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RÉSUMÉ 
 

           Le décrochage tournant est une instabilité aérodynamique des compresseurs qui est bien 

connue et qui limite l‘enveloppe d‘opération des turbines à gaz de moteurs d‘avion.  Une 

méthode innovatrice avait été proposée pour supprimer le type d‘initiation le plus commun au 

décrochage tournant en utilisant un actionneur plasma DBD annulaire. Un actionneur plasma 

DBD est un dispositif simple sans pièces mobiles qui convertit l‘électricité directement en 

accélération de l‘écoulement via l‘ionisation partielle de l‘air. Cependant, le concept proposé 

n‘avait été évalué que de façon préliminaire via de simples simulations numériques d‘un rotor 

axial isolé avec un code CFD rudimentaire. Ce projet fait une évaluation expérimentale ainsi que 

numérique de ce concept pour un étage de compresseur axial et un étage de compresseur 

centrifuge, tous deux faisant partie d‘un banc d‘essai de compresseur bi-étagé axial-centrifuge à 

basse vitesse.     

Les deux configurations étudiées sont la configuration bi-étagé avec un actionneur 

plasma annulaire de 100 mN/m placé sur le carter juste en amont du bord d‘attaque du rotor 

axial, et une configuration avec un seul étage de compresseur centrifuge dans lequel le même 

actionneur est placé juste en amont du bord d‘attaque de l‘impulseur. Les configurations testées 

furent simulées avec un code RANS CFD commercial sophistiqué (ANSYS CFX) dans lequel 

furent intégrés le plus récent modèle d‘ingénierie de l‘actionneur DBD ainsi qu‘une condition de 

sortie  dynamique, sur des domaines de calcul multi-étagé à un passage d‘aube.  

Les mesures expérimentales montrent que l‘actionneur plasma DBD annulaire sur le 

carter  réduit le débit massique du dernier point d‘opération stable (point de décrochage tournant)  

de 19.28% pour l‘étage de compresseur axial et de 28.39% pour l‘étage de compresseur 

centrifuge pour lequel l‘impulseur était la source du décrochage tournant. Les simulations 

numériques indiquent que pour les deux types de compresseurs l‘actionneur retarde le 

décrochage tournant en poussant l‘interface entre l‘écoulement d‘entrée et l‘écoulement de jeu 

d‘aube en aval vers l‘intérieur du passage d‘aube. Dans chaque cas, le pourcentage prédit par 

CFD de la  réduction du débit massique du point de décrochage tournant concorde assez bien 

avec la valeur mesurée. Cependant, les simulations CFD surestiment le débit massique du point 

de décrochage tournant ainsi que l‘augmentation de pression de l‘étage centrifuge et sous-
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estiment l‘augmentation de pression de l‘étage axial. Les principaux facteurs expliquant cette 

différence sont probablement les petites différences entre la forme simulée versus la forme 

actuelle de l‘aube de rotor axial et l‘incapacité de l‘outil de simulation à bien capturer les pertes 

de pression totale dans la région près du moyeu du diffuseur sans aubes.   
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ABSTRACT 
 

           Rotating stall is a well-known aerodynamic instability in compressors that limits the 

operating envelope of aircraft gas turbine engines. An innovative method for suppressing the 

most common form of rotating stall inception using an annular DBD plasma actuator had been 

proposed. A DBD plasma actuator is a simple solid-state device that converts electricity directly 

into flow acceleration through partial air ionization. However, the proposed concept had only 

been preliminarily evaluated with simple numerical simulations on an isolated axial rotor using a 

relatively basic CFD code. The current project provides both an experimental and a numerical 

assessment of this concept for an axial compressor stage as well as centrifugal compressor stage 

that are both part of a low-speed two-stage axial-centrifugal compressor test rig.  

The two configuration studied are the two-stage configuration with a 100 mN/m annular 

casing plasma actuator placed just upstream of the axial rotor leading edge, and the single-stage 

centrifugal compressor with the same actuator placed upstream of the impeller leading edge. The 

tested configuration were simulated with a sophisticated commercial RANS CFD code (ANSYS 

CFX) in which was implemented the latest engineering DBD plasma model and dynamic throttle 

boundary condition, using single-passage multiple blade row computational domains. 

The experiments show that the casing plasma actuator reduces the mass flow of the last 

stable point (stall point) by 19.28% for the axial compressor stage and 28.39% for the centrifugal 

compressor stage for which the impeller is the source of rotating stall. The CFD simulations 

indicate that in both types of compressors the actuator delays the stall inception by pushing the 

incoming/tip clearance flow interface downstream into the blade passage. In each case, the 

predicted percentage reduction in stalling mass flow matches the experimental value reasonably 

well. However, the CFD simulations over-predicts the mass flow of the stall point as well as the 

pressure rise of the centrifugal stage and under-predict the pressure rise of the axial stage. The 

main factors for the difference are likely slight discrepancies between the simulated and actual 

axial rotor blade geometry deformation and the inability of the simulation tool to accurately 

capture the total pressure loss in the hub region of the vaneless diffuser. 
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CHAPTER 1           INTRODUCTION 

 

1.1 Background 

 

         The compressor forms along with the combustion chamber and turbine the three main 

components of a gas turbine but is usually the largest and heaviest component. It serves to 

compress the air before it enters the combustion chamber. The inherently positive pressure 

gradient in the flow direction renders its aerodynamic design highly challenging in terms of 

efficiency and aerodynamic stability. Its design has a direct impact on the performance and 

operating envelope of the engine. 

         To achieve the required pressure rise while limiting pressure gradients to avoid boundary 

layer separation on the blades, the compression is usually carried out over multiple stages. Each 

compressor stage consists of a rotating blade row (rotor) which increases both static pressure and 

absolute velocity of the fluid and a stationary blade row (stator) which diffuses the flow to 

transformed the increased kinetic energy into further static pressure rise. A compressor can be 

categorized according to the variation of the mean radius of the flow path.  When this radius 

remains more or less constant, the compressor is of the axial type. On the other hand, when the 

mean flow radius increases significantly and the flow exits the rotor radially, the compressor is 

of the centrifugal or radial type and its rotor and stator are referred to as impeller and diffuser, 

respectively. A centrifugal compressor stage can achieve pressure rise that are several times that 

of an axial stage but at a lower adiabatic efficiency and incur a larger frontal area, which is less 

desirable for aircraft applications. Compressors that are between these two types are referred to 

as mixed flow compressors. A multi-stage compressor can be a combination of any of these 

types. However, large gas turbine engines usually use all axial stages while smaller engines 

typically use a combination of axial stages followed by a centrifugal stage.   

         The compressor performance is presented in a compressor map, as shown in figure 1.1, 

which is composed of a series of characteristic curves called speedlines, each of which is plot of 

pressure rise (pressure ratio or pressure rise coefficient) versus corrected mass flow for one 

particular rotation speed. Each speedline is delimited on the right by a choke condition and on 
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the left by the stall condition. Choking occurs when the flow is increased to the point where the 

pressure drops rapidly with increasing mass flow due to negative incidence on the rotor and 

stator blades and flow reaching choke conditions in their blade passages. The result is increased 

losses and a rapid drop in performance (pressure ratio and efficiency). On the other hand, a 

sufficient reduction of the flow causes the blades to stall from the increased incidence, resulting 

in aerodynamic instabilities in the form of rotating stall and surge that will be discussed in 

section 1.2.  

 

Figure 1.1: Compressor map 

        The curve that links the stall points of different speedlines is referred to as the stall line or 

surge line. Below this line, the speedlines are intersected by the running line, which is the line 

along which the compressor will operate when the engine is slowly accelerated or decelerated. 

The running line is set in the design through choking of the turbine.  Its intersection with the 

speedline corresponding to the design rotational speed is the design or operating point of the 

compressor which should lie at or close to its peak efficiency. The running line can move up 

while the stall/surge line can move down under certain conditions such as transient operation and 

with engine wear. Consequently, a safety margin called stall margin or surge margin is left 

between the two lines which sacrifices compressor pressure ratio and possibly efficiency it 

displaces the design/operating point away from the peak efficiency point as illustrated in figure 

1.1. Thus, there is great interest in technologies that can suppress compressor aerodynamic 
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instabilities and thus delay the stall point to lower mass flow so as to move the running line 

upward. The current research is aimed at assessing one such technology. 

  1.2     Compressor Aerodynamic Instabilities 

 

           As discussed in the previous section, compressor aerodynamic instabilities in the form of 

rotating stall and surge is the major factor in limiting the operating envelope of the compressor 

and of by extension of the gas turbine engine.  

 Rotating stall is the formation of a cell of velocity deficiency that rotates at a speed 20%-

80% of the rotor speed [1], as illustrated in figure 1.2,  and is usually accompanied by drop in 

pressure ratio and thus of engine performance. Two distinct types of rotating stall inception have 

been identified: long length-scale (modal) stall inception and short length-scale (spike) stall 

inception, which are illustrated in figure 1.3. Modal stall inception is characterized by the 

relatively slow growth over 10-40 rotor revolutions of a low-amplitude 2-D perturbation with 

circumferential wavelength on the order of the annulus into fully developed rotating stall cells. It 

has been shown both analytically and experimentally to occur at the zero-slope of the stagnation-

to-static pressure rise characteristic (speedline) [2] of the entire compression system for which a 

positive slope is equivalent to negative damping of naturally occurring perturbations [3]. On the 

other hand; spike stall inception, which is more common in modern compressors, is 

characterized by the sudden appearance of a high-amplitude 3-D perturbation at the rotor tip with 

2-3 rotor pitch[4] in circumferential wavelength. This perturbation grows rapidly within only two 

to five rotor revolutions into a fully developed rotating stall cell. This type of stall inception 

occurs at a negative slope of the stagnation-to-static speedline [5, 6], i.e. prior to the conditions 

for modal stall inception. Its rapid occurrence makes it harder to detect and control than modal 

stall inception. While spike stall inception is much less understood, the origin of the perturbation 

in the rotor tip region has linked it to tip clearance flow, i.e. the flow through the small gap 

between the rotor tip and compressor shroud. Compressors whose rotating stall is caused by tip 

clearance flow are usually referred to as tip critical compressors.   

 The drop in pressure rise associated with rotating stall means that the compressor can no 

longer maintain the necessary pressure in the combustion chamber. Thus, rotating stall usually 

triggers a much more severe aerodynamic instability in the form of surge. Surge is a one-
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dimensional axisymmetric flow oscillation which, depending on its severity, can involve flow 

reversal across the engine, and cause not only a severe drop in engine power but also mechanical 

damage to the engine.  

 

Figure 1.2: Rotating stall cell 

 

Figure 1.3: Two types of rotating stall inception 
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1.3     Rotating Stall Suppression 

 

          Given that surge is usually triggered by rotating stall, the suppression of aerodynamic 

instabilities starts with the suppression of rotating stall. Many passive and active rotating stall 

inception strategies have been tested.  

Passive strategies do not require power input and mainly involve casing treatment, i.e. 

grooves and slots on the shroud above the rotor. However, while casing treatment has been 

shown to extend the stall/surge margin, it usually involves penalty in terms of efficiency and 

pressure rise at the design point [7]. Moreover, by their very nature, casing treatments are only 

effective for tip critical compressors which usually exhibit spike stall inception. Since this type 

of stall inception is not well understood, the design of casing treatment has been mostly 

empirical with no clear design rules to optimize stall margin while minimizing performance 

penalty. 

           On the other hand, active rotating stall suppression strategies require power input. 

However, this input can be kept low if the actuators are placed at strategic locations and designed 

to suppress the low-amplitude stall inception perturbations. More significantly, when 

implemented with a control feedback system, the actuator only needs to be turned on near stall 

which minimizes their negative impact on performance near the design point and further reduces 

power consumption. Most active control techniques have been successfully applied to delay 

modal stall inception for which the mechanism has been relatively well understood and 

analytically modeled since the 1980s. Moreover, the relative small growth rate and large 

wavelength of the pre-stall modal perturbations lends themselves better to detection and 

feedback control. These techniques include the use of circumferentially distributed movable inlet 

guide vanes [8], jet injectors [9] and tip jet injectors [10] to input out-of phase perturbations that 

suppress the growth of modal stall perturbations. Discrete micro-tip injectors aimed at the rotor 

tip clearance region have also been demonstrated, albeit without feedback control, to extend (Nie 

et al.[11], Deppe et al. [12]) on low-speed axial compressor test rigs. Despite their relative 

success, none of the tested active control strategies have yet been implemented in a commercial 

aircraft gas turbine engine. This absence can be attributed to the weight and costs associated with 
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integrating these mechanical and pneumatic actuators and their robustness (e.g. clogging of the 

jet injectors in a real aircraft working environment).    

1.4     Problem definition  

 

         Vo [13, 14] used the advent of plasma actuation technology to propose an active rotating 

stall suppression concept primarily for spike stall inception that can potentially overcome these 

obstacles. A single dielectric barrier discharge (SDBD) plasma actuator is a thin solid-state 

actuator that converts electricity directly into flow acceleration via partial air ionization. As 

illustrated in figure 1.4, it essentially consists of two axially shifted electrodes, one exposed to 

the air while the other is hidden beneath a dielectric material. An AC voltage of several kilovolts 

and several kilohertz in frequency but at very low current (low power) placed across the 

electrodes results a strong electric field between the electrode that partially ionizes the air in a 

small region over the hidden electrode. The force on the ions (plasma) lying in this electric field 

cause them to accelerate and collide with neutral air particle resulting in a flow acceleration in a 

thin layer adjacent on the surface. More detailed information on the mechanism of DBD 

actuators can be found in references [15-17]. The electrical nature and simplicity of these 

actuators which are devoid of moving parts make them lighter, potentially more robust with 

higher bandwidth and easier to integrate than traditional mechanical and pneumatic actuators.  In 

addition, since the exposed electrode is very thin and can even be made flush with the surface, 

DBD actuator has minimal if not zero detrimental impact on the flow when not in use. DBD 

actuators had been evaluated for a series of flow control applications mostly involving boundary 

layer separation suppression to delay wing stall [18-22] and reduce landing gear noise [23]. 

However, due to the limited strength of existing DBD actuators, experimental evaluations have 

been limited to relatively low speeds. The actuator strength is expressed as the induced axial 

force per unit actuator length. 
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Figure 1.4: Configuration of electrodes in a plasma actuator 

          Vo [13, 14, 24] was the first to propose applying plasma actuators to suppress rotating 

stall. As shown in figure 1.5, his concept involves placing an annular DBD actuator on the 

shroud just upstream of the leading edge of a compressor rotor to accelerate the incoming flow to 

counter the effect of the tip clearance flow. The intended effect is somewhat similar to that of the 

discrete micro-injectors by Nie et al. [11, 25] and Deppe et al. [12] but more circumferentially 

uniform and devoid of mass addition and piping and other integration and robustness issues 

association with jet injection. While the results by Vo were very promising, his work was purely 

computational using a rather primitive CFD research code with a very basic (mixing length) 

turbulence model in which he implemented an engineering plasma actuator model. Furthermore, 

the simulations were limited to a single axial compressor rotor.  

 

Figure 1.5: Stall inception suppression concept with plasma actuator proposed by Vo [13, 14, 24] 

 It remains to be seen whether the concept would work experimentally, even at low speed, 

on an axial compressor stage. Moreover, the applicability of the concept to centrifugal 

compressors should be assessed given that these compressors whose use has traditionally been 

restricted to small aircraft engines are likely to play an important role in future large aircraft 

turbofan engines whose increasing large bypass ratio lead to smaller engine core. Furthermore, it 

would be desirable to establish a more sophisticated computational tool validated with 
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experimental data that could be used to evaluate the concept for realistic aircraft engine 

compressor operating conditions for which the required actuator strength were estimated by Vo 

et al. [24] to be well above what can be achieved with existing DBD actuators.   

1.5     Objectives 

 

          Based on the shortcomings of the work by Vo [13, 14, 24] as described in the previous 

section, the objectives of the present research are: 

1. Demonstrate experimentally the concept of stall inception suppression with plasma 

actuation on a low-speed axial compressor stage and a low-speed centrifugal compressor 

stage. 

2. Set up and validate a simulation tool for the concept based on a sophisticated (more 

accurate) commercial CFD code. 

 

1.6     Thesis outline 

 

          Following the introduction to the research in this chapter, chapter 2 provides a brief 

literature review of rotating stall inception physics and relevant suppression methodologies. A 

review of DBD actuator models for CFD simulation is also provided.  Chapter 3 presents the 

experimental setup and outlines the experimental and computational methodologies to obtain test 

data and corresponding numerical predictions on the effectiveness of the proposed plasma 

actuation concept for stall delay. Thereafter, the results from simulations and experiments are 

presented, compared and discussed in chapter 4. Finally, chapter 5 summarizes the conclusions 

of the current research and suggests improvements in future works. 
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CHAPTER 2      LITERATURE REVIEW 

 

           This chapter provides a review of the pertinent literature to this research. It will start with 

past work on stall inception mechanisms, followed by a more detailed summary of active 

rotating stall suppression strategies closely related to the concept studied in the current research. 

Finally, past research plasma actuation modelling and implementation in CFD simulations will 

be summarized.  

2.1 Stall Inception Mechanisms 

 

         The first attempt to elucidate the mechanism behind rotating stall was done in the 1950s by 

Emmons[26]. As illustrated in figure 2.1, he proposed that a blade stall from a local increase in 

incidence would generate blockage in the local blade passage. The resulting divergence of flow 

to the two adjacent blade passages would increase the incidence to one neighbouring blade and 

decrease it for the other. The next blade would thus stall and decrease the incidence on the local 

blade, thus moving the stall cell circumferentially.  

 

Figure 2.1: Rotating stall mechanism proposed by Emmons [26] 
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          While intuitive, the mechanism proposed by Emmons was never proven and no significant 

work was done on explaining rotating stall until the 1980s when by Moore [3] and later by 

Moore and Greitzer [27] modeled a multi-stage compressor as an actuator disk with flow inertia. 

Their model showed that when the total-to-static pressure rise versus mass flow curve 

(speedline) reaches a positive slope, the damping of naturally occurring perturbations would be 

negative and these perturbations would grow to fully developed rotating stall cells. This type of 

stall inception was verified experimentally and would later be referred to as long length-scale or 

modal stall inception, which initiated much of the research into active rotating stall suppression 

technology, with the work listed in section 1.3. 

 However, the research in rotating stall took another turn when Day[6] experimentally 

discovered short length-scale or spike stall inception in the early 1990s. While this type of stall 

inception turned out to be much more common than modal stall inception, its highly localized 

nature with sudden appearance and rapid evolution made it hard to measure and predict. Through 

experiments on an axial compressor in which the inlet flow angle could be varied, Camp and 

Day [5] observed that spike stall inception seemed to occur at a constant inlet flow incidence 

angle for a particular geometry. They thus proposed that spike stall inception results from a 2-D 

type blade stall when the flow near the blade tip reaches a critical incidence. However, they 

could not provide any general quantitative criterion as to the value of the critical incidence nor 

the exact span location to evaluate it.   

 A few years later, using single and multiple blade passage simulations of an isolated axial 

compressor rotor, Vo [28, 29] proposed a new mechanism for spike stall inception that seemed to 

be consistent with previous experimental observations, as well as the first quantitative criteria to 

predict this type of stall inception. The proposed mechanism and criteria are based on tip 

clearance flow, which is the flow through the physical clearance between the rotor tip and the 

shroud that is driven by the pressure difference between the pressure and suction side of the 

rotor. Due to viscous and mixing loss within and at the exit of the gap, this flow has low relative 

stagnation pressure has high entropy contributing to loss in rotor pressure rise and efficiency. 

From the illustration in figure 2.2, as the tip clearance flow exits the tip gap, it encounters the 

low-entropy incoming flow at almost normal angles and forms an interface, which can be 

detected as a high entropy gradient region. The interface location is determined by a momentum 
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balance between the incoming and tip clearance flow. As one moves up the speedline, the mass 

flow and thus incoming axial flow velocity component decreases. The resulting increase in 

incidence strengthens the pressure difference across the blade and hence the tip clearance flow 

while the incoming flow is weakened. Consequently, the incoming/tip clearance flow interface 

moves upstream toward the leading edge plane.  

 

Figure 2.2: Interface between incoming flow and tip clearance flow [29] 

          In this context, and based on observations from his CFD simulations, Vo proposed two 

criteria for the formation of a short length-scale disturbance that leads to short length-scale 

rotating stall inception. These criteria are illustrated in figure 2.3. The first criterion (top 

illustration) is the incoming/tip clearance flow interface reaching the leading edge at the blade 

tip, which marks the onset of tip clearance flow spillage below and ahead of the blade tip leading 

edge into the adjacent blade passage. The second criterion is the onset of tip clearance fluid 

backflow at the trailing edge below the blade tip (detected as zero flow at the blade tip trailing 

edge), which would then impinge on the adjacent blade pressure surface (bottom illustration of 

figure 2.3). The proposed mechanism associated with these two criteria is shown in figure 2.4. 

Essentially, the impinging tip clearance fluid at the trailing edge (criterion 2) has a tendency to 

move upstream due to the positive pressure gradient along the blade passage but is forced by the 

incoming flow to either convect downstream or enter the adjacent blade tip clearance (double tip 

leakage).  However, when the incoming tip clearance interface moves upstream of the leading 

edge at the blade tip (criterion 1), the spillage at the leading edge represents a path of lower 

resistance that downstream convection or double leakage that allows unhindered upstream 

movement of the impinged tip clearance flow that results in the formation of a spike. As such, 

Vo showed from his simulations that both criteria are required and reasoned that if one of the 
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two criteria could be suppressed, then spike stall inception could be delayed until both are 

satisfied at a lower mass flow.  

 

Figure 2.3: Criteria for spike stall inception[29] 

 

Figure 2.4: Proposed mechanism for spike stall inception [29] 
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          Through this work, Vo [28] also suggested that should the two criteria occur in a particular 

rotor before the total-to-static speedline of the entire compressor reaches a zero-slope peak, then 

the compressor would exhibit spike stall inception. Otherwise, the compressor would exhibit 

modal stall inception. Furthermore, despite the proposed central role of tip clearance flow in 

spike stall inception, Vo infer that tip clearance flow can also play a role in modal stall inception 

if the losses it generates causes the total-to-static speedline of the compressor to turn over and 

reach zero-slope before criteria for spike stall inception are met.    

         Although the trailing edge backflow criterion (criterion 2) has yet to be widely accepted, 

many subsequent work by other researchers on different geometries seem to corroborate the 

leading edge spillage criterion (criterion 1) both through CFD simulations [30] and experiments 

[12, 31], which point to criterion 1 being generic. 

          While a lot of research has been carried out on rotating stall in axial compressors, much 

less research has been carried out for centrifugal compressor. Japikse [32] summarized the 

knowledge on centrifugal compressor stall. Rotating stall in centrifugal compressors can be 

triggered by the impeller or the diffuser. Three types of rotating stall are associated with the 

impeller, namely mild impeller rotating stall (MIRS), abrupt impeller rotating stall (AIRS) and 

progressive impeller rotating stall (PIRS) while only one type is known for diffusers, namely 

vaneless diffuser rotating stall (VDRS). For the first type of stall in impeller (MIRS), there is no 

clear theoretical explanation. However it is considered as a precursor of (VDRS). (AIRS) is 

characterized by large amplitude oscillations in velocity and pressure upstream and downstream 

of the impeller, and can occur at negative or positive slope of the pressure rise characteristic. 

Very little is known about (PIRS), beyond the fact that the amplitude of the perturbations grow 

progressively. The important parameters which have been associated with rotating stall in 

impeller are tip incidence, impeller outlet blade angle and leading edge to throat velocity ratio. 

However, there are no reliable prediction criteria for the onset of impeller rotating stall. 

Similarly, there are no generic prediction tools for diffuser stall, but the parameters affecting 

VDRS are the diffuser length, width, inlet-to-throat area ratio and the vaneless extent and the 

number of vanes for vaned diffusers and their designs can affect the flow pattern and stall onset 

in diffusers.  
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2.2 Relevant Active Rotating Stall Suppression Methodologies 

 

          Section 1.3 provided a general summary of rotating stall suppression technologies. This 

section provides a more detail review of the active rotating stall suppression technologies closely 

related to and including the concept studied in this research. 

Many active control concepts have been tested for modal stall inception, which is easier to 

detect and whose slower evolution puts lower requirements on actuator bandwidth. On the other 

hand, the more recently discovered and less understood nature of spike stall inception, along with 

the rapid evolution of spike perturbation means that much fewer work has been done on spike 

stall inception outside of casing treatments whose empirical development have preceded even the 

discovery of modal stall inception.  

