
UNIVERSITÉ DE MONTRÉAL

ON LINE TRACE SYNCHRONIZATION FOR LARGE SCALE DISTRIBUTED

SYSTEMS

MASOUME JABBARIFAR

DÉPARTEMENT DE GÉNIE INFORMATIQUE ET GÉNIE LOGICIEL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

THÈSE PRÉSENTÉE EN VUE DE L’OBTENTION

DU DIPLÔME DE PHILOSOPHIÆ DOCTOR

(GÉNIE INFORMATIQUE)

NOVEMBRE 2013

c© Masoume Jabbarifar, 2013.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PolyPublie

https://core.ac.uk/display/213618851?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNIVERSITÉ DE MONTRÉAL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

Cette thèse intitulée :

ON LINE TRACE SYNCHRONIZATION FOR LARGE SCALE DISTRIBUTED

SYSTEMS

présentée par : JABBARIFAR Masoume

en vue de l’obtention du diplôme de : Philosophiæ Doctor

a été dûment acceptée par le jury d’examen constitué de :

Mme BOUCHENEB Hanifa, Doctorat, présidente

M. DAGENAIS Michel, Ph.D., membre et directeur de recherche

M. GAGNON Michel, Ph.D., membre

M. GOSWANI Dhrubajyoti, Ph.D., membre

iii

I dedicate my dissertation work to :

my loving parents, Batoul and Norouzali

whose words of encouragement while

I am far away of them and they miss me a lot,

my husband, Alireza,

has never left my side and supported me

throughout the process with his special love,

my beautiful princess daughter, Liana,

whose smile is my everything

I would have never been here without your support.

iv

ACKNOWLEDGEMENTS

I would like to express my deep and sincere gratitude to my supervisor Professor Dr.

Michel Dagenais for his endless support, understanding, kindness, and great supervision. His

guidance and ideas opened new doors into new aspects of distributed systems tracing for me.

He also gently added some constraints and restrictions into the method of thinking which

have been very beneficial and accelerated my research process. During my PhD studies in

Ecole Polythechnique de Montreal, I learned a lot from him not only about research but also

about life.

Many thanks go to the committee members who were more than generous with their

expertise and precious time. A special thanks to Dr. Hanifa Boucheneb, committee chairman,

for her countless hours of reflecting, reading, encouraging, and most of all patience throughout

the entire process. Thank you Dr. Michel Gagnon, Dr. Dhrubajyoti Goswami, and Dr. Robert

Legros for agreeing to serve on my committee.

Thanks to Ericsson and the Natural Sciences and Engineering Research Council of Canada

for funding this research.

I would like to thank my friends and colleagues at the DORSAL laboratory of the depart-

ment of Computer and Software Engineering. All of you have been my best cheerleaders.

I wish to thank my mother Batoul Tabaghlou-Sorkhab and my father Norouzali Jabba-

rifar. No words can express and no act of gratitude can relay what their love and support

have meant to me. I hope they accept this as an indication of my heartfelt appreciation for

everything they are.

I would like to thank my brothers Rasoul and Davoud, my sisters Farkhonde, Soraya, and

Fahime and their lovely families, my nephews Vahid and Saeed and their nice spouses, Ali,

and Mohammad, and finally my nieces Maryam, Pegah, Maedeh, Mahya, Zahra, Parastou,

and Dina. Without their support and encouragement, my efforts to complete this dissertation

would not have been possible.

I am very thankful to my mother-in-law and father-in-law, Parvin and Khanali Shameli-

Sendi. I am also grateful to my brothers-in-law Mohammad and his family, and Sajad, and

my sisters-in-law Zahra and Fatemeh for their unconditionally loving and supportive energy

at all times.

Finally, but most importantly, I am indefinitely indebted to my husband, Alireza, who has

put up with me for reasons not always obvious, endured countless sacrifices so that I can follow

my dreams and supported me in any way that he could. I owe all of my accomplishments to

him.

v

RÉSUMÉ

Les systèmes distribués en réseau fournissent une plate-forme informatique polyvalente

pour soutenir diverses applications, telles que des algorithmes de routage dans les réseaux

de télécommunication, les systèmes bancaires dans les applications de réseau, les systèmes

de contrôle d’aéronefs dans le contrôle de processus en temps réel, ou le calcul scientifique,

y compris les grilles et grappes de calcul en calcul parallèle. Ces systèmes sont généralement

supervisés afin de détecter, de déboguer et d’éviter les problèmes de sécurité ou de perfor-

mance. Un outil de traçage est une des méthodes les plus efficaces et précises, avec laquelle

toutes les informations détaillées pour chaque noeud individuel dans le système peuvent être

extraites et étudiées.

Typiquement, une tâche énorme est divisée en de nombreuses tâches, qui sont distribuées

et exécutées sur plusieurs ordinateurs coopérant en réseau. Ainsi, afin de contrôler la fonc-

tionnalité des systèmes distribués actuels, toutes les informations sont collectées à partir de

plusieurs systèmes et appareils embarqués pour une analyse et une visualisation à la fois en

ligne et hors ligne. Cette information de traçage, générée à un rythme effarant, est livrée avec

estampilles de temps générées localement sur chaque noeud. Ces estampilles sont générale-

ment fondées sur des compteurs de cycle, avec une granularité du niveau de la nanoseconde.

Toutefois, les horloges de chaque noeud sont indépendantes et donc asynchrones les unes des

autres. Néanmoins, les utilisateurs s’attendent à voir la sortie de l’analyse en temps réel, sur

un axe de référence de temps commun, afin d’être en mesure de diagnostiquer les problèmes

plus facilement.

La portée de l’oeuvre proposée ici est la synchronisation efficace et en direct de traces

générées dans un environnement de grande grappe d’ordinateurs avec des estampilles de temps

de granularité du niveau de la nanoseconde, produites par des horloges non synchronisées.

Par ailleurs, le modèle de trafic du réseau, le nombre de noeuds informatiques disponibles et

même la topologie du réseau peuvent changer. En effet, les grands centres de données roulent

un ensemble diversifié et en constante évolution d’applications. Les noeuds peuvent échouer

ou revenir en ligne à tout moment, et même le réseau peut être reconfiguré dynamiquement.

Ainsi, motivé par la grande échelle des systèmes ciblés, le volume élevé de flux de traces de

données associés, la limitation des tampons mémoire et la nécessité d’une analyse en direct,

et la haute précision de synchronisation requise, nous avons conçu une nouvelle approche

incrémentale pour synchroniser les traces de plusieurs ordinateurs connectés à un réseau

dynamique à grande échelle.

Tout d’abord, nous présentons une nouvelle technique de synchronisation en direct des

vi

connexions individuelles basée sur la classification rapide des paquets échangés, soit comme

des paquets précis ou des paquets inintéressants. Cette méthode permet d’obtenir à la fois

le plus bas coût de calcul, une latence minimale et une meilleure précision. Deuxièmement,

nous avons proposé un algorithme efficace pour calculer incrémentalement l’arbre couvrant

minimum des liaisons réseau avec la meilleure précision (plus faible inexactitude) afin de

permettre le calcul efficace de paramètres de synchronisation transitive entre deux noeuds

qui ne sont pas connectés directement. Ce problème est un défi multiple puisque l’exactitude

des liens change au fur et à mesure que des paquets sont échangés entre deux noeuds, de

nouveaux liens peuvent apparâıtre lorsque les noeuds commencent à échanger des paquets,

et de nouveaux noeuds peuvent aussi apparâıtre. Enfin, nous avons proposé un nouvel algo-

rithme pour identifier efficacement et mettre à jour le noeud de référence optimal dans l’arbre

couvrant minimum, afin d’utiliser ce noeud comme référence de temps pour l’analyse et la

visualisation des traces de plusieurs noeuds. En résumé, nous avons conçu et mis en oeuvre

une nouvelle procédure efficace et complète pour la synchronisation de trace optimale, dans

un environnement de très grande grappe d’ordinateurs, en direct.

Le Linux Trace Toolkit next generation (LTTng), développé à l’École Polytechnique de

Montréal, offre une trace d’exécution détaillée des systèmes Linux avec faible surcharge. Notre

nouvelle procédure a été programmée et validée par la synchronisation en ligne d’énormes

traces LTTng dans de grands réseaux dynamiques.

vii

ABSTRACT

Networked distributed systems provide a versatile computing platform for supporting vari-

ous applications, such as routing algorithms in telecommunication networks, banking systems

in network applications, aircraft control systems in real-time process control, or scientific com-

puting including cluster and grid computing in parallel computation [61]. These systems are

typically monitored to detect, debug and avoid security or performance problems. A tracing

tool is one of the most efficient and precise methods, in which all the detailed information

for every individual node in the system can be extracted and studied. Typically, a particular

huge task is divided into many tasks, which are distributed and run on several cooperating

networked computers. Hence, in order to monitor the functionality of current distributed

systems, all information is collected, from multiple systems and embedded devices, for both

online and a posteriori offline analysis and viewing. This tracing information, generated at a

staggering rate, comes with timestamps locally generated on each node. These timestamps

are typically based on cycle counters, with a nanosecond level granularity. However, the

clocks in each node are independent and thus asynchronous from one another. Nonetheless,

users expect to see the analysis output in real-time, on a common time reference axis, in

order to be able to diagnose problems more easily.

The scope of the work proposed here is the efficient and live synchronization of traces

generated in distributed systems with nanosecond granularity timestamps produced by unsyn-

chronized clocks. Moreover, the pattern of network traffic, the number of available computer

nodes and even the network topology can change. Indeed, distributed systems run a diverse

and changing set of applications, nodes may fail or come back online at any time, and even

the network can be reconfigured dynamically. Thus, motivated by the large scale of targeted

systems, the high volume of associated trace data streams, the data buffering limitations, and

the need for live analysis and high synchronization precision, we designed a new incremental

approach to synchronize traces from multiple connected computers in a large scale dynamic

network.

First, we present a novel schema for live synchronization of individual connections based

on the fast classification of exchanged packets as either accurate packets or uninteresting

packets. This method achieves at the same time the lowest computing cost, lowest latency

and best accuracy. Secondly, we proposed an efficient algorithm to incrementally compute

the minimum spanning tree of network links with the best precision (lowest inaccuracy) in

order to allow the efficient computation of synchronization parameters transitively between

two nodes which are not connected directly. This problem is a multiple challenge since the

viii

accuracy of links changes as more packets are exchanged between two nodes, new links may

appear when nodes start exchanging packets, and new nodes may appear as well. Finally,

we proposed a new algorithm to efficiently identify and update the optimal reference node in

the minimum spanning tree, in order to use this node as time reference when analyzing and

visualizing traces from multiple nodes. In summary, we designed and implemented a new

efficient procedure for optimum trace synchronization in a live distributed systems.

The Linux Trace Toolkit next generation (LTTng), developed at Polytechnique Montreal,

provides a detailed execution trace of Linux systems with low overhead. Our new procedure

was programmed and validated through the online synchronization of huge LTTng traces in

large dynamic networks.

ix

CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

RÉSUMÉ . v

ABSTRACT . vii

CONTENTS . ix

LIST OF TABLES . xii

LIST OF FIGURES . xiii

LIST OF SIGNS AND ABBREVIATIONS . xv

CHAPTER 1 INTRODUCTION . 1

1.1 LTTng . 1

1.1.1 LTTV and TMF . 2

1.1.2 Synchronization Architecture in LTTng 4

1.2 The Contributions of this thesis . 6

1.3 General organization of the thesis . 8

CHAPTER 2 LITERATURE REVIEW : A Comprehensive Survey of Techniques and

Challenges in Distributed Systems Time Synchronization 9

2.1 Abstract . 9

2.2 Introduction . 9

2.3 Clock and Synchronization Protocols . 11

2.3.1 Time Keeping Hardware . 12

2.3.2 Packet-based Clock Offset Calculation 13

2.3.3 Logical clock Synchronization . 15

2.4 Synchronization techniques to compute clock offset and drift 15

2.5 Synchronization Applications . 20

2.5.1 Offline Clock Synchronization . 20

2.5.2 Online Clock Synchronization . 22

x

2.6 Evaluation of protocols . 23

2.6.1 Evaluation factors . 23

2.6.2 Protocols comparison . 25

2.7 Conclusion . 26

CHAPTER 3 Paper 1 : Streaming Mode Incremental Clock Synchronization 28

3.1 Abstract . 28

3.2 Introduction . 28

3.3 Related Work . 29

3.3.1 Offline Clock Synchronization . 29

3.3.2 Online Clock Synchronization . 31

3.4 Kernel-Level Event Tracing . 32

3.4.1 Tracer . 32

3.4.2 Time Stamp Counter . 32

3.5 Terminology and background . 33

3.6 Proposed Model . 35

3.6.1 Model . 36

3.6.2 Convex-Hull . 38

3.6.3 Window-based Approach . 40

3.6.4 Fully Incremental Approach . 45

3.7 Experiments and evaluation . 50

3.7.1 Experimental setup . 50

3.7.2 Packet matching and Convex-Hull points 52

3.7.3 Accuracy and Cost . 55

3.7.4 Delay and Packet loss effects on the Fully Incremental approach 58

3.8 Conclusion . 60

CHAPTER 4 Paper 2 : Reference Node Selection in Dynamic Tree 61

4.1 Abstract . 61

4.2 Introduction . 61

4.3 Related Work . 62

4.4 Data Structure . 63

4.5 Methodology . 65

4.5.1 Reference Node . 65

4.5.2 Independent trees . 65

4.5.3 Adding a single vertex and edge . 66

4.5.4 Replacing an edge in a tree . 66

xi

4.5.5 Inserting an edge between two independent trees 73

4.6 Algorithm complexity . 76

4.7 Experiments and evaluation . 76

4.7.1 Experimental setup . 76

4.7.2 Results . 77

4.7.3 Performance evaluation . 81

4.8 Conclusion . 83

CHAPTER 5 Paper 3 : LIANA : Live Incremental Time Synchronization of Traces for

Distributed Systems Analysis . 86

5.1 Abstract . 86

5.2 Introduction . 86

5.3 Related Work . 88

5.4 Terminology and background . 89

5.5 Methodology . 91

5.5.1 Two-node synchronization . 91

5.5.2 Multi-hop synchronization . 95

5.5.3 Dynamic Reference Node . 98

5.5.4 Synchronization Factor Propagation . 99

5.6 Experiments and evaluation . 99

5.6.1 Simulation experiments . 99

5.6.2 Real world traced network . 101

5.6.3 Discussion . 108

5.7 Conclusion . 115

CHAPTER 6 GENERAL DISCUSSION . 116

CHAPTER 7 CONCLUSION . 120

7.1 Concluding Remarks . 120

7.2 Future Research . 121

7.2.1 Data integration from Virtual Machine 122

7.2.2 Hardware tracing . 123

LIST OF REFERENCES . 124

xii

LIST OF TABLES

Table 2.1 Performance comparison of synchronization protocols 26

Table 3.1 The packet loss affection on Fully Incremental approach 58

Table 4.1 Number for each operation, from a total of one million operations . . . 79

Table 4.2 The result of proposed algorithm for six datasets in term of RN changes 80

Table 4.3 The status of join operation . 81

Table 4.4 Number of descendantSize update in each operation 82

Table 5.1 Number of operations by type, out of a total of one million operations . 102

Table 5.2 Number of operations which affect and update the MST, out of a total

of one million operations . 102

Table 5.3 Dataset features and number of RN changes 106

Table 5.4 Time evaluation with the Non Incremental method 109

Table 5.5 The MST, RN, and conversion parameter update computation time

with the Non Incremental [85] method applied on 2-second windows . . 110

Table 5.6 Decomposition of the execution time for the proposed method 113

xiii

LIST OF FIGURES

Figure 1.1 Synchronization view of LTTV . 3

Figure 1.2 Synchronization view of TMF . 5

Figure 1.3 Synchronization architecture . 6

Figure 2.1 SYNC message . 14

Figure 2.2 Convex-hull method. 19

Figure 3.1 Two different approaches for online synchronization. 37

Figure 3.2 Convex-hull method. 39

Figure 3.3 The local clock values used for traces T0 and T1 may be highly desyn-

chronized. Two traces starting about at the same time may see start

times of 600sec. and 800sec. on their local clocks, respectively. With a

window size of 3sec., the first window, W1, will go from 600sec. (mi-

nimum start time) to 803sec. (maximum start time plus window size).

After processing the first time window, and analyzing matching events,

it may be computed that trace T0 should be offset by -200sec., using

T1 as time reference. The second time window, W2, is from 803sec. to

806sec., based on the reference time of T1. This corresponds to 603sec.

to 606sec. in T0 based on its local clock. After synchronization, we rea-

lize that events in T0 for time range W2 have already been processed

as part of W1. These already read events are skipped. 44

Figure 3.4 Correlated sliding window. 46

Figure 3.5 Fully Incremental Approach . 47

Figure 3.6 Geometric movement state in upper and lower hulls 48

Figure 3.7 The number of matched packets in each window. 53

Figure 3.8 The number of pairs in Convex-Hull in each window (Correlated ap-

proach). 53

Figure 3.9 The number of pairs in Convex-Hull in each synchronization (Fully

Incremental approach). 54

Figure 3.10 Comparison of total pairs in Convex-Hull. 54

Figure 3.11 Accurate packet rate . 56

Figure 3.12 Accurate packet distribution vs. time window enhancement 56

Figure 3.13 Comparison of time synchronization approaches in streaming mode. . . 59

Figure 3.14 Zoom on the accuracy dimension of Figure 3.13 from 1.2e−06 to 1.9e−06

and the trace time dimension from 120 to 170 second. 59

xiv

Figure 4.1 The DescendantSize operation in insertion mode with no tree cycle . . 67

Figure 4.2 The position of add() and cut() . 69

Figure 4.3 One way the previous reference node can remain an RN 72

Figure 4.4 One case of joining two trees . 74

Figure 4.5 Execution time for recomputing the RN as a graph with an increasing

number of updated vertices. The updating sequences contain one mil-

lion operations, consisting of Insertion, Join, Cycle, and updateEdge,

in a forest. The previous algorithm measured here has a complexity of

O(n2) . 83

Figure 4.6 Dynamic Time RN : running time on a random graph with an increa-

sing number of vertices plotted using an algorithm with a complexity

of O(log n). Updating sequences contained one million operations in-

cluding Insertion, Join, Cycle, and updateEdge, in a forest 84

Figure 4.7 The rate of page faults with the proposed method : running time in-

creases linearly with the number of nodes. 85

Figure 4.8 The memory usage of the proposed method ; the running time increases

linearly with the number of nodes. 85

Figure 5.1 Convex-Hull method. 93

Figure 5.2 Fully Incremental Approach . 94

Figure 5.3 Fully Incremental Approach . 96

Figure 5.4 A general example of a resynchronization area when the MST changes . 100

Figure 5.5 Execution time for recomputing the MST as a graph with an increasing

number of updated vertices and edges. The updating sequences contain

one million operations, consisting of Insertion, Join, Cycle, and upda-

teEdge, in a forest. The proposed algorithm measured here has a time

complexity of O(log n) . 103

Figure 5.6 Dynamic Time RN : running time on a random graph with an increa-

sing number of nodes plotted using an algorithm with a complexity of

O(log n). Updating sequences contained one million operations inclu-

ding Insertion, Join, Cycle, and updateEdge, in a dynamic network . . 103

Figure 5.7 Map of the computer cluster used in the experiment 105

Figure 5.8 Comparison between the Fully Incremental and Non Incremental me-

thods for pairwise computer time synchronization 111

Figure 5.9 Comparison between the two methods for the complete network time

synchronization computation . 112

Figure 5.10 Accuracy after 25 minutes for each node statically defined as RN . . . 112

xv

LIST OF SIGNS AND ABBREVIATIONS

ACK Acknowledge

API Application Programming Interface

BTS Branch Trace Store

CPU Central Processing Unit

CTF Common Trace Format

DSB Data Synchronization Barrier

GPS Global Positioning Satellites

ID IDentification

IBM International Business Machines

I/O Input/Output

IP Internet Protocol

IRQ Interrupt Request

KVM Kernel-based Virtual Machine

LIANA Live Incremental Asynchronous Network Analysis

Log Logarithm

LTTng Linux Trace Toolkit Next Generation

LTTV Linux Trace Toolkit Viewer

MPI Message Passing Interface

MST Minimum Spanning Tree

NTP Network Time Protocol

NTPD Network Time Protocol Daemon

OS Operating System

PIT Programmable Interrupt Timers

PTP Precision Time Protocol

QoS Quality of Service

QEMU Quick EMUlator

RN Reference Node

RT Real-Time

RTT Round Trip Time

SNTP Simple Network Time Protocol

ST Splay Tree

SYNC Synchronization

TCP Transmission Control Protocol

xvi

TMF Tracing and Monitoring Framework in the Eclipse framework

TSC Time Stamp Counter

UDP User Datagram Protocolor

UTC Coordinated Universal Time

UST User-Space Tracer

VM Virtual Machine

1

CHAPTER 1

INTRODUCTION

The arrival of multi-core processors in computer clusters represents an evolutionary change

in conventional computing to obtain high performance computing. However, these systems

may exhibit coherency problems when parallel programs access shared resources, thus creating

hard to debug timing related problems. It is therefore crucial to have proper tools to monitor,

trace and analyze system execution, in order to identify functional and performance problems.

A trace facility aims to keep track of functional flow and report relevant changes at certain

times. An efficient and accurate system level tracing is required to monitor and maintain

distributed systems.

Over the years, different tools have been implemented to trace operating system behavior

by recording kernel events. Some of the most interesting tracing tools are Ftrace [5], Dtrace

[4], Systemtap [9], and LTTng [8]. The currently available trace visualization tools have often

targeted detailed traces for small real-time embedded systems, or much less detailed system

logs for larger systems. Moreover, existing tracing tools for distributed systems often use

coarse higher level events, at the message passing programming interface layer, for which

local clock differences may not be a problem ; using a time sychronization service daemon

may provide sufficient accuracy in that case, to combine timestamps from several nodes as if

their clocks were synchronized.

In newer distributed systems, with shorter and more frequent interactions between nodes,

higher accuracy is desirable, especially for measuring and debugging low latency operations.

This is the case, for example, for telecom servers, and high performance web sites such as

search engines. This explains the high interest for accurate traces synchronization, providing

higher accuracy and avoiding the requirement for a time synchronization service in the system

under study. Indeed, a major challenge, in monitoring and debugging tools for live systems,

is to minimize the impact of tracing on the traced computer.

1.1 LTTng

LTTng, developed at Ecole Polytechnique de Montreal, provides a detailed execution

trace of the Linux operating system with low overhead. LTTng, like other tracers such as

Perf [27], Xtrace [43], and etc.[28], uses probes to track system events. The probes fetch

some information, and write it in event records. An event record contains an event identifier,

2

a timestamp, and optionally an event specific payload. Probes, when currently enabled, are

called when the associated instrumentation is encountered during execution.

LTTng is a prime example of low overhead tracing used for measuring small intervals,

for instance system call entry and exit, which may happen within one microsecond. LTTng

is thus capable of handling huge traces of several gigabytes or more [29]. LTTng not only

has a very low overhead but it is also able to trace kernel space and user space activities

simultaneously. These specific characteristics of LTTng help monitoring an ample range of

activities in a computer [8].

However, to handle huge detailed traces collected from multiple system nodes and em-

bedded devices, for both online and a posteriori offline analysis and viewing, a new approach

is required. Furthermore, while LTTng started as a tool for a posteriori analysis, the latest

improvements now enable the live tracing and streaming of traces from multiple nodes. In

a computer cluster, multiple nodes produce separate trace streams independently. Events in

the traces come with a timestamp. Since timestamps are recorded based on a local clock that

runs asynchronously on each node, the logical order of events cannot be guaranteed. Global

trace analysis, therefore, faces the problem of converting the local timestamp values to a

common reference time. Consequently, the aim of this work is to provide a new, efficient and

accurate traces synchronization algorithm for live trace viewing and analysis. Indeed, LTTng

should be able to visualize traces from several distributed systems on a common reference

time base.

1.1.1 LTTV and TMF

LTTV, Linux Trace Toolkit Viewer, is the stand-alone viewer for kernel and userspace

traces. It is written in C/C++ using Glib and GTK+. It uses libbabeltrace to read the LTTng

CTF traces. Figure 1.1 shows a screenshot of LTTV.

TMF, the Tracing and Monitoring Framework, is an Eclipse plug-in to view LTTng kernel

and userspace traces. It is part of the Linux Tools project at Eclipse and was used to prototype

the new proposed approach. TMF provides different types of detailed trace analysis. It offers

different views such as the ”Control flow view” and ”Statistic view”, which facilitate trace

analysis [7]. Figure 1.2 shows a screenshot of TMF where two trace files are shown with

a common time base. Meanwhile, the synchronization parameters, relating each local clock

to the common time reference, are shown in the synchronization view at the bottom of

this Figure. Two traces with the names of scp dest and scp src are illustrated and their

connection status is shown in row Quality. The Accurate label for this row indicates that the

synchronization was achieved correctly at this moment. Hence, the drift and offset of these

two traces are shown in the next two rows (alpha and beta) respectively. In addition, other

3

Figure 1.1 Synchronization view of LTTV

4

synchronization parameters are represented in following rows.

1.1.2 Synchronization Architecture in LTTng

Prior to the work proposed here, the synchronization of two traces in offline mode (tracing

is completed and saved in a file on each computer) had been implemented recently in LTTng

[85]. The main concern was to achieve a high accuracy with this trace analysis enhancement.

It consisted in a post-processing step called offline synchronization [85]. This method was

applied to traces recorded at the kernel level with low intrusiveness in offline mode. Figure 1.3

illustrates the general architecture of the synchronization model, showing the synchronization

steps. There are four connected modules in it. Each module receives input from one or more

modules and sends output to other modules.

The input of this architecture is fed by LTTng and consists of two or more unsynchronized

trace files. The output is two or more synchronized traces. The output format is compatible

with LTTV and TMF, which are able to show synchronized traces. The following modules

are present in this architecture :

Processing module : Traces are gathered from all distributed nodes in distributed

systems, and are ready to be analyzed. In order to synchronize traces from two nodes, net-

work traffic exchanges between them are required. Packet exchange events are extracted and

dispatched to the next module. Thus, this module captures network traffic and computer

activity and extracts the necessary information for the matching module.

Matching module : Event processing feeds the events one by one. However, the Analysis

module works on groups of events. Consequently, the Matching module is responsible for

forming these groups. The relations between the packets are of different types (”one to one”,

”one to many”, or a mix) and this will influence the overall behavior of the module for TCP,

UDP or MPI. This module must match the sent and receive events for a same packet and

group them. For example, for linear regression, the round trip time (RTT) is needed, so this

module makes a group after finding an acknowledgment packet, and the acknowledge time

will be assumed as reference time.

Analysis module : There are two methods to synchronize time ; Linear Regression and

Convex-Hull. In this module, the user can choose any of these methods to synchronize traces.

The Convex-Hull method synchronizes traces with better accuracy. Consequently, it is chosen

as the default option.

Reduction module : Matched packets are sent to the Analysis module without any

processing and are then used to synchronize each node pair based on the Convex-Hull. The

reference time is computed and all nodes can be synchronized with this reference time. Then,

the reference node, the node which has the most accurate links to other nodes, is selected

5

Figure 1.2 Synchronization view of TMF

6

Figure 1.3 Synchronization architecture

and each node pair is synchronized. However, sometimes an indirect path between two nodes

has better accuracy (less drift and offset) and is chosen. To find those precise links (and

drift/offset) between all node pairs, a Minimum Spanning Tree (MST) ordered by accuracy

is computed. It ensures a minimal synchronization tree and the best accuracy in distributed

systems. Using a spanning tree has been useful in other similar applications such as wireless

sensor networks. The last part in this module is propagation. All nodes should be synchronized

based on the reference node time, and drift and offset factors (α and β), propagated through

the paths to the reference node. At the end, the resulting times, converted to a common

reference node, become available to the user interface and trace events are shown in LTTV

and TMF with right time order.

The work proposed here retains in large part this architecture but transforms each step

to efficient incremental algorithms, while maintaining the same accuracy.

1.2 The Contributions of this thesis

Our goal was to achieve an incremental synchronization scheme with high accuracy and

low impact. The results of this research were evaluated in the context of a tracing environ-

ment, and showed excellent performance. Therefore, the presented approaches can be used for

online time synchronization in computer networks even under the most demanding conditions.

Our work guarantees the best accuracy, taking into account all the Convex-Hull constraints

generated by matched packets as they arise, as well as optimal performance and scalability.

First, we proposed a new incremental and efficient technique to synchronize two live

7

connected systems. As soon as two computers start exchanging messages, this method starts

computing the clock offset and drift between the two, based on an optimized Convex-Hull al-

gorithm. Since the Convex-Hull algorithm relies on the packets with lowest latency, it insures

the best time synchronization accuracy. This method updates the synchronization factors

when an accurate packet is exchanged and incrementally improves the time synchronization.

This method not only does not need any buffering, but also takes O(1) time on average for

updating the synchronization, when a new accurate packet is found, which is ideal for live

online analysis.

Secondly, we presented a novel incremental method to compute the synchronization para-

meters at the link level and maintain a Minimum Spanning Tree formed by the most accurate

links. In a dynamic network, where computers connect/disconnect to/from the network, we

efficiently maintain a dynamic MST. The proposed method is based on splay trees, in which

every operation on the tree, such as computer connection, joining separate networks, and

so on, takes O(log n) where n represents the total number of computers in the network.

Therefore, instead of updating the whole MST, the network tree splays on one of updated

nodes and the computation is performed upon a portion of the network.

We finally proposed a new method to select and maintain a central reference node in a

dynamic network and then update the synchronization parameters. This work is performed for

tracing and monitoring purposes, where a time Reference Node is required to synchronize the

traces from all the nodes in a dynamic network. In the proposed technique, a novel schema

analyzes new vertex insertions, tree merging, and cycle handling in a forest, minimizing

average time complexity per operation in the dynamic network. What distinguishes this work

from previous work is that it investigates only the altered path with respect to the Reference

Node, once an alteration has occurred in the network. The proposed method incrementally

processes updates in evolving trees in the forest and thus improves performance.

This new live approach to traces synchronization is fully incremental and most efficient.

It not only does not degrade the accuracy of the results, but it also does not delay the syn-

chronization improvement updates. Moreover, it minimizes buffering, an important feature

for scaling to large computer clusters and distributed systems. We tested the proposed ap-

proach on extremely large clusters, with a real network containing more than 55 physical

computers, and in a simulated network containing 60,000 nodes. The results demonstrated

that the proposed method addresses the accuracy, performance and scalability needs. Hence,

this can be used in all cases where an efficient online time synchronization is desired.

8

1.3 General organization of the thesis

This dissertation is organized in seven chapters and submitted as a ”thesis by articles”.

This first chapter, introduction, clarifies the context and framework of the research project.

It is then followed by the body of this doctoral thesis which consists of four main articles

presented in Chapters two to five. The detailed literature review is represented in a survey

paper in Chapter 2 with title ”A Comprehensive Survey of Techniques and Challenges in

Distributed Systems Time Synchronization”, submitted to Journal of Network and Computer

Applications. This second chapter aims to bring a sufficient understanding of the issues and

methods used in this research project [53]. Chapter three presents the second article entitled :

“Streaming Mode Incremental Clock Synchronization”, submitted to Springer Journal : Net-

work and System Management (JONS). This scientific article introduces an efficient and fully

incremental, continuous time synchronization approach for links between two computers. It

offers high precision and low intrusiveness for online applications and constitutes the first

main original contribution [57]. The fourth chapter contains the scientific article entitled :

”Reference Node Selection in Dynamic Tree”, submitted to the Journal of Network Manage-

ment. This work presents an efficient incremental method to select and update the optimum

reference node in dynamic networks where nodes connect/disconnect frequently. This is used

to efficiently select the time reference node in order to achieve high synchronization accu-

racy, as required for real-time process-level tracing in a live distributed system. It constitutes

the second main original contribution [55]. The fifth chapter presents the last article entit-

led : “LIANA : Live Incremental Time Synchronization of Traces for Distributed Systems

Analysis”, submitted to the Journal of Network and Computer Applications. It addresses

the complete process of achieving online distributed trace synchronization in real-world live

distributed system tracing. It proposes new algorithms to update the time synchronization

MST, based on the link level synchronization of Chapter 3, and passes the updated MST to

the incremental reference node selection algorithm of Chapter 4 [54]. A general discussion on

this research area, and the results obtained, is presented in Chapter 6. This is followed in

Chapter 7 by a conclusion and recommendations for future work.

