the amplitude equations obtained. They 

observed the period doubling for the inline excitation as the dominant phenomena, which confirms 
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the Williamson experiment (Mureithi et al., 2010).  

In the present work, the dynamics of the wake flow for Re=200 when forced to oscillate in the 

inline direction at the vortex shedding frequency is studied by developing a model using the 

equivariant bifurcation theory. The coefficients of the amplitude equations are considered complex 

to include the frequency saturation and solved for higher orders to cover the spatio-temporal 

effects. The first two primary modes which exist for various oscillation amplitudes are employed 

to model the wake dynamics. The linear terms of the amplitude equations are affected by the 

variation of the streamwise oscillation and thus considered as the bifurcation parameters. The goal 

of this work is to find the sequence of bifurcations observed in CFD and previous experimental 

results through bifurcation analysis of the symmetry-based model. 

2.5 Numerical computations 

The two-dimensional flow over a circular cylinder under forced inline oscillation is simulated using 

ANSYS CFX. Simulations were done for Re=200 at two dimensional domain given in Figure 2-1. 

The excitation frequency is equal to the natural shedding frequency and oscillation amplitude ratio 

varies from zero to 0.5D. Convergence tests were performed for the fixed cylinder case and the 

measured force coefficients and Strouhal number were found to be in good agreement with the 

previous numerical and experimental results presented by Mureithi, (2005).  

 

Figure 2-1: Schematic of 2D domain and structured mesh. 

The forced vibration is implemented as a boundary condition instead of using a moving mesh. It is 

equivalent to setting a rigid cylinder in an oscillated flow field. The oscillating inlet flow is then 

sin( )u U A t   , where A  is the amplitude of oscillation, 2 ef   is the oscillation frequency 
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with 1e sf f   and u  is the streamwise component of fluid velocity. The transverse velocity of the 

forced wake flow is stored in a matrix. The POD method is applied to analyze the recorded data of 

the v-velocity perturbations in 100 nodes on the line 10D downstream of the flow for 40 steady 

cycles. First, the mean value of each column is subtracted to find the velocity perturbation value as 

in Eq. (2.1) and the results are stored in the matrix A. 

 ( , ) ( , ) ( , ),mv y t v y t v y t    (2.1) 

The perturbation velocity matrix can then be written as: 

 
100

1
( , ) ( ) ( ),k kk

v y t a t y


   (2.2) 

where each mode includes a spatial eigenvector ( )k y , called topos and a temporal one ( )ka t , 

called chronos. The chronos ( )ka t
 
describes each point time history velocity and ( )k y  represents 

the velocity profile of 100 points at a specific time. The matrix A (5500,100) for each case of the 

forced oscillation is reduced by singular value decomposition (SVD) to identify the topos and 

chronos of the primary modes in the following method. The different topos and chronos for various 

amplitudes of oscillation show different behaviors of the flow field, under the effect of cylinder 

oscillations. Since POD gives the normalized topos, chronos contains the amplitude evolution of 

the mode.  

2.6 Numerical Solution and POD Modes 

The eigenvalue spectrum of transverse velocity given in Figure 2-2 clearly shows that the first two 

modes contain 99% of the energy. Since the fluctuating v-velocity data is complex each dominant 

mode represents pair of similar patterns shifted spatially. Each pair mode represents a travelling 

wave corresponding to the convective nature of the flow. The singular values of Figure 2-3 related 

to the perturbed v-velocity for 0.5A D   are still concentrated around the first two modes and 

these modes have similar spatial structures to those derived for the stationary cylinder. 
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Figure 2-2: Singular values of v-velocity for 

stationary cylinder 

Figure 2-3: Singular values of v-velocity for 

oscillation amplitude 0.5A D  . 

The symmetry properties of each topos are utilized to identify each eigenmode clearly. As shown 

in Figure 2-4(a) the first mode topos is symmetric with the dominant frequency equal to the non-

dimensional natural shedding frequency vf , while Figure 2-4(c) represents the antisymmetric 

spatial pattern with the frequency 2 vf .  

   

   

Figure 2-4: The spatial and temporal basic functions of two dominant modes for 0.0A D  . (a) 

first topos (b) first chronos (c) second topos (d) second chronos. 

(a) (b) 

(c) (d) 
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For forcing amplitude 0.15A D  , the quasi periodic nature of both modes observed in Poincare 

plane of Figure 2-18(c) and 2-18(d) are also found in Figure 2-5(b) and 2-5(d) due to the existence 

of the other peaks in addition to vf  and 2 vf . For the case of 0.5A D  , the torus state is then 

replaced by period-doubled torus where the dominant dimensionless frequency of the first 

symmetric mode becomes 0.1, same as the bifurcated lift coefficient frequency (see Figures 2-7(a)-

2-7(d)).  

   

   

Figure 2-5: The spatial and temporal basic functions of two dominant modes for 0.15A D   (a) 

first topos (b) first chronos (c) second topos (d) second chronos. 

   

(a) (b) 

(a) (b) 

(c) (d) 
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Figure 2-6: The spatial and temporal basic functions of two dominant modes for 0.35A D   (a) 

first topos (b) first chronos (c) second topos (d) second chronos. 

   

   

Figure 2-7: The spatial and temporal basic functions of two dominant modes for 0.5A D   (a) 

first topos (b) first chronos (c) second topos (d) second chronos. 

The eigenmodes in terms of contours computed for the 40 cycle of the v-velocity are given in 

Figures 2-8(a)-2-8(h) representing the competition between the symmetric and antisymmetric 

modes. For 0.5A D  , the torus doubling bifurcation is observed.  

(c) (d) 

(a) (b) 

(c) (d) 
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Figure 2-8: Temporal evolution of  two primary modes at different oscillation amplitudes (a,b) 

fixed cylinder case (c,d) 0.15A D   (e,f) 0.35A D   (g,h) 0.5A D  . 

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 
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Although the antisymmetric pair mode is energized as shown in Figure 2-7(d) due to the inline 

oscillation, the energy of the first pair mode is again higher than the second one. Hence, the basic 

v-velocity pattern is symmetric but with a larger spacing between vortices as shown in Figure 2-

8(g) corresponding to the lower Strouhal number, . 0.1St  . 

The dependence of the lift coefficient dynamics on the amplitude oscillation is shown in Figure 2-

9. As the amplitude of oscillation increases, the steady periodic lift coefficient becomes quasi-

periodic.  

 

 

 

Figure 2-9: Hilbert transform of lift coefficient for (a) fixed cylinder case (b) 0.175A D  (c)

0.5A D  . Lift coefficient frequency peak for (d) fixed cylinder case (e) 0.175A D  (f) 0.5A D    

(a) (b) 

(c) (d) 

(e) (f) 
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The dominant peak of the lift coefficient for 0.5A D   is precisely equal to the peak of the v-

velocity first mode given in Figure 2-7(b). The presence of the other peaks in Figure 2-9(f) in 

addition to the dominant one confirms the quasi-periodic dynamics of the lift coefficient. The 

model comparison plotted in Figures 2-18(e) and 2-18(f) on the Poincare map indicates the same 

period-2 state. 

2.7 Derivation of Symmetry Based Model 

As shown in the v-velocity singular values of Figures 2-2 and 2-3, the harmonic streamwise 

oscillation excites two dominant modes of the v-velocity while the other modes remain stable. 

These two modes contribute to a one spatial dimension pattern deduced under the bifurcation 

parameter variation due to the oscillation amplitude. The general solution describing the 1D 

oscillatory pattern, that sets in at the bifurcation point with defined temporal and spatial periods 

can be expressed as 

 
( ) ( )

( , , ) ( ) ( ) ( ) ( ) . . ,
s k

s k

x x
i t i t

v x y t S t e f y K t e g y h o t
 

 
 

    (2.3) 

where ( )S t  and ( )K t  are the time dependent amplitudes and ( )f y , ( )g y  are the corresponding 

eigenfunctions. Here . .h o t indicates the higher harmonic terms whose amplitudes can be included 

in terms of the amplitudes of the primary modes S and K. The wavelength ratio is 

2s k k s m n      . Therefore, Eq. (2.3) can be written as 

 
( ) 2 ( )( , , ) ( ) ( ) ( ) ( ) . . ,i kx t i kx tv x y t S t e f y K t e g y h o t      (2.4) 

where the complex amplitudes (S, K)  satisfy equations that are equivariant with respect to the 

related action of the symmetry group. Each mode has its own symmetry group. The S mode satisfies 

the following symmetry properties 

 ( , , ) ( , , ) ( , , ) ( , , ),s sv x y t v x y t v x y t v x y t        (2.5) 

and K mode has symmetries: 

 ( , , ) ( , , 2) ( 2, , )k kv x y t v x y t v x y t        (2.6) 

where
 

2
s

s





 ,

2
k

k





 . Thus the overall symmetry group of the system is 
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: ( , ) ( , )

: ( , ) ( , )

: 2 ( , ) ( , )

inl iml

s

in im

s

y y S K S K

T x x l T S K Se Ke

t t S K Se Ke 

 



    

    

   

   

 (2.7) 

The symmetry   acts through reflection represented as 2 ( )Z  , T  acts through translation 

represented as (2)SO  and   phase shift symmetry, represented by 1S . Thus, the overall symmetry 

is 1 1

2(2) ( ) (2)SO Z S O S    . To derive the amplitude equations, equivariance under the 

translations in x and t and reflections lead to the invariants: 

 
2 2 2, , ( )n mS K K S  (2.8) 

and four equivariants as: 

 2 2 1 2 2 1( , ),( , )n m m nS K S K S K   (2.9) 

The derivation of the invariants and equivariants is presented in appendix C. The most general form 

of the amplitude equations is the following: 

 

2 2 2

0 0 1 1 2 2 3 3

2 2 2 2 2 1

0 0 1 1 2 2 3 3

[( ) ( ) ( ) ( )( ) ]

[( ) ( ) ( ) ( )( ) ]

n m

n m n m

dS
i i K i S i K S S

dt

i i K i S i K S K S

       

        

        

      

 (2.10(a)) 

 

2 2 2

0 0 1 1 2 2 3 3

2 2 2 2 1 2

0 0 1 1 2 2 3 3

[( ) ( ) ( ) ( )( ) ]

[( ) ( ) ( ) ( )( ) ]

n m

n m n m

dK
i i K i S i K S K

dt

i i K i S i K S K S

       

        

        

      

 (2.10(b)) 

Since the coefficients of the amplitude equations are complex, the frequency variation of the 

transition modes can be analyzed. The solution branch types and their stabilities can be 

determined as functions of coefficient values. 

 Truncation of the amplitude equation up to third order O(3) 

The mode interaction equations first truncated up to third order are 

 
2 2

0 0 1 1 2 2[( ) ( ) ( ) ]
dS

i i K i S S
dt

            (2.11(a)) 

 
2 2

0 0 1 1 2 2[( ) ( ) ( ) ]
dK

i i K i S K
dt

            (2.11(b)) 
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The real part of the first complex coefficient describes the growth rate of each mode due to the 

linear instabilities of the cylinder wake. The cubic terms of the Landau model describe the 

saturation of the modes S and K. The coupling terms describe the mode interaction effect. If the 

sign of the cubic term is positive, the bifurcation is supercritical and if negative, it represents the 

subcritical one. These equations can be put into amplitude and phase form by writing 

,i iS qe K re    where , 0q r   and 0 , 2    . Separating out the real and imaginary parts 

of the equations lead to 

 
2 2

0 1 2( )
dq

r q q
dt

      (2.12(a)) 

 
2 2

0 1 2( )
dr

r q r
dt

      (2.12(b)) 

 
2 2

, 0 1 2sat s

d
r q

dt


        (2.12(c)) 

 
2 2

, 0 1 2sat k

d
r q

dt


        (2.12(d)) 

The individual imaginary part represents the saturated frequency for each mode. The phase 

equations d dt  and d dt  do not appear in the amplitude equations and depend only on q and 

r , so if q  and r are stable to perturbation, they will be too. This means that for stability analysis 

just the amplitude equations are considered. But to see the frequency effects on the amplitude 

equation, the amplitude equation is expanded up to higher order and the stability analysis is 

considered for this case. 

 Truncating the amplitude equation up to order O(7) 

The phases of modes only affect the dynamics through the terms involving m  and n  and by 

truncations up to low orders, their effect is ignored. The frequencies of these modes will vary along 

the transition between the solution branches, as they undergo the bifurcation. As mentioned, the 

amplitude equations at third order are not sufficient to describe the hysteresis. Hence, the amplitude 

equations are expanded up to 7th  order.  
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2 2 2 2

0 0 1 1 2 2 3 3

2 2 2 3

0 0 1 1 2 2

[ ( ) ( ) ( )( ) ]

[ ( ) ( ) ]

dS
i i K i S i KS S

dt

i i K i S K S

       

     

        

    

 (2.13(a)) 

 

2 2 2 2

0 0 1 1 2 2 3 3

2 2 4

0 0 1 1 2 2

[ ( ) ( ) ( )( ) ]

[ ( ) ( ) ]

dK
i i K i S i KS K

dt

i i K i S KS

       

     

        

    

 (2.13(b)) 

The complex equations can be rewritten in polar form by setting ,i iS qe K re    and separating 

out the real and imaginary parts of the equations to get 

 

2 2 2 4

0 1 2 3 3

2 2 2 2 2 3

0 1 2 0 1 2

[ ( cos 2 sin 2 ) ]

[( )cos 2 ( )sin 2 ]

dq
r q r q q

dt

r q r q r q

      

       

     

    

 (2.14(a)) 

 

2 2 2 4

0 1 2 3 3

2 2 2 2 4

0 1 2 0 1 2

[ ( cos 2 sin 2 ) ]

[( )cos 2 ( )sin 2 ]

dr
r q r q r

dt

r q r q rq

      

       

     

    

 (2.14(b)) 

 

2 2 2 4

0 1 2 3 3

2 2 2 2 2 2

0 1 2 0 1 2

[ cos 2 sin 2 ]

[( )sin 2 ( )cos 2 ]

d
r q r q

dt

r q r q q r


      

       

     

    

 (2.14(c)) 

 

2 2 2 4

0 1 2 3 3

2 2 2 2 4

0 1 2 0 1 2

[ cos 2 sin 2 ]

[( )cos 2 ( )sin 2 ]

d
r q r q

dt

r q r q q


      

       

     

    

 (2.14(d)) 

Combining (2.14(c)) and (2.14(d)) gives 

 

2 2

0 0 1 1 2 2 3 3

2 4 2 2 2 2 4

3 3 0 1 2 0 1 2

2 2 2 2 2 2

0 1 2 0 1 2

2 ( 2 ) ( 2 ) [( 2 )cos 2

( 2 )sin 2 ] [( )cos 2 ( )sin 2 ]

2[( )sin 2 ( )cos 2 ]

d
r q

dt

r q r q r q q

r q r q q r


        

          

       

        

       

    

   (2.14(e)) 

where 2     is the phase difference and therefore the system is in fact three dimensional. As 

shown in Eq. (2.14(e)) the evolution of the individual phases are functions of ,r q  and  . 

