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RÉSUMÉ 

Des couches semi-conductrices d’oxyde de cuivre de type p et de type n pour des applications 

photovoltaïques ont été fabriquées par voie électrochimique avec des approches nouvelles. Les 

couches minces ont été électro-déposées par polarisation cathodique sur une feuille de cuivre et 

des substrats d'oxyde d'indium-étain (ou oxyde d'indium dopé à l'étain (ITO)). Les conditions 

optimales de dépôt (composition, pH  et température de l’électrolyte, domaine de potentiel à 

appliquer) des couches sous forme de films minces ont été identifiée, En particulier les 

conditions qui permettent d’avoir des couches de type n ont été bien identifiée pour la première 

fois. La configuration d’une pile photo-électrochimique a été utilisée pour caractériser la réponse 

spectrale des couches. Il a été montré que les couches p délivre un photo-courant  dans le 

domaine cathodique et les couches n dans le domaine de potentiel anodique. Les mesures des 

résistivités électriques des couches électro chimiquement déposées de Cu2O, de type p et n, ont 

montré que la résistivité du Cu2O de type p varie de 3.2×10
5
 à 2.0×10

8
 Ω.cm selon les conditions 

de dépôt telles le pH de la solution, le potentiel de dépôt et la température. 

L'influence de plusieurs paramètres d'électrodéposition de couches de Cu2O de type, tels que le 

potentiel appliqué, le pH et la température du bain, sur la composition chimique, le degré de 

cristallinité, la taille des grains et l'orientation a été systématiquement étudiée en utilisant la 

diffraction des rayons X et la microscopie électronique à balayage. Selon le potentiel 

d’électrodéposition, deux morphologies différentes de surface avec des orientations cristallines 

préférentielles variées ont été  obtenues pour des températures de l’électrolyte de dépôt  de 30 °C 

et un  pH de 9.Pour  la même température, les couches de Cu2O de type p, hautement cristallines, 

se trouvent sont obtenues à  pH de 12, ce qui indique que la cristallinité dépend du pH du bain. 
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Aussi, il a été montré que la morphologie des couches de Cu2O était modifiable en variant le 

potentiel et la durée  de déposition, ainsi que la température de la solution. 

Les conditions d’électrodéposition de Cu2O de type n ont été identifies de manière systématique 

la première fois. L’électrolyte de déposition est à base de 0,01 M d’acétate de cuivre et 0,1 M 

d’acétate de sodium: a un pH compris entre 4 et 6.3, un potentiel compris entre -0,25 V vs 

Ag/AgCl et une température de 60
o
C. La température optimum de recuit des couches n est de 

120-150
o
C pour des durées de 30 à 120 minutes.  La résistivité des films de type n varie entre 

5x10
3
 et  pH 4  à 5x10

4
 à pH 6.4. Nous avons montré pour la première fois que le barbotage de 

l’azote dans la cellule d’électrodéposition des couches de type n améliore manière significative 

leur réponse spectrale.  

Un procédé d’électrodéposition en deux étapes à été mis en œuvre pour fabriquer la l’homo 

jonction p-n de l’oxyde oxyde cuivreux sur le substrat  l'oxyde d'indium-étain (ITO) qui a été 

utilisé comme un oxyde conducteur transparent. La performance photovoltaïque d'une cellule 

solaire à homo-jonction p-n de Cu2O a été déterminée. Le courant en court-circuit et la tension 

de circuit ouvert  ont été respectivement déterminés à 235 μA/cm
2 

et 0,35 Volt. Le facteur de 

remplissage (FF) et le rendement de conversion de la lumière en électricité des cellules ont été 

respectivement évalués à 0,305 et 0,082%. 
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ABSTRACT 

p and n type copper oxide semiconductor layers were fabricated by electrochemistry using new 

approaches for photovoltaic applications. Thin films were electroplated by cathodic polarization 

on a copper foil or indium tin oxide (ITO) substrates. The optimum deposition conditions 

(composition, pH and temperature of the electrolyte and applied potential) of the layers as thin 

films have been identified; in particular the conditions that allow getting the n-type layers have 

been well identified for the first time. The configuration of a photo - electrochemical cell was 

used to characterize the spectral response of the layers. It was shown that the p type layers 

exhibit a photocurrent in the cathode potential region and n layers exhibit photo current in the 

anode potential region. Measurements of electrical resistivity of electro chemically deposited 

layers of p and n type Cu2O, showed that the resistivity of p-type Cu2O varies from 3.2 × 10
5
 to 

2.0 × 10
8
 Ωcm. These values depend the electrodepositing conditions such as the pH of the 

solution, the deposition potential and temperature.  

The influence of several plating parameters of the p-type layers of Cu2O, such as applied 

potential, pH and temperature of the bath on the chemical composition, degree of crystallinity, 

grain size and orientation parameters of the sample was systematically studied using X-ray 

diffraction and scanning electron microscopy. Depending of the electro-deposition potential, two 

different surface morphologies with various preferential crystal orientations were obtained for 

the temperatures of the electro-deposition of 30 ° C and pH 9. For the same temperature, the 

layers of p-type Cu2O of highly crystalline p-type are obtained at pH 12, indicating that the 

crystallinity depends on the pH of the bath. 
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Also, it has been shown that the morphology of Cu2O layers was changed by varying the 

potential and the duration of deposition, as well as the temperature of the solution. 

The conditions for the electro-deposition of Cu2O n-type were identified consistently for the first 

time. The electro-deposition electrolyte is based 0.01M acetate copper and 0.1 M sodium acetate: 

it has a pH between 6.3 and 4, a potential of from 0 to -0.25 V vs. Ag / AgCl and a temperature 

of 60
o
C. The optimum annealing temperature of the n-type Cu2O layers is between 120-150

o
C 

for the annealing time of 30 to 120 minutes. Resistivity of the n-type films varies between 5x10
3
 

and 5x10
4 

at pH 4 to pH 6.4. We have shown for the first time that bubbling nitrogen gas in the 

electroplating cell improves significantly the spectral response of the electro-deposited n-type 

thin film. 

A two steps electro-deposition process was implemented to make the p-n homojunction cuprous 

oxide. Indium tin oxide (ITO) was used as a transparent conductive oxide substrate. A p-Cu2O 

was electrodeposited on ITO. After heat treatment a thin film layer of n-Cu2O was 

electrodeposited on top of previous layer. The performance of a p-n homojunction photovoltaic 

solar cell of Cu2O was determined. The short-circuit current and the open circuit voltage were 

respectively determined to be as 0.35 volts and 235 μA/cm
2
. The fill factor (FF) and conversion 

efficiency of light into electricity were respectively measured to be 0.305 and 0.082%. 
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CONDENSÉ EN FRANÇAIS 

La performance limitée de conversion et le coût élevé des cellules solaires à base de silicium sont 

les limites  essentielles qui empêchent à ce que les piles solaires photovoltaïques deviennent une 

alternative à l'utilisation de combustibles fossiles qui sont les principales sources d’énergie 

présentement disponibles même pour l’électrification. Par conséquent, le développement de 

nouveaux matériaux photovoltaïques à rendements de conversion élevé,  à coûts peu onéreux et 

non toxiques  utilisant des procédés économes en énergie est essentiel. Les oxydes de métaux de 

transition ont un grand potentiel pour répondre à ces exigences. Parmi eux, l'oxyde cuivreux 

(Cu2O) est une alternative potentielle au silicium en raison de sa non-toxicité, de la simplicité de 

et du faible coût de son processus de fabrication à partir de matériaux disponibles en abondance. 

Le Cu2O a une énergie de bande interdite directe de 2,0 eV et un coefficient d'absorption 

relativement élevé (4×10
5
at λ=450nm) dans la région du visible. Son rendement de conversion de 

la puissance électrique théorique calculée est d'environ 20%. Cependant la compréhension 

limitée du type de conductivité du semi-conducteur Cu2O selon les conditions d’élaboration ainsi 

que  la difficulté de son  dopage et les difficultés d’élaboration du  Cu2O de type n limitent la 

production efficace de cellules photovoltaïques à base de Cu2O. L’oxyde cuivreux est un semi-

conducteur non stœchiométrique naturellement de type p en raison de défauts ponctuels tels que 

les lacunes de cuivre. 

L'objectif de la présente étude était de préparer soigneusement des couches minces de Cu2O de 

type p et de type n en ajustant les paramètres d’électrodéposition et d’obtenir des paramètres de 

préparation optimale pour la fabrication de cellule solaire à haut rendement à base 

d’homojunction p-n de Cu2O.  
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Deux substrats différents ont été utilisés comme électrodes de travail pour l'électrodéposition de 

Cu2O. L'un était l’oxyde conducteur transparent - ITO (oxyde d'indium-étain) sur un substrat de 

verre avec une résistance de couche de 18Ω/cm. L'autre était une feuille de cuivre d'une 

épaisseur de 18 µm. 

Deux solutions électrolytiques différentes ont été utilisées pour le dépôt électrochimique Cu2O. 

Pour le dépôt de type p Cu2O, les solutions d'électrolyte est une solution aqueuse contenant 0,4 

M de sulfate de cuivre et 3 M de lactate de sodium (NaC3H5O3, solution aqueuse à 60% p / p). 

Pour le type n Cu2O, les solutions d'électrolyte est une solution aqueuse contenant 0,01 M 

d'acétate de cuivre et de 0,1 M d'acétate de sodium. 

Une cellule électrochimique à trois électrodes et à un seul compartiment a été utilisée pour le 

dépôt de ces films. L’électrodéposition a été réalisée avec un potentiostat Princeton Applied 

Research 273A. L'électrode de référence  commerciale Ag/AgCl (KCl 4M) et une grille de Pt ont 

été utilisées comme électrode de référence comme contre contre-électrode, respectivement. La 

température de l'électrolyte est contrôlée entre 30°C et 70°C par sa circulation à travers un bain 

d’eau thermostaté à l’aide d’un appareil de type Polystat. L'électrodéposition est réalisée en 

mode potentiostatique à différentes valeurs de potentiel appliquées par rapport à l'électrode de 

référence. La fenêtre de potentiel appliquée est choisie à partir la courbe de voltampérométrie 

cyclique (CV). Après dépôt, les films ont été rincés à l'eau déminéralisée et séchés à température 

ambiante. 

La morphologie de surface des films a été étudiée en utilisant un microscope électronique à 

balayage (MEB). La pureté et orientations cristallines  de chacune des couches Cu2O de type p et 

de type n ont été examinées par diffraction des rayons X (XRD). Les propriétés optiques des 
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films ont été déterminées par la caractérisation de photocourant réalisée dans une cellule photo-

électrochimique à trois électrodes. La conversion des photons de la lumière en énergie électrique 

a été caractérisée par une jonction solide-liquide appelée cellule photo-électrochimique (PEC). 

Cette cellule a été utilisée par la mesure des caractéristiques courant-tension (IV) dans l'obscurité  

et sous éclairement de 80mW/cm
2
 

Les courbes courant en fonction de la tension (courbes I-V) ont été effectuées afin de déterminer 

la résistivité des films de Cu2O de type p ou de type n. Une électrode Cu circulaire a été placée 

sur le dessus du film de Cu2O. Une tension a été balayée entre le substrat et l'électrode supérieure 

et le courant a été mesuré à température ambiante avec le potentiostat Princeton Applied 

Research 273A. à l’aide de pente de la courbe I-V de la couche électro déposée et de son 

épaisseur,  la résistivité a été déterminée. 

Dans un premier temps, notre étude se démontré que l’augmentation de la température de dépôt 

élargissait  le domaine de potentiel de dépôt de Cu2O de type vers potentiels cathodiques plus 

négatifs. Ceci augmentait aussi le courant.  Il a été trouvé que la température comprise entre 60-

70
o
C est une température optimale pour le dépôt de Cu2O. Ilau aussi été trouvé que le domaine 

de potentiel utilisé  est également l'un des paramètres important pour le dépôt de Cu2O et que sa 

valeur doit être maintenue entre -0,2 à -0,6 V vs. Ag/AgCl. Pour des valeurs plus négatives en 

potentiel, il y a co-déposition de du cuivre (Cu). Afin d'éviter la co-déposition de cuivre, la 

fenêtre de potentiel utilisé dans cette étude a été maintenue en dessous de -0.5 V vs. Ag/AgCl. 

Un autre  paramètre jugé important pour optimiser les conditions de dépôt est la valeur du pH de 

l’électrolyte d’électrodéposition. Les échantillons déposés à partir d’électrolyte dont le pH varie 
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entre 8 et 13,5  ont montré une réponse photo électrochimique qui est typique de celui d’un semi-

conducteur de type p. 

Tous les échantillons déposés à ce potentiel et avec un électrolyte ayant un pH compris entre 8 et 

13,5 donne des couches de Cu2O pur sans trace de dépôt de Cu ou CuO. Cependant nous avons 

observé  que les couches déposées à pH inférieur à 10 avaient une orientation cristallographique 

préférentielle selon le plan (100). Cette orientation cristallographique préférentielle était de (111) 

pour les dépôts effectués à ph supérieur à 11. 

 La résistivité du film de type p déposé diminue légèrement lorsque le pH de la solution 

augmente. La plus petite valeur (5x10
5
Ω.cm) a été obtenue à un pH de 13; ce qui est inférieur de 

deux ordres de grandeur à celle des films préparés à pH 9,0 (6x10
7
Ω.cm). Les résultats montrent 

aussi que le photo courant augmente avec l'augmentation de pH de la solution. Ainsi le film 

déposé à un pH de 13 produits deux fois plus de photo courant que le film déposé à un pH de 8,5.  

L'effet du pH du bain sur la morphologie et la taille des grains du film de Cu2O a aussi été étudié. 

ILa taille des grains augmente avec le pH du bain d’électrodéposition. Le mécanisme qui 

explique l’effet du pH sur la taille des gains est actuellement inconnu. Nous poursuivons nous 

études pour comprendre ce phénomène. 

Les observations au microscope électronique à balayage montrent que la morphologie de la 

surface des couches déposées dont les cristaux sont  sous forme de pyramides à 4 côtés avec une 

distribution de taille relativement uniforme pour le plan d’orientation (100). Par contre 

l’observation de cette morphologie montre de gros cristaux sous forme de pyramides de 3 faces à 

pour le plan d’orientation (111). La température et le potentiel d’électrodéposition  ont aussi un 
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effet sur la morphologie du dépôt Cu2O. Ainsi les films préparés à une température élevées 

(60
o
C) a une meilleure cristallinité avec moins de fissures et de défauts dans les cristaux que des 

dépôts obtenus à 25
o
C. Une diminution de la taille des grains a été observée lorsque le potentiel 

d’électro déposition se déplace vers des valeurs plus négatives dans le domaine compris entre -

0,3 à -0,7 V vs Ag/AgCl. 

Dans un deuxième temps, des couches de Cu2O de type n ont été déposés dans un bain d'acétate 

contenant 0,01 M d'acétate de cuivre et de 0,1 M d'acétate de sodium par électrodéposition. La 

courbe de voltamétrie qui a été réalisée sur une électrode de cuivre et de p-Cu2O a révélé que le 

potentiel de dépôt doit être plus positif que -0,25 V par rapport à Ag/AgCl pour une température 

donnée. Les courants correspondants à cette gamme de potentiel sont plus faibles que ceux 

utilisés pour le dépôt de type p-Cu2O. Cette valeur du courant de dépôt augmente et se déplace 

vers les potentiels négatifs lorsque le pH augmente. Tous les échantillons préparés dans la 

gamme de pH de 4,8 à 6,0 fournissent un photo-courant anodique sous illumination dans une pile 

photo électrochimique ; ce qui confirme leur conductivité de type n. 

Les résultats montrent que le courant photoélectrique ou la photo-réponse augmente lorsque le 

potentiel d’électrodéposition des couches se déplace vers des valeurs plus négatives. C’est ainsi 

que la meilleure photo-réponse été obtenue pour les films de Cu2O déposé à un potentiel de         

-0,25 V par rapport à Ag/AgCl.  

L'effet du traitement thermique sur les propriétés de photo-réponses et électriques des 

échantillons de n-Cu2O a été étudié. Après le recuit sous vide pendant 80 min à 150°C, les 

échantillons ont montré l'amélioration des caractéristiques courant-tension. C’est la première fois 

que les couches de Cu2O de type ont pu être préparées dans ces conditions. 
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Dans un troisième temps un procédé d’électrodéposition en deux étapes à été mis en œuvre pour 

fabriquer la l’homo jonction p-n de l’oxyde oxyde cuivreux sur  le substrat l’oxyde d'indium-

étain (ITO) qui a été utilisé comme un oxyde conducteur transparent. La performance 

photovoltaïque d'une cellule solaire à homo-jonction p-n de Cu2O a été déterminée. Le courant 

en court-circuit et la tension de circuit ouvert  ont été respectivement déterminés à 235 μA/cm
2 

et 

0,35 Volt. Le facteur de remplissage (FF) et le rendement de conversion de la lumière en 

électricité des cellules ont été respectivement évalués à 0,305 et 0,082%. 
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Chapter 1 INTRODUCTION 

Introduction 

As the population of the world continues to grow rapidly and becoming more industrialized, the 

demand for energy is becoming more critical challenge for the world’s population. Therefore 

competitive, sustainable and secure energy supply is an ever more demanding issue.  

Global energy consumption approximately doubled in the last three decades and increased 

rapidly in 2000-2008 and it is growing about 2.3% per year. According to International Energy 

Agency (IEA) in 2007, the primary source of energy was fossil fuels with a share of 86.4% 

(petroleum 36.0%, natural gas 23.0%, and coal 27.4 %,) of total energy sources. In 2009 the 

global energy consumption of renewable energy sources was 13.1% [1].  

The fossil fuels energy sources face a number of challenges including rising prices, security of 

supply and pollution by carbon dioxide emission. Carbon dioxide is producer of green house 

effect gases, which increase global temperature by reducing outward radiation and causing 

anthropogenic climate change. With current rate of fossil fuel consumption it is expected that the 

concentration of CO2 reaches the critical level of 750 ppm in 2050 [2]. Since there is no natural 

decomposition of CO2 in the atmosphere, it will take 500 to 2000 years to overcome the 

environmental effect of this level of pollution. As a result, considerable attention has been paid 

by governments, businesses and consumers to reduce CO2 emission by supporting the 

development of alternative energy sources and new technologies for electricity generation. With 

current technology the only practical solution is to reduce CO2 emissions to the atmosphere and 

http://en.wikipedia.org/wiki/Anthropogenic
http://en.wikipedia.org/wiki/Climate_change
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minimise the risk of large-scale and long-term changes to our environment. This can be achieved 

by switching from fossil fuels to alternative energy sources. 

Potential alternative energy sources can be solar, geothermal, hydroelectric and wind power. 

These resources does not deplete as opposed to fossil fuels.  Solar energy has huge potential 

capacity of 120000 TW, which is 7500 times larger than the current annual global energy 

consumption.  Currently the total global energy consumption is estimated to be around 13.5 TW 

and will increases to 27 TW by 2050 [2]. This means one hour of sun light on earth can provide 

us with our annual energy use.  In other words, at 10% efficiency in solar cells, only 0.1% of the 

Earth’s surface is sufficient to satisfy our present needs of energy. But getting hold to this huge 

energy reservoir remains an enormous challenge. 

Power generation from solar energy is one of the most rapidly growing renewable sources of 

electricity. Solar power generation has advantages of reducing fossil fuel consumption, 

production of electricity with less impact on environment, and free power source. Solar energy 

can be used as solar heating, solar photovoltaic, solar thermal electricity. 