9

CHAPTER 2

LITERATURE REVIEW : A Comprehensive Survey of Techniques and

Challenges in Distributed Systems Time Synchronization

Masoume Jabbarifar and Michel Dagenais

2.1 Abstract

With the appearance of a new generation of distributed systems applications and cloud

computing environments, the need arises to revisit the discussion of time synchronization.

In such environments, individual physical nodes in large data centers come and go while

applications and virtual machines migrate from one physical node to another. A significant

problem in this context is to trace and monitor events, with a common reference time, on

interacting applications and systems. Yet, tracing and monitoring tools are more important

than ever to properly analyze problems in online applications under high load. Thus, time

synchronization between interacting nodes is highly desirable. This paper presents a survey

and classification of time synchronization protocols according to a variety of factors such

as accuracy, scalability, and cost. The provided context helps designers to select the most

practical synchronization protocol for their own purposes. The detailed analysis of the cha-

racteristics of each approach guides developers to design and characterize new protocols with

the desired feature set for a distributed system application. Furthermore, this paper presents

a comparison framework through which designers can correlate and analyze the features of

new and existing synchronization protocols.

2.2 Introduction

Time synchronization plays an important role for many applications in distributed systems

and networks, where many nodes may interact or observe the same events. The information

is collected at each individual node in the network, yet it may need to be assembled to build a

coherent observation in order to achieve higher-level analysis. One of the key and fundamental

ingredients for a coherent observation is a common time reference. For example, when nodes

trace the actions related to a problem or a cyber-attack, then higher-level information (such as

system performance analysis, attack sources and destinations) can be extracted by correlating

data from multiple nodes.

10

Researchers have created several time synchronization protocols for wired and wireless

networks over the past years. Since the challenges posed by wireless networks, such as energy

efficiency and movement, are different, time synchronization in wireless sensor networks is

considered a separate branch and is outside the scope of this article. On the other hand, wired

network applications are growing rapidly with new applications and associated challenges

appearing. In particular, online applications deployed in distributed systems require a fast

and precise protocol to synchronize streaming data such as execution traces. While many

applications insist on either accuracy or cost, applications such as tracing and monitoring

need both at the same time. Indeed, tracing tools need to be minimally invasive to not

change the system behavior under study, yet high accuracy is required to solve the most

difficult problems. This is similar to electronic test and measurement equipment requiring

much higher performance than the systems under test.

This paper addresses three main objectives. First, it surveys traditional clock synchro-

nization protocols in distributed systems, and looks at new requirements and solutions for

applications such as traces synchronization. This review is based on several factors such as

accuracy, scalability, and cost, and will help designers to select the most efficient protocol

for their application. Secondly, the analysis of the features, protocols and usecases of the

different approaches presented should enable developers to combine or adjust existing ap-

proaches for specific application goals. Finally, this paper provides a framework to present

different functional aspects and comparisons of the existing synchronization approaches.

Although there are several survey papers on time synchronization, they either predate

many of the new applications exposed here [37, 66, 100] or focus on specific usecases such as

wireless sensor networks [10, 11, 46, 96, 99]. Wireless sensor networks have several specific

concerns of their own, such as energy and movement, and form a somewhat separate branch.

In this work, we rather focus on distributed systems which bring different and new usecases,

such as telecommunication services, online business applications, online gaming and etc.

This paper is organized as follows. Section 2.3 presents the concepts and foundations of

clocks synchronization protocols. Section 2.4 provides a classification of synchronization ap-

proaches into online and offline classes. Section 2.5 contains an evaluation of several protocols

and a comparison among them based on several factors, which are discussed separately. Sec-

tion 2.6 lists different challenges that influence the time synchronization accuracy and cost.

Finally, we conclude our survey paper with Section 2.7.

11

2.3 Clock and Synchronization Protocols

The ultimate common reference time usually is the Coordinated Universal Time (UTC)

[90]. UTC is a standard global time source provided by several governmental laboratories

around the world and normally based on atomic clocks. It is available as primary time ser-

vers on the Internet and as over-the-air electromagnetic signals. Another important precise

common time reference is the Global Positioning Satellites (GPS) system [71], built around

a large number of satellites, each containing an atomic clock. The two time referentials dif-

fer by several seconds since UTC adds leap seconds every few years to synchronize with the

earth rotation, while GPS clocks simply follow their atomic clocks with no attempt to remain

synchronized with terrestrial days.

While most systems ultimately synchronize with UTC, the major concern usually is to

have a precise common reference time within a distributed system in order to compare related

events arising on different nodes. In that context, the accuracy of the synchronization between

the different nodes in the distributed system is often much more important than the accuracy

of the synchronization with UTC.

The problem arises from the fact that each computer node has an independent clock.

In theory, it would be possible to distribute a common clock to several computers in a

data center. This could be achieved by a light source feeding several fiber optics cables with

carefully measured cable lengths. Indeed, signals in either electrical wires or fiber optics travel

at approximately 2/3 of the speed of light or about 6ns per meter. All cables could have the

same length or compensation factors could be computed based on the cable length to each

node. Then, this signal should be connected directly to the processor internal clock, a facility

not available on most systems. Specialized telecommunication equipment may use similar

schemes because of their stringent needs on clock synchronization for high speed protocols

such as SONET [36].

A common mechanism is to have a timing signal cable providing a pulse per second signal

at the beginning of each second. This cable is connected to an input signal that can generate

interrupts on the node (e.g. a pin on the serial or parallel port of many computers). For

example, a very precise pulse per second signal may be provided by relatively inexpensive GPS

timing receivers. The main source of inaccuracy then often becomes the interrupt latency, for

the computer node to be notified of the interrupt generated by the pulse per second signal

[22, 33, 74].

When no such special purpose hardware is available, time synchronization is achieved

through the existing network hardware. Packet exchanges between nodes can be used to

estimate the clock offsets. This will be the focus of the remainder of this article. Different

12

strategies may be used in order to compare events on a common time reference. The most

prevalent, [75], attempts to keep the clock at each node as close as possible to a reference

clock, typically UTC. Then, events at each node are loosely based on the same time reference.

A second approach, used for tracing, is [85] where the clock at each node does not need to

be especially well synchronized. Instead, the a posteriori analysis of packet send and receive

events in traces is used to deduce with high accuracy the offsets between the clocks in each

node. Finally, a third approach is used when tracing information is displayed live, in quasi real

time, [57]. The approaches are similar to a posteriori analysis except that the computation

must be performed incrementally and that the offset estimation may improve over time as

more packet send and receive events are analyzed.

2.3.1 Time Keeping Hardware

When a computer node is started, it needs to initialize its internal clock. This is usually

achieved by reading the current time from a special battery-backed circuit called Real Time

Clock. This circuit is typically not used thereafter during normal operation because of the

delay to read from this slow peripheral. Instead, the operating system uses a regular interrupt

to update its internal clock. Most processors contain at least one and often several Program-

mable Interrupt Timers (PIT) that can be used for that purpose [21]. Unix and early Linux

systems received interrupts to update their internal clock every 10ms. This was later changed

to each 1 ms.

When a finer granularity is required, a cycle counter can often be used, such as the

Time Stamp Counter (TSC) on Intel processors. The TSC is a special hardware register

incremented at each clock cycle. It thus provides a high-resolution, low-overhead, and fine-

grained (about 1 nanosecond or better) time source [31]. However, if the processor frequency

changes, the TSC rate will change as well on most systems. When the processor goes into

idle or halted mode, the TSC may stop altogether. With the advent of multiple processor

cores on a single chip or motherboard, the TSC s on different processor cores may drift away

from each other over time, and there is no guarantee that they will ever resynchronize.

A new generation of multicore processors from Intel include a constant rate TSC, which

provides for synchronization of the cores even though their frequency may vary over time

[81]. Indeed, a constantly running clock, shared by many processor cores, is used to update

these TSCs [64]. The TSC can then be used as the only time source for kernel and user space

needs.

The interaction between these multiple clock sources can be problematic. Linux systems

have a system clock tracking UTC, typically through the Network Time Protocol. Howe-

ver, the time adjustments can distort time measurements needed by the operating system,

13

for instance in device drivers. While it is not recommended, the system clock may even be

adjusted to go back in time. For this reason, another clock source is defined in the kernel,

CLOCK MONOTONIC, which is never adjusted during the execution and progresses regard-

less of UTC. It represents the absolute elapsed time since an arbitrary point. It keeps increa-

sing and is synchronized between all processor cores in a node [26]. It may run slightly faster or

slower than real time, its rate may vary slightly due to environmental conditions like tempera-

ture or voltage, and it may jump ahead when in a virtual machine and coming back from being

scheduled out. This clock source is typically built from the regular timer interrupts at every

milisecond, with the TSC being used on Intel processors to interpolate between two timer

interrupts and provide the needed high resolution. The time update at each timer interrupt

is synchronized among the multiple processor cores, enabling the CLOCK MONOTONIC

to be fairly well synchronized between cores. CLOCK MONOTONIC is used in the LTTng

tracer [8], insuring a high resolution common reference time among the processor cores on a

single node [20, 62, 84].

2.3.2 Packet-based Clock Offset Calculation

When a packet is sent from time server node S to client node C, C ’s clock could be set

to S ’s clock plus the delay for the packet to travel between the two nodes. The problem with

this simplistic approach is that the nominal network delay may not be known. Moreover,

network congestion or operating system latency may delay almost indefinitely the delivery of

the packet to the clock synchronization application.

A better approach was proposed by Cristian [25]. This method is based on the round-trip

time (RTT) between a computer C and a time server S. C sends a time request to S. Once

S receives the request, it responds by appending its current time TS to the message. Then,

C calculates the time with Formula 2.1 and updates its clock accordingly. This technique

assumes that the network delay is the same for the request and the response. When this is the

case, perfect accuracy is obtained. Otherwise, the computed time value is within ±RTT/2
of the real value. To improve the accuracy, C can send multiple requests to S and retain the

response with the smallest round-trip time (RTT).

TC = TS + (RTT/2) (2.1)

This was further improved upon by incorporating into the equation the processing time

of the server. Unlike the network delay, this processing time, albeit small, is easily obtained.

Figure 2.1 illustrates that the sender issues to the receiver a message at T1. The receiver

notes T2 as the reception time. Then, the receiver returns an ACK message to the sender

14

at time T3. The sender receives the ACK message with T4 as reception time. Finally, at

the end of the message exchange, the sender can compute the offset and accuracy from the

four timestamps embedded in the Response message with Formula 2.2. The sender adjusts

its clock according to the offset and the synchronization is performed.

Here again, the method assumes that the sender-receiver and receiver-sender propagation

times are exactly equal, in which case perfect accuracy is obtained. Otherwise, the bound on

accuracy is provided. Since the inaccuracy is related to the time elapsed between T1 and T2,

and between T3 and T4, one optimization is to get these time values as close as possible to

the packet send and receive points in the kernel. For example, in the LTTng tracer, which

uses this technique to synchronize traces, the packet send and receive events in the trace

are generated in the kernel at the lowest possible point in the network stack, just ahead of

the interface with the NIC driver [85]. The values of timestamps are thus obtained much

closer to the packet send and receive points. This is used in order to obtain a better accuracy

than what can be achieved when generating timestamps at the application level in a time

synchronization daemon. Another interesting aspect of LTTng is that the information from

existing packets is used to compute the offset, keeping the tracer minimally invasive since it

is not necessary to send additional packets for time synchronization.

This synchronization method, based on Equation 2.2, is the basis for the Network Time

Protocol (NTP), a standard Internet protocol for clock synchronization. It proposes an or-

ganisation with two levels of time servers : Primary and Secondary time servers. A primary

time server synchronizes directly with a reference time source, usually a UTC atomic clock.

Secondary time servers synchronize with primary time servers or other secondary servers.

A client typically synchronizes with its nearest secondary time server. NTP, depending on

the network latencies, typically achieves an accuracy between one and ten milliseconds in

local networks and tens or even hundreds of milliseconds in wide area Internet. The Simple

Figure 2.1 SYNC message

15

Network Time Protocol (SNTP) is a simplified version of NTP for users [80].

Offset = [(T2− T1) + (T3− T4)]/2

Accuracy = ±[(T2− T1)− (T3− T4)]/2

(2.2)

The Precision Time Protocol (PTP) [38] uses the same equation to estimate the network

delay between each node and the time server. However, hardware support in the networking

equipment can be used to insert the reference time at the network switch level in a broadcast

packet, insuring that all clients receive the reference time in parallel and with a very short

network delay. Furthermore, networking equipment is optimized to minimize network delay

variations and asymmetry. As a result, PTP can achieve clock synchronization accuracy at

the microsecond level.

When no time server is available, several computer nodes can communicate their clock

values and compute an hopefully more precise average value as the reference. This is the

main idea behing the Berkeley protocol [24, 66, 100].

2.3.3 Logical clock Synchronization

Some applications only require causal ordering of events. Hence, they use logical clocks

to order events. Each pair of related events is ordered by causality relations (such as the

send event for a packet necessarily happening before the receive event). This type of syn-

chronization is called logical time. Lamport proposed algorithms to compose logical clocks.

The limitation of his algorithm is that it cannot necessarily specify which one is executed

first when timestampe1 < timestampe2 , unless they refer to the same logical clock [65, 69].

Mattern and Fidge proposed a method based on Vector Clocks to address this problem and

determine precedence. Landes et al. use a tree structure to improve Vector Clocks limitation.

However, the storage and message size increase with the number of nodes [70]. Logical clocks

suffer from two important limitations. First, they cannot provide precedence relationships for

events without explicit causality relationships, for example two computer nodes interacting

with the same shared storage device (thus indirectly but not directly interacting). Secondly,

there is no notion of absolute time, which is important in several applications.

2.4 Synchronization techniques to compute clock offset and drift

As seen in the previous section, network packets sent among nodes are used to compute

the clock offset between communicating nodes. Packets may be sent explicitly for time syn-

chronization, carrying the send and receive time values for the exchange, or a trace of ordinary

16

packets sent and received at each node can be taken and sent later to an analysis node. In

either case, it is interesting to combine the information from several packet exchanges to get

a more precise estimate of the offset, and its variation over time. The exact frequency of

the clock at a node can vary somewhat. Several computers with a 2 GHz nominal frequency

will in practice all have a slightly different frequency. That frequency, for a given node, is

however extremely stable over a time as long as factors such as the operating temperature or

the supply voltage do not vary significantly [75]. For this reason, the clock offset between two

nodes varies linearly with time as a factor of the ratio of their respective frequency. It will

therefore be represented as a linear function with the initial offset and drift as coefficients.

The two main methods to estimate this linear function, based on the data from several packet

exchanges, are the Linear Regression and the Convex-Hull.

Linear Regression

The Linear Regression models a response variable, y, as a linear function of a single

predictor variable, x. The formula for this definition is : y = a × x + b, where “a” and “b”

are the regression coefficients. Coefficient “a” is the slope of the line and “b” defines the

Y-intercept. In our case, “a” is the clock drift, “x” is the time and “b” is the initial offset.

In a two dimensional space, based on timestamps of node A and B, the Linear Regression

algorithm tries to fit a line among the points. Packet A sent from node A has a timestamp

that provides the x coordinate. As soon as it is received in node B, its timestamp is obtained

and becomes the y coordinate. These two coordinates define a point in the two dimensional

space. Since there are many packet exchanges in a regular connection, many points will be

obtained in this way [95]. It is obvious that a line can be drawn through two points. However,

there are typically many more than two points and just one line should model the whole

information. The solution is based on the method of least squares. This model estimates the

best-fitting line that minimizes the differences with actual data. If each point in the two

dimensional space is represented by its x and y values, and there are N points (total number

of exchanged packets), the average of x and y values are obtained as shown in Formula 2.3.

x =
Σn

i=1xi
n

y =
Σn

i=1yi
n

(2.3)

Both regression coefficients are estimated with Formulas 2.4 and 2.5.

a =
Σn

i=1(xi−x)×(yi−y)

Σn
i=1(xi−x)2

(2.4)

17

b = y − a× x (2.5)

In these equations, “a” and “b” are the drift and offset respectively between the two

clocks. While the linear regression gives adequate results, there are significant weaknesses

with this approach. The first is that the measurement error is biased. When everything works

as expected, a minimal delay is achieved and a very good point is obtained. The system and

network delay cannot go under this minimum, corresponding to the ideal case. However, if

the system is preempted by a high priority interrupt or there is network congestion, a much

longer delay may be obtained creating a bad point. The problem is that the linear regression

takes into account all points when calculating the best fit. To alleviate this problem, some

have proposed to detect and eliminate outliers, not using them for the linear regression [22]

and obtaining more precise results. A second problem is that the x and y values, the time at

nodes A and B, are not sampled simultaneously ; they are separated by the packet propagation

time. However, if the number of packets, used for the linear regression, is the same in each

direction, the errors in each direction should mostly compensate for one another.

Convex-Hull

The Convex-Hull algorithm is based on the fact that each packet implies that the receiving

time is later than the sending time. Thus, it does not suffer from outliers since they bring

weaker constraints which have no effect on the result. Similarly, the fact that there is a

network delay between the time at which x and y are measured does not contradict the

inequality indicating that the receiving time (even with the network delay added) is after the

sending time.

As shown in Figure 2.2, pairs are divided into two sets, based on the message direction.

Consequently, the synchronization estimation line should be below all the pairs {
−−−−−→
(θSi , ξ

R
i),−−−−−−−→

(θSi+1, ξ
R
i+1), ...} and above all pairs {

←−−−−−
(θRj , ξ

S
j),
←−−−−−−
(θRj+, ξ

S
j+1), ...}.

The packets with minimum latency are those of interest in the Convex-Hull synchroni-

zation algorithm. Packets sent from θ (horizontal axis) to ξ (vertical axis) occupy the upper

left half-plane and are shifted higher when more network latency was encountered. There-

fore, the lower half-hull, of the Convex-Hull formed by those points, is a lower bound for the

packets sent from θ and identifies the packets with the lowest latency. Similarly, packets sent

from ξ (vertical axis) to θ (horizontal axis) occupy the lower right half-plane and are shifted

to the right when more network latency was encountered. Therefore, the upper half-hull, of

the Convex-Hull formed by those points, is an upper bound for the packets sent from ξ and

identifies the packets with the lowest latency. The possible synchronization lines lie below the

18

lower half-hull of packets sent from θ and above the upper half-hull of packets sent from ξ.

The synchronization accuracy is limited by the delay between the send and receive events.

Any packet delayed by interrupts, network switch delay, or some other cause will lead to an

inaccurate pair and a long delay. The Convex-Hull algorithm selects the pairs on the inside

envelope between the send time and the receive time, and so identifies the most accurate

pairs with the shortest delay. In other words, it finds the area that has minimum latency and

ignores outlying pairs, as shown in Figure 2.2 (
−−−−−→
(θS2 , ξ

R
2),
−−−−−→
(θS5 , ξ

R
5),
←−−−−−
(θR2 , ξ

S
2),
←−−−−−
(θR3 , ξ

S
3)). Therefore,

the estimated line is more accurate than with Linear Regression, not being affected by outliers.

According to the above definition, we have two completely separate sets. Otherwise, this

would imply a message inversion (receive before send). In each set, the optimal separator is

computed (the solid line in each hull) from the points in each set nearest to the separator

space. Graham’s scan algorithm selects the points forming the Convex-hull in these two

separated sets. The bounds of the Convex-hull, shown in Figure 2.2, are :

UpperBound = {
←−−−−−
(θR1 , ξ

S
1),
←−−−−−
(θR4 , ξ

S
4),
←−−−−−
(θR5 , ξ

S
5)}

LowerBound = {
−−−−−→
(θS1 , ξ

R
1),
−−−−−→
(θS3 , ξ

R
3),
−−−−−→
(θS4 , ξ

R
4),
−−−−−→
(θS6 , ξ

R
6)}

(2.6)

Thus, the maximum likelihood estimators are between the following conditions :

αθSi + β < ξRi

αξRj + β < θSj

i, j = 1, 2, ..., n

(2.7)

The next step is to find two lines, one with maximum slope (Lmax) and another with

minimum slope (Lmin) :

Lmax = αmaxθ + βmin

Lmin = αminθ + βmax
(2.8)

As a result, the final estimated α and β are certainly limited to the area that is enclosed

between (αmin, αmax) and (βmin, βmax), and the selected synchronization line is the bisector

of Lmax and Lmin.

When synchronizing two traces, the relationship between them can be one of the following :

Definition 1) An accurate relationship : this is the expected case, shown in Figure

2.2, where Lmax and Lmin are available and their middle can be computed. If the relationship

between two clocks is of the accurate type, we can define the accuracy metric as the difference

between the minimum and maximum possible drifts between the two clocks.

Accuracy(i) = Lmax.drift− Lmin.drift; (2.9)

19

â�
�t
ξâ

��

â��tθâ��

â��(θR
1,ξ

S
1)â��

â��(θR
2,ξ

S
2)â��

â��(θR
3,ξ

S
3)â��

â��(θR
4,ξ

S
4)â��

â��(θR
5,ξ

S
5)â��

â��(θS
1,ξ

R
1)â��

â��(θS
2,ξ

R
2)â��

â��(θS
3,ξ

R
3)â��

â��(θS
4,ξ

R
4)â��

â��(θS
5,ξ

R
5)â��

â��(θS
6,ξ

R
6)â��

â��Lmaxâ��

â��Lminâ��

â��Cξ(tθ)â��

â��βmaxâ��

â��βminâ��

Figure 2.2 Convex-hull method.

Definition 2) An approximate relationship : Lmax and Lmin are not available because

the hulls do not satisfy the hypothesis that the upper half-hull should be below the lower

half-hull and not intersect with it. This may be caused by a deviation from the assumed

constant clock frequency, causing a higher-order (e.g. quadratic) relation between the two

clocks. Other possible causes include a problem with the time measurement computation. In

that case, the approximation is a ”best effort”.

Definition 3) An incomplete relationship : only one of the Lmax and Lmin lines is

available. There is communication in only one direction, which is insufficient to obtain a

proper bounded synchronization.

Definition 4) An absent relationship : there is no communication between the nodes in

either direction, and nothing can be deduced about their relative time.

Definition 5) Fail relationship : none of the Lmax and Lmin lines is available. This is

because the hulls completely intersect each other or are reversed.

Based on each of these definitions, two nodes either are synchronized, not synchronized,

or partially synchronized. When there is no connection between two nodes, it may be pos-

sible to compute their offset and dritf indirectly through other nodes with which both are

communicating.

20

2.5 Synchronization Applications

In traditional clock synchronization, the aim is to adjust the clock offset immediately

with respect to a time server [73, 77, 78]. Information from successive synchronization points

is used to compute the clock drift, better correlate these synchronization points over a long

period of time, filtering out less accurate values, and improving the accuracy between syn-

chronization points using a correction factor. The other form of time synchronization is traces

synchronization [34, 83, 86]. In that context, traces from several distributed nodes are brought

together on an analysis node. The basic algorithms for synchronization remain the same but

several constraints are different and the algorithms can be adapted and optimized accor-

dingly. For instance, it can select the best path to compute the clock differences between

two nodes among several indirect paths. Moreover, the most interesting node to use as time

reference can be selected dynamically. Finally, in some cases, the trace analysis is only perfor-

med offline at the end of data collection. In that case, the clock differences can be optimally

computed based on the complete data set.

In this section, we will therefore examine the specificities of traces synchronization and

in particular offline A posteriori Trace Synchronization and live streaming Online Trace

Synchronization.

2.5.1 Offline Clock Synchronization

Recently, many time synchronization algorithms have been suggested. The main goal of

these algorithms is to increase the time synchronization accuracy. All algorithms tried to

estimate a function that models the time on the clock of a computer versus the time on

the clock of another computer, and then propagate the estimation to other computers in a

cluster.

When a message is exchanged between a pair of nodes, the receiving and sending times will

not be directly comparable because the clocks of two nodes are not synchronized [12, 64, 72].

However, by the principle of causality, the receive time must be later that the send time. This

constraint is used to compute the clock drift between two nodes [25].

An interesting offline clock synchronization method has been proposed by Duda et al.

[37], which consists of two synchronization algorithms, Linear Regression and Convex-Hull.

These algorithms estimate a conversion function between the clocks in a pair of nodes. In

both algorithms, the conversion function is linear, and the drift and offset between the two

clocks are extracted from this linear model [58].

It is also used to estimate the one-way delay between two nodes by Moon et al. [82]. In

a two-dimensional space, based on the time values at nodes A and B, the Linear Regression

21

algorithm attempts to map all points to a line. Thus, every point will affect the position

of that line. In reality, network latency and similar events between two nodes can cause

problematic outlying points, biased being only late. These outliers should ideally not affect

the drift or offset computed from the Linear Regression. They should, in fact, be ignored in

order to increase accuracy [14].

The Convex-Hull algorithm does not suffer from this problem and insures the highest

synchronization accuracy [59]. The Convex-Hull is a precise algorithm that assumes upper

and lower bounds (sending time and receiving time) separated by the network delay. In this

way, it finds the area that has minimum latency and ignores outlying points. As a result, the

estimated line is more accurate with this algorithm than with Linear Regression.

Among these two algorithms, Linear Regression and Convex-Hull, the Linear Regression

algorithm can use existing functions from a statistical package and is thus easier to imple-

ment. However, the Convex-Hull algorithm can model clocks with higher accuracy while still

requiring a modest computational complexity. The following two subsections provide more

details about using each of these two algorithms.

Khlifi et al. [63] proposed two algorithms, which they call the average and direct skew

removal techniques for offline skew removal. The average algorithm calculates the average

delay for a fixed number of consecutive packets at the beginning and the end of a trace,

yielding a constant O(1) complexity. The direct skew removal technique has the interesting

property of being able to account for low clock resolution, where the clock granularity may

be larger (e.g. 1ms) than the packet delay. For this purpose, the whole trace is analyzed for

a linear O(n) complexity.

Clement et al. [22] have evaluated the impact of system characteristics on trace synchro-

nization accuracy. First, they studied the tracing duration impact. They propose dividing

long duration traces into 30 minute segments, since the error in the clock drift linear ap-

proximation begins to increase significantly after approximately 45 minutes of tracing, while

it is quite stable during the first 30 minutes. The error increases because of the variation in

the clock drift with time, as shown by the Allan deviation [2], and because of environmental

effects on the clock circuit frequency, such as temperature and supply voltage variations.

Then, they studied the impact of the system load parameter, when there is a heavy load

on major subsystems, CPU, memory, and hard disk. They found that the transmission time

and response time measurement variations, caused by interrupt latency in a loaded system,

influence the clock drift computation directly, and subsequently the time synchronization

accuracy. The third parameter studied was hop count, when there is more than one path

between two nodes. In that case, the offset between the two indirectly linked nodes may be

computed by adding the offsets along a path, from one intermediate hop to the next. A path

22

with fewer hops generally provides higher accuracy. If there is a direct path, it is normally

better to choose that one to synchronize two nodes.

Poirier et al. [85] presented an accurate method for synchronizing distributed traces.

This method is applied to traces recorded at the kernel level with low intrusiveness. They

applied the Convex-Hull algorithm to the clocks of traced nodes as a conversion function. If

collected traces are huge and involve numerous nodes, their method is time consuming. Since

their algorithm was designed for post-processing, the analysis delay was not major concern.

However, for a live display of traces, the latency should be minimized. In [56], the proposed

method estimates accurate paths in large computer clusters and improves the performance

of offline distributed trace synchronization.

2.5.2 Online Clock Synchronization

Online synchronization works in streaming mode. Several researchers have proposed algo-

rithms for this application. The standard clock synchronization method, widely used today,

are the Network Time Protocol (NTP) [79] and NTP Daemon (NTPD) [80]. It sets and

maintains the kernel system clock, used to measure packet send and receive time, based on

feedback from exchanges with the server. Veitch et al. and Ridoux et al. [87, 102] proposed

the RAD clock (Robust Absolute and Difference Clock), which provides alternative clock

synchronization algorithms. The timing packets are timestamped using raw packet times-

tamps. They estimate the clock skew based on the difference between the system clock and

the timestamps received from the server, and maintain the clock skew correction without

changing the raw system clock, in a feed-forward approach.

Khlifi et al. [63] presented two techniques for online skew estimation and removal. The

first one, sliding window, monitors the minimum delays to reduce the gap between the true

and the corrected delays, (the correction being the estimated skew). To improve the accuracy,

they present a second technique, the combined approach. They perform the sliding window

algorithm to quickly estimate the skew, in the first interval. Then, they use the Convex-Hull

algorithm during subsequent intervals to improve the accuracy.

A particularly efficient algorithm is proposed in [57], which is based on Converx-Hull

algorithm combined with lines with minimum and maximum possible slopes between the

hulls. This can provide skew estimates very early, obviating the need for a different method

in the first interval. Furthermore, the proposed algorithm can identify accurate packets (those

few that can improve the estimate) with a simple test and recomputes the drift and offset

incrementally in O(1) upon identifying an accurate packet.

23

2.6 Evaluation of protocols

In this Section, the evaluation criteria are detailed. Then, the various synchronization

protocols are compared and evaluated based on the comparison criteria. The presented clas-

sification helps selecting the most efficient synchronization protocol in terms of performance

and applicability.

2.6.1 Evaluation factors

The evaluation factors are listed in this section. Moreover, the influence of each factor on

the synchronization is explained.

Synchronization Accuracy

A hardware oscillator circuits provide the physical clock in a system. Since the frequency

of hardware oscillators varies, clocks operate at slightly different rates on different systems.

Therefore, the physical clock values should be synchronized when an application needs to

accurately compare the time of events on different nodes. As discussed earlier, many other

applications are satisfied with a causal ordering of related events.

Synchronization accuracy is a factor that shows the time difference at a node. The ac-

curacy measurement defines how well the synchronization is performed. Accuracy shows the

deviation of the synchronized time at a node from an external reference node on the network,

or from the time of another node. When the deviation between the clocks at two nodes is

smaller, we have better accuracy. When synchronizing a pair of nodes, the accuracy is the

deviation between the two, and when synchronizing a network, the accuracy is the maximum

deviation over the network.

1. Absolute synchronization accuracy : The maximum deviation of the logical/physical

clock of the node from an external standard, for instance UTC.

2. Implicit synchronization accuracy : The maximum deviation among all pairs of logi-

cal/physical clocks of two connected nodes in a network.

Computational Complexity

In a large computer cluster with numerous nodes, the computational complexity in both

time and memory is an important concern to select an efficient synchronization protocol

for a specific application. It is different from the message complexity, discussed in the next

subsection. Beside the computation time, the buffering requirements is another significant

factor to evaluate the behavior of the protocols. A protocol may be impractical if its memory

requirements relative to the number of computers being synchronized are disproportionate.

24

Convergence time

The total synchronization time for a network is named convergence time. Usually, proto-

cols with a large number of messages exchanged for synchronization have longer convergence

time, as compared to protocols with no Sync messages. The protocols with no Sync mes-

sages use the timing information from regular messages. Hence, there is no need to wait for

the next round of synchronization messages to get synchronization data. Beside the number

of messages, the network bandwidth directly affects the convergence time. A protocol with

minimum convergence time is preferred for many applications.

Overall cost

Algorithmic complexity and communication overhead are combined into a metric cal-

led overall complexity. Overall complexity is shown as a numerical value even though it is

qualitative metric. However, the computational complexity and convergence time are two

quantitative factors.

Fault tolerance

A real-world network is influenced by many disturbances caused by either the environment

or human intervention. A packet loss impacts time synchronization where synchronization

protocols use explicit message exchanges. Packet loss directly affects the overhead in terms of

both network traffic and synchronization accuracy. Furthermore, it reduces the performance

significantly.

Scalability

Scalability plays an important role in current distributed systems. In many cases, the

protocol is impractical when the network contains a large number of nodes. As large computer

clouds are employed for big data computations, limitations on time synchronization scalability

become important. A time synchronization protocol is expected to work efficiently in a huge

cluster. Thus, the scalability becomes an important feature of a protocol.

Real-time application

There are two types of applications in which the protocols provide synchronized data

for a distributed system. The first is when the applications need synchronized information

for further a posteriori analysis. Other applications require online analysis and thus Real-

time online synchronization. In such cases, a key factor is to minimize the synchronization

25

computational complexity and latency at each incremental update.

2.6.2 Protocols comparison

Table 2.1 presents a comparison among synchronization protocols based on the factors

introduced. Most protocols are highly accurate. The desired level of accuracy varies from

one application to another. The most accurate protocols are based on the Convex-Hull, and

in particular those presented by Poirier et al. [85] and Jabbarifar et al. [54]. The protocol

obtains a synchronization accuracy among connected nodes in the network of around 10 µs, as

compared to ms accuracy in other protocols. As discussed earlier, however, hardware assisted

synchronization can obtain better accuracy.

All [63, 68, 85] protocols takes O(n) for synchronizing two nodes, n being the number

of packets used for the computation. Since these protocols do not have an optimized mode

for whole network synchronization, they require O(n2) for network synchronization where

n is the number of nodes. Therefore, they are all problematic to use in huge computer

clusters. However, the protocol in [57] provides a streaming and incremental approach to

analyze exchanged packets where the drift and offset are updated when new packets are

received with O(1) time complexity. Jabbarifar et al. presented a procedure for whole network

synchronization in [54], which takes O(n log n) for a network with n nodes. Consequently,

it is the only method optimized for very large clusters, and the best choice to synchronize a

huge network with adequate computational complexity.

The protocol proposed by Khlifi et al. [63] uses specific messages for synchronization.

Therefore, this adds to network traffic and also typically provides fewer and more distant

synchronization points, incurring a higher convergence time. On the other hand, Kuhn et al.

[68], Poirier et al. [85], Jabbarifar et al. [54], and Scheuermann et al. [89] use messages from

normal network traffic to synchronize the nodes, avoiding the need for additional synchroni-

zation messages. Hence, they normally provide a better convergence time.

As discussed earlier, the protocols by Kuhn et al. [68] and Poirier et al. [85] have higher

computational, storage and message costs as compared to Khlifi et al. [63]. The best choice

for a resource-restricted application is probably the protocol proposed in [63]. However, it

is not very accurate and thus not suitable in many applications. The lowest synchronization

cost belongs to the protocol proposed by Jabbarifar et al. [54]. In addition, it has minimal

buffering requirements. It only stores a very limited number of packets, even for a very long

trace, typically less than 10, those likely to be on the final Convex-Hull.

The protocols presented in [54, 63, 85] do not suffer from message losses, as long as there

is a sufficient number of successful packets. Other protocols have not addressed the issue

of their sensitivity to message losses. For protocols requiring explicit time synchronization

26

messages, lost messages require retransmission and care to prevent incorrect matches between

duplicate (retransmitted) send or receive messages.

Based on the experimental results presented for each of the protocols, the protocol pre-

sented in [89] scales to large networks. However, it achieves synchronization accuracy in ms,

which is not considered very accurate. The other protocol tested with large networks (more

than 20 physical nodes in one experiment, and with 60000 simulated nodes in another expe-

riment) is the one presented in [54]. All other protocols have been tested in small networks

and, while they may offer good accuracy, their scalability is a major concern.

As shown in the last column of Table 2.1, only the protocols in [54, 63, 68] support online

synchronization, which is important for online monitoring. Other protocols collect data first

and then apply synchronization algorithms. Using repeatedly an offline algorithm to achieve

online synchronization is a costly proposition, or may induce latency in obtaining results

when used in small duration batches.

2.7 Conclusion

Some distributed systems only require maintaining a logical order among events and are

satisfied with logical clocks. There is however a large proportion of applications, especially for

debugging and monitoring purpose where accurate timestamps, on a common time referential,

is required. In some cases, a hardware solution can provide the needed synchronization with

minimal computation cost and very high accuracy. In the general case, such hardware is

not available and efficient time synchronization algorithms must be used. The needs in such

applications vary greatly in terms of accuracy, network size and online versus offline.

This paper surveyed and evaluated existing clock synchronization protocols according to

a number of important parameters such as accuracy, scalability, cost and etc. Each parameter

Table 2.1 Performance comparison of synchronization protocols

Protocol Synchronization Complexity of Convergence Overall Fault Scalability Real-time
Accuracy Calculation Time Cost Tolerance Application

Khlifi et al. [63] 50 ms O(n2) High Medium Yes Poor Online/Offline

Kuhn et al. [68] Unknown O(n2) Low High No Poor Online

Poirier et al. [85] 10 µs O(n2) Low High Yes Poor Offline

Scheuermann et al. [89] 0.1 ms N/A Low N/A Unknown Good Offline

Salyers et al. [88] 17.2 ms N/A Low N/A Yes Poor Offline

Jabbarifar et al. [54] 10 µs O(log n) Low Low Yes Excellent Online/Offline

27

was explained as well as its impact on distributed systems. The article thus provides a com-

prehensive and detailed review of the existing protocols and helps developers to analyze and

compare the different approaches. Finally, the analytical structure of the survey facilitates

the selection by developers of the most suitable and efficient protocol, or a combination or

extension to these protocols, to satisfy their specific application.

28

CHAPTER 3

Paper 1 : Streaming Mode Incremental Clock Synchronization

Masoume Jabbarifar, Michel Dagenais, and Alireza Shameli-Sendi

3.1 Abstract

It is crucial to have appropriate tools to monitor, trace, and analyze system execution, so

that functional and performance problems in distributed systems can be identified. A trace

facility is aimed at keeping track of functional flow and reporting relevant changes at certain

times. In distributed mode, each node produces individual trace streams independently. Times

are recorded by a local clock which runs natively on each node. Traces from all the computers

in a network are gathered and analyzed online. One of the most significant requirements for

analyzing traces is online synchronization accuracy. The aim of this paper is to demonstrate

an efficient implementation of time synchronization in streaming mode. We propose several

approaches based on sliding window and non-sliding window techniques to resynchronize the

traces at regular intervals. We compare these approaches, and introduce a fully incremental,

continuous synchronization approach.

3.2 Introduction

The advent of multicore processors in computer clusters represents an evolutionary change

in conventional computing to achieve high performance computing. However, these systems

may exhibit coherency problems when parallel programs access shared resources, creating

timing-related problems that are hard to debug. It is therefore crucial to have appropriate

tools to monitor, trace, and analyze system execution, in order to identify functional and

performance problems. The trace facility is aimed at keeping track of the functional flow

globally, and at reporting relevant changes at certain times. The problem with global trace

analysis is that the cores of each node in a cluster have their own clock, which is not syn-

chronized with the others [75]. Dealing with this problem becomes even more complicated in

multilevel tracing (tracing in virtual machines, middleware, and application layers).

The Linux Trace Toolkit next generation (LTTng) [17], developed at the École Polytech-

nique de Montréal, provides a detailed execution trace of the Linux operating system with

low overhead. LTTng is capable of handling huge traces, in the order of several gigabytes.

However, a new method is required to handle these large traces, while at the same time

29

allowing the traces from multiple systems and embedded devices to be collected for online

analysis and viewing. Furthermore, the LTTng user expects to see the output analysis in real

time, in order to diagnose problems live. Consequently, LTTng should be capable of visuali-

zing traces from several distributed systems on a common reference time base. In a computer

cluster, multiple nodes produce separate trace streams independently, and there are times-

tamps associated with each event. Since timestamps are recorded based on a local time that

runs natively on each node, a logical ordering of events cannot be guaranteed. The objective

of trace synchronization, with a high degree of precision and a low level of intrusiveness has

been achieved for a posteriori analysis [85].

Our objective in this paper is to improve the time synchronization algorithms for the live

analysis of streaming mode traces recorded on distributed nodes. The main contributions of

this work can be summarized as follows :

– Various sliding window approaches are proposed and compared. The functional and

performance problems related to these approaches are identified, along with the best

approach for real-time analysis.

– We introduce a new algorithm for online time synchronization. This new algorithm

efficiently filters new packet send-receive pairs with a simple test to only retain those

that can change the synchronization parameters. These remaining packet pairs are

processed in constant average time. Furthermore, the synchronization parameters are

incrementally updated in constant time as these packet pairs are processed.

– The proposed algorithm improves the streaming time synchronization of traces recorded

on distributed nodes with high precision and low intrusiveness.

The paper is organized as follows : first, we discuss related work, and several existing

methods for synchronization are introduced. In Section 3.4, we present the details of an open

source implementation that uses kernel-level tracing. In Section 3.5, we define the terms

needed to describe clock behavior, and introduce the notation used in the remainder of the

paper. The proposed model is illustrated in Section 3.6. In Section 3.7, experimental results

are provided. In Section 3.8, our conclusion is presented and future work is discussed.

3.3 Related Work

3.3.1 Offline Clock Synchronization

Synchronization algorithms are classified as either offline or online. Offline synchroniza-

tion focuses on trace synchronization at the end of tracing and after the traces have been

collected. A major offline clock synchronization method has been proposed by Duda et al.

[37], which consists of two synchronization algorithms, Linear Regression and Convex-Hull.

30

These algorithms estimate a conversion function between a pair of clocks. In both algorithms,

the conversion function is linear, and the drift and offset between the two clocks are extracted

from this linear model [58]. It also is used to estimate the one-way delay between two nodes by

Moon et al. [82]. However, the Convex-Hull algorithm guarantees the highest synchronization

accuracy [59].

In a two-dimensional space, based on the times of nodes A and B, the Linear Regression

algorithm attempts to map all the points on a line. Thus, every point will affect the position

of that line. In reality, network latency and similar events between two nodes can cause

problematic outlying points, biased being only late. These outliers should ideally not affect

the delay or offset computed from the linear regression. They should, in fact, be ignored

in order to increase accuracy [14]. The Convex-Hull is an accurate algorithm that assumes

minimum and maximum delay (sending time and receiving time). In this way, it finds the

area that has minimum latency and ignores outlying points. As a result, the estimated line

is more accurate with this algorithm than with Linear Regression.

Khlifi et al. [63] propose two algorithms, which they call the average and direct skew

removal techniques for offline skew removal. The average algorithm calculates the average

delay for a fixed number of consecutive packets at the beginning and the end of a trace,

yielding a constant O(1) complexity. The direct skew removal technique has the interesting

property of being able to account for low clock resolution, where the clock granularity may

be larger (e.g. 1ms) than the packet delay. For this purpose, the whole trace is analyzed for

a linear O(n) complexity.

They also present two techniques for online skew estimation and removal. The first one,

sliding window, monitors the minimum delays to reduce the gap between the true and the

corrected delays, (the correction being the estimated skew). To improve the accuracy, they

present a second technique, the combined approach. They perform the sliding window al-

gorithm to quickly estimate the skew, in the first interval. Then, they use the Convex-Hull

algorithm during subsequent intervals to improve the accuracy. By contrast, our proposed

approach is based on the Convex-Hull algorithm combined with lines with minimum and

maximum possible slopes between the hulls. This can provide skew estimates very early,

obviating the need for a different method in the first interval. Furthermore, our proposed

algorithm recomputes the skew incrementally in O(1).

Clement et al. [22] have evaluated the impact of system characteristics on trace synchro-

nization accuracy. First, they studied the tracing duration impact. They propose dividing

long duration traces into 30 minute segments, since the error in the clock drift linear ap-

proximation begins to increase significantly after approximately 45 minutes of tracing, while

it is almost stable during the first 30 minutes. The error increases because of the variation in

31

the clock drift with time, as shown by the Allan deviation [2], and because of environmental

effects on the clock circuit frequency, such as temperature and supply voltage variations.

Then, they studied the impact of the system load parameter, when there is a heavy load

on major subsystems, CPU, memory, and hard disk. They found that the transmission time

and response time measurement variations, caused by interrupt latency in a loaded system,

influence the clock drift computation directly, and subsequently the time synchronization

accuracy. The third parameter studied was hop count, when there is more than one path

between two nodes. In that case, the offset between the two indirectly linked nodes may be

computed by adding the offsets along a path, from one intermediate hop to the next. A path

with fewer hops generally provides higher accuracy. If there is a direct path, it is normally

better to choose that one to synchronize two nodes.

Poirier et al. [85] present an accurate method for synchronizing distributed traces. This

method is applied to traces recorded at the kernel level with low intrusiveness. They apply

the Convex-Hull algorithm to the clocks of traced nodes as a conversion function. If collec-

ted traces are huge and involve numerous nodes, their method is time consuming. In [56],

the proposed method estimates accurate paths in large computer clusters and improves the

performance of offline distributed trace synchronization. Since their algorithm was designed

for post-processing, the analysis delay was not major concern. However, for a live display of

traces, the latency should be minimized.

3.3.2 Online Clock Synchronization

By contrast, online synchronization works in streaming mode. Several researchers have

proposed algorithms for this application. The standard clock synchronization method, widely

used today, is the Network Time Protocol Daemon (NTPD) [80]. It sets and maintains the

kernel system clock, used to measure packet send and receive time, based on feedback from

exchanges with the server. Veitch et al. and Ridoux et al. [87, 102] proposed the RAD clock

(Robust Absolute and Difference Clock), which provides alternative clock synchronization

algorithms. The timing packets are timestamped using raw packet timestamps. They estimate

the clock skew based on the difference between the system clock and the timestamps received

from the server, and maintain the clock skew correction without changing the raw system

clock, in a feed-forward approach.

In some cases, where the casual ordering of events is sufficient to achieve the application

objectives, logical clocks have been proposed. Synchronization based on logical time considers

each pair of related events (such as the send event for a packet, which necessarily occurs

before the receive event) and orders them. Lamport [69], a pioneer in this area, formalized

this concept and proposed algorithms to compose logical clocks. The Lamport algorithm

32

is fairly limited in what it can order, however. To tackle this weakness, vector clocks were

independently proposed by Fidge [42] and Mattern [76]. The problem with vector clocks is

their use of vectors to track events, since the size of each vector grows with the number of

nodes.

However, in tracing and monitoring systems, the exact time of occurrence of each event,

and the speed of identification of the relationships between events, are sufficient to isolate the

probable problem and measure performance [94]. Consequently, the elapsed time on a physi-

cal clock is considered necessary for synchronizing nodes and analyzing their behavior with

LTTng. Cristian [25] proposes using a timeserver to synchronize physical clocks. However, the

problem with the timeserver is that it must tolerate occasional client readings. The Berkeley

algorithm [47] assumes that no machine has an accurate time source. The server estimates

the clients’ local time and yields an average overall time, informing each client of their offset.

However, it does not provide the accuracy required for trace analysis. Consequently, other

physical time synchronization algorithms are being considered, which focus on correcting the

difference between each pair of clocks, and relating each clock to a uniform reference time

base. We provide further details about these algorithms in the next Section.

3.4 Kernel-Level Event Tracing

3.4.1 Tracer

Over the years, different tools have been implemented to enhance trace operating system

behavior by recording kernel events. Some of the most applicable tracing tools are Ftrace,

Dtrace, Systemtap, and LTTng [29]. The trace visualization tools currently available have

often targeted detailed traces for small real time embedded systems, or much less detailed

system logs for larger systems [16]. All tracing tools rely on local clock synchronization, and

incur a significant loss of accuracy in the process. The proposed model is for LTTng tracer

in online mode. The most significant challenge for all tracing tools is to minimize the impact

of tracing on the traced computer. LTTng not only has very low overhead, but it is also able

to trace kernel space and user space activities. These specific characteristics of LTTng help

it monitor a broad range of activities in a computer.

3.4.2 Time Stamp Counter

The Time Stamp Counter (TSC) is a special register in the hardware that counts the

number of ticks in the computer, which provides high-resolution, low-overhead, and fine-

grained processor timing information [31]. If the processor frequency changes, the TSC rate

will change as well on most systems. When the processor goes into idle or halted mode, the

33

TSC may stop altogether. With the advent of multiple processors on a single motherboard,

the TSC s on different processors may drift away from each other over time, and there is

no guarantee that they will ever resynchronize. A new generation of multicore processors

includes a constant rate TSC, which provides for synchronization of the cores even though

their frequency may vary over time [29]. For the kernel and user space tracer, the TSC must

be the only time source. The trace clock is implemented based on TSC in LTTng, which

is able to detect various problems that may arise from improperly synchronized TSC s in

multicore systems and react appropriately. We generate events at the lowest possible point

in the network stack, just ahead of the interface with the NIC driver [85]. Using kernel-level

event tracing allows us to timestamp a packet transmission after data have been transferred

from an application to the operating system, and after they have been processed by the

networking stack. This results in lower timestamping delay than when messages are recorded

at the application level, and means that every combination of application and hardware is

supported. Since trace events are recorded locally, there is no need to modify the packets.

This contributes to keeping the intrusiveness of tracing low.

3.5 Terminology and background

In this section, we introduce the terminology used in the remainder of the paper, and we

formalize the definition of the clock skew. Time offset, frequency offset, and frequency offset

rate are parameters that describe the behavior of a clock, and they differ from one clock to

another. The trajectory of the time offset can be modeled by the following equation [39] :

∆T (t) = β(t0) + α(t0)(t− t0) + `(t− t0)2+ ∈ (t) (3.1)

∆T (t) Time offset at time t

β(t0) Initial offset

α(t0) Frequency offset

` Frequency drift

∈ (t) Other factors, particularly random perturbations

Equation 3.1 shows that clock inaccuracies are caused by a combination of various factors.

Over relatively short intervals, many algorithms consider that only the initial offset and the

frequency offset are significant. We will refer to this as the ”linear clock approximation”.

Taking this approximation into account, equation 3.1 can be simplified to :

∆T (t) = β(t0) + α(t0)(t− t0) (3.2)

34

Finding the time offset between a node clock and a virtual perfect clock becomes a matter

of identifying two factors in a linear equation. It follows that the offset between two real clocks

can also be modeled as a linear function. For the rest of this paper, we estimate a function

that maps the time on clock A to the time on clock B as follows :

CA(t) = α0 + α1CB(t) (3.3)

Moreover, the structure of a trace can be illustrated as follows :

T = (drift, offset, start time from TSC, events)

events = (e1, e2, e3, ..., en)
(3.4)

Let us assume that there are two traces in a distributed system, T0 and T1, on computers

C0 and C1 respectively. Two event types are considered for time synchronization : (i) sending

a message, and (ii) receiving a message. Let us denote by θi the time when C0 sends message

i to C1, and by ξi the time when C1 receives message i from C0.

m(i) : T0(θi) 7→ T1(ξi) (3.5)

The timestamp for the sent message is stored in T0 and the timestamp for the received

message is stored in T1. θi and ξi are based on the local time of C0 and C1 respectively. In

addition, C1 sends message j to C0, and θj is the time of when C0 receives message j from

C1.

m(j) : T1(ξj) 7→ T0(θj) (3.6)

Each trace contains sent (S) and received (R) message timestamps, based on local time,

as expressed by the following sets :

T0.events = (θSi , θ
R
j , ...)

T1.events = (ξRi , ξ
S
j , ...)

i, j = 1, 2, 3, ...

(3.7)

As shown in sets T0 and T1,
−−−−−→
(θSi , ξ

R
i) is the first pair of send-receive times for the message

sent by C0 to C1, and
←−−−−−
(θRj , ξ

S
j) is the second pair of send-receive times for the message sent

by C1 to C0. If the event timestamps of T0 are considered as references times, this gives us

the following equation :

CT0(t) = θS

CT1(t) = αθS + β
(3.8)

35

3.6 Proposed Model

In online time synchronization, we are dealing with streaming data, the distinguishing

feature of which is the speed of the stream flow. Thus, it is not practical to scan the data

stream more than once. Buffering the data stream for a long time is another challenge that

we have to address, because of the huge amount of data usually in the stream. Consequently,

because of the limited amount of space for storing stream data, there is a trade-off between

memory and accuracy [35]. Ideally, an online synchronization algorithm should be efficient

in terms of both time and memory. In addition, the synchronization algorithm should be

scalable, have a consistently low synchronization computation latency, and maintain its ac-

curacy over time. Below, we introduce some common techniques for dealing with streaming

data :

Random Sampling analysis

One solution to working with a large dataset is to sample the stream at periodic intervals,

instead of handling all the data at once. An unbiased sampling requires some information in

advance, such as the length of the stream. Reservoir sampling selects an unbiased random

sample containing N elements without replacement. The idea is to maintain a sample, called

the reservoir, from the random samples generated (each sample uniformly has N elements)

[44].

Sliding Window analysis

Rather than taking a random sample of the streamed data, a sliding window model can

be used to analyze them. The idea is to use recent data to make a decision, instead of working

with all the data seen so far. This means that, if we have a window of size L, an element that

arrives at t will expire at t + L. Limiting the amount of data in this way reduces memory

space requirements [48], and is efficient in terms of both time and memory.

Incremental analysis

The idea behind this approach is to analyze the data as soon as it is received and then

discard most of it from memory. Here, the analysis speed must be the same as, or higher

than, the rate at which the data is received. Otherwise, memory buffer overflow will result.

We propose and evaluate three approaches based on sliding windows and one incremental

approach.

36

3.6.1 Model

Figure 3.1 illustrates the basic architecture of the proposed model, which supports both

window-based approaches and the Fully Incremental approach. The following steps would be

performed in this organization.

Processing module : traces T0 and T1 are gathered from two distributed systems in a

computer cluster for online analysis. In order to compute the clock differences between the

two nodes, there must be network traffic between them. The packet exchange events ei are

extracted and dispatched to the next module. So, this module captures both network traffic

and computer activity, and extracts the necessary information for the matching module.

TraceSetContext = (T0, T1) (3.9)

As shown, there are two approaches : (i) Window-based approaches : In these approaches,

we have to read the traces for a particular time window. Each window is completely disjoint,

i.e. the windows do not overlap. At the window end, we finalize synchronization to obtain

the synchronization factors (drift and offset) per analysis module. (ii) Fully Incremental

approach : In this approach, events are read continuously. When the analysis module finds

an accurate pair, it updates the synchronization parameters. In the subsections below, we

define the term accurate pair.

Matching module : event processing feeds the events into the matching module one by

one. In this module, an attempt is made to match one event from a trace to the corresponding

event in another trace. Once we have a send or receive event, the matching module looks in

the associated table for an unmatched receive/send packet, or enters the send/receive packet

as unmatched. The cost of this operation is O(1). This involves a direct lookup in a hash

table using a so-called SegmentKey, which is based on TCP and IP packet headers (source

and destination IP and port, as well as sequence number). Care is required in order to limit

memory usage in the matching module, by removing unmatched packets periodically.

Events may be unmatched for several reasons, as illustrated in the following two scenarios.

In scenario (i), the tracing start and end times in the systems are not the same. Suppose

that we start with two traces, A and B, A starting 2 minutes before B. If we scan A first,

inserting all the unmatched send/receive events that occurred during these 2 minutes, when

we arrive at B, we could try to match all the send/receive events from B, but without success.

In scenario (ii), lost events cause corresponding events to remain unmatched. Events are lost

either when the tracing buffers are not large enough to handle bursts, or when the rate

of events arrival is larger than the available bandwidth to send/save the buffers. It is also

possible for a packet to be dropped by the network. When a send or a receive event is lost, the

37

Figure 3.1 Two different approaches for online synchronization.

corresponding receive/send event will remain unmatched, and this may make the matching

procedure inefficient, as memory is taken up by needlessly storing the event. Indeed, while

it may be possible to match the event at a later time, the corresponding packet will have

been significantly delayed (e.g. by taking a different route), and high latency exchanges are

inaccurate. Moreover, even if we only have communication in a single direction (unlikely

because of TCP ACK packets), once several later packets have been matched, we can deduce

that a late match would not create a data point of interest and so we can clear that packet.

Our proposed strategy for addressing these problems is to scan all the events available

to date from both traces, and so obtain a first time offset estimate. Subsequently, after a

threshold (T buffer) time, a new hash table is created, the existing one is kept as a previous

table, and the former previous table is discarded. The new packets are inserted into the new

table, but matching is attempted in the new and previous tables. The T buffer can be very

large, but should be sufficiently small that unmatched packets cannot accumulate to the

extent of causing a memory problem. As a result, the proposed strategy flushes the older

packets, while keeping the O(1) complexity per packet examined.

If one trace started much earlier than the other, this may overload the memory by storing

packets that will never be matched. If we have no hint of the relative timing of the traces,

the following are possible : trace 1 may be completed before trace 2, or performed after it.

If we do have a hint of the relative timing of the traces, this could provide us with a good

estimate of where to start. The timing can come from : (i) trace headers or trace buffer

headers relating TSC to real-time clocks, assuming that these clocks are synchronized to

38

within a few seconds ; (ii) in streaming mode, if the trace is live, the last buffer of events is

received from each trace at the same time, or within a few seconds. If we have no hint as to

timing (the traces are already completed, or they are streaming, but with a long delay), and

are afraid that inserting all the packet events will cause the memory to overflow, we could

use the following strategy. If the traces are disjoint, no synchronization is possible/useful. If

the traces intersect, the beginning or end of one trace must intersect with a part of the other

trace. In the latter case, we could insert a constant number of packets from the beginning

and end of one trace, and then try to match all the packets from the other trace. This would

allow us to find an initial time estimate in linear time and constant memory.

Analysis module : the analysis module receives a matched send/receive pair and applies

the Convex-Hull algorithm in different ways, using one of the various approaches presen-

ted in this paper. This module should return synchronization factors for each trace pair of

communicating computers.

3.6.2 Convex-Hull

As shown in Figure 3.2, pairs are divided into two sets, based on the message direction.

Consequently, the synchronization estimation line should be below all the pairs {
−−−−−→
(θSi , ξ

R
i),−−−−−−−→

(θSi+1, ξ
R
i+1), ...} and above all pairs {

←−−−−−
(θRj , ξ

S
j),
←−−−−−−
(θRj+, ξ

S
j+1), ...}.

The packets with minimum latency are those of interest in the Convex-Hull synchroni-

zation algorithm. Packets sent from θ (horizontal axis) to ξ (vertical axis) occupy the upper

left half-plane and are shifted higher when more network latency was encountered. There-

fore, the lower half-hull, of the Convex-Hull formed by those points, is a lower bound for the

packets sent from θ and identifies the packets with the lowest latency. Similarly, packets sent

from ξ (vertical axis) to θ (horizontal axis) occupy the lower right half-plane and are shifted

to the right when more network latency was encountered. Therefore, the upper half-hull, of

the Convex-Hull formed by those points, is an upper bound for the packets sent from ξ and

identifies the packets with the lowest latency. The possible synchronization lines lie below the

lower half-hull of packets sent from θ and above the upper half-hull of packets sent from ξ.

Synchronization accuracy is limited by the delay between the send and receive events.

Any packet delayed by interrupts, network switch delay, or some other cause will lead to an

inaccurate pair and a long delay. The Convex-Hull algorithm selects the pairs on the inside

envelope between the sent time and the received time, and so identifies the most accurate

pairs with the shortest delay. In other words, it finds the area that has minimum latency

and ignores outlying pairs, as shown in Figure 3.2 (
−−−−−→
(θS2 , ξ

R
2),
−−−−−→
(θS5 , ξ

R
5),
←−−−−−
(θR2 , ξ

S
2),
←−−−−−
(θR3 , ξ

S
3)). This

means that the estimated line is more accurate than with Linear Regression, which is affected

by all pairs, including delayed packets.

39

â�
�t
ξâ

��

â��tθâ��

â��(θR
1,ξ

S
1)â��

â��(θR
2,ξ

S
2)â��

â��(θR
3,ξ

S
3)â��

â��(θR
4,ξ

S
4)â��

â��(θR
5,ξ

S
5)â��

â��(θS
1,ξ

R
1)â��

â��(θS
2,ξ

R
2)â��

â��(θS
3,ξ

R
3)â��

â��(θS
4,ξ

R
4)â��

â��(θS
5,ξ

R
5)â��

â��(θS
6,ξ

R
6)â��

â��Lmaxâ��

â��Lminâ��

â��Cξ(tθ)â��

â��βmaxâ��

â��βminâ��

Figure 3.2 Convex-hull method.

According to the above definition, we have two completely separate sets, because there is

no message inversion (receive before send). Each set attempts to find the optimal separator

(the solid line in each hull), as points in each set are nearest to the separator space. Graham’s

scan algorithm forms these two separated sets. The bounds of the Convex-Hull, shown in

Figure 3.2, are :

UpperBound = {
←−−−−−
(θR1 , ξ

S
1),
←−−−−−
(θR4 , ξ

S
4),
←−−−−−
(θR5 , ξ

S
5)}

LowerBound = {
−−−−−→
(θS1 , ξ

R
1),
−−−−−→
(θS3 , ξ

R
3),
−−−−−→
(θS4 , ξ

R
4),
−−−−−→
(θS6 , ξ

R
6)}

(3.10)

Thus, the maximum likelihood estimators are between the following conditions :

αθSi + β < ξRi

αξRj + β < θSj

i, j = 1, 2, ..., n

(3.11)

The next step is to find two lines, one with maximum slope (Lmax) and another with

minimum slope (Lmin) :

Lmax = αmaxθ + βmin

Lmin = αminθ + βmax
(3.12)

As a result, the final estimated α and β are certainly limited to the area that is enclosed

40

between (αmin, αmax) and (βmin, βmax), and the selected synchronization line is the bisector

of Lmax and Lmin.

When synchronizing two traces, the relationship between them can be one of the following :

Definition 1) An accurate relationship : this is the expected case, shown in Figure

3.2, where Lmax and Lmin are available and their middle can be computed. If the relationship

between two clocks is of the accurate type, we can define the accuracy metric as the difference

between the minimum and maximum possible drifts between the two clocks.

Accuracy(i) = LmaxB .drift− LminB .drift; (3.13)

Definition 2) An approximate relationship : Lmax and Lmin are not available because

the hulls do not satisfy the hypothesis that the upper half-hull should be below the lower

half-hull and not intersect with it. The approximation is a ”best effort”.

Definition 3) An incomplete relationship : only one of the Lmax and Lmin lines is

available. There is communication in only one direction, which is insufficient to obtain a

proper bounded synchronization.

Definition 4) An absent relationship : there is no communication between the nodes in

either direction, and nothing can be deduced about their relative time.

Definition 5) Fail relationship : none of the Lmax and Lmin lines is available. This is

because the hulls intersect each other or are reversed.

3.6.3 Window-based Approach

As mentioned, one of the applicable methods for streaming data is the window-based

technique. Each window is completely disjoint, i.e. windows do not overlap. With this method,

the analysis is performed on the data in the current window instead of the whole data. It is,

however, possible to reuse synchronization parameters or even accurate pairs from previous

windows. The advantage of this method is to use the most accurate packets that were detected

in previous windows for synchronizing time in the current window. Thus, the synchronization

results for each window are stored to be potentially used in subsequent windows.

In some cases, after refining the synchronization at the end of one window, the synchro-

nized time in the next window for events in one trace may change, relative to the events in

the other trace. As a consequence, the window start time must be adjusted to avoid skipping

some events in one trace, and events from the other trace that may already have been read

can be ignored.

Algorithm 1 illustrates the pseudocode of the window-based approach. One of the inputs

to this pseudocode is window size (l). There is a tradeoff in determining l. If l is too large,

41

ALGORITHM 1: Window-based approach

Require: L : window-size
Require: TtoS() : convert from Trace time to Synchronized time
Require: StoT() : convert from Synchronized time to Trace time

1: T[0].offset= 0
2: T[0].drift= 1
3: T[0].prevWindowTime t= T[0].startTime t
4: T[0].startTime s= TtoS(T[0].offset, T[0].drift, T[0].startTime t)
5: T[1].offset= 0
6: T[1].drift= 1
7: T[1].prevWindowTime t= T[1].startTime t
8: T[1].startTime s= TtoS(T[1].offset, T[1].drift, T[1].startTime t)
9: w.startTime= min(T[0].startTime s, T[1].startTime s)

10: w.endTime= max(T[0].startTime s, T[1].startTime s) + L
11: loop
12: T[0].endWindowTime t= StoT(T[0].offset, T[0].drift, w.endTime)
13: T[1].endWindowTime t= StoT(T[1].offset, T[1].drift, w.endTime)
14: for (e = readEvent() and e.time < TSC.T[e.index].endWindowTime t) do
15: if e.time > T[e.index].preWindowTime t then
16: P= matching(e)
17: if P is not null then
18: performAnalysis(P)
19: end if
20: end if
21: end for
22: finalize-sync()
23: UpdateViewer()
24: T[0].endWindowTime s= TtoS(T[0].offset, T[0].drift, TSC.T[0].endWindowTime t)
25: T[1].endWindowTime s= TtoS(T[1].offset, T[1].drift, TSC.T[1].endWindowTime t)
26: w.startTime= min(T[0].endWindowTime s, T[1].endWindowTime s)
27: w.endTime= w.startTime + L
28: T[0].prevWindowTime t= T[0].endWindowTime t
29: T[1].prevWindowTime t= T[1].endWindowTime t
30: end loop

42

there is a latency period before an accurate synchronization is obtained. If l is too small, the

precision of the algorithm suffers. However, the total computation time should be unaffected.

We used heuristics to determine the window size.

Having a sufficiently large window is essential for a synchronization. If the window is too

small, then the traces are being synchronized onto a space of insufficient dimension, in which

there is not any accurate packet to improve synchronization. Thus, the delay caused by run-

ning several useless synchronizations impacts online synchronization performance. Moreover,

a too large window also produces problems : postponing synchronization to the end of each

window delays the user visible reaction time. These algorithms also store more data for ana-

lysis, impacting memory usage. We tested different window sizes and the experiment results

lead us to select a window size equal to three seconds for the experimented datasets.

Other inputs to this algorithm are the two traces, T0 and T1. First, all drifts and offsets

are set to 1 and 0 respectively, and the traces are ready for the first window. The start and

end of a window are updated based on the reference time. We define two boundaries for each

trace : prevWindowTime t and endWindowTime t. The prevWindowTime t boundary first

refers to the trace start time (line 4 and line 7) and then refers to the previous endWindow-

Time t, and the endWindowTime t boundary is updated based on w.endTime. To calculate

endWindowTime t we use StoT function because w.endTime is based on the reference time

and has to be converted to the local time of the trace.

These boundaries not only update the window end time, but also avoid events being read

which were read earlier. First, the boundaries of each trace are converted by the TtoS function

to define the first window. This function converts local time to synchronized time by applying

the current synchronization factors of the trace. Then, the minimum and maximum start time

between two traces are extracted. The first window starts from the minimum time to avoid

skipping events and ends at the maximum time plus l. This means that the first window is

the largest. The important point is that new synchronization factors may change the relative

trace time, as Figure 3.3b illustrates. Therefore, the w.startTime of the new window may

not refer to the end of the previous window. This means that, as line 26 indicates, the start

time of the new window is the minimum of two previous end window times of traces, to

avoid any gap. In fact, we should avoid reading events that were read earlier. To tackle this

challenge, we compute two boundaries for each trace. Event reading is performed based on

these two boundaries in each trace (line 15), and in this way duplicate reading is avoided.

Function matching pairs one event from a trace with the corresponding event in the other

trace (p). The matched events are sent to the analysis module as a packet to analyze based on

the Convex-Hull algorithm (line 18). At the window end, we finalize the synchronization to

obtain new synchronization factors after reading all the events (line 22). Finally, we update

43

the trace viewer [85].

Different models for window-based approach

We have compared three different approaches for analyzing information one window at a

time, and accordingly recompute the time synchronization.

Independent windows : The idea behind synchronizing the computers in streaming mode

is to consider only the traffic information in the current window. No relationship is maintai-

ned between windows. One of the advantages of this approach is that no buffered data or

computations are passed from the previous window to the current window, which minimizes

analysis time and complexity. The disadvantage of this method is that it is not capable of

achieving a satisfactory level of accuracy, not only in each window, but also at the end of the

process.

Replace : Reusing the accurate results from the Convex-Hull analysis of the previous

windows is the objective of the Replace approach. As mentioned before, the result of trace

synchronization may be : ”accurate”, ”approximate”, ”incomplete”, ”absent”, or ”fail”. The idea

behind this approach is to compare the current window’s accuracy with that of the previous

window. In this way, we compare the accuracies that we have so far. Accuracyi represents

the accuracy of window i and Accuracy(i−1) represents the accuracy of the previous window

in Eq. 3.14.

εi = Accuracy(i−1) − Accuracyi
if εi > 0 replace

(3.14)

If εi < 0, the current window packets have not improved the accuracy and should be igno-

red. If εi > 0, the current window packets have improved in accuracy. In that case, the current

accuracy becomes the new best accuracy, and all the points in the Convex-Hull are replaced

by the current window points. If the current synchronization state is ”accurate” while the pre-

vious state was ”approximate”, ”incomplete”, ”absent”, or ”fail”, the replacement takes place

automatically. The same applies if the current window synchronization is ”approximate” and

the previous window is ”approximate” (conditional replacement) or one of the inferior states

(automatic replacement). This approach is somewhat incremental, and improves accuracy

over time, but relatively slowly.

Correlated : This approach selects the accurate packets in each window and transfers them

to the next window to initialize the Convex-Hull. When a new packet with a small delay is

detected, it is added to the set of accurate packets. As shown in Figure 3.4, this method

stores pairs {
←−−−−−
(θR1 , ξ

S
1),
←−−−−−
(θR2 , ξ

S
2),
←−−−−−
(θR3 , ξ

S
3)} in the upper bound list, and pairs {

−−−−−→
(θS1 , ξ

R
1),
−−−−−→
(θS2 , ξ

R
2),−−−−−→

(θS3 , ξ
R
3),
−−−−−→
(θS4 , ξ

R
4)} in the lower bound list of the first window. Once it finds {

←−−−−−
(θR5 , ξ

S
5),
−−−−−→
(θS7 , ξ

R
7)}

44

(a) before sync. (first window)

(b) after sync. (second window)

Figure 3.3 The local clock values used for traces T0 and T1 may be highly desynchronized.
Two traces starting about at the same time may see start times of 600sec. and 800sec. on
their local clocks, respectively. With a window size of 3sec., the first window, W1, will go
from 600sec. (minimum start time) to 803sec. (maximum start time plus window size). After
processing the first time window, and analyzing matching events, it may be computed that
trace T0 should be offset by -200sec., using T1 as time reference. The second time window,
W2, is from 803sec. to 806sec., based on the reference time of T1. This corresponds to 603sec.
to 606sec. in T0 based on its local clock. After synchronization, we realize that events in T0
for time range W2 have already been processed as part of W1. These already read events are
skipped.

45

more accurate pairs in the second window, producing a narrower channel between the hulls, it

replaces them as the most accurate pairs and saves them for future use in the next windows.

In the case where there is no pair as accurate as any of the previous stored pairs in the new

window, the method keeps the previous synchronization factors for that window. In this way,

the correlated sliding windows keep the performance of the overall analysis. The advantage of

this method is that it uses the history of the accurate packets and improves the set over time,

based on new exchanged packet information. Moreover, it stores little information about the

most accurate points kept for future use, which means that, for the most part, buffering

problems are avoided.

This method postpones the recomputation of the trace synchronization to the end of each

time window, which reduces the time synchronization costs, in turn limiting the number of

recomputations to the number of time windows. Still, it reaches the ideal accuracy at the end

of each time window. There are many applications where this small latency period, waiting

until the time window ends before obtaining the improved accuracy, is not a problem. The

Correlated sliding window approach is suitable for such applications. For example, many

system administration tools refresh the analysis view once every few seconds, and selection of

the time window can match the display refresh cycle. By contrast, there are some applications

that are time sensitive and require the resynchronization of traces as soon as the accuracy

can be improved. This would be the case in several real-time applications, particularly for

detecting security attacks and generating alerts based on distributed trace analysis. Any delay

in such applications is to be avoided. It is this scenario that motivated our additional effort

to develop a fully incremental algorithm.

3.6.4 Fully Incremental Approach

The Convex-Hull algorithm looks for the smallest difference between the sent and recei-

ved timestamps. It finds the send and receive events exhibiting the minimum latency and

ignores points further apart, and so restricts its computation space as much as possible. The

first step of the proposed method for online synchronization is to synchronize the two traces

as soon as possible. When the type of relationship is accurate, we have reached the first

synchronization between traces. As illustrated in Figure 3.5a, pairs in the upper bound and

pairs (
←−−−−−
(θR1 , ξ

S
1),
←−−−−−
(θR2 , ξ

S
2),
←−−−−−
(θR3 , ξ

S
3)) in upper bound and pairs (

−−−−−→
(θS1 , ξ

R
1),
−−−−−→
(θS3 , ξ

R
3),
−−−−−→
(θS4 , ξ

R
4)) in lo-

wer bound help to estimate the first time synchronization between two local times, C0 and

C1.

This first estimation is not very accurate, but, as more packets are received, accuracy

should improve over time. Accuracy is determined by the difference between αmin and αmax.

The idea is to react only to matched packets that affect the slopes (αmin, αmax), and then

46

â�
�t
ξâ

��

â��tθâ��

â��(θR
1,ξ

S
1)â��

â��(θR
2,ξ

S
2)â��

â��(θR
3,ξ

S
3)â��

â��(θR
4,ξ

S
4)â��

â��(θR
5,ξ

S
5)â��

â��(θS
1,ξ

R
1)â��

â��(θS
2,ξ

R
2)â��

â��(θS
3,ξ

R
3)â��

â��(θS
4,ξ

R
4)â��

â��(θS
5,ξ

R
5)â��

â��(θS
6,ξ

R
6)â��

â��(θS
7,ξ

R
7)â��

â��Window1â�� â��Window2â��

Figure 3.4 Correlated sliding window.

update the synchronization parameters in O(1) time.

Definition 6) Accurate message : a matched pair will improve the synchronization

accuracy if and only if it is below the line Lmax in the lower hull or above the line Lmin in

the upper hull.

Removal of the right-hand pair from the upper or lower bound list is shown in Figure

3.6. Figure 3.6a illustrates the removal of a pair from the lower hull (θS2 , ξ
R
2), and Figure 3.6b

illustrates the removal of a pair from the upper hull (θR2 , ξ
S
2). This simple test (above or below

a line) is applied to every incoming matched pair, and quickly identifies the few pairs that

actually change the slope of Lmin and Lmax, and improve accuracy, moving towards their

center space.

As shown in Figure 3.5b, most packet pairs are outside Lmin and Lmax, and cannot affect

accuracy, and so are ignored. For example, pairs {(θS5 , ξR5), (θS6 , ξ
R
6)} do not change Lmax,

which means that accuracy cannot change. However, the new pair (θS7 , ξ
R
7) affects Lmax, and

accuracy is improved.

αmax > α̃max

αmax − αmin > α̃max − αmin
(3.15)

The same reasoning applies for Lmin.

47

â�
�t
ξâ

��

â��tθâ��

â��(θR
1,ξ

S
1)â��

â��(θR
2,ξ

S
2)â��

â��(θR
3,ξ

S
3)â��

â��(θS
1,ξ

R
1)â��

â��(θS
2,ξ

R
2)â��

â��(θS
3,ξ

R
3)â��

â��(θS
4,ξ

R
4)â��

â��(θS
5,ξ

R
5)â��

â��(θS
6,ξ

R
6)â�� â��(θS

7,ξ
R
7)â��

â��Lmaxâ��

â��Lminâ��

â��Cξ(tθ)â��

â��βmaxâ��

â��βminâ��

(a) The accurate packet, (θS7 , ξ
R
7), position before updating the synchronization

â�
�t
ξâ

��

â��tθâ��

â��(θR
1,ξ

S
1)â��

â��(θR
2,ξ

S
2)â��

â��(θR
3,ξ

S
3)â��

â��(θS
1,ξ

R
1)â��

â��(θS
2,ξ

R
2)â��

â��(θS
3,ξ

R
3)â��

â��(θS
4,ξ

R
4)â��

â��(θS
5,ξ

R
5)â��

â��(θS
6,ξ

R
6)â��

â��(θS
7,ξ

R
7)â��

â��Lmaxâ��

â��Lminâ��

â��Cξ(tθ)â��

â��βmaxâ��

â��βminâ��

(b) Synchronization based on accurate packet

Figure 3.5 Fully Incremental Approach

48

(a) clockwise triangle (b) counterclockwise tri-
angle

Figure 3.6 Geometric movement state in upper and lower hulls

αmin < α̃min

αmax − αmin > αmax − α̃min
(3.16)

Therefore, our Fully Incremental approach calculates the new drift and offset between

two traces on a pair located between lines Lmax or Lmin, after the first synchronization. It

guarantees the best accuracy without waiting for a window end time. Thus, to manage Lmax

and Lmin, the two points currently defining each of them must be stored.

Lmax = {(θRimin
, ξSimin

), (θSimax
, ξRimax

)}

Lmin = {(θSimin
, ξRimin

), (θRimax
, ξSimax

)}

imin ε {1, ..., n− 1}

imax ε {2, ..., n}

(3.17)

Unlike in the classic Convex-Hull algorithm, the pairs of points defining Lmax and Lmin

are incrementally updated as new points are added.

Theorem. Each synchronization in the Fully Incremental approach requires O(1) time,

on average.

Proof 1. Algorithm 2 illustrates the Fully Incremental pseudocode. The Fully Incremental

approach takes a packet as input (consisting of a pair of matched send-receive events from

two traces). Lines 5 to 15 check whether the new packet belongs to the upper or the lower

bound. Line 16 calls upon the Qualify-message function, to verify whether or not the new

packet is an accurate one. Lmin has a first point in the lower hull (delimiting the upper

plane), Lmin.point1, such that the slope of the hull edge ahead of the point is smaller, and

49

the slope of the edge after it is larger. The second point, Lmin.point2, is in the upper hull

(delimiting the lower plane), with the slope of the hull edge ahead of the point larger and

the slope of the edge after it smaller. Lmin has a smaller slope than Lmax, and therefore

Lmin.point1 must be ahead of Lmax.point2 on the lower hull, and Lmax.point1 must be ahead

of Lmin.point2 on the upper hull. When a new packet arrives for the lower hull, if it is above

Lmax, it cannot affect Lmax and is not of interest, even though it could be on the Convex-Hull.

We call these points neglected hull points. However, if another point comes later which is

below Lmax, it will be considered, included in the hull, and change Lmax, becoming the new

Lmax.point2. It is important to note that any neglected hull point between the previous and

the new Lmax.point2 would have formed a concave section (pairs {(θS5 , ξR5), (θS6 , ξ
R
6)} in Figure

3.5b) and been removed. Thus, behind Lmax.point2, we have the complete Convex-Hull. This

is important because it ensures that the optimization that neglects some hull points ahead

of Lmax.point2 does not affect the integrity of the hull behind Lmax.point2, and so does not

interfere with the computation of Lmin.point1 (pair {(θR1 , ξS1)}) in Figure 3.5b), which is

ahead of Lmax.point2 on the lower hull. Let (θSi , ξ
R
i) and (θRi , ξ

S
i) be the new pair positioned

against the lower and upper bound respectively. The qualification can be performed by a

cross-product function in the lower and upper bounds, as follows :

cross− product((θSi , ξRi), (θRimin
, ξSimin

), (θSimax
, ξRimax

)) =

(θRimin
− θSi)(ξRimax

− ξRi)− (ξSimin
− ξRi)(θSimax

− θSi)

cross− product((θRi , ξSi), (θSimin
, ξRimin

), (θRimax
, ξSimax

)) =

(θSimin
− θRi)(ξSimax

− ξSi)− (ξRimin
− xiSi)(θRimax

− θRi)

The complexity of the cross-product function is O(1). If the pair is not qualified, it is drop-

ped, because it does not improve accuracy. Otherwise, it is added at the end of the bound

list. Let p be the new matched packet. < l1, l2, l3, ..., lm−1, lm > and < u1, u2, u3, ..., uk−1, uk >

denote the remaining points on the lower and upper bound lists respectively. If p quali-

fies as an accurate packet for the upper bound list, it becomes uk+1. The next step, line

17, is running the Graham scan vertex addition procedure to performing the cross-product

cross− product(uk−1, uk, uk+1). If uk is removed, then the cross− product(uk−2, uk−1, uk+1)

is performed. Each point is examined in turn, and is either removed and the processing conti-

nues, or is kept and the processing stops. The total number of points (matched pairs) to

process being n, the number of iterations in the algorithm is n and the number of points that

may reside in the upper or lower list is bounded by n. At every iteration, when a new point is

added and several points from the hull may be removed, the number of operations required

is in the order of the number of points removed, and may approach n. However, the total

50

number of points removed over all iterations is also bounded by n. Thus, for the n iterations,

the average complexity for one iteration is O(1). It is interesting to note that the number of

points in the lower and upper lists is typically much lower than n, and often no more than 8.

The last step is adjust-bounds procedure. As mentioned, either Lmax or Lmin is necessarily

affected when a packet pair qualifies. For instance, if the accurate packet is related to the

upper bound, Lmin has to be recomputed (but does not affect Lmax). In the proposed ap-

proach, we update only one of the two lines, and the received accurate point simply replaces

Lmax.point2 or Lmin.point2 (line 18). Algorithm 3 illustrates the pseudocode for updating

the first point of the line Lmin or Lmax. For every new accurate point, when the slope of

line Lmin or Lmax changes, its first point may advance, skipping a few points to reach one

with a higher number in the bound list. Let l.pos1 denote the position of point lpos1 in the

lower bound list, which is currently used as Lmin.point1. When the slope of Lmin is updated

(increased), it may become larger than the slope defined by points lpos1 and lpos1+1. In that

case, l.pos1 must be incrementally updated until the slope defined by points lpos1 and lpos1+1

becomes larger than the slope of the updated Lmin. The number of operations required is

in the order of the number of points skipped in the list. Here again, the number of points

skipped in one slope update is bounded by n. However, the total number of points skipped

over the whole incremental procedure is also bounded by n, and so the average complexity

for the slope update per iteration is O(1).

Line 20 in Algorithm 2 reveals an exceptional situation which may occur when point1

of Lmax or Lmin is removed by the Graham scan. In this case, we also have to update the

first point of the other line in the same way. Even doubling the number of operations in that

worst-case situation does not change the algorithm complexity.

The Fully Incremental approach introduced here is particularly interesting, because it in-

crementally updates the synchronization immediately upon receiving more accurate packets,

yet it has a worst case average complexity of O(1) per packet. Moreover, very few packets

qualify for synchronization updating, and a very small subset of points is typically retained

to define the Convex-Hull. This makes the algorithm ideally suited for the targeted high

performance trace analysis tools.

3.7 Experiments and evaluation

3.7.1 Experimental setup

In our model, we instrumented the Linux kernel version 2.6.26 using LTTng, and the tests

were performed on seven Pentium III computers (4 CPUs) with 4 GB of RAM. The window

size for the Correlated, Replace, and Independent approaches is 3 seconds.

51

ALGORITHM 2: Fully Incremental approach

Require: p : new packet
1: Upper bound list= < u1, u2, u3, ..., uk−1, uk >
2: Lower bound list= < l1, l2, l3, ..., lm−1, lm >
3: Lmax =< point1, point2 >
4: Lmin =< point1, point2 >
5: if p related to the upper bound then
6: BoundList= Upper bound list
7: OtherBoundList= Lower bound list
8: Line= Lmin
9: OtherLine= Lmax

10: else
11: BoundList= Lower bound list
12: OtherBoundList= Upper bound list
13: Line= Lmax
14: OtherLine= Lmin
15: end if
16: Qualify-message(Line, p)
17: Remove-useless-points(BoundList)
18: Line.point2= p
19: Adjust-bounds(Line, OtherBoundList)
20: if OtherLine.point1 has been removed then
21: OtherLine.point1= BoundList[0]
22: Adjust-bounds(OtherLine, BoundList)
23: end if

ALGORITHM 3: Adjust-bounds

Require: Line
Require: OtherBoundList

1: pos1= Line.point1
2: i = OtherBoundListpos1
3: j= Line.point2
4: while i ≤ OtherBoundList.length-1 do
5: rotation= cross− product(i, i+ 1, j)
6: if the rotation is not optimal then
7: if i+1.x < j.x then
8: i++
9: else

10: Line.point1 = NULL
11: end if
12: else
13: Line.point1 = i
14: end if
15: end while

52

3.7.2 Packet matching and Convex-Hull points

Figure 3.7 illustrates the number of matched packets in each window for the window-

based approaches. As shown, the maximum number is associated with the 198th window. As

explained in Figure 3.3, we have two traces with two different S-TSCs that are far apart. We

read more events from trace T0 than from trace T1 in the first window. Consequently, the rate

of matched events depends on T1, and we have many unmatched read events from T0 that

will be matched in subsequent (second and third) windows. Thus, we have a higher rate of

matched events in the initial windows, the third window in this experiment. Since traces are

synchronized at the end of the first window, the S-TSCs quickly move closer together over

time. This means that the rate of matching will be back to normal after the third window,

and subsequently depend on the number of exchanged packets in each window.

We analyzed 239 windows from the data stream in this experiment. According to Figure

3.3, the total number of matched packets is 39786. Figure 3.8 illustrates the number of event

pairs that represent the bound points of each hull in the Correlated sliding window approach.

As shown in Figure 3.8, there are 12.7 points, on average, in the lower hull, and 11.8 points, on

average, in the upper hull. These numbers become 8.5 points in the lower hull and 6.4 points

in the upper hull for the Fully Incremental approach, as shown in Figure 3.9. According to

this figure, there are 226 accurate pairs, and therefore there were 226 synchronization updates

during this experiment. By contrast, the Correlated approach performs synchronization at

most once per time window, that is, 239 for this experiment. When compared to the total

number of matched pairs, which is 39786, both these numbers, 226 and 239, are much lower,

and so incur a low cost. Figure 3.10 illustrates the comparison between the number of pairs

in the two hulls in the Correlated and Fully Incremental approaches. As discussed earlier, the

number of pairs is minimal in the Fully Incremental approach.

Figure 3.11 shows the accurate packet rate during the trace. It shows that at the start of

tracing around 30 percent of matched packets are accurate packets and able to improve the

synchronization since initial synchronizations is performed with low precision and the Lmax

and Lmin drifts are away from each other. This difference decreases and the synchronization

accuracy improves while receiving the accurate packets. Consequently, the chances of receiving

a packet placed between Lmax and Lmin diminish with time.

Figure 3.12 illustrates this concept by comparing the number of received accurate packets

versus the number of windows in the Correlated approach. At the start of tracing, the rate

of accuracy improvement in the Fully Incremental approach is superior to the window based

Correlated approach. After some time, this rate grows slower. For instance, there are 217

received accurate packets until 654 second into the trace, which is comparable to the number

of time windows. However, the accurate packet flow reduces after this point and there are

53

 0

 50

 100

 150

 200

 250

 0 50 100 150 200

M
a

tc
h

e
d

 P
a

c
k
e

ts
 N

o
.

Window No.

Figure 3.7 The number of matched packets in each window.

 0

 10

 20

 30

 40

 50

 0 50 100 150 200

P
a

ir
s
 N

o
.

Window No.

 Lower hull

 Upper hull

 Total

Figure 3.8 The number of pairs in Convex-Hull in each window (Correlated approach).

54

 0

 5

 10

 15

 20

 25

 30

 35

 50 100 150 200

P
a

ir
s
 N

o
.

Synchronization No.

 Lower hull

 Upper hull

 Total

Figure 3.9 The number of pairs in Convex-Hull in each synchronization (Fully Incremental
approach).

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 100 200 300 400 500 600 700

T
o
ta

l
p
a
ir
s
 i
n
 t
w

o
 h

u
lls

Time (sec.)

 Fully Incremental approach

 Correlated approach

Figure 3.10 Comparison of total pairs in Convex-Hull.

55

nine subsequent synchronizations performed by the Fully Incremental approach versus 21

synchronizations performed in the Correlated approach.

3.7.3 Accuracy and Cost

Figure 3.13 illustrates the synchronization results of the Fully Incremental vs. the time

window-based approaches. As expected, the Independent approach has the worst accuracy,

because it ignores the pairs of interest in previous windows. Moreover, the Replace approach

changes the results when it is able to improve the total accuracy in a window relative to

that of the previous window. Nonetheless, it still ignores the accurate pairs in previous win-

dows. Therefore, as shown in Figure 3.13, it cannot improve on the total accuracy after the

second window, and it keeps that accuracy until the end of the experiment. Consequently,

we will focus on the other two approaches. As expected, the Fully Incremental approach

performs synchronization as soon as it finds an accurate pair. The first synchronization of

all window-based approaches was performed at time 3.42. By contrast, the Fully Incremental

approach synchronizes these two traces 22 times before time 3.42. This illustrates why the

Fully Incremental approach has the highest accuracy at all times, since it does not postpone

the calculation of the synchronization factors. We now examine the synchronization cost of

the two approaches in further detail. Formula 3.18 represents the synchronization cost of the

window-based approaches (Costw) for each window :

l = window size

R = Read events(l)

M = Matching(R)

P = Perform analysis(M)

F = Finalize sync.(P)

= Cal(Lmax) + Cal(Lmin) + Cal(α, β))

Costw = Cost(R) + Cost(M) + Cost(P) + Cost(F)

(3.18)

The number of events in each window is different, and depends on the rate of event

occurrence. The reading time depends on the number of events (Cost(R)). The number of

matched and unmatched pairs is different in each window (Cost(M)), but the matching time

does not depend on the number of events in the hash table, since it has O(1) complexity.

As mentioned, with the Convex-Hull algorithm, we perform vertex removal when adding the

latest received pairs, and possibly replace some of the related bound pairs. Thus, there is a

cost (Cost(P)) in dealing with new pairs, when the Matching module sends a new pair to

the Analysis module, in the window-based approaches. The cost of the finalize sync is to find

56

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200

A
c
c
u

ra
te

 P
a

c
k
e

t
R

a
te

Time (sec.)

Figure 3.11 Accurate packet rate

 0

 50

 100

 150

 200

 250

 300

 100 200 300 400 500 600 700

N
o

.

Time (sec.)

 Accurate Packet

 Window

Figure 3.12 Accurate packet distribution vs. time window enhancement

57

Lmax and Lmin, and compute the synchronization factors.

Formula 3.19 represents the synchronization cost for the Fully Incremental approach

(Costf) :

R = Read events()

M = Matching(R)

C = Check accurate pair(M)

F = Finalize sync.(P)

= Cal(Lmax)|Cal(Lmin) + Cal(α, β))

Costf = Cost(R) + Cost(M) + Cost(C) + Cost(F)

(3.19)

As mentioned in Formula 3.19, the costs of reading and matching events (Cost(R) and

Cost(M)) in the Fully Incremental approach are same as for the window-based approaches

(Formula 3.18).

In the Fully Incremental approach, there is no comparison algorithm for the new pair

and the existing pairs in the hull bound lists. For most points, the procedure merely involves

checking the location of the pair and Lmax or Lmin, which costs less than the cost comparison

required in the window-based approaches. Since we do not save inaccurate pairs that are

located higher than Lmax or lower than Lmin, we save not only in terms of memory, but also

in terms of time, as just explained, since inaccurate pairs do not improve synchronization

accuracy (Cost(C)).

Since only Lmax or Lmin is changed when an accurate pair is received, the cost of finalizing

the synchronization algorithm is lower as well (Cost(F)). Therefore, the total cost of the Fully

Incremental approach is lower than the total cost of the window-based approaches.

Figure 3.14 illustrates the zoom on the accuracy dimension from 1.2e−06 to 1.9e−06 and

the trace time dimension from 120 to 170 second in Figure 3.13. It shows that the Fully

Incremental approach always yields the lowest (best) accuracy bound, while the Correlated

approach achieves the best accuracy as well, but with some delay, at the end of each window.

For example, 1.35e−06 is the accuracy reached by Correlated approach at 153 second,

while Fully Incremental approach had already achieved this accuracy at 150.69 second of the

trace. This illustrates the first disadvantage of the Correlated approach, not synchronizing

the traces until the end of windows. This delay (2.31 seconds for this short trace) causes

problems for critical applications. The worst case happens when accurate packet is found at

the start of window, in which the delay is approximately equal to the length of window.

Moreover, there is no improvement in two windows between 153 and 159 second. Thus,

the Correlated approach recomputes needlessly the synchronization parameters. The Fully

58

Incremental approach does not recompute anything until the next accurate packet. This

illustrates the second disadvantage of the Correlated approach running at the end of each

window, even when there is no chance to improve the synchronization accuracy.

Four techniques for online synchronization have been discussed and tested in this section.

The interesting feature of the Fully Incremental approach is that it continuously updates the

time synchronization factors with the best available data. Yet, each step involved : matching

the send-receive pair, adding a point to the Convex-Hull, and updating the slope of the min,

max, and median lines, takes a constant time, on average. Furthermore, for a large proportion

of the new points, we can quickly determine that no update is necessary.

3.7.4 Delay and Packet loss effects on the Fully Incremental approach

The presented Fully Incremental algorithm for online clock synchronization is robust even

in the presence of network delay uncertainties and internal kernel delays. It also guarantees

accuracy improvements as soon as transmission latency improves.

To test the effect of packet loss, we traced a network containing two computers, and

generated TCP/IP packet exchange traffic. The target duration of the traces is 12 minutes.

Initially, we used a traffic with less than 10 percent packet loss. Then, the experiments were

repeated with increasing packet loss. This is achieved by using iptables and the statistic

module (iptables -A INPUT -m statistic –mode random –probability 0.1 -j DROP). Since

the packet loss grows in the different experiments, the duration of the traced applications

increases accordingly. Indeed, the TCP/IP protocol retransmits lost packets when it does

not receive acknowledgments. Although this retransmission causes the overall throughput of

the connection to drop, the number of sent/received packets increases. Therefore, we choose

the first 270 seconds after 30 seconds warm-up period of each trace for comparison purposes.

When the proportion of lost packets rises, the number of matched packets and accurate

packets diminish and consequently the accuracy slowly declines, as shown in Table 3.1.

Table 3.1 The packet loss affection on Fully Incremental approach

Packet Trace Matched Accurate
loss duration (sec.) Packet No. Packet No. Accuracy

0.1 270 5797 105 7.535× 10−7

0.2 270 4027 103 6.736× 10−7

0.3 270 2063 87 5.042× 10−7

59

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

 100 200 300 400 500 600 700

A
c
c
u

ra
c
y

Time (sec.)

 Correlated

 Fully-Incremental

 Replace approach

 Independent

Figure 3.13 Comparison of time synchronization approaches in streaming mode.

 1.2e-06

 1.3e-06

 1.4e-06

 1.5e-06

 1.6e-06

 1.7e-06

 1.8e-06

 1.9e-06

 120 130 140 150 160 170

A
c
c
u

ra
c
y

Time (sec.)

 Correlated

 Fully-Incremental

Figure 3.14 Zoom on the accuracy dimension of Figure 3.13 from 1.2e−06 to 1.9e−06 and the
trace time dimension from 120 to 170 second.