Therefore, the fixed points of Eq. (2.14(e)) with , 0    corresponds to periodic solution of Eq. 

(2.13(a)) and (2.13(b)) while the limit cycles of Eq. (2.14(e)) relate to the tori in the set of Eq. 

(2.13). 
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 Solution branches 

As the symmetry group 1(2)O S  is continuous, there exist an infinite number of solutions when 

the symmetry is broken. Using the equivariant bifurcation theory the maximal subgroups with 

lower order symmetries and fixed-point dimensions are identified. The steady solution branches of 

the amplitude equations of O(3) by 0dq dt dr dt   leads to three types: (i) Trivial solution, 

where 0q r  , (ii) Pure modes. These solutions are 

 2 0 1 0
0

1 1

0, ,
d

q r
dt

  


 


     (2.15(a)) 

 2 0 2 0
0

2 2

0, ,
d

r q
dt

  


 


     (2.15(b)) 

The general form of Eq. (2.15(b)) is 0( )

0 2( , , ) ( )
i kx t

v x y t e f y
    

   which has isotropy group 

𝑆𝑂(2)̃ × 𝑍2(𝜅). The definition of  𝑆𝑂(2)̃ = {(𝜃, −𝜃): 0 ≤ 𝜃 ≤ 2𝜋} is that a translation through   

has the same effect as a phase shift  . Also, the pure mode K solution is 

02 ( )

0 1( , , ) ( )
i kx t

v x y t e g y
    

 
 
with isotropy group 𝑆𝑂(2)̃ × 𝑍2(𝜅, 𝜋). The pure modes are 

travelling waves and have one dimensional fixed point subspace. They maintain the spatio-

temporal symmetry at all times, while oscillating periodically. (iii) Mixed modes. These solutions 

can be calculated by solving the coupled set of equations (2.12). The fixed point amplitude values 

are 

 2 0 1 1 0

1 2 2 1

q
   

   





 (2.16(a)) 

 2 0 1 1 0
0 2

1 1 2 2 1

1
r

   
 

    

  
    

  
 (2.16(b)) 

The phase speeds of the mixed travelling waves can be calculated by substituting the values of r  

and q  in Eq. (2.12(c)) and (2.12(d)). The corresponding flow field will be: 

 0 0( ) ( )
( , , ) ( ) ( )s s k ki k x t i k x t

TW TWv x y t q e f y r e g y
      

   (2.17) 

The mixed solution has maximum 𝑆𝑂(2)̃  symmetry subgroup. Since the relative phase equation 

does not exist, it is not possible to distinguish the steady periodic solutions from the mixed 
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modulated waves (torus). As mentioned earlier, in order to determine the types of mixed modes, 

the amplitude equations should be expanded up to higher orders. For the O (7) trucated amplitude 

equations, the steady state solution branches are again found by setting 0dq dt dr dt d dt  

. In addition  to the trivial solution, two types of solution branches are possible. The basic steady 

solution branches can be listed as: 

1- Pure mode which is similar to the low order model O(3). This solution is given by

 0 2( , ) ( ),0iS K e f y    that is calculated by solving the set of Eq. (2.12) determining the 

amplitude and phase of the pure mode. 

2- Mixed modes. There are two types of mixed modes.  

 Travelling waves (TW). These are solutions of the form 2( , )i iqe re  . The solutions are 

deduced from solving the set of Eq. (2.14) to get the fixed points. Since 2 0d dt d dt   , but 

0d dt  , the travelling waves are the periodic orbits within the Eq. (2.13(a)) and (2.13(b)). 

 Modulated travelling waves (MTW). MTW correspond to tori when 0d dt  . 

 Coefficients calculation using dominant POD modes of the transverse 

velocity 

The amplitude equation coefficients are calculated using the chronos of two primary modes 

obtained from the POD analysis. The equations have been developed in the case of complex 

amplitudes, so the data are transformed into complex signals by Hilbert transformation. The 

Landau coefficients which cover the initial transition until the steady periodic region are calculated 

for each mode independently at each of the oscillation amplitude. Since the data is recorded for 40 

cycles, the system of Eq. (2.18) is over-determined and the constants can be calculated using least 

squares method.  
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The coupling coefficients are also determined by least squares method. These coefficients are 

calculated at the oscillation amplitudes where mode K is initially observed and the last time that 

mode S occurs. Then, the known landau coefficients of mode S for A/D=0.5 are substituted in the 

Eq. (2.13(a)) and the coupling coefficients are obtained from the over-determined system given by 

Eq. (2.19(a)). Applying the same method for the fixed cylinder case, the coupling coefficients of 

K mode are achieved. Thus the critical amplitude for mode K is the fixed cylinder case, A/D=0.0 

where mode K is weak and for mode S, A/D=0.5 where its energy is reduced. The deduced 

coefficients are presented in Table 2-1. 
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(2.19(b)) 

Table 2-1: The coefficients of the amplitude equation deduced from the least squares method. 

  

S 

0 0i   1 1i   2 2i   3 3i   0 0i   1 1i   2 2i   

0.0926-0.08i 0.0-85.57i -2.04+1.39i 985.32-3281.8i  -720.41+197.49i 95977+37561i 985.32-3281.8i 

  

K 

0 0i   1 1i   2 2i   3 3i   0 0i   1 1i   2 2i   

0.25+0.25i -80.63-37.59i -4.15-5.98i -198880+20991i -57.45+2.96i 64593+115600i 819.87-427.48i 

The real parts of both modes approximated from the amplitude equations are plotted in Figure 2-

10. Both the frequency and amplitude of the modes match well with the simulation results. Now 

by variation of the bifurcation parameter due to the amplitude oscillation, the solution branches can 

be determined.  

 

Figure 2-10: (a) The chronos of modes S and K from CFD, (b) Deduced S and K modes 

approximated from the least squares method of the dominant chronos data. 

(a) (b) 
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2.8 Bifurcation and stability analysis 

Through the coefficients found from the chronos of the first two primary modes, the linear terms 

of the amplitude equations are influenced by harmonic inline oscillation. The nature of the 

interaction between different solution branches as linear bifurcation parameters are varied can be 

determined while the other coefficients remain fixed. Thus the bifurcation analysis is considered 

for the linear terms variation, obtained from the numerical computations. As the amplitude of 

oscillation increases, 0  decreases, 0  
increases while 0 0,   do not change. Therefore, the mixed 

modes undergo bifurcation by smooth variation of these two parameters 0  and 0 . The two steady 

travelling waves of Figure 2-10(b) lose stability via a Hopf bifurcation at 0 0.0836   and 

0 0.29   shown in Figure 2-11. As the torus doubling bifurcation is approached at 0 0.0826   

and 0 0.46  , two period-doubled tori are deduced as shown in Figure 2-12. Due to the principle 

solution branch classification, the bifurcated responses of the mode interaction are mixed 

modulated travelling waves (MTW) with 𝑆𝑂(2)̃  symmetry group. As shown in Figure 2-12 the 

bifurcated mode S has higher energy with respect to the larger amplitude value in comparison with 

the bifurcated mode K which leads to the reflection symmetry 2 ( )Z   becoming dominant in the 

flow field. The quasi-periodic solution of the complex amplitude in terms of mode S and K are 

shown in Figures 2-13 and 2-14.  

 

Figure 2-11: Quasi-periodic state of modes S 

and K at 
0

0.0836  , 
0

0.29  . 

Figure 2-12: Quasi-periodic state of modes S 

and K at 
0

0.0826  , 
0

0.46  . 
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Figure 2-13: Complex amplitude of bifurcated 

mode S at
0

0.0826  , 
0

0.46  . 

Figure 2-14: Complex amplitude of bifurcated 

mode K at 
0

0.0826  , 
0

0.46  . 

As previously mentioned, the physical significance of the inline amplitude oscillation can be 

modeled by variation of the two parameters 0  and 0 . Thus, the bifurcation analysis in the mixed 

region is limited to these two coefficients. The stable limit cycle of the amplitudes of S and K 

modes are given in the following plots. 

 

Figure 2-15: Limit cycle of amplitude term of 

mode S. 

Figure 2-16: Limit cycle of amplitude term of 

mode K. 

The stability of the orbit is analyzed by calculating the Poincare map. The Jacobian of the Poincare 

map is called monodromy matrix. For the stability analysis, the amplitude equations are rewritten 

in the Cartesian form using S x iy   and K z ih  .  
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The Jacobian matrix around the periodic orbit is obtained as 
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To investigate the existence and stability of the periodic motions, a stability analysis is performed. 

The nonlinear nature of the equations does not allow solving analytically for the fixed points. Thus, 

numerical integration of the equations identifies the fixed points. We are interested in finding the 

values of 0 0 
 
space where torus doubling occurs. The stability of the periodic solution branch 

can be analyzed by calculating the Jacobian matrix with periodic coefficients. The characteristic 

polynomial of the Jacobian has the form 

 4 3 2

3 2 1 0 0c c c c         (2.22) 

where the coefficients ic
 
are functions of the variables. The periodic solution due to Floquet theory 

will be stable if all roots have norm less than 1 and it will become unstable if an eigenvalue crosses 

the unit circle. The monodromy matrix is captured by integrating the Jacobian matrix with period 

1.0725   starting from the fixed point values. The eigenvalues of the monodromy matrix are 

called Floquet multipliers. Figure 2-17 shows the Argand diagram of the two periodic solution 

branches undergoing bifurcation by variation of 0  and 0 . The diagram shows the movement of 

the Floquet multipliers while the bifurcations occur. It indicates that the stable mixed travelling 

wave (MTW) branches lose stability via a torus bifurcation at 0 0.0836   and 0 0.29  . At these 

values of the bifurcation parameters the Floquet multipliers move in the complex plane by the 

values given in Table 2-2. By later variation of the bifurcation parameters at 0 0.0826   and 

0 0.46 
 
the Floquet multipliers collide with negative real axis and cross the unit cycle at -1, 

triggering a torus doubling bifurcation.  

Table 2-2: Floquet multiplier values at different bifurcation parameters. 

       Bifurcation                                                                           

p       parameters 

 

 

    Floquet multipliers 

 

𝜉0 = 0.0926 

𝛿0 = 0.25 

 

𝜉0 = 0.0836 

𝛿0 = 0.29 

 

𝜉0 = 0.0836 

𝛿0 = 0.36 

 

𝜉0 = 0.0826 

𝛿0 = 0.46 

mode S -0.1643+ 0.2434i -0.4310 + 0.9109i -0.5414 -1.0258 

mode K -0.1650 +0.2410i -0.4605+ 0.8769i -0.4709 -1.0267 
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Figure 2-17: Movement of Floquet multipliers of mode K and S by variation of bifurcation 

parameters. 

 Poincare map 

The Poincare maps of the amplitude equation solution branches for different cylinder amplitudes 

characterize the stability of the two periodic limit cycle responses. For the fixed cylinder case, the 

periodic response has almost a single Poincare point related to the steady state case (see Figures 2-

18(a) and 2-18(b)). As the oscillation amplitude increases at 0 0.0836 
 
and 0 0.29  , the system 

undergoes torus bifurcation. The Poincare map of the torus is shown in Figure 2-18(c) and 2-18(d). 

It is obvious from these figures that by varying the bifurcation parameters small-amplitude 

fluctuations are observed possibly caused by the interaction of the two frequencies. The later 

increase in the oscillation amplitude leads to the torus doubling bifurcation at 0 0.0826   and 

0 0.46  . At these values, there is an infinite number of Poincare points organized along two 

invariant curves associated with the quasi-periodic response of period-doubled torus (Figure 2-

18(e) and 2-18(f)). 
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Figure 2-18: Poincare map of the modes S and K at (a,b)
0

0.0926  ,
0

0.25  (c,d)
0

0.0836  ,

0
0.29  and (e,f)

0
0.0826  ,

0
0.46  . 

2.9 Conclusion 

The equivariant bifurcation theory is applied to derive the amplitude equations modeling the 

cylinder wake mode interaction in Poincare space. The proposed model predicts the sequence of 

bifurcations observed in the lift coefficient dynamics obtained from CFD results. This analysis 

shows that as the amplitude of oscillation increases, the limit cycle undergoes a symmetry-breaking 

(a) (b) 

(c) (d) 

(e) (f) 
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bifurcation leading to a quasi-periodic state. Further increase in the forcing amplitude leads to a 

period-doubled torus. The amplitude equations qualitatively explain the nonlinear interaction 

between symmetric and antisymmetric modes as the oscillation amplitude is increased. The 

cylinder streamwise oscillation energizes the second mode of the transverse velocity which 

interacts with the first mode and leading to the torus doubling bifurcation. However, the modulated 

travelling waves bifurcated from the model have mode S again as the dominant mode which 

verifies the symmetric v-velocity pattern with period-doubled bifurcated pattern observed in the 

numerical results. Thus, the solution branches deduced from the presented model are in good 

agreement with the wake dynamics obtained from numerical simulations. 
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 ARTICLE 2: LOCK-ON VORTEX SHEDDING  PATTERNS AND 

BIFURCATION ANALYSIS OF THE FORCED STREAMWISE 

OSCILLATION OF THE CYLINDER WAKE 

 

Nabatian N. and Mureithi N. W. (2014) submitted to “International Journal of bifurcation and 

chaos”in April 8, 2014. 

Abstract 

The 2D numerical simulation of the flow over a cylinder forced to oscillate in the streamwise 

direction for Re=200 is performed in ANSYS CFX. The controlled-vibration comprised of 

prescribed inline vibration from 0.05D up to 0.5D with the excitation frequency ratios of 1,1.5 and 

2 including the harmonic and superharmonic excitation regions. The immersed boundary method 

is used to model the cylinder oscillation. Modal decomposition of the transverse velocity field using 

the POD method is applied to uncover the interaction of symmetric and antisymmetric modes of 

the near wake. A model using the first two POD modes is developed by the equivariant bifurcation 

theory. The present model predicts the mode interactions and bifurcation sequences for all cases 

which are in good agreement with numerical as well as previous experimental results. Lock-on is 

determined for a range of values of the oscillation amplitudes and frequency ratios. It is shown that 

the lock-on range widens with increasing A D . The asymmetric 2S, P+S and symmetric pattern S 

as well as a regime in which vortex formation is not synchronized with cylinder motion are 

observed in the cylinder wake depending on the combination of oscillation amplitude and 

frequency ratio. The frequency ratio variation from 1 to 2 leads to the switching from asymmetric 

to symmetric modes. The symmetric flow pattern corresponds to a near zero lift coefficient on the 

cylinder.  

Key words: Modal decomposition; equivariant bifurcation theory; lock-on. 

