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RÉSUMÉ 

L'objectif de cette thèse de doctorat est d’appliquer la connectivité fonctionnelle dans une variété 

de modèles animaux, à l’aide de plusieurs techniques d’imagerie optique. Le cerveau, même au 

repos, montre une activité métabolique élevée : la corrélation des fluctuations spontanées lentes 

permet d’identifier des régions cérébrales distantes mais connectées; d’où le terme connectivité 

fonctionnelle. Les changements dans l’activité spontanée peuvent donner un aperçu des processus 

neuronaux qui comprennent  la majorité de l’activité métabolique du cerveau, et constituent en 

conséquent une vaste source de changements reliés aux maladies. 

L’hémodynamique du cerveau peut être modifiée grâce à des affections neurovasculaires et avoir 

un effet sur l’activité au repos. Cette thèse vise la compréhension des changements de 

connectivité fonctionnelle induits par des maladies, à l’aide de l’imagerie optique fonctionnelle. 

Les techniques d’imagerie explorées dans les deux premières contributions de cette thèse sont 

l’Imagerie Optique Intrinsèque et l’Imagerie par Granularité Laser. Ensemble, elles peuvent 

estimer les changements de consommation d'oxygène, étroitement liés à l’activité neuronale. Ces 

techniques possèdent des résolutions temporelles et spatiales adéquates et bien adaptées pour 

imager la convexité du cortex cérébral. Dans le dernier article, une modalité d’imagerie en 

profondeur, la Tomographie Photoacoustique a été utilisée chez le rat nouveau-né. La 

Tomographie par Cohérence Optique et la Tomographie Laminaire Optique font également partie 

de la gamme des techniques d’imagerie développées et appliquées dans d’autres collaborations. 

La première partie des résultats mesure les changements de connectivité fonctionnelle dans un 

modèle d’activité épileptiforme aiguë chez le rongeur. Il y a des augmentations ainsi que des 

diminutions entre les corrélations homologues, avec une faible dépendance aux crises 

épileptiques. Ces changements suggèrent un découplage potentiel entre les paramètres 

hémodynamiques dans les réseaux au repos, en soulignant l’importance d’investiguer les réseaux 

épileptiques à l’aide de plusieurs mesures hémodynamiques indépendantes. 

La deuxième partie des travaux étudie un nouveau modèle de rigidité artérielle chez la souris : la 

calcification unilatérale de la carotide droite. L’analyse de connectivité basé sur les régions 

d’intérêt montre une tendance décroissante de corrélation homologue dans les cortex moteur et 

cingulum. L’analyse de graphes montre une randomisation des réseaux corticaux, ce qui suggère 

une perte de connectivité; plus spécifiquement, dans le cortex moteur ipsilateral à la carotide 
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traitée. Néanmoins, ces changements ne se reflètent pas dans un métabolisme différencié. Ils 

restent toujours des facteurs confondants dûs au fait que la calcification de la carotide induit un 

déclin neuronal dans l’hippocampe ainsi qu’une altération unilatérale de la pulsatilité vasculaire. 

Cependant, les résultats appuient la nécessite d’observer plusieurs paramètres hémodynamiques 

lorsqu’on image le cerveau suite à la remodélisation artérielle. 

La troisième partie des travaux étudie un modèle de lésion inflammatoire chez le rat nouveau-né. 

La saturation d’oxygène et la connectivité fonctionnelle ont été mesurées avec la Tomographie 

Photoacoustique. La saturation d’oxygène a diminué dans le site de la lésion et dans le cortex 

ipsilateral à la lésion, toutefois cette diminution n’a pas été complètement expliquée par 

l’hypovascularisation révélée par l’histologie. Une analyse de connectivité des régions d’intérêt a 

montré que la connectivité intra-hémisphères n’est pas modifiée par la lésion inflammatoire. 
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ABSTRACT 

The aim of this thesis is to apply functional connectivity in a variety of animal models, using 

several optical imaging modalities. Even at rest, the brain shows high metabolic activity: the 

correlation in slow spontaneous fluctuations identifies remotely connected areas of the brain; 

hence the term “functional connectivity”. Ongoing changes in spontaneous activity may provide 

insight into the neural processing that takes most of the brain metabolic activity, and so may 

provide a vast source of disease related changes. 