60

3.8 Conclusion

In this paper, we have presented a framework for online time synchronization, which

applies to data streaming. The most notable feature of streaming data is the speed of the

stream flow, which makes it impractical to scan the data stream more than once. Buffering the

data stream for a long time is not practical either. The proposed model is not only efficient

in terms of both time and memory, it is also scalable and yet maintains and improves its

accuracy over time. The novel approach proposed is of particular interest for two reasons :

it is fully incremental, with O(1) complexity on average per event in the trace, and it does

not add latency to the time synchronization computation. Moreover, the algorithm can very

quickly eliminate inaccurate packets without loss of accuracy or added latency. It only needs

to examine in detail, a very small fraction of the matched packets, and eventually store

them as Convex-Hull vertices. This makes the proposed algorithm ideally suited for the high

performance live analysis of detailed distributed system traces in clusters and clouds.

We also introduced several window-based approaches in this paper. The experimental

results demonstrated that our proposed Fully Incremental approach is more accurate and

generates no latency for synchronization computation. In future work, the new incremental

algorithm will be studied in the context of large scale clusters, and extended for finding the

optimal time reference node and synchronization spanning tree.

61

CHAPTER 4

Paper 2 : Reference Node Selection in Dynamic Tree

Masoume Jabbarifar and Michel Dagenais

4.1 Abstract

Several dynamic network tools require an efficient incremental algorithm to calculate hop

counts and choose a central point for the network. For example, in a dynamic network, a time

Reference Node is needed to synchronize all the nodes. However, computer connections to the

network and disconnections from it frequently occur in a dynamic network, and this affects all

network activities. The model proposed in this paper improves the performance of Reference

Node maintenance live mode in a dynamic network, and the new method investigates only

the altered path with respect to the Reference Node once an alteration has occurred in

the network spanning tree. This method provides an efficient way to find and maintain a

Reference Node incrementally in an average time complexity of O(log n), where n is the total

number of nodes in the network.

4.2 Introduction

In the past few years, intensive research efforts have been devoted to dynamic graphs and

forests where edges are added or removed and weights change [67, 103], and a particular and

ongoing focus of these efforts is incremental dynamic tree maintenance. As well, various data

structures have been presented to improve dynamic maintenance performance [19, 51, 52].

The purpose of this paper is to present a method to incrementally update Reference Nodes

(RN) in a dynamic forest. As will be demonstrated, RN should be the nodes with a minimum

hop count between them and all the other connected nodes in the tree.

Although we are using this graph-based algorithm to solve a dynamic network synchroni-

zation problem, it can also be used in other applications, such as electronics, medical science,

etc. In a dynamic distributed system, where communication links appear and disappear,

analysis of the applications critically depends on time synchronization [40]. Our objective in

this work is not only to provide the best time synchronization accuracy, but also to improve

synchronization performance.

Recently, several time synchronization algorithms have been presented for wired and wi-

reless networks [45, 58, 85, 101]. The general idea behind these algorithms is to maintain a

62

spanning tree (ST) of all the nodes in the network, updating it at each network change, and

computing pairwise synchronization for all the ST edges. Once all the clock drifts and offsets

have been obtained, a node must be found to act as a time reference [59]. For any node in ST,

the shortest paths to every other node are computed. The best time reference node (RN) is

the node with the shortest paths to all the nodes [22]. Eventually, all the nodes in the network

synchronize their time with the RN through those paths. The position of RN is critical to

decreasing the total time conversion error through all paths. Since it takes a time of O(n2) to

find the RN with a naive approach, most applications favor synchronization based on a fixed

RN chosen in the network in advance [56]. However, a static RN has many disadvantages.

The main problem is that the number of node connections may change, leading to fewer

hops for time conversion in a path in the dynamic network over time. Since having fewer

hops improves synchronization accuracy, it is beneficial to choose a new RN [58]. The second

problem is RN robustness. The synchronization algorithm should be robust to node failures

[101] ; however, a static RN is a single point of failure.

The work in this paper is primarily motivated by the online LTTng (Linux Trace Toolkit

Next Generation) time synchronization project [30]. LTTng is capable of handling huge traces

of several gigabytes or more. However, a new architecture is required to do so while at the

same time allowing traces to be collected from multiple systems and embedded devices, for

both online and a posteriori offline analysis and viewing. Moreover, LTTng users expect to

see the analysis output in real time, in order to be able to diagnose problems more easily.

Therefore, LTTng should be able to visualize traces from several distributed systems, on a

common reference time base, and in streaming mode.

In this paper, we propose an efficient algorithm to identify dynamic RN with O(log n)

time complexity in a dynamic forest. The paper begins with a study of the problem and a

review of related work in the 4.3 section. The proposed data structure and methodology are

detailed in the 4.4 and 4.5 Sections, and the evaluation of the complexity of the proposed

method is explained in the 4.6 Section. Noteworthy results, including performance analysis,

are presented in the 4.7 Section. Finally, we present our concluding remarks and discuss

future work in the 4.8 Section.

4.3 Related Work

In this section, we discuss the most interesting synchronization algorithms in wired and

wireless networks, and see how they use time RN.

Greunen et al. [101] proposed their Lightweight Time Synchronization for Sensor Net-

works, in which nodes are placed uniformly and at random within a 2-dimensional area. The

63

network contains a single RN which keeps accurate time in an ST of nodes. For better syn-

chronization precision, the RN is located in the area center. In dynamic networks, nodes are

mobile, and can join and leave the network. Thus, efficient dynamic calculation of RN (as

proposed in this paper) in ST can increase precision. Ganeriwal et al. [45] propose a protocol

to synchronize nodes in sensor networks called TPSN, which first creates an ST of the net-

work and then performs pairwise synchronization along the edges. This algorithm does not

handle dynamic topology changes, however, and the RN is static.

Many use cases for dynamic RN are possible in wired networks as well. There is an

interesting one in tracing software [29]. Tracing is similar to logging, and consists in recording

events that occur in a system, usually more detailed lower-level events as compared to logging)

[30]. The tracer software user expects to see the analysis output in real time, in order to

diagnose problems live. Consequently, the software should be capable of visualizing traces

from several distributed systems on a common reference time base.

In a computer cluster, multiple nodes produce separate trace streams independently, and

there are timestamps associated with each event [32]. Synchronization starts online, as soon

as two nodes begin to exchange messages. This connection creates an edge between those

two vertices and establishes the first tree. The tree then grows, or new trees are established,

by adding new nodes and new connections. Synchronization accuracy is the weight of all the

edges in the dynamic network. Obviously, when a connection is added or disappears, the

dynamic graph changes and must be checked to determine whether or not the change affects

the Minimum Spanning Tree (MST) [98]. Clearly, any change that occurs may affect the

choice of time RN.

Many interesting algorithms with a O(log n) running time have been proposed to maintain

a dynamic MST [19, 51]. The algorithm proposed in this paper builds on these efficient

dynamic MST algorithms, with a view to improving the time synchronization algorithms for

the analysis of streaming mode traces recorded on distributed systems.

4.4 Data Structure

Let G=(V,E) be an undirected graph containing a set V of vertices and a set E of edges.

An edge (e = {υ, ν}) is related to two vertices. Let τ be an ST for G. In streaming mode,

many separate trees (τ = {τ1, τ2, τ3, ..., τn}) may be joined together over time.

As more and more messages are sent between the nodes, clock synchronization can be

computed between the newly communicating nodes, and edges are dynamically added to the

communication graph. The weight of each edge can change over time (e.g. reduced error, if a

better synchronization is achieved with more messages). The ST forest computed from the

64

communication graph can only see trees being merged as time progresses and more messages

are sent. It is possible, however, that edges will be added to the ST in the forest, or removed

from them, as new edges become favored over others.

Definition 1 : DescendantSize is a factor that illustrates whether or not a vertex is a

better balance point than the existing RN.

To find an optimal dynamic RN, we compute a DescendantSize attribute for each vertex.

This attribute shows the number of children there are for each vertex, not in the ”parent”

direction to the RN. When a vertex ν is added to a tree τ , its DescendantSize is initialized

to 1, and this value is propagated along the parent path.

Six types of operations are defined on a tree. All the operations, except reverse(υ) and

treeId(vertex υ),take time O(1).

– parent(vertex υ) : Return the parent of υ. If υ is the root of its tree, it returns a null

value.

– reverse(vertex υ) : Reverse the direction of the tree, making the child the parent. It

is proportional to the length of the tree path from υ to the previous root. The number

of operations depends on the depth of that branch. Since the average depth of a tree is

log n, the average complexity of this function is O(log n).

– DescendantSize(vertex υ) : Return the DescendantSize of the vertex.

– update DescendantSize(vertex υ, int x) : Add x to the current value of vertex Des-

cendantSize.

– treeId(vertex υ) : Since there are many separate trees in a forest, this function returns

the ID of the tree to which the vertex υ belongs. When two trees are joined together,

we retain the lowest of the two IDs as the new tree ID.

– treeSize(vertex υ) : Return the number of vertices in the tree to which the vertex υ

belongs.

– referenceNode(treeId id) : Return the RN in the tree id.

The RN is the topmost node in our tree. Each node in a tree has zero or more child nodes.

All directions in the tree are defined relative to the RN. When the RN changes in a dynamic

tree, all the directions in the altered path(s) change towards the new RN.

65

4.5 Methodology

4.5.1 Reference Node

The RN is a vertex which has a strategic role in a graph. For example, in a distributed

system, the RN can be the time reference for all the other nodes for clock synchronization

purposes. In such a context, the best RN could be defined as having the minimal sum of

time synchronization errors between itself and every other node. The synchronization error

between two connected node is the edge weight, and the path sum of weights for indirectly

connected nodes.

Lemma 1. The best RN has the minimum hop count to all the nodes in a tree.

Let τ be a tree in the forest with < υ1, ..., υn > vertices. Further, Pυi < υi, υi+1, ..., RN >

is the set of vertices met by υi on the path reaching the RN.

The Formula 4.1 illustrates a total tree cost that corresponds to the summation of all the

vertex weights with respect to the RN. The weight of each vertex to reach the RN corresponds

to the summation of Pυi edge weights.

Total Costτ =
∑n

i=1

∑l
j=1 weight(edgej on Pυi) (4.1)

Thus, for each edge, multiply its weight by the number of children opposite RN, as shown

in the formula 4.2, as follows :

Total Costτ =
∑n

i=1DescendantSize(υi)× wei (4.2)

Cost =

DescendantSize(υl)× we : RN is on the υk side

DescendantSize(υk)× we : RN is on the υl side
(4.3)

The contribution of the other edges does not change, whether the RN is υk or υl. Moreover,

they change independently of we’s contribution when they are further away from e. Therefore,

the optimal choice is to place the RN on the side with the larger DescendantSize, irrespective

of we. This property will be used to incrementally compute the best RN. �

Cost is a concept applicable to different use cases, such as power usage, error, and so on.

As discussed, a prime example of the use of RN is in distributed system time synchronization.

4.5.2 Independent trees

In a dynamic environment, new vertices and edges appear (for example, as new computers

join and communicate with existing computers) and when they do the weight of edges can

66

change (a new communication can provide better synchronization accuracy, or the accuracy

can be reevaluated when no message has been received from a computer for a long time).

Vertices and edges are never removed from the communication graph, since inactive nodes

may simply be assigned an updated weight representative of their long period of inactivity.

Similarly, the associated ST will only see vertices being added. However, edges can either be

added to the ST, connecting and merging two previously independent trees, or replaced. An

edge is replaced when a better edge connects two vertices that are in the same tree already,

causing the minimum ST algorithm to remove an edge that is less good.

Initially, there is no edge and each vertex forms an independent tree (τ1, τ2, τ3, ..., τn), and

the single vertex is trivially the RN for its tree. Let us examine the operations required to

update the dynamic RN in each independent tree when the edges are added or replaced.

4.5.3 Adding a single vertex and edge

As Figure 4.1 illustrates, this situation arises when a new vertex υ is connected to the

current tree τi with a new edge. This occurs frequently when the algorithm starts. In Figure

4.1, the number inside each vertex shows the DescendantSize. We denote the DescendantSize

attribute of each node as ξ. Since a new single vertex does not have a child, its DescendantSize

is 1. The DescendantSize of parent(υ) is increased by 1 (line 12 Algorithm 4), and this new

increase (∆ξ = 1) is propagated along the path from the parent of υ to the RN. The best

candidate for the new RN is the latest vertex in the propagation path to the RN. ξ(υn) is

the number of children that vertex υn has. It compares its DescendantSize with RN (χ) (line

8 Algorithm 4) to determine which of them will be the next RN. The number of operations

required is proportional to the length of the path between the new vertex and the RN.

4.5.4 Replacing an edge in a tree

To maintain an ST structure when an edge is removed from a tree and replaced by

another, one subtree is disconnected and reconnected elsewhere, possibly through another

vertex. This tree reorganization may change the whole balance. Since the RN is a node with

a minimum number of hop counts to all nodes, it should be recomputed for the modified tree.

We consider two possibilities, depending on the location of the cut/insertion in the tree :

As Figure 4.2a illustrates, in the first situation, the cut(s1, o1) and add(on, e1) operations

occur on different sides of the RN. We introduce three paths along which the DescendantSize

of all vertices has to be updated :

67

Figure 4.1 The DescendantSize operation in insertion mode with no tree cycle

ALGORITHM 4: Update RN Insertion()

1: χ : an RN
2: υ1 : a new vertex is added to an existing tree
3: Begin
4: propagationPath={υ1, ..., υn, χ}
5: for each υ ∈ propagationPath do
6: if υ = χ then
7: DescendantSize(χ)= treeSize(υn)-DescendantSize(υn)
8: if DescendantSize(υn) > DescendantSize(χ) then
9: The RN is υn

10: end if

11: else
12: update DescendantSize(υ, DescendantSize(υ)+1)

13: end if
14: end for
15: End

68

ALGORITHM 5: Update RN Cycle()

1: χ : RN
2: modification : cut(s1, o1) and add(on, e1)
3: Begin
4: smallPath={s1, s2, ..., sn, χ}
5: orphanPath={o1, o2, ..., on}
6: extendedPath={e1, e2, ..., en, χ}
7: updateDescendantSize(orphanPath)
8: updateDescendantSize(smallPath)
9: if e1 was visited in updateDescendantSize(smallPath) then

10: tree is still balanced
11: else
12: if DescendantSize(χ) > treeSize(χ)/2 then
13: χ is still a RN
14: updateDescendantSize(extendedPath)
15: else
16: while DescendantSize(ei ∈ extendedPath) < treeSize(χ)/2 do
17: updateDescendantSize(extendedPath)
18: end while
19: ei = a new RN
20: reverse(ei)
21: betweenRNsPath={ei+1, ei+2, ..., en}
22: updateDescendantSize(betweenRNsPath)
23: end if
24: end if
25: End

69

(a) add and cut occur on different sides of an RN

(b) add and cut occur on the same side

Figure 4.2 The position of add() and cut()

70

Orphan path :< o2, ..., on−1 >

small path :< s1, s2, ..., sn >

Extended path :< e1, e2, ..., en >

(4.4)

Lemma 2. The candidate RN in (i) below must be one of the vertices in the path <

e1, e2, ..., en, RN >. In (ii) below, the total number of vertices is unchanged on the side where

both the cut and the insertion occurred. Thus, the DescendantSize of the children of the

previous RN remain the same and the algorithm keeps that RN.

(i) Assume that the RN is connected to the n paths : < p1, ..., pn >. Moreover, there is

a minimum number of hops from the RN to all the other nodes in the tree. The candidate

list of RN for the next operation is all vertices in all paths close to RN < υp1 , ..., υpn >. The

cut() operation causes the vertex υpl , at the end of a path pl, to have no chance of becoming

the RN. Indeed, its DescendantSize has been reduced and the RN must have the maximum

DescendantSize in the tree. However, the add(on, e1) operation causes m vertices from path

pl to join path pk and increase the DescendantSize of all the vertices in this path. Thus, one

of the vertices in pk = {e1, e2, ..., en}, where ξ(χ) > treeSize(χ)/2, becomes RN.

(ii) As Figure 4.3 illustrates, in the special case where the RN (χ) itself has many children,

the RN does not change. To calculate how many children the RN has, we use the following

formula (Eq. 4.5) :

reverse(e1)

4 = ξ(o1)︸ ︷︷ ︸
cut impact

ξ(χ) =

the new DescendantSize for the previous RN︷ ︸︸ ︷
treeSize(χ)− [ξ(parent(χ))︸ ︷︷ ︸

en

+4]

RN(τi) =

 χ if ξ(χ) > treeSize(χ)/2︸ ︷︷ ︸
tree balance value

search in extendedPath otherwise

(4.5)

Since parent(χ) is en, to obtain its DescendantSize, we have to run the reverse(e1) ope-

ration, since we do not know who en is. If the RN DescendantSize is greater than half the

DescendantSize of its updated child, the previous RN can remain as it is (lines 12-15 Algo-

rithm 5). �

Orphan path : path < o1, o2, ..., on > : this path was structured for the previous

RN. Therefore, not only should the DescendantSize attribute of each node be updated, but

the direction of the edges should be oriented towards the new probable RN as well. Since

edge(s1, o1) has been cut, we are reversing the parental structure of this path. Previously,

71

the DescendantSize of o1 was the sum of DescendantSize(o2) and how many children it has.

Thus, the update algorithm in this step is (line 7 Algorithm 5) :

reverse(on)

ξ(o1)︸ ︷︷ ︸
new DescendantSize

= ξ(o1)︸ ︷︷ ︸
old DescendantSize

− ξ(parent(o1))︸ ︷︷ ︸
o2

∀x ∈ path < o2, ..., on−1 >

ξ(x) = ξ(x)− ξ(parent(x))︸ ︷︷ ︸
new parent

+ ξ(x− 1))︸ ︷︷ ︸
new child or previous parent

ξ(on) = ξ(on)︸ ︷︷ ︸
old DescendantSize

+ ξ(on−1)︸ ︷︷ ︸
new child or previous parent

(4.6)

Small path : path < s1, s2, ..., sn > : the direction of this path has not changed, and so

updating DescendantSize is the only step that has to be taken. Previously, the vertex o1 was

one of the children of s1. In the new tree, there is no connection between them, and so the

updated algorithm for the small path is (line 8 Algorithm 5) :

4 = ξ(o1)︸ ︷︷ ︸
cut impact

∀x ∈ path < s1, s2, ..., sn >

ξ(x) = ξ(x)−4

(4.7)

Extended path : path < e1, e2, ..., en > : we update the DescendantSize of the vertices

in this path and check a condition for the new RN (lines 16-18 Algorithm 5). If we cannot

find the RN in the previous path, the new RN is chosen from the vertices in this path. If the

DescendantSize of a vertex ei is greater than the treeSize(χ)/2, which is the half the number

of vertices in the tree, ei will be the new RN (line 19 Algorithm 5). Updating DescendantSize

follows the 4.8 formula.

reverse(χ)

4 = ξ(on)︸ ︷︷ ︸
new children for the extended path

∀x ∈ path < e1, e2, ..., ei >

ξ(x) = ξ(x) +4

(4.8)

If we find the new reference (ei) in the extended path, we have to reverse the direction of

the path between the previous RN and the new one, ei, and update each node DescendantSize

in path < en, en−1, ..., ei+1 > (lines 20-22 Algorithm 5) as follows :

72

Figure 4.3 One way the previous reference node can remain an RN

reverse(ei)

ξ(en) = ξ(en)− ξ(parent(en))︸ ︷︷ ︸
en−1

+ ξ(χ)︸︷︷︸
calculated in small path update

∀x ∈ path < en−1, ..., ei+2 >

ξ(x) = ξ(x)− ξ(parent(x)) + ξ(x+ 1)

ξ(ei+1) = treeSize(χ)− ξ(ei)︸︷︷︸
new RN

(4.9)

As Figure 4.2b illustrates, in the second situation, the cut(s1, o2) and add(on, e1) opera-

tions are performed on the same side.

Lemma 3. When the cut() and add() operations are performed on the same side of the

RN, the RN does not change.

All the changes occur on one side of the RN, and the tree size does not change. For

example, vertex sm is the new connection to vertices (n1, n2) in the small path. Previously,

the children of DescendantSize(sm) were [on, on−1, ..., o1, s1, s2, ..., sm−1]. When we update

the orphan path, the children of DescendantSize(on) are [o1, o2, ..., on−1]. Then, when we

update the small path, the children of DescendantSize(sm) are [s1, s2, ..., sm−1] plus the

children of DescendantSize(on). Thus, when we see the newly connected vertices (n1, n2)

in the small path, we stop updating the DescendantSize and the previous RN remains the

same. Also, there is no extended path in the second situation (lines 9-11 Algorithm 5). �

In the worst case, the orphan path needs to have its direction reversed and DescendentSize

updated, the small path needs to have its DescendentSize updated, and the extended path

needs to have its DescendentSize updated and checked for a new RN along the extended

73

path. The number of operations required is proportional to the length of each of these paths

(orphan, small, and extended).

4.5.5 Inserting an edge between two independent trees

Every tree in the forest has its own RN. Thus, when an edge is inserted between two

independent trees, the two trees become connected and merged, and four cases can arise :

1. edge(RNτs , RNτb) : We denote the small and big tree as τs and τb respectively. In this

case, the new edge is between two RN. So, RNτb is still the RN (line 8 Algorithm 6).

2. edge(RNτs , ei) : In this case, the vertex RN from the small tree is joined to a vertex

ei in the big tree. No computation is needed in the small tree. The new RN will be

in the tree that has more vertices. The candidate RN list is in path < eτb , ..., RNτb >.

If we denote the new RN as RNn, we first have to update the DescendantSize in

path < e1, e2, ..., ei, ..., RNn >, as follows :

ξ(RNτs) = treeSize(RNτs)︸ ︷︷ ︸
small tree size

4 = ξ(RNτs)

∀x ∈ path < e1, e2, ..., RNn >

ξ(x) = ξ(x) +4

(4.10)

and then reverse the direction of the path between the previous RN and RNn, and then

update path < RNτb , ..., RNn > (lines 16-25 Algorithm 6), as follows :

reverse(RNn)

ξ(RNn) = ξ(RNn)− ξ(parent(RNn)) + ξ(RNτb)

∀x ∈ path < RNτb , ..., RNn >

ξ(x) = ξ(x)− ξ(parent(x)) + ξ(x+ 1))

(4.11)

3. edge(mi, RNτb) : In this case, a vertex mi from the small tree joins the RN in the big

tree, and RNτb is still the RN. The only computation is in the small tree, where we

have to run operation reverse(mi) and update DescendantSize along path < RNτs , ...,

mi, ...,m2,m1,mτs > in the small tree before joining it to the big tree. Thus, the update

algorithm in the small tree is run as follows (lines 26-30 Algorithm 6) :

74

Figure 4.4 One case of joining two trees

reverse(mi)

ξ(RNτs) = treeSize(RNτs)− ξ(parent(RNτs))︸ ︷︷ ︸
m1

∀x ∈ path < m1,m2, ...,mn−1 >

ξ(x) = ξ(x)− ξ(parent(x)) + ξ(x− 1))

ξ(mn) = ξ(mn) + ξ(mn−1)

(4.12)

4. edge(mτs , eτb) : In this case, a vertex from the small tree is joined to a vertex in the

big tree, as shown in Figure 4.4. The candidate RN list is in path < eτb , ..., RNτb >.

We have to update the DescendantSize in three paths at most. In the small tree, we

run the update algorithm as mentioned in the third case. In the big tree, we run the

update algorithm as mentioned in the second case.

Algorithm 6 illustrates the pseudocode for finding the RN when joining two trees. When

they are joined, the ID of the new tree is set to the lowest tree ID of the two trees.

The complexity of joining two independent trees is similar to the complexity of the re-

connection phase when replacing an edge in a tree. In the smaller tree, the path between

the previous RN and the vertex with the new edge, like the orphan path, needs to have its

direction reversed and its DescendentSize updated. Then, in the larger tree, the extended

75

ALGORITHM 6: Update RN Join()

1: ν : vertex
2: ξ : vertex
3: Begin
4: if treeSize(ν) < treeSize(ξ) then
5: eτs= ν
6: eτb= ξ
7: else
8: eτs= ξ
9: eτb= ν

10: end if
11: RNτs = referenceNode[treeId(eτs)]
12: RNτb = referenceNode[treeId(eτb)]
13: if eτb = RNτb and eτs = RNτs then
14: RNτb is still RN
15: else
16: if eτb ! = RNτb and eτs = RNτs then
17: updatePath = {eτb , ..., RNτb}
18: while DescendantSize(ei ∈ updatePath) < treeSize(RNτb)/2 do
19: updateDescendantSize(extendedPath)
20: end while
21: ei = new RN
22: reverse(ei)
23: betweenRNsPath={ei+1, ei+2, ..., en, RNτb}
24: updateDescendantSize(betweenRNsPath)
25: else
26: if eτb = RNτb and eτs ! = RNτs then
27: reverse(eτs)
28: smalltreePath = {RNτs , ..., eτs}
29: updateDescendantSize(smalltreePath)
30: else
31: reverse(eτs)
32: smalltreePath = {RNτs , ..., eτs}
33: updateDescendantSize(smalltreePath)
34: bigtreePath = {eτb , ..., RNτb}
35: while DescendantSize(ei ∈ updatePath) < treeSize(RNτb)/2 do
36: updateDescendantSize(bigtreePath)
37: end while
38: ei = new RN
39: reverse(ei)
40: betweenRNsPath={ei+1, ei+2, ..., en, RNτb}
41: updateDescendantSize(betweenRNsPath)
42: end if
43: end if
44: end if
45: End

76

path needs to have its DescendentSize updated and checked for a new RN. Here again, the

number of operations required is proportional to the length each of these paths (orphan and

extended).

4.6 Algorithm complexity

For all the possible tree updates, and associated dynamic recomputation of RN, a small

constant number of path updates were required, with each path update requiring a number

of operations proportional to its length. The worst-case is the edge replacement with between

one and two operations required on three different paths (orphan, small and extended). In the

worst case, a degenerate tree, the path length can be O(n). In a perfectly balanced tree, the

worst case and average path length is O(log n). It has been demonstrated that the average

depth of a tree with n vertices is O(log n) [23]. Therefore, the average complexity of our

proposed method is no larger than O(log n).

4.7 Experiments and evaluation

4.7.1 Experimental setup

First, let see what happens in a dynamic network. A dynamic network consists of many

individual computers. As the computers begin communicate, one after another, small net-

works appear. Then, messages join the networks, forming a huge network. At that point, the

network has reached its full size and the associated graph only changes when we have a new

connection between nodes, or when the edge weights decrease.

We simulate this typical situation of a huge dynamic network. Random forests are gra-

dually generated by adding vertices incrementally. Trees are joined together and finally form

a huge tree in each forest. Moreover, since cycles are forbidden in a tree, the MST algorithm

eliminates one of the connections in the cycle when a connection adds an edge that creates

a cycle. To follow this model, our simulation supports four operations : (i) Insertion : a new

vertex connects to the graph, or two new vertices connect to each other and create a new

tree ; (ii) Join : two trees are connected with a new link ; (iii) Cycle : a new link generates a

cycle ; and (iv) updateEdge : the weight of an existing edge increases, possibly affecting the

MST computation.

Each line in the dataset represents three numbers : ν, ξ, and ω. These numbers denote

the first vertex, the second vertex, and the edge weight respectively. Algorithm 7 illustrates

the data analysis of the dataset : (i) if ν and ξ are two new vertices, and they generate a

new tree (line 6) ; (ii) if either ν or ξ is a new vertex, it connects to the existing tree. Since

77

this vertex is new, it cannot create a cycle in the tree, and is therefore not required to call

the MST algorithm (lines 8-18) ; (iii) if both ν and ξ exist in the forest and are located in

two separate trees, this implies that those trees are joining together and forming a bigger

tree (line 20), and the MST algorithm is not required in this case either ; and (iv) if ν and ξ

belong to a tree and there is no edge between them (line 23), this new edge creates a cycle in

the tree and the MST function must be run to eliminate one of the edges in the cycle (line

32). In the case of new edge elimination, the RN does not have to be recomputed. Otherwise,

the information about the add() and cut() operations are passed to the Update RN Cycle

function to find new RN (line 35). If ν and ξ belong to a tree, there is an edge between them,

and if the previous weight is greater than the new one, the edge weight is updated (line 30).

The dataset consists of one million operations (Insertion, Join, Cycle, and updateEdge).

Six datasets are used in this simulation, ranging from 10,000 to 60,000 vertices in the forest.

We consider a reasonable number of situations that stress this test. Table 4.1 presents the

statistics for our datasets.

4.7.2 Results

Table 4.2 illustrates the simulation results. Each category has a Number column, which

indicates : (1) how many insertions there are, i.e. when a new vertex is added to an existing

tree in the forest ; and (2) how many times two vertices make a new tree. The winRN column

gives the number of RN changes in each category, and loseRN indicates how many unchanged

RN there are, i.e. when a new vertex connects to the tree. Statistically, 15% of the new vertex

insertions change the number of RN.

The number in the Join column indicates the situations where two existing vertices from

two separate trees connect and the two trees are merged. There are four possibilities with

this type of connection : (1) two RN from two trees connect ; (2) one vertex of the small tree

connects to the RN of the big tree ; (3) the RN of the small tree connects to one vertex of

the big tree ; and (4) two vertices from two trees connect. The RN changes only in the third

and fourth possibilities. Table 4.3 shows these four possibilities in the datasets. The third

and fourth columns constitute the major part of the tree merging operations. Therefore, as

shown in the second section of Table 4.2, the RN of the big tree changes in 50% of cases.

The Number column in the Cycle section indicates when a new edge creates a cycle in

the tree. Most cycles occur when all the trees are established and merged into a big tree.

The MST algorithm eliminates one edge in the cycle. If the tree changes, the RN algorithm

must be run. Statistics in the Cycle section demonstrate that in less than 3% of cases the

RN changes. Indeed, in most cases the balance of the big tree does not change.

Thereafter, we analyze the position of a new vertex insertion in the existing tree and a new

78

ALGORITHM 7: ReadDataSet()

1: ν : vertex
2: ξ : vertex
3: ω : edge weight
4: Begin
5: if exist(ν)= FALSE and exist(ξ)=FALSE then
6: createTree(ν,ξ,ω)
7: else
8: if exist(ν)= TRUE and exist(ξ)=FALSE then
9: addExistTree(ν,ξ,ω)

10: id= treeId(ν)
11: χ= referenceNode(id)
12: Update RN Insertion(χ,ν)
13: else
14: if exist(ν)= FALSE and exist(ξ)=TRUE then
15: addExistTree(ν,ξ,ω)
16: id= treeId(ξ)
17: χ= referenceNode(id)
18: Update RN Insertion(χ,ξ)
19: else
20: if exist(ν)= TRUE and exist(ξ)=TRUE and treeId(ν) != treeId(ξ) then
21: Update RN Join(ν,ξ)
22: else
23: if exist(edge(ν,ξ))= FALSE then
24: modification= MST(ν,ξ,ω)
25: id= treeId(ν)
26: χ= referenceNode(id)
27: Update RN Cycle(χ,modification)
28: else
29: if weight(edge(ν,ξ)) > ω then
30: updateWeight(ν,ξ,ω)
31: end if
32: end if
33: end if
34: end if
35: end if
36: end if
37: End

79

Table 4.1 Number for each operation, from a total of one million operations

Cycle
Nodes Insertion Join Stay1 Remove2 updateEdge

Dataset1 10000 4991 2503 45449 946879 178

Dataset2 20000 9892 5052 76404 908556 96

Dataset3 30000 15005 7496 102672 874761 66

Dataset4 40000 19955 10021 125650 844322 52

Dataset5 50000 24959 12519 145733 816753 36

Dataset6 60000 29953 15022 164104 790885 36

1 the new connection stays in the loop and the other edge in the cycle
is removed by the MST algorithm.
2 the new connection has the highest weight in the cycle and is removed
by the MST algorithm

edge insertion in the join/cycle. When a new vertex connects to the RN of an existing tree

directly, the RN does not change (Eq. 4.5). Therefore, the number of RN changes depends

on the insertion position of the new vertex. In Table 4.4, the Insertion section presents the

total of number of insertions, the number of updated vertices, and the average distance from

the new connection to the RN. As shown, for the first dataset of 10000 nodes, a new vertex

insertion causes 18 updates along the propagation path to RN, on average. As Table 4.2

illustrates, the RN changes in only 15% of cases.

As shown in Table 4.3, most cases are associated with trees joining, where two vertices

from two trees connect (ms − eb). In this case, the update is performed from the small tree

RN to ms and from eb to the big tree RN. As Table 4.4 illustrates, the range of average

updates for Dataset1 to Dataset6 is 20-36.

As mentioned, in the Cycle case, updates are performed along three paths : Small, Orphan,

and Extended. When the cut() and add() operations are performed on the same side of the

RN, there is no ”extended path”. As shown in Table 4.4, on average, 75.5 and 145 updates

are performed when there are 10000 and 60000 nodes respectively.

80

T
ab

le
4.

2
T

h
e

re
su

lt
of

p
ro

p
os

ed
al

go
ri

th
m

fo
r

si
x

d
at

as
et

s
in

te
rm

of
R

N
ch

an
ge

s

In
se

rt
io

n
J
oi

n
C

y
cl

e
N

u
m

b
er

1
w
in
R
N

2
%

lo
se
R
N

3
%

N
u
m

b
er

4
w
in
R
N

%
lo
se
R
N

%
N

u
m

b
er

5
w
in
R
N

%
lo
se
R
N

%

D
a
ta
se
t 1

49
91

73
2

15
%

42
59

85
%

25
03

14
64

58
%

10
39

42
%

45
44

9
11

86
3%

44
26

3
97

%

D
a
ta
se
t 2

98
92

14
35

14
%

84
57

86
%

50
52

29
72

70
%

20
80

30
%

76
40

4
12

59
2%

75
14

5
98

%

D
a
ta
se
t 3

15
00

5
22

70
15

%
12

73
5

85
%

74
96

44
39

59
%

30
57

41
%

10
26

72
15

08
2%

10
11

64
98

%

D
a
ta
se
t 4

19
95

5
29

86
15

%
16

96
9

85
%

10
02

1
58

47
58

%
41

74
42

%
12

56
50

13
65

1%
12

42
85

99
%

D
a
ta
se
t 5

24
95

9
36

75
15

%
21

28
4

85
%

12
51

9
72

98
58

%
52

21
42

%
14

57
33

14
32

1%
14

43
01

99
%

D
a
ta
se
t 6

29
95

3
43

73
15

%
25

58
0

85
%

15
02

2
88

39
59

%
61

83
41

%
16

41
04

17
76

1%
16

23
28

99
%

1
T

h
e

to
ta

l
n
u
m

b
er

of
ca

se
s

w
h
er

e
a

ve
rt

ex
is

ad
d
ed

to
an

ex
is

ti
n
g

tr
ee

.
N

ot
e

th
at

ot
h
er

ca
se

s
b

el
on

g
to

tw
o

n
ew

ve
rt

ex
co

n
n
ec

ti
on

s,
w

h
ic

h
fo

rm
a

n
ew

tr
ee

.
In

a
re

ce
n
t

ca
se

,
on

e
of

th
e

ve
rt

ic
es

w
as

se
le

ct
ed

as
th

e
R

N
an

d
th

er
e

w
as

n
o

co
m

p
u
ta

ti
on

p
er

fo
rm

ed
to

fi
n
d

it
.

2
T

h
e

n
u
m

b
er

of
ca

se
s

w
h
er

e
R

N
ch

an
ge

s.
3

T
h
e

n
u
m

b
er

of
ca

se
s

w
h
er

e
R

N
d
o
es

n
ot

ch
an

ge
.

4
T

h
e

n
u
m

b
er

of
ca

se
s

w
h
er

e
tw

o
tr

ee
s

m
er

ge
in

th
e

fo
re

st
.

5
T

h
e

n
u
m

b
er

of
ca

se
s

w
h
er

e
an

ed
ge

m
ak

es
a

cy
cl

e
in

on
e

of
th

e
tr

ee
s

in
th

e
fo

re
st

.

81

Table 4.3 The status of join operation

RNs −RNb mi −RNb RNs − ei mi − ei
Dataset1 0 190 80 2233
Dataset2 0 440 161 4451
Dataset3 0 595 232 6669
Dataset4 0 819 339 8863
Dataset5 0 1035 420 11064
Dataset6 0 1238 474 13310

4.7.3 Performance evaluation

Firstly, we analyze and compare the previous and the proposed incremental approaches

in terms of execution time. The previous approach calculated the summation of shortest

paths from each node to each other node. Eventually it selects the node with minimum sum

as the Reference Node. Although, it is applicable for offline analysis, where the reference

node is found only once, it would be costly for online analysis where the reference node

should be recomputed for every change in the network. As shown in Figure 4.5, updating the

reference node in a dynamic network with 10000 nodes and one million operations takes 32.53

seconds with the previous approach. The same algorithm takes 1549.92 seconds to update

the reference node in a larger network with 60000 nodes and one million operations. This

amount of the time is unacceptable for live data analysis.

The proposed new method improves the performance of live mode RN maintenance in

a dynamic network. When the tree is modified, the method incrementally propagates the

consequences of the update and recomputes the RN efficiently, ignoring unaltered parts to

find the new RN.

The proposed method has been tested under the same conditions with one million changes

in the live network. We applied the same operations on the same forests, and calculated the

proposed method’s execution time for updating the RN. As shown in Figure 4.6, our method

takes 0.34 seconds to recompute the RN in a forest with 10000 nodes. This is compared with

32.53 seconds for the previous approach on the same network. Also, our method takes 4.93

seconds to update the RN in a forest with 60000 nodes, as compared with 25 minutes and

49.92 seconds with the previous approach.

LTTngTop [8] was used to analyze the performance of the proposed method in terms

of page fault rate. This tool displays various system metrics in real time extracted from a

detailed operating system trace. The trace is produced with low overhead by LTTng [30] and

analyzed directly in the shared memory buffers by LTTngTop, without the need to write the

trace to disk. Figure 4.7 illustrates a gradual increase in the number of page faults with an

82

T
ab

le
4.

4
N

u
m

b
er

of
d
es

ce
n
d
an

tS
iz

e
u
p

d
at

e
in

ea
ch

op
er

at
io

n

In
se

rt
io

n
J
oi

n
C

y
cl

e
A

v
g.

D
is

ta
n
ce

A
v
g.

D
is

ta
n
ce

A
v
g.

D
is

ta
n
ce

N
u
m

b
er

U
p

d
at

e
to

R
N

N
u
m

b
er

U
p

d
at

e
to

R
N

N
u
m

b
er

U
p

d
at

e
to

R
N

D
a
ta
se
t 1

49
91

89
98

5
18

25
03

50
93

0
20

45
44

9
34

31
77

3
75

.5

D
a
ta
se
t 2

98
92

24
68

27
25

50
52

12
88

18
25

.5
76

40
4

76
14

99
6

10
0

D
a
ta
se
t 3

15
00

5
36

69
67

24
74

96
19

18
11

26
10

26
72

12
25

04
93

11
9

D
a
ta
se
t 4

19
95

5
51

31
53

26
10

02
1

27
54

19
27

.5
12

56
50

15
74

07
73

12
7

D
a
ta
se
t 5

24
95

9
76

24
60

31
12

51
9

39
84

19
32

14
57

33
18

80
40

27
12

9

D
a
ta
se
t 6

29
95

3
10

18
79

2
34

15
02

2
54

09
92

36
16

41
04

23
82

24
48

14
5

83

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

 10000 20000 30000 40000 50000 60000

M
ic

ro
s
e

c
o

n
d

Number of Nodes

Figure 4.5 Execution time for recomputing the RN as a graph with an increasing number
of updated vertices. The updating sequences contain one million operations, consisting of
Insertion, Join, Cycle, and updateEdge, in a forest. The previous algorithm measured here
has a complexity of O(n2)

.

increase in the number of nodes from 10000 to 60000. The minor page faults go from 9090

for 10000 nodes to 12894 for 60000 simulated nodes with the proposed algorithm. During RN

computation, the proposed approach incurs almost no major page faults, while the previous

approach sustained more than 5 major page faults per second.

Figure 4.8 illustrates the memory usage of the proposed method. It shows a gradual

increase in memory usage with the number of simulated nodes, growing from 9.2 MB for

10000 nodes to 12.2 MB for 60000 simulated nodes. The amount of memory scales nicely

with the size of the problem.

4.8 Conclusion

In this paper, we have presented a method to maintain the reference nodes in a dyna-

mic forest. A valuable research contribution is presented by introducing a novel method for

the online analysis of new vertex insertion, tree merging, and cycle handling in a forest,

with O(log n) average time complexity per operation, where n is the number of nodes in

84

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 10000 20000 30000 40000 50000 60000

T
im

e
 (

M
ic

ro
s
e

c
.)

Number of Nodes

Figure 4.6 Dynamic Time RN : running time on a random graph with an increasing number
of vertices plotted using an algorithm with a complexity of O(log n). Updating sequences
contained one million operations including Insertion, Join, Cycle, and updateEdge, in a forest

the network. In short, the proposed method improves performance, thanks to its ability to

incrementally process updates in evolving trees in the forest. The previous method suffers

from the cost of checking the whole forest, even when there has been no change after tree

modification has been performed several times. After a large number of modifications have

been made, and a sparse forest has grown into a large tree, the performance improvements are

even greater. One of the most interesting use cases of the proposed method is synchronization

in dynamic wired or wireless networks.

85

 9000

 9500

 10000

 10500

 11000

 11500

 12000

 12500

 13000

 0 10000 20000 30000 40000 50000 60000 70000

N
u
m

b
e
r

o
f
p
a
g
e
 f
a
u
lt
s

Number of Nodes

Figure 4.7 The rate of page faults with the proposed method : running time increases linearly
with the number of nodes.

 9

 9.5

 10

 10.5

 11

 11.5

 12

 12.5

 10000 20000 30000 40000 50000 60000

M
 B

y
te

Number of Nodes

Figure 4.8 The memory usage of the proposed method ; the running time increases linearly
with the number of nodes.

86

CHAPTER 5

Paper 3 : LIANA : Live Incremental Time Synchronization of Traces for

Distributed Systems Analysis

Masoume Jabbarifar and Michel Dagenais

5.1 Abstract

Tracing and monitoring tools, and other similar analysis tools, add new requirements

to the old problem of coping with asynchronous clocks in distributed systems. Existing ap-

proaches based on the convex hull can achieve excellent accuracy for a posteriori analysis,

but impose a significant cost and latency when used in live mode and over large clusters.

We propose a novel method, LIANA (Live Incremental Asynchronous Network Analysis), for

incrementally computing the clock offset, and updating it as the network evolves, along each

communication link, as well as selecting the best synchronization paths and time reference

node. Each connection in a network requires message exchanges to compute the clock skew

and offset between two connected nodes. This method relies on the trace events recorded for

the existing TCP/IP traffic between nodes. After computing the offset and its accuracy for

every connection in the network graph, a minimum spanning tree is computed. The edges

with the best accuracy are selected and form the spanning tree. Then, a central node is se-

lected as the time reference to optimally compute the offset from any node to this reference

node. LIANA is efficient, both in terms of synchronization accuracy and time complexity.

The method, which is used for online distributed trace synchronization, has been evaluated

in realistic scenarios with a diverse set of network topologies and traffic. We show that LIANA

generates precise results highly efficiently, which makes it suitable for large cloud-distributed

systems.

5.2 Introduction

Distributed systems provide a versatile computing platform for a number of applications,

such as routing algorithms in telecommunications networks, banking systems, and aircraft

control systems, as well as in scientific computing, including cluster and grid computing. These

systems are typically monitored to detect and debug problems. Tracing tools are often the

preferred monitoring method, since they can record detailed information for each individual

system which can then be analyzed. In clusters, a large task is often divided into many

87

smaller tasks distributed throughout the cluster. So, in order to monitor the functionality

of a distributed system, information from each node in the cluster is collected, merged, and

then processed. The result is a huge flow of traced events, timestamped at the nanosecond

level, but using each node’s independent clock. Synchronizing events from a stream of this

scale is the main challenge addressed in this paper.

Because of the large scale of the data stream, data buffering space limitations, and the

need for timely results, live analysis is required in many cases. This explains the need for

the efficient and accurate streaming mode synchronization of distributed traces. The method

presented in this paper is motivated by a novel online tracing and monitoring system called

LTTng. This system requires the accurate synchronization of traces from nodes in large

infrastructures at cloud computer scale.

A computer cluster consists of many individual computers from which traces can be

extracted. As each computer starts to communicate with other computers, the network links

become visible in the traces through packet send and receive events. Initially, these links form

several subgraphs and, as new links are exercised and appear in traces, subgraphs are joined

together and may eventually become one large connected graph for the whole cluster. For

each link, a clock offset and skew between two connected nodes can be computed, along with

bounds on its inaccuracy. For distributed trace analysis purposes, a reference node needs

to be identified, and the offset and skew for each node with respect to the reference node

needs to be computed. A Spanning Tree (ST) of computers is formed incrementally, with

edges (links with their associated inaccuracy) being added as packets are exchanged between

new pairs of computers. The ST algorithm eliminates highly inaccurate redundant links and

prevents cycling. A time reference node is selected, and may change as links are added. Then,

events from different nodes can be compared by looking up the clock offset and skew with

the reference node along the ST.

Our objective was to design and implement a high-speed method for synchronizing distri-

buted traces. We use splay trees to store the dynamic graph of traced nodes. This dynamic

graph handles variations over time in the inaccuracy of the offset computation between nodes.

As new packets are exchanged, either new links are added to the graph or the inaccuracy

associated with a link decreases. As a result, the ST may be updated and a new reference

node selected.

The main contribution of this work is that the new method works incrementally, sup-

porting the live analysis of streaming mode traces. Moreover, it achieves higher performance

than previous methods in both streaming mode and batch mode, while retaining the pro-

perty of computing skew and offset with optimal inaccuracy bounds. This new scheme quickly

identifies the few accurate packets that will improve the inaccuracy bound in O(1) average

88

time for processing each packet receive or send event. Once the accuracy of a link has been

updated after one of the few accurate packets has been found, the ST is updated as needed

in O(log n) amortized time, n being the number of nodes, using the splay tree algorithms.

Finally, dynamic time reference node selection is updated incrementally, which takes O(log

n), on average.

In section 5.3, we examine related work in this area, and in section 5.4 we provide termi-

nology and background. In section 5.5, we detail the new proposed algorithms, and in section

5.6, we present our experimental results. Finally, in section 5.7, we conclude the paper and

discuss possible future work.

5.3 Related Work

Duda et al. [37] proposed the Linear Regression and Convex-Hull algorithms for offline

clock synchronization. The Linear Regression algorithm provides a fairly accurate synchroni-

zation approach [58] ; however, because the Convex-Hull algorithm is based on the fact that

packet send and arrival times impose bounds on the clock offset and skew, it guarantees the

highest level of synchronization accuracy [59]. In [14], the timestamps are corrected using

the shortest round trip delays between the packets exchanged. Moon et al. [82] use a Linear

Programming algorithm to estimate the one-way delay between two nodes.

Zhang et al. [104] discuss the estimation and removal of the relative clock skew based

on delay measurements. Their method, like ours, uses the Convex-Hull algorithm for online

and offline clock synchronization. However, they scan through the measurement points in

increasing order, store the lower Convex-Hull points, and then estimate the clock skew at the

end of each interval. Since they use a time interval to gather the connection information for

skew removal, their approach takes a time O(n) at each interval, or O(n2) globally. However,

it also adds a latency of up to one interval, since the computation is postponed to the end

of each time interval. By contrast, our scheme updates the bounding hull and clock skew

incrementally, and filters out points that may lie on the Convex-Hull temporarily, but cannot

affect the skew computation, leading to O(1) time complexity per packet processed and O(n)

globally, without postponing the computation.

Khlifi et al. [63] proposes two algorithms to remove the skew during offline trace analysis.

The first algorithm, average, computes the average delay for a fixed number of consecutive

packets at the beginning and end of a trace. This algorithm works with a constant O(1)

complexity. The second technique, direct skew removal, has the interesting property of being

able to account for low clock resolution, where the clock granularity may be larger (e.g.

1ms) than the packet delay. To achieve this, it analyzes the whole trace for a linear O(n)

89

complexity. While efficient, these two algorithms do not provide the same accuracy as the

Convex-Hull method.

None of these synchronization approaches, including our proposed method, requires addi-

tional network messages to estimate the linear clock deviations between two nodes. A number

of other online synchronization methods, such as Elson et al.’s schema [40], rely on broad-

casting synchronizing packets. Likewise, in [89], the proposed algorithm generates additional

network traffic to estimate and compensate for the timestamping delay and the network laten-

cies. However, for most real-time applications, a synchronization method without additional

network traffic load is preferred.

In a distributed system with more than two nodes, synchronization is performed along

a Minimum Spanning Tree (MST), in order to decrease time conversion errors. Kruskal’s

algorithm [23] computes the MST in a time of O(m log n), where m and n are the number

of edges and vertices respectively. The edges are placed in a priority queue in this algorithm.

The algorithm extracts the lowest edge from the queue and adds it to the MST, unless it

forms a cycle, in which case it is discarded. This procedure is repeated until the MST has n-1

edges, which means that all the vertices are reached through the MST. For online purposes,

various algorithms are available to maintain changes in a dynamic tree [23, 98]. Among them,

the algorithms presented in [19, 51] update the MST in a time of O(log n). We use these

algorithms in our approach to synchronize distributed traces.

The next generation Linux Trace Toolkit (LTTng) tracks performance and debugging

problems. Tracing across multiple systems in a cluster helps uncover various problems which

are hard to find [29, 31]. Trace events are recorded based on the local system clock. Since

every system has its own clock in a distributed system, a practical synchronization approach

is required to order events based on a single reference time. Properly ordered events simplify

the analysis of distributed systems [56]. The characteristics of clock skew and drift, and their

estimation, have been studied in [22, 29, 75]. Then, Poirier et al. [85] proposed an efficient

and accurate algorithm for offline trace synchronization based on the Convex-Hull algorithm.

However, their method is not efficient for online analysis purposes.

5.4 Terminology and background

In this section, we introduce the terminology used in the remainder of the paper, and we

formalize the definition of the clock skew.

Time offset, frequency offset, and frequency offset rate are parameters that describe the

behavior of a clock, and these differ from one clock to another. The trajectory of the time

offset can be modeled by the following equation [39] :

90

∆T (t) = β(t0) + α(t0)(t− t0) + `(t− t0)2+ ∈ (t) (5.1)

∆T (t) Time offset at time t

β(t0) Initial offset

α(t0) Frequency offset

` Frequency drift

∈ (t) Other factors, particularly random perturbations

Equation 5.1 shows that clock inaccuracies are caused by a combination of various factors.

Over relatively short intervals, many algorithms consider that only the initial offset and the

frequency offset are significant. We refer to this as the ”linear clock approximation”. Taking

this approximation into account, equation 5.1 can be simplified to :

∆T (t) = β(t0) + α(t0)(t− t0) (5.2)

Finding the time offset between a node clock and a virtual perfect clock becomes a matter

of identifying two factors in a linear equation. It follows that the offset between two real clocks

can also be modeled as a linear function. For the rest of this paper, we estimate a function

that maps the time on clock A to the time on clock B as follows :

CA(t) = α0 + α1CB(t) (5.3)

Moreover, the structure of a trace can be illustrated as follows :

T = (drift, offset, start time from TSC, events)

events = (e1, e2, e3, ..., en)
(5.4)

Let us assume that there are two traces in a distributed system, T0 and T1, on computers

C0 and C1 respectively. Two event types are considered for time synchronization : (i) sending

a message ; and (ii) receiving a message. Let us denote by θi the time when C0 sends message

i to C1, and by ξi the time when C1 receives message i from C0.

m(i) : T0(θi) 7→ T1(ξi) (5.5)

The timestamp for the sent message is stored in T0 and the timestamp for the received

message is stored in T1. θi and ξi are based on the local time of C0 and C1 respectively. In

addition, C1 sends message j to C0, and θj is the time when C0 receives message j from C1.

m(j) : T1(ξj) 7→ T0(θj) (5.6)

91

Each trace contains sent (S) and received (R) message timestamps, based on local time,

as expressed by the following sets :

T0.events = (θSi , θ
R
j , ...)

T1.events = (ξRi , ξ
S
j , ...)

i, j = 1, 2, 3, ...

(5.7)

As shown in sets T0 and T1,
−−−−−→
(θSi , ξ

R
i) is the first pair of send-receive times for the message

sent by C0 to C1, and
←−−−−−
(θRj , ξ

S
j) is the second pair of send-receive times for the message sent

by C1 to C0. If the event timestamps of T0 are considered as reference times, this gives us

the following equation :

CT0(t) = θS

CT1(t) = αθS + β
(5.8)

5.5 Methodology

Dealing with streaming data involves many challenges. Since long-term buffering of strea-

med data incurs an unacceptable cost in many cases, the stream should be scanned and

analyzed in a timely fashion. Ideally, an online synchronization method should be efficient, in

terms of both time and memory. Another challenge is to ensure that the method is scalable

to a large number of nodes, has low latency, and so generates its results quickly and maintains

good synchronization accuracy over time.

5.5.1 Two-node synchronization

The method proposed in [57] synchronizes every connection between two nodes incre-

mentally with a method based on the Convex Hull algorithm, which estimates a conversion

function between the clocks of a pair of traced computers. Figure 5.1 illustrates the sent

and received packets in a two-dimensional chart based on the source and destination clocks.

The main features of this incremental approach to synchronizing two nodes are summarized

in this subsection, in order to explain how it fits into the complete cluster synchronization

process proposed in this article.

The set {
−−−−−→
(θSi , ξ

R
i),
−−−−−−−→
(θSi+1, ξ

R
i+1), ...} shows the sent packets from computer θ to computer

ξ, and the set {
←−−−−−
(θRj , ξ

S
j),
←−−−−−−
(θRj+, ξ

S
j+1), ...} shows the sent packets from computer ξ to computer

θ. Since there is no message inversion in a normal connection, these two sets are completely

separate.

The Convex-Hull algorithm uses maximum received times and minimum sent times, i.e.

92

packets with minimum latency, in order to accurately synchronize connections. The packets

with minimum latency are those of interest in the Convex-Hull synchronization algorithm.

In Figure 5.1, packets sent from θ (horizontal axis) to ξ (vertical axis) occupy the upper left

half-plane and are shifted higher when more network latency was encountered. Therefore, the

lower half-hull, of the Convex-Hull formed by those points, is a lower bound for the packets

sent from θ and identifies the packets with the lowest latency. Similarly, packets sent from

ξ (vertical axis) to θ (horizontal axis) occupy the lower right half-plane and are shifted to

the right when more network latency was encountered. Therefore, the upper half-hull, of the

Convex-Hull formed by those points, is an upper bound for the packets sent from ξ and

identifies the packets with the lowest latency. The possible synchronization lines lie below

the lower half-hull of packets sent from θ and above the upper half-hull of packets sent from

ξ.

This means that the lower bound of the sent packets and the upper bound of the packets

received by computer θ determine the possible range for the linear clock function. Graham’s

scan forms these two sets and their bounds. The formula 5.9 shows the corresponding pairs

in each bound in Figure 5.1.

UpperBound = {
←−−−−−
(θR1 , ξ

S
1),
←−−−−−
(θR4 , ξ

S
4),
←−−−−−
(θR5 , ξ

S
5)}

LowerBound = {
−−−−−→
(θS1 , ξ

R
1),
−−−−−→
(θS3 , ξ

R
3),
−−−−−→
(θS4 , ξ

R
4),
−−−−−→
(θS6 , ξ

R
6)}

(5.9)

We see that this algorithm ignores inaccurate pairs (
−−−−−→
(θS2 , ξ

R
2),
−−−−−→
(θS5 , ξ

R
5),
←−−−−−
(θR2 , ξ

S
2),
←−−−−−
(θR3 , ξ

S
3)),

which are packets delayed by interrupts, network switches, etc.

In the next step, the Convex-Hull algorithm attempts to draw two lines. One line has a

maximal slope, Lmax, and the other has a minimal slope, Lmin, as illustrated in Eq. 5.10. The

final estimation line is the line that bisects Lmax and Lmin.

Lmax = αmaxθ + βmin

Lmin = αminθ + βmax
(5.10)

As mentioned, the Convex-Hull algorithm uses the exchanged packets with minimum

latencies and ignores the other packets. The basic idea of the Fully Incremental Approach

[57] is to benefit from this specific feature of the Convex-Hull algorithm, by selecting accurate

packets that strengthen the bounds. It proposes a novel online synchronization method for

two connected computers. Online synchronization starts as soon as enough exchanged packets

are found. Synchronization accuracy then improves over time, as more accurate packets are

received.

Synchronization accuracy is the difference between the drift of two lines with maximum

and minimum slopes (Lmax and Lmin).

93

â�
�t
ξâ

��

â��tθâ��

â��(θR
1,ξ

S
1)â��

â��(θR
2,ξ

S
2)â��

â��(θR
3,ξ

S
3)â��

â��(θR
4,ξ

S
4)â��

â��(θR
5,ξ

S
5)â��

â��(θS
1,ξ

R
1)â��

â��(θS
2,ξ

R
2)â��

â��(θS
3,ξ

R
3)â��

â��(θS
4,ξ

R
4)â��

â��(θS
5,ξ

R
5)â��

â��(θS
6,ξ

R
6)â��

â��Lmaxâ��

â��Lminâ��

â��Cξ(tθ)â��

â��βmaxâ��

â��βminâ��

Figure 5.1 Convex-Hull method.

Accuracy = Lmax.drift− Lmin.drift (5.11)

Consequently, the Fully Incremental Approach only examines the exchanged packets that

impact one of these lines, narrowing the gap between the minimum and maximum lines. These

packets are called accurate packets in this approach. A packet is accurate when it is placed

either below line Lmax or above line Lmin. For example, in Figure 5.2a,
−−−−−→
(θS7 , ξ

R
7) is an accurate

packet sent from computer θ to computer ξ, which moves Lmax to the new position in Figure

5.2b. However, packets
−−−−−→
(θS5 , ξ

R
5),
−−−−−→
(θS6 , ξ

R
6)) suffered increased latency in reaching computer ξ,

and they do not lower Lmax or improve accuracy, and so they are ignored.

In summary, the Fully Incremental Approach updates the drift and offset, and the asso-

ciated accuracy, between the traces on two nodes, and always guarantees the best accuracy

during live tracing. Moreover, unlike the classic Convex-Hull algorithm, it not only retains

the packets that lie on the Convex-Hull, but also affects Lmax or Lmin. The updated drift and

offset are computed immediately when Lmax or Lmin are affected, which is not the case in the

window-based approaches, where the evaluation is postponed to the end of each window [57].

The immediately available updates on the drift, offset, and accuracy of this approach are fed

into the proposed new cluster synchronization approach, as detailed in the next subsections.

94

â�
�t
ξâ

��

â��tθâ��

â��(θR
1,ξ

S
1)â��

â��(θR
2,ξ

S
2)â��

â��(θR
3,ξ

S
3)â��

â��(θS
1,ξ

R
1)â��

â��(θS
2,ξ

R
2)â��

â��(θS
3,ξ

R
3)â��

â��(θS
4,ξ

R
4)â��

â��(θS
5,ξ

R
5)â��

â��(θS
6,ξ

R
6)â�� â��(θS

7,ξ
R
7)â��

â��Lmaxâ��

â��Lminâ��

â��Cξ(tθ)â��

â��βmaxâ��

â��βminâ��

(a) The accurate packet position before updating the synchronization

â�
�t
ξâ

��

â��tθâ��

â��(θR
1,ξ

S
1)â��

â��(θR
2,ξ

S
2)â��

â��(θR
3,ξ

S
3)â��

â��(θS
1,ξ

R
1)â��

â��(θS
2,ξ

R
2)â��

â��(θS
3,ξ

R
3)â��

â��(θS
4,ξ

R
4)â��

â��(θS
5,ξ

R
5)â��

â��(θS
6,ξ

R
6)â��

â��(θS
7,ξ

R
7)â��

â��Lmaxâ��

â��Lminâ��

â��Cξ(tθ)â��

â��βmaxâ��

â��βminâ��

(b) Synchronization based on the accurate packet position

Figure 5.2 Fully Incremental Approach

95

5.5.2 Multi-hop synchronization

Since synchronization is performed using streaming data from a cluster, the idea is to

maintain a synchronization graph dynamically. Edges are added when new nodes start com-

municating, and edge weights (synchronization accuracy between two nodes) are updated

when more accurate packets are received.

A Minimum Spanning Tree (MST) in the graph is maintained, and a root with the mini-

mum cost path to all the other nodes is selected as the time reference node. This way, links

with the best accuracy are retained and used to compute the drift and offset from any node

to the reference node.

The MST can change in three different situations : (i) a new computer connects to the

network and starts tracing, adding a vertex ; (ii) a new connection is created between two

existing computers in the network, and a new edge is added and may affect the MST, and

possibly the time reference node as well ; (iii) a more accurate packet is received, improving

the accuracy of the weight of an edge, which can lead to updating of the MST and possibly

of the time reference node as well.

MST algorithms, such as Kruskal’s algorithm, work efficiently with static trees and take

a time of O(m log n), on average, where m is the number of edges and n is the number of

vertices. We call this a non incremental approach.

Changes occur frequently in online analysis, and the MST should be updated accordingly.

Repeatedly applying a non incremental approach would be inefficient, leading to a complexity

of O(m2 log n). The performance of streaming synchronization is improved using an incre-

mental MST algorithm. When a change to the graph is made, a new edge may be added or

the weight of an edge not on the MST may be reduced. In either case, the edge is added

to the MST for consideration (as shown in Figure 5.3a). The MST is splayed, so that one

of the nodes connected to the new edge becomes the root of the tree, as shown in Figure

5.3b (Splay(h) : parent(g) = h, parent(e) = g, parent(a) = e). In this way, the cycle created

by the new edge is quickly identified. Then, the edge with maximum weight in the cycle is

removed from the MST. This process is performed in an amortized time of O(log n).

A data structure for the Minimum Spanning Tree (MST) is maintained throughout the

sequence of updates. We designed it based on the dynamic tree data structure proposed by

Sleator and Tarjan [98]. The proposed structure is implemented as a splay tree (ST-tree) [97].

These authors also consider another data structure, the None Tree (NT), which they use to

account for increasing and decreasing weights in their graph. However, this structure is not

applicable in our case, where the clock skew estimation can only improve as more accurate

packets are received.

96

(a) A new connection between nodes h and k in MST,
which creates a cycle

(b) Splaying on node h to move it to the root

Figure 5.3 Fully Incremental Approach

Splaying Process

The splaying process is designed to optimize the updating of the MST based on the

frequent changes in a dynamic tree. It starts from an arbitrary state and restructures itself

when a new operation occurs. This process runs from either of the two nodes with the updated

connection. To splay a tree, we run a recursive schema on the specific node until it becomes

the root of the tree.

We start from node x and check whether or not parent(x) is the root of the tree. When

parent(x) is not the root, we splay at parent(x) and check whether or not grandparent(x)

is the root of the tree. This procedure continues until we find an ancestor(x) in the path

between x and the root of the tree and splay at the link from ancestor(x) to the root.

When parent(x) is the root, splaying is completed by everything the edge linking x and

parent(x). Since any node in the tree may have more than two connections, we keep the same

children for nodes x and parent(x), and only the parent-child edge of node x is reversed.

In Figure 5.3a, we start from node h and find node e, ancestor(h), whose parent (node a)

is the root of the tree. Splaying is performed between e and parent(e), and node e becomes

the root. Then, splaying is pursued between g and parent(g), which is the new root (node e).

In this step, node g becomes the root of the tree. Splaying is not completed yet, however. In

the last step of the splay process, the parent of the specified node becomes the root. Here,

parent(h), node g, is the root. Therefore, the last splaying step consists in splaying the edge

97

linking node h and parent(h), node h becoming the root.

ALGORITHM 8: Dynamic Minimum Spanning Tree Maintenance

Require: ν : vertex
Require: ξ : vertex
Require: ω : edge weight (sync. accuracy)

1: if exist link(ν, ξ) then
2: update weight(ν,ξ,ω)
3: else
4: if ¬exist vertex(ν) and ¬exist vertex(ξ) then
5: Id= create Tree()
6: add Exist Tree(ν,ξ,ω,Id)
7: RN= ν
8: else
9: if

(exist vertex(ν) and ¬exist vertex(ξ)) or (¬exist vertex(ν) and exist vertex(ξ))
then

10: if exist vertex(ν) then
11: id= tree Id(ν)
12: else
13: id= tree Id(ξ)
14: end if
15: add Exist Tree(ν,ξ,ω,Id)
16: update RN Insertion()
17: else
18: if treeId(ν) = treeId(ξ) then
19: cycle(ν,ξ,ω,tree Id(ξ))
20: update RN Cycle()
21: else
22: join(ν,ξ,ω,tree Id(ν),tree Id(ξ))
23: update RN Join()
24: end if
25: end if
26: end if
27: end if

The algorithm 8 illustrates the method for dynamically maintaining the MST. First, it

checks the existence of the (ν, ξ) link in the data structure (line 1). Then, we update that

weight (ωt). In fact, the receipt of a new, accurate packet between two nodes can improve

accuracy, and so diminish the inaccuracy in the weight of the corresponding edge. The new

weight must surely be less than it was previously. Moreover, if the link is already in the MST

and its weight improves, it will remain in the MST, which stays unchanged. So, we always

have :

98

t > t− 1 : ω(ν, ξ)t < ω(ν, ξ)t−1 (5.12)

If edge (ν, ξ) is not in the MST, there are four possibilities. The first is that neither of

the two vertices in the MST exists, in which case a new single edge disconnected tree is

formed (line 4-8). The second is that one of the two vertices is already in the MST. The new

edge connects the new vertex, resulting in an enlarged MST (line 9-17). The third is that

both vertices exist in the MST. If the two vertices belong to the same tree, the new edge

forms a cycle, which requires the removal of the edge within the cycle with the largest weight

(line 18-21). Otherwise, when those vertices are not in same tree, the new edge connects two

separate trees (line 21-24).

5.5.3 Dynamic Reference Node

In a distributed system, computers are often synchronized with a time server using a

protocol such as NTP. The granularity of that synchronization is usually coarser than what

is required to compare events with nanosecond-level timestamps between different traces.

Moreover, the clients and servers under study and being traced may be using different time

servers. For this reason, we derive the clock offset and drift directly from the trace information,

and build a synchronization MST structure based on the network links with the best accuracy.

To do so, we also need to dynamically select a time reference node (RN) in the MST, which

is used to display all the events and state timelines in trace viewing tools using a common

time reference. We use an efficient incremental algorithm to update the RN, as proposed in

[55]. We summarize this approach here and explain its integration into the new proposed

cluster synchronization approach.

The incremental RN selection must handle three different cases, depending on the possible

updates to the MST. First, when a new node connects to the current network, the balance of

the network may change (Algorithm 8 line 16), and the RN selection may be affected. Second,

when an edge is added to existing nodes in the MST, a cycle is generated and an edge along

the cycle must be removed, altering the MST topology and the selection of the RN. This

may happen either because of a new connection between two existing nodes, or a change in

the accuracy of an old connection (Algorithm 8 line 20). In fact, when the accuracy of an old

connection improves over time, the MST algorithm adds it as a new edge and eliminates a

link with maximum inaccuracy in the related cycle. Third, when two unconnected networks

are joined by a new connection, the RN selection is also affected (Algorithm 8 line 23).

For all possible network updates, and the associated dynamic recomputation of RN, a

small and constant number of operations is required at each node along the path affected

99

(from the new edge to the existing RN). In a perfectly balanced network, the worst case and

average path length is O(log n). It has been demonstrated that the average depth of a tree

with n computers is O(log n) [23]. Therefore, the average complexity of our proposed method

is no larger than O(log n).

5.5.4 Synchronization Factor Propagation

As described earlier, some MST updates cause RN changes. With such a change, the

time conversion parameters with respect to the reference node may change, for all the traced

nodes in the network, because of these updates. In some applications, the MST is used as is

as needed. In that case, when the time difference between a node and the RN is requested,

the time conversion parameters along the path from the node to the RN are combined. In

other applications, we must store and update the time conversion parameters with respect

to the RN at each node. This latter case is examined here.

The algorithm 9 illustrates the three possible cases for updating the time conversion para-

meters. In the first case (lines 1-3), the MST and RN are fixed, but the accuracy associated

with one edge is improved. This update also affects the children of the modified edge.

In the second case, the MST changes while either a new node connects to the network or

the accuracy of a current connection improves, but the RN remains the same. When a new

node or a new subtree connects to the network, the new node or subtree requires updates to

their conversion parameters. Otherwise, a new connection between two existing nodes in the

MST results in a cycle. Figure 5.4 shows this situation and the cut required to update the

MST. The update area is outlined in Figure 5.4. The path from ci+1 to ai and all the children

of ais have their conversion parameters updated (lines 4-7). Moreover, the nodes from ai+1 to

the node before the new RN has been inserted also update their synchronization parameters

with respect to the new RN. However, other paths with ci as starting point do not require

updates.

In the third case (lines 8-10), both the MST and the RN change. This is the worst case,

where all the nodes in the related graph update their conversion parameters with respect to

the new RN.

5.6 Experiments and evaluation

5.6.1 Simulation experiments

The proposed schema is applicable to large-scale computer clusters, including cloud and

grid computer environments. To validate the proposed approach, we simulated a large scale

100

Figure 5.4 A general example of a resynchronization area when the MST changes

ALGORITHM 9: Dynamic Synchronization Factor Propagation

Require: = : MST status
Require: < : RN status

1: if = = Static and < = Static then
2: convertPath(child(ei))
3: else
4: if = = changed and < = Static then
5: reversePath(ci+1)
6: convertPath(child(ai))
7: else
8: if = = changed and < = changed then
9: convertPath(all)

10: end if
11: end if
12: end if

101

consisting of 60,000 nodes with a dataset containing one million operations. Then, we expe-

rimented with the schema in this environment. The following subsections present the results

of applying the proposed method to this cloud-scale computer cluster.

Simulation setup

The dataset consists of one million operations (New computer connection, Network join,

Cycle, and updateLink). Six datasets are used in this simulation, ranging from 10000 to

60000 simulated nodes, which constitutes a dynamic network. Tables 5.2 and 5.1 present the

operation statistics and MST changes.

Evaluation of schema performance in the simulated network

During online analysis, changes can occur rapidly, and the MST should be updated after

every change. As mentioned, using a non incremental method would be costly, as it requires

1.440216 seconds to find the MST once in the simulated network with 10000 simulated nodes.

As shown in Table 5.2, 992328 operations (out of one million) result in changes to the MST for

this network. This means that a non incremental approach would require more than sixteen

days to follow up on the changes.

As shown in Figure 5.5, our Fully Incremental Approach takes 0.36 seconds to update the

MST in a network with 10000 simulated nodes, compared to 16.5 days for the non incremental

approach on the same network. Moreover, the Fully Incremental Approach takes 7.79 seconds

to recompute the MST in a dynamic network with 60000 simulated nodes.

The same test conditions, which include 992328 changes to the live network, are subjected

to the Fully Incremental Approach. The same operations are tested on the same forests, and

the time to update the RN with the proposed method is measured. Figure 5.6 illustrates

that the Fully Incremental Approach takes 0.34 seconds to recompute the RN in a dynamic

network with 10000 nodes, compared with 32.53 seconds for the non incremental method with

complexity O(n2) on the same network [55]. Furthermore, it takes 4.93 seconds to update the

RN in a dynamic network with 60000 nodes, compared with 25 minutes and 46 seconds with

the non incremental RN selection approach.

5.6.2 Real world traced network

We tested our method with traces gathered in a real network cluster. This cluster is used

in many applications, such as network monitoring tools, network debugging use cases, and so

on. The traces were obtained with the next generation Linux Trace Toolkit (LTTng), which

provides the most precise traces, with low overhead, in kernel- and user space-level execution

102

Table 5.1 Number of operations by type, out of a total of one million operations

Cycle
Nodes Insertion Join Examined- Ignored- updateEdge

Link1 Link2

Dataset1 10000 4991 2503 45449 946879 178

Dataset2 20000 9892 5052 76404 908556 96

Dataset3 30000 15005 7496 102672 874761 66

Dataset4 40000 19955 10021 125650 844322 52

Dataset5 50000 24959 12519 145733 816753 36

Dataset6 60000 29953 15022 164104 790885 36

1 The new connection is evaluated by the MST algorithm, and one of the
other edges in the cycle is ignored.
2 The new connection has the highest weight in the cycle and is ignored by
the MST algorithm.

Table 5.2 Number of operations which affect and update the MST, out of a total of one
million operations

Nodes Examined-Link1 Ignored-Link2 Total

Dataset1 10000 45449 946879 992328

Dataset2 20000 76404 908556 984960

Dataset3 30000 102672 874761 977433

Dataset4 40000 125650 844322 969972

Dataset5 50000 145733 816753 962486

Dataset6 60000 164104 790885 954989

103

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 10000 20000 30000 40000 50000 60000

T
im

e
 (

M
ic

ro
s
e
c
.)

Number of Nodes

Figure 5.5 Execution time for recomputing the MST as a graph with an increasing number of
updated vertices and edges. The updating sequences contain one million operations, consisting
of Insertion, Join, Cycle, and updateEdge, in a forest. The proposed algorithm measured here
has a time complexity of O(log n)

.

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 10000 20000 30000 40000 50000 60000

T
im

e
 (

M
ic

ro
s
e
c
.)

Number of Nodes

Figure 5.6 Dynamic Time RN : running time on a random graph with an increasing number of
nodes plotted using an algorithm with a complexity of O(log n). Updating sequences contai-
ned one million operations including Insertion, Join, Cycle, and updateEdge, in a dynamic
network

104

in live streaming mode. The proposed method synchronizes the trace events from different

machines in the network with a high degree of accuracy. The synchronized information can

then be analyzed for many applications.

Experimental environment

For our method, we installed the Linux kernel, version 2.6.38−279.22.1.el6.centos.plus.lttng.x8664

(LTTng), and the tests were performed with Linux Trace Toolkit Trace Control, version

0.89-05122011. Our experimental setup consisted of 20 machines, each equipped with two

Quad-Core 2.00 GHz Intel Xeon processors with 8 GB of RAM. All the systems had one 160

GB HDD and a 6144 KB cache.

We provided 12 datasets, containing traces of different duration, ranging from 3 to 25

minutes. We examined a number of different situations in this test.

Figure 5.6 shows a map of the cluster of 20 computers used for this experiment, and their

61 connections. This graph includes all the connections exercised, which were deduced from

the traces, after 25 minutes had elapsed in the experiment. At that moment, node number 12

was selected as RN. The solid lines show the accurate connections in the current MST, which

are used to synchronize the nodes with the current RN. As the other connections, shown

with broken lines, did not belong to the current MST, they were ignored for synchronization

purposes, although some may have been part of the MST for a while and been removed when

more accurate connections appeared.

Analysis and evaluation

The 20 computers in the cluster were traced, and the results of our experiments are

illustrated in Table 5.3. Twelve datasets are presented, each of which contains 20 traces from

20 machines and with durations ranging from 3 to 25 minutes. The Node Insertion column

shows the number of new nodes connected to the existing trees. When two nodes connect

and create a new tree, they are not counted. For example, in the Total Operations column,

the first row of the Node Insertion and Tree Join columns shows 10 and 4 respectively,

which indicates that five networks have been established. Each network contains two nodes

initially, and then 10 other nodes connect to one of these 5 networks one by one. This is why

the number shown in the Node Insertion column is 10. Five separate networks join together

one by one, and eventually form one big network, so there are 4 Tree Join operations in the

related column. The MST Changes column shows the total number of MST changes (42)

during the 3 minutes of tracing.

The RN Changes column separates the reference node updates into 2 network situations :

105

Figure 5.7 Map of the computer cluster used in the experiment

Unstable States, when not all the nodes are connected together ; and Stable States, when all

the nodes connect to a single network. For instance, in the unstable state, the RN changes

twice, once, and twice for updates respectively, as a result of Node Insertion, Tree Join, and

MST Changes. In the stable states, the RN changes 14 times, as a result of MST changes,

since no more Node Insertion or Tree Join operations take place once a single network exists.

We perform the experiments with three different methods of increasing sophistication and

effectiveness.

– Non Incremental Method

The Non Incremental method, presented in [85], synchronizes traces collected a poste-

riori from a computer network with the Convex-Hull algorithm. This method starts rea-

ding events only when tracing has finished. Then, it matches related packet send/receive

events. Convex-Hulls are constructed from these packet pairs, and the time conversion

parameters are computed as the middle line between the upper and lower Convex-Hull

for each pair of communicating computers. A MST of the links with the smallest in-

accuracy is built and a RN providing the best synchronization accuracy is selected.

Finally, the trace from each computer has its time conversion parameters computed

with respect to the RN through the MST.

To apply this algorithm to streaming traces, we run the method on small intervals.

Smaller intervals reduce the latency required to obtain the synchronization parameters,

106

T
ab

le
5.

3
D

at
as

et
fe

at
u
re

s
an

d
n
u
m

b
er

of
R

N
ch

an
ge

s

T
ot

al
O

p
er

at
io

n
s

R
N

C
h
an

ge
s

T
ra

ce
U

n
st

ab
le

S
ta

te
s

S
ta

b
le

S
ta

te
s

D
u
ra

ti
on

N
o
d
e

T
re

e
M

S
T

U
p

d
at

e
N

o
d
e

T
re

e
M

S
T

N
o
d
e

T
re

e
M

S
T

(M
in

u
te

s)
In

se
rt

io
n

J
oi

n
C

h
an

ge
s

O
p

er
at

io
n
s

In
se

rt
io

n
J
oi

n
C

h
an

ge
s

In
se

rt
io

n
J
oi

n
C

h
an

ge
s

D
a
ta
se
t 1

3
10

4
42

81
41

2
1

2
0

0
14

D
a
ta
se
t 2

5
10

4
15

99
26

2
1

0
0

0
3

D
a
ta
se
t 3

7
14

2
32

11
65

7
3

1
2

0
0

5

D
a
ta
se
t 4

9
14

2
26

10
22

7
4

2
0

0
0

3

D
a
ta
se
t 5

11
16

1
24

11
78

0
4

1
2

0
0

11

D
a
ta
se
t 6

13
16

1
28

12
79

3
4

1
0

0
0

4

D
a
ta
se
t 7

15
16

1
29

13
06

7
4

1
0

0
0

7

D
a
ta
se
t 8

17
16

1
68

12
29

3
3

0
4

0
0

24

D
a
ta
se
t 9

19
16

1
40

13
67

0
1

0
0

0
0

4

D
a
ta
se
t 1

0
21

16
1

18
12

64
6

1
0

1
0

0
8

D
a
ta
se
t 1

1
23

16
1

13
13

19
5

3
0

3
0

0
5

D
a
ta
se
t 1

2
25

16
1

31
14

39
4

3
0

1
0

0
8

107

but increase the total running time, since the Convex-Hull algorithm is run more often.

Furthermore, smaller intervals contain fewer packets and have a lower synchronization

accuracy. This method, when run once at the end of 25 minutes, takes 107.24 seconds.

With 2-second intervals, the method is run 750 times and requires a total execution

time of 141.161651 seconds. The 2-second interval was deemed the maximum value

acceptable for monitoring purposes in live streaming mode.

Table 5.4 illustrates the results collected from running the Non Incremental method

in streaming mode. For example, in Dataset12 with a 25 minute trace duration, there

are 750 windows. Thus, MST, RN, and Conversion run 750 times. Since they run with

O(n3), O(n2), and O(n log n) respectively, and with the results obtained for n = 20

(number of nodes in the network), the time consumption will grow rapidly for larger

values of n and will not be suitable for live analysis.

– Incremental method

In this second approach, the Convex-Hull is built incrementally. However, when the syn-

chronization parameters are updated, the MST and RN are recomputed from scratch,

as in the Non Incremental method. Table 5.5 shows that the non incremental compu-

tation is very costly for the MST, RN, and time conversion parameters. In offline trace

synchronization, these three phases are computed only once, at an acceptable cost.

For example, when 20 traces of 25 minutes’ duration are synchronized with this method,

as shown in the last row of Table 5.5, 31 MST updates take more than 23 seconds.

Moreover, the RN selection phase takes over 500 milliseconds for just 12 updates. In

total, these three phases take more than 24.5 seconds in execution time. This is for

a very small network, and the time burden will rapidly become unbearable for a very

large network.

– Fully Incremental method

We now show the results of using the proposed method to synchronize the same traces.

Table 5.6 illustrates that we can significantly reduce the cost of synchronizing pairs and

updating the MST, RN, and time conversion parameters. For example, after 25-minute

traces, as presented in the last row, a negligible delay, around 1 millisecond in total, is

needed to update the MST, RN, and time conversion parameters. As could be expected,

these computation times seem directly correlated to the number of changes. Indeed, in

cases where there are more MST updates, the computation time increases.

Figure 5.8 shows a comparison between the Fully Incremental and the Non Incremental

methods, and the considerable improvement in pairwise synchronization performance.

Figure 5.9 compares the two methods for the complete processing, including the up-

108

dating of the MST, RN, and conversion time parameters. The slopes of two methods

grow differently over time, with the Non Incremental method being at least twice as

fast. However, for a larger number of nodes, the difference is much more dramatic, as

seen with the large simulated clusters.

Note that the number of runs is not equal in the two methods. The Non Incremental

method runs at the end of each window. There are 750 windows of 2 seconds each

during the 25 minutes. The Fully Incremental method runs whenever it finds an accurate

packet, 3012 in this 25 minute trace set. In some cases, users may want to statically

define the time reference node (RN). This brings up the interesting question of how

much accuracy is gained by dynamically computing the optimal RN. It is interesting

to see that the gain in accuracy is considerable, while the computation cost is almost

negligible, as shown in Table 5.6. Figure 5.10 shows the total synchronization accuracy

after 25 minutes when each of the 20 nodes is statically defined as RN. When the

preselected node matches the dynamically selected RN, at the 25th minute, there is

obviously no difference in accuracy at this point.

5.6.3 Discussion

Formula 5.14 represents the online synchronization cost for distributed traces :

R = Read events()

M = Matching(R)

C = Check accurate pair(M)/ ∗ Current connection ∗ /
or

Check enough points(M)/ ∗ New connection ∗ /

F = Finalize sync.(C)

= Cal(Lmax)|Cal(Lmin) + Cal(α, β))

(5.13)

109

Table 5.4 Time evaluation with the Non Incremental method

Trace Reading Matching Analyzing MST RN Conversion
Duration (sec.) (sec.) (sec.) (micro- (micro- (micro-sec.)
(3-25 Min.) sec.) sec.)
Dataset1 5.160105 2.574805 7.307259 38312 829 18793

Dataset2 11.089841 2.138869 12.60183 70052 1519 21610

Dataset3 15.097491 3.63815 17.221264 121066 2397 23971

Dataset4 19.302863 5.292982 22.026885 152329 3201 27932

Dataset5 22.531641 8.029082 26.642928 184209 4096 29210

Dataset6 25.499023 9.827137 31.94265 196593 4948 30883

Dataset7 30.334039 10.98167 36.183022 248372 5770 32915

Dataset8 33.164242 13.167896 46.622513 300733 6735 40593

Dataset9 38.76134 13.567527 47.379368 312125 7443 46232

Dataset10 43.394643 14.412027 57.448351 325389 8287 52912

Dataset11 47.506583 16.527386 60.294533 394914 9244 61756

Dataset12 51.2547709 21.9105391 68.486419 409035 10060 70983

110

Table 5.5 The MST, RN, and conversion parameter update computation time with the Non
Incremental [85] method applied on 2-second windows

Trace MST RN Conversion
Duration (sec.) (micro-sec.) (micro-sec.)
Dataset1 13.411856 286235 142327

Dataset2 16.998048 300845 183944

Dataset3 17.062387 356732 235296

Dataset4 15.936221 329215 264010

Dataset5 17.411254 370429 260477

Dataset6 17.736352 392539 297339

Dataset7 19.068075 408757 305357

Dataset8 18.984110 411445 322278

Dataset9 19.338771 436489 346175

Dataset10 18.734489 457006 353306

Dataset11 21.744413 458938 365856

Dataset12 23.867056 510076 380507

111

 1.77512

 7.30726

 9.66124

 12.6018

 17.2213

 22.0269

 26.6429

 31.9427

 36.4701

 47.3794

 57.4484

 60.2945

 68.4864

 3 5 7 9 11 13 15 17 19 21 23 25

T
im

e
 (

S
e

c
o

n
d

)

Trace Duration (Minute)

 Fully Incremental

 Non-Incremental

Figure 5.8 Comparison between the Fully Incremental and Non Incremental methods for
pairwise computer time synchronization

112

 9.3933

 15.0422

 25.8305

 30.7041

 35.9353

 41.7631

 46.6227

 51.3369

 57.2037

 61.738

 67.2688

 73.2077

 77.7858

 93.7115

 98.9514

 118.101
 121.482

 141.652

 3 5 7 9 11 13 15 17 19 21 23 25

T
im

e
 (

S
e

c
o

n
d

)

Trace Duration (Minute)

 Fully Incremental

 Non-Incremental

Figure 5.9 Comparison between the two methods for the complete network time synchroni-
zation computation

 2e-06

 3e-06

 4e-06

 5e-06

 6e-06

 7e-06

 8e-06

 2 4 6 8 10 12 14 16 18 20

A
c
c
u
ra

c
y

Trace No.

 Static RN Selection (when all traces appear)

Figure 5.10 Accuracy after 25 minutes for each node statically defined as RN

113

Table 5.6 Decomposition of the execution time for the proposed method

Trace No. of Total Total Analyzing MST RN Conversion
Duration Accurate No. of RN No. of MST (sec.) (micro- (micro- (micro-sec.)
(3-25 Min.) Packets Changes Changes sec.) sec.)
Dataset1 21395 19 42 1.775123 899 940 120

Dataset2 25769 7 15 1.921271 286 342 134

Dataset3 29842 11 32 3.594395 689 587 141

Dataset4 27826 9 26 5.773544 505 538 158

Dataset5 31395 18 24 5.837151 491 914 166

Dataset6 34555 9 28 5.976978 532 404 173

Dataset7 34580 12 29 7.146467 540 626 187

Dataset8 30899 31 68 7.666715 1202 1339 192

Dataset9 35399 5 40 7.808655 847 213 195

Dataset10 35200 10 18 8.06981 313 518 201

Dataset11 37557 11 13 8.709675 264 594 206

Dataset12 39012 12 31 9.661242 672 609 211

114

MST = updateMST ()

RN = updateRN()

S = ConvertSyncFactors()

Cost = Cost(R) + Cost(M) + Cost(C) + Cost(F)+

Cost(MST) + Cost(RN) + Cost(S)

(5.14)

The number of events depends on the rate at which events are generated in the trace,

which means that the reading time depends on the number of events (Cost(R)). The matching

time (Cost(M)) does not depend on the number of events in the hash table, since it has O(1)

complexity.

Two cases arise in calculating the synchronization factors between two nodes. In the first

case, there is a connection between the nodes. We already have synchronization factors for

this link, and are awaiting new, more accurate packets to improve accuracy (Cost(C)). As

mentioned earlier, in the Fully Incremental method, the procedure for the most matched

packets merely involves checking the location of the point with respect to Lmax or Lmin,

an important improvement over [63, 85]. In the second case, there is no existing connection

between the nodes, and we are trying to establish the first synchronization factors for the

new link. This requires at least two points in the lower and upper bounding hulls (Cost(C)).

Since only Lmax or Lmin is changed when an accurate pair is received, the new conversion

factors are easily computed in constant time, again at a lower cost than that of the previous

approach (Cost(F)).

As mentioned in the 5.5.2 section, the computation of the conversion parameters with res-

pect to RN is performed only in a subtree of the network graph, the Minimum Spanning Tree.

The Minimum Spanning Tree proposed in this work is updated incrementally throughout the

sequence of updates in an amortized time of O(log n) per update (Cost(MST)).

The reference node for the MST is updated in O(log n), on average (Cost(RN)). The

MST with a time reference node forms a tree of the best path to relate each node’s clock

to the reference node based on the link’s accuracy. We have proposed an efficient algorithm

to incrementally compute the MST and RN, and to propagate the conversion parameters

(Cost(S)).

115

5.7 Conclusion

The online synchronization of distributed traces is important for the live diagnosis of

complex problems in distributed systems. The existing methods for trace synchronization

cannot efficiently address the problem of live synchronization. As a first step, an incremental

approach for synchronizing each communication link was presented. This method requires

O(1) time, on average, to process each new network packet and update the synchronization

factors, while maintaining optimal accuracy without latency.

New algorithms were also presented to build on the link level synchronization factors and

incrementally compute a Minimum Spanning Tree formed by the most accurate links, as well

as to find the best time reference node. The new approach presented takes a time of O(log

n) on average, when the synchronization factors for a link change.

In summary, this new approach efficiently updates the synchronization parameters in-

crementally, without sacrificing the accuracy of the results or delaying their computation.

Furthermore, it is shown to scale extremely well to large networks and traces of long dura-

tion. This makes our scheme applicable to all types of online time synchronization.

116

CHAPTER 6

GENERAL DISCUSSION

New online applications bring new time synchronization needs : online operation, and high

accuracy and performance. Traditional clock synchronization algorithms relied on explicit

time synchronization network messages. Not only does that add supplementary traffic to the

network but, more importantly for tracing and monitoring tools, it needlessly modifies the

behavior of the network and nodes being traced.

The main motivation for the new algorithms contributed and presented in this thesis is

to optimize traces synchronization for online operation in very large networked clusters. The

LTTng kernel and user-space tracers can collect extensive traces of execution events on each

node with very fine granularity. The traces can then be accumulated at each node for later

analysis, adding a small burden to the disk subsystem. Alternatively, they may be streamed

to an analysis host on the network. In that case, the traces streaming will add to the network

traffic, but using efficient batching of events and compact binary encoding. At least, it does

not require, on top of the streaming traces, additional time synchronization messages and

running time synchronization daemons on every host.

The events collected at each node are timestamped with a granularity in the order of the

nanosecond. Successive events in a trace are sometimes separated one from another by less

than a microsecond. The aim is therefore to achieve highly accurate traces synchronization

to be able to compare, on a common time referential, events with such time granularity. The

second challenge adressed in this thesis is to enable online traces synchronization for live

monitoring and analysis. This requires the ability to synchronize on the fly multiple traces

without needing extensive buffering. Finally, the third goal of this work was to insure the

scalability, to huge clusters, of these online algorithms.

In Chapter 2, a comprehensive review of the existing approaches was presented. It clearly

presented the strengths and limitations of each approach and explained why none of the

existing time synchronization methods could provide the accuracy and performance required

for distributed online tracing in very large clusters. This evaluation and comparison is pre-

sented in the form of a survey paper to help designers choosing a practical protocol matching

their application. Existing surveys predate large clusters or focus on specialized areas such

as wireless sensor networks. Wireless sensor networks have become a field in itself with very

specific requirements, for instance in terms of low power and self configuration.

Chapter 3 is a research article proposing a new and extremely efficient incremental ap-

117

proach that can quickly process packet send and receive events, and update when needed the

offset and drift values associated with a connection. Every received packet is checked with

a simple formula to determine if it can improve the synchronization accuracy. If not, it is

simply ignored. In this way, this method minimizes the number of time points requiring fur-

ther processing or buffering space. When the received packet lies between the Lmax and Lmin

lines, it can improve the synchronization accuracy between those two nodes. Therefore, the

algorithm takes it into account and updates incrementally the synchronization parameters.

Since the packet evaluation and synchronization update takes O(1) time, this method can

easily process high volume traces on the fly. Nonetheless, this method retains the accuracy

of the Convex-Hull approach, and insures the best synchronization accuracy. Thus, this new

method is ideally suited for online traces synchronization, addressing both synchronization

speed and accuracy requirements.

Any time synchronization algorithm in streaming mode has to be robust even in the pre-

sence of network delay variations, internal kernel delays and even lost packets. The main

concern is whether such erratic network or system behavior can adversely impact the syn-

chronization algorithm speed, accuracy or reliability.

To test the effect of lost packets, three different traffic tests with 10, 20 and 30 percent

lost packets have been conducted between two computers. The packet loss ratio is set as the

fraction of packets randomly dropped by iptables. An increasing packet loss ratio models an

increasing network congestion. The direct effect is to make packet matching more difficult

(finding the corresponding packet send and receive events), having many packets sent but

never received. It also reduces the number of packets available for synchronization. The results

in this paper illustrate that even with 30 percent packet loss, the fully incremental approach

provides appropriate synchronization accuracy. In fact, in spite of the high packet loss ratio,

our approach could reach an acceptable precision even with few accurate packets.

Another interesting consideration is how to cope with incremental adjustments to the

estimated offset and drift values. When a monitoring tool is currently showing traces from

two nodes, it may happen that the exact scale and alignment of one trace with respect to

the other gets updated following the reception of more accurate packets. One possibility is to

simply redraw the trace with the updated, improved, offset and drift values. However, from

an ergonomic point of view, users may feel more comfortable if the already shown portion of

the trace is not changed, (i.e. the past is not rewritten), but the view gradually transitions

the scale and alignment of the trace to the updated values, when continuing to draw the

trace.

Another issue is the initial delay to obtain the first estimation of the offset and drift, when

a synchronized view is required as soon as possible for online traces. The synchronization ac-

118

curacy improves over time as new accurate packets are received. The first values are obtained

from as little as 4 packets, enough to define the two lines (Lmax and Lmin). Thereafter, as

accurate packets are received, the slope of either Lmax or Lmin changes, narrowing the gap

and improving accuracy. At the beginning, the rate of accurate packets is much higher, the

initial values have a relatively high error margin, but are improved upon quickly as more pa-

ckets are received. After a while, the gap between Lmax and Lmin becomes much smaller, as

the accuracy increases, and the chances of receiving a packet placed between Lmax and Lmin

diminish. Thus, the synchronization update rate is high at the start, and decreases rapidly

over time. If such updates are discomforting for the users of a live graphical view, a strategy

could be to delay the initial drawing by a few seconds, until a sufficient level of accuracy is

obtained.

The impact of network traffic on the synchronization performance was observed with

a particularly interesting experiment run on the Mammouth cluster. Mammouth is one of

the largest Linux clusters in Canada, and is located at the Centre de Calcul Scientifique in

Sherbrooke University, funded by the RQCHP [1]. The results have shown that the accuracy

depends not only on the traffic volume, but also on the latency of the traffic. Thus, when the

latency of the network is smaller, even with low traffic volume, the accuracy will be higher

[56].

For our target applications, the online time synchronization algorithms needed to scale

to huge computer clusters, and to grid and cloud environments. To this end, the pairwise

node synchronizations needed to be combined into network level synchronization, in the

presence of a large number of dynamic nodes entering or leaving the network. Indeed, a

cluster tracing and monitoring system needs to analyze and maintain a live tracing view in a

dynamic network. Chapter 5 presents a new technique to efficiently and incrementally build

a Minimum Spanning Tree of links with the best synchronization accuracy. This tree may be

used to quickly compute the offset and drift, between any pair of nodes in the network, by

navigating the tree and composing the drift and offset values along the path between the two

nodes. The idea was to minimize the amount of recomputation needed at each update. The

Minimum Spanning Tree updates are based on the very efficient splay tree structure.

To complete the network level synchronization, for instance to show a live tracing view

of the activity at several nodes, the final step is to select a reference node to act as time

referential. In small to medium networks, the user may sometimes want to select manually the

reference node. However, in very large networks, the selection of the reference node is better

left automated. Indeed, with a static reference node, the total synchronization error increases

because the reference node may not be the optimal one, in the updated synchronization

graph. Moreover, it is generally impractical to have a statically fixed reference node in a

119

dynamic network where any node may come and go.

A new and efficient algorithm was proposed in Chapter 4 to dynamically select and update

the reference node in a synchronization Minimum Spanning Tree. The proposed schema

dynamically maintains the reference node selection at a minimal cost in processing time. In

some tests, it achieved a tenfold accuracy improvement over predefining a specific node as

reference. We evaluated our algorithms in dynamic simulated networks with six data sets,

each containing one million operations affecting graphs with between 10,000 to 60,000 vertices.

It would however be interesting to test and evaluate our algorithms in real-world dynamic

networks, such as those formed by the largest data centers in operation on the Internet.

As for the updates to the drift and offset parameters, changing the reference node should

not create a disturbing discontinuity in the online view of traces. To this end, in most cases,

it will be better not to change already drawn timelines of traces. Moreover, the transition to

the time of the new reference node should be gradual and almost imperceptible to the viewer.

A temporary offset, representing the time difference between the old and new reference node,

can be maintained to insure continuity, and be gradually decreased over time.

The algorithms presented in this thesis have been incorporated into the Eclipse Tracing

and Monitoring Framework (TMF) [7] and will appear in upcoming versions. TMF is used

throughout the world by large high technology companies such as Ericsson, Intel, Mentor

and WindRiver. This confirms that the new algorithms proposed here are not only original,

computationally efficient and elegant, they solve actual industrial problems and bring new

efficiency to real applications.

120

CHAPTER 7

CONCLUSION

This chapter presents a few concluding remarks, summarizes the original contributions in

this thesis, and proposes possible directions for future research in distributed trace synchro-

nization.

7.1 Concluding Remarks

In this thesis, we investigated several issues that are crucial for tracing when deploying

real-time distributed systems. We studied approaches for online synchronization of distributed

traces in order to monitor distributed systems and diagnose complex problems. Existing

approaches based on Convex-Hulls achieve excellent accuracy for a posterior analysis, but

impose a significant cost and latency when used in live mode and over large clusters.

Our objective was to maintain the same synchronization accuracy, without latency for

the availability of updated synchronization parameters, while providing an extremely efficient

incremental algorithm. Indeed, in a large network, traced events are generated at an enormous

rate. We initially relied on repeated applications of the Convex-Hull algorithm because of its

accuracy. We then used several models using time intervals to support live analysis of stream

data. Storing events through a time interval, and then applying the Convex-Hull algorithm

at the end of the interval, provides accurate results but only at the end of the interval.

Furthermore, the repeated application of the Convex-Hull is inefficient, and storing events

for the interval needlessly consumes memory for the buffers.

We then proposed a novel and efficient method to compute synchronization factors in-

crementally. It calculates the clock offset and drift, and provides updates as packets are

exchanged along a communication link. This method observes every exchanged packet and

quickly verifies a basic and simple condition to identify accurate packets. It then uses that

packet to incrementally update the synchronization parameters in O(1) time. Therefore, this

proposed method avoids needlessly storing packets, and very few packets (accurate packets)

actually require further computation and are kept to build the Convex-Hull.

The second important contribution of this thesis was to expand live tracing from the

link to the network level. Hence, we proposed a new method to build upon the link level

synchronization parameters, and incrementally compute a Minimum Spanning Tree formed

by the most accurate links. Here, the goal was to achieve the best performance in a dynamic

121

network where computers connect/disconnect to/from the network and thus update the MST

efficiently. The presented approach takes O(log n) time on average (where n represents the

total number of computers in the network) when the synchronization factors for a link change

sufficiently to affect the MST.

Finally, as third important contribution, we proposed a new algorithm to update the best

time reference node incrementally upon network changes. This method provides an efficient

way to find and maintain a Reference Node incrementally in an average time complexity of

O (log n), where n is the total number of nodes in the network. In this work, the online

analysis of new vertex insertion, tree merging, and cycle handling in a forest are handled.

The previous method suffers from the cost of checking the whole forest, even when there

has been no change, after each tree modification. After a large number of modifications have

been made, and a sparse forest has grown into a large tree, the performance improvements

brought by the new approach are even greater.

Our work focused on the fact that, for most application, scalability, accuracy and perfor-

mance are the main objectives. The new approaches presented can efficiently and incremen-

tally update the synchronization parameters, without sacrificing the accuracy of the results or

delaying their computation. The proposed methods were tested on extremely large clusters,

a real network containing more than 55 physical computers and a simulated network with

60,000 nodes. Furthermore, long duration traces were generated and analyzed to demonstrate

the scalability with respect to trace size and time duration. The results showed that the pre-

sented work achieves the accuracy, performance and scalability objectives. These algorithms

are thus applicable to all types of online time synchronization.

7.2 Future Research

Our online time synchronization technique can be applied to synchronize several types

of traces where accuracy, performance and scalability are required. Although we have only

provided results for tracing networked computers, we can extend this method to many data

synchronization applications where messages are exchanged. It also can be used effectively in

distributed system applications where online applications need accurate data adjustments.

For example, in fault tolerant redundant storage applications, our method may be used on

every redundant storage server to analyze the history on each node and improve adjustments

such as conflict resolutions [60]. This work also can be useful to synchronize events coming

from virtual machines on a physical system. This will be discussed in the next Section.

122

7.2.1 Data integration from Virtual Machine

An increasingly important aspect of trace synchronization is virtual machines (VM) tra-

cing. For example, it is very useful to trace complete systems, Linux host and KVM guests,

to represent graphically the interactions between the host and the guest(s). Each virtual

machine is a guest software environment, which consists of an operating system and many

software applications. Multiple virtual machines may run on a physical host and each VM

has its own view of the system time, stored internally as an offset to the Time Stamp Counter

(TSC). Since the offset to the underlying TSC (physical machine TSC) can change during

operations such as CPU migration, physical machine migration or pause/resume, we need to

keep track of the TSC offset every time it changes, in order to synchronize the traces. Phy-

sical machine migration happens when a virtual machine instance is moved to new physical

machine while it is running. It can happen based on an administrative decision to control

load balancing, for security purposes and etc. Moreover, a virtual machine may be paused

and then resumed after a while. In these two scenarios, a virtual machine should see the

time growing monotonically. Consequently, for synchronization purposes, a virtual machine

trace may need to be realigned multiple times since there may be more than one offset for

a particular TSC. Hence, the TSC offset on the physical machine has to be updated for

these operations. Multi-level traces are required to trace a VM. First, tracing is performed

at the physical host user-space level (QEMU for KVM) [75], secondly at the physical host

kernel-space level, thirdly at the virtual machine kernel-space level and finally at the virtual

machine user-space applications level. All these traces are gathered to fully understand the

operation of a virtual machine. To record a consistent trace across these layers efficiently,

multi-level time synchronization is essential [18]. Traces recorded in the host and in the guest

are not directly aligned since there are multiple time sources in multi-level tracing :

– TSC begins at machine boot time

– LTTng relies mostly on the TSC (cycles + freq)

– UST relies on clock gettime vDSO (sec.nsec) : by default it returns the linux uptime

which starts when linux boots instead of when the machine boots

– Offset in the traces kernel/user-space : those have been synchronized already using the

trace clock in LTTng

There are three types of offsets to the TSC : 1) Linux boot offset, 2) virtual machine boot

offset 3) Linux boot offset on the virtual machine. To tackle this problem, an efficient TSC

based clock source is required. An efficient TSC ensures that the TSC is synchronized across

all cores, host kernel/user space and guest(s) kernel/user space [74].

123

7.2.2 Hardware tracing

A number of newer processors now contain hardware-assisted tracing. This has been

offered in several ARM processors for some time [3] and similar facilities have been announced

for Intel processors recently [6]. The problem here again is synchronizing these hardware

generated traces with the kernel and UST software generated traces. For example, the Intel

Branch Trace Store (BTS) provides a trace of all control flow changes on a CPU, but without

timestamps. When a BTS buffer is full, the associated interrupt service routine can record the

current time, leading to synchronization points at each buffer switch. Analyzing the control

flow and the relative size of code blocks may be used to estimate interpolated values for

each element in this branch trace. Different hardware tracing facilities will present similar

challenges and constitute an extremely interesting and useful field for future research.

124

LIST OF REFERENCES

[1] (2010). Réseau québécois de calcul de haute performance. https://rqchp.ca/?mod=

cms&pageId=0&lang=EN&. [Online ; accessed 22-June-2010].

[2] (2012). Time and frequency from a to z : A to al. http://tf.nist.gov/general/

glossary.htm. [Online ; accessed 18-October-2012].

[3] (2013). Arm : The architecture for the digital world. http://www.arm.com/

products/processors/technologies/biglittleprocessing.php. [Online ; accessed

20-September-2013].

[4] (2013). Dtrace : Dynamic tracing framework. http://dtrace.org/blogs/. [Online ;

accessed 20-September-2013].

[5] (2013). Ftrace : the linux kernel internal tracer. http://elinux.org/Ftrace. [Online ;

accessed 20-September-2013].

[6] (2013). Intel R© processor comparison. http://www.intel.com/content/www/us/

en/processor-comparison/compare-intel-processors.html. [Online ; accessed 20-

October-2013].

[7] (2013). Linux tools project - lttng integration (tracing and monitoring framework).

http://www.eclipse.org/linuxtools/projectPages/lttng/. [Online ; accessed 2-

October-2013].

[8] (2013). Lttng project : Linux trace toolkit-next generation. http://lttng.org/. [On-

line ; accessed 20-September-2013].

[9] (2013). Systemtap. http://sourceware.org/systemtap/. [Online ; accessed 20-

September-2013].

[10] AKYILDIZ, I. F., MELODIA, T. and CHOWDURY, K. R. (2007). Wireless multimedia

sensor networks : A survey. Wireless Communications, IEEE, 14, 32–39.

[11] AKYILDIZ, I. F., SU, W., SANKARASUBRAMANIAM, Y. and CAYIRCI, E. (2002).

A survey on sensor networks. Communications magazine, IEEE, 40, 102–114.

[12] ARVIND, K. (1994). Probabilistic clock synchronization in distributed systems. Parallel

and Distributed Systems, IEEE Transactions on, 5, 474–487.

[13] ASHLEY, S. (2011). Introduction to amba R© 4 aceTM and big.littleTM processing tech-

nology. Rapport technique, ARM.

[14] ASHTON, P. (1995). Algorithms for off-line clock synchronization. Rapport technique,

Department of Computer Science, University of Canterbury.

https://rqchp.ca/?mod=cms&pageId=0&lang=EN&
https://rqchp.ca/?mod=cms&pageId=0&lang=EN&
http://tf.nist.gov/general/glossary.htm
http://tf.nist.gov/general/glossary.htm
http://www.arm.com/products/processors/technologies/biglittleprocessing.php
http://www.arm.com/products/processors/technologies/biglittleprocessing.php
http://dtrace.org/blogs/
http://elinux.org/Ftrace
http://www.intel.com/content/www/us/en/processor-comparison/compare-intel-processors.html
http://www.intel.com/content/www/us/en/processor-comparison/compare-intel-processors.html
http://www.eclipse.org/linuxtools/projectPages/lttng/
http://lttng.org/
http://sourceware.org/systemtap/

125

[15] BEAMONTE, R., GIRALDEAU, F. and DAGENAIS, M. (2012). High Performance

Tracing Tools for Multicore Linux Hard Real-Time Systems. Proceedings of the 14th

Real-Time Linux Workshop. OSADL.

[16] BETTI, E., CESATI, M., GIOIOSA, R. and PIERMARIA, F. (2009). A global opera-

ting system for hpc clusters. Cluster Computing and Workshops, 2009. CLUSTER’09.

IEEE International Conference on. IEEE, 1–10.

[17] BLIGH, M., DESNOYERS, M. and SCHULTZ, R. (2007). Linux kernel debugging on

google-sized clusters. Proceedings of the Linux Symposium. 29–40.

[18] BLUNCK, J., DESNOYERS, M. and FOURNIER, P.-M. (2009). Userspace application

tracing with markers and tracepoints. Proceedings of the 2009 Linux Kongress.

[19] CATTANEO, G., FARUOLO, P., PETRILLO, U. F. and ITALIANO, G. (2010). Main-

taining dynamic minimum spanning trees : An experimental study. Discrete Applied

Mathematics, 158, 404 – 425.

[20] CHAI, L., GAO, Q. and PANDA, D. K. (2007). Understanding the impact of multi-core

architecture in cluster computing : A case study with intel dual-core system. Cluster

Computing and the Grid, 2007. CCGRID 2007. Seventh IEEE International Sympo-

sium on. IEEE, 471–478.

[21] CHAN, E. M., CARLYLE, J. C., DAVID, F. M., FARIVAR, R. and CAMPBELL, R. H.

(2008). Bootjacker : compromising computers using forced restarts. Proceedings of the

15th ACM conference on Computer and communications security. ACM, 555–564.

[22] CLEMENT, E. and DAGENAIS, M. (2009). Traces synchronization in distributed

networks. Journal of Computer Systems, Networks, and Communications, 2009, 5.

[23] CORMEN, T. H., STEIN, C., RIVEST, R. L. and LEISERSON, C. E. (2001). Intro-

duction to Algorithms. McGraw-Hill Higher Education, seconde édition.

[24] COULOURIS, G. F. and DOLLIMORE, J. (1988). Distributed systems : concepts and

design. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[25] CRISTIAN, F. (1989). Probabilistic clock synchronization. Distributed computing, 3,

146–158.

[26] CUCINOTTA, T. and FAGGIOLI, D. (2010). An exception based approach to timing

constraints violations in real-time and multimedia applications. Industrial Embedded

Systems (SIES), 2010 International Symposium on. IEEE, 136–145.

[27] DE MELO, A. C. (2010). The new linux’perf’tools. Slides from Linux Kongress.

[28] DESCHÊNES, J.-H., DESNOYERS, M. and DAGENAIS, M. R. (2008). Tracing time

operating system state determination. The Open Software Engineering Journal, 40–44.

126

[29] DESNOYERS, M. (2009). Low-impact operating system tracing. Thèse de doctorat,

École Polytechnique de Montréal.

[30] DESNOYERS, M. and DAGENAIS, M. (2008). Lttng : Tracing across execution layers,

from the hypervisor to user-space. Linux Symposium. 101.

[31] DESNOYERS, M. and DAGENAIS, M. (2009). Deploying lttng on exotic embedded

architectures. ELC (Embedded Linux Conference).

[32] DIETZ, M. A. (1996). Gathering And Using Time Measurements In Distributed Sys-

tems. Thèse de doctorat, Duke University.

[33] DOLESCHAL, J., KNÜPFER, A., MÜLLER, M. S. and NAGEL, W. E. (2008). Inter-

nal timer synchronization for parallel event tracing. Proceedings of the 15th European

PVM/MPI Users’ Group Meeting on Recent Advances in Parallel Virtual Machine and

Message Passing Interface. Springer-Verlag, Berlin, Heidelberg, 202–209.

[34] DOLEV, D., LYNCH, N. A., PINTER, S. S., STARK, E. W. and WEIHL, W. E. (1986).

Reaching approximate agreement in the presence of faults. J. ACM, 33, 499–516.

[35] DOMINGOS, P. and HULTEN, G. (2000). Mining high-speed data streams. Proceedings

of the sixth ACM SIGKDD international conference on Knowledge discovery and data

mining. ACM, New York, NY, USA, KDD ’00, 71–80.

[36] DOMMETY, G. and JAIN, R. (1998). Potential networking applications of global

positioning systems (gps). arXiv preprint cs/9809079.

[37] DUDA, A., HARRUS, G., HADDAD, Y. and BERNARD, G. (1987). Estimating global

time in distributed systems. ICDCS. vol. 87, 299–306.

[38] EIDSON, J. and LEE, K. (2002). Ieee 1588 standard for a precision clock synchroni-

zation protocol for networked measurement and control systems. Sensors for Industry

Conference, 2002. 2nd ISA/IEEE. IEEE, 98–105.

[39] ELLINGSON, C. and KULPINSKI, R. (1973). Dissemination of system time. Com-

munications, IEEE Transactions on, 21, 605–624.

[40] ELSON, J., GIROD, L. and ESTRIN, D. (2002). Fine-grained network time synchro-

nization using reference broadcasts. SIGOPS Oper. Syst. Rev., 36, 147–163.

[41] FAN, R. and LYNCH, N. (2006). Gradient clock synchronization. Distributed Compu-

ting, 18, 255–266.

[42] FIDGE, C. J. (1988). Timestamps in message-passing systems that preserve the partial

ordering. Proceedings of the 11th Australian Computer Science Conference. vol. 10, 56–

66.

127

[43] FONSECA, R. L. C. (2009). Improving visibility of distributed systems through execu-

tion tracing. ProQuest.

[44] GABER, M. M., ZASLAVSKY, A. and KRISHNASWAMY, S. (2005). Mining data

streams : a review. SIGMOD Rec., 34, 18–26.

[45] GANERIWAL, S., KUMAR, R. and SRIVASTAVA, M. B. (2003). Timing-sync proto-

col for sensor networks. Proceedings of the 1st international conference on Embedded

networked sensor systems. ACM, New York, NY, USA, SenSys ’03, 138–149.

[46] GOODMAN, D. J., VALENZUELA, R. A., GAYLIARD, K. and RAMAMURTHI, B.

(1989). Packet reservation multiple access for local wireless communications. Commu-

nications, IEEE Transactions on, 37, 885–890.

[47] GUSELLA, R. and ZATTI, S. (1989). The accuracy of the clock synchronization achie-

ved by tempo in berkeley unix 4.3 bsd. Software Engineering, IEEE Transactions on,

15, 847–853.

[48] HAN, J. (2005). Data Mining : Concepts and Techniques. Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA.

[49] HAN, L. and HUA, N. (2013). A distributed time synchronization solution without

satellite time reference for mobile communication. Communications Letters, IEEE, 17,

1447–1450.

[50] HE, L.-M. (2008). Time synchronization based on spanning tree for wireless sensor

networks. Wireless Communications, Networking and Mobile Computing, 2008. Wi-

COM’08. 4th International Conference on. IEEE, 1–4.

[51] HENZINGER, M. R. and KING, V. (2001). Maintaining minimum spanning forests in

dynamic graphs. SIAM J. COMPUT, 31, 2001.

[52] HOLM, J., DE LICHTENBERG, K. and THORUP, M. (2001). Poly-logarithmic de-

terministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge,

and biconnectivity. J. ACM, 48, 723–760.

[53] JABBARIFAR, M. and DAGENAIS, M. (2013). A comprehensive survey of techniques

and challenges in distributed systems time synchronization. Submitted to the Journal

of Network and Computer Applications.

[54] JABBARIFAR, M. and DAGENAIS, M. (2013). Liana : Live incremental time syn-

chronization of traces for distributed systems. Submitted to the Journal of Network and

Computer Applications.

[55] JABBARIFAR, M. and DAGENAIS, M. (2013). Reference node selection in dynamic

tree. Submitted to the Journal of Network Management.

128

[56] JABBARIFAR, M., DAGENAIS, M., ROY, R. and SENDI, A. S. (2012). Optimum

off-line trace synchronization of computer clusters. Journal of Physics : Conference

Series. IOP Publishing, vol. 341, 012029.

[57] JABBARIFAR, M., DAGENAIS, M. and SENDI, A. S. (2013). Streaming mode in-

cremental clock synchronization. Submitted to the Journal of Network and Systems

Management (JONS).

[58] JABBARIFAR, M., SENDI, A. S., PEDRAM, H., DEHGHAN, M. and DAGENAIS, M.

(2010). L-sync : Larger degree clustering based time-synchronisation for wireless sensor

network. Software Engineering Research, Management and Applications (SERA), 2010

Eighth ACIS International Conference on. IEEE, 171–178.

[59] JABBARIFAR, M., SENDI, A. S., SADIGHIAN, A., JIVAN, N. E. and DAGENAIS,

M. (2010). A reliable and efficient time synchronization protocol for heterogeneous

wireless sensor network. Wireless Sensor Network, 2.

[60] JÉZÉQUEL, J.-M. and JARD, C. (1996). Building a global clock for observing com-

putations in distributed memory parallel computers. Concurrency : Practice and Ex-

perience, 8, 71–89.

[61] JOSEPH, J. and FELLENSTEIN, C. (2003). Grid Computing. Prentice Hall PTR,

Upper Saddle River, NJ, USA.

[62] KELTCHER, C. N., MCGRATH, K. J., AHMED, A. and CONWAY, P. (2003). The

amd opteron processor for multiprocessor servers. IEEE Micro, 23, 66–76.

[63] KHLIFI, H. and GRÉGOIRE, J.-C. (2006). Low-complexity offline and online clock

skew estimation and removal. Computer Networks, 50, 1872–1884.

[64] KOCH, B., KOCH, R., MOSER, L. E. and MELLIAR-SMITH, P. M. (1998). Times-

tamp acknowledgments for determining message stability. In Proceedings of the 2nd

International Conference on Parallel and Distributed Computing and Networks.

[65] KSHEMKALYANI, A. D. (2004). The power of logical clock abstractions. Distributed

Computing, 17, 131–150.

[66] KSHEMKALYANI, A. D. and SINGHAL, M. (2008). Distributed Computing : Prin-

ciples, Algorithms, and Systems. Cambridge University Press, New York, NY, USA,

première édition.

[67] KUHN, F., LENZEN, C., LOCHER, T. and OSHMAN, R. (2010). Optimal gradient

clock synchronization in dynamic networks. Proceedings of the 29th ACM SIGACT-

SIGOPS symposium on Principles of distributed computing. ACM, New York, NY,

USA, PODC ’10, 430–439.

129

[68] KUHN, F., LOCHER, T. and OSHMAN, R. (2011). Gradient clock synchronization in

dynamic networks. Theory of Computing Systems, 49, 781–816.

[69] LAMPORT, L. (1978). Time, clocks, and the ordering of events in a distributed system.

Communications of the ACM, 21, 558–565.

[70] LANDES, T. (2007). Tree clocks : an efficient and entirely dynamic logical time system.

Proceedings of the 25th conference on Proceedings of the 25th IASTED International

Multi-Conference : parallel and distributed computing and networks. ACTA Press, Ana-

heim, CA, USA, PDCN’07, 375–380.

[71] LEICK, A. (2004). GPS satellite surveying. Wiley. com.

[72] LEMMON, M. D., GANGULY, J. and XIA, L. (2000). Model-based clock synchroniza-

tion in networks with drifting clocks. Dependable Computing, 2000. Proceedings. 2000

Pacific Rim International Symposium on. IEEE, 177–184.

[73] LISKOV, B. (1993). Practical uses of synchronized clocks in distributed systems. Dis-

tributed Computing, 6, 211–219.

[74] MAROUANI, H. and DAGENAIS, M. R. (2005). Comparing high resolution times-

tamps in computer clusters. Electrical and Computer Engineering, 2005. Canadian

Conference on. IEEE, 400–403.

[75] MAROUANI, H. and DAGENAIS, M. R. (2008). Internal clock drift estimation in

computer clusters. J. Comp. Sys., Netw., and Comm., 2008, 9 :1–9 :7.

[76] MATTERN, F. (1989). Virtual time and global states of distributed systems. Parallel

and Distributed Algorithms, 1, 215–226.

[77] MILLS, D. (1992). Modelling and analysis of computer network clocks. Electrical

Engineering Department Report, 9252.

[78] MILLS, D. (1992). Network time protocol (version 3) specification, implementation

and analysis.

[79] MILLS, D. L. (1991). Internet time synchronization : the network time protocol. Com-

munications, IEEE Transactions on, 39, 1482–1493.

[80] MILLS, D. L. (1997). Computer network time synchronization. Report Dagstuhl Semi-

nar on Time Services Schloß Dagstuhl, March 11.–March 15. 1996. Springer, vol. 12,

332.

[81] MOLKA, D., HACKENBERG, D., SCHONE, R. and MULLER, M. S. (2009). Memory

performance and cache coherency effects on an intel nehalem multiprocessor system.

Parallel Architectures and Compilation Techniques, 2009. PACT’09. 18th International

Conference on. IEEE, 261–270.

130

[82] MOON, S. B., SKELLY, P. and TOWSLEY, D. (1999). Estimation and removal of

clock skew from network delay measurements. INFOCOM’99. Eighteenth Annual Joint

Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE.

IEEE, vol. 1, 227–234.

[83] OLSON, A. and SHIN, K. G. (1994). Fault-tolerant clock synchronization in large

multicomputer systems. Parallel and Distributed Systems, IEEE Transactions on, 5,

912–923.

[84] PAPAKIPOS, M. (2007). The peakstream platform : High-productivity software de-

velopment for multi-core processors. Proceedings of Windows Hardware Engineering

Conference (WinHEC), Industry Papers.

[85] POIRIER, B., ROY, R. and DAGENAIS, M. (2010). Accurate offline synchronization

of distributed traces using kernel-level events. SIGOPS Oper. Syst. Rev., 44, 75–87.

[86] RAMANATHAN, P., SHIN, K. G. and BUTLER, R. W. (1990). Fault-tolerant clock

synchronization in distributed systems. Computer, 23, 33–42.

[87] RIDOUX, J., VEITCH, D. and BROOMHEAD, T. (2012). The case for feed-forward

clock synchronization. Networking, IEEE/ACM Transactions on, 20, 231–242.

[88] SALYERS, D., STRIEGEL, A. and POELLABAUER, C. (2008). A light weight method

for maintaining clock synchronization for networked systems. Computer Communica-

tions and Networks, 2008. ICCCN’08. Proceedings of 17th International Conference

on. IEEE, 1–5.

[89] SCHEUERMANN, B., KIESS, W., ROOS, M., JARRE, F. and MAUVE, M. (2009).

On the time synchronization of distributed log files in networks with local broadcast

media. IEEE/ACM Trans. Netw., 17, 431–444.

[90] SCHMID, U. (1994). Synchronized utc for distributed real-time systems. Annual Review

in Automatic Programming, 18, 101–107.

[91] SENDI, A. S., JABBARIFAR, M., SHAJARI, M. and DAGENAIS, M. (2010). Femra :

fuzzy expert model for risk assessment. Internet Monitoring and Protection (ICIMP),

2010 Fifth International Conference on. IEEE, 48–53.

[92] SHAMELI SENDI, A. and DAGENAIS, M. (2013). Arito : Cyber-attack response

system using accurate risk impact tolerance. International Journal of Information

Security.

[93] SHAMELI SENDI, A., DAGENAIS, M., JABBARIFAR, M. and COUTURE, M.

(2012). Real time intrusion prediction based on optimized alerts with hidden mar-

kov model. Journal of Networks, 7, 311–321.

131

[94] SHAMELI-SENDI, A., EZZATI-JIVAN, N., JABBARIFAR, M. and DAGENAIS, M.

(2012). Intrusion response systems : survey and taxonomy. International Journal

Computer Science Network Security (IJCSNS). i1, 12, 1–14.

[95] SIRDEY, R. and MAURICE, F. (2008). A linear programming approach to highly

precise clock synchronization over a packet network. 4OR, 6, 393–401.

[96] SIVRIKAYA, F. and YENER, B. (2004). Time synchronization in sensor networks : a

survey. Network, IEEE, 18, 45–50.

[97] SLEATOR, D. D. and ENDRE TARJAN, R. (1983). A data structure for dynamic

trees. Journal of computer and system sciences, 26, 362–391.

[98] SLEATOR, D. D. and TARJAN, R. E. (1985). Self-adjusting binary search trees. J.

ACM, 32, 652–686.

[99] SUNDARARAMAN, B., BUY, U. and KSHEMKALYANI, A. D. (2005). Clock syn-

chronization for wireless sensor networks : a survey. Ad Hoc Networks, 3, 281–323.

[100] TANENBAUM, A. S. and STEEN, M. V. (2006). Distributed Systems : Principles and

Paradigms (2nd Edition). Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

[101] VAN GREUNEN, J. and RABAEY, J. (2003). Lightweight time synchronization for

sensor networks. Proceedings of the 2nd ACM international conference on Wireless

sensor networks and applications. ACM, New York, NY, USA, WSNA ’03, 11–19.

[102] VEITCH, D., RIDOUX, J. and KORADA, S. B. (2009). Robust synchronization of

absolute and difference clocks over networks. IEEE/ACM Transactions on Networking

(TON), 17, 417–430.

[103] XUAN, B. B., FERREIRA, A. and JARRY, A. (2003). Computing shortest, fastest,

and foremost journeys in dynamic networks. International Journal of Foundations of

Computer Science, 14, 267–285.

[104] ZHANG, L., LIU, Z. and HONGHUI XIA, C. (2002). Clock synchronization algorithms

for network measurements. INFOCOM 2002. Twenty-First Annual Joint Conference of

the IEEE Computer and Communications Societies. Proceedings. IEEE. IEEE, vol. 1,

160–169.

	DEDICATION
	ACKNOWLEDGEMENTS
	RÉSUMÉ
	ABSTRACT
	CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SIGNS AND ABBREVIATIONS
	1 INTRODUCTION
	1.1 LTTng
	1.1.1 LTTV and TMF
	1.1.2 Synchronization Architecture in LTTng

	1.2 The Contributions of this thesis
	1.3 General organization of the thesis

	2 LITERATURE REVIEW: A Comprehensive Survey of Techniques and Challenges in Distributed Systems Time Synchronization
	2.1 Abstract
	2.2 Introduction
	2.3 Clock and Synchronization Protocols
	2.3.1 Time Keeping Hardware
	2.3.2 Packet-based Clock Offset Calculation
	2.3.3 Logical clock Synchronization

	2.4 Synchronization techniques to compute clock offset and drift
	2.5 Synchronization Applications
	2.5.1 Offline Clock Synchronization
	2.5.2 Online Clock Synchronization

	2.6 Evaluation of protocols
	2.6.1 Evaluation factors
	2.6.2 Protocols comparison

	2.7 Conclusion

	3 Paper 1: Streaming Mode Incremental Clock Synchronization
	3.1 Abstract
	3.2 Introduction
	3.3 Related Work
	3.3.1 Offline Clock Synchronization
	3.3.2 Online Clock Synchronization

	3.4 Kernel-Level Event Tracing
	3.4.1 Tracer
	3.4.2 Time Stamp Counter

	3.5 Terminology and background
	3.6 Proposed Model
	3.6.1 Model
	3.6.2 Convex-Hull
	3.6.3 Window-based Approach
	3.6.4 Fully Incremental Approach

	3.7 Experiments and evaluation
	3.7.1 Experimental setup
	3.7.2 Packet matching and Convex-Hull points
	3.7.3 Accuracy and Cost
	3.7.4 Delay and Packet loss effects on the Fully Incremental approach

	3.8 Conclusion

	4 Paper 2: Reference Node Selection in Dynamic Tree
	4.1 Abstract
	4.2 Introduction
	4.3 Related Work
	4.4 Data Structure
	4.5 Methodology
	4.5.1 Reference Node
	4.5.2 Independent trees
	4.5.3 Adding a single vertex and edge
	4.5.4 Replacing an edge in a tree
	4.5.5 Inserting an edge between two independent trees

	4.6 Algorithm complexity
	4.7 Experiments and evaluation
	4.7.1 Experimental setup
	4.7.2 Results
	4.7.3 Performance evaluation

	4.8 Conclusion

	5 Paper 3: LIANA: Live Incremental Time Synchronization of Traces for Distributed Systems Analysis
	5.1 Abstract
	5.2 Introduction
	5.3 Related Work
	5.4 Terminology and background
	5.5 Methodology
	5.5.1 Two-node synchronization
	5.5.2 Multi-hop synchronization
	5.5.3 Dynamic Reference Node
	5.5.4 Synchronization Factor Propagation

	5.6 Experiments and evaluation
	5.6.1 Simulation experiments
	5.6.2 Real world traced network
	5.6.3 Discussion

	5.7 Conclusion

	6 GENERAL DISCUSSION
	7 CONCLUSION
	7.1 Concluding Remarks
	7.2 Future Research
	7.2.1 Data integration from Virtual Machine
	7.2.2 Hardware tracing

	LIST OF REFERENCES