3.1 Introduction 

The wake flow behind a cylinder generates transverse and inline fluctuating forces causing the 

cylinder to vibrate; so called vortex-induced vibration (VIV). The frequency of the vortex shedding 
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is affected by the cylinder motion and when it is synchronized with the structural frequency VIV 

phenomenon occurs which causes structural failure. In hydrodynamic flows, the inline force 

component has been known to excite members of offshore structures, marine piles and submarine 

periscopes. The controlled vibration is an approach to provide a deeper understanding of VIV 

behavior. Any motion of a cylinder in a steady approaching flow clearly affects the flow field in 

the wake of the cylinder depending on the combination of non-dimensional oscillation amplitude 

A D  and e sf f  where ef  is the excitation and sf  the natural shedding frequency. There have been 

some experimental investigations involving streamwise forced oscillation of the wake flow 

(Blackburn and Henderson, 1999; Konstantinidis and Bouris, 2009; Li et al., 2011; Mittal and 

Kumar, 1999; Papaioannou et al., 2006; Pham et al., 2010; Sohankar, 2007; Srikanth et al., 2011; 

Xu et al., 2006). Griffin and Ramberg, (1976) were among the first to study the wake flow behind 

an inline oscillating cylinder in a freestream. They performed simulations of the forced inline 

oscillation over the range of frequency ratios [1.2,2.5]e sf f   for Re=190. They showed that 

during forced oscillation, vortex shedding is affected by the cylinder motion; hence the vortex 

shedding changes to oscillate with the structural frequency, a phenomenon known as lock-on. Both 

primary lock-on where e sf f  and subharmonic lock-on with 2s ef f  were observed.  Two 

asymmetric modes of vortex shedding 2S and 2P were observed at the low amplitudes 

0.06 0.22A  . The asymmetric 2S mode corresponds to the Karman vortex street while in the 

2P mode two pairs of vortices are shed per cycle. These flow structures correspond to A-I and A-

III modes as categorized by Ongoren and Rockwell, (1988) who investigated the flow patterns for 

a cylinder forced to oscillate at an angle with respect to the streamwise direction at dimensionless 

oscillation amplitudes 0.13 and 0.3 and frequency ratios ranging from 0.5 to 4.0. Two basic modes, 

symmetric and antisymmetric vortex patterns are identified which are classified into five 

subgroups. The mode S corresponds to the symmetric vortex shedding and A-I, A-II, A-III and A-

IV modes for antisymmetric vortex formation. Ongoren and Rockwell experimentally explained 

the switching between vortex patterns and showed that the modes of vortex shedding can be 

symmetric, antisymmetric or chaotic depending on the forcing frequency and oscillation amplitude.  

As mentioned above, the mode of vortex shedding is dependent upon the frequency-amplitude 

parameters as well as the Reynolds number. The different vortex shedding patterns are classified 

based on their symmetry properties. The symmetry properties of the vortex patterns can be used in 
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an analytical study of the vortex shedding by deriving a low order model (Clune and Knobloch, 

1993; Goldstein et al., 1992). The Stuart-Landau model was first applied to model the Hopf 

bifurcation leading to the asymmetric Karman shedding results by Provansal, (1987a). He found 

that the periodic Karman wake is the saturated product of the temporal global wake instability and 

suggested that linear stability theory can be applied to find the saturation frequency near the 

threshold frequency. Later, Barkley et al., (2000) suggested the bifurcation scenario to describe the 

development and interaction between two three-dimensional modes. The truncated discrete Landau 

amplitude equations incorporate the coupling terms of mode A and B instabilities and satisfy the 

spatio-temporal symmetry properties of each mode. In order to model the frequency variation of 

the transition modes, the coupled Landau equations were then expanded into the complex plane by 

Sheard et al., (2003). The analytical model to study the forced oscillation considering the symmetry 

properties was first proposed by Mureithi, (2003; 2010; 2005). He used the symmetry-equivariant 

theory to study the forced Karman wake. The nonlinear interaction of the Karman and symmetric 

mode is modeled by symmetry equivariant bifurcation theory in the form of a pair of low order 

discrete amplitude equations. The coefficients of the amplitude equations are determined by proper 

orthogonal decomposition (POD) analysis (Chatterjee, 2000; Chen et al., 2012; Graham et al., 

1999; Rowley, 2005) of the CFD results. The forced mode is assumed as known and its effect on 

the vortex shedding mode was investigated.  

In the present study, the wake structure and lock-on phenomena are numerically investigated in the 

near wake region for Re=200 with oscillation amplitude extended up to 0.5D and three frequency 

ratios 1,1.5e sf f   and 2. The two primary modes which exist at various oscillation amplitudes 

and represent the wake dynamics are determined via POD analysis of the transverse velocity 

component of the numerical results. The symmetry properties of the model are then applied to 

develop the analytical model. The coefficients of the amplitude equations are considered complex 

to include the frequency saturation and solved for higher orders to cover the spatio-temporal 

effects. These coefficients are calculated by the least squares method from the CFD results. The 

linear terms of the amplitude equations are assumed to be affected by the variation of the inline 

cylinder motion and thus considered as the bifurcation parameters. The objective of this work is to 

numerically investigate the wake flow with velocity streamlines, vorticity contours and lift 

coefficient transitions at each combination of oscillation amplitudes and forcing frequency ratios 

and determine the lock-on region. The proposed model is also used to predict the sequence of 
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bifurcations, and results are compared with those obtained from numerical computations.  

3.2 Numerical computations 

Two-dimensional numerical computations are conducted to simulate the inline forced oscillation 

with amplitude ratios in the range 0 0.5A D    and excitation frequency ratios 1,1.5e sf f   and 

2 for Re=200. Simulations are performed for frequencies within the harmonic and superharmonic 

regions and different oscillation amplitudes to determine the vortex shedding modes and lock-on 

ranges. The cylinder motion is simulated in the cylinder-fixed frame with a prescribed sinusoidal 

oscillation imposed in the inflow. The oscillating inlet flow is given by sin( )u U A t    with 

U  the mean flow velocity,   the perturbation frequency and A  the non-dimensional oscillation 

amplitude. For the lateral boundaries a symmetry condition is assumed, the no-slip condition is set 

on the cylinder surface and the outer boundary condition is pressure outlet. The accuracy of the 

results has already been validated for the stationary cylinder case. The detailed description of the 

numerical model is presented by Mureithi, (2005). 

  

Figure 3-1: The structured mesh of the 2D domain. 

The transverse velocity of the forced wake flow is monitored 10D aft of the cylinder at 100 nodes 

in the y direction and stored in a matrix, A. The v-velocity data is transformed to a complex signal 

by Hilbert transformation to include the frequency variation. The mean value is then subtracted to 

reach the velocity fluctuations as 

 ( , ) ( , ) ( , )mv y t v y t v y t    (3.1) 
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The fluctuating velocity matrix A can then be decomposed using singular value decomposition 

(SVD) into spatial and temporal eigenfunctions as 

 
100

1
( , ) ( ) ( ),k kk

v y t a t y


   (3.2) 

where ( )k y  the spatial eigenvector representing the velocity profile in the y-direction is called 

topos and ( )ka t  the temporal modal component describing the time history of velocity called 

chronos. Since the topos is normalized, the chronos contains the energy of each mode. The topos 

and chronos are affected by the cylinder motion. These modes are used to develop the amplitude 

equation modeling the mode interactions of the wake flow. 

3.3 Numerical Results  

In this section, CFD results of the lock-on range and vortex shedding modes for both harmonic and 

superharmonic excitations at three selected amplitude ratios are presented and compared with the 

proposed model results. 

  Harmonic excitation  

The case for Re=200 and 1e sf f   at different oscillation amplitude is considered first. The phase 

plane and power spectrum of the lift coefficient with the first mode chronos of the transverse 

velocity are plotted in Figure 3-2 to identify the lock-on region. For the stationary cylinder, the 

limit cycle is observed in the phase plane indicating the lock-on state. The spectrum of the first 

mode chronos confirms the pure sinusoidal response with the presence of a single peak at 

0.2fD U  . As the oscillation amplitude increases, the phase plane shows that the wake is in a 

quasi-periodic state with the fluctuation of the lift coefficient on different paths between two 

successive cycles. The power spectrum of the lift coefficient shows the higher frequency at vortex 

shedding reduced frequency 0.2St 
 
while a smaller peak corresponding to the beating behavior 

at 0.013fD U  . Since the secondary frequency is lower than the primary one, it affects the 

periodicity from cycle-to-cycle and thus the flow is periodic over the beating period. Increasing the 

oscillation amplitude up to A/D=0.5, synchronized vortex shedding is again observed. The power 

spectrum of the lift coefficient and first mode chronos given in Figure 3-2(h) and 3-2(i) exhibit the 

dominant frequency at 0.1fD U 
 
although there is a weak secondary peak at 0.3fD U  . Since 
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the frequency of the secondary peak is higher than the lock-on frequency, it does not affect the 

periodicity of the flow and the lift coefficient trace is repetitive every two cycle of cylinder 

oscillation. 

    

   

   

Figure 3-2: Phase plane of the lift coefficient, lift coefficient power spectrum and the v-velocity 

first mode chronos for three oscillation amplitudes (a-c) 0.0A D  , (d-f) 0.175A D  and (g-i)

0.5A D  for 1
e s

f f  . 

The periodicity of the fixed cylinder case can also be shown by velocity contours in the wake which 

are exactly the same at two instants separated by one period 1s sT f . For 0.175A D   the wake 

is not locked on the cylinder motion due to the beating behavior. The velocity contours are plotted 

in Figure 3-3 over 15 cycles of the cylinder oscillation corresponding to the beating period, 

15b eT T . It is clear that the velocity contours at two instants separated by bT  are exactly the same. 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 
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Thus, outside of the lock-on region the vortex shedding periodicity is not periodic over shedding 

cycle but over the beating period. 

 

Figure 3-3: The velocity contours for oscillation amplitudes 0.175A D   for 1
e s

f f  over 15
b e

T T . 

For A/D=0.5 the snapshots of the wake in terms of the velocity contours over two cylinder 

oscillation period are plotted. Figures 3-4(d)-3-4(f) show that the spacing between vortices is 

increased due to the inline oscillation and the velocity contours are the same over two periods of 
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cylinder motion. This indicates that the 2S mode is locked-on over two periods of the cylinder 

motion instead of the vortex shedding period. 

 

 

Figure 3-4: The velocity contours for the stationary cylinder (a-c) and forced oscillation 

amplitudes 0.5A D   (d-f) for 1
e s

f f  over two oscillation period. 

 Super non-harmonic excitation with 1.5e sf f   

The phase plane and power spectrum of the lift coefficient with v-velocity first mode chronos are 

employed to identify the lock-on region at different oscillation amplitudes. In Figure 3-5(a) the 

phase plane shows a quasi-stable trajectory due to the presence of a lower frequency at 0.1fD U   

with respect to the primary frequency at 0.2fD U   corresponding to the beating behavior. As it 

is known from previous studies the non-dimensional frequency 1.5e sf f   is in the lock-on range 

for inline oscillation. Thus for 0.175A D   the phase portrait exhibits a limit cycle indicating that 

vortex shedding has locked onto the cylinder motion at a smaller oscillation amplitude with respect 

to the harmonic oscillation case. The lift coefficient power spectrum given in Figure 3-5(e) does 

not exhibit any beating behavior, but the signal is modulated by a secondary frequency at 

0.45fD U 
 
over an oscillation cycle. Since these frequencies are higher than the lock-on 

frequency 0.15fD U  , they do not affect periodicity over the primary lock-on period but deform 

the shape of each cycle. For 0.5A D   synchronized vortex shedding is observed. The phase plane 

of Figure 3-5(g) therefore shows only one limit cycle with a different shape from the fixed cylinder 

path. The spectrum of the lift coefficient of Figure 3-5(h) shows that the secondary frequency is 

energized due to the cylinder motion indicating the competition between symmetric and 

(a) (b) (c) 

(d) (e) (f) 
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asymmetric modes.  

   

   

   

Figure 3-5: Phase plane of the lift coefficient, lift coefficient power spectrum and the v-velocity 

first mode chronos for (a-c) 0.05A D  , (d-f) 0.175A D  and (g-i) 0.5A D  for 1.5
e s

f f  . 

The velocity contour visualization for three selected oscillation amplitudes 0.05,0.175A D   and 

0.5  are presented next. Figures 3-6(a)-3-6(c) displays the velocity contours over two oscillation 

periods. The snapshots of the streamlines show the quasi-periodic pattern every two oscillation 

period. The beating behavior is not observed in Figures 3-6(a)-3-6(c) since the low peak at 

0.1fD U 
 
is weak. Increasing the oscillation amplitude up to A/D=0.175 the lock-on state is 

reached. Six vortices are shed over two cycles of oscillation. Two of the vortices develop on the 

upper side of the cylinder while the third vortex is shed from bottom side per oscillation period. 

This asymmetric vortex formation is referred to as the P+S mode. This mode breaks the reflection 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 



55 

 

 

symmetry and makes it possible to track the side of perturbation initiation. 

 

 

 

Figure 3-6: Velocity contours for (a-c) 0.05A D  , (d-f) 0.175A D  and (g-i) 0.5A D  for

1.5
e s

f f  over two oscillation period. 

 Superharmonic excitation with 2e sf f    

The limit cycle of the lift coefficient for A/D=0.05 is shown in Figure 3-7(a) indicating that the 

beating behavior is eliminated by increasing the frequency ratio in comparison with Figure 3-5(a).  

As 2e sf f   is located in the lock-on region, the phase portrait again shows a limit cycle from 

small amplitude of oscillation. However, the limit cycle shape changes from the simple ellipse to 

the complex geometry. Figure 3-7(e) shows that the lift coefficient period is twice the cycle of 

cylinder oscillation which is also confirmed by velocity contours of Figure 3-8. The first peak 

corresponds to the natural shedding Strouhal number. By increasing the oscillation amplitude to 

A/D=0.5, a synchronized pair of vortices is shed as shown in Figures 3-8(g)-3-8(i). The symmetric 

pattern of the vortex shedding decreases the lift coefficient value to near zero with two frequencies 

each playing a role in the vortex shedding process. The first peak of the lift coefficient given in 

Figure 3-7(h) is at 0.4fD U   which is equal to the forced oscillation frequency while the second 

frequency is at 0.8fD U  . The first mode chronos of Figure 3-7(i) matches well with the 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 
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spectrum of the lift coefficient. Although a synchronized vortex shedding is observed it is not a 

complete lock-on according to the chaotic path on the phase plane with the values almost near zero. 

The chaotic behavior can be related to the presence of equal forcing and shedding frequencies and 

also nonlinear coupling between streamwise and transverse velocities.  

 

Figure 3-7: Phase plane, power spectrum of the lift coefficient and the v-velocity first mode 

chronos for (a-c) 0.05A D  , (d-f) 0.175A D  and (g-i) 0.5A D  , for 2
e s

f f  . 

The velocity contours of  Figure 3-8 as well as lift coefficient display the lock-on state of the flow 

every two periods of cylinder oscillation for A/D=0.05 and 0.175. By increasing the forcing 

frequency the longitudinal space between vortices decreases and then they are more concentrated 

than the lower forcing frequency. Consequently the near wake flow is asymmetric but the transition 

is toward the symmetric mode S. Figures 3-8(g)-3-8(i) show that the vortex shedding pattern 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 
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becomes symmetric every oscillation period. The snapshots of velocity streamlines are plotted 

every half cycle of cylinder oscillation.   

 

 

 

Figure 3-8: Velocity contours with forced oscillation amplitudes (a-c) 0.05A D  (d-f) 0.175A D 

over two oscillation period and (g-i) 0.5A D  every oscillation period for 2
e s

f f  . 

