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RÉSUMÉ

La Gestion du Revenu consiste à maximiser le revenu des compagnies. Cette technique

est pratiquée, entre autres, dans les secteurs de l’aéronautique, des télécommunications et

de l’hôtellerie. Dans cette thèse, nous développons et résolvons un modèle stochastique bi-

niveau pour l’industrie hôtelière qui est considérée, de nos jours, comme une industrie mûre

caractérisée par une forte compétition et une gestion des inventaires compliquée. Nous avons

remarqué que durant ces trente dernières années, la recherche dans le domaine de la gestion

du revenu dans l’industrie hôtelière n’a pas proposé ou résolu de modèles qui considèrent

simultanément l’affectation des inventaires, le prix, la longueur du séjour, la qualité de ser-

vice et l’incertitude. Par conséquent, le but de cette thèse est de développer un nouveau

modèle de gestion du revenu dans l’industrie hôtelière qui permet aux gestionnaires d’hôtels

de prendre en compte certaines données pertinentes pour la prise des décisions relatives à la

tarification et l’affectation des inventaires en se basant sur une meilleure compréhension du

comportement des clients et de l’incertitude du marché. Nous nous inspirons pour cela des

modèles biniveau de tarification et des modèles stochastiques à deux étapes.

Dans le cas déterministe, le meneur (leader) de l’industrie essaie, au niveau supérieur, de

fixer les prix de ses inventaires de façon à maximiser ses revenus. Puis, les usagers essaient,

au niveau inférieur, de minimiser leurs dépenses en fonction des différentes alternatives. Dans

le but d’introduire le facteur de l’incertitude, nous avons développé un modèle stochastique

à deux étapes : à la première étape, le meneur, comme dans le cas déterministe, fixe ses

prix en maximisant ses profits. Puis, chaque groupe d’utilisateurs choisit, au niveau inférieur,

les inventaires les moins chers tout en considérant les attributs qu’ils ont préalablement

définis (distance et qualité de service). À la seconde étape, nous introduisons de l’incertitude

sur le prix fixé par les concurrents ainsi que sur la demande. En réaction, le meneur doit

ajuster ses prix et ses affectations d’inventaires, ce qui implique des changements dans les

distributions des groupes d’usagers aussi. Ces deux étapes sont liées par des contraintes

absolues et proportionnelles relatives à la variation du prix de chaque inventaire. Comme ce

modèle est un modèle stochastique biniveau à deux étapes, il hérite la propriété NP-Difficile

du modèle biniveau déterministe.

Dans ce modèle, nous considérons que l’incertitude peut être modélisée en utilisant des

vecteurs aléatoires qui suivent une certaine distribution de probabilité connue. Cette infor-

mation peut provenir des données historiques ou d’une connaissance empirique de la fonction

de masse qui représente fidèlement la vraie distribution. Nous supposons que les vecteurs

aléatoires ont un nombre fini de réalisations qui, dans notre cas, correspondent aux scénarios.
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Afin de résoudre notre modèle, nous avons développé non seulement des stratégies exactes,

mais aussi des heuristiques. La stratégie exacte consiste à transformer le problème de base en

un problème MIP (Mixed Integer Program), qui est standard pour ce type de problème. La

principale réussite en termes d’heuristiques est le développement d’une heuristique gloutonne

capable de résoudre le problème de manière efficace. Cette heuristique consiste à copier les

prix des concurrents et à ré-optimiser en faveur du meneur. Pour continuer avec une recherche

globale, le processus d’exploration a été suivi par un problème MIP restreint qui se base sur

la solution fournie par notre heuristique. Finalement, la stratégie exacte supportée par les

heuristiques consiste à ajouter au problème MIP original une heuristique qui cherche les

solutions entières, par la procédure d’évaluation et séparation progressive (B&B), et qui

permet d’ajuster directement la borne inférieure.

Une fois que les heuristiques et le modèle ont été développés, nous avons créé un processus

de génération de données. Ce processus cherche non seulement à générer des instances réalistes

pour l’industrie, mais aussi à éviter les situations atypiques. Pour cela, nous avons modélisé

la fluctuation du prix et de la demande en utilisant des variables aléatoires uniformes, et

nous avons développé un processus analytique qui permet d’ignorer rapidement les situations

atypiques. Les résultats numériques sont présentés pour les trois stratégies précédentes. Le

résultat le plus satisfaisant est celui basé sur notre heuristique complétée par un problème

MIP restreint. De plus, les résultats obtenus sont en accord avec le comportement économique.

Selon que le meneur a ou n’a pas d’avantage compétitif en ce qui concerne la localisation des

hôtels, il aura un comportement plus ou moins prédateur face à ses concurrents. Dans le

cas où il a un avantage compétitif, le meneur cherchera à imiter le prix de ses concurrents

afin d’attirer les groupes d’usagers offrant les revenus les plus importants. Lorsque le meneur

n’est pas dans une position avantageuse, il fixera ses prix plus bas que ses concurrents pour

attirer les groupes d’utilisateurs qui sont sensibles à la distance, mais aussi ceux qui sont plus

sensibles à la qualité du service. Pour cela, il devra relocaliser ses inventaires en ignorant les

groupes d’usagers qui lui procureront de faibles revenus.

Finalement, un certain nombre d’analyses de sensibilité ont été réalisées pour évaluer la

performance du modèle. Premièrement, nous avons introduit la stochasticité simultanément

sur le prix et la demande. Ensuite, nous avons complexifié le modèle en variant la capacité

de l’industrie. Notre heuristique a permis d’obtenir un résultat conforme au comportement

économique espéré.
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Par conséquent, les principales contributions de cette recherche sont : l’élaboration d’un

modèle complexe pour la gestion des revenus hôteliers, la résolution de grands et de petits

exemples en un temps de calcul raisonnable, l’obtention de bons résultats grâce à l’utilisa-

tion de notre heuristique (même si nous ne pouvons pas garantir qu’il s’agit de la solution

optimale), et l’offre de résultats utiles pour la prise de décision dans l’industrie hôtelière.
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ABSTRACT

Revenue Management consists in maximizing a company’s revenue. This technique is

applied in the airline, telecommunications, and hospitality industry, among others. In this

thesis, we develop and solve a stochastic bilevel model for the hotel industry, which is nowa-

days considered as a mature industry marked by an intense competition and by a complex

inventory management. We noticed that over the last 30 years, Hotel Revenue Management

research has not proposed and solved models that consider simultaneously inventory assign-

ments, price, length of stay, quality of service and uncertainty. Therefore, the purpose of this

doctoral research is to develop a new model for Hotel Revenue Management that is inspired

from bilevel pricing models and from the Two-stage Stochastic Models and that allows hotel’s

managers to account with useful data for pricing decision and assignment allocation, based

on a better understanding of consumers’ behavior and market uncertainty.

In a deterministic model, the leader of the industry tries to set prices to its inventories,

maximizing its revenue in the upper level, and users choose the lowest cumulative expen-

ditures among available alternatives, at the lower level. In order to introduce uncertainty

information, we have developed a two-stage model: in the first stage the leader set its prices

with the goal of maximizing profits in the upper level, and each users’ group chooses the least

expensive inventory considering the attributes previously defined by them (distance and qual-

ity of service), at the lower level. In the second stage, we introduce uncertain information

about competitors’ prices and demand, and thus the leader must set again its prices and

inventory allocations, which also implies changes in users’ group distributions. The stages

are tied by price variation in each inventory through an absolute and proportional constraint.

It is difficult to solve the bilevel programming problem. The non-convexity usually present

in bilevel programming results in the complexity of the solution algorithm. Even a very

simple bilevel problem is still a NP-hard problem The NP-hard property of deteministic

bilevel programs is also present in our two-stage stochastic bilevel model.

We consider that uncertainty can be modeled with the support of random vectors that

follow a known distribution function. This information might come from historical data or

from the empirical knowledge of the distribution function, and that is close to the true un-

known uncertainty. We assume that the random vectors have a finite number of realizations,

which in our case corresponds to the scenarios.

In order to solve our model, we developed not only exact strategies but also heuristics.

The exact strategy consisted in transforming the basic problem into a Mixed Integer Program

problem using the Karush–Kuhn–Tucker Conditions conditions (or optimality conditions),
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through the use of big constants and auxiliary binary variables. The main achievement in

terms of heuristics is the development of our greedy heuristic, which was able to solve the

problem efficiently. This heuristic consisted in copying competitors’ prices and re-optimizing

in favor of the leader. To keep a global search, the exploration process was followed by a

Mixed Integer Program restricted problem that took as origin the solution provided by our

heuristic. Finally, the exact strategy supported by heuristics consisted in adding to the Mixed

Integer Program original problem a heuristic that looks for integer solutions directly in the

branch and bound (B&B) tree.

Once the model and the heuristics were developed, a data generation process was designed.

The procedure sought not only to generate realistic instances for the industry but also to

avoid unfeasible situations. To do this, we modeled price and demand fluctuations through

the use of uniform random variables and we developed an analytical process that allowed us to

disregard quickly atypical situations. The numerical results are presented for the two previous

strategies, being the most performing the one based on our heuristic complemented with the

Mixed Integer Program restricted problem. Moreover, the obtained results performed as

expected in terms of its economic behavior. Depending on having or not a competitive

advantage with respect to the location of its hotels, the leader has a more or less predatory

behavior with its competition. In a situation under a competitive advantage, the leader seeks

to imitate the price of its competitors in order to attract users’ groups that provide the

highest revenue. If the leader is not in an advantageous position, it set lower prices than the

competition to compensate users’ groups more sensible to distance. At the same time, it set

competitive prices to attract users’ groups that are more sensitive to quality of service than

to distance, which implies that the leader reallocates its inventories and disregards users’

groups providing lower revenues.

Finally, a certain number of sensitivity analyzes were conducted to evaluate the perfor-

mance of the model. First, we introduced stochasticity on price and demand simultaneously

and then, we added more complexity by varying the capacity of the industry. The heuristic

was able to obtain a result, which was again behaving economically as expected.

Therefore, the main contributions of this research are to provide a elaborated model for

Hotel Revenue Management, to solve small and large instances in a reasonable computing

time, to obtain good results through the use of our heuristic (although we cannot assure it is

the optimal solution), and to provide very useful results such as: pricing information, users

group distribution in inventories, users group revenue contributions, sensitivity to capacity

parameters, for decision making in the hotel industry.
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CHAPTER 1

INTRODUCTION

In this Chapter, we introduce the main features and current practice of the hotel industry

and cast them within the general framework of Revenue Management Revenue Management

(RM). In particular, we survey various RM models for the Hotel Industry that have been

developed over the past thirty years. Toward the end of the chapter, we introduce the model

which is the topic of this thesis, and whose aim is to address issues yet unresolved in Hotel

Revenue Management.

1.1 The Hotel Industry

Prior to the 20th century, the hotel industry was mainly focused on renting space for

travelers. This was the case in France at the beginning of the fifteenth century, or yet in Japan

with Ryokan guest houses or England with coaching inns. Catering to different customers were

medical facilities for long-term illness, such as sanitariums, or health-oriented resorts that

could be put in parallel with modern spas. Sanitariums were famous not only for combining

comfortable and even luxurious lodges for resting, with fresh air, good food and mineral spring

water, but also for including thermal bathing, heliotherapy, and other services. However,

these types of facilities tended to disappear with the advent of improved health standards

and modern medicine, paritucarly so after the discovery of antibiotics.

The industrial revolution facilitated the development of hotels in Europe and in the USA.

Actually, the modern concept of dedicated building for a hotel derives from the City Hotel in

New York. In this very city, the Tremont House is considered as the first luxury class service

hotel with inside toilets, locks and restaurants. By 1908, another hotel, the “Buffalo Statler”,

included many current services such as amenities, private baths, ice water and newspapers.

In the 1920’s, several large luxurious hotels opened their doors, the Waldorf Astoria in New

York City being a quintessential example.

During the 20th century, the holiday and Hotel Industry grew in parallel, and at high pace.

New services were developed both to increase hotel revenues and to deal with competition

from different hotel brands. Investments in this sector have been constant and have taken into

account the preferences and needs of very diverse customers. From an investor perspective,

occupancy rate, i.e., , the ration of the number of rooms solve over a specified period of time

over the tota supply, has been one of the most important measures of hotel performance.
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Nowadays, the Hotel Industry is considered as a mature industry marked by an intense

competition and in which any market share increase/decrease comes typically at a compe-

titor’s expense/gain. Although the North American Hotel Industry is still considered very

important in size, the industry-wide growth is now occurring outside the USA, particularly

in Asia. Using as a reference the hotel classification from the North American market, we

can consider the following hotel categories :

Conference Centers : Mainly oriented towards conferences or meetings. Space is assigned

to large groups, and provide all services and equipment required for handling conven-

tions or expositions.

Commercial Hotels : Oriented towards business clients. They have the most common ser-

vices as room-service, coffee, dining-room, bar, pressing, valet service, parking, internet,

computer desk, printing and fax services.

Economy Hotels : Low price hotels. They usually provide basic services for tourist class

guests.

Suite or All-Suite Hotels : Well-known as hotels offering beautiful design and spacious

layout. They have big spaces for people that need to work but also some entertainments

in addition to the room.

Residential Hotels : Oriented to long term accommodations and sometimes family accom-

modations.

Airport Hotels : Located close to airports, they provide a wide but not always defined

category of services such as room-service, rent-a-car, parking, bus or limousine to the

airport.

Highway Hotel : Located close to major highways but not in suburban areas.

In the Hotel Industry, some new trends can also be observed such as :

Casino Hotels : Usually very luxurious, they provide entertainments facilities such as thea-

ters, bars and restaurants, togethr with all kind of gambling experiences. Following into

the footsteps of Las Vega, Macau developed some of the most luxurious casino hotels

in the world, catering to internatial customers.

Resort Hotels : Located in picturesque cities or nature environments (seaside, mountain),

they cater to leisure travelers, providing them with various forms of entertainement,

indoors and outdoors, such tennis, sailing, diving, trekking, etc.

Theme Hotels : Mainly dedicated to offer a new “experience”, they have evolved symbio-

tically with parks and resorts, but are not limited to them. There are a proliferation of

hotels dedicated to Eco-and Social-responsible experience (huts and tribal experiences),
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medical tourism, and unconventional accommodations such as palace heritage accom-

modations.

Cruise liner : Cruise liners have been involved in the Hotel Industry, through their ves-

sels increasingly becoming floating hotels. They share features wiht casino hotels and

resorts.

Cabin Hotels : A new trend in the industry, they have many resemblances with Motels

and VIP airport lounges. These hotels, such as “Yotel” offer a reduced room space for

individuals, and some entertainments oriented to etime-conscious travelers or young

professionals.

Boutique Hotels : Very stylish and fashionable small to medium size hotels, usually loca-

ted in “trending” or “expensive” neighborhoods. They follow a non-standard aproach

to satisfy different guest preferences in terms of entertainment and relaxation, such

as themes or dramatic atmospheres with luxury furniture combined with antiquities.

Other particular characteristics of these hotels are their design and architecture, mu-

sic, lighting and artistic objects, but they can also include technological gadgets. They

focused on middle-to-upper income young clientele.

The contemporary Hotel Industry picture is dominated by franchised chains and brands,

which are nowadays considered as commodities, with property management companies playing

an increasing role. The companies are frequently detached from the real estate business. In

this evolving environment, only lodging, bar and restaurant services represent the core “clas-

sical” services.

Recently, the market has witnessed the advent of websites that promote a direct contact

between customers looking for short term bookings and private owners of houses or flats. In

some markets, these new entrants threaten the business model of traditional channels, since

they are not subject to the same legal or fiscal regulations. In certain tourist hubs, they have

increased the supply of available rooms significantly. Among the most well-known websites

are : Airbnb, Hostelbookers and Localo.

An alternative classification for the Hotel Industry, this one based on physical location,

can also be considered. Indeed, hotels can be categorized as : Urban – Only located in densely

populated areas. Suburban – Only located in suburbs of main cities. These are moderately

priced. Their size and their proximity from downtown vary widely. Airport – Distance may

vary to downtown, but they are close to airports. Highway – Hotels in main highways or major

roads that are not considered as suburban. Resort/Leisure – Located in leisure destination

for travelling. Small-town – Located in urban areas but distant to main cities, these hotels are

close to mining areas, refineries, industrial complexes, plants, etc. Their sizes are irrelevant.
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It also possible to categorize hotels according to price segments which are frequently

used in the hotel industry to reflect different qualities of service. These may be regrouped

into five main categories, according to the average price, and are correlaated to the star

system used in many conuntries : Luxury and Upper Upscale (top 15th percentile) ; Upscale

(next 15th percentile) ; Mid-Price (middle 30th percentile) ; Economy (next 20th percentile)

and Budget (lowest 20th percentile). We note that this feature is not shared by the airline

industry, where most flights have one or two comfort categories (economy, business(, although

quality is included artificially through the advantages related to the product, such as full

reimbursement, fidelity programs, etc.

As the hotel industry becomes more competitive, inventory management also becomes

more complex. In order to manage its inventories 1 firms must asssess the impact of disruptive

technologies, such as mobile internet, as well as unexpected events. This has led the industry

to increasingly rely on logistic systems that make use of complex simulations for decision

making. In order to optimize profits, these systems must explicitly take into account customer

behavior, and thus fit the general framework of revenue management. These techniques, which

will be described in the following section of this chapter, are referred as revenue management,

which is the topic of the next section.

1.2 Revenue Management (RM)

Revenue management refers to a set of tools for optimizing the revenue associated with

a given set of available resources. It applies mostly to businesses characterized by high fixed

costs and relatively stable inventories. The reader is referred toMcGill and Van Ryzin (1999),

where the main aspects of RM are introduced, together with a comprehensive literature

review.

RM was initiated in the 70s, with an article published by Rothstein (1971) for the air-

line industry, whilst the first efforts to apply this technique to other industries arose in

1974 (Rothstein, 1974). In the early 70’s, the main concern of the airlines was the wides-

pread price decline associated with a sluggish demand. Companies responded by adopting

“overbooking”2 strategies to offset the large number of last minute cancellations.

Throughout the the 70s, the introduction of restrictions began to be part of the current

practices of airlines. The advent of automated reservation that gather statistics about their

reservations allowed to adjust prices to customers’ expectiations, thus protecting seats for

high-fare passengers, as pointed out by Weatherford and Bodily (1992); Weatherford et al.

(1993).

1. An inventory is a set of rooms with equivalent price/quality features.
2. Overbooking consists in selling more units than the available capacity.



5

In 1978, Straszheim (1978) showed that business trips were much less sensitive to tariff

changes than leisure trips. Therefore, it was argued that a way to make more profits would be

to use RM in a systematic way, always trying to protect seats for the most profitable passen-

gers. This practice, known at first as “protection levels” triggered a the concept of “Booking

limit”, whereby access to cheaper fare classes is dynamically forbidden. Subsequent studies

showed another interesting phenomenon : demand is more sensitive to individual income and

economic growth than to fares. Therefore, it is more important to prevent business travelers

to find the cheapest seats than to limit tourist access to cheap tickets. This phenomenon of

unequal elasticity is still present in many industries. Consequently, the main effective restric-

tion (known as “fences”) for selling seats arises at booking time, and can be considered as a

measure of risk willingness of the manager regarding customer unfairness perception.

During the 80’s, after the deregulation of the U.S. Air Transportation Industry (ATI),

competition brought new actors and pricing began to play an important role in RM. One of

the practices implemented was that of “bid-price”, which is a set of threshold prices for selling

resource units. A bid-price is an estimate of the marginal cost of consuming the next unit

of the resource capacity. Therefore, when a booking comes in, the revenue of that request

is compared to the bid-price of the resource unit. If the revenue exceeds the bid-price, the

request is accepted. Otherwise, it is declined.

Moreover, as a result of the deregulation, a large number of small airlines categorized as

“low-cost” (as People Express) appeared in the industry with half the operating costs of large

companies (American, Delta, United and TWA at that moment).

From the 90’s on, various researchers studied the impact of fare on revenue. As a copn-

sequence of competition, it has become important for companies to send a signal to the

market in order to influence it, but also to offer different products for each type of consumer

at different prices. According to Weatherford and Bodily (1992); Weatherford et al. (1993);

Weatherford (1995); Weatherford and Kimes (2003), RM has been successful for doing reser-

vations and allocations among several different price categories (“booking limits”). Nowadays,

RM takes advantage from highly complex Global Distribution Systems 3 which facilitate seg-

mentation and price differentiation.

The most common approach utilized in RM for setting price or booking limits, and largely

used in the ATI, is the Expected Marginal Seat Revenue (EMSR) Belobaba (1987b, 1998a,b).

This method does not consider competitors, only the aggregated demand and assumes that

clients will not be influenced by them. For the success of this model, it is assumed that fares

are known to clients and that information is controlled.

3. A network system that automates transactions between booking agents, like Amadeus, Sabre, Travelport
and System One for the Air Transportation Industry (ATI) and Pegasus Solutions for the Hotel Industry,
but also for car rentals and activities services.
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According to Kimes and Mutkoski (1989); Kimes (1989b,a), RM is characterized by a set

of features listed below :

Rigid capacity : Inventory capacity subject to RM cannot be modified in the short term

in an intended way.

High fixed cost : Adding an additional inventory unit is very expensive. Inventories are

costly and cannot be created easily.

Perishable inventory : The inventory units are sold at a fixed date. If the units are not

used, they are lost.

Products sold in advance : Services are booked in advance. There is a delay between the

booking and the purchase of the product and the time of consumption. The product

may consist of a promise to sell, as seen in the model of Quan (2002).

Low variable costs : The consumption of an additional unit of product causes only negli-

gible additional costs.

A variable demand in time : Demand is variable or uncertain, thus stochastic. However,

simplified models are satisfied with using fixed seasonal demands.

Market segmentation : The model must differentiate customers according to their willin-

gness to pay or risk aversion by establishing difficult barriers to circumvent such as

anticipated reservations, age, sex, method of payment, membership, etc. It is neces-

sary that the quality service-net income-consumption level trio allows the company to

increase revenue, but not necessarily by always selling to customers who bring the most.

Based on the literature in this field, Gigli (2001) described a number of success factors

for RM :

Fixed price : Find the point where supply and demand are in harmony, in a context where

it is very difficult (expensive) to increase production capacity. In the presence of uncer-

tainty the problem becomes even more complex because of the investment risk.

Link price to market and not to production costs : Selected prices should allow the

company to survive in the long term.

Take account of market segmentation : It is necessary that the product is adapted to

consumer needs.

Assign the product to the consumer who is most profitable : Companies must iden-

tify customers’ types. To do this, they must choose effective barriers to differentiate.

Base decisions on facts, not assumptions : Use information from previous data and sta-

tistics well established, consider clients behavior, and use proper algorithms.
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Know the true value of each product : The value of a product depends on selling date

and consumers’ willingness to pay. This is a consequence of market segmentation. The

concept of customer perceived value is different from selling price.

Reassess sales strategies continuously : All price packages and segments are valid wi-

thin a time slot. Management must follow customer expectations and reassess its stra-

tegies. It must also continually assess competitors’ actions (offer and price).

In terms of the most popular resolution techniques in RM, Kimes has pointed out the

following :

Methods based on mathematical programming : Linear programming and Mixed In-

teger Program (MIP), linear probabilistic programming and dynamic programming.

Methods based on economic theory : Models based on marginal revenue are still the

most popular and widely used in the ATI and Hotel Industry.

Methods based on threshold chart analysis : According to Kimes (1989b) and Belo-

baba (1987a), these methods are practical methods, but not always optimal.

Methods of artificial intelligence : Expert and neural network systems like Relihan III

(1989).

The first models (mathematical programming and economic theory models) set the rules

for assessing various situations. The second models (artificial intelligence or data mining)

are better suited to forecasting. According to Kimes (2003), research in RM can be divided

into three main areas, one of them descriptive (studying the application of RM concepts in

different industries), and the other two prescriptive : pricing and inventory management.

Revenue Management is today commonly observed in the air transportation, hospitality,

parcels, telecommunication, car rental industries, as well as internet retail, among others.

Although most industries have developed “In-House” systems, all of them rely on the same

concepts : Demand curve, client-price elasticity of demand 4, and capacity displacement cost

(shadow-prices). Critics to classic RM consider that most RM practices neglect the main mar-

ket’s components : competitors’ changes such as new entrants and new clients stratifications

or groups. Moreover, current RM practice focuses excessively on “price” to influence clients

decisions and neglect companies’ financial stretch or indebtedness. Sometimes, there is also

an excessive focus on operational decisions, forgetting business development strategies, and

some lack of interest to integrate “Data Mining” over expert judgment.

While the advance of RM is often credited to the airline industry, pioneer studies for the

hotel industry were also conducted in the early 70’s. In fact, it is sometimes claimed that RM

4. This elasticity somehow incorporates competition.
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practices in the Hotel Industry occurred prior to those in the ATI, as pointed out by Tritsch

(1989), although the approaches were very naive. Afterwards, as we will see in the following

section, the hotel industry borrowed many of the concepts and tools from the airline revenue

management to develop their own revenue management systems.

1.3 Hotel Revenue Management (HRM)

Economic and political uncertainties have pushed the hotel industry to evaluate different

scenarios and competitors’ behavior. Revenue Management became a practice for maximizing

revenue by selling products or services to the right customers at the right time and the right

price, as described by Kimes and Mutkoski (1989); Kimes et al. (1998). In HRM there are

very few models based on economical theory like Gu (1997); Tony S.M. and Poon (2012).

In the most common form, the praxis consider a fine forecasting of the market demand, and

then an intense effort to assign limited resources to customers, playing with the allowance of

these customers for over-paying such products when they are available. Everything is done

with the support of different marketing techniques such as focus advertising, customer loyalty

and bonus, etc.

In the Hotel Industry, the basic product is a single/double room offered for a single night,

and other services are added as surcharges : Bar, Gym, Parking, Internet, Restaurant, Pool,

Press, On Demand TV, etc. This is similar to a Single Leg Trip in the ATI. Because of the

complexity of HRM, inventory “Booking Limits” and “Bid Prices” were the only practices

retained by the hotel industry. From the perspective of the Hotel Industry, booking limits is

the amount of capacity (rooms) that can be sold at a given price and point in time, and room

prices are equivalent to air fares or“fare classes”. However, a deluxe room and a standard room

will always have different attributes, rather than price, such as space, furniture, decoration,

services, etc. In some cases, the room price list is just a mean to charge different prices for non-

differentiable products. Differentiation may correspond to natural flowers, juice, bathrobe or

unrelated bedroom characteristics such as Wifi, room service, pressing, free parking, etc. All

these features enable hotels to offer“upgrades”for value-added products. In the hotel industry,

a third element that does not exist in the ATI is the Length-of-stay (LOS) 5. However the

LOS represents the same difficult part as for the airline problem is the “round trip ticket”.

For HRM, it is very common to price sets of identical quality rooms, considering the LOS

and the day of the week. Nevertheless, it is also very frequent that the services included

in the room’s price can change. To take into account the LOS, Weatherford and Bodily

(1992) introduce the concept of “displacement”, which means the impact of one stay spread

5. LOS is the the total room nights in a hotel in a booking.
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over several nights on the revenue (or costs) associated to other customers. He states that

this displacement effect is related to the residual capacity of the hotel. The analysis of this

phenomenon is crucial in the calculation of “no-show” per day of the week, by price or by

category of users. According to his study, it is possible to increase revenue by nearly 3%

taking into account the LOS. However, overbooking effect on the LOS was not reported in

these studies.

In terms of revenue management practices, inventory and LOS controls are widely used in

the Hotel Industry, where we can find “overbooking” and “forecasting” strategies. Several RM

systems also control the LOS for a range of price categories. In that sense, an integrated Pro-

perty Management System (PMS) allows to one hotel chain to control a big territory keeping

the inventory together, like a “City-Wide Revenue Management” or a province (Disney and

Marriott in Florida). The dynamic of a PMS consists on accepting or refusing bookings for a

future date at a determined price. After each new booking, an inventory update is conducted.

The process of queries is random, so is the interest of clients for matching the current hotel’s

room price. As a consequence, any early bad decision means lower revenue for the season.

Inventories are generally controlled in three ways in the hotel industry :

Divided Inventory (small hotels) : The inventory is physically divided into rooms accor-

ding to service quality. Each Quality of Service (QoS) has a number of quality rooms

with identical services, and it is not allowed to change the category of any room.

Nested inventories : The inventory is shared by all qualities of service. Certain rooms are

more luxurious but most of them are standard. Higher revenue reservations have access

to the entire inventory, while low revenue reservations are limited to standard rooms.

Virtual Inventory : The inventory is shared according to quality of service. As room cha-

racteristics are similar, the difference is made by adding services. This system is ob-

viously the most flexible and widely used in major hotels.

Some of the currently systems in practice to control LOS Allocation, by using several price

categories and inventories, are single inventories (inflexible), nested inventories, and virtual

inventories (very flexible).

In terms of techniques, the most common paradigm in the HRM is the expected marginal

room revenue, which is a derivation from the EMSR as described by Katul (1995). Margi-

nal estimated values allow accepting, rejecting, upgrading, and downgrading a reservation

based on price and not on reservation constraints. In general, hotels stratify clients by their

willingness to pay from low to high, which is not always a valid assumption. In fact, in order

to maintain that system running and to reduce its errors, many adjustments are needed. To

update booking limits or prices, a new optimization of the EMSR and/or simulations with

the new forecasted scenarios of demand is needed. The most difficult problem remains in
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determining the preferences and choices of customers groups as well as the reaction of com-

petitors (mainly in terms of prices), and particular problems appear in the EMSR models

when the LOS is considered.

In conjunction with client price-elasticity, client preferences and competitor’s price changes,

it is also important to address the issue of demand stochasticity, through the introduction of

scenarios. Althought this in not the only source of randomness in HRM, it is certainly the

most important.

In terms of RM models and resolution methods, we can refer to Kimes and Mutkoski

(1989); Kimes (1989b,a, 2003), and to Gigli (2001), Baker and Collier (1999, 2003); Baker

et al. (2002) for mathematical programming hotel models.

Baker and Collier (1999) contains a very good summary of the mathematical tools used

in the field, which are :

1. Dynamic system for forecasting demand.

2. Allocation model among several classes.

3. Decision method for overbooking, i.e., when and how many rooms to overbook.

4. Pricing method for each users class

From the standpoint of models, these authors compare the “Bid Prices” method (BPM)

of Talluri and van Ryzin (2001) to the PSM method of Gallego and Ryzin (1997) :

BPM : In this method the opportunity cost of re-allocating a room is estimated from the

inventory using a nonlinear program that estimates the parameters of the function mass

of the random variable “number of reservations” by minimizing the error relative to the

observed demand. The PSM method assumes that competitors’ prices and packages

available on a planning horizon are fixed.

PSM : it is similar to BPM, but the price varies according to demand and available capa-

city. The values provided by the method are used to calibrate the demand, under the

assumption that arrivals follow a Poisson distribution.

Most of the optimization models use a complex forecasting process over a long planning

horizon to determine the marginal room value. For example, Weatherford (1995); Weather-

ford and Bodily (1992); Weatherford et al. (1993); Weatherford and Kimes (2003); Aziz et al.

(2011) present models with some simulations as a way to test their efficacy and several sce-

narios of demand. In these simulations, a price sample of a large hotel was used and assumed

to adequately represent the elasticity of the demand 6. It was observed that customers are

more willing to honor their reservations when prices are high. These simulations allowed these

authors to validate heuristic methods in an environment with several parameters.

6. This elasticity incorporates somehow competitors.
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Research development is still ongoing in Forecasting and Overbooking (real service de-

mand), reservations, cancellations, LOS and price variation. For example, Quan (2002) pro-

poses a model based on option valuation theory (European option), in which the booking

represents an insurance over the room’s price for the arrival date and clients are free to can-

cel, make other bookings in the same hotel, or switch to the competition. According to Quan

(2002), reservation has customer value and creates a cost to the issuer. For price-sensitive

customers, a hotel reservation can be seen as a call European-style option on a hotel room

price. Models are used to determine the value of the option and to determine the value of

a reservation for the client and the costs incurred by the hotel. The Hotel Industry does

not charge for booking, but the author demonstrates that such a practice could be useful in

conjunction with a cancellation and refund policy. He considers two different forms of boo-

king, each with a different level of price commitment. Customer choice would indicate the

type of customer (price-conscious or “yieldable”7).

Another interesting approach is that of Liu (2011) using a“general equilibrium approach”.

In this approach, a maximization problem models the provider and the guest interests based

on the probability that a booking will be realized, using information from the client about

the certainty of a trip. This model, with some important differences, may be the closest to

our bilevel programming approach.

RM problems can be also formulated as mathematical dynamic programs, but including

overbooking in the formulation is still considered as a challenge in the HRM literature (Roth-

stein (1974, 1971), Hersh and Ladany (1978); Ladany (2001); Toh and Dekay (2002); Aziz

et al. (2011) and Alstrup et al. (1986)). Bitran and Mondschein (2003, 1995) proposed dy-

namic programming for the LOS, and the optimal policy was obtained in function of the

capacity and the delay at the day of arrival. Generally speaking, all stochastic dynamic mo-

dels assume a Poisson distribution parameterized with respect to clients’ arrival rates, but

ignore the order of arrival. Another very close aproach is consider HRM as special case for

network revenue management as in Gallego and Ryzin (1997) or Zhang and Weatherford

(2012); Aziz et al. (2011).

When demand is static, Chen (2000) illustrates how to solve the room allocation problem

using the maximum flow model in a network. He also presents an extension for group bookings,

which is akin to the models developed in Montecinos (2007).

During the past years, new stochastic linear models have appeared such as those proposed

by Goldman et al. (2002); Lai and Ng (2005); Liu and Lu (2005); Liu et al. (2006, 2008);

Guadix et al. (2010). Most of the recent models solve simultaneously allocation and over-

booking and penalize the lack of capacity for a unsatisfied demand. The recent models are

7. Capable to pay a higher tariff by persuasion or force.
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mathematical programming models that take into account the LOS, such as Chen (2000),

and Hormby et al. (2010); Koushik et al. (2012); Pekgün et al. (2013), and that include

both demand and overbooking scenarios. The complexity of the resulting nonlinear models

is very high. Therefore, Liu and Lu (2005), who criticize the model of Lai and Ng (2005)

for its complexity, treat forecasting and allocation problems separately, solving the allocation

problems as MIPs, where a penalty for each unmet demand is imposed. Note that, in their

model, there is a single price category. According to the authors, the model corresponds to a

knapsack problem and can be solved using a greedy heuristic algorithm.

In summary, HRM has been focused on the collection and analysis of data, the develop-

ment of prediction/estimation models, and the optimization and control of inventories, all of

that in an environment supported by information technology.

1.4 New Trends in Hotel Revenue Management

For practitioners, several books have consolidated the main trends in hotel revenue mana-

gement, such as Phillips (2005); Talluri and Van Ryzin (2005); Yeoman and McMahon-Beattie

(2011); Rouse and Maguire (2011); Forgács (2010); Mauri (2013) and Huefner (2011). The Ho-

tel Industry has also been studied in numerous new journals and academic publishing. Chiang

et al. (2007); Koushik et al. (2012), for instance, expose the interesting case of “Interconti-

nental Hotels Group”, one of the growing franchises in the Hotel Industry : internationally,

it reaches more rooms than any other hotel chain, 672,000 in almost 100 countries 8. Other

franchising chain experiences can be seen in Hormby et al. (2010); Pekgün et al. (2013).

In recent years, HRM has evolved to group booking (tourist operators, meetings and

conferences). Indeed, block reservations count for almost 50% of the bookings, so they deserve

special attention. In Choi (2006), a model to account for acceptable minimum rates for

accepting or refusing block groups is presented. In Guadix et al. (2010), a different approach

was proposed, which uses individual and group forecasting among stochastic programming

and simulation to test four models and their corresponding heuristics for classical property

control (no control, booking limits and nested inventories) but applied to individuals (not to

block-booking). In the counterpart, Anderson and Xie (2009) analyze a tour operator that

wants to minimize the number of rooms that could not be sold but that have to be paid to

the hotel.

An interesting point to highlight is the public acceptance of HRM practices, particularly in

daily hotel rates, as stated by Rohlfs and Kimes (2007). This is an important issue, in the view

that the advent of internet has made tariffs more transparent. In that sense, numerous articles

8. According to Forbes TM.
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consider fairness perception, asymmetry information, distribution channels Choi and Kimes

(2002), and the role of tour operators, travel agents and hotel brands in their examinations as

in Chen and Schwartz (2006); Thakran and Verma (2013); Kwortnik and Han (2011); Wilson

(2011). Another important aspect in the Hotel Industry is the increasing interest on hotel

“function space”9 , as a source of revenue, as stated by Kimes and McGuire (2001), which is

also relevant in other business, such as spa centers.

There are also new models mainly related to small hotels. These try to bring back sim-

plicity into HRM, by assuming only two classes but several periods with increasing prices, as

proposed by Hadi and Rohollah (2012). Instead of complex calculations “off-the-shelf”, they

use past PMS information and statistical regressions to deal information : temperature, com-

petitors prices or bookings, seasonality, services and especial customers preferences data as

described by Planagumà and Julve (2012) and Bayoumi et al. (2012). These models include

manager adjustable weights to combine different estimators for price or to adjust discount

factors over fixed tariffs. These models can also estimate customers’ price-elasticity using

not only historical data but also market conditions in combination with simple simulations,

in order to offer managers a decision choice. Those models improve the methods presented

in Relihan III (1989), as threshold curves models still in use, but they are much more flexible,

parameterized, and largely supported by computer databases, although data remain under

manager’s control. These models adapt very well in situation where marginal pricing does

not reflect correctly seasonality, or when demand is much lower than capacity. In particular,

the article presented by Kachitvichyanukul et al. (2012) is interesting because the problem is

re-framed as a duopoly pricing economic model, including overbooking, and solved through

the use of game theory techniques. In the MSc thesis of Montecinos (2007), a determinis-

tic bilevel model for HRM was proposed, which comprised the allocation of several units of

hotel inventory (hotels) to various groups of clients (users), and the simultaneous pricing

of the same allocated units. In this study, the planning horizon equivalent to a season was

considered. Among the characteristics included for the groups of clients were the proximity

to an attracting place, the price, and the quality of service. In that model, the resolution of

numerical models was obtained following a transformation from a bilevel problem to a mixed

integer problem by its Karush–Kuhn–Tucker Conditions (KKT).

Low budget small hotels have also introduced HRM, but switching directly to variable

pricing, sometimes called real-time pricing, which differs from traditional pricing where a

fixed tariff discount or an offer is applied and replaced by a constantly in-line price change

or auctions. Recent examples can be seen in Aziz et al. (2011); Rasyanti (2013). Large chains

9. Rooms, floors or terraces that can be used for meetings, banquets, exhibitions, etc. This space usually
is setup on purpose with minimum turnover-time in amphitheaters, round tables, stands, expositions, etc.
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have also addressed similar issues using “opaque selling”10 to maintain anonymity but still

addressing the last-minute buyers segment, according to Jerath et al. (2010).

1.5 The Challenges of Hotel Revenue Management

The new tendencies in HRM have pointed out to a more critical view of the almost 30

years of practice, as stated by Anderson and Xie (2010) but also to an even deeper critic of the

vision of the models that do not consider LOS, multiple inventory share, conjoint overbooking,

room availability guarantee, special events, and “Total RM” over mulitple properties and

services, as presented by Ivanov and Zhechev (2012). In particular, those authors account

not only for the complexity of effectively controlling the downward spiral of revenue and the

current fencing, but also the case of long-stay booking, as Ling et al. (2012) describe, or

multiply-day booking in periods of demand shortage. Indeed, in a world with excess of offers

in lodging, rooms become a simple commodity. On the other hand, the challenges behind

managing a more individualized demand, as highlighted by Cross et al. (2009), lead to an

urgent re-specialization of HRM focused on choice-driven-pricing and service-pricing, and

require a close collaboration with marketing as suggested by Kwortnik and Vosburgh (2007);

Victorino et al. (2009); Verma (2010); Sengupta and Dev (2011).

In the forecasting aspect of HRM, common models have always relied on past occupancy

and room rates records, and some efforts have been made to cope with the unconstrained

demand estimation like in Fiori et al. (2013). Deep segregation and fencing have also provided

a better understanding of group behavior. But these efforts do not always include local or

global effects, such as travel trends and fashion. While the proximity to points of interest

has been recognized for airport hotels Lee and Jang (2011), it is still frequently ignored.

HRM will also take advantage of technological advances, like the internet and GIS 11, which

make much easier the task of estimating room rates and even predicting temporal prices by

monitoring competitors’ prices. Another approach of interest is that of “Spatial Modelling”,

a form of modelling by disaggregation, in which an area is divided into geographical units.

Several algorithms simulate or analyze real-world conditions using the spatial relationships

of the geographical units. These geographical models are linked to a GIS for Geovisualization

(GVis) or data input. In “Geographic knowledge discovery (GKD)” several algorithms can

explore large spatial databases using geographic data mining techniques to unveil human

patterns. Nevertheless, these new tools (GIS, spatial models and GKD) are in the middle

point of being part of the Hotel Industry, but also in tours operators, travel agencies, or

10. It is the practice of using intermediaries to hide descriptive attributes of the hotel, like address and
room characteristics. Examples are Hotwire TMand Priceline TM.

11. Geographic Information System.
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intermediate agencies that maintain control over several large databases. These new tools

establish very different data mining algorithms that are capable to correlate geographical

data (proximity to amenities, business centers, airports, other hotels, waterfront, hairdressers,

etc.) and websites or internet data to make accurate estimations on pricing. In these systems,

operators and experts or practitioners can form educated guesses about the most appropriate

model. We refer the reader to the article by Kisilevich et al. (2013) for a detailed analysis of

these novel concepts.

As several authors have emphasized, there is a periodic, sequential and probabilistic re-

servation dynamic in the hotel industry. It is thus possible to formulate the problem as a

stochastic dynamic program that takes into account simultaneously overbooking and RM

rules (Rothstein (1971), Hersh and Ladany (1978), Alstrup et al. (1986)).

As previously discussed, stochastic pricing is one of the most common sources of uncer-

tainty faced by hotels, together with demand. This uncertainty is usually caused by fluctua-

tions in the offer but is also related to the asymmetrical information game that is taking place

in this industry, in which suppliers try to hide information and to speculate. Other secondary

sources of uncertainty in the hotel industry are processing information errors (models and

software errors, quantization for discrete categories, sampling errors), lack of understanding

of the problem, partial information accessibility, and distribution channels bias.

From the point of view of the suppliers, the purpose of stochastic pricing is to shield

themselves from the spiral-down price effect, which occurs when incorrect assumptions about

customers’ and competitors’ behavior make tariffs and revenues to decrease over time, and

lead to misleading demand forecasts. Alternatively, this should prevent companies to enter

into price-wars, or simply being to much “price-driven”.

Demand uncertainty is usually a consequence of external factors that can have an impact

on the tourism industry and on international relations. These may be related to weather,

disasters, or yet unforeseen changes in the offer in different geographical zones. Tour operators

and travel agents also add some quotes of speculation in their relationships with main hotel

brands, thus playing a partial information game. Since hotels are the last boundary in money

flow, they must dilute these losses caused by demand uncertainty.

1.6 Purpose of this thesis

The issues of HRM highlighted in the previous section motivate us to propose models for

the Hotel Industry that considers not only customer’s preferences but also demand stochas-

ticity. It follows into the footsteps of the model proposed by Montecinos (2007), who argued

that scenarios could be embedded within a bilevel model, although this added complexity
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would call for more sophisticated resolution techniques. The stochastic model that we analyze

and solve has the following features :

— A leader of the Hotel Industry maximizes its revenue while facing multiple competitors.

— The objective function of the leader involves the revenue expectation and risk aversion.

— Customer population takes the form of user groups, each one endowed with several pre-

ferences that follow a random distribution over different price classes, with deterministic

arrival day and LOS.

— The optimization occurs over a limited planning horizon.

— “Booking limits”12 or “Protection levels”13 estimation.

— Prices are positive and can take any possible value.

Our objective is to maximize a firm’s revenue through the price adjustment and the

management of its inventory (setting optimal booking limits), while taking into account

customer behaviour and prices of the competition. To this end, we investigate several bilevel

models, where demand is random, that fit the generic framework of two-stage stochastic

programming. To solve this problem, we develop mixed integer programming formulations.

Since solving them to global optimality is not possible (note that the deterministic version is

already NP-hard), we have developed novel heuristic procedures that are capable of addressing

nontrivial instances.

The main contributions of this thesis are :

— Mathematical Models that considers several elements : Pricing on several days, uncer-

tainty, length-of-stay, quality of service, inventory capacity and groups preferences.

— A data generation process to overcome atypical and/or irrelevant cases

— Exact and heuristic resolution methods

— To Provide useful results for decision making in the hotel industry

This doctoral thesis is organized as follow : In Chapter 2, a deterministic bilevel model

for hotel revenue management is introduced. In Chapter 3, we briefly review the literature

on stochastic programming and stochastic bilevel programming that lies at the heart of our

models. In Chapter 4, a Stochastic Bilevel Programming (BLP) is introduced, followed by

models that include expectation in the first level objective. In Chapter 5, we present diverse

12. Booking Limits are the maximum number of reservations per weekday considering business rules for
LOS.

13. Protection Levels are the number of rooms to reserve per weekday for a particular class.
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heuristics used for solving our model and a performance analysis of our algorithm with respect

to MIP+. In the next chapter we present the numerical results of several tested instances

, and the results of different sensitivity analysis. Some instances are also analyzed from an

economic point of view. Finally, in the conclusion, we summarize our research, we point out

the main contributions of this thesis and its main limits, as well as some avenues for research.
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CHAPTER 2

A DETERMINISTIC BILEVEL MODEL

OF HOTEL REVENUE MANAGEMENT

In this chapter, we will describe a bilevel deterministic model of HRM. Before doing

that, we will present a review of Bilevel Programming (BLP) and its economical applications

particularly to RM.

2.1 Bilevel Programming (BLP)

Bilevel programs BLP are hierarchical optimization problems in which an objective func-

tion is minimized (maximized) over a set of solutions from a second problem parameterized

by the decisions taken in the first level. Bilevel programming allows the modelling of hierar-

chical situations in which a subset of decision variables is not controlled by the leader (at the

first level) but by a follower (at the second level), who rationally optimizes its own objective

with respect to the variables set by the leader. This framework is very well adapted to our

problem : An hotel manager integrates into its booking and pricing policies the behavior of

its clients. We present some of its properties.

2.1.1 Bases of BLP

Bilevel programming allows us to model problems in which not all the decision’s variables

are controlled by the main agent (a leader) but controlled by another agent (the follower) that

optimizes its own objective over a subset of variables. The variables controlled by the leader

are constant for the second agent, who reacts looking for its own optimality and its strategy

is closely tied to the decisions of the leader (they never oppose the leader). Generally, the

existence of upper level constraints depends on the application under consideration. Problems

with upper level constraints can arise if the leader does not want certain optimal solutions of

the follower. This is conditonated to the existence of multiple optimal lower level solutions.

Also, a bilevel programming model can change its optimal solution if constraints are switched

from one level to the other (Mersha and Dempe, 2006). Necessary and sufficient optimality

conditions can bed derived from the Karush–Kuhn–Tucker Conditions (KKT). If the leader

controls a vector of variables x, the follower controls a vector of variables y, and we have the
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following formulation,

(BPP) min
x,y

F (x, y)

s.t. g(x, y) ≤ 0

y ∈ argmin
y′

f(x, y′)

s.t. h(x, y′) ≤ 0,

with x ∈ Rnx , y ∈ Rny , F ,f : Rnx+ny → R, g : Rnx+ny → Rnu and h : Rnx+ny → Rnl . The

relaxed feasible set,

F = {(x, y) | g(x, y) ≤ 0, h(x, y) ≤ 0},

for every fixed x, the feasible domain for the follower is,

Fs(x) = {y | h(x, y) ≤ 0},

and its optimal subset is, for x constant, the follower reaction set,

Rs(x) = {y ∈ argmin f(x, y) | y ∈ Fs(x)}

The induced or inducible region is,

RI(x) = {(x, y) | g(x, y) ≤ 0, y ∈ Rs(x)}.

This subset is generally non convex, and possibly disconnected. When g and h are differen-

tiable convex functions, and the sets X and Y (x) = {(x, y) : hi(x, y) ≤ 0, i = 1, . . . , n.} are

both convex and regulars 1, the problem can be stated as,

min
x,y

F (x, y)

s.t. (x, y) ∈ X
y ∈ Rs(x).

When Rs is not a singleton and the leader is free to select any element from Rs, we have an

optimistic formulation. The pessimistic formulation refers to the contrary case : the leader

1. A set is regular when satisfy a constraint qualification, like the Mangasarian-Fromovitz.
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fights against the worst possible situation. It is possible to formulate this as,

min
x

max
y

F (x, y)

s.t. (x, y) ∈ X
y ∈ Rs(x).

Another common formulation related to bilevel programs is Mathematical Programs with

Equilibrium Constrains (MPEC). In MPECs, the lower level corresponds to an equilibrium

problem. The MPEC formulation is the following,

(MPEC) min
x,y

F (x, y)

s.t. (x, y) ∈ X
y ∈ Y (x)

−G(x, y) ∈ NY (x)(y),

where Y (x) = {y | (x, y) ∈ Y }, NY (x)(y) is the normal cone to Yx at the point y. If G =

∇yg(x, y), g is convex in y, and the set Y is convex, we can also formulate the bilevel problem

as,

(BP-VI) min
x,y

F (x, y)

s.t. (x, y) ∈ X,
〈∇y2g(x, y), y − y′〉 ≤ 0,

y, y′ ∈ Y (x).

A deep examination on this subject is presented in Luo et al. (1996) and Shimizu et al.

(1997).

Bilevel problems are difficult to solve, and in particular, Vicente et al. (1994) have shown

that a simple verification of local optimality is a NP-hard problem (Roch et al., 2005). When

the lower level is parametrically convex, it is possible to transform a bilevel problem to a

single level by using the Karush, Kuhn & Tucker conditions (KKT) over the lower level.

But this is only possible under an optimistic position 2 and when the lower level respects the

regular conditions.

2. We have an optimistic position when the lower level solution favorizes the leader’s interest.
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2.1.2 Bilevel Linear Programs

When F , f , g and h are either linear or affine functions, we have a Bilevel Linear Pro-

gram 3 :

(BLP) min
x

F (x, y) = c1x+ d1y

s.t. min
y

f(x, y) = c2x+ d2y

s.t. h(x, y) = Ax+By − b ≤ 0

x, y ≥ 0,

where,

c1, c2, x ∈ Rnx , d1, d2, y ∈ Rny , A ∈ Rm1 nx , A2 ∈ Rm2 ny , B ∈ Rm1 ny , B2 ∈ Rm2 ny , b ∈ Rm2 .

A simple polynomial transformation allows the conversion of BLP into Linear Mixed 0-1

integer programs (MIP0−1) and vice versa, as we can see in Marcotte and Savard (2005). The

transformation also introduces auxiliary constants.

Bilinear Bilevel Programs

The Disjoint Bilinear 4 Program (BILP) was introduced by Konno (1971) to compute

Nash equilibra on bimatrix games based on Mills’ works in Mills (1960). Audet et al. (1997);

Alarie et al. (2001) were able to construct a branch-and-cut algorithm for the BILP using the

separability of its variables. The main aspect of their works is the construction of an auxiliary

bilevel problem (a “max-min” problem) to solve the original separable bilinear program. As

presented in Audet (1997); Audet et al. (1997); Nahapetyan (2009), there is a coupled interest

in Bilinear Disjoint Programs, Bilevel Programming and MIP0–1, which are related to the

possibility to transform problems, to their ability to construct useful algorithms, and to their

complexity (hardiness).

2.1.3 Bilevel Programming and Some Applications

In the literature, several Bilevel programming models can be found, which consider either

a network structure or an assignment problem. In some problems, revenue maximisation is

3. For an easy reading, we can delete the operator “argmin” and the vector y′ from the lower level.
4. A function of two variables is bilinear if it is linear with respect to each of its variables, e.g., the

quadratic function xQy + cx+ by is bilinear respect to (x, y).
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hidden under other objectives, such as quality improvement or any other valuable (priceable)

objective for companies.

In particular to RM, bilevel models have been adopted in the following applications :

1. Hazardous Material Transport Mitigation : In Marcotte et al. (2009a), it was presented

that toll policies can be very efficient to minimize hazardous materials transportation.

2. Healthcare Facility Network : A bilevel non-linear optimization model was presented

in Zhang et al. (2010).

3. Product Design : Piedras et al. (2006) optimize a product development process.

The bilevel programming paradigm has been adapted to Revenue Management and Pri-

cing in various fields, such as

1. Supply Chain Management : Shouping and Baozhuang (2007) and Gao et al. (2011)

and also Sun and Gao (2004).

2. Network Transportation and Highway Toll setting : Numerous articles in this field,

such as Labbé et al. (1998); Brotcorne et al. (2001, 2000a,b, 2011, 2003); Heilporn et al.

(2009, 2010, 2011); Brotcorne et al. (2012).

3. Airline Revenue Management : Côté (2001); Côté et al. (2003); Xu and Xu (2012).

The first article settled a turning point in the classical Airline Revenue Management.

Moreover, the article of Marcotte et al. (2009b) offers an interesting example of a

strategic decision problem.

4. Telecommunications : Bouhtou et al. (2002); Altman and Wynter (2004); Bouhtou et al.

(2006, 2007)

5. Network pricing : Bouhtou et al. (2003); Heilporn et al. (2010)

6. Rail Freight Transportation : In Crevier et al. (2012) a bilevel formulation that tied

pricing and network planning policies was presented.

7. Reverse auction problem : Cheng et al. (2011).

In Labbé et al. (1998), a bilevel network pricing problem was introduced, consisting in

maximizing the leader tariffs’ revenue, knowing that user flows are assigned to the cheapest

paths. The leader just sets tariffs on a subset of the transportation network’s arcs, and the

follower sets the flows to the cheapest paths of a multi-commodity transportation network.

Too high tariffs will push users towards tariff-free paths, and too low tariffs will attract users

with a consequence lost in revenue.

For a given vector T controlled by the leader, who wants to maximize its revenue, the

follower minimizes its operating costs.
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As previously denoted, F corresponds to the leader’s objective function, f to the follower’s

function, and y to the follower’s vector corresponding to goods (or activities) in which y1

represents the vector of goods (or activities) subject to taxation, y2 the vector of goods not

subject to taxes, and Ti the taxation level for the good (or activity) i. We note that this

model is a bilinear model that has interesting properties, which will be reviewed in the next

section.

2.2 A Bilevel Deterministic Model for HRM

In a general taxation problem over a network, the leader adjusts the price over the arcs T

(those that it controls) for optimizing its revenue. The competitors control some arcs with

fixed prices Pa. This situation is illustrated in Figure 2.1. The followers, i.e., the clients,

react to the leader arc prices by looking for the service that maximizes their utilities (like in

MaxToll).

For the hotel industry, we aim to determine the tariffs for the inventories 5 of rooms and

the “booking limits”6. By defining “room inventory” as a set of similar rooms but with QoS

that can be modified, we can create complex paradigms such as hotels in different places

and with different prices. The followers are clients that book for a fixed date and for a LOS

predetermined. Competitors are not players in this game.

2.2.1 A Basic Bilevel Deterministic Model for HRM

As presented in Montecinos (2007), it is possible to use a bilevel deterministic problem

to model an industry leader that seeks to maximize its revenues, facing competition and

many groups of clients with different preferences (clients can choose among prices, hotel

proximities to tourist attractions and qualities of services). These models are also suitable

for setting price and quantity at the same time and for dealing with group preferences for

clients. The models also perform extremely well with many LOS. These models can be set

under Labbé et al. (1999) framework, in which the network in the lower level minimum cost

flow problem is simplified to a generalized assignment problem in several dimensions, one for

each day (very much like in a multidimensional knapsack). There are, however, important

differences with respect to capacity restrictions. Indeed, in transportation problems capacity

is related to arcs congestion in a origin-destination path, whilst in the hotel industry capacity

restriction occurs within each hotel inventory in every day of the rolling horizon.

The LOS can be seen as an origin-destination problem within a network, which means that

5. A set of rooms.
6. The number of rooms sold at a fixed price.
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O1

O2

O3

D1

D2

D3

P1

P2

P3

P4

P5

P6

P7

P8

P8

P9

T1

T2

T3

T4

User 1: wants to go from O1 to D1

User 2: wants to go from O2 to D2

User 3: wants to go from O3 to D3

Leader’s Arcs

Competitors’ Arcs

Figure 2.1 Taxation Model.

for every day in a planning horizon (a season) we create a node (an origin and a destination

node) and the arcs linking the origin“O” to the destination“D”correspond to one stay. Every

demand is a flow in this O–D network.

The following hypotheses are used for setting the model :

— A deterministic demand.

— Competitors’ prices are known for every day in the planning horizon.

— The information related to the preferences of clients : length of stay (LOS), QoS, price,

etc., is known for every day in the planning horizon. We suppose that the PMS supports

and integrates forecasting.

In the lower level, clients make their decisions only based on room prices. The following

notation is used :
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j, j′ : Indices denoting arrival dates (j = 1, . . . ,W ).

l : Indices denoting length of stay (l = 1, . . . , L).

xj,l : “Leader Booking limit (number of rooms)”; j + l is the departure date.

yj,l : “Competitors’ Booking limit” (number of rooms).

P : Denotes competitor’s price.

T : Leader’s price variable.

K1 : Capacity of the leader inventory.

K2 : Capacity of competitors.

W : Planning horizon Length.

L : Maximal length of stay.

The model is,

max
T

|W |∑
j=1

|L|∑
l=1

l T xj,l

s.t.

min
x,y

|W |∑
j=1

|L|∑
l=1

l T xj,l +

|W |∑
j=1

|L|∑
l=1

l P yj,l

s.t.

∀j, l : xj,l + yj,l = dj,l (2.1)

∀j :

|L|∑
l=1

xj,l +
∑
j′<j

∑
l≥j−j′

xj′,l −
|L|∑
l=1

x(j−l),l ≤ K1 (2.2)

∀j :

|L|∑
l=1

yj,l +
∑
j′<j

∑
l≥j−j′

yj′,l −
|L|∑
l=1

y(j−l),l ≤ K2 (2.3)

x, y ≥ 0.

In the objective function, we have the revenue contribution T xj,l and P yj,l by day. At the

lower level, followers are undistinguished and they can choose a price room either T or P . We

have imposed that the maximum number of rooms allocated cannot exceed the maximum

inventory, i.e., there is not overbooking. The constraints (2.1) denote demand’s constraints.

Constraints (2.2) denote capacity constraint in the leader’s inventories and (2.3) in the com-
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petitors’ inventories. Figure 2.2 illustrates the lower level problem for day j. The clients

staying in an inventory in day j are equal to new comers (a) plus clients already in the hotel

(b) less departures (c), and they must not surpass the hotel capacity. We do not ask for

integer solutions. Even for a very simple case, the number of variables is be high.

Chen (2000), Lai and Ng (2005) and Liu and Lu (2005) have proposed similar models for

booking assignment. Chen (2000) is inspired on the original work from Glover et al. (1992)

and Hersh and Ladany (1978), in the aerial industry.

2.2.2 A Bilevel Model Including User Groups, Multiples Hotels and Three Cri-

teria

We can modify the basic model to consider the case in which there is a hotel network

settled in a city (in several towns). In this case, the leader is managing several inventories in

different places. We consider a common point of interest for clients and every hotel (Leader

and competitor’s) is at a known distance to this point. Each hotel has its own price list.

In this case, we have that clients are segmented in several groups (G). The members of the

same group share their willingness to pay for the Quality of Service (QoS) (C) and for the

proximity to the interest point. We also use a circular rolling horizon with size W for a

stationary solution.

G : Set of client groups.

S : Set of Length-of-Stay, (S = {1,. . .,L}).
Qmax : Upper Quality of Service .

C : Set of Quality of Service, (C = {1,. . .,Qmax}).
W : Rolling horizon Length.

dj,g,l : Demand for day j ∈ W and l ∈ S, for group g ∈ G.

αg : Value of the proximity to attractions, for group g ∈ G.

βq,g : Value for the quality q ∈ C, for group g ∈ G.

A : Set of leader’s inventories.

B : Set of competitor’s inventories.

λi : Distance to attractions of inventory i ∈ {A ∪B}
T aq : Price of the inventory a ∈ A, for the quality of service q ∈ C.

T bq : Price of the inventory b ∈ B, for the quality of service q ∈ C.

Ka : Maximal capacity of the inventory a ∈ A, for the quality of service.

Kb : Maximal capacity of the inventory b ∈ B, for the quality of service.
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Figure 2.2 Second level problem, showing day j.

πig,q : Perceived price of the inventory i ∈ {A ∪B}.

The perceived price for the client of group g ∈ G is :

πig,q =

{
T iq + αgλi + βg

1

q

}
,∀q ∈ C,∀q ∈ C, i ∈ {A ∪B} .

In this model, we have,

— First Level Objective : Maximize the revenue from all inventories for the rolling

horizon

— Second Level Objective : Minimize the sum of the “perceived costs” for every stay

in the rolling horizon.

— Constraints of the lower level :

1. Respect to the maximal capacity for every inventory (no overbooking).

2. The whole demand should be satisfied for every day and length of stay.

3. The Booking Limits for every group of clients and for every inventory should be

positive.
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The model, as proposed in (Montecinos, 2007) is then formulated as follows :

max
Ta

|W |∑
j=1

∑
a∈A

∑
g∈G

∑
l∈S

∑
q∈C

l T aq x
a
j,g,l,q

min
x

|W |∑
j=1

{∑
a∈A

∑
g∈G

∑
l∈S

∑
q∈C

l πag,q x
a
j,g,l,q +

∑
b∈B

∑
g∈G

∑
l∈S

∑
q∈C

l πbg,q x
b
j,g,l,q

}
s.t.∑

q∈C

∑
g∈G

{∑
l∈S

xij,g,l,q +
∑
k>1

∑
l>k

xi(j−l+1) mod W,g,l,q

}
≤ Ki ∀j ∈ W, ∀i ∈ {A ∪B}∑

a∈A

∑
q∈C

xaj,g,l,q +
∑
b∈B

∑
q∈C

xbj,g,l,q = dj,g,l ∀j ∈ W,∀g ∈ G,∀l ∈ S

xij,g,l,q ≥ 0. ∀j ∈ W, ∀g ∈ G,∀q ∈ C, ∀l ∈ S, i ∈ {A ∪B}

For presenting this model, it is better to use a matrix notation,

πig,q ∈ R1 (|S| |W |) : Line vector of perceived cost for the leader’s (competitor)

rooms for the clients of group g ∈ G, and quality of service

q ∈ C, ∀i ∈ {A ∪B}.
xig,q ∈ R(|S| |W |) : Column vector with the booking limits of leader’s (competitor)

rooms for the clients of group g ∈ G, and quality of service

q ∈ C,∀i ∈ {A ∪B}.
Ka ∈ R(|W | |C|) : Column vector with the capacities of the leader for the qua-

lity of service q, for day j in the rolling horizon.

Kb ∈ R(|W | |C|) : Column vector with the capacities of the competitors for the

quality of service q, for day j in the rolling horizon.

d ∈ R(|S| |W |) : Column vector of client’s demands.

Ga ∈ {0, 1}(|W | |C|) (|S|) : Binary matrix showing which rooms of quality q belong to

the leader, for a length of stay l in day j, with a length of

stay l.

[Ga](j,q,l) ∈ {0, 1} :


1 If the room is in the leader’s inventory for day j, quality

q, a length of stay l.

0 None

Gb ∈ {0, 1}(|W | |C|) (|S|) : Binary matrix showing which rooms belong to competitors

for the length of stay l day j, and quality q.
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[Gb](j,q,l) ∈ {0, 1} :


1 If the room is in the inventory of competitors for day

j, with length of stay l.

0 None

Aa ∈ {0, 1}(|W | (|S|) |C| : Binary matrix representing the Leader’s rooms for the length

of stay l in day j.

[Aa](j,l,q) ∈ {0, 1} :


1 If the leader’s room can be used for allocating demand

for day j, and length of stay l.

0 None.

Ab ∈ {0, 1}(|W | (|S|) |C| : Binary matrix representing the competitors’ rooms for the

length of stay l in day j over the total demand.

[Ab](j,l,q) ∈ {0, 1} :


1 If the competitor’s room can be used for allocating de-

mand for day j, and length of stay l.

0 None.

ξ ∈ R1 (|W | |C|) : Line vector representing the dual variables associated to the

leader capacity constraints.

ν ∈ R1 (|W | |C|) : Line vector representing the dual variables associated to the

competitor capacity constraints.

η ∈ R1 (|W | |S|) : Line vector representing the dual variables associated to the

demand constraints.
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and we re-write the model as HRM (2.4),

(HRM) max
T

∑
g∈G
q∈C
a∈A

T axag,q (2.4)

s.t. (2.5)

min
xa,xb

∑
g∈G
q∈C
a∈A

πag,qx
a
g,q +

∑
g∈G
q∈C
b∈B

πbg,qx
b
g,q (2.6)

s.t. (2.7)∑
q∈C
a∈A

Aaxag,q +
∑
q∈C
b∈B

Abxbg,q = dg, g ∈ G (ηg) (2.8)

∑
g∈G
q∈C

Gaxag,q ≤ Ka, ∀a ∈ A (2.9)

∑
g∈G
q∈C

Gbxbg,q ≤ Kb, ∀b ∈ B (νb) (2.10)

xag,q, x
b
g,q ≥ 0, g ∈ G, a ∈ A, b ∈ B et q ∈ Q. (2.11)

In most industries, it is generally accepted that better qualities must correspond to higher

prices. Therefore, the corresponding “Service-Quality Order” constraints are introduced into

the upper level as a manner to obtain a suitable order in prices for different quality services,

Ta,q ≤ Ta,q+1,∀a ∈ A,∀q ∈ {1 ≤, . . . , q, . . . , |C| − 1.} (2.12)

2.2.3 Moving Constraints to the First Level

Generally, bilevel problems are very difficult, having a feasible set usually disconnected

in the presence of first level Constraints. Constraints cannot be moved freely from the lo-

wer level to the first level and vice versa, because the solution (and the feasible set) can be

altered. First level constraint are enforced by the leader through the choise of appropriate

values for the price vector, but the lower level constraints must be satisfied by the followers.

In our model, the leader inventory capacity constraints (2.9) can be moved to the first level

without affecting the optimal solution. This can help the resolution by reducing the numbers

of variables needed. It is evident that this action does not hold for the inventory capacity of

competitors (2.10), and in fact, it is easy to construct a counterexample.

Proposition : Assuming that HRM is feasible, bounded from the above, with a non-
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negative matrix of capacities Aa, ∀a ∈ A, then the leader inventory capacity constraints can

be moved to the first level without affecting the optimal solution.

Proof : The proof is identical to the proof presented in Brotcorne et al. (2003) for the

“Joint Design and Pricing in a Network (JDP)” problem. That means in practice that dual

variables ξa, ∀a ∈ A can be set to zero.

Without capacity constraints in the lower level, the corresponding problem (in x) results

in an independent minimal cost assignment problem (an easy problem). Fortunately, there

are very few competitors’ capacity constraints (2.10). Economically speaking, the presence

of the competitor’s capacity contraints, implied that dual variables νb, b ∈ B can take any

negative value (when competitors inventories are at full capacity). This affect (negatively)

the leader’s revenue modulated by the size of these competitors inventories, i.e., the leader

should put more “attention” to its main competitors with big inventories.
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CHAPTER 3

STOCHASTIC BILEVEL PROGRAMMING

3.1 Stochastic Programming (SP)

In this section, we briefly introduce some concepts and common definitions from theory

as presented in Kall and Wallace (2003); Birge and Louveaux (1997); Kall and Mayer (2005),

and particularly, we focus on what is useful for the development of this thesis.

3.1.1 General Definitions

Let’s define a general formulation of stochastic programs (SGP),

(SGP) min
x

g0(x, ξ) (3.1)

s.t. gi(x, ξ) ≤ 0 i = {1, . . . ,m.},
x ∈ X ⊂ Rn,

ξ ∈ Ξ ⊂ Rk,

k, n,m ∈ N,

where ξ is a random vector varying over a support set Ξ ⊂ Rk, in the probability space

(Ξ,F , P ), with a family F of measurable events and whose probability distribution P on

F is given. We also have that for any subset A ∈ Ξ, A ⊂ F we know P (A). The functions

gi(x, ξ) : Ξ→ R, ∀x, ∀ξ, i = 0, . . . ,m. are random variables.

After introducing this general formulation, we can formulate the Stochastic Linear Pro-

gram (SLP) :

(SLP) min
x

cTx (3.2)

s.t. Ax = b,

T (ξ)x = h(ξ), (3.3)

x ≥ 0,

x ∈ X ⊂ Rn,

ξ ∈ Ξ ⊂ Rk,

with A ∈ Rm×n, b ∈ Rm, c ∈ Rn. We should also assume T (ξ) ∈ Rs×n, h(ξ) ∈ Rs as random
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functions depending on ξ,

T (ξ) = T 0 + ξ1T
1 + . . .+ ξkT

k,

h(ξ) = h0 + ξ1h
1 + . . .+ ξkh

k,

with matrices T 0, . . . , T k and vectors h0, . . . , hk as deterministics. It is important to notice

that these models (3.1), (3.2) are not well defined : the minimization and the constraints

are not clear. In effect, the revision of this model can be done in several ways to obtain a

deterministic equivalent. Stochastic linear program SLP (3.2) will be discussed in the next

sections.

3.1.2 Single-stage SP Models

We consider that the problem needs a single decision “here and now”1. We suppose that

any decision taken on the x variables does not have any effect on the random variables.

The constraints (3.3) can be re-stated as a random function ζ(x, ξ), which is included in the

objective. We have then the following definition,

ζ(x, ξ) := T (ξ)x− h(ξ),

where ξ : Ξ → Rr is a random vector, T (ξ) ∈ Rs×n is a random matrix and h(ξ) ∈ Rs is

a random vector. We can suppose a joint probability distribution for (T (ξ), h(ξ)), which is

generally nonlinear.

3.1.3 Two-stage SP Models

It is important to observe that (3.2) is formulated with equality constraints. The definition

presented in (3.1) has strict inequalities. In order to introduce more flexibility, the restrictions

(3.3) must be replaced by a “recourse function”. We define the set Y = {y ≥ 0, y ∈ Rn} and

the following constrains will replace (3.3),

Wy = T (ξ)x− h(ξ),

y ∈ Y,

with W ∈ Rn×n deterministic. We assume a vector of cost q ∈ Rn for y, and we define the

total cost as qTy, which is linear. Obviously, we want to achieve any compensation with the

minimal cost, Q(x, T, h) = miny q
Ty.

1. There is no “corrective action” after the realization of the random variables.
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The recourse function is defined as,

Q(x, T (ξ), h(ξ)) = min
y
qTy

s.t. Wy = T (ξ)x− h(ξ),

y ∈ Y.

It is convenient to consider the average of the cost on x and y and set the problem into the

Two-stage Stochastic Programming (TSP) (3.4) form,

(TSP) min
x∈X

cTx+ Eξ∈Ξ{Q(x, T (ξ), h(ξ))} (3.4)

s.t. Ax = b,

x ≥ 0,

y ∈ Y.

If the random variables in T (ξ) and h(ξ) have a continuous joint distribution, this problem is

also nonlinear. Nevertheless, the most common paradigm in the literature is the Two-stage

Stochastic Linear Program (TSLP) :

(TSLP) min
x

cTx+Q(x)

s.t. Ax = b

Q(x) =
∑
j

pjQ(x, ξj)

x ≥ 0,

where Q(x, ξ) = min{q(ξ)Ty | W (ξ)y = h(ξ)− T (ξ)x, y ≥ 0}, is the “Recourse function” and

pj is the probability of ξ = ξj, a particular realization of the random vector. The vector Q(x) is

called the“expected recourse vector”. This assumes that an early decision can be compensated

by one later decision. Four specials cases arise from the definition of the constraints Wy =

T (ξ)x− h(ξ) in the recourse function :

1. Fixed Recourse : If W (ξ) = W fixed (not random),

2. Simple Recourse : If W (ξ) = [I,−I]

3. Complete Recourse : If {t|t = W (ξ)y,∀y ≥ 0,∀ξ} = Rm,m = rank(W )

4. Relatively Complete Recourse : If {Ax = b,∀x ≥ 0} ⇒ {t|t = W (ξ)y,∀y ≥ 0,∀ξ} = Rm
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3.1.4 Multi-stage Stochastic Linear Programs

A Multi-stage Stochastic linear program is a dynamic decision model where decisions are

taken sequentially in stages (more than one). We define then feasibility sets for every stage

as :

Bt = (x1, . . . , xt−1; ξ2, . . . , ξt), t = {1, . . . , T.}.

In this case, after a first stage vector decision x1 ∈ B1, we observe the realization of vector

random variables ξ2 ∈ B1. A new stage begins at this point, a decision x2(x1, ξ2) ∈ B2 is

taken, and following to this decision an observation ξ3 ∈ B2 is done. We can continue for any

stage needed. The Multi-stage Stochastic linear program (MSLP) is stated as :

(MSLP) min
x
{cT1 x1 + E{

T∑
t=2

cTt (ξt)xt(ξt)}}

s.t. A11x1 = b1

At1(ξτ )x1 +
t∑

τ=2

Atτ (ξτ )xτ (ξτ ) = bt(ξτ ), t = 2, . . . , T.,

x1 ≥ 0,

xt(ξτ ) ≥ 0, t = 2, . . . , T.

Here the constraints Wy = T (ξ)x − h(ξ), y ∈ Y are equivalent to At1(x1) +
∑t

τ=2 Atτxτ =

bt(ξτ ), t = 2, . . . , T .

3.1.5 Chance-Constrained Program (SCCP)

Chance-constrained problems are difficult and generally it is necessary to assume convexity

and smoothness to deal with them using mathematical programming methods. A “problem

with single probabilistic constraints” (PSPC) is a problem of the form,

(PSPC) min
x∈X

E{cTx}

s.t. P (ξ|Ti(ξ)x ≤ hi(ξ)) ≥ αi, i = 1, . . . ,m.

α ∈ [0, 1].

If Ti(ξ) = Ti is constant, then the constraints,

P ({ξ|Ti(ξ)x ≤ hi(ξ)}) ≥ αi, i = {1, . . . ,m.},
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are equivalent to Tix ≥ F−1
i (αi). Here the single chance constraint turns into a linear

constraint. Due to its simplicity, this type of Change-constrained program is one of the most

utilized in the industry.

3.1.6 Recourse Problem (RP)

The recourse model paradigm consists to make one decision now and minimize the expec-

ted costs (or utilities) of the consequences of that decision. Recourse models can be extended

to include more than one stage, known as a multistage problem, in which we make one deci-

sion now, wait for some uncertainty to be resolved (realized), and then make another decision

based on what’s happened. The objective is to minimize the expected costs of all decisions

taken.

The simplest and most common form used is the Two-stage Recourse Problem. In this

thesis, we also utilize this common form.

3.2 Stochastic Bilevel Programming (SBLP)

Because of the existence of random variables in the bilevel program, it is not possible to

calculate exactly the vectors x, y that optimize f on the expectation of f(x, y(ξ)).

The general form of the stochastic bilevel program (GSBP) includes a lower-level varia-

tional inequality (VI(x, ξ)) problem :

(GSBP) min
x

Eξ{f(x, y(ξ))}

s.t. x ∈ X,
ξ ∈ Ξ,

y(ξ) ∈ VI(x, ξ),

VI(x, ξ) = {y | T (x, y(ξ))T (y − y′) ≤ 0, y′ ∈ Z(x, ξ)},

where the feasible set Z(x, ξ) is assumed convex, and corresponds to the feasibility set of

the lower-level, and T (x, y) is a continuous utility function. We also need ξ ∈ Ξ defined in a

probability space (Ξ,F , P ).

The objective function of the stochastic bilevel model is a multiple integral over a vector of

continuous random variables, then Eξ[f(x, y(ξ))] =
∫

Ξ
f(x, y(ξ)) dF (ξ). This integral could

be difficult to evaluate or its expression be unavailable. It is widely used to work with a

discretization of the random distributions in order to express the expectation as a sum.



37

3.2.1 Important Properties of SBLP

To continue, let’s consider the following assumptions in Wynter (2001) for a discrete

stochastic bilevel problem with a non-linear lower level :

1. X is nonempty and closed.

2. The lower-level constraint set is of the form Z(x) = {y | gi(x, y) ≤ 0, i = 1, · · · , K}
where gi(x, y) is continuous and convex in y,∀x ∈ X, and for each x ∈ X, there is a y

such gi(x, y) ≤ 0.

3. There is a (x, y) ∈ {(x, y) ∈ gr VI | x ∈ X}, such as f(x, y) is bounded from above.

Some properties of interest are :

— Existence of optimal solutions to the discrete SBLP : Under the previous hypo-

theses and T continuous, there is at least one solution to the discrete SBP (Patriksson

and Wynter, 1999; Wynter, 2001).

— Convexity of Two-stage Bilevel Programming (TBLP) where the objective

depends only on the objective value of the lower-level : Generally, either BLPs

or SBLPs are non-convex. But there is a special case, the discrete formulation of the

SBLP in which the upper level objective function depends only in the value of the

solution of the lower-level (Shimizu et al., 1997),

(SBP-OV) min
x

∑
j∈Ξ

pjFj(x, vj(x, ξ
j))

s.t. x ∈ X,
vj(x, ξ

j) := inf {fj(x, yj, ξj)},
yj ∈ Zj(x) = {y | gi(x, y, ξj) ≤ 0, i = 1, · · · , K.}.

In this particular case with the former assumptions,

a. Assumptions 1) to 3) and Inf-compactness (f is lower semicontinuous, proper, and

has bounded level sets on P ),

b. fj(x, y), are convex,

c. vj(x, ξ
j), are convex on j,

d. gi(x, y), i = {1, · · · , K.}, are convex,

e. Fj(x, v), are convex and increasing in vj(x, ξ
j),

then the convexity of SBP-OV is obtained. The reader can look into Shimizu et al.

(1997) and Patriksson and Wynter (1999) for more details on this interesting property.
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— Differentiability of the upper level objective : This is a useful property for some

resolution methods. Let’s suppose for this property,

1. f is in the class C2.

2. T is in C1 and strongly monotone in y, ∀x ∈ X.

3. Uniqueness of the lower-level solution.

4. Let I(x, y) = {gi(x, y) = 0 : i = 1, . . . , K.}, and ∇ygi(x, y), ∀i ∈ {1, . . . , K},
linearly independent.

5. Every gi(x, y) is in the class C2.

Under the former assumptions Eξ[f(x, y(ξ)] is locally Lipschitz continuous and direc-

tionally differentiable (Patriksson and Wynter, 1999).

3.2.2 Applications of SBLP

We can have different applications for SBLP. We present some of the most common

applications found in literature.

1. Optimal Pricing problem : According to Wynter (2001), either in transportation

or in telecommunication problems that are modeled as bilevel or MPECs, uncertainty

can be incorporated to add realism. For this, we can set the demand as stochastic,

d(x) := d(x(ξ)), with ξ ∈ (Ξ,F , P ) a probability space. The same can be integrated

for the capacity on the upper “usage limits” of resources or in the user’s cost function,

where infrastructure parameters can vary according to a known distribution.

2. Stackelberg-Nash-Cournot equilibrium : According to Sherali et al. (1983) and Wyn-

ter (2001)

3. Structural optimization (Kim and Wen (1988); Evgrafov et al. (2003); Chris-

tiansen et al. (1997, 1998); Stavroulakis and Günzel (1998)) the (lowerlevel)

state variables : displacements, stress and contact forces, y ∈ Y . The matrix K(x)

represents the stiffness of the material and is symmetric and positive semi-definite.

Another similar application can be seen in Kim and Wen (1988), where a bilevel relia-

bility constraint model is developed. In that model, uncertainty is taken into account

for modeling loads as a random process. The objective function is constrained by the

probabilities of various limit states within the allowable limits. Evgrafov and Patriksson

(2003) and Stavroulakis and Günzel (1998) developed other complex applications in the

same field.

4. Multivariable control : Li and Marlin (2006)
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5. Interdiction of Material Smuggling : Pan et al. (2003) added to the model when

the pair origin-destination (s, t) is unknown but governed by a probability mass function

pξ := P ( (s, t) = (sξ, tξ), ξ ∈ Ξ). The authors argue that the models follow a nested

“min-max” structure because the leader and follower use the same objective function.

6. Telecommunication : Werner (2004)

3.2.3 Algorithms for the Resolution of SBLP

Wynter (2001) presents an algorithm (for the continuous case) that solves the problem

generating subgradients of f (based on Outrata and Zowe (1995)) 2. Some other methods,

which are not detailed here but that are found in literature, are :

— A penalty method making use of a merit function reformulation of the VIP (Wynter

(2001)).

— A perturbation method, which uses the KKT conditions of the VIP (Wynter (2001)).

— Methods using random sampling.

— Stochastic quasi-gradient algorithms.

— Stochastic decomposition (mostly for discrete cases).

— Approximation strategies and heuristics.

3.2.4 SBLP models with Recourse

Let’s define a SBLPR with recourse as follow :

(SBLPR) min
x1,y1

F (x1, y1) +Q(x, y)

s.t. fF (x1, y1) ≤ 0,

y1 ∈ argmin
y′1

g1(x1, y
′
1),

s.t. hg1(x1, y
′
1) ≤ 0,

2. We note that this algorithm utilizes the local Lipchitz continuity and directional differentiability of the
implicit function f , and at least this requires the assumptions presented above.
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where, Q(x2, y2) = Eξ∈Ξ[Φ(x2, y2, ξ)], ξ : Ξ→ R, ∀ξ ∈ Ξ and :

Φ(x2, y2, ξ) = min
x2,y2

ξ G(x2, y2, ξ),

s.t. fG(x1, y1, x2, y2, ξ) ≤ 0,

y2 ∈ argmin
y′2

g2(x2, y
′
2, ξ),

s.t. hg2(x2, y
′
2, ξ) ≤ 0

Based on this definition, this problem can be transformed into a standard Two-stage Sto-

chastic problem, considering the following conditions : First, we need that both objective and

constraints functions, in upper and lower level, are convex, type C1 in (x1, y1, x2, y2)∗, at the

optimal solution, by adopting a suitable constraint qualification. Second, the KKT conditions

need to be established, taking µ and δξ (shown in the right margin) as the KKT multipliers,

and assuming that ξ ∈ Ξ is finite, or at least that we can sample ξs, for s ∈ S, with S finite,

large enough and non-biased.

We note that the Second Stage constraint in Φ does not depend on variables x1,y1, but

they should remain tied by the objective. Therefore, this problem can be formerly re-written

as a Single-stage Stochastic Bilevel problem as :

(RSSBP) min
x1,y1

F (x1, y1) + Eξ∈Ξ[min
x2,y2

ξ G(x2, y2, ξ)]

s.t. fF (x1, y1) ≤ 0,

fG(x1, y1, x2, y2, ξ) ≤ 0,

y1 ∈ argmin
y′1

g1(x1, y
′
1),

y2 ∈ argmin
y′2

g2(x2, y
′
2, ξ), ∀ξ ∈ Ξ

hg1(x1, y
′
1) ≤ 0, (µ ≥ 0)

hg2(x2, y
′
2, ξ) ≤ 0, (δξ ≥ 0) ∀ξ ∈ Ξ.

3.3 The Value of Stochastic Solutions

While several decision problems involve uncertainty, utilisation of stochastic programs

are rarely used in practice because of their complexity. A common practice is to make ap-

proximations or expectations of the random variables involved. After that, both deterministic

solutions for different scenarios and sensitivity analysis are utilized to gain knowledge over

uncertainty. When the computational cost is too high, this practice could be adequate. Mo-



41

reover, a common criterion to determine the importance of a stochastic solution is calculating

the expected value of perfect information Expected Value of Perfect Information (EVPI), pro-

posed by Raiffa and Schlaifer (1961). This number represents the value of having complete

information over uncertainty and it is calculated using “WS” and “RP”. WS is commonly

known as the “wait and see” value and denotes the value of using the optimal solution for

“each scenario” (3.9) ; RP denotes the “here and now” solution, which is the optimal value

solution of the “recursion problem”. Some of these approximations and related bounds have

being revisited and some new ones have being proposed by Maggioni et al. (2012) to consider

cases such as Multi-stages Stochastic Problems.

The most common approximation in literature to solve stochastic problems is the “De-

terministic Approximation”, also known as the “Expected Value Problem”, or the Expected

Value (EV), as proposed by Birge (1982).

EV = max
(x1,y1)

φ((x1, y1),E(ξ)). (3.5)

Taking E(ξ) = ξ̄, yield a First Stage solution, (x̄1, ȳ1)(ξ̄). The expected result of using EV

solution is then called Expected Solution of the Expected Value (EEV),

EEV = Eξ[φ((x̄1, ȳ1), ξ)]. (3.6)

The most standard approximations are the following : First, the Value of the Stochastic

Solution (VSS), which will be defined in (3.7), also proposed by Birge (1982), and that

illustrates the expected gain from solving a stochastic programming problem rather than

using a deterministic approximation and in which stochastic variables are replaced by their

expected values.

VSS = RP − EEV (3.7)

Large VSS relative values are associated with systems and models, in which uncertainty

plays a very important role. The second approximation is the “Value of perfect Informa-

tion”, EVPI (presented in (3.8)), which indicates the difference from solving the stochastic

programming problem in comparison to the solution of “knowing” the future for any outcome.

EVPI = WS − RP (3.8)
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The perfect information behavior is taken from the “Wait-&-See” solutions,

WS = E(ξ)[ max
(x1,y1)

φ((x1, y1), ξ)]. (3.9)

It has been established by Madansky (1960) that EEV ≥ RP ≥WS ≥ EV, for a minimi-

sation problem.

We refer the reader to Birge (1982) and Escudero et al. (2007); Maggioni et al. (2012) for

further explanations and definitions on approximations.

3.4 Some Applications of Stochastic Programming and Bilevel Programming

Stochastic Programming and Bilevel Programming have been developed in multiple fields,

in which we can notice the following advances :

1. Structural mechanics : Patriksson and Wynter (1997a) propose a model for addres-

sing a structural optimization problem. Christiansen et al. (2001) then formulate a

topology optimization model. Wynter (2009) also cover this problem.

2. Traffic models : Patriksson (2008) introduces stochastic data fluctuations in a bilevel

context.

3. Network Pricing : Mirza Alizadeh (2013) continue the Labbé et al. (1998) framework

in a two-stage stochastic model, which tries to counter the net-revenue loss of neglecting

randomness, and in which each stage became a bilevel structure. In the second-stage,

demand and cost are stochastic. Both stages are connected using constraints of leader’s

prices. In the second part of Mirza Alizadeh (2013), the authors study three variations :

(a) Tardiness and reliability terms in the commuters’ disutility.

(b) Chance constraints at the leader level as concern for the network administrator.

(c) Congestion associated with random capacities along the arcs of the transportation

network.

4. Energy biddings : Fampa et al. (2008) formulate a model to address the strategic-

bidding process in the energy market as a Stackelberg Game. To do this, an energy

provider maximizes its profit expectation at the first level, and minimizes its operational

costs at the inferior level. The bidding process is based on stochastic scenarios. A similar

problem was alternatively studied in Hobbs et al. (2000) using also game theoretical

approaches but taking a Nash Equilibrium.

5. Retail Market : Carrión et al. (2009) model a retailer that optimizes its medium-term

revenue with a given risk level in a context in which prices, demand and competitors

prices are uncertain.
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6. Energy market modeling : Kalashnikov et al. (2010) formulate the natural gas cash-

out problem as multi-stage bilevel stochastic problem.

7. Duopoly price fixation : Cooper et al. (2012) optimizes the performance of price

strategies as dynamic prices and demand estimation uncertainties.

8. Telecommunication : As in Werner (2005) and Audestad et al. (2006). In the specific

case examined by Audestad et al. (2006) several agents (owner, clients and lease ope-

rators) are analyzed, in which the objective is to maximize the combined revenue for

the owner and lease operators, under either deterministic or stochastic environments.

9. Multi-product pricing : Like in Kosuch et al. (2012). A leader “prices” multiple

products with the intention of maximizing its revenue. Clients shop for lowest price

products, which are under capacity constraints. The capacity is stochastic (it is modeled

as a chance constraint).

It can be easily seen that Bilevel Programming, combined with stochastic programming,

is a trending paradigm for modeling problems in a context of high competition and com-

moditization. Uncertainty plays a bigger role in the context of economic stagnation and

Eco-responsibility and sustainability issues. In the near future, it would be possible to see

new models in the field of parallel computing and data-mining

3.5 Stochastic Programming Models for HRM

In this section we present two different Stochastic Programming HRM models that have

been proposed in the literature 3. These models will be important for the devolpement of the

stochastic bilevel models in this thesis. The first model, is the model of Goldman et al. (2002).

This model can be considered as a general framework in stochastis programming HRM. In

this model, demand can take on a limited number of realizations, which are considered as

scenarios. The model is derived from EMSR in the airline industry. The list of parameters

and variables of the stochastic model considered for optimizing the room distribution are :

Φ : Demand probability function.

E : Set of Scenarios.

L : Length of stay (LOS), in days.

J : Planning Horizon (in days).

Q : Set of QoS.

Tq : Price for QoS “q”, q ∈ Q.

3. The models were reframed to follow the ongoing notation.
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Cj : Capacity for day “j”.

dejqk : Demand on day “j”, LOS of “k” days, with QoS “q”, q ∈ Q, in scenario “e”, e ∈ E.

Djqk : Demand in the discrete set of values : {d1
jqk < d2

jqk < . . . < d
|E|
jqk}

Variable in the model :

xejqk : Integer variable, booking limit (number of room) for arrival day “j”, QoS “q” and

LOS “k”, in scenario “e”. It represents the demand Djqk in the interval [de−1
jqk , d

e
jqk].

The model is,

[HSRM1]

max
x

|E|∑
e=1

|J |∑
j=1

|Q|∑
q=1

|L|∑
k=1

k TqΦ(Djqk ≥ dejqk)x
e
jqk

s.t.

|E|∑
e=1

∑
l≤j

|Q|∑
q=1

∑
(l+k)>j

xelqk ≤ Cj, ∀j ∈ J

xjqk,1 ≤ djqk,1 ∀j, q, k.
xejqk ≤ dejqk − de−1

jqk , ∀j, q, k. ∀e ∈ E
xejqk ≥ 0 ∀j, q, k.
xejqk Integer

The second model, commonly reference in literature is the model in Lai and Ng (2005).

This models considers an stochastic network revenue management formulation. The mo-

del’s robust optimization framework integrates goal programming with scenario realizations.

The models takes two parameters to weight the trade-off between optimality and robust-

ness, w and λ.

List of parameters :

pe : Probability of scenario e.

T ei,j : Price in scenario “e”, e ∈ E.

Ci : Capacity on day “i”.

λ : Risk trade-off factor. between expected revenue and deviation, for the decision-

maker.
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weij : Penalty for excess/lack of assignments in day “i” with check-out in day “j”, in sce-

nario “e”, e ∈ E.

De
ij : Demand on day “i” with check-out in day “j”, in scenario “e”, e ∈ E.

In this model, a penalization is introduced because the assignment could not match demand,

for each scenario, which means xi,j 6= De
ij, (i, j), 0 ≤ i < j ≤ J :

Variable in the model :

xi,j : Booking limit for arrival day “i” and check-out in day “j”.

The reduced model is stated as,

[HSRM2]

max
x

|E|∑
e=1

pe

|J |−1∑
j=1

|J |∑
j=i+1

{
T ei,j xi,j − wei,j|De

ij − xi,j|
}
− λ

|E|∑
e=1

pe

∣∣∣∣∣∣
|J |−1∑
j=1

|J |∑
j=i+1

T ei,j xi,j −
|E|∑
e=1

pe

|J |−1∑
j=1

|J |∑
j=i+1

T ei,j xi,j

∣∣∣∣∣∣
s.t.

k−1∑
i=0

|J |∑
j=k+1

xi,j +

|J |∑
j=k+1

xk,j −
k−1∑
i=0

xi,k ≤ Ck, ∀k ∈ J

|J |∑
j=1

x0,j ≤ C0

xi,j ≤ max
e∈E
{De

ij}, ∀(i, j), 0 ≤ i < j ≤ J.

xi,j ≥ 0, ∀(i, j), 0 ≤ i < j ≤ J.

In the next Chapter, we will present the bilevel stochastic programming model developed

in this thesis.
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CHAPTER 4

BILEVEL STOCHASTIC PROGRAMMING MODELS FOR HOTEL

REVENUE MANAGEMENT

In this chapter, we propose SBLP for the hotel industry, which are ordered by their level

of complexity. Their main differences are in terms of the number of stages considered and the

inclusion of penalizations or overbooking. In fact, the first three models only have one stage

whilst the last two models have two-stages. Moreover, penalization for revenue variation is

only included in MODEL 2 and overbooking is only considered in MODEL 3 through the

inclusion of a probabilistic constraint. Finally, Model 4 and Model 5 are two-stage models,

whose only difference is the restriction that connect both stages, either an absolute or a

proportional constraint.

4.1 SBLP models for the Hotel Industry

Decision making under uncertainty with two or more agents is a new field of research. In

the literature, we can find two majors points of view combining bilevel programming, game

theory, and stochastic programming. It is possible to find a recent application to network

communication in Werner (2004).

For simplicity, we propose to formulate a SBLP as,

(SBLP) min
x,y

F (x, y, ξ)

s.t. g(x, y, ξ) ≤ 0

y ∈ argmin
y′

f(x, y′, ξ)

s.t. h(x, y′, ξ) ≤ 0,

where ξ is a random vector varying over a set Ξ ⊂ Rk, in the probability space (Ξ,F , P ),

with a family F of measurable events, and whose probability distribution P on F is given.

This model should be more precisely defined to be considered as a contribution for HRM.

Several possibilities are open, especially from the point of view of the leader :

1. We can choose that both agents, the leader and the followers, face uncertainty from the

environment, which comes from the competition : the price and the QoS, or by changes

in hotel capacity.
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2. The leader could face uncertainty from the follower’s response. We need to limit the

scope to assume that the leader will have the information from the response of the

followers (the solution of the lower level). But we could also assume that only a part of

this information is available by introducing new variables (random variables and upper

level constraints) to model this noise and adding them to the real information. The

leader will have an estimation of the response 1.

3. Simple probabilistic constraints in the lower level such as variation in demand, arrival

date or LOS.

An initial use of bilevel stochastic programs can be found in Patriksson and Wynter (1997b);

Christiansen et al. (1997). Those models were developed taking into account the variability

of the inputs and their unfeasibility. In our case, we introduce a model with expectations in

the leader revenue as,

min
x,y

Eξ{F (x, y, ξ)}

s.t. g(x, y, ξ) ≤ 0

y ∈ argmin
y′

f(x, y′, ξ)

s.t. h(x, y′, ξ) ≤ 0.

However, solving bilevel problems is always challenging, and for some parameters these

problems could also become unfeasible. The common difficulty of bilevel problems is non

convexity that also can occur in stochastic models. In such cases, the use of “pertinent”

recourse functions could help to obtain feasible models.

4.2 SBLP models with Expectations in the Objective

In the first model, the objective is to maximize the expectation over several scenarios.

Each scenario follows the determistic HRM framework presented in Chapter 2.

For this model we have

— First level : Maximize the expected revenue over all the leader hotels.

— Second level objective : Minimize the perceived cost for all the stays in the planning

horizon over all the hotels.

— Model constraints (in lower level) :

1. To ensure that the maximal capacity of each hotel is not exceeded.

1. An alternative is to include the random vector in the lower level problem. Then the constraint linking
the results will be in the lower level.
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2. Demand should be satisfied by day and by length of stay.

3. The assignments for every group should be non-negative.

The parameters are the following :

E : Set of scenarios, e ∈ E.

A : Set of leader’s hotels.

B : Set of competitor’s hotels.

pe : Probability of scenario e ∈ E.

Ka : Maximum capacity for leader’s hotels a ∈ A.

Kb : Maximum capacity for competitor’s hotels b ∈ B.

de,j,g,l : Demand for day j ∈ W, l ∈ S, g ∈ G, and scenario e ∈ E

Decision variables in the model are the following :

T ie,q : Room price i ∈ A ∪B, for the quality q ∈ C in scenario e ∈ E.

πie,g,q : Perceived price for inventory i ∈ {A ∪B} , g ∈ G, q ∈ C and scenario e ∈ E.

xie,j,g,l,q : Demand for day j ∈ W, l ∈ S, g ∈ G, q ∈ C, and scenario e ∈ E.

We introduce the notation, for the perceived price for group g ∈ G is shown in (4.1) :

πag,q =
{
T iq + αgλi − βgq

}
,∀q ∈ C,∀q ∈ C. (4.1)

and,

πbe,g,q =
{
T ieq + αgλi − βgq

}
,∀q ∈ C,∀q ∈ C,∀e ∈ E.

The initial Hotel Stochastic Bilevel Program, named Model 1, for many groups, hotels
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and quality services, is the following :

MODEL 1 :

max
Ta

|E|∑
e=1

pe

W∑
j=1

∑
a,g,l,q

l T aq x
a
e,j,g,l,q

g ∈ G,∀q ∈ C, ∀l ∈ S
s.t

L(T ) = min
x,y

W∑
j=1

∑
a,b

{∑
g,l,q

l πag,q x
a
e,j,g,l,q +

∑
g,l,q

l πbe,g,q y
b
e,j,g,l,q

}
s.t∑

q∈C

∑
g∈G

{∑
l∈S

xae,j,l,q,g +
∑
k>1

∑
l>k

xae,(j−l+1),l,q,g

}
≤ Ka

e , ∀a ∈ A, ∀j ∈ W,∀e ∈ E

∑
q∈C

∑
g∈G

{∑
l∈S

ybe,j,l,q,g +
∑
k>1

∑
l>k

ybe,(j−l+1),l,q,g

}
≤ Kb

e , ∀b ∈ B, ∀j ∈ W,∀e ∈ E∑
a∈A

∑
q∈C

xae,j,g,l,q +
∑
b∈B

∑
q∈C

ybe,j,g,l,q = de,j,g,l ∀e ∈ E,∀j ∈ W,∀ g ∈ G,∀ l ∈ S

xae,j,g,l,q, y
b
e,j,g,l,q ≥ 0

∀e ∈ E,∀a ∈ A, ∀b ∈ B, ∀j ∈ W,∀ g ∈ G,∀ q ∈ C, ∀ l ∈ S

It is important to notice that this first model is only a tariffication model and thus we

can only obtain the assignments for each scenario but not the booking limits. One possibility

would be to introduce a penalization in the objective in order to reduce revenue variations

in all the scenarios and thus assignments could be more homogeneous. This is still not a

booking limit but it gives the possibility of homogenizing the assignments. Reducing booking

limits variability is important for hotels that want to forecast their needs both in services

and stocks.

Therefore, in this second model, the objective is to maximize the expectations by sub-

tracting the penalty for the deviation from the weighted mean in absolute value. In other

words, we want to penalize big deviations from the average revenue. This second model is

close to models utilized in optimal control and finance, in which the purpose is to penalize

the notion of risk aversion for decision makers.

The parameters and variables for our second model are equivalent to those presented in

our first model, except for the inclusion of the parameter κ that corresponds to the risk factor.
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This risk factor allows to the manager to set the amount of risk that it is willing to take.

κ : Weight for the penalty.

Our second stochastic bilevel model, named MODEL 2, for many groups, hotels and

quality services, is the following :

MODEL 2 :

max
Ta

|E|∑
e=1

pe

W∑
j=1

∑
a,g,l,q

l T aq x
a
e,j,g,l,q

−κ
|E|∑
e=1

pe

∣∣∣∣ W∑
j=1

∑
a,g,l,q

l T aq x
a
e,j,g,l,q −

|E|∑
e=1

pe

W∑
j=1

∑
a,g,l,q

l T aq x
a
e,j,g,l,q

∣∣∣∣
g ∈ G,∀q ∈ C, ∀l ∈ S

min
x,y

|E|∑
e=1

W∑
j=1

∑
a,b

{∑
g,l,q

l πae,g,q x
a
e,j,g,l,q +

∑
g,l,q

l πbe,g,q y
b
e,j,g,l,q

}
∀ g ∈ G,∀ q ∈ C, ∀ l ∈ S

s.t∑
q∈C

∑
g∈G

{∑
l∈S

xae,j,l,q,g +
∑
k>1

∑
l>k

xae,[(j−l+1) mod W ],l,q,g

}
≤ Ka, ∀a ∈ A, ∀j ∈ W,∀e ∈ E

∑
q∈C

∑
g∈G

{∑
l∈S

ybe,j,l,q,g +
∑
k>1

∑
l>k

ybe,[(j−l+1) mod W ],l,q,g

}
≤ Kb, ∀b ∈ B, ∀j ∈ W,∀e ∈ E∑

a∈A

∑
q∈C

xae,j,g,l,q +
∑
b∈B

∑
q∈C

ybe,j,g,l,q = de,j,g,l ∀e ∈ E,∀j ∈ W,∀ g ∈ G,∀ l ∈ S

xae,j,g,l,q, y
b
e,j,g,l,q ≥ 0

∀e ∈ E,∀a ∈ A, ∀b ∈ B, ∀j ∈ W,∀ g ∈ G,∀ q ∈ C, ∀ l ∈ S

Although the introduction of penalization in this second model, we acknowledge that it

could not result in homogeneous assignments and that at the same time we are subject to ma-

nagers’ risk aversion. If the manager is not risk averse, the impact of the penalization should

be reduced (setting κ ≈ 0) and we will arrive to the same situation presented in MODEL 1.

As already mentioned, it is not enough to have just the price “information” T a, because the

industry would like to have a value for the Prices/“booking limits” to compare whether the

current season corresponds to a good or a bad scenario before it finishes. Therefore, other

models must be explored in this thesis. For instance, we can introduce a second stage and
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attempt to obtain new Prices/“booking limits” for the remaining allocations in the middle of

the season. This possibility will be introduced in the last two models of this chapter. In the

meanwhile, we will present a third model that aims to consider over-booking through the use

of probabilistic constraints.

4.3 SBLP models with Probabilistic Constraints

In this section we present a third stochastic bilevel model that was developed not only to

consider over-booking through the introduction of probabilitic constraints, but also to allow

us to incorporate changes in capacity that are not totally controlled by managers.

For example, instead of considering that demand follows a normal distribution, we could

consider that hotel capacity varies following the normal distribution. The manager could

impose a hard restriction to the maximum number of rooms overbooked in order to limit the

risk that is willing to take. Therefore, we have two capacity restrictions for the leader, the

first one is a strict constraint that represents the maximum willingness for overbooking (4.2),

given by parameter ∆, and the second one corresponds to the probabilistic constraint per

se (4.3). We are going to suppose that ξe,∀e ∈ E, follows a Normal distribution, i.i.d ξe ∼
N (0, σ2). With the linear constraints (4.2) and (4.3) we seek to model the case in which

the hotel available capacity can vary because of wrong management decisions, unexpected

damages caused by fire or leaks, overstay guests or clients that do no-show, etc. We want these

constraints to be hold with some risk parameters chosen by the manager (as a constant), or

as another random variable i.i.d Me ∼ U(0, 1)),∀e ∈ E.

Two additional parameters are included in this model compared to the first two models.

These parameters are the following :

∆ ≥ 0 : Max overbooking room units.

σ2 : Normal Distribution Variance.
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Our third stochastic bilevel model, named MODEL 3, is the following :

MODEL 3 :

max
Ta

|E|∑
e=1

pe

W∑
j=1

∑
a,g,l,q

l T aq x
a
e,j,g,l,q,

g ∈ G,∀q ∈ C, ∀l ∈ S
s.t

min
x,y

W∑
j=1

∑
a,b

{∑
g,l,q

l πag,q x
a
e,j,g,l,q +

∑
g,l,q

l πbe,g,q y
b
e,j,g,l,q

}
∀ g ∈ G,∀ q ∈ C, ∀ l ∈ S

s.t∑
q∈C

∑
g∈G

{∑
l∈S

xae,j,l,q,g +
∑
k>1

∑
l>k

xae,(j−l+1),l,q,g

}
≤ Ka + ∆, ∀a ∈ A,∀j ∈ W,∀e ∈ E (4.2)

Pξe

(∑
q∈C

∑
g∈G

{∑
l∈S

xae,j,l,q,g +
∑
k>1

∑
l>k

xae,(j−l+1),l,q,g

}
≤ Ka + ξ′e

)
≤Ma

j,e, ∀a ∈ A, ∀j ∈ W,∀e ∈ E

(4.3)∑
q∈C

∑
g∈G

{∑
l∈S

ybe,j,l,q,g +
∑
k>1

∑
l>k

ybe,(j−l+1),l,q,g

}
≤ Kb, ∀b ∈ B, ∀j ∈ W,∀e ∈ E∑

a∈A

∑
q∈C

xae,j,g,l,q +
∑
b∈B

∑
q∈C

ybe,j,g,l,q = de,j,g,l ∀e ∈ E,∀j ∈ W,∀ g ∈ G,∀ l ∈ S

xae,j,g,l,q, y
b
e,j,g,l,q ≥ 0

∀e ∈ E,∀a ∈ A, ∀b ∈ B, ∀j ∈ W,∀ g ∈ G,∀ q ∈ C, ∀ l ∈ S

In this case ξe
′ is a realization of ξe ∼ N(0, σ2) but restricted to −Ka ≤ ξ′e ≤ ∆ and

Ma
j,e,∀e ∈ E is a realization of Ma

e ∼ U(0, 1). Every constraint can be converted to a linear

constraint, as follow,

Φ
(0,σ2)
ξe

(∑
q∈C

∑
g∈G

{∑
l∈S

xae,j,l,q,g +
∑
k>1

∑
l>k

xae,(j−l+1),l,q,g

})
≥ 1−Ma

j,e, ∀a ∈ A,∀j ∈ W,∀e ∈ E

(4.4)

where Φ
(0,σ2)
ξe

is the normal probability density function.

Because we have individual probabilistic constraints for each scenario, they maintain their
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simplicity,

∑
q∈C

∑
g∈G

{∑
l∈S

xae,j,l,q,g +
∑
k>1

∑
l>k

xae,(j−l+1),l,q,g

}
≥ Q(0,σ2)(1−Ma

j,e), ∀a ∈ A, ∀j ∈ W,∀e ∈ E

(4.5)

where Q(0,σ2)(p) is the Gaussian p-quantile.

Like in the other models, the introduction of individual probabilistic constraints does not

allow us to obtain booking limits because it solves each scenario independently.

We propose to develop a two-stage stochastic bilivel model in which booking limits are

considered in the first stage, and demand stochasticity is allowed in the second stage (through

the scenarios). We can incorporate overbooking in the second stage without the complexity of

introducing probabilistic constraints considering stochastic capacity in every scenario. The-

refore, MODEL 3 is not necessary to be solved. This approach is presented in the following

section.

4.4 SHBP with Recourse

In this section, we present two stochastic bilevel models with recourse functions that are

relevant for the hotel industry because they allow hotel managers to reconsider decisions

taken in the first stage. These models are finally the ones that integrate most of the previous

concepts presented in the previous models and thus these are the ones that will be solved in

the next chapter.

SBLP models with Recourse were presented previously in 3.2.4. However, in practice, this

model is not useful for the industry because the two stages were only “tied” in the objective

and thus they are independent. Because of that, we need to introduce another constraint that

is pertinent for the hotel industry and that recourse the second stage. This constraint is price

variation between these two stages.

The model, including this new constraint, is then formulated as the Stochastic Hotel



54

Bilevel Program (SHBP) model,

SHBP :

max
Ta

W∑
j=1

∑
a,g,l,q

l T ′a,q x
′
a,j,g,l,q +Q(x, y)

g ∈ G,∀q ∈ C, ∀l ∈ S
s.t

(ta,q, t
′
a,q) ∈ Cδ, ∀a ∈ A, ∀q ∈ Q

T ′a,q ≤ T ′a,q+1,∀a ∈ A, ∀q ∈ {1 ≤, . . . , q, . . . ,≤ |C| − 1.} (4.6)

L(T ) = min
x,y

W∑
j=1

∑
a,b

{∑
g,l,q

l π′a,g,q x
′
a,j,g,l,q +

∑
g,l,q

l πb,g,q,1 y
′
b,j,g,l,q

}
(4.7)

∀ g ∈ G,∀ q ∈ C, ∀ l ∈ S
s.t∑

q∈C

∑
g∈G

{∑
l∈S

x′a,j,l,q,g +
∑
k>1

∑
l>k

x′a,(j−l+1),l,q,g

}
≤ K ′a, ∀a ∈ A,∀j ∈ W

∑
q∈C

∑
g∈G

{∑
l∈S

y′b,j,l,q,g +
∑
k>1

∑
l>k

y′
b
(j−l+1),l,q,g

}
≤ K ′b, ∀b ∈ B, ∀j ∈ W∑

a∈A

∑
q∈C

x′a,j,g,l,q +
∑
b∈B

∑
q∈C

y′b,j,g,l,q = d′j,g,l ∀j ∈ W,∀ g ∈ G,∀ l ∈ S

x′a,j,g,l,q, y
′
b,j,g,l,q ≥ 0

∀a ∈ A,∀b ∈ B, ∀j ∈ W,∀ g ∈ G,∀ q ∈ C, ∀ l ∈ S
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Q(x, y) = max
Ta

|E|∑
e=1

pe

W∑
j=1

∑
a,g,l,q

l Ta,q x
a
e,j,g,l,q

g ∈ G,∀q ∈ C, ∀l ∈ S
Ta,q ≤ Ta,q+1,∀a ∈ A, ∀q ∈ {1 ≤, . . . , q, . . . ,≤ |C| − 1.} (4.8)

s.t

min
x,y

W∑
j=1

∑
a,b

{∑
g,l,q

l πa,g,q x
a
e,j,g,l,q +

∑
g,l,q

l πb,g,q,e y
b
e,j,g,l,q

}
(4.9)

∀ g ∈ G,∀ q ∈ C, ∀ l ∈ S
s.t∑

q∈C

∑
g∈G

{∑
l∈S

xae,j,l,q,g +
∑
k>1

∑
l>k

xae,(j−l+1),l,q,g

}
≤ Ka

e , ∀a ∈ A, ∀j ∈ W,∀e ∈ E

∑
q∈C

∑
g∈G

{∑
l∈S

ybe,j,l,q,g +
∑
k>1

∑
l>k

ybe,(j−l+1),l,q,g

}
≤ Kb

e , ∀b ∈ B, ∀j ∈ W,∀e ∈ E∑
a∈A

∑
q∈C

xae,j,g,l,q +
∑
b∈B

∑
q∈C

ybe,j,g,l,q = de,j,g,l ∀e ∈ E,∀j ∈ W,∀ g ∈ G,∀ l ∈ S

xae,j,g,l,q, y
b
e,j,g,l,q ≥ 0

∀e ∈ E,∀a ∈ A, ∀b ∈ B, ∀j ∈ W,∀ g ∈ G,∀ q ∈ C, ∀ l ∈ S

For Cδ, we can consider two interesting cases for the thesis. By setting the range, the

manager aims to avoid radical changes in prices. Indirectly it reduces revenue variance. The

first one is (4.10),

CδABS
= {(t, t′) / |t− t′| ≤ δABS}, (4.10)
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The particular model associated with this constraint is “MODEL 4” :

MODEL 4 :

max
Ta

W∑
j=1

∑
a,g,l,q

l T ′a,q x
′
a,j,g,l,q +Q(x, y)

g ∈ G,∀q ∈ C, ∀l ∈ S
s.t

CδABS
= {(t, t′) / |t− t′| ≤ δABS}, (4.11)

T ′a,q ≤ T ′a,q+1,∀a ∈ A, ∀q ∈ {1 ≤, . . . , q, . . . ,≤ |C| − 1.} (4.12)

L(T ) = min
x,y

W∑
j=1

∑
a,b

{∑
g,l,q

l π′a,g,q x
′
a,j,g,l,q +

∑
g,l,q

l πb,g,q,1 y
′
b,j,g,l,q

}
(4.13)

∀ g ∈ G,∀ q ∈ C, ∀ l ∈ S
s.t∑

q∈C

∑
g∈G

{∑
l∈S

x′a,j,l,q,g +
∑
k>1

∑
l>k

x′a,(j−l+1),l,q,g

}
≤ K ′a, ∀a ∈ A,∀j ∈ W

∑
q∈C

∑
g∈G

{∑
l∈S

y′b,j,l,q,g +
∑
k>1

∑
l>k

y′
b
(j−l+1),l,q,g

}
≤ K ′b, ∀b ∈ B, ∀j ∈ W∑

a∈A

∑
q∈C

x′a,j,g,l,q +
∑
b∈B

∑
q∈C

y′b,j,g,l,q = d′j,g,l ∀j ∈ W,∀ g ∈ G,∀ l ∈ S

x′a,j,g,l,q, y
′
b,j,g,l,q ≥ 0

∀a ∈ A,∀b ∈ B, ∀j ∈ W,∀ g ∈ G,∀ q ∈ C, ∀ l ∈ S,

This corresponds to an absolute restriction between the First Stage t′ and the second stage

tariffs, for each category.

The second case corresponds to (4.14),

CδPROP
= {(t, t′) / |t− t′| ≤ δPROP t}, (4.14)
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The particular model associated with this constraint is “MODEL 5” :

MODEL 5 :

max
Ta

W∑
j=1

∑
a,g,l,q

l T ′a,q x
′
a,j,g,l,q +Q(x, y)

g ∈ G,∀q ∈ C, ∀l ∈ S
s.t

CδPROP
= {(t, t′) / |t− t′| ≤ δPROP t}, (4.15)

T ′a,q ≤ T ′a,q+1,∀a ∈ A, ∀q ∈ {1 ≤, . . . , q, . . . ,≤ |C| − 1.} (4.16)

L(T ) = min
x,y

W∑
j=1

∑
a,b

{∑
g,l,q

l π′a,g,q x
′
a,j,g,l,q +

∑
g,l,q

l πb,g,q,1 y
′
b,j,g,l,q

}
(4.17)

∀ g ∈ G,∀ q ∈ C, ∀ l ∈ S
s.t∑

q∈C

∑
g∈G

{∑
l∈S

x′a,j,l,q,g +
∑
k>1

∑
l>k

x′a,(j−l+1),l,q,g

}
≤ K ′a, ∀a ∈ A,∀j ∈ W

∑
q∈C

∑
g∈G

{∑
l∈S

y′b,j,l,q,g +
∑
k>1

∑
l>k

y′
b
(j−l+1),l,q,g

}
≤ K ′b, ∀b ∈ B, ∀j ∈ W∑

a∈A

∑
q∈C

x′a,j,g,l,q +
∑
b∈B

∑
q∈C

y′b,j,g,l,q = d′j,g,l ∀j ∈ W,∀ g ∈ G,∀ l ∈ S

x′a,j,g,l,q, y
′
b,j,g,l,q ≥ 0

∀a ∈ A,∀b ∈ B, ∀j ∈ W,∀ g ∈ G,∀ q ∈ C, ∀ l ∈ S,

In which Second stage tariffs must not increase/decrease more than a fraction of the actual

price for each category.

Both stages are connected if the constraint is active for a value lower than δ ′ ≤ ∞. If δ is

set to infinity, then both stages are disconnected. The converse case is also possible, δ = 0, and

both stages should have the same tariffs. This case is very similar (for the discrete or sampled

case) as having one single stage with one “fixed scenario”, assuming realizations/samples for

ξ ∈ Ξ.

Linking these stages by considering prices is advantageous because each one of the stages

and the scenarios can be transformed and easily solved. If capacity were used as a recourse

variable, KKT conditions could not be taken in each scenario so easily and decomposition

could not be possible.
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4.5 Some properties for SHBP

An upper bound on the leader’s revenue was derived in Labbé et al. (1998) and revisited

by Roch et al. (2005) for MaxToll. We can rewrite the same theorem for the deterministic case,

taking the new bound as : B(T ) = L∞ − L(0), where L(T ) is the second level optimal value

for a tariff vector T for SHBP as defined in (4.7). L(∞) and L0 are the values for T =∞ and

T = 0 respectively. Because SHBP never has negative increasing cycles (L(T ) is bounded) and

the constraints set is not empty, then the theorem also applies when considering the perceived

values in the lower level Π(T ) as function of T . Therefore, for a single stage problem (and

the deterministic case), B(T ) is an upper bound on the leader’s revenue. Considering now

δ =∞, then identical bounds can be found for every scenario w, independently, in the second

stage. So the SHBP revenue will be bounded by (4.18) :

L(∞)− L(0) + max
Ta

|E|∑
e=1

pe[Le(∞)− L0] (4.18)

In practice, this bound is not very tight because the individual revenue scenario diminishes

for any T ∗δ 6= T ∗w,δ=∞, where T ∗w,δ=∞ is the optimal value for the scenario w and δ′ ≤ δ ≤ ∞.

So the optimal revenue decreases with δ, having a minimum for δ = 0.

Mirza Alizadeh (2013) found interesting properties for the bilevel stochastic case in

a network. Among special cases, it was proved the continuity for the stochastic MaxToll

considering the “absolute value” restriction for connecting both stages and taking δ as an

independent variable. Primarily, we need to remember that in the deterministic model, for

a given price vector T ∈ R+
0 , any optimal solution is found in an extremal point of the

polyhedral formed by the lower level constraints. This extremal point remains optimal as long

as T does not exceed a threshold vector value Tthr, which carries a new set of assignments.

For T −∆ ≤ Tthr, the leader’s objective is the sum of linear functions with constant slopes

given for their respective assignments. For T ≥ Tthr there is a change in the extreme point

associated (because it will not remain optimal for the lower level). So, there are several jump

discontinuities, from the right. Obviously, the optima is found in one of these local maxima.

The main properties that can be found are :

a. Continuity : The objective function in SHBP is C1 for δ ∈ R.

b. Piecewise linearity : The objective function in SHBP is piecewise linear on δ ∈ R.

The complexity of Model 4 makes it very difficult to prove these properties, but the conjecture

can be state as :
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Conjecture 4.5.1 Considering the absolute constraints for non degenerated cases 2, the func-

tion R(δ), is continuous and piecewise linear, for T ≥ 0.

Continuity Conjecture : Having capacity constraints in the problem, it is not possible to

rely in the demonstration found in Mirza Alizadeh (2013), but similar arguments follow for a

non-degenerated case in which capacity constraints are non-active. We note that in the case

of a degenerated solution, a “little” change in price could introduce a change in assignments,

so any change in price needs to be as minimal as possible to prevent any assignment change

for the theorem to hold.

Piecewise Linear Conjecture : Having fixed the assignments, and with non-active capacity

constraints, the stochastic bilevel problem is reduced to a linear program (LP) with only the

vector T (Max LP on (TF, TS), where F represents the First Stage and S represents the Second

Stage). This problem becomes thus a special case of a “Parametric Right-hand side LP”, with

a single parameterized constraint. Then, it is a concave piecewise-linear function of δ. And

by generalization, a concave polyhedral function.

As noted in Mirza Alizadeh (2013) for the problem with Proportional Constraints Case

(PROP) constraints (Model 5), it does not follow the conjecture, not even for the continuous

part.

2. When multiple solutions are available.
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CHAPTER 5

ALGORITHMS FOR THE SHBP MODELS

In this chapter, we examine the most pertinent forms of solving the SHBP model proposed

in the previous chapter. We present exact and heuristic methods.

5.1 Exact Method

For simplicity, it is easier to use the decomposition of each one of the scenarios in each

stage and rebuild the problem into a unique large combinatorial problem. In fact, all scenarios

are linked through the price and each scenario is treated as a deterministic problem. We

can thus rebuild the problem by adding a constraint that makes all prices equal for each

scenario. Finally, we use Cplex to solve this large combinatorial problem. The advantage of

this method is explained by the efficiency of Branch&Cut in Cplex and by the experience

obtained in solving the deterministic case Montecinos (2007).

The deterministic hotel bilevel model HRM shown in (2.4) can be transformed into a

single level model by replacing the lower level objective by its KKT conditions. We also

notice that the first level objective of this model is non-linear but easily convertible into

linear by algebraic transformations. Therefore, we obtain,

max
xa,xb,η,ν

∑
a∈A


∑
g∈G

ηgdg −
∑
g∈G
q∈C

(πbg,qx
b
g,q + αgλx

a
g,q − βgqxag,q) +

∑
b∈B

νbK
b


s.t.

Ta,q ≤ Ta,q+1,∀a ∈ A, ∀q ∈ {1 ≤, . . . , q, . . . , |C| − 1.} (5.1)∑
q∈C

Aaxag,q +
∑
q∈C

Abxbg,q = dg, g ∈ G, q ∈ C∑
g∈G
q∈C

Gaxag,q ≤ Ka, a ∈ A

∑
g∈G
q∈C

Gbxbg,q ≤ Kb, b ∈ B

ηgA
a ≤ πag,q, g ∈ G, q ∈ C, a ∈ A
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ηgA
b + νbG

b ≤ πbg,q, g ∈ G, q ∈ C, b ∈ B
− νb(Kb −

∑
g∈G
q∈C

Gbxbg,q) = 0, b ∈ B (5.2)

xag,q(π
a
g,q − ηgAa) = 0, g ∈ G, q ∈ C, a ∈ A (5.3)

xbg,q(π
b
g,q − ηgAb − νbGb) = 0, g ∈ G, q ∈ C, b ∈ B (5.4)

xag,q, x
b
g,q ≥ 0, g ∈ G, a ∈ A, b ∈ B

νb ≤ 0 b ∈ B
ηg free, ∀g ∈ G.

We note that the transformed model has complementarity constraints. For solving this

problem there are some effective methods. In this development, we use both the “big-M”

method. The transformed model can be solved as MIP through the use of Cplex.

We introduce a matrix notation for the “big-M” constant used in the transformation.

Nxa , Nxb ∈ R(|S| |W |) : Matrices associated to the constraints (5.2).

Mνb ∈ R(|W |) : Matrix associated to the constraints (5.3).

Nξa , Nνb ∈ R(|W |) : Matrices associated to the constraints (5.4).

We introduce thus some binary variables vector for the “big-M” method.

wb ∈ {0, 1}1 (|C| |W |) : Binary variables column vector associated to the

constraints (5.2).

zag,q ∈ {0, 1}1 (|S| |C| |W |) : Binary variables column vector associated to the

constraints (5.3).

zbg,q ∈ {0, 1}1 (|S| |C| |W |) : Binary variables column vector associated to the

constraints (5.4).
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The ”big-M” formulation, is the following :

max
Ta,xa,xb,η,ν

∑
g∈G

ηgdg −
∑
g∈G
q∈C

(πbg,qx
b
g,q + αgλx

a
g,q − βgqxag,q) +

∑
b∈B

νbK
b

s.t.

Ta,q ≤ Ta,q+1,∀a ∈ A, ∀q ∈ {1 ≤, . . . , q, . . . , |C| − 1.}
Aaxag,q + Abxbg,q = dg, g ∈ G∑
g∈G
q∈C

Gaxag,q ≤ Ka

∑
g∈G
q∈C

Gbxbg,q ≤ Kb

ηgA
a ≤ πag,q, g ∈ G

ηgA
b + νbG

b ≤ πbg,q, g ∈ G
(Kb −

∑
g∈G
q∈C

Gbxbg,q)i ≤ [Mνb ]iiw
b
i ,∀i ∈ W

− νi ≤ [Nνb ]ii(1− wbi ) , ∀i ∈ W
(πag,q − ηgAa)g,q ≤ [Mxa ]g,qz

a
g,q , g ∈ G, q ∈ C

xag,q ≤ [Nxa ]g,q(1− zag,q) , g ∈ G, q ∈ C
(πbg,q − ηgAb − νaGb)g,q ≤ [Mxb ]g,qz

b
g,q , g ∈ G, q ∈ C

xbg,q ≤ [Nxb ]g,q(1− zbg,q) ,∀g ∈ G, q ∈ C
xag,q, x

b
g,q ≥ 0, g ∈ G, q ∈ C

νb ≤ 0

ηg free,∀g ∈ G
zag,q, z

b
g,q ∈ {0, 1}1 (|S| |W |),∀g ∈ G, q ∈ C

wa, wb ∈ {0, 1}1 (|W |)

The deterministic model has a great number of binary variables. In Montecinos (2007),

the deterministic models were solved first using Cplex. The MIP transformation suggested

in Labbé et al. (1998) was utilized because it is able to escape from the local-maximum,

keeping the optimization global, by using state of the art MIP solvers. However, we note
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that the MIP transformation can be very weak to face symmetry, and the linear relaxation

is terrible, because of the several big-M constants that multiply auxiliary binary variables.

The lower level problem is frequently degenerated as also happens in many network flow

problems. This condition can be treated is several ways, such as adding perturbations to

the dual right hand side constraint (RHS). We can notice that in the SHBP (4.4) problem,

stochasticity reduces the inconvenient of degeneracy, at least in theory, but it increases the

chances of finding several local-maximum in the resolution.

In order to solve large instance models, some heuristics were developed to test and compare

their efficiency against exact methods in SHBP.

5.2 A Naive Managerial Approach Heuristics

The market driven naive managerial approach tries to average the perceived prices π

(from (4.1)) for each group (α, β) in every day of the rolling horizon for each QoS without

considering the LOS. These values correspond to three price list outputs, the “lowest market

price”, the “average market price”, and the “maximum market price”. The Service-Quality

constraint for each inventory (2.12) is applied to ensure that to higher-quality corresponds

higher-price list. If the constraint is not satisfied, a reduction to the price list must be applied

from the highest to the lowest QoS. The same price list is replicated in all the inventories, as

used in many hotel brands settled in a narrow zone. The manager will decide among these

three outputs based on its experience, and thus this approach is very simple. However, it is

important to notice that risk is not being measured in these three outputs and thus it is only

inherent to manager’s aversion.

The manager could believe that at least one of these outputs will assure him/her the

maximal revenue in the future. However, because these outputs are not considering stochas-

ticity, this managerial approach is not very “safe”, as it will be seen in the numerical results

presented in the following chapter. Finally, this approach assumes that group behavior is

known by the Leader and managers do not analyze the perceived prices in two-stages. The

Naive Market-Price Heuristic is shown in Algorithm 1.

Due to the great difficulty presented in SHBP problems, more complex heuristics are

needed to solve them. The developed heuristics are not approximations of the optimal solution

because they have the option of either finding the optimal solution or contributing with a

good enough solution to re-evaluate the exact solution.

In the next two sections, we present the two heuristics developed for solving our SHBP

model.
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Algorithm 1 Naive Market-Price Heuristics

INPUT : A problem SHBP with competitors Prices TB.
OUTPUT : An integer solution for SHBP.

Set S = Stages in SHBP
for s ∈ S do

Set E = Scenarios in s
for e ∈ E do

Set ∆s,e
B = Distance and Quality Price for Competitors Inventories (αgλb − βgq)B

Set ∆s,e
A = Distance and Quality Price for Leader Inventories (αgλa − βgq)A

Set ∆s,e =
[
∆s,e
B −∆s,e

A

]
a,q
, (a, q) ∈ A× C

end for
end for
Generation of the outpus.
Set T+ = mini,q(T

s,e
B + ∆s,e, ∀e ∈ E,∀s ∈ S)

Set T− = maxi,q(T
s,e
B + ∆s,e,∀e ∈ E,∀s ∈ S)

Set T = mean (T s,eB + ∆s,e, ∀e ∈ E,∀s ∈ S)
Apply Service Quality Constraints([T+, T−, T ])

5.3 Multipath-based Heuristic (HBP)

Several algorithms have been proposed in the literature to solve bilevel programming pro-

blems. For example, sensitivity analysis based algorithms (solving the lower-level for a set of

prices and after that re-optimizing the first-level in order to modify prices in the ascent direc-

tion) have been tried to take advantage of alternating or switching paths in transportation

problems but with the inconvenient of falling in local-maxima. In order to avoid this problem,

we developed a multipath-based heuristic 1, whose main idea is to“match”competitors’ prices

beginning in any given price vector solution. If by matching one competitor’ price (a tariff

by quality of services and inventory) it is possible to obtain a higher revenue, then this new

tariff is considered as part of the solution. Otherwise, it is dismissed and another tariff is

examined. This is done iteratively to each one of the elements of vector T controlled by the

leader, TA hereinafter.

The heuristics works as follow : First, we begin matching competitors’ prices for the pro-

duct having the highest QoS for every inventory. Leader’s price is set an ε-below competitors’

prices, ε, 0 < ε� 1, in order to attract a large quantity of competitors’ customers. It is im-

portant to notice that the “match-below” is done in terms of average perceived prices π (4.1)

1. A multipath is a set of feasible paths in a network O–D. A multipath-based heuristic construct a path
per each origin–destination pair.
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for each user group instead of matching price list. The reason is that the use of the average

perceived price allows us to reduce the large combinatorial problem that would be caused if

we only use the price list of each competitor. Second, if the revenue of the leader does not

increase after matching its price to the average perceived price, we do not use that price and

we continue with the next QoS. Each trial is considered as a step in the heuristic.

To be able to produce a “proper” price reduction, it is important to consider some res-

trictions on vector TA (Quality Services Restrictions and non-negativity). It must be noticed

that we could find a local-maximum and thus something must be done to get out of those

points. Such as accepting some “backtracking steps” or forcing a decrease that is much lower

than the value of competitors’ prices.

There is not a natural order to perform price reduction one by one on the components of

the vector TA. Moreover, there is not a manner to know if we have fallen in the same local-

maximum already explored. Furthermore, a decrease from a local maximum may invariably

also lead to a downward path from which there is no improvement.

The form to avoid problems caused by these reductions is to give a tree structure to the

problem. The interest behind generating this tree is to make the fewest moves as possible,

when exploring the tree nodes one by one, to obtain a very fast and good quality solution.

Nevertheless, our intention is to sample the best possible TA space to find the most profitable

sub-space in terms of revenue. In order to create the tree, we need to define a neighborhood.

In fact, the neighborhood structure is very important for the algorithm, as we will explain

later. In this tree, a node is defined as the basis of simplex in the lower level, in which the

perceived prices πA = π(TA) of non-assigned capacities have been reduced as much as possible

without affecting the actual solution. In order to do that, their reduced costs 2 are utilized.

A second step is to allow that several columns can be used to re-optimize the first level.

Neighbors of this node are all the other basis of simplex to which is possible to arrive by

reducing any component of the vector πA in at least ρ. As we can see, this definition of the

oriented network (a tree of sons and siblings) is very dense. However, it is possible to construct

an improved neighborhood considering degenerated basis-simplex as nodes connected by small

feasible moves in every component of πA(TA). Feasible moves are those that consider all the

constraints on TA at the same time, among all the scenarios. In fact, any move is not restricted

to a small one ρ.

The most technical part of the algorithm relies in the way to generate a succession of

visiting nodes that improves the revenue. The pursuit can begin from the highest price vector

that allows getting a revenue for the leader. This is the highest vector price that an assignment

could have favorable for the leader. We can name this point as an “initial vector price”.

2. The smallest of all is selected.
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The next step is to generate moves from one basis to another simplex basis. As previously

explained, a form of obtaining a first move from the initial vector price is by considering the

most strict low reduction on perceived prices πA (from (4.1)) to modify the vector TA.

Exploring the tree as defined here can be done by tracking the nodes already visited,

to avoid evaluating them again, which generates an exploration tree. As we previously said,

computing assignments for a price vector generates a tree-like structure for the lower level.

In practice, we can take wider “moves” in TA and after that to do again the tree projection

to any of the nodes.

Just making moves arbitrarily in TA, without considering the neighborhood, does not

take advantages of multiple lower level solutions that allow switches in the inventories for

different users. These switches allow us to explore interesting zones for revenue increase but

also to get out from the local-maximum areas. We propose to make an exploration of this

tree by considering a best-first search approach and by using a priority queue to maintain

the best solution in front of us. To improve the searching speed, we allow jumps by choosing

a variable ρ steps-size for a reduction over a single TA, and then projecting back into the

neighborhood-tree, leaving several “sons” nodes unexplored. This is especially important at

the beginning.

When a jump and its projection conduct us to an already explored node 3, we are in a

dead end of the exploration in its respective tree-branch. It is possible that two nodes are

linked to similar value solutions or whose vectors TA resemble closely (using any metrics like

L2 norm). To avoid this, and also to reduce the computation, we consider that nodes are

“identical” using a simpler L1 metric on the associated revenue. It is important to notice that

exploring too close nodes early in the tree avoids following parallel paths later. The heuristics

implemented can be seen in Algorithm (2).

We define :

— Best-T : Vector Price found by the heuristic.

— Best-Solution : The best solution to SHBP.

— Dual Variables : The Second Level Dual Variables : νb, ∀b ∈ B, ηg, ∀g ∈ G.

— PQueue : A descending priority queue that keeps all the nodes already explored.

— The vector TA : [Ta,q] ∀a ∈ A,∀q ∈ C Vector of Leader’s Prices.

— The vector ΠA(TA) : [πa,g,q] ∀a ∈ A, ∀g ∈ G,∀q ∈ C} Vector of Perceived Leader’s

Prices.

— Second-Level-SHBP : The lower level problem of SHBP.

3. Or to close to a explored node
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Algorithm 2 Multipath

INPUT : A problem SHBP with Leader vector Prices TA.
OUTPUT : The solution Best-T, the Second Level Dual Variables, and the flows.

Step 1.
Set ρ = ρ0 > 0, variable step
Set ρ′ > 0, step constant
Let DualVariables = ∅, set of Second Level Dual Variables Values
Let Best-T = ∅, set of TA
Let Best-Solution = ∅, set of solutions
Solve every Second− Level− SHBP(TA =∞) in both stages
Let Revenue(TA) = 0
Let Rπ = ReducedCost(SHBP(TA)).
Let Rmina,q = min{Rπa,g,q,e ,∀g ∈ G,∀e ∈ E}, ∀a ∈ A, ∀q ∈ C.
Update, TA = maxT ′

A
{T ′A/T ′A ≤ (TA − Rmin), S.T. Constraints for T ′A.}.

Let PQueue := Descending Priority Queue
Add (Revenue(TA), TA) to PQueue

Step 2.
while PQueue 6= ∅ and not StopCondition(Time, Iterations) do

Remove TA from PQueue
Add TA to Best-T
Solve every Second− Level− SHBP(TA) in both stages
Add Dual SHBP to DualVariables
Let Rπ = ReducedCost(SHBP(TA))
Let Rmina,q = min{Rπa,g,q,e,∀g ∈ G,∀e ∈ E}, ∀a ∈ A,∀q ∈ C.
Solve Revenue(TA) = Upper− Level− SHBP(TA)
for all (a, q) ∈ A× C do

Let T ′′A = maxT ′
A
{T ′A/T ′A ≤ (TA − Rmin)− êa,q ∗ ρ, S.T. Constraints for T ′A.}.

if (Revenue(TA), T ′′A) not in PQueue then
Add (Revenue(TA), T ′′A) to PQueue

end if
end for
if Revenue(TA) > BestRev then

BestRev = Revenue(TA)
ρ = min(ρ+ ρ′, ρmax)

else
ρ = max(ρ− ρ′, 0)

end if
Update Best-Solution set

end while
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A multi-assignment is any feasible assignment for the lower level (an optimal allocation

that respects capacity restrictions and demand (every component of the demand)). Doubtless,

our heuristic could be seen as a “multi-assignment” seeker. It is intuitive to assume that the

leader will have high revenue values and thus this multi-assignment is quite expensive for the

followers. An upper bound to the leader’s revenue under a multi-assignment can be obtained

solving an inverse optimization problem, in which leader’s prices are re-computed for a given

fixed path. Indeed, our model is subject to capacity constraints and to a large number of

“groups” multiplied by the “Length of Stay” and Dates “j” (similar to multi-commodities and

O-D pairs), but the multi-assignment interactions make possible several short-paths options

when products are split among inventories, e.g., many possible “paths” (crossing inventories)

composed by just two arcs, and this for every scenario. In summary, the number of possible

paths for our model is too huge and thus inverse optimization is less productive.

Our HBP heuristic took some steps from Didi-Biha et al. (2006), Brotcorne et al. (2011)

and Brotcorne et al. (2012). For example, Didi-Biha et al. (2006) suggest evaluating multi-

assignments iteratively by sorting from the highest upper potential bound to the lowest

potential bound and stopping arbitrarily when a sufficient good bound was found or when

computation was too much costly. Lately, this idea was taken in the algorithm device of Brot-

corne et al. (2011), improved in Brotcorne et al. (2012), where an inverse optimization pro-

cess with fixed paths was solved. In fact, these authors took the dual of the former problem

and used the Dantzig-Wolfe decomposition. The dual was an easier problem with only one

complicated constraint. The sub-problem was solved in the column-generation fashion. The

improvement consisted on using Tabu-Search to generate paths, avoiding falling in previous

false steps. Both algorithms adapted well to the connected network (without capacity), in

which the number of pairs O-D is small and the number of commodities can be very large.

Therefore, the number of feasible paths was easy to enumerate. The Tabu-Search algorithm

elaborated by them improved the enumeration and made it more efficient.

The distinction of our heuristic to the work of Brotcorne et al. (2011) and Brotcorne et al.

(2012) is that instead of using the Tabu-search to avoid the same feasible path, we used a

best-first search approach and the price reductions.

It is important to highlight that although we could do a local search as a final step in this

multipath-based heuristic, we only use its results as an initial solution for another heuristic,

named “Restricted SHBP” heuristic, which is presented in the following subsection. In that

heuristic we will do a local search for the problem.
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5.4 Restricted SHBP

In this heuristic, we focus our attention on a reduced number of binary variables and

decrease the variable domain in order to do a local search in the context of the MIP defined

in the exact method. We rename this MIP as a “MIP restricted”.

In order to do that, we take all the solutions coming from the previous heuristic and

we analyze the range of the prices and dual variables. By reducing and setting the range of

dual variables, we are doing stabilization, as is done in column generation. Big-M constants

that defined the polyhedral space of the linear relaxation can also be set. This is possible by

searching the smallest value of M in a way that the best solutions are feasible.

The restricted MIP has tighter bounds for prices and dual variables. Also some binary

variables can be fixed through the inspection of big-M constants associated to each variable.

The only computing cost comes from solving several linear problems, one for each constant.

Keeping the structure of a MIP assures that we can get-out from any local-maximum. An

optimal solution for the MIP restricted problem is a lower bound to the MIP original problem

(and a good starting solution). The dual variables corresponding to Demands Constraints

vary widely. It is also known from column-generation practitioners that stabilization for dual

variables is key in order to avoid a high rotation of columns in a master problem, as stated

by Du Merle et al. (1999). There are several techniques to do so, mainly limiting the range of

moves for the dual variables and keeping some variables (columns) until they are exhausted.

Most complex problems will finish with hundreds of columns with negative but small

reduced-cost. At this point, the dual variables do not need more stabilization because the

impact in the objective is negligible for new moves. The problem remains purely combinatorial

to prove the optimality. In summary, just limiting the dual range proves to be helpful in several

problems.

In this heuristic, the best solution obtained with HBP is used by Cplex as an initial

solution. The MIP restricted heuristic is presented in Algorithm 3.
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Algorithm 3 MIP-Restricted

(INPUT. : Second Level Dual Variables, Best-T (from step 2 in Algorithm (2) )
(OUTPUT. : SHBP-MIP-Restricted solution)

BigM = vector of Big-M constants
Create ConvexEnvelope(DualVariables, Best-T)
Minimize Big-M(ConvexEnvelope(DualVariables, Best-T))
Construct a SHBP-MIP-Restricted(BigM)
Fix SHBP-MIP-Restricted BinaryVariables
Input Best-Solution to SHBP-MIP-Restricted
Solve SHBP-MIP-Restricted

5.5 Algorithm MIP-H+

The MIP problem can be solved using Cplex. An improved MIP problem is proposed

using a heuristic at every node of the B&B tree. The heuristics is based on the price vector

TA, previously defined. The heuristic consists in relaxing SHBP by replacing all the second

lower level problems, in every scenario at every stage, for new linear inequalities. Each new

restriction consists in the second lower level objective equal to the optimal value of the

second level calculated for TA considered as a constant. The resulting relaxed problem is a

simple linear problem that recalculates the best assignment for the constant vector TA that

maximizes revenue. The new solution can be corrected if it does not satisfy each one of the

restrictions of the lower level problem in every scenario at every stage. This new algorithm was

called “MIP-H+”. ‘MIP-H+” helps to find new feasible solutions and sometimes it improves

the lower bound. This improvement reduces the integral gap when convergence is too slow or

reaches a time limit. The lower level of all the scenarios can be solved and this information

is used to improve the solution. The new solution is added to Cplex’s solutions pool if the

solution improves the lower bound. We note that Cplex has control on the nodes where the

algorithm is applied. In most cases, Cplex could have found integral values for ≈ 70% of the

integers variables (all stages and scenarios included) but the price vector TA is still “floating”

in the B&B tree until all the binary variables are set. This procedure just helps to find the

integrality for all binaries without fixing the previous binary variables found for that node.

Exploring the “non-fixed binaries” as a sub-MIP is already done by Cplex in its “proving”4.

So, this version seems to be the best for our model because the new solution could have a

totally different multi-assignment compared to the one that is explored in the branch, and

4. Cplex has an heuristic that tries to fix binary variables by checking logical implications and lifting
binary coefficients.
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in theory, it should find many solutions at the beginning of the B&B. In Brotcorne et al.

(2011), an improved MIP problem also was proposed using inverse optimization applied at

every node of the B&B tree. This MIP was called “MIP+”. Making reference to this idea, we

have call our present algorithm “MIP-H+”.

5.6 Numerical Issues : parameter settings for Cplex and choice of an initial

solution

Cplex could take a considerable amount of time, first, to obtain an integer solution and the

integrality gap information, and finally to obtain the optimal solution and prove optimality,

if possible 5. To cope with this numerical problem, a fine tuning with Cplex was done, and

then the main heuristic was developed to apply on more difficult problems 6.

Several runs were made with different instances of the problem to characterize the best

parameters to be given to Cplex. These are shown in the Appendix A. These parameters

balance the obtainment of good dual bounds (and use of memory) with the obtainment of

feasible solutions. It is important to mention that the obtainment of a feasible solution can

be very time consuming. The successive tests, without incorporating other external cuts to

the model, show the interest to force Cplex in a pure aggressive branch-and-bound (B&B)

behavior. All the heuristics for B&B behave very badly when problems grow to thousands

of binary auxiliary variables. With a machine using two threads, the test found that several

general cuts in Cplex library fit the best to the problems. The most successful of these cuts,

in terms of the number of times that these cuts were applied to the problem, were : Mixed

integer rounding cuts applied, Flow cuts applied, Disjunctive cuts applied, Implied bound cuts

applied, Gomory fractional cuts applied, Cover Cuts. The rest of all possible cuts available

in Cplex were set to Off to gain in speed. The tuning improved considerably the computing

time for most of the instances solved in this thesis, but it did not help to prove optimality 7.

The experiment was done without using the tools provided by Cplex because they way they

work are unknown and we decide not to rely on them, considering the difficulty in solving

bilevel models. For example, in one of the trial after tuning Cplex, it took 106 seconds to get

optimality (a first solution was find after 70 seconds), the performed manual tuning found the

best solution in just 44 seconds, and the parameters totally differed from the solver tuning.

Without any tuning, Cplex by default took ≈ 18907 seconds. This last time is an absolutely

prohibited attempt for trying more complex problems and thus a tuning to Cplex must be

5. For a reasonable amount of time or cost. In this case one hour was considered reasonable
6. Almost any commercial solver will find different upper bounds that can change the integrality gap

calculation merely relying on other heuristics after the dual value calculation.
7. In a reasonable amount of time or cost. In this case one hour was considered as reasonable
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performed. Moreover, we realized that a better performance was possible if an initial solution

was provided to the solver.

Starting solutions

In our model, it was often easy to compute a first solution for any instance, as the trivial

solution, but that is not good enough for Cplex.

A second alternative is to generate several random solutions, which consists in taking a

random vector T , to then solving the lower level problem and finally re-optimizing the first

level (leader revenue). However, this procedure was extremely inefficient. Because of that,

this method was disregarded as a way to obtain an initial solution.

A third alternative is to use the “Feasibility Pump” implemented in Cplex to get an

initial solution, as described in Fischetti et al. (2005); Bertacco et al. (2007); Achterberg and

Berthold (2007); Bonami et al. (2009); Boland et al. (2011); Fischetti and Salvagnin (2009);

De Santis et al. (2010); Boland et al. (2012). However, we did not get any good result for

large instances, even after our attempts to re-implement the heuristic independently. Because

of that, this heuristic was finally disregarded.

Therefore, we decided to use our own heuristic HBP to provide Cplex this initial solution.

One of the main contributions of our heuristic was to provide to Cplex a fairly good feasible

solution and not just a lower bound. Practioners have reported that using this technique it

is possible to find the optimal in many cases because every new solution sets a new lower

bound to the maximization problem. Better bounds dismiss many branches in the exploring

tree. We notice that the solution time (comparing the situation without a feasible solution)

was reduced in a half for most common problems (for the previous second trial it was a 43%

of reduction).

However, proving that the initial solution is the optimal solution (or an integrality gap

equal to zero) is impossible for large instances. The stochastic bilevel model considers a

large amount of binary variables multiplying each one by a different big M constant. The

numerical stability is under stretch and thus the integrality precision was increased from

defaults to more strict values (from 10−6 to 10−8, big-M values rely in the range [1, 105]). In

fact, the transformation from the original model 8 to the MIP increases the chances that small

deviations in “list prices” will false the solution or make it appears “almost true solutions”.

This is what happens when the rounded auxiliary binary variables are poor. This situation

is particularly difficult with the complementary constraints (“list prices” are embedded in

these constraints). Small deviations in the assignment caused by rounding binary variables

can also happen, but they do not have a serious impact on the resolution.

8. The model itself is prone to multiple solutions, so to have multiple lower level degenerated basis.
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It is important to point out that numerical errors could invalid the improved heuristic

solution when tested against the lower level model and when the first level is re-optimized.

Therefore, because there is no easy way to prove that any solution is optimal, we will rely

on the B&B solver process to do so. From a practical point of view, the resolution of large

instances is useful for economical decision making or analysis even with a relative high gap.

The success of our approach relies on a reasonable good heuristic that works well in almost

any instance tested to find a solution with an integrality gap lesser than 30%. However, if

Cplex does not accept the solution in its MIP heuristics, the user needs to force Cplex to

acquire this solution through several attempts, until Cplex makes it feasible. However, most of

the time Cplex downgrades the value of the solution initially provided. In other words, Cplex

first checks the feasibility of this initial solution, but this solution has reasonable sources

for inexactitude due to the transformation process. So, Cplex will mostly find the solution

infeasible and will try to correct it. Appropriated parameters were thus set to accomplish

this important task.

5.7 A brief comparison of HBP and MIP-H+

With the advent of parallel machines with multiple threads capabilities, it becomes more

difficult to compare the resolution time or the improvement of each heuristic in the same

problem.

Both heuristics were implemented with Cplex. Comparing both heuristics is difficult be-

cause the implementation is different in nature : MIP-H+ was implemented using Python 2.6

and the Cplex API 9. Python is a dynamic type language. Python is not comparable in speed

to language C or C++. The main reason is that it is not compiled ; it does not use primitives,

just objects, and handle them indistinctly. Python could be at least tenth hundred times slo-

wer in the test machine. The comparison shown in Figure 5.1 was taken using a single thread

and limiting the solve to 5000 linear relaxations for HBP, beyond this scope the performance

decays because of memory use. In order to make a fair comparison, MIP-H+ implementation

also uses some notation in Python but using a different API. At the same time, MIP-H+ is

able to solve 2 times more linear programs than HBP, but it also has a lost in performance

for memory issues.

Another important point is that MIP-H+ does not need any parameterization, but HBP

step size needs a tuning for some instances : The step size should always remain in the

“middle” of all reduced-cost sizes to be effective, but it needs to grow faster at the beginning

to get in the “interesting zone” and to get as much samples as possible there, for the second

9. Application programming interface. Software library that facilitates the interaction among software.
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part. The algorithm MIP-H+ was always used with the original model, using standard values

for Big-M constants (105) to avoid any interference with the upper bounds that could end

up the B&B earlier.

In the graphic 5.1, it is easy to appreciate that the performance of HBP is very good

at the beginning, both lines cross several times. We could infer that both algorithms found

identical local maxima and both stopped finding better solutions almost at the same point,

based on some milestones and the asymptotic behavior.

In the graphic 5.2, it can be seen that Cplex starts from the same solution found in the

previous example. It is also possible to see in the extreme left, the solution supplied to Cplex.

Immediately after, Cplex gets the solution, which is accepted or modified (downgrade or

upgrade) because of numerical problems. In almost all the cases, Cplex accepts the solution.

We notice that MIP-H+ gets in stagnation very fast and stays like that for a while. In

fact, Cplex was capable to find a similar good solution. MIP-H+ at the end of the test was

capable to find a small gap, mostly because of the oportunistic behavior of the heuristic.

An example is shown as “Number 23” in the following chapter. The graphic also illustrates

that Cplex could not find any solution for the comparison, and even with a first solution the

results were very deceiving.

Another relevant aspect is the mathematical precision : there is a huge number of auxiliary

binary variables that are tied to assignment variables, and thus a small imprecision confuses

Cplex to accept solutions, and at the same time, it could create a unstable equilibrium (or

false equilibrium). On the other hand, under small variations of vector T, assignments can

change dramatically. Because of these technicalities, it was not possible to make an interaction

between these different approaches (MIP and multipath) in another heuristic that tied both.
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CHAPTER 6

NUMERICAL EXPERIMENTATION AND VALIDATION

In this chapter, we present and analyze the solution of several numerical examples, ordered

by its level of complexity, from small to large instances. Complexity is related to the number

of variables involved in the resolution of the problem, such as number of inventories, number

of groups, length of stay, number of scenarios, rolling horizon days, and price range. In all

these examples, the leader attempts to optimize its profit, considering two different periods

of time (two rolling horizons). These periods of time could be the first week in the month,

compared to the first week in the next month ; or a season compared to the next season, etc.

Before presenting and analyzing these examples, we need to present our data generation

process. After that, one example corresponding to a small instance is introduced and analyzed,

from both a numerical and an economic perspective. Although the small instance is solved

until optimality is reached, we also present the results obtained for the naive and HBP

heuristics to compare their results with the optimal solution. Moreover, due to the enormous

quantity of data that can be obtained for each example, even for small instances, we only

present its main results, which are specifically revenue (using the most common stochastic

approximations) and price list (first stage and second stage), for the small instance, all this

for Model 4 and Model 5. Finally, we perform a sensitivity analysis in terms of price range

for Model 4 and Model 5.

In the second part of this chapter, large instances are presented (beginning

in“Example 23”and finishing in“Example 51”). We only present the revenue obtained in each

example to focus the analysis on the difficulty behind solving them. However, three examples

are further analyzed in terms of their economic results. In those cases, we explain the main

effects of capacity, group composition, and list prices on revenue.

In the third part, stochasticity in prices and/or demand is introduced to large instances

and its effect on revenue and users’ distribution are briefly analyzed. Finally, in the last section

of this chapter, the impact of changes in capacity on revenue are presented and analyzed.

6.1 Experimental Set-Up and Data Generation

In order to test the SHBP model, we created data that represented a relevant context for

the hotel industry. Because of that, we developed a data generation process that allowed us to

reduce the possibilities of falling into infeasibility, atypical solutions and thus into unrealistic
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market situations.

However, it is important to notice that in order to generate this realistic market situation,

a trade-off in terms of parameters dependency was required. For instance, the number of

inventories and hotel capacity are related to the number of total clients (considering all the

groups). Moreover, quality of service is related to Distance Price and Quality Price. Therefore,

although in theory we propose the existence of independent variables, our parameters are

related in order to generate feasible and realistic situations. In terms of price and demand,

these variables were generated in a range that allowed us to obtain a 90% of feasible instances.

Our data generation process was as follows : First of all, we generated random values

uniformly distributed for demand, competitors’ price, inventory proximity, inventory capacity,

distance price α and quality price β for each user’s group, scenario probability, and ABS

(Model 4) and PROP (Model 5) parameters 1, as presented in Table 6.1.

Table 6.1 Parameters for the Set-Up

Item Uniform Range

Demand U [20, 80] + U [−10, 10]
Price U [50, 500] + U [−40, 40]
Inventory Distance U [0, 50]
Inventory Capacity U [0, 500]
Distance Price, α U [0, 90]
Quality Price, β U [0, 300]
Scenario Probability U [0.0, 1.0]
ABS parameter U [2, 50]
PROP parameter U [0, 20] in %

The other parameters such as LOS, rolling horizon, number of user groups, number of

scenarios, number of inventories and number of quality services were also randomly generated

using a uniform distribution but in a reduced range trying to replicate a more realistic business

environment and a pertinent instance to be examined. For instance, in terms of inventories,

we assumed that the leader cannot surpass 50% of the market share. We also assume that

competitors’ inventories are larger or equal in size and at least as numerous as the leader’s

inventories in all the instances.

Once all these values were determined, they became fixed and the next step was to

introduce uncertainty either on price, on demand, or on price and demand simultaneously.

Our setting process to generate stochasticity was developed as follow. First, two random

1. In the following tables and descriptions, we will use generically the denomination “Model 4”, for “Ab-
solute Constraints Case” case ; and “Model 5”, for “Proportional Constraints Case” case to make reference to
the respective problems.
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uniform vectors for distance were generated, one corresponding to the proximity of leader’s

inventories to the interest points and the other corresponding to the proximity of competitors’

inventories to the same interest points. We argue that inventories located closer to downtown

(where most of the interest points are placed) must have a higher average price than those

located in the periphery. In order to respect this characteristic, random vector prices were

generated for each inventory, following a uniform distribution, to which a uniform noise was

added to introduce an stochastic perturbation for everyday in the rolling horizon. We assumed

that prices are identical for each day in the rolling horizon within each inventory. Because

the number of days considered in the rolling horizon is generally not so large, it is reasonable

to argue that list price does not follow any trend rather a fluctuation.

After average prices were calculated for each one of the vectors, they were ordered from

high to low to assign the highest price to the shortest distance inventories and the lowest

price to the farthest distance inventories. Price vectors were also ordered from high to low

with respect to QoS in order to assign the highest price to the highest quality. It is important

to mention that, in some specific cases, competitors’ prices did not follow the “Quality service

Constraints”, which in practice is explained by market conditions or strategic decisions, but

the spirit of this principle is generally maintained in our resolution.

Regarding to demand, it was also randomly generated following a uniform distribution

adding a uniform noise for each specific group, each day, and length of stay 2.

Once stochasticity on price and demand was introduced, we conducted a feasibility analy-

sis to dismiss atypical solutions. In order to do that, we fixed the price of the leader inventories

to infinite as a manner to make abstraction of it and we analyzed users’ group distributions

on competitors’ inventories but also inventory capacity. If for example the groups became

concentrated in only one inventory and one QoS, the instance was discharged and both com-

petitors’ price and demand noise must be set-up again until the solution was feasible. If after

some attempts the solution was still atypical, we regenerated certain initial parameters, such

as α and β. After getting experience with this analytical process, we can assure that in ap-

proximately 90% of the cases our solutions are feasible for the values presented in Table 6.1.

The remaining 10% of the cases were unfeasible and thus they were dismissed.

All the set-up parameters were maintained for all the examples presented in this chap-

ter. The problems were solved by using the transformation to a MIP problem for all the

scenarios (and stages) in one single problem, because the standard decomposition (Benders’

decomposition or L-Shape Method) under bilevel programming became not suitable. The

2. In general terms, stochasticity can exist in both demand and price, individually or simultaneously.
However, in the small instance and in the first large examples (from example 23 to 51) only price was sto-
chastic. For the instances utilized in the sensitivity analysis, demand and price were considered as stochastic,
individually and simultaneously.
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MIP obtained by this mean was solved using Cplex.

6.2 A Small Instance

The purpose of solving and presenting a small instance is to show that when the problem

has a reduced size, we can be confident that the result obtained through our HBP heuristic

is close to the optimal.

In this instance, the letter A refers to leaders’ inventories, and B designates competi-

tors’ inventories. This example is composed of four inventories, which is reasonable due that

hotels’ chains regularly manage more than one hotel in a geographical zone. We define four

quality service categories for each leader’s inventory in order to cover from economic rooms

to more luxury ones. The leader has one additional QoS category (Q4), which is superior to

all the categories offered by the competitor. In that sense, this QoS is considered as the most

luxurious of our problem.

In terms of capacity, the leader has one big inventory (hotel), which is similar in size to one

of the hotels of its competition, but most of the leader’s hotels are medium size. Competitors’

hotels are larger and closer to attraction points (which are mainly located in downtown), and

its farthest hotels are similarly located to the closest leader’s hotels.

Four Group’s categories represent users that ranges from the less sensitive to proximity

and QoS, and thus mostly sensitive to price, to those sensitive to proximity and QoS. The

rolling horizon is equivalent to a weekend.

Problem Definition

In terms of price, this example assumes a certain volatility that is common in this industry

and that varies from one inventory to another but also in terms of QoS as shown in Table 6.3.

We see that for the inventory B2 for quality of service Q2, the list price of competitors for the

second stage in each scenario is lower compared to the first stage. However, in the inventory

B4 for the quality of service Q3, the price list of competitors is higher in each scenario.

Specifically regarding the scenarios, this example considers four price scenarios, in which

the probability is 1 for the first stage, and respectively (0.47, 0.29, 0.19, 0.05) for each scenario

in the second stage, with a discount factor of 1.0 (discount rate = 0%) between both stages

and with maximal price difference among stages of δABS = 17 or δPROP = 0.05.

The model is described and summarised using two tables, Table 6.2 and Table 6.3. In the

first table, inventories characteristics are presented in (a), Users Groups related definitions

are presented in (b), and Stage definitions are shown in (c). In the second table, demand is

shown in (a) and competitor’s list price in (b).
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Similarly to the rest of the examples presented in this chapter, “Service-Quality Order”

constraints (2.12), were introduced for every scenario.

Table 6.2 Small Instance Definitions A

Inventory Service Qualities Distance Capacity

A1 (Leader) 4 37 301
A2 4 48 176
A3 4 72 188
A4 4 77 154

B1 (competitors) 3 13 347
B2 3 27 365
B3 3 30 303
B4 3 47 266

(a) Inventories

Groups Distance Value (α) Quality Value (β)

G1 3.20 4
G2 4.32 49
G3 4.97 101
G4 8.75 165

(b) Group Definitions

Parameter Value

Price Absolute Difference : 17.0
Price Proportional Difference : 0.05
Discount Factor : 1.0
Rolling Horizon : 2 days

(c) Stage Definition



82

T
ab

le
6.

3
S
m

al
l

In
st

an
ce

D
efi

n
it

io
n
s

B

P
ro

b
ab

il
it

y
b
y

S
ta

ge
an

d
S
ce

n
ar

io

F
ir

st
S
ta

ge
S
ec

on
d

S
ta

ge
S
ce

n
ar

io
1

S
ec

on
d

S
ta

ge
S
ce

n
ar

io
2

S
ec

on
d

S
ta

ge
S
ce

n
ar

io
3

S
ec

on
d

S
ta

ge
S
ce

n
ar

io
4

1.
0

0.
47

0.
29

0.
19

0.
05

D
em

an
d

b
y

S
ta

ge
an

d
S
ce

n
ar

io
D

ay
G

ro
u
p
s

L
en

gh
t

of
S
ta

y
F

ir
st

S
ta

ge
S
ec

on
d

S
ta

ge
S
ce

n
ar

io
1

S
ec

on
d

S
ta

ge
S
ce

n
ar

io
2

S
ec

on
d

S
ta

ge
S
ce

n
ar

io
3

S
ec

on
d

S
ta

ge
S
ce

n
ar

io
4

1
G

1
1

20
1

1
G

2
1

19
3

1
G

3
1

21
2

1
G

4
1

20
8

2
G

1
1

18
6

2
G

2
1

20
1

2
G

3
1

22
9

2
G

4
1

20
8

(a
)

S
ce

n
a
ri

o
P

ro
b

a
b
il
it

y
&

D
em

a
n
d

D
efi

n
it

io
n

In
ve

n
to

ry
S
er

v
ic

es
F

ir
st

S
ec

on
d

S
ta

ge
S
ce

n
ar

io
1

S
ec

on
d

S
ta

ge
S
ce

n
ar

io
2

S
ec

on
d

S
ta

ge
S
ce

n
ar

io
3

S
ec

on
d

S
ta

ge
S
ce

n
ar

io
4

Q
u
al

it
ie

s
S
ta

ge
[d

ay
1,

d
ay

2]
[d

ay
1,

d
ay

2]
[d

ay
1,

d
ay

2]
[d

ay
1,

d
ay

2]

B
1

(c
om

p
et

it
or

s)
1

31
7

26
6.

40
,

24
7.

81
25

4.
49

,
31

3.
36

28
0.

42
,2

93
.3

0
27

5.
65

,
26

5.
68

B
1

2
36

6
33

5.
34

,
37

5.
54

37
1.

67
,

30
9.

34
36

4.
63

,3
43

.4
3

31
3.

00
,

33
7.

10
B

1
3

38
3

41
1.

64
,

35
4.

38
35

6.
37

,
36

6.
22

36
9.

51
,3

62
.6

6
41

4.
14

,
36

3.
11

B
2

1
21

2
22

9.
02

,
23

3.
76

21
0.

90
,

23
3.

88
25

9.
27

,2
34

.2
9

26
5.

21
,

26
9.

49
B

2
2

41
0

28
2.

46
,

30
9.

03
26

2.
73

,
24

5.
5

27
1.

08
,2

62
.8

3
23

5.
57

,
26

5.
86

B
2

3
41

4
49

8.
63

,
50

1.
23

43
0.

88
,

50
0.

32
46

3.
32

,4
97

.4
1

48
4.

46
,

46
0.

00

B
3

1
10

2
94

.2
4,

13
2.

10
12

8.
47

,
77

.1
4

82
.4

6,
12

8.
00

13
8.

43
,

13
9.

44
B

3
2

29
9

27
5.

80
,

34
5.

41
30

0.
46

,
34

2.
05

28
3.

28
,2

85
.3

9
28

8.
96

,
32

7.
67

B
3

3
43

2
32

6.
81

,
35

7.
55

32
6.

97
,

30
3.

41
32

7.
72

,3
43

.5
0

35
3.

60
,

35
5.

55

B
4

1
14

8
12

0.
62

,
11

7.
11

12
0.

39
,

61
.9

9
13

5.
48

,
78

.9
0

86
.9

8,
94

.7
4

B
4

2
21

9
22

1.
05

,
22

5.
53

18
2.

33
,

23
3.

54
17

8.
16

,2
30

.0
7

21
8.

21
,

17
7.

40
B

4
3

23
9

44
2.

46
,

38
1.

19
41

7.
89

,
41

1.
28

40
5.

64
,4

22
.8

4
42

6.
98

,
38

8.
91

(b
)

L
is

t
P

ri
ce

D
efi

n
it

io
n

s



83

6.2.1 Numerical Results and Sensitivity Analysis

The optimal solutions, for our Model 4, are presented in Table 6.5 and Table 6.6 and for

our Model 5 in Table 6.7 and Table 6.8. The solutions provided by the naive heuristic and

our HBP heuristic for both Model 4 and Model 5 are presented in Table 6.4

In this example, Model 4 shows changes that are notorious for the basic analysis : the

Expected Value (EV) and the Expected Solution of the Expected Value (EEV) are both

6% different compared to the SHBP solution. The Value of the Stochastic Solution (VSS) is

equivalent to 6%. The Expected Value of Perfect Information (EVPI) is small (approx. to

1%) but it is relevant from an industrial point of view because 1% can represent thousands

of dollars in terms of revenue.

We can argue that the differences found are consistent with the importance of the stochas-

tic solution. If we take a look at prices, we can see that “Scenario 1” is dominant in Recourse

Problem (RP), EEV and WS solutions. Moreover, if we examine data coming from “Scenario

4”, they are not favorable for a price increase, which is also reflected in all the solutions.

Regarding Model 5, it presents similar results compared to the previous case, mainly

because in both situations prices are close. In effect, Model 5 shows that EV is also 6%

different. The EEV is also 6% different and the VSS is lower compared to Model 4, just

6.4% than SHBP solution. Finally, the Expected Value of Perfect Information (EVPI) is

almost 1% as well. Moreover, in Model 5, the maximal proportional difference is equivalent

to a difference in price of $9 3, which is quite different from $17 in Model 4, presented in

Table 6.2, despite similar solutions in terms of price.

We also notice that the price obtained for the second stage for SHBP is the same compared

to the prices obtained for the Second stage,“Scenario 1”, for the WS type solution. That means

that “Scenario 1” is influent in the results obtained for SHBP in the Second stage in both

Model 4 and Model 5 because of its weight. In addition, we can see that the First stage can

be also influent in the results. A good example of this is the price equal to zero obtained for

the leader in inventory 4 for the WS type solution, for both Model 4 and Model 5. In this

example, the leader faced low prices coming from competitors’ inventories B3 and B4 in the

First stage and, at the same time, the leader assumed that there would be very low prices for

those inventories in the second stage for “Scenario 4”. Therefore, the leader, in a deterministic

behaviour, reduced its prices to attract clients 4. Fortunately for the leader, “Scenario 4” has

a low weight in the final solution for this particular example.

Another aspect to highlight is that, compared to the prices obtained for the SHBP type

3. It corresponds to 5% of $432
4. Although this seams to be counter intuitive form an economic perspective, it happens because of the

inherent characteristic of bilevel programming.



84

Table 6.4 Revenue Small Instance, Heuristic Results

Solution Heuristic Revenue Diff. to Optimal in %

Naive Revenue Min 372155 −34.8%
Naive Revenue Max 404651 −29.1%
Naive Revenue Mean 402577 −29.4%

Case Model 4 Model 5

HBP Best Revenue 529165 492600 −7.2% − 12.3%

solution, prices differ across all the other solutions, but this variation is not higher than 15%

for every single tariff. Finally, it is important to point out that the EV and EEV solutions

are similar to price results for Model 4 and Model 5. This behavior is natural because of its

own definition, in which just the second stage changes. The same situation happens between

WS and SHBP price solutions presented in Table 6.5 and Table 6.7. Therefore, we can argue

in both cases, Model 4 and Model 5, that WS is a good approximation for SHBP.

We conducted a sensitivity analysis of the parameter δ (the parameter that ties both

stages) on revenue in order to observe the behavior of the stochastic value, the approximations

and the measures. The results are shown in Figure 6.1 and Figure 6.2. In terms of the graph

shape of each solution type for Model 4 and Model 5, we can see from those figures clear

differences among them. In addition, the shapes of each solution type within each Model

are also different. If we look at the shape of the EV for Model 4, we can see an increase

until it reaches an asymptote upper value, which occurs in straight lines, without jumps.

Moreover, for the EEV (also for Model 4) we can also see an increase, but with jumps or

steep slopes. For SHBP (RP) and WS, we cannot assume that we are looking at a straight line.

The reason seems to be the piecewise linearity conjecture. However, we can argue that since

inventories’ prices all increase or decrease in a proportional fashion (in one or both stages)

as a function of δABS, under small changes of δ, it is clear that the inventory assignment will

not be modified under the new reduced/increased prices, and this could be expected for each

scenario. Whenever the lower level minimal cost assignments are unique, the SHBP became a

linear program in the tariffs T . Then, the value function is piecewise linear, between different

assignments.

We can suppose that the discontinuity points are coincident with the points where assi-

gnments (or prices) change in a “bang-bang effect”5. As we have noted, Model 5 is the most

erratic. Looking the curves, there is a local minimum in Model 4-EVPI function and also a

5. Having a sudden, quick and violent effect.
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Table 6.5 Small Instance, Model 4, Price Values EV and EEV

Model 4, Solution Aprox. Revenue Diff. to Optimal in %

Expected Value (EV) 602714 5.7%
Expected Solution of the Expected Value (EEV) 534793 −6.2%
Wait and See (WS) 576595 1.1%
SHBP (RP) 570364
HBP Heuris. 529165 −7.2%
Value of the Stochastic Solution (VSS) 35572 6.2%
Expected Value of Perfect Information (EVPI) 6231 1.1%

(a) Model 4, Stochastic Problem Solution

Sol. Inv. Serv. First Second
Aprox. Qual. Stage Stage

EV 1 1 150.00 133.00
1 2 191.16 174.16
1 3 240.16 248.00
1 4 338.00 349.00

2 1 114.80 97.80
2 2 143.64 126.64
2 3 192.64 193.33
2 4 283.33 294.33

3 1 38.00 21.00
3 2 42.00 25.00
3 3 88.96 74.05
3 4 164.05 175.05

4 1 22.00 5.00
4 2 26.00 9.00
4 3 67.36 50.36
4 4 139.20 150.20

Sol. Inv. Serv. First Second Stage
Aprox. Qual. Stage Scen. 1 Scen. 2 Scen. 3 Scen. 4

EEV 1 1 150.00 149.11 152.39 167.00 133.00
1 2 191.16 190.27 193.55 208.16 174.16
1 3 240.16 239.27 242.55 257.16 243.83
1 4 338.00 336.10 321.22 324.51 344.83

2 1 114.80 113.91 117.19 131.80 97.80
2 2 143.64 142.75 146.03 160.64 126.64
2 3 192.64 191.75 195.03 209.64 199.33
2 4 283.33 292.75 266.55 269.84 300.33

3 1 38.00 40.62 40.39 55.00 21.00
3 2 42.00 44.62 44.39 59.00 25.00
3 3 88.96 91.58 91.35 105.96 80.05
3 4 164.05 176.98 147.27 154.96 181.05

4 1 22.00 24.62 24.39 39.00 5.00
4 2 26.00 28.62 28.39 43.00 9.00
4 3 67.36 69.98 69.75 84.36 55.20
4 4 139.20 152.13 122.42 133.36 156.20

(b) Model 4, Price Values
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Table 6.6 Small Instance, Model 4, Price Values WS and and SHBP (RP)

Sol. Inv. Serv. First Second
Type Qual. Stage Stage

Scen. 1 Scen. 2 Scen. 3 Scen. 4 Scen. 1 Scen. 2 Scen. 3 Scen. 4

WS 1 1 166.11 169.39 176.64 133.03 149.11 152.39 167.48 117.04
1 2 207.27 210.55 217.80 174.19 190.27 193.55 208.64 157.19
1 3 256.27 259.55 266.80 230.34 239.27 242.55 257.64 213.34
1 4 326.38 328.37 334.66 331.34 309.38 311.37 317.66 314.34

2 1 130.91 134.19 141.44 97.83 113.91 117.19 132.28 81.84
2 2 159.75 163.03 170.28 126.67 142.75 146.03 161.12 109.67
2 3 208.75 212.03 219.28 175.67 191.75 195.03 210.12 158.67
2 4 271.71 273.70 279.99 276.67 254.71 256.70 262.99 259.67

3 1 54.11 57.39 64.64 21.03 37.11 40.39 55.48 5.04
3 2 58.11 61.39 68.64 25.03 41.11 44.39 59.48 9.04
3 3 105.07 108.35 115.60 71.99 88.07 91.35 106.44 54.99
3 4 154.07 157.35 164.60 157.39 137.07 140.35 155.44 140.39

4 1 38.11 41.39 48.64 5.03 21.11 24.39 39.48 0.00
4 2 42.11 45.39 52.64 9.03 25.11 28.39 43.48 0.01
4 3 83.47 86.75 94.00 50.39 66.47 69.75 84.84 33.39
4 4 132.47 135.75 143.00 132.54 115.47 118.75 133.84 115.54

Sol. Inv. Serv. First Second
Type Qual. Stage Stage

SHBP (RP) 1 1 166.11 149.11
1 2 207.27 190.27
1 3 256.27 239.27
1 4 326.38 309.38

2 1 130.91 113.91
2 2 159.75 142.75
2 3 208.75 191.75
2 4 271.71 254.71

3 1 54.11 37.11
3 2 58.11 41.11
3 3 105.07 88.07
3 4 154.07 137.07

4 1 38.11 21.11
4 2 42.11 25.11
4 3 83.47 66.47
4 4 132.47 115.47

(a) Model 4, Price Values
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Table 6.7 Small Instance, Model 5, Price Values, EV and EEV

Model 5, Solution Aprox. Revenue Diff. to Optimal in %

EV 596796 6.3%
EEV 525387 −6.5%
WS 569409 1.4%
SHBP (RP) 561670
HBP Heuris. 492600 −12.3%
VSS 36283 6.46%
EVPI 7738 1.37%

(a) Model 5, Stochastic Problem Solution

Sol. Inv. Serv. First Second
Aprox. Qual. Stage Stage

EV 1 1 133.00 133.00
1 2 174.16 174.16
1 3 237.00 237.00
1 4 338.00 338.00

2 1 97.80 97.80
2 2 126.64 126.64
2 3 182.33 182.33
2 4 283.33 283.33

3 1 21.00 21.00
3 2 25.00 25.00
3 3 71.96 71.96
3 4 164.05 164.05

4 1 5.00 5.00
4 2 9.00 9.00
4 3 50.36 50.36
4 4 139.20 139.20

Sol. Inv. Serv. First Second Stage
Aprox. Qual. Stage Scen. 1 Scen. 2 Scen. 3 Scen. 4

EEV 1 1 145.70 148.50 148.50 148.50 123.84
1 2 186.86 189.66 189.66 189.66 160.14
1 3 237.00 238.66 238.66 238.66 216.29
1 4 338.00 309.38 311.37 317.66 317.29

2 1 110.50 113.30 113.30 113.30 93.92
2 2 139.34 142.14 142.14 142.14 118.44
2 3 188.34 191.14 191.14 191.14 161.62
2 4 283.33 254.71 256.70 262.99 262.62

3 1 33.70 36.50 36.50 36.50 28.64
3 2 37.70 40.50 40.50 40.50 32.04
3 3 84.66 87.46 87.46 87.46 71.96
3 4 164.05 139.44 139.44 143.71 143.34

4 1 17.70 20.50 20.50 20.50 15.04
4 2 21.70 24.50 24.50 24.50 18.44
4 3 63.06 65.86 65.86 65.86 53.60
4 4 139.20 118.32 118.32 118.86 118.49

(b) Model 5, Price Values
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Table 6.8 Small Instance, Model 5, Price Values WS and and SHBP (RP)

Sol. Inv. Serv. First Second
Type Qual. Stage Stage

Scen. 1 Scen. 2 Scen. 3 Scen. 4 Scen. 1 Scen. 2 Scen. 3 Scen. 4

WS 1 1 156.32 159.78 175.66 118.92 149.11 152.39 167.48 117.04
1 2 197.48 200.94 216.82 160.08 190.27 193.55 208.64 157.19
1 3 246.48 249.94 265.82 230.97 239.27 242.55 257.64 219.43
1 4 318.23 321.69 331.50 331.98 309.38 311.37 317.66 318.11

2 1 121.12 124.58 140.46 83.72 115.07 118.35 133.44 81.84
2 2 149.96 153.42 169.30 112.56 142.75 146.03 161.12 109.67
2 3 198.96 202.42 218.30 176.31 191.75 195.03 210.12 167.49
2 4 263.56 267.02 276.83 277.31 254.71 256.70 262.99 263.44

3 1 44.32 47.78 63.66 6.92 42.11 45.39 60.48 6.58
3 2 48.32 51.78 67.66 10.92 45.91 49.19 64.28 10.38
3 3 95.28 98.74 114.62 57.88 90.52 93.80 108.89 54.99
3 4 144.28 147.74 163.62 158.03 137.07 140.35 155.44 150.12

4 1 28.32 31.78 47.66 0.00 26.91 30.19 45.28 0.00
4 2 32.32 35.78 51.66 0.01 30.71 33.99 49.08 0.01
4 3 73.68 77.14 93.02 36.28 70.00 73.28 88.37 34.47
4 4 122.68 126.14 142.02 133.18 116.55 119.83 134.92 126.52

Sol. Inv. Serv. First Second
Type Qual. Stage Stage

SHBP (RP) 1 1 156.32 149.11
1 2 197.48 190.27
1 3 246.48 239.27
1 4 318.23 309.38

2 1 121.12 115.07
2 2 149.96 142.75
2 3 198.96 191.75
2 4 263.56 254.71

3 1 44.32 42.11
3 2 48.32 45.91
3 3 95.28 90.52
3 4 144.28 137.07

4 1 28.32 26.91
4 2 32.32 30.71
4 3 73.68 70.00
4 4 122.68 116.55

(a) Model 5, Price Values
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minimum point for Model 5-EVPI function.

Finally, in terms of the results obtained through the use of heuristics, we notice that the

best naive heuristic result has a difference of 29% with respect to the optimal solution SHBP,

and our heuristic HBP performs better in both models, with only a 7.2% difference compared

to the optimal solution in the case of our Model 4, and a 12.3% difference in the case of our

Model 5.

It is important to mention that in order to present these results, an extra complex auto-

matic tuning was done (using the Cplex Tuning Tool) and further extra manual tuning on the

solver parameters was also performed, without using other extra heuristics from Cplex. This

was necessary to reduce calculation time related to the vast number of graph dots required

to present these results. This example took on average 1464 seconds to be solved in a single

CPU machine Intel I7 for all problems and both models.

6.2.2 Economic Analysis of the Small Instance

From data presented in the previous pages, we can notice that there is an excess of capa-

city, because the sum of all rooms available from the leader and its competition is higher than

the total demand. Moreover, we can also point out that although the leader has four qualities

of services instead of three, and thus it can provide the highest quality, the competitor has

a competitive advantage in terms of location, because 3 out of 4 of its hotels are closer to

the attraction points. Because of that, clients are tempted to choose competitor’s inventories

instead of leader’s inventories for rooms with the same quality service.

Therefore, the leader must set a price that compensates clients for being far from the

attraction points. By looking at Table 6.7, and considering the four scenarios, the leader

could expect that competitor’s list prices are going to decrease for quality of services Q1

and Q2 and increase for quality of service Q3 in the second stage. The leader could be thus

tempted to also increase its list prices for quality services Q3 and Q4 (in Q4 even there is

no competition), but the leader finally decided to reduce its prices in the second stage for all

its quality services as shown in Table 6.8. As a result, the leader was able to attract all the

demand related to quality of service Q3 and Q4 from users’ groups G3 and G4, and some

users from group G2, to whom it offered a lower price for the same QoS. In terms of revenue,

almost 90% was contributed by users G3 and G4.

Moreover, in terms of the rationale of the leader to set its list price in the first stage, we

can see that the leader’s list price for its inventory A2 (closely located to inventory B4) is

lower for quality of services Q1, Q2 and Q3 than the price settled by the competitor for the

same quality service. However, the leader can set a higher price in its best located inventory

(A1) compared to its inventory A2 and to competitor’s inventory B4. In order to compete
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with the best located inventory of the competition, the leader seeks to attract groups that

highly value QoS and that are not too sensitive to proximity. For instance, let’s examine the

leader list price for its inventory A1–quality of service Q3. In fact, that price (256.27) is much

lower compared to the price of inventory B3 (432) for the same quality of service, because

those inventories (B3) are better located than those of the leader. The reason is that there

are two groups (G3 and G4) that valorize a good QoS and thus the leader considers that

those clients could be highly interested on staying in farther hotels if the price is attractive

for them compared to rooms with equal quality of service but that are closer to the attraction

points.

We can also see that the leader sets low prices for the inventories located far away to the

ones of the competition (inventories A3 and A4) in the first stage, in all its quality of service,

as a strategy to attract groups that highly valuate quality and that can make the effort of

being far from the attraction points.

6.3 Large Instances

Twenty nine large instances of the problem were tested for models 4 and 5, trying to be

solved to optimality. These instances only consider stochastic pricing.

A description of the notation used in the “Test Instances Description” can be seen in

Table 6.9. The description for the notation used in the “Test Results Tables”, can be seen in

Table 6.10. The “Test Instances” description can be seen in two tables : Part I in Table 6.11

and Part II in Table 6.12.
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Table 6.9 Notation used in the “Test Instances Description Tables”

Notation Description

NA Number of Inventories for the leader [4 to 5]
QA Number of Service Qualities [4 to 6]
DA Distance of the Inventories to the Downtown
CA Capacity of the Inventories

NB Number of Inventories for the Competitors
QB Number of Service Qualities
DB Distance of the Inventories to the Downtown
CB Capacity of the Inventories

GR Number of Clients Groups
α Price Value of Distance
β Price Value for Quality of Service
LOS Lenght of Stay [2 to 3]
RH Rolling Horizon
ABS ABS case (Model 4)
PROP PROP case (Model 5)
DF Discount Factor
PrF Probability for Scenarios for First Stage
PrS Probability for Scenarios in the Second Stage
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Table 6.10 Notation used in the “Test Results Tables”

Notation Description

Example Example Name
ABS Results for the Problem with ABS (Model 4)
PROP Results for the Problem with PROP (Model 5)
Threads Max. numbers of threads used in the resolution
Total Time Max Time allowed for Optimization

HBP
The Heuristic HBP using single thread
Always stop after 5000 iterations (≈ 2800 sec.)

MIP The MIP problem
MIP Restr The MIP Restricted with incumbent from HBP
MIP-H+ The Heuristic applied over MIP

MIP Begin Initial Integral Solution used as Incumbent
Initial Gap The gap corresponding to Initial Integral Solution used as Incumbent
Best Revenue Final Solution after solve
Gap Final Gap corresponding to the Best Solution after solve

Called Number of calls to MIP-H+
Usefull Number of Incumbent found with MIP-H+
NaN Not a Number
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Table 6.11 Description of Large Test Instances, Part I

Name NA QA DA CA NB QB DB CB GR

Large23 4 4 37, 56, 72, 77 188, 154, 375,
304

5 5 13, 27, 30, 47, 48 365, 303, 266,
301, 176

10

Large24 4 5 37, 56, 72, 77 188, 154, 375,
304

5 6 13, 27, 30, 47, 48 365, 303, 266,
301, 176

10

Large25 4 4 49, 56, 59, 77 304, 357, 428, 74 6 5 13, 30, 37, 47, 48, 72 266, 301, 176,
188, 154, 375

8

Large26 4 5 37, 56, 72, 77 188, 154, 375,
304

5 7 13, 27, 30, 47, 48 365, 303, 266,
301, 176

12

Large27 4 5 34, 36, 63, 68 454, 342, 442,
352

5 7 19, 38, 69, 69, 76 472, 279, 348,
482, 108

10

Large28 4 6 40, 50, 66, 74 80, 465, 354, 287 6 5 18, 31, 32, 56, 66, 74 76, 225, 216,
205, 461, 386

10

Large29 4 5 33, 39, 57, 75 349, 304, 253,
194

5 4 20, 69, 70, 76, 79 483, 302, 378,
85, 250

8

Large30 4 5 11, 25, 36, 49 291, 177, 115,
331

5 4 14, 24, 32, 43, 46 112, 285, 350,
252, 488

8

Large31 4 4 11, 24, 29, 72 346, 120, 102,
309

4 4 19, 48, 66, 67 405, 482, 302,
305

9

Large32 5 6 20, 34, 50, 59, 66 194, 366, 273,
355, 261

5 6 20, 33, 63, 64, 70 355, 201, 341,
395, 321

10

Large33 4 4 52, 61, 70, 73 191, 350, 275,
443

5 6 10, 22, 24, 25, 68 296, 83, 494,
351, 385

10

Large34 4 5 13, 19, 23, 32 112, 402, 313,
274

5 6 22, 30, 34, 47, 51 88, 108, 306,
340, 317

12

Large35 4 5 12, 14, 46, 73 321, 310, 239,
214

5 6 13, 22, 43, 58, 62 200, 306, 462,
279, 86

11

Large36 4 4 14, 51, 57, 61 188, 411, 114,
204

4 4 10, 40, 56, 79 357, 129, 367,
291

7

Large37 4 4 39, 46, 68, 70 346, 270, 252, 57 4 4 28, 54, 63, 78 341, 268, 464,
494

13

Large38 4 4 32, 36, 64, 71 86, 486, 97, 372 4 4 42, 45, 57, 58 389, 471, 69, 492 13
Large39 4 5 22, 46, 62, 64 68, 65, 429, 168 4 5 10, 26, 58, 69 61, 349, 237, 251 10
Large40 4 5 17, 51, 56, 71 193, 159, 371,

196
5 5 16, 42, 43, 44, 67 484, 243, 193,

411, 430
10

Large41 5 5 13, 44, 48, 53, 76 126, 105, 401,
115, 219

5 5 27, 34, 69, 73, 80 58, 121, 126,
323, 471

10

Large43 5 5 31, 32, 53, 63, 67 421, 53, 443,
240, 126

5 5 28, 35, 65, 70, 78 156, 292, 480,
436, 335

8

Large44 5 5 26, 27, 34, 47, 57 217, 148, 171,
352, 184

5 5 11, 13, 39, 47, 53 64, 448, 362,
120, 416

8

Large45 5 5 25, 27, 53, 59, 77 356, 318, 168,
383, 106

5 5 43, 53, 54, 69, 72 427, 488, 110,
329, 459

8

Large46 5 5 15, 24, 47, 71, 77 319, 124, 83,
261, 400

5 5 14, 24, 36, 79, 79 479, 408, 113,
108, 211

8

Large47 5 5 23, 25, 33, 42, 48 227, 88, 196, 96,
221

5 5 20, 32, 41, 51, 67 111, 272, 372,
240, 354

8

Large48 5 5 10, 12, 24, 63, 75 68, 342, 177,
177, 388

5 5 33, 46, 55, 58, 61 488, 267, 458,
493, 81

8

Large49 5 5 11, 26, 29, 35, 47 200, 147, 213,
495, 55

5 5 12, 12, 21, 39, 67 255, 263, 264,
441, 155

8

Large50 5 5 12, 30, 30, 38, 62 83, 456, 221,
224, 76

5 5 13, 23, 64, 74, 75 469, 445, 500,
381, 97

8

Large51 5 5 15, 23, 39, 65, 77 456, 55, 376,
179, 468

5 5 29, 31, 37, 42, 65 460, 101, 295,
423, 421

8
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The Test Results are shown in Tables 6.13, 6.14, 6.15 and 6.16, for the Parts I to IV

respectively. In the Table 6.16 are presented results with a bigger discount factor and longer

resolution time to compare the difficulty of the problem.

6.3.1 Numerical Results and Analysis

In this section, we present the revenue of the leader obtained through the different reso-

lution strategies. The main purpose is to show the difficulties solving these large instances

and the benefits of using our HBP heuristic.

As presented in the next tables, the problems show themselves as difficult problems, the

gap in many cases is high (60% gap or more), and at the moment of stopping the solver, the

gap was already in stagnation. Allowing more time did not improve the bounds any more. In

many problems with a gap lower than 40%, we could think been close to the optimal solution

with the MIP 6. From the point of view of the restrictions tying both stages, it is difficult

to judge that Model 5 is much more complicated to solve than Model 4. We can argue that

differently to a network, as reported by (Mirza Alizadeh, 2013), Model 5 restriction does not

imply many changes in the assignment (paths for the network case) to explore because the

congestion happens inside the inventories, and these are few.

From the point of view of the algorithms, it can be seen that HBP, our proposed heuristic,

works well considering the low computing time allowed. In some instances : “Example 32”,

“Example 38” and “Example 39” the performance was ranging the 20% of the gap (taken

from the MIP-Restricted), and in 23/29, the gap was lower than 50%. In these tests, no

special tuning was done for the HBP heuristic, so the results represent how much easy for

the heuristic is to adapt to general difficult problems.

The algorithm MIP-H+ was allowed to run for approximately 3600 sec., because of the

few times that this algorithm improved the lower bound in each call, and because of the

memory management problems described in section 5.7. The improvements are frequent at

the beginning, and spread after. In some cases, MIP-H+ identifies much better solutions

like in “Model 5-Example 27” compared to a pure MIP and MIP-Restricted. Some runs were

carried out by using 4 threads in order to check if parallelisation outperforms previous results.

However, no mayor improvement were revealed and therefore no more test were done. This

is probably because the dual bound was not closing much faster for any MIP other than

MIP-Restricted.

The MIP runs for Model 4 were capable of ameliorating the solution in only 4 examples,

and in 1 instance for Model 5. This confirms that the problem is difficult even having a initial

solution, and that B&B is week for identifying new solutions and/or closing the dual gap with

6. From a practical point of view, the computational cost exceeds the benefits of looking for a better gap.
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Table 6.13 Large Test Instances, Numerical Results Part I

Example 27 28 29 30 31 32

Model 4
Naive Revenue Min 5.983E+05 8.878E+05 2.532E+06 3.010E+06 1.448E+06 1.503E+06
Naive Revenue Max 3.185E+05 6.319E+05 1.895E+06 2.167E+06 1.204E+06 1.262E+06
Naive Revenue Mean 3.898E+05 6.489E+05 2.348E+06 2.922E+06 1.137E+06 1.646E+06
HBP Best Revenue 3.422E+06 2.577E+06 3.138E+06 3.375E+06 2.303E+06 2.040E+06
HBP Total Time 2846 3069 2511 2443 2413 539
MIP Restr. Begin 3.344E+06 2.467E+06 3.179E+06 3.273E+06 2.366E+06 1.850E+06
MIP Restr. Initial Gap 41.97% 51.00% 47.28% 56.02% 40.87% 54.98%
MIP Restr. Best Revenue 3.344E+06 2.467E+06 3.179E+06 3.273E+06 2.366E+06 2.249E+06
MIP Restr. Gap 37.93% 47.36% 38.59% 51.66% 35.26% 20.49%
MIP Restr. Best Bound 4.612E+06 3.636E+06 4.406E+06 4.964E+06 3.200E+06 2.710E+06
MIP Restr. Total Time 3600 3600 3600 3600 3600 3600
MIP Initial Gap NaN NaN NaN NaN NaN 23.37%
MIP Best Revenue 0 0 0 0 0 0
MIP Gap NaN NaN NaN NaN NaN NaN
MIP Best Bound NaN NaN NaN NaN NaN NaN
MIP Total Time 3599 3599 3600 3600 3600 3600
MIP-H+ Called 20 12 28 30 29 53
MIP-H+ Usefull 5 4 6 11 8 7
MIP-H+ Best Revenue 1.934E+06 9.948E+05 2.622E+06 2.212E+06 1.403E+06 1.962E+06
MIP-H+ Gap 146.83% 277.04% 94.24% 124.71% 127.20% 45.85%
MIP-H+ Best Bound 4.774E+06 3.751E+06 5.093E+06 4.971E+06 3.188E+06 2.862E+06
MIP-H+ Total Time 3600 3599 3599 3600 3600 3600

Model 5
Naive Revenue Min 5.983E+05 8.878E+05 2.532E+06 3.010E+06 1.448E+06 1.503E+06
Naive Revenue Max 3.185E+05 6.319E+05 1.895E+06 2.167E+06 1.204E+06 1.262E+06
Naive Revenue Mean 3.898E+05 6.489E+05 2.348E+06 2.922E+06 1.137E+06 1.646E+06
HBP Best Revenue 1.071E+06 2.328E+06 2.470E+06 3.226E+06 1.634E+06 1.797E+06
HBP Total Time 2528 2995 2257 2409 1950 455
MIP Restr. Begin 9.845E+05 2.260E+06 2.444E+06 2.990E+06 1.623E+06 1.747E+06
MIP Restr. Initial Gap 257.64% 64.96% 55.07% 71.83% 92.86% 62.57%
MIP Restr. Best Revenue 9.845E+05 2.260E+06 2.770E+06 2.990E+06 1.623E+06 2.057E+06
MIP Restr. Gap 244.45% 60.28% 32.18% 61.47% 75.36% 27.82%
MIP Restr. Best Bound 3.391E+06 3.622E+06 3.661E+06 4.829E+06 2.846E+06 2.630E+06
MIP Restr. Total Time 3600 3600 3600 3600 3600 3302
MIP Initial Gap NaN NaN 49.88% NaN NaN NaN
MIP Best Revenue 0 0 0 0 0 0
MIP Gap NaN NaN NaN NaN NaN NaN
MIP Best Bound NaN NaN NaN NaN NaN NaN
MIP Total Time 3599 3599 3600 3600 3599 3600
MIP-H+ Called 22 10 36 33 26 NaN
MIP-H+ Usefull 5 6 13 4 13 NaN
MIP-H+ Best Revenue 2.233E+06 1.366E+06 2.432E+06 2.687E+06 1.605E+06 1.69E+06
MIP-H+ Gap 113.59% 175.52% 110.25% 84.81% 101.16% 59.00%
MIP-H+ Best Bound 4.770E+06 3.763E+06 5.113E+06 4.966E+06 3.229E+06 2.842E+03
MIP-H+ Total Time 3572 3534 3600 3600 3600 3600

[pE8oE++urlRph ?EnoRCerHh c©]
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Table 6.14 Large Test Instances, Numerical Results Part II

Example 33 34 35 36 37 38

Model 4
Naive Revenue Min 6.797E+05 8.794E+05 1.328E+06 1.723E+06 1.517E+06 1.287E+06
Naive Revenue Max 4.476E+05 5.470E+05 6.268E+05 7.710E+05 8.839E+05 9.351E+05
Naive Revenue Mean 3.868E+05 5.009E+05 7.115E+05 1.488E+06 1.181E+06 1.267E+06
HBP Best Revenue 1.095E+06 3.059E+06 2.761E+06 2.608E+06 2.592E+06 3.586E+06
HBP Total Time 1966 2408 2654 1185 2360 636
MIP Restr. Begin 9.672E+05 3.097E+06 2.723E+06 2.525E+06 2.601E+06 3.606E+06
MIP Restr. Initial Gap 102.95% 39.48% 44.21% 43.78% 43.51% 21.63%
MIP Restr. Best Revenue 1.103E+06 3.097E+06 2.723E+06 2.525E+06 2.601E+06 3.644E+06
MIP Restr. Gap 59.68% 34.01% 39.15% 37.28% 32.95% 14.86%
MIP Restr. Best Bound 1.762E+06 4.150E+06 3.789E+06 3.466E+06 3.459E+06 4.185E+06
MIP Restr. Total Time 3600 3601 3600 3601 3601 3600
MIP Initial Gap NaN NaN NaN NaN NaN 22.31%
MIP Best Revenue 0 0 0 0 0 3.502E+06
MIP Gap NaN NaN NaN NaN NaN 20.48%
MIP Best Bound NaN NaN NaN NaN NaN 4.220E+06
MIP Total Time 3600 3600 3600 3600 3600 3600
MIP-H+ Called 28 32 26 37 39 39
MIP-H+ Usefull 6 11 8 27 5 4
MIP-H+ Best Revenue 1.040E+06 1.705E+06 1.105E+06 1.514E+06 1.596E+06 3.500E+06
MIP-H+ Gap 78.29% 145.19% 243.88% 130.83% 122.39% 20.93%
MIP-H+ Best Bound 1.854E+06 4.181E+06 3.800E+06 3.494E+06 3.548E+06 4.232E+06
MIP-H+ Total Time 3600 3599 3600 3600 3600 3599

Model 5
Naive Revenue Min 6.797E+05 8.794E+05 1.328E+06 1.723E+06 1.517E+06 1.287E+06
Naive Revenue Max 4.476E+05 5.470E+05 6.268E+05 7.710E+05 8.839E+05 9.351E+05
Naive Revenue Mean 3.868E+05 5.009E+05 7.115E+05 1.488E+06 1.181E+06 1.267E+06
HBP Best Revenue 9.832E+05 1.211E+06 2.350E+06 2.030E+06 2.615E+06 1.541E+06
HBP Total Time 1813 2369 2068 985 2306 623
MIP Restr. Begin 9.526E+05 1.222E+06 2.322E+06 1.968E+06 2.581E+06 2.073E+06
MIP Restr. Initial Gap 106.96% 210.77% 57.50% 82.72% 44.50% 110.08%
MIP Restr. Best Revenue 1.097E+06 1.271E+06 2.322E+06 2.209E+06 2.581E+06 3.731E+06
MIP Restr. Gap 63.31% 168.57% 48.51% 52.91% 33.52% 10.11%
MIP Restr. Best Bound 1.791E+06 3.415E+06 3.449E+06 3.377E+06 3.446E+06 4.108E+06
MIP Restr. Total Time 3600 3600 3600 3600 3106 3600
MIP Initial Gap NaN NaN NaN 64.22% NaN 23.04%
MIP Best Revenue 0 0 0 2.484E+06 0 3.646E+06
MIP Gap NaN NaN NaN 39.44% NaN 14.08%
MIP Best Bound NaN NaN NaN 3.464E+06 NaN 4.159E+06
MIP Total Time 3600 3600 3600 3600 3600 3600
MIP-H+ Called 33 40 24 39 42 45
MIP-H+ Usefull 11 23 7 16 4 3
MIP-H+ Best Revenue 1.084E+06 1.999E+06 1.561E+06 1.885E+06 1.967E+06 3.666E+06
MIP-H+ Gap 70.99% 109.37% 144.27% 85.01% 79.75% 15.26%
MIP-H+ Best Bound 1.853E+06 4.185E+06 3.813E+06 3.487E+06 3.535E+06 4.225E+06
MIP-H+ Total Time 3600 3600 3599 3599 3600 3599
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Table 6.15 Large Test Instances, Numerical Results Part III

Example 39 40 41 43 44 45

Model 4
Naive Revenue Min 7.293E+05 1.108E+06 1.443E+06 2.457E+06 1.556E+06 2.953E+06
Naive Revenue Max 6.533E+05 8.161E+05 1.438E+06 1.908E+06 1.481E+03 2.781E+06
Naive Revenue Mean 6.532E+05 9.996E+05 1.437E+06 2.326E+06 1.671E+06 3.085E+06
HBP Best Revenue 2.189E+06 2.228E+06 1.913E+06 3.177E+06 3.596E+06 4.733E+06
HBP Total Time 2389 1952 3204 2945 2833 1041
MIP Restr. Begin 2.135E+06 2.219E+06 1.805E+06 3.111E+06 3.328E+06 4.551E+06
MIP Restr. Initial Gap 29.31% 45.34% 103.01% 53.51% 33.77% 57.14%
MIP Restr. Best Revenue 2.135E+06 2.219E+06 1.805E+06 3.111E+06 3.328E+06 4.836E+06
MIP Restr. Gap 21.50% 35.67% 100.04% 49.69% 28.91% 41.13%
MIP Restr. Best Bound 2.594E+06 3.010E+06 3.612E+06 4.657E+06 4.290E+06 6.825E+06
MIP Restr. Total Time 3600 3600 3600 3600 3600 3600
MIP Initial Gap NaN NaN NaN NaN NaN NaN
MIP Best Revenue 0 0 0 0 0 0
MIP Gap NaN NaN NaN NaN NaN NaN
MIP Best Bound NaN NaN NaN NaN NaN NaN
MIP Total Time 3600 3600 3599 3599 3599 3600
MIP-H+ Called NaN 32 14 23 27 NaN
MIP-H+ Usefull NaN 32 14 5 7 NaN
MIP-H+ Best Revenue 6.04E+05 1.261E+06 1.063E+06 2.480E+06 1.684E+06 3.03E+06
MIP-H+ Gap 22.00% 142.91% 239.77% 100.22% 160.29% 43.00%
MIP-H+ Best Bound 2.808E+06 3.064E+06 3.611E+06 4.966E+06 4.383E+06 6.979E+06
MIP-H+ Total Time 3600 3600 3600 3549 3600 3600

Model 5
Naive Revenue Min 7.293E+05 1.108E+06 1.443E+06 2.457E+06 1.556E+06 2.953E+06
Naive Revenue Max 6.533E+05 8.161E+05 1.438E+06 1.908E+06 1.481E+03 2.781E+06
Naive Revenue Mean 6.532E+05 9.996E+05 1.437E+06 2.326E+06 1.671E+06 3.085E+06
HBP Best Revenue 1.845E+06 2.169E+06 1.814E+06 2.646E+06 2.673E+06 3.689E+06
HBP Total Time 1853 1863 2849 2700 2820 849
MIP Restr. Begin 1.838E+06 2.140E+06 1.876E+06 2.783E+06 2.339E+06 3.604E+06
MIP Restr. Initial Gap 49.79% 50.73% 95.45% 72.90% 88.69% 77.56%
MIP Restr. Best Revenue 1.838E+06 2.140E+06 1.876E+06 2.783E+06 2.339E+06 3.604E+06
MIP Restr. Gap 40.92% 40.68% 92.35% 69.15% 81.37% 67.72%
MIP Restr. Best Bound 2.590E+06 3.010E+06 3.608E+06 4.707E+06 4.242E+06 6.044E+06
MIP Restr. Total Time 3243 3600 3600 3600 3600 3600
MIP Initial Gap NaN NaN NaN NaN NaN NaN
MIP Best Revenue 0 0 0 0 0 0
MIP Gap NaN NaN NaN NaN NaN NaN
MIP Best Bound NaN NaN NaN NaN NaN NaN
MIP Total Time 3600 3600 3599 3599 3599 3600
MIP-H+ Called NaN 33 12 19 27 36
MIP-H+ Usefull NaN 10 12 19 7 9
MIP-H+ Best Revenue 8.661E+05 1.606E+06 8.342E+05 1.485E+06 1.992E+06 3.204E+06
MIP-H+ Gap 32.00% 91.11% 333.97% 235.78% 120.28% 117.44%
MIP-H+ Best Bound 2.685E+06 3.069E+06 3.620E+06 4.985E+06 4.388E+06 6.966E+06
MIP-H+ Total Time 3600 3600 3599 3600 3600 3600
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Table 6.16 Large Test Instances, Numerical Results Part IV

Example 46 47 48 49 50 51

Model 4
Naive Revenue Min 1.398E+06 1.787E+06 2.025E+06 2.131E+06 1.069E+06 3.016E+06
Naive Revenue Max 1.322E+06 1.313E+06 2.422E+06 8.710E+05 6.561E+05 2.399E+06
Naive Revenue Mean 1.392E+06 1.643E+06 2.316E+06 1.053E+06 1.010E+06 3.042E+06
HBP Best Revenue 3.378E+06 2.341E+06 3.682E+06 3.246E+06 3.249E+06 6.376E+06
HBP Total Time 2782 2935 2953 2927 2906 1167
MIP Restr. Begin 3.105E+06 2.252E+06 3.534E+06 3.224E+06 3.033E+06 6.184E+06
MIP Restr. Initial Gap 55.31% 53.76% 52.24% 42.16% 41.02% 28.55%
MIP Restr. Best Revenue 3.105E+06 2.252E+06 3.534E+06 3.224E+06 3.033E+06 6.184E+06
MIP Restr. Gap 52.64% 50.64% 48.67% 36.32% 32.00% 25.82%
MIP Restr. Best Bound 4.740E+06 3.393E+06 5.253E+06 4.394E+06 4.004E+06 7.781E+06
MIP Restr. Total Time 2682 3600 3600 3599 3599 3600
MIP Initial Gap NaN NaN NaN NaN NaN NaN
MIP Best Revenue 0 0 0 0 0 0
MIP Gap NaN NaN NaN NaN NaN NaN
MIP Best Bound NaN NaN NaN NaN NaN NaN
MIP Total Time 3599 3599 3600 3599 3600 3600
MIP-H+ Called 20 26 16 NaN 27 29
MIP-H+ Usefull 3 12 8 NaN 27 2
MIP-H+ Best Revenue 1.578E+06 9.834E+05 2.200E+06 2.172E+06 2.681E+05 4.709E+06
MIP-H+ Gap 200.25% 250.87% 142.33% 47.00% 1499.56% 65.62%
MIP-H+ Best Bound 4.739E+06 3.451E+06 5.331E+06 4.612E+06 4.288E+06 7.799E+06
MIP-H+ Total Time 3600 3600 3600 3601 3598 3600

Model 5
Naive Revenue Min 1.398E+06 1.787E+06 2.025E+06 2.131E+06 1.069E+06 3.016E+06
Naive Revenue Max 1.322E+06 1.313E+06 2.422E+06 8.710E+05 6.561E+05 2.399E+06
Naive Revenue Mean 1.392E+06 1.643E+06 2.316E+06 1.053E+06 1.010E+06 3.042E+06
HBP Best Revenue 2.215E+06 2.576E+06 2.913E+06 1.855E+06 2.048E+06 4.536E+06
HBP Total Time 2645 2743 2855 2721 2863 1006
MIP Restr. Begin 1.844E+06 2.550E+06 2.909E+06 1.667E+06 1.989E+06 4.001E+06
MIP Restr. Initial Gap 156.65% 36.81% 84.50% 167.79% 110.72% 94.64%
MIP Restr. Best Revenue 1.844E+06 2.550E+06 2.909E+06 1.667E+06 3.003E+06 5.279E+06
MIP Restr. Gap 147.90% 34.26% 79.84% 134.77% 30.36% 43.01%
MIP Restr. Best Bound 4.573E+06 3.423E+06 5.232E+06 3.914E+06 3.915E+06 7.550E+06
MIP Restr. Total Time 1694 3600 2761 3599 3600 3600
MIP Initial Gap NaN NaN NaN NaN NaN NaN
MIP Best Revenue 0 0 0 0 0 0
MIP Gap NaN NaN NaN NaN NaN NaN
MIP Best Bound NaN NaN NaN NaN NaN NaN
MIP Total Time 3600 3600 3599 3600 3600 3600
MIP-H+ Called 21 29 18 NaN 29 29
MIP-H+ Usefull 6 10 14 NaN 29 3
MIP-H+ Best Revenue 1.565E+06 1.148E+06 2.438E+06 2.295E+06 1.183E+06 5.378E+06
MIP-H+ Gap 202.53% 199.92% 118.65% 48.00% 261.90% 45.33%
MIP-H+ Best Bound 4.735E+06 3.442E+06 5.331E+06 4.612E+06 4.282E+06 7.816E+06
MIP-H+ Total Time 3600 3600 3600 3599 3598 3600
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Table 6.17 Large Test Instances, Numerical Results Part V, Long Time, DF=1.19

Example 23–DF = 1.19 24–DF = 1.19 25–DF = 1.19 26–DF = 1.19 41–DF = 1.18
Naive Revenue Min 5.18E+04 1.57E+05 2.06E+05 6.69E+04 7.43E+05
Naive Revenue Max 4.02E+04 2.46E+05 6.49E+03 4.52E+04 7.30E+05
Naive Revenue Mean 4.02E+04 2.23E+05 4.03E+04 6.77E+04 7.29E+05

Model 4

Threads 12 4 4 4 32
Total Time 2.88E+04 3.60E+03 3.60E+03 2.88E+04 1.44E+04

HBP Best Revenue 3.46E+05 5.91E+05 7.67E+05 3.93E+05 1.23E+06

MIP Restr. Begin 3.57E+05 6.13E+05 7.18E+05 3.55E+05 1.13E+06
MIP Restr. Initial Gap 43.4% 37.7% 46.2% 72.5% 62%
MIP Restr. Best Revenue 3.90E+05 6.31E+05 7.18E+05 3.55E+05 1.13E+06
MIP Restr. Gap 14.8% 22.2% 32.8% 59.8% 62%

MIP Begin 3.90E+05 6.31E+05 7.18E+05 3.55E+05 1.13E+06
MIP Initial Gap 41.5% 36.7% 46.0% 90.3% 67.6%
MIP Best Revenue 3.90E+05 6.31E+05 8.17E+05 4.00E+05 1.13E+06
MIP Gap 20.0% 30.6% 24.8% 55.9% 67.6%

MIP-H+ Best Revenue 3.21E+05 6.53E+05 8.00E+05 4.07E+05 1.47E+06
MIP-H+ Gap 45.8% 26.2% 28.3% 50.3% 26.0%
MIP-H+ Called 1.74E+03 2.90E+04 3.46E+04 1.35E+04 1.08E+04
MIP-H+ Usefull 2 57 64 19 20
MIP-H+ Total Time 2.88E+04 2.88E+04 2.88E+04 2.88E+04 2.88E+04
MIP-H+ Threads 4 4 4 1 1

Model 5

Threads 4 4 4 4 32
Total Time 1.44E+04 1.44E+04 1.44E+04 1.44E+04 1.44E+04

HBP Best Revenue 3.64E+05 5.86E+05 6.73E+05 3.80E+05 1.23E+06

MIP Restr. Begin 3.78E+05 5.82E+05 6.41E+05 3.96E+05 1.12E+06
MIP Restr. Initial Gap 38.2% 45.8% 63.4% 57.2% 63.5%
MIP Restr. Best Revenue 3.82E+05 6.55E+05 6.41E+05 3.96E+05 1.12E+06
MIP Restr. Gap 19.8% 21.8% 56.6% 52.2% 63.5%

MIP Begin. 3.82E+05 6.55E+05 6.41E+05 3.96E+05 1.12E+06
MIP Initial Gap 37.3% 31.5% 63.5% 63.8% 69.0%
MIP Best Revenue 3.82E+05 6.55E+05 6.41E+05 3.96E+05 1.12E+06
MIP Gap 26.5% 23.9% 55.1% 56.4% 65.0%

MIP-H+ Best Revenue 3.47E+05 6.22E+05 7.69E+05 4.12E+05 1.25E+06
MIP-H+ Gap 43.3% 33.3% 33.4% 48.9% 48.1%
MIP-H+ Called 3.45E+04 2.89E+04 3.42E+04 1.23E+04 5.80E+03
MIP-H+ Usefull 56 32 95 69 28
MIP-H+ Total Time 2.88E+04 2.88E+04 2.88E+04 2.88E+04 2.89E+04
MIP-H+ Threads 4 4 4 1 1
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the prices floating in a big range of bounds. MIP-Restricted has a reduced range of bounds

for every variable. On the other hand, MIP-Restricted was able to improve in just 11 cases

for Model 4, and in 12 cases for Model 5. MIP-Restricted was not able of finding a lower gap

in 1 instance for Model 4, and 1 instance for Model 5. This is probably because of the size of

the problems involved. In fact, it could be necessary a larger “sampling” for those instances

using the heuristic HBP, but it could be also possible that the best solution could have been

cut from the solution space. In the overall process, HBP in cascade with MIP-Restricted is a

good tool to solve the general problem, or simply the only available tool to solve the problem

under reasonable computing time. MIP-H+ was able to find the best solution in 7 cases,

which is few in comparison to HBP and MIP-Restricted together.

6.3.2 Economic Analysis of some Large Instances

We identified three pertinent instances (“Example 51”, “Example 27” and “Example 33”)

selected because they represent some extreme cases. Let’s take a look to the example having

the highest revenue for Model 4, the“Example 51”int Table 6.16 on page 104.. In this case, the

leader and the competitor have the same number of inventory types and the same number of

quality of services. However, the leader has 2 hotels better located than competition and only

1 hotel located in a greater distance than the competition. Eight users’ groups are considered

in this example, which valuate differently distance but more homogenously the quality of

service (except for few groups).

In this case, we obtained that this higher revenue comes from the fact that the leader

attracted more than 85% of the demand (that is attracted by distance and quality of service),

and thus it was able to fulfill its capacity in a similar percentage. More specifically, the leader

attracted clients to the highest quality of services and thus it was able to charge high prices

to them. In terms of users’ groups, the leader attracted the whole group G4 to its highest

QoS located in the nearest hotel to the attraction points.

Another pertinent example to examine is “Example 27”. In that case, leader capacity is

similar to the capacity of “Example 51”, and in terms of demand, the leader attracted 65%

of the total demand. However, its revenue is almost 50% lower in this example. The main

reason is explained by the location of the competitor. Indeed, the competitor has the best

located hotel and it has two QoS that the leader does not have. Therefore, the leader was

not able to attract the most profitable clients and it had to fulfill its inventories with clients

that were willing to pay a lower price.

It is important to mention that in our “Example 27” the initial leader’s list price was, in

general, cheaper than competitor’s list price, and due to the disadvantage of the leader with

respect to the location of its inventories, the leader was not able to increase its prices in the
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second stage. That had a negative impact in its total revenue as well.

Finally, we decided to analyze “Example 33”, which presents the lowest revenue (in terms

of restricted value). In this case, competition has a strong competitive advantage with respect

to location compared to the leader. In fact, there are 4 competitor’s inventories located close

to the interest points, and the closest leader inventory can only compete in proximity with

the two farthest inventories of the competition. Moreover, the competition has two additional

categories of quality of service in its inventories, which means that the best located inventories

and the highest QoS inventories belong to the competition. Therefore, it is not surprising

60% of the total demand chose the competition, and on the other hand, the leader had

to set low prices from the beginning (compared to competitor’s inventories) in order to

finally attract the 40% remaining. We could think this example resembles the case in which

a hotel chain was settled several years ago in a location that was attractive at that time,

but with the development of new areas within the city, these hotels become less attractive

for customers. Therefore, these hotels finally became economic hotels mainly attractive for

low-budget customers.

6.3.3 Stochasticity in Prices and/or Demand for Large Instances

In order to compare the effect of different sources of uncertainty on revenue, gap and

client groups distribution, several tests were conducted for examples in which Demand, Price

or both were stochastic. The instances were noted using the notation P for Stochastic Price,

D for Stochastic Demand, and DP for Stochastic Price & Demand. Similarly to our previous

test, all the algorithms were used to determine if any of them was more useful, using both

Model 4 and Model 5. We noted that the gap for these instances is in general high, and no

algorithm was really dominant over the others. The HBP algorithm nevertheless is able to

find a solution in all the cases. The instance used several “threads” (4 threads in total) to

look for significant improvements with the parallelizing mode in the solver. The results were

putting aside to facilitate the comparison. For some of the instances, the solution was not

found using Cplex, because the solver did not accept a first solution or bound. In those cases,

the solver runs for all periods without finding a solution by itself. We noticed that all the

problems tested were feasible under the stochastic parameters in use. The notation is the

same used in Table 6.9. The tables showing the definitions of these instances are Table 6.18

and Table 6.19.

The notation used in the tables showing numerical results is presented in 6.20. The Test

Results are shown in Table 6.22, 6.23, 6.24 and 6.25 7. Instances 604, 607, 609, 610, 614

7. To avoid any confusion with other tables, these tables received the notation “600”, and the number of
the instances are the tens and units, followed by the respective letter P, D, DP.
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Table 6.18 Parameter defintions used in Tables Numerical Results : Stochasticity in De-
mand D, Prices P and Both DP, Part I

Ex.
Name

NA QA DA CA NB QB DB CB GR

602 6 6 12, 40, 58, 60,
78, 78

426, 129, 484,
155, 182, 205

6 6 17, 41, 42, 52, 64, 64 376, 375, 360,
406, 291, 155

12

604 6 6 23, 30, 35, 43,
49, 65

122, 150, 250,
87, 62, 121

6 6 23, 34, 36, 39, 45, 78 185, 105, 186,
92, 185, 497

12

607 6 6 28, 39, 69, 69,
75, 79

106, 83, 230,
189, 194, 469

6 6 30, 42, 57, 63, 66, 76 137, 433, 113,
231, 228, 289

12

609 6 6 15, 19, 57, 62,
66, 67

134, 281, 78, 51,
121, 294

6 6 12, 21, 28, 47, 62, 79 146, 319, 448,
401, 474, 250

12

610 5 5 17, 19, 46, 72, 79 344, 412, 442,
106, 281

6 5 22, 24, 40, 42, 49, 71 414, 474, 233,
192, 65, 440

9

611 5 5 17, 18, 31, 42, 66 58, 290, 180,
370, 186

6 5 11, 12, 58, 62, 66, 73 276, 170, 413,
276, 325, 166

9

614 5 5 22, 35, 41, 60, 74 132, 481, 168,
383, 492

6 5 13, 21, 26, 28, 39, 64 184, 148, 463,
280, 429, 476

9

Table 6.19 Parameter defintions used in Tables Numerical Results : Stochasticity in De-
mand D, Prices P and Both DP, Part II

Ex.
Name

Distance Value (α) Quality Value (β) LOS RH ABS PROP DF PrF PrS

602 4.33, 4, 3.61, 4.74, 0.56, 2.04, 5.87,
2.79, 1.72, 8.83, 16.09, 3.26

34.50, 37.67, 42.40, 43.67, 46.25,
51.67, 64.75, 70.50, 84.67, 86,
87.25, 98.67

3 7 17 0.19 0.76 1 0.24, 0.40, 0.06, 0.29

604 2.05, 7.67, 6.55, 10, 2.92, 11.60,
14.44, 2.68, 2.02, 1.08, 14.60, 7.23

35.67, 37.25, 44.33, 46.40, 53,
58, 67, 67.33, 71.60, 76.25, 78.75,
87.33

3 7 23 0.08 1.00 1 0.27, 0.44, 0.28, 0.01

607 0.26, 4.78, 9.05, 2.44, 7.79, 3.17,
2.59, 1, 10.37, 2, 2.05, 0.85

45, 65.75, 68.75, 70.40, 71.20,
79.80, 83, 84.67, 87.50, 88, 97,
98.33

3 7 5 0.21 1.00 1 0.01, 0.09, 0.63, 0.27

609 0.41, 4.72, 0.79, 3.59, 2.26, 3.34,
4.37, 1.91, 2.96, 0.64, 1.96, 1.39

15.67, 29.20, 33.25, 37.67, 40,
62.33, 62.50, 66.60, 74.40, 82.50,
89.75, 93.67

3 7 5 0.07 1.00 1 0.18, 0.39, 0.08, 0.35

610 2.72, 0.26, 7.90, 6.96, 4.20, 7.60,
5.64, 12.78, 11.89

25, 45.67, 49, 50, 57.25, 70.75, 79,
97.25, 126.33

3 7 11 0.11 1.00 1 0.52, 0.34, 0.07, 0.07

611 11.07, 2.76, 2.25, 2.90, 9.36, 4.27,
1.30, 0.67, 2.11

33, 48.33, 56.33, 74.50, 82, 92.33,
93, 98.33, 100.00

3 7 11 0.19 1.03 1 0.44, 0.29, 0.23, 0.05

614 3.16, 4.03, 5.11, 16.29, 3, 2.92,
5.38, 1.49, 5.00

25.67, 37.75, 43.67, 65.50, 72.75,
73, 81.67, 87.67, 124.67

3 7 8 0.21 1.00 1 0.39, 0.29, 0.19, 0.13
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Table 6.20 Notation used in “Sensitivity Examples”

Notation Description

Naive Revenue Min Result for Naive Heuristics Min
Naive Revenue Max Result for Naive Heuristics Max
Naive Revenue Mean Result for Naive Heuristics Mean

HBP Best Revenue Best Integer for Heuristics HBP
HBP Total Time Total Running Time for Heuristics HBP

MIP Restr. Begin MIP Restristed Problem Best Initial Integer Solution
MIP Restr. Initial Gap MIP Restristed Problem Initial Gap Solution
MIP Restr. Best Value MIP Restristed Problem Best Final Integer Solution
MIP Restr. Gap MIP Restristed Problem Final Gap Solution
MIP Restr. Best Bound MIP Restristed Problem Final Bound Solution
MIP Restr. Total Time Total Running Time for MIP Restricted

MIP Begin MIP Problem Best Initial Integer Solution
MIP Initial Gap MIP Problem Initial Gap Solution
MIP Best Value MIP Problem Best Final Integer Solution
MIP Gap MIP Problem Final Gap Solution
MIP Best Bound MIP Problem Bound Gap Solution
MIP Total Time Total Running Time for MIP Problem

MIP-H+ Called MIP-H+ Problem Best Initial Integer Solution
MIP-H+ Usefull MIP-H+ Problem Initial Gap Solution
MIP-H+ Best Value MIP-H+ Problem Best Final Integer Solution
MIP-H+ Gap MIP-H+ Problem Final Gap Solution
MIP-H+ Best Bound MIP-H+ Problem Final Bound Solution
MIP-H+ Total Time Total Running Time for Heuristics MIP-H+
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did not have any solution found by MIP-Original. The gap was not uniform along several

instances, which makes quite difficult to compare the quality of the results.

These differences, also noted before for the other instances, are usually related to the way

Cplex calculates the Best Bound. We can note that in most cases the stochasticity in demand

does not reduce but in some cases improves the results for the leader. Uncertainty in Demand

and Price, usually jeopardize the revenue.

The HBP heuristic behave quite well considering the reduced time used, and it was capable

of obtaining results in several cases in which Cplex was unable to do it. Cplex improved the

GAP in [5%, 20%] from HBP results. This can be seen in Table 6.21.

Table 6.21 Summary of Algorithms Finding the Best Solution

Algorithm Type Found Best Integer Sol. in

HBP 22 cases
Restricted Problem 15 . . .
Original Problem 8 . . .
MIP-H+ 3 . . .

Total 48

Economical Analysis

We will analyze in detail“Example 610”and“Example 611”from an economic perspective :

— Analysis of “Example 610” : In this example, the leader has a competitive advantage

in terms of location, with 2 hotels better located than the competition. Both leader

and competitors offer the same five qualities of services and there are 9 users’ groups,

from which four of them (groups 4, 6, 8, and 9) are sensitive to proximity. Sensitivity

analysis was conducted on three cases : stochasticity in price, in demand, and in price-

demand jointly. Results for Model 4 shows that the highest revenue is achieved when

only demand is stochastic, and the lowest revenue is achieved when both price and

demand are stochastic. The difference in revenue is mostly explained by the fact of

losing around 3800 clients from group 6, who valuates proximity and quality, impacting

negatively on revenue by approximately $700, 000. Other lost revenue come from groups

3 and 4, with a negative impact of approximately $160, 000 each one. It is important

to mention that clients from groups 8 and 9 did not move to the competition but

only internally to inventory 2, because this is still better located that the best located

hotel of the competition. Therefore, there was a minimum impact on revenue from

this new distribution. Another important aspect to point out is the fact that although
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Table 6.22 Sensitivity Examples to Stochasticity in Demand D, Prices P
and Both DP, Numerical Results Part I

Example 604–P 604–D 604–DP 607–P 607–D 607–DP

Model 4
Naive Revenue Min 1.436E+06 1.315E+06 1.493E+06 2.187E+06 2.067E+06 2.176E+06
Naive Revenue Max 9.799E+05 1.315E+06 9.990E+05 2.071E+06 2.068E+06 2.065E+06
Naive Revenue Mean 1.227E+06 1.315E+06 1.254E+06 2.003E+06 2.067E+06 2.007E+06
HBP Best Revenue 1.657E+06 1.876E+06 1.710E+06 2.875E+06 3.446E+06 2.915E+06
HBP Total Time 5044 5033 4845 4338 4833 4773
MIP Restr. Begin 1.635E+06 1.765E+06 1.647E+06 2.849E+06 3.178E+06 2.907E+06
MIP Restr. Initial Gap 114.50% 109.48% 118.88% 104.89% 79.57% 101.44%
MIP Restr. Best Revenue 1.635E+06 1.765E+06 1.647E+06 2.849E+06 3.178E+06 2.907E+06
MIP Restr. Gap 114.50% 109.48% 118.88% 104.89% 79.57% 101.44%
MIP Restr. Best Bound 3.506E+06 3.697E+06 3.604E+06 5.837E+06 5.707E+06 5.857E+06
MIP Restr. Total Time 3600 3600 3600 3600 3600 3600
MIP Best Revenue 0 0 0 0 0 0
MIP Gap NaN NaN NaN NaN NaN NaN
MIP Best Bound NaN NaN NaN NaN NaN NaN
MIP Total Time 3601 3600 3600 3602 3603 3603
MIP-H+ Called 4 5 4 2 2 NaN
MIP-H+ Usefull 3 3 3 2 1 NaN
MIP-H+ Best Revenue 1.570E+06 1.307E+06 1.292E+06 1.960E+06 2.354E+06 NaN
MIP-H+ Gap 136.90% 191.97% 192.54% 206.85% 153.64% NaN
MIP-H+ Best Bound 3.719E+06 3.816E+06 3.780E+06 6.013E+06 5.970E+06 NaN
MIP-H+ Total Time 3597 3598 3598 3603 3598 3598

Model 5
Naive Revenue Min 1.436E+06 1.315E+06 1.493E+06 2.187E+06 2.067E+06 2.176E+06
Naive Revenue Max 9.799E+05 1.315E+06 9.990E+05 2.071E+06 2.068E+06 2.065E+06
Naive Revenue Mean 1.227E+06 1.315E+06 1.254E+06 2.003E+06 2.067E+06 2.007E+06
HBP Best Revenue 1.625E+06 1.793E+06 1.725E+06 2.695E+06 2.730E+06 2.794E+06
HBP Total Time 4014 3841 4366 3659 4043 3869
MIP Restr. Begin 1.516E+06 1.678E+06 1.603E+06 2.778E+06 2.911E+06 2.832E+06
MIP Restr. Initial Gap 131.44% 120.48% 124.98% 110.02% 97.16% 106.76%
MIP Restr. Best Revenue 1.516E+06 1.678E+06 1.603E+06 2.778E+06 2.911E+06 2.832E+06
MIP Restr. Gap 131.44% 120.48% 124.98% 106.57% 97.16% 103.46%
MIP Restr. Best Bound 3.508E+06 3.699E+06 3.606E+06 5.738E+06 5.740E+06 5.763E+06
MIP Restr. Total Time 3600 3600 3600 3600 3600 3600
MIP Best Revenue 0 0 0 0 0 0
MIP Gap NaN NaN NaN NaN NaN NaN
MIP Best Bound NaN NaN NaN NaN NaN NaN
MIP Total Time 3601 3599 3601 3598 3603 3598
MIP-H+ Called 5 4 3 2 1 NaN
MIP-H+ Usefull 3 3 2 2 1 NaN
MIP-H+ Best Revenue 1.590E+06 1.318E+06 1.227E+06 2.345E+06 2.689E+06 NaN
MIP-H+ Gap 133.51% 190.21% 208.77% 156.12% 130.72% NaN
MIP-H+ Best Bound 3.713E+06 3.824E+06 3.790E+06 6.006E+06 6.205E+06 NaN
MIP-H+ Total Time 3598 3598 3598 3598 3598 3598
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Table 6.23 Sensitivity Examples to Stochasticity in Demand D, Prices P
and Both DP, Numerical Results Part II

Example 609–P 609–D 609–DP 610–P 610–D 610–DP

Model 4
Naive Revenue Min 1.399E+06 1.699E+06 1.409E+06 2.389E+06 2.945E+06 2.393E+06
Naive Revenue Max 1.341E+06 1.700E+06 1.339E+06 3.491E+06 2.945E+06 3.478E+06
Naive Revenue Mean 1.484E+06 1.700E+06 1.505E+06 2.947E+06 2.945E+06 2.931E+06
HBP Best Revenue 1.915E+06 2.170E+06 1.929E+06 5.066E+06 5.342E+06 5.055E+06
HBP Total Time 4979 4201 4467 3407 3366 3317
MIP Restr. Begin 1.850E+06 2.213E+06 1.852E+06 5.034E+06 5.155E+06 4.558E+06
MIP Restr. Initial Gap 109.89% 83.44% 110.74% 40.13% 37.67% 54.65%
MIP Restr. Best Revenue 1.850E+06 2.213E+06 1.852E+06 5.034E+06 5.744E+06 4.558E+06
MIP Restr. Gap 109.89% 83.44% 110.74% 37.04% 20.11% 51.47%
MIP Restr. Best Bound 3.883E+06 4.060E+06 3.902E+06 6.898E+06 6.899E+06 6.904E+06
MIP Restr. Total Time 3600 3600 3600 3600 3600 3600
MIP Best Revenue 0 0 0 0 0 0
MIP Gap NaN NaN NaN NaN NaN NaN
MIP Best Bound NaN NaN NaN NaN NaN NaN
MIP Total Time 3605 3604 3604 3599 3599 3599
MIP-H+ Called 3 2 4 10 13 13
MIP-H+ Usefull 3 2 4 5 11 5
MIP-H+ Best Revenue 1.020E+06 1.024E+06 1.019E+06 2.535E+06 3.107E+06 2.679E+06
MIP-H+ Gap 287.83% 296.86% 288.74% 175.67% 126.05% 160.30%
MIP-H+ Best Bound 3.955E+06 4.065E+06 3.962E+06 6.989E+06 7.022E+06 6.975E+06
MIP-H+ Total Time 3597 3598 3597 3599 3584 3578

Model 5
Naive Revenue Min 1.399E+06 1.699E+06 1.409E+06 2.389E+06 2.945E+06 2.393E+06
Naive Revenue Max 1.341E+06 1.700E+06 1.339E+06 3.491E+06 2.945E+06 3.478E+06
Naive Revenue Mean 1.484E+06 1.700E+06 1.505E+06 2.947E+06 2.945E+06 2.931E+06
HBP Best Revenue 2.034E+06 2.198E+06 2.027E+06 4.239E+06 3.444E+06 4.104E+06
HBP Total Time 3810 4386 4118 2926 2861 2773
MIP Restr. Begin 1.943E+06 2.111E+06 1.953E+06 3.983E+06 3.813E+06 4.399E+06
MIP Restr. Initial Gap 100.27% 93.06% 100.19% 77.17% 86.13% 60.31%
MIP Restr. Best Revenue 1.943E+06 2.111E+06 1.953E+06 3.983E+06 3.813E+06 4.399E+06
MIP Restr. Gap 100.27% 93.06% 100.19% 72.55% 81.90% 57.23%
MIP Restr. Best Bound 3.890E+06 4.076E+06 3.910E+06 6.873E+06 6.936E+06 6.916E+06
MIP Restr. Total Time 3600 3600 3600 3600 3600 3600
MIP Best Revenue 0 0 0 0 0 0
MIP Gap NaN NaN NaN NaN NaN NaN
MIP Best Bound NaN NaN NaN NaN NaN NaN
MIP Total Time 3605 3604 3605 3599 3599 3599
MIP-H+ Called 4 2 3 15 12 19
MIP-H+ Usefull 3 2 3 5 3 7
MIP-H+ Best Revenue 1.484E+06 1.022E+06 1.017E+06 2.979E+06 3.529E+06 3.019E+06
MIP-H+ Gap 167.74% 301.84% 295.51% 134.16% 98.66% 130.52%
MIP-H+ Best Bound 3.972E+06 4.107E+06 4.024E+06 6.975E+06 7.011E+06 6.961E+06
MIP-H+ Total Time 3598 3598 3598 3599 3599 3599
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Table 6.24 Sensitivity Examples to Stochasticity in Demand D, Prices P
and Both DP, Numerical Results Part III

Example 611–P 611–D 611–DP 614–P 614–D 614–DP

Model 4
Naive Revenue Min 9.104E+05 9.817E+05 9.161E+05 3.001E+06 2.541E+06 3.031E+06
Naive Revenue Max 7.985E+05 9.819E+05 8.056E+05 2.521E+06 2.542E+06 2.537E+06
Naive Revenue Mean 7.985E+05 9.818E+05 8.055E+05 2.521E+06 2.542E+06 2.541E+06
HBP Best Revenue 1.606E+06 1.754E+06 1.648E+06 3.981E+06 4.226E+06 3.839E+06
HBP Total Time 3301 3399 3225 3087 3170 3190
MIP Restr. Begin 1.559E+06 1.676E+06 1.599E+06 3.991E+06 4.169E+06 3.849E+06
MIP Restr. Initial Gap 47.07% 41.30% 33.72% 41.15% 39.00% 47.52%
MIP Restr. Best Revenue 1.559E+06 1.822E+06 1.599E+06 3.991E+06 4.169E+06 3.849E+06
MIP Restr. Gap 44.42% 27.04% 30.59% 39.04% 39.00% 44.71%
MIP Restr. Best Bound 2.251E+06 2.315E+06 2.088E+06 5.549E+06 5.796E+06 5.570E+06
MIP Restr. Total Time 4.313E+04 4.315E+04 4.313E+04 3600 3600 3600
MIP Best Revenue 1.559E+06 1.822E+06 1.599E+06 0 0 0
MIP Gap 64.91% 43.78% 60.65% NaN NaN NaN
MIP Best Bound 2.571E+06 2.620E+06 2.569E+06 NaN NaN NaN
MIP Total Time 4.320E+04 4.320E+04 4.320E+04 3599 3600 3599
MIP-H+ Called 43 39 48 5 7 6
MIP-H+ Usefull 14 13 11 4 7 5
MIP-H+ Best Revenue 1.001E+06 1.346E+06 1.566E+06 1.294E+06 1.182E+06 1.309E+06
MIP-H+ Gap 150.41% 89.14% 60.18% 335.20% 383.54% 331.29%
MIP-H+ Best Bound 2.506E+06 2.546E+06 2.509E+06 5.631E+06 5.714E+06 5.647E+06
MIP-H+ Total Time 4.319E+04 4.319E+04 4.319E+04 3599 3598 3599

Model 5
Naive Revenue Min 9.104E+05 9.817E+05 9.161E+05 3.001E+06 2.541E+06 3.031E+06
Naive Revenue Max 7.985E+05 9.819E+05 8.056E+05 2.521E+06 2.542E+06 2.537E+06
Naive Revenue Mean 7.985E+05 9.818E+05 8.055E+05 2.521E+06 2.542E+06 2.541E+06
HBP Best Revenue 1.105E+06 1.277E+06 1.112E+06 2.957E+06 3.130E+06 2.958E+06
HBP Total Time 2907 2935 2812 2809 2871 2947
MIP Restr. Begin 1.087E+06 1.269E+06 1.099E+06 3.222E+06 3.443E+06 3.255E+06
MIP Restr. Initial Gap 91.60% 71.39% 86.39% 74.62% 68.42% 74.71%
MIP Restr. Best Revenue 1.264E+06 1.808E+06 1.220E+06 3.222E+06 3.443E+06 3.255E+06
MIP Restr. Gap 60.87% 16.84% 63.24% 71.61% 68.42% 71.38%
MIP Restr. Best Bound 2.034E+06 2.113E+06 1.992E+06 5.530E+06 5.799E+06 5.578E+06
MIP Restr. Total Time 4.310E+04 4.310E+04 4.314E+04 3600 3600 3600
MIP Best Revenue 1.264E+06 1.808E+06 1.220E+06 0 0 0
MIP Gap 102.45% 44.26% 110.90% NaN NaN NaN
MIP Best Bound 2.559E+06 2.609E+06 2.573E+06 NaN NaN NaN
MIP Total Time 4.320E+04 4.32E+04 4.320E+04 3599 3600 3599
MIP-H+ Called 53 45 52 5 5 6
MIP-H+ Usefull 6 10 9 5 5 6
MIP-H+ Best Revenue 1.404E+06 1.719E+06 1.392E+06 1.051E+06 1.221E+06 3.896E+05
MIP-H+ Gap 78.50% 48.56% 80.00% 440.47% 375.51% 1361.45%
MIP-H+ Best Bound 2.506E+06 2.553E+06 2.506E+06 5.682E+06 5.805E+06 5.694E+06
MIP-H+ Total Time 4.319E+04 4.319E+04 4.319E+04 3599 3599 3600
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Table 6.25 Sensitivity Examples to Stochasticity in Demand D, Prices P
and Both DP, Numerical Results Part IV

Example 602–P 602–D 602–DP 605–P 605–D 605–DP

Model 4
DF DF = 0.75 DF = 0.94
Naive Revenue Min 7.032E+05 5.762E+05 6.989E+05 7.519E+05 6.739E+05 7.701E+05
Naive Revenue Max 2.465E+05 5.765E+05 2.611E+05 5.162E+05 6.741E+05 5.224E+05
Naive Revenue Mean 5.565E+05 5.763E+05 5.644E+05 6.603E+05 6.740E+05 6.689E+05
HBP Best Revenue 1.606E+06 1.684E+06 1.620E+06 9.452E+05 9.703E+05 9.404E+05
HBP Total Time 2817 2705 2788 4339 5137 5004
MIP Restr. Begin 1.518E+06 1.637E+06 1.617E+06 9.308E+05 8.781E+05 9.140E+05
MIP Restr. Initial Gap 42.84% 34.76% 34.39% 95.17% 115.40% 103.04%
MIP Restr. Best Revenue 1.682E+06 1.852E+06 1.713E+06 9.308E+05 8.781E+05 9.140E+05
MIP Restr. Gap 22.40% 13.23% 21.05% 95.17% 115.40% 103.04%
MIP Restr. Best Bound 2.059E+06 2.097E+06 2.074E+06 1.817E+06 1.891E+06 1.856E+06
MIP Restr. Total Time 4.318E+04 4.317E+04 4.318E+04 4.300E+04 4.280E+04 4.293E+04
MIP Best Revenue 1.682E+06 1.852E+06 1.713E+06 9.308E+05 8.781E+05 9.140E+05
MIP Initial Gap 31.91% 22.61% 29.84% 110.23% 128.38% 116.92%
MIP Best Revenue 1.685E+06 1.852E+06 1.727E+06 9.308E+05 8.781E+05 9.835E+05
MIP Gap 27.49% 18.15% 24.40% 110.23% 123.81% 98.16%
MIP Best Bound 2.148E+06 2.189E+06 2.148E+06 1.957E+06 1.965E+06 1.949E+06
MIP Total Time 4.320E+04 4.320E+04 4.320E+04 4.319E+04 4.319E+04 4.319E+04
MIP-H+ Called 62 153 62 15 30 21
MIP-H+ Usefull 11 5 7 8 3 7
MIP-H+ Best Revenue 7.600E+05 1.639E+06 9.284E+05 5.872E+05 6.155E+05 7.089E+05
MIP-H+ Gap 178.73% 31.11% 128.37% 226.38% 212.38% 171.25%
MIP-H+ Best Bound 2.118E+06 2.149E+06 2.120E+06 1.917E+06 1.923E+06 1.923E+06
MIP-H+ Total Time 4.320E+04 4.320E+04 4.320E+04 2.878E+04 2.877E+04 2.878E+04

Model 5
Naive Revenue Min 7.032E+05 5.762E+05 6.989E+05 7.519E+05 6.739E+05 7.701E+05
Naive Revenue Max 2.465E+05 5.765E+05 2.611E+05 5.162E+05 6.741E+05 5.224E+05
Naive Revenue Mean 5.565E+05 5.763E+05 5.644E+05 6.603E+05 6.740E+05 6.689E+05
HBP Best Revenue 9.019E+05 1.050E+06 9.160E+05 9.052E+05 1.014E+06 9.271E+05
HBP Total Time 2628 2673 2588 3741 4431 3712
MIP Restr. Begin 9.037E+05 1.070E+06 9.168E+05 8.650E+05 9.183E+05 8.830E+05
MIP Restr. Initial Gap 129.50% 103.63% 122.98% 110.24% 106.08% 110.33%
MIP Restr. Best Revenue 1.239E+06 1.699E+06 1.297E+06 8.650E+05 9.183E+05 8.830E+05
MIP Restr. Gap 62.39% 19.55% 51.89% 110.24% 106.08% 110.33%
MIP Restr. Best Bound 2.012E+06 2.031E+06 1.970E+06 1.819E+06 1.892E+06 1.857E+06
MIP Restr. Total Time 4.316E+04 4.317E+04 4.317E+04 4.301E+04 4.279E+04 4.296E+04
MIP Best Revenue 1.239E+06 1.699E+06 1.297E+06 8.650E+05 9.183E+05 8.830E+05
MIP Restr. Initial Gap 79.12% 33.66% 71.47% 126.24% 118.38% 124.53%
MIP Best Revenue 1.253E+06 1.877E+06 1.403E+06 1.017E+06 1.164E+06 8.830E+05
MIP Gap 68.42% 16.73% 50.50% 90.13% 69.23% 124.53%
MIP Best Bound 2.110E+06 2.191E+06 2.111E+06 1.934E+06 1.969E+06 1.983E+06
MIP Total Time 4.320E+04 4.320E+04 4.320E+04 4.319E+04 4.319E+04 4.319E+04
MIP-H+ Called 213 321 243 33 39 40
MIP-H+ Usefull 7 15 8 4 4 10
MIP-H+ Best Revenue 1.011E+06 1.602E+06 1.091E+06 8.026E+05 6.068E+05 7.845E+05
MIP-H+ Gap 107.93% 33.55% 92.24%

136.91% 216.60% 143.62%
MIP-H+ Best Bound 2.102E+06 2.139E+06 2.097E+06 1.901E+06 1.921E+06 1.911E+06
MIP-H+ Total Time 4.320E+04 4.320E+04 4.320E+04 4.317E+04 4.317E+04 4.318E+04
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stochasticity on price had a negative impact on revenue compared to stochasticity on

demand only, the impact is less important than in the previous cases. This lower revenue

is not explained by losing too many clients from group 6 as before rather because users

from group 6 moved from quality of service Q5 to quality of service Q4 after the leader

set its prices for the second stage. Therefore, the leader lost $118 per client, which

corresponds to a reduction of 26%. In summary, we can conclude from this example

that stochasticity on price and on demand have an impact (in this case negative) on

revenue, and the effect is higher when both elements are uncertain for the leader. Indeed,

the leader is acting defensively trying to protect its best payers’ clients, which has the

cost of losing users groups or having a new distribution of groups within its inventories.

However, Model 5 shows us the contrary effect.

The lowest revenue appears when the demand is stochastic and the highest revenue is

obtained when price and demand are stochastic. Excluding the fact that the gaps are

different compared to the Model 4, this result is explained by the fact that in Model 5

the leader has a higher maneuver to set higher prices, and thus following its defensive

strategy, it prefers to set higher prices to its best payer’s clients.

— Analysis of “Example 611” :

In this case, the competitor has a competitive advantage in terms of location. It has

two inventories well located but its third hotel is very far compared to the best located

hotels of the leader. In terms of capacity, the leader has a small hotel as its best located

inventory but its second best located hotel has a similar capacity to the competition.

Quality of service is equal to five in both cases. In this example, the highest effect of

stochasticity (for Model 4) on revenue is also when price and demand are stochastic.

Moreover, there is almost no difference in revenue when stochasticity is either on price

or on price and demand jointly. However, the effect is less important than compared to

“Example 610”. In “Example 611” we only obtain a total negative impact of approxima-

tely $200, 000, which is mainly explained by losing approximately 4700 clients, mostly

from group G3, which is a group that was not present in the most expensive rooms,

and thus its impact on revenue is less dramatic. It is important to mention that in this

example the revenue obtained in Model 5 is not so different from the one of Model 4 as

in the previous example. The main reason is that the revenue of the leader is mainly

composed by least expensive rooms and thus the higher room for manoeuvre to set

prices is not made on high prices as happened in the previous example.
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6.3.4 Sensitivity with respect to changes in Capacity for Large Instances

In order to test sensitivity under capacity considerations, we show a dramatic possible

change, such ass local disaster. In this disaster, we can suppose a 20% loss of the total

capacity for the leader and its competitors. To make sense about these changes, we use a

reference that we call “regular” as the base for conducting three inventory restrictions : “20%

increment”, “20% decrement”, and “No capacity restriction” (or infinite capacity). The last

restriction is used to show how much would be the maximum revenue for the fixed capacity

that the leader could perceive. The“20% decrement”, is the highest reduction without making

the problem unfeasible (In some cases this reduction is approximately 20%). The details of

capacity reductions are presented in Table 6.27 under notation CA and CB. The test was run

for five different examples, with three scenarios for every test, created in the same way than

before, considering uniform random variables. Every test is done considering Model 4 and

Model 5. The notation used in the descriptions are the same as Table 6.9. In order to avoid

repetition, the definition of the common parameters for this sensitivity analysis is presented

separately in Table 6.26. The rest of the specific definitions are presented in Table 6.27 and

Table 6.28. The notations used for the column titles are the same than the ones used before.

We note that in three cases, Naive Revenue Min, Naive Revenue Max, Naive

Revenue Mean can have a zero value. This happens because the leader’s inventories are

in average more distant compared to the competitor’s inventories. Then, groups with high

disutility penalize these “too far” inventories. The Heuristic “Naive Market Prices” would set

a negative price to overcome this difference in distance but the “Non-negative constraint on

Prices” corrects this and provides them a zero value.

In some instances, the Heuristic MIP-H+ was able to find an incumbent and update

its lower-bound, but the solution was not updated, so this solution was not useful for our

revenue and group composition analysis. In those cases, another solution was used among the

best from Heuristic HBP or MIP-Restricted or MIP-Original (Model 4, instances 1001–DP,

1002–P, 1003–P, 1003–D, 1003–DP, 1004–DP, 1005–P, 1005–D, 1005–DP).

Table 6.26 Common Parameters for Capacity Sensitivity Experiment

Commons Parameters NA QA NB QB GR LOS RH PrF
Values 4 4 6 4 5 3 7 1
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Sensitivity Results

Results are presented as follows. First, we present the results related to a capacity decrease

of 20%. Those results are shown in Tables 6.29 and 6.30. After that, we present the results

for the regular cases, which do not behave differently to those cases presented in the “600”

examples. We decided to present these results to support the previous tendencies but also to

use them in our economic analysis. The results are shown in Tables 6.31 and 6.32.

Our third scenario corresponds to an increase capacity of 20%. Those results are presented

in Tables 6.33 and 6.34. Our last scenario corresponds to an infinite case, which is equivalent

to a scenario with no capacity constraints. The results are shown in Tables 6.35 and 6.36.

In order to support our economic analysis, we also present hotel composition and revenue

contribution per group (in percentages). These tables are presented for the three stochasticity

options, stochasticity on price, on demand, or on price and demand simultaneously. We only

present the results for Model 4 because the behaviour of the results for Model 5 is very

similar. Those results are available for consultation in the appendix.

Results regarding hotel composition and revenue contribution per group are shown in

Table 6.37 and 6.38 for Stochastic Demand D, in Table 6.39 and 6.40 for Stochastic Price P,

and Table 6.41 and 6.42 for Stochastic Price & Demand DP.

In general, we could expect to have an equal repartition of groups (and revenue) when

capacity goes to infinity because groups are also created uniformly and the number of leader

inventories are almost the same quantity as groups. However, we will see in the economic

analysis that in some cases that expectation does not occur.
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Table 6.29 Examples Decrease 20% Capacity, Numerical Results Part I

Example 901–P 901–D 901–DP 902–P 902–D 902–DP

Model 4

Naive Revenue Min 1.978E+05 1.821E+05 1.992E+05 2.505E+05 1.020E+05 2.563E+05
Naive Revenue Max 1.876E+05 1.821E+05 1.956E+05 1.847E+05 1.020E+05 1.071E+05
Naive Revenue Mean 1.953E+05 1.821E+05 2E+05 1.719E+05 1.020E+05 1.151E+05

HBP Best Revenue 4.499E+05 4.946E+05 4.868E+05 4.736E+05 4.997E+05 4.660E+05
HBP Total Time 1818 1629 1514 2116 1860 2048

MIP Restr. Begin 4.247E+05 4.973E+05 4.529E+05 4.611E+05 4.709E+05 4.670E+05
MIP Restr. Initial Gap 52.06% 33.11% 45.64% 45.19% 41.17% 41.17%
MIP Restr. Best Revenue 4.495E+05 5.438E+05 5.067E+05 4.611E+05 4.932E+05 4.670E+05
MIP Restr. Gap 36.29% 12.46% 19.62% 40.69% 29.95% 37.15%
MIP Restr. Best Bound 6.127E+05 6.116E+05 6.061E+05 6.487E+05 6.409E+05 6.404E+05
MIP Restr. Total Time 3600 3600 3600 3600 3600 3600

MIP Best Revenue 0 0 0 0 0 0
MIP Gap NaN NaN NaN NaN NaN NaN
MIP Best Bound NaN NaN NaN NaN NaN NaN
MIP Total Time 3600 3600 3600 3600 3600 3600

MIP-H+ Called 111 201 192 82 202 95
MIP-H+ Usefull 6 3 3 11 9 7
MIP-H+ Best Revenue 2.271E+05 3.938E+05 2.392E+05 3.426E+05 3.599E+05 2.922E+05
MIP-H+ Gap 172.74% 59.50% 161.46% 91.14% 76.80% 118.03%
MIP-H+ Best Bound 6.194E+05 6.282E+05 6.254E+05 6.548E+05 6.363E+05 6.370E+05
MIP-H+ Total Time 3599 3605 3616 3600 3600 3600

Model 5

Naive Revenue Min 1.978E+05 1.822E+05 1.992E+05 2.505E+05 1.020E+05 2.563E+05
Naive Revenue Max 1.873E+05 1.822E+05 1.954E+05 1.847E+05 1.020E+05 1.071E+05
Naive Revenue Mean 1.952E+05 1.822E+05 1.989E+05 1.719E+05 1.020E+05 1.151E+05

HBP Best Revenue 2.552E+05 3.206E+05 4.838E+05 2.731E+05 2.975E+05 3.026E+05
HBP Total Time 1892 1740 1853 1892 1722 1565

MIP Restr. Begin 2.270E+05 3.279E+05 4.660E+05 2.639E+05 2.715E+05 2.641E+05
MIP Restr. Initial Gap 184.70% 102.15% 41.75% 131.38% 140.03% 133.83%
MIP Restr. Best Revenue 2.700E+05 5.370E+05 4.994E+05 3.898E+05 4.068E+05 3.515E+05
MIP Restr. Gap 127.28% 15.77% 24.05% 48.05% 53.74% 62.31%
MIP Restr. Best Bound 6.137E+05 6.217E+05 6.195E+05 5.770E+05 6.255E+05 5.705E+05
MIP Restr. Total Time 3600 3600 3600 2390 2356 954

MIP Best Revenue 0 0 0 0 0 0
MIP Gap NaN NaN NaN NaN NaN NaN
MIP Best Bound NaN NaN NaN NaN NaN NaN
MIP Total Time 3600 3600 3600 3600 3600 3600

MIP-H+ Called 75 179 210 128 178 171
MIP-H+ Usefull 3 2 18 17 10 5
MIP-H+ Best Revenue 2.350E+05 5.201E+05 2.318E+05 3.687E+05 3.135E+05 3.266E+05
MIP-H+ Gap 163.74% 20.79% 170.54% 76.61% 104.18% 95.56%
MIP-H+ Best Bound 6.198E+05 6.282E+05 6.271E+05 6.512E+05 6.401E+05 6.386E+05
MIP-H+ Total Time 3605 3618 3601 3600 3600 3600
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Table 6.30 Examples Decrease 20% Capacity, Numerical Results Part II

Example 903–P 903–D 903–DP 905–P 905–D 905–DP

Model 4

Naive Revenue Min 3.672E+05 2.055E+05 3.573E+05 2.955E+05 2.488E+05 2.321E+05
Naive Revenue Max 2.289E+05 2.055E+05 2.051E+05 3.306E+05 2.488E+05 2.648E+05
Naive Revenue Mean 2.415E+05 2.055E+05 2.127E+05 3.109E+05 2.488E+05 2.491E+05

HBP Best Revenue 4.672E+05 6.433E+05 6.324E+05 4.765E+05 4.498E+05 4.305E+05
HBP Total Time 2046 2026 1916 1546 1300 1363

MIP Restr. Begin 4.672E+05 6.083E+05 5.876E+05 5.970E+05 5.607E+05 4.279E+05
MIP Restr. Initial Gap 68.21% 36.82% 39.87% 68.56% 63.37% 108.52%
MIP Restr. Best Revenue 4.808E+05 6.605E+05 5.876E+05 7.195E+05 5.776E+05 5.637E+05
MIP Restr. Gap 60.33% 23.17% 36.83% 34.32% 44.42% 45.50%
MIP Restr. Best Bound 7.708E+05 8.136E+05 8.039E+05 9.665E+05 8.342E+05 8.202E+05
MIP Restr. Total Time 3600 3601 3600 3600 3600 3600

MIP Best Revenue 0 0 0 0 0 0
MIP Gap NaN NaN NaN NaN NaN NaN
MIP Best Bound NaN NaN NaN NaN NaN NaN
MIP Total Time 3600 3600 3600 3600 3600 3600

MIP-H+ Called 153 278 223 35 63 75
MIP-H+ Usefull 14 84 38 10 41 3
MIP-H+ Best Revenue 2.090E+05 3.486E+05 3.425E+05 3.197E+05 2.301E+05 3.108E+05
MIP-H+ Gap 292.95% 134.10% 135.06% 231.83% 329.88% 215.59%
MIP-H+ Best Bound 8.211E+05 8.161E+05 8.051E+05 1.061E+06 9.892E+05 9.807E+05
MIP-H+ Total Time 3600 3600 3600 3567 3600 3591

Model 5

Naive Revenue Min 3.672E+05 2.055E+05 3.573E+05 2.955E+05 2.488E+05 2.321E+05
Naive Revenue Max 2.289E+05 2.055E+05 2.051E+05 3.306E+05 2.488E+05 2.648E+05
Naive Revenue Mean 2.415E+05 2.055E+05 2.127E+05 3.109E+05 2.488E+05 2.491E+05

HBP Best Revenue 4.383E+05 4.709E+05 4.943E+05 4.760E+05 4.523E+05 4.193E+05
HBP Total Time 1805 1819 1527 1531 1470 1601

MIP Restr. Begin 4.333E+05 4.436E+05 4.742E+05 6.131E+05 5.804E+05 4.387E+05
MIP Restr. Initial Gap 81.86% 84.48% 71.19% 57.61% 57.83% 103.73%
MIP Restr. Best Revenue 4.333E+05 6.692E+05 4.742E+05 7.385E+05 6.638E+05 5.559E+05
MIP Restr. Gap 78.15% 19.02% 67.15% 23.54% 25.42% 47.55%
MIP Restr. Best Bound 7.720E+05 7.965E+05 7.927E+05 9.123E+05 8.326E+05 8.203E+05
MIP Restr. Total Time 3600 3600 3600 3601 3273 3600

MIP Best Revenue 0 0 0 0 0 0
MIP Gap NaN NaN NaN NaN NaN NaN
MIP Best Bound NaN NaN NaN NaN NaN NaN
MIP Total Time 3600 3600 3600 3600 3600 3600

MIP-H+ Called 234 295 324 45 43 45
MIP-H+ Usefull 13 72 42 10 17 5
MIP-H+ Best Revenue 2.680E+05 3.392E+05 3.475E+05 3.364E+05 2.603E+05 3.514E+05
MIP-H+ Gap 206.47% 139.73% 131.83% 213.79% 281.41% 178.54%
MIP-H+ Best Bound 8.213E+05 8.131E+05 8.056E+05 1.055E+06 9.929E+05 9.787E+05
MIP-H+ Total Time 3600 3600 3600 3600 3593 3592
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Table 6.31 Examples Regular Capacity, Numerical Results Part I

Example 701–P 701–D 701–DP 702–P 702–D 702–DP

Model 4

Naive Revenue Min 2.088E+05 1.922E+05 2.171E+05 2.799E+05 1.062E+05 2.943E+05
Naive Revenue Max 1.956E+05 1.922E+05 2.019E+05 8.623E+04 1.063E+05 1.071E+05
Naive Revenue Mean 2.027E+05 1.922E+05 2.111E+05 9.716E+04 1.063E+05 1.199E+05

HBP Best Revenue 5.196E+05 5.608E+05 5.264E+05 5.059E+05 5.361E+05 5.102E+05
HBP Total Time 1412 1586 1415 1851 1952 1624

MIP Restr. Begin 4.646E+05 5.750E+05 4.766E+05 4.882E+05 5.237E+05 4.867E+05
MIP Restr. Initial Gap 49.15% 26.03% 51.75% 45.51% 38.99% 48.53%
MIP Restr. Best Revenue 5.372E+05 5.924E+05 5.599E+05 5.360E+05 5.913E+05 4.867E+05
MIP Restr. Gap 18.19% 13.24% 19.74% 26.59% 18.99% 40.58%
MIP Restr. Best Bound 6.350E+05 6.708E+05 6.704E+05 6.785E+05 7.036E+05 6.841E+05
MIP Restr. Total Time 3600 3600 3600 3602 3600 3590

MIP Best Revenue 0 0 0 0 5.913E+05 0
MIP Gap NaN NaN NaN NaN 20.43% NaN
MIP Best Bound NaN NaN NaN NaN 7.121E+05 NaN
MIP Total Time 3600 3600 3600 3600 3600 3600

MIP-H+ Called 151 303 196 40 104 64
MIP-H+ Usefull 56 3 7 4 4 5
MIP-H+ Best Revenue 2.671E+05 3.395E+05 2.731E+05 2.854E+05 3.173E+05 2.980E+05
MIP-H+ Gap 147.28% 103.18% 151.60% 138.36% 120.33% 134.60%
MIP-H+ Best Bound 6.604E+05 6.899E+05 6.872E+05 6.803E+05 6.991E+05 6.992E+05
MIP-H+ Total Time 3653 3647 3635 3600 3630 3600

Model 5

Naive Revenue Min 2.088E+05 1.922E+05 2.171E+05 2.799E+05 1.062E+05 2.943E+05
Naive Revenue Max 1.954E+05 1.922E+05 2.017E+05 8.623E+04 1.063E+05 1.071E+05
Naive Revenue Mean 2.027E+05 1.922E+05 2.103E+05 9.716E+04 1.063E+05 1.199E+05

HBP Best Revenue 5.315E+05 3.229E+05 5.344E+05 2.999E+05 3.153E+05 3.232E+05
HBP Total Time 1750 1550 1505 1876 1879 1921

MIP Restr. Begin 4.809E+05 2.992E+05 5.007E+05 2.681E+05 2.875E+05 2.979E+05
MIP Restr. Initial Gap 44.29% 142.50% 44.64% 148.53% 145.29% 121.32%
MIP Restr. Best Revenue 5.591E+05 5.928E+05 5.658E+05 3.805E+05 5.327E+05 3.767E+05
MIP Restr. Gap 15.73% 15.72% 20.18% 63.46% 25.82% 63.02%
MIP Restr. Best Bound 6.471E+05 6.860E+05 6.800E+05 6.219E+05 6.703E+05 6.141E+05
MIP Restr. Total Time 3600 3600 3600 3600 3600 3375

MIP Best Revenue 3.253E+05 0 0 0 5.455E+05 0
MIP Gap 104.55% NaN NaN NaN 28.91% NaN
MIP Best Bound 6.653E+05 NaN NaN NaN 7.031E+05 NaN
MIP Total Time 3600 3600 3600 3600 3599 3600

MIP-H+ Called 161 181 156 65 252 85
MIP-H+ Usefull 4 5 4 6 6 11
MIP-H+ Best Revenue 2.702E+05 5.537E+05 2.993E+05 3.300E+05 4.267E+05 3.505E+05
MIP-H+ Gap 145.98% 25.08% 131.00% 106.39% 64.45% 98.17%
MIP-H+ Best Bound 6.645E+05 6.925E+05 6.913E+05 6.810E+05 7.016E+05 6.946E+05
MIP-H+ Total Time 3696 3613 3680 3600 3628 3600
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Table 6.32 Examples Regular Capacity, Numerical Results Part II

Example 703–P 703–D 703–DP 705–P 705–D 705–DP

Model 4

Naive Revenue Min 3.854E+05 2.465E+05 3.893E+05 2.181E+05 2.491E+05 2.324E+05
Naive Revenue Max 2.247E+05 2.465E+05 2.395E+05 2.488E+05 2.491E+05 2.650E+05
Naive Revenue Mean 2.415E+05 2.465E+05 2.573E+05 2.342E+05 2.491E+05 2.495E+05

HBP Best Revenue 6.701E+05 7.155E+05 7.161E+05 6.561E+05 4.991E+05 4.666E+05
HBP Total Time 1467 1730 1598 1475 1442 1612

MIP Restr. Begin 6.103E+05 6.826E+05 6.940E+05 6.454E+05 4.932E+05 4.618E+05
MIP Restr. Initial Gap 48.01% 40.83% 34.87% 38.10% 99.42% 107.96%
MIP Restr. Best Revenue 6.103E+05 7.221E+05 7.194E+05 6.636E+05 5.068E+05 4.720E+05
MIP Restr. Gap 43.54% 28.00% 25.72% 25.79% 74.44% 85.83%
MIP Restr. Best Bound 8.760E+05 9.243E+05 9.044E+05 8.347E+05 8.841E+05 8.771E+05
MIP Restr. Total Time 3600 3600 3600 3600 3600 3600

MIP Best Revenue 0 0 0 0 0 0
MIP Gap NaN NaN NaN NaN NaN NaN
MIP Best Bound NaN NaN NaN NaN NaN NaN
MIP Total Time 3600 3600 3600 3600 3600 3600

MIP-H+ Called 379 342 362 51 52 89
MIP-H+ Usefull 12 7 11 6 31 31
MIP-H+ Best Revenue 6.703E+05 6.266E+05 5.697E+05 5.057E+05 5.721E+05 4.172E+05
MIP-H+ Gap 33.12% 48.38% 62.41% 91.95% 81.85% 145.02%
MIP-H+ Best Bound 8.923E+05 9.297E+05 9.252E+05 9.706E+05 1.040E+06 1.022E+06
MIP-H+ Total Time 3600 3600 3600 3595 3600 3600

Model 5

Naive Revenue Min 3.854E+05 2.465E+05 3.893E+05 2.181E+05 2.491E+05 2.324E+05
Naive Revenue Max 2.247E+05 2.465E+05 2.395E+05 2.488E+05 2.491E+05 2.650E+05
Naive Revenue Mean 2.415E+05 2.465E+05 2.573E+05 2.342E+05 2.491E+05 2.495E+05

HBP Best Revenue 6.427E+05 6.021E+05 6.791E+05 5.682E+05 5.127E+05 4.832E+05
HBP Total Time 1770 1542 1732 1659 1711 1836

MIP Restr. Begin 6.359E+05 5.662E+05 6.140E+05 NaN 5.156E+05 4.565E+05
MIP Restr. Initial Gap 36.49% 59.88% 50.65% NaN 87.95% 109.28%
MIP Restr. Best Revenue 6.517E+05 6.639E+05 7.093E+05 0 7.572E+05 4.854E+05
MIP Restr. Gap 29.64% 31.75% 26.62% NaN 17.54% 79.13%
MIP Restr. Best Bound 8.449E+05 8.747E+05 8.981E+05 NaN 8.901E+05 8.695E+05
MIP Restr. Total Time 3601 3600 3600 3600 3600 3600

MIP Best Revenue 0 0 0 0 0 0
MIP Gap NaN NaN NaN NaN NaN NaN
MIP Best Bound NaN NaN NaN NaN NaN NaN
MIP Total Time 3600 3600 3600 3600 3600 3600

MIP-H+ Called 262 347 349 48 151 88
MIP-H+ Usefull 15 54 7 11 3 15
MIP-H+ Best Revenue 5.751E+05 5.337E+05 5.604E+05 5.323E+05 5.735E+05 4.975E+05
MIP-H+ Gap 54.22% 74.84% 64.97% 82.49% 79.44% 105.01%
MIP-H+ Best Bound 8.869E+05 9.332E+05 9.244E+05 9.714E+05 1.029E+06 1.020E+06
MIP-H+ Total Time 3600 3600 3600 3600 3596 3600
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Table 6.33 Examples Increase Capacity in 20%, Numerical Results Part I

Example 1001–P 1001–D 1001–DP 1002–P 1002–D 1002–DP

Model 4

Naive Revenue Min 2.171E+05 2.044E+05 2.263E+05 3.136E+05 4.307E+04 3.232E+05
Naive Revenue Max 2.097E+05 2.044E+05 2.096E+05 2.215E+04 4.309E+04 2.511E+04
Naive Revenue Mean 2.126E+05 2.044E+05 2.171E+05 4.853E+04 4.308E+04 6.882E+04

HBP Best Revenue 5.481E+05 5.831E+05 5.700E+05 5.523E+05 5.731E+05 5.463E+05
HBP Total Time 1674 1255 1645 1689 1552 1534

MIP Restr. Begin 5.151E+05 5.917E+05 5.561E+05 5.161E+05 5.351E+05 5.280E+05
MIP Restr. Initial Gap 45.89% 30.27% 39.03% 43.33% 42.90% 43.36%
MIP Restr. Best Revenue 5.824E+05 6.265E+05 5.997E+05 5.552E+05 5.907E+05 5.562E+05
MIP Restr. Gap 15.84% 12.77% 17.32% 20.60% 16.61% 24.17%
MIP Restr. Best Bound 6.747E+05 7.065E+05 7.035E+05 6.695E+05 6.888E+05 6.907E+05
MIP Restr. Total Time 3600 3600 3600 3600 3600 850

MIP Best Revenue 0 0 0 4.086E+05 4.484E+05 0
MIP Gap NaN NaN NaN 69.38% 62.64% NaN
MIP Best Bound NaN NaN NaN 6.921E+05 7.293E+05 NaN
MIP Total Time 3600 3600 3600 3600 3600 3600

MIP-H+ Called 138 233 202 58 152 119
MIP-H+ Usefull 102 22 139 3 1 2
MIP-H+ Best Revenue 2.664E+05 4.029E+05 2.878E+05 5.096E+05 5.418E+05 3.402E+05
MIP-H+ Gap 155.44% 80.10% 150.96% 34.59% 31.11% 112.53%
MIP-H+ Best Bound 6.805E+05 7.256E+05 7.222E+05 6.859E+05 7.103E+05 7.231E+05
MIP-H+ Total Time 3611 3612 3621 3599 3628 3600

Model 5

Naive Revenue Min 2.171E+05 2.044E+05 2.263E+05 3.136E+05 4.307E+04 3.232E+05
Naive Revenue Max 2.095E+05 2.044E+05 2.094E+05 2.215E+04 4.309E+04 2.511E+04
Naive Revenue Mean 2.126E+05 2.044E+05 2.171E+05 4.853E+04 4.308E+04 6.882E+04

HBP Best Revenue 5.670E+05 6.011E+05 5.784E+05 2.900E+05 2.844E+05 3.107E+05
HBP Total Time 1543 1342 1574 1505 1658 1557

MIP Restr. Begin 5.407E+05 6.021E+05 5.827E+05 2.688E+05 2.613E+05 2.814E+05
MIP Restr. Initial Gap 39.17% 28.16% 32.78% 149.57% 169.87% 151.29%
MIP Restr. Best Revenue 5.962E+05 6.514E+05 6.109E+05 4.553E+05 6.253E+05 3.471E+05
MIP Restr. Gap 16.60% 10.19% 16.99% 37.67% 5.05% 88.92%
MIP Restr. Best Bound 6.951E+05 7.178E+05 7.147E+05 6.268E+05 6.569E+05 6.557E+05
MIP Restr. Total Time 3600 3600 3600 3602 3600 1431

MIP Best Revenue 0 0 0 5.777E+05 6.364E+05 0
MIP Gap NaN NaN NaN 18.86% 12.89% NaN
MIP Best Bound NaN NaN NaN 6.866E+05 7.184E+05 NaN
MIP Total Time 3600 3600 3600 3600 3600 3600

MIP-H+ Called 119 318 92 61 301 142
MIP-H+ Usefull 87 4 7 4 1 9
MIP-H+ Best Revenue 2.687E+05 5.448E+05 2.861E+05 5.358E+05 5.928E+05 4.063E+05
MIP-H+ Gap 148.23% 24.38% 154.91% 28.86% 18.99% 74.92%
MIP-H+ Best Bound 6.669E+05 6.776E+05 7.292E+05 6.904E+05 7.053E+05 7.107E+05
MIP-H+ Total Time 3616 3620 3604 3602 3655 3594
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Table 6.34 Examples Increase Capacity in 20%, Numerical Results Part II

Example 1003–P 1003–D 1003–DP 1005–P 1005–D 1005–DP

Model 4

Naive Revenue Min 3.815E+05 2.493E+05 3.826E+05 1.484E+05 1.719E+05 1.618E+05
Naive Revenue Max 2.193E+05 2.493E+05 2.404E+05 1.666E+05 1.719E+05 1.829E+05
Naive Revenue Mean 2.418E+05 2.493E+05 2.656E+05 1.569E+05 1.719E+05 1.722E+05

HBP Best Revenue 6.819E+05 6.712E+05 7.138E+05 5.286E+05 4.545E+05 4.344E+05
HBP Total Time 1708 1732 1603 1442 1486 1529

MIP Restr. Begin 6.752E+05 6.343E+05 6.205E+05 5.239E+05 5.370E+05 4.038E+05
MIP Restr. Initial Gap 37.65% 54.57% 57.05% 55.03% 56.92% 121.37%
MIP Restr. Best Revenue 6.909E+05 6.856E+05 7.318E+05 5.466E+05 6.081E+05 5.384E+05
MIP Restr. Gap 30.08% 36.20% 28.37% 35.04% 23.31% 49.59%
MIP Restr. Best Bound 8.988E+05 9.338E+05 9.394E+05 7.381E+05 7.498E+05 8.055E+05
MIP Restr. Total Time 3600 3600 3600 3600 3600 3600

MIP Best Revenue 0 8.301E+05 0 0 7.434E+05 0
MIP Gap NaN 16.54% NaN NaN 37.47% NaN
MIP Best Bound NaN 9.674E+05 NaN NaN 1.022E+06 NaN
MIP Total Time 3600 3589 3600 3600 3597 3600

MIP-H+ Called 234 299 350 189 193 188
MIP-H+ Usefull 2 7 15 26 31 43
MIP-H+ Best Revenue 5.814E+05 6.798E+05 6.805E+05 5.058E+05 6.072E+05 5.527E+05
MIP-H+ Gap 55.53% 40.71% 38.17% 84.80% 59.82% 78.63%
MIP-H+ Best Bound 9.043E+05 9.566E+05 9.402E+05 9.348E+05 9.705E+05 9.872E+05
MIP-H+ Total Time 3600 3603 3600 3595 3600 3596

Model 5

Naive Revenue Min 3.815E+05 2.493E+05 3.826E+05 1.484E+05 1.719E+05 1.618E+05
Naive Revenue Max 2.193E+05 2.493E+05 2.404E+05 1.666E+05 1.719E+05 1.829E+05
Naive Revenue Mean 2.418E+05 2.493E+05 2.656E+05 1.569E+05 1.719E+05 1.722E+05

HBP Best Revenue 6.762E+05 5.777E+05 5.275E+05 4.173E+05 4.381E+05 4.198E+05
HBP Total Time 1500 1504 1355 1218 1425 1413

MIP Restr. Begin 6.637E+05 5.480E+05 5.040E+05 NaN 4.492E+05 4.224E+05
MIP Restr. Initial Gap 40.05% 75.43% 84.43% NaN 83.06% 111.36%
MIP Restr. Best Revenue 6.977E+05 6.671E+05 5.621E+05 0 6.125E+05 5.770E+05
MIP Restr. Gap 27.81% 38.58% 58.04% NaN 15.99% 39.71%
MIP Restr. Best Bound 8.917E+05 9.244E+05 8.884E+05 NaN 7.104E+05 8.061E+05
MIP Restr. Total Time 3600 1729 3600 3600 2779 3600

MIP Best Revenue 0 0 0 0 0 0
MIP Gap NaN NaN NaN NaN NaN NaN
MIP Best Bound NaN NaN NaN NaN NaN NaN
MIP Total Time 3600 3600 3600 3600 3600 3600

MIP-H+ Called 155 351 345 127 274 252
MIP-H+ Usefull 2 69 7 25 24 19
MIP-H+ Best Revenue 5.184E+05 6.464E+05 6.401E+05 5.212E+05 6.211E+05 4.204E+05
MIP-H+ Gap 74.34% 47.49% 47.22% 79.83% 57.19% 133.30%
MIP-H+ Best Bound 9.037E+05 9.533E+05 9.424E+05 9.373E+05 9.764E+05 9.808E+05
MIP-H+ Total Time 3600 3596 3600 3603 3598 3595
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Table 6.35 Examples, Infinite Capacity, Numerical Results Part I

Example 801–P 801–D 801–DP 802–P 802–D 802–DP

Model 4

Naive Revenue Min 2.399E+05 2.451E+05 2.478E+05 2.956E+05 1.827E+04 3.014E+05
Naive Revenue Max 2.374E+05 2.451E+05 2.451E+05 0 1.829E+04 0
Naive Revenue Mean 2.374E+05 2.451E+05 2.451E+05 2.321E+04 1.828E+04 2.229E+04

HBP Best Revenue 6.634E+05 6.856E+05 7.054E+05 6.310E+05 7.225E+05 6.787E+05
HBP Total Time 1248 1216 1330 1512 1326 1324

MIP Restr. Begin 6.551E+05 7.044E+05 6.501E+05 6.410E+05 7.328E+05 7.115E+05
MIP Restr. Initial Gap 38.01% 34.39% 44.96% 41.52% 29.27% 31.25%
MIP Restr. Best Revenue 6.921E+05 7.632E+05 7.202E+05 7.027E+05 7.328E+05 7.294E+05
MIP Restr. Gap 3.13% 0.01% 0.95% 11.51% 11.32% 7.67%
MIP Restr. Best Bound 7.138E+05 7.633E+05 7.271E+05 7.836E+05 8.157E+05 7.853E+05
MIP Restr. Total Time 3600 923 3600 3600 3600 3600

MIP Best Revenue 6.921E+05 7.632E+05 7.202E+05 7.027E+05 7.328E+05 7.294E+05
MIP Gap 3.93% 0.01% 5.61% 7.16% 11.10% 9.53%
MIP Best Bound 7.193E+05 7.633E+05 7.606E+05 7.530E+05 8.141E+05 7.989E+05
MIP Total Time 3600 426 3599 3600 3599 3600

MIP-H+ Called 308 417 404 169 311 212
MIP-H+ Usefull 1 3 0 4 1 0
MIP-H+ Best Revenue 6.921E+05 7.633E+05 7.202E+05 6.995E+05 7.328E+05 7.294E+05
MIP-H+ Gap 16.77% 10.41% 16.02% 9.17% 4.93% 7.64%
MIP-H+ Best Bound 8.082E+05 8.427E+05 8.356E+05 7.637E+05 7.689E+05 7.851E+05
MIP-H+ Total Time 3615 3775 3830 3599 3603 3603

Model 5

Naive Revenue Min 2.399E+05 2.451E+05 2.478E+05 2.956E+05 1.827E+04 3.014E+05
Naive Revenue Max 2.374E+05 2.451E+05 2.451E+05 0 1.829E+04 0
Naive Revenue Mean 2.374E+05 2.451E+05 2.451E+05 2.321E+04 1.828E+04 2.229E+04

HBP Best Revenue 6.653E+05 7.058E+05 6.773E+05 4.283E+05 6.546E+05 4.764E+05
HBP Total Time 1313 1162 1181 1182 1224 1225

MIP Restr. Begin 6.799E+05 7.164E+05 6.964E+05 3.890E+05 5.749E+05 3.770E+05
MIP Restr. Initial Gap 34.84% 34.18% 37.27% 87.51% 41.10% 103.03%
MIP Restr. Best Revenue 7.044E+05 7.875E+05 7.212E+05 6.181E+05 7.233E+05 6.425E+05
MIP Restr. Gap 12.18% 0.01% 6.72% 1.38% 0.01% 1.46%
MIP Restr. Best Bound 7.902E+05 7.876E+05 7.696E+05 6.266E+05 7.234E+05 6.519E+05
MIP Restr. Total Time 3600 1273 3600 3600 164 3600

MIP Best Revenue 7.044E+05 7.875E+05 7.212E+05 7.027E+05 7.519E+05 7.294E+05
MIP Gap 11.38% 0.01% 13.35% 8.17% 2.84% 7.00%
MIP Best Bound 7.846E+05 7.876E+05 8.174E+05 7.601E+05 7.732E+05 7.804E+05
MIP Total Time 3600 327 3600 3600 3600 3600

MIP-H+ Called 257 478 356 168 338 190
MIP-H+ Usefull 2 4 2 5 2 1
MIP-H+ Best Revenue 7.033E+05 7.875E+05 7.211E+05 7.027E+05 7.519E+05 7.294E+05
MIP-H+ Gap 16.54% 7.81% 17.06% 9.41% 3.09% 7.84%
MIP-H+ Best Bound 8.196E+05 8.491E+05 8.441E+05 7.688E+05 7.752E+05 7.866E+05
MIP-H+ Total Time 3952 3731 3651 3600 3601 3600
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Table 6.36 Examples, Infinite Capacity, Numerical Results Part II

Example 803–P 803–D 803–DP 805–P 805–D 805–DP

Model 4

Naive Revenue Min 3.180E+05 2.381E+05 3.180E+05 0 0 0
Naive Revenue Max 2.538E+05 2.381E+05 2.538E+05 0 0 0
Naive Revenue Mean 2.359E+05 2.381E+05 2.359E+05 0 0 0

HBP Best Revenue 6.955E+05 7.936E+05 7.172E+05 8.233E+05 9.147E+05 8.519E+05
HBP Total Time 1470 1509 1397 1199 1047 1223

MIP Restr. Begin 6.946E+05 7.459E+05 7.757E+05 8.055E+05 9.230E+05 8.452E+05
MIP Restr. Initial Gap 39.44% 36.77% 29.91% 30.25% 17.30% 28.33%
MIP Restr. Best Revenue 7.402E+05 8.846E+05 7.781E+05 8.756E+05 9.400E+05 9.062E+05
MIP Restr. Gap 9.92% 1.32% 10.17% 6.78% 6.23% 1.83%
MIP Restr. Best Bound 8.136E+05 8.963E+05 8.572E+05 9.350E+05 9.985E+05 9.228E+05
MIP Restr. Total Time 3600 3600 3600 3600 3600 3600

MIP Best Revenue 7.413E+05 8.846E+05 7.749E+05 8.761E+05 9.400E+05 9.069E+05
MIP Gap 13.91% 3.33% 9.95% 4.02% 4.79% 3.23%
MIP Best Bound 8.444E+05 9.141E+05 8.521E+05 9.113E+05 9.851E+05 9.361E+05
MIP Total Time 3600 3600 3599 3600 3600 3600

MIP-H+ Called 85 288 74 173 368 262
MIP-H+ Usefull 2 1 1 4 2 3
MIP-H+ Best Revenue 7.452E+05 8.385E+05 7.574E+05 8.708E+05 9.438E+05 8.945E+05
MIP-H+ Gap 17.75% 9.31% 20.29% 5.78% 6.20% 6.36%
MIP-H+ Best Bound 8.774E+05 9.167E+05 9.110E+05 9.211E+05 1.002E+06 9.514E+05
MIP-H+ Total Time 3599 3602 3600 3605 3601 3602

Model 5

Naive Revenue Min 3.180E+05 2.381E+05 3.180E+05 0 0 0
Naive Revenue Max 2.538E+05 2.381E+05 2.538E+05 0 0 0
Naive Revenue Mean 2.359E+05 2.381E+05 2.359E+05 0 0 0

HBP Best Revenue 6.856E+05 7.455E+05 7.162E+05 7.254E+05 8.718E+05 7.416E+05
HBP Total Time 1355 1158 1323 1354 1105 1197

MIP Restr. Begin 7.019E+05 7.218E+05 7.333E+05 6.540E+05 7.872E+05 6.703E+05
MIP Restr. Initial Gap 38.72% 41.52% 37.96% 43.47% 35.00% 44.77%
MIP Restr. Best Revenue 7.262E+05 8.733E+05 7.571E+05 8.615E+05 9.700E+05 8.847E+05
MIP Restr. Gap 14.45% 3.52% 12.95% 0.00% 0.69% 0.79%
MIP Restr. Best Bound 8.311E+05 9.041E+05 8.551E+05 8.615E+05 9.767E+05 8.916E+05
MIP Restr. Total Time 3600 3600 3600 2693 3600 3600

MIP Best Revenue 7.262E+05 8.733E+05 7.571E+05 8.967E+05 9.675E+05 9.284E+05
MIP Gap 13.35% 3.04% 14.01% 5.39% 2.90% 3.21%
MIP Best Bound 8.231E+05 8.999E+05 8.632E+05 9.450E+05 9.956E+05 9.582E+05
MIP Total Time 3599 3600 3599 3600 3600 3600

MIP-H+ Called 61 189 72 243 391 320
MIP-H+ Usefull 1 0 1 4 1 6
MIP-H+ Best Revenue 7.427E+05 8.704E+05 7.580E+05 8.812E+05 9.667E+05 9.227E+05
MIP-H+ Gap 18.98% 4.12% 19.33% 6.76% 4.00% 4.81%
MIP-H+ Best Bound 8.836E+05 9.062E+05 9.046E+05 9.408E+05 1.005E+06 9.671E+05
MIP-H+ Total Time 3599 3600 3600 3601 3600 3600
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Table 6.37 Summary Examples : Stochastic Demand in Model 4, Group % in Hotel

Example 1 D Revenue Group 1 Group 2 Group 3 Group 4 Group 5
Decr 20 5.440E+05 29.4% 16.5% 13.4% 10.0% 30.7%
Regular 5.920E+05 27.5% 18.5% 16.4% 10.1% 27.6%
Incr 20 6.270E+05 27.1% 21.1% 19.9% 14.3% 17.7%
Infinit 7.630E+05 18.3% 18.0% 21.2% 19.5% 23.0%

Example 2 D Revenue Group 1 Group 2 Group 3 Group 4 Group 5
Decr 20 4.930E+05 27.9% 1.9% 23.6% 27.8% 18.6%
Regular 5.910E+05 24.7% 0.0% 22.4% 26.4% 26.6%
Incr 20 5.910E+05 23.9% 0.2% 25.6% 30.1% 20.3%
Infinit 7.330E+05 25.9% 6.1% 20.2% 23.7% 24.1%

Example 3 D Revenue Group 1 Group 2 Group 3 Group 4 Group 5
Decr 20 6.610E+05 26.9% 19.2% 18.8% 27.6% 7.5%
Regular 7.220E+05 29.6% 16.5% 15.0% 26.8% 12.2%
Incr 20 8.300E+05 19.7% 18.6% 19.7% 19.1% 23.0%
Infinit 8.850E+05 19.2% 18.2% 19.7% 18.6% 24.3%

Example 5 D Revenue Group 1 Group 2 Group 3 Group 4 Group 5
Decr 20 5.780E+05 0.0% 4.0% 5.1% 49.1% 41.7%
Regular 5.070E+05 0.0% 2.3% 24.2% 40.8% 32.8%
Incr 20 7.430E+05 21.2% 17.8% 20.0% 20.3% 20.7%
Infinit 9.400E+05 16.0% 22.1% 20.3% 20.6% 21.0%

Table 6.38 Summary Examples : Stochastic Demand in Model 4, Group Revenue contri-
bution

Example 1 D Revenue Group 1 Group 2 Group 3 Group 4 Group 5
Decr 20 5.440E+05 7.1% 15.9% 27.6% 17.1% 32.3%
Regular 5.920E+05 6.4% 19.7% 28.3% 16.4% 29.1%
Incr 20 6.270E+05 3.9% 24.2% 30.0% 18.8% 23.1%
Infinit 7.630E+05 6.9% 29.2% 33.3% 14.3% 16.4%

Example 2 D Revenue Group 1 Group 2 Group 3 Group 4 Group 5
Decr 20 4.930E+05 21.3% 0.7% 20.6% 29.4% 27.9%
Regular 5.910E+05 22.1% 0.0% 20.6% 25.4% 31.8%
Incr 20 5.910E+05 13.8% 0.1% 24.9% 30.2% 31.0%
Infinit 7.330E+05 23.5% 11.1% 19.6% 22.5% 23.2%

Example 3 D Revenue Group 1 Group 2 Group 3 Group 4 Group 5
Decr 20 6.610E+05 23.8% 23.1% 23.9% 23.1% 6.1%
Regular 7.220E+05 24.5% 19.6% 22.2% 20.0% 13.7%
Incr 20 8.300E+05 18.4% 21.7% 25.5% 16.5% 17.9%
Infinit 8.850E+05 22.3% 21.7% 23.8% 14.4% 17.9%

Example 5 D Revenue Group 1 Group 2 Group 3 Group 4 Group 5
Decr 20 5.780E+05 0.0% 4.3% 2.3% 33.5% 60.0%
Regular 5.070E+05 0.0% 7.1% 24.3% 38.8% 29.8%
Incr 20 7.430E+05 15.5% 27.2% 18.4% 15.4% 23.5%
Infinit 9.400E+05 10.1% 24.3% 21.3% 22.6% 21.6%
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Table 6.39 Summary Examples : Stochastic Price in Model 4, Group % in Hotel

Example 1 P Revenue Group 1 Group 2 Group 3 Group 4 Group 5
Decr 20 4.500E+05 28.7% 10.0% 21.6% 16.9% 22.8%
Regular 5.370E+05 29.3% 14.2% 25.8% 14.3% 16.4%
Incr 20 5.820E+05 27.3% 17.4% 27.4% 13.0% 14.8%
Infinit 6.920E+05 23.4% 30.2% 30.9% 7.5% 8.0%

Example 2 P Revenue Group 1 Group 2 Group 3 Group 4 Group 5
Decr 20 4.610E+05 1.7% 0.0% 26.3% 34.9% 37.1%
Regular 5.360E+05 24.3% 0.0% 21.8% 26.4% 27.5%
Incr 20 5.550E+05 18.9% 0.0% 23.1% 28.0% 29.9%
Infinit 7.030E+05 22.0% 12.3% 20.1% 21.3% 24.3%

Example 3 P Revenue Group 1 Group 2 Group 3 Group 4 Group 5
Decr 20 4.810E+05 13.1% 39.2% 4.0% 30.8% 12.9%
Regular 6.100E+05 23.4% 19.0% 22.1% 21.7% 13.9%
Incr 20 6.910E+05 22.2% 19.4% 23.5% 21.8% 13.1%
Infinit 7.450E+05 22.9% 22.3% 26.1% 16.2% 12.5%

Example 5 P Revenue Group 1 Group 2 Group 3 Group 4 Group 5
Decr 20 7.200E+05 0.0% 14.3% 13.5% 33.5% 38.8%
Regular 6.640E+05 1.0% 6.0% 32.7% 37.8% 22.5%
Incr 20 5.470E+05 5.2% 3.3% 29.2% 43.5% 18.7%
Infinit 8.760E+05 17.6% 22.3% 19.6% 20.9% 19.6%

Table 6.40 Summary Examples : Stochastic Price in Model 4, Group Revenue contribution

Example 1 P Revenue Group 1 Group 2 Group 3 Group 4 Group 5
Decr 20 4.500E+05 3.3% 10.0% 38.3% 21.6% 26.9%
Regular 5.370E+05 4.6% 15.6% 37.4% 18.7% 23.7%
Incr 20 5.820E+05 4.6% 21.3% 37.3% 16.4% 20.4%
Infinit 6.920E+05 2.9% 33.0% 33.7% 14.7% 15.7%

Example 2 P Revenue Group 1 Group 2 Group 3 Group 4 Group 5
Decr 20 4.610E+05 1.0% 0.0% 21.1% 33.2% 44.8%
Regular 5.360E+05 11.8% 0.0% 22.4% 27.6% 38.2%
Incr 20 5.550E+05 11.4% 0.0% 22.9% 27.7% 38.0%
Infinit 7.030E+05 21.2% 15.3% 19.5% 20.6% 23.4%

Example 3 P Revenue Group 1 Group 2 Group 3 Group 4 Group 5
Decr 20 4.810E+05 18.6% 39.2% 5.9% 28.3% 7.9%
Regular 6.100E+05 14.0% 22.7% 27.1% 20.2% 15.9%
Incr 20 6.910E+05 21.8% 20.6% 25.4% 17.4% 14.9%
Infinit 7.450E+05 22.1% 21.6% 25.2% 17.0% 14.2%

Example 5 P Revenue Group 1 Group 2 Group 3 Group 4 Group 5
Decr 20 7.200E+05 0.0% 14.7% 13.2% 21.6% 50.4%
Regular 6.640E+05 1.0% 7.4% 22.5% 26.6% 42.4%
Incr 20 5.470E+05 2.4% 4.2% 23.4% 33.7% 36.4%
Infinit 8.760E+05 16.7% 22.5% 19.8% 21.2% 19.8%
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Table 6.41 Summary Examples : Stochastic Price & Demand in Model 4, Group % in
Hotel

Example 1 DP Revenue Group 1 Group 2 Group 3 Group 4 Group 5
Decr 20 5.070E+05 31.4% 7.6% 23.8% 16.3% 20.9%
Regular 5.600E+05 28.4% 12.7% 22.9% 16.8% 19.3%
Incr 20 6E+05 27.3% 15.6% 24.9% 14.7% 17.5%
Infinit 7.200E+05 19.5% 19.2% 22.6% 17.6% 21.1%

Example 2 DP Revenue Group 1 Group 2 Group 3 Group 4 Group 5
Decr 20 4.670E+05 16.9% 0.0% 24.3% 33.6% 25.2%
Regular 4.870E+05 27.4% 0.7% 18.9% 27.7% 25.4%
Incr 20 5.560E+05 22.2% 0.0% 22.8% 31.0% 24.0%
Infinit 7.290E+05 23.7% 14.2% 18.4% 21.7% 22.0%

Example 3 DP Revenue Group 1 Group 2 Group 3 Group 4 Group 5
Decr 20 5.880E+05 23.9% 18.2% 21.9% 27.0% 9.1%
Regular 7.190E+05 25.5% 16.0% 20.4% 24.1% 14.0%
Incr 20 7.320E+05 22.6% 18.5% 22.2% 20.0% 16.7%
Infinit 7.780E+05 20.2% 19.1% 20.6% 19.4% 20.8%

Example 5 DP Revenue Group 1 Group 2 Group 3 Group 4 Group 5
Decr 20 5.640E+05 0.0% 10.6% 13.8% 40.0% 35.5%
Regular 4.720E+05 0.1% 2.3% 22.0% 41.8% 33.8%
Incr 20 5.380E+05 0.0% 7.2% 17.9% 47.8% 27.1%
Infinit 9.070E+05 17.7% 21.7% 19.9% 20.2% 20.6%

Table 6.42 Summary Examples : Stochastic Price & Demand in Model 4, Group Revenue
contribution

Example 1 DP Revenue Group 1 Group 2 Group 3 Group 4 Group 5
Decr 20 5.070E+05 4.8% 7.2% 38.5% 21.4% 28.2%
Regular 5.600E+05 3.9% 14.7% 35.5% 20.3% 25.5%
Incr 20 6E+05 6.4% 19.9% 36.1% 18.2% 19.4%
Infinit 7.200E+05 6.8% 30.9% 35.2% 12.5% 14.4%

Example 2 DP Revenue Group 1 Group 2 Group 3 Group 4 Group 5
Decr 20 4.670E+05 13.3% 0.0% 20.7% 32.5% 33.5%
Regular 4.870E+05 13.7% 0.3% 18.0% 30.8% 37.2%
Incr 20 5.560E+05 15.4% 0.0% 22.6% 28.5% 33.5%
Infinit 7.290E+05 22.1% 16.4% 18.5% 21.1% 21.9%

Example 3 DP Revenue Group 1 Group 2 Group 3 Group 4 Group 5
Decr 20 5.880E+05 15.5% 23.4% 28.5% 25.1% 7.4%
Regular 7.190E+05 21.0% 18.8% 25.3% 20.5% 14.3%
Incr 20 7.320E+05 21.5% 20.6% 25.0% 16.8% 16.2%
Infinit 7.780E+05 23.0% 22.3% 24.6% 14.5% 15.6%

Example 5 DP Revenue Group 1 Group 2 Group 3 Group 4 Group 5
Decr 20 5.640E+05 0.0% 6.6% 19.3% 32.1% 42.0%
Regular 4.720E+05 0.0% 7.4% 23.8% 39.7% 29.2%
Incr 20 5.380E+05 0.0% 5.3% 14.7% 37.8% 42.2%
Infinit 9.070E+05 17.5% 22.2% 19.4% 21.3% 19.6%
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We could suppose for the instance that a larger number of inventories would have not

shown congestion inside them, because at least one inventory would have been “taken” by

one single group in the infinity, and of course this situation is softened by the number of

scenarios. A considerable quantity of scenarios would have also greatly softened the results.

This situation however was not tested in this thesis. Having a lower number of inventories is

good because the bang-bang behavior is kept, which facilitates to perform general analysis.

It is important to notice that MIP-H+ was less effective than in the previous runs. This is

probably caused by more complicated problems.

Sensitivity Analysis to changes in Capacity :

— Example 1 :

Leader has one good located hotel and thus it gives preference to groups 2 and 3, who

are the ones sensitive to proximity to that inventory, and more preference to groups

1, 4 and 5 to the furthest inventories because they are not sensitive to proximity but

sensitive to quality. Specifically, groups 4 and 5 are more sensitive to quality than group

1, and thus higher prices can be charged to those clients. The opposite case happens

with group 1, who is only willing to pay low prices. Because of that, when the leader

faces a capacity reduction it gives priority to group 5 with its farther hotels and then

to group 3 with its closest hotel. In this example, higher capacity generates higher

revenue for the leader. When capacity reaches the infinite, group distribution tends to

be equal (in a range of [18%, 23%]), but in terms of revenue it does not happen because

group 1 has low prices and thus its contribution to the total revenue is marginal. In

terms of differences related to stochasticity on price, demand, or both, we notice the

same behaviour of the leader when it faces capacity constraint. In other words, the

leader prefers groups 3 and 5, but with an increase on group 3 in terms of revenue

contribution, when price is stochastic. The reason is that the leader sought to attract

more clients from group 3 and keep clients from group 5 by offering lower prices, which

finally happened.

— Example 2 :

In this example, the leader is bad located. Therefore, it cannot compete in distance

to attract group 2, which is the one that values more proximity in comparison to

the other groups. This explains the fact that even with infinite capacity, group 2 is

marginal in terms of group participation. However, in terms of contribution to revenue,

this group takes more relevance in the case of infinite capacity, because the leader gets

some clients from this group by offering an attractive price that does not jeopardize

the price charged to the other categories. When demand is stochastic and the leader
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faces a capacity reduction, the leader prefers clients from groups 4 and 5, who are the

ones that provide more value to quality of service, and particularly to group 4 that is

not sensitive to proximity. However, when price is stochastic, the leader is interested

on moving group 5 clients to its best located inventory (from inventory 2 to inventory

1) in order to be able to charge a higher price. However, the leader had to disregard

clients from group 1 in order to have capacity for pursuing that strategy. Finally, when

price and demand are stochastic, the leader behaves similarly as when only demand is

stochastic, thus preferences are given to groups 4 and 5.

— Example 3 :

In this example, the best located inventory of the leader is in front of the best located

inventory of the competition. The second best located inventory of the leader is better

located than its competition. There is only one group, G3, which values proximity, and

one group, G5, which is not sensitive at all to proximity, but it is the most sensitive

to quality. Therefore, the leader is more interested on attracting clients from groups 1

and 3 when it faces a regular capacity and demand is stochastic, and less interested

in group 5. However, once there is a capacity reduction and demand is stochastic, the

leader becomes more interested in groups 2 and 4, and almost not interested at all in

group 5. The leader increased its revenue in group 2 and decreased its revenue from

group 3 when price were stochastic, because it decided to aggressively increase the

price of that group (approximately $250) but that strategy finally moved clients to the

competition. Finally, when price and demand were stochastic, the leader came back to

the initial situation, i.e., it was interested in all groups except group 5. It is important

to mention that given these results (especially having an aggressive price increase of

$250), we think that this solution is suboptimal.

— Example 5 :

In this example, the best located inventory of the leader is close to the best located

inventory of its competitor, but this one has the location advantage. However, its second

and third best located inventories are better located than the competition. There are

two groups sensitive to proximity, groups 2 and 5, being the last one also sensitive to

quality. In the scenario of stochastic demand and regular capacity, the leader is more

interested on attracting groups 3, 4 and 5 because group 2 preferred the competition (it

has the best located inventory) and group 1 is disregarded due to its lower sensitivity

to proximity. Once the leader faces a capacity reduction, it lost group 3 but it was

able to move several clients of group 5 from inventory 3 to inventory 1, with a price

increase of approximately $450. That had a positive impact on revenue, which explains

the fact that although having a capacity reduction, the leader was able to increase
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its revenue. However, when price is stochastic, groups 2 and 3 also contributed to the

revenue of the leader, although it was not as much as group 5. Indeed, the leader was

able to increase the price of group 5 in approximately $50 without losing demand.

Finally, when price and demand are stochastic, group 3 increased its participation in

the revenue of the leader, although groups 4 and 5 were still the highest contributors.

Regarding the increase in group 3, it happened because the leader was able to move this

group from farther inventories to inventories 2 and 3, which allowed setting a higher

price to that group.

As a general remark is important to mention that leader controls its “quality of service”

(QoS) but not distance, and thus competitors play an important role. Because of that, the

leader tends to do more aggressive changes to its prices when it is trying to “move” clients

from one inventory to another. If there are more groups with cross-preferences, the leader

has to do more aggressive price changes.



134

CHAPTER 7

CONCLUSION

In this chapter we synthesize the main components of this thesis (model, heuristics, and

results analysis), point out our main contributions, highlight the main limitations, and suggest

future research in this area.

7.1 Synthesis

Our research consists on developing and solving a stochastic bilevel RM model for the

hotel industry and on analyzing its results. In order to identify the main areas for possible

academic and industrial contribution, we reviewed several studies conducted over the last

40 years in HRM. We also examined the development of the hotel industry and its current

trends.

One of the first elements that we noticed was that the hotel industry did not have RM

models that considered simultaneously the length of the stay, the price of the competitors, the

inventory capacity, and particularly the effect of uncertainty on revenue. Therefore, we deve-

loped a model that considered all these elements at the same time, and in which uncertainty

was introduced for competitors’ prices and demand. Regarding demand, it was modelled for

several users’ groups that were jointly looking for minimizing their internal disutility func-

tion. This minimization considered users’ preferences for three criteria, which were price list,

proximity to attraction points, and QoS value.

The model was developed in a first attempt under a deterministic frame and then extended

to its stochastic frame. We examined the pertinence of linking our model to other related

models based on the same paradigms and their properties. Moreover, the model was built

up as a Two-stage Recourse Problem, in which both stages were tied through Price using

two different restrictions : An Absolute Restriction (Model 4)and a Proportional Restriction

(Model 5). This connection was set for every tariff in the leader’s inventories. After this,

we reviewed some of its properties, already studied in the literature, and we proposed some

conjectures regarding its continuity for the Model 4 : Piecewise continuity and non-convex

continuous. Because of all these elements contained in our model, we can argue that our first

contribution in this field is the introduction and development of a complex stochastic bilevel

model for HRM.

In terms of resolution, we developed some strategies that included exact methods, heuris-
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tics and exact methods assisted by new heuristics. First, we began by using an exact method,

the MIP Original, which was not able to provide a numerical solution to our problem. The-

refore, we had to define a better heuristic that could help MIP Original to solve the problem.

Our first attempt was through the development of a Min-Max-Mean naive heuristic, which

provided a very bad solution but it was useful to compare the result with those that could

have been provided by an hotel manager through the analysis of competitors’ prices and

users’ characteristics.

Our second attempt consisted on developing a more complex heuristic, named HBP, which

solved our problem with good results. This heuristic consists in simultaneously descending

and copying prices in an orderly manner and re-optimizing the first level of the problem.

Price exploration was made over a neighborhood in which price vectors were marked and

kept to avoid being re-explored afterwards. A second alternative for exploring prices was

examined through the development of a MIP restricted problem that takes into account the

price vectors obtained in the HBP heuristic as well as other dual variables, in order to reduce

the domain and size of the big constants utilized. By doing this, we were able to help Cplex

to focus on the most promising domain values for the solution. This strategy allows us not

only to complement the HBP heuristic, but also to calculate a gap and thus to be able to

compare our results with those obtained through MIP Original.

Finally, our last strategy consisted in developing MIP-H+ ; a heuristic where assignments

were recalculated to each node of the B&B in order to obtain the best result. This result was

entered into Cplex with the aim of improving the lower bound. We noticed that in most of

the cases, combining HBP with MIP Restricted was the best heuristic for solving our problem

and thus we can argue that our second main contribution is the development of our HBP

heuristic but also its complementary with the MIP restricted problem.

In order to test our model and its heuristics, we began with the resolution of a small

instance. We calculated the classic approximations for the result and also analyzed the quality

of the heuristics based on these numerical results. After that, we solved large instances,

in which the focus was on analyzing revenue composition and distribution per group of

users, with the purpose of getting a better understanding of our model. Once these examples

were analyzed, we solved other large instances to which we added stochasticity in price

and demand with the intention of examining its impact not only on revenue but also on

users’ group distribution per inventory, and the implications of that distribution on revenue.

Finally, we solved more complex problems by assuming different capacity scenarios, which

also included stochasticity in price, demand, or both. The objective of this sensitivity analysis

was to understand the impact of hotel capacity on revenue but also to observe the strategic

distribution of groups to those inventories. We noticed that most of the results were coherent
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with the economic behavior introduced to the model.

In summary, the main contributions of this thesis are to provide an elaborated model for

HRM, to solve small and large instances in a reasonable computing time, to obtain good

mathematical results through the use of our HBP heuristic (although we cannot assure it

is the optimal solution), and to provide very useful results for decision making in the hotel

industry.

7.2 Limitations

There are some research limitations in this thesis that must be acknowledged. First of all,

there are some limitations related to the model and its resolution, which are inherent to MIP

transformations. Indeed, these transformations have serious problems not also for closing the

best-bound (upper bound) and closing the gap in many of the models but also in making

more detailed sensitivity analysis on groups assignments. Moreover, there is not certitude

that we have found the optimal solution for large instances. However, the results obtained in

this thesis are good enough to provide a complete analysis for the industry.

A second limitation is related to stochasticity and specifically to the analysis that can be

done about the impact that it has on revenue. Because our model is a two-stage problem and

the number of scenarios is reduced, as well as the rolling horizon and the Length-of-stay, we

are mainly examining the impact of stochasticity on revenue in terms of volatility but not in

terms of trends.

A third limitation is related to the data generation process, which is by itself another

problem to model. In fact, instances must be carefully designed to avoid falling into atypical

or infeasible cases when we are introducing stochasticity in price and demand.

Finally, our model does not take into account Price-Demand elasticity of users’ groups.

However, this limitation is reduced when we are using the model for conducting short-term

analysis.

7.3 Future Research

Through the development of this thesis and the analysis of the results, we noticed that

there are several possibilities for extending our model for future research. For example, it could

be interesting to develop a numerical approach that takes bigger advantages of the simple

structure, solving a disjunctive problem for every assignment, instead of a MIP transformation

that is cumbersome for closing the gap.

Another approach could be the use of a Progressive Hedging (PH) metaheuristic, which is

a well-suited technique for solving stochastic programs and that has been successfully applied
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by Crainic et al. (2011) for network design. We could use our HBP heuristic to solve scenarios

and the consensual problem among decision variables with a PH metaheuristic.

As widely treated in the literature by Hilge and Sen (1991); Kall and Wallace (2003);

Birge and Louveaux (1997); Kall and Mayer (2005), the Two-stage SLP with Recourse and

discrete distributions shows a particular structure named “L-Shaped”. However, SHBP has

two stages that are Bilevel Problems. It is thus possible to decompose the problem by using

a generalization of Benders’ algorithm (Non-convex Generalized Benders’ decomposition for

Stochastic Programs as presented in Li et al. (2011)) using global optimization tools such as

BARON developed by Tawarmalani and Sahinidis (2005); Sahinidis (2013).

We could also adapt our HBP heuristic not only to consider the first level reoptimization

but also to perform iterations by solving other MIP restricted problems (with some binary

variables fixed) and letting the remaining variables to flip in a reduced number of cases to

look for a better solution. The HBP heuristic could be easily parallelized to take advantage

of different threads and test diverse exploration leaves simultaneously, with a common tree.

It could be also interesting to develop a new approach for generating scenarios, which

would allow us to keep the size of the instances reduced, and at the same time, to enhance the

understanding of stochasticity effects on revenue. Moreover, even though our model behave

very well in economic terms, it could be modified to perform more complex sensitivities,

particularly for the parameters α and β. For instance, we could consider a two-dimensional

criterion for measuring distance, by proposing more than one interest point zone, or by

including two forms for standardizing QoS in order to normalize it with respect to price.

Regarding QoS, the model could be adapted to allow more freedom for the leader in terms

of setting its prices, especially when the leader faces complex situations. This could be done

by eliminating the restrictions related to ordering QoS.

In terms of users groups, we could modify the model to consider identical users’ blocks

instead of individual users. Moreover, we could introduce users’ booking arrival information

to re-optimize prices and booking limits locally, if these were sub-optimal. We argue that it

could be interesting to re-obtain the booking limits, because it is going to help to determine

the impact of protection levels on revenue, particularly when it is performed for low-price

inventories.

Another sensitivity analysis could be done in terms of inventory location. We already

noticed that location played an important competitive advantage role and thus it could be

interesting to examine the effect of adding or eliminating inventories in well located areas on

revenue distribution per user group. It could be done either by closing or by opening new

competitors’ inventories or by allowing the leader to opening a competitive inventory.

The idea of trying a relaxed model for SHBP, allowing different rates for weekend days
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(Thursday to Monday) as certain hotels do seems interesting. Intuitively, this problem should

be easier to solve compared to our SHBP problem with a unique tariff. This new model is

thus considered as a relaxation of the SHBP problem and its revenue should be higher. This

relaxation corresponds to separate the price for each day allowing that each day has an

independent tariff. Algorithmically, it seems easier to fix Ti,q,j, ∀i ∈ A,∀q ∈ Q,∀j ∈ W than

Ti,q,∀i ∈ A, ∀q ∈ Q because there are less binary auxiliary variables involved for each tariff.

As a conjecture, we could consider that the number of local maxima will also increase for the

deterministic equivalent. However, we must notice that in case of finding feasible solutions

those do not define necessarily a vector of feasible auxiliary binary variables to the original

SHBP. Further examinations to this relaxation could be possible by modifying our HBP

heuristic in order to consider a different tariff per day.

Finally, another interesting aspect for further examination would be to compare our actual

model with a new restricted model in order to obtain results that will be independent of group

size and length of stay, but still valid in terms of capacity restrictions. To do this, we could

perform an independent minimization for each group instead of considering the sum of the

disutility of all our users.
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ANNEXE A

Cplex Common General Parameters

Common parameters used for tests :

CPX_PARAM_SCRIND 1

CPX_PARAM_WORKDIR "/tmp"

CPX_PARAM_MIPDISPLAY 2

CPX_PARAM_NODEFILEIND 3

CPX_PARAM_TRELIM 1.53600000000000e+05

CPX_PARAM_BNDSTRENIND 0

CPX_PARAM_FLOWCOVERS 1

CPX_PARAM_IMPLBD 2

CPX_PARAM_PROBE 3

CPX_PARAM_GUBCOVERS -1

CPX_PARAM_FRACCUTS 2

CPX_PARAM_MIRCUTS 1

CPX_PARAM_DISJCUTS 3

CPX_PARAM_MIPEMPHASIS 3

CPX_PARAM_SUBMIPNODELIM 250

CPX_PARAM_REPAIRTRIES 10

CPX_PARAM_MIPSEARCH 1

CPX_PARAM_VARSEL 3

CPX_PARAM_BRDIR 1

CPX_PARAM_PRESLVND 2
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ANNEXE B

Summary Model 5, Sensitivity Analysis with respect to capacity

For the Model 5, the result are show in Table B.1 for stochastic demand, Table B.3 for

stochastic price, and Table B.5 for stochastic price & demand.

Table B.1 Summary Examples : Stochastic Demand in Model 5, Group % in Hotel

Example 1 D Revenue Group 1 Group 2 Group 3 Group 4 Group 5
Decr 20 5.370E+05 30.4% 17.5% 10.1% 9.0% 33.0%
Regular 5.930E+05 23.2% 20.0% 15.4% 12.9% 28.5%
Incr 20 6.510E+05 22.2% 22.5% 21.2% 16.1% 18.0%
Infinit 7.880E+05 18.3% 18.0% 21.2% 19.5% 23.0%

Example 2 D Revenue Group 1 Group 2 Group 3 Group 4 Group 5
Decr 20 4.070E+05 27.0% 2.9% 15.6% 38.7% 15.8%
Regular 5.450E+05 25.1% 1.7% 29.1% 34.2% 9.9%
Incr 20 6.360E+05 20.9% 0.0% 23.7% 27.8% 27.6%
Infinit 7.520E+05 25.9% 6.1% 20.2% 23.7% 24.1%

Example 3 D Revenue Group 1 Group 2 Group 3 Group 4 Group 5
Decr 20 6.690E+05 28.6% 17.3% 18.7% 28.9% 6.5%
Regular 6.640E+05 18.6% 18.1% 23.7% 32.2% 7.5%
Incr 20 6.670E+05 37.5% 16.0% 17.0% 25.5% 4.0%
Infinit 8.730E+05 19.2% 18.2% 19.7% 18.6% 24.3%

Example 5 D Revenue Group 1 Group 2 Group 3 Group 4 Group 5
Decr 20 6.640E+05 0.0% 2.9% 29.1% 37.5% 30.4%
Regular 7.570E+05 0.0% 2.7% 33.4% 36.0% 27.9%
Incr 20 6.120E+05 0.0% 1.1% 35.1% 40.4% 23.4%
Infinit 9.700E+05 20.3% 21.0% 19.2% 19.5% 19.9%

Table B.2 Summary Examples : Change in Group Composition Stochastic Demand in
Model 5, Group Revenue contribution

Example 1 D Revenue Group 1 Group 2 Group 3 Group 4 Group 5
Decr 20 5.370E+05 4.8% 17.5% 24.5% 18.2% 35.1%
Regular 5.930E+05 5.2% 18.5% 27.8% 19.0% 29.5%
Incr 20 6.510E+05 4.6% 24.3% 29.7% 19.6% 21.9%
Infinit 7.880E+05 6.7% 29.3% 33.4% 14.2% 16.3%

Example 2 D Revenue Group 1 Group 2 Group 3 Group 4 Group 5
Decr 20 4.070E+05 10.9% 0.7% 20.8% 38.2% 29.5%
Regular 5.450E+05 14.1% 0.5% 27.7% 33.8% 23.8%
Incr 20 6.360E+05 11.0% 0.0% 23.6% 28.4% 37.0%
Infinit 7.520E+05 21.4% 10.8% 20.3% 23.4% 24.0%

Example 3 D Revenue Group 1 Group 2 Group 3 Group 4 Group 5
Decr 20 6.690E+05 23.7% 22.2% 25.9% 24.2% 3.9%
Regular 6.640E+05 19.0% 22.1% 28.7% 25.8% 4.4%
Incr 20 6.670E+05 31.8% 21.3% 24.9% 19.7% 2.4%
Infinit 8.730E+05 22.3% 21.7% 23.9% 14.3% 17.8%

Example 5 D Revenue Group 1 Group 2 Group 3 Group 4 Group 5
Decr 20 6.640E+05 0.0% 2.9% 26.4% 31.3% 39.4%
Regular 7.570E+05 0.0% 3.4% 19.2% 29.2% 48.3%
Incr 20 6.120E+05 0.0% 1.2% 20.2% 36.5% 42.1%
Infinit 9.700E+05 13.3% 24.7% 19.2% 21.0% 21.9%
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Table B.3 Summary Examples : Change in Group Composition Stochastic Price in Mo-
del 5, Group % in Hotel

Example 1 P Revenue Group 1 Group 2 Group 3 Group 4 Group 5
Decr 20 2.700E+05 33.5% 0.0% 1.0% 25.9% 39.6%
Regular 5.590E+05 28.2% 13.6% 24.5% 17.1% 16.7%
Incr 20 5.960E+05 27.6% 17.5% 27.6% 11.9% 15.4%
Infinit 7.040E+05 25.0% 29.6% 30.2% 7.3% 7.8%

Example 2 P Revenue Group 1 Group 2 Group 3 Group 4 Group 5
Decr 20 3.900E+05 27.7% 1.6% 27.6% 17.9% 25.3%
Regular 3.800E+05 27.3% 0.0% 24.4% 18.3% 29.9%
Incr 20 5.780E+05 11.7% 0.0% 28.4% 30.0% 29.9%
Infinit 7.030E+05 22.0% 12.3% 20.1% 21.3% 24.3%

Example 3 P Revenue Group 1 Group 2 Group 3 Group 4 Group 5
Decr 20 4.330E+05 19.9% 37.9% 3.7% 26.0% 12.6%
Regular 6.520E+05 29.9% 25.4% 8.7% 25.2% 10.7%
Incr 20 6.980E+05 22.4% 20.3% 23.7% 20.4% 13.1%
Infinit 7.430E+05 21.6% 21.1% 24.6% 18.3% 14.4%

Example 5 P Revenue Group 1 Group 2 Group 3 Group 4 Group 5
Decr 20 7.390E+05 0.0% 13.0% 28.0% 23.7% 35.2%
Regular 4.590E+05 0.4% 0.9% 9.0% 36.8% 53.0%
Incr 20 4.820E+05 5.7% 3.6% 37.4% 32.8% 20.5%
Infinit 8.970E+05 16.8% 22.5% 19.8% 21.1% 19.8%

Table B.4 Summary Examples : Change in Group Composition Stochastic Price in Mo-
del 5, Group Revenue contribution

Example 1 P Revenue Group 1 Group 2 Group 3 Group 4 Group 5
Decr 20 2.700E+05 7.0% 0.0% 2.2% 41.2% 49.7%
Regular 5.590E+05 3.9% 15.4% 36.3% 20.9% 23.4%
Incr 20 5.960E+05 4.4% 21.1% 36.9% 16.7% 20.9%
Infinit 7.040E+05 2.9% 32.3% 33.0% 15.4% 16.5%

Example 2 P Revenue Group 1 Group 2 Group 3 Group 4 Group 5
Decr 20 3.900E+05 11.7% 0.6% 24.1% 25.1% 38.6%
Regular 3.800E+05 10.9% 0.0% 23.4% 26.2% 39.5%
Incr 20 5.780E+05 8.2% 0.0% 25.0% 27.7% 39.1%
Infinit 7.030E+05 21.2% 15.3% 19.5% 20.6% 23.4%

Example 3 P Revenue Group 1 Group 2 Group 3 Group 4 Group 5
Decr 20 4.330E+05 17.4% 43.0% 4.1% 27.2% 8.3%
Regular 6.520E+05 21.9% 24.0% 22.1% 19.7% 12.4%
Incr 20 6.980E+05 20.6% 20.9% 26.1% 17.8% 14.6%
Infinit 7.430E+05 22.6% 22.1% 25.8% 15.4% 14.1%

Example 5 P Revenue Group 1 Group 2 Group 3 Group 4 Group 5
Decr 20 7.390E+05 0.0% 14.4% 18.7% 17.7% 49.2%
Regular 4.590E+05 0.0% 2.1% 5.7% 26.9% 65.4%
Incr 20 4.820E+05 2.3% 2.9% 40.6% 29.2% 25.0%
Infinit 8.970E+05 19.4% 23.3% 17.8% 19.0% 20.5%
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Table B.5 Summary Examples : Change in Group Composition Stochastic Price & De-
mand in Model 5, % Group in Hotel

Example 1 DP Revenue Group 1 Group 2 Group 3 Group 4 Group 5
Decr 20 4.990E+05 30.5% 7.3% 25.1% 15.8% 21.4%
Regular 5.660E+05 27.8% 12.2% 23.0% 17.7% 19.2%
Incr 20 6.110E+05 27.8% 15.8% 25.2% 14.8% 16.4%
Infinit 7.210E+05 25.9% 27.3% 32.3% 7.0% 7.5%

Example 2 DP Revenue Group 1 Group 2 Group 3 Group 4 Group 5
Decr 20 3.510E+05 27.1% 2.1% 21.4% 22.8% 26.5%
Regular 3.770E+05 31.9% 2.2% 19.9% 21.2% 24.8%
Incr 20 3.470E+05 32.8% 0.0% 20.7% 21.1% 25.3%
Infinit 7.290E+05 23.7% 14.2% 18.4% 21.7% 22.0%

Example 3 DP Revenue Group 1 Group 2 Group 3 Group 4 Group 5
Decr 20 4.740E+05 9.6% 19.6% 31.0% 25.0% 14.8%
Regular 7.090E+05 27.1% 23.4% 9.4% 23.6% 16.5%
Incr 20 6.400E+05 20.0% 14.0% 17.3% 29.1% 19.5%
Infinit 7.580E+05 24.2% 22.8% 24.7% 14.8% 13.4%

Example 5 DP Revenue Group 1 Group 2 Group 3 Group 4 Group 5
Decr 20 5.560E+05 0.0% 9.9% 30.3% 26.5% 33.2%
Regular 4.850E+05 0.5% 2.5% 17.2% 43.9% 35.9%
Incr 20 5.770E+05 6.8% 2.3% 28.0% 40.5% 22.3%
Infinit 9.280E+05 16.9% 21.9% 20.0% 20.4% 20.8%

Table B.6 Summary Examples : Change in Group Composition Stochastic Price & De-
mand in Model 5, Group Revenue contribution

Example 1 DP Revenue Group 1 Group 2 Group 3 Group 4 Group 5
Decr 20 4.990E+05 3.3% 6.8% 39.3% 24.7% 25.8%
Regular 5.660E+05 5.0% 14.5% 35.9% 21.7% 22.9%
Incr 20 6.110E+05 6.2% 19.7% 35.7% 18.5% 19.8%
Infinit 7.210E+05 3.0% 30.8% 35.1% 15.0% 16.1%

Example 2 DP Revenue Group 1 Group 2 Group 3 Group 4 Group 5
Decr 20 3.510E+05 10.0% 0.5% 24.5% 29.1% 35.9%
Regular 3.770E+05 13.3% 0.5% 23.4% 27.0% 35.8%
Incr 20 3.470E+05 11.6% 0.0% 23.0% 27.6% 37.7%
Infinit 7.290E+05 22.1% 16.4% 18.5% 21.1% 21.9%

Example 3 DP Revenue Group 1 Group 2 Group 3 Group 4 Group 5
Decr 20 4.740E+05 7.1% 22.6% 38.4% 24.0% 7.9%
Regular 7.090E+05 21.0% 23.9% 21.7% 18.8% 14.5%
Incr 20 6.400E+05 14.4% 21.2% 26.8% 21.4% 16.3%
Infinit 7.580E+05 22.9% 22.2% 24.5% 16.0% 14.5%

Example 5 DP Revenue Group 1 Group 2 Group 3 Group 4 Group 5
Decr 20 5.560E+05 0.0% 6.6% 26.5% 24.6% 42.3%
Regular 4.850E+05 0.0% 7.4% 20.8% 40.7% 31.1%
Incr 20 5.770E+05 2.6% 2.1% 23.2% 34.0% 38.2%
Infinit 9.280E+05 17.3% 22.9% 18.8% 20.6% 20.3%
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