View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by PolyPublie

UNIVERSITE DE MONTREAL

ON LINE TRACE SYNCHRONIZATION FOR LARGE SCALE DISTRIBUTED
SYSTEMS

MASOUME JABBARIFAR
DEPARTEMENT DE GENIE INFORMATIQUE ET GENIE LOGICIEL
ECOLE POLYTECHNIQUE DE MONTREAL

THESE PRESENTEE EN VUE DE L’OBTENTION
DU DIPLOME DE PHILOSOPHIZE DOCTOR
(GENIE INFORMATIQUE)
NOVEMBRE 2013

(© Masoume Jabbarifar, 2013.

https://core.ac.uk/display/213618851?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNIVERSITE DE MONTREAL

ECOLE POLYTECHNIQUE DE MONTREAL

Cette theése intitulée :

ON LINE TRACE SYNCHRONIZATION FOR LARGE SCALE DISTRIBUTED
SYSTEMS

présentée par : JABBARIFAR Masoume

en vue de 'obtention du diplome de : Philosophise Doctor

a été dument acceptée par le jury d’examen constitué de :

Mme BOUCHENEB Hanifa, Doctorat, présidente

M. DAGENAIS Michel, Ph.D., membre et directeur de recherche
M. GAGNON Michel, Ph.D., membre

M. GOSWANTI Dhrubajyoti, Ph.D., membre

111

I dedicate my dissertation work to :

my loving parents, Batoul and Norouzali
whose words of encouragement while

I am far away of them and they miss me a lot,

my husband, Alireza,
has never left my side and supported me

throughout the process with his special love,

my beautiful princess daughter, Liana,

whose smile 1s my everything

I would have never been here without your support.

v

ACKNOWLEDGEMENTS

I would like to express my deep and sincere gratitude to my supervisor Professor Dr.
Michel Dagenais for his endless support, understanding, kindness, and great supervision. His
guidance and ideas opened new doors into new aspects of distributed systems tracing for me.
He also gently added some constraints and restrictions into the method of thinking which
have been very beneficial and accelerated my research process. During my PhD studies in
Ecole Polythechnique de Montreal, I learned a lot from him not only about research but also
about life.

Many thanks go to the committee members who were more than generous with their
expertise and precious time. A special thanks to Dr. Hanifa Boucheneb, committee chairman,
for her countless hours of reflecting, reading, encouraging, and most of all patience throughout
the entire process. Thank you Dr. Michel Gagnon, Dr. Dhrubajyoti Goswami, and Dr. Robert
Legros for agreeing to serve on my committee.

Thanks to Ericsson and the Natural Sciences and Engineering Research Council of Canada
for funding this research.

I would like to thank my friends and colleagues at the DORSAL laboratory of the depart-
ment of Computer and Software Engineering. All of you have been my best cheerleaders.

I wish to thank my mother Batoul Tabaghlou-Sorkhab and my father Norouzali Jabba-
rifar. No words can express and no act of gratitude can relay what their love and support
have meant to me. I hope they accept this as an indication of my heartfelt appreciation for
everything they are.

[would like to thank my brothers Rasoul and Davoud, my sisters Farkhonde, Soraya, and
Fahime and their lovely families, my nephews Vahid and Saeed and their nice spouses, Ali,
and Mohammad, and finally my nieces Maryam, Pegah, Maedeh, Mahya, Zahra, Parastou,
and Dina. Without their support and encouragement, my efforts to complete this dissertation
would not have been possible.

I am very thankful to my mother-in-law and father-in-law, Parvin and Khanali Shameli-
Sendi. I am also grateful to my brothers-in-law Mohammad and his family, and Sajad, and
my sisters-in-law Zahra and Fatemeh for their unconditionally loving and supportive energy
at all times.

Finally, but most importantly, I am indefinitely indebted to my husband, Alireza, who has
put up with me for reasons not always obvious, endured countless sacrifices so that I can follow
my dreams and supported me in any way that he could. I owe all of my accomplishments to

him.

RESUME

Les systemes distribués en réseau fournissent une plate-forme informatique polyvalente
pour soutenir diverses applications, telles que des algorithmes de routage dans les réseaux
de télécommunication, les systemes bancaires dans les applications de réseau, les systemes
de controle d’aéronefs dans le controle de processus en temps réel, ou le calcul scientifique,
y compris les grilles et grappes de calcul en calcul parallele. Ces systemes sont généralement
supervisés afin de détecter, de déboguer et d’éviter les problemes de sécurité ou de perfor-
mance. Un outil de tragage est une des méthodes les plus efficaces et précises, avec laquelle
toutes les informations détaillées pour chaque noeud individuel dans le systeme peuvent étre
extraites et étudiées.

Typiquement, une tache énorme est divisée en de nombreuses taches, qui sont distribuées
et exécutées sur plusieurs ordinateurs coopérant en réseau. Ainsi, afin de controler la fonc-
tionnalité des systemes distribués actuels, toutes les informations sont collectées a partir de
plusieurs systemes et appareils embarqués pour une analyse et une visualisation a la fois en
ligne et hors ligne. Cette information de tragage, générée a un rythme effarant, est livrée avec
estampilles de temps générées localement sur chaque noeud. Ces estampilles sont générale-
ment fondées sur des compteurs de cycle, avec une granularité du niveau de la nanoseconde.
Toutefois, les horloges de chaque noeud sont indépendantes et donc asynchrones les unes des
autres. Néanmoins, les utilisateurs s’attendent a voir la sortie de I’analyse en temps réel, sur
un axe de référence de temps commun, afin d’étre en mesure de diagnostiquer les problemes
plus facilement.

La portée de l'oeuvre proposée ici est la synchronisation efficace et en direct de traces
générées dans un environnement de grande grappe d’ordinateurs avec des estampilles de temps
de granularité du niveau de la nanoseconde, produites par des horloges non synchronisées.
Par ailleurs, le modele de trafic du réseau, le nombre de noeuds informatiques disponibles et
meéme la topologie du réseau peuvent changer. En effet, les grands centres de données roulent
un ensemble diversifié et en constante évolution d’applications. Les noeuds peuvent échouer
ou revenir en ligne a tout moment, et méme le réseau peut étre reconfiguré dynamiquement.
Ainsi, motivé par la grande échelle des systemes ciblés, le volume élevé de flux de traces de
données associés, la limitation des tampons mémoire et la nécessité d’une analyse en direct,
et la haute précision de synchronisation requise, nous avons con¢u une nouvelle approche
incrémentale pour synchroniser les traces de plusieurs ordinateurs connectés a un réseau
dynamique a grande échelle.

Tout d’abord, nous présentons une nouvelle technique de synchronisation en direct des

vi

connexions individuelles basée sur la classification rapide des paquets échangés, soit comme
des paquets précis ou des paquets inintéressants. Cette méthode permet d’obtenir a la fois
le plus bas cotlit de calcul, une latence minimale et une meilleure précision. Deuxiemement,
nous avons proposé un algorithme efficace pour calculer incrémentalement ’arbre couvrant
minimum des liaisons réseau avec la meilleure précision (plus faible inexactitude) afin de
permettre le calcul efficace de parametres de synchronisation transitive entre deux noeuds
qui ne sont pas connectés directement. Ce probléeme est un défi multiple puisque I'exactitude
des liens change au fur et a mesure que des paquets sont échangés entre deux noeuds, de
nouveaux liens peuvent apparaitre lorsque les noeuds commencent a échanger des paquets,
et de nouveaux noeuds peuvent aussi apparaitre. Enfin, nous avons proposé un nouvel algo-
rithme pour identifier efficacement et mettre a jour le noeud de référence optimal dans I'arbre
couvrant minimum, afin d’utiliser ce noeud comme référence de temps pour 'analyse et la
visualisation des traces de plusieurs noeuds. En résumé, nous avons concu et mis en oeuvre
une nouvelle procédure efficace et complete pour la synchronisation de trace optimale, dans
un environnement de tres grande grappe d’ordinateurs, en direct.

Le Linux Trace Toolkit next generation (LTTng), développé a I’Ecole Polytechnique de
Montréal, offre une trace d’exécution détaillée des systemes Linux avec faible surcharge. Notre
nouvelle procédure a été programmée et validée par la synchronisation en ligne d’énormes

traces LTTng dans de grands réseaux dynamiques.

Vil

ABSTRACT

Networked distributed systems provide a versatile computing platform for supporting vari-
ous applications, such as routing algorithms in telecommunication networks, banking systems
in network applications, aircraft control systems in real-time process control, or scientific com-
puting including cluster and grid computing in parallel computation [61]. These systems are
typically monitored to detect, debug and avoid security or performance problems. A tracing
tool is one of the most efficient and precise methods, in which all the detailed information
for every individual node in the system can be extracted and studied. Typically, a particular
huge task is divided into many tasks, which are distributed and run on several cooperating
networked computers. Hence, in order to monitor the functionality of current distributed
systems, all information is collected, from multiple systems and embedded devices, for both
online and a posteriori offline analysis and viewing. This tracing information, generated at a
staggering rate, comes with timestamps locally generated on each node. These timestamps
are typically based on cycle counters, with a nanosecond level granularity. However, the
clocks in each node are independent and thus asynchronous from one another. Nonetheless,
users expect to see the analysis output in real-time, on a common time reference axis, in
order to be able to diagnose problems more easily.

The scope of the work proposed here is the efficient and live synchronization of traces
generated in distributed systems with nanosecond granularity timestamps produced by unsyn-
chronized clocks. Moreover, the pattern of network traffic, the number of available computer
nodes and even the network topology can change. Indeed, distributed systems run a diverse
and changing set of applications, nodes may fail or come back online at any time, and even
the network can be reconfigured dynamically. Thus, motivated by the large scale of targeted
systems, the high volume of associated trace data streams, the data buffering limitations, and
the need for live analysis and high synchronization precision, we designed a new incremental
approach to synchronize traces from multiple connected computers in a large scale dynamic
network.

First, we present a novel schema for live synchronization of individual connections based
on the fast classification of exchanged packets as either accurate packets or uninteresting
packets. This method achieves at the same time the lowest computing cost, lowest latency
and best accuracy. Secondly, we proposed an efficient algorithm to incrementally compute
the minimum spanning tree of network links with the best precision (lowest inaccuracy) in
order to allow the efficient computation of synchronization parameters transitively between

two nodes which are not connected directly. This problem is a multiple challenge since the

viil

accuracy of links changes as more packets are exchanged between two nodes, new links may
appear when nodes start exchanging packets, and new nodes may appear as well. Finally,
we proposed a new algorithm to efficiently identify and update the optimal reference node in
the minimum spanning tree, in order to use this node as time reference when analyzing and
visualizing traces from multiple nodes. In summary, we designed and implemented a new
efficient procedure for optimum trace synchronization in a live distributed systems.

The Linux Trace Toolkit next generation (LTTng), developed at Polytechnique Montreal,
provides a detailed execution trace of Linux systems with low overhead. Our new procedure
was programmed and validated through the online synchronization of huge LTTng traces in

large dynamic networks.

1X

CONTENTS

DEDICATION .« . . o oo iii

ACKNOWLEDGEMENTS

CHAPTER 2 LITERATURE REVIEW : A Comprehensive Survey of Techniques and |

| Challenges in Distributed Systems Time Synchronization| 9
.1 Abstractlo 9
2.2 Introductionl 9
[2.3 Clock and Synchronization Protocols 11

[2.3.1 'Time Keeping Hardware| 12

-) calculationl oo oo 13

[2.3.3 Logical clock Synchronization| 15

[2.4 Synchronization techniques to compute clock oftset and drift| 15
[2.5 Synchronization Applications| o000 20
[2.5.1 Offline Clock Synchronization| 20

[2.5.2 Online Clock Synchronization| 22

[2.6 Evaluation of protocols| o 23
2.6.1 PBvaluation factors/. L Lo 23
[2.6.2 Protocols comparison|o 25

.7 Conclusionl. 26

CHAPTER[3 Paper 1 : Streaming Mode Incremental Clock Synchronization] 28

B.1 Abstractl 28

3.2 Introductionl 28

3.3 Related Worklo o 29
[3.3.1 Offline Clock Synchronization| 29
[3.3.2 Online Clock Synchronization| 31

[3.4 Kernel-Level Event Tracingl 32
B.4.1 Tracer] 32
[3.4.2 Time Stamp Counter| 32

[3.5 Terminology and background| 33

[3.6 Proposed Modell 35
3.6.1 Modell 36
.62 Convex-Hulll 38
[3.6.3 Window-based Approach|. oL 40
[3.6.4 Fully Incremental Approach| 45

[3.7 Experiments and evaluation| 50
[3.7.1 Experimental setup| o000 50
[3.7.2 Packet matching and Convex-Hull pomnts| 52
[3.7.3 Accuracy and Cost| 55
[3.7.4 Delay and Packet loss ettects on the Fully Incremental approach| 58

3.8 Conclusionl. L 60

CHAPTER 4 Paper 2 : Reference Node Selection in Dynamic Tred|. 61

41 Abstractl 61

4.2 Introductionl 61

4.3 Related Workl 62

44 Data Structurelo 63

[4.5 Methodologyl 65
[4.5.1 Reference Nodel 65
[4.5.2 Independent trees|. 65
[4.5.3 Adding a single vertex and edge| 66

[4.5.4 Replacing an edge in a tree| 66

x1

[4.5.5 Inserting an edge between two independent trees/. 73
[4.6 Algorithm complexity|. 76
[4.7 Experiments and evaluationl 0000 76
[4.7.1 Experimental setup| o o0 76
472 Resultsl. 7
M.7.3 Performance evaluationl.o 81
4.8 Conclusion|. 83

CHAPTER 5 Paper 3 : LTANA : Live Incremental Time Synchronization of Traces for |

[Distributed Systems Analysis|o oo 86
b1 Abstractl 86
H.2 Introductionlo 86
b3 Related Workl 88
[>.4 Terminology and background| o000 89
[5.5 Methodology| 91

[5.5.1 'T'wo-node synchronization| 91
[5.5.2 Multi-hop synchronization|o 95
[5.5.3 Dynamic Reference Node|. 98
[5.5.4 Synchronization Factor Propagationl. 99
[5.6 Experiments and evaluation 0000 99
[5.6.1 Simulation experiments|.o 99
H.6.2 Real world traced network| 101
[0.6.3 Discussionl 108
b7 Conclusion|. 115

CHAPTER [6__GENERAL DISCUSSION| 116

CHAPTER[_CONCLUSION] 120
[7.1 Concluding Remarks| 120
[(.2 Future Researchl. 121

[7.2.1 Data integration from Virtual Machine| 122
[7.2.2 Hardware tracing| 123

LIST OF REFERENCES

xii

LIST OF TABLES

[Table 2.1 Pertformance comparison of synchronization protocols| 26
[Table 3.1 'T'he packet loss aftection on Fully Incremental approach|. 58
[Table 4.1 Number for each operation, from a total of one million operations| . . . 79
[Table 4.2 The result of proposed algorithm for six datasets in term of RN changes| 80
[Table 4.3 The status of join operation|, 81
[Table 4.4 Number of descendantSize update in each operation| 82
[Table 5.1 Number of operations by type, out of a total ot one million operations|. 102
[Table 5.2 Number of operations which affect and update the MST', out of a total |
[of one million operations| Lo 102
[Table 5.3 Dataset teatures and number of RN changes| 106
able 5.4 Time evaluation with the Non Incremental methodl 109
[Table 5.5 'The MST, RN, and conversion parameter update computation time |

| with the Non Incremental [85] method applied on 2-second windows| . . 110

[Table 5.6 Decomposition of the execution time for the proposed method| 113

xiil

LIST OF FIGURES

[Figure 1.1 oSynchronization view of LT'T'V| 3
[Figure 1.2 oynchronization view ot TMFE'[.)
[Figure 1.3 Synchronization architecture| 6
[Figure 2.1 SYNC message| 14
[Figure 2.2 Convex-hull method.| L. 19
[Figure 3.1 'T'wo different approaches for online synchronization.|. 37
[Figure 3.2 Convex-hull method.| 39
[Figure 3.3 The local clock values used for traces T0 and I'l may be highly desyn- |
[chronized. Two traces starting about at the same time may see start |
| times of 600sec. and 800sec. on their local clocks, respectively. With a |
| window size of 3sec., the first window, W1, will go from 600sec. (mi- |
| nimum start time) to 803sec. (maximum start time plus window size). |
[Atter processing the first time window, and analyzing matching events, |
[1t may be computed that trace T0 should be oftset by -200sec., using |
['I'T as time reference. 'T'he second time window, W2, is from 803sec. to |
| 806sec., based on the reterence time of T'1. This corresponds to 603sec. |
[to 606sec. in T'0 based on its local clock. After synchronization, we rea- |
| lize that events in 'T'0 for time range W2 have already been processed |
| as part of W1. These already read events are skipped.|. 44
[Figure 3.4 Correlated sliding window.| 46
[Figure 3.5 Fully Incremental Approach| 47
[Figure 3.6 Geometric movement state in upper and lower hulls| 48
[Figure 3.7 The number of matched packets in each window.| 53
[Figure 3.8 The number of pairs in Convex-Hull in each window (Correlated ap- |
| proach).| 53
[Figure 3.9 The number of pairs in Convex-Hull in each synchronization (Fully |
| Incremental approach).| oo oo 54
[Figure 3.10 Comparison of total pairs in Convex-Hull| 54
[Figure 3.11 Accurate packet rate| Lo 56
[Figure 3.12 Accurate packet distribution vs. time window enhancement|. 56
[Figure 3.13 Comparison of time synchronization approaches in streaming mode.| . . 59
[Figure 3.14 Zoom on the accuracy dimension of Figure[3.13[from 1.2e7% to 1.9¢7"° |

Xiv

[Figure 4.1 The DescendantSize operation in insertion mode with no tree cycle| . . 67
[Figure 4.2 The position of add() and cut()f 69
[Figure 4.3 One way the previous reference node can remain an R/N| 72
[Figure 4.4 One case of joining two trees|. 74
[Figure 4.5 Execution time for recomputing the RV as a graph with an increasing |
[number of updated vertices. The updating sequences contain one mil- |
| lion operations, consisting of Insertion, Join, Cycle, and updateEdge, [
| in a forest. The previous algorithm measured here has a complexity of |
| O . . 83
[Figure 4.6 Dynamic Time RN : running time on a random graph with an increa- |
[sing number of vertices plotted using an algorithm with a complexity |
| of O(log n). Updating sequences contained one million operations in- |
| cluding Insertion, Jown, Cycle, and updateldge, in a forest| 84
[Figure 4.7 The rate of page taults with the proposed method : running time in- |
[creases linearly with the number ot nodes.| 85
[Figure 4.8 ''ne memory usage of the proposed method ; the running time increases |
| linearly with the number of nodes.| 85
[Figure 5.1 Convex-Hull method.| 93
[Figure 5.2 Fully Incremental Approach| 94
[Figure 5.3 Fully Incremental Approach| 96
[Figure 5.4 A general example of a resynchronization area when the MST changes|. 100
[Figure 5.5 Execution time for recomputing the MST" as a graph with an increasing |
[number of updated vertices and edges. The updating sequences contain |
[one million operations, consisting of Insertion, Join, Cycle, and upda- |
| teFdge, in a forest. The proposed algorithm measured here has a time |
| complexity of O(logn)| o . 103
[Figure 5.6 Dynamic Time RN : running time on a random graph with an increa- |
[sing number of nodes plotted using an algorithm with a complexity of |
| O(log n). Updating sequences contained one million operations inclu- |
| ding Insertion, Join, Cycle, and updatelEdge, in a dynamic network] . . 103
[Figure 5.7 Map of the computer cluster used in the experiment|. 105
[Figure 5.8 Comparison between the Fully Incremental and Non Incremental me- |
[thods for pairwise computer time synchronization| 111
[Figure 5.9 Comparison between the two methods for the complete network time |
| synchronization computation|. L. 112
[Figure 5.10 Accuracy after 25 minutes for each node statically defined as RN| . . . 112

ACK
API
BTS
CPU
CTF
DSB
GPS
ID
IBM
I/0

IP
IRQ
KVM
LTIANA
Log
LTTng
LTTV
MPI
MST
NTP
NTPD
OS
PIT
PTP
QoS
QEMU
RN
RT
RTT
SNTP
ST
SYNC
TCP

LIST OF SIGNS AND ABBREVIATIONS

Acknowledge

Application Programming Interface
Branch Trace Store

Central Processing Unit
Common Trace Format

Data Synchronization Barrier
Global Positioning Satellites
[Dentification

International Business Machines
Input/Output

Internet Protocol

Interrupt Request

Kernel-based Virtual Machine
Live Incremental Asynchronous Network Analysis
Logarithm

Linux Trace Toolkit Next Generation
Linux Trace Toolkit Viewer
Message Passing Interface
Minimum Spanning Tree
Network Time Protocol
Network Time Protocol Daemon
Operating System
Programmable Interrupt Timers
Precision Time Protocol

Quality of Service

Quick EMUlator

Reference Node

Real-Time

Round Trip Time

Simple Network Time Protocol
Splay Tree

Synchronization

Transmission Control Protocol

XV

TMF
TSC

UDP
UTC
UST

VM

Tracing and Monitoring Framework in the Eclipse framework
Time Stamp Counter

User Datagram Protocolor

Coordinated Universal Time

User-Space Tracer

Virtual Machine

XVl

CHAPTER 1

INTRODUCTION

The arrival of multi-core processors in computer clusters represents an evolutionary change
in conventional computing to obtain high performance computing. However, these systems
may exhibit coherency problems when parallel programs access shared resources, thus creating
hard to debug timing related problems. It is therefore crucial to have proper tools to monitor,
trace and analyze system execution, in order to identify functional and performance problems.
A trace facility aims to keep track of functional flow and report relevant changes at certain
times. An efficient and accurate system level tracing is required to monitor and maintain
distributed systems.

Over the years, different tools have been implemented to trace operating system behavior
by recording kernel events. Some of the most interesting tracing tools are Ftrace [5], Dtrace
[4], Systemtap [9], and LTTng [8]. The currently available trace visualization tools have often
targeted detailed traces for small real-time embedded systems, or much less detailed system
logs for larger systems. Moreover, existing tracing tools for distributed systems often use
coarse higher level events, at the message passing programming interface layer, for which
local clock differences may not be a problem; using a time sychronization service daemon
may provide sufficient accuracy in that case, to combine timestamps from several nodes as if
their clocks were synchronized.

In newer distributed systems, with shorter and more frequent interactions between nodes,
higher accuracy is desirable, especially for measuring and debugging low latency operations.
This is the case, for example, for telecom servers, and high performance web sites such as
search engines. This explains the high interest for accurate traces synchronization, providing
higher accuracy and avoiding the requirement for a time synchronization service in the system
under study. Indeed, a major challenge, in monitoring and debugging tools for live systems,

is to minimize the impact of tracing on the traced computer.

1.1 LTTng

LT7Tng, developed at Ecole Polytechnique de Montreal, provides a detailed execution
trace of the Linux operating system with low overhead. LT7Tng, like other tracers such as
Perf [27], Xtrace [43], and etc.[28], uses probes to track system events. The probes fetch

some information, and write it in event records. An event record contains an event identifier,

a timestamp, and optionally an event specific payload. Probes, when currently enabled, are
called when the associated instrumentation is encountered during execution.

LTTng is a prime example of low overhead tracing used for measuring small intervals,
for instance system call entry and exit, which may happen within one microsecond. LT Tng
is thus capable of handling huge traces of several gigabytes or more [29]. LTTng not only
has a very low overhead but it is also able to trace kernel space and user space activities
simultaneously. These specific characteristics of LTTng help monitoring an ample range of
activities in a computer [§].

However, to handle huge detailed traces collected from multiple system nodes and em-
bedded devices, for both online and a posteriori offline analysis and viewing, a new approach
is required. Furthermore, while LT Tng started as a tool for a posteriori analysis, the latest
improvements now enable the live tracing and streaming of traces from multiple nodes. In
a computer cluster, multiple nodes produce separate trace streams independently. Events in
the traces come with a timestamp. Since timestamps are recorded based on a local clock that
runs asynchronously on each node, the logical order of events cannot be guaranteed. Global
trace analysis, therefore, faces the problem of converting the local timestamp values to a
common reference time. Consequently, the aim of this work is to provide a new, efficient and
accurate traces synchronization algorithm for live trace viewing and analysis. Indeed, LT Tnhg
should be able to visualize traces from several distributed systems on a common reference

time base.

1.1.1 LTTV and TMF

LTTYV, Linux Trace Toolkit Viewer, is the stand-alone viewer for kernel and userspace
traces. It is written in C/C++ using Glib and GTK+. It uses libbabeltrace to read the LTTng
CTF traces. Figure shows a screenshot of LTTV.

TMF, the Tracing and Monitoring Framework, is an Eclipse plug-in to view LTTng kernel
and userspace traces. It is part of the Linux Tools project at Eclipse and was used to prototype
the new proposed approach. TMF provides different types of detailed trace analysis. It offers
different views such as the "Control flow view” and "Statistic view”, which facilitate trace
analysis [7]. Figure shows a screenshot of TMF where two trace files are shown with
a common time base. Meanwhile, the synchronization parameters, relating each local clock
to the common time reference, are shown in the synchronization view at the bottom of
this Figure. Two traces with the names of scp_dest and scp_src are illustrated and their
connection status is shown in row Quality. The Accurate label for this row indicates that the
synchronization was achieved correctly at this moment. Hence, the drift and offset of these

two traces are shown in the next two rows (alpha and beta) respectively. In addition, other

Linux Trace Toolkit Viewer

Fle View Tools Plugins

D8I

]) W = @@@B QQ@ - v X = % =

Traceset |

-

10173032308

1} Resource

@ Blockdev (22,0
Blockdev (3,0)
CPUD

IRQ 1 [ig042]
IRD 14 [ide0]

IRQ 18 [uhe_heekusb2]

P |

22708
Be30748450:

1} Process | Brand | PID | TGID| FFID | CPU ':::::“”m ::::;I”“m
@ su UMNBRAMDED 4182 4182 4151 0O

Hetctl UNBRAMDED 4183 4183 4182 0

=] UMBRAMDED 4185 4185 1]

=] UNBRAMDED 4186 4185 1 Q H

Ibinsu UMBRAMDED 4182 4188 4151 0

lustflocalibinittctl UNBRANDED 4185 4185 4188 O

1
22708
Be30748450:

mefprafitrapitrace-dd-hde-hda/cpu_0), 0, 0, swapper, UNBRANDED, 0, 0x0, IRQ { major = 2, rinor = 0, diraction = 1}

lomel/prfftmpitrace-dd-hdc-hdajcpu_0), 0, 0, swapper, UNBRANDED, 0, 0x0, IRQ { device = 3145728, sector = 80207, size = 4096, what = 16908288, error = 0 }

Eiprfitrpitrace-dd-hdec-hdajcpu_0), 4187, 4187, fbinfdd, UNBRAMDED, 4176, 0x0, SYSCALL { device = 23068672, sector = 0, size = 0, what = 16842752, error =0}
dd, UNBRAMDED, 4176, 0x0, SYSCALL { maj

fprfitmpitrace-dd-hde-hdaicpu_0), 4187, 4187, /birydd, UNBRAMNDED, 4176, 0x0, SYSCALL { device = 23068672, sector = 0, size = 0, what = 16842752, error = 0}

mefprafitrapitrace-dd-hde-hdalcpu_0), 0, 0, swapper, UNBRANDED, 0, 0x0, IRQ { major = 22, rinar = 0, direction = 0 }

ST T A W U O R C R LRIRRALIRER A A RA T i — AMRARRETA dooe — A dime A ek — 1FRARTER e = A1

CICl

Time Frame start (2254 [*] 101730325 [*| ns| end:[2270 [.]s[s65074845 [] ns|Time ntervat 16 [.]s[767344520 [| ns Current Time: [2258 [2] s[13623345 [%]ns
[

-

Figure 1.1 Synchronization view of LTTV

synchronization parameters are represented in following rows.

1.1.2 Synchronization Architecture in LTTng

Prior to the work proposed here, the synchronization of two traces in offline mode (tracing
is completed and saved in a file on each computer) had been implemented recently in LT Tng
[85]. The main concern was to achieve a high accuracy with this trace analysis enhancement.
It consisted in a post-processing step called offline synchronization [85]. This method was
applied to traces recorded at the kernel level with low intrusiveness in offline mode. Figure|1.3
illustrates the general architecture of the synchronization model, showing the synchronization
steps. There are four connected modules in it. Each module receives input from one or more
modules and sends output to other modules.

The input of this architecture is fed by LTTng and consists of two or more unsynchronized
trace files. The output is two or more synchronized traces. The output format is compatible
with LTTV and TMF, which are able to show synchronized traces. The following modules
are present in this architecture :

Processing module : Traces are gathered from all distributed nodes in distributed
systems, and are ready to be analyzed. In order to synchronize traces from two nodes, net-
work traffic exchanges between them are required. Packet exchange events are extracted and
dispatched to the next module. Thus, this module captures network traffic and computer
activity and extracts the necessary information for the matching module.

Matching module : Event processing feeds the events one by one. However, the Analysis
module works on groups of events. Consequently, the Matching module is responsible for
forming these groups. The relations between the packets are of different types (“one to one”,
“one to many”, or a mix) and this will influence the overall behavior of the module for TCP,
UDP or MPI. This module must match the sent and receive events for a same packet and
group them. For example, for linear regression, the round trip time (RTT) is needed, so this
module makes a group after finding an acknowledgment packet, and the acknowledge time
will be assumed as reference time.

Analysis module : There are two methods to synchronize time; Linear Regression and
Convez-Hull. In this module, the user can choose any of these methods to synchronize traces.
The Convex-Hull method synchronizes traces with better accuracy. Consequently, it is chosen
as the default option.

Reduction module : Matched packets are sent to the Analysis module without any
processing and are then used to synchronize each node pair based on the Convex-Hull. The
reference time is computed and all nodes can be synchronized with this reference time. Then,

the reference node, the node which has the most accurate links to other nodes, is selected

_ - Eclipse Platform

[oResource M LTTng Kernel [Tracing

[ProjectExpl @ = B - control Flow 2 rce tic e BRY 4 LES =B
BEg * Process TID PTID Birthtime Trace 14:01:16.500
v & projectt v systemd 1 14:01:16.453528741 | scp_src_ I
* P Experiments 1] systemd-udevd 105 |1 | 1401:16.453580368 | scp_src_ —
» 5 experiment[2] systemdjournal 113 (1| 14:01:16.453562573 | scp_src_ s
» & Traces [3] v sshd 190 1 14:01:16.453586833 | scp_src_ -
v sshd 3382 | 190 | 14:01:16.453621996 | scp_src_ T —
sshd 3384 | 3382 | 14:01:16.453623841 | scp_src_ I
v sshd 6468 | 190 | 14:01:16.453625471 | scp_src_ N
b sshd 6470 | 6468 | 14:01:16.453627283 | Sp_STC_]
¥ sshd 6523 {190 | 14:01:16.453631082 | scp_src_ —
¥ sshd 6525 | 6523 | 14:01:16.453632822 | scp_src_ I
sftp-server 6526 | 6525 | 14:01:16.453634725 | scp_src_]
* bash 6527 | 6525 | 14:01:16.453636597 | scp_src_ 1 Y
i experiment1 B = 0
Timestamp channel Event Type Content
¥ <srch> | <srchs | =srch> <srch=
14:01:16.445 485 712| channel0_0 | timer_init timer=18446612132819818688
14:01:16.445 487 3401 channelo_o i timer_start timer=18446612132819818688, function=1844674407 1579262552, expires=4298035454, now=4298032454
14:01:16.445 489 s1z‘ «channelo_o g sched_stat_runtime comm=lttng-sessiond, tid=2274, runtime=187752, vruntime=39559761554
14:01:16.445 490 925/ channel0_0 sched_stat_wait comm=Ittng-consumerd, tid=7416, delay=197046
14:01:16.445 491 5?2‘ «channelo_o sched_switch prev_comms=lttng-sessiond, prev_tid=2274, prev_prio=20, prev_state=1, next_comm=Ittng-consumerd, next_
14:01:16.445 596 518 channelo_0 sched_stat_runtime comm=lttng-consumerd, tid=7416, runtime=106814, vruntime=39562635476
14:01:16.445 597 692| channel0_0 | sched_stat_sleep comm=Ittng-consumerd, tid=2304, delay=294566
P bad sl Lik i bid i .
Al Histogram %, synchronization | i< State System Explorer S+ Control Flow Sync =
synchronization Information Value
000058625066383030723307598788165, Beta:
o scp_dest
at Control 2 = o T scp_src
Quality Accurate
Alpha 1.0000586250663830307233075987BB165
Beta -79801185988752.877651435554251
Number of points in upper hull L}
Number of points in lower hull 4
Accuracy 0.0053767073521642506
Number of matching packets received 46
Number of accurate packets 25
C_Toft) T_scp_dest
C_Ti{t) 1.000058625066383030723307598788165*T_scp_dest +T9801185588752.877651439554251

Figure 1.2 Synchronization view of TMF

Traces processing Matching Analysis Reduction
6 Find
Chec}(matched —® Synchronize —® Improve
6 tracepoints events o and B
: Extract the
events
v
Apply .
tothe Propagation
traces

Figure 1.3 Synchronization architecture

and each node pair is synchronized. However, sometimes an indirect path between two nodes
has better accuracy (less drift and offset) and is chosen. To find those precise links (and
drift /offset) between all node pairs, a Minimum Spanning Tree (MST) ordered by accuracy
is computed. It ensures a minimal synchronization tree and the best accuracy in distributed
systems. Using a spanning tree has been useful in other similar applications such as wireless
sensor networks. The last part in this module is propagation. All nodes should be synchronized
based on the reference node time, and drift and offset factors (o and (3), propagated through
the paths to the reference node. At the end, the resulting times, converted to a common
reference node, become available to the user interface and trace events are shown in LTTV
and TMF with right time order.

The work proposed here retains in large part this architecture but transforms each step

to efficient incremental algorithms, while maintaining the same accuracy.

1.2 The Contributions of this thesis

Our goal was to achieve an incremental synchronization scheme with high accuracy and
low impact. The results of this research were evaluated in the context of a tracing environ-
ment, and showed excellent performance. Therefore, the presented approaches can be used for
online time synchronization in computer networks even under the most demanding conditions.
Our work guarantees the best accuracy, taking into account all the Convez-Hull constraints
generated by matched packets as they arise, as well as optimal performance and scalability.

First, we proposed a new incremental and efficient technique to synchronize two live

connected systems. As soon as two computers start exchanging messages, this method starts
computing the clock offset and drift between the two, based on an optimized Convez-Hull al-
gorithm. Since the Convez-Hull algorithm relies on the packets with lowest latency, it insures
the best time synchronization accuracy. This method updates the synchronization factors
when an accurate packet is exchanged and incrementally improves the time synchronization.
This method not only does not need any buffering, but also takes O(1) time on average for
updating the synchronization, when a new accurate packet is found, which is ideal for live
online analysis.

Secondly, we presented a novel incremental method to compute the synchronization para-
meters at the link level and maintain a Minimum Spanning Tree formed by the most accurate
links. In a dynamic network, where computers connect/disconnect to/from the network, we
efficiently maintain a dynamic MST. The proposed method is based on splay trees, in which
every operation on the tree, such as computer connection, joining separate networks, and
so on, takes O(log n) where n represents the total number of computers in the network.
Therefore, instead of updating the whole MST, the network tree splays on one of updated
nodes and the computation is performed upon a portion of the network.

We finally proposed a new method to select and maintain a central reference node in a
dynamic network and then update the synchronization parameters. This work is performed for
tracing and monitoring purposes, where a time Reference Node is required to synchronize the
traces from all the nodes in a dynamic network. In the proposed technique, a novel schema
analyzes new vertex insertions, tree merging, and cycle handling in a forest, minimizing
average time complexity per operation in the dynamic network. What distinguishes this work
from previous work is that it investigates only the altered path with respect to the Reference
Node, once an alteration has occurred in the network. The proposed method incrementally
processes updates in evolving trees in the forest and thus improves performance.

This new live approach to traces synchronization is fully incremental and most efficient.
It not only does not degrade the accuracy of the results, but it also does not delay the syn-
chronization improvement updates. Moreover, it minimizes buffering, an important feature
for scaling to large computer clusters and distributed systems. We tested the proposed ap-
proach on extremely large clusters, with a real network containing more than 55 physical
computers, and in a simulated network containing 60,000 nodes. The results demonstrated
that the proposed method addresses the accuracy, performance and scalability needs. Hence,

this can be used in all cases where an efficient online time synchronization is desired.

1.3 General organization of the thesis

This dissertation is organized in seven chapters and submitted as a "thesis by articles”.
This first chapter, introduction, clarifies the context and framework of the research project.
It is then followed by the body of this doctoral thesis which consists of four main articles
presented in Chapters two to five. The detailed literature review is represented in a survey
paper in Chapter 2 with title A Comprehensive Survey of Techniques and Challenges in
Distributed Systems Time Synchronization”, submitted to Journal of Network and Computer
Applications. This second chapter aims to bring a sufficient understanding of the issues and
methods used in this research project [53]. Chapter three presents the second article entitled :
“Streaming Mode Incremental Clock Synchronization”, submitted to Springer Journal : Net-
work and System Management (JONS). This scientific article introduces an efficient and fully
incremental, continuous time synchronization approach for links between two computers. It
offers high precision and low intrusiveness for online applications and constitutes the first
main original contribution [57]. The fourth chapter contains the scientific article entitled :
"Reference Node Selection in Dynamic Tree”, submitted to the Journal of Network Manage-
ment. This work presents an efficient incremental method to select and update the optimum
reference node in dynamic networks where nodes connect/disconnect frequently. This is used
to efficiently select the time reference node in order to achieve high synchronization accu-
racy, as required for real-time process-level tracing in a live distributed system. It constitutes
the second main original contribution [55]. The fifth chapter presents the last article entit-
led : “LIANA : Live Incremental Time Synchronization of Traces for Distributed Systems
Analysis”, submitted to the Journal of Network and Computer Applications. It addresses
the complete process of achieving online distributed trace synchronization in real-world live
distributed system tracing. It proposes new algorithms to update the time synchronization
MST, based on the link level synchronization of Chapter 3, and passes the updated MST to
the incremental reference node selection algorithm of Chapter 4 [54]. A general discussion on
this research area, and the results obtained, is presented in Chapter 6. This is followed in

Chapter 7 by a conclusion and recommendations for future work.

CHAPTER 2

LITERATURE REVIEW : A Comprehensive Survey of Techniques and

Challenges in Distributed Systems Time Synchronization

MASOUME JABBARIFAR AND MICHEL DAGENAIS

2.1 Abstract

With the appearance of a new generation of distributed systems applications and cloud
computing environments, the need arises to revisit the discussion of time synchronization.
In such environments, individual physical nodes in large data centers come and go while
applications and virtual machines migrate from one physical node to another. A significant
problem in this context is to trace and monitor events, with a common reference time, on
interacting applications and systems. Yet, tracing and monitoring tools are more important
than ever to properly analyze problems in online applications under high load. Thus, time
synchronization between interacting nodes is highly desirable. This paper presents a survey
and classification of time synchronization protocols according to a variety of factors such
as accuracy, scalability, and cost. The provided context helps designers to select the most
practical synchronization protocol for their own purposes. The detailed analysis of the cha-
racteristics of each approach guides developers to design and characterize new protocols with
the desired feature set for a distributed system application. Furthermore, this paper presents
a comparison framework through which designers can correlate and analyze the features of

new and existing synchronization protocols.

2.2 Introduction

Time synchronization plays an important role for many applications in distributed systems
and networks, where many nodes may interact or observe the same events. The information
is collected at each individual node in the network, yet it may need to be assembled to build a
coherent observation in order to achieve higher-level analysis. One of the key and fundamental
ingredients for a coherent observation is a common time reference. For example, when nodes
trace the actions related to a problem or a cyber-attack, then higher-level information (such as
system performance analysis, attack sources and destinations) can be extracted by correlating

data from multiple nodes.

10

Researchers have created several time synchronization protocols for wired and wireless
networks over the past years. Since the challenges posed by wireless networks, such as energy
efficiency and movement, are different, time synchronization in wireless sensor networks is
considered a separate branch and is outside the scope of this article. On the other hand, wired
network applications are growing rapidly with new applications and associated challenges
appearing. In particular, online applications deployed in distributed systems require a fast
and precise protocol to synchronize streaming data such as execution traces. While many
applications insist on either accuracy or cost, applications such as tracing and monitoring
need both at the same time. Indeed, tracing tools need to be minimally invasive to not
change the system behavior under study, yet high accuracy is required to solve the most
difficult problems. This is similar to electronic test and measurement equipment requiring
much higher performance than the systems under test.

This paper addresses three main objectives. First, it surveys traditional clock synchro-
nization protocols in distributed systems, and looks at new requirements and solutions for
applications such as traces synchronization. This review is based on several factors such as
accuracy, scalability, and cost, and will help designers to select the most efficient protocol
for their application. Secondly, the analysis of the features, protocols and usecases of the
different approaches presented should enable developers to combine or adjust existing ap-
proaches for specific application goals. Finally, this paper provides a framework to present
different functional aspects and comparisons of the existing synchronization approaches.

Although there are several survey papers on time synchronization, they either predate
many of the new applications exposed here [37,, 66}, T00] or focus on specific usecases such as
wireless sensor networks [10] [1T), 46, 96, [99]. Wireless sensor networks have several specific
concerns of their own, such as energy and movement, and form a somewhat separate branch.
In this work, we rather focus on distributed systems which bring different and new usecases,
such as telecommunication services, online business applications, online gaming and etc.

This paper is organized as follows. Section presents the concepts and foundations of
clocks synchronization protocols. Section provides a classification of synchronization ap-
proaches into online and offline classes. Section contains an evaluation of several protocols
and a comparison among them based on several factors, which are discussed separately. Sec-
tion lists different challenges that influence the time synchronization accuracy and cost.

Finally, we conclude our survey paper with Section [2.7]

11

2.3 Clock and Synchronization Protocols

The ultimate common reference time usually is the Coordinated Universal Time (UTC')
[90]. UTC is a standard global time source provided by several governmental laboratories
around the world and normally based on atomic clocks. It is available as primary time ser-
vers on the Internet and as over-the-air electromagnetic signals. Another important precise
common time reference is the Global Positioning Satellites (GPS) system [71], built around
a large number of satellites, each containing an atomic clock. The two time referentials dif-
fer by several seconds since UTC' adds leap seconds every few years to synchronize with the
earth rotation, while GPS clocks simply follow their atomic clocks with no attempt to remain
synchronized with terrestrial days.

While most systems ultimately synchronize with UTC| the major concern usually is to
have a precise common reference time within a distributed system in order to compare related
events arising on different nodes. In that context, the accuracy of the synchronization between
the different nodes in the distributed system is often much more important than the accuracy
of the synchronization with UTC.

The problem arises from the fact that each computer node has an independent clock.
In theory, it would be possible to distribute a common clock to several computers in a
data center. This could be achieved by a light source feeding several fiber optics cables with
carefully measured cable lengths. Indeed, signals in either electrical wires or fiber optics travel
at approximately 2/3 of the speed of light or about 6ns per meter. All cables could have the
same length or compensation factors could be computed based on the cable length to each
node. Then, this signal should be connected directly to the processor internal clock, a facility
not available on most systems. Specialized telecommunication equipment may use similar
schemes because of their stringent needs on clock synchronization for high speed protocols
such as SONET [36].

A common mechanism is to have a timing signal cable providing a pulse per second signal
at the beginning of each second. This cable is connected to an input signal that can generate
interrupts on the node (e.g. a pin on the serial or parallel port of many computers). For
example, a very precise pulse per second signal may be provided by relatively inexpensive GPS
timing receivers. The main source of inaccuracy then often becomes the interrupt latency, for
the computer node to be notified of the interrupt generated by the pulse per second signal
[22] 33, [74].

When no such special purpose hardware is available, time synchronization is achieved
through the existing network hardware. Packet exchanges between nodes can be used to

estimate the clock offsets. This will be the focus of the remainder of this article. Different

12

strategies may be used in order to compare events on a common time reference. The most
prevalent, [75], attempts to keep the clock at each node as close as possible to a reference
clock, typically UTC. Then, events at each node are loosely based on the same time reference.
A second approach, used for tracing, is [85] where the clock at each node does not need to
be especially well synchronized. Instead, the a posteriori analysis of packet send and receive
events in traces is used to deduce with high accuracy the offsets between the clocks in each
node. Finally, a third approach is used when tracing information is displayed live, in quasi real
time, [57]. The approaches are similar to a posteriori analysis except that the computation
must be performed incrementally and that the offset estimation may improve over time as

more packet send and receive events are analyzed.

2.3.1 Time Keeping Hardware

When a computer node is started, it needs to initialize its internal clock. This is usually
achieved by reading the current time from a special battery-backed circuit called Real Time
Clock. This circuit is typically not used thereafter during normal operation because of the
delay to read from this slow peripheral. Instead, the operating system uses a regular interrupt
to update its internal clock. Most processors contain at least one and often several Program-
mable Interrupt Timers (PIT) that can be used for that purpose [21]. Unix and early Linux
systems received interrupts to update their internal clock every 10ms. This was later changed
to each 1 ms.

When a finer granularity is required, a cycle counter can often be used, such as the
Time Stamp Counter (7.SC) on Intel processors. The TSC is a special hardware register
incremented at each clock cycle. It thus provides a high-resolution, low-overhead, and fine-
grained (about 1 nanosecond or better) time source [31]. However, if the processor frequency
changes, the T'SC' rate will change as well on most systems. When the processor goes into
idle or halted mode, the T'SC' may stop altogether. With the advent of multiple processor
cores on a single chip or motherboard, the T'SC's on different processor cores may drift away
from each other over time, and there is no guarantee that they will ever resynchronize.

A new generation of multicore processors from Intel include a constant rate TSC, which
provides for synchronization of the cores even though their frequency may vary over time
[81]. Indeed, a constantly running clock, shared by many processor cores, is used to update
these TSCs [64]. The TSC can then be used as the only time source for kernel and user space
needs.

The interaction between these multiple clock sources can be problematic. Linux systems
have a system clock tracking UTC, typically through the Network Time Protocol. Howe-

ver, the time adjustments can distort time measurements needed by the operating system,

13

for instance in device drivers. While it is not recommended, the system clock may even be
adjusted to go back in time. For this reason, another clock source is defined in the kernel,
CLOCK_-MONOTONIC, which is never adjusted during the execution and progresses regard-
less of UTC. It represents the absolute elapsed time since an arbitrary point. It keeps increa-
sing and is synchronized between all processor cores in a node [26]. It may run slightly faster or
slower than real time, its rate may vary slightly due to environmental conditions like tempera-
ture or voltage, and it may jump ahead when in a virtual machine and coming back from being
scheduled out. This clock source is typically built from the regular timer interrupts at every
milisecond, with the TSC being used on Intel processors to interpolate between two timer
interrupts and provide the needed high resolution. The time update at each timer interrupt
is synchronized among the multiple processor cores, enabling the CLOCK_MONOTONIC
to be fairly well synchronized between cores. CLOCK_MONOTONIC is used in the LTTng
tracer [], insuring a high resolution common reference time among the processor cores on a
single node [20, [62] [84].

2.3.2 Packet-based Clock Offset Calculation

When a packet is sent from time server node S to client node C, C’s clock could be set
to S’s clock plus the delay for the packet to travel between the two nodes. The problem with
this simplistic approach is that the nominal network delay may not be known. Moreover,
network congestion or operating system latency may delay almost indefinitely the delivery of
the packet to the clock synchronization application.

A better approach was proposed by Cristian [25]. This method is based on the round-trip
time (RTT) between a computer C' and a time server S. C sends a time request to S. Once
S receives the request, it responds by appending its current time Tg to the message. Then,
(' calculates the time with Formula and updates its clock accordingly. This technique
assumes that the network delay is the same for the request and the response. When this is the
case, perfect accuracy is obtained. Otherwise, the computed time value is within £RTT/2
of the real value. To improve the accuracy, C' can send multiple requests to S and retain the

response with the smallest round-trip time (RTT).

T = Ts + (RTT/2) (2.1)

This was further improved upon by incorporating into the equation the processing time
of the server. Unlike the network delay, this processing time, albeit small, is easily obtained.
Figure illustrates that the sender issues to the receiver a message at 7'1. The receiver

notes T2 as the reception time. Then, the receiver returns an ACK message to the sender

14

at time T3. The sender receives the ACK message with T4 as reception time. Finally, at
the end of the message exchange, the sender can compute the offset and accuracy from the
four timestamps embedded in the Response message with Formula [2.2] The sender adjusts
its clock according to the offset and the synchronization is performed.

Here again, the method assumes that the sender-receiver and receiver-sender propagation
times are exactly equal, in which case perfect accuracy is obtained. Otherwise, the bound on
accuracy is provided. Since the inaccuracy is related to the time elapsed between T1 and T2,
and between T8 and T4, one optimization is to get these time values as close as possible to
the packet send and receive points in the kernel. For example, in the LT7Tng tracer, which
uses this technique to synchronize traces, the packet send and receive events in the trace
are generated in the kernel at the lowest possible point in the network stack, just ahead of
the interface with the NIC driver [85]. The values of timestamps are thus obtained much
closer to the packet send and receive points. This is used in order to obtain a better accuracy
than what can be achieved when generating timestamps at the application level in a time
synchronization daemon. Another interesting aspect of LT Tng is that the information from
existing packets is used to compute the offset, keeping the tracer minimally invasive since it
is not necessary to send additional packets for time synchronization.

This synchronization method, based on Equation [2.2] is the basis for the Network Time
Protocol (NTP), a standard Internet protocol for clock synchronization. It proposes an or-
ganisation with two levels of time servers : Primary and Secondary time servers. A primary
time server synchronizes directly with a reference time source, usually a UTC atomic clock.
Secondary time servers synchronize with primary time servers or other secondary servers.
A client typically synchronizes with its nearest secondary time server. NTP, depending on
the network latencies, typically achieves an accuracy between one and ten milliseconds in

local networks and tens or even hundreds of milliseconds in wide area Internet. The Simple

T2 T3
RECEIVER f i :
| 1
S :
V" Follow-up i Response
, Ao :
SENDER — :
TT_ TsR—» L—TRS —NI-4

Figure 2.1 SYNC message

15

Network Time Protocol (SNTP) is a simplified version of NTP for users [80].

Offset =[(T2—T1)+ (T3 —T4)]/2
(2.2)
Accuracy = £[(T2 —T1) — (T3 —T4)]/2

The Precision Time Protocol (PTP) [38] uses the same equation to estimate the network
delay between each node and the time server. However, hardware support in the networking
equipment can be used to insert the reference time at the network switch level in a broadcast
packet, insuring that all clients receive the reference time in parallel and with a very short
network delay. Furthermore, networking equipment is optimized to minimize network delay
variations and asymmetry. As a result, PTP can achieve clock synchronization accuracy at
the microsecond level.

When no time server is available, several computer nodes can communicate their clock
values and compute an hopefully more precise average value as the reference. This is the
main idea behing the Berkeley protocol [24] 66, 100].

2.3.3 Logical clock Synchronization

Some applications only require causal ordering of events. Hence, they use logical clocks
to order events. Each pair of related events is ordered by causality relations (such as the
send event for a packet necessarily happening before the receive event). This type of syn-
chronization is called logical time. Lamport proposed algorithms to compose logical clocks.
The limitation of his algorithm is that it cannot necessarily specify which one is executed
first when timestamp., < timestamp,,, unless they refer to the same logical clock [65] [69].
Mattern and Fidge proposed a method based on Vector Clocks to address this problem and
determine precedence. Landes et al. use a tree structure to improve Vector Clocks limitation.
However, the storage and message size increase with the number of nodes [70]. Logical clocks
suffer from two important limitations. First, they cannot provide precedence relationships for
events without explicit causality relationships, for example two computer nodes interacting
with the same shared storage device (thus indirectly but not directly interacting). Secondly,

there is no notion of absolute time, which is important in several applications.

2.4 Synchronization techniques to compute clock offset and drift

As seen in the previous section, network packets sent among nodes are used to compute
the clock offset between communicating nodes. Packets may be sent explicitly for time syn-

chronization, carrying the send and receive time values for the exchange, or a trace of ordinary

16

packets sent and received at each node can be taken and sent later to an analysis node. In
either case, it is interesting to combine the information from several packet exchanges to get
a more precise estimate of the offset, and its variation over time. The exact frequency of
the clock at a node can vary somewhat. Several computers with a 2 GHz nominal frequency
will in practice all have a slightly different frequency. That frequency, for a given node, is
however extremely stable over a time as long as factors such as the operating temperature or
the supply voltage do not vary significantly [75]. For this reason, the clock offset between two
nodes varies linearly with time as a factor of the ratio of their respective frequency. It will
therefore be represented as a linear function with the initial offset and drift as coefficients.
The two main methods to estimate this linear function, based on the data from several packet

exchanges, are the Linear Regression and the Convex-Hull.

Linear Regression

The Linear Regression models a response variable, y, as a linear function of a single
predictor variable, x. The formula for this definition is : y = a X x + b, where “a” and “b”
are the regression coefficients. Coefficient “a” is the slope of the line and “b” defines the
Y-intercept. In our case, “a”is the clock drift, “z”is the time and “b”is the initial offset.

In a two dimensional space, based on timestamps of node A and B, the Linear Regression
algorithm tries to fit a line among the points. Packet A sent from node A has a timestamp
that provides the x coordinate. As soon as it is received in node B, its timestamp is obtained
and becomes the y coordinate. These two coordinates define a point in the two dimensional
space. Since there are many packet exchanges in a regular connection, many points will be
obtained in this way [95]. It is obvious that a line can be drawn through two points. However,
there are typically many more than two points and just one line should model the whole
information. The solution is based on the method of least squares. This model estimates the
best-fitting line that minimizes the differences with actual data. If each point in the two
dimensional space is represented by its z and y values, and there are N points (total number

of exchanged packets), the average of z and y values are obtained as shown in Formula .

_ (2.3)
Both regression coefficients are estimated with Formulas [2.4] and 2.5

2 (2i—T) X (yi—7) (2.4)

E;’-L: 1 (z; —5)2

a =

17

b=y—ax7Z (2.5)

In these equations, “a” and “b” are the drift and offset respectively between the two
clocks. While the linear regression gives adequate results, there are significant weaknesses
with this approach. The first is that the measurement error is biased. When everything works
as expected, a minimal delay is achieved and a very good point is obtained. The system and
network delay cannot go under this minimum, corresponding to the ideal case. However, if
the system is preempted by a high priority interrupt or there is network congestion, a much
longer delay may be obtained creating a bad point. The problem is that the linear regression
takes into account all points when calculating the best fit. To alleviate this problem, some
have proposed to detect and eliminate outliers, not using them for the linear regression [22]
and obtaining more precise results. A second problem is that the x and y values, the time at
nodes A and B, are not sampled simultaneously ; they are separated by the packet propagation
time. However, if the number of packets, used for the linear regression, is the same in each

direction, the errors in each direction should mostly compensate for one another.

Convex-Hull

The Convex-Hull algorithm is based on the fact that each packet implies that the receiving
time is later than the sending time. Thus, it does not suffer from outliers since they bring
weaker constraints which have no effect on the result. Similarly, the fact that there is a
network delay between the time at which x and y are measured does not contradict the
inequality indicating that the receiving time (even with the network delay added) is after the
sending time.

As shown in Figure 2.2] pairs are divided into two sets, based on the message direction.
Consequently, the synchronization estimation line should be below all the pairs {(07, €1,
(602.1,&2,), ...} and above all pairs {EH?,SJS), Eéﬁ,fﬁrl), .

The packets with minimum latency are those of interest in the Convez-Hull synchroni-

zation algorithm. Packets sent from 6 (horizontal axis) to & (vertical axis) occupy the upper
left half-plane and are shifted higher when more network latency was encountered. There-
fore, the lower half-hull, of the Convez-Hull formed by those points, is a lower bound for the
packets sent from 6 and identifies the packets with the lowest latency. Similarly, packets sent
from & (vertical axis) to 6 (horizontal axis) occupy the lower right half-plane and are shifted
to the right when more network latency was encountered. Therefore, the upper half-hull, of
the Convez-Hull formed by those points, is an upper bound for the packets sent from & and

identifies the packets with the lowest latency. The possible synchronization lines lie below the

18

lower half-hull of packets sent from 6 and above the upper half-hull of packets sent from &.
The synchronization accuracy is limited by the delay between the send and receive events.
Any packet delayed by interrupts, network switch delay, or some other cause will lead to an
inaccurate pair and a long delay. The Convez-Hull algorithm selects the pairs on the inside
envelope between the send time and the receive time, and so identifies the most accurate
pairs with the shortest delay. In other words, it finds the area that has minimum latency and

ignores outlying pairs, as shown in Figure[2.2] (65, ££8), (02, €8), (0% £9), (0F,£5)). Therefore,

the estimated line is more accurate than with Linear Regression, not being affected by outliers.

According to the above definition, we have two completely separate sets. Otherwise, this
would imply a message inversion (receive before send). In each set, the optimal separator is
computed (the solid line in each hull) from the points in each set nearest to the separator
space. Graham’s scan algorithm selects the points forming the Convez-hull in these two

separated sets. The bounds of the Convez-hull, shown in Figure [2.2] are :

Vi

UpperBound = {(0F, £7), (07, €5), (08, €5)}

> > (2.6)
Lower Bound = { (07, &), (05, &), (07, £1Y), (05, &6)}
Thus, the maximum likelihood estimators are between the following conditions :
aff + 8 < &f
aflt+ <67 (2.7)

i,j=1,2..n

The next step is to find two lines, one with maximum slope (L,,q,) and another with

minimum slope (L) :

Lmam = amawe + ﬁmm

(2.8)
Lmin = amine + ﬁmax

As a result, the final estimated a and (are certainly limited to the area that is enclosed
between (min, ¥maz) a0d (Bmin, Bmaz), and the selected synchronization line is the bisector
of Lyae and Ly,ip.

When synchronizing two traces, the relationship between them can be one of the following :

Definition 1) An accurate relationship : this is the expected case, shown in Figure
2.2 where L,,,, and L,,;, are available and their middle can be computed. If the relationship
between two clocks is of the accurate type, we can define the accuracy metric as the difference

between the minimum and maximum possible drifts between the two clocks.

Accuracy(i) = Lyae-drift — Ly drift; (2.9)

19

Bmax

Brnin L

Y

Figure 2.2 Convex-hull method.

Definition 2) An approximate relationship : L4, and L,,;, are not available because
the hulls do not satisfy the hypothesis that the upper half-hull should be below the lower
half-hull and not intersect with it. This may be caused by a deviation from the assumed
constant clock frequency, causing a higher-order (e.g. quadratic) relation between the two
clocks. Other possible causes include a problem with the time measurement computation. In
that case, the approximation is a "best effort”.

Definition 3) An incomplete relationship : only one of the L., and L, lines is
available. There is communication in only one direction, which is insufficient to obtain a
proper bounded synchronization.

Definition 4) An absent relationship : there is no communication between the nodes in
either direction, and nothing can be deduced about their relative time.

Definition 5) Fail relationship : none of the L., and L, lines is available. This is
because the hulls completely intersect each other or are reversed.

Based on each of these definitions, two nodes either are synchronized, not synchronized,
or partially synchronized. When there is no connection between two nodes, it may be pos-
sible to compute their offset and dritf indirectly through other nodes with which both are

communicating.

20

2.5 Synchronization Applications

In traditional clock synchronization, the aim is to adjust the clock offset immediately
with respect to a time server [73] [77, [78]. Information from successive synchronization points
is used to compute the clock drift, better correlate these synchronization points over a long
period of time, filtering out less accurate values, and improving the accuracy between syn-
chronization points using a correction factor. The other form of time synchronization is traces
synchronization [34, [83]86]. In that context, traces from several distributed nodes are brought
together on an analysis node. The basic algorithms for synchronization remain the same but
several constraints are different and the algorithms can be adapted and optimized accor-
dingly. For instance, it can select the best path to compute the clock differences between
two nodes among several indirect paths. Moreover, the most interesting node to use as time
reference can be selected dynamically. Finally, in some cases, the trace analysis is only perfor-
med offline at the end of data collection. In that case, the clock differences can be optimally
computed based on the complete data set.

In this section, we will therefore examine the specificities of traces synchronization and
in particular offline A posteriori Trace Synchronization and live streaming Online Trace

Synchronization.

2.5.1 OfHline Clock Synchronization

Recently, many time synchronization algorithms have been suggested. The main goal of
these algorithms is to increase the time synchronization accuracy. All algorithms tried to
estimate a function that models the time on the clock of a computer versus the time on
the clock of another computer, and then propagate the estimation to other computers in a
cluster.

When a message is exchanged between a pair of nodes, the receiving and sending times will
not be directly comparable because the clocks of two nodes are not synchronized [12], 64} [72].
However, by the principle of causality, the receive time must be later that the send time. This
constraint is used to compute the clock drift between two nodes [25].

An interesting offline clock synchronization method has been proposed by Duda et al.
[37], which consists of two synchronization algorithms, Linear Regression and Convex-Hull.
These algorithms estimate a conversion function between the clocks in a pair of nodes. In
both algorithms, the conversion function is linear, and the drift and offset between the two
clocks are extracted from this linear model [58].

It is also used to estimate the one-way delay between two nodes by Moon et al. [82]. In

a two-dimensional space, based on the time values at nodes A and B, the Linear Regression

21

algorithm attempts to map all points to a line. Thus, every point will affect the position
of that line. In reality, network latency and similar events between two nodes can cause
problematic outlying points, biased being only late. These outliers should ideally not affect
the drift or offset computed from the Linear Regression. They should, in fact, be ignored in
order to increase accuracy [14].

The Convex-Hull algorithm does not suffer from this problem and insures the highest
synchronization accuracy [59]. The Convez-Hull is a precise algorithm that assumes upper
and lower bounds (sending time and receiving time) separated by the network delay. In this
way, it finds the area that has minimum latency and ignores outlying points. As a result, the
estimated line is more accurate with this algorithm than with Linear Regression.

Among these two algorithms, Linear Regression and Convez-Hull, the Linear Regression
algorithm can use existing functions from a statistical package and is thus easier to imple-
ment. However, the Convez-Hull algorithm can model clocks with higher accuracy while still
requiring a modest computational complexity. The following two subsections provide more
details about using each of these two algorithms.

Khlifi et al. [63] proposed two algorithms, which they call the average and direct skew
removal techniques for offline skew removal. The average algorithm calculates the average
delay for a fixed number of consecutive packets at the beginning and the end of a trace,
yielding a constant O(1) complexity. The direct skew removal technique has the interesting
property of being able to account for low clock resolution, where the clock granularity may
be larger (e.g. 1ms) than the packet delay. For this purpose, the whole trace is analyzed for
a linear O(n) complexity.

Clement et al. [22] have evaluated the impact of system characteristics on trace synchro-
nization accuracy. First, they studied the tracing duration impact. They propose dividing
long duration traces into 30 minute segments, since the error in the clock drift linear ap-
proximation begins to increase significantly after approximately 45 minutes of tracing, while
it is quite stable during the first 30 minutes. The error increases because of the variation in
the clock drift with time, as shown by the Allan deviation [2], and because of environmental
effects on the clock circuit frequency, such as temperature and supply voltage variations.

Then, they studied the impact of the system load parameter, when there is a heavy load
on major subsystems, CPU, memory, and hard disk. They found that the transmission time
and response time measurement variations, caused by interrupt latency in a loaded system,
influence the clock drift computation directly, and subsequently the time synchronization
accuracy. The third parameter studied was hop count, when there is more than one path
between two nodes. In that case, the offset between the two indirectly linked nodes may be

computed by adding the offsets along a path, from one intermediate hop to the next. A path

22

with fewer hops generally provides higher accuracy. If there is a direct path, it is normally
better to choose that one to synchronize two nodes.

Poirier et al. [85] presented an accurate method for synchronizing distributed traces.
This method is applied to traces recorded at the kernel level with low intrusiveness. They
applied the Convex-Hull algorithm to the clocks of traced nodes as a conversion function. If
collected traces are huge and involve numerous nodes, their method is time consuming. Since
their algorithm was designed for post-processing, the analysis delay was not major concern.
However, for a live display of traces, the latency should be minimized. In [56], the proposed
method estimates accurate paths in large computer clusters and improves the performance

of offline distributed trace synchronization.

2.5.2 Online Clock Synchronization

Online synchronization works in streaming mode. Several researchers have proposed algo-
rithms for this application. The standard clock synchronization method, widely used today,
are the Network Time Protocol (NTP) [79] and NTP Daemon (NTPD) [80]. It sets and
maintains the kernel system clock, used to measure packet send and receive time, based on
feedback from exchanges with the server. Veitch et al. and Ridoux et al. [87] [102] proposed
the RAD clock (Robust Absolute and Difference Clock), which provides alternative clock
synchronization algorithms. The timing packets are timestamped using raw packet times-
tamps. They estimate the clock skew based on the difference between the system clock and
the timestamps received from the server, and maintain the clock skew correction without
changing the raw system clock, in a feed-forward approach.

Khlifi et al. [63] presented two techniques for online skew estimation and removal. The
first one, sliding window, monitors the minimum delays to reduce the gap between the true
and the corrected delays, (the correction being the estimated skew). To improve the accuracy,
they present a second technique, the combined approach. They perform the sliding window
algorithm to quickly estimate the skew, in the first interval. Then, they use the Convex-Hull
algorithm during subsequent intervals to improve the accuracy.

A particularly efficient algorithm is proposed in [57], which is based on Converz-Hull
algorithm combined with lines with minimum and maximum possible slopes between the
hulls. This can provide skew estimates very early, obviating the need for a different method
in the first interval. Furthermore, the proposed algorithm can identify accurate packets (those
few that can improve the estimate) with a simple test and recomputes the drift and offset

incrementally in O(1) upon identifying an accurate packet.

23

2.6 Evaluation of protocols

In this Section, the evaluation criteria are detailed. Then, the various synchronization
protocols are compared and evaluated based on the comparison criteria. The presented clas-
sification helps selecting the most efficient synchronization protocol in terms of performance

and applicability.

2.6.1 Evaluation factors

The evaluation factors are listed in this section. Moreover, the influence of each factor on

the synchronization is explained.

Synchronization Accuracy

A hardware oscillator circuits provide the physical clock in a system. Since the frequency
of hardware oscillators varies, clocks operate at slightly different rates on different systems.
Therefore, the physical clock values should be synchronized when an application needs to
accurately compare the time of events on different nodes. As discussed earlier, many other
applications are satisfied with a causal ordering of related events.

Synchronization accuracy is a factor that shows the time difference at a node. The ac-
curacy measurement defines how well the synchronization is performed. Accuracy shows the
deviation of the synchronized time at a node from an external reference node on the network,
or from the time of another node. When the deviation between the clocks at two nodes is
smaller, we have better accuracy. When synchronizing a pair of nodes, the accuracy is the
deviation between the two, and when synchronizing a network, the accuracy is the maximum
deviation over the network.

1. Absolute synchronization accuracy : The maximum deviation of the logical /physical
clock of the node from an external standard, for instance UTC.

2. Implicit synchronization accuracy : The maximum deviation among all pairs of logi-

cal /physical clocks of two connected nodes in a network.

Computational Complexity

In a large computer cluster with numerous nodes, the computational complexity in both
time and memory is an important concern to select an efficient synchronization protocol
for a specific application. It is different from the message complexity, discussed in the next
subsection. Beside the computation time, the buffering requirements is another significant
factor to evaluate the behavior of the protocols. A protocol may be impractical if its memory

requirements relative to the number of computers being synchronized are disproportionate.

24

Convergence time

The total synchronization time for a network is named convergence time. Usually, proto-
cols with a large number of messages exchanged for synchronization have longer convergence
time, as compared to protocols with no Sync messages. The protocols with no Sync mes-
sages use the timing information from regular messages. Hence, there is no need to wait for
the next round of synchronization messages to get synchronization data. Beside the number
of messages, the network bandwidth directly affects the convergence time. A protocol with

minimum convergence time is preferred for many applications.

Overall cost

Algorithmic complexity and communication overhead are combined into a metric cal-
led overall complexity. Overall complexity is shown as a numerical value even though it is
qualitative metric. However, the computational complexity and convergence time are two

quantitative factors.

Fault tolerance

A real-world network is influenced by many disturbances caused by either the environment
or human intervention. A packet loss impacts time synchronization where synchronization
protocols use explicit message exchanges. Packet loss directly affects the overhead in terms of
both network traffic and synchronization accuracy. Furthermore, it reduces the performance

significantly.

Scalability

Scalability plays an important role in current distributed systems. In many cases, the
protocol is impractical when the network contains a large number of nodes. As large computer
clouds are employed for big data computations, limitations on time synchronization scalability
become important. A time synchronization protocol is expected to work efficiently in a huge

cluster. Thus, the scalability becomes an important feature of a protocol.

Real-time application

There are two types of applications in which the protocols provide synchronized data
for a distributed system. The first is when the applications need synchronized information
for further a posteriori analysis. Other applications require online analysis and thus Real-

time online synchronization. In such cases, a key factor is to minimize the synchronization

25

computational complexity and latency at each incremental update.

2.6.2 Protocols comparison

Table presents a comparison among synchronization protocols based on the factors
introduced. Most protocols are highly accurate. The desired level of accuracy varies from
one application to another. The most accurate protocols are based on the Convex-Hull, and
in particular those presented by Poirier et al. [85] and Jabbarifar et al. [54]. The protocol
obtains a synchronization accuracy among connected nodes in the network of around 10 us, as
compared to ms accuracy in other protocols. As discussed earlier, however, hardware assisted
synchronization can obtain better accuracy.

All [63, 68, B5] protocols takes O(n) for synchronizing two nodes, n being the number
of packets used for the computation. Since these protocols do not have an optimized mode
for whole network synchronization, they require O(n?) for network synchronization where
n is the number of nodes. Therefore, they are all problematic to use in huge computer
clusters. However, the protocol in [57] provides a streaming and incremental approach to
analyze exchanged packets where the drift and offset are updated when new packets are
received with O(1) time complexity. Jabbarifar et al. presented a procedure for whole network
synchronization in [54], which takes O(n log n) for a network with n nodes. Consequently,
it is the only method optimized for very large clusters, and the best choice to synchronize a
huge network with adequate computational complexity.

The protocol proposed by Khlifi et al. [63] uses specific messages for synchronization.
Therefore, this adds to network traffic and also typically provides fewer and more distant
synchronization points, incurring a higher convergence time. On the other hand, Kuhn et al.
[68], Poirier et al. [85], Jabbarifar et al. [54], and Scheuermann et al. [89] use messages from
normal network traffic to synchronize the nodes, avoiding the need for additional synchroni-
zation messages. Hence, they normally provide a better convergence time.

As discussed earlier, the protocols by Kuhn et al. [68] and Poirier et al. [85] have higher
computational, storage and message costs as compared to Khlifi et al. [63]. The best choice
for a resource-restricted application is probably the protocol proposed in [63]. However, it
is not very accurate and thus not suitable in many applications. The lowest synchronization
cost belongs to the protocol proposed by Jabbarifar et al. [54]. In addition, it has minimal
buffering requirements. It only stores a very limited number of packets, even for a very long
trace, typically less than 10, those likely to be on the final Convez-Hull.

The protocols presented in [54] 63, [85] do not suffer from message losses, as long as there
is a sufficient number of successful packets. Other protocols have not addressed the issue

of their sensitivity to message losses. For protocols requiring explicit time synchronization

26

messages, lost messages require retransmission and care to prevent incorrect matches between
duplicate (retransmitted) send or receive messages.

Based on the experimental results presented for each of the protocols, the protocol pre-
sented in [89] scales to large networks. However, it achieves synchronization accuracy in ms,
which is not considered very accurate. The other protocol tested with large networks (more
than 20 physical nodes in one experiment, and with 60000 simulated nodes in another expe-
riment) is the one presented in [54]. All other protocols have been tested in small networks
and, while they may offer good accuracy, their scalability is a major concern.

As shown in the last column of Table 2.1} only the protocols in [54} (63, [68] support online
synchronization, which is important for online monitoring. Other protocols collect data first
and then apply synchronization algorithms. Using repeatedly an offline algorithm to achieve
online synchronization is a costly proposition, or may induce latency in obtaining results

when used in small duration batches.

2.7 Conclusion

Some distributed systems only require maintaining a logical order among events and are
satisfied with logical clocks. There is however a large proportion of applications, especially for
debugging and monitoring purpose where accurate timestamps, on a common time referential,
is required. In some cases, a hardware solution can provide the needed synchronization with
minimal computation cost and very high accuracy. In the general case, such hardware is
not available and efficient time synchronization algorithms must be used. The needs in such
applications vary greatly in terms of accuracy, network size and online versus offline.

This paper surveyed and evaluated existing clock synchronization protocols according to

a number of important parameters such as accuracy, scalability, cost and etc. Each parameter

Table 2.1 Performance comparison of synchronization protocols

Protocol Synchronization | Complexity of | Convergence | Overall | Fault Scalability | Real-time
Accuracy Calculation Time Cost Tolerance Application

Khlifi et al. [63] 50 ms O(n?) High Medium | Yes Poor Online/Offline
Kuhn et al. [68] Unknown O(n?) Low High No Poor Online

Poirier et al. [85] 10 ps O(n?) Low High Yes Poor Offline
Scheuermann et al. [89] | 0.1 ms N/A Low N/A Unknown | Good Offline
Salyers et al. [88] 17.2 ms N/A Low N/A Yes Poor Offline
Jabbarifar et al. [54] 10 ps O(log n) Low Low Yes Excellent | Online/Offline

27

was explained as well as its impact on distributed systems. The article thus provides a com-
prehensive and detailed review of the existing protocols and helps developers to analyze and
compare the different approaches. Finally, the analytical structure of the survey facilitates
the selection by developers of the most suitable and efficient protocol, or a combination or

extension to these protocols, to satisfy their specific application.

28
CHAPTER 3

Paper 1 : Streaming Mode Incremental Clock Synchronization

MASOUME JABBARIFAR, MICHEL DAGENAIS, AND ALIREZA SHAMELI-SENDI

3.1 Abstract

It is crucial to have appropriate tools to monitor, trace, and analyze system execution, so
that functional and performance problems in distributed systems can be identified. A trace
facility is aimed at keeping track of functional flow and reporting relevant changes at certain
times. In distributed mode, each node produces individual trace streams independently. Times
are recorded by a local clock which runs natively on each node. Traces from all the computers
in a network are gathered and analyzed online. One of the most significant requirements for
analyzing traces is online synchronization accuracy. The aim of this paper is to demonstrate
an efficient implementation of time synchronization in streaming mode. We propose several
approaches based on sliding window and non-sliding window techniques to resynchronize the
traces at regular intervals. We compare these approaches, and introduce a fully incremental,

continuous synchronization approach.

3.2 Introduction

The advent of multicore processors in computer clusters represents an evolutionary change
in conventional computing to achieve high performance computing. However, these systems
may exhibit coherency problems when parallel programs access shared resources, creating
timing-related problems that are hard to debug. It is therefore crucial to have appropriate
tools to monitor, trace, and analyze system execution, in order to identify functional and
performance problems. The trace facility is aimed at keeping track of the functional flow
globally, and at reporting relevant changes at certain times. The problem with global trace
analysis is that the cores of each node in a cluster have their own clock, which is not syn-
chronized with the others [75]. Dealing with this problem becomes even more complicated in
multilevel tracing (tracing in virtual machines, middleware, and application layers).

The Linux Trace Toolkit next generation (LTTng) [I7], developed at the Ecole Polytech-
nique de Montréal, provides a detailed execution trace of the Linux operating system with
low overhead. LTTng is capable of handling huge traces, in the order of several gigabytes.

However, a new method is required to handle these large traces, while at the same time

29

allowing the traces from multiple systems and embedded devices to be collected for online
analysis and viewing. Furthermore, the LT Tng user expects to see the output analysis in real
time, in order to diagnose problems live. Consequently, LTTng should be capable of visuali-
zing traces from several distributed systems on a common reference time base. In a computer
cluster, multiple nodes produce separate trace streams independently, and there are times-
tamps associated with each event. Since timestamps are recorded based on a local time that
runs natively on each node, a logical ordering of events cannot be guaranteed. The objective
of trace synchronization, with a high degree of precision and a low level of intrusiveness has
been achieved for a posteriori analysis [85].

Our objective in this paper is to improve the time synchronization algorithms for the live
analysis of streaming mode traces recorded on distributed nodes. The main contributions of
this work can be summarized as follows :

— Various sliding window approaches are proposed and compared. The functional and
performance problems related to these approaches are identified, along with the best
approach for real-time analysis.

— We introduce a new algorithm for online time synchronization. This new algorithm
efficiently filters new packet send-receive pairs with a simple test to only retain those
that can change the synchronization parameters. These remaining packet pairs are
processed in constant average time. Furthermore, the synchronization parameters are
incrementally updated in constant time as these packet pairs are processed.

— The proposed algorithm improves the streaming time synchronization of traces recorded
on distributed nodes with high precision and low intrusiveness.

The paper is organized as follows : first, we discuss related work, and several existing
methods for synchronization are introduced. In Section [3.4], we present the details of an open
source implementation that uses kernel-level tracing. In Section [3.5] we define the terms
needed to describe clock behavior, and introduce the notation used in the remainder of the
paper. The proposed model is illustrated in Section In Section [3.7], experimental results

are provided. In Section |3.8], our conclusion is presented and future work is discussed.

3.3 Related Work

3.3.1 Offline Clock Synchronization

Synchronization algorithms are classified as either offiine or online. Offline synchroniza-
tion focuses on trace synchronization at the end of tracing and after the traces have been
collected. A major offline clock synchronization method has been proposed by Duda et al.

[37], which consists of two synchronization algorithms, Linear Regression and Convex-Hull.

30

These algorithms estimate a conversion function between a pair of clocks. In both algorithms,
the conversion function is linear, and the drift and offset between the two clocks are extracted
from this linear model [58]. It also is used to estimate the one-way delay between two nodes by
Moon et al. [82]. However, the Convez-Hull algorithm guarantees the highest synchronization
accuracy [59).

In a two-dimensional space, based on the times of nodes A and B, the Linear Regression
algorithm attempts to map all the points on a line. Thus, every point will affect the position
of that line. In reality, network latency and similar events between two nodes can cause
problematic outlying points, biased being only late. These outliers should ideally not affect
the delay or offset computed from the linear regression. They should, in fact, be ignored
in order to increase accuracy [14]. The Convez-Hull is an accurate algorithm that assumes
minimum and maximum delay (sending time and receiving time). In this way, it finds the
area that has minimum latency and ignores outlying points. As a result, the estimated line
is more accurate with this algorithm than with Linear Regression.

Khlifi et al. [63] propose two algorithms, which they call the average and direct skew
remouval techniques for offline skew removal. The average algorithm calculates the average
delay for a fixed number of consecutive packets at the beginning and the end of a trace,
yielding a constant O(1) complexity. The direct skew removal technique has the interesting
property of being able to account for low clock resolution, where the clock granularity may
be larger (e.g. 1ms) than the packet delay. For this purpose, the whole trace is analyzed for
a linear O(n) complexity.

They also present two techniques for online skew estimation and removal. The first one,
sliding window, monitors the minimum delays to reduce the gap between the true and the
corrected delays, (the correction being the estimated skew). To improve the accuracy, they
present a second technique, the combined approach. They perform the sliding window al-
gorithm to quickly estimate the skew, in the first interval. Then, they use the Convex-Hull
algorithm during subsequent intervals to improve the accuracy. By contrast, our proposed
approach is based on the Convezr-Hull algorithm combined with lines with minimum and
maximum possible slopes between the hulls. This can provide skew estimates very early,
obviating the need for a different method in the first interval. Furthermore, our proposed
algorithm recomputes the skew incrementally in O(1).

Clement et al. [22] have evaluated the impact of system characteristics on trace synchro-
nization accuracy. First, they studied the tracing duration impact. They propose dividing
long duration traces into 30 minute segments, since the error in the clock drift linear ap-
proximation begins to increase significantly after approximately 45 minutes of tracing, while

it is almost stable during the first 30 minutes. The error increases because of the variation in

31

the clock drift with time, as shown by the Allan deviation [2], and because of environmental
effects on the clock circuit frequency, such as temperature and supply voltage variations.

Then, they studied the impact of the system load parameter, when there is a heavy load
on major subsystems, CPU, memory, and hard disk. They found that the transmission time
and response time measurement variations, caused by interrupt latency in a loaded system,
influence the clock drift computation directly, and subsequently the time synchronization
accuracy. The third parameter studied was hop count, when there is more than one path
between two nodes. In that case, the offset between the two indirectly linked nodes may be
computed by adding the offsets along a path, from one intermediate hop to the next. A path
with fewer hops generally provides higher accuracy. If there is a direct path, it is normally
better to choose that one to synchronize two nodes.

Poirier et al. [85] present an accurate method for synchronizing distributed traces. This
method is applied to traces recorded at the kernel level with low intrusiveness. They apply
the Convez-Hull algorithm to the clocks of traced nodes as a conversion function. If collec-
ted traces are huge and involve numerous nodes, their method is time consuming. In [50],
the proposed method estimates accurate paths in large computer clusters and improves the
performance of offline distributed trace synchronization. Since their algorithm was designed
for post-processing, the analysis delay was not major concern. However, for a live display of

traces, the latency should be minimized.

3.3.2 Online Clock Synchronization

By contrast, online synchronization works in streaming mode. Several researchers have
proposed algorithms for this application. The standard clock synchronization method, widely
used today, is the Network Time Protocol Daemon (NTPD) [80]. It sets and maintains the
kernel system clock, used to measure packet send and receive time, based on feedback from
exchanges with the server. Veitch et al. and Ridoux et al. [87) [102] proposed the RAD clock
(Robust Absolute and Difference Clock), which provides alternative clock synchronization
algorithms. The timing packets are timestamped using raw packet timestamps. They estimate
the clock skew based on the difference between the system clock and the timestamps received
from the server, and maintain the clock skew correction without changing the raw system
clock, in a feed-forward approach.

In some cases, where the casual ordering of events is sufficient to achieve the application
objectives, logical clocks have been proposed. Synchronization based on logical time considers
each pair of related events (such as the send event for a packet, which necessarily occurs
before the receive event) and orders them. Lamport [69], a pioneer in this area, formalized

this concept and proposed algorithms to compose logical clocks. The Lamport algorithm

32

is fairly limited in what it can order, however. To tackle this weakness, vector clocks were
independently proposed by Fidge [42] and Mattern [76]. The problem with vector clocks is
their use of vectors to track events, since the size of each vector grows with the number of
nodes.

However, in tracing and monitoring systems, the exact time of occurrence of each event,
and the speed of identification of the relationships between events, are sufficient to isolate the
probable problem and measure performance [94]. Consequently, the elapsed time on a physi-
cal clock is considered necessary for synchronizing nodes and analyzing their behavior with
LTTng. Cristian [25] proposes using a timeserver to synchronize physical clocks. However, the
problem with the timeserver is that it must tolerate occasional client readings. The Berkeley
algorithm [47] assumes that no machine has an accurate time source. The server estimates
the clients’ local time and yields an average overall time, informing each client of their offset.
However, it does not provide the accuracy required for trace analysis. Consequently, other
physical time synchronization algorithms are being considered, which focus on correcting the
difference between each pair of clocks, and relating each clock to a uniform reference time

base. We provide further details about these algorithms in the next Section.

3.4 Kernel-Level Event Tracing

3.4.1 Tracer

Over the years, different tools have been implemented to enhance trace operating system
behavior by recording kernel events. Some of the most applicable tracing tools are Ftrace,
Dtrace, Systemtap, and LTTng [29]. The trace visualization tools currently available have
often targeted detailed traces for small real time embedded systems, or much less detailed
system logs for larger systems [16]. All tracing tools rely on local clock synchronization, and
incur a significant loss of accuracy in the process. The proposed model is for LTTng tracer
in online mode. The most significant challenge for all tracing tools is to minimize the impact
of tracing on the traced computer. LT Tng not only has very low overhead, but it is also able
to trace kernel space and user space activities. These specific characteristics of LT Tng help

it monitor a broad range of activities in a computer.

3.4.2 Time Stamp Counter

The Time Stamp Counter (TSC) is a special register in the hardware that counts the
number of ticks in the computer, which provides high-resolution, low-overhead, and fine-
grained processor timing information [31]. If the processor frequency changes, the TSC rate

will change as well on most systems. When the processor goes into idle or halted mode, the

33

TSC may stop altogether. With the advent of multiple processors on a single motherboard,
the T'SCs on different processors may drift away from each other over time, and there is
no guarantee that they will ever resynchronize. A new generation of multicore processors
includes a constant rate T'SC, which provides for synchronization of the cores even though
their frequency may vary over time [29]. For the kernel and user space tracer, the T'SC' must
be the only time source. The trace clock is implemented based on TSC in LT7Tng, which
is able to detect various problems that may arise from improperly synchronized TSC's in
multicore systems and react appropriately. We generate events at the lowest possible point
in the network stack, just ahead of the interface with the NIC' driver [85]. Using kernel-level
event tracing allows us to timestamp a packet transmission after data have been transferred
from an application to the operating system, and after they have been processed by the
networking stack. This results in lower timestamping delay than when messages are recorded
at the application level, and means that every combination of application and hardware is
supported. Since trace events are recorded locally, there is no need to modify the packets.

This contributes to keeping the intrusiveness of tracing low.

3.5 Terminology and background

In this section, we introduce the terminology used in the remainder of the paper, and we
formalize the definition of the clock skew. Time offset, frequency offset, and frequency offset
rate are parameters that describe the behavior of a clock, and they differ from one clock to

another. The trajectory of the time offset can be modeled by the following equation [39] :

AT(t) = B(to) + alte)(t — to) + £(t — to)*+ € (1) (3.1)
AT(t) Time offset at time ¢
B(to) Initial offset
a(to) Frequency offset

Frequency drift

€ (1) Other factors, particularly random perturbations

Equation [3.1|shows that clock inaccuracies are caused by a combination of various factors.
Over relatively short intervals, many algorithms consider that only the initial offset and the
frequency offset are significant. We will refer to this as the "linear clock approximation”.

Taking this approximation into account, equation [3.1] can be simplified to :

AT(t) = B(to) + a(to)(t — to) (3.2)

34

Finding the time offset between a node clock and a virtual perfect clock becomes a matter
of identifying two factors in a linear equation. It follows that the offset between two real clocks
can also be modeled as a linear function. For the rest of this paper, we estimate a function

that maps the time on clock A to the time on clock B as follows :

OA('LL) = -+ OélCB(t) (33)

Moreover, the structure of a trace can be illustrated as follows :

T = (drift,of fset, start_time_from_TSC, events)

events = (e, g, €3, ..., €x)

(3.4)

Let us assume that there are two traces in a distributed system, 7j and 7T}, on computers
Cy and C respectively. Two event types are considered for time synchronization : (i) sending
a message, and (ii) receiving a message. Let us denote by 6; the time when Cj sends message

1 to ', and by &; the time when C] receives message ¢ from Cj,.

m(1) : To(0;) — T1(&) (3.5)

The timestamp for the sent message is stored in 7 and the timestamp for the received
message is stored in T7. 6; and &; are based on the local time of Cy and C] respectively. In
addition, C'; sends message j to Cp, and 6; is the time of when Cj receives message j from
Ch.

m(j) - Tu(&;) = To(6;) (3.6)

Each trace contains sent (S) and received (R) message timestamps, based on local time,

as expressed by the following sets :

Ty.events = (67,07, ...)
Ty.events = (£f,€5,...) (3.7)

i,j=1,23,..

. ——%
As shown in sets Ty and Ty, (67, &F) is the first pair of send-receive times for the message
sent by Cy to C}, and (GJR, ff) is the second pair of send-receive times for the message sent
by C; to Cy. If the event timestamps of T, are considered as references times, this gives us

the following equation :

Cr,(t) =6°

Cr,(t) = ab® + 3 (38)

35

3.6 Proposed Model

In online time synchronization, we are dealing with streaming data, the distinguishing
feature of which is the speed of the stream flow. Thus, it is not practical to scan the data
stream more than once. Buffering the data stream for a long time is another challenge that
we have to address, because of the huge amount of data usually in the stream. Consequently,
because of the limited amount of space for storing stream data, there is a trade-off between
memory and accuracy [35]. Ideally, an online synchronization algorithm should be efficient
in terms of both time and memory. In addition, the synchronization algorithm should be
scalable, have a consistently low synchronization computation latency, and maintain its ac-
curacy over time. Below, we introduce some common techniques for dealing with streaming
data :

Random Sampling analysis

One solution to working with a large dataset is to sample the stream at periodic intervals,
instead of handling all the data at once. An unbiased sampling requires some information in
advance, such as the length of the stream. Reservoir sampling selects an unbiased random
sample containing N elements without replacement. The idea is to maintain a sample, called
the reservoir, from the random samples generated (each sample uniformly has N elements)
[44].

Sliding Window analysis

Rather than taking a random sample of the streamed data, a sliding window model can
be used to analyze them. The idea is to use recent data to make a decision, instead of working
with all the data seen so far. This means that, if we have a window of size L, an element that
arrives at ¢ will expire at ¢ + L. Limiting the amount of data in this way reduces memory

space requirements [48], and is efficient in terms of both time and memory.

Incremental analysis

The idea behind this approach is to analyze the data as soon as it is received and then
discard most of it from memory. Here, the analysis speed must be the same as, or higher
than, the rate at which the data is received. Otherwise, memory buffer overflow will result.

We propose and evaluate three approaches based on sliding windows and one incremental

approach.

36

3.6.1 Model

Figure |3.1] illustrates the basic architecture of the proposed model, which supports both
window-based approaches and the Fully Incremental approach. The following steps would be
performed in this organization.

Processing module : traces Ty and T are gathered from two distributed systems in a
computer cluster for online analysis. In order to compute the clock differences between the
two nodes, there must be network traffic between them. The packet exchange events e; are
extracted and dispatched to the next module. So, this module captures both network traffic

and computer activity, and extracts the necessary information for the matching module.

TraceSetContext = (Ty, T}) (3.9)

As shown, there are two approaches : (i) Window-based approaches : In these approaches,
we have to read the traces for a particular time window. Each window is completely disjoint,
i.e. the windows do not overlap. At the window end, we finalize synchronization to obtain
the synchronization factors (drift and offset) per analysis module. (ii) Fully Incremental
approach : In this approach, events are read continuously. When the analysis module finds
an accurate pair, it updates the synchronization parameters. In the subsections below, we
define the term accurate pair.

Matching module : event processing feeds the events into the matching module one by
one. In this module, an attempt is made to match one event from a trace to the corresponding
event in another trace. Once we have a send or receive event, the matching module looks in
the associated table for an unmatched receive/send packet, or enters the send/receive packet
as unmatched. The cost of this operation is O(1). This involves a direct lookup in a hash
table using a so-called SegmentKey, which is based on TCP and IP packet headers (source
and destination IP and port, as well as sequence number). Care is required in order to limit
memory usage in the matching module, by removing unmatched packets periodically.

Events may be unmatched for several reasons, as illustrated in the following two scenarios.
In scenario (i), the tracing start and end times in the systems are not the same. Suppose
that we start with two traces, A and B, A starting 2 minutes before B. If we scan A first,
inserting all the unmatched send/receive events that occurred during these 2 minutes, when
we arrive at B, we could try to match all the send/receive events from B, but without success.
In scenario (1), lost events cause corresponding events to remain unmatched. Events are lost
either when the tracing buffers are not large enough to handle bursts, or when the rate
of events arrival is larger than the available bandwidth to send/save the buffers. It is also

possible for a packet to be dropped by the network. When a send or a receive event is lost, the

37

Processing Matching Analysis
module module module

: _ _ Reading A _ Finalize
; T Policy P P Policy
10 1 sliding | ;"ﬁ;{c‘&;‘;;é S . Window
: ——p ¢ Window | i p © et Perform ! Size i L
: P e + | events + Analysis | oo
Tl Lol Raly P P \ Accurate
: : ; ;Incremental§ P P . Message

Synchronization Factor

Figure 3.1 Two different approaches for online synchronization.

corresponding receive/send event will remain unmatched, and this may make the matching
procedure inefficient, as memory is taken up by needlessly storing the event. Indeed, while
it may be possible to match the event at a later time, the corresponding packet will have
been significantly delayed (e.g. by taking a different route), and high latency exchanges are
inaccurate. Moreover, even if we only have communication in a single direction (unlikely
because of TCP ACK packets), once several later packets have been matched, we can deduce
that a late match would not create a data point of interest and so we can clear that packet.

Our proposed strategy for addressing these problems is to scan all the events available
to date from both traces, and so obtain a first time offset estimate. Subsequently, after a
threshold (T_buf fer) time, a new hash table is created, the existing one is kept as a previous
table, and the former previous table is discarded. The new packets are inserted into the new
table, but matching is attempted in the new and previous tables. The T_buffer can be very
large, but should be sufficiently small that unmatched packets cannot accumulate to the
extent of causing a memory problem. As a result, the proposed strategy flushes the older
packets, while keeping the O(1) complexity per packet examined.

If one trace started much earlier than the other, this may overload the memory by storing
packets that will never be matched. If we have no hint of the relative timing of the traces,
the following are possible : trace 1 may be completed before trace 2, or performed after it.
If we do have a hint of the relative timing of the traces, this could provide us with a good
estimate of where to start. The timing can come from : (i) trace headers or trace buffer

headers relating TSC to real-time clocks, assuming that these clocks are synchronized to

38

within a few seconds; (i) in streaming mode, if the trace is live, the last buffer of events is
received from each trace at the same time, or within a few seconds. If we have no hint as to
timing (the traces are already completed, or they are streaming, but with a long delay), and
are afraid that inserting all the packet events will cause the memory to overflow, we could
use the following strategy. If the traces are disjoint, no synchronization is possible/useful. If
the traces intersect, the beginning or end of one trace must intersect with a part of the other
trace. In the latter case, we could insert a constant number of packets from the beginning
and end of one trace, and then try to match all the packets from the other trace. This would
allow us to find an initial time estimate in linear time and constant memory.

Analysis module : the analysis module receives a matched send/receive pair and applies
the Convez-Hull algorithm in different ways, using one of the various approaches presen-
ted in this paper. This module should return synchronization factors for each trace pair of

communicating computers.

3.6.2 Convex-Hull

As shown in Figure [3.2] pairs are divided into two sets, based on the message direction.
Consequently, the synchronization estimation line should be below all the pairs {(07, ¢,
(09,1,6%,), ...} and above all pairs {(0F,£7), (0F.,€5,,), ...}.

The packets with minimum latency are those of interest in the Convez-Hull synchroni-

zation algorithm. Packets sent from 6 (horizontal axis) to & (vertical axis) occupy the upper
left half-plane and are shifted higher when more network latency was encountered. There-
fore, the lower half-hull, of the Convez-Hull formed by those points, is a lower bound for the
packets sent from 6 and identifies the packets with the lowest latency. Similarly, packets sent
from £ (vertical axis) to 6 (horizontal axis) occupy the lower right half-plane and are shifted
to the right when more network latency was encountered. Therefore, the upper half-hull, of
the Convez-Hull formed by those points, is an upper bound for the packets sent from & and
identifies the packets with the lowest latency. The possible synchronization lines lie below the
lower half-hull of packets sent from 6 and above the upper half-hull of packets sent from &.
Synchronization accuracy is limited by the delay between the send and receive events.
Any packet delayed by interrupts, network switch delay, or some other cause will lead to an
inaccurate pair and a long delay. The Convez-Hull algorithm selects the pairs on the inside
envelope between the sent time and the received time, and so identifies the most accurate
pairs with the shortest delay. In other words, it finds the area that has minimum latency
and ignores outlying pairs, as shown in Figure (05, ffj, (02,8, (08, &5), 693{%, £5)). This

means that the estimated line is more accurate than with Linear Regression, which is affected

by all pairs, including delayed packets.

39

A
- Lmax
o 0850
(0585 = Cilty
~ By I-min
& (ORED)
B &Fs e
max | .- L GR,
(e, §S) €25
Bmin -

Figure 3.2 Convex-hull method.

According to the above definition, we have two completely separate sets, because there is
no message inversion (receive before send). Each set attempts to find the optimal separator
(the solid line in each hull), as points in each set are nearest to the separator space. Graham’s
scan algorithm forms these two separated sets. The bounds of the Convex-Hull, shown in
Figure are :

UpperBound = {(9{%’5)\7 (Qf, 54)7 685 7655)} R (3 10)
Lower Bound = {(9f7€)7(6§a€3)7(945754) (‘96‘?75?)}
Thus, the maximum likelihood estimators are between the following conditions :
abf + f < &
QR+ B < 0 (3.11)

,7=1,2,...n
The next step is to find two lines, one with maximum slope (L) and another with

minimum slope (L) :

Lmaac = amaxe + Bmm

(3.12)
Lmin = amine + 6mar

As a result, the final estimated o and 3 are certainly limited to the area that is enclosed

40

between (Qmin, ¥maz) a0 (Bmin, Bmaz), and the selected synchronization line is the bisector
of Lz and L.
When synchronizing two traces, the relationship between them can be one of the following :
Definition 1) An accurate relationship : this is the expected case, shown in Figure
B.2] where L, and Ly, are available and their middle can be computed. If the relationship
between two clocks is of the accurate type, we can define the accuracy metric as the difference

between the minimum and maximum possible drifts between the two clocks.

Accuracy(i) = L™ .drift — L's™.drift; (3.13)

Definition 2) An approximate relationship : L,,q, and L,,;, are not available because
the hulls do not satisfy the hypothesis that the upper half-hull should be below the lower
half-hull and not intersect with it. The approximation is a "best effort”.

Definition 3) An incomplete relationship : only one of the L., and L, lines is
available. There is communication in only one direction, which is insufficient to obtain a
proper bounded synchronization.

Definition 4) An absent relationship : there is no communication between the nodes in
either direction, and nothing can be deduced about their relative time.

Definition 5) Fail relationship : none of the L., and Ly, lines is available. This is

because the hulls intersect each other or are reversed.

3.6.3 Window-based Approach

As mentioned, one of the applicable methods for streaming data is the window-based
technique. Each window is completely disjoint, i.e. windows do not overlap. With this method,
the analysis is performed on the data in the current window instead of the whole data. It is,
however, possible to reuse synchronization parameters or even accurate pairs from previous
windows. The advantage of this method is to use the most accurate packets that were detected
in previous windows for synchronizing time in the current window. Thus, the synchronization
results for each window are stored to be potentially used in subsequent windows.

In some cases, after refining the synchronization at the end of one window, the synchro-
nized time in the next window for events in one trace may change, relative to the events in
the other trace. As a consequence, the window start time must be adjusted to avoid skipping
some events in one trace, and events from the other trace that may already have been read
can be ignored.

Algorithm 1 illustrates the pseudocode of the window-based approach. One of the inputs

to this pseudocode is window size ([). There is a tradeoff in determining I If [is too large,

41

ALGORITHM 1: Window-based approach

Require: L : window-size
Require: TtoS() : convert from Trace time to Synchronized time
Require: StoT() : convert from Synchronized time to Trace time

— =
—= O

T[0].offset= 0

w.startTime= min(T[0].start Time_s, T[1].startTime_s)
w.endTime= max(T|[0].start Time_s, T[1].startTime_s) + L

: loop

—_ =

)_.
>

.—
ot

,_
@

—
.

,_.
*

H
©

NN NN
w2

SR CEEN

)
=1

DO
*

29:
30: end loop

T[0].endWindowTime_t= StoT(T[0].offset, T[0].drift, w.endTime)
T[1].endWindowTime_t= StoT(T[1].offset, T[1].drift, w.endTime)
for (e = readEvent() and e.time < TSC.T[e.index|.endWindowTime_t) do
if e.time > T[e.index].preWindowTime_t then
P= matching(e)
if P is not null then
performAnalysis(P)
end if
end if
end for
finalize-sync()
UpdateViewer()
T[0].endWindowTime_s= TtoS(T|[0].offset, T[0].drift, TSC.T[0].endWindow Time_t)
T[1].endWindowTime_s= TtoS(T[1].offset, T[1].drift, TSC.T[1].endWindow Time_t)
w.start Time= min(T[0].endWindowTime_s, T[1].endWindow Time_s)
w.endTime= w.startTime + L
T[0].prevWindowTime_t= T[0].endWindowTime_t
T[1].prevWindowTime_t= T[1].endWindowTime_t

42

there is a latency period before an accurate synchronization is obtained. If [is too small, the
precision of the algorithm suffers. However, the total computation time should be unaffected.
We used heuristics to determine the window size.

Having a sufficiently large window is essential for a synchronization. If the window is too
small, then the traces are being synchronized onto a space of insufficient dimension, in which
there is not any accurate packet to improve synchronization. Thus, the delay caused by run-
ning several useless synchronizations impacts online synchronization performance. Moreover,
a too large window also produces problems : postponing synchronization to the end of each
window delays the user visible reaction time. These algorithms also store more data for ana-
lysis, impacting memory usage. We tested different window sizes and the experiment results
lead us to select a window size equal to three seconds for the experimented datasets.

Other inputs to this algorithm are the two traces, Ty and Tj. First, all drifts and offsets
are set to 1 and 0 respectively, and the traces are ready for the first window. The start and
end of a window are updated based on the reference time. We define two boundaries for each
trace : prevWindowTime_t and end WindowTime_t. The prevWindowTime_t boundary first
refers to the trace start time (line 4 and line 7) and then refers to the previous end Window-
Time_t, and the end WindowTime_t boundary is updated based on w.endTime. To calculate
endWindowTime_t we use StoT function because w.endTime is based on the reference time
and has to be converted to the local time of the trace.

These boundaries not only update the window end time, but also avoid events being read
which were read earlier. First, the boundaries of each trace are converted by the TtoS function
to define the first window. This function converts local time to synchronized time by applying
the current synchronization factors of the trace. Then, the minimum and maximum start time
between two traces are extracted. The first window starts from the minimum time to avoid
skipping events and ends at the maximum time plus /. This means that the first window is
the largest. The important point is that new synchronization factors may change the relative
trace time, as Figure [3.3b] illustrates. Therefore, the w.startTime of the new window may
not refer to the end of the previous window. This means that, as line 26 indicates, the start
time of the new window is the minimum of two previous end window times of traces, to
avoid any gap. In fact, we should avoid reading events that were read earlier. To tackle this
challenge, we compute two boundaries for each trace. Event reading is performed based on
these two boundaries in each trace (line 15), and in this way duplicate reading is avoided.
Function matching pairs one event from a trace with the corresponding event in the other
trace (p). The matched events are sent to the analysis module as a packet to analyze based on
the Convex-Hull algorithm (line 18). At the window end, we finalize the synchronization to

obtain new synchronization factors after reading all the events (line 22). Finally, we update

43

the trace viewer [85].

Different models for window-based approach

We have compared three different approaches for analyzing information one window at a
time, and accordingly recompute the time synchronization.

Independent windows : The idea behind synchronizing the computers in streaming mode
is to consider only the traffic information in the current window. No relationship is maintai-
ned between windows. One of the advantages of this approach is that no buffered data or
computations are passed from the previous window to the current window, which minimizes
analysis time and complexity. The disadvantage of this method is that it is not capable of
achieving a satisfactory level of accuracy, not only in each window, but also at the end of the
process.

Replace : Reusing the accurate results from the Convez-Hull analysis of the previous
windows is the objective of the Replace approach. As mentioned before, the result of trace
synchronization may be : "accurate”, "approximate”, incomplete”, "absent”, or "fail”. The idea
behind this approach is to compare the current window’s accuracy with that of the previous
window. In this way, we compare the accuracies that we have so far. Accuracy; represents

the accuracy of window ¢ and Accuracy;—,) represents the accuracy of the previous window

in Eq. |3.14]

g; = Accuracy;_1y — Accuracy;
, Y1) Y (3.14)
if ¢ >0 replace

If ¢; < 0, the current window packets have not improved the accuracy and should be igno-
red. If €; > 0, the current window packets have improved in accuracy. In that case, the current
accuracy becomes the new best accuracy, and all the points in the Convex-Hull are replaced
by the current window points. If the current synchronization state is "accurate” while the pre-
vious state was "approximate”, "incomplete”, "absent”, or "fail”, the replacement takes place
automatically. The same applies if the current window synchronization is "approximate” and
the previous window is "approximate” (conditional replacement) or one of the inferior states
(automatic replacement). This approach is somewhat incremental, and improves accuracy
over time, but relatively slowly.

Correlated : This approach selects the accurate packets in each window and transfers them
to the next window to initialize the Convez-Hull. When a new packet with a small delay is
detected, it is added to the set of accurate packets. As shown in Figure [3.4] this method
stores pairs {(0f,¢7), EHQR,), Ee};, €3)} in the upper bound list, and pairs { (67, £5), (65, f‘ﬁj,
8 é}fj, (67, ff;} in the lower bound list of the first window. Once it finds {EH5R, £9), (02, ffj}

44

T1
StartTime=600 sec.

StartTime=800 sec.

} W1

(a) before sync. (first window)

TO Tl
Synchronized Time=800 sec.

StartTime_s=803sec.
EndTime=806 sec.

(b) after sync. (second window)

Figure 3.3 The local clock values used for traces TO and T1 may be highly desynchronized.
Two traces starting about at the same time may see start times of 600sec. and 800sec. on
their local clocks, respectively. With a window size of 3sec., the first window, W1, will go
from 600sec. (minimum start time) to 803sec. (maximum start time plus window size). After
processing the first time window, and analyzing matching events, it may be computed that
trace TO should be offset by -200sec., using T1 as time reference. The second time window,
W2, is from 803sec. to 806sec., based on the reference time of T'1. This corresponds to 603sec.
to 606sec. in TO based on its local clock. After synchronization, we realize that events in T0
for time range W2 have already been processed as part of W1. These already read events are
skipped.

45

more accurate pairs in the second window, producing a narrower channel between the hulls, it
replaces them as the most accurate pairs and saves them for future use in the next windows.
In the case where there is no pair as accurate as any of the previous stored pairs in the new
window, the method keeps the previous synchronization factors for that window. In this way,
the correlated sliding windows keep the performance of the overall analysis. The advantage of
this method is that it uses the history of the accurate packets and improves the set over time,
based on new exchanged packet information. Moreover, it stores little information about the
most accurate points kept for future use, which means that, for the most part, buffering
problems are avoided.

This method postpones the recomputation of the trace synchronization to the end of each
time window, which reduces the time synchronization costs, in turn limiting the number of
recomputations to the number of time windows. Still, it reaches the ideal accuracy at the end
of each time window. There are many applications where this small latency period, waiting
until the time window ends before obtaining the improved accuracy, is not a problem. The
Correlated sliding window approach is suitable for such applications. For example, many
system administration tools refresh the analysis view once every few seconds, and selection of
the time window can match the display refresh cycle. By contrast, there are some applications
that are time sensitive and require the resynchronization of traces as soon as the accuracy
can be improved. This would be the case in several real-time applications, particularly for
detecting security attacks and generating alerts based on distributed trace analysis. Any delay
in such applications is to be avoided. It is this scenario that motivated our additional effort

to develop a fully incremental algorithm.

3.6.4 Fully Incremental Approach

The Convex-Hull algorithm looks for the smallest difference between the sent and recei-
ved timestamps. It finds the send and receive events exhibiting the minimum latency and
ignores points further apart, and so restricts its computation space as much as possible. The
first step of the proposed method for online synchronization is to synchronize the two traces
as soon as possible. When the type of relationship is accurate, we have reached the first
synchronization between traces. As illustrated in Figure [3.5a] pairs in the upper bound and
pairs ((0F, 7). (04,€5), (65,€5)) in upper bound and pairs (65, 1), (65, €), (65, €)) in lo-
wer bound help to estimate the first time synchronization between two local times, Cy and
.

This first estimation is not very accurate, but, as more packets are received, accuracy

should improve over time. Accuracy is determined by the difference between «,,,;,, and ;4.

The idea is to react only to matched packets that affect the slopes (min, Qmaz), and then

46

Window, Window,

(67.7)
(eg,gg 7957

(0385
0

(0555)
07D

Y

Figure 3.4 Correlated sliding window.

update the synchronization parameters in O(1) time.

Definition 6) Accurate message : a matched pair will improve the synchronization
accuracy if and only if it is below the line L,,,, in the lower hull or above the line L,,;, in
the upper hull.

Removal of the right-hand pair from the upper or lower bound list is shown in Figure
3.6 Figure illustrates the removal of a pair from the lower hull (65, ££), and Figure [3.6H)
illustrates the removal of a pair from the upper hull (0, £5). This simple test (above or below
a line) is applied to every incoming matched pair, and quickly identifies the few pairs that
actually change the slope of L,,;, and L,,.., and improve accuracy, moving towards their
center space.

As shown in Figure [3.5b] most packet pairs are outside L, and Ly, and cannot affect
accuracy, and so are ignored. For example, pairs {(65, &%), (05,¢8)} do not change Lngq,
which means that accuracy cannot change. However, the new pair (07, &) affects Lypa,, and

accuracy is improved.

amax > amaz

(3.15)

Omazr — Amin 2> Omaz — Omin

The same reasoning applies for L,,;,.

47

A
L max
(65.6) /,,,-»5(9?,@;‘)/0
(93&?)5 D o Celt)
" Lmin
Bray -
Brmink=_ _

(a) The accurate packet, (65, &), position before updating the synchronization

A
L max
S
e OB
0385 7 - Clto)
0
Bmay.
Prmink_ g

(b) Synchronization based on accurate packet

Figure 3.5 Fully Incremental Approach

48

S ZR R S
(6:,6) (6/,¢)
(a) clockwise triangle (b) counterclockwise tri-
angle

Figure 3.6 Geometric movement state in upper and lower hulls

Cmin. < Gmin) (3.16)
Qmaz — Umin > Qmaz — Omin
Therefore, our Fully Incremental approach calculates the new drift and offset between
two traces on a pair located between lines L,,,. Or L., after the first synchronization. It
guarantees the best accuracy without waiting for a window end time. Thus, to manage L,
and L,,;,, the two points currently defining each of them must be stored.

Lmaz:{(eR 3)7(95 z)}

tmin? Slmin tmazx’ dlmax

Lmin = {(e'zs;nzn’ 7/}'rznm)’ (ggnaac’ fmaa:)}

(3.17)
imin € {1,...,n—1}

imaz € {2,...,n}

Unlike in the classic Convex-Hull algorithm, the pairs of points defining L,,., and L,
are incrementally updated as new points are added.

Theorem. Each synchronization in the Fully Incremental approach requires O(1) time,
on average.

Proof 1. Algorithm 2 illustrates the Fully Incremental pseudocode. The Fully Incremental
approach takes a packet as input (consisting of a pair of matched send-receive events from
two traces). Lines 5 to 15 check whether the new packet belongs to the upper or the lower
bound. Line 16 calls upon the Qualify-message function, to verify whether or not the new
packet is an accurate one. L,;, has a first point in the lower hull (delimiting the upper

plane), L,,,.point;, such that the slope of the hull edge ahead of the point is smaller, and

49

the slope of the edge after it is larger. The second point, L,,;,.points, is in the upper hull
(delimiting the lower plane), with the slope of the hull edge ahead of the point larger and
the slope of the edge after it smaller. L,,;, has a smaller slope than L,,,,, and therefore
Lpnin.point; must be ahead of L,,q..points on the lower hull, and L,,...point; must be ahead
of Lyin.-pointy on the upper hull. When a new packet arrives for the lower hull, if it is above
Loz, it cannot affect L,,., and is not of interest, even though it could be on the Convex-Hull.
We call these points neglected hull points. However, if another point comes later which is
below L;q., it will be considered, included in the hull, and change L,, .., becoming the new
Lppaz-points. It is important to note that any neglected hull point between the previous and
the new L,,q..point; would have formed a concave section (pairs {(62, ¢2), (05, £8)} in Figure
and been removed. Thus, behind L,,,,.points, we have the complete Convez-Hull. This
is important because it ensures that the optimization that neglects some hull points ahead
of Lyaz-points does not affect the integrity of the hull behind L,,q..points, and so does not
interfere with the computation of Lyu,.point; (pair {(6%,&7)}) in Figure [3.5b), which is
ahead of Lq..pointy on the lower hull. Let (67, £5) and (0%, £7) be the new pair positioned
against the lower and upper bound respectively. The qualification can be performed by a
cross-product function in the lower and upper bounds, as follows :

cross — product((07,€F), (0% &5) (67 R =

Tmin? Slmin tmazx’ dlmazx

(0%, = 09N, — &) — (&, — &N}, — 67

cross — product((0F,£2), (02 &R) (OR &5) =

Tmin? Slmin tmaz’ dlmazx

(05, — OF)(EL,,, — &) — (€8, — wif)(0F,, —0f)

The complexity of the cross-product function is O(1). If the pair is not qualified, it is drop-
ped, because it does not improve accuracy. Otherwise, it is added at the end of the bound
list. Let p be the new matched packet. < ly,ls, 13, ..., l,n_1, [, > and < uq, ug, us, ..., Up_1, U >
denote the remaining points on the lower and upper bound lists respectively. If p quali-
fies as an accurate packet for the upper bound list, it becomes u;;. The next step, line
17, is running the Graham scan vertex addition procedure to performing the cross-product
cross — product(ug_1, uy, ugs1). If ug is removed, then the cross — product(uy_o, up_1, 1)
is performed. Each point is examined in turn, and is either removed and the processing conti-
nues, or is kept and the processing stops. The total number of points (matched pairs) to
process being n, the number of iterations in the algorithm is n and the number of points that
may reside in the upper or lower list is bounded by n. At every iteration, when a new point is
added and several points from the hull may be removed, the number of operations required

is in the order of the number of points removed, and may approach n. However, the total

20

number of points removed over all iterations is also bounded by n. Thus, for the n iterations,
the average complexity for one iteration is O(1). It is interesting to note that the number of
points in the lower and upper lists is typically much lower than n, and often no more than 8.

The last step is adjust-bounds procedure. As mentioned, either L,, ., or L,,;, is necessarily
affected when a packet pair qualifies. For instance, if the accurate packet is related to the
upper bound, L,,;, has to be recomputed (but does not affect L,,q;). In the proposed ap-
proach, we update only one of the two lines, and the received accurate point simply replaces
Linaz-pointy or Ly,.points (line 18). Algorithm 3 illustrates the pseudocode for updating
the first point of the line L,,;, or L,,... For every new accurate point, when the slope of
line L,,;, or L,,.. changes, its first point may advance, skipping a few points to reach one
with a higher number in the bound list. Let [.posl denote the position of point [, in the
lower bound list, which is currently used as L,,;,.point;. When the slope of L,,;, is updated
(increased), it may become larger than the slope defined by points lp,s1 and lpps141. In that
case, .posl must be incrementally updated until the slope defined by points l,s1 and l,es141
becomes larger than the slope of the updated L,,;,. The number of operations required is
in the order of the number of points skipped in the list. Here again, the number of points
skipped in one slope update is bounded by n. However, the total number of points skipped
over the whole incremental procedure is also bounded by n, and so the average complexity
for the slope update per iteration is O(1).

Line 20 in Algorithm 2 reveals an exceptional situation which may occur when point,
of Lyae OF Ly, is removed by the Graham scan. In this case, we also have to update the
first point of the other line in the same way. Even doubling the number of operations in that
worst-case situation does not change the algorithm complexity.

The Fully Incremental approach introduced here is particularly interesting, because it in-
crementally updates the synchronization immediately upon receiving more accurate packets,
yet it has a worst case average complexity of O(1) per packet. Moreover, very few packets
qualify for synchronization updating, and a very small subset of points is typically retained
to define the Convex-Hull. This makes the algorithm ideally suited for the targeted high

performance trace analysis tools.

3.7 Experiments and evaluation

3.7.1 Experimental setup

In our model, we instrumented the Linux kernel version 2.6.26 using LTT'ng, and the tests
were performed on seven Pentium III computers (4 CPUs) with 4 GB of RAM. The window

size for the Correlated, Replace, and Independent approaches is 3 seconds.

51

ALGORITHM 2: Fully Incremental approach

Require: p : new packet

N N N N o e s e e e e

Upper_bound_list= < uy, ug, Ug, ..., Up_1, U >

Lower_bound_list= < [y, [, l3, ..., L1, [, >

Lar =< pointq, pointy >

Lpin =< pointq, pointy >

if p related to the upper bound then
BoundList= Upper_bound_list
OtherBoundList= Lower_bound_list
Line= L,,;,
OtherLine= L,

else

BoundList= Lower_bound_list
OtherBoundList= Upper_bound_list
Line= L4
OtherLine= L,,;,

. end if

: Qualify-message(Line, p)

: Remove-useless-points(BoundList)

: Line.points= p

. Adjust-bounds(Line, OtherBoundList)

. if OtherLine.point; has been removed then

OtherLine.point;= BoundList|[0]
Adjust-bounds(OtherLine, BoundList)

. end if

ALGORITHM 3: Adjust-bounds

Require: Line
Require: OtherBoundList

1:
2:

posl= Line.point,
i = Other BoundList s

3: j= Line.points

4:

10:
11:
12:
13:
14:
15:

5
6
7
8-
9

while i < OtherBoundList.length-1 do
rotation= cross — product(i,i + 1, j)
if the rotation is not optimal then
if i+1.x < j.x then
1++
else
Line.point; = NULL
end if
else
Line.point, =1
end if
end while

52

3.7.2 Packet matching and Convex-Hull points

Figure illustrates the number of matched packets in each window for the window-
based approaches. As shown, the maximum number is associated with the 198th window. As
explained in Figure [3.3] we have two traces with two different S-TSCs that are far apart. We
read more events from trace T than from trace 77 in the first window. Consequently, the rate
of matched events depends on 77, and we have many unmatched read events from T that
will be matched in subsequent (second and third) windows. Thus, we have a higher rate of
matched events in the initial windows, the third window in this experiment. Since traces are
synchronized at the end of the first window, the S-TSCs quickly move closer together over
time. This means that the rate of matching will be back to normal after the third window,
and subsequently depend on the number of exchanged packets in each window.

We analyzed 239 windows from the data stream in this experiment. According to Figure
3.3} the total number of matched packets is 39786. Figure [3.§ illustrates the number of event
pairs that represent the bound points of each hull in the Correlated sliding window approach.
As shown in Figure[3.8| there are 12.7 points, on average, in the lower hull, and 11.8 points, on
average, in the upper hull. These numbers become 8.5 points in the lower hull and 6.4 points
in the upper hull for the Fully Incremental approach, as shown in Figure 3.9, According to
this figure, there are 226 accurate pairs, and therefore there were 226 synchronization updates
during this experiment. By contrast, the Correlated approach performs synchronization at
most once per time window, that is, 239 for this experiment. When compared to the total
number of matched pairs, which is 39786, both these numbers, 226 and 239, are much lower,
and so incur a low cost. Figure [3.10] illustrates the comparison between the number of pairs
in the two hulls in the Correlated and Fully Incremental approaches. As discussed earlier, the
number of pairs is minimal in the Fully Incremental approach.

Figure shows the accurate packet rate during the trace. It shows that at the start of
tracing around 30 percent of matched packets are accurate packets and able to improve the
synchronization since initial synchronizations is performed with low precision and the L.,
and L,,;, drifts are away from each other. This difference decreases and the synchronization
accuracy improves while receiving the accurate packets. Consequently, the chances of receiving
a packet placed between L,,,, and L,,;, diminish with time.

Figure 3.12]illustrates this concept by comparing the number of received accurate packets
versus the number of windows in the Correlated approach. At the start of tracing, the rate
of accuracy improvement in the Fully Incremental approach is superior to the window based
Correlated approach. After some time, this rate grows slower. For instance, there are 217
received accurate packets until 654 second into the trace, which is comparable to the number

of time windows. However, the accurate packet flow reduces after this point and there are

93

250
. 200 r P’\ﬂ
S V\W N \
§2]
2 ol 1]
O
©
2 |
@ 100 | -
-
O
g
50 k .
O 1 1 1 1
0 50 100 150 200

Window No.

Figure 3.7 The number of matched packets in each window.

50 | | | |
Lower hull -~~~
40 1 Upper hull -
Total
s 30} |
=z
%
£ 20} _
0 . | | |
0 S0 100 150 200

Window No.

Figure 3.8 The number of pairs in Convex-Hull in each window (Correlated approach).

o4

35 T T T T
Lower hull ------

30 Upper hull - i

o5 | Total

Pairs No.

50 100 150 200
Synchronization No.

Figure 3.9 The number of pairs in Convex-Hull in each synchronization (Fully Incremental
approach).

40 T T T T T T T
Fully Incremental approach ——-—

Correlated approach =

Total pairs in two hulls

O 1 1 1 1 1 1 1

0 100 200 300 400 500 600 700
Time (sec.)

Figure 3.10 Comparison of total pairs in Convex-Hull.

55

nine subsequent synchronizations performed by the Fully Incremental approach versus 21

synchronizations performed in the Correlated approach.

3.7.3 Accuracy and Cost

Figure [3.13] illustrates the synchronization results of the Fully Incremental vs. the time
window-based approaches. As expected, the Independent approach has the worst accuracy,
because it ignores the pairs of interest in previous windows. Moreover, the Replace approach
changes the results when it is able to improve the total accuracy in a window relative to
that of the previous window. Nonetheless, it still ignores the accurate pairs in previous win-
dows. Therefore, as shown in Figure [3.13] it cannot improve on the total accuracy after the
second window, and it keeps that accuracy until the end of the experiment. Consequently,
we will focus on the other two approaches. As expected, the Fully Incremental approach
performs synchronization as soon as it finds an accurate pair. The first synchronization of
all window-based approaches was performed at time 3.42. By contrast, the Fully Incremental
approach synchronizes these two traces 22 times before time 3.42. This illustrates why the
Fully Incremental approach has the highest accuracy at all times, since it does not postpone
the calculation of the synchronization factors. We now examine the synchronization cost of
the two approaches in further detail. Formula [3.18| represents the synchronization cost of the

window-based approaches (Cost,,) for each window :

| = window_size
R = Read_events(l)
M = Matching(R)
P = Per form_analysis(M)
F = Finalize_sync.(P)
= Cal(Lpaz) + Cal(Lyin) + Cal(a, B))

(3.18)

Cost,, = Cost(R) + Cost(M) + Cost(P) + Cost(F)

The number of events in each window is different, and depends on the rate of event
occurrence. The reading time depends on the number of events (Cost(R)). The number of
matched and unmatched pairs is different in each window (Cost(M)), but the matching time
does not depend on the number of events in the hash table, since it has O(1) complexity.
As mentioned, with the Convez-Hull algorithm, we perform vertex removal when adding the
latest received pairs, and possibly replace some of the related bound pairs. Thus, there is a
cost (Cost(P)) in dealing with new pairs, when the Matching module sends a new pair to

the Analysis module, in the window-based approaches. The cost of the finalize_sync is to find

o6

60

50 | .

Accurate Packet Rate
w
o

O 1 1 1 1
0 50 100 150 200

Time (sec.)

Figure 3.11 Accurate packet rate

300 I I T T T T T
Accurate Packet -

Window ——

250

200 _

150

No.

100

5 O / T

Time (sec.)

Figure 3.12 Accurate packet distribution vs. time window enhancement

o7

Lper and L,,;,, and compute the synchronization factors.
Formula [3.19| represents the synchronization cost for the Fully Incremental approach

(Costy) :

R = Read_events()

M = Matching(R)

C' = Check_accurate_pair(M)

F = Finalize_sync.(P) (3.19)
= Cal(Lyaz)|Cal(L) + Cal(a, B))

Costy = Cost(R) + Cost(M) + Cost(C) + Cost(F)
As mentioned in Formula [3.19] the costs of reading and matching events (Cost(R) and

Cost(M)) in the Fully Incremental approach are same as for the window-based approaches
(Formula [3.18).

In the Fully Incremental approach, there is no comparison algorithm for the new pair
and the existing pairs in the hull bound lists. For most points, the procedure merely involves
checking the location of the pair and L,,q; or L,,in, which costs less than the cost comparison
required in the window-based approaches. Since we do not save inaccurate pairs that are
located higher than L,,,, or lower than L,,;,, we save not only in terms of memory, but also
in terms of time, as just explained, since inaccurate pairs do not improve synchronization
accuracy (Cost(C)).

Since only L,,4. or L, is changed when an accurate pair is received, the cost of finalizing
the synchronization algorithm is lower as well (Cost(F)). Therefore, the total cost of the Fully
Incremental approach is lower than the total cost of the window-based approaches.

Figure illustrates the zoom on the accuracy dimension from 1.2¢7% to 1.9¢7% and
the trace time dimension from 120 to 170 second in Figure [3.13] It shows that the Fully
Incremental approach always yields the lowest (best) accuracy bound, while the Correlated
approach achieves the best accuracy as well, but with some delay, at the end of each window.

For example, 1.35¢7% is the accuracy reached by Correlated approach at 153 second,
while Fully Incremental approach had already achieved this accuracy at 150.69 second of the
trace. This illustrates the first disadvantage of the Correlated approach, not synchronizing
the traces until the end of windows. This delay (2.31 seconds for this short trace) causes
problems for critical applications. The worst case happens when accurate packet is found at
the start of window, in which the delay is approximately equal to the length of window.

Moreover, there is no improvement in two windows between 153 and 159 second. Thus,

the Correlated approach recomputes needlessly the synchronization parameters. The Fully

o8

Incremental approach does not recompute anything until the next accurate packet. This
illustrates the second disadvantage of the Correlated approach running at the end of each
window, even when there is no chance to improve the synchronization accuracy.

Four techniques for online synchronization have been discussed and tested in this section.
The interesting feature of the Fully Incremental approach is that it continuously updates the
time synchronization factors with the best available data. Yet, each step involved : matching
the send-receive pair, adding a point to the Convex-Hull, and updating the slope of the min,
max, and median lines, takes a constant time, on average. Furthermore, for a large proportion

of the new points, we can quickly determine that no update is necessary.

3.7.4 Delay and Packet loss effects on the Fully Incremental approach

The presented Fully Incremental algorithm for online clock synchronization is robust even
in the presence of network delay uncertainties and internal kernel delays. It also guarantees
accuracy improvements as soon as transmission latency improves.

To test the effect of packet loss, we traced a network containing two computers, and
generated TCP/IP packet exchange traffic. The target duration of the traces is 12 minutes.
Initially, we used a traffic with less than 10 percent packet loss. Then, the experiments were
repeated with increasing packet loss. This is achieved by using iptables and the statistic
module (iptables -A INPUT -m statistic -mode random —probability 0.1 -j DROP). Since
the packet loss grows in the different experiments, the duration of the traced applications
increases accordingly. Indeed, the TCP/IP protocol retransmits lost packets when it does
not receive acknowledgments. Although this retransmission causes the overall throughput of
the connection to drop, the number of sent/received packets increases. Therefore, we choose
the first 270 seconds after 30 seconds warm-up period of each trace for comparison purposes.
When the proportion of lost packets rises, the number of matched packets and accurate

packets diminish and consequently the accuracy slowly declines, as shown in Table [3.1]

Table 3.1 The packet loss affection on Fully Incremental approach

Packet Trace Matched Accurate

loss duration (sec.) Packet No. Packet No. Accuracy
0.1 270 D797 105 7.535 x 1077
0.2 270 4027 103 6.736 x 1077

0.3 270 2063 87 5.042 x 1077

Accuracy

Figure 3.13 Comparison of time synchronization approaches in streaming mode.

Accuracy

0.001
0.0009
0.0008
0.0007
0.0006
0.0005
0.0004
0.0003
0.0002
0.0001

1.9e-06

1.8e-06

1.7e-06

1.6e-06

1.5e-06

1.4e-06

1.3e-06

1.2e-06

- Correlated ---- |
Fully-Incremental -
Replace approach |
E Independent

120

100 200 300 400 500 600 700
Time (sec.)

Correlated —
Fully-Incremental -

1 1 1 1 ©

130 140 150

Time (sec.)

160

99

Figure 3.14 Zoom on the accuracy dimension of Figure from 1.2e7° to 1.9¢7% and the
trace time dimension from 120 to 170 second.

60

3.8 Conclusion

In this paper, we have presented a framework for online time synchronization, which
applies to data streaming. The most notable feature of streaming data is the speed of the
stream flow, which makes it impractical to scan the data stream more than once. Buffering the
data stream for a long time is not practical either. The proposed model is not only efficient
in terms of both time and memory, it is also scalable and yet maintains and improves its
accuracy over time. The novel approach proposed is of particular interest for two reasons :
it is fully incremental, with O(1) complexity on average per event in the trace, and it does
not add latency to the time synchronization computation. Moreover, the algorithm can very
quickly eliminate inaccurate packets without loss of accuracy or added latency. It only needs
to examine in detail, a very small fraction of the matched packets, and eventually store
them as Convez-Hull vertices. This makes the proposed algorithm ideally suited for the high
performance live analysis of detailed distributed system traces in clusters and clouds.

We also introduced several window-based approaches in this paper. The experimental
results demonstrated that our proposed Fully Incremental approach is more accurate and
generates no latency for synchronization computation. In future work, the new incremental
algorithm will be studied in the context of large scale clusters, and extended for finding the

optimal time reference node and synchronization spanning tree.

61

CHAPTER 4

Paper 2 : Reference Node Selection in Dynamic Tree

MASOUME JABBARIFAR AND MICHEL DAGENAIS

4.1 Abstract

Several dynamic network tools require an efficient incremental algorithm to calculate hop
counts and choose a central point for the network. For example, in a dynamic network, a time
Reference Node is needed to synchronize all the nodes. However, computer connections to the
network and disconnections from it frequently occur in a dynamic network, and this affects all
network activities. The model proposed in this paper improves the performance of Reference
Node maintenance live mode in a dynamic network, and the new method investigates only
the altered path with respect to the Reference Node once an alteration has occurred in
the network spanning tree. This method provides an efficient way to find and maintain a
Reference Node incrementally in an average time complexity of O(log n), where n is the total

number of nodes in the network.

4.2 Introduction

In the past few years, intensive research efforts have been devoted to dynamic graphs and
forests where edges are added or removed and weights change [67), 103], and a particular and
ongoing focus of these efforts is incremental dynamic tree maintenance. As well, various data
structures have been presented to improve dynamic maintenance performance [19, 51, [52].
The purpose of this paper is to present a method to incrementally update Reference Nodes
(RN) in a dynamic forest. As will be demonstrated, RN should be the nodes with a minimum
hop count between them and all the other connected nodes in the tree.

Although we are using this graph-based algorithm to solve a dynamic network synchroni-
zation problem, it can also be used in other applications, such as electronics, medical science,
etc. In a dynamic distributed system, where communication links appear and disappear,
analysis of the applications critically depends on time synchronization [40]. Our objective in
this work is not only to provide the best time synchronization accuracy, but also to improve
synchronization performance.

Recently, several time synchronization algorithms have been presented for wired and wi-

reless networks [45], 58, 85 [T0T]. The general idea behind these algorithms is to maintain a

62

spanning tree (ST) of all the nodes in the network, updating it at each network change, and
computing pairwise synchronization for all the ST edges. Once all the clock drifts and offsets
have been obtained, a node must be found to act as a time reference [59]. For any node in ST,
the shortest paths to every other node are computed. The best time reference node (RN) is
the node with the shortest paths to all the nodes [22]. Eventually, all the nodes in the network
synchronize their time with the RN through those paths. The position of RN is critical to
decreasing the total time conversion error through all paths. Since it takes a time of O(n?) to
find the RN with a naive approach, most applications favor synchronization based on a fixed
RN chosen in the network in advance [56]. However, a static RN has many disadvantages.
The main problem is that the number of node connections may change, leading to fewer
hops for time conversion in a path in the dynamic network over time. Since having fewer
hops improves synchronization accuracy, it is beneficial to choose a new RN [58]. The second
problem is RN robustness. The synchronization algorithm should be robust to node failures
[101] ; however, a static RN is a single point of failure.

The work in this paper is primarily motivated by the online LTTng (Linux Trace Toolkit
Next Generation) time synchronization project [30]. LT Tng is capable of handling huge traces
of several gigabytes or more. However, a new architecture is required to do so while at the
same time allowing traces to be collected from multiple systems and embedded devices, for
both online and a posteriori offline analysis and viewing. Moreover, LT Tng users expect to
see the analysis output in real time, in order to be able to diagnose problems more easily.
Therefore, LTTng should be able to visualize traces from several distributed systems, on a
common reference time base, and in streaming mode.

In this paper, we propose an efficient algorithm to identify dynamic RN with O(log n)
time complexity in a dynamic forest. The paper begins with a study of the problem and a
review of related work in the section. The proposed data structure and methodology are
detailed in the [4.4] and Sections, and the evaluation of the complexity of the proposed
method is explained in the Section. Noteworthy results, including performance analysis,
are presented in the [£.7 Section. Finally, we present our concluding remarks and discuss
future work in the [£.8] Section.

4.3 Related Work

In this section, we discuss the most interesting synchronization algorithms in wired and
wireless networks, and see how they use time RN.
Greunen et al. [101] proposed their Lightweight Time Synchronization for Sensor Net-

works, in which nodes are placed uniformly and at random within a 2-dimensional area. The

63

network contains a single RN which keeps accurate time in an ST of nodes. For better syn-
chronization precision, the RN is located in the area center. In dynamic networks, nodes are
mobile, and can join and leave the network. Thus, efficient dynamic calculation of RN (as
proposed in this paper) in ST can increase precision. Ganeriwal et al. [45] propose a protocol
to synchronize nodes in sensor networks called TPSN, which first creates an ST of the net-
work and then performs pairwise synchronization along the edges. This algorithm does not
handle dynamic topology changes, however, and the RN is static.

Many use cases for dynamic RN are possible in wired networks as well. There is an
interesting one in tracing software [29]. Tracing is similar to logging, and consists in recording
events that occur in a system, usually more detailed lower-level events as compared to logging)
[30]. The tracer software user expects to see the analysis output in real time, in order to
diagnose problems live. Consequently, the software should be capable of visualizing traces
from several distributed systems on a common reference time base.

In a computer cluster, multiple nodes produce separate trace streams independently, and
there are timestamps associated with each event [32]. Synchronization starts online, as soon
as two nodes begin to exchange messages. This connection creates an edge between those
two vertices and establishes the first tree. The tree then grows, or new trees are established,
by adding new nodes and new connections. Synchronization accuracy is the weight of all the
edges in the dynamic network. Obviously, when a connection is added or disappears, the
dynamic graph changes and must be checked to determine whether or not the change affects
the Minimum Spanning Tree (MST) [98]. Clearly, any change that occurs may affect the
choice of time RN.

Many interesting algorithms with a O(log n) running time have been proposed to maintain
a dynamic MST [19, 51]. The algorithm proposed in this paper builds on these efficient
dynamic MST algorithms, with a view to improving the time synchronization algorithms for

the analysis of streaming mode traces recorded on distributed systems.

4.4 Data Structure

Let G=(V,E) be an undirected graph containing a set V' of vertices and a set E of edges.
An edge (e = {v,r}) is related to two vertices. Let 7 be an ST for G. In streaming mode,
many separate trees (7 = {71, T2, 73, ..., T, }) may be joined together over time.

As more and more messages are sent between the nodes, clock synchronization can be
computed between the newly communicating nodes, and edges are dynamically added to the
communication graph. The weight of each edge can change over time (e.g. reduced error, if a

better synchronization is achieved with more messages). The ST forest computed from the

64

communication graph can only see trees being merged as time progresses and more messages
are sent. It is possible, however, that edges will be added to the ST in the forest, or removed
from them, as new edges become favored over others.

Definition 1 : DescendantSize is a factor that illustrates whether or not a vertex is a
better balance point than the existing RN.

To find an optimal dynamic RN, we compute a DescendantSize attribute for each vertex.
This attribute shows the number of children there are for each vertex, not in the "parent”
direction to the RN. When a vertex v is added to a tree 7, its DescendantSize is initialized
to 1, and this value is propagated along the parent path.

Six types of operations are defined on a tree. All the operations, except reverse(v) and
treeld(vertex v) take time O(1).

— parent(vertex v) : Return the parent of v. If v is the root of its tree, it returns a null

value.

— reverse(vertex v) : Reverse the direction of the tree, making the child the parent. It
is proportional to the length of the tree path from v to the previous root. The number
of operations depends on the depth of that branch. Since the average depth of a tree is

log n, the average complexity of this function is O(log n).
— DescendantSize(vertex v) : Return the DescendantSize of the vertex.

— update_DescendantSize(vertex v, int x) : Add z to the current value of vertex Des-

cendantSize.

— treeld(vertex v) : Since there are many separate trees in a forest, this function returns
the ID of the tree to which the vertex v belongs. When two trees are joined together,

we retain the lowest of the two IDs as the new tree ID.

— treeSize(vertex v) : Return the number of vertices in the tree to which the vertex v

belongs.

— referenceNode(treeld id) : Return the RN in the tree id.

The RN is the topmost node in our tree. Each node in a tree has zero or more child nodes.
All directions in the tree are defined relative to the RN. When the RN changes in a dynamic
tree, all the directions in the altered path(s) change towards the new RN.

65

4.5 Methodology

4.5.1 Reference Node

The RN is a vertex which has a strategic role in a graph. For example, in a distributed
system, the RN can be the time reference for all the other nodes for clock synchronization
purposes. In such a context, the best RN could be defined as having the minimal sum of
time synchronization errors between itself and every other node. The synchronization error
between two connected node is the edge weight, and the path sum of weights for indirectly
connected nodes.

Lemma 1. The best RN has the minimum hop count to all the nodes in a tree.

Let 7 be a tree in the forest with < vy, ...,v,, > vertices. Further, P,, < v;, Vit1,..., RN >
is the set of vertices met by v; on the path reaching the RN.

The Formula {.1]illustrates a total tree cost that corresponds to the summation of all the
vertex weights with respect to the RN. The weight of each vertex to reach the RN corresponds

to the summation of P,, edge weights.

Total Cost, = ¢, 22:1 weight(edge; on P,,) (4.1)

Thus, for each edge, multiply its weight by the number of children opposite RN, as shown
in the formula [4.2] as follows :

Total Cost, = | DescendantSize(v;) X we, (4.2)

DescendantSize(v;) X w, : RN is on the vy side
Cost = (4.3)

DescendantSize(vy) X we : RN is on the v; side
The contribution of the other edges does not change, whether the RN is vy, or v;. Moreover,
they change independently of w,’s contribution when they are further away from e. Therefore,
the optimal choice is to place the RN on the side with the larger DescendantSize, irrespective
of w,. This property will be used to incrementally compute the best RN. [
Cost is a concept applicable to different use cases, such as power usage, error, and so on.

As discussed, a prime example of the use of RN is in distributed system time synchronization.

4.5.2 Independent trees

In a dynamic environment, new vertices and edges appear (for example, as new computers

join and communicate with existing computers) and when they do the weight of edges can

66

change (a new communication can provide better synchronization accuracy, or the accuracy
can be reevaluated when no message has been received from a computer for a long time).
Vertices and edges are never removed from the communication graph, since inactive nodes
may simply be assigned an updated weight representative of their long period of inactivity.
Similarly, the associated ST will only see vertices being added. However, edges can either be
added to the ST, connecting and merging two previously independent trees, or replaced. An
edge is replaced when a better edge connects two vertices that are in the same tree already,
causing the minimum ST algorithm to remove an edge that is less good.

Initially, there is no edge and each vertex forms an independent tree (7, 72, 73, ..., 7,), and
the single vertex is trivially the RN for its tree. Let us examine the operations required to

update the dynamic RN in each independent tree when the edges are added or replaced.

4.5.3 Adding a single vertex and edge

As Figure [4.1] illustrates, this situation arises when a new vertex v is connected to the
current tree 7; with a new edge. This occurs frequently when the algorithm starts. In Figure
[4.1] the number inside each vertex shows the DescendantSize. We denote the DescendantSize
attribute of each node as £. Since a new single vertex does not have a child, its DescendantSize
is 1. The DescendantSize of parent(v) is increased by 1 (line 12 Algorithm []), and this new
increase (A¢ = 1) is propagated along the path from the parent of v to the RN. The best
candidate for the new RN is the latest vertex in the propagation path to the RN. £(v,) is
the number of children that vertex v,, has. It compares its DescendantSize with RN (x) (line
8 Algorithm {4f) to determine which of them will be the next RN. The number of operations
required is proportional to the length of the path between the new vertex and the RN.

4.5.4 Replacing an edge in a tree

To maintain an ST structure when an edge is removed from a tree and replaced by
another, one subtree is disconnected and reconnected elsewhere, possibly through another
vertex. This tree reorganization may change the whole balance. Since the RN is a node with
a minimum number of hop counts to all nodes, it should be recomputed for the modified tree.
We consider two possibilities, depending on the location of the cut/insertion in the tree :

As Figure illustrates, in the first situation, the cut(sy, 01) and add(o,, €1) operations
occur on different sides of the RN. We introduce three paths along which the DescendantSize

of all vertices has to be updated :

a)

b)

<)

d)

)

RN

O n ®
@@ ® @

D@ ° @D
RN oo
DO

RN
(1) h) (1)
RN

@D« @ @

@ © @

Figure 4.1 The DescendantSize operation in insertion mode with no tree cycle

el)
= =

67

ALGORITHM 4: Update_RN_Insertion()

1:

— = =
o= 2

13:
14:
15:

X :an RN
v1 : a new vertex is added to an existing tree
Begin
propagationPath={vy, ..., v,, x}
for each v € propagationPath do
if v =y then
DescendantSize(y)= treeSize(vy,)-DescendantSize(vy,)
if DescendantSize(v,) > DescendantSize(x) then
The RN is vy,
end if
else
update_DescendantSize(v, DescendantSize(v)+1)
end if
end for

End

68

ALGORITHM 5: Update_RN_Cycle()

1:

e el e e e e e e T

N DN
N =

23:
24:
25:

O
@

X : RN

modification : cut(sy,01) and add(o,, e;)

Begin

smallPath={s1, sa, ..., Sn, X}

orphanPath={o01, 09, ..., 0,}

extendedPath={e1, es, ..., e,, x}

updateDescendantSize(orphanPath)

updateDescendantSize(smallPath)

if e; was visited in updateDescendantSize(smallPath) then
tree is still balanced

. else

if DescendantSize(x) > treeSize(x)/2 then
x is still a RN
updateDescendantSize(extendedPath)
else
while DescendantSize(e; € extendedPath) < treeSize(x)/2 do
updateDescendantSize(extendedPath)
end while
e; = anew RN
reverse(e;)
betweenRNsPath={e; 1, €;12, ..., €y}
updateDescendantSize(betweenRNsPath)
end if
end if
End

69

Small path Extended path

A A
- TN ™

Orphan path @

aﬂd ‘-..‘ -r.--... e

(a) add and cut occur on different sides of an RN

Small path

T
@) e @O O

Orphan path

(b) add and cut occur on the same side

Figure 4.2 The position of add() and cut()

70

Orphan path :< 09, ...,0,_1 >
small path :< s1, S9, ..., 8, > (4.4)
Extended path :< ey, eq, ..., €, >

Lemma 2. The candidate RN in (i) below must be one of the vertices in the path <
€1,€2,...,en, RN >. In (ii) below, the total number of vertices is unchanged on the side where
both the cut and the insertion occurred. Thus, the DescendantSize of the children of the
previous RN remain the same and the algorithm keeps that RN.

(i) Assume that the RN is connected to the n paths : < pq,...,p, >. Moreover, there is
a minimum number of hops from the RN to all the other nodes in the tree. The candidate
list of RN for the next operation is all vertices in all paths close to RN < v,,,...,vp, >. The
cut() operation causes the vertex v,,, at the end of a path p;, to have no chance of becoming
the RN. Indeed, its DescendantSize has been reduced and the RN must have the maximum
DescendantSize in the tree. However, the add(o,, e;) operation causes m vertices from path
p; to join path p, and increase the DescendantSize of all the vertices in this path. Thus, one
of the vertices in py = {e1, €2, ..., €, }, where (x) > treeSize(x)/2, becomes RN.

(i) As Figure[4.3|illustrates, in the special case where the RN () itself has many children,
the RN does not change. To calculate how many children the RN has, we use the following

formula (Eq. :

reverse(e;)
A= ¢o)
N2

cut impact

the new DescendantSize for the previous RN
7\

&(x) = treeSize(x) — [{(parent(x)) +A] (4.5)

€n

X if £(x) > treeSize(x)/2
—_—

tree balance value

RN(1;) =
search in extendedPath otherwise

Since parent(x) is e,, to obtain its DescendantSize, we have to run the reverse(e;) ope-

ration, since we do not know who e, is. If the RN DescendantSize is greater than half the

DescendantSize of its updated child, the previous RN can remain as it is (lines 12-15 Algo-
rithm . U

Orphan path : path < o01,09,...,0, > : this path was structured for the previous

RN. Therefore, not only should the DescendantSize attribute of each node be updated, but

the direction of the edges should be oriented towards the new probable RN as well. Since

edge(sy,01) has been cut, we are reversing the parental structure of this path. Previously,

71

the DescendantSize of 0, was the sum of DescendantSize(oy) and how many children it has.
Thus, the update algorithm in this step is (line 7 Algorithm |5)) :

reverse(oy,)
£(o1) = &lo)) —&(parent(or))
~— ~—— N————
new DescendantSize old DescendantSize 02
Vo € path < 0s,...,0,_1 > (4.6)
{(z) = {(x) — {(parent(z)) + {(z—1))
—_—— —_———
new parent new child or previous parent
{(on) = £(on) + §(0n-1)
~—— ——

old DescendantSize new child or previous parent

Small path : path < sq, $s,...,5, > : the direction of this path has not changed, and so
updating DescendantSize is the only step that has to be taken. Previously, the vertex o, was
one of the children of s;. In the new tree, there is no connection between them, and so the
updated algorithm for the small path is (line 8 Algorithm 3)) :

A= o)
NAYZ

cut impact

Vo € path < si,52,..., 5, >
{(z) =¢&(x) - A

Extended path : path < ey, es,...,e, > : we update the DescendantSize of the vertices

in this path and check a condition for the new RN (lines 16-18 Algorithm . If we cannot

find the RN in the previous path, the new RN is chosen from the vertices in this path. If the

DescendantSize of a vertex e; is greater than the treeSize(y)/2, which is the half the number

of vertices in the tree, e; will be the new RN (line 19 Algorithm. Updating DescendantSize
follows the (.8 formula.

(4.7)

reverse(x)
A= £(on)
new children for the extended path (48)

Vx € path < ey, es,...,e; >
§(z) = E(x) + A
If we find the new reference (e;) in the extended path, we have to reverse the direction of

the path between the previous RN and the new one, ¢;, and update each node DescendantSize
in path < e,,en_1,...,e;41 > (lines 20-22 Algorithm [5)) as follows :

72

Figure 4.3 One way the previous reference node can remain an RN

reverse(e;)
§(en) = &(en) — S(parent(e,)) + §(x)
—_—— ~—~
en—1 calculated in small path update
Vr € path < e,_1,...,€;49 > (4.9)

{(z) = &(x) — E(parent(x)) + &(x + 1)
(eir1) = treeSize(x) — £(e;)

~—
new RN

As Figure illustrates, in the second situation, the cut(sq,02) and add(o,,e;) opera-

tions are performed on the same side.

Lemma 3. When the cut() and add() operations are performed on the same side of the
RN, the RN does not change.

All the changes occur on one side of the RN, and the tree size does not change. For
example, vertex s,, is the new connection to vertices (n1, ng) in the small path. Previously,
the children of DescendantSize(s,,) were [0y, 0n_1,...,01, 81, 82, ..., Sm—1]. When we update
the orphan path, the children of DescendantSize(o,) are [01,09,...,0,-1]. Then, when we
update the small path, the children of DescendantSize(s,,) are [si, S2, ..., Sm—1] plus the
children of DescendantSize(o,). Thus, when we see the newly connected vertices (ny, ng)
in the small path, we stop updating the DescendantSize and the previous RN remains the
same. Also, there is no extended path in the second situation (lines 9-11 Algorithm [f]). O

In the worst case, the orphan path needs to have its direction reversed and DescendentSize
updated, the small path needs to have its DescendentSize updated, and the extended path

needs to have its DescendentSize updated and checked for a new RN along the extended

73

path. The number of operations required is proportional to the length of each of these paths

(orphan, small, and extended).

4.5.5 Inserting an edge between two independent trees

Every tree in the forest has its own RN. Thus, when an edge is inserted between two

independent trees, the two trees become connected and merged, and four cases can arise :

1. edge(RN,,, RN;,) : We denote the small and big tree as 7, and 7, respectively. In this
case, the new edge is between two RN. So, RN, is still the RN (line 8 Algorithm @

2. edge(RN.,,e;) : In this case, the vertex RN from the small tree is joined to a vertex
e; in the big tree. No computation is needed in the small tree. The new RN will be
in the tree that has more vertices. The candidate RN list is in path < e, ..., RN, >.
If we denote the new RN as RN,, we first have to update the DescendantSize in
path < ey, eq, ..., €;, ..., RN, >, as follows :

¢(RN,,) = treeSize(RN,,)

Vv
small tree size

A = §(RN,) (4.10)
Vx € path < ey, ey, ..., RN, >

() =&(x) + A

and then reverse the direction of the path between the previous RN and RN,,, and then
update path < RN, ..., RN, > (lines 16-25 Algorithm [6), as follows :

reverse(RN,)
§(RNn) = §(RNy,) — &(parent(RN,)) + §(RN7,)
Vo € path < RN,,, ..., RN,, >

§(z) = &(x) — &(parent(z)) + £(z + 1))

3. edge(m;, RN,,) : In this case, a vertex m; from the small tree joins the RN in the big

(4.11)

tree, and RN, is still the RN. The only computation is in the small tree, where we
have to run operation reverse(m;) and update DescendantSize along path < RN, ...,
My, ..., Mo, My, M, > in the small tree before joining it to the big tree. Thus, the update

algorithm in the small tree is run as follows (lines 26-30 Algorithm @ :

Small Network I<Iew
Cohnection

Big Network

Figure 4.4 One case of joining two trees

reverse(m;)
E(RN,,) = treeSize(RN,,) — {(parent(RN,,))

Vo € path < my,ma, ..., my_1 >

§(x) = ¢(x) — E(parent(z)) + {(z — 1))

§(man) = &(ma) + &(mn—1)

74

(4.12)

4. edge(m.,,es) : In this case, a vertex from the small tree is joined to a vertex in the
big tree, as shown in Figure 4.4] The candidate RN list is in path < e, ..., RN;, >.

We have to update the DescendantSize in three paths at most. In the small tree, we

run the update algorithm as mentioned in the third case. In the big tree, we run the

update algorithm as mentioned in the second case.

Algorithm [0] illustrates the pseudocode for finding the RN when joining two trees. When

they are joined, the ID of the new tree is set to the lowest tree ID of the two trees.

The complexity of joining two independent trees is similar to the complexity of the re-

connection phase when replacing an edge in a tree. In the smaller tree, the path between

the previous RN and the vertex with the new edge, like the orphan path, needs to have its

direction reversed and its DescendentSize updated. Then, in the larger tree, the extended

75

ALGORITHM 6: Update_RN_Join()

1:
2:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:

v vertex
& @ vertex
Begin
if treeSize(r) < treeSize(¢) then
er, =V
ern=¢
else
Cr,= 5
en=1r
end if
RN, = referenceNode[treeld(e,,)]
RN,, = referenceNode[treeld(es,)]
if e;, = RN;, and e,, = RN, then
RN, is still RN
else
if e;,! = RN,, and e;, = RN, then
updatePath = {e,,, ..., RN, }
while DescendantSize(e; € updatePath) < treeSize(RN,,)/2 do
updateDescendantSize(extendedPath)
end while
e; = new RN
reverse(e;)
betweenRNsPath={e; 1, €¢;y2, ..., €n, RN, }
updateDescendantSize(betweenRNsPath)
else
if e;, = RN,, and e, ! = RN, then
reverse(e,,)
smalltreePath = {RN.,, ...,e;.}
updateDescendantSize(smalltreePath)
else
reverse(e,,)
smalltreePath = {RN.,, ...,e.,}
updateDescendantSize(smalltreePath)
bigtreePath = {e,,, ..., RN, }
while DescendantSize(e; € updatePath) < treeSize(RN,,)/2 do
updateDescendantSize(bigtreePath)
end while
e; = new RN
reverse(e;)
betweenRNsPath={e; 1, e;12, ..., €,, RN, }
updateDescendantSize(betweenRNsPath)
end if
end if
end if
End

76

path needs to have its DescendentSize updated and checked for a new RN. Here again, the
number of operations required is proportional to the length each of these paths (orphan and
extended).

4.6 Algorithm complexity

For all the possible tree updates, and associated dynamic recomputation of RN, a small
constant number of path updates were required, with each path update requiring a number
of operations proportional to its length. The worst-case is the edge replacement with between
one and two operations required on three different paths (orphan, small and extended). In the
worst case, a degenerate tree, the path length can be O(n). In a perfectly balanced tree, the
worst case and average path length is O(log n). It has been demonstrated that the average
depth of a tree with n vertices is O(log n) [23]. Therefore, the average complexity of our

proposed method is no larger than O(log n).

4.7 Experiments and evaluation

4.7.1 Experimental setup

First, let see what happens in a dynamic network. A dynamic network consists of many
individual computers. As the computers begin communicate, one after another, small net-
works appear. Then, messages join the networks, forming a huge network. At that point, the
network has reached its full size and the associated graph only changes when we have a new
connection between nodes, or when the edge weights decrease.

We simulate this typical situation of a huge dynamic network. Random forests are gra-
dually generated by adding vertices incrementally. Trees are joined together and finally form
a huge tree in each forest. Moreover, since cycles are forbidden in a tree, the MST algorithm
eliminates one of the connections in the cycle when a connection adds an edge that creates
a cycle. To follow this model, our simulation supports four operations : (i) Insertion : a new
vertex connects to the graph, or two new vertices connect to each other and create a new
tree; (ii) Join : two trees are connected with a new link; (iii) Cycle : a new link generates a
cycle; and (iv) updateEdge : the weight of an existing edge increases, possibly affecting the
MST computation.

Each line in the dataset represents three numbers : v, £, and w. These numbers denote
the first vertex, the second vertex, and the edge weight respectively. Algorithm [7] illustrates
the data analysis of the dataset : (i) if v and £ are two new vertices, and they generate a

new tree (line 6); (ii) if either v or £ is a new vertex, it connects to the existing tree. Since

77

this vertex is new, it cannot create a cycle in the tree, and is therefore not required to call
the MST algorithm (lines 8-18); (iii) if both v and £ exist in the forest and are located in
two separate trees, this implies that those trees are joining together and forming a bigger
tree (line 20), and the MST algorithm is not required in this case either; and (iv) if v and
belong to a tree and there is no edge between them (line 23), this new edge creates a cycle in
the tree and the MST function must be run to eliminate one of the edges in the cycle (line
32). In the case of new edge elimination, the RN does not have to be recomputed. Otherwise,
the information about the add() and cut() operations are passed to the Update_RN_Cycle
function to find new RN (line 35). If v and & belong to a tree, there is an edge between them,
and if the previous weight is greater than the new one, the edge weight is updated (line 30).

The dataset consists of one million operations (Insertion, Join, Cycle, and updateEdge).
Six datasets are used in this simulation, ranging from 10,000 to 60,000 vertices in the forest.
We consider a reasonable number of situations that stress this test. Table [L.1] presents the

statistics for our datasets.

4.7.2 Results

Table illustrates the simulation results. Each category has a Number column, which
indicates : (1) how many insertions there are, i.e. when a new vertex is added to an existing
tree in the forest ; and (2) how many times two vertices make a new tree. The wingy column
gives the number of RN changes in each category, and losegy indicates how many unchanged
RN there are, i.e. when a new vertex connects to the tree. Statistically, 15% of the new vertex
insertions change the number of RNV.

The number in the Join column indicates the situations where two existing vertices from
two separate trees connect and the two trees are merged. There are four possibilities with
this type of connection : (1) two RN from two trees connect ; (2) one vertex of the small tree
connects to the RN of the big tree; (3) the RN of the small tree connects to one vertex of
the big tree; and (4) two vertices from two trees connect. The RN changes only in the third
and fourth possibilities. Table shows these four possibilities in the datasets. The third
and fourth columns constitute the major part of the tree merging operations. Therefore, as
shown in the second section of Table [4.2] the RN of the big tree changes in 50% of cases.

The Number column in the Cycle section indicates when a new edge creates a cycle in
the tree. Most cycles occur when all the trees are established and merged into a big tree.
The MST algorithm eliminates one edge in the cycle. If the tree changes, the RN algorithm
must be run. Statistics in the Cycle section demonstrate that in less than 3% of cases the
RN changes. Indeed, in most cases the balance of the big tree does not change.

Thereafter, we analyze the position of a new vertex insertion in the existing tree and a new

78

ALGORITHM 7: ReadDataSet()

1: v : vertex

2: £ @ vertex

3: w : edge weight

4: Begin

5: if exist(r)= FALSE and exist({)=FALSE then

6: createTree(r,&.w)

7: else

8: if exist(v)= TRUE and exist({)=FALSE then
9: addExistTree(v,{,w)

10: id= treeld(v)

11: x= referenceNode(id)

12: Update_RN_Insertion(y,v)

13: else

14: if exist(v)= FALSE and exist({)=TRUE then
15: addExistTree(v,§,w)

16: id= treeld(&)

17: x= referenceNode(id)

18: Update_RN_Insertion(,¢)

19: else
20: if exist(v)= TRUE and exist({)=TRUE and treeld(v) |= treeld({) then
21: Update_RN_Join(v,£)
22: else
23: if exist(edge(v,£))= FALSE then
24: modification= MST(v,§,w)
25: id= treeld(v)
26: x= referenceNode(id)
27: Update_RN_Cycle(y,modification)
28: else
29: if weight(edge(r,£)) > w then
30: updateWeight(v,{,w)
31: end if
32: end if
33: end if
34: end if
35: end if
36: end if

37: End

79

Table 4.1 Number for each operation, from a total of one million operations

Cycle
Nodes Insertion Join | Stay! Remove?| updateEdge

Dataset; 10000 4991 2503 | 45449 946879 | 178
Dataset, 20000 9892 5052 | 76404 908556 | 96
Datasets 30000 15005 7496 | 102672 874761 | 66
Datasety, 40000 19955 10021 | 125650 844322 | 52
Dataset; 50000 24959 12519 | 145733 816753 | 36

Datasets 60000 29953 15022 | 164104 790885 | 36

Lthe new connection stays in the loop and the other edge in the cycle
is removed by the MST algorithm.

2 the new connection has the highest weight in the cycle and is removed
by the MST algorithm

edge insertion in the join/cycle. When a new vertex connects to the RN of an existing tree
directly, the RN does not change (Eq. [4.5). Therefore, the number of RN changes depends
on the insertion position of the new vertex. In Table [£.4] the Insertion section presents the
total of number of insertions, the number of updated vertices, and the average distance from
the new connection to the RN. As shown, for the first dataset of 10000 nodes, a new vertex
insertion causes 18 updates along the propagation path to RN, on average. As Table
illustrates, the RN changes in only 15% of cases.

As shown in Table most cases are associated with trees joining, where two vertices
from two trees connect (ms — e,). In this case, the update is performed from the small tree
RN to mg and from e, to the big tree RN. As Table illustrates, the range of average
updates for Dataset; to Datasetg is 20-36.

As mentioned, in the Cycle case, updates are performed along three paths : Small, Orphan,
and Eztended. When the cut() and add() operations are performed on the same side of the
RN, there is no "extended path”. As shown in Table [4.4] on average, 75.5 and 145 updates
are performed when there are 10000 and 60000 nodes respectively.

80

*JSOI0J O} UL S0} O} JO OUO UL S[2AD B SONRUL 9FPO UR 9I9YM SOSED JO IoqUuINU oY, ¢
*JSOI0] O} UL OSIOW S09I) OM] OIOYM SOSED JO I9qUINU dY,
"08URYD 10U SO0 N3 9IOYM S9SBD JO IoqUINU I, .
"SOSURYD N\ 0IOUM SOSBD JO IdqUINU A, ,
91 puy 0} pauriojiad uoryeInduiod ou sem 9197} PUR A7 1) SB POJII[OS SBM SOOTLIOA [} JO OUO ‘OSBD JUSIAI © U] 991} MU B UWLIOJ UDIYM
‘SUOI09UUO0) XOJIOA MU OM)} 0F FUOO(SOSED I0YJ0 JRT) OJON 09I} SUISIXO U 0} POPPE SI XOLI0A € 0IOUM SOSBD JO IoqUINU [810} O,

%66 8CECIT %I 9LLT VOTVIT | %IV €819 %69 6E88 Ce0ST | %98 0899C %ST €LEV €4966C | 21svID
%66 T10eVVL %l CEvl €ELAVT | %eh TS %8G 86TL 619CT | %58 ¥8CIC %Sl GL9E 6567C | “spIng
%66 <8cvel %l G9€T 0999¢T | %eh VLIV %8G L¥8S 12001 | %98 69691 %ST 986¢ GG66T | T#sDID(
%86 ¥ITI0T %c 80GT ¢Loe0T | %Iy LS0€ %69 6EVY 967 L %98 GE€LCT %ST 0LCC GO0ST | EpsmIn
%86 SVIGL %c 69Cl vOv9L | %0 080C %0L TL6C ¢S04 %98 LGV8 %Pl GEVI G686 GpasvIn (]
%L6 €9V Y %e 9811 6Vvay | %ch 6E0T %8G ¥IVI €04¢ %98 69cv %ST GEL 1667 HpasvIn(g
% Ndssop of Ndwm Jgequny | 9 N¥asop o Nduum Koo_aszg o (N¥osop oy Ndum I9qUUNN
A[AD) uror 7 UOT}IaSU]

SOSURYD Ay JO WLISY UI sj9sejep XIs 10] wiyjtiodre pasodoad Jo ynsal oy, ' 9[qR],

81

Table 4.3 The status of join operation

RNS - RNb m; — RNb RNS — € Mm; —€;

Dataset; 0 190 &0 2233
Datasety 0 440 161 4451
Datasets 0 595 232 6669
Datasety, 0 819 339 8863
Datasets 0 1035 420 11064
Datasetg 0 1238 474 13310

4.7.3 Performance evaluation

Firstly, we analyze and compare the previous and the proposed incremental approaches
in terms of execution time. The previous approach calculated the summation of shortest
paths from each node to each other node. Eventually it selects the node with minimum sum
as the Reference Node. Although, it is applicable for offline analysis, where the reference
node is found only once, it would be costly for online analysis where the reference node
should be recomputed for every change in the network. As shown in Figure updating the
reference node in a dynamic network with 10000 nodes and one million operations takes 32.53
seconds with the previous approach. The same algorithm takes 1549.92 seconds to update
the reference node in a larger network with 60000 nodes and one million operations. This
amount of the time is unacceptable for live data analysis.

The proposed new method improves the performance of live mode RN maintenance in
a dynamic network. When the tree is modified, the method incrementally propagates the
consequences of the update and recomputes the RN efficiently, ignoring unaltered parts to
find the new RN.

The proposed method has been tested under the same conditions with one million changes
in the live network. We applied the same operations on the same forests, and calculated the
proposed method’s execution time for updating the RN. As shown in Figure [4.6] our method
takes 0.34 seconds to recompute the RN in a forest with 10000 nodes. This is compared with
32.53 seconds for the previous approach on the same network. Also, our method takes 4.93
seconds to update the RN in a forest with 60000 nodes, as compared with 25 minutes and
49.92 seconds with the previous approach.

LTTngTop [8] was used to analyze the performance of the proposed method in terms
of page fault rate. This tool displays various system metrics in real time extracted from a
detailed operating system trace. The trace is produced with low overhead by LTTng [30] and
analyzed directly in the shared memory buffers by LT TngTop, without the need to write the

trace to disk. Figure [4.7] illustrates a gradual increase in the number of page faults with an

82

avi 8¥yee8ee vOTVITL 7 9¢ ¢6607< 6c04T Ve GOLSTOT €G66¢C | “1svIn(
6C1 LCOVO88T €CLGVT 7 45 61¥86€ 614¢T Ie 09¥¢9.L 6S6¥C | “12sDIn(T
LTl eLLOVLST 0994cT 7 G'L¢ 61V4LG 1¢00T 9¢ eqrers GG661T | "sDID(
61T €6y05ccl ¢l9c01 7 9¢ TT8T6T 967 L 4 L9699¢ GOOGT | 15D
00T 966719 v0¥9.L 7 G'Ge 8T88CT ¢90¢ G¢ LT8IVC 2686 | CrsvIn
G'ql CLLIEVE 6¥vay 0¢ 0€604 €0s¢ 8T 48668 1667 | "12sv0q
NY 01 orepd IoqunyN NY 09 orepdn Ioquny NY 09 orepd Ioquuny
90URISI(] "SAY 90URISI(] "SAY 90URISI(] "SAY
9[oAD) uror UOT}IOSU]

uonerodo yoes ur oyepdn 9ZIGIURPUSISIP JO

qUIMN 77 9[q8L

83

1.4e+09 r .
1.2e+09 | .
1e+09 .
8e+08 | .
6e+08 | .

Microsecond

4e+08 | .
2e+08 | .

O L L L L L
10000 20000 30000 40000 50000 60000

Number of Nodes

Figure 4.5 Execution time for recomputing the RN as a graph with an increasing number
of updated vertices. The updating sequences contain one million operations, consisting of
Insertion, Join, Cycle, and updateEdge, in a forest. The previous algorithm measured here
has a complexity of O(n?)

increase in the number of nodes from 10000 to 60000. The minor page faults go from 9090
for 10000 nodes to 12894 for 60000 simulated nodes with the proposed algorithm. During RN
computation, the proposed approach incurs almost no major page faults, while the previous
approach sustained more than 5 major page faults per second.

Figure illustrates the memory usage of the proposed method. It shows a gradual
increase in memory usage with the number of simulated nodes, growing from 9.2 MB for
10000 nodes to 12.2 MB for 60000 simulated nodes. The amount of memory scales nicely
with the size of the problem.

4.8 Conclusion

In this paper, we have presented a method to maintain the reference nodes in a dyna-
mic forest. A valuable research contribution is presented by introducing a novel method for
the online analysis of new vertex insertion, tree merging, and cycle handling in a forest,

with O(logn) average time complexity per operation, where n is the number of nodes in

84

5e+06
4e+06
S
o
@ 3e+06
S
=
o 2e+06
£
|_
1e+06
O 1 1 1 1

10000 20000 30000 40000 50000 60000
Number of Nodes

Figure 4.6 Dynamic Time RN : running time on a random graph with an increasing number
of vertices plotted using an algorithm with a complexity of O(log n). Updating sequences
contained one million operations including Insertion, Join, Cycle, and updateEdge, in a forest

the network. In short, the proposed method improves performance, thanks to its ability to
incrementally process updates in evolving trees in the forest. The previous method suffers
from the cost of checking the whole forest, even when there has been no change after tree
modification has been performed several times. After a large number of modifications have
been made, and a sparse forest has grown into a large tree, the performance improvements are
even greater. One of the most interesting use cases of the proposed method is synchronization

in dynamic wired or wireless networks.

85

13000 - . .

12500

12000

11500

11000

10500

10000 -
9500 I
9000 —

0 10000 20000 30000 40000 50000 60000 70000
Number of Nodes

Number of page faults

Figure 4.7 The rate of page faults with the proposed method : running time increases linearly
with the number of nodes.

12.5

12

M Byte

10.5

10

9.5

9 1 1 1
10000 20000 30000 40000 50000 60000

Number of Nodes

Figure 4.8 The memory usage of the proposed method ; the running time increases linearly
with the number of nodes.

86

CHAPTER 5

Paper 3 : LIANA : Live Incremental Time Synchronization of Traces for

Distributed Systems Analysis

MASOUME JABBARIFAR AND MICHEL DAGENAIS

5.1 Abstract

Tracing and monitoring tools, and other similar analysis tools, add new requirements
to the old problem of coping with asynchronous clocks in distributed systems. Existing ap-
proaches based on the convex hull can achieve excellent accuracy for a posteriori analysis,
but impose a significant cost and latency when used in live mode and over large clusters.
We propose a novel method, LIANA (Live Incremental Asynchronous Network Analysis), for
incrementally computing the clock offset, and updating it as the network evolves, along each
communication link, as well as selecting the best synchronization paths and time reference
node. Each connection in a network requires message exchanges to compute the clock skew
and offset between two connected nodes. This method relies on the trace events recorded for
the existing TCP/IP traffic between nodes. After computing the offset and its accuracy for
every connection in the network graph, a minimum spanning tree is computed. The edges
with the best accuracy are selected and form the spanning tree. Then, a central node is se-
lected as the time reference to optimally compute the offset from any node to this reference
node. LIANA is efficient, both in terms of synchronization accuracy and time complexity.
The method, which is used for online distributed trace synchronization, has been evaluated
in realistic scenarios with a diverse set of network topologies and traffic. We show that LIANA
generates precise results highly efficiently, which makes it suitable for large cloud-distributed

systems.

5.2 Introduction

Distributed systems provide a versatile computing platform for a number of applications,
such as routing algorithms in telecommunications networks, banking systems, and aircraft
control systems, as well as in scientific computing, including cluster and grid computing. These
systems are typically monitored to detect and debug problems. Tracing tools are often the
preferred monitoring method, since they can record detailed information for each individual

system which can then be analyzed. In clusters, a large task is often divided into many

87

smaller tasks distributed throughout the cluster. So, in order to monitor the functionality
of a distributed system, information from each node in the cluster is collected, merged, and
then processed. The result is a huge flow of traced events, timestamped at the nanosecond
level, but using each node’s independent clock. Synchronizing events from a stream of this
scale is the main challenge addressed in this paper.

Because of the large scale of the data stream, data buffering space limitations, and the
need for timely results, live analysis is required in many cases. This explains the need for
the efficient and accurate streaming mode synchronization of distributed traces. The method
presented in this paper is motivated by a novel online tracing and monitoring system called
LTTng. This system requires the accurate synchronization of traces from nodes in large
infrastructures at cloud computer scale.

A computer cluster consists of many individual computers from which traces can be
extracted. As each computer starts to communicate with other computers, the network links
become visible in the traces through packet send and receive events. Initially, these links form
several subgraphs and, as new links are exercised and appear in traces, subgraphs are joined
together and may eventually become one large connected graph for the whole cluster. For
each link, a clock offset and skew between two connected nodes can be computed, along with
bounds on its inaccuracy. For distributed trace analysis purposes, a reference node needs
to be identified, and the offset and skew for each node with respect to the reference node
needs to be computed. A Spanning Tree (ST) of computers is formed incrementally, with
edges (links with their associated inaccuracy) being added as packets are exchanged between
new pairs of computers. The ST algorithm eliminates highly inaccurate redundant links and
prevents cycling. A time reference node is selected, and may change as links are added. Then,
events from different nodes can be compared by looking up the clock offset and skew with
the reference node along the ST.

Our objective was to design and implement a high-speed method for synchronizing distri-
buted traces. We use splay trees to store the dynamic graph of traced nodes. This dynamic
graph handles variations over time in the inaccuracy of the offset computation between nodes.
As new packets are exchanged, either new links are added to the graph or the inaccuracy
associated with a link decreases. As a result, the ST may be updated and a new reference
node selected.

The main contribution of this work is that the new method works incrementally, sup-
porting the live analysis of streaming mode traces. Moreover, it achieves higher performance
than previous methods in both streaming mode and batch mode, while retaining the pro-
perty of computing skew and offset with optimal inaccuracy bounds. This new scheme quickly

identifies the few accurate packets that will improve the inaccuracy bound in O(1) average

88

time for processing each packet receive or send event. Once the accuracy of a link has been
updated after one of the few accurate packets has been found, the ST is updated as needed
in O(log n) amortized time, n being the number of nodes, using the splay tree algorithms.
Finally, dynamic time reference node selection is updated incrementally, which takes O(log
n), on average.

In section [5.3], we examine related work in this area, and in section we provide termi-
nology and background. In section [5.5, we detail the new proposed algorithms, and in section
5.6 we present our experimental results. Finally, in section [5.7, we conclude the paper and

discuss possible future work.

5.3 Related Work

Duda et al. [37] proposed the Linear Regression and Convex-Hull algorithms for offline
clock synchronization. The Linear Regression algorithm provides a fairly accurate synchroni-
zation approach [58]; however, because the Convez-Hull algorithm is based on the fact that
packet send and arrival times impose bounds on the clock offset and skew, it guarantees the
highest level of synchronization accuracy [59]. In [14], the timestamps are corrected using
the shortest round trip delays between the packets exchanged. Moon et al. [82] use a Linear
Programming algorithm to estimate the one-way delay between two nodes.

Zhang et al. [104] discuss the estimation and removal of the relative clock skew based
on delay measurements. Their method, like ours, uses the Convez-Hull algorithm for online
and offline clock synchronization. However, they scan through the measurement points in
increasing order, store the lower Convex-Hull points, and then estimate the clock skew at the
end of each interval. Since they use a time interval to gather the connection information for
skew removal, their approach takes a time O(n) at each interval, or O(n?) globally. However,
it also adds a latency of up to one interval, since the computation is postponed to the end
of each time interval. By contrast, our scheme updates the bounding hull and clock skew
incrementally, and filters out points that may lie on the Convez-Hull temporarily, but cannot
affect the skew computation, leading to O(1) time complexity per packet processed and O(n)
globally, without postponing the computation.

Khlifi et al. [63] proposes two algorithms to remove the skew during offline trace analysis.
The first algorithm, average, computes the average delay for a fixed number of consecutive
packets at the beginning and end of a trace. This algorithm works with a constant O(1)
complexity. The second technique, direct skew removal, has the interesting property of being
able to account for low clock resolution, where the clock granularity may be larger (e.g.

Ims) than the packet delay. To achieve this, it analyzes the whole trace for a linear O(n)

89

complexity. While efficient, these two algorithms do not provide the same accuracy as the
Convex-Hull method.

None of these synchronization approaches, including our proposed method, requires addi-
tional network messages to estimate the linear clock deviations between two nodes. A number
of other online synchronization methods, such as Elson et al.’s schema [40], rely on broad-
casting synchronizing packets. Likewise, in [89], the proposed algorithm generates additional
network traffic to estimate and compensate for the timestamping delay and the network laten-
cies. However, for most real-time applications, a synchronization method without additional
network traffic load is preferred.

In a distributed system with more than two nodes, synchronization is performed along
a Minimum Spanning Tree (MST), in order to decrease time conversion errors. Kruskal’s
algorithm [23] computes the MST in a time of O(m log n), where m and n are the number
of edges and vertices respectively. The edges are placed in a priority queue in this algorithm.
The algorithm extracts the lowest edge from the queue and adds it to the MST, unless it
forms a cycle, in which case it is discarded. This procedure is repeated until the MST has n-1
edges, which means that all the vertices are reached through the MST. For online purposes,
various algorithms are available to maintain changes in a dynamic tree [23],[08]. Among them,
the algorithms presented in [19, 5I] update the MST in a time of O(log n). We use these
algorithms in our approach to synchronize distributed traces.

The next generation Linux Trace Toolkit (LTTng) tracks performance and debugging
problems. Tracing across multiple systems in a cluster helps uncover various problems which
are hard to find [29 B1]. Trace events are recorded based on the local system clock. Since
every system has its own clock in a distributed system, a practical synchronization approach
is required to order events based on a single reference time. Properly ordered events simplify
the analysis of distributed systems [56]. The characteristics of clock skew and drift, and their
estimation, have been studied in [22] 29, [75]. Then, Poirier et al. [85] proposed an efficient
and accurate algorithm for offline trace synchronization based on the Convez-Hull algorithm.

However, their method is not efficient for online analysis purposes.

5.4 Terminology and background

In this section, we introduce the terminology used in the remainder of the paper, and we
formalize the definition of the clock skew.

Time offset, frequency offset, and frequency offset rate are parameters that describe the
behavior of a clock, and these differ from one clock to another. The trajectory of the time

offset can be modeled by the following equation [39] :

90

AT(t) = B(to) + alte)(t — to) + £(t — to)*+ € (1) (5.1)
AT(t) Time offset at time ¢
B(to) Initial offset
a(to) Frequency offset
l Frequency drift
€ (t) Other factors, particularly random perturbations

Equation [5.1] shows that clock inaccuracies are caused by a combination of various factors.
Over relatively short intervals, many algorithms consider that only the initial offset and the
frequency offset are significant. We refer to this as the "linear clock approximation”. Taking

this approximation into account, equation [5.1] can be simplified to :

AT(t) = B(to) + alto)(t — to) (5.2)

Finding the time offset between a node clock and a virtual perfect clock becomes a matter
of identifying two factors in a linear equation. It follows that the offset between two real clocks
can also be modeled as a linear function. For the rest of this paper, we estimate a function

that maps the time on clock A to the time on clock B as follows :

CA(t) =gy + OZ1CB(t) (53)

Moreover, the structure of a trace can be illustrated as follows :

T = (drift,of fset, start_time_from_TSC, events)

(5.4)
events = (eq, €a, €3, ..., €,)

Let us assume that there are two traces in a distributed system, Ty and 7}, on computers
Cy and O respectively. Two event types are considered for time synchronization : (i) sending
a message ; and (ii) receiving a message. Let us denote by 6; the time when Cj sends message

1 to C1, and by &; the time when C] receives message i from Cj.

m(i) - To(6:) — Ti(&) (5.5)

The timestamp for the sent message is stored in T and the timestamp for the received
message is stored in 77. 6; and §; are based on the local time of Cy and C} respectively. In

addition, C sends message j to Cp, and 6; is the time when Cj receives message j from C}.

m(j) : T1(&;) = To(6;) (5.6)

91

Each trace contains sent (S) and received (R) message timestamps, based on local time,

as expressed by the following sets :

Ty.events = (07,0%, ...)
Ty.events = (£f,€5,...) (5.7)
ii=1,2,3 ..

. %
As shown in sets Ty and Ty, (67, &F) is the first pair of send-receive times for the message
sent by Cy to (', and (Gf, ff) is the second pair of send-receive times for the message sent
by C; to Cpy. If the event timestamps of Tj are considered as reference times, this gives us

the following equation :

Cr,(t) = 0°

Cr, (1) = b5 + 3 (58)

5.5 Methodology

Dealing with streaming data involves many challenges. Since long-term buffering of strea-
med data incurs an unacceptable cost in many cases, the stream should be scanned and
analyzed in a timely fashion. Ideally, an online synchronization method should be efficient, in
terms of both time and memory. Another challenge is to ensure that the method is scalable
to a large number of nodes, has low latency, and so generates its results quickly and maintains

good synchronization accuracy over time.

5.5.1 Two-node synchronization

The method proposed in [57] synchronizes every connection between two nodes incre-
mentally with a method based on the Convexr Hull algorithm, which estimates a conversion
function between the clocks of a pair of traced computers. Figure [5.1] illustrates the sent
and received packets in a two-dimensional chart based on the source and destination clocks.
The main features of this incremental approach to synchronizing two nodes are summarized
in this subsection, in order to explain how it fits into the complete cluster synchronization

process proposed in this article.

The set {(07,&R), (05.,,&,), ...} shows the sent packets from computer 6 to computer

¢, and the set {(0F,&7), (01 ,€7,,), ...} shows the sent packets from computer £ to computer
6. Since there is no message inversion in a normal connection, these two sets are completely
separate.

The Convex-Hull algorithm uses maximum received times and minimum sent times, i.e.

92

packets with minimum latency, in order to accurately synchronize connections. The packets
with minimum latency are those of interest in the Convez-Hull synchronization algorithm.
In Figure packets sent from 6 (horizontal axis) to £ (vertical axis) occupy the upper left
half-plane and are shifted higher when more network latency was encountered. Therefore, the
lower half-hull, of the Convez-Hull formed by those points, is a lower bound for the packets
sent from 6 and identifies the packets with the lowest latency. Similarly, packets sent from
¢ (vertical axis) to 6 (horizontal axis) occupy the lower right half-plane and are shifted to
the right when more network latency was encountered. Therefore, the upper half-hull, of the
Convex-Hull formed by those points, is an upper bound for the packets sent from & and
identifies the packets with the lowest latency. The possible synchronization lines lie below
the lower half-hull of packets sent from 6 and above the upper half-hull of packets sent from
&.

This means that the lower bound of the sent packets and the upper bound of the packets
received by computer ¢ determine the possible range for the linear clock function. Graham’s
scan forms these two sets and their bounds. The formula [5.9| shows the corresponding pairs
in each bound in Figure [5.1}

Vi

Upper Bound = {(6.£7). (0F, €7), (6£1.&7)) (5.9)

Lower Bound = { (65, €8, (65, €5, (65, €1, (65, €5}

\

We see that this algorithm ignores inaccurate pairs ((95,553, (02, &), 695, £5), (0%, £5)),

which are packets delayed by interrupts, network switches, etc.

In the next step, the Convex-Hull algorithm attempts to draw two lines. One line has a
maximal slope, L., and the other has a minimal slope, L,,;,, as illustrated in Eq.[5.10| The

final estimation line is the line that bisects L, 4> and L.

Lma:c = O-/maze + Bmzn

(5.10)
Lmin - aming + ﬂmaz

As mentioned, the Convex-Hull algorithm uses the exchanged packets with minimum
latencies and ignores the other packets. The basic idea of the Fully Incremental Approach
[57] is to benefit from this specific feature of the Convez-Hull algorithm, by selecting accurate
packets that strengthen the bounds. It proposes a novel online synchronization method for
two connected computers. Online synchronization starts as soon as enough exchanged packets
are found. Synchronization accuracy then improves over time, as more accurate packets are
received.

Synchronization accuracy is the difference between the drift of two lines with maximum

and minimum slopes (L,a; and Ly,).

93

Bmax

Brnin L

Y

Figure 5.1 Convex-Hull method.

Accuracy = Lyae-drift — Lyn.drift (5.11)

Consequently, the Fully Incremental Approach only examines the exchanged packets that
impact one of these lines, narrowing the gap between the minimum and maximum lines. These

packets are called accurate packets in this approach. A packet is accurate when it is placed

. % .
either below line L, 4, or above line L,,;,. For example, in Figure |5.2al (05, £F) is an accurate

packet sent from computer # to computer §, which moves Ly,q, to the new position in Figure

5.2b. However, packets (65, §§3, (05, &LY)) suffered increased latency in reaching computer &,

and they do not lower L,,,, or improve accuracy, and so they are ignored.

In summary, the Fully Incremental Approach updates the drift and offset, and the asso-
ciated accuracy, between the traces on two nodes, and always guarantees the best accuracy
during live tracing. Moreover, unlike the classic Convez-Hull algorithm, it not only retains
the packets that lie on the Convex-Hull, but also affects L,,,q. O L. The updated drift and
offset are computed immediately when L, or L,,;, are affected, which is not the case in the
window-based approaches, where the evaluation is postponed to the end of each window [57].
The immediately available updates on the drift, offset, and accuracy of this approach are fed

into the proposed new cluster synchronization approach, as detailed in the next subsections.

Brmay
Bmir\

Brmay..
Bmir\

94

. =max
035 @S

Ce(to)

(039

CE e
(618’ é’;!l:‘) — »;;,’,",";’:/:’57"7”ﬁ'{;: _ (65{, gg)

)

Y

3
(a) The accurate packet position before updating the synchronization

A
L

/ «’"Cg(te)

L

max
(05,50

0588 ©
S o -

min

Y

(b) Synchronization based on the accurate packet position

Figure 5.2 Fully Incremental Approach

95

5.5.2 Multi-hop synchronization

Since synchronization is performed using streaming data from a cluster, the idea is to
maintain a synchronization graph dynamically. Edges are added when new nodes start com-
municating, and edge weights (synchronization accuracy between two nodes) are updated
when more accurate packets are received.

A Minimum Spanning Tree (MST) in the graph is maintained, and a root with the mini-
mum cost path to all the other nodes is selected as the time reference node. This way, links
with the best accuracy are retained and used to compute the drift and offset from any node
to the reference node.

The MST can change in three different situations : (i) a new computer connects to the
network and starts tracing, adding a vertex; (ii) a new connection is created between two
existing computers in the network, and a new edge is added and may affect the MST, and
possibly the time reference node as well; (iii) a more accurate packet is received, improving
the accuracy of the weight of an edge, which can lead to updating of the MST and possibly
of the time reference node as well.

MST algorithms, such as Kruskal’s algorithm, work efficiently with static trees and take
a time of O(m log n), on average, where m is the number of edges and n is the number of
vertices. We call this a non incremental approach.

Changes occur frequently in online analysis, and the MST should be updated accordingly.
Repeatedly applying a non incremental approach would be inefficient, leading to a complexity
of O(m? log n). The performance of streaming synchronization is improved using an incre-
mental MST algorithm. When a change to the graph is made, a new edge may be added or
the weight of an edge not on the MST may be reduced. In either case, the edge is added
to the MST for consideration (as shown in Figure [5.3a). The MST is splayed, so that one
of the nodes connected to the new edge becomes the root of the tree, as shown in Figure
(Splay(h) : parent(g) = h, parent(e) = g, parent(a) = e). In this way, the cycle created
by the new edge is quickly identified. Then, the edge with maximum weight in the cycle is
removed from the MST. This process is performed in an amortized time of O(log n).

A data structure for the Minimum Spanning Tree (MST) is maintained throughout the
sequence of updates. We designed it based on the dynamic tree data structure proposed by
Sleator and Tarjan [98]. The proposed structure is implemented as a splay tree (ST-tree) [97].
These authors also consider another data structure, the None Tree (NT), which they use to
account for increasing and decreasing weights in their graph. However, this structure is not
applicable in our case, where the clock skew estimation can only improve as more accurate

packets are received.

96

Loop in MST

Make vertex h the root of its tree

o New link

(a) A new connection between nodes h and k¥ in MST, (b) Splaying on node % to move it to the root
which creates a cycle

Figure 5.3 Fully Incremental Approach

Splaying Process

The splaying process is designed to optimize the updating of the MST based on the
frequent changes in a dynamic tree. It starts from an arbitrary state and restructures itself
when a new operation occurs. This process runs from either of the two nodes with the updated
connection. To splay a tree, we run a recursive schema on the specific node until it becomes
the root of the tree.

We start from node z and check whether or not parent(z) is the root of the tree. When
parent(z) is not the root, we splay at parent(z) and check whether or not grandparent(z)
is the root of the tree. This procedure continues until we find an ancestor(z) in the path
between z and the root of the tree and splay at the link from ancestor(z) to the root.

When parent(z) is the root, splaying is completed by everything the edge linking z and
parent(z). Since any node in the tree may have more than two connections, we keep the same
children for nodes z and parent(z), and only the parent-child edge of node z is reversed.

In Figure [5.3a] we start from node & and find node e, ancestor(h), whose parent (node a)
is the root of the tree. Splaying is performed between e and parent(e), and node e becomes
the root. Then, splaying is pursued between g and parent(g), which is the new root (node e).
In this step, node g becomes the root of the tree. Splaying is not completed yet, however. In
the last step of the splay process, the parent of the specified node becomes the root. Here,
parent(h), node g, is the root. Therefore, the last splaying step consists in splaying the edge

97

linking node h and parent(h), node h becoming the root.

ALGORITHM 8: Dynamic Minimum Spanning Tree Maintenance
Require: v : vertex
Require: ¢ : vertex
Require: w : edge weight (sync. accuracy)
1. if exist_link(v,€) then

2: update_weight(v,£ w)
3: else
4: if —exist_vertex(v) and —exist_vertex(§) then
5: Id= create_Tree()
6: add_Exist_Tree(v,&,w,Id)
T RN=v
8 else
9: if
(exist_vertex(v) and —exist_vertex()) or (—exist_vertex(v) and exist_vertex(£))
then
10: if exist_vertex(v) then
11: id= tree_Id(v)
12: else
13: id= tree_1d(§)
14: end if
15: add_Exist_Tree(v,&,w,Id)
16: update_RN_Insertion()
17: else
18: if treeld(v) = treeld(§) then
19: cycle(v,& w,tree_1d(€))
20: update_RN_Cycle()
21: else
22: join(v,&,w,tree_Id(v),tree_1d(&))
23: update_RN_Join()
24: end if
25: end if
26: end if
27: end if

The algorithm [§] illustrates the method for dynamically maintaining the MST. First, it
checks the existence of the (v,) link in the data structure (line 1). Then, we update that
weight (w;). In fact, the receipt of a new, accurate packet between two nodes can improve
accuracy, and so diminish the inaccuracy in the weight of the corresponding edge. The new
weight must surely be less than it was previously. Moreover, if the link is already in the MST
and its weight improves, it will remain in the MST, which stays unchanged. So, we always

have :

98

t>t—1:w, &) <w(v, &)1 (5.12)

If edge (v,&) is not in the MST, there are four possibilities. The first is that neither of
the two vertices in the MST exists, in which case a new single edge disconnected tree is
formed (line 4-8). The second is that one of the two vertices is already in the MST. The new
edge connects the new vertex, resulting in an enlarged MST (line 9-17). The third is that
both vertices exist in the MST. If the two vertices belong to the same tree, the new edge
forms a cycle, which requires the removal of the edge within the cycle with the largest weight
(line 18-21). Otherwise, when those vertices are not in same tree, the new edge connects two

separate trees (line 21-24).

5.5.3 Dynamic Reference Node

In a distributed system, computers are often synchronized with a time server using a
protocol such as NTP. The granularity of that synchronization is usually coarser than what
is required to compare events with nanosecond-level timestamps between different traces.
Moreover, the clients and servers under study and being traced may be using different time
servers. For this reason, we derive the clock offset and drift directly from the trace information,
and build a synchronization MST structure based on the network links with the best accuracy.
To do so, we also need to dynamically select a time reference node (RN) in the MST, which
is used to display all the events and state timelines in trace viewing tools using a common
time reference. We use an efficient incremental algorithm to update the RN, as proposed in
[55]. We summarize this approach here and explain its integration into the new proposed
cluster synchronization approach.

The incremental RN selection must handle three different cases, depending on the possible
updates to the MST. First, when a new node connects to the current network, the balance of
the network may change (Algorithm [§line 16), and the RN selection may be affected. Second,
when an edge is added to existing nodes in the MST, a cycle is generated and an edge along
the cycle must be removed, altering the MST topology and the selection of the RN. This
may happen either because of a new connection between two existing nodes, or a change in
the accuracy of an old connection (Algorithm [§fline 20). In fact, when the accuracy of an old
connection improves over time, the MST algorithm adds it as a new edge and eliminates a
link with maximum inaccuracy in the related cycle. Third, when two unconnected networks
are joined by a new connection, the RN selection is also affected (Algorithm |8 line 23).

For all possible network updates, and the associated dynamic recomputation of RN, a

small and constant number of operations is required at each node along the path affected

99

(from the new edge to the existing RN). In a perfectly balanced network, the worst case and
average path length is O(log n). It has been demonstrated that the average depth of a tree
with n computers is O(log n) [23]. Therefore, the average complexity of our proposed method

is no larger than O(log n).

5.5.4 Synchronization Factor Propagation

As described earlier, some MST updates cause RN changes. With such a change, the
time conversion parameters with respect to the reference node may change, for all the traced
nodes in the network, because of these updates. In some applications, the MST is used as is
as needed. In that case, when the time difference between a node and the RN is requested,
the time conversion parameters along the path from the node to the RN are combined. In
other applications, we must store and update the time conversion parameters with respect
to the RN at each node. This latter case is examined here.

The algorithm [J]illustrates the three possible cases for updating the time conversion para-
meters. In the first case (lines 1-3), the MST and RN are fixed, but the accuracy associated
with one edge is improved. This update also affects the children of the modified edge.

In the second case, the MST changes while either a new node connects to the network or
the accuracy of a current connection improves, but the RN remains the same. When a new
node or a new subtree connects to the network, the new node or subtree requires updates to
their conversion parameters. Otherwise, a new connection between two existing nodes in the
MS'T results in a cycle. Figure |5.4] shows this situation and the cut required to update the
MST. The update area is outlined in Figure 5.4l The path from ¢;;; to a; and all the children
of a;s have their conversion parameters updated (lines 4-7). Moreover, the nodes from a; to
the node before the new RN has been inserted also update their synchronization parameters
with respect to the new RN. However, other paths with ¢; as starting point do not require
updates.

In the third case (lines 8-10), both the MST and the RN change. This is the worst case,
where all the nodes in the related graph update their conversion parameters with respect to
the new RN.

5.6 Experiments and evaluation

5.6.1 Simulation experiments

The proposed schema is applicable to large-scale computer clusters, including cloud and

grid computer environments. To validate the proposed approach, we simulated a large scale

Considered connection in MST updatg/ ...

~ignored connection in MST

“with worse accuracy in loop

Figure 5.4 A general example of a resynchronization area when the MST changes

100

ALGORITHM 9: Dynamic Synchronization Factor Propagation

Require: & : MST status
Require: R : RN status
if & = Static and R = Static then
convertPath(child(e;))
else
if & = changed and R = Static then
reversePath(c;;1)
convertPath(child(a;))
else
if & = changed and R = changed then
convertPath(all)
end if
11: end if
12: end if

._
@

101

consisting of 60,000 nodes with a dataset containing one million operations. Then, we expe-
rimented with the schema in this environment. The following subsections present the results

of applying the proposed method to this cloud-scale computer cluster.

Simulation setup

The dataset consists of one million operations (New computer connection, Network join,
Cycle, and updateLink). Six datasets are used in this simulation, ranging from 10000 to
60000 simulated nodes, which constitutes a dynamic network. Tables [5.2| and [5.1] present the
operation statistics and MST changes.

Evaluation of schema performance in the simulated network

During online analysis, changes can occur rapidly, and the MST should be updated after
every change. As mentioned, using a non incremental method would be costly, as it requires
1.440216 seconds to find the MST once in the simulated network with 10000 simulated nodes.
As shown in Table[5.2] 992328 operations (out of one million) result in changes to the MST for
this network. This means that a non incremental approach would require more than sixteen
days to follow up on the changes.

As shown in Figure[5.5] our Fully Incremental Approach takes 0.36 seconds to update the
MST in a network with 10000 simulated nodes, compared to 16.5 days for the non incremental
approach on the same network. Moreover, the Fully Incremental Approach takes 7.79 seconds
to recompute the MST in a dynamic network with 60000 simulated nodes.

The same test conditions, which include 992328 changes to the live network, are subjected
to the Fully Incremental Approach. The same operations are tested on the same forests, and
the time to update the RN with the proposed method is measured. Figure illustrates
that the Fully Incremental Approach takes 0.34 seconds to recompute the RN in a dynamic
network with 10000 nodes, compared with 32.53 seconds for the non incremental method with
complexity O(n?) on the same network [55]. Furthermore, it takes 4.93 seconds to update the
RN in a dynamic network with 60000 nodes, compared with 25 minutes and 46 seconds with

the non incremental RN selection approach.

5.6.2 Real world traced network

We tested our method with traces gathered in a real network cluster. This cluster is used
in many applications, such as network monitoring tools, network