Brain hemodynamics may be modified during disease and affect resting-state activity. The thesis 

aims to better understand these changes in functional connectivity due to disease, using 

functional optical imaging. 

The optical imaging techniques explored in the first two contributions of this thesis are Optical 

Imaging of Intrinsic Signals and Laser Speckle Contrast Imaging, together they can estimate the 

metabolic rate of oxygen consumption, that closely parallels neural activity. They both have 

adequate spatial and temporal resolution and are well adapted to image the convexity of the 

mouse cortex. In the last article, a depth-sensitive modality called photoacoustic tomography was 

used in the newborn rat. Optical coherence tomography and laminar optical tomography were 

also part of the array of imaging techniques developed and applied in other collaborations. 

The first article of this work shows the changes in functional connectivity in an acute murine 

model of epileptiform activity. Homologous correlations are both increased and decreased with a 

small dependence on seizure duration. These changes suggest a potential decoupling between the 

hemodynamic parameters in resting-state networks, underlining the importance to investigate 

epileptic networks with several independent hemodynamic measures. 

The second study examines a novel murine model of arterial stiffness: the unilateral calcification 

of the right carotid. Seed-based connectivity analysis showed a decreasing trend of homologous 

correlation in the motor and cingulate cortices. Graph analyses showed a randomization of the 

cortex functional networks, suggesting a loss of connectivity, more specifically in the motor 

cortex ipsilateral to the treated carotid; however these changes are not reflected in differentiated 

metabolic estimates. Confounds remain due to the fact that carotid rigidification gives rise to 

neural decline in the hippocampus as well as unilateral alteration of vascular pulsatility; however 
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the results support the need to look at several hemodynamic parameters when imaging the brain 

after arterial remodeling.  

The third article of this thesis studies a model of inflammatory injury on the newborn rat. Oxygen 

saturation and functional connectivity were assessed with photoacoustic tomography. Oxygen 

saturation was decreased in the site of the lesion and on the cortex ipsilateral to the injury; 

however this decrease is not fully explained by hypovascularization revealed by histology. Seed-

based functional connectivity analysis showed that inter-hemispheric connectivity is not affected 

by inflammatory injury. 
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INTRODUCTION 

Brain function has been traditionally studied in terms of physiological responses to the 

administration of external stimuli or tasks. From early physiology work (Hubel & Wiesel, 1962) 

to cognitive activation paradigms in humans (Raichle, 1998), this approach has been very 

valuable in linking brain topography with function; this perspective considers the brain to be 

mainly driven by external inputs, ignoring the fact that human brain consumes 20% of the body 

energy at rest, even though it accounts for less than 2% of total body mass (Raichle, 1998, 2010).  

A variety of functional imaging techniques have been developed to indirectly record the 

metabolic traces of neural activity in the central nervous system. About 23 years ago, one of the 

most promising modalities appeared, called functional magnetic resonance imaging (fMRI). 

fMRI uses a non-invasive method that relies on Blood Oxygenation Level Dependent (BOLD) 

contrast, due to the paramagnetic properties of HbR (Ogawa, Lee, Kay, & Tank, 1990). 

The empirical motivation for studying spontaneous neural activity arose from the first 

observation of spatially coherent activity in the fMRI BOLD signal (B. Biswal, Yetkin, 

Haughton, & Hyde, 1995). In their seminal paper, Biswal and colleagues observed spontaneous 

fluctuations on the right motor cortex that were correlated with spontaneous fluctuations in its 

contralateral homologue, even during the absence of an overt motor task. This finding has been 

replicated by several groups since then, extending the studies from the motor cortex to the visual, 

auditory, and language processing regions (Cordes et al., 2001; De Luca, Beckmann, De Stefano, 

Matthews, & Smith, 2006; Fox, Snyder, Zacks, & Raichle, 2006; Greicius, Krasnow, Reiss, & 

Menon, 2003; Lowe, Dzemidzic, Lurito, Mathews, & Phillips, 2000). Brain regions that showed 

greater BOLD signal during rest than during task performance have also received attention; these 

regions that routinely exhibit decreased activity during experimental tasks have been labeled the 

default-mode network (Raichle et al., 2001). Functional connectivity is a method that describes 

the correlation of spatially remote areas in the temporal domain (Karl J Friston, 2011) and the 

regions of coherent activity found  with functional connectivity methods have been termed 

resting-state networks (RSNs) (Fox & Raichle, 2007; la Iglesia-Vaya, Molina-Mateo, Jose, S., & 

Marti-Bonmati, 2013). Far from being pretty noise, spontaneous fluctuations are correlated 

within functionally related brain zones (Deco & Corbetta, 2011). While extensively used in 

humans, the application of fMRI in mice remains difficult, as the small size of murine brain 
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needs exceptionally good signal-to-noise ratio (SNR) and spatial resolution (Benveniste & 

Blackband, 2002; Jonckers, Van Audekerke, De Visscher, Van der Linden, & Verhoye, 2011); 

making it challenging to relate human studies to mouse models of disease, where molecular and 

genetic mechanisms are well-established. Although BOLD fMRI is widely used in functional 

imaging, it is subject to confounds due to the competing effects of changes in blood flow and 

oxygen metabolism. An attractive alternative to work around the limitations of fMRI is to use 

optical imaging in the small animal. First, it may be possible to reveal functional networks 

consistently identified in the resting-state. Second, using multiple wavelengths a complete set of 

hemodynamic parameters may be obtained and then be used to disambiguate the confounds 

present in the BOLD signal. Finally, translating the advances of functional connectivity fMRI to 

optical techniques in disease murine models would enable new studies on a multitude of cost-

effective and efficient animal models, with high genetic similarity (European Commission 

Workshop, 2010). Therefore, the goal of this thesis is to combine a variety of optical imaging 

modalities with resting-state functional connectivity mapping.  

The studies presented in this work aim to establish the utility of different optical imaging 

techniques such as multi-spectral intrinsic optical imaging, laser speckle imaging and 

photoacoustic tomography (PAT) to assess resting-state connectivity in various murine models. 

Using multiple illumination wavelengths, relative changes in HbO2 and HbR can be estimated, 

while speckle imaging gives access to relative cerebral blood flow (CBF). This then enables 

estimations of CMRO2, a measurement more closely related to neural activity than hemoglobin 

concentrations alone (Brieu, Beaumont, Dubeau, Cohen-Adad, & Lesage, 2010; Zappe, Uludag, 

Oeltermann, Ugurbil, & Logothetis, 2008). Hence, due to access to distinct hemodynamic 

components, functional connectivity based on optical imaging of intrinsic signals (fcOIS) may 

provide additional information that complements resting-state studies with fMRI in the context of 

neurological and vascular disease. PAT is a technique that combines the intrinsic contrast 

capabilities of optical imaging with the  advantage of high spatial resolution of ultrasound (L. V. 

Wang & Hu, 2012). A short laser pulse is absorbed by molecules in living tissue, generating an 

ultrasonic pressure wave, which is detected by an ultrasound transducer to form images (X. Wang 

et al., 2003). Its non-invasive nature lends itself to application in newborn models and it also 

provides access to deeper layers of the brain. 
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The techniques presented in this thesis are an attempt to unravel the functional correlates of 

several disease models, leading to a better understanding of connectivity changes in rodent 

models. 

 

Brief literature review 

Proxy measures of neural activity 

Brain imaging depends largely on evoked hemodynamic signals. In 1878, Mosso tested the 

hypothesis that blood flow is related to brain activity, recording changes in brain volume related 

to cerebral blood flow (CBF) on the exposed dura mater  in the frontal region of a 37-year old 

subject (Mosso, 1884; Sandrone et al., 2013; Yu, Schummers, & Sur, 2010; Zago, Lorusso, 

Ferrucci, & Priori, 2012). He observed that pulsations in the frontal cortex increased during the 

performance of a computation task. Although modern imaging techniques are not based on the 

same principles as Mosso’s, his idea of indirect measurements of neural activity may be 

considered the precursor to modern functional neuroimaging. 

When a neuron depolarizes, there is a localized oxygen consumption indicated by an initial 

increase in deoxyhemoglobin (HbR). A few seconds later (1–2 s), there is a large increase in CBF 

and cerebral blood volume (CBV) as a compensation mechanism to the initial oxygen utilization. 

This large mismatch between oxygen supply and consumption leads to a delayed augmentation in 

oxyhemoglobin (HbO2) concentration and the consequent dilution of HbR (Malonek & Grinvald, 

1996). These responses have a temporal width of 4–6 s to even a very brief stimulus; this delay 

depends on the metabolic filter of each brain region, the choice of estimator and the duration of 

the stimulus (ON) period (C. H. Liao et al., 2002; Saad, DeYoe, & Ropella, 2003). Thus, activity 

of the neurons can be indirectly localized and quantified by measuring the hemodynamic changes 

following electrical activation: the so called hemodynamic response (HDR).  

However, the relationship between neural activation and HDR remains complex, even non-linear 

(Devor et al., 2003). This non-linearity is more pronounced when comparing the HDR to a wide 

range of stimuli (Richard B. Buxton, Uludag, Dubowitz, & Liu, 2004). Another finding that is 

still subject to controversy in the literature (Chen & Pike, 2009) is the so-called “initial dip”: a 

decrease in HDR signal (from a HbR increase) lasting 1–2 s before the standard augmentation in 

HbO2; this initial dip has been reported in optical imaging (Malonek & Grinvald, 1996) but the 
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effect is small and not always present (R B Buxton, 2001); in some studies it has been shown that 

this initial augmentation of HbR is counterbalanced by an equal diminution in HbO2 (Devor et al., 

2003).  

It is commonly accepted that precise regulation of blood flow involves the dilation of arterioles 

(Cox, Woolsey, & Rovainen, 1993), but it is not clear how the signal transfers from neurons to 

surrounding vasculature. One hypothesis claims that the activation of specific subsets of 

vasomotor interneurons can directly evoke dilation or constriction of adjacent vessels, 

transmuting neuronal signals into vascular responses (Cauli et al., 2004). Another hypothesis 

states that glutamate released from firing neurons initiates calcium waves in astrocytes; this post-

synaptic calcium in turn induces the release of several vasoactive agents that are central to CBF 

increase (Iadecola, 2004). Furthermore, there is a growing body of evidence suggesting that 

astrocytes may be responsible for a critical component of neurovascular coupling and the HDR  

(Petzold & Murthy, 2011; Yu et al., 2010).  

This complex neurovascular coupling makes the interpretation of optical imaging difficult. 

Nonetheless, neural activity is undoubtedly reflected in hemodynamic changes, which are 

detectable by the optical imaging techniques utilized in this work. 

Functional connectivity 

The term functional connectivity (fc) is applied to a variety of studies that examine coherent 

inter-regional correlations of neuronal activity during both cognitive tasks and rest (Fox & 

Raichle, 2007). In the present work, functional connectivity is explored in the absence of external 

stimuli. It is a technique sensitive to spatial and temporal synchronicity of fluctuations in neural 

activity from different brain areas, that may be spatially remote (Waites, Briellmann, Saling, 

Abbott, & Jackson, 2006). In the context of functional neuroimaging, fc is used to describe the 

relationship between the neurovascular activation patterns of anatomically separated regions. 

Synchronization has been measured by several methods, ranging from direct measures of neural 

activity such as local field potential (LFP) (Bressler, Ding, & Yang, 1999; Ding, Bressler, Yang, 

& Liang, 2000; Magill et al., 2006; Nir et al., 2008; Shmuel, Augