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RÉSUMÉ

Au Canada, les infrastructures des ponts vieillissent rapidement. En 2007, un grand

nombre de ponts ont dépassé 57% de leur durée de vie, estimée à 43,3 années. Ce ratio aug-

menté 72% au Québec, ce qui indique qu’un bon nombre de ces ponts sont structurellement

ou fonctionnellement déficient (Gagnon and Gaudreault 2011). Ce contexte met l’accent sur

la nécessité de ce basér sur la performance, la rentabilité et l’optimisation des techniques de

construction et l’amélioration des stratégies de rénovation. L’appui du pont est un élément

essentiel de l’ensemble de la structure. Étant donné que la durée de vie d’un appui de pont est

plus courte que celle du pont lui-même, un nombre considérable de déficiences dans les ponts

peut être dû à un dysfonctionnement de l’appui du pont. Le type d’appui du pont qui est

largement utilisé est appui de type pot (élastomère confiné), qui a été développé en Europe

au début des années 1960. Comme d’autres types d’appuis, l’appui de type pot est utilisé

pour supporter une superstructure de pont et accommoder ses mouvements indépendamment

des éléments de support, c’est-à-dire piles et culées (Tonias 1994).

Quelques codes de pratique et spécifications qui ont mis l’accent sur la conception des

appuis de type pot sont la norme européenne EN 1337-5 (EN 2005), AASHTO LRFD spé-

cifications de conception de pont (AASHTO 2012), le rapport NCHRP 432 (NCHRP 1999)

et CAN/CSA-S6-06 (CAN/CSA 2006). Certaines des règles prescrites par ces codes ne sont

pas claires et devraient être validées pour assurer que la conception répond à la pratique

de l’ingénierie actuelle. D’autre part, l’étude du comportement de l’appui de pont exige des

techniques d’analyse de modélisation dictées par la présence de l’élastomère, qui est un ma-

tériau incompressible fortement non linéaire, couplé aux mécanismes complexes impliquant

des interactions de contact non linéaires entre les différentes parties du BPE. Ces analyses

avancées sont généralement fastidieuses et demande beaucoup d’expertise, ce qui explique

principalement le manque des publications scientifiques dans ce domaine.

L’objectif principal de cette recherche est d’étudier les performances structurelles d’appuis

à pot fixes par modélisation des éléments finis simplifiés. Dans le chapitre 2, les normes et

les directives les plus importantes de la conception de BPE ont été introduites et l’origin des

équations a été discutée en se référant des études théoriques disponibles. Ce chapitre répond

à la nécessité de fournir un document qui étudie les raisons derrières les spécifications des

normes. Par la suite, avant de procéder à l’analyse des éléments finis, la précision du logiciel

pour les conditions de contact a été évaluée au chapitre 3. Dans ce chapitre, les résultats de

la modélisation par éléments finis de deux corps cylindriques en contact ont été comparés

aux formulations disponibles de contact analytiques. Le chapitre 4 présente le processus de
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conception des appuis de pont de type pot comme une procédure à suivre étape par étape

par le concepteur. Après avoir évalué la convergenc du logiciel d’analyse des éléments finis

pour le problème de contact, chapitre 5 présente la méthode et les hypothèses utilisées pour

générer des modèles éléments finis 3D. Ces modèles comprennent les modèles d’appui à pot

ainsi que des modèles disque et anneau développé pour simuler les conditions de contact dans

un appui de pot. à la fin de ce chapitre une étude paramétrique de régression a été effectuée

sur les résultats de l’angle de contact obtenus par modélisation EF. Cette étape a été prise

en compte due à l’impact important de l’angle de contact entre le piston et le pot dans la

procédure de conception de l’appui à pot et son efficacité dans les formulations de conception

recommandées dans les normes.
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ABSTRACT

Bridge infrastructure in Canada is aging rapidly, with a large number of bridges exceeding

57% of their service life estimated at 43.3 years in 2007 (Gagnon and Gaudreault 2011). This

ratio increases to 72% in Quebec, indicating that many of these bridges are structurally or

functionally deficient. This context emphasizes the need for performance-based, cost-effective

and optimized construction techniques and retrofit strategies. A bridge bearing is a crucial

part of the whole structure. Since the total lifetime of a bearing is much less than that of the

bridge itself, considerable number of deficiencies in bridges can be due to bearing malfunc-

tion. A widely used type of bridge bearings are elastomeric pot bearings (EPBs), which are

developed in Europe in the early 1960s. As other bearing types, they are used to support a

bridge superstructure and accommodate its movements independently from the supporting

elements, i.e. piers and abutments (Tonias 1994).

Some of the specifications and codes of practice that address the design of pot bearings

include the European Standard EN 1337-5 (EN 2005), AASHTO LRFD bridge design spe-

cifications (AASHTO 2012), the NCHRP Report 432 (NCHRP 1999) and Canadian High-

way Bridge Design Code CAN/CSA-S6-06 (CAN/CSA 2006). Very often, the underlying

assumptions behind the requirements prescribed by these codes for the design pot bearings

are unclear. On the other hand, the investigation of the behaviour of EPBs requires advan-

ced modeling analysis techniques dictated by the presence of the elastomeric pad, which is a

highly nonlinear incompressible material, coupled to the complex mechanisms involving non-

linear contact interactions between the different parts of EPBs. Such advanced analyses are

usually expertise demanding, time-consuming, and usually manufacturer proprietary, which

mainly explains the lack of published research in this field.

The main objective of this research is to investigate the structural performance of fixed

pot bearings through finite element modeling and simplified analytical formulations. For

this purpose, the most important standards and guidelines for design of EPBs have been

introduced, and the rationale underlying main design equations was discussed by referring

to available theoretical work. Before performing finite element analyses on a series of pot

bearings, the accuracy of the contact formulation programmed in the finite element software

was assessed by comparing to classical contact problems for which analytical formulations

are available, such as two cylindrical bodies in contact. The design process of pot bearings

as a step by step procedure to be followed by the practicing engineer was highlighted. The
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assumptions and method pursued to generate 3D finite element models were presented. A

simplified finite element model including a piston and a truncated pot was also proposed

and validated. A regression parametric study was performed on the results of contact angle

between the pot and piston obtained from finite element modeling. The results of these

simplified formulations of contact angle are original and important for the improvement of

design procedures of pot bearings.
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VRd Design resistance transverse forces

VSd Design transverse forces

Vu Vertical load from ultimate load combinations

V ′

Rd Shear resistance within pot walls per unit length

V ′

Sd Design shear forces within pot walls per unit length

w Width of piston face

wRing width of the ring

X, Y, Z Axes of the global system of coordinates

α Value of contact angle

α1 Angle of contact obtained from first regression analysis

αf Angle of contact obtained from final regression analysis

αPerm Rotation angle from permanent loads according to EN 1337

α′

min Negative rotation angles caused by variable loads according to EN 1337
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α′

max Positive rotation angles caused by variable loads according to EN 1337

αmax Design value of maximum rotation angle according to EN 1337

βw Correlation factor

∆ Parameter related to body properties

∆α2 Range of rotation angles due to extreme positions of variable loads

∆tPad Deflection of elastomer due to rotation

δu Vertical deflection due to factored load

γM Partial safety factor

γM2 Connector resistance partial safety factor

γ′ Ratio of vertical to horizontal loads in ultimate limit state

ν Poisson’s ratio

φ Central angle measured positive counterclockwise from the x−axis

r′ Equal to tan(α/4) in Persson method

σs Stress due to hydrostatic pressure

σu Ultimate tensile strength

σxx Principal stress in x direction

σyy Principal stress in y direction

σzz Principal stress in z direction

γ Factor of contact pressure
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CHAPTER 1

INTRODUCTION

1.1 Problem statement

Bridges are one of the first structures built in human history. According to statistics,

considerable number of bridges are deficient in Canada. Some part of this deficiency may be

due to the use of bridge bearings. Elastomeric pot bearings, which were developed in Europe

in the early 1960s, are the most common type of bridge bearings used to support a bridge

superstructure and accommodate its movements independently from supporting elements,

i.e. piers and abutments. These bearings are part of High Load Multi-Rotational bearings

with the ability to transmit large force demands from superstructure to substructure and to

accommodate rotation about any horizontal axis as a function of the applied loads. EPBs

have usually been designed according to a mix of empirical and theoretical procedures.

Different standards, specifications and codes of practice have focused on the design of

pot bearings such as the European Standard EN 1337-5 (EN 2005), AASHTO LRFD bridge

design specifications (AASHTO 2012), NCHRP Report 432 (NCHRP 1999) and Canadian

Highway Bridge Design Code (CAN/CSA 2006). Some of the rules prescribed by these codes

and guidelines were validated by experimental tests, and others are only based on theoretical

considerations, engineering judgment or in-house practice of various bearing manufacturers.

Very often, the rationale behind some of these design rules is unclear and a detailed study to

clarify the underlying assumptions in these documents is essential for the practicing engineer.

The investigation of the behaviour of EPBs requires advanced modeling analysis tech-

niques dictated by the presence of the elastomeric pad, which is a highly nonlinear incompres-

sible material, coupled to the complex mechanisms involving nonlinear contact interactions

between different parts of EPBs. Such advanced analyses are usually expertise demanding

and time-consuming, which mainly explains the lack of published research in this field. Also

by performing an advanced finite element modeling of numerous pot bearings, the assump-

tions stated in the specifications mentioned can be studied further and a numerical method

to estimate design parameters may be developed.
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1.2 Objectives

The main objective of this research is to investigate structural performance of fixed pot

bearings (EPBs) through finite element modeling and analytical formulations of pot bearings.

This objective is achieved through finite element analysis of pot bearings while adopting some

simplifying assumptions under different values of applied loadings. The second objective of

this research project is to prepare a detailed literature review related to the development

and use of EPBs. This step is taken due to lack of a coherent document that focuses on the

most reliable methods specified in different design specifications and discusses the rationale

behind them. The results of this research can be used to modify pot bearing design using the

equation developed in this thesis to estimate contact angle between bearing parts.

1.3 Methodology

One of the main objectives of this research project is to provide a coherent literature

review on different aspects of pot bearings. Numerous sources were consulted such as li-

brary databases, journal articles, conference papers, standards and guidelines, and available

technical reports. The internship at the industrial partners provided valuable information on

various design and manufacturing procedures. The first objective of the research program

was fulfilled by covering the following information regarding pot bearings :

– Introduction to main parts of an a fixed pot bearing and their fundamental mechanical

functions ;

– Mechanical and geometrical properties of pot bearings ;

– Review of standards, specifications and design guidelines of pot bearings.

The literature review shows that some of the existing rules concerning design of EPBs

were validated by experimental testing while others were based on some theoretical contact

considerations which need to be studied further. These theoretical contact formulations are

then applied to some case studies and the results are compared to those obtained from finite

element modeling. This step is taken to verify the accuracy of the results obtained from the

software. By referring to the literature review, the steps that should be followed to design

pot bearings according to various specifications are highlighted.

In the second part of the research project, 3D finite element models of actual pot bearings

are built and the assumptions used to generate the finite element models are discussed. Since

preparing and running finite element model of a pot bearing is a very time consuming due to

nonlinear behaviour of the elastomeric pad and complexities of 3D contact modeling between

piston and the pot, as the next step a simplified finite element model is developed which

includes disk and ring. The accuracy of the disk and ring model is examined by comparing the
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contact angle obtained from both finite element models. Then numerous finite element models

were generated for various loading and geometrical properties for disk and ring model. The

type of mesh chosen was optimized so that it provided accurate results and at the same time

reduced computational burden. To achieve the most acceptable results, some of the prepared

models had to be modified and run again. Then, due to the importance of distribution of

contact forces between piston and pot, the angle of contact through which these forces were

distributed was obtained manually for each model.

After obtaining the angle of contact values from numerical modeling of disk and ring

models, a parametric regression analysis was performed on the results. In this analysis the

effective parameters in contact values between disk and the ring were selected from numerical

modeling and Persson method (as an accurate method for 2D contact problem of a disk and

an infinite ring) and the regression analysis was performed in two steps. In the first step

angle of contact of α1 was obtained from regression analysis of models with one constant

parameter. In the second step, the final angle of contact of αf was obtained from performing

regression analysis on all the numerical results. After presenting an angle of contact in terms

of the available variables, the equations in specifications which consider angle of contact as

180 ◦ can be modified to the value obtained from parametric regression analysis.

1.4 Contents of the thesis

This thesis is organized as follows

– Chapter 1 presents the problem statements, objectives of the research and the metho-

dology followed ;

– Chapter 2 presents a literature review on EPBs and the important guidelines and codes

to design pot bearings ;

– Chapter 3 focuses on verifying finite element modeling with analytical contact formu-

lations ;

– Chapter 4 presents design steps according to the specifications as a continuous proce-

dure ;

– Chapter 5 focuses on generation of finite element models and parametric regression

analysis on contact angles ;

– Chapter 6 provides a conclusion of the research project and discusses the results.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Bridge infrastructure is aging rapidly, with a large number of bridges exceeding their ser-

vice life, and many of which being structurally or functionally deficient (Alampalli et al. 2002 ;

Gagnon and Gaudreault 2011 ; Nystrom et al. 2003). A bridge bearing is a crucial component

having a lifetime generally much less than that of the bridge itself. Therefore, a considerable

number of deficiencies in bridges is due to bearing malfunction. A widely used type of bridge

bearings are pot bearings with confined elastomeric pads, which were developed initially in

Europe in the early 1960s (Atkinson 1991). These bearings are used to support bridge super-

structure and accommodate its movements independently from the supporting elements, i.e.

piers and abutments.

Pot bearings are part of High Load Multi-Rotational bearings since they can (i) transmit

large force demands from the superstructure to the substructure, and (ii) accommodate ro-

tation about any horizontal axis as a function of the applied loads. This type of bearings can

also accommodate translational movements when coupled with a PTFE (Polytetrafluoroe-

thylene) layer and stainless steel slider. Pot bearings have usually been designed according

to a mix of empirical and theoretical procedures.

Failures of first generation pot bearings raised the need for more firm design specifications

and guidelines. The first technical documents were produced without extensive practical re-

search and little data describing the complexities of the behavior of pot bearing components

such as the elastomeric pad was available. Critical issues related to the efficiency of sea-

ling and lubrication were not addressed appropriately. Past experience has shown that clear

and detailed specifications are necessary for the production of high quality bearing devices

while ensuring minimum uniform standards common to design engineers, manufacturers and

bridge inspectors. Such standardization of production techniques was expected to lead to

consistent quality and reduced costs (Atkinson 1991). As such, different standards, specifica-

tions and codes of practice have focused on the design of pot bearings such as the European

Standard EN 1337-5 (EN 2005), American Association of State Highway and Transportation-

AASHTO (AASHTO 2012) and the NCHRP Report 432 (NCHRP 1999). Some of the rules

prescribed by these codes and guidelines were validated by experimental tests, and others

are only based on theoretical considerations, engineering judgment or in-house practice of
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various bearing manufacturers. Very often, the rationale behind some of these design rules is

unclear and should be understood to assure that the design still meets current engineering

needs. The investigation of the structural behavior of pot bearings requires advanced mode-

ling analysis techniques dictated by the presence of the elastomeric pad, which is a highly

nonlinear incompressible material, coupled to the complex mechanisms involving nonlinear

contact interactions between the different parts of pot bearings. Such advanced analyses are

usually expertise-demanding, time-consuming and usually manufacturer’s proprietary, which

can explain the lack of published research in this field.

The main objective of this chapter is to provide a detailed literature review on the me-

chanical behaviour of fixed pot bearings and their design guidelines.

2.2 History of contact problem

One of the most important disciplines of engineering science is contact mechanics and

physics of friction. They have numerous applications in civil engineering such as bearings and

hinges. The problem of contact mechanics depends on various conditions such as existence

of lubrication and material specifications (Popov, 2010).

Contact stresses are caused by pressure of one solid on another over limited areas of

contact. In some cases contact stresses have significant values and are of high importance

since the stresses on or beneath the surface of the contact is the major cause of failure of one

or both of the bodies (Boresi et al. 1978). In contact problems (such as the case of bridge pot

bearings) the contact between the elements does not remain in fixed conditions since stresses

are often cyclic in nature and are repeated several times which may lead to fatigue failure

starting from local fractures. Thus these stresses may limit the load carrying capacity of the

members (Boresi et al. 1978).

Over the years, several researchers have tried to solve the problem of contact between

two bodies. Classical contact mechanics is one of the most reliable results of studying contact

problems between two materials which is associated to Heinrich Hertz. He has solved the

problem of finding principal contact stresses between two elastic bodies with smooth and

continuous surfaces in 1882 with a satisfactory solution by assuming the contact area is

small compared to the dimensions of the bodies (non conforming), the frictional forces in

the contact area can be ignored and that the contact area is infinitely long in one direction

(elastic half-space) (Popov, 2010 ; Johnson 1985).

After presentation of Hertz contact theory, several researchers focused on solving contact

problems for which the assumptions made in Hertz method are not satisfied. For example

as conforming surfaces, case of two dimensional contact of a cylindrical pin in a hole with
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slightly larger radius was studied by Allan Persson who managed to provide a complex solu-

tion for contact angle in 1964 (Persson 1964 ; Ciavarella 2001 ; Johnson 1985). Goodman and

Keer studied contact problem of a frictionless sphere in a conforming cavity with a slightly

larger radius in 1965, (Roark et. al 1989 ; Johnson 1985). Also instead of assuming contact

area to be infinitely long along one direction Flynn and Roll studied contact problem for a

very short cylinder and a plate having a width less than five or six times that of the contact

area (Roark et. al 1989 ; Flynn and Roll 1967). Regarding to effects of friction in at the in-

terface of two non-conforming bodies it is proved that this factor plays a part only if the

material of the elastic bodies are different (Johnson 1985). If the materials of the two solids

are dissimilar, the tangential displacements will be different too. This leads to slip between

the bodies (Johnson 1985).

The contact conditions in a pot bearing can be represented as contact between a disk and

a ring with finite width. In the context of this research the attention was directed to Hertz

and Persson method to solve contact problem between two cylindrical bodies. This is due to

the fact that the assumptions made in these theories correspond well to the requirements of

a pot bearing comparing to those defined in other procedures.

2.3 Basic definitions of pot bearings

Pot bearings are generally used when there is a demand of longer spans and higher loads

while the number of girders is to be minimized (AASHTO/NSBA 2004 ; NCHRP 1999).

This type of bearing can accommodate movements which may be either translational, ro-

tational or both. A basic pot bearing can permit rotation but no translation. However,

translational movements can be accommodated easily too by introducing PTFE stainless

steel sliders. The direction of the translational movement can be controlled by using guide

bars (NCHRP 1999 ; Valvezan and Farhangi 1996). Fig. 2.1 illustrates a typical pot bearing

consisting of an elastomeric pad confined within a cylindrical shallow container called pot

while pressured by a flat plate called piston.

A pot bearing transmits horizontal and vertical loads from the superstructure to the

bridge supports, i.e. piers and/or abutments. For this purpose, the elastomer pad acts like

a fluid in a hydraulic cylinder transmitting the load from superstructure through the pis-

ton plate to the pot base and walls. This load is finally transferred from the pot to the

pier or abutment (Roeder and Stanton 1998 ; Valvezan and Farhangi 1996). The base of the

pot may rest on a masonry plate and a bedding layer, or is occasionally directly placed

on the pier or abutment (Roeder and Stanton 1998). The fixed pot bearing illustrated in

Fig. 2.1 can permit rotational movements. However in order to accommodate horizontal mo-



7

vements, a PTFE slider can be fixed to the top of the piston plate which allows the bearing

to slide against a sole plate while the direction of sliding can be controlled using guiding

bars (Valvezan and Farhangi 1996).

Elastomer

Piston

Pot

Seal

Figure 2.1 Principal elements of a fixed EPB

2.4 Material specifications of pot bearings

The material used for different parts of a pot bearing depends on the specification used

for designing the pot to satisfy specific requirements. Some of these requirements include

resistance, durability, weldability and operating temperatures for piston and pot, stiffness

and and resistance to wear and abrasion for elastomeric pad and frictional resistance, effect

on escape of elastomer and resistance to wear for sealing rings (EN 2005 ; NCHRP 1999).

Regarding to material of the pot, it is usually made of either structural carbon, stain-

less steel or aluminum (Steel Bridge Bearing and Design Guide 2011) among which stainless

steel is the most popular considering corrosion resistance, durability and weldability require-

ments (Roeder and Stanton 1998).

Until now various types of elastomers have been used in bridge applications, such as neo-

prene, butyl rubber and urethane. However, the most common elastomers are by far natural

rubber which is commonly used in UK and Switzerland and neoprene which is more popular

in France and Germany (Muscarella 1995 ; Roeder and Stanton 1998). In comparison with

natural rubber, neoprene has better resistance to deterioration in the presence of oil, ozone

and other agents (Agrawal et al. 2005 ; Roeder and Stanton 1998). However when subjected

to vertical forces, it exhibits outward bulging which restricts the height of a neoprene pad to

be used effectively for transferring vertical loads (Agrawal et al. 2005). On the other hand,

natural rubber generally costs less and appears to be less susceptible to low temperature

stiffening than neoprene (Muscarella 1995 ; Roeder and Stanton 1998).
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The internal seals can be made of different materials such as brass, polyoxymethylene-

delrin (POM), carbon filled PTFE and stainless steel. In the first pot bearings use of PTFE

seals was very common since they are cheaper than brass and create less frictional resistance

to the rotation of the piston. However, it became clear that elastomer leaked through them

relatively easily (Roeder and Stanton 1998). Brass sealing rings are one of the most common

internal seals used today. They may either be flat or have a circular cross section. Brass rings

with a solid circular cross section provide a tight seal but may experience wear during cyclic

rotation. However, their long-term performance can be improved by reducing friction and

wear of the rings. On the other hand flat brass rings are more susceptible to leakage and ring

fracture, but they behave less severe wear. To improve ring performance, use of heavier flat

brass rings has been suggested (NCHRP 1999).

POM sealing ring include individual beads which snap together and form a closed chain

which is vulcanized. Comparing to brass rings they are deeper and friction between seal and

the pot wall appears to be less which reduces resistance to rotation (Roeder and Stanton 1998).

2.5 Design criteria for pot bearings

In this section, important design criteria of pot bearings according to the most reliable

specifications including European Standard EN 1337-5 (EN 2005), American Association

of State Highway and Transportation - AASHTO (AASHTO 2012) and Canadian Highway

Bridge Design Code (CAN/CSA 2006) are presented. The general design method of fixed pot

bearings according to these codes remains the same which includes determining design para-

meters of pad, pot and piston. However the rationales behind these specifications to design

each element are different. In the next sections the assumptions and methods of designing

principal elements of a pot bearing according to each of these specifications will be discussed.
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2.5.1 Rotation limitations

Rotations of a bridge deck with respect to its supports under the effect of dead or live

loads causes the rotation of the piston plate, thus generating a non-uniform pressure on the

elastomeric pad which deforms accordingly. We denote by αmax the design angle corresponding

to the maximum rotation under the combined effects of dead and live loads. In addition to

the effects of applied loads, AASHTO (2012) requires that the limiting value of αmax should

account for : (i) maximum rotation caused by fabrication and instrumentation tolerances,

taken as 0.005 rad or less if justified by an approved quality control plan, and (ii) allowance

for uncertainties, taken as 0.005 rad or less if justified by an approved quality control plan.

Regarding to rotation limitation, EN 1337-5 requires that maximum rotation should take

into account rotations due to permanent loads as well as the variable loads. The following

angles can be defined to assess such rotations which may originate from permanent or variable

loads :

– the rotation angle αPerm caused by permanent loads,

– the minimum rotation angle α′

min caused by variable loads,

– the maximum rotation angle α′

max caused by variable loads,

– rotation angle due to extreme positions of variable loads ∆α2 which can be obtained

from sum of α′

min and α′

max.

According to the experimental results, this rotation due to traffic and temperature

effects is in order of 0.005 rad (Gase 2011) which is also the limiting bound for rotation

angle due to extreme position of variable loads according to EN 1337-5.

According to EN 1337-5 another criteria that should be considered regarding to the va-

riable rotations is the accumulated slide path of SA, d generated from variable rotations

in a pot bearing which effects durability of the internal seals.

As illustrated in Fig. 2.2, the accumulated slide path in a pot bearing due to variable

rotation when one vehicle is moving can be obtained as ∆α2
dPad
2

. By Assuming that nv

number of lorries pass the bridge during the intended life of the bearing, accumulated

slide path generated from variable rotation can be obtained from

SA, d = nv ∆α2
dPad
2

(2.1)

The accumulated slide path of the bearing obtained from Eq. (2.1) should not exceed

the one obtained from experimental testing (ST), as specified in annex E-EN 1337-5

multiplied by the correcting factor of c. This factor is applied due to the fact that in

a bridge bearing accumulated slide path is performed in much more severe conditions

than that of experimental testing (due to high velocity of cyclic rotations and constant
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value of rotations in testing conditions) (Marioni 2006)

SA,d 6 cST (2.2)

where

– SA,d is the accumulated slide path of the bearing (mm),

– dPad is the diameter of elastomer (mm),

– nv is the number of vehicles moving along the bridge during intended life of bearing,

– c is the correction factor to take account of difference between the constant amplitude

of slide path prescribed in the tests (annex E of EN 1337-5) and the variable amplitude

movements which actually occur in traffic conditions,

– ST is the accumulated slide path derived from testing in accordance with annex E of

EN 1337-5 (mm),

∆α
2

S
A.d

R
Pad

Figure 2.2 Representation of sliding path due to ∆α2

– αmax is the maximum rotation (rad) caused by both permanent and variable loads which

should not exceed 0.03 rad according to EN 1337-5.

αmax = αPerm + α′

max (2.3)

Fig. 2.3 presents rotations caused permanent and variable loads.

2.5.2 Horizontal load distribution

In the specifications, it is assumed that the elastomeric pad has hydrostatic characteristics

under pressure. Also, the pressure between piston and pot walls resulting from external

horizontal actions is assumed to be parabolically distributed over half of the perimeter of the

pot. For this reason, the maximum value of this pressure is taken as 1.5 times its mean value

as will be shown next.

For clarity, the case of a pot bearing subjected to a horizontal load along the x direction

is considered as illustrated in Fig. 2.4. Assuming that the distribution of horizontal forces P
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∆α
2

PermPerm

min

max
α’

α’

α

max
α

Figure 2.3 Representation of rotation angles

transferred from the piston to the pot per unit thickness follows a parabolic shape as shown

in Fig. 2.4, the resulting total horizontal force can then be expressed as

VFx, Sd =

∫ rPad

−rPad

P (x) dx (2.4)

or

VFx,Sd = 2

∫

π

2

0

P (φ) dφ (2.5)

where rPad is the interior radius of the pot, x is the coordinate along the diameter axis of

the pot parallel to the direction of applied horizontal load and φ is a central angle measured

positive counterclockwise from the x−axis. Considering the boundary conditions

P (x) = 0 at x = −rPad ; P (x) = 0 at x = rPad ; P (x) = P0 at x = 0 (2.6)

we can write

P (x) = − P0

r2Pad
x2 − P0 (2.7)

We also have

x = rPad sin(φ) ; dx = rPad cos(φ) dφ (2.8)

Eq. (5.4) becomes then

VFx,Sd = 2

∫

π

2

0

[

−P0

(

r2Pad sin
2(φ)

r2Pad
− 1

)]

rPad cos(φ) dφ (2.9)

=
4

3
P0rPad (2.10)
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yielding

P0 = 1.5
VFx, Sd

dPad
(2.11)

where
VFx,Sd

dPad
represents the mean value of horizontal forces per unit thickness along the

diameter. In the general case, the total lateral forces VFxy,Sd due to applied horizontal loads

along any direction can be obtained as

VFxy, Sd =
√

V 2
Fx,Sd + V 2

Fy, Sd (2.12)

where VFx,Sd and VFy, Sd are the resulting forces along x and y directions, respectively. This

Pad
D

Pad
R

Figure 2.4 Representation of horizontal forces

is also denoted that in previous versions of EN 1337, distribution of applied horizontal loads

was assumed to have cosine shape. Thus factor of 1.5 in Eq. (2.11) changes to 1.3 for cosine

distribution of contact forces.

2.5.3 Elastomeric pad

After determining the maximum rotations in a pot bearing, thickness and diameter of

the elastomeric pad can be determined from the allowable pressure induced on the pad from

applied vertical loads as well as pad deflection limit as discussed further.
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Allowable pressure on pad

According to the early work in Germany and physical test results, European designs were

usually based on allowable pressure of 25MPa exerted on the elastomeric pad and a pad

diameter to thickness ratio of about 16. The stress limit of 25MPa mentioned in the early

European designs appears to be appropriate since this value was a common concrete bearing

stress at the early years of development of pot bearings (Roeder and Stanton 1998). This

upper limit is also retained for the current version of AASHTO due to satisfactory bearing

performance except a few seal failures. However, this stress limit is specified as 40MPa in

CHBDC.

Comparing to these specifications EN 1337-5, relates the allowable stress on the pad to its

contact strength properties (fe, k). This means that the design axial force of the elastomeric

pad (NSd) has to be less than or equal to axial resistance of the pad (NRd), i.e.

NSd 6 NRd (2.13)

The value of NRd can be obtained as

NRd =
NRk

γM
(2.14)

and

NRk =
π

4
d2Padfe, k (2.15)

where

– NRk is the characteristic value of resistance of the elastomeric pad

– fe, k is the characteristic contact strength of the elastomer which is a statistically-based

material property (ASTM 2012). According to EN 1337-5 for pot bearings this value

is equal to 60MPa and is limited by the effectiveness of seal to prevent extrusion of

elastomer between piston and pot wall.

– γM is a partial safety factor. In EN 1337, the recommended value of this factor is equal

to 1.30. For this parameter characteristic values of uncertain loads and resistances are

specified and partial safety factors are applied to ensure safety of the structure. Partial

safety factors are usually based on experience or calibrated to existing codes or to

measures of the reliability obtained from probabilistic techniques (Sorensen 2011).
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Thickness of the pad

The minimum thickness requirement of elastomeric pad is of high importance due to its

influence on rotation capacity of the bearing. Generally rotation capacity of the bearing can

be increased by using a thicker pad. According to the specifications dimensions of elastomeric

pad should be such that under the characteristic combination of the applied actions the total

rotation of αmax does not cause a deflection of ∆t at the perimeter more than 15 percent

of the pad thickness (∆t 6 t × 0.15). This strain limit is based more on past practice than

the research results (NCHRP 1999) which prevents seal from escaping and the bearing from

locking up. To comply with this requirement, the specifications state that the minimum

thickness of an elastomeric pad shall be obtained from

tPadmin
= 3.33 αmax dPad (2.16)

where tPadmin
is the minimum thickness of the elastomer (mm).

Eq. (2.16) finds its justification in what follows,

The value of deflection due to elastomer rotation of αmax can be determined as

∆tPad =
dPad
2

tan(αmax) (2.17)

Another criterion specified in European Standard EN 1337-5 is

∆tPad 6 0.15 tPad (2.18)

Eqs. (2.17) to (2.18) result in

tPad >
10

3
αmax dPad ≈ 3.33 αmax dPad = tPadmin

(2.19)

In addition according to EN 1337-5 the pad thickness should not be less than dPad/16.

2.5.4 Piston

Corresponding to piston design, the main difference between EN 1337-5 and AASHTO is

in the type of piston wall. According to EN 1337-5 the designer can choose from two types

of contact surface for the piston, (i) flat contact surface or (ii) curved contact surface. Also

in AASHTO it is stated that contact rim may be cylindrical or spherical. However there is

no indication regarding to the diversity in design procedure for the two types.
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Flat contact surface

According to EN 1337-5 designing piston wall as flat is allowed when the width of the

piston w is less than 15mm. Also design value of transverse force and should be less than the

resistance force. To satisfy this requirement, maximum pressure from the applied horizontal

loads (which has a parabolic distribution as discussed in section 2.5.2) should be less than

the yielding stress of the material used or in other words

P0

w
6

Fy

γM
(2.20)

where w is the width of piston face as illustrated in Fig. 5.1. Using Eq. (2.11) yields

1.5 VFxy,Sd

dPotw
6

Fy

γM
(2.21)

This equation can also be written as

w >
1.5VFxy,SdγM

dPotFy
(2.22)

V
Fxy,Sdw wb

R
V

Fxy,Sd

Figure 2.5 Flat and curved contact surface

The requirement for width of piston face according to AASHTO is similar to Eq. (2.22)

w ≥ 1.5VFxy,Sd

dPotFy

(2.23)

also in CHBDC, contact area is assumed as 0.33 wdPad instead of wdPad. According to

CHBDC and AASHTO the following limit bounds for this parameter should be respected

regarding to width of piston face,

w > 3mm (2.24)
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w > 0.03 dPot (2.25)

In CHBDC limit bound of 3 mm is replaced with 6 mm.

Curved contact surface

According to EN 1337, the radius of the curved contact surface should satisfy the following

criterion

R > max(0.5 dPot, 100) (2.26)

Similar to the case of flat contact surface, design transverse forces shall be less than resistance

of the curved contact surface to transverse forces, i.e.

VSd 6 VRd (2.27)

where

VRd =
15F 2

u R dPot
Ed γ

2
M

(2.28)

in which, as illustrated in Fig. 5.1

– R is the radius of contact surface

– Fu is the ultimate strength of the material

– Ed is design modulus of elasticity

– dPot is the internal diameter of the pot.

Eq. (2.28) is based on Hertz theory of contact between a flat and a cylindrical surface. The

ability of curved surfaces and plates to withstand deformation under applied loads is de-

pendent upon the hardness of materials from which they are made. As it is clear there is not

a constant relationship between hardness and yield stress of the material contrary to ultimate

strength. Therefore, Eq. (2.28) is based on ultimate strength of the material assuming Hertz

contact conditions apply (Johnson 1985)

– The strains are small and within the elastic limit

– Each body can be considered an elastic half-space, i.e., the area of contact is much

smaller than the characteristic radius of the body

– The surfaces are continuous and non-conforming, and

– The surfaces are frictionless.

According to Hertz theory, if two cylinders with radii r1 and r2, made of the same material

with Youn modulus Ed, and Poisson’s ratio ν = 0.3, are in contact as illustrated in Fig. 3.2,
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then the resulting pressure can be obtained as (Srinath 2009)

p = 0.418

√

F (r1 + r2) Ed

r1 r2
(2.29)

where F is the force applied per unit length of the cylinder. In a pot bearing with curved

piston wall contact takes place between a cylinder with radius of r and a plane surface.

Therefor Eq. (2.29) changes to (Srinath 2009)

p = 0.418

√

FEd

r
(2.30)

In the previous edition of EN 1337, contact stress was limited to 1.75 times the ultimate

tensile strength σu to limit the deformation of the pot and the piston to an acceptable

level (Lee 1994). However as a conservative assumption contact stresses are limited to 2Fu in

the latest version of EN 1337-5. considering that F = P0,

0.418

√

P0E
1

r
= 2 σu (2.31)

where

σu =
Fu

γM
(2.32)

Eq. (2.28) can be obtained.

Also according to EN 1337, piston and pot contact width for a bearing with curved piston

wall Fig. 5.1 can be obtained from

b = 3.04

√

1.5VFxy, Sd r

Ed dPot
(2.33)

By referring to the case of two cylinders in contact and assuming that contact takes place

approximately along a straight line element before loads are applied, the semi-major axis of

area will be infinitely large, therefore the semi-minor axis of area will be considered as the

radius of contact. In this case, contact width can be calculated from Hertz theory for 2D

contact between two cylinders (Boresi et al. 1978)

b

2
=

√

2P0 ∆

π
(2.34)
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If both of the cylinders are made from the same material with modulus of elasticity of Ed

and Poisson’s ratio ν, parameter ∆ can be expressed as

∆ = 4 r
1− ν2

Ed

(2.35)

Replacing Eq. (2.35) into Eq. (2.34) yields to Eq. (2.33).

F

r
1

r
2

Figure 2.6 Two cylindrical bodies in contact
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2.5.5 Pot

One of the main differences in design procedure of pot bearings according to AASHTO

specifications and European Standard EN 1337-5 is in design of the pot. In AASHTO spe-

cifications and CHBDC, design of pot is based on assuming that walls and base of the pot

provide sufficient resistance against the bending moments applied and that all the elements

of the pot act as a single structural unit. However in EN 1337-5 design procedure of the pot

is performed by taking account of the tensile and shear forces due to applied horizontal loads

and pressures from the pad rather than bending moments and assuming that base and pot

walls act as separate components. On the other hand method of pot design in CHBDC is

quite similar to AASHTO specifications.

Pot walls

According to AASHTO specifications if pot bearing is subjected to lateral loads the

thickness of the pot wall should satisfy the following condition (AASHTO 2012)

tWall >

√

25Hu αmax

Fy
(2.36)

This requirement is based on the assumption that applied horizontal loads are carried by

bending mechanism while the bursting effects of pot wall from hydrostatic stresses are carried

by hoop tension in the wall (NCHRP 1999). Then according to Fig. 2.7 the lever arm of

horizontal loads can be obtained from

la = tPad + αmax
dPad
2

+
w

2
(2.37)

and as discussed before,

tPadmin
= 3.33 αmax dPad (2.38)

Considering that the maximum stress in the bearing is 3.5 kips, the vertical load can be

obtained from (NCHRP 1999)

Vu = 3.5
πd2Pad
4

(2.39)

Also by assuming that applied horizontal load is a percentage of the vertical loads

Hu = γ′Vu (2.40)



20

From equations 2.39 and 2.40 and assuming parabolic distribution of horizontal forces

w =
1.5Hu

dPadFy
=

1.5γ′Vu

dPadFy
=

5.25γ′dPad
Fy

(2.41)

Then from equations 2.38 and 2.41, Eq. 2.37 changes to

la = 3.33 αmax dPad + αmax
DPad

2
+ 2.625

γ′dPad
Fy

= (3.83 αmax +
2.625γ′

Fy

)dPad (2.42)

By limiting the moments due to applied horizontal loads per unit length to 0.6 times the

plastic bending moment strength of pot wall with unit length in circumferential direction we

have,
Hu

dPad
la ≤ 0.6Fy

t2Wall

4
(2.43)

Then finally

tWall ≥
√

25Hu αmaxd

Fy
(2.44)

V
Fxy,Sd

α
max

w

t
Pad

l
a

h
Wall

t
Wall

Figure 2.7 Lever arm of applied horizontal forces according to AASHTO

Considering Fig. 2.7, after obtaining width of piston face (w), pot cavity depth (hWall)

should respect the following requirement according to AASHTO,

hWall > (0.5 αmax dPot) + tPad + w (2.45)
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Comparing to AASHTO specification, as mentioned before design method of pot walls

according to EN 1337-5 is based on providing sufficient resistance against applied tensile

and shear forces to the pot wall rather than bending moment resistance. In EN 1337, the

simplified formulae for design of pot bearings consider that the pot walls and the pot base

act as separate components at the ultimate limit state (Eggert and Kauschke 2002). The

transverse force within pot walls subjected to tensile force have to satisfy

VSd 6 VRd (2.46)

where VSd includes the force Ve,Sd corresponding to hydrostatic pressure from the elastomeric

pad and the lateral load VFxy, Sd corresponding to applied horizontal forces

VSd = Ve,Sd + VFxy,Sd (2.47)

The force Ve, Sd can be obtained as follows. The stress applied to the pot walls due to hydro-

static pressure is given by

σs =
NSd

π
d2Pot
4

(2.48)

According to the Hook stress equation, the transverse force Ve,Sd can be obtained as

Ve,Sd =
NSd dPot tPad

π
d2Pot
4

=
4NSd tPad
πdPot

(2.49)

The design resistance transverse force of VRd corresponds to the design stresses within the

pot, which shall not exceed the design value of the yield strength Fy at any section of the

pot wall. The force VRd can then be obtained as

VRd =
Fy AR

γM
(2.50)

where AR is twice the area of the cross-section of the pot wall given by

AR = (DPot − dPot)hWall (2.51)

According to EN 1337-5, determination of shear forces applied to pot walls from pad

pressures and applied horizontal loads reformulate applied load per unit height of pot walls.
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Figure 2.8 Representation of elastomer pressure on pot wall

Therefore, the design shear forces within pot walls have to satisfy the following relationship

V ′

Sd 6 V ′

Rd (2.52)

where

V ′

Sd =
Ve, Sd + 1.5VFxy, Sd

dPot
(2.53)

According to distortion energy theory (Bhandari 2010), the yield strength in shear is
1√
3

times the yield strength in tension. Then, the shear resistance V ′

Rd of a pot wall per unit

height can be obtained as

V ′

Rd =
Fy

AR

2
γMhWall

√
3

(2.54)

where AR was given by Eq. (2.51). Replacing into Eq. (2.54) yields

V ′

Rd =
Fy(DPot − dPad)

2 γM
√
3

(2.55)

Thus According to EN 1337, by providing sufficient pot wall resistance against applied shear

and tensile forces the limit bounds for hWall and DPot will be obtained.
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Pot base

To determine thickness of pot base, AASHTO and CHBDC specify limiting bounds for the

minimum required thickness. These lower bounds are intended to provide the rigidity needed

to compensate effects of uneven bearing. This is due to the fact that in case of significant

deformation of base plate there will be inadequate volume of elastomer to fill pot cavity

resulting to hard contact between bearings parts (AASHTO 2012).

– bearings directly against concrete or grout

tPot > 0.06 dPot (2.56)

tPot > 20mm (2.57)

– bearings directly on steel girders or load distribution plates

tPot > 0.04 dPot (2.58)

However SCEF recommends conservative factor of 0.045 instead of 0.04.

tPot > 12.5mm (2.59)

In CHBDC the limiting bound of 15mm is stated in lieu of 12.5mm limit.

Another criteria specified in AASHTO for base plate thickness is that similar to the pot

wall as discussed in section 2.5.5, pot base should be able to resist bending moments generated

tPot >

√

25Hu αmax

Fy
(2.60)

Determining pot base thickness according to EN 1337-5 is performed by taking account of

the tensile forces applied to the base. EN 1337-5 states that base plate of the pot should have

sufficient resistance against applied tensile forces similar to the pot walls. Thus the tensile

force within the pot base has to be less or equal to the the design resistance

VSd 6 VRd (2.61)

where as previously

VSd = Ve,Sd + VFxy,Sd (2.62)
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In the case of the pot base, the tensile resistance force can be determined as

VRd =
FyAp

γM
(2.63)

in which the cross-section area Ap of the bearing base can be obtained from

Ap = DPot tPot (2.64)

where tPot is the thickness of the pot base. However according to EN 1337-5 tPot should not

be less than 12 mm. Finally from the limiting bounds presented in AASHTO, EN 1337-5 or

CHBDC and the requirements for tensile or bending moment resistance the thickness of the

base plate can be determined.

2.5.6 Sealing rings

Use of internal seal in fixed pot bearing is intended to prevent scape of the pad through the

clearance between the recess walls and piston when compressive loads are applied (EN 2005).

As discussed in section 2.5.3 the limit of minimum thickness for the elastomeric pad is ba-

sed on limiting the compressive strain on the pad from rotation to 15%. However since

the effective thickness of the pad under sealing recess is reduced, the resulting compres-

sive strain may increase. Then the sealing recess should be shallow relative to total thi-

ckness of the elastomeric which will prevent damage to the elastomer layer bellow the

rings (Steel Bridge Bearing and Design Guide 2011).

AASHTO allows using seals made of brass either in form of (i) multiple flat rings usually

bent from strip and the ends are not joined (Steel Bridge Bearing and Design Guide 2011)

or (ii) circular rod brazed into a closed ring. However flat brass rings are more susceptible to

ring fracture and leakage of elastomer while circular brass rings are more susceptible to severe

wear. AASHTO prohibits use of PTFE rings due to their poor performance while permits use

of plastic rings (Steel Bridge Bearing and Design Guide 2011). The specifications stated in

AASHTO and CHBDC for rectangular or circular-cross section rings are intended to prevent

loss of elastomer pad through the seal due to variable rotations,

– Rings with rectangular cross section :

In this type of sealing ring three rectangular rings are cut at one point around its cir-

cumference with 45 ◦ to the vertical plane. The position of the rings should be such that

the cuts are spaced equally around the circumference of the pot. Also the dimensions

of the rings should be such that the width of each ring is not less than either 0.02 dPot

or 6mm and not more than 19mm. Besides the depth of each ring should not be less
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than 0.2 times its width.

– Rings with circular cross section :

In this type of sealing rings, one circular cross sectional ring is used with outside dia-

meter of dPot. Also cross sectional diameter of the circular sealing ring should not be

less than either 0.0175 dPot or 4mm

In European Standard EN 1337-5 other than brass sealing rings, use of carbon filled

PTFE, stainless steel and POM seals is permitted as well. Also in this code the geometrical

considerations are base on the material from which the sealing ring is made of rather than

its shape (comparing to AASHTO and CHBDC). Geometrical and material specifications

for each of these sealing types are mentioned in detail in Annex A of EN 1337-5. In case of

using these types of sealing rings the accumulated slide path from testing (ST) as discussed

in section 2.5.1 can be assumed as the following without performing any additional tests,

– For stainless steel seals ST = 500m

– For brass seals ST = 1000m

– For POM and carbon filled PTFE seals ST = 2000m

in case of using alternative sealing rings performing long term rotation and load test is

essential to examine behaviour of the sealing ring and test durability of the bearing.

2.6 Fabrication criteria of pot bearings

After performing the primary design of the fixed pot bearing, the procedure to construct

the pot from base plate and pot wall should be determined. In this sections the types of

connections allowed to be used in the codes will be specified. Also the additional geometrical

requirements that should be satisfied for proper behaviour of the bearing are mentioned.

2.6.1 Base plate and pot wall connection

Regarding to the connection procedures between base plate and the ring, EN 1337 focuses

more in detail to different types of connections comparing to other specifications. According

to AASHTO, the most reliable way of constructing pot is by machining it from a single plate.

However, this code allows attaching the pot walls by using full penetration weld for very large

bearings to reduce costs and also take account of the high moments where the ring joins the

base plate. On the other hand EN 1337 permits use of full penetration butt weld, partial

penetration butt weld and fillet weld as means of connection between the base plate and the

ring.
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Full penetration butt weld

In Fig. 2.9, connection between base plate and the ring using full penetration butt weld

according to EN 1337-5 is presented. For this type of connection the properties of the weld

is controlled by the elements joined. According to EC3-1-8 full penetration butt weld should

have equal or superior properties to those of joined elements so that design resistance is

taken as the weaker of the parts connected (Trahair 2008). Then the capacity of butt weld

is calculated from capacity of pot base. In other terms, we have

VSd 6 VRd (2.65)

where

VSd = Ve,Sd + VFxy,Sd (2.66)

and

VRd 6
FyAp

γM
(2.67)

in which

Ap = DPot tPot (2.68)

D
Pot

d
Pot

h
Wall

Figure 2.9 Full penetration butt weld

Partial penetration butt weld

Comparing to full penetration type, partial penetration butt weld has an effective (throat)

thickness which is less than that of the elements joined. In case of connection between base

plate and the ring, butt weld has to bear tensile forces applied to the base. Then we have

VSd 6 VRd (2.69)
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where

VSd = Ve,Sd + VFxy,Sd (2.70)

However, the design resistance of partial butt welds is evaluated by

VRd =
∑

Fw,RddPot (2.71)

where the design resistance per unit length Fw,Rd is given by PrEN 1993-1-8 as

Fw,Rd = aFvw, d (2.72)

in which a is the effective throat thickness of weld, and Fvw,d is the design shear strength

that can be obtained as

Fvw, d =

Fu√
3

βw γM2
(2.73)

where Fu is the minimum ultimate strength of the connected parts, βw is a correlation factor,

equal to 0.85 for steel grade S275 and 0.9 for steel grade S355 and γM2 is the connector

resistance partial safety factor that an be taken equal to 1.25 (Trahair 2008).

Fillet weld

A fillet can be used to connect pot wall to top of the pot base as shown in Fig. 2.10. In

this case, the design forces and resistance are determined per unit length. As previously, the

following inequality has to be satisfied

V ′

Sd 6 V ′

Rd (2.74)

in which V ′

Sd was defined before and V ′

Rd is given by

V ′

Rd =
∑

Fw,Rd (2.75)

Fw,Rd can be calculated as done for partial penetration butt welds section.

2.6.2 Additional geometrical requirements

The following geometrical conditions need to be satisfied to obtain the required rotational

capacity of a pot bearing while preventing escape of the elastomer and locking of bearing

components according to EN 1337-5 and AASHTO :

– The edge of the contact interface between the piston and the elastomer must re-
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Pot
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Pot

Figure 2.10 Fillet Weld

main within the cylindrical recess formed by the pot wall around the whole circum-

ference (EN 2005).

– The top of the pot wall should not be in contact with any other metallic component (EN 2005).

– The seal and piston rim must remain in full contact with the vertical face of the pot

wall (AASHTO 2012).

– Contact or binding between metal components should not prevent displacement and

rotation (AASHTO 2012).

We show that these criteria imply the following geometric condition according to EN 1337-5

on the height of the pot wall according to figure Fig. 2.11

hWall > tPad + 0.5× (w − b) +
1

2
αmax dPad + ad (2.76)

where ad is a safety factor which can be evaluated as (EN 2005)

ad = min
{

max(0.01 dPot, 3 mm), 10 mm
}

(2.77)

If the wall of the piston is flat, i.e. w=b, Eq. (2.76) changes to

hWall > tPad +
1

2
αmax dPad + ad (2.78)

Regarding to minimum cavity depth for pot bearing with flat contact surface from EN

1337-5 (Eq. (2.78)), AASHTO specifies a more conservative requirement as mentioned in

section 2.5.5 by assuming that flat contact area should remain within the pot cavity (Fig. 2.7)

hWall > (0.5 αmax dPot) + tPad + w (2.79)
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Figure 2.11 Geometrical conditions for rotation according to EN 1337
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Figure 2.12 Critical dimensions for clearances according to AASHTO
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Also according to Fig. 2.12 AASHTO specifies that the vertical clearance between top

of piston and top of pot wall, hP, as illustrated in Fig. 2.12, should satisfy the following

requirement (AASHTO 2012)

hP > R0αmax + 2δu + 3 (2.80)

where

– δu is the compressive deflection due to factored load (mm)

– R0 is the radial distance from center of pot to object in question (pot wall, anchor bolt,

etc) (mm).

Since the actual compressive deflection of δu is small when compared to the deflection

due to rotation (Baker 2006), in SCEF the required minimum clearance is obtained from

deflection due to maximum rotation coupled with an extra 3.2 mm.

According to AASHTO the clearance between piston and pot (c1) is critical to proper

functioning of pot bearings. In order to prevent escaping of elastomer AASHTO states that

this parameter should be as small as possible in the range of 0.5 to 1mm. Also in case of

designing piston rim as cylindrical the following requirement should be satisfied

c1 > αmax(w − dPot αmax

2
) (2.81)

where

– dPot is internal diameter of pot (mm)

– w is height of top of rim to underside of piston (mm)

– αmax is design strength limit state rotation (rad)

2.6.3 Lubrication

One of the controversial issues regarding to design of pot bearings is whether it should

be lubricated. Some engineers have raised a concern about lubrication making the elastomer

slide easily in the pot and consequently reducing the rotational resistance. However some be-

lieve that in order to avoid the potential of abrasion and wear of elastomer lubricant should

be used. Grease (one common material is Silicon grease) or powdered lubricant are some of

the common types of lubricants generally applied before placing the elastomer in the cylin-

der (Roeder and Stanton 1998). Silicon grease lubrication reduces the rotational resistance

during initial cycles of rotation but its beneficial effect is lost in later cycles. The ultimate

wear of the elastomeric disk is not reduced significantly by the lubrication, but in contributes

in reducing the wear observed in the rings, pot walls and piston (NCHRP 1999).

According to some engineers one of the disadvantages of grease is that when subjected

to the same pressure as the elastomeric pad, it makes the pot wall slippery while squeezing
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out which leads to leakage of elastomer. Another concern is that some elastomer compounds

deteriorate over time when in contact with oil or grease. Also the lubricant tends to migrate

and the beneficial effect is lost (Roeder and Stanton 1998).

2.7 Conclusion

This chapter includes a detailed review of design methods of fixed elastomeric pot bearing

according to the reliable specifications of AASHTO, EN 1337 and CHBDC was discussed.

The requirements stated in each specification were explained and the rationales behind them

were presented. It is concluded that the general design method of CHBDC is generally similar

to AASHTO. However the main differences between EN 1337-5 and these specifications is in

the following requirements,

– Pot design : Design method of pot in AASHTO in mainly based on providing sufficient

bending resistance for the applied horizontal loads at interconnection between base and

the walls. However in the latest version of EN 1337-5 the design method of pot parts

is performed by taking into consideration the shear and tensile forces in the pot rather

than the bending moments.

– Piston design : The provisions regarding to piston design in EN 1337-5 seem to be more

integrated due to concentration on the requirements for both flat and curved contact

face of piston wall. However in AASHTO only the requirements regarding to flat contact

area are mentioned.

– Geometrical conditions : In EN 1337-5 the maximum cavity depth of the pot is obtained

by assuming that in the most critical condition with maximum rotation of αmax the

edge of piston and pad contact face remains within the cylindrical recess. However in

AASHTO for the critical condition it is assumed that total width of piston in contact

with pot cavity remains within the ring.
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CHAPTER 3

ANALYTICAL AND FE MODELING OF CONTACT PROBLEMS

3.1 Introduction

With the advancements in computers and development of new numerical procedures, it

seems that method of computing contact parameters and the rational behind it is unclear

for many engineers nowadays. Thus it can be concluded that regarding to the importance of

contact problem for pot bearings and reliance of the specifications on the analytical methods

as it will be discussed further in this chapter, it is important to convey a study on contact

parameters (such as angle of contact, principal stresses, contact pressure and contact forces)

obtained from both analytical and numerical methods and compare the results.

The objective of this chapter is to apply analytical contact methods of Hertz and Persson

and compare the results to the corresponding numerical outputs obtained from modeling two

typical cylinders in contact. First a classical case of contact between two cylindrical bodies

with the same curvature sign will be considered. The finite element modeling of this type of

contact will be developed. The results of the finite element models will be validated against

Hertz analytical formulation.

In the next step, the contact angle between a cylinder resting inside another hollow

cylindrical body (with different curvature signs) is compared to the analytical methods by

referring to both Hertz and Persson analytical methods.

3.2 Analytical methods for contact problems

Hertz has studied contact conditions between two bodies with different geometrical shapes.

In a pot bearing, contact between a piston and cylinder can be regarded as contact between

two cylindrical bodies. In the following sections Hertizian contact between two cylindrical

bodies will be highlighted. Comparing to Hertz, as previously mentioned Persson has limited

his theory to contact between two cylindrical bodies which one is resting inside another

one. In the following sections a brief introduction to the most important analytical contact

methods of Persson and Hertz for two cylindrical bodies is presented.
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3.2.1 Hertz theory of contact

The first satisfactory analysis at the contact between two elastic bodies was performed

by Hertz by accepting the following assumptions (Johnson 1985) :

– The surfaces are continuous and non-conforming,

– The stresses are small,

– Each solid can be considered as an elastic half-space,

– Area of contact has an elliptical shape,

– and the surfaces are frictionless.

Contact between piston and pot can be regarded as contact between two cylindrical

bodies. For two cylinders in contact Hertz assumes that the bodies have parallel axes in

which contact area is infinitely long in one direction. In other words, when a distributed load

F per unit length is applied to the first body as illustrated in Fig. 3.2, the value of semi-major

axis a′ will be infinitely long due to the line contact while the semi-minor axis is equal to

b′. According to Hertz this type of contact is available for two cylinders with perpendicular

line of contact to the paper and also for a small circular cylinder resting on a larger hollow

cylinder as illustrated in Fig. 3.3. According to Hertz theory the value of width of contact b′

for two cylinders in contact can be obtained from

b′ =

√

2F∆

π
(3.1)

where

∆ =
1

1

2r1
+

1

2r2

[

1− ν2
1

E1

+
1− ν2

2

E2

]

(3.2)

It should also be noted that for a cylindrical body placed inside another one (case b, Fig. 3.2),

r2 shall be inserted as negative in Eq. (3.2) due to different curvature signs (Boresi et al. 1978).

Finally value of contact angle α in the horizontal plane can be obtained from

α = 2 arcsin

[

b′

r1

]

(3.3)

Hertz has also presented analytical equations to obtain values of principal stresses for

the cylinders with contact region approximately along a straight line (plane strain). Boresi

et. al have simplified Hertizian principal stress equations for linear elastic cylindrical bodies

in contact along Z axis (Boresi et al. 1978). This axis originates at the the middle point of

contact with maximum contact pressure and passes center of the lower body as illustrated in
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Fig. 3.1. The equations for principal stresses obtained by Boresi et. al are,

– Principal stress yy

σyy = −2ν

[
√

1 + (
z

b′
)2 − z

b′

]

b′

∆
(3.4)

– Principal stress xx

σxx = −

[√

1 + (
z

b′
)2 − z

b′

]2

√

1 + (
z

b′
)2

b′

∆
(3.5)

– Principal stress zz

σzz = −









1
√

1 + (
z

b′
)2









b′

∆
(3.6)

as previously mentioned, according to Hertz contact theory contact pressure between

two parallel cylinders will be represented by a semi elliptical prism over contact length of

2b′ and the area of contact approaches a rectangle. Fig. 3.1 presents pressure distribution

between two cylinders according to this analytical method. This pressure can be obtained

from (Lipson et al. 1963)

P (y) = Po

√

1− y2

b′2
(3.7)

r2

r1

y

b

`

b

`

y

P
P0

z
Figure 3.1 Hertz pressure distribution

Where the value of Po is equal to maximum principal stress at the point of contact.

Analytical formulations have implied to these values in different types of orientation and
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geometrical properties. In the case considered here, since cylinders are made from the same

material, value of Po is obtained from (Lipson et al. 1963)

P0 = 0.418

√

FE

a′
(r1 + r2)

r1r2
(3.8)

In the formulations mentioned above :

– F (N/m) is load per unit length of the contact area

– r1 and r2 (m) is smaller and bigger radii of contact of two bodies

– ν is poisson’s ratio of each body

– z (m) is the distance below the contact surface

– E (N/m2) is modulus of elasticity of each of the bodies

– b′ is half of contact width of the cylinders

– Po is the maximum principal stress taking place at the point of contact.

F

r
1

r
2

Figure 3.2 Two cylindrical bodies in contact with positive curvatures
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b

Figure 3.3 Hertz contact conditions for two cylindrical bodies
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3.2.2 Persson theory of contact

As previously discussed one of the main assumptions of Hertz theory is that contact area

is small comparing to the dimensions of the bodies in contact. According to Ciavarella and

Persson (Ciavarella 2001 ; Persson 1964) applying the two dimensional case of Hertz theory

will not lead to acceptable results for the case of a cylinder in a bore with only a slightly

larger radius (Fig. 3.4). This is due to the fact that the contact area between these two

bodies is not small compared to the radii of the bodies and the contact angle (conforming

contact). An important advance in analyzing an elastic pin in contact with an infinite elastic

plate was performed by Persson by providing complex solution for singular integro-differential

equation for contact problem between two bodies with the same materials. He has applied

stress functions appropriate to a circular disk and a circular hole in an infinite plate to obtain

the stress field for both bodies (Johnson 1985). The assumptions considered for this contact

problem are,

– The plate is infinite,

– a concentrated force is applied at the center of the plate,

– Both of the bodies are made of isotropic elastic materials,

– The difference of radius of the bodies is very small,

– Contact area is frictionless,

– and plane stress condition is assumed.

In Eq. (3.9), Persson has presented an equation which relates the parameters ∆r, E, F and

r′,

E∆r

Q
=

2

π

1− r′2

r′2
− I6

π2r′2(1 + r′2)
(3.9)

where I6 is an integral which has not been calculated in closed from

I6 =

∫ r′

−r′

ln

√
r′2 + 1 +

√
r′2 − t2√

r′2 + 1−
√
r′2 − t2

1 + t2
dt (3.10)

and E is the modulus of elasticity of the bodies.

Also for maximum stress between the two cylinders Persson has obtained the following

equation,
r2P0

F
=

2r′

π
√
r′2 + 1

+
ln(

√
r′2 + 1 + r′)

πr′2(1 + r′2)
(3.11)

where

– F is load per unit length of the contact area
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– ∆r is the difference of radii of the cylindrical surfaces

– ν is poisson’s ratio of each body

– z is the distance below the contact surface

– E is modulus of elasticity of each of the bodies

– b′ is half of contact width of the cylinders

– r′ is equal to tan(α/4) (where α is angle of contact)

– Contact forces follow plane stress distribution.

It should also be noted that due to the complexity of calculation of Eq. (3.10), for simpli-

city Persson has also provided a table which presents value of angle of contact of α and ratio

of r2P0/F for each value of E∆r/F .

r
12

r

1
S

FDisk

2
S

Plate

Figure 3.4 Persson contact conditions for two cylindrical bodies
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3.3 Examples of 2D finite element modeling of contact problems

In this section the properties of the numerical models generated with ADINA software

are discussed. In the first step finite element models of two cylindrical bodies with positive

curvatures in contact are generated for different meshing types. In the second step numerical

models corresponding to two cylindrical bodies with different curvature signs in contact are

generated.

3.3.1 Cylinders in contact with positive curvature signs

One cylinder resting on another one (both with positive curvature signs), have been mo-

deled in ADINA finite element software using two dimensional solid elements with a primary

contact as illustrated in Fig. 3.5. In order to find the best accordance between analytical and

numerical results, finite element models are optimized by using element types with a coarse

mesh. The process of generation of model is as follows,

– Material : Both cylinders are made of the same homogeneous, isotropic and elastic steel

material with Young’s modulus of 200 GPa and Poisson ratio of 0.3.

– Geometry : The radii of upper and lower cylinders have been chosen as 32 mm and

45 mm respectively. These dimensions were extracted from an analytical contact pro-

blem of two cylindrical bodies solved by Boresi et al (Boresi et al. 1978).

– Meshing : 2D plain strain cylinders were meshed by nine, eight and four node elements.

– Force : Point force of 40 kN was applied on the upper cylinder.

– Contact : 2D contact group without any friction is chosen as the contact group of the

cylinders.

3.3.2 Cylinders in contact with different curvature signs

For two cylinders with different signs in curvature, a small circular cylinder which is

resting on a cylindrical ring is modeled in 2D with ADINA (case b Fig. 3.3). In order to

have accordance between Persson assumptions and finite element modeling, all the degrees

of freedom along perimeter of the outer cylinder were fixed and first point force of 40 kN and

then of 154 kN were applied at the center of the inner cylinder. Radius of the inner body is

chosen as r1 = 104.5 mm and the internal and external radii of the outer body are chosen

as r2 = 105 mm and r3 = 242.5 mm respectively. Also due to the plane stress assumption of

calculations in Persson theory, thickness of 6 mm was assigned in 2D finite element model.

Geometry of the model is presented in figure Fig. 3.6.
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Figure 3.5 FE model, two cylinders with positive curvatures
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Figure 3.6 Cylinders with opposite curvatures
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3.4 Comparison of the results of analytical and finite element models

3.4.1 Stress verification for cylinders with positive curvatures,

Values of principal stresses and z coordinates of the nodes which are located along line

of contact are extracted (as shown in Fig. 3.5). It must be mentioned that the analytical

formulations mentioned for Hertz theory and finite element modeling for this part are both

based on plain strain assumption. Therefor, if acceptable results are achieved for yy and zz

principal stresses, the accuracy of results can be generalized for xx principal stresses as well.

Stress values obtained from both numerical and Hertz analytical methods are compared and

finally corresponding tables and figures are provided to present the results. This procedure

is pursued for three types of element meshing (9, 8 and 4 node elements).

After comparing the numerical and analytical (Hertz theory) results for two cylinders

with positive curvature signs in contact, the following results are obtained ;

– Principal stress zz : By going through the figures and tables illustrated for principal

stresses in z direction for the three types of meshing (nine, eight and four node element

meshing), it can be concluded that the numerical values have an acceptable accordance

with those of analytical formulation.

– Principal stress yy : Similar to the case of principal stress zz, the numerical values of

principal stresses yy have an acceptable accordance with the analytical formulation of

these stresses.

– Stress xx : Since numerical outputs of both principal stresses zz and yy have led to an

acceptable accuracy when compared with analytical formulations, it can be concluded

that the values of principal stress xx in finite element modeling are in accordance with

analytical outputs due to plain strain assumption.

– Point of contact stresses : By going through the tables and figures illustrated it can be

inferred that at the point of contact the results of analytical formulations and ADINA

modeling have the highest differences. This is due to concentration of high local stresses

at point of contact. However the value of stress ratio at the points very close to contact

point (0.3 mm) are found to be very close to one.

Figures 3.7 to 3.12 illustrate the results corresponding to nine node element meshing.
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Figure 3.7 Stress zz, nine-node FE model, cylinders with positive curvature
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Figure 3.8 Stress yy, nine-node FE model, cylinders with positive curvature
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Figure 3.9 Stress zz, eight-node FE model, cylinders with positive curvature
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Figure 3.10 Stress yy, eight-node FE model, cylinders with positive curvature
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Figure 3.11 Stress zz, four-node FE model, cylinders with positive curvature

−1 −0.5 0 0.5 1 1.5 2 2.5

−1

−0.5

0

0.5

1

1.5

2

log(σ
yy

) for four node elements, MPa

lo
g(

Z
),

 m
m

 

 

Analytical formulation
ADINA

Figure 3.12 Stress yy, four-node FE model, cylinders with positive curvature
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3.4.2 Contact force verification for cylinders with positive curvatures

In this section contact forces obtained from numerical method are compared to the ones

corresponding to Hertz contact theory. As previously discussed in Eq. 3.8, analytical pressure

is distributed over contact width (in the range of −b′ ≤ y ≤ b′). Thus contact forces obtained

from the two methods in three selected nodes (as presented in figures 3.13 and 3.14) are

compared.

Analytical contact forces are obtained from Hertz contact pressure induced on each body

which is constant for all meshing types. However distribution of analytical contact forces

will highly be dependent on the number of nodes in each element. However numerical values

of contact forces are directly extracted from finite element modeling. Tables 3.1, 3.2 and 3.3

present values of contact forces at the selected nodes. According to these tables, it can be

inferred that for nine, eight and four node element meshing contact forces obtained from of

Hertz method are very close to those of FE modeling.

Table 3.1 Results for nine-node element model, bodies with similar curvatures

node y analytical analytical ADINA ratio
number (mm) pressure (MPa) contact force (kN) contact force (kN)

1 -0.199 2.73E+4 -7.26E+3 -7.59E+3 0.96
2 -0.398 2.73E+4 -3.62E+3 -3.74E+3 0.97
3 -0.598 2.72E+4 -7.26E+3 -7.64E+3 0.95

Table 3.2 Results for eight-node element model, bodies with similar curvatures

node y analytical analytical ADINA ratio
number (mm) pressure (MPa) contact force (kN) contact force (kN)

1 -0.199 2.73E+4 -7.26E+3 -7.59E+3 0.96
2 -0.398 2.73E+4 -3.62E+3 -3.74E+3 0.97
3 -0.598 2.72E+4 -7.26E+3 -7.64E+3 0.95

Table 3.3 Results for four-node element model, bodies with similar curvatures

node y analytical analytical ADINA ratio
number (mm) pressure (MPa) contact force (kN) contact force (kN)

1 -0.398 2.73E+4 -1.09E+3 -1.14E+3 0.96
2 -0.797 2.72E+4 -1.09E+3 -1.14E+3 0.96
3 -0.120 2.71E+4 -1.08E+3 -1.13E+3 0.95
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Figure 3.13 Nodes chosen for eight and nine node element meshing

Figure 3.14 Nodes chosen for four node element meshing



47

3.4.3 Angle and stress verification for cylinders with different curvatures

As mentioned before according to the references, limiting case of Hertz contact theory in

which contact area becomes infinitely long in one direction will not lead to acceptable results

for a cylinder which is in a bore with slightly larger radius (Persson 1964 ; Ciavarella 2001). In

such conditions the area of contact is not small anymore. In this section the numerical results

obtained by modeling two cylinders in contact with different curvature signs are compared

to both Persson and Hertz contact theory and the accuracy of the methods is examined.

Fig. 3.15 and 3.16 illustrate distribution of contact forces and angle of contact obtained from

numerical modeling for two loading values.

45

Figure 3.15 FEM contact force distribution (H=40 kN)

As mentioned before Persson has purposed an analytical method to obtain contact para-

meters for the case of contact for a cylinder in a bore of (Eq. (3.9) and Eq. (3.11)). Table 3.4

illustrates the outputs of maximum stresses and angle of contact derived from Hertz and

Persson analytical methods as well as finite element modeling of the cylinders for two loading

conditions.

From table 3.4 it can be concluded that for contact problem between two cylindrical bodies

with opposite curvatures, Persson theory leads to similar results with numerical modeling for

both smaller and higher values of loadings. However comparing to Persson, Hertz method

leads to less accurate results. By referring to the results it is specifically concluded that when

the applied load increases area of contact will become larger for which Hertz outputs will be

considerably different from those obtained from Persson method. However comparing to the

numerical values Persson leads to accurate results. From the results obtained it is concluded
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78

Figure 3.16 FEM contact force distribution (H=154 kN)

Table 3.4 Numerical and analytical results, bodies with similar curvature sign

Applied load Contact angle Maximum stress
Methods (kN) (Deg.) (MPa)

Numerical method 40 45 108
Persson method 40 45 105
Hertz method 40 47 102

Numerical method 154 78 251
Persson method 154 80 237
Hertz method 154 101 201

that for two cylindrical bodies with contact conditions in which areas of contact is large,

contact parameters obtained from Hertz method will not lead to accurate values.

3.5 Conclusions

From the results obtained from finite element modeling and available analytical methods

for two cylindrical bodies in contact is is concluded that (i) For two cylinders with positive

curvature signs, the numerical method has accordance with that of Hertz theory. Thus this

analytical method can be used effectively to estimate contact parameters. (ii) For two cylin-

ders with different curvature signs Hertz method is not always accurate. For cases of with

small areas of contact, this method can be accurate. However for larger areas of contact this

method is not accurate. However for this case of contact Persson method provides accurate
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results for both small and large areas of contact
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CHAPTER 4

DISCUSSION ON POT BEARING DESIGN

4.1 Introduction

In chapter 2, the most important specifications which focus on design of pot bearings

(European Standard EN 1337-5, AASHTO/NSBA steel bridge bearing design and detailing

guidelines and Canadian Highway Bridge Design Code) were introduced and the rules pres-

cribed by these specifications and the rationale behind them were discussed. In this chapter

of the thesis, the method of design of pot bearings as a continuous process according to the

available codes of practice is highlighted and the important factors as well as the simplifying

assumptions made in the design of pot bearings are discussed.

4.2 Design procedure according to European Standard EN 1337-5

4.2.1 Design steps

In Fig. 4.1, the essential steps in design of fixed pot bearings according to European Stan-

dard EN 1337-5 are illustrated as a flowchart. As presented in this figure, design procedure

begins with specifying elastomer pad dimensions, piston, pot and the sealing rings respec-

tively. In order to begin design process of the bearing it is assumed that the value of some

parameters is known to the designer which include, design axial force (NSd), partial safety

factor (γM), design horizontal force (VFxy, Sd), properties of materials (fe, k, Fy, Ed and Fy )

and maximum total rotation (αmax). In figure 4.2, the important geometrical parameters are

presented.
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Figure 4.1 Pot bearing design flowchart according to EN 1337-5
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Figure 4.2 Geometrical design parameters for an EPB
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4.2.2 Design of elastomeric pad

According to European Standard EN 1337-5, in order to specify elastomeric pad dimen-

sions the following verifications shall be made

– Diameter

Elastomeric pad diameter is obtained by assuming design axial forces are less than or

equal to the design value of resistance of elastomeric pad

NSd 6 NRd (4.1)

or

NSd 6
π

4
d2Padfe, k (4.2)

– Thickness of the pad

The minimum thickness of the pad is specified by assuming occurrence of the maximum

rotation

tPadmin
= 3.33 αmax dPad (4.3)

Another criteria to be considered is,

tPadmin
≥ dPad

15
(4.4)

4.2.3 Design of piston

Similar to pot, design of piston is also dependant on the distribution of contact forces in

the horizontal plane. According to European Standard EN 1337-5, method of piston design

depends on whether the piston wall is flat or curved.

Flat piston

– The width of piston face

This property shall satisfy the following equation

1.5 VSd

dPotw
6

Fy

γM
(4.5)

Curved piston

– diameter and radii of curvature

These geometrical properties of a curved piston can be obtained by the following crite-
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rion,

VSd 6
15f 2

u R dPot
Ed γ

2
M

(4.6)

– Piston and pot contact width

The piston wall width in which comes into contact with pot can be obtained from

b = 3.04

√

1.5VFxy, Sd R

Ed dPot
(4.7)

Also width of curved piston is obtained from

w = b+ αmaxdPot (4.8)

4.2.4 Design of pot

According to the available codes of practice method of design of pot and piston is consi-

derably dependant on the distribution of contact forces in the horizontal plane from piston

to the pot. As discussed in chapter 2, in European Standard EN 1337-5 it is assumed that

distribution of contact forces in horizontal plane is along half of pot perimeter with a para-

bolic shape which leads to maximum contact pressure of 1.5 times the mean value. Then it is

obvious that this simplifying assumption plays a crucial role in design process of pot bearing.

In the next chapter distribution of contact forces in the horizontal plane will be discussed

further and in this part of the thesis the design method of piston and pot according to the

available specifications will be highlighted.

The geometrical dimensions of the pot to be determined after obtaining properties of the

elastomer pad include, external diameter of the pot, height of the pot wall and thickness of

pot base plate.

– External diameter of the pot

According to European Standard EN 1337-5 external diameter of the pot can be ob-

tained by providing sufficient resistance to the shear force for the pot walls then

V ′

Sd 6 V ′

Rd (4.9)

or
4NSd tPad
πd2Pot

+
1.5VFxy,Sd

dPot
6

Fy(DPot − dPad)

2 γM
√
3

(4.10)

– Height of pot wall

After obtaining external diameter, height of the pot wall can be determined by providing
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sufficient resistance against tensile forces from the following equation

VSd 6 VRd (4.11)

or
4NSd tPad
πdPot

+ VFxy, Sd 6
Fy (DPot − dPot)hWall

γM
(4.12)

– Thickness of pot base

Pot base thickness can be obtained by providing sufficient resistance against tensile

forces applied to the base by

VSd 6 VRd (4.13)

or
4NSd tPad
πdPot

+ VFxy,Sd 6
FydPot tPot

γM
(4.14)

4.2.5 Design of sealing rings

According to European Standard EN 1337-5, sealing rings can be chosen from brass,

POM, carbon filled PTFE or stainless steel material. In this standard the dimensions and

material properties of the internal seals are based on the experimental tests which led to more

satisfactory behaviour of pot bearing. The specifications about diameter, cross section, slits

and number of rings and material requirements are stated in Annex A of European Standard

EN 1337-5.

4.2.6 Additional conditions

After determining the primary dimensions of elastomeric pad, pot and the piston, accor-

ding to European Standard EN 1337-5, additional conditions shall be satisfied including

hWall > tPad + 0.5 (w − b) + (0.5 αmax dPot) + ad (4.15)

and for the parameter hp as illustrated in Fig. 4.3 we have

hp = hWall − tPad + ad + (0.5 αmax dPot) (4.16)

where ad is a safety factor of

ad = min [max(0.01DPot, 3 mm), 10 mm] (4.17)
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Figure 4.3 Geometrical conditions for rotation according to EN 1337-5

4.3 Design procedure according to AASHTO/NSBA

Pot bearing design procedure according to this specification is similar with that of Euro-

pean Standard in determining elastomer dimensions. However comparing to European Stan-

dard EN 1337-5, AASHTO Specification assumes transmission of horizontal forces through

bending mechanism and bursting moments rather that shear and tensile stresses. This as-

sumption leads to several differences in pot bearing design procedure. The method of pot

bearing designed is presented in Fig. 4.4 as a flowchart.

4.3.1 Design of elastomeric pad

– Thickness of the pad

Similar to European Standard EN 1337-5 the minimum thickness of the pad according

to AASHTO is specified by assuming occurrence of the maximum rotation thus the

maximum deflection

hPadmin
= 3.33 αmax dPad (4.18)

– Diameter of the pad

AASHTO specification states maximum compressive stress of 25MPa which leads to a

minimum value of pad and pot diameter.

4.3.2 Design of pot

– Pot wall thickness

According to AASHTO pot wall thickness can be obtained from

tWall >

√

25Hu αmax

Fy

(4.19)
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– Pot cavity depth

This parameter according to AASHTO Specifications can be obtained from

hWall > (0.5 αmax DPot) + tPad + w (4.20)

– Pot base thickness

According to AASHTO pot wall thickness can be obtained from

tPot >

√

25Hu αmax

Fy
(4.21)

Also depending on where the bearing is placed the following bounds should be satisfied.

Bearing directly against concrete or grout :

tPot > 0.06 dPot (4.22)

and

tPot > 20mm (4.23)

bearing directly on steel girders or load distribution plates :

tPot > 0.04dPot (4.24)

and

tPot > 12.5mm (4.25)

4.3.3 Design of piston

The specifications related to piston design in AASHTO is only limited to flat piston type

by assuming a parabolic distribution of contact forces. According to this specification similar

to EN 1337-5 width of piston face can be obtained from

w ≥ 1.5Hu

dPotFy

(4.26)

4.3.4 Sealing rings

AASHTO allows use of multiple flat brass rings, circular brass rod formed and brazed into

a ring and plastic rings with performing tests which verify proper behaviour of the bearing.

However if rings with rectangular or circular cross section are used according to AASHTO

specifications, they will not require testing since their behaviour has already been verified.
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4.3.5 Additional conditions

– Vertical clearance between top of piston and top of pot wall :

According to AASHTO, this parameter can be determined from

hP > R0αmax + 2δu + 3 (4.27)

– Clearance between diameter of piston and pot :

The diameter of piston rim is equal to inside parameter of the pot less the clearance

c1. This value should not be less than 0.5mm. For cylindrical piston rim,

c1 > αmax(w − dPot αmax

2
) (4.28)
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CHAPTER 5

PARAMETRIC ANALYSIS OF POT BEARINGS

5.1 Introduction

As previously discussed, transmission of forces from piston plate to the pot in an elasto-

meric pot bearings takes place through contact between the two bodies. Thus taking account

of contact problem is crucial to design a pot bearing for which hard contact between piston

and pot during cyclic rotations does not occur. As discussed in chapters 2 and 4, EN 1337-5

is considered as one of the most comprehensive specifications which introduces the possibility

of designing the pot wall as curved or flat. Also the design procedure of bearing parts is based

on the assumption that contact forces are transferred through half of bearing perimeter. Also

in chapter 3 the accuracy of finite element modeling outputs for Hertz and Persson contact

condition was approved by comparing the analytical and numerical procedures for 2D pro-

blems. As stated in this chapter for two cylinders with different curvature signs and relatively

very close radius, the contact parameters obtained from Hertz theory (angle of contact and

maximum stress) are not accurate comparing to Persson method.

In this chapter first available types of contact in a pot bearing will be introduced. Next

a finite element model of an elastomeric pot bearing will be developed. The finite element

model generated is designated for bearings with small ratios of pad thickness to piston contact

width. Also a more simplified finite element model of a disk and a ring in contact will be

presented which simulates contact condition between piston and the pot in an elastomeric pot

bearing. The model is generated for numerous disk and ring models with similar geometrical

and loading conditions in a pot bearing. As the next step, the important parameters which

act effective in the contact angle values between the ring and the disk are are combined

with those employed in Persson method due to accuracy of this method for 2D problems as

discussed in chapter 3. Finally a regression analysis is performed on the contact angle outputs

derived from finite element modeling of disk and ring and an equation is developed to obtain

contact angle values in disk and ring model.

5.2 Types of contact between piston and pot

In a pot bearing distribution of forces from piston to the pot takes place through two

directions. First, the loads are transferred from piston wall to the pot wall in the vertical

plane of the bearing. As discussed in chapter 2, in the latest version of EN 1337, this type of
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load distribution is studied by classifying piston wall as flat or curved. In this specification

parameter b is the length of the piston wall through which contact forces are transferred

vertically to pot wall. As previously mentioned, the equations in EN 1337-5 for curved ver-

tical contact are based on assuming contact conditions take place according to Hertz theory.

Then in chapter 3 the accuracy of this assumption was verified by comparing the results of

two cylindrical bodies in 2D. In Fig. 5.1 the plane in which vertical contact takes place is

illustrated. In this chapter it is supposed that piston wall is from flat type.

V
Fxy,Sdw wb

R
V

Fxy,Sd

Figure 5.1 Distribution of contact forces in vertical plane

The second type of distribution of contact surfaces takes place in the horizontal plane of

the bearing. This type of contact force distribution actually takes place through a portion

of bearing perimeter. As mentioned in chapter 2, EN 1337-5, AASHTO and CHBDC have

prescribed this portion as half of bearing perimeter (or 180 ◦) as illustrated in Fig. 5.2. In

design procedures according to EN-1337 this parameter will take part in determining both

piston and pot properties due to taking account shear forces in the pot walls. However in

AASHTO and CHBDC, angle of contact plays active only in determining piston dimensions

due to taking into account bending mechanism of the pot. As it was stated previously in

chapter 2, factor of 1.5 which is available in the equations regarding to design of piston and

pot is related to this assumption. Then it can be concluded that value of angle of contact

plays an important role in design procedure of the pot bearing.

In the next sections of this chapter more focus will be paid on distribution of contact

forces in the horizontal plane of the bearing by performing numerical analysis on pot bearing

and disk and ring models.
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Figure 5.2 Distribution of contact forces of EPBs in horizontal plane
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5.3 Pot bearing finite element model

As discussed in the previous parts the angle of contact between piston and pot is the

parameter that can be used effectively to calculate design tensile and shear forces in a pot

bearing. The objective of this section is to develop a 3D finite element model of pot bearing

and measure value of contact angle.

Finite element modeling of a pot bearing requires advance modeling analysis techniques

due to existence of elastomeric pad as a highly incompressible material and complex me-

chanisms involving nonlinear contact interactions between different parts of pot bearing in

3D. In this research, numerous types of finite element modeling were generated to simulate

behaviour of a pot bearing in 3D by ADINA software. Finally in order to model the bearing

the effect of sealing rings was neglecting by assuming that elastomeric pad occupies the whole

volume between the piston and the pot. The details of the generated model are highlighted

as,

– Geometry

The geometrical properties and loading values of the bearings were extracted from

the properties of fixed pot bearings with flat piston wall designed by D.S.Brwon, a

manufacturer of engineered products for the bridges (D.S.Brwon 2013) and also by

referring to AASHTO apecifications. The material of piston and the pot is assumed as

Grade 350W, with Young’s modulus of E =200GPa and Poisson’s ratio of ν =0.287,

ultimate strength of Fu=450MPa and yield strength of Fy=350MPa.

– meshing

Since contact forces are effective along a portion of bearing perimeter, the pot bearing

is subdivided into four quadrants I to IV as illustrated in Fig. 5.3 and the mesh density

selected for quadrant I of piston and pot is higher than the other quadrants as presented

in figures 5.4 and 5.5. This step is taken to optimize the mesh density to the most critical

zones, reduce computational burden, and enhance the quality of the numerical results.

The different components are meshed using 3D solid linear isoparametric finite elements

and mesh construction is dictated by a compromise between the quality of the numerical

models and reasonable computational cost.

– Loading

As mentioned earlier the effects of the pad in the bearing was taken into account by

applying a hydrostatic pressure on base and walls of the pot, therefor a uniform pressure

due to the applied vertical loads on the elastomeric pad is assigned to all the faces of

the pot in contact with the pad as illustrated in Fig. 5.6 for one quadrant.

To apply the horizontal forces, since the resulting mesh density is not uniform over
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Piston

Figure 5.3 Geometrical design parameters for pot bearing model

Figure 5.4 Generated meshing for piston quadrants
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Figure 5.5 Generated meshing for pot quadrants

piston upper face, a uniformly meshed thin circular transfert plate is glued to this face

to ensure a uniform distribution of the horizontal loads. In Fig. 5.7 the horizontal loads

applied to the plate are presented.

PRESCRIBED
PRESSURE

2.332E+07

Figure 5.6 Applied pressure due to vertical loading

– Boundary conditions

To simulate the movement of the piston in the bearing, the boundary conditions assi-

gned to the lower face of the piston is such that it can move freely in the horizontal

plane of the bearing. Also it is assumed that the bearing is completely fixed in the base

of the pot.
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PRESCRIBED
FORCE

TIME 1.000

63.10

Figure 5.7 Loads applied to the transfert plate

5.4 Disk and ring finite element model

The model generated from modeling piston, pot and the base plate discussed in the

previous section still imposed computation burden, thus there was an essential need for a

more simplified model. To fulfill this objective, numerous trials were performed to generate

a more simplified numerical model which simulates contact conditions available in a pot

bearing. Finally the simplified model was generated from modeling a disk in a ring with

equal thicknesses. Disk and ring were modeled by cutting the piston and the pot at lower and

upper sections where they come into contact. For better illustration the sections where the

bodies are cut to generate disk and ring models are illustrated in Fig. 5.9. Also the general

geometry of disk and ring model is presented in Fig. 5.8.

In order to study variation of contact angle for disk and ring models, numerous samples

were created with different geometrical and loading properties of ring and disk models.

These properties were extracted from fixed pot bearings designed by D.S.Brwon, a ma-

nufacturer of engineered products for the bridges as well as AASHTO design specifica-

tions (D.S.Brwon 2013). The material of disk and ring is similar to piston and pot and

similar to the case of pot bearing, disk and the ring are meshed for four quadrants for effi-

cient modeling. Also the horizontal loads were applied to a transfert plate which is glued to

the disk similar to pot bearing model. Comparing to the bearing, the boundary conditions

applied to the ring is such that it is completely fixed along the perimeter instead of the base.

However the boundary condition for the disk is similar to the piston in pot bearing model.

The vertical loads applied to the bearing were ignored in the simplified models since after
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Figure 5.8 Geometrical design parameters for disk and ring model
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Cutting Sections

Figure 5.9 Sections cut in the bearing to generate ring and disk model

numerous trial and errors it became clear than vertical loads do not play an important role

in distribution of contact forces in the horizontal plane.

After generation of the model, contact angles obtained from disk and ring models were

compared to the ones corresponding to the pot bearing. Finally disk and ring model was

accepted as a simplified model due to very close results with contact angle in pot bearings.



69

x y

z

Disk

I

II

III

IV

Studied quadrant

x y

z

I

IV

III

II

Ring

Studied quadrant

Figure 5.10 Subdivision of disk-ring model into four quadrants
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5.5 Parametric regression analysis

In chapter 3 the analytical methods to obtain contact angle between two bodies in contact

in 2D were discussed and their accuracy were investigated by comparing the numerical results

with the analytical outputs. In this chapter it was also proved that for 2D contact between

two bodies with small radius difference Hertz method does not provide accurate results while

Persson method outputs were still close to the numerical results. In the previous part of

current chapter simplified model of disk and ring was presented to simulate contact conditions

in a pot bearing.

As it is clear the geometrical conditions available in a pot bearing has more conformity

with Persson method comparing to Hertz since piston and pot have very close radii and

also because in Persson method cylindrical bodies are assumed as plane stress. On the other

hand some assumptions made in Persson method do not exist in contact conditions between

disk and ring (or pot bearing). This is due to the fact that Persson method is valid for 2D

problems, also the width of the ring is considered as infinite in this method. In the following

parts of this chapter it will be illustrated that the angle of contact obtained from Persson

method does not lead to accurate results for disk and ring (or pot bearing) by comparing

them to those of numerical method.

The objective of this section is to perform a parametric regression analysis by referring

to the numerical results obtained from disk and ring models as well as by taking account of

parameters effective in Persson method. The parametric regression analysis performed in the

context of this research includes the following steps,

– Determining the effective parameters

The parameters which define geometrical and loading properties of disk and ring models

include applied horizontal force (H), radius of the disk (rDisk), inner radius of the ring

(rRing), width of the ring (wRing) and thickness of the bodies (bRing).

– Highlighting the parameters effective in Persson method

Due to the fact that Persson method proved to be accurate for 2D peroblems as dis-

cussed in chapter 3 (if the assumptions of the method are satisfied), the parameters

effective in this method were used for the parametric analysis. These parameters are

in the terms of the ratio
E∆R

Q
where Q is the distributed load (

H

bRing
) and ∆R is the

difference of disk radius and inner radius of the ring. In the models generated it is as-

sumed that the bodies are made from steel with Young’s modulus of E=200GPa and

the difference of disk radius (rDisk) with the inner radius of the ring (rRing) is 1mm. By

using
E∆R

Q
, two parameters of the applied force and the thickness of bodies in contact

will be taken into account in one parameter.
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– Determining the final parameters to be used in regression analysis

Finally the parameters that will be taken into account for the parametric regression

analysis include
E∆R

Q
, wRing and rRing.

5.5.1 Models generated for regression analysis

After verifying the contact angle obtained from disk and ring numerical model by com-

paring it to the corresponding pot bearing numerical model, it was decided to perform re-

gression analysis on the numerical contact angles obtained from disk and ring models. Thus

numerous models for disk and ring with various loading and geometrical conditions were

developed for regression analysis. As mentioned previously, the properties of the ring and

disk models were derived from actual pot bearings designed by D.S.Brwon, a manufacturer

of engineered products for the bridges (D.S.Brwon 2013) and also by referring to AASHTO

specifications (AASHTO 2012). The geometrical properties of these models are presented in

annex A. The models generated for disk and ring can be classified into two groups,

– The models with constant inner radius of the ring (rRing)

– The models with various geometrical and loading properties

In other words the parametric study on disk and ring outputs was performed in two

steps. This procedure was taken due to the fact that number of variables which play role in

the numerical contact angle were more than two. Thus in the first step one model adopted

from the ones designed by D.S.Brwon (D.S.Brwon 2013) was chosen (model number 1) from

which numerous models were generated by assigning various values for applied horizontal

loads (0.25H , 0.5H , 1H , 2H and 3H) with various values of width of ring (0.5wRing, 1wRing,

2wRing, 3wRing and 4wRing). In other words by keeping radius of the ring (rRing) as constant,

number of variables in the parametric study changed from three to two. The properties of

these models are included in annex B.