The vortex shedding patterns in terms of the vorticity are also presented for three different 

frequency ratios 1,1.5e sf f   and 2  with oscillation amplitude ranging from 0 to 0.5. For the 

harmonic case as shown in Figures 3-9(a)-3-9(c), as the amplitude of oscillation increases the 

displacement between vortices are increased and thus the wake flow goes under torus-doubling 

bifurcation. The vorticity contours of non-harmonic excitation given in Figures 3-9(d)-3-9(f) show 

that for relatively low amplitudes 0.05A D   the wake pattern does not seem to change and 

remains at the basic 2S mode. Further increase in the amplitude causes the alternate peaks to grow 

leading to the development of the asymmetric P+S mode. The reflection symmetry is broken as 

will be predicted later by the model. The symmetric S mode is observed in terms of the equivorticity 

contours for superharmonic forced excitation in Figure 3-9(i). Two symmetric vortices are shed 

simultaneously every oscillation cycle. The vortex shedding transition depending on the frequency 

variation is also shown at each of the oscillation amplitudes. 

(d) 

(a) (b) (c) 

(e) (f) 

(g) (h) (i) 
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Figure 3-9: The equivorticity contours with frequency ratio (a-c) 1
e s

f f  (d-f) 1.5
e s

f f  and (g-i) 

2
e s

f f   for oscillation amplitudes ranging from 0-0.5. 

The v-velocity contours are presented in Figure 3-10. Comparing Figure 3-9(c) and 3-9(i) shows 

that by increasing the frequency ratio the isovorticity contours represent switching from 

asymmetric to symmetric pattern while the v-velocity contours of Figures 3-10(c) and 3-10(i) 

represent the transition from symmetric to asymmetric mode. 

 

 

 

Figure 3-10: The v-velocity contours with frequency ratios (a-c) 1
e s

f f  (d-f) 1.5
e s

f f  and (g-i) 

2
e s

f f   for oscillation amplitudes ranging from 0-0.5. 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 
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3.4 Derivation of Amplitude Equations Based on Symmetry  

Two primary modes of the transverse velocity excited by the cylinder motion are employed to 

represent the flow dynamics while the other modes are assumed to remain stable.  These two 

primary modes deduced from POD with a wavelength ratio 2s k k s m n       contribute to 

the one spatial dimensional oscillatory pattern represented as 

 
( ) ( )

( , , ) ( ) ( ) ( ) ( ) . . ,
s k

s k

x x
i t i t

v x y t S t e f y K t e g y h o t
 

 
 

    (3.3) 

where ( )S t  and ( )K t  are time dependent amplitudes of modes corresponding to spatial 

eigenvectors ( )f y and ( )g y . The approximate symmetry of each mode is defined next. The mode 

S has symmetries 

 ( , , ) ( , , ) ( , , ) ( , , ),s sv x y t v x y t v x y t v x y t        (3.4) 

while the K mode satisfies the symmetry group 

 ( , , ) ( , , 2) ( 2, , )k kv x y t v x y t v x y t        (3.5)

where 2s s   , 2k k   . The action of the symmetry group is generated on the amplitudes 

of primary modes from the requirement that the solution for ( , , )v x y t  should be invariant under 

the action of these symmetries.  

 

: ( , ) ( , )

: ( , ) ( , )

: 2 ( , ) ( , )

inl iml

s

in im

s

y y S K S K

T x x l T S K Se Ke

t t S K Se Ke 

 



    

    

   

   

 (3.6) 

The element   acts through reflection represented as 2 ( )Z  . T acts through translation represented 

as (2)SO  and   is a phase shift symmetry, shown by 1S . A steady bifurcation on one-dimensional 

lattice therefore has 
1(2)O S  symmetry. Applying the equivariance under translations in x and t 

and reflection   leads to the invariants 
2 2 2, , ( )n mS K K S

 
and four equivariants 

2 2 1 2 2 1( , ),( , )n m m nS K S K S K 
. The amplitude equations are derived by using these invariants and 

equivariants. 
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2 2 1n mdS

pS qK S
dt

   (3.7(a)) 

 
2 1 2n mdK

rK sK S
dt

   (3.7(b)) 

where , ,p q r  and s  are polynomials based on the invariant functions. The general form of the 

amplitude equations is truncated up to 7th order to include frequency variation and the primary 

solution branches with maximum subgroups are determined. The amplitude equations expanded 

up to 7th order are 

 

2 2 2 2

0 0 1 1 2 2 3 3

2 2 2 3

0 0 1 1 2 2

[ ( ) ( ) ( )( ) ]

[ ( ) ( ) ]

dS
i i K i S i KS S

dt

i i K i S K S

       

     

        

    

 (3.8(a)) 

 

2 2 2 2

0 0 1 1 2 2 3 3

2 2 4

0 0 1 1 2 2

[ ( ) ( ) ( )( ) ]

[ ( ) ( ) ]

dK
i i K i S i KS K

dt

i i K i S KS

       

     

        

    

 (3.8(b)) 

These complex equations can be rewritten in polar forms by setting ,i iS qe K re    as 

 

2 2 2 4

0 1 2 3 3

2 2 2 2 2 3

0 1 2 0 1 2

[ ( cos 2 sin 2 ) ]

[( )cos 2 ( )sin 2 ]

dq
r q r q q

dt

r q r q r q

      

       

     

    

 (3.9(a)) 

 

2 2 2 4

0 1 2 3 3

2 2 2 2 4

0 1 2 0 1 2

[ ( cos 2 sin 2 ) ]

[( )cos 2 ( )sin 2 ]

dr
r q r q r

dt

r q r q rq

      

       

     

    

 (3.9(b)) 

 

2 2

0 0 1 1 2 2 3 3

2 4 2 2 2 2 4

3 3 0 1 2 0 1 2

2 2 2 2 2 2

0 1 2 0 1 2

2 ( 2 ) ( 2 ) [( 2 )cos 2

( 2 )sin 2 ] [( )cos 2 ( )sin 2 ]

2[( )sin 2 ( )cos 2 ]

d
r q

dt

r q r q r q q

r q r q q r


        

          

       

        

       

    

 (3.9(c)) 

where 2     is a phase difference and thus the system is reduced to be three-dimensional. 

The fixed points of Eq. (3.9(c)) relate to the periodic solutions while a limit cycle of (3.9(c)) 

corresponds to the quasi-periodic state. 
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 Basic solution branches  

The equivariant bifurcation theory is applied to determine the primary solution branches with the 

maximal subgroups. They are classified into three types: (i) Trivial solution where  0q r  (ii)  

Pure modes, (iii) Mixed modes. Pure mode solutions are given by  0 2( , ) ( ),0iS K e f y  
 
or  

 0 1( , ) 0, ( )iS K e g y  
 
that are calculated by solving the set of Eq. (3.8) determining the 

amplitude and phase of the pure mode. The solution has the isotropy subgroup 𝑆𝑂(2)̃ × 𝑍2(𝜅)
 
or 

𝑆𝑂(2)̃ × 𝑍2(𝜅, 𝜋). The definition of 𝑆𝑂(2)̃ = {(𝜃, −𝜃): 0 ≤ 𝜃 ≤ 2𝜋} is that a translation through 

  has the same effect as a phase shift  . The pure solution branches are travelling waves 

maintaining their spatio-temporal symmetry while oscillating periodically. Mixed mode solutions 

can be divided into two types, steady periodic solutions (TW) in the form of 
2( , )i iqe re 

 deduced 

by finding the fixed points of Eq. (3.9(c)) and mixed modulated waves (MTW) formed when 

0d dt  . These solutions can be computed by solving the coupled set of Eq. (3.9) numerically. 

The phase speeds of the travelling mixed modes are then calculated by substituting the values of r

and q in equations leading to  

 0 0( ) ( )
( , , ) ( ) ( )s s k ki k x t i k x t

TW TWv x y t q e f y r e g y
      

   (3.10) 

The mixed mode solution has maximum 𝑆𝑂(2)̃  symmetry subgroup. However, if the amplitude of 

a mode is much higher than the other, the flow field gets the symmetry of the spatial eigenfunction 

of the dominant mode unless the amplitude of both modes are almost equal.  

 Coefficients calculation using the v-velocity POD primary modes and 

bifurcation analysis  

The unknown coefficients of the amplitude equations are calculated using the chronos of the two 

first dominant modes of v-velocity deduced from POD analysis. The Landau coefficients which 

cover the initial transition until the steady periodic region are calculated for each mode 

independently at each of the oscillation amplitudes. Since the data is recorded for 40 cycles, the 

system of Eq. (3.11) is over-determined and the Landau coefficients of mode S can be calculated 

using least squares method. The Landau coefficients of mode K are obtained by applying the same 

method. 
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 (3.11) 

The coupling coefficients are also determined by the least squares method. These coefficients are 

calculated at the oscillation amplitudes where for the first time mode K is observed and the last 

time that mode S occurs. Then, the known Landau coefficients of mode S for A/D=0.5, obtained 

from Eq. (3.11), are substituted in the Eq. (3.12) and the coupling coefficients are calculated from 

the over-determined system of Eq. (3.12). Applying the same method for the fixed cylinder case, 

the coupling coefficients of the K mode are achieved. Thus the critical amplitude for mode K is the 

fixed cylinder case, where mode K is weak and for mode S for 0.5A D  where its energy is 

reduced. The deduced coefficients are presented in Table 3-1.  

 

2 2 22 2 2 3 2 3 2 3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 3

2 2 22 2 2 3 2 3 2 3
0 0

1 1

2 2 22 2 2 3 2 3 2 3
2 2

39 39 39 39 39 39 39 39 39 39 39 39 39

( )

( )

( )

i i i i i i i i i i i i i

K S K S S K S K K S S K S i

i

iK S K S S K S K K S S K S

i

iK S K S S K S K K S S K S

 

 

 

 

 

   
 

 
 

 
 

  


  
 

    
2

2 1 0 0 1 2 2 1 1 0.5

2

1 0 0 2 2 0.5

2

40 39 0 0 39 2 2 39 39 0.5

[( ) ( ) ]

[( ) ( ) ]

[( ) ( ) ]

A D

i i i i i A D

A D

S S i S i S S

S S i S i S S

S S i S i S S

   

   

   



 



 




     
 
 
 

     
 
 
      

 (3.12) 

Table 3-1: The coefficients of the amplitude equation deduced from the least square method 

  

S 

0 0i   1 1i   2 2i   3 3i   0 0i   1 1i   2 2i   

0.0926-0.08i 0.0-85.57i -2.04+1.39i 985.32-3281.8i  -720.41+197.49i 95977+37561i 985.32-3281.8i 

  

K 

0 0i   1 1i   2 2i   3 3i   0 0i   1 1i   2 2i   

0.25+0.25i -80.63-37.59i -4.15-5.98i -198880+20991i -57.45+2.96i 64593+115600i 819.87-427.48i 
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The real parts of both modes approximated from the amplitude equations are plotted in Figure 3-

11. Both the frequency and amplitude of the modes match well with the simulation results. The 

linear terms of the amplitude equations are affected most by the inline cylinder motion and thus 

considered as the bifurcation parameters while the other coefficients remain unchanged. Now by 

variation of the linear bifurcation parameters obtained from numerical computations, the solution 

branches can be determined.  

 

Figure 3-11: (a) The chronos of modes S and K from CFD, (b) Deduced S and K modes 

approximated from the least square method of the dominant chronos data. 

For the harmonic case, as the amplitude of oscillation increases, 0  decreases, 0  increases while 

0 0,    remain fixed. Therefore, the mixed modes go under the bifurcation by smooth variation of 

these two parameters 0  
and 0 .  

 

Figure 3-12: Quasi-periodic state of modes S 

and K at 
0

0.0836  and
0

0.29   

Figure 3-13: Quasi-periodic state of modes S 

and K at 
0

0.0826   and
0

0.46  . 

(a) (b) 
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The steady travelling waves of Figure 3-11 lose stability at 0 0.0836 
 
and 0 0.29 

 
as shown 

in Figure 3-12. As the torus doubling bifurcation is approached at 0 0.0826 
 
and 0 0.46  , two 

period-doubled tori are deduced as plotted in Figure 3-13. The modes bifurcating due to the 

harmonic inline oscillation are modulated travelling waves with 𝑆𝑂(2)̃
 symmetry. As shown in 

Figure 3-13 the bifurcated mode S has higher energy with respect to the larger amplitude value in 

comparison with the bifurcated mode K. Thus the flow field gets the reflection symmetry of the 

dominant spatial eigenfunction 2 ( )Z  . The approximate symmetry for harmonic case is 𝑍2(𝜅) ×

𝑆𝑂(2)̃ . 

 

Figure 3-14: Complex amplitude of bifurcated 

mode S at 
0

0.0826  , 
0

0.46  . 

Figure 3-15: Complex amplitude of bifurcated 

mode K at
0

0.0826  , 
0

0.46  . 

Next, the bifurcation analysis is considered for super non-harmonic excitation with the assumption 

that the forcing frequency variation, in addition to the oscillation amplitude changes, only affects 

the linear terms of the model. Then for forcing frequency ratio 1.5e sf f  , the solution branch is 

deduced by calculating the variation of two linear terms 0  
and 0  

considered as bifurcation 

parameters. The mixed modulated modes are deduced from torus bifurcation at 

0 0( , ) (0.0726,0.26)    due to the cylinder motion. However, the forcing frequency variation 

affects the other linear terms too e.g. at 0 0 00.001, 0.0, 0.018      and 0 0.04 
 
two steady 

modes with primary dimensionless lock-on frequency 0.15 are found as given in Figure 3-17.  
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Figure 3-16: Quasi-periodic state of modes S 

and K at
0 0

0.0726, 0.26   . 

Figure 3-17: steady bifurcated modes S and K 

at 
0 0 0

0.001, 0.0, 0.018     and
0

0.04  . 

But the presence of higher harmonics shown in the phase portrait of Figure 3-5(g) which 

deforms the shape of the limit cycle is not observed in the modes of Figures 3-16 and 3-17. This 

shows that the nonlinear terms may also be affected by frequency variation. Two tori result from 

the Hopf bifurcation are shown in Figures 3-18 and 3-19. As the second mode amplitude increases, 

there is a competition between symmetric and asymmetric modes.  Thus the deduced solution 

branch has symmetry 𝑆𝑂(2)̃  which shows that the forced excitation breaks the reflection symmetry. 

 

Figure 3-18: Complex amplitude of bifurcated 

mode S at
0

0.0726  , 
0

0.26  . 

Figure 3-19: Complex amplitude of bifurcated 

mode K at
0

0.0726  , 
0

0.26  . 

Finally, the bifurcation analysis for the superharmonic excitation with frequency ratio 2e sf f   

is considered. Figure 3-20 shows two travelling waves created from two bifurcation parameters at 

0 0( , ) ( 0.0606,0.17)    .  
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Figure 3-20: Steady bifurcated S and K modes at 
0

0.0606   , 
0

0.17  . 

It is clear from Figure 3-20 that the K mode with its spatio-temporal reflection symmetry is 

dominant similar to the asymmetric v-velocity contours of Figure 3-10(i) observed in the numerical 

results. Thus for superharmonic excitation the approximate symmetry group is 𝑍2(𝜅, 𝜋) ×  𝑆𝑂(2)̃ . 

As shown in Figure 3-7(g) the lift coefficient becomes chaotic with respect to the presence of equal 

forcing and shedding frequencies and nonlinear couplings of inline and transverse velocities. The 

dominant frequency of the mode K is predicted well however the second mode frequency cannot 

be modeled with variation of only two bifurcation parameters.  

3.5 Conclusion 

The lock-on flow regime is investigated by phase plane and power spectra of lift coefficient, 

transverse velocity and equivorticity contours. Two-dimensional numerical computations are 

conducted for Re=200, 0.0 0.5A D    and 1,1.5e sf f   and 2 . The vortices are shed in various 

vortex shedding modes and there is no deviation from the x-axis, thus the v-velocity first mode 

chronos is a good representative of the lift coefficient frequency which is confirmed in numerical 

results. As the vorticity contains both the streamwise and transverse velocity effects, the chronos 

of first vorticity mode may give a better approximation of the shedding frequency.  

A model is developed to analyze the vortex shedding mode interactions using equivariant 

bifurcation theory. The torus-doubling bifurcation for harmonic excitation, the mode competition 

for super non-harmonic case with 1.5e sf f   which leads to the reflection symmetry breaking and 

for superharmonic case with 2e sf f 
 

switching of the dominant eigenfunction reflection 



67 

 

 

symmetry are all well predicted with the proposed model. However, the frequency of the second 

mode does not match for superharmonic cases, which shows that more than two linear bifurcation 

terms should be involved for more precise modeling. Involving more than two bifurcation 

parameters could uncover the complexity of the nonlinear vortex shedding mode interaction. 

For superharmonic excitation cases, the lock-on occurs within the oscillation amplitude ranges of 

[0.175-0.5], a much larger range than the one found for the harmonic case. It is shown that the 

lock-on range widens with the increase of amplitude, reflecting the dominance of the oscillatory 

motion by increasing amplitude. For the harmonic case, by increasing the oscillation amplitude, 

the second peak takes a lower frequency than the dominant peak and the beating phenomenon is 

observed. Thus the flow is not periodic over the lock-on period but over several periods equal in 

total, to the beating period. However, for the super non-harmonic case, the second peak has higher 

frequency than the first peak which modulates the signal during the oscillatory frequency. The flow 

in superharmonic case remains periodic over one cycle but with some fluctuations due to the 

presence of the secondary peak. 

Symmetric and asymmetric lock-on modes are observed for three different oscillation amplitudes 

and frequency ratios. The lock-on asymmetric 2S mode when 1e sf f 
 
for A/D=[0.35-0.5], P+S 

mode with 1.5e sf f 
 

for A/D=[0.175,0.5] and symmetric S mode with 2e sf f   for 

A/D=[0.175,0.5] are verified. Increasing the frequency ratio from harmonic to superharmonic for 

A/D=0.5 causes the vortex shedding mode to switch from asymmetric to symmetric mode while 

the transverse velocity pattern changes from symmetric to asymmetric. The lift coefficient 

decreases as the symmetric mode develops in the wake. The obtained numerical results are in good 

agreement with previous experimental observations. 
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 ARTICLE 3: POD ANALYSIS OF THREE-DIMENSIONAL 

FORCED HARMONIC INLINE WAKE FLOW OF A CIRCULAR 

CYLINDER 

 

Nabatian N., Xu X. and Mureithi N. W. (2014) submitted to “Transactions of the Canadian Society 

for Mechanical Engineering, TCSME” in April 23, 2014. 

Abstract 

A three-dimensional numerical simulation of a circular cylinder wake is presented in this paper. 

The cylinder is harmonically forced in the streamwise direction. The results are compared with a 

previous two-dimensional CFD model. The objective of the present work is to investigate the effect 

of the oscillation amplitude on the secondary transition of the wake. The wake characteristics are 

analyzed using the aerodynamic coefficients. The lift and drag coefficient frequencies computed 

from 3D simulations agree well with the previous 2D model and other experimental results. Both 

two and three-dimensional simulations of the unsteady wake flow using an immersed-boundary 

method in a fixed Cartesian grid predict the flow dynamics well. The frequency of the lift force is 

then linked to the form of the vortex shedding mode. The relation between these vortex shedding 

modes using POD analysis of the transverse velocity and the unsteady lift coefficient of 3D 

simulation is in good agreement with the 2D model. Results show that the three-dimensional 

spanwise effect, which can change the wake structure, is suppressed at Re=200 by streamwise 

oscillation of the cylinder. Thus the 2D analysis can effectively model the temporal instability of 

the wake flow. 

Keywords: secondary transition; immersed-boundary method; temporal instability. 

ANALYSE POD TRIDIMENSIONNELLE DE L’ECOULEMENT DU 

SILLAGE EN LIGNE FORCÉ D'UN CYLINDRE CIRCULAIRE 

RÉSUMÉ 

Dans cet article, une simulation numérique tridimensionnelle de l’écoulement dans le sillage d’un cylindre 

circulaire est présentée. Le nombre de Reynolds (Re) considéré est  égal à 200. On force une oscillation 

harmonique en ligne du cylindre. Les résultats prédits par cette simulation sont comparés avec notre modèle 
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CFD bidimensionnelle antérieur. L'objectif de ce travail est d'étudier l'effet de l'amplitude des oscillations 

sur la transition secondaire du sillage. Les caractéristiques du sillage sont analysées en utilisant les 

coefficients aérodynamiques. Les fréquences des coefficients de portance et de traînée calculés à partir de 

simulations 3D sont en général en accord avec les résultats du modèle 2D ainsi qu’avec quelques mesures 

expérimentales trouvées dans la littérature. Les simulations instationnaires tridimensionnelles et 

bidimensionnelles de l’écoulement dans le sillage utilisent des conditions aux frontières immergées dans 

une grille cartésienne fixe. Les prédictions de la dynamique d'écoulement sont assez précises. La fréquence 

de la force de portance est reliée à la forme du mode de décollement tourbillonnaire. La relation entre les 

modes de décollement tourbillonnaire et le coefficient de portance instationnaire de la simulation 3D a été 

analysé grâce à l'analyse POD de la vitesse transverse. Les résultats 2D et 3D sont en bon accord. Nos 

calculs montrent que les effets spanwise tridimensionnels, affectant la structure de sillage, sont supprimés à 

Re = 200 par l’oscillation en ligne du cylindre. Par conséquent, l'analyse 2D est suffisante pour modéliser 

l’instabilité temporelle du sillage d’un cylindre circulaire. 

Mots-clés : transition secondaire ; conditions aux frontières immergées; Instabilité temporelle. 

4.1 Introduction 

Flow around a circular cylinder is studied to understand the bluff body wake complex dynamics as 

it has a large application in many industries. Different flow regimes are classified depending on 

Reynolds number. At low Reynolds number, the flow field is symmetric. As the Reynolds number 

increases, the first instability causes the flow to separate behind the cylinder causing vortex 

shedding. This is the first 2D transition that creates a periodic flow from the steady wake.  For

40 Re 200  , laminar vortex shedding occurs in the wake of the cylinder. Secondary transition of 

the wake flow occurs at approximately Re=200, where the three-dimensional effects are observed 

in the flow. The vortex shedding induces fluctuating drag and lift that cause the structure to vibrate 

when synchronized to the structural resonant frequency. This is known as vortex induced vibration 

(VIV) and can lead to structural failures (Blackburn and Henderson, 1999; Blackburn et al., 2004a; 

Thompson et al., 2001; Williamson, 1996). Numerous experimental and numerical studies have 

been performed to improve the understanding and prediction of cylinder VIV behavior. The forced 

oscillation of the cylinder is one of the approaches to study and control vortex shedding. When the 

cylinder oscillates at a given frequency, it interacts with the vortex shedding process. For forced 

oscillations in a specific range of amplitude and frequency, the cylinder motion is able to control 

the instability mechanism arising from the vortex shedding. One of the characteristics of fluid-
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structure interactions is lock-on between vortex shedding and structure vibration in which the 

vortex shedding frequency diverges from natural shedding frequency and becomes equal to the 

forced oscillation frequency. This approach is used to study the phenomenon of VIV where the 

wake flow causes the cylinder to oscillate at its natural frequency at a higher Reynolds number 

(Atluri et al., 2009; Borggaard et al., 2007; Bruneau and Mortazavi, 2006; Carberry et al., 2004; 

Constantinides and Oakley, 2006; Do et al., 2011; Konstantinidis et al., 2007; Morse and 

Williamson, 2006; Morse and Williamson, 2009; Srikanth et al., 2011; Xu et al., 2006; Zheng and 

Zhang, 2008).  

Several studies have been conducted to investigate the oscillation effect on the transition of the 3D 

wake (Barkley et al., 2002; Buffoni et al., 2006; Kaiktsis et al.). Williamson, (1996) showed that 

at the transition Reynolds number, Re 200 , three-dimensional flow effects appear which are 

shown by a hysteretic discontinuity in the Strouhal number values. Due to this phenomenon, there 

is a reduction in the Strouhal number followed by an increase up to Re=300. It has been 

demonstrated that the three-dimensionality of the cylinder wake can be delayed by forcing the 

cylinder to oscillate at moderate amplitudes. Koopman, (1967) and Griffin and Ramberg, (1974) 

showed that the wake flow is two-dimensional at oscillation amplitudes above 0.1D for Reynolds 

number up to 300-400. Berger, (1967) showed via an experimental study that by applying a 

controlled transverse oscillation with frequencies that synchronize the wake fluctuations, a laminar 

vortex-shedding regime can be extended until Re=300-350. Thus, the flow can be assumed to be 

two-dimensional. Later, Gioria and Meneghini, (2010) presented direct numerical simulations of 

forced wake flow behind a circular cylinder. The threshold amplitude in which the three-

dimensionalities are suppressed is in the range of 0.03 0.65D A D  for Re=200. The transverse 

oscillations inhibit the growth of three-dimensional fluctuations; hence the wake flow remains two-

dimensional in this amplitude range. 

The present study numerically investigates the three-dimensional wake flow past a circular cylinder 

forced to oscillate inline to the free-stream. The numerical simulations are performed for a range 

of oscillation amplitudes extended up to 0.5D with frequency equal to natural shedding frequency 

at Re=200. By changing the oscillation amplitude, the wake flow undergoes several transition 

regions and states. The objective of the present work is to investigate the effect of inline oscillation 

of the cylinder on the wake dynamics using 3D simulations. The results are compared with 
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previously obtained 2D numerical results to verify the two-dimensional wake flow assumption at 

Re=200 by considering the inline oscillation. 

4.2 Numerical computations 

 Methodology  

The computational domain is extended 40D downstream, 15D upstream and 20D cross-stream on 

each side. A no-slip condition is imposed on the cylinder surface and symmetry conditions are 

employed for the lateral boundaries, whereas the pressure outlet is used for the outlet condition. A 

structured mesh of Figure 4-1(a) with 109692 elements corresponding to 220648 nodes is used for 

2D simulation. A 3D mesh is constructed with 3433440 nodes and 3344828 elements with 

considerable mesh concentration around the cylinder and the wake shown in Figure 4-1(b). 

 

Figure 4-1: (a) Schematic of the mesh for 2D domain, (b) Schematic of the mesh for 3D domain 

The immersed boundary method is applied. To simulate the forced inline oscillation of the wake 

flow in the stationary coordinate system an extra acceleration term and mass source/ sink terms are 

added to the momentum and continuity equations. The forced oscillation is implemented as a 

boundary condition that is equivalent to subjecting the rigid cylinder to an oscillating flow. At the 

inlet boundary a sinusoidal velocity is prescribed as ( ) sin( )u t U A t   , where A  is the non-

dimensional amplitude of oscillation, 2 ef 
 
is the oscillation frequency with 1

e s
f f  and ( )u t  

is the streamwise component of fluid velocity. 

The Navier-Stokes equations are solved using the implicit hybrid finite-element/finite-volume 

approach to achieve the pressure-velocity coupling. Advection fluxes are evaluated with a 

(a) (b) 
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calculated blending factor using second-order accurate high resolution scheme while a second-

order accurate backward Euler scheme is used for time discretization. The shear-stress transport 

(SST) k   model is employed to account for the transport of the principle turbulent shear stress. 

In the SST k   model the standard k   model and transformed k   model are both multiplied 

by a blending function. This function is designed to approach one in the near wall region which 

activates the standard k   model and zero away from the surface which activates the transformed 

k   model. A constant time step, 0.0078dt   is used for simulation of the unsteady wake flow 

which is twice the 2D simulation time step. The resolution and convergence tests have been 

conducted for the stationary cylinder case in the previous study. The detailed results of the 

comparison, the Strouhal number and non-dimensional aerodynamic coefficients, for grid-

dependence study were presented in previous publications (Mureithi et al., 2010; Mureithi and 

Rodriguez, 2005). 

 POD Analysis of the transverse velocity 

The transverse velocity of the forced wake flow is extracted on a square plane with 10D dimension 

and 51 sampling points on each side at 21 selected planes in the z-direction. The recorded data for 

40-cycles is then stored in a matrix A. POD is used to develop the low order dynamical model of 

the wake flow which optimally contains the dominant energy of the v-velocity perturbations by 

minimizing the error (Druault and Chaillou, 2007; Graham et al., 1999; Kerschen et al., 2005; 

Rowley, 2005). The 3D POD analysis is performed using the snapshots of ( , , , )kv x y z t at kN

discrete time instants of the last 40 steady periods. The mean-flow field is subtracted to find the 

velocity perturbation value as in Eq.  (4.1) and the results are stored in a matrix A. 

 ( , , , ) ( , , , ) ( , , , ),mv x y z t v x y z t v x y z t     (4.1) 

Since the dimension of the spatial discretization of the flow field is higher than the snapshots, the 

POD modes of the perturbation velocity field are computed using the time correlation tensor. The 

time correlation tensor is defined as  

 
31 2

1 1 11 2 3

1
[ ] ( , ) ( , ) ( , )

nn n

ijk lmq i lmq j lmq k

l m q

R V X t V X t V X t
n n n   

    (4.2) 

where 1 2n n is the number of total grid points in the x-y plane at 3n  z-coordinates, V is the 

transverse velocity vector and X is the space variable. The POD coefficients ( )na are deduced from 
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this correlation matrix by solving the eigenvalue problem RA A where n  corresponds to the 

energy contained within the nth POD mode. Thus solving the k kN N  eigenvalue problem is more 

efficient than n n  eigenvalue equation as the number of snapshots kN  is smaller than the number 

of states n . The eigenfunctions are deduced from the Galerkin-projection of the instantaneous 

velocity field onto the corresponding POD coefficients. The instantaneous transverse velocity field 

is then reconstructed as 

 
mod

( ) ( )

1

( , ) ( ) ( )
eN

n n

n

v X t a t X


    (4.3) 

where modeN  is the total number of POD modes. The 
( )n  is the set of orthogonal spatial modes 

and ( )na  is the set of modal coefficients. For 2D flow, the POD modes can be calculated using the 

recorded data of the v-velocity perturbations at 100 nodes on the line 10D downstream of the flow 

for 40 steady cycles. The transverse velocity values are transformed into complex form by Hilbert 

transformation. The mean value is subtracted and the singular value decomposition (SVD) is 

applied to find the decomposed perturbation velocity as 

 
100

1

( , ) ( ) ( ),k k

k

v y t a t y


    (4.4) 

where each mode includes a spatial eigenvector ( )k y , called topos and a temporal one ( )ka t , 

called chronos. The chronos ( )ka t  describes the time history of each point velocity while ( )k y  

represents the velocity profile of 100 points at a specific time. The matrix A (5500,100) for each 

case of the forced oscillation is processed by SVD to identify the topos and chronos of the primary 

modes. The different topos and chronos created at various amplitudes of oscillation show different 

behaviors of the flow field, affected by the cylinder oscillations. Since POD gives the normalized 

topos, chronos contains the amplitude evolution of the mode. 

4.3 Results 

The structure of the wake flow is studied using the transverse velocity streamlines. Physical 

quantities such as lift and drag coefficients are computed and compared with the 2D numerical 

results. The power spectra of the lift and drag coefficients for the stationary cylinder are computed 

using data in the last 40 steady periods as shown in Figure 4-2(b). The lift frequency represents the 

natural shedding frequency at 0.1975St  and the primary frequency in the drag direction 
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corresponds to twice the vortex shedding frequency at 0.395fD U   since two vortices are created 

in each oscillation cycle. There is significant coupling between lift and drag coefficients as the drag 

frequency is twice the lift frequency. The measured dominant frequencies for lift and drag 

coefficients are in comparison with 0.1945fD U  , 0.385fD U 
 

obtained from the 2D 

simulation. The 3D results have a good agreement with the 2D model. Despite a better agreement 

in the drag coefficient, the lift coefficient amplitude of the 2D simulation is higher than the 3D lift 

as the three-dimensional effects which reduce the force are not considered in two-dimensional 

simulation. 

 

Figure 4-2: The spectra of the lift and drag coefficients for (a) 2D simulation, (b) 3D simulation. 

The forced harmonic oscillation alters the lift coefficient dynamics from a steady state. The 

fluctuating lift coefficient is directly related to the vortex shedding pattern in the wake. The time 

histories and power spectra of the lift coefficient at the various oscillation amplitudes for the 

harmonic case are plotted in Figure 4-3. For the stationary cylinder case, the lift coefficient is 

characterized by a pure sinusoidal response. The spectrum of the lift coefficient presented in Figure 

4-3(a) confirms this sinusoidal response with a single peak at 0.1975fD U  . Additionally, a limit 

cycle is observed in the lift coefficient phase portrait of Figure 4-3(c). Increasing the oscillation 

amplitude, the quasi-periodic state appears at A.D=0.175 where 0.2fD U   is the main frequency 

with the presence of the lower frequency at 0.016fD U   in lC  signal. The time series of the lift 

coefficient is no longer sinusoidal as shown in Figure 4-3(d-f) and a beating behavior is observed. 

This shows that the flow is now periodic over the beating period which is related to the forced 

oscillation period by 15
b e

T T . Different paths between two cycles in the phase plane of Figure 4-

3(f) are associated with the quasi-periodic state. The presence of more than one peak in the 

(a) (b) 
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frequency spectrum exhibits the nonlinear nature of the forced harmonic excitation. The other 

harmonics of the dominant frequency can interact with a pure harmonic mode to non-synchronized 

state.  

 

   

 

Figure 4-3: Time series, power spectrum and phase plane of the fluctuating lift coefficient at 

Re=200 for three cases (a-c) 0.0A D  (d-f) 0.175A D  and 0.5A D   with 1
e s

f f  . 

As the oscillation amplitude is increased, the lift trace varies from quasi-steady form to one with 

two smaller secondary peaks per oscillation. The power spectrum has a dominant peak at 

0.1fD U   and a secondary frequency at 0.2fD U   verifying the torus-doubling nature of the 

flow. Although a synchronized vortex shedding mode is observed, a complete lock-on is not 

observed due to the presence of the other peaks. The secondary frequency is higher than the main 

one and thus does not affect the periodicity but deforms the shape of each cycle. Therefore, the 

phase-plane diagram exhibits a limit cycle indicating that the wake locks onto the forced oscillatory 

motion with different shapes from the stationary cylinder limit cycle. 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 
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POD is used to identify the most energetic modes with their corresponding spatial structures. The 

temporal evolution of the POD primary modes with their temporal distributions for 2D and spatial 

structures with their temporal modes for 3D simulations of a stationary cylinder case are presented 

in Figure 4-4(a-d) and Figure 4-5(a-i) in terms of the v-velocity streamlines. The 2D POD modes 

are derived as a set of orthonormal fields in a Hilbert system including the frequency information.  

 

 

Figure 4-4: Spatio-temporal structure of the 2D POD modes in terms of the v-velocity streamlines 

with their corresponding chronos values for stationary cylinder case, (a,b) first mode, (c,d) second 

mode. 

The chronos of the first mode for the fixed cylinder case shows a single peak at 0.2fD U   and 

smaller peak at third harmonic 0.6fD U  . The second mode dominant frequency is at 0.4fD U   

with smaller peak at 0.8fD U  . The first primary mode is symmetric whereas the second mode 

is asymmetric. The 3D POD modes can be grouped as pairs where the two modes of each pair have 

similar energy. The first two eigenmodes of 3D POD correspond to the first mode of 2D POD 

mode with chronos at 0.2fD U  . Their grouping shows that the wake behaves like a travelling 

wave. The second pair of dominant modes has a similar symmetry to the first primary modes but 

(a) (b) 

(c) (d) 
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with the frequency at 0.6fD U   which is associated with the secondary peak of the 2D POD main 

mode.  

 

 

Figure 4-5: Spatial structure of the first three pairs of the 3D POD modes with their 

corresponding chronos values for stationary cylinder case, (a-c) first pair (d-f) second pair and (g-

i) third pair. 

Eigenmode 5 and 6 are asymmetric with the dominant frequency at 0.4fD U   similar to the 

chronos of the second mode in 2D POD analysis. The eigenmodes of order 7 and 8 have the same 

asymmetric structure as the fifth and sixth modes but as their energy is less than 0.1% they are 

considered negligible. 

Comparing the 3D and 2D singular value spectra given in Figure 4-6(a) and 4-6(b) shows that the 

modes with similar symmetry have the same energy level. As the 2D v-velocity signal is 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 
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complexified to contain the frequency information, each pair of similar patterns of the 3D POD 

modes with a phase shift correspond to one mode of the 2D POD mode. The similar structure of 

the modes shifted spatially is due to the convective nature of the flow. The symmetric and 

asymmetric primary modes with their singular values decaying pairwise exhibit the symmetry of 

the wake flow. Most of the fluctuation energy is captured by the first two modes of the 2D POD 

modes or the first six modes of the 3D POD modes with the remaining eigenvalues accounting for 

much less than 1% of the energy which provides a satisfactory description of the flow dynamics. 

  

Figure 4-6: Singular values of the transverse velocity deduced for fixed cylinder case, (a) from 

2D POD analysis, (b) from 3D POD analysis. 

By increasing the oscillation amplitude up to A/D=0.175, other peaks appear in the chronos of both 

modes. The interaction of these two frequencies leads to non-synchronized flow as shown in Figure 

4-7(a-d) of 2D POD results and Figure 4-8(a-i) for 3D POD analysis where the spacing between 

vortices is different. The chronos of the POD modes show that the second mode amplitude 

increases while the amplitude of the first mode decreases; however the first mode amplitude is still 

higher than the second one and thus the basic mode remains symmetric as shown in Figure 4-7(a) 

and 4-8(a-b) for 2D and 3D primary modes respectively. The cylinder motion energizes the second 

pair of modes. The flow energy is also partially convected downstream due to the spatial effects 

given in Figure 4-8(d-i) and partially transferred to higher modes via nonlinear interaction between 

the symmetric and asymmetric pair of modes. The dominant modes also dissipate energy. The fifth 

and sixth spatial modes shown in Figure 4-8(g-h) might be related to the asymmetric modes only 

in the very near wake as they are shift modes in the transition region. 

(a) (b) 



  79 

 

 

 

Figure 4-7: Spatio-temporal structure of the 2D POD modes in terms of the v-velocity streamlines 

with their corresponding chronos values for A/D=0.175. (a,b) first mode, (c,d) second mode. 

 

(a) (b) 

(c) (d) 

(b) (c) 

(d) (e) (f) 

(a) 
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Figure 4-8: Spatial structure of the first three pairs of the 3D POD modes with their 

corresponding chronos values for A/D=0.175, (a-c) first pair (d-f) second pair and (g-i) third pair. 

As the oscillation amplitude increases up to A/D=0.5, the 3D POD analysis shows that the 

eigenvalue spectrum of Figure 4-9(b) is again concentrated around the first few modes having the 

similar structure to those derived for the fixed cylinder case which match with the 2D POD analysis. 

The 2D eigenvalues given in Figure 4-9(a) confirm that the other modes have less than 1% energy 

although they are energized due to the cylinder oscillation. The 3D singular value plot also confirms 

that the first four modes contain more than 99% of the energy.  

  

Figure 4-9: (a) Singular values of the transverse velocity deduced for A/D=0.5 (a) from 2D POD 

analysis, (b) from 3D POD analysis. 

The torus-doubling bifurcation is observed in the two 2D POD eigenmodes where the reduced 

primary vortex shedding frequency is 0.1fD U   with a second mode peak at 0.3fD U   due to 

incomplete synchronization. In the 3D POD analysis, the torus bifurcation occurs in the fourth-

order eigenmodes followed by a near period doubling at 0.116fD U  . It is clear that by increasing 

the amplitude of oscillation, the space between vortices increases; therefore four vortices are shed 

(g) (h) (i) 

(a) (b) 
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instead of eight for stationary cylinder case shown in Figure 4-10(a) and similarly for 3D POD 

analysis, four vortices are observed in the fixed cylinder case and two vortices are shed for A/D=0.5 

as shown in Figure 4-11(a-b) confirming the first mode lock-on over two cycles of cylinder 

oscillation in chronos of Figure 4-11(c) and chronos of the 2D POD mode in Figure 4-10(b). The 

dominant frequency of the v-velocity corresponds well with the lift coefficient frequency at various 

oscillation amplitudes. However, the higher harmonics especially for 3D POD do not match well 

due to the spatial effects. The spatial structures of the fifth and sixth modes are also rather 

asymmetric with some random velocity distributions reflecting chaotic pattern downstream. 

 

  

Figure 4-10: Spatio-temporal structure of the 2D POD modes in terms of the v-velocity 

streamlines with their corresponding chronos values for A/D=0.5, (a,b) first mode, (c,d) second 

mode. 

(a) (b) 

(c) (d) 
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Figure 4-11: Spatial structure of the first three pairs of the 3D POD modes with their 

corresponding chronos values for A/D=0. 5, (a-c) first pair, (d-f) second pair and (g-i) third pair. 

The snapshots of the transverse velocity streamlines are plotted for three oscillation amplitudes 

with harmonic forcing frequency as illustrated in Figures 4-12 and 4-13 for 3D simulations. For 

the stationary cylinder wake, the v-velocity field is exactly the same over a shedding period. For 

A/D=0.175 the vortices shed from the cylinder surface elongate and the distance between them is 

not equal indicating the flow is not periodic over the shedding cycle but over several cycles 

corresponding to the beating period. The beating phenomenon can be observed by plotting the v-

velocity streamlines at three instants 0 0 0, , 2e et t t t T t t T      and 0 bt t T   where 15b eT T . 

The quasi-periodic vortex shedding pattern as shown in Figure 4-12 at two instants separated by 

bT  is the same. Changing the oscillation amplitude can cause transition from a quasi-periodic to a 

phase-locked state as in Figure 4-13.  

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 
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Figure 4-12: The v-velocity contours for A/D=0.175 with 1
e s

f f   for (a-d)

0 0 0
, , 2

e e
t t t t T t t T      and 15

b e
T T . 

For A/D=0.5 the v-velocity field shows a similar vortex shedding pattern to the case of the 

stationary cylinder with an increase in the longitudinal spacing between the vortices leading to the 

period of the vortex shedding twice as the period of the base flow. The v-velocity field visualization 

in Figure 4-13(b) indicates that the vortex shedding is periodic over two cylinder oscillation 

periods, which confirms the two-dimensional simulation results. In comparison, the 3D v-velocity 

field of the wake is similar to the two-dimensional one with a small amount of spatial effect due to 

the three dimensional instabilities. This may be due to the fact that the wake flow is effectively 

two-dimensional and laminar. 

 

 

Figure 4-13: (a-c) The transverse velocity contours with 1
e s

f f   over two oscillation periods for 

(a-c) stationary cylinder, (d-f) A/D=0.5. 

The transverse velocity field can be reconstructed using the POD dominant modes to show the 

relation between vortex shedding modes and the v-velocity field.  

(a) (b) 

(c) (d) 

(a) (b) (c) 

(d) (e) (f) 
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Figure 4-14: Reconstruction of v-velocity field for oscillation amplitudes A/D=0.0, A/D=0.175 

and A/D=0.5 (a-c) using two first modes of the 2D POD (d-f) using four eigenmodes of the 3D 

POD. 

The reconstruction is made using the first two POD modes for the 2D case or four POD eigenmodes 

for the 3D case. As shown in Figure 4-14, the 2S mode for the stationary cylinder case is clearly 

evident. For A/D=0.5 the reconstructed eigenmodes are associated with the basic 2S wake mode 

with half shedding frequency which are similar observation of the transverse velocity contours 

given in Figure 4-13 from numerical computation. 

4.4 Conclusion 

The two and three-dimensional simulations of wake flow past over a circular cylinder forced to 

harmonic inline oscillation are performed using the immersed boundary condition method. The 

phase plane, power spectra and time series of the lift coefficient with v-velocity POD modes are 

used to analyze the wake dynamics and bifurcations. The wake pattern and torus doubling 

bifurcation observed in 2D simulation is in good agreement with the 3D results since the 3D 

features are weak. The main shedding frequency is almost equal to the primary 2D instability 

without any new time scale introduced from the secondary 3D transition. However, the amplitude 

of the lift coefficient is lower due to the three-dimensional distortions of the 3D instability. Thus 

the 3D results show very small variability from the 2D model for forced oscillation cases, despite 

(a) (b) (c) 

(d) (e) (f) 
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the significant differences found in the fixed cylinder case. For the stationary cylinder case, the 

wake initiates the transition from 2D to 3D flow by the spanwise secondary instability. But the 

cylinder oscillation inhibits the growth of three-dimensional perturbations as the transverse 

velocity streamlines are periodic without changing sign and almost independent of z-direction. This 

shows that the cylinder motion has a stabilization effect on the wake dynamics and delays the 

secondary transition to three dimensional. Thus the vortex shedding modes and the stability of the 

flow with respect to the three-dimensional fluctuations are dependent on the cylinder vibration. It 

is shown that the wake flow at small oscillation amplitude becomes stable to three-dimensional 

perturbation. Although 2D simulation is a simplifying assumption compared to three-dimensional 

approach, the results confirm that the vortex shedding remains two-dimensional. 