In 2011, the IEA said that "the development of affordable, inexhaustible and clean solar energy 

technologies will have huge longer-term benefits. It will increase countries’ energy security 

through reliance on an indigenous, inexhaustible and mostly import independent resource, 

enhance sustainability, reduce pollution, lower the costs of mitigating climate change, and 

keep fossil fuel prices lower than otherwise. These advantages are global. Hence the additional 

costs of the incentives for early deployment should be considered learning investments; they 

must be wisely spent and need to be widely shared" [3]. 
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Depending on the method sunlight is captured and converted, solar technologies are divided into 

passive or active. Active solar techniques use the sun’s irradiance, or radiation and electrical or 

mechanical equipment such as photovoltaic cells, pumps, and fans to convert sunlight into 

electricity while passive solar techniques rely on the heat of the sun and the thermodynamic 

properties of the system or materials. In this work active solar technique using solar electricity 

generated by photovoltaic effect will be studied.  
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Chapter 2 LITERATURE REVIEW 

 

2.1  Overview 

2.1.1 Solar Cell basics 

A solar cell is an electronic device which directly converts solar radiation energy into electricity 

in the process called photovoltaic effect. Light shining on the solar cell create an electrical 

current or voltage in material which generate electric power. Key factors of this process are the 

intensity of radiation, the spectral distribution of radiation, light absorption material and design 

of the external circuit.  A variety of materials can potentially satisfy the requirements for 

photovoltaic energy conversion, however for efficient photovoltaic energy conversion, 

semiconductor materials in the form of a p-n junction are essential. 

When light strikes material, the incident photons with an energy greater than that of the band gap 

will excite a negatively charged electron from low energy state (valence band) to a higher energy 

state (conduction band) leaving behind a passivity charged vacancy (a hole) therefore creating 

electron-hole pairs. However these generated electron-hole pairs will only exist, for a length of 

time equal to the minority carrier lifetime before they recombine. If the incident photons have 

energy lower than that of the band gap the electron energy state will not changed and will 

immediately relax down and recombine with the hole and the energy will be lost as heat and no 

current or power can be generated. 

The generated electron-hole pairs should be separated and collected before recombination by the 

action of the electric field. This electric field is created by joining n-type and p-type 

semiconductor materials and forming a p-n junction. A p–n junction is created by doping, or 
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growing a layer of crystal doped with one type of dopant on top of a layer of crystal doped with 

another type of dopant. Since the n-type region has a high electron concentration and the p-type a 

high hole concentration, after joining p-type and n-type semiconductors, electrons near the p–n 

interface tend to diffuse from the n-type side to the p-type side leaving leave holes, positively 

charged ions,  in the n region. Similarly, holes flow by diffusion from the p-type side to the n-

type side leaving electrons, negatively charged ions, in the p region.  Therefore on the n-type 

side, positive ion cores are exposed and on the p-type side, negative ion cores are exposed. This 

will create charged regions and hence internal electrical field nearby the p–n interfaces. The 

electrical field will sweeps out the free carries (electrons and holes) and accelerates them in 

opposite directions causing the depletion of carries, hence, forming the depletion layer or space 

charge region (Fig. 2-1).  

  

Figure 2-1 A p-n junction in thermal equilibrium with zero bias voltage applied1. 

If the light-generated minority carriers survive long enough to reaches the p-n junction, it is 

swept across the junction by the electric field at the junction, where it is now a majority carrier 

                                                            
1 http://www.optique-ingenieur.org 

http://www.optique-ingenieur.org/
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which is then carried towards the contacts terminals creating voltage difference on either side of 

the photovoltaic cell. The magnitude of this voltage drop is called the open circuit voltage and 

scales with the intensity of light while remains constant with time for a given intensity. If the 

terminals of the solar cell are connected together, the light-generated carriers can flow through 

the external circuit. The higher the open circuit voltage is, the better is the quality of the 

photovoltaic cell, and hence the more efficient will be the solar cell in converting light into 

electrical energy. 

The ratio of the number of carriers collected by the solar cell to the number of photons of a given 

energy incident on the solar cell is called quantum efficiency and it can be expressed either as a 

function of wavelength or as energy. It is one at the particular wavelength if all photons of that 

wavelength are absorbed and the resulting minority carriers are collected and it is zero for 

photons with energy below the band gap. However, the quantum efficiency for most solar cells is 

reduced because of the effects of recombination, where charge carriers are not able to move into 

an external circuit. The impact of surface passivation and diffusion length on collection 

probability is important. It is more favorable to place p-n junction closer to surface rather than 

bulk, thus the separated carriers have a shorter distance to travel within the cell and as a result a 

lower chance of recombining. 

2.1.1.1  Equivalent circuit of the solar cell 

The solar cell can be seen as a current generator, the current is produced by injection from light. 

To better analyze the electrical behavior of solar cell, the equivalent electrical model based on 

electrical components is been created. The behavior of these components is well known. This 

equivalent circuit describes the static behavior of the solar cell. This circuit is composed of a 
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current source, a p-n junction diode and a shunt resistor (RSH) in parallel along with a parasitic 

series resistor (RS). 

 
Figure 2-2 Equivalent-circuit model for Solar cells. 

Figure 2-2 shows an example of an equivalent circuit of a solar cell with one diode. RS is the total 

Ohmic resistance of the solar cell, which is essentially the bulk resistance caused by the fact that 

a solar cell is not a perfect conductor. For more efficient cells, a smaller RS value is required. RSH 

accounts for recombination currents and leakage currents from one terminal to the other due to 

poor insulation. In this case larger RSH values is required for more efficient cell, this means that 

the recombination currents and leakage currents are reduced. From the equivalent circuit it is 

evident that the current produced by the solar cell is equal to: 

            

Where, I, IL, ID ISH are output current, photogenerated current, diode current, and shunt current 

respectively.  

The current through these elements is governed by the voltage across them: 
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Where Vj and V are voltage across both diode and resistor RSH and voltage across the output 

terminals. 

By the Shockley diode equation, the current diverted through the diode is: 

           
   

   
     

Where I0, n, q, k, T are reverse saturation current, diode ideality factor (1 for an ideal diode), 

elementary charge, Boltzmann's constant and absolute temperature respectively. At 25°C, KT/q 

is approximated to 0.0259 volts. By Ohm's law, the current diverted through the shunt resistor is: 

    
  

   
 

Substituting these into the first equation produces the characteristic equation of a solar cell, 

which relates solar cell parameters to the output current and voltage: 

            
        

   
     

     

   
 

The [-1] term in the above equation can usually be neglected since the exponential term is 

usually >> 1. 

In principle, the equation can be solve by given a particular operating voltage V and determining 

the operating current I at that voltage. However, since I appears on both side of equation, the 

equation has no general analytical solution. Hence, the parameters I0, n, RS, and RSH cannot be 

measured directly, the most common application of the characteristic equation is nonlinear 

regression to extract the values of these parameters on the basis of their combined effect on solar 

cell behavior. 



9 
 

 
 

Most solar cell parameters can be obtained from simple I-V measurements and the performance 

can be simply demonstrated by few solar cell parameters such as short circuit current (Isc), open 

circuit voltage (Voc), fill factor (FF), power(W) and conversion efficiency(η).   

The Isc (or IL) is the current through the solar cell when the voltage across the solar cell is zero 

and Voc is the voltage across the solar cell when the current through the solar cell is zero and it is 

the maximum voltage available from the solar cell. One of the most straightforward techniques 

to estimate RSH and RS is to measure the slope of I-V characteristics as shown in Figure 2-3.  RSH 

also can be estimated from the slope of a reverse biased I-V characteristics in the linear region. 

 

 

 
Figure 2-3 Typical IV forward bias characteristics of a solar cell2.  

 

                                                            
2 http://www.azonano.com/article.aspx?ArticleID=3615 

http://www.azonano.com/article.aspx?ArticleID=3615
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The fill factor (FF) and the conversion efficiency (η) are metrics used to characterize the 

performance of the solar cell. The fill factor is defined as the ratio of maximum power point 

(Pmax) divided by the product of Voc and Isc. The Pmax is the condition under which the solar cell 

generates its maximum power; Vmax and Imax are voltage and current at maximum power point 

respectively. Fill Factor is essentially a measure of quality of the solar cell and giving by 

following equation and can also be interpreted graphically as the ratio of the rectangular areas 

shown in Figure 2-3. 

    
        

      
 

The conversion efficiency is defined as the ratio of Pmax to the product of the input light 

irradiance (E) and the solar cell surface area (A) or simply Power input. 

  
    

   
 

 

2.1.1.2 Type of solar cell 

There are a variety of types of solar cells under development. Despite the complicated 

fabrication process and high cost the majority of solar cells fabricated today are silicon-based 

solar cells. Silicon-based solar cells types are single crystalline, large-grained poly crystalline 

and amorphous forms and they dominated PV market by taking 85% of share [4, 5]. 

Silicon is an abundant material, however its purification is highly expensive and the potential 

requirement for optimum solar cells exceeds available fabrication process for the high quality, 

pure silicon crystal lattices high efficiency solar cell. Therefore to have more cost effective solar 

cells, silicon should be replaced by other materials. 
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Idea solar cells should possess qualities such as optimum value band gap, direct band gap, 

homojunction, non toxic and abundant source material, simple and cost effective preparation 

method and finally good physical and chemical stability. 

The maximum possible efficiency of a single junction solar cell under un-concentrated sunlight 

as a function of the semiconductor band graph can be estimated from the Shockley-Queisser 

limit graph. This graph is shown in Figure 2-4.  If the band gap is too high, most daylight 

photons cannot be absorbed; if it is too low, then most photons have much more energy than 

necessary to excite electrons across the band gap, and the rest is wasted. 

 
Figure 2-4 Limiting solar cell efficiency as a function of the material bandgap3.  

 

Lots of efforts is been dedicated to prompt the development of solar cells based on alternative 

materials to improve conversion efficiency and reduce costs both for fabrication process and for 

                                                            
3 S.M. Sze, Physics of Semiconductor Devices, Wiley-Interscience 1969  
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the peripheral components, thereby lowering the cost per Watt of the solar cell. Table 2-1 

summarizes the various types of solar cells and the challenges facing them.  

 Category Type Challenges 

  Single crystalline  Development of the device structure  

Silicon  Polly crystalline and improvement of the crystal quality 

  Amorphous Multiplying the junctions 

 III-V Semiconductor GaAsInP Control of the band gap 

Compound II-VI Semiconductor CdTe/CdS – Cu2S/CdS  Multiplying the junction 

 Chalcopyrite  

Semiconductor 

CIGS  

Organic  Pentancene Development of the device 

Development of the materials 

Photochemical  Dye sensitized Development of the materials 

Table 2-1 Solar cell types.  

 

 

2.1.2 Electrochemical cells 

Electrochemical deposition, or electrodeposition for short, is well known at the industrial level. 

Electroplating nickel metal on automotive, copper metal on to circuit boards to provide low 

resistance interconnection between electronic components and Ni-Fe alloy for magnetic heads 

has been around for a long time. With the help of this technique a thin film of material can be 

applied to the surface of an object to change its external properties such as to increase corrosion 

protection, increase abrasion resistance and even improve decorative quality.  

Electrochemical deposition is the process of depositing material onto a conducting surface from 

a solution containing ionic species (salts). This fabrication technique is been used for plating 

simple metals, alloys (mixtures of metals) and semiconductors. Recently there is a great research 
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interest in utilizing this technique to produce semiconductors because of its simplicity, low cost, 

low-temperature process, control of film quality and possibility of making large area thin films 

onto conductive substrates. 

Electrodeposition cell consists of three electrodes, namely working, reference, and counter 

electrodes. The process is carried out by passing an electric current between electrodes separated 

by an electrolyte. The electrodes are connected to a potentiostat which is the instrument which 

controls the deposition process. This deposition takes place at the electrode-electrolyte interface. 

The overall electrochemical reaction in a cell consists of two independent half reactions. Each 

half reaction reacts to the interfacial potential difference at the corresponding electrode namely 

working or counter electrode (CE). Mostly one half- reaction and the electrode at which it 

happens is of interest. This electrode is referred as working electrode (WE). To focus on desired 

reaction, the other half-reaction is standardized by using an electrode with constant composition 

phases, called reference electrode (RE). The potential of working electrode is fixed. 

When a negative potential is applied to the working electrode, the energy of electron at working 

electrode is increased. When this energy becomes higher than the vacant electronic energy states 

of species in electrolyte, the electron will transfer into the electrolyte. Hence, the electrons will 

flow from working electrode into solution and a cathodic current will be established. The 

cathodic current will cause the reduction of the species in the solution at the surface of the 

working electrode. Similarly, applying positive potential will lower the energy of the electrons in 

working electrode and at certain potential, the electrons will flow from solution species to 

working electrode and an anodic current is formed, which results in the oxidation of the species 

in the solution. Representation of (a) reduction and (b) oxidation process of a species, A, in 

solution is given in Figure 2-5. The reactions stop when the equilibrium is achieved. The critical 
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potential, at which these reactions occurs, is called the standard potential (E0) for the related 

species in the solution. 

 
Figure 2-5 Schematic representation of a) reduction and b) oxidation process4. 

 

In practical electrodeposition, the chemical reaction around the electrode area occurs in a more 

complicated process. Under applied potential, the ions near the electrode surface will force to 

rearrange themselves creating an electrical double layer called the Helmholtz double layer, 

followed by the formation of a diffusion layer. These two layers are referred as the Gouy-

Chapman layer. The process describe as follows: 

                                                            
4 Allen J. Bard, Larry R. Faulkner, Electrochemical Methods: Fundamentals and Applications, John Wiley & Sons, Inc. 
2001 
 

http://ca.wiley.com/WileyCDA/Section/id-302478.html?query=Allen+J.+Bard
http://ca.wiley.com/WileyCDA/Section/id-302478.html?query=Larry+R.+Faulkner
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-  Mass transfer: The hydrated metal ions in the solution migrate towards the working electrode 

under the influence of current as well as by diffusion and convection. 

- Electron transfer: At the working electrode surface, a hydrated metal ion enters the diffused 

double layer. Then the metal ion enters the Helmholtz double layer where it will be removed of 

its hydrate envelope. 

- Nucleation: chemical reaction precedes and the dehydrated ion is neutralized and adsorbed on 

the electrode surface. 

- Growth: The adsorbed atom then migrates or diffuses to the growth point on the electrode 

surface. 

Therefore an electrode reaction is controlled by many parameters and variables. A summary of 

these variables is given in Figure 2-6. The key to desirable electrochemical reaction is a proper 

choice of these parameters. Therefore a large number of trials are required to optimize the 

process.  

Thickness of the electroplated layer on the substrate is determined by the time duration of the 

plating and layer thickness range is from 0.1 to 30 microns. An electroplated layer is usually 

composed of a single metallic element although co-deposition of two or more metals is possible 

under suitable conditions of potential and polarization. 
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Figure 2-6 Variables affecting electrochemical phase formation5. 

 

2.1.3 Cyclic voltammetry 

Cyclic voltammetry (CV) has become an important and widely used electroanalytical technique 

in many areas of chemistry. It is widely used for the study of redox processes, for understanding 

reaction intermediates, and for obtaining stability (the reversibility of a reaction) of reaction 

products. 

A CV system consists of an electrochemical cell, a potentiostat, and a data acquisition system for 

converting analog waveforms into digital values for processing. Electrochemical cell consists of 

a working electrode, counter electrode, reference electrode, and electrolytic solution.  

The common characteristic of all voltammetric techniques is that they involve the application of 

a potential (E) to an electrode and the monitoring of the resulting current (i) flowing through the 

                                                            
5 Allen J. Bard, Larry R. Faulkner, Electrochemical Methods: Fundamentals and Applications, John Wiley & Sons, Inc. 
2001 

http://ca.wiley.com/WileyCDA/Section/id-302478.html?query=Allen+J.+Bard
http://ca.wiley.com/WileyCDA/Section/id-302478.html?query=Larry+R.+Faulkner
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electrochemical cell. In many cases working electrode’s potential is varied linearly with time (t), 

both forward and reverse directions (at same scan rate), the reference electrode maintains a 

constant potential and the current is monitored. The purpose of the electrolytic solution is to 

provide ions to the electrodes during oxidation and reduction.  Thus, all voltammetric techniques 

can be described as some function of E, i, and t.  

The response obtained from a CV can be very simple, and resulting current vs. applied potential 

curve is predicted for an ideal, reversible system to have the shape shown in Figure 2-7. This 

Figure shows a CV resulting from a single electron reduction and oxidation. Consider the 

following reversible reaction: M
+
 + e

-
 <=> M.  The important parameters in a cyclic 

voltammogram are the peak potentials (Epc , Epa) and peak currents (ipc , ipa) of the cathodic and 

anodic peaks, respectively. 

 
Figure 2-7 Voltammogram of oxidation-reduction process6. Potential, E is given vs. Reference electrode. 

 

                                                            
6 http://www.basinc.com 

http://www.basinc.com/


18 
 

 
 

The reduction process occurs from (a) the initial potential to (d) the switching potential. In this 

region the potential is scanned negatively to cause a reduction. The resulting current is called 

cathodic current (ipc). The corresponding peak potential occurs at (c), and is called the cathodic 

peak potential (Epc). The Epc is reached when all of the substrate at the surface of the electrode 

has been reduced. After the switching potential has been reached (d), the potential scans 

positively from (d) to (g). This results in anodic current (Ipa) and oxidation to occur. The peak 

potential at (f) is called the anodic peak potential (Epa), and is reached when all of the substrate at 

the surface of the electrode has been oxidized. 

The peak current ip in this voltammogram is given by; 

 
               

 
      

 
     

 
    

 

where ip is the peak current (in amperes), n is the number of electrons passed per molecule of  

analyte oxidized or reduced, A is the electrode area (in cm
2
), D is the diffusion coefficient of  

analyte (in cm
2
/sec), ν is the potential sweep rate (in volts/sec), and C is the concentration of 

analyte in bulk solution (in moles/cm
3
). The midpoint potential of the two peaks in the 

voltammogram is given by: 

          
                       

 
    

  
  

  
   

  

 
  

 
 

 
  
  

Where E
o '

 is the redox potential, and DO and DR are the diffusion coefficients for the oxidized 

and reduced halves of that couple. It is frequently reasonable to assume that DO and DR are 

nearly equal, and in such a case the midpoint potential is very nearly equal to the redox potential.  
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Finally, the separation between the two peaks of the voltammogram is given by: 

                               
  

  
 

  

 
                 

Hence, depending on what is already known about a given system, one could determine the 

concentration, the diffusion coefficient, the number of electrons per molecule of analyte oxidized 

or reduced, and/or the redox potential for the analyte, all from a single experiment. 

 

2.1.4 Photoelectrochemical cell   

Photoelectrochemistry is a general category encompassing light-induced electrochemical 

reactions of semiconductors in contact with liquid electrolytes arising from the primary 

generation of minority carriers. Conceptually, liquid junctions are well suited for semiconductor 

characterization, since they have almost “contactless” junctions and are most adaptable for on-

line characterization. 

There are three major components in photoelectrochemical cell (PEC). First is the cell for 

exposing the semiconductor working surface to the electrolyte while also accommodating 

auxiliary electrode for controlling the semiconductor potential. Second is the control apparatus, 

typically a potentiostat and a means for monitoring current.  Finally is a light source. 

The principle of a photoelectrochemical cell (PEC) based on a single photoanode (n-type 

semiconductor) in a electrolyte with a redox couple (Eredox) and a metal counter electrode is 

shown in Figure 2-8.a. Other configurations of the PEC exist and may involve a single 

photocathode (p-type semiconductor) and a metal counter electrode or a single photoanode and a 
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photocathode as the counter electrode. In the case of Fig. 2.8.a, the photoanode (n-type 

semiconductor) is characterized by its conduction band (EBC), its valence band, (EVB) in a 

electrolyte with a redox couple (Eredox).  

Let us now consider a Photoelectrochemical cell formed by a n-type semiconductor, an 

electrolyte and a metal (platinum or carbon). When a semiconductor is immersed in electrolyte, 

the charges will flow from one phase to the other to equalize the Fermi level of the 

semiconductor to the Fermi level of the redox couple. The charge flowing contributes to the 

formation of the depletion layer, a region on each side of the junction where the charge 

distribution differs from the bulk material, and band-bending in the semiconductor phase. At 

equilibrium in the dark the Fermi levels of the three components equalize. When the 

semiconductor (working electrode) is illuminated with a light having energy hv equal or greater 

than the bandgap, electron-hole couples are generated. These electrons and holes are spatially 

separated from each other by an electrical field which is created in the semiconductor. This 

situation gives rise to photopotential, equal to the difference between the Fermi level of the 

illuminated semiconductor and that of the redox couple in solution. The maximum photovoltage 

corresponds to the condition where the bands are totally unbended. The corresponding voltage is 

called flat-band potential, which plays the same role as the point of zero charge in metals. 

Under the influence of depletion layer the holes are injected into the solution and the electrons 

move toward the bulk of the semiconductor and, via an external load, back to the counter 

electrode, from which they are injected into the solution where they can reduce the oxidised 

species of the redox couple. The photogenerated holes are swept toward the electrolyte where 

they can oxidize the reduced species of the redox couple and a photocurrent is generated. 

Therefore, irradiation on an n-type semiconductor will promote an anodic photocurrent. In a p-
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type semiconductor, the negative space charge region is formed, so under illumination, holes 

move into semiconductor and electrons move into solution, which generates a cathodic 

photocurrent. The magnitude of a photocurrent depends on the electrode properties, applied 

potential, and solution composition, which provide information about the nature of the photo-

process. 

It should be noted that the photo-generated minority carriers, may oxidize (n-type) or reduce (p-

type) the semiconductor itself, which lead to photocorrosion processes that could rapidly degrade 

the life of PEC. Therefore an electrolyte composition should be chosen in such ways that make 

the rate of transport of the photo-generated minority carriers to the redox couple much faster than 

that of photocorrosion. 
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Figure 2-8 Schematic showing the electronic energy levels at the interface between a semiconductor and an electrolyte 
containing a redox couple and a metal as the counter electrode. a) n-type semiconductor, b) p-type semiconductor7. 

 

In well-behaved photoelectrochemical cell, the curve of photocurrent vs. applied potential of an 

n-type semiconductor with an electrolyte containing a redox couple (A) is schematically shown 

in Figure 2-9.  

                                                            
7 Redraw from: Adv. Nat. Sci.: Nanosci. Nanotechnol. 2 (2011) 023002  



23 
 

 
 

 

Figure 2-9 Ideal behavior for an n-type semiconductor in the dark (---) and under irradiation (—). 

At the flat-band potential there is no current, either in the dark or upon irradiation (Region II), 

since there is no electric field to separate any generated charge carriers. At potentials negative of 

the flat-band potential (Region I), an accumulation layer exists, and the electrode can act as a 

cathode, both in the dark and upon irradiation. At potentials positive of the flat-band potential 

(Region III), a space-charged layer is thus formed, the width and magnitude of which grows as 

the potential becomes more positive. Therefore there can be no oxidative (anodic) current in the 

dark. However, upon irradiation a photocurrent is produced.  

 

 

2.2 Copper oxide thin film solar cells 

Cu2O crystallizes in a simple cubic structure which the copper atoms arrange in a face-centered 

cubic (fcc) sublattice and the oxygen atoms in a body-centered cubic (bcc) sublattice. This 

structure has a lattice constant al=4.2696 Å and one sublattice is shifted by a quarter of the body 

diagonal. In the lattice, each copper atom linearly coordinated by two neighboring oxygens and 

each oxygen atoms surrounded by four copper atoms, which makes the stoichiometry 2:1. 
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However, this stoichiometry is not obeyed completely as the ratio of copper and oxygen atoms is 

slightly different from the ratio in one mole. Therefore the arrangement of atoms in crystalline 

copper oxide is not perfect. Hence the structure needs to balance itself by the present of defects. 

In copper oxide crystal, these defects have a form of point defects which are defects that occur 

only at or around a single lattice point and are not extended in space in any dimension and 

typically involve at most a few extra or missing atoms. This deviation from stoichiometry, δ in 

Cu2O can be identifies either as vacancies, interstitials or both. 

Sears et al. 1984 reported that an excess of oxygen, as a result of stoichiometry, is the major 

active impurity and gives a p-doped semiconductor [6]. These defects not only tune the 

properties of semiconductor but also are involved directly as the active centers in chemical 

reactions.  

Cu2O is soluble in acid and insoluble in water and has a reddish color [7]. Cu2O has a molar 

mass of 143.09 g/mol, density of 6.0 g/cm
3
 with melting and boiling points at 1235°C and 

1800°C, respectively. High quality natural cuprous oxide crystals with lowest density of 

structural defect can found in Namibia and Congo [8]. Cu2O has six atoms per unit cell and thus 

3x6 = 18 phonon modes are found, three acoustic and 15 optical phonons [9]. 

The Cu–O system has two stable oxides: cupric oxide (CuO) and cuprous oxide (Cu2O). Each 

oxide has different crystal structures and physical properties. These two oxides are 

semiconductors with band gaps in the visible or near infrared regions. However cuprous oxide 

has much better crystallinity, bigger grains and direct bad gap structure. Cu2O has being 

frequently studied as absorber for low cost solar cell, even though its optical band gap is not 

optimum.  
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Cu2O is a p-type semiconductor with a direct band gap of 2.0–2.2 eV, which is suitable for 

photovoltaic conversion. Based on the Shockley-Queisser limit, its calculated theoretical 

electrical power conversion efficiency is approximately 20%; however based on a detailed 

photon and carrier loss analysis conducted for Cu/Cu2O cells, it is projected that the ultimate 

values of the photocurrent for Cu2O cells would  be 12 - 14 mA cm
-2

. Which indicate that the 

practical efficiency of around 11%-14% is a realistic achievable goal. This makes it an attractive 

material for solar cell applications; yet, the experimental efficiencies obtained up to this date are 

much lower than expectation values [10]. The lack of optimized p-n junction is the limiting 

factor.  

The most widely used method of producing Cu2O is thermal oxidation via the oxidation of 

copper metal. Copper is abundant material and can be processed by industrially proven low cost 

methods. Cu2O thin films can also be prepared by other methods such as anodic oxidation, 

chemical deposition, sol–gel chemistry, sputtering, electrodeposition, and other gas-phase 

deposition techniques [11, 12]. 

Thermal oxidation of copper is a simple and scalable method to produce copper oxide; however 

the procedure involves the oxidation of high purity copper at an elevated temperature (700-

1500
0
C). Depending on thickness desire the time range can be from few hours to few minutes 

followed by high temperature annealing for hours or even days. Copper can be oxidized 

thermally in air, oxygen or water vapor. Oxidizing in air or oxygen produces CuO and Cu2O 

depending on the thermodynamic stability of the oxides. Cu2O has been identified to be stable at 

limited ranges of temperatures and oxygen pressure. While water vapor produces more pure 

Cu2O phase [13]. In this method Cu2O with the bulk resistivity in the range of 10
2
 -10

4 
  ohmcm   

without post treatments can be obtained. This resistivity can further be lowered by oxidizing in 
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the presence of chlorine gas to below 100 ohmcm. However the purity of the starting Cu2O 

material has a significant impact on the quality of Cu2O. Thermal oxidation process normally 

shows high carrier concentration and low resistivity [14]. 

Anodic oxidation of copper surface at constant potential can produce copper oxide; however 

producing Cu2O film with high purity in the anodic case is facing serious difficulties. The 

produced film in this method has a bi-layer structure which consists of Cu2O as an inner layer 

and a partly hydrated cupric oxide, CuOx(OH)2-2x as an outer layer. A pure oxide layer thickness 

in the 1.5 to 2 μm range is needed for an effective solar cell [15]. 

Sputtering can be used to deposit copper oxide by sputtering. This method requires use of 

vacuum technique, as very low pressure in the working space is needed. By varying the rf power 

during deposition   both Cu2O rich and CuO rich films can be produced. Both  the  rf power  and  

the oxygen  flow  rate  during  deposition  affected  the  electrical  sheet resistance  of  the  

prepared  films. Cu2O films of resistivity as low as 25 ohmcm have been produced by Drobny et 

al., using this technique [16, 17]. 

Chemical vapor deposition (CVD) is a chemical process that produces high-purity solid 

materials. The produced Cu2O may be polycrystalline or amorphous depending on the materials 

and reactor conditions. Chemical vapor deposition has high throughput, high purity, and low-cost 

of operation. Several important factors such as the deposition temperature, the properties of the 

precursor, the process pressure, the substrate, the carrier gas flow rate and the chamber geometry 

affect the quality of the deposited film.  

Sol-gel-like dip technique is a simple and low-cost method, with no sophisticated setup; however 

stoichiometry and phase composition represent a major concern but other aspect such as 
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crystallite size and distribution, can be easily controlled by a proper choice of the molecular 

precursors and of the annealing conditions [18]. 

Electrical properties of Cu2O, such as carrier mobility, carrier concentration, and resistivity are 

very dependent on preparation methods. For example thermal oxidation leads to good quality 

polycrystalline Cu2O and shows high carrier concentration with the bulk resistivity in the range 

of 10
2
 -10

4
 ohmcm while electrodepostion process produces bulk resistivity in the range of 10

4
 -

10
6
 ohmcm but the grain sizes of the electrodeposits can be controlled easily from 0.1 to 10μm 

[19]. However the possibility of producing n-Cu2O compensate for this drawback. 

Cu2O semiconductor and its potential for the device application have been recognized since 

1920. When silicon, germanium and other potential semiconducting materials were discovered, 

researcher interest was shifted to these materials and further research on Cu2O was stopped for 

two decades. In the 1970s, interest in Cu2O was revived once again by the photovoltaic 

community due to its potential application as low cost material for solar cells. Several groups 

started investigation in metal-Cu2O solar cells in particular. A Schottky junction solar cell with 

highest efficiency of 1.8% was fabricated during this time [20]. The best efficient Cu2O-base 

heterojunction solar cell was reported recently by Mittiga et al, with efficiency of 2% with the 

MgF2/ ITO(sputtering)/ ZnO(sputtering)/ Cu2O(oxidation) structure [21]. They concluded that the use of 

good quality Cu2O sheets and IBS (ion beam sputtering) room temperature TCO (transparent 

conducting oxide) deposition can greatly improve the performances of TCO/Cu2O solar cells. 

However, this over all low efficiency is attributed to the lack of n-type Cu2O, which prevents 

formation of a homogeneous Cu2O p–n junction [10, 22] and common conclusion was that the 
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fabrication of homojunction Cu2O is the only way to achieve high efficiency Cu2O-base solar 

cell due to the fact that homojunction has no interface strain. 

In recent years electrodeposition has attracted the researcher because of its simplicity, low cost, 

low-temperature process (<100
o
C) and easy control of film quality onto conductive substrates. 

This liquid solution, represent other phase of the growth of materials either in bulk form or as 

thin film. The main advantage of electrodepostion is that the electrical conductivity (n-type or p-

type) can be modify by variation of semiconductor’s composition, during the electrodeposition 

of films [23-25] while none of previously mentioned techniques are able to produce a n-type 

Cu2O film. The reason for such restriction is not understood yet. It is generally accepted that n-

type doping is forbidden in the thermodynamic equilibrium because of a self-compensation 

mechanism. Therefore the concept of the origin of the n-type conductivity in Cu2O should be 

developed. This will help us to produce optimal n-type Cu2O and hence feasible fabrication of 

Cu2O p-n junction for higher efficiency photovoltaic application. 

Electrodepostion of Cu2O can be performed either in the potentiostatic mode or, galvanostatic 

mode.  In potentiostatic mode, a potentiostat will accurately control the potential of the counter 

electrode (CE) against the working electrode (WE) so that the potential difference between the 

working electrode and the reference electrode (RE) is well defined. In galvanostatic mode, the 

current flow between the WE and the CE is controlled. The potential difference between the RE 

and WE and the current flowing between the CE and WE are continuously monitored [11, 18, 

26, 27]. 

Rakhshani et al. [11] prepared p-Cu2O film onto conductive substrates in each three different 

modes, they used a solution of cupric sulphate, sodium hydroxide and lactic acid and the 



29 
 

 
 

composition of the films deposited under all conditions was p-Cu2O with no traces of CuO. The 

conclusion was that the substrate does not have a major effect on the orientation and the size of 

the grains; however stirring, concentration and aging of the bath solution all have distinct effects 

on the deposition parameters. The temperature range was from 25 to 70
o
C, they found that 

deposition temperature had a strong effect on the p-Cu2O grains size, higher temperature results 

in bigger grains size up to few micrometers; however the orientation of the grains is not effected 

with change in temperature. Rakhshani et al. [28] also showed that the size of grains could be 

controlled by the rate of deposition in the galvanostatic mode. Authors found that films deposited 

galvanostatically in solution of lactic acid (2.7 M), anhydrous cupric sulphate (0.4 M), and 

sodium hydroxide (4 M) at a temperature of 60 
o
C with pH 9, consisted  only of Cu2O and with 

highly oriented along the (100) plane parallel to the substrate surface with film resistivity in the 

range 10
6
 – 10

8
 ohmcm. 

Mukhopadhyay et al. [27] galvanostatically deposited p-Cu2O at 40–60 °C on copper substrates 

in solution of cupric sulphate (0.3 M), NaOH (3.2 M) and lactic acid (2.3 M) at pH 9. The 

deposition kinetics was found to be independent of deposition temperature and linear in the 

thickness up to about 20 μm. The electrical conductivity of p-Cu2O films was found to vary 

exponentially with temperature in the 145–300°C range with associated activation energy of 0.79 

eV. 

Golden et al. [29] electrodeposited p-type cuprous oxide by reduction of copper (II) lactate in 

alkaline solution of 0.4 M cupric sulfate and 3 M lactic acid and concluded that the surface 

texture of electrodeposited Cu2O films in bath is affected by bath pH and current density. At a 

solution pH 9 the orientation of the film is (100), while at a solution pH 12 the orientation 

changes to (111). The degree of (111) texture for the films grown at pH 12 increased with 
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applied current density. Other researchers find similar results that at bath pH~9.0, the (100) plane 

are produced and in higher bath pH~11.0, the (111) are produced [4, 10, 11]. In addition to these 

preferred orientation Wang  et al. in a narrow pH range, ~9.4-~9.9 obtained a third preferred 

orientation namely (110) [12]. In pH range 8-9, the preferential orientation of Cu2O deposited 

film is (200) and as the pH decreases further below 8, the film composition changes from Cu2O 

to mix phase of Cu and Cu2O at pH 7 and to Pure Cu below pH 5 [30]. 

Zhou and Switzer [31] conducted similar experiment and obtained similar results. They obtained 

pure four-sided pyramids Cu2O films at bath pH 9 with applied potential between -0.35 and -0.55 

vs. saturated calomel electrode (SCE) or at bath pH 12. Their conclusion was that preferred 

orientation can be controlled by adjusting the bath pH and/or the applied potential. They also 

concluded that the grain size in the (111) oriented films are larger than those in (100) films. 

Georgieva & Ristov [32] deposited the cuprous oxide (Cu2O) films using a galvanostatic method 

from an alkaline CuSO4 bath containing lactic acid and sodium hydroxide at a temperature of 

60°C.Authors obtained polycrystalline films of 4–6 μm in thickness with optical band gap of 

2.38 eV. 

The first n-type behavior of Cu2O by electrodeposition was reported by Siripala and Jaykody 

[23]. They cathodically deposited n-Cu2O on various metal substrates in solution containing 

1mM CuSO4 and small amount of NaOH. Photoconductivity of these films confirmed that the 

produced film is a n-type Cu2O. However the photoconductivity was changed to p-type for the 

same sample after heat treatment in air at 400
o
C for short time. They attributed the n-type 

behavior of Cu2O to oxygen vacancies created in the crystal lattice and/or additional copper 

atoms. 
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On other experiment Siripala et al. [33] used indium tin oxide (ITO) coated glass as substrate and 

electrodepostion was done in a solution of 0.1 M sodium acetate and 0.016 M cupric acetate for 

1.5 h in order to obtain films of thicknesses in the order of 1 μm. They obtained polycrystalline 

Cu2O films grain sizes in the order of 1-2 μm. The effect of annealing in air has been studied too 

and found that there is no apparent change in the crystal structure when heat treated in air at or 

below 300°C. Annealing above 300°C causes the decomposition of Cu2O film into a darker film, 

containing black CuO. 

Tang et al. [34] investigated the n-type electrochemical deposition of nanocrystalline Cu2O thin 

films on TiO2 films coated on transparent conducting optically (TCO) glass substrates by 

cathodic reduction in solution consisting of cupric acetate 0.1 M sodium acetate and 0.02 M 

cupric acetate. The effect of bath temperature was investigated at bath temperature at 0, 30, 45, 

and 60 °C. Authors found that that growth rates also exhibit significant temperature dependence 

and the film thickness increases with increasing temperature for the same deposition time. 

By selecting a bath temperature of 30 °C and an applied potential of −245 mV (vs. SCE) they 

investigate the effect of pH and found that it strongly affect the composition and microstructure 

of the Cu2O thin films. Authors found that the films deposited at pH < 4 are mostly metallic Cu 

and only little Cu2O (according to reaction Cu
2+

+2e
−
→Cu and the following reaction: 

Cu2O+2e
−
+2H

+
→2Cu+H2O). 

In the region of pH 4 to pH 5.5, the deposited films are mix composite of Cu and Cu2O, while 

the films deposited at pH between 5.5 and 6 are pure Cu2O. Thus they concluded 

electrodeposition carried out in the pH region 5.5∼6 can yield good-quality Cu2O thin films. In 

this range pure Cu2O was deposited at bath temperature between 0 and 30
0
C with spherically 
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shaped grains with 40~50 nm in diameter. Authors found that in order to produce nanocrystalline 

Cu2O thin film the bath temperature must be controlled in the range of 0-30
0
C. At a temperature 

of 45°C, a highly branched dendrite formed, and the grain size increased to 200–500 nm. At the 

temperature above 60°C, a ring-shaped structure with a more porous surface was observed. They 

also found that heat treatment in air at a temperature above 300 °C causes the oxidation of Cu2O 

to CuO.  Heat treatment also decreased the resistivity of Cu2O thin films and optical absorption.  

Wijesundera et al. [35] showed that that the single phase polycrystalline Cu2O can be deposited 

from 0 to -300 mV (SCE). While at more negative potential co-deposition of Cu and Cu2O starts 

and at the deposition potential from -700 mV (SCE) and more negative a single phase Cu thin 

films are produced. They carried the electrodepostion in an aqueous solution containing sodium 

acetate and cupric acetate. Single phase polycrystalline Cu2O thin films with cubic grains of 1–2 

μm was produced at the deposition potential around -200 mV (SCE). Authors concluded that the 

photoactivity of the Cu2O thin films in a PEC can be improved by depositing microscopic scale 

random Cu deposits on top of Cu2O thin films due to the better charge transfer process between 

Cu2O and electrolyte.  

Jayathileke et al. [36] electrodeposited cuprous oxide thin film in aqueous acetate baths and 

discovered  not only the pH value but also the cupric ion concentration of acetate bath determine 

the conduction type of the Cu2O films. The higher concentrations tend to produce n-type film 

and lower concentration produces p-type films.  

Han et al. [37] [38] studied the effect of doping conditions on electrical properties of n-type 

Cu2O. For un-doped samples the electrodepostion solution contained CuSO4 and Na lactate and 

pH was adjusted by adding 4M NaOH. CuCl2 and NaCl were used as the Cl precursor for doped 
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samples. Different mole concentrations of Cl precursor were used to control the doping level in 

Cu2O. They found that  the resistivity of Cl-doped Cu2O is affected by doping conditions such as 

Cu and Cl concentrations, different Cu and Cl precursors, complexing agent concentration, 

solution pH and deposition temperature. Thin film n-type Cu2O with resistive as low as 7 Ω-cm 

with small grain size of around 100nm in Cl-doped, was obtained. Authors suggested that Cl 

substitution of O in Cu2O is the reason for excess electrons and thus the n-type conductivity.  

This type of doping enables for much more efficient Cu2O solar cells by reducing the resistivity 

to optimum resistivity, which is around 1 Ω-cm for solar cell applications. 

Han et al, [39, 40] also studied the effect of bromine doping electrical properties of n-type Cu2O. 

Bromine doping in Cu2O significantly reduces the resistivity to as low as 42 Ωcm after vacuum 

annealing. The deposited Cu2O film contained larger grain size around ~ 100 μm in linear 

dimension. They concluded that the large grains and low resistivity will benefit photovoltaic and 

photochemical cells by reducing carrier recombination as well as carrier scattering at grain 

boundaries. 

The first Cu2O solar cells of 1% efficiency were fabricated in 1978 at National Science 

foundation and at the Joint Centre for Graduate Studies. Later on Herion et al, [41] fabricated a 

Cu/Cu2O thin-film front wall solar cells using partial thermal oxidation of Cu foil. Open circuit 

voltages of 0.5 V, and fill factors of 0.45 and efficiencies of 0.4% were obtained. The relatively 

small fill factor was mainly due to the high series resistance of the cells. These solar cells were 

limited to Schottky barrier solar cells; i.e., the junction was between p-Cu2O semiconductor and 

a metal. 
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When Cu2O is placed in contact with a metal to form a Schottky barrier, most metals reduce   

Cu2O to form a copper‐rich region at the interface, to form essentially a Cu/Cu2O contact. This 

copper‐rich region determines the barrier‐height magnitude which is always in the range of    

0.7-1.0 eV; regardless of the choice of metal [10]. This oxidation results in low efficiencies in 

the order of 1%. 

Since by that time researchers have not succeeded in producing n-type Cu2O, the homojunction 

cell structure could not be fabricated. Therefore researches were focused on heterojunction cells.  

A heterojunction solar cell is fabricated by depositing n-type semiconductor of suitable band gap 

on Cu2O.  

Later on Herion et al,[42] fabricated metal oxide/cuprous oxide heterojunction solar cells 

prepared by ion etching of a Cu2O substrate using air as the sputtering gas. Two types of 

heterojunction solar cells namely CuO/Cu2O and ZnO/Cu2O were prepared. They concluded that 

ZnO/Cu2O heterojunction is essentially Cu/Cu2O Schottky cell since Zn reduces Cu2O to Cu. 

The fabricated p-Cu2O/n-ZnO photovoltaic device showed poor photovoltaic performance of 

0.11% conversion efficiency [43]. 

Other researchers shift their interest towards transparent conducting oxide. Georgieva & Ristov 

fabricated ITO/Cu2O solar cell by depositing graphite paste on the rear of the Cu2O layer with 

values of the open circuit voltage Voc of 340 mV and the short circuit current density Isc of 245 

μA/cm
2
[32].

  

Tanaka et al. [44] prepared various transparent conducting oxide (TCO)-cuprous oxide (Cu2O) 

heterojunction such as indium oxide (In2O3), tin oxide (SnO2) and multi-component oxides like 

aluminium-zinc oxide (AZO) and aluminium- zinc-indium-tin-oxide (AZITO) and ZnO. The 
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electrical and photovoltaic properties measured on these heterojunction devices prepared by a 

pulsed laser deposition showed poor results. The best results obtained with AZO-Cu2O devices 

prepared at 150 
O
C and measured under air mass 2 (AM2). Illumination with an open-circuit 

voltage of 0.4 V, a short-circuit current density of 7.1 mA/cm
2
, a fill factor of 0.4 and an energy 

conversion efficiency of 1.2%. 

Mittiga et al., [21] prepared ITO/ZnO/Cu2O solar cell with efficiency of  2%. This is the best 

solar cell, to date using transparent conducting oxide (TCO) thin films. The TCO films have 

been grown by ion beam sputtering on good quality Cu2O sheets prepared by oxidizing copper at 

a high temperature.  

Wijesundera, [45] potentiostatically electrodeposited n-Cu2O thin films in an acetate bath            

(0.1M sodium acetate and 0.01 M cupric acetate) on Ti/CuO electrodes in order to fabricate the 

p-CuO/n-Cu2O heterojunction. The Ti/CuO/Cu2O/Au heterojunction gave the open circuit 

voltage (Voc) of∼210 mV, short circuit current (Jsc) of∼310μA cm
2
, fill factor (FF) of∼0.26 and 

efficiency (η) of ∼0.02% under the white light illumination of 90 mW cm
−2

. 

Katayama et al, [46] prepared Cu2O/ZnO solar cells by electrodeposition of ZnO on tin-oxide-

coated glass  followed by galvanostatic deposition of Cu2O to form Cu2O/ZnO/ITO  solar cells 

with a short-circuit photocurrent density of 2.08 mA cm
-2

,an open-circuit voltage of 0.19 V, a fill 

factor of 0.295 and conversion efficiency of 0.117%. Cu2O film was deposited at current 

densities of -0.1 to -0.4 mA cm
-2

 from alkaline copper (II) sulfate solution containing malic acid 

as a complexing agent at pH 9.0. The low efficiency was contributed to defects induced by 

mismatch between the lattice parameters at the heterojunction. 
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Septina et al, [47] fabricated a Cu2O/AZO heterojunction was fabricated by electrodeposition of 

a Cu2O film on glass substrates coated with F-doped SnO2 from an alkaline electrolyte solution 

(pH 12.5) containing copper (II) sulfate and lactic acid.  The Cu2O film deposited at −0.6 V (vs. 

Ag/AgCl) at 60 °C showed good electrical rectification. The deposited film had the band gap of 

1.9 eV. The solar cell prepared by these parameters had the best performance with 0.60% 

conversion efficiency. 

Cheng and his co-worker showed that preparing nanostructured Cu2O/ZnO by the 

electrodeposition will increased p–n heterojunction area and then the enhanced charge carriers 

collection ability.  Their cavity-like nano-patterns solar cell showed a efficiency of 0.51%  with 

a Voc of 0.24 V, a Jsc of 6.33 mA cm
−2

, and a FF of 34.5 [48]. 

These heterojunction cells have low conversation efficiency, much lower than the theoretical 

efficiency limit of the Cu2O solar cell. The above low efficiencies can be attributed to parasitic 

current losses due to the injection of minority carriers across the junction. Poor interface quality 

due to the crystal lattice mismatch and different crystal orientation is a main cause of these 

parasitic current losses. 

With successful preparation of n-type Cu2O, a homogeneous Cu2O p–n junction could be 

fabricated, and common conclusion is that the fabrication of homojunction Cu2O with 

consistence crystal orientation is the only way to achieve high efficiency Cu2O-base solar cell 

due to the fact that homojunction has no interface strain [10, 49-51].  

Despite this conclusion, fabrication of p-n Cu2O homojunction solar cells has been very limited; 

so far only four Cu2O homojunction have been reported to date [22, 49, 50, 52]. Han et al, 

fabricated Cu2O p-n homojunction by a two-step sequential electrodeposition process. a 0.8 µm 
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n-type Cu2O film was first electrodeposited on a ITO coated glass substrate in an aqueous 

solution containing 0.01 M copper acetate and 0.1 M sodium acetate at solution pH 5.2. The 

deposition potential was -0.1 V and deposition temperature 60 °C. In second step a p-type Cu2O 

film with 3.0 µm thickness was then directly deposited on n-type Cu2O in an aqueous solution 

containing 0.4 M copper sulfate and 3 M sodium lactate at solution pH 13.0. The deposition 

potential was -0.5 V and deposition temperature 60 °C.  They achieved efficiency of 0.15 % in a 

Cu2O substrate solar cell with an area of 0.01 cm
2
. They also concluded that solution pH has 

significant effect on the flat-band voltage and hence on open-circuit voltage.  Increase in solution 

pH will lower the open-circuit voltage.  They also found that the open-circuit voltage of the cells 

increases linearly with the thickness of the p-type Cu2O layer, while the short-circuit current 

remains almost the same.  The low efficiency solar cells was largely attributed to the high 

resistivity of both p-type and n-type Cu2O. Therefore, they suggested doping in both p-type and 

n-type Cu2O to reduce their resistivity in order to increase the efficiency [50].  

Other group suggested that tuning the homojunction interface crystal orientation and forming a 

pyramid-like textured surface can increase the efficiency [49, 51]. 

2.2.1 p-type materials 

Cu2O having p-type conductivity could be produced by different methods. In electrodepostion 

method the most common materials for preparing p-type Cu2O are copper sulfate (CuSO4), 

sodium lactate (NaC3H5O3, 60% w/w aqueous solution) and NaOH [11, 53]. p-type Cu2O could 

also be prepared from a solution of copper acetate, trioctylamine (C24H51N), and oleic 

acid(C18H34O2) [54]. 
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2.2.2 n-type materials 

For electrodepostion method the most common materials for preparing n-type Cu2O is aqueous 

solution of copper acetate and sodium acetate [33]. n-type Cu2O is also prepared from Copper(II) 

acetate (Cu(OOCCH3), copper(II) nitrate trihydrate (Cu(NO3) and acetic acid (CH3COOH) [55]. 

Immersing polished and ultrasonically cleaned copper plates in HCl solution of pH 3 at 40
o
C for 

several hours also produce a n-type Cu2O [56]. Our attempt to prepare n-type Cu2O with this 

method was not successful. Siripala and Kumara also observed n-type behavior by dipping a 

polished copper plated in 0.5 M CuSO4 stirred solution (pH=4). The pH was adjusted by mixture 

of NaOH and H2SO4 solution [57].  
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Chapter 3 OBJECTIVE 

Photovoltaic limited efficiency and the high cost of silicon solar cells are key issues for solar cell 

to become an alternative to the use of readily available fossil fuels. Therefore the development of 

new cost effective and non-toxic photovoltaic materials and energy efficient processes is 

essential. Transition metal oxides have a great potential to fulfill these requirements. Among 

them cuprous oxide (Cu2O) has potential alternative to silicon due to its, non-toxicity and simple 

low-cost fabrication process from abundantly available materials. Cu2O has direct band-gap 

energy of 2.0 eV and a relatively high absorption (~10
4
 cm

-1
) coefficient in the visible region. Its 

calculated theoretical electrical power conversion efficiency is approximately 20 % [1]. However 

limited understanding of the conductivity the n-type of Cu2O semiconductor as well the 

difficulty in doping and the lack of n-type Cu2O has hindered the efficient production of 

homojunction Cu2O based photovoltaic cells. 

Cuprous oxide is a non-stoichiometric naturally p-type semiconductor due to point defects such 

as copper excess vacancy in comparison to oxygen. Since the principles of photovoltaic relies on 

a p-n junction, hetero-junction Cu2O photovoltaic cells such as ZnO/Cu2O , CdO/Cu2O and 

ITO/Cu2O has been fabricated during the past decades, i.e., ZnO, CdO and ITO as a n-type 

material and Cu2O as a p-type active material. These heterojunction cells have low conversation 

efficiency, with the highest efficiency of less than 2% [2]. Few publications [3-6] have 

demonstrated the feasibility of Cu2O homojunction for photovoltaic applications and optimum 

efficiency which was claimed was around 1% [5]. Until now there are no systematic studies 

which evaluate the relations between the physico-chemical properties and the electrodeposition 
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and annealing parameters of p-Cu2O and n-Cu2O. These aspects are very important if we want to 

improve the efficiency of p-n Cu2O homojunction solar cells.  

The objective of the present study was to carefully evaluate the correlations between the physico-

chemical properties and the electrodeposition and annealing parameters of p-Cu2O and n-Cu2O. This will 

help to identify optimum preparation parameters for high efficiency homojunction p-n Cu2O solar 

Cell. For the first time this work will present a new approach to improve the photocurrent 

response due to a specific preparation of the n-Cu2O.  The feasibility of a p-n Cu2O 

homojunction thin film solar cell will be also demonstrated.  
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Chapter 4 EXPERIMENTAL METHODS AND ORGANISATION OF THE 

ARTICLES 

Abstract.  In  this  chapter  the  key  experimental  methods  are  introduced  and  data analysis 

methods are explained.  

4.1 Experimental Methods 

4.1.1  Scanning Electron Microscopy (SEM) 

For understanding the morphology of prepared films, it is important to investigate the surface 

structure. Scanning electron microscopy (SEM) analysis was performed to provide micro and 

nanoscale information on morphology and composition of thin film. The SEM measurements 

were conducted by using a FEI JEOL JSM-7600TFE scanning electron microscope.  This 

microscope is equipped with a Field Effect Gun (FEG) for the observation of non-conducting 

samples and its lateral resolution is given as 1.4 nm at 1 kV and 1.0 nm at 15 kV.  

Figure 4-1 shows a typical diagram to explain processes in the SEM. Electrons with high energy 

are accelerated towards the sample surface from the filament source. The scattered electrons 

provide surface topography information. In addition, X-ray emission from the sample is caused 

by electron excitation (inner electrons) after electron impact. Energy dispersive X-ray 

spectroscopy (EDX) is an analytical technique for surface elemental analysis. By exposing the 

material to high energy electrons (15 keV in the present work) excitation (inner electrons) after 

electron impact EDX can be measured. This process excites the atoms and consequently some of 

the core electrons move from the ground state (unexcited state) to a higher energy level or they 

are emitted leaving an electron hole. Then there are two possibilities: (i) either an electron from  
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an outer, higherenergy shell falls back into this hole causing characteristic X-ray emission lines 

(EDX) or (ii) a second electron is emitted when the electron drops into the ground state to refill 

the position (Auger effect, only for light elements). The difference in energy between the higher 

energy shell and the lower energy shell may be released in the form of characteristic Xrays in 

EDX. Energy dispersive spectrometer can be used to count the energy of the Xrays emitted from 

a specimen. Because of the energy of the Xray is characteristic for the difference in energy 

between the two atomic shells, the type of element and the approximate concentration can be 

determined. In this study we will use these methods of analysis to determine the morphology and 

the chemical composition of the electrodeposited Cu2O. The SEM will be used to determine the 

grains size of the electrodeposited thin films in various experimental conditions. The effect of 

these experimental electrode position and heat treatment conditions will be evaluated using these 

methods.   

 

4-1 Schematic illustration of SEM8. 

                                                            
8 http://nanoart21.org/sem.html 

 

http://nanoart21.org/sem.html
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4.1.2 Xray Diffraction (XRD) Techniques 

X-ray crystallography is a fundamental experimental techniques used for determining the atomic 

and molecular structure of a crystal. X-ray diffraction is a non-destructive rapid analytical 

technique primarily used for phase identification of a crystalline material which can yield the 

unique fingerprint of unit cell dimensions by Bragg reflections associated with a crystal 

structure. One can regard a crystal structure as being built of layers, or planes, which each act as 

a semi-transparent mirror. X-rays with a wavelength similar to the distances between these 

planes can be reflected such that the angle of reflection is equal to the angle of incidence.  

The Xray  region  is  located  in  the  section  of  the  electromagnetic  spectrum  in  the  

wavelength range between 0.1100 Å. Like all electromagnetic waves, Xrays can be  viewed  as  

both  of  flow  of  photon  particles  and  a wave  of  energy  and  they  can  be  characterised  by  

their  energy. The energy is given by the product of the inverse wavelength (λ), the Planck 

constant (h), and the frequency (υ)  

                                

                                         

Here c is the speed of light, h is the Planck constant. From equation (1) and (2) the photon 

energy can be calculated (eq. 3). 

  
   

  
                                              

Thus, Xray wavelengths are short and they have comparably higher energy. Xrays can be 

produced when high energy electrons emitted from a hot filament (cathode) strike a heavy 



48 
 

 
 

metallic target (anode). Usually, the cathode can be maintained at a potential of 30 to 50 kV 

relative to the anode. The electrons librated from the heated filament and accelerated by high 

voltage towards the metal target.  

A crystal structure can be regard as building of layers, or planes, which each act as a semi-

transparent mirror. X-rays with a wavelength similar to the distances between these planes can 

be reflected reinforce one another in certain direction according to Bragg’s law of diffraction. 

                        

where n is an integer, d is the spacing between the adjacent crystal planes, θ is the angle between 

incident X-ray beam and scattering plane, and λ is the wavelength of incident X-ray. These 

diffracted X-rays are then detected, processed and counted. By changing the geometry of the 

incident rays, the orientation of the centered crystal and the detector, all possible diffraction 

directions of the lattice should be attained. Figure 4-2 illustrates the interaction of the 

electromagnetic wave and the crystal planes. 

 

4-2 Schematic drawing illustrating Xray diffraction and Bragg’s Law9. 

                                                            
9  http://cnx.org/content/m46154/1.2/ 

http://cnx.org/content/m46154/1.2/
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In this work the purity and crystal phases of each Cu2O layers were examined by X-ray 

diffraction (XRD). XRD data acquisition was done using a Philips X'Pert diffractometer 

equipped with Cu Kα radiation (λ = 1.5406 Å) (at 50 kV and 40 mA) in a scan range (2θ) from 

20° to 90° and data analysis was carried out using the Panalytical X’pert Highscore Plus 

program. The high resolution of the equipment (min step 0.0001° in detector and omega, best 

instrumental resolution ~0.003° in omega & omega/2theta) will allow us to determine properly 

the detection of the XRD the main patterns of the electrodeposited films for various experimental 

conditions.  

4.1.3 Current-Voltage Characterisation 

A photovoltaic cell may be represented by the equivalent circuit model described in section 

2.1.1.1 and shown in Figure 2-2, consisting of a photon current source (IL), a diode, a series 

resistance (Rs), and a shunt resistance (Rsh). 

Critical PV cell performance parameters, such as the equivalent cell shunt and series resistance 

and the electrical conversion efficiency and fill factor, may be determined from I-V 

measurements. The cell must be maintained at a constant temperature and a radiant source with a 

constant intensity and a known spectral distribution must be used. 

This test involves generating the forward biased I-V curve between the two points (V1 = 0, I1 = 

Isc) and (V2 = Voc, I2 = 0). The parameters Voc and Isc can be directly determined from the curve 

and Imp, Vmp, Pmax, FF, and η are easily calculated. Additional analytical techniques may be used 

to determine Rs and Rsh.  
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The reverse bias I-V curve test is performed in the dark between 0V and the level where 

breakdown begins to occur. In this region, the slope of the current-voltage characteristic can be 

used to estimate the shunt resistance (Rsh). 

 

4.1.4 Photocurrent characterization 

The optical properties of the films were determined by photocurrent characterization carried out 

in a custom built three-electrode electrochemical cell based on Photoelectrochemical cell (PEC) 

described in section 2.1.4. A Pt mesh, Ag/AgCl reference electrode, and the Cu2O film were used 

as the counter, reference, and working electrode, respectively. The illumination  switch  was  

controlled manually  to  chop  the  light  in  certain  time  intervals. For photocurrent 

measurements, using Princeton Applied Research potentiostat, the electrolyte was an aqueous 

solution of 0.5 M sodium acetate. To avoid false signals rising from oxygen reduction, the 

electrolyte was continuously purged with N2 to remove oxygen.  

The conversion of photon of light into electrical energy was characterized by solid-liquid 

junction called Photo-electrochemical cell (PEC). The PEC consists of the Cu2O film 

semiconductor deposited on ITO coated class as the working electrode, a carbon rod electrode as 

counter electrode and Ag/AgCl reference electrode. The electrolyte was sodium hydroxide at pH 

8.5. A xenon lamp was used to illuminate the semiconductor surface through the electrolyte to 

get an equivalent of 100 mW/cm
2
 at the semiconductor surface.  The PEC was characterized by 

measuring current voltage characteristics in dark as well as under illumination in the same cell 

used for photocurrent characterization.  
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4.2 Organisation of Articles 

This thesis consists of the following two articles; 

1. Electrochemically deposited n and p type Cu2O thin films and their characterization for 

photovoltaic applications. 

2. Photocurrent enhancement of n-type Cu2O fabricated under different gas atmospheres in 

the electrolyte. 

 

 



52 
 

 
 

Chapter 5 ARTICLE 1:  ELECTROCHEMICALLY DEPOSITED n AND p 

TYPE Cu2O THIN FILMS AND THEIR CHARACTERIZATION FOR 

PHOTOVOLTAIC APPLICATIONS 

S. M. Shahrestani and O. Savadogo
 

Laboratory of New Materials for Electrochemistry and Energy 

École Polytechnque de Montréal, Canada, H3C 3A7 

Submitted to the Materials Research Bulletin, on November, 2013  

 

Abstract 

Polycrystalline p-Cu2O and n-Cu2O thin films were electrodeposited in aqueous electrolytes on 

copper sheet or Indium tin oxide (ITO) coated glass. The effect of the electrodeposition 

parameters on the resistivity and the photo-response of the films were determined. The best 

electrolyte and potential for the electro-deposition of n-Cu2O was determined for the first time.  

A two-step electrodeposition process is implemented to fabricate p-n homojunction cuprous 

oxide on ITO substrate which was used as a transparent conductive oxide for the homojunction 

Cu2O solar cell. The photovoltaic performance of a p-n Cu2O homojunction solar cell was 

determined. The short circuit current and open circuit voltage are respectively determined as 235 

microA/cm
2
 and 0.35 Volt. The fill factor (FF) and the cell conversion efficiency of light to 

electricity are determined to be respectively 0.305 and 0.082%. 

Key Words: Electro deposition, p and n type Cu2O thin films, homojunction, photovoltaic solar 

cells 
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5.1 Introduction 

Despite the tremendous progress in all aspects of production of Si-based solar cells and the rapid 

decrease of production cost for PV modules from $5 per peak watt at the beginning of the 1990s 

to $2.5 per peak watt in 2010, or $0.7 per kWh, this remains effectively too high[1]. A cost level 

of $0.50 per peak watt would make solar light conversion very attractive for large-scale 

application of solar light conversion devices. This will also make solar cell more competitive 

than fossil fuel resources for various large applications. A total solar cell cost of $130 m
−2

 with a 

light conversion efficiency of 50% is necessary to reach this peak watt cost. There is no current 

solar cell technology which meets these two requirements. From basic scientific principles, these 

requirements are feasible but the development of related commercial devices is facing major 

scientific as well as engineering development challenges.  

Thin-film materials and nanomaterials are based on material layers the thicknesses of which 

range from monolayer’s of nanometers to several micrometers. Among them various transition 

metal oxides including cuprous oxide (Cu2O) have a great potential as an alternative to Si-based 

solar cell. Cuprous oxide has direct band-gap energy of 2.0 eV, a relatively high absorption 

coefficient in the visible region. Cu2O is an abundant and low cost material satisfying 

economical and environmental requirement necessary for large scale applications [2]. Its 

calculated theoretical electrical power conversion efficiency is approximately 22%; however 

practical efficiencies of around 11%-14% are a realistic achievable goal [3, 4]. This makes it an 

attractive material for solar cell applications; yet, the experimental efficiencies obtained up to 

this date are much lower than expectation values. The best efficient Cu2O-base heterojunction solar 

cell was reported recently by Mittiga et al. with efficiency of 2% [5]. This low efficiency is attributed 
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to the lack of n-type Cu2O, which prevents formation of a homogeneous Cu2O p–n junction [3, 

6]. Cuprous oxide is non-stoichiometric naturally p-type semiconductor due to point defects. 

Sears et al. 1984 reported that an excess of oxygen, as a result of stoichiometry, is the major 

active impurity and gives a p-doped semiconductor [7]. Others attributed p-type conductivity to 

presence of Cu vacancies [8-10].  

Cu2O thin films are prepared by various methods such as thermal oxidation, anodic oxidation, 

chemical deposition, sol–gel chemistry, sputtering, electrodeposition and other gas-phase 

deposition techniques [11-13]. All these methods produces p-type Cu2O semiconductor. 

The first n-type behavior of Cu2O was reported by Siripala and Jaykody. They implement 

electrodepostion techniques to produce n-Cu2O thin films. They attributed the n-type behavior of 

Cu2O to oxygen vacancies and/or additional copper atoms [14]. 

Electrodeposition is simple, low cost and low-temperature process. Control of film quality and 

possibility of making large area thin films onto conductive substrates can be achieved easily by 

electrodepostion. In electrodeposition, the electrical conductivity (n-type or p-type) can be 

modify more easily by variation of semiconductor’s composition during the electrodeposition of 

films [14-18]. However better understanding of point defects and doping process is required to 

produce optimal n-type Cu2O and hence feasible fabrication of Cu2O p-n junction for higher 

efficiency photovoltaic application. 

It has been reported that the structural properties, such as the crystal orientation, grain size, 

surface texture of electro-deposited Cu2O films in acetate bath is affected by bath pH and applied 

potential. At bath pH~9.0, the (100) planes are produced and in higher bath pH~11.0, the (111) 

planes are produced [13, 19, 20]. In addition to these preferred orientation a narrow pH range, 
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~9.4-~9.9 showed a third preferred orientation namely (110) [13]. At higher bath pH, Cu ions 

diffuse to the surface, form the Cu vacancies and hence produce p-type films, while at lower pH 

values the oxygen vacancies will produce n-type conductivity [14, 21-23]. However, why pH can 

influence vacancy type, and thereby the conduction type of Cu2O, is not yet explained clearly. 

Moreover the resistivity of n-type Cu2O film produced by electrodepostion techniques remains 

high in the range of (10
6
 – 10

8
 ohm/cm) [6, 17].  

The objective of the present study was to carefully prepare p-type and n-type Cu2O thin films by 

simply adjusting the pH of the copper (II) acetate aqueous solution. Photoelectrochemical 

characterization confirmed that Cu2O films deposited in acidic and alkaline media show n-type 

and p-type behavior, respectively. We have systematically investigated the deposition conditions. 

 

5.2 Experimental methods 

5.2.1 Preparation of Cu2O 

5.2.1.1 Preparation of working electrode 

Two different substrates were used as the working electrodes for the electrodeposition of Cu2O. 

One was transparent conducting oxide - ITO (indium tin oxide) on glass substrate with a sheet 

resistance of 18Ω/cm. The other one was Copper foil with a thickness of 18 µm.  

Prior to the film deposition, ITO/glass  and  Cu foil  were  degreased  in  ultrasonicated  acetone  

for  15  minutes, rinsed in de-ionized water. The degreasing process is to remove dirt, loose 

particles, grease, oil, and other surface organic contaminants by immersion of the working 

sample into a bath of solvent. Ethanol and isopropanol can also be used as cleaning solvent. The 
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ultrasonic source will create very high frequency cavitation of the solvent forming thousands of 

small bubbles which then collapse. This constant formation and collapsing action scrubs the 

surface of sample, helping to remove insoluble soils and particulates. For more efficient results 

this process was carried out at temperature of 50 °C. After degreasing process, the samples are 

rinsed in de-ionized water. 

After cleaning process, chemical etching was performed on samples to remove inorganic 

contamination and native oxides on sample surface. ITO/glass and Cu foil were etched 

chemically, in diluted hydrochloric acid (HCl) and nitric acid respectively for 2 minutes, and 

finally rinsed in de-ionized water.  

 

5.2.1.2 Preparation of solution 

Two different electrolyte solutions were used for Cu2O electrochemical deposition. For the 

electro-deposition of p-type Cu2O, the electrolyte was the aqueous solution of 0.4 M copper 

sulfate and 3M sodium lactate (NaC3H5O3, 60% w/w aqueous solution) [11]. Copper sulfate was 

first dissolved in de-ionized water then 3M sodium lactate was added to the solution. Sodium 

lactate works as the complexing agent to stabilize the Cu
2+

 ion at high pH values and prevent it 

to precipitate when NaOH is added to the solution. For n-type Cu2O, the electrolyte solution was 

the aqueous solution of 0.01M copper acetate and 0.1M sodium acetate [15]. Sodium acetate was 

introduced as a background electrolyte into solution to remove migration effect and also acts as a 

conductor to help the passage of current thought the solution. All chemicals were from 

commercial sources. They were used without further purification. All solutions in this study were 

prepared from de-ionized water. 
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5.2.1.3 Electro-deposition parameters and procedure 

A single-compartment, three-electrode electrochemical cell, as illustrated in Figure 5.1, was used 

for film deposition. Electrodeposition was carried out with a Princeton Applied Research 

potentiostat 273A. The commercial Ag/AgCl (4M KCl)  and  Pt  mesh were  used  as  the 

reference  and  counter  electrode,  respectively. The electrolyte was kept in a water-jacked cell 

and the temperature was controlled between 30°C and 70 °C by a Polystat circulation water bath. 

The electrodeposition was carried out in the potentiostatic mode at different applied potential 

values with respect to the reference electrode. The applied potential window was chosen from 

cyclic voltammetry (CV) or linear voltammetry (LV). After deposition, the films were rinsed in 

de-ionized water and dried at room temperature. 

 

Figure 5-1 Schematic representation of the electrochemical cell used in this study. 
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5.2.2 Characterization 

Linear voltammetry (LV) at slow scan rate was used for the initial characterization and 

identifying the electrochemically redox processes. LV measurements were performed in the 

same single-compartment, three-electrode electrochemical cell used for electrodeposition. The 

potential was applied between the reference electrode and the working electrode and the current 

was measured between the working electrode and the counter electrode. The linear voltammetry 

was performed prior to each deposition for each new solution with different pH. 

To investigate the influence of bath pH on voltammetric curve, baths with different pH values 

were prepared. The pH of the bath was controlled by adding different amounts of NaOH in the 

electrolyte. As an example, the temperature of the bath was fixed at 60 °C in the solution 

containing 0.4M copper sulfate and 3M sodium lactate. A shift in the peak cathodic peak 

potential to negative values was noticed when the pH increases.   

The surface morphology of the films was studied using FEI JEOL JSM-7600TFE scanning 

electron microscope (SEM). The purity and crystal phases of each Cu2O layers were examined 

by X-ray diffraction (XRD). XRD data acquisition was done using a Philips X'Pert 

diffractometer equipped with Cu Kα radiation (λ = 1.5406 Å) (at 50 kV and 40 mA) in a scan 

range (2θ) from 20° to 90°. The optical properties of the films were determined by photocurrent 

characterization carried out in a custom built three-electrode electrochemical cell.  A Pt mesh, 

Ag/AgCl reference electrode, and the Cu2O film were used as the counter, reference, and 

working electrode, respectively. The illumination  switch  was  controlled manually  to  chop  the  

light  in  certain  time  intervals. For photocurrent measurements, using Princeton Applied 

Research potentiostat, the electrolyte was an aqueous solution of 0.5 M sodium acetate. To avoid 
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false signals raising from oxygen reduction the electrolyte was continuously purged with N2 to 

remove oxygen.  

The conversion of photon of light into electrical energy was characterized by solid-liquid 

junction called Photo-electrochemical cell (PEC). The PEC consists of the Cu2O film 

semiconductor deposited on a ITO coated class as the working electrode, a carbon rod electrode 

as counter electrode and a Ag/AgCl reference electrode. The electrolyte was sodium hydroxide at 

pH 8.5. A xenon lamp was used to illuminate the semiconductor surface through the electrolyte 

to get an equivalent of 100 mW/cm
2
 at the semiconductor surface.  The PEC was characterized 

by measuring current voltage characteristics (I-V) in dark as well as in light in the same cell used 

for photocurrent characterization.  

I-V measurements were performed to determine the resistivity of p-type Cu2O films.  Due to 

highly conductive substrate (copper substrate) it was difficult to characterize the electrical 

properties of p-type Cu2O films by standard Four-point probe measurements. Therefore a 

circular Cu electrode was placed on top of Cu2O films. A voltage was sweep between the 

substrate and the top electrode and the current was measured at room temperature with the 

Princeton Applied Research potentiostat 273A.  From the slope of I-V curve, the area of top 

electrode, and the thickness of deposited film, the resistivity was determined.  

  
   

   
                       

Where   is the resistivity of the Cu2O film, A is the area of the top electrode, d is the thickness of 

the Cu2O film, V is the applied voltage, and I is the measured current. The thickness of Cu2O 

film was estimated from the following equation assuming that two electrons are consumed for 



60 
 

 
 

the formation of one molecule of Cu2O or Cu and that no parallel charge transfer other than that 

leading to deposition of Cu2O or Cu is taking place at the deposition potential.  

  
 

     
                

Where d, n, A, Q, M,  , N and e  are film thickness, number of electron in the electrochemical 

reaction (2 for Cu
2+

), area, total charge passed during deposition, molecular weight of the 

deposit, mass density of the film, Avogadro’s number and electron charge respectively.  In the 

calculation it was assumed that only a single phase of Cu2O or Cu was deposited and the density 

of Cu2O film was 6 g/cm
3
.  The thickness of film where there is co-deposition of Cu2O and Cu 

could not be estimated with this formula.  

 

5.3 Results and discussion 

5.3.1 p-Cu2O 

A linear voltammetry performed in a bath pH 12.5 in shown in Figure 5.2. This Voltammogram 

was performed in a deposition solution at bath temperature of 60 °C between 0. 05 and -1.0 V vs. 

Ag/AgCl at a scan rate of 10 mV/s. Two cathodic regions are absorbed, the first region placed 

around -0.2 to -0.6 V vs. Ag/AgCl and second region around -0.8V. The first peak is attributed to 

the reduction of Cu
2+

 to Cu
+
 and hence to Cu2O and the second peak to the formation of copper 

according to the following respective reactions. 
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This is in agreement with previous works [20, 23-25]. These results show clearly that the 

deposition potential of p-Cu2O should be in the range of -0.15 V to -0.6 V, although this range 

depends on the bath temperature. 

 

 
Figure 5-2 Linear voltammogram of solution containing 0.4M copper sulfate and 3 M sodium lactate on copper foil substrate 
with given parameters. 

 

Figure 5.3 shows that the deposition current increases with the pH of the deposition bath. The pH 

change was controlled by adding different amounts of NaOH. The cathodic current peaks are 
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shifted to the negative potential side when the pH of the bath increases. This indicates that the 

window of potentials to electrodeposits Cu2O is more important at high pH values.  

 
Figure 5-3 Voltammetric curves of a copper foil in an electrochemical cell containing 0.4M copper sulfate and 3 M sodium 
lactate at different bath pH (pH was adjusted by adding 1M NaOH).   

 

Figure 5.4 shows the voltammetric curves obtained using the solution of 0.4M copper sulfate and 

3M sodium lactate at pH 9 and temperatures from 50 to 80
o
C. The electro-deposition current 

increases and the cathodic peaks are slightly shifted to the negative potential side when the 

temperature increases. Therefore, the electro-deposition current increases with the temperature. 

This might be due to the improvement of the electro-deposition rate with the increase of the 

temperature.  
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Figure 5-4 Voltammetric curves of a copper foil in an electrochemical cell containing 0.4M copper sulfate and 3 M sodium 
lactate at a pH of 9 and different temperatures.  

 

Accordingly, to determine the effect of the pH of the bath on the properties (crystal shape and 

orientation, surface morphology, and photo-response) of the electrodeposited films, several 

samples were electro-deposited respectively in an aqueous solution containing 0.4M copper 

sulfate and 3 M sodium lactate at a potential between -0.3 V and -0.6 V vs. Ag/AgCl reference 

electrode and at pH between 8.5 and 13. As shown in Figure 5.3, the electro-deposition potential 

between -0.3 V and -0.6V may allow the deposition of Cu2O without copper deposition which 

appears at higher negative potential and current densities.  Reproducible experimental results we 

got in this study  have also shown that making p-Cu2O electro-deposition close to this potential 

of -0.3 V ensures a reasonable deposition rate of the film, since we did not obtained any film for 
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deposition performed at -0.2 V. This is supported by the following results on the growth rate 

with time.   

To determine the effect of the pH of the electrodeposition electrolyte on the  electrodeposited 

films properties, several samples were electrodeposited in an aqueous solution containing 0.4M 

copper sulfate and 3 M sodium lactate by selecting the applied potential at a fixed value of -0.3 

V versus the Ag/AgCl reference electrode and different pH values between 8.5 and 13. This 

fixed deposition potential is chosen according to voltammetric curves for having reasonable 

deposition rate. 

X-ray Diffraction method (XRD) was used to further investigate the structure of the Cu2O films. 

For this purpose, samples were electro-deposited at a potential of -0.3 V and cupper sulfate based 

electrolyte with pH varying from 9 to 13. We have verified experimentally that all the samples 

deposited at this potential and the various pH (from 9 to 13) are composed of pure Cu2O without 

any traces of CuO deposits on the films. All samples deposited at selected pH range of 9 to 13 

were crystalline. An example of the XRD patterns is shown in Figure 5.5 for the films deposited 

at pH 9 and pH 13.   

The quality of the films we obtained experimentally in this work (chemical composition, 

morphology, reproducibility of preparation of the films, etc.) indicates that the appropriate p-

Cu2O films are obtained when the pH is between 9 and 13 and deposition potential range is 

between -0.3 to -0.6 Volt vs. Ag/AgCl.   

Figure 5.6.a shows  the growth rate of p-type Cu2O as a function of the deposition time for 

several samples were electro-deposited using electrolyte of at pH 11.6. For all samples the 

electro-deposition potential was -0.32V. Film thickness was determined from careful weighing 



65 
 

 
 

method using a density of 6.0 gcm
-3

. The details of these calculations are given in annex A. The 

thickness of the Cu2O layer increases with the electro-deposition time between 10 and 30 

minutes. Experimentally, we have obtained that when the electro-deposition time is less than 3 

minutes no film is obtained. Consequently thicknesses before 5 minutes were not determined. 

 
Figure 5-5 XRD spectra of electrodeposited Cu2O film obtained using bath containing 0.4M copper sulfate and 2 M sodium 
lactate. The electro-deposition potential and pH is respectively -0.3 Volt a) pH 9 and b) ph 13.  c) Reflections of Cu substrate 
according to the JCPDS card (2-1225). d)  Reflections of Cu2O according to the JCPDS card (5-0667).  
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The variation of the thickness (named Y in microns) of the electro-deposited p-Cu2O of the 

sample with time (named x in minutes) are in the form: 

                                     

In first approximation, this type of curve is an indication that the deposition is limited by the 

diffusion of the species involved in this electro-deposition process or by their mass transfer 

process at the electrode surface. This is supported by the experimental results we have obtained 

and which have shown the non significant variation of the p-Cu2O thickness with the applied 

current density (from -0,5 to -2 mA/cm
2
 the thickness variation is less than 10% ) for the same 

electro-deposition potential.  

In comparison Figure 5.6.b the growth rate of n-type Cu2O (the n-type electro-deposition will be 

discussed in paragraph 3.2) as a function of the electro-deposition time for several samples using 

electrolyte of at pH 5.5. In Figure 5.6.b the variation of the thickness (named Y in microns) with 

time (named x in minutes) is in the form: 

                                       

In first approximation, this type of curve is an indication that the deposition is limited by the 

diffusion of the species involved in this electro-deposition process or by their mass transfer 

process at the electrode surface.  
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Figure 5-6 Thickness vs deposition time of a) p-type Cu2O deposited at 60 °C in solution pH 11.6;  b) n-type Cu2O deposited at 
60 °C in solution pH 5.5. c) SEM of n-type Cu2O film deposited on ITO, deposition time 50 min. 
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The relations (5) and (6) show also clearly that the Faradic law e.g. the linear variation between 

the deposited mass and the deposition time is not obtained. This might indicate that the side 

reactions as the hydrogen evolution reaction are also involved during the Cu2O electrodeposition. 

The side reactions are more important at higher deposition time.  However if we consider the 

reaction rate as  

  
 

     
                            

Where, r, I, n, F and A are the reaction rate, the current, number of electrons involved in the 

reaction, The Faraday number (~96500 coulombs per mole) and the electrode area respectively. 

Trough the classical Faraday law, the reaction rate represents (mol/sec.area), and is an index of 

mass per time or thickness per time formation rate because the mass is proportional to the 

thickness. For a constant current density (i/A) during a fixed deposition time, the relation 

between the thickness and the deposition time must be linear. But, in this study (Figs. 5.6), it is 

not the case because the value (current density) is not a constant with the deposition time; Here 

the voltage was the constant parameter, and therefore, the current density might change with 

respect to the change of the deposited film resistance.  

 

  
   

   
                           

Where d, I, t, M and   are the thickness, the current density, the deposition time, the molar mass 

and the density of the deposited film respectively.  

As the thickness or/and sides reactions are increasing with time, consequently the total resistivity 

or/and the current due to side reactions increase as well. Therefore when the resistivity or/and 

side reactions increases, for a constant voltage, total useful current for the film deposition will 
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decrease. Hence, reaction rate which is a variable of the useful current density for the film 

deposition will decrease during the time causing the decrease in the thickness with time.  

This thickness of the film was also evaluated by SEM. The n-Cu2O film was deposited on ITO 

substrate for 50 minutes. Using the classical Faraday Law between the thickness and the 

deposition time for n-Cu2O films, the thickness of this deposited film calculated as 0.6µm. A 

cross section SEM image (Figure 5-6.c) was taken from this sample. Based on the SEM image 

obtained from the film; the thickness was measured as 0.55µm. Therefore there is an agreement 

between the theoretical and the experimental values of the thickness of the n-Cu2O films.   

Comparison of Figure 5.6.a and Figure 5.6.b shows that to get the same thickness, the  deposition 

time of n-Cu2O at pH 5.5 is around 9 times higher  than that of p-type Cu2O at pH 11.6. As an 

example the thickness of p-Cu2O deposited during 10 minutes is around 2 microns and to get the 

same thickness for n-Cu2O the electro deposition time is 90 minutes. This significant difference 

between the two rates of deposition is not well know and is under active investigation. 

Figure 5.7 shows the SEM images of the Cu2O films electro-deposited at a temperature of 60
o
C 

and an  applied potential of -0.4 V vs. Ag/AgCl for: a) pH = 8.5; b) pH= 9.5 and c) pH= 12. 

There is a noticeable differences in crystal shape and grain size when the pH changes. 

The grain size increases with  the pH of the electro-deposition bath. Even the real mechanism of 

the dependence of grain size on the pH is not currently well elucidated; we may argue it might 

due to a preferential orientation of the grains depending of the value of the pH. This might help 

in the grain size variation with the pH. This is in agreement with the work of Zohu et al. [20] that 

attributed the change in grain size to the preferred orientation, and preferred orientation because 

specific crystallographic plane have different growth rate which changes with the pH. 
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Figure 5-7 SEM images of Cu2O film electro- deposited at -0.4 vs Ag/AgCl and   at 22oC;  The pH of the electro-deposition bath 
was 12. The electro-deposition of the film was done at constant charge of 1.35 coulombs.  
 

SEM pictures form samples prepeared under an applied potential of -0.4V vs. Ag/AgCl and 60
o
C 

reveled differenct surface morphology and crystal size for different pH bath. Films depsotioed at 

pH 8.5 exposed the crystal grains in the shape of 4-sided pyramids in a relatively uniform size 

distribution. This texture is attributed to [100] preferred orientation plane by measuring the 

intensity ratio I(111)/I(200) obtained from XRD patterns [32]. Films deposited at pH 9.5 exposed 

the crystal grains shape in the form of triangular prisms, with less uniform distributation when 

compared to the 4-sided pyramids shape  in [100] plane. This texture is related  to a [110] 

preferred orientation plane. Films deposited at pH 12 exposed the cyrstal grains with a large size  

3-faced pyramid shape. This plane texture is related to [111] preferred orientation. These results  

support well that the pH has  important effect on the crystal orientation which in turn has an 

impact on the grain size.  

Figure 5.7 and Figure 5.8 shows the effect of the electro-deposition temperature on the SEM 

images of the surface morphology of the samples fabricated at -0.4 V vs. Ag/AgCl. The electro-

deposition of each film was done at constant charge of 1.35 coulombs to allow a film thickness 

of 1 micron approximately. We can see cracks and defects in Figure 5.7 for sample 



71 
 

 
 

electrodeposited at 22
o
C. This is an indication that the electro-deposition of p-Cu2O at room 

temperature is not an optimized electro-deposition temperature. From the SEM image of Figure 

5.8 it is clear that film prepared at 60
o
C has better crystallinity with less cracks and defects in 

crystals. These results support well that the electro-deposition at 60
o
C is one of the optimum 

conditions for the fabrication of p-Cu2O.   

 

Figure 5-8 SEM image of Cu2O film electro- deposited at -0.4 vs Ag/AgCl and   at 60oC; The pH of the electro-deposition bath 
was 12. The electro-deposition of the film was done at constant charge of 1.35 coulombs.  

 

Figure 5.9 shows the Scanning electron micrographs at high magnification (x20 000) of the 

electrodeposited Cu2O films prepared respectively at 5 different potentials. This helps to analyze 

the effect of the electro-deposition potential on the composition, orientation, and crystallite shape 

and grain size of the p-Cu2O films. The  samples were prepared on ITO in solution  containing 

0.4M copper sulfate and 3M sodium lactate. The electrolyte pH and temperature were fixed at 12 

and 60
o
C  respectivily. The applied potential range was -0.3 to -0.7 V versus Ag/AgCl. In each 

case, the deposition time was controlled with a potentiostat (PAR 273A) which fixed the value of 

1.35 coulombs as the total amount of charge passed during each electro-deposition. This ensures 

equal film thickness of about 1 µm for all prepared samples. SEM characterization reveled that 

all films were pyramidal in shape. Pure crystalline Cu2O was obtained at deposition potential of -
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0.3 to -0.6 V. However the degree of texture changes with the applied potential. A decrease in 

grain size has been observed when the applied potential changes more negative values from -0.3 

to -0.7 V versus Ag/AgCl as shown in Figure 5.9. From the SEM image on our samples, the 

surface morphology became coarser and coarser when the potential for the electro-deposition of 

Cu2O films progressively changes from -0.3 to -0.7 V vs Ag/AgCl. The dependence of grain size 

on depostion potential can be attributed to the change of depostion rate at different depostion 

potentials. The Cu2O film deposited at -0.3 was 3-faced pyramid shape and relatively large, 

about 3.5µm (Figure 5.9.a). With the increase toward  negative potential the crytals size becomes 

smaller and smaller, and cyrtals being more uniformaly distributed (Figure 5.9.b to 5.9.e).  

However, significant bumps appear on the surface of Cu2O when the film is depostied at -0.7 V 

vs Ag/AgCl. These bumps are attributed to Cu metal. Therefore at this potential nano-sized Cu 

and crystalline Cu2O are co-deposited. This is supported by the SEM images done lower 

magnification which shows some allots of Cu deposits on the sample. 

Figure 5.10  shows the SEM images at low magnification (x5 000) of films morphlogy deposited 

at -0.7 V versus Ag/AgCl.  Figure 5.10.a shows relative nano-sized Cu metal nanocubes(white 

particles) nucleated on the Cu2O facets.  

 



73 
 

 
 

 

 

 

Figure 5-9 Scanning electron micrographs of the electrodeposited Cu2O films prepared with at different potentials a) -0.3,     
b) -0.4, c) -0.5, d) -0.6, e)-0.7 V vs. Ag/AgCl.  The pH of the electro-deposition bath was 12. The electro-deposition of each film 
was done at constant charge of 1.35 coulombs. 

 

Other noticeable result was that films eletro-deposited at -0.3 V appeared to be less bright and 

bigger grain size than those electro-deposited at lower potentials. Films electro-deposited at         

-0.6 V had smaller grain size brighter appearance than other samples. Therefore the grain size 
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due to multiple reflection and scattering of light from the grains can determine the film 

brightness.  

 

Figure 5-10 Scanning electron micrographs of the electrodeposited Cu2O films prepared at potentials -0.7 vs. Ag/AgCl, b) the 
same sample with lower magnification(x 1000).  The pH of the electro-deposition bath was 12. The electro-deposition of 
each film was done at constant charge of 1.35 coulombs.  

 

After the electro-deposition, we verify if the fabricated films respond under light illumination 

and if this response is in the cathodic (p-type semiconductor) potentials or in the anodic (n-type 

semiconductor) potentials. Figure 5.11 shows the current-voltage curve (inset curve) under dark 

and illumination of the p-Cu2O based photoelectrochemical cell (PEC). Under illumination the 

cathodic current increases significantly in comparison to the dark current. The fabricated films 

are sensitive to illumination and a photo current can be measured.  This response of the films 

under cathodic polarization confirms the p-type of the films. The photocurrent measurements 

under applied potentials were carried out in the photo electrochemical cell described in the 

experimental section.  

Figure 5.11 shows photocurrent characteristics under chopped illumination of the polarization 

curve of electrodeposited p-type Cu2O/Cu. The photocurrent is generated in cathodic region. 

This indicates that Cu2O films obtained under above experimental conditions are p-type cuprous 
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oxide. On this curve, the magnitude of the PEC photo current of Cu2O films (film electro-

deposited at -0.3 V and at pH=13) increases from less cathodic potential (-0.2V to more cathodic 

potential (-0.7 V). The electrolyte used for the photoelectrochemical cell measurement was: 0.5 

M sodium acetate in deionised water (pH 9). As an example the photocurrent at the polarized 

potential of -0.3 Volt is 20µA and -0.65 V this photocurrent is around -300 µA.  

 

Figure 5-11 Photocurrent characteristics under chopped illumination of electrodeposited p-type Cu2O/Cu. Inset shows dark 
and light current-voltage characterization of Cu2O thin film in PEC cell prepared at pH 13.   

 

This may be due to an increse of the band bending (difference between the polarisation potential 

and the flat band potential: Vpolarisation - Vfb)  when the polarisation potential (Vpolarisation)  increases 

to more negative values which allow the charge transfer process between Cu2O and electrolyte. 

Tha flat band potential was meausred from the analysis of the capacitance-potential data via the 

Mott–Schottky (M–S) expression [26-28]. 



76 
 

 
 

 

  
 

 

       
 
        

  

 
                       

Where C is the interfacial capacitance (i.e., capacitance of the semiconductor depletion layer), ε 

is the dielectric constant of Cu2O ( can be taken as 8.6,[29]), ε0 is the permittivity of free space 

(8.85×10
−12

 F/m), NA is the density (cm
−3

) of acceptors in Cu2O, A is the electrode area, Vap is 

the applied potential, k is the Boltzmann constant (1.38×10
−23

 J/K), T is the absolute temperature 

(298 K) and e is the electronic charge (1.6×10
−19

 C). The intercept (V0) of a plot of 1/C
2
 versus 

the applied potential (in the reverse bias regime) on the potential axis affords a value for the flat-

band potential; Vfb after the small thermal correction, kT/e is made: 

       
  

 
                    

The flat band potential obtained here is +0.15 Volt/Ag/AgCl at pH = 9 and and -0.43 at pH = 13 

(by adding sodium hydroxyde in the electrolyte) is in agreement with the Vfb of p-Cu2O obtained 

in [13]. The Cu2O film/electrolyte capacitance was measured at different DC potential applied to 

the Cu2O/electrolyte interface and for each DC applied potential an AC input signal of 10 mV 

was applied to the interface. The variation of the interface capacitance (C) on the DC potential 

was measured for various frequencies in the frequency range, 5–100000 Hz using a Solatron 

1280 Model system.  
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Figure 5-12 Current-voltage characteristics under dark and illumination of electro-deposited p-type Cu2O/Cu, at pH 8.5 and 
13. The electrodeposition time and temperature is respectively 60 minutes and 50oC.  

 

Figure 5.12 shows the current-voltage (I-V) polarization curve under dark and under illumination 

of a PEC cell based on p-Cu2O films variation of the photocurrent exhibited by a sample 

electrodeposited at pH 13 (dashed lines) is significantly higher than those of the sample 

electrodeposited at pH 9. This might be related to a more important band bending and/or less 

recombination effect of the carriers under illumination for samples prepared at high pH and/or 

the preferential orientation of the crystal. The determination of the variation of the film 

resistivity with the pH of the electrolyte of the sample electro deposition might help to 

understand this behavior.  
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In order to determine the dependence of the effect of the pH of the electrolyte of the 

electrodeposition on the electrical properties of the electrodeposited p-type Cu2O films, we study 

the variation of the conductivity of the samples which been fabricated at various pH values from   

9.0 to 13.0 by adding different amounts of NaOH in the basic electrolyte of 0.5 M sodium acetate 

in deionised water. The deposition potential was fixed at -0.4 V vs. Ag/AgCl for all these 

samples. The deposition time was 60 minutes.  

Current-voltage curves (I-V) of the p-Cu2O films were performed using the schematic structure 

of Cu/Cu2O of Figure 5.13. The Cu2O film was deposited on copper substrate. After deposition 

without any heat treatment a copper tape was placed on top of deposited film as the top 

electrode. The voltage sweep between -0.5 and +0.5 V was applied between Cu film and top 

electrode. From the slope of I-V curve of each sample, and using equation (1) the resistivity of 

the film was calculated because we know the surface area of the top p-Cu2O and the thickness of 

deposited film.  

 

Figure 5-13 Schematic of Cu/Cu2O structure for current-Voltage characterization.  

 

Figure 5.14a shows that the variation of the resistivity of samples with the pH of the electrolyte 

used to fabricate them. The resistivity of the film decreases as pH increases. As an example the 

resistivity of the film prepared at pH 9 is about 5x10
7 

Ωcm whereas those prepare at pH 13 is 

4x10
5
 Ωcm. Consequently the smallest resistivity was obtained at pH 13.0, which is lower by 
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two orders of magnitude than of film prepared at pH 9.0. We have also shown above that 

samples prepared at pH 13 have crystal with preferential orientation of (111) which appears at 

pH 13, while preferential orientation of samples prepared at pH 9.0 is (100). This supports the 

idea that the improvement in photocurrent at pH 13 is related to the significant decrease of the 

carriers recombination and low resistivity for electrodeposited films at pH 13.  

  

Figure 5-14 Resistivity of p-Cu2O films as a function of the pH of the electro-deposition electrolyte and the potential of the 
electro-deposition  a) Variation of the resistivity of the films  with pH of the electro-deposition electrolyte  from 9 to 13 and a 
constant potential of -0.4 Volt; b) variation of resistivity with electro-deposition potential of the films from -0.3 to -0.6 V and 
a constant electro-deposition electrolyte pH 10.6. 

 

Figure 5-14b shows also that the resistivity of the film decreases when the electro-deposition 

potential increases from more negative to more positive values. This might be due to the 

decrease of the grain size when the electro-deposition potential becomes more negative [20]. 

From Figures 5-14a and Figure 5-14b the optimized low resistivity of the p-Cu2O can be 

obtained by the electro-deposition of the p-Cu2O films at pH 13 and at a potential of -0.4 or -0.3 

V. Some preliminary results we obtained have shown that combing these parameters and the 

proper heat treatment of the films have allowed a resistivity in the range of 100 Ωcm. This is 

result is not yet reproducible and is not used the p-n junction fabrication. This is particularly 
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important because the high resistivity of the p-Cu2O films is the most important limitations for 

their utilization in solar cell applications. It is anticipated that doping Cu2O with an appropriate 

agent will contribute to decrease significantly the resistivity of the films and could be lower to 

appropriate level of 1 Ωcm for industrial solar cells.  

 

5.3.2 n-Cu2O 

The objective of this part of the work is to identify the optimum conditions of the electro-

deposition of n-Cu2O which experimental parameters of fabrication are missing in the literature. 

Consequently, our electro-deposition electrolyte was based on an acetate bath containing 0.01 M 

copper acetate and 0.1 M sodium acetate. A voltammogram of copper foil electrode containing 

this electrolyte was firstly done in view to identify the electro-deposition conditions of n-Cu2O. 

Figure 5.15 shows voltammetric curves of a copper foil substrate obtained in 0.01 M copper 

acetate and 0.1 M sodium acetate. The electrolyte temperature was 60°C at various pH. This 

voltammetric curve revealed that the electro-deposition potential should be more positive than    

-0.25 V. For a given potential and temperature, the corresponding current in this range are lower 

than that of a p-type Cu2O deposition. This makes the rate of electro-deposition of n-Cu2O 

significantly lower than those of p-Cu2O  Therefore to compensate this lower deposition rate of 

n-Cu2O longer electro-deposition time, e.g. 120 minutes, was chosen for the electro-deposition of 

n-type Cu2O. To investigate the influence of the pH of the electrolyte on the voltammetric curve, 

different values of the pH were prepared by adding appropriate amount in the 0.01 M copper 

acetate and 0.1 M sodium acetate. 
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Figure 5.16a shows a shift to more positive potentials of the cathodic peak corresponding to the 

Cu deposition when the electrolyte pH decreases. This indicates that the acidic electrolyte favors 

the electro-deposition of copper over the Cu2O deposition. Figure 5.16.a shows also that the 

cathode current increased with the cathode potential. The cathodic currents in this region are 

slightly shifted to the negative potentials with an increase of the pH of the electrolyte.  Figure 

5.16.b shows the voltammetric curves obtained for the temperature range of 30 to 60 
o
C in the 

solution of the 0.01 M copper acetate and 0.1 M sodium acetate at pH 5.5.  The current increased 

and cathode peaks are slightly shifted to the negative potential side when the temperature 

increases. In the regions of the n-Cu2O (between -0.25 and 0.05 V/Ag/AgCl) the current density 

increases with the temperature due to the improvement of the activation of the Cu
2+

 e. g. more 

diffusion of these ions at the support surface at high temperature. Therefore when the electrolyte 

pH increases, the potentials shifted to more negative values for a given current. This variation is 

on the order of -0.125 Volt per unit of pH variation (between pH 5.5 and pH 6.6)   at a current 

density of -1.25mA.cm
-2

. This variation might be attributed to the improvement of the deposition 

of copper when the pH increases in this range of acid pH. On the other hand, the current 

increases with the pH for a given potential. As an example at -0.625 V, the variation of the 

current is in the order of 0.5 mA.cm
2
 per unit of pH when pH between 5.5 and 6.6. This increase 

of the current with the pH is in agreement of the improvement of the copper deposition. 
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Figure 5-15 Linear voltammogram of copper foil substrate electrode contacting the electrolyte of 0.01 M copper acetate and 
0.1 M sodium acetate. 

 

Figure 5-16 Linear voltammogram of the solution containing 0.01 M copper acetate and 0.1 M sodium acetate, (a) on copper 
foil substrate with given parameters. (b) at different pH (pH was adjusted by adding acetic acid).  
 

From the results obtained above on linear voltammogram, we may conclude that the best 

parameters for the electro-deposition of Cu2O in acidic media are: The electro-deposition 
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potential between -0.25 and 0.05 V; the electrolyte pH between 4.5 to 6.5 and the electro-

deposition temperature of 60
o
C. 

Figure 5.17 shows the Current-voltage curves of an as-deposited and an annealed sample in 

vacuum for 80 min at 150 °C. After annealing in vacuum for 80 minutes at 150
o
C, the current in 

the dark of the films is smaller than that of the as-deposited films. The photocurrent of the 

annealed films is significantly enhanced in comparison to those of samples which are not 

annealed. This improvement of the photo-response for annealed films must be due to a decrease 

of the carrier’s recombination centers of the films after annealing. This is supported by the 

resistivity measurement on as-deposited and annealed film. 

 

Figure 5-17 Current-voltage characteristics in as-deposited and annealed sample in vacuum for 80 min at 150 °C. 
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Figure 5.18 shows the variation of the resistivity of n- Cu2O films as a function of pH, before and 

after heat treatment in air for 80 min at 150 °C. For a given pH, the resistivity of annealed 

samples is about one order of magnitude lower than those of the as-deposited sample. This may 

indicate the presence of fewer defects in annealed films than in as-deposited films and 

consequently the annealed films might exhibit higher photo-response than annealed film. The 

resistivity of the as-deposited and annealed films increases (about one order of magnitude per 

unit of pH from pH 4 to 6) with the pH of the electro-deposition electrolyte.  In comparison to 

Figure 5.14 (resistivity of p-Cu2O), the resistivity of the n-Cu2O (figure 5.18) is slightly lower 

than those of p-Cu2O. These results are different from those obtained elsewhere [6] where the 

resistivity of the n-Cu2O was slightly higher than the p-Cu2O and the resistivity of n-Cu2O 

decreases when the pH increases. These differences are attributed to the difference in the 

experimental conditions (electrolyte composition and voltage used) we used in this work in 

comparison to those used in [6].   