The parametric analysis was performed with fitting feature in MATLAB by assigning the

two variables to the program (E∆R/Q and wRing) as x and y and the numerical outputs

obtained from model numbers 1 to 25 (Annex B) as z. By performing numerous trial and

errors the best fitting function in terms of these two variables to for angle of contact value

was obtained as,

α1 = 39.05

[

E∆R

Q

]

−0.339

(wRing)
0.1704 (5.1)

Fig. 5.11 illustrates dispersion of the data of first group of models comparing to α1 surface

obtained from Eq. (5.1). Also in figures 5.12 to 5.16 for different values of horizontal loads

changes of α1 is illustrated for models with a specific wRing as well as numerical and Persson
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Figure 5.11 Presentation of the function obtained from step 1

method results. As it is clear from the figure, Persson method values do not provide accurate

results for disk and ring case.
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Figure 5.12 Comparing α1 with numerical and persson results for 0.5wRing
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Figure 5.13 Comparing α1 with numerical and persson results for 1wRing
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Figure 5.14 Comparing α1 with numerical and persson results for 2wRing
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Figure 5.15 Comparing α1 with numerical and persson results for 3wRing
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Figure 5.16 Comparing α1 with numerical and persson results for 4wRing
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The second part of parametric analysis was performed by taking into account all the

models generated for disk and ring models (models 1 to 50 from annex A.1 and A.2). In this

step α1 and rRing were assigned to fitting feature of MATLAB as x and y values and the

numerical outputs obtained from finite element modeling az z values. The equation obtained

from this step of regression analysis is considered as the final equation which takes account

of all the variables presented before.

αf = 73.05×
[

E∆R

Q

]

−0.337

(wRing)
0.169(rRing)

−0.1095 (5.2)

Fig. 5.17 illustrates the numerical data and surface of αf in terms of the α1 and rRing.

As mentioned before this equation is generated from disk-ring models of bearings with small

ratios of pad thickness to piston contact width. Thus this method can be used for such

bearings. Also in figures 5.18 to 5.21 variation of contact angle obtained from Eq. (5.2) is

compared with numerical and Persson method results in terms of different variables for models

26 to 50.

Figure 5.17 Presentation of the final function to obtain angle of contact

5.6 Verification of the developed equation

In the previous section Eq. (5.2) was developed as a method to estimate contact angle

in disk and ring model. In this section the accuracy of this method is assessed by perfor-

ming finite element analysis on some models not included in the regression analysis. The

properties of these models are presented in Annex A (models 51 to 73 from annex A.3) and

the contact angles obtained from Eq. (5.2) are compared to the numerical outputs as pre-

sented in figures 5.22 to figures 5.25 in terms of different variables. As it is clear from these

figures, the equation developed can estimate the numerical angle of contact with acceptable
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Figure 5.18 Variation of contact angle in terms of horizontal loads
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Figure 5.19 Variation of contact angle in terms of inner radius of ring
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Figure 5.20 Variation of contact angle in terms of ring thickness
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Figure 5.21 Variation of contact angle in terms of ring width
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approximation.
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Figure 5.22 Variation of contact angle in terms of loading for additional models

5.7 Effects of angle of contact on design method

Method of pot bearing design specified in codes of practice can be optimized by applying

Eq. (5.2) obtained from nonlinear regression analysis. This step can be taken by calculating

maximum contact pressure from angle of contact obtained. As discussed in chapter 2 maxi-

mum contact pressure between piston and the pot plays an effective role in determining design

parameter according to the following specifications as,

– EN 1337 :

According to this specification maximum contact pressure is effective in determining

external diameter of the pot (DPot,Eq. (4.10)) due to taking into account shear forces in

the pot walls. Also regarding to design of piston this parameter plays role in determining

width of piston face for flat piston (w, Eq. (4.5)), radius of piston wall (R, Eq. (4.6))

and contact width between piston and pot (b, Eq. (4.7)) for curved piston walls to resist

transverse forces transferred to the piston.

– AASHTO and CHBDC :
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Figure 5.23 Variation of contact angle in terms of inner radius additional models
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Figure 5.24 Variation of contact angle in terms of thickness for additional models
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Figure 5.25 Variation of contact angle in terms of ring width for additional models

Compering to EN 1337, for these specifications contact pressure is effective only in

determining width of piston face (w) for flat piston. In these specifications there is no

indication to possibility of designing the piston as curved.

Thus the maximum contact pressure of P0 can be obtained from the equation below by

assigning αf

VFx,Sd =

∫ rPad sin(αf /2)

−rPad sin(αf/2)

P (x) dx (5.3)

or

VFx,Sd = 2

∫ (αf /2)

0

P (φ) dφ (5.4)

Also assuming a parabolic distribution of contact forces the boundary conditions for

contact pressures for Fig. 5.26 change to,

P (x) = 0 at x = −rPad sin(
α

2
) ; P (x) = 0 at x = rPad sin(

α

2
) ; P (x) = P0 at x = 0

(5.5)
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Figure 5.26 Horizontal distribution of contact forces in a pot bearing
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leading to,

P0 =
γVFx,Sd

dPad
(5.6)

Annex A.4, presents value of γ for models 1 to 73. As it is clear from the results γ exceeds

1.5 when angle of contact is less than 180 ◦.

5.8 Conclusion

Numerical values of contact angle from finite element modeling of pot bearings show that

angle of contact depends on different geometrical and loading parameters that should be

considered. These results also show that the simplifying assumption in design specifications

considering only horizontal transmission of contact forces along half of bearing perimeter

is not accurate. Also the maximum pressures obtained from Eq. (5.6) prove that contact

pressure will be more than what is assigned in the specifications. when angle of contact is

less than 180 ◦.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 Reminder of research objectives

The main objective of this research is to investigate structural performance of fixed pot

bearings through finite element modeling and simplified analytical formulations. For this

purpose, the following phases were followed : (i) preparation of an exhaustive literature review,

(ii) verification of finite element modeling by referring to analytical formulations of contact

problem, (iii) finite element modeling of elastomeric pot bearing and disk and ring model,

(iv) performing parametric regression analysis on contact angles obtained from numerical

modeling. In the first phase of this research, a detailed literature review was conducted on pot

bearings. Finite element results were assessed through comparison with available analytical

formulations for typical bodies. In the next phase of the research, finite element modeling

of a series of pot bearings from various manufacturers was conducted. The results of these

analyses confirmed that the angle of contact between piston and the pot is generally different

from 180 ◦ as assumed in design specifications. A simplified FE model including only a disk

and truncated pot was proposed and validated to simulate contact conditions in actual pot

bearings. The results were exploited to develop an equation for angle of contact, an important

factor in design of pot bearings. For this purpose, a nonlinear regression analysis including

the most important design parameters was conducted. The equation developed is the first

numerical equation that estimates angle of contact between bearing parts in lieu of assuming

distribution of contact forces along half of bearing perimeter as stated in the specifications.

6.2 Conclusions

The detailed literature review showed that the among the important specifications in

design of pot bearings, code EN 1337 takes into account contact conditions between pot

and the piston more effectively by stating that piston walls can be designed as either flat or

curved for vertical transmission of forces. However for transmission of horizontal loads, all the

specifications assume that contact stresses are transmitted from the piston to the wall along

half of pot perimeter. Also it is concluded that another main difference between EN 1337 and

the two specifications (AASHTO and CHBDC) is in design method of pot. In EN 1337 pot

parts are assumed as separate components which transfer tensile and shear forces. However

according to AASHTO and CHBDC pot is designed as a single structural unit which resists
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bending moments due to the applied loads.

The results from finite element models of typical contact problems were validated against

analytical formulations when available. It is concluded that (i) for two cylinders with positive

curvature signs contact Hertz can be used as an accurate method to obtain contact parameters

(ii) For two cylinders with different curvature signs, Hertz provides accurate results only when

the contact area is small. However persson method proved to be accurate to obtain contact

parameters for both small and large areas of contact.

The results obtained from 3D finite element models proved that angle of contact between

piston and pot can be obtained by simplifying the bearing to a piston and truncated pot to

avoid computation burden. However this angle cannot be obtained from Persson analytical

method. The results of finite element analysis of the disk-ring models showed that angle of

contact in a bearing is usually less than 180 ◦ (assumed in the specifications) which depends on

on various geometrical and loading parameters. Angle of contact obtained from the developed

equation by nonlinear regression method proved that this method can be used as a satisfactory

means to estimate this parameter. Also the values of contact pressure obtained from the

equation showed that for bearings with angle of contact less than 180 ◦, contact pressure will

be more than what is stated in specifications. Thus the design method of pot bearings can

be optimized by applying the modified value of contact pressure.

6.3 Recommendations

Due to the complex mechanisms present in a pot bearing such as nonlinear contact inter-

actions and sophisticated boundary conditions it is recommended that the designer perform

finite element analysis on pot bearings as well. This will help the designer to have a bet-

ter understanding of the behaviour of the bearing. Also the design method of pot bearings

should be optimized by the designer due to approximate design methods prescribed in the

specifications. Also as further research in this area it is suggested to perform experimental

tests on elastomeric pot bearings and compare the results with the ones corresponding to

numerical methods.
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ANNEXE A

SPECIFICATIONS OF DEVELOPED DISK-RING MODELS

Table A.1 Horizontal and geometrical properties of disk-ring models (continue)

model H bRing wRing r1Ring

# (kN) (mm) (mm) (mm)
1 489 15 51 247
2 122 15 102 247
3 245 15 102 247
4 489 15 102 247
5 979 15 102 247
6 1468 15 102 247
7 122 15 153 247
8 245 15 153 247
9 489 15 153 247
10 979 15 153 247
11 1468 15 153 247
12 122 15 204 247
13 245 15 204 247
14 489 15 204 247
15 979 15 204 247
16 1468 15 204 247
17 122 15 26 247
18 245 15 26 247
19 489 15 26 247
20 979 15 26 247
21 1468 15 26 247
22 122 15 51 247
23 245 15 51 247
24 979 15 51 247
25 1468 15 51 247
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Table A.2 Horizontal and geometrical properties of disk-ring models

model H bRing wRing r1Ring

# (kN) (mm) (mm) (mm)
26 56 5 20 78
27 67 6 22 93
28 111 7 25 121
29 133 8 26 129
30 156 9 28 144
31 200 10 31 163
32 245 11 34 179
33 289 11 37 192
34 334 12 40 208
35 356 13 42 215
36 423 14 47 232
37 489 15 51 247
38 578 16 55 269
39 712 18 59 299
40 890 20 65 335
41 1223 23 80 390
42 1557 26 90 440
43 2002 32 100 532
44 2402 30 125 294
45 2669 36 142 299
46 3003 39 140 319
47 3670 44 169 349
48 4003 47 178 365
49 4671 50 186 398
50 5338 52 195 427
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Table A.3 Specifications disk-ring models generated to verify developed equation

model H bRing wRing r1Ring

# (kN) (mm) (mm) (mm)
51 89 5 20 78
52 133 6 22 93
53 222 7 25 121
54 267 8 26 129
55 311 9 28 144
56 400 10 31 163
57 489 11 34 179
58 578 11 37 192
59 667 12 40 208
60 712 13 42 215
61 845 14 47 232
62 979 15 51 247
63 1157 16 55 269
64 1423 18 59 299
65 1779 20 65 335
66 2447 23 80 390
67 3114 26 90 440
68 4003 32 100 532
69 4804 30 125 294
70 5338 36 142 299
71 6005 39 140 319
72 7340 44 169 349
73 10676 52 195 427
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Table A.4 Value of γ for the models developed

model γ model γ model γ
# # #
1 3.3 26 4.7 51 4.1
2 4.7 27 4.8 52 3.8
3 3.7 28 4.4 53 3.6
4 3.0 29 4.3 54 3.4
5 2.4 30 4.2 55 3.4
6 2.2 31 4.0 56 3.2
7 4.4 32 3.9 57 3.1
8 3.5 33 3.7 58 3.0
9 2.8 34 3.6 59 2.9
10 2.3 35 3.6 60 2.9
11 2.1 36 3.4 61 2.8
12 4.2 37 3.3 62 2.7
13 3.3 38 3.2 63 2.6
14 2.7 39 3.1 64 2.5
15 2.2 40 3.0 65 2.5
16 2.0 41 2.8 66 2.3
17 5.9 42 2.7 67 2.2
18 4.7 43 2.7 68 2.2
19 3.7 44 2.3 69 1.9
20 3.0 45 2.3 70 1.9
21 2.7 46 2.3 71 1.9
22 5.2 47 2.2 72 1.8
23 4.2 48 2.2 73 1.8
24 2.7 49 2.1
25 2.4 50 2.1
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