  



  86 

 

GENERAL DISCCUSIONS  

The research performed in the present Thesis is motivated by better understanding of the physical 

mechanism of the vortex induced vibration (VIV). The transition from steady state to spatio-

temporal complexity and turbulence in the wake flow can be uncovered by studying the 

fundamental wake flow over a simple geometry such as a cylinder which leads to the development 

of fluid-structure interaction. The forced inline excitation is employed to study the wake flow 

dynamics. The work approach combined the equivariant bifurcation and normal form theories with 

numerical simulation to uncover the key factors behind the formation of the different wake patterns.  

The first paper (Chapter 2) includes the two-dimensional numerical computations of the wake flow 

subjected to inline cylinder oscillation with harmonic forcing frequency for selected oscillation 

amplitudes. A low order model was also developed to reduce the number of degree-of-freedom in 

the problem. The eigenfunctions of the v-velocity were then computed by POD approach using the 

flow field snapshots from the CFD simulation. The resulting dominant modes were used to model 

the wake flow characteristics over a wide range of oscillation amplitudes and forcing frequency 

ratios. Two primary modes are considered invariant under the action of a symmetry group. The 

vortex shedding primary modes have unique symmetry properties. These symmetries were applied 

to develop an analytical model using the equivariant bifurcation theory. The wake dynamics was 

modeled by a set of ODE which provides analytical insight into the physical mechanisms. 

From the CFD results, by increasing the amplitude of oscillation, the dominant modes reach a 

quasi-periodic state in the transition region and by later increase in the forcing amplitude two 

travelling waves undergo a torus-doubling bifurcation. The cylinder motion energized the 

asymmetric mode to interact with the first mode leading to the torus doubling bifurcation. However, 

the bifurcated S mode, which is period doubled, has higher amplitude than the asymmetric mode. 

This confirms the period-doubled symmetric transverse velocity pattern observed in simulations. 

The third harmonic of the lift coefficient exists in the response of the wake flow at A/D=0.5 due to 

the inline motion of the cylinder. 

The nonlinear interaction between symmetric and asymmetric modes was qualitatively predicted 

by the analytical model. The linear bifurcation parameters were changed due to the cylinder motion 

leading to the symmetry-breaking bifurcation. The mode competition between these two modes 

has been investigated while they bifurcate simultaneously. In the linear stability analysis the 

transitions of the primary modes were investigated by movement of the Floquet multipliers in the 
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Argand diagram. The complex-conjugate pair of Floquet multipliers collides with the negative real 

axis and crosses the unit cycle at -1 confirming the torus doubling bifurcation. In addition, a 

stability analysis of the coupled amplitude equations was performed in Poincare space where two 

steady travelling waves undergo the torus doubling bifurcation. The bifurcated modes have the 

same spatial symmetries as in fixed cylinder case but with different wavenumbers. The symmetries 

and wavelength of each mode could therefore be determined characterizing the bifurcated pattern. 

Thus, the symmetry-based model correctly predicts the bifurcation sequences that were observed 

in CFD results. 

Employing the same methodology in the second paper presented in Chapter 3, the forced super 

non-harmonic and superharmonic streamwise excitation simulations were performed. Various 

vortex shedding patterns were observed for different forcing frequency ratios and oscillation 

amplitudes within the identification of the lock-on region using phase plane and power spectra of 

the lift coefficient. For the harmonic excitation case, the basic flow undergoes a Hopf bifurcation 

at A/D=0.175 and since the second frequency is lower than the main one, the beating phenomenon 

was observed. At A/D=0.5 the transition from the quasi-periodic state to the lock-on state occurs 

where the dominant mode keeps the spatial symmetry of the base flow with half shedding 

frequency. For forcing frequency ratio / 1.5e sf f  , the lock-on region becomes wider than the 

harmonic excitation case and covers A/D=0.175. The competition between symmetric and 

antisymmetric primary modes leads to the breaking of the reflection symmetry and the P+S mode 

bifurcates from the mode interaction. For the superharmonic excitation case with / 2e sf f  , the 

symmetric S mode replaces the asymmetric basic mode 2S while the v-velocity mode switches 

from symmetric to asymmetric. Lock-on also occurs within the oscillation amplitude range of 

[0.05-0.5]. The bifurcation analysis of the analytical model correctly predicts the symmetry of the 

primary modes, the dominant mode wavelength and bifurcation sequences. However, the 

frequency of the second mode does not match for the superharmonic case. In this case, more than 

two bifurcation parameters are involved which shows the complexity of the mode interaction. 

Furthermore, the change in the vortex shedding pattern is found to cause a significant effect on the 

force acting on the cylinder as the lift coefficient magnitude is reduced in the symmetric pattern. 

Finally, the secondary instability of the wake flow was considered in the third paper presented in 

Chapter 4. The three-dimensional simulations of the wake flow at Re=200 using the SST model 

were performed to investigate the cylinder motion effect on the vortex shedding. The three-
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dimensional simulations show that the wake flow dynamics remains almost two-dimensional at 

Re=200. It was shown that the vibration of the cylinder improves the spanwise correlation of the 

vortices and suppresses the three-dimensional instabilities, although there are some spatial effects 

which lead to the random distribution of vorticity downstream. This suggests that the cylinder 

motion has a stabilizing effect in the flow and the two-dimensional simulations provide good 

results, thus the wake flow can be assumed two-dimensional.  
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CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

As mentioned above, the research is motivated by fluid-structure interaction results from VIV. The 

objective of this work is to investigate the pure inline VIV effect to improve the prediction methods 

of wake flow dynamics. Forced oscillation of a rigid cylinder for selected oscillation amplitudes 

and forcing frequency ratio were carried out to study the wake response to the prescribed motion. 

The following paragraphs outline main contributions of this Thesis and recommendations for future 

work are presented. The main contributions of the Thesis are:  

1. Development of the modal amplitude equations, with the role of normal form symmetries 

through equivariant bifurcation theory, capable of predicting the forced inline cylinder wake 

dynamics.  

2. Bifurcation and stability analysis of the coupled amplitude equations to predict the bifurcation 

sequences that observed in CFD results. 

The first two primary modes which exist for various oscillation amplitudes with harmonic forcing 

frequency ratio are employed to model the wake dynamics. The symmetries and periodicity of 

these modes are determined by POD analysis of the v-velocity data. Each of these modes has its 

own symmetry properties. The symmetries of the spatial eigenfunctions corresponding to the 

dominant v-velocity modes are applied to the governing equations of the system to develop modal 

amplitude equations through the bifurcation theory. The coefficients of the amplitude equations are 

calculated through the least squares method using the chronos of two primary modes, which are 

transformed into complex signals by Hilbert transformation. Thus, the frequency saturation 

information is included as the coefficients are complex. Two linear terms of the amplitude 

equations are affected most by the variation of the streamwise oscillation and thus considered as 

the bifurcation parameters. By changing the bifurcation parameters, the low order amplitude 

equations can have different solution branches with less symmetry than the symmetry of the 

original equations. The sequence of bifurcations observed in CFD and previous experimental 

results are well predicted through bifurcation analysis of the symmetry-based model. 

3. Identification of the lock-on region and various vortex shedding patterns by simulating the 

forced inline oscillation of a circular cylinder in the range of frequencies / [1 2]e sf f    consisting 

the harmonic and superharmonic excitation region with amplitude ratio belongs to the range 

/ [0 0.5]A D  . 
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4.  Bifurcation analysis of the amplitude equations to predict the sequence of bifurcations occurs 

according to the combination of oscillation amplitudes and forcing frequency ratios.  

The wake structure and lock-on phenomenon are numerically investigated in the near wake region 

for Re=200 with oscillation amplitude extended up to 0.5D and three frequency ratios 1,1.5e sf f   

and 2. The wake flow with velocity, vorticity contours and lift coefficient transitions at each 

combination of oscillation amplitudes and forcing frequency ratios are investigated and the lock-

on region is determined. The bifurcation scenario is applied to the developed analytical model to 

study the mode competition between symmetric and asymmetric ones and determine the types of 

bifurcation and wavenumber selection of the solution branches. The analytical results match well 

with those obtained numerically. 

5. Investigation of the stability of the two-dimensional wakes to three-dimensional perturbations 

at Re=200 through POD analysis of three-dimensional forced harmonic inline wake flow of a 

circular cylinder. 

The three-dimensional wake flow past a circular cylinder forced to oscillate inline to the free-

stream is also investigated to verify the 2D results. The numerical simulations are performed for 

three selected oscillation amplitudes A/D=0.0, 0.175 and 0.5 with frequency equal to natural 

shedding frequency at Re=200. The validity of two-dimensional flow field for Re=200 subjected 

to inline harmonic oscillation is confirmed. 

Recommendations for future work       

 As noted in the conclusions, the dominant frequency of the transverse velocity is a good 

representative of the vortex shedding frequency except for the superharmonic case for A/D=0.5. 

Since there is a nonlinear coupling between the streamwise and transverse velocities, the vorticity 

component may be a better representative for identification of the shedding frequency since it 

contains both the u and v velocity effects. Although the forced harmonic and superharmonic 

excitation of the wake flow are investigated, there are number of issues that remain unresolved. 

The first one is the subharmonic excitation region in which from previous studies it seems that the 

vortex shedding may deviate from the horizontal axes and thus the flow becomes doubly periodic. 

For harmonic and superharmonic cases, the vortex shedding is parallel to the x-axis and thus the 

one-dimensional oscillatory pattern is used to develop the analytical model although the flow is 

temporal-doubly periodic. However, if the wake flow is two-dimensionally periodic a dual lattice 
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should be used to model the wake flow dynamics. Another recommendation for future work is the 

characterization of the secondary instabilities in the wake flow investigated at higher Reynolds 

number. At higher Reynolds number three-dimensional effects appear and spanwise effects can 

change the structure of the wake flow. Using a temporal model is then not sufficient due to the 

spatial dislocations and the Ginzburg-Landau model should be employed. Experiments can also be 

performed over a wide range of frequency ratios and oscillation amplitudes in the longitudinal 

direction making possible to a mapping of the wake modes and a complete Griffin-plot. 

Publications 

This PhD project has led to three journal articles and one conference paper. The papers submitted 

to journals are: 

NABATIAN N., MUREITHI N. W. (2014), Bifurcation and stability analysis with the role of 

normal form symmetries on the harmonic streamwise forced oscillation of the cylinder wake, 

(paper submitted to International Journal of bifurcation and chaos).  

NABATIAN N., MUREITHI N. W. (2014), Lock-on vortex shedding patterns and bifurcation 

analysis of the forced streamwise oscillation of the cylinder wake, (paper submitted to International 

Journal of bifurcation and chaos). 

NABATIAN N., MUREITHI N. W. (2014), POD analysis of three-dimensional forced harmonic 

inline wake flow of a circular cylinder, (paper submitted to TCSME). 
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APPENDIX A – MATHEMATICAL FORMULATION OF POD 

In order to model and control the vortex shedding, numerical computations of forced oscillation 

are needed. Due to the inherent nonlinearity in the Navier-Stokes equations and complexity of 

infinite-dimensional flow dynamics, the full simulation is a challenging task. So, some type of 

approximation is introduced to simplify the flow computation via reduced order model. Many 

reduced-order model techniques in fluid mechanics are derived from the proper orthogonal 

decomposition (POD)-Galerkin projection approach. The POD provides a tool to formulate an 

optimal basis or minimum degree of modes (or freedom) required to represent the system 

dynamics. This method is known as Karhunen-Loeve expansion in component analysis. It has been 

applied to many engineering and scientific applications including low-dimensional dynamics 

modeling (Berkooz et al., 1993; Deane and Mavriplis, 1994; Noack et al., 2003); image processing 

(Holmes et al., 1996), and pattern recognition (Sirovichi and Kirby, 1987). POD has been widely 

used to identify the coherent structures in turbulent flows and examine their stability (Holmes et 

al., 1996) . 

The flow field data (u,v) is generated from a numerical simulation and is assembled in a matrix 

2S NW   as shown below. The fluctuating velocity matrix is calculated by subtracting the mean 

velocities from the individual snapshot. Each row represents a time instant or a snapshot and S is 

the total number of snapshots for N grid points in the domain. The eigenvalues represent the 

measure of kinetic energy of each mode.  

 

(1) (1) (1) (1)

1 1

(2) (2) (2) (2)

1 1
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N N
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Mathematically, the eigenfunction Φ  is computed in a way that the following relation becomes 

maximum 

 

2

2

,Φ
,

Φ

u
 (A-2) 

where .  denotes the average operator in time. This equation is equivalent to a Fredholm integral 

eigenvalue represented as 
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Ω

( , )Φ Φ ,j j

ijR x x x dx x   (A-3) 

where ,i j  are the number of velocity components and ( , )R x x  is the space-time correlation tensor 

and the eigenfunctions are the POD modes. The average operator is evaluated in time. In this 

approach, the autocovariance matrix is computed as 

 TR W W  (A-4) 

The POD modes are then calculated by solving the eigenvalue problem  

 
i i iRQ Q  (A-5) 

where i  and 
iQ  are the eigenvalue and eigenvector. The POD modes are computed as follows 

 
1

Φi i

i

WQ


  (A-6) 

The velocity eigenmodes have relation as Φ .Φi j ij  where ij  is the kronecker delta function 

which shows the orthogonally characteristic of these modes. The optimality is determined by 

capturing the greatest possible fraction of the eigenvalues for a projection set of modes. In another 

approach, the singular value decomposition (SVD) of the data is computed. The POD 

eigenfunctions of the data ensemble, Σ TW U V  are computed via three methods 

1. 2 1
:      (   )T S S T

i i i i i

i

WW R W WV V andU WV if S N


    

2. 2:  (   )T N N T

i i iWW R WW U U if S N   

3. :S N T

i i iW R W U V   

where Σ  contains the singular values of W .The descending order of the singular values in Σ  are 

positive and real. The i  is related to the eigenvalue i  by 2

i i  . The eigenvalue represent the 

energy contained in each eigenfunction. 

Galerkin projection 

Then, the reduced order model can be formed using Galerkin projection onto this subspace. The 

dynamics of the system can be described by 
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 ( )  ( ) ( )x t f x t  (A-7) 

Galerkin projection simply projects the original vector field onto the r-dimensional subspace 

through     r r rx t P f x t . Writing 

    
1

,
r

r j j

j

x t a t 


  (A-8) 

Substituting into the equation (A-7) and multiplying by T

j  leads to a set of r ODEs that describe 

the evolution of  rx t . 