          Day [33] was arguably the first to work on supressing spike stall inception after he 

discovered it. Given the location of the spike perturbation, he experimentally applied small air 

jets in the rotor tip gap region upstream of the first rotor of a four stage low-speed axial 

compressor. The air injection system was in the form of an array of 12 equally spaced 

individually controllable valves, hinged along one side as shown in figure 2.5, i.e. about one 

injector per five rotor blade pitch. The valves are flush with the outer casing of the annulus when 

closed. Emerging localized spike-type stall cells were found to be removed by air injection in 

their immediate vicinity, doing this repeatedly improved stall margin by 6 percent.  
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Figure 2.5: Schematic picture of air injection valve used by Day[33] 

 Deppe et al.[12] also experimentally applied discrete micro-injection in the tip clearance 

region of three low-speed single-stage axial flow compressors. The air injectors consisted of 

small 2 mm diameter tubes located 3 mm upstream of the rotor tip at leading edge in two 

different configurations (with 8 nozzles and with 16 nozzles). It was found that 16 nozzles (1 per 

blade pitch) are more effective in terms of stall margin extension. Their best result was a 20% 

reduction in stalling mass flow for an injection of 0.286% of the incoming mass flow. In a 

parametric study the radial position of the nozzles were changed, increasing the radial distance 

measured from casing wall caused a significant reduction in performance improvement, thus 

indicating that spike-type stall is linked to tip clearance flow. In a similar study injection angle 

was varied, for positive jet angles (against rotor rotation) stall flow rate remained almost 

constant, but for negative angles (in direction of rotor rotation) stall mass flow rate was even 

higher than the stall flow rate without injection.  

           Nie et al.[11, 25] improved on the tip injection concept by using flush-mounted discrete 

micro-air injectors which can be rotated in yaw as shown in figure 2.6. The injectors can be 

mounted at different axial positions. In their first study of 2002 [11] they reduced stall mass flow 

by 5.83% on a low-speed three-stage axial compressor using four injectors equally spaced 

circumferentially with 7mm axial gap upstream of the first rotor  injecting 0.056% of design 

mass flow rate. In a subsequent study using the same injectors on this compressor and a higher 

speed compressor, Nie et al [25] found that the optimum axial location and yaw angles for the 
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injections depends on injection flow rate and compressor speed and with injection just 

downstream of the rotor leading edge and axial direction preferable for low speed and low 

injection rate and injection at rotor leading edge turned toward the direction of rotating better for 

high speed compressors. 

 

Figure 2.6: Injector axial position and definition of yaw angle[11, 25] 

           It is noted that all of the above techniques aimed at supressing spike stall inception by 

using air injection to add axial momentum to the incoming flow in the tip region. As such, one 

can infer from their success that they probably work by pushing the incoming/tip clearance flow 

interface downstream back into the blade passage and thus delaying of the first stall criterion for 

spike stall inception proposed by Vo [28]. However, the injection concepts have many 

inconveniences that prevent their application in a real aircraft engine operating environment. 

First, the required high-pressure air must be taken from downstream stages in the compressor 

which imposes an efficiency penalty on the engine. Second, the recirculated air from aft stages is 

also hot which may increase tip clearance gap from shroud thermal expansion[34], further 

degrading performance and reducing stall margin. Third, while both previous factors can be 

minimized with very small injection, the micro injection system would be highly vulnerable to 

clogging from the dirty operating environment that can only be prevented though expensive 
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maintenance. Last but not least, the integration of such pneumatic systems with pipes and valves 

adds complexity and weight to the engine.  

It is in this context that Vo [13, 14] proposed the concept of placing an annular plasma 

actuator on the casing just upstream of the rotor leading edge to accelerate a thin layer of 

incoming flow adjacent to the shroud in order to push the incoming/tip clearance flow interface 

downstream and in doing so suppress spike stall inception, as shown in figure 2.7. To evaluate 

this concept, Vo implemented a plasma actuator model in the form of a basic steady linear [13]  

and non-linear[14] spatial body force distribution and a more sophisticated distribution into a 

basic cell-centered RANS CFD research code (UNSTREST by J. Denton of the University of 

Cambridge). He simulated the low-speed compressor rotor used in his spike stall inception study 

[28, 29] without and with plasma actuator placed different actuator axial locations at low (Mach 

0.2) and medium (Mach 0.5) circumferential tip speed. He showed that the plasma actuator 

delays stall by moving the incoming/tip clearance flow interface downstream and is most 

effective when placed just upstream of the rotor leading edge, in this case at 7% chord upstream. 

At low tip speed (Mach 0.2), an actuator strength on the order of 100-200 mN/m would be 

required to achieve a drop of about 8% in the stall mass flow, which is higher than the strength 

achievable with the first generation of plasma actuators (20-30 mN/m). Moreover, the 

effectiveness decreases with speed and the actuator strength requirement scales roughly with 

speed. Vo et al. [24] repeated the simulations for a different (transonic) compressor rotor which 

showed similar conclusions. 
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Figure 2.7: Concept of plasma flow actuation for suppression of rotating stall inception [13, 14, 

24] 

           Jothiprasad et al. [35] later simulated the same concept studied numerically using a simple 

linear body force distribution as the plasma actuator model implemented in a 3D RANS solver 

developed for turbomachinery. However, their objective was to assess the effect of the 

directionality of actuation. An annular DBD plasma actuator with an actuator strength of 260 

mN/m was positioned at 7% chord upstream of a low-speed compressor rotor (left of figure 2.8). 

Subsequently, axial sections of DBD actuators are placed at intervals around the circumference 

axially to turn the incoming flow circumferentially in or against blade rotation (right of figure 

2.7), these two cases would respectively decrease and increase rotor tip incidence.  Their results 

indicated that only the actuation in the direction of rotation is ineffective, which implies that tip 

incidence reduction is not crucial for stall margin enhancement. This lends credence to the 

mechanism of stall suppression proposed by Vo in figure 2.7. Motivated by the effects observed 

at low-speed, a further study at transonic speeds was done on the NASA Rotor 37, axial 

transonic compressor rotor. It was found that an actuation strength of 5.24 N/m would be needed 

to extend 7.6% the stalling mass flow. 
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Figure 2.8: DBD actuator for downstream force. Forcing region and direction in blue [35] 

          It must be noted both Vo [13, 14, 24] and Jothiprasad [35] used an exit static pressure 

boundary condition for the computational domain. As such, they could not obtain the new stall 

point with plasma actuator should it lie past the zero-slope peak of stagnation-to-static pressure 

rise characteristic of the simulated rotor. 

         In the case of centrifugal compressors, Nie et al. [25] also experimentally implemented the 

micro tip injection concept to a low-speed centrifugal compressor with 19 impeller blades and 15 

diffuser vanes as shown in figure 2.9. Eight injectors were applied at each of the positions 2 and 

3 while five equally spaced injectors were used at position 4. Two injected mass flow rates were 

applied, namely 0.942% and 0.579% of the stall mass flow rate. The authors found that the 

position where injection is most effective may be different according to the amount of injected 

air. At the higher injected mass flow rate position 2 was found the best location by providing a 

decrease of 10% in stall mass flow rate with rotating stall detected in the inducer (upstream part 

of impeller) one can infer that the application of injection at this position works by affecting tip 

clearance flow. For low injected mass flow rates, injection at position 4 was found to be the most 

effective as it is inferred to reduce flow incidence to the diffuser. Finally injection at position 1 

with    yaw did not show a significant extension in stall margin. This could be caused by not 

injecting air in the tip clearance gap since figure 2.9 shows that the head of the injection tube is 

below impeller leading edge tip. 



20 
 

 

Figure 2.9: Micro injector applied to centrifugal compressor by Nie et al. [25] 

 In another study, Skoch et al. [36] experimented steady jet injection at the shroud into the 

vaneless region just upstream of the vanned diffuser of a 4:1 pressure ratio high-speed 

centrifugal compressor stage. Several parameters such as injection angle, injection flow rate, 

injector spacing and injection versus bleed were investigated, compressor discharge and external 

source were used as the air supply. In addition, the effect of the flow obstruction by a tube 

inserted in diffuser vaneless space through the shroud was also studied. Figure 2.10 depicts the 

setup. Three different stabilizing methods were investigated. The results showed that forward-

tangent injection using recirculated air resulted in a little pressure loss in the diffuser and a small 

improvement in surge margin while reverse-tangent injection produces higher losses in stage 

pressure ratio for a similar stall margin improvement. However, control tubes provided the 

greatest surge margin improvement while with moderate pressure loss in the diffuser. The 

improvements produced from all methods are results of the span-wise reduction of average swirl 

angle which in turn causes: a reduction in diffusion between the impeller exit and the diffuser 

throat; a reduction of incidence on the diffuser vane leading edge; and the elimination of 

backward rotating perturbation. One can thus infer that a rotating stall control concept in the 

vaned diffuser of a centrifugal compressor should aim to reduce average swirl angle while 

keeping pressure loss in minimum level. 
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Figure 2.10: Cross section of test compressor and control tube (left), shroud side injector 

orientations (right) [36] 

2.3 Plasma actuator modelling 

 

           Computational fluid dynamics (CFD) has played a key role in the development of new 

plasma actuation concepts by providing the tools to evaluate their feasibility in terms of actuation 

requirements at realistic operating conditions as well as to assess whether the currently available 

actuator strength is sufficient to justify an experiment. Such an assessment is required in the 

current research before setting up the experimental demonstration of the casing plasma actuation 

concept for rotating stall suppression. The use of CFD simulation requires an adequate model of 

the DBD plasma actuator.   

The models of DBD plasma actuators can generally be separated into two different 

categories. The first category includes complex models which couple the governing equations of 

motion for ions and electrons to the flow equations. These models have been developed by Roy 

et al. [37] , Jayaraman et al. [38] and Gaitonde et al. [39]. However, these models are highly 

computationally intensive even to simulate a simple two-dimensional actuator in quiescent flow 

on a flat plate. Thus, they cannot be used for simulations of flow control applications on realistic 

shapes in the near future.  
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The other category consists of engineering models which simulate the effects of the DBD 

actuator on the flow by an equivalent spatial body force distribution that can be implemented as a 

source term in the CFD code. Shyy et al. [40] developed the simplest of these models by using a 

time-averaged linear two-dimensional body force distribution in terms of the actuator size and 

input voltage amplitude and frequency, which was used by Vo [13] (initially) and Jothiprasad et 

al. [35] to simulate their concepts. However, this model highly over estimates the actuator 

strength for a given voltage and frequency input. Suzen et al. [41]
 
later developed a more 

sophisticated model that produces a (non-linear) more realistic body force distribution (when 

compared to the results from the complex models) based on actuator geometry and the nature of 

the fluid and dielectric material. This body force distribution is then modulated in time with the 

alternating voltage input. This model was used by Vo in his later studies [13, 14, 24] of the 

plasma actuation concept for rotating stall suppression. Orlov et al. [42]
 
used a network of 

electrical elements to model the dynamics of the glow discharge (plasma) region over the hidden 

electrode to capture the unsteady charge distribution over this electrode due to plasma formation, 

advancement and retreat over the input cycle. Lemire and Vo [23] combined the best element of 

previous models [41, 42] to obtain a more accurate spatial and time variation of the induced body 

force. Figure 2.11 shows a spatial body force distribution obtained by Lemire et al. [23] from 

their model, which they assessed to be very similar to that from one of the complex models. An 

evaluation of the different engineering models by Palmeiro and Lavoie [43] showed that this is 

the best engineering model of DBD actuators so far. 
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Figure 2.11: Spatial body force distribution from model of Lemire et al. [23] (x and y are in mm, 

x=0 is the edge of the exposed electrode, and y=0 is the dielectric surface). 

While a time-varying spatial body force should in principle be implemented in CFD 

simulations to reproduce the effect of the AC input to the actuator, virtually all flow control 

simulations so far in the literature with DBD actuators use a constant (time-averaged) spatial 

body force distribution. This distribution can be scaled so that the integral value in the x-

direction matches the desired actuator strength. This steady approach is justified a relatively slow 

flow velocities where the flow convection time over the actuator is much slower than the time 

period of the DBD actuator input, meaning that from the point of view of the flow, the actuator 

appears to be operating in steady state.  
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CHAPTER 3     METHODOLOGY 
 

          The general methodology taken in this research is to set up and use a numerical tool based 

on a commercial CFD code and an engineering plasma actuator model to assess the feasibility of 

testing the casing plasma actuation concept on an existing low-speed compressor test rig. The 

experiments are subsequently carried out to verify the numerical prediction and validate the tool. 

Given that the simulations are constrained by the compressor test rig and plasma actuator, this 

chapter starts with a description of the experimental setup, followed by the numerical setup and 

simulation and testing procedures.     

3.1     Experimental setup 

 

          The compressor test rig used for the current research is a low-speed two-stage compressor 

composed of an axial stage and a centrifugal stage with a vaneless diffuser. This rig was 

designed and built by a group of 15 undergraduate final year students for the 2012-2013 final-

year integrated project in propulsion at École Polytechnique de Montréal.  The blade rows and 

casing fabricated in plastic by stereolithography, making it easier to integrate DBD plasma 

actuators for which the casing can be used as the main dielectric material. A photograph of the 

rig is shown in figure 3.1. The compressor is driven by a 0-8900 rpm 7.7 HP Baldor-Reliance 

AC electric motor and drive.  

 

Figure 3.1: Low-speed axial-centrifugal compressor test rig with instrumentation 
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Figure 3.2: Side view cross-section of compressor test rig with instrumentation 

          Figure 3.2 presents a cross-sectional side view of this two-stage axial-centrifugal 

compressor, along with the instrumentations, which will be discussed later. The flow enters 

axially through a Bellmouth with three struts into an axial compressor with constant hub and tip 

radii. The hub rotates with the rotor such as the stator has a hub clearance. The axial flow exiting 

the axial stage then enters an impeller and vaneless diffuser that dumps the swirling flow into a 

plenum. The plenum extremity is made up of two plates, each having six openings of same shape 

and area. One plate can slide past the other to vary the opening area and thus control the mass 

flow rate through the compressor. While the compressor was originally designed to operate at a 

corrected speed (Nc) of 7200 rpm, the operating corrected speed was reduced to 4400 rpm for the 

current research to allow for the plasma actuator of limited strength to have a more noticeable 

effect.  The main design characteristics of each stage of the compressor at either speed are shown 

in tables 3.1 and 3.2. It is noted that design parameters at Nc=4400 rpm correspond to peak 



26 
 

efficiency conditions at this speed. The rig is designed such that the axial stage can be removed 

and replaced with a bladeless hub and shroud in order to run the centrifugal compressor alone. 

Table 3.1: Design parameters of the axial compressor stage 

Parameter Nc=7200 rpm Nc=4400 rpm 

Design corrected mass flow (kg/s) 0.5112 0.3016 

Design stagnation pressure rise coefficient 0.3839 0.3950 

Design efficiency 0.9456 0.8625 

Rotor circum. tip speed (m/s) 66.8 40.8 

Tip radius (mm) 88.90 

Hub radius (mm) 44.45 

Number of blades (rotor/stator) 12/14 

Rotor tip clearance/stator hub clearance (mm) 0.381/0.381 

 

 

Table 3.2: Design parameters of the centrifugal compressor stage 

Parameter Nc=7200 rpm Nc=4400 rpm 

Design corrected mass flow (kg/s) 0.5112 0.3016 

Design stagnation pressure rise coefficient 2.404 2.341 

Design efficiency 0.8976 0.8959 

Impeller inlet circum. tip speed (m/s) 57.3 35.0 

Impeller tip radius inlet/exit (mm) 76.2/107.95 

Impeller inlet hub radius/exit blade height 

(mm) 

31.75/26.20 

Number of blades (impeller) 12 

Impeller tip clearance (mm) 0.381 

Vaneless diffuser inlet radius (mm) 107.95 

Vaneless diffuser exit radius (hub/tip) (mm) 133.35/159.18 
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Instrumentation 

           As shown in figure 3.1 and summarized in table 3.3 the instrumentation on the 

compressor rig mainly consists of static pressure taps, total pressure probes and thermocouples. 

The static pressure taps are placed on the casing at different axial position, including at the exit 

of every blade row. At each axial position, the taps are spaced out circumferentially and 

connected together to obtain an average static pressure. At the exit of the stator, the taps are 

spaced so that different pitch positions with respect to the stator blades are covered by the 

circumferential taps to get a meaningful average.  

The total pressure probes include Kiel probes placed at the exit of the rotor, impeller and 

vaneless diffuser (Pt3, Pt6, Pt7) with radial traverses powered by servos. A homemade pitot tube 

with radial traverse is also placed just upstream of the impeller. Just downstream of the stator lies 

a total pressure rake with seven holes radially spaced out to cover seven equal area portions of 

the annulus. The rake can in be positioned circumferentially with respect to the stator blade pitch 

to obtain a two-dimensional distribution of the total pressure distribution at the stator exit plane. 

Four type-T thermocouples, read through a NI 9211 unit, were used. Two thermocouples, 

calibrated in a constant temperature bath to  0.1°C accuracy, were placed upstream on the 

Bellmouth intake to measure ambient (inlet) total temperature and in the plenum to obtain the 

exit temperature for efficiency estimation of the two stage compressor or the centrifugal 

compressor when the latter is operated alone. The efficiency of the axial stage could not be 

measured because the temperature rise across the stage is too small making the measurement 

uncertainty too significant. The other two uncalibrated ( 1°C in accuracy) thermocouples were 

used to monitor the temperature of the two bearings.   

The pressures (relative to the atmospheric pressure) were measured with a 16-channel 

Netscanner 9116 from with a range of 0-1 psi and a precision of  3.4 Pa. The ambient 

conditions were read through an Arduino board from digital sensors placed below the 

compressor rig, namely a Bosch BMP085 for atmospheric pressure whose range and precision 

are respectively 30-110 kPa and  0.3 kPa, and a AM2302 probe for relative humidity (0-100%  

3%). The rotational speed was visually read from the motor drive display and is accurate to  1 

rpm. 
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The static and total pressure and temperature measurements along with the rotational 

speed and atmospheric conditions allow calculations of the pressure rise coefficient. Moreover, 

the static pressure at the Bellmouth exit in combination with the atmospheric pressure (which is 

the corresponding inlet total pressure) were used to calculate the mass flow using correlations for 

the discharge coefficients Cd obtained from the rig designers. The details of the calculations of 

the main parameters can be found in Appendix A and were implemented in a LabView program 

created by the rig designers for real time display of the measured speedline. 

Other instruments include three optical tip clearance sensors and three high-speed 

(Kulite) pressure sensors, placed at the rotor leading edge, impeller leading edge and impeller 

trailing edge. The tip clearance probes were supposed to measure the change in tip clearance size 

due to rotor and impeller blade deformation under rotation. However, they did not work reliably 

and the deformation obtained from finite element simulations in ANSYS during the blade design 

was substracted from the static tip clearance (measured with feeler gauges) to give the tip 

clearance values under rotation given in tables 3.1 and 3.2. Similarly, the Kulite sensors installed 

to detect perturbations associated with rotating stall inception and fully developed rotating stall 

proved ineffective due to the signal to-noise ratio at the low-speed operation. Instead, a thin 

string was hanged from the shroud just upstream of either the rotor or the impeller, as shown in 

figure 3.3a, when the centrifugal stage is operated alone. As illustrated in figure 3.3b, the string 

points downstream when the operating point is stable. Near stall, the string would oscillate a 

little bit while still pointing downstream, lightly due to tip clearance flow oscillation often 

observed as one approaches the stall point [44]. When rotating stall occurs, this string would 

abruptly oscillate back and forth. 

Table 3.3: Measurement instrumentations installed on the compressor 

                                  

Ambient 

pressure 

Ambient 

temperature 

Total pressure 

at Bellmouth 

Static pressure 

at Bellmouth 

Total 

pressure at 

Rotor inlet 

Total pressure at 

Rotor outlet 

Static 

pressure at 

Rotor outlet 

Static 

pressure at 

Stator 

outlet 

    (Rake)                          

Total pressure 

rake at stator 

outlet 

Static pressure at 

Impeller inlet 

Total pressure 

at Impeller 

inlet 

Total pressure 

at Impeller 

outlet 

Total 

pressure at 

Plenum 

Total 

temperature at 

Plenum 

Static 

pressure at 

Plenum 
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Figure 3.3 : String for rotating stall detection 

Plasma actuator 

          The annular casing plasma actuator used in the experiments were built by using the 

material of the casing (5-mm thick DSM Somos WaterShed XC 11122 photopolymer) as the 

main dielectric material and 0.0035 in. thick self-adhering copper foil tape for the electrodes. 

Layers of 0.001 and 0.005 in. thick Kapton tape cover either side of the main dielectric material 

increase the electrical insulation and to protect the photopolymer from wear/degradation under 

repeated plasma formation.  Figure 3.4 illustrates the geometrical layout and positioning of the 

DBD actuator for the axial rotor. The 25.4 mm wide hidden electrode is placed on the outside of 

the casing and is completely covered with Kapton tape to avoid the formation of parasitic (non-

useful) plasma on the outer casing. The 6.35 mm wide exposed electrode is placed on the inner 

casing without overlap with the edge of the hidden electrode. Its downstream edge lies 5 mm 

(11.25% of rotor tip chord) upstream of the blade tip leading edge. The upstream half of the 

exposed electrode is covered with Kapton tape to avoid parasitic plasma at its upstream edge.  A 

similar setup (figure 3.5) is used for the impeller of the centrifugal compressor stage. It must be 

noted that in either case, the annular DBD actuator does not cover the full 360°, but skips three 

small circumferential sections of about 10° each to avoid two mounts instrumentation mounts 

and to provide space for connecting the electrode to the high-voltage generator.   

(a) 

(b) 
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 The physical layout of the DBD actuator used in this experiment was determined based 

on Thomas et al. [18] and past tests done by the research group at Polytechnique, updated with 

trial and error on the Watershed 11122 photopolymer. The aim was to obtain about 100 mN/m 

actuator strength for continuous operation over 30 seconds at a time without damaging the 

actuator.  The methodology used to measure the actuator strength and to determine the required 

input AC voltage and frequency are described in Appendix B     

 Two experimental configurations were tested in the current research. The first is with the 

two-stage axial-centrifugal compressor with the plasma actuator applied only to the axial 

compressor rotor. The second configuration is with the centrifugal compressor stage operating 

alone with the plasma actuator applied to the impeller. 

 

Figure 3.4: Profile of actuator installed on the casing for the axial rotor 
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Figure 3.5: Profile of actuator installed on the casing for the impeller 

3.2     Numerical setup 

 

          The simulations of the compressor test rig described in section 3.1 are carried out using 

ANSYS-CFX  Version 13, a sophisticated commercial finite-volume Reynolds Average Navier-

Stokes (RANS) CFD code widely used for turbomachinery. User defined functions can be added 

to ANSYS CFX via CFX Expression Language (CEL) written by the user in FORTRAN. In this 

case, the CEL is used to implement a DBD plasma actuator model and a more sophisticated 

throttle exit boundary conditions that can capture points beyond the zero-slope peak of the total-

to-static speedline. The DBD plasma actuator model used takes the form of a spatial body force 

distribution obtained and implemented in CFX as a source term.     

           Several hypotheses are used to simplify the simulations while attempting to capture the 

main physics of the flow. The first is to neglect the effect on capturing the stall point of blade-to-

blade interactions from adjacent blade rows and of rotating instabilities. Rotating instabilities are 

circumferential perturbations of multiple blade pitch in wavelength, referred that can occur in the 

stable operating region near stall. This hypothesis allows for the use to simulate only a single 
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blade passage per blade row with a mixing plane interface between two adjacent blade rows 

which only a radial distributions of circumferentially averaged properties are transferred. This 

practice is standard for simulating multi-stage compressors where blade rows have different 

blade numbers which would otherwise require prohibitively expensive (in time and resources) 

full-annulus simulations.  The second hypothesis, the plasma actuator operation is quasi-steady 

from the point of view of the flow. In this case, the flow convection time is about one order of 

magnitude higher than the period of the plasma actuator input, which means that this assumption 

may still be all right and thus allow for the use of a constant (time-averaged) body force 

distribution to represent the effect of the plasma actuator. 

Computational Domain and Boundary Conditions 

          Although the first test configuration aims to assess the casing plasma actuation concept on 

the axial compressor stage, the compressor rig must be run with the centrifugal compressor as 

well. The simulation domain thus includes both stages as shown in figure 3.6 (although some 

simulations that included only the axial rotor were also carried out for comparison, as shown in 

appendix D). The domain is subdivided into seven subdomains containing, in order, the intake, 

plasma actuator, rotor, stator and inter stage duct, impeller, diffuser and end duct. The first 

subdomain is an axial length approximately equal to that of the Bellmouth without directly 

modeling the latter. The last subdomain models the plenum without meshing the real plenum. 

The inset in figure 3.6 illustrates the extent of this subdomain inside the physical plenum. (A 

validation of this approach versus meshing and simulating the real plenum is presented in 

appendix E). Each subdomain is one-blade pitch in circumferential width, with the inlet and 

plasma domains taking the width of the rotor domain and the diffuser and end duct domains that 

of the impeller.  

 With reference to figure 3.6, the Rotor Inlet, Stator, Diffuser and End_Duct subdomains 

are stationary while the Rotor and Impeller domain are solved in the rotating frame. The Plasma 

subdomain starts at the axial location where the stationary bullet of the intake ends and the hub 

stars to rotate as part of the axial rotor. It ends just upstream of the rotor leading edge so as to 

place the spatial force distribution representing the plasma actuator as closed to the rotor leading 

edge as possible to represent the physical configuration. The closeness of this interface to the 

rotor leading edge requires the use of a Frozen Rotor interface (instead of a Stage, i.e. mixing 
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plane interface) which allows for transfer of pitchwise flow variation across the interface 

between the Rotor and Plasma subdomains. The remaining interfaces are of the Stage type which 

is much less computationally demanding than the Frozen Rotor interface.  

 

Figure 3.6: Schematic of the two-stage compressor computational domain for plasma actuation 

on axial rotor 

 

Figure 3.7: Mesh of two-stage compressor computational domain 
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 The subdomains containing the blade rows and the diffuser were meshed using ANSYS 

TURBOGRID, a meshing software specialized for turbomachinery. The mesh for the remaining 

sub domains were created with GAMBIT but the number of elements in the radial, axial and 

circumferential directions were chosen to be coherent with the TURBOGRID subdomains to 

preserve mesh density compatibility at the interfaces. Following a mesh study whose details are 

given in Appendix H, the final chosen mesh is shown in figure 3.7 and contains 1091440 nodes. 

The node distribution (meriodional×pitch×radial) for the rotor, stator and impeller subdomains 

are 78×70×40 , 110×40×36 and 110×50×30, respectively, with the corresponding number of 

radial nodes in the tip/hub clearance being 8, 7 and 7. The y+ value at the solid surfaces vary 

between approximately 12 and 20.  

All solid surfaces are modeled as a no-slip wall with the automatic wall function option 

used to switch between a no-slip wall and wall function according to the local y+ value.  The 

only exceptions are the hub and shroud surfaces of the End_Duct subdomain which are defined 

as free-slip (inviscid) walls to account for the fact that this domain lies in the plenum with no 

physical solid surfaces at the position of these endwalls (see inset of figure 3.6). In the rotating 

sub-domains, stationary endwall surface such as the casing are defined as counter rotating. The 

Stator subdomain hub is defined as rotating to be consistent with the physical configuration. Last 

but not least, the SST turbulence model is chosen. The common k- model is more robust and 

may be more suitable for highly separated flow such as in stall and surge simulations. However, 

the SST model is more accurate in predicting the onset and amount of boundary layer separation 

in an adverse pressure gradient and in modeling flow over curved surfaces [45]. Since 

simulations in the current cover the stable range of the speedline up to the stall point, the 

accuracy of the SST model is more useful than the robustness of the k- model.   

  For the configuration where the centrifugal compressor stage is tested alone, the  

computational domain and boundary conditions are very similar to those of the two-stage 

configuration in figure 3.6. As shown in figure 3.8, the only difference is that the Plasma-Rotor-

Stator subdomains combination in figure 3.6 has been replaced by an empty Intermediate sub 

domain followed by a Plasma subdomain, the latter sharing a Frozen Rotor interface with the 

Impeller domain.  
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Figure 3.8: Schematic of computational domain for centrifugal compressor alone for plasma 

actuation on impeller 

Plasma Actuator Model 

          The plasma actuator model consists a time-invariant spatial body force distribution 

obtained from the model by Lemire and Vo [23] as shown in figure 2.14 implemented in CFX as 

a momentum source term through a CEL function. The original 2-D spatial body force 

distribution for a fine Cartesian used by Lemire and Vo to run their model is mapped onto the 3-

D mesh of the Plasma subdomain at the location where the physical plasma actuator is placed 

and then multipled by a scale factor to give an integrated axial value equal to the desired actuator 

strength. The curvature effect of the cylindrical domain was taken into account in the mapping 

by considering the effective depth of each cell. The mapping procedure is the same as that 

described by Vo [13] and is described in more detail in appendix F. While the plasma actuator in 

experiments is installed 5 mm upstream of the rotor/impeller leading edge, it had to be placed at 

6 mm upstream of the rotor/impeller leading edge in the CFD simulations to avoid mesh 

generation problems associated with placing the interface between the plasma and rotor/impeller 

sub-domains too close to the rotor/impeller leading edge.  
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Figure 3.9:  Plasma body force mapping for the plasma domain 

3.3     Simulation Procedure 

 

          For each of the two test configurations, the numerical investigation aims to predict the stall 

point without and with plasma actuation, which requires in each case simulating stable operating 

up the speedline until the stall point is reached. The simulation procedure consist of first 

obtaining a stable operating point via a steady simulation using a standard exit static pressure 

boundary condition and calculating the value of the throttle constant (Kt) corresponding to this 

point via equation (C.10) in Appendix C. Using the converged solution from this point as initial 

condition, the simulation switched to the time-accurate mode with the throttle boundary 

condition and the value of Kt is increased to obtain the next stable operating point up the 

speedline. This process is repeated each time using the previous solution as the initial condition 

and increasing Kt until the last stable point (stall point) is reached. In principle, if the stalling 

behavior is abrupt, this numerical setup should show the pressure rise coefficient and mass flow 

drop if Kt is increased beyond the value corresponding to the last stable point. However, the 

criterion applied in the current study is that the interface between the incoming and tip clearance 

flow at the rotor or impeller blade tip reaches the leading edge plane.  

3.4     Experimental procedure 

 

 The experimental procedures parallels the numerical procedure laid out in section 3.3 

with a slight modification to avoid damaging the DBD plasma actuator. While the part of the 



37 
 

actuator inside the compressor gas path is relatively thin, its protrusion is enough to change the 

tip clearance and thus performance. To ensure a fair comparison between results without and 

with plasma cases, the no-actuation case is run with the actuator in place but turned off.  

 The procedure consists of starting the compressor and waiting for it to stabilize at 4400 

rpm with the throttle opened for a stable operating point. The throttle is then closed in steps. At 

each new throttle position, a pause of three to five second is provided for the flow to stabilize 

before the pressure, temperature and rpm data is recorded (mass flow rate, pressures and 

temperatures are monitored in real time so as to determine whether the flow has settled.) When 

the plasma actuator is off, ten one-second averaged readings are taken for pressures and 

temperature at each throttle position. The points are numerically averaged to get the final value 

and the scatter is used to determine the error margin. With the plasma actuator turned on, a one-

second average is taken for each point to avoid the risk of actuator damage from extended 

operation. This reading is assumed to be the averaged point. The error margin is assumed to be 

the same as a similar point (in terms of mass flow) without plasma. For the speedline 

measurements, the rake is taken out to minimize flow interference and the static pressure at the 

shroud along with the inlet total (ambient) pressure to obtain the total to static pressure rise.   

            For the two-stage configuration, rotating stall was accompanied by a sudden drop in 

pressure rise and mass flow so that the previous point in the slow throttle closing is taken as the 

last stable point (stall point). This technique was also verified and confirmed later with the string 

technique. For the second test configuration with the centrifugal compressor stage operating 

alone, only the string technique was used to determine the stall point because the pressure and 

mass flow change at rotating stall is not obvious. In the test with plasma actuation, the DBD 

actuator is only turned on near the no-plasma stall point and left on until the new stall point is 

reached. The speedline with and without plasma were carried out two to three times in 

succession to insure repeatability of the results. 

 Finally, for measurement of the total pressure profile just downstream of the rotor and the 

impeller, the Kiel probes is traversed from the shroud toward the hub. At each position, a two to 

three second pause is given for the flow to settle and pressure data is recorded at ten one-second 

reading. The average is taken and the scatter provides the error margin. 
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CHAPTER 4             RESULTS AND DISCUSSION 
 

          This chapter presents the results for the two tested configurations at 4400 rpm, 

namely the two-stage configuration with plasma actuation at the axial rotor leading edge and the 

single-stage centrifugal compressor configuration with plasma actuation at the impeller leading 

edge. For each configuration, the computational predictions from CFD simulations are first 

presented and then compared with experimental results with a discussion on the comparison.  

Unless otherwise specified, the numerical simulations used as inlet conditions the ambient 

conditions recorded during the experiments and the pressure and temperature in the calculations 

of points on the speedline are taken from the CFD flow solution at the same axial and radial 

locations as the corresponding probes in the test compressor. In the plots, the suffixes p and e in 

the point numbering refers, respectively, to plasma actuation and experimental data. While this 

chapter presents one set of experimental data per tested configuration, each case was tested two 

to three times to ensure repeatability. The data for the repeated tests are presented in Appendix I.  

4.1     Two-Stage Configuration with Plasma Actuation on Axial Rotor  

 

Figure 4.1a presents the results for the two-stage CFD simulations in terms of the 

stagnation-to-static pressure ratio versus corrected mass flow for the entire two-stage compressor 

(figure 4.1a) without and with plasma actuation at the axial rotor with an actuator strength of 100 

mN/m, with key points identified. (It is noted that the static pressure at the diffuser exit is an 

area-averaged over a plane in the virtual End_duct subdomain of figure 3.6 at the location of the 

static pressure taps in the plenum which is not reproduced in the simulation.) Figure 4.1b 

presents the corresponding stagnation-to-static pressure rise coefficient taken across the axial 

rotor versus corrected mass flow, along with the entropy contours at the rotor blade tip plane at 

the key points to determine the position of the incoming/tip clearance flow interface as a stall 

assessment criterion. The ‗ghost points‘ with dashed outline represents the points that have 

supposedly stalled according to this criterion. The errors bars on some of the points higher up the 

speedline represents the range of the oscillation in pressure rise seen in the solution with the 

corresponding point being the average value of the pressure rise. The procedure to obtain the 

error bars and average for these points is explained in Appendix I.  
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Figure 4.1: CFD assessment of effect of plasma actuation at axial rotor leading edge 
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 From the results presented in figure 4.1, point 6 is the stall point for the no-actuation case 

according to the spike stall inception criterion since the corresponding entropy contour in figure 

4.1b shows that the incoming/tip clearance interface reaches the rotor tip interface leading edge 

plane. According to the literature, the negative slope of the speedline of the two-stage 

compressor at point 6 in figure 4.1a further supports the inference of spike stall inception 

originating in the axial rotor since the zero-slope peak of the speedline (modal stall inception 

criterion) has not yet been reached. Using this spike stall inception criterion, one can see that the 

additional axial momentum added by the plasma actuator at the rotor leading edge pushes the 

incoming/tip clearance flow interface downstream inside the blade passage from the entropy 

contours for point 6p in figure 4.1b. The stall point with plasma actuation is thus delayed until 

point 11p giving a reduction in stall mass flow of 20.27 %. The plasma actuation also slightly 

increases the pressure rise. These observations agree with those of Vo [13, 14, 24] for this 

actuation concept. 

 The only puzzling observation is that in the no-actuation case, the ghost points indicate 

that both the axial rotor and two-stage total-to-static pressure rise continue to increase beyond 

point 6 even though we would expect it to drop once the stall criterion is reached. One initial 

hypothesis is that presence of a centrifugal stage which is more robust to rotating stall may have 

stabilized the two-stage compressor and contributed to this unexpected behavior. However, a 

simulation of the rotor alone in Appendix D shows the same observation and thus discounts the 

presence of the centrifugal stage as a being factor. Experimental data should provide some 

confirmation of this behavior.   

Figure 4.2 plots the experimental results along with the computational predictions of 

figure 4.1 in the background. For the test data, the errors bars were determined using the 

procedure outlined in section 3.4. The ghost points (10e and 12ep) with dashed outline represents 

the points in rotating stall, the dashed error-bars for these points represent the extent of flow 

oscillations due to rotating stall. In going from 9e to 10e and from 11ep to 12ep through a small 

closing of the throttle, not only the pressure rise and mass flow suddenly drop but the oscillations 

as outlined by the error bars also suddenly increase. Thus, the measured stall points (last stable 

points) are point 9e for the no-actuation case and 11ep for the actuated case, giving a measured 

reduction stall mass flow of 19.28%, which is relatively close the predicted value from CFD, and 
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also compares well with micro-injection techniques reviewed in Chapter 2. This delay in stall 

was also repeated in subsequent experiments as shown in Appendix I. 

 

 

Figure 4.2: Experimental vs. CFD assessment of plasma actuation at axial rotor leading edge 

Ψ
T

S
 

Ψ
T

S
 



42 
 

          Another observation from figure 4.2 is that there is a modest but noticeable difference 

between the measurements and simulations in both the stall points (points 9e vs. 6 and 11ep vs. 

11p) and the speedline (in stable range to the right of the stall point). In particular, one notices 

that the simulations under-predict the pressure rise for the axial rotor but over predicts it for the 

full two-stage. One possible explanation is that the exact blade shape at 4400 rpm may not have 

been reproduced in the simulations. Under rotation, the blades from the rotor and impeller tend 

to un-twist and this deformation was taken into account such that the rotor and impeller 

production blade geometry (‗cold shape‘) were slightly different from the desired rotating 

geometry at the original design speed of 7200 rpm. However, the rotor and impeller were 

simulated with the originally designed blade geometry at 7200 rpm rather than correcting the 

rotating shape to 4400 rpm. At 4400 rpm, the rotor would have lower stagger angle (more 

pressure rise) and impeller would have more backsweep (less pressure rise) than the simulated 

geometries at 7200 rpm. Since the centrifugal stage produce much more pressure rise than the 

axial stage, the trend seen in the impeller would be the same as seen in the two-stage compressor. 

This would explain the tendency observed in the speedline data comparison. Furthermore, this 

hypothesis is further reinforced by a comparison of the spanwise distribution of pitch-averaged 

total pressure just downstream of the axial rotor at an operating corrected mass flow of 0.30 kg/s 

in figure 4.3. This comparison shows a higher rise in total pressure ratio in the upper half-span 

for the tested versus simulated geometry and the difference rises with span. This is consistent 

with the actual rotor blade having increasing lower stagger angle than the simulated rotor as one 

moves toward the tip, as the deformation naturally increases with rotor span. The extent of this 

factor for the structurally sturdier impeller will be verified in section 4.2.  Other factors that may 

play a role in the discrepancy between the numerical and experimental speedlines and stall points 

include: the estimated value and axisymmetric assumption of the simulated tip clearance (the real 

tip clearance was not perfectly axisymmetric and an average value minus an estimate of blade 

radial deformation were used to get the simulated tip clearance); the accuracy of the simulated 

endwall boundary layer at the rotor inlet (the actual Bellmouth intake was not simulated); the 

fully annular assumption for the simulated plasma actuator; and the borderline validity of the 

steady spatial body force distribution at the flow speeds involved.  Note that instrument accuracy 

only represents about 10 % of the pressure rise error-bars for the stall (last stable) points. The 

rest of the error-bars come from the flow field fluctuations resulting from flow features such as 
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those due to relative motion between adjacent blade rows and tip clearance flow oscillations near 

stall.      

 Another observation is that, notwithstanding the error bars, figure 4.2b shows that the 

stagnation-to-static pressure rise across the axial rotor continues to increase after stall (points 9e 

to 10e). This is consistent with the puzzling observation seen in figure 4.1b in the simulations at 

the left of the predicted stall point (point 6). 

 A last interesting note is the visual observation during the experiments that at stable 

operating points near stall the string starts to oscillate but still curving downstream. This is 

consistent with the flow pressure oscillation seen at points near stall in the simulations (e.g. 

points 10p and 11p in figure 4.1).  

 

Figure 4.3: Spanwise variation of pitch-averaged total pressure coefficient at rotor outlet 
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4.2  Single-Stage Centrifugal Compressor Configuration with Plasma Actuation on      

Impeller 

         As discussed in chapter 2, rotating stall in centrifugal compressor can occur in either 

impeller or diffuser and is more varied and much less understood than in axial compressors. The 

CFD simulations of the centrifugal compressor stage without plasma actuation are first carefully 

studied to get a better idea of the source of rotating stall. This assessment is important as the 

physical constraints in the compressor rig only allows for the application of plasma actuator at 

the impeller leading edge to address  stall inception in the impeller. 

 Figure 4.4 shows the simulated speedline with the entropy contours at the impeller tip 

plane for selected points. One can observe that the incoming/tip clearance flow interface reaches 

the leading edge at point 24. When the numerical throttle is closed slightly further, the pressure 

and mass flow drops to point 26 while the interface moves upstream of the leading edge as is 

usually expected for an axial rotor. From these observations, it is inferred that point 24 is the stall 

point (last stable point) with the ghost point 26 with dashed outline being in rotating stall, and 

that for this centrifugal compressor the impeller is the source of the rotating stall with a stall 

criteria similar to spike stall inception.  

 

Figure 4.4: CFD prediction of centrifugal compressor total-to-stagnation characteristics 

(speedline) at 4400 RPM without plasma actuation 
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 The inference that the impeller is the source of rotating stall for this centrifugal 

compressor is further reinforced by the evolution of the flow field. Figure 4.5 shows the 

streamlines in a meridional plane through the impeller and vaneless diffuser for points 18, 22 and 

24 identified in figure 4.4. While there is a large flow recirculation zone in the diffuser at point 

18 that could be associated with a diffuser stall, the size of the recirculation significantly 

decreases as one moves up the speedline toward point 24.  The proposed explanation for this 

behavior is illustrated in figure 4.6, which shows that as the meridional velocity diminishes with 

reduced mass flow, the swirl angle of the flow exiting impeller (absolute flow angle  ) increases. 

The result is a longer path traveled by flow particle along the vaneless diffuser and hence a lower 

pressure gradient and separation (or recirculation) near diffuser shroud. The reduction in the 

recirculation zone implies that the diffuser is not the source of stall for this centrifugal 

compressor and thus that plasma actuation on the impeller may work in delaying stall. (In fact, as 

shown in Appendix G, an early computational study was carried out with different plasma 

actuation location on this centrifugal compressor stage at 3700 rpm to show that the impeller 

leading edge actuation was the best configuration)   

 

Figure 4.5: Variation in recirculation zone size near diffuser shroud for points in figure 4.4 

 Figure 4.7 presents the speedline with plasma actuation at 100 mN/m from CFD 

simulations on top of the no-actuation speedline of figure 4.4. The entropy contours at the 

impeller blade tip for points 24p versus point 24 shows that the casing plasma actuation at the 

impeller leading edge pushes the incoming/tip clearance flow interface inside the blade passage 

as was the case with the axial rotor. Using the position of this interface as the stall criterion, the 
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new stall point would be point 32p, giving a reduction in stall mass flow of 16.67% for the 

proposed plasma actuation concept.   

 

Figure 4.6: Explanation for evolution of recirculation zone near vaneless diffuser shroud 

 

Figure 4.7: CFD prediction of centrifugal compressor total-to-stagnation characteristics with 

versus without plasma actuation 
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 Figure 4.8 presents the experimental data for the centrifugal compressor with the 

corresponding CFD results from figure 4.7 in the background. Based on the string technique, the 

measured last stable point (stall point) without and with plasma are points 12e and 9ep, 

respectively, which translate to a stall mass flow reduction of 28.39%, which is close to the CFD 

prediction in terms of absolute reduction and in line with what had been achieved in the literature 

[reference] with micro-tip injection on impellers. With the repeatability of this extension in a 

repeat of these tests (Appendix I), this experiment shows that the proposed casing plasma 

actuation concept can also work for a centrifugal compressor in which then impeller is the source 

of rotating stall. An additional important observation is that the measured stall mass flow of the 

centrifugal stage without actuation (point 12e in figure 4.8) is much lower than that of the two-

stage configuration (point 9e in figure 4.2). This confirms that the axial stage is the source of 

rotating stall inception in the axial-centrifugal configuration and thus validates the previous two-

stage setup for testing plasma actuation on the axial rotor.    

 

Figure 4.8: Measured versus CFD prediction of centrifugal compressor total-to-stagnation 

characteristics without and with plasma actuation 



48 
 

         The comparison of the experimental and CFD results in figure 4.8 also shows some 

discrepancy in the prediction of the speedline by CFD. One difference is that slope of the 

speedline near stall is very flat in the experiments compared the predicted negative slope for no 

actuation and positive slope with plasma actuation. The differences concerning the shift in the 

predicted stall point and lower pressure rise in the experiment versus the CFD simulations are 

consistent with the observations in the two-stage configuration. A comparison of the measured 

and predicted (CFD) spanwise stagnation pressure at the impeller exit and diffuser exit at the 

design corrected mass flow of 0.30 kg/s without plasma in figures 4.9 and 4.10 may provide 

some clues to explain this discrepancy. Figure 4.9 indicates that the CFD simulations predict the 

pressure rise across the impeller quite well with proportionately much less discrepancy than for 

the axial rotor (figure 4.3). However, figure 4.10 point to a growing discrepancy in the stagnation 

pressure distribution at the diffuser exit as one moves toward the span. The results in figures 4.9 

and 4.9 indicate the blade deformation discrepancy argument for the axial rotor is not a factor for 

the impeller and that the discrepancy seen in the experimental versus CFD speedlines is due to 

the CFD code‘s difficulty in accurately capturing the total pressure loss in the hub region of the 

vaneless diffuser. 
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Figure 4.9: Spanwise variation of pitch-averaged total pressure coefficient at impeller exit 

 

Figure 4.10: Spanwise variation of pitch-averaged total pressure coefficient at diffuser exi 
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CHAPTER 5          CONCLUSIONS 
 

 

5.1     Summary and conclusions 

 

          A concept of annular casing plasma actuation to suppress rotating stall inception has 

previously been proposed but only evaluated numerically for an isolated compressor rotor using 

a basic CFD code. This project aimed to assess this concept both numerically and experimentally 

on an axial compressor stage as well as a centrifugal compressor, which are part of a two-stage 

axial compressor test rig operating at 4400 rpm. The latest engineering DBD plasma model and 

dynamic throttle boundary condition are implemented in a sophisticated commercial RANS CFD 

code (ANSYS CFX) to form the computational tool. The computational domains were set up to 

model closely the tested configurations consisted of multiple blade rows of single blade passage 

simulations with mixing plane interfaces between the blade rows. 

Two configurations were simulated and tested. The first is the entire two-stage axial-

centrifugal compressor with a 100mN/m annular casing plasma actuator placed just upstream of 

the axial rotor leading edge. The second configuration incorporates only the centrifugal 

compressor with the same casing plasma actuator placed just upstream of the impeller leading 

edge.  

Both experiments and simulations show that the casing plasma actuator can work for both 

the axial compressor and the centrifugal compressor in which the impeller is the source of 

rotating stall. The CFD simulations seem to confirm that the mechanism of suppression of stall 

by the casing plasma actuator is that the axial momentum added by the actuator pushes the 

incoming/tip clearance flow interface downstream into the blade passage. This mechanism not 

only applies for the axial rotor but to the impeller as well. The predicted percentage reduction in 

stalling mass flow matches the experimental value reasonably well in both configurations. 

However, the CFD simulations over-predicts the mass flow of the stall point as well as the 

pressure rise of the centrifugal stage and under-predict the pressure rise of the axial stage. 

Comparison of the spanwise distribution of total pressure just downstream of the axial rotor, 
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impeller and vaneless diffuser at the design mass flow indicates that the main factors for the 

difference are the failure to fully correct for axial rotor blade deformation at the (part) speed of 

4400 rpm and the inability to accurately capture the total pressure loss in the hub region of the 

vaneless diffuser.  

 In addition, the axial compressor rotor seems to exhibit a peculiar and yet to be explained 

behaviour of continued increased in exit tip static pressure past the point of stall, apparent in both 

CFD and experimental data.  

5.2    Recommendations for Future Work 

 

         Experimental validation of the simulation results indicate that the computational tool based 

on ANSYS-CFX could possibly serve as a means to investigate the plasma actuation concepts 

for rotating stall suppression at more realistic speeds that are beyond the capability of existing 

plasma actuators. However, a number of tasks are recommended to improve this tool and make it 

more accurate. 

1) Verify and correct any discrepancy between the simulated blade geometry and true 

geometry at 4400 rpm  

2) A more detailed experimental survey of the flow field in the compressor rig (without 

plasma actuator) at more points on the speedline to validate in detail the CFD 

simulations an identify the weakness of the computational tool. A more detail flow 

survey could include using total pressure traverse at all available meridional 

positions, including upstream just of the rotor and impeller, and obtaining two-

dimensional total pressure distribution at the stator exit plane  and apply flow 

visualization techniques in the vaneless diffuser. 

3) Second, a time-varying spatial body force distribution should be implemented for the 

DBD actuator model as the quasi-steady assumption for the plasma effect is reaching 

its limit even for this low-speed compressor. 

Finally, an investigation both with detailed measurement and CFD simulations into the source of 

the rise in static pressure at the exit of the axial rotor after stall. 
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APPENDIX A- Experimental Setup and Measurements details 
 

          The side cross-section of the compressor is shown in figure 3.2; also the instrumentations 

installed over the compressor shown in the picture are listed in table 3.2. The necessary data to 

plot the speedline of compressor stages are measured via the instrumentations installed over the 

compressor, once these analogue data are recorded they are sent to the instruments that are not 

installed over the compressor to be transformed to digital data that can be read in the LabView 

interface. It is also possible to measure other data such as tip-clearance size, and to change the 

position of total pressure tubes via a servo-motor mechanism by the provided devices. Pictures of 

the compressor assembly and table of the instrumentation are shown in figures A.1 and A.2. 

  

Figure A.1: Assembly of compressor test rig 

 

Figure A.2: System of instrumentation installed over a board 
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         The mechanism of throttle setting is shown in figure A.3. For the facility of opening and 

closing the valve an electric jack is provided. 

 

Figure A.3: Throttle setting mechanism 

Measurements 

          The most important measurements for speedline are (    ,    ,                    ). 

The main parameters to be calculated for the speedlines are: 

1)      
          

 

 
     

 
                                  Vertical axis                                     (A.1)                                                                                                                                                                                 

           Where                 and          
 

 
            

                                      

        and         =                                     

                                                                     

2)      PR  
   

    
                        (For centrifugal compressor)                         (A.2)    

3) Horizontal axis, Corrected Mass Flow Rate,  ̇.  
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 Density at the inlet where          is 

    (
 

       (          )
)  *                        (

           

         
)+           (A.3)   

 Isentropic mass flow rate     

                  √
    

   
  ̇                                          (A.4) 

 Discharge coefficient (Considering boundary layer thickness) 

Cd      9     ̇    
 +  5       ̇    

   5    5   ̇    
 +   59  9   ̇    

   

     5   ̇    
  +          ̇     –     5                                                                           (A.5) 

 

          Equation (A.5) is obtained by the designers of the rig.   

 

 ̇=Cd* ̇    *0.45359237                                                                                                   (A.6)  

(0.45359237 for conversion from lb/s to kg/s)  

 

 And finally converting to corrected mass flow rate. 

 ̇           ̇  
√
   
     5
   
     5

                                                                                                           (A.7) 
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APPENDIX B- Plasma generation system and actuator strength measurement 
 

 

B.1      Plasma generation system 

 

           This system as shown in figure B.1 consists of a signal generator, power amplifiers, 

ballast resistor module and transformers. 

 

Figure B.1: Schematic of plasma generation system 

           For AC signal generating, standard signal generators or NI DAQ cards (e.g. PCI-6110) 

can be used. The signal generated is in forms like, sine, square, triangle and sawtooth. The signal 

is then sent to two Crown XTi-4000 Power Amplifiers powered by two independent AC line 

sources (110 W, 15 A), consisting of totally four channels with the same amplification ratio. In 

addition to power switches, an emergency stop is provided to cut off AC power supply directly 

from line sources. Four channels of amplifier are connected to four ballast resistor module 

(2ohm, 300W) which are mounted on a PC board, and are lifted 0.5 inches to avoid over-heating 

of the board. Four outputs of resistors are connected together which then connect to two CMI-

5525 transformers made by Corona Magnetics to obtain high AC voltage. Each of these 

transformers which are mounted on a porous aluminum plate has a turns ratio (secondary to 

primary) of 360:1,working frequency of 0.9-5 KHz with maximum output of 25 KVrms .In order 

to obtain a total ratio of 720:1, they are connected in parallel. As shown in figure B.1, C1 and C2 

are connected to ground, and H1, H2 each is connected to one electrode. The assembly is shown 

in figure B.2, the bottom to top order of components is amplifiers, ballast resistor module and 

transformers, the system is cooled with a fan, also for safety and to avoid high voltage discharge, 
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any metallic component should be kept at a distance from high voltage leads of transformers, and 

also all metallic cases and plates are grounded. The high voltage between actuators is measured 

via a PVM-3 high voltage probe (40 KVDC, max frequency of 40 MHz, divider ratio of 

10000:1), made by North Star High Voltage, this probe is put near one electrode, doubling the 

value measured, gives us the voltage difference between the plasma actuator electrodes. 

 

Figure B.2: Assembly of plasma generation system 

B.2     Actuation strength measurement 

 

           To obtain an actuator strength of about 100 mN/m and associate required input for the 

experiments, a little setup was built to measure actuator strength. Annular plasma actuator is 

installed over a free casing, and is oriented in a direction in which the induced flow is blowing 

upward, i.e. the streamwise direction is vertical, the free casing (the same material and same 

thickness as the compressor casing), is placed over a wooden rod, which is placed over a high-

precision balance (Sartorius) with 10 Kg capacity and 0.01 g resolution. This arrangement allows 

the air to be sucked from below, with this technique the downward acting reactive thrust which is 

produced by the plasma induced flow is measured for a range of frequencies and voltages 
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applied in order to find a suitable frequency and voltage to obtain 100 mN/m. This arrangement 

is shown in figure B.3. 

 

Figure B.3: Arrangement for actuator strength measurement 

           It should be noted that measured reactive thrust is actually the actuator strength minus the 

viscous shear force at the surface as shown by Versailles et al. [46]. 

 

Figure B.4: Control volume for induced body force computation 

              which is wall shear force that can be calculated from velocity gradient at the wall, the 

momentum equation in x direction (Equation B.1) gives the imparted body force   , (so thrust 

measured is a reduced amount of real actuator strength). CFD simulations of plasma actuator on 

a flat plate at static air condition estimated that shear force is about 25 % of imparted body force, 

so it can be deduced that reactive thrust measured is about 75% of actuator strength, so every 

value measured as thrust must be multiplied by 1.333 to obtain real actuator strength.                                                       
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     ∫  
  

  
    ∫    

    
  + ∫      

  
+ ∫      

  
                                     (B.1)                                                

B.3      Plasma actuator characterization 

 

           The results of the tests are plotted in figure B.5. Thomas et al. [47] showed that the thrust 

is inversely related to the frequency of the signal generated. Furthermore Xu [48] and Balcon et 

al. [49] showed that negative sawtooth gave greater thrust for the same power consumption than 

the sinusoidal input. Thus a negative sawtooth input at lower frequency range was used. 

 

Figure B.5: Actuation strength as a function of voltage 

            Figure B.5 shows the actuator strength per unit length as a function of peak-to-peak 

voltage for several low AC frequencies ranging from 2 KHz to 2.75 KHz. Past 100mN/m, the 

plasma is almost in filamentary mode and is not recommended for use (inefficient, not good for 

actuator wear). Thus 2.5 KHz frequency can be used for the tests on the compressor test rig, and 

the value of 100mN/m is used for doing CFD simulations. The values on the vertical axis are the 

real actuator strength but not the measured reactive thrust, so this value is applied for 

simulations. In order to find a relation between the thrust and peak-to-peak voltage, figure B.5 is 

again plotted in logarithmic scale for both axes and the points are connected via a linear 

trendline. The slope of all these lines is between 3 to 3.5, close to 3.5, which is so close to the 

relation found by Thomas et al.[47] as a power law which gives   
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              5                                                                                                         (B.2) 

          Trendlines are all good fits since their   are almost equal to 1. 

 

Figure B.6: Logarithmic plot of actuator strength as a function of voltage 
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APPENDIX C- Throttle exit boundary condition 
 

          Dumas [50] created a hybrid model of compression system which links numerical 

resolution of 3D Navier-Stokes equations with 1D analysis for surge simulation.  

 

Figure C.1: General principle of the numerical method 

           As illustrated in figure C.1, the compressor is simulated in 3D via CFD as the principle 

element under study, while the combustion chamber (plenum) and turbine (valve) are modeled as 

a 1D equation to provide a dynamic static pressure boundary condition at the exit of the 

simulation domain (compressor). 

          Dumas performed 1D modeling of (combustion chamber, turbine) using the model of 

Greitzer [51, 52] in Greitzer‘s model compressor is also modeled by (actuator disc theory) which 

considers compressor as a disc with infinitesimal thickness (only flow properties at its upstream 

and downstream are considered), combustion chamber is replaced by a plenum of volume   . In 

the plenum pressure  , temperature   and density   are uniform and fluid velocity is almost zero 

i.e.    . Turbine is modeled by a valve that can be opened or closed. So, Greitzer‘s model is 

completely 1D as shown in figure C.2. 
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Dynamic boundary conditions modeling 

Figure C.2: Schematic of 1D model 

      As shown in figure C.2, the combustion chamber is modeled as a plenum volume with 

uniform isentropic compressibility while the turbine is represented by a valve with a quadratic 

relation between pressure drop and mass flow. 

          To obtain the governing equations of this 1D model, the following indices are used: 

                                                                               

                                              9                            

Procedure for obtaining the governing boundary condition for outlet of compressor. 

 Conservation of mass for plenum

 ̇    ̇    
 (    )

  
   

 (  )

  
(C.1) 

 Perfect gas law

    ̃ 

(C.2) 

Where  ̃      
 

    
  , perfect gas constant for air 

The system in the plenum is considered to be isentropic, so we have 
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            (C.3) 

 Where                                    

 (  )

  
 
 ̃

 (
  

  
)

  
 
 ̃   

   

  
 
  

   

  

(C.4) 

 Where                          

 Substituting equation (C.4) in (C.1) gives equation (C.5).

   

  
 
  

  
( ̇    ̇   ) (C.5) 

This equation gives instantaneous variation of pressure in the plenum as a function of 

volume of plenum  , sound speed   as well as inlet and outlet mass flow rates     
      

 . 

With the help of following non-dimensional variables, it is possible to obtain more useful 

equations; furthermore, non-dimensionalizing helps comparison between different geometries 

without considering other parameters. Dimensionless variables are: 

1)   
       

 
                                    

2)   
              

       
 

                                                    

3)   
   

 
 d                              

4)    
  

 
                                                   

5)   
 

   
√

  

    
                           

6)                   

7)                                  

 Equation (C.5) can be rewritten in terms of   Instead of  ̇ as
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(        )                                                                                           (C.6) 

 Then 

  
               

       
 

            
 

       
 
                 

                          (C.7) 

           And 

  
   

 
     

 

 
       

 

 
                                                                                  (C.8) 

 Substituting (C.7) and (C.8) in (C.6) and doing some simplifications, gives 

  

  
 

  

      

 

     
(        )                                                                                            (C.9) 

 Turbine is modeled with a valve, and the pressure drop across that is modeled by a 

coefficient (  ) in equation (C.10). 

    
 

 
          

 
                                                                                                           (C.10) 

           If static pressure at plenum outlet is supposed to be equal to the total pressure at 

compressor inlet, so total to static pressure rise across the compressor     corresponds to static 

pressure drop across the turbine   . 

 Non-dimensionalizing equation (C.10) gives 

  
 

 
      

 
                                                                                                                     (C.11)     

 Finally combination of equations (3.10) and (3.12) gives. 

  

  
 

  

      

 

     
(    √

  

  
)                                                                                          (C.12) 
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           For incompressible flows 
  

      
 is almost equal to 1,with the help of equation (C.12) when 

related to the boundary condition of CFD domain, stall and surge can be modeled in a 

compressor. 

          For applying dynamic boundary condition to CFD simulations, as explained in previous 

section, the principle element under study which is resolved in 3D CFD simulations is 

compressor, so from now on indexes          correspond to the inlet and outlet of compressor. 

          For simulating stall or surge, as long as compressor behavior is in the transient part of the 

speedline (past the steady-state part), a dynamic or (variable with time) static pressure rather than 

a constant static pressure is applied at the compressor outlet to precisely model the flow in the 

compressor. It is considered that the conditions at compressor outlet (pressure, temperature, 

density, mass flow) correspond to the plenum. This dynamic (static pressure) is calculated from 

discretization of equation (C.12) 

     ( +   )       ( ) +
     

   

     
(
 ̇      ( )

       
 √

       ( )

         
)                             (C.13) 

          It is now clear that static pressure at compressor outlet at time  +    is calculated from 

mass flow rate and static pressure at previous time iteration or  . This static pressure is 

considered as the outlet boundary condition for the compressor. As long as when the compressor 

is stalled the flow is still in positive direction and is not reversed like what happens during surge, 

the following boundary conditions can be considered for performing the simulations. 

 

Figure C.3: Boundary conditions applied at inlet and outlet of compressor for transient regime 
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          For the steady-state part of the speedline the static pressure at the compressor outlet is 

constant over time, but the same settings for boundary conditions as shown in figure C.3 can still 

be used for performing the simulations. In steady-state part applying constant static pressure or 

dynamic (static pressure) gives the same result, because even if dynamic pressure is used, it very 

soon converges to a constant value and this constant value is applied over the time of simulation. 

So for the simulations and obtaining the complete speedline till the stall point, the dynamic 

(static pressure,      ( +   )) as sketched in figure C.3 and calculated in equation (C.13) is 

used. 
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APPENDIX D- Comparison of full two-stage compressor simulation with 

isolated axial rotor simulation  

 

          In addition to the simulations performed on the two-stage compressor, a set of simulations 

were also performed on just the axial rotor to assess the effect of centrifugal stage on the axial 

stage.  

          The computational domain is shown in figure D.1. A duct length of one-blade pitch in 

axial length is provided downstream of the rotor trailing edge for attenuation of circumferential 

flow non-uniformity in the blade passage to zero for compatibility with the circumferential 

uniform exit boundary condition. 

 

Figure D.1: Schematic of the numerical setup of axial rotor (alone) 

           The speedline of the simulation for the isolated rotor shown in figure D.1 with that of 

figure 3.6 are compared in figure D.2. 
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Figure D.2: Axial rotor speed-line for two different configurations 

          The results show that the predicted speedline is virtually the same, in addition the 

incoming/tip clearance flow interface criterion for stall occurs at the same mass flow rates in 

both configurations for cases without and with plasma. Therefore it can be said that 

circumferential stage has almost no effect on the axial stage. Thus evaluating the effect of plasma 

on the axial isolated rotor may be sufficient. 
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APPENDIX E- The effect of simulating the real plenum instead of virtual end-

duct domain 

          As explained in section 3.2 the end-duct domain with virtual hub and shroud aligned with 

the diffuser‘s hub and shroud, was used to model the static pressure distribution over the diffuser 

outlet plane. This configuration allowed for a smaller domain compared to the real plenum and 

thus lower computational time and resources. The results of simulating a point near stall at 3470 

RPM with this domain and the same point with real plenum modeling are compared in figures 

E.1 and E.2. For simulation with plenum the amount of opening of the valve is fixed and the 

pressure at the opening is fixed to be equal to ambient conditions. 

 

Figure E.1: Comparison of static pressure distribution over diffuser outlet plane 
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Figure E.2: Comparison between velocity streamlines in meridional view 

          As is illustrated in figure E.2 the size of recirculation zone near diffuser shroud does not 

change in simulation without and with plenum. The static entropy contours also show the same 

position for the low entropy incoming flow and high entropy tip clearance flow interface. Table 

E.1 summarizes the results of comparison and shows that using a small end-duct gives the results 

with good agreement as those from simulations of the real plenum. Note that the difference in 

area average of pressure at diffuser outlet is 1.9% of      across compressor, so the difference 

can be neglected. 

Table E.1: Comparison between results (without and with plenum) 

 Corrected mass flow(Kg/s) Area average of pressure at 

diffuser outlet(Pa) 

With plenum 0.16958 891.008 

Without plenum 0.16566 908.518 
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APPENDIX F- Plasma Actuator Model Implementation 
 

          The implementation of the DBD plasma actuator model essentially consists of mapping the 

time-averaged spatial body force distribution of Lemire et al. [23] from their fine 2-D Cartesian 

mesh onto the coarse CFD mesh of the plasma sub-domain created in GAMBIT at the 

determined location of the plasma actuator using the procedure laid out by Vo [14]. The process 

starts with exporting the coordinates of a periodic side of the perfectly cylindrical CFD mesh of 

the Plasma sub-domain in the axial-radial plane and superposing over it the fine 2-D Cartesian 

actuator mesh at the desired position of the actuator as illustrated in figure F.1. The body force 

per unit depth for each CFD cell is the sum of the values from smaller fine actuator mesh cells 

lying within it, modulated by the proportion of their areas lying within the CFD cell, as shown in 

figure F.2. This value is then multiplied by the effective depth of the 3-D cell volume to get the    

body force associated with the CFD cell. The body force distribution is then multiplied by a 

factor so that the integrated value equals the desired actuator strength. Figure F.3 shows the final 

transferred body force distribution on the CFD mesh.     

 

Figure F.1: Actuator mesh mapped onto CFD mesh 
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Figure F.2: Body force mapping process [14] 

 

Figure F.3: Plasma body force distribution over CFD mesh 

          User FORTRAN option in ANSYS-CFX [45] (subroutines, user functions, shared 

libraries), help to implement this body force distribution in CFD simulations. Since the body 

force produced by the MATLAB code is 300 mN/m, a scale factor of 1/3 is applied to the vector 

force field. 
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APPENDIX G- Assessment of plasma actuation strategies 

 

          Plasma actuation is applied at different locations to find the best place for delaying rotating 

stall in centrifugal compressor. 

G.1    Streamwise plasma at diffuser inlet 

 

           It is applied just at the inlet of diffuser domain, after the impeller TE. The interface of 

electrodes is at a distance of 3.5 mm from diffuser inlet and 6 mm from impeller trailing edge. 

This is the closest possible distance for the interface of electrodes.  

G.2     Circumferential plasma at diffuser inlet 

 

           The other configuration is circumferential plasma at the mid pitch (50 %) of the passage 

of the diffuser domain. Plasma in this case is only applied for around 20% of length of shroud at 

the inlet of diffuser in the stream-wise direction. 

G.3    Stream-wise plasma at Impeller LE 

 

          The plasma is applied at the impeller LE plane in the tip region. The effect of these 

actuation configurations on velocity contours is shown in figure G.1 

 

Figure G.1: Effect of different plasma configurations on velocity 
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           And also the effect of different configurations on surface velocity streamlines for point 10 

on speedline (figure G.3), is highlighted in figure G.2. 

 

 

Figure G.2: Effect of different configurations on surface streamlines 

          As can be seen stream-wise plasma at diffuser inlet and impeller plasma increase 

meridional flow velocity which with the same discussions as section 4.2 for velocity triangles it 

can be said that the amount of separation and size of recirculation zone increases. 

Circumferential velocity cannot increase absolute flow angle effectively and it has also the same 

tendency to increase the recirculation zone size. 

          A comparison between the length of a single streamline in the diffuser (from its inlet to its 

outlet) for point 10 on the speedline for the three different cases is done.  
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Streamline length       Without Plasma>Circumferential Plasma>Impeller Plasma>Stream-wise 

Plasma 

          Figure G.3 shows the speedline of the centrifugal compressor at 3700 RPM. 

          The vertical axis is the ratio of area-averaged static pressure over diffuser outlet plane to 

the mass-averaged total pressure over a plane 10% axial chord upstream of impeller leading edge 

plane. 

 

Figure G.3: Speedline of centrifugal compressor for different plasma locations and without 

plasma case 

          As noticed, none of the methods can increase pressure coefficient, because they increase 

recirculation in diffuser, however impeller plasma is the only location that can increase the range 

of operation and delay stall. The same location for plasma is used for simulations and tests at 

3470 and 4400 RPM in this project.  
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APPENDIX H- Mesh study 
 

          A mesh study is performed to survey the effect of mesh size on the results and to evaluate 

the quality of the mesh used. 

H.1    Entire compressor simulations 

           For doing a mesh study for the entire compressor, a point of operation should be chosen, 

since the most sensitive operational points are the points near stall, point 6 from figure 4.1 (the 

last stable operating point) is chosen and the area averaged static pressure measured at the outlet 

of the entire compressor (at the outlet of End Duct) is applied as the outlet boundary condition 

for different meshes. The criterion for judgment about the quality of the mesh is the corrected 

mass flow through the compressor. Table H.1 summarizes the characteristics of three different 

meshes applied for simulations at 4400 RPM. 

Table H.1: Characteristics of different meshes applied for the mesh study of entire compressor 

 Mesh #1 Mesh #2 Mesh #3 

Number of nodes 521400 1091440 1957878 

Number of elements 472840 1011536 1840984 

           

          Note that each time the number of nodes and elements are almost doubled. For doing so 

the number of elements and nodes in each domain are proportionally increased. 

 

Figure H.1: Variation of corrected mass flow rate as a function of number of elements for the 

entire compressor 
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          The density of Mesh#2 which is applied in this project for the entire compressor seems 

enough, since increasing number of mesh elements after that requires a much longer 

computational time and more powerful computational resources, however does not give a result 

with big difference, so it is not worth to make the mesh finer.  

H.2    Centrifugal compressor 

 

          A similar study is also done for centrifugal compressor. Table H.2 shows the 

characteristics of the meshes applied and figure H.2 assesses the criterion for convergence based 

on the corrected mass flow rate for point 9 in figure J.2. 

Table H.2: Characteristics of different meshes applied for the mesh study of centrifugal 

compressor 

 Mesh #1 Mesh #2 Mesh #3 

Number of nodes 240462 408329 1006030 

Number of elements 213572 369306 938400 

           

          The results are shown in figure H.2; again Mesh#2 for centrifugal compressor which is 

used for simulations of centrifugal compressor in this project seems to have enough mesh 

density. 

 

Figure H.2: Variation of corrected mass flow rate as a function of number of elements for the 

centrifugal compressor 
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APPENDIX I- Details of calculating errors for simulations and experiments 
 

I.1     Errors in simulations 

 

          When simulating the points near stall with throttle setting, it is seen that mass flow, and 

pressures start to oscillate periodically versus time, in order to save time and judge about the 

convergence a Fast Fourier Transform analysis (FFT) is performed on these types of results. 

These oscillations consist of several different frequencies. (FFT) helps to find the lowest 

frequency which is translated as the highest time period of the oscillations (  
 

 
), then the 

simulations are set to run for an integer number of this time period, and all data (mass flow rate, 

pressures, etc.) are time-averaged over this period of simulation to obtain the converged solution 

from the simulation. The amplitude of lowest frequency oscillation may reduce as the time 

passes, but the time-average which is of our interest remains constant, so after running the 

simulations for just several time periods (Known number of time-steps), it is possible to stop the 

simulations and get the averaged data. In the steady-state part of the speedline there is no 

oscillation, for point 6 in figure 4.1 despite that is the last stable operating point no oscillation is 

recorded. But for points 10p, and 11p, such oscillations exist and the errors are considered. So 

these points are shown with error-bars, but uncertainties in their mass flow rates are so small 

such that are even smaller than the symbol size. Such an analysis for the mass flow is shown in 

figure I.1, this method will also be used for centrifugal compressor results. 

 

Figure I.1: FFT analysis for obtaining lowest frequency of oscillations 
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I.2     Errors in experiments 

 

          All the instrumentations measure data with a specified frequency that they are designed 

for, but since the LabView is programmed in a way that shows data every second, so all the 

necessary variables are recorded over a fixed period of time (10 seconds or 10 data) for each 

operating point or each valve position, the amplitude of the fluctuations are calculated based on 

the minimum and the maximum values measured during this fixed period. As mentioned in 

section 3.4 for insuring repeatability of data three tests are carried out in succession for two-stage 

configuration, and the results without plasma are shown in figure I.2, and the ones with plasma 

are illustrated in figure I.3, also two tests were performed for centrifugal compressor alone, 

results without plasma and with plasma are plotted in figures I.4 and I.5 respectively. 

 

Figure I.2: Speedline of axial rotor without plasma in three different tests 
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Figure I.3: Speedline of axial rotor with plasma in three different tests 

 

Figure I.4: Speedline of centrifugal compressor alone without plasma in two different tests 
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Figure I.5: Speedline of centrifugal compressor alone with plasma in two different tests 
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APPENDIX J- Centrifugal compressor results at 3470 RPM 
 

J.1     Centrifugal results at 3470 RPM 

 

          Figure J.1 shows the speedline of the compressor with and without applying the actuation 

for both experimental tests and numerical simulations.  

 

Figure J.1: Speedline of centrifugal compressor at 3470 RPM (CFD and experiment) 

          Again note the growth in error-bars size as moving up the speedline. For this speed the 

numerical results show an extension of 0.0327 kg/s in stall margin from point 11 to 17p (21.76 

percent extension compared to the last stable point without plasma), and experimental results 

show that stall margin is extended by 0.046 kg/s (48.17 percent extension of last stable operating 

point). Both experimental and CFD results show a further extension in stall margin with 

100mn/m actuation compared to 4400 RPM, the result which was anticipated in section 4.2, 
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however since the difference in speeds is not so great, the improvement in stall margin is not that 

big as well. 

J.2     Effect of higher actuation strength 

 

          To predict the effect of actuation at higher actuation strength, in addition to 100mN/m, 

300mN/m is also applied in CFD simulations at 3470 RPM. Figure J.2, shows the speedline of 

the compressor, without actuation, with 100mN/m actuation and with 300mN/m actuation. 

 

Figure J.2: Effect of higher strength actuation on stall margin improvement at 3470 RPM for 

centrifugal compressor 

          Higher actuation strength increases the momentum of incoming flow more and pushes the 

static entropy interface to a more downstream location and hence improves stall margin more 

than 100mN/m, a reduction of 0.0533 kg/s in mass flow rate of last stable point is recorded, 

compared to 0.0327 kg/s for 100mN/m. Note the change in location of interface for points 17p 

and 17p‘ for 100 and 300 mN/m actuations in figure J.3. 
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Figure J.3: Effect of higher actuation strength in replacing static entropy interface at 3470 RPM 

 

 

 

 

 

 

 

 

 

 

 

 

 