These results can be compared to those obtained elsewhere [15, 30, 31]. In particular it was 

shown that electro-deposited p-Cu2O film heated at 350°C for 30 min reduced the electrical 

resistivity from 10
6
 ohm.cm to 10

3
 ohm.cm [31]. Our results show that we can get similar results 

if the as-deposited samples are heated at only 150 
o
C during 80 minutes.  We keep the heating 

temperature lower than 300
o
C because our experimental results have shown that heating n-Cu2O 

at temperature higher than 300
o
C will change the conductivity from n-type Cu2O to p-type and 

the films become cupric oxide (CuO). This is in agreement with previous results [15].   

Accordingly better electrodeposited n-Cu2O films are obtained with the experimental conditions 

which integrate annealing at temperature lower than 300
o
C as we found in this work.  
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Figure 5-18 Resistivity of n-Cu2O films as a function of pH from 4.8 to 6, before and after heat treatment in air for 80 min at 
150 °C.   

 

For a better understanding of the effect of the pH and potential on the photo response of the 

films, a set of thin films were electro-deposited on Cu foil substrate in the electrochemical cell 

containing 0.01 M copper acetate and 0.1 M sodium acetate at various pH controlled from 5.8 to 

4.9 with different amounts of acetic acid. Another set of thin films were deposited on copper foil 

under various applied potentials vs. Ag/AgCl between +0.05 and -0.25 V 60°C.  

Figure 5.19 shows the photocurrent characteristics under chopped illumination of the 

polarization curve of electrodeposited n-Cu2O/Cu at 0.0 V Ag/AgCl and pH 5.6. Only anodic 

photocurrent is obtained. No cathode photocurrent is observed. This curve represents the typical 

behavior of the n-type semiconductor. This indicates that n-Cu2O films are obtained from these 

above experimental conditions of preparation of the cuprous oxide.  On this curve, the magnitude 

of the PEC photo current of n-Cu2O films is almost constant (1 μA/cm
2
 in the range of of 

potential between -0.013 V and +0.01 V vs. Ag/AgCl. The electrolyte used for the 
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photoelectrochemical cell measurement was: 0.1 M sodium acetate in deionised water which pH 

was 8.5. 

Thin n-Cu2O films electro-deposited at fixed potential and various pH values showed different 

magnitude of the photocurrent. Our experimental results have also shown that  the films prepared 

at pH 5.5 produced higher photocurrent (1 μA/cm
2
) comparing to the films prepared at pH 4.8( 

0.5 μA/cm
2
).  Both films were electro-deposited at 60°C and ~-0.1 V vs. Ag/AgCl.  Current-

voltage characteristics (I-V) in dark as well as in light were preformed on prepared samples. All 

samples prepared in the pH range of 4.8-6.3, produced anodic current under illumination, 

confirming their n-type conductivity.   

 

Figure 5-19 Current-voltage characteristics under chopped illumination of electrodeposited n-type Cu2O/Cu at 0.0 V vs. 
Ag/AgCl and pH 5.6. The inset shows respective photocurrent density for electrode held at 0V vs. Ag/AgCl in dark and light 
illumination. 
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Figure 5.20 show the photoresponse of a PEC based on n-Cu2O/Cu contacting 0.1 M sodium 

acetate in deionised water at pH 8.2. The n-Cu2O thin films were electro-deposited at 

respectively 0.0 V; -0.8 V and -0.25 V vs. Ag/AgCl and a pH value of 5.5. The photo current 

(IPh) increases when the electro-deposition potential of the films becomes more negative: IPh (at 

0.0 V) < IPh (at -0.08 V < IPh (at -0.25 V). Accordingly the highest photoresponse for pH 5.5 were 

obtained for Cu2O deposited at -0.25 V vs. Ag/AgCl. This might be attributed to a decrease of 

the crystal defects when the electro-deposition potential of the films becomes more negative. 

These defects might be the sites of recombination of the carriers under illumination and their 

concentration might decrease when the electro-deposition potential of the films is more negative. 

 

Figure 5-20 Current-voltage characteristics under chopped illumination of electrodeposited n-type Cu2O/Cu, for a pH of 5.5 
and different electro-deposition potential (0.0 V; -0.08 V and -0.25 V vs. Ag/AgCl). 
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5.3.3 p-n homojunction Cu2O solar cell 

A two-step electro-deposition process is implemented to fabricate p-n homo junction cuprous 

oxide on Indium tin oxide (ITO) substrate which was used as a transparent conductive oxide for 

the homo junction Cu2O solar cell. The electro-deposition of p-Cu2O and n-Cu2O was performed 

potentiostatically without stirring in a single-compartment, three-electrode electrochemical cell. 

The working electrode for cell was ITO substrate, the reference electrode was Ag/AgCl and the 

counter electrode was a platinum mesh.  

The working electrode (ITO) immersed into a solution with bath pH of 12.5 containing 0.4M 

copper sulfate and 3M sodium lactate. Cu2O film is deposited at a potential of -0.6 V (vs. 

Ag/AgCl/4M KCl) at 60
o
C. The deposition time was controlled by amount of charge deposited. 

The amount of charge deposited kept at 0.82 C-cm
-2 

to ensure the deposition thickness of 1µm p-

Cu2O film.  

After the deposition, p-Cu2O film was annealed in air at 300
o
C for 30 minutes. Right after heat 

treatment the substrate with p-type cuprous oxide is put into a solution with bath pH of 6.3 

containing 0.01 M copper acetate and 0.1 M sodium acetate. To determine the optimized 

deposition conditions of n-Cu2O on p-Cu2O, liner voltammetry was obtained. The 

voltammogram shown in Figure 5.21 reveals that parameters for deposition of n-Cu2O on p-

Cu2O are different than those previously obtained on copper foil substrate or ITO substrate.  

There is noticeable shift in cathodic peak towards positive potential and decrease in deposition 

rate. This potential shift is due to the potential barrier between ITO and p-Cu2O. The electrolyte 

for depositing n-Cu2O was 0.01 M copper acetate and 0.1 M sodium acetate at pH 6.3. 
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Figure 5-21 Linear voltammogram of solution containing 0.02 M copper acetate and 0.1 M sodium acetate on ITO and ITO/ p-
Cu2O substrate with given parameters.   

 

Therefore the electrodeposition of n-Cu2O on p-Cu2O was performed based on new 

voltammogram obtained on p-Cu2O. The applied potential was fixed to 0V (vs. Ag/AgCl), the 

deposition time was controlled by amount of charge deposited. The amount of charge deposited 

kept at 0.38 C-cm
-2 

to ensure the deposition thickness of 450 nm for n-Cu2O film. After the 

deposition, n-Cu2O film was annealed in air at 120
o
C for 20 minutes. The back Cu contact used 

to assemble the solar cell (cell: ITO/p-Cu2O/n-Cu2O/Cu).  

The current-voltage (I-V) curves under dark and illumination of a fabricated cell: ITO/ p-

Cu2O/n-Cu2O/Cu illuminated through the ITO substrate are shown in Figure 5.22. This curve of 

the p-Cu2O/n-Cu2O homojunction shows clearly a behavior which is similar to those of the I-V 

polarization curves of the p-n solar cell junction. Under illumination, electrons diffuse to n-Cu2O 
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region, whereas holes diffuse to the p-Cu2O region under influence of applied eclectic field. As a 

result, a photocurrent is generated. The short circuit current and open circuit voltage are 

respectively determined as 235 microA/cm
2
 and 0.35 Volt. The fill factor (FF) and the cell 

conversion efficiency of light to electricity are determined to be respectively 0.305 and 0.082%. 

However obtained efficiency is not in desirable range. This could be due high resistivity of films, 

weak contact between top electrode and n-Cu2O film and also weak junction between p-Cu2O 

and n-Cu2O films. There are also measuring errors such as lead contact resistance and deviations 

from AM1.5 which cause errors in Isc, and optical losses such as surface reflection and rear 

surface reflection. All these source of losses with definitely have a impact on this low efficiency. 

However our results on cell performances in this work are close to those obtained in [6].  

 

Figure 5-22 I-V characteristics of ITO/ p-Cu2O/n-Cu2O/Cu. Inset: an illustration of testing configuration. 
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5.4 Conclusion 

Polycrystalline p-Cu2O thin films were electrodeposited in aqueous solutions based on aqueous 

solution containing 0.4M copper sulfate and 3 M sodium lactate at a potential between -0.3 V 

and -0.7 V vs. Ag/AgCl reference electrode and at pH between 8.5 and 13. p-type conductivity 

was obtained in alkaline media (pH > 8). Resistivity was decreasing with increase in pH value. 

At pH 9 the resistivity of the film is 5x10
7 

Ωcm whereas those prepare at pH 13 it is 4x10
5
 Ωcm. 

It was found that the optimum parameters for deposition of p-Cu2O are; higher pH and more 

negative potential at 60
o
C. n-type conductivity was obtained in acidic media (pH 4.8–6.5) in 

solution containing copper acetate sodium acetate. The optimum parameters for deposition of n-

Cu2O are more negative potential and 60
o
C. Furthermore the prepared films were annealed. The 

annealed films showed enhancement in current-voltage characteristics. For annealed films the 

resistivity ranged from 5x10
3
 at ph 4.8 to 5x10

4
 at pH 6.4. 

On successful production of n-type and p-type Cu2O films, a homojunction p-n Cu2O solar cell 

was fabricated by two-step electro-deposition process. Indium tin oxide (ITO) substrate was used 

as a transparent conductive oxide for the homojunction p-n Cu2O solar cell. The photovoltaic 

characterization was performed. The short circuit current and open circuit voltage are 

respectively determined as 235 microA/cm
2
 and 0.35 Volt. The fill factor (FF) and the cell 

conversion efficiency of light to electricity are determined to be respectively 0.305 and 0.082%. 

However obtained efficiency is not in desirable range. This could be due to weak contact 

between top electrode and n-Cu2O film and also weak junction between p-Cu2Oand n-Cu2O 

films. 

The future work will be focused on the: 
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1) Improvement the film resistivity by doping p-Cu2Oand n-Cu2O films.  It is anticipated that 

doping Cu2O with an appropriate agent will contribute to decrease significantly the resistivity 

of the films and could be reached to appropriate level of 1 Ωcm for industrial solar cells. Our 

approach is to dope n-Cu2O film with iodide (I). Copper iodide (CuI) can be used as a source 

of doping and can be introduced in the electrodepostion bath. Therefore co-deposition of 

Iodide in Cu2O could be investigated. 

2) Improvement of the junction between p-Cu2Oand n-Cu2O films and contact between the film 

and top electrode. 
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Abstract 

n-type Cu2O thin films electrodeposited under different gas atmospheres in the electrolyte was 

achieved. The photocurrent response of   the electrodeposited sample changes with the type of 

gas introduced in the electrolyte during the electrode deposition process. It was found that for 

Cu2O samples electrodeposited at a given time, nitrogen bubbling leads to films which exhibit 

more photocurrent than those fabricated from argon bubbling or not bubbling each of these 

gases. The photocurrent response also increases with the gas bubbling time. The morphology of 

the films changes from porous (no bubbling with nitrogen) to more dense film (bubbling with 

nitrogen).  This photocurrent changes also with nitrogen bubbling time. It was concluded that the 

type of the bubbling gas (nitrogen and argon) and time has no effect on the chemical composition 

of the sample.   
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6.1 Introduction 

Copper oxide semiconductors are promising alternative to silicon-based solar cells because Cu2O 

is a non-toxic, abundant and low cost material satisfying economical and environmental 

requirement necessary for large scale applications [1]. Cu2O is a potential high efficiency solar 

cell with direct band gap energy of 2.0 eV, which is close to the ideal energy gap (about 1.5 eV), 

and well matched with solar spectrum. Its calculated theoretical electrical power conversion 

efficiency is approximately 20 % [2]. However limited understanding of conductivity type of 

Cu2O semiconductor and lack of efficient n-type Cu2O has hindered the efficient production of 

Cu2O based photovoltaic cells.  

The best efficient Cu2O-base heterojunction solar cell was reported recently by Mittiga et al. 

with efficiency of 2% [3]. This low efficiency is attributed to the lack of a homogeneous Cu2O 

p–n junction [2, 4]. The common conclusion is that the fabrication of homojunction Cu2O is the 

only way to achieve high efficiency Cu2O-base solar cell. In this case abrupt structural 

discontinuities or sever interface structures is not expected to cause interface strain.  

In the Cu2O lattice, each copper atoms linearly coordinated by two neighboring oxygen and each 

oxygen atoms surrounded by four copper atoms, which makes the stoichiometry 2:1. However, 

this stoichiometry is not obeyed completely as the ratio of copper and oxygen atoms is slightly 

different from the ratio in one mole. Therefore the arrangement of atoms in crystalline copper 
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oxide is not perfect. This deviation from stoichiometry, δ in Cu2O can be identifies either as 

vacancies, interstitials or both. 

 

Recently, n-type thin film Cu2O is been produced by electrodepostion [4-7]. Electrodeposition is 

a simple and inexpensive technique to deposit Cu2O films on a conductive substrate. Other 

techniques such as thermal oxidation, anodic oxidation, chemical deposition, sol–gel chemistry, 

sputtering, and other gas-phase deposition techniques produce p-type conductivity due to the 

presence of Cu vacancies [8-11]. Sears et al. 1984 reported that an excess of oxygen, as a result 

of stoichiometry, is the major active impurity and gives a p-doped semiconductor [12]. The 

origin of n-type conductivity is speculated to be due to oxygen vacancies [5, 13]. It also has been 

reported that the conductivity of Cu2O thin film can be changed by varying the pH solution in 

electrodepostion process [4, 14]. The electrical properties of Cu2O can be controlled by the 

intrinsic defects such as copper and oxygen vacancies [15]. 

The purpose of the present work was to study the synthesis condition to electrochemically 

prepare high-performance n-type Cu2O. The focus of this study was to investigate new strategy 

of enhancing the photocurrent of n-type Cu2O via controlling the dissolved concentration of 

oxygen in deposition solution called deaeration.  
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6.2 Experimental methods 

6.2.1 Preparation of Cu2O film 

6.2.1.1 Preparation of working electrode 

Indium tin oxide (ITO) substrates on glass substrate with a sheet resistance of 18Ω/cm were used 

as the working electrodes for the electrodeposition of Cu2O. Prior to the film deposition, 

ITO/glass was degreased in ultrasonicated acetone for 15 minutes, rinsed in de-ionized water. 

After cleaning process, chemical etching was performed on samples to remove inorganic 

contamination and native oxides on sample surface. ITO/glass was etched chemically, in diluted 

hydrochloric acid (HCl) for 2 minutes, and finally rinsed in de-ionized water.  

6.2.1.2 Preparation of solution 

Electrodepostion of Cu2O on ITO substrates was studied in an aqueous solution of sodium 

acetate and cupric acetate. Cupric acetate was used as Cu
+2 

source for Cu2O electrochemical 

deposition. Sodium acetate was added to solution making complexes releasing copper ions 

slowly into the medium allowing a uniform growth of Cu2O thin film [16]. All chemicals were 

from commercial sources. They were used without further purification. All solutions were 

prepared from de-ionized water. 

 

6.2.1.3 Deposition parameters and procedure 

 

A single-compartment, three-electrode electrochemical cell, was used for film deposition. 

Electrodeposition was carried out with a Princeton Applied Research potentiostat 273A. The 
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commercial Ag/AgCl (4M KCl)  and  graphite/carbon counter electrode  were  used  as  the 

reference  and  counter  electrode,  respectively. The electrolyte was kept in a water-jacked cell 

and temperature was controlled by a Polystat circulation water bath. Electrodeposition was 

carried out in the potentiostatic mode at different applied potential values with respect to the 

reference electrode. The applied potential window was chosen from voltammetry curves 

obtained in the solution. All working electrode used for voltammetric curves had a contact area 

of 0.2 cm
2
 with electrolyte. After deposition, the films were rinsed in de-ionized water and dried 

at room temperature. 

A set of thin films with area of 0.385 cm
2
 were deposited on ITO substrates in the 

electrochemical cell containing 0.02 M copper acetate (Cu(CH3CO2)2) and 0.1 M sodium acetate 

at various deposition potentials (-50 to -250 mV with respect to the Ag/AgCl), in order to study 

the film properties. Deposition time period was controlled in order to obtain films of thickness 

~750 nm. Film thickness was calculated by monitoring the total charge passed during the film 

deposition. Deaeration of solution was carried either by nitrogen or Argon stripping or ultrasonic 

degassing. Stripping will utilize Henry’s law by reducing the partial pressure of oxygen whereby 

the equilibrium is shifted from dissolved oxygen towards oxygen in the gas phase. Prior to 

deposition the solution was purge at room pressure with flow rate of 100 ml/min. 

 

6.2.2 Characterization 

The surface morphology of the films was studied using FEI JEOL JSM-7600TFE scanning 

electron microscope (SEM). The crystal phases of the samples were determined using x-ray 

diffractometer (Philips X’pert) with CuKα radiation source.  The optical properties of the films 
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were determined by photocurrent characterization carried out in a custom built three-electrode 

electrochemical cell.  A Pt mesh, Ag/AgCl reference electrode, and the Cu2O film were used as 

the counter, reference, and working electrode, respectively.  A 100-W soft white light lamp was 

used as the light source and it was positioned 20 cm away from working electrode. The 

illumination  switch  was  controlled manually  to  chop  the  light  in  certain  time  intervals. For 

photocurrent measurements, using Princeton Applied Research potentiostat, the electrolyte was 

an aqueous solution of 0.1 M sodium acetate. To avoid false signals raising from oxygen 

reduction the electrolyte was continuously purged with N2 to remove oxygen. 

 

6.3 Results and discussion 

The linear sweep voltammogram of Cu2O films deposited from cupric acetate solution at pH 6.2 

is shown in Figure 6.1. The sweep is scanned cathodically at 10 mV/s in solution 

containing 0.02M copper acetate and 0.1M sodium acetate while temperature maintained at 

60
o
C. Two cathodic peaks are obtained. First cathodic peak attributes to the formation of Cu2O 

on the substrate during the cathodic reduction of cupric acetate solution according to the 

following reaction. 

                       

Under potentiostatic conditions of lower potential at second cathodic peak, metallic Cu will be 

formed on substrates according to the following reaction. 
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Therefore at higher negative potential the formation of Cu and at moderate negative potential the 

formation of Cu2O will take place. The more negative potential correspond to higher current 

density, higher current density means higher reaction rate which is proportional to growth rate. 

Figure 6.2 shows Photoelectrochemical behaviors of Cu2O films deposited at -100 mV vs 

Ag/AgCl and pH 6.2. The zero bias photocurrent obtained without applying an external bias 

between the Cu2O electrode and counter electrode. It is clear that the photocurrent produced by 

Cu2O film strongly depends on the nitrogen purging time. The photocurrent increases with 

increase in purging time. Other set of samples is prepared in pH bath 5.8 and 5.5. The zero-bias 

photocurrent of these electrodes once again shows the same trend: photocurrent increases as the 

purging time increases.  

 
Figure 6-1 Linear sweep voltammogram of Cu2O films deposited on ITO. 
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Figure 6-2 Photocurrent generated of the Cu2O films deposited in N2 purged solution.  

 

Figure 6.3 shows the effect of Argon bubbling during the film electrode position on its response 

in photocurrent. A set of similar samples is prepared. Argon gas is used as a purging agent. 

Similar results is obtained and confirmed that the increase in photocurrent is due to bubbling 

during electrodepostion which may change the morphology of the films for better photocurrent 

response. XRD results indicate that the chemical composition of the films did not change with 

and without nitrogen or argon bubbling in the electrodeposition bath. Furthermore to confirm this 

hypothesis a set of samples is prepared with the same deposition parameters and ultrasonic 

degassing procedure is performed as a method of deaeration. Figure 6.4 shows that similar 

behaviors are obtained regardless of the method of deaeration.  Therefore it could be confirm that 

the photoconductivity of the thin film Cu2O can be controlled by the dissolved concentration of 

oxygen in deposition solution. The similar increments in the photocurrent are obtained in 

samples prepared with same deposition parameters and pH bath of 5.5.                                                                                                                                                         
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Figure 6-3 Photocurrent generated of the Cu2O films deposited in Ar and N2 purged solution.  

 

The corresponding photocurrents are less than values obtained for pH 6.2 but all samples 

followed the same trend and showed substantial increments in photoelectrochemical current. 

 
 Figure 6-4 Photoelectrochemical behaviors of Cu2O films deposited in ultrasonicated solution.  
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Heat treatment effects on optical and electrical properties of electrodeposited Cu2O have been 

studied by several authors [16-19]. All reports confirmed that the annealing will improve the 

optical and electrical properties of electrodeposited Cu2O, although the optimal annealing 

temperature depends on deposition history.  For example Mahalingam et al. found that annealing 

Cu2O thin film at 350 °C for 30 min reduced the electrical resistivity from 10
6
 ohm-cm to 10

3
 

ohm-cm [18]. In order to investigate the effect of annealing on our samples, several samples are 

chosen randomly to be annealed.  The annealing temperature is kept below 300 °C; heat 

treatment above this temperature will change the conductivity type from n-type to p-type as the 

film become cupric oxide [5, 17]. In our studies we found that for n-type electrodeposited Cu2O 

film the annealing temperature should be kept below 200°C.  Therefore the annealing of samples 

are performed in vacuum for 20 min at 175 °C, the samples showed enhancement in current-

voltage characteristics, which can be seen in figure 6.5. Local impurities might be the reason for 

low performance of un-annealed samples. Obviously, the photocurrent of annealed samples 

displays substantial increments in the photocurrent at the zero-bias potential. In comparison with 

as-grown Cu2O film, the annealed sample deposited under 30 min nitrogen purge exhibits 

approximately 35 times enhancement. In figure 6.5 the enhancement in photocurrent annealed n-

Cu2O thin film is presented. All samples prepared showed enhancement in generated 

photocurrent regardless of deaeration methods. For the comparison propose one n-Cu2O thin film 

sample is prepared without nitrogen or argon bubbling as a reference sample.  
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Figure 6-5 Photoelectrochemical behaviors of Cu2O after heat treatment.  

 

In order to investigate the purity of electrodeposited Cu2O thin film, one sample from each 

deaeration techniques were chosen for XRD spectrum characterization. Figure 6.6 provides the 

XRD patterns for the electrodeposited Cu2O films under nitrogen purge environment. The 

diffraction peaks were consistent with what were expected in Cu2O (JCPDS: 5-667) without the 

impurity of Cu or CuO or any other phase.  Similar XRD pattern was obtained for the sample 

purged under Argon and the sample prepared under ultrasonic degassing. The conclusion was 

that the deaeration methods used in this study had no noticeable effect on purity of prepared 

Cu2O thin films. 
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Figure 6-6 XRD patterns for the electrodeposited Cu2O film in nitrogen purged solution, a) XRD obtained compared with 
reference Cu2O, b) XRD obtained compared with reference ITO.  

 

Figure 6.7 shows the SEM images of the microstructure of the Cu2O films that been deposited 

under no purge, 5 minutes, 10 minutes, 15 minutes and 15 minutes  bubbling time.  
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Figure 6-7 SEM images of the Cu2O films deposited in different purging time. (a) without purge (b) 5 minutes bubbling with 
N2, (c) 10 minutes bubbling with N2; (d) 15 minutes bubbling with N2 and; (e) 30 minutes bubbling with N2.  

 

When the concentration of dissolved oxygen in electrolyte is high (no nitrogen purge), the 

flower-like shapes Cu2O films are formed. The morphology of the Cu2O thin film gradually 
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changes to ring shape as the purging time increases. At low purging time big pores are observed. 

As the purging time increases the pores size are reduced as shown in figure 6.7 (b-e). The surface 

morphology changed to the densely packed network shape structure. In this structure (Cu2O film 

deposited without nitrogen purge) we obtained the lowest photocurrent density. This might be 

due to voids between flowers like shape (large) grains, which caused leakage current. The Cu2O 

film deposited under N2 become more compact than the film deposited under no N2 purge. 

Effect of applied deposition potential on produced photocurrent was investigated. Figure 6.8 

shows the SEM images of the microstructure of the Cu2O films that been deposited at various 

applied potentials. All other parameters kept unchanged. The deposition solution was purge 

under nitrogen for 5 min. prior to the deposition. The zero-bias photocurrent of these electrodes 

was 4.5, 7.5, 12 and 22 µA/cm
2
 for applied deposition potential of -100, -150, -200 and -250 

mV, respectively. All potentials are versus Ag/AgCl reference electrode.  

Better understanding of Cu2O stoichiometry is desirable to determine the origin and mechanism 

of p- and n-type Cu2Oformation. The relation between the oxygen and the copper ion content in 

the electrodeposition bath should be determined. It is speculated that due to the oxygen vacancies 

or the excess of copper ion in the composition of the deposited film, the n-type Cu2O is achieved. 

This will help to identify the origin of the n-type conductivity.  

A standalone system for measurement and control of the oxygen partial pressure is needed to 

achieve the above goal. We are proposing a set up that contains a three-electrode electrochemical 

cell in closed chamber connected to a mass flow meter and a potentiometric sensor. Through the 

mass flow meter we could precisely measure the amount of gas entering into the system and by 

the potentiometric sensor we could precisely control and measure oxygen partial pressure (pO2) 
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during the entire deposition time. After deposition samples could be characterized by inductively 

coupled plasma atomic emission spectroscopy (ICP-AES) and X-ray photoelectron spectroscopy 

(XPS). By these techniques we could trace copper ions and oxygen composition in the film and 

determine the relation between the oxygen and the copper ion content in the electrodeposition 

films.  

 

Figure 6-8 SEM images of the Cu2O films deposited under 5 minutes fixed N2 purge time applied potential of (a) -100,             
(b) -150, (c) -200 and (d) -250 mV vs. Ag/AgCl.   
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6.4 Conclusion 

The n-type Cu2O films were fabricated on ITO substrate. Oxygen deficiency in the Cu2O lattice 

may be the origin of the n-type behavior. Nitrogen purging prior the electrodepostion has effect 

in the morphological changes of Cu2O particles in the reaction process. The photocurrent density 

of n-type Cu2O were enhanced by longer purging time. The efficiencies we obtained were 

improved. Oxygen deficiency in the Cu2O lattice may be the origin of the n-type behavior. 

Whether the presents of nitrogen has a direct or indirect effect on the photocurrent enhancement 

remains to be investigated. 
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Chapter 7 : GENERAL DISCUSSION 

Photovoltaic limited efficiency and high cost of silicon solar cells are key issues for solar cell to 

become an alternative to the use of readily available fossil fuel. Therefore the development of 

new cost effective and non-toxic photovoltaic materials and energy efficient processes is 

essential. Transition metal oxides have a great potential to fulfill these requirements. Among 

them cuprous oxide (Cu2O) has potential alternative to silicon due to its, non-toxicity and simple 

low-cost fabrication process from abundantly available materials. Cu2O has direct band-gap 

energy of 2.0 eV and a relatively high absorption coefficient in the visible region. Its calculated 

theoretical electrical power conversion efficiency is approximately 20 %. However limited 

understanding of conductivity type of Cu2O semiconductor as well difficulty in doping and lack 

of n-type Cu2O has hindered the efficient production of Cu2O based photovoltaic cells. 

The objective of the present study was to carefully prepare p-type and n-type Cu2O thin films by 

adjusting electrodepostion parameters and obtain optimum preparation parameters for future 

fabrication of high efficiency homojunction p-n Cu2O solar Cell.  

Two different substrates were used as the working electrodes for the electrodeposition of Cu2O. 

One was transparent conducting oxide - ITO (indium tin oxide) on glass substrate with a sheet 

resistance of 18Ω/cm. The other one was Copper foil with a thickness of 18 µm.  

Two different electrolyte solutions were used for Cu2O electrochemical deposition. For 

deposition of p-type Cu2O, the electrolyte solutions was the aqueous solution contained 0.4 M 

copper sulfate and 3 M sodium lactate (NaC3H5O3, 60% w/w aqueous solution). For n-type 

Cu2O, the electrolyte solutions was the aqueous solution contained 0.01 M copper acetate and 

0.1 M sodium acetate.  
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A single-compartment, three-electrode electrochemical cell, was used for film deposition. 

Electrodeposition was carried out with a Princeton Applied Research potentiostat 273A. The 

commercial Ag/AgCl (4M KCl)  and  Pt  mesh were  used  as  the reference  and  counter  

electrode,  respectively. The electrolyte was kept in water-jacked cell and temperature was 

controlled between 30°C and 70 °C by Polystat circulation water bath. Electrodeposition was 

carried out in the potentiostatic mode at different applied potential values with respect to the 

reference electrode. The applied potential window was chosen from cyclic voltammetry (CV). 

After deposition, the films were rinsed in de-ionized water and dried at room temperature. 

The surface morphology of the films was studied using scanning electron microscope (SEM). 

The purity and crystal phases of each Cu2O layers were examined by X-ray diffraction (XRD). 

The optical properties of the films were determined by photocurrent characterization carried out 

in a custom built three-electrode electrochemical cell.  The conversion of photon of light into 

electrical energy was characterized by solid -liquid junction called Photo-electrochemical cell 

(PEC). The PEC was characterized by measuring current voltage characteristics (I-V) in dark as 

well as in light in the same cell used for photocurrent characterization.  

I-V measurements were performed to determine the resistivity of p-type Cu2O films.  A circular 

Cu electrode was placed on top of Cu2O films. A voltage was sweep between the substrate and 

the top electrode and the current was measured at room temperature with the Princeton Applied 

Research potentiostat 273A.  From the slope of I-V curve, the area of top electrode, and the 

thickness of deposited film, the resistivity was determined. 

Our study reveled that the increases in temperature will widen the Cu2O deposition window 

toward more negative cathodic potentials and increases the deposition current and 60–70
o
C is an 
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optimum temperature for deposition of Cu2O. The deposition potential also is one of important 

parameter in deposition of Cu2O and should be kept between -0.2 to -0.6 V vs. Ag/AgCl. At 

more negative the current started to oscillate and Cu was co-deposited. In order to avoid co-

deposition of Copper, the potential window used in this study was kept below -0.5 V vs. 

Ag/AgCl.  

Other important parameters found to be bath pH. Samples deposited at pH bath 8 and above all 

showed cathodic behavior which represents the typical behavior of the p-type semiconductor. All 

samples deposited at this potential and bath pH range composed of pure Cu2O without the trace 

of Cu or CuO deposition. However thin film crystal preferred ordination for pH<10 bath is (100) 

plane and for pH> 11 is (111) plane.  

The resistivity of deposited film depends on deposition conditions and decreases slightly as 

solution pH increases. The smallest value was obtained at pH 13.0, which is lower by two orders 

of magnitude than of film prepared at pH 9.0. The photocurrent increases with increase in 

solution pH, the film deposited at pH 13 produce more photocurrent than film deposited at pH 

8.5. Therefore as the bath pH increases the photocurrent response was increased as well. 

The effect of bath pH on the morphology and grain size  of Cu2O film is investiagted. There is a 

noticeable differences in cyristal shape and grain size. The grain size increases as the bath pH 

increases. The mechanism for the dependence of grain size on bath pH is currently unknown. 

The surface morphology is found to be 4-sided pyramids with a relatively uniform size 

distribution. For (100) orientation plane and size  3-faced pyramid shape with large cyrstal grain 

for (111) plane. Temperture  and applied poetential also have effect of the morphology of 

deposited Cu2O. The film prepared at higher temperature has better crystallinity with less cracks 
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and defects in crystals. The degree of texture changes with the applied potential. A decrease in 

grain size i observed when the applied potential changes from -0.3 to -0.7 V versus Ag/AgCl. 

The n-type Cu2O films are deposited in an acetate bath containing 0.01 M copper acetate and 0.1 

M sodium acetate by electrodepostion. Voltammetric curve revealed that the deposition potential 

should be more positive than -0.25 V for given temperature and the corresponding current in this 

range are lower than that of p-type Cu2O deposition. We reveled that that deposition current 

increased and cathodic peaks are slightly shifted to the negative potential side with increase in 

bath pH. All samples prepared in the pH range of 4.8-6.0, produced anodic current under 

illumination, confirming their n-type conductivity. 

It was noted that photoresponse increases for the samples prepared under more negative applied 

potential. The best photoresponse for pH 5.5 were obtained for Cu2O deposited at -0.25 V vs. 

Ag/AgCl. It is observed that the photocurrent is a function of deposition potential for 

electrodepostion preformed in acidic medium. 

Heat treatment effects on optical and electrical properties of electrodeposited Cu2O have been 

investigated. After annealing in vacuum for 80 min at 150 °C, the samples showed enhancement 

in current-voltage characteristics. 

A two-step electro-deposition process is implemented to fabricate p-n homo junction cuprous 

oxide on Indium tin oxide (ITO) substrate. The electro-deposition of p-Cu2O and n-Cu2O was 

performed potentiostatically without stirring in a single-compartment, three-electrode 

electrochemical cell. The current-voltage (I-V) curves under dark and illumination of a 

fabricated cell: ITO/ p-Cu2O/n-Cu2O/Cu illuminated through the ITO substrate are shown in 

Figure 5.22. This curve of the p-Cu2O/n-Cu2O homojunction shows clearly a behavior which is 
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similar to those of the I-V polarization curves of the p-n solar cell junction. The short circuit 

current and open circuit voltage are respectively determined as 235 microA/cm
2
 and 0.35 Volt. 

The fill factor (FF) and the cell conversion efficiency of light to electricity are determined to be 

respectively 0.305 and 0.082%. However obtained efficiency is not in desirable range. This 

could be due to weak contact between top electrode and n-Cu2O film and also weak junction 

between p-Cu2Oand n-Cu2O films. 

Furthermore the n-type Cu2O is prepared under different atmosphere. Nitrogen purging prior the 

electrodepostion has affected the morphology of Cu2O particles in the reaction process. We 

observed that the photocurrent density of n-type Cu2O is enhanced by bubbling Nitrogen/Argon. 

The longer bubbling time showed better photocurrent density. 
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Chapter 8 : CONCLUSION AND RECOMMENDATIONS 

8.1 Conclusion 

In this Dissertation, we carried out potentiostatic electrodepostion of single phase cuprous oxide 

(Cu2O) thin films in an aqueous solution. Cu2O is a photovoltaic absorber. The electrical, 

structural and optical characteristics as deposited cuprous oxide are investigated.  

The deposition parameters such as temperature, solution pH and applied potential are studied. It 

was noted that the deposition pH has a significant effect in controlling the structural, electrical 

properties of Cu2O films. Cuprous oxide deposited in alkaline media (pH >8) in solution 

containing copper sulfate and lactic acid is p-type semiconductor. Films deposited at pH range of 

8-9 have preferred orientation of (100) and have higher electrical resistance than films deposited 

in pH ~ 11 and higher, as this range have preferred orientation of (111). The crystallite shapes 

changes from 4-sided pyramids with relatively uniform size distribution in (100) oriented film to 

3-faced pyramid shape with less uniform size distribution in (111) oriented film. The grain sizes 

of deposited films are increased as bath pH increased. The resistivities of films are decreased 

with increase pH values. The potential ranges of -200mV to -600mV Vs Ag/AgCl in copper 

sulfate and sodium lactate solution are suitable potential to obtain p-Cu2O. The film deposited at 

pH 8-9 exhibit lower photoactivity than those deposited at pH 12-13. The bath temperature has 

strong effect on the composition and microstructure of the Cu2O thin films. Annealing above 

300
o
C causes the oxidation of p-Cu2O. Annealing above 200

 o
C causes the conductivity 

conversion for n-type to p-type. Annealing decreases the electrical resistivity of Cu2O thin film 

and enhances its photo-response. 
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Cu2O films were prepared on an Indium tin oxide glass substrate. The effect of different 

atmospheric treatments on the photoresponse of ITO/n-Cu2O thin films was studied. We 

developed a method for enhancing the photocurrent of n-Cu2O films. We showed that prepared 

film under nitrogen atmosphere has significant enhancement in the photocurrent produced in n-

type Cu2O. It is reasonable to believe that the origin of n-type Cu2O is related to the oxygen 

incorporation in the crystal lattice, which is controlled by amount of dissolved oxygen in the 

solution. Hence lower concentration of oxygen is producing better n-type Cu2O either with 

oxygen vacancy or additional copper. 

With the optimum parameters obtained in this work a two-step electro-deposition process is 

implemented to fabricate p-n homo junction cuprous oxide on Indium tin oxide (ITO) substrate 

which was used as a transparent conductive oxide for the homo junction Cu2O solar cell. The 

photovoltaic characterization was performed. The short circuit current and open circuit voltage 

are respectively determined as 235 microA/cm
2
 and 0.35 Volt. The fill factor (FF) and the cell 

conversion efficiency of light to electricity are determined to be respectively 0.305 and 0.082%. 

However obtained efficiency is not in desirable range. This could be due to weak contact 

between top electrode and n-Cu2O film and also weak junction between p-Cu2Oand n-Cu2O 

films. Optimization of electrodepostion condition would improve the efficiencies of the solar 

cells. 

 

8.2 Recommendations 

Based on this work we can improve the low value of electrical power conversion efficiency of 

Cu2O based solar cells by future work. 
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1) Both p- and n-type Cu2O films prepared in this work have high resistivity. Future work 

need to be done to lower the resistivity of electrodeposited Cu2O by doping. Doping will 

enhance the carrier concentration and carrier mobility which are critical factors for 

performance of solar cells. Key issue for doping are the selection of dopant which should 

be stable in deposition solution and simultaneously deposited with cuprous oxide. Iodide 

can be a potential donor doping material in Cu2O and copper iodide (CuI) can be 

introduced in the electrodepostion bath. Therefore co-deposition of Iodide in Cu2O could 

be investigated.  

2) The systematic correlation between the resistivity and the Cu2O p-n homojunction cell 

performance should be evaluated because it will help to identify the best films for 

optimized cells.  

3) Better understanding of Cu2O stoichiometry is desirable to understand the origin and 

mechanize of p- and n-type Cu2O. 

4) Cu2O has a band gap of 2.0–2.2 eV, which is not an ideal value for solar cells. By 

controlling the stoichiometric of Cu2O or by incorporating other atoms in the lattice, the 

energy band gap can be engineered. It should be interesting to correlate the Cu2O particle 

size to its band gap value.  

5) Better understanding of Cu2O stoichiometry is desirable to understand the origin and 

mechanism of p- and n-type Cu2Oformation. Determination of the relation between the 

oxygen and the copper ion content in the electrodeposition bath in necessary. Because it 

is speculated that due to the oxygen vacancies or the excess of copper ion in the 

composition of the deposited film, the n-type Cu2O will be achieved. This will help to 

identify the origin of the n-type conductivity.  
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Annex A. 

The thickness calculation of the deposited films by weighting method. 

m1 m2 m2-m1=M V=M/ρ L= V/A L*10000=µm ~ L 

p-Cu2O 

0.1823 0.1832 0.0009 0.00015 0.000114 1.14 1.1 

0.1004 0.1019 0.0015 0.00025 0.000189 1.89 1.9 

0.1052 0.1074 0.0022 0.000367 0.000278 2.78 2.8 

0.0991 0.1016 0.0025 0.000417 0.000316 3.16 3.2 

0.1907 0.1935 0.0028 0.000467 0.000354 3.54 3.5 

0.1075 0.1104 0.0029 0.000483 0.000366 3.66 3.7 

n-Cu2O 

0.1606 0.1614 0.0008 0.000133 0.000101 1.01 1 

0.1675 0.169 0.0015 0.00025 0.000189 1.89 1.9 

0.1734 0.1754 0.002 0.000333 0.000253 2.52 2.5 

0.179 0.1814 0.0024 0.0004 0.000303 3.03 3 

0.1127 0.1153 0.0026 0.000433 0.000328 3.28 3.3 

0.1279 0.1307 0.0028 0.000467 0.000354 3.53 3.5 

 

Where m1, m2, ρ, L and A are the initial substrate mass, the substrate mass after deposition, the 

density of Cu2O, the thickness and the deposited area respectively.   

 