     ,        1, .,T

k k ra t f x k r    (A-9) 

Stuart-Landau equation 

In this work, instead of using Galerkin projection, the reduced order model of the transverse 

velocity field was developed within the framework of the Landau equation using symmetry-

equivariant bifurcation theory. The Landau model was first applied in hydrodynamics to perform 

the stability analysis of a steady flow. A velocity perturbation 1( , , , )u x y z t  of the steady flow 

0( , , )u x y z  of the Navier-Stokes equations is expanded as a sum: 

  *

1

1

( , , , ) ( ) ( , , ) ( ) ( , , ) ,i i i i

i

u x y z t A t g x y z A t g x y z


    (A-10) 

where ( , , )ig x y z  satisfies the boundary condition and the temporal amplitude ( )iA t  satisfies the 

evolution equation 

 ( ); 1,2,...i
i i i j

dA
s A G A j

dt
    (A-11) 

where iG  includes the nonlinear terms of the mode interaction results from the nonlinear partial 

differential equation. The Landau equation is then truncated form of the above equation. The 

independent mode 
tA e with relative growth rate r ii     is considered for temporal 

amplitude term. When Re Recr  all disturbances are stable and 0r   while for Re Recr there 

is only one normal mode with 1 1 1r ii    ( 1 0r  for marginal stability at Re Recr ). As Re 

increases above Recr , 1 0r   but 0r   for all the other modes. Thus, the expression for the 

amplitude is no longer valid as the modulus does not grow infinitely. The Landau hypothesis leads 



  102 

 

to definition of the term which bounds its limit. The following term is the first term of the expansion 

of the solution in powers of A  and *A .  

 

2

2( )
2 ( ) .r

d A t
A t

dt
  (A-12) 

The second term is of the third order in A . There are two constraints for the validity of the amplitude 

equation. First the average value of 

2
( )d A t

dt
 should be considered on time   long compared to 

the period 2 iT   meanwhile small enough to keep 1u  as small perturbation.  The boundary 

condition should also be satisfied. Due to the solvability condition, the mean value of the third-

order term is almost null, so the second term is of fourth order: 
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which is proposed by Landau in 1944. The steady solution for the amplitude is then  
1

22 r rA l

, where r  plays the role of bifurcation parameter with the following relation 

 2(Re Re ) (Re Re ) ,r cr crk O      (A-14) 

where k  is the characteristic frequency. Substituting Eq. (A-14) in the steady amplitude relation 

leads to 

 
1

2(Re Re ) .crA    (A-15) 

The stability analysis of a given flow by Landau equation was derived by Stuart in 1958 (Provansal 

et al., 1987a). The Stuart-Landau equation governing the weakly nonlinear dynamics of the 

amplitude of perturbations near the bifurcation is then given: 
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2

( ) 1
( ) ( ) ,

2

1
( )

2
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i i

d A t
A t l A t

dt

d
l A t

dt






 

 

 (A-16)  

As mentioned above in the present work, the nonlinear mode interaction of v-velocity field have 

been investigated within the framework of the landau equation using equivariant bifurcation theory 

by defining the invariant and equivariant functions described in Appendix C.   
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APPENDIX B – INTRODUCTION TO BIFURCATION AND LINEAR 

STABILITY ANALYSIS 

Bifurcation occurs only when the system is structurally unstable. The stability of system is studied 

by analyzing the fixed point stability. The equilibrium point of the system is called fixed point. 

Fixed points in the phase space are calculated by solving the equation   0x F x  . The stability 

of the fixed point is studied by applying a small perturbation to the system located at the considered 

fixed point 

 x x      x (x )F         (B-1) 

Using the approximate polynomial       2x x J x ( )F F O      , where  J x  is the Jacobian 

matrix of F, the system evolution   arises from the perturbation can be obtained from the 

variational equation 

   2J x ( )O     (B-2) 

The eigenvalues i  of the Jacobian matrix is found by solving  J x i i i  . Writing the 

variational equation in the form of i i i   leads to the integration 

 0( ) itt e
   (B-3) 

Depending on the sign of the real part of the eigenvalues of Jacobian matrix i , the perturbation i  

will be amplified or damped describing the stability of such equilibria.  

The first order differential equation can be a function of control parameter as 

 ( , )x f x   (B-4) 

where   is the bifurcation parameter. A bifurcation marks qualitative changes of a system when 

the parameter   is varied. As the system undergoes the bifurcation it can reach to the new 

equilibrium, periodic or chaotic state. Different types of singular points are presented in Figure B-

1. 
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Figure B-1: Different types of the fixed point (a): node; (b): saddle; (c): sink; (d):centre. 

As mentioned, the nature of the fixed point is changed by variation of the control parameter . 

Bifurcation can be subcritical if the number of fixed points decreases, supercritical if it increases 

and transcritical if the number of singular points stays unchanged. The bifurcation diagram in 

Figure B-2 shows the stability of the fixed points as a function of the control parameter . 

 

Figure B-2: Bifurcations of singular points. (a): Saddle-node bifurcation; (b): Supercritical 

pitchfork bifurcation; (c): Transcritical bifurcation; (d): Supercritical Hopf bifurcation. 

A structurally stable system comes back to its equilibrium position if its parameters are slightly 

perturbed. A system is structurally unstable if its fixed points are non-hyperbolic. A fixed point x  

is non-hyperbolic if the Jacobian  , ( / )x xJ x f x     at that point has any eigenvalue with zero 

real part. Structural instability is necessary for bifurcation to occur, but it does not imply bifurcation 

automatically. The bifurcation size is determined by the number of eigenvalues of the Jacobian 

matrix with zero real parts. If there is no eigenvalue with zero real part, then no bifurcation occurs. 

Having two or more eigenvalues with zero real parts, then bifurcation of two or higher orders can 

take place. The general forms of the typical bifurcations are followed. The general form of the 

pitchfork bifurcation is represented in equation (B-5) with singular points are found by letting 

0x   leads to 





(a) (b) (c) (d) 

(a) (b) (c) (d) 
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 (B-5) 

The eigenvalues of Jacobian matrix of pitchfork bifurcation are 

   2, 3
x

J x x
x

 


  


 (B-6) 

By substituting the fixed points, the eigenvalues are    for 0x   and 2    for x   . 

When 0  , the system is structurally unstable and bifurcation occurs. For 0  , the only 

singular point is 0x  , which is stable as  ( ) 0Re    . When 0  , the singular point 0x   

becomes unstable because of  ( ) 0Re     and two other singular points x    are added 

which both stable as  ( ) 2 0Re     . The supercritical and subcritical solution branches deduced 

from the pitchfork bifurcation are presented in Figure B-3. 

 

Figure B-3: (a) Supercritical pitchfork bifurcation diagram, (b) subcritical pitchfork bifurcation 

diagram, Solid line is stable states and dashed lines relate to unstable conditions  

The saddle-node bifurcation is described in the form of 
2x x   with singular points x   . 

The Jacobian matrix of the saddle-node bifurcation is  , 2J x x    with eigenvalue 2x   . 

The bifurcation parameter is 0   and fixed point stability is determined by    2 0Re     . 

The fixed point x   is therefore stable while x    is unstable as shown in Figure B-4. 
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Figure B-4: Saddle node Bifurcation diagram, solid line (stable), dashed line (unstable). 

 

The transcritical bifurcation general form with fixed points is 

 

2 ,

0,  .

x x x

x x





 

 
 (B-7) 

The transcritical Jacobian matrix obtained from equation (B-7) is  , 2J x x    with eigenvalue 

2x   . The bifurcation parameter is μ 0 . The singular point 0x   is stable for 0   and 

unstable for 0  . The second fixed point x   is unstable for 0   and stable for 0  . The 

two equilibrium solutions therefore meet and change stability in the transcritical bifurcation as 

shown in Figure B-5. 

 

Figure B-5: Transcritical bifurcation diagram, solid line (stable), dashed line (unstable). 
 

The Hopf bifurcation is characterized by a limit cycle, which means that the equilibrium point 

bifurcates into periodic motion. Therefore the bifurcation space is two dimensional. The general 

form of Hopf bifurcation with fixed points is 

      

  

  
 

2 2

2 2

,

,

, ) 0,0 .(

x y x x y

y x y x y

x y





    

   



    (B-8) 
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The Jacobian matrix of the Hopf bifurcation is  ,J x i   . The bifurcation point is 0  . 

The singular point is stable for   0   and unstable for 0  . At 0  , a stable limit cycle exists 

for 0  . The Hopf bifurcation, like the pitchfork bifurcation has supercritical and subcritical 

forms shown in Figure B-6. The subcritical form has inverted sign of equation (B-8) and so inverted 

stability. 

 

Figure B-6: Supercritical Hopf bifurcation diagram. 
 

The limit cycle arises from the supercritical Hopf bifurcation can be subject to destabilization. The 

stability of limit cycle is studied through a periodic point which transformed by the period of limit 

cycle using the Poincare section. 

 1 ( )n nx G x   (B-9) 

The periodic solution corresponds to one periodic point x  of the map G  defined by x n p nx x   

where p is the period of the limit cycle. Stability of the periodic orbit can be studied using Floquet 

theory. When the limit cycle loses its stability and undergoes a Hopf bifurcation, the limit cycle 

turns to a torus as shown in below figure. 

 

Figure B-7: Limit cycle undergoes torus doubling bifurcation. 



  108 

 

The evolution of the system then is characterized by two frequencies, one related to the rotation 

around the principle axis and second to the rotation around the tore. The system depending on the 

frequency ratio to be rational or not can be periodic or quasi-periodic. 

Another type of bifurcation is period-doubling or flip bifurcation that occurs only in periodic orbits 

as shown in Figure B-8.  

 

Figure B-8: Bifurcation diagram of a period-doubling cascade. 

When the limit cycle loses its stability and the eigenvalues of the system takes the value -1, the flip 

bifurcation occurs. The limit cycle undergoes a period-doubling and period-2 cycle appears at low 

  value. With further increase of the bifurcation parameter  , the period-2 undergoes another 

period-doubling and becomes period-4 cycle and so on. This sequence of period-doubling 

occurrence is called period-doubling cascade (Hoyle, 2006). 

Numerical Floquet Theory 

First, the basics of the Floquet theory are reviewed. If X  is a fundamental solution matrix for a 

periodic system  ( )u A t u
 
with  0X I , where I  is the identity matrix, then by calculating 

the periodic coefficient matrix ( )A t  at t t    a new solution ( )X t   is produced. These two 

solution matrices can be related via matrix  

   ( )X t X t C   (B-10) 

Substituting t=0 into equation (B-10) yields the monodromy matrix  C X  , that is integrated 

on the interval  0  . Let ( )Y t  be another solution such that    Y t X t R  where columns of R  
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are the matrix of independent eigenvectos of the matrix C . Rewriting equation (B-10) in terms of 

( )Y t  leads 

     1 ( )Y t Y t R CR Y t      (B-11) 

where   is a diagonal matrix with the eigenvalues of C . Thus the ith column of equation (B-11) 

can be written as 

   ( )i i iY t Y t    (B-12) 

The solution of equation (B-12) can be in the form of   ( )kt

i i iY t p t  where k  is an unknown 

constant and ip  an unknown function. Substituting this into equation (B-12) gives  

     ( ( ))
k t kt

i i i i ip t p t


   


   (B-13) 

It is satisfied when 
1

k


  and ( )ip t  is a periodic function with period  . Then the solution 

becomes   ( )
t

i i iY t p t  where    i ip t p t  . To have a stable solution from this model, iY   

should remain bounded as t  . Therefore the eigenvalues of the matrix C  determine the 

stability condition. If 1i   then   0iY t   as t  . Likewise if 1i   then  iY t   as 

t  . Thus, it is confirmed that norm of the eigenvalues of the matrix C  should be less than or 

equal to unity in order to have stable solution. 

Poincare' Map for periodically excited forced vibration 

The idea of Poincare comes from the response to this question that how the orbit behaves if we 

start very close to it. 

 

Figure B-9: Schematic of the perturbed fixed point around the periodic orbit. 
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The periodic function with initial perturbation is defined as 
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 (B-14) 

Therefore, the original perturbation is defined as 
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 (B-15) 

which is called variational equation. For 𝑡 = 𝑡0 we have 

  
 

 
 0 0 0 0 0 0

0 0 0 0 0 0

0 0

, , , ,
, , , , n n

t t x t t x
t t x t t x I

x x

 
  

 
    

 
 (B-16) 

So the sensivity to the ICs is investigated by 
 0 0

0

, ,t t x

x




. Considering a linear system in the form 

of  ( ) ( )x t A t x t  having a solution due to the perturbation as 

  
 

 0 0

0 0 0 0 0

0

, ,
, , , , ,

t t x
t t x t t x

x


 


  


 (B-17) 

hence 
 0 0

0

0

, ,
( , )STM

t t x
t t

x





. Thus, the partial derivative of the solution with respect to the 

initial condition is the state transition matrix (STM). The STM can be found numerically by solving 

      0 0 0, , ,   ( , )STM STM STM n n

d
t t A t t t t t I

dt
      (B-18) 

Now, for a nonlinear system the same analysis is applied 
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 (B-19) 

As the RHS should equal to the LHS at 0t t , then  
0 0 0, ,x n nt t x I  . In the linear system 

  
 

,
( )

f x t t
A t

x t





 which means that  

0 0 0, ,x t t x  is the STM. Now, going back to the general 

solution of the nonlinear system, the Poincare map is 

         
0 0

0 0 0 0 0 1 0 0

0 0

, , , , , , , ,

T t T t

n n nT t t x x f t x d x P x x f t x d        

 

       
 

(B-20) 

The fixed point is   
0

0

0

, , , 0

T t

FPf t x d   



  and the stability analysis defined as 

 
  
 

 0

0 0 0 0

0 0 00

, , , , ,( )

, ,

T t

FP

FP

f t x t xP x
I d

x t x x

    


 

  
 

    (B-21) 

Hence, the monodromy matrix is nothing more than the Jacobian of the Poincare map. 

   
 

 
0

0 0 0

, ,

( , )
, , , , ,   [0, ]

FP

FP FP x FP

x t t x

d f x t
t t x t t x t T

dt x 

 






 (B-22) 

From the Floquet Theory we know that the ith column of the monodromy matrix is found by 

integrating the variational equation with an initial condition equal to the ith column of the identity 

matrix for one period. The monodromy matrix differential equation in general case is calculated by 

numerically integrating with given input values of the equilibrium point, period and the system 

parameters. Thus to numerically determine the stability and bifurcation type of the solution, the 

following procedure in Matlab is summarized as 

1. The monodromy matrix is calculated. 

2. The norm of the eigenvalues of the monodromy matrix is checked to determine the stability 

and bifurcation type.  



  112 

 

APPENDIX C – INVARIANT AND EQUIVARIANT DERIVATION 

The bifurcations of the systems with symmetry, including those where patterns are observed can 

be analyzed using group theory which is known as equivariant bifurcation theory. This theory 

determines that how the symmetry of patterns is affected by symmetry of the governing equations 

that produce them. The governing equations are derived through defining invariant and equivariant 

functions. Different systems are analyzed using this theory (Amdjadi, 2002; Dawes, 2000; Dawes, 

2001; Dawes and Proctor, 2008; Ermentrout et al., 2012; Gunaratne et al., 1994; Porter and 

Knobloch, 2000, 2001; Rucklidge, 1997; Silber and Skeldon, 1999). The invariants and equivariant 

functions of the proposed model are developed as 
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Invariants 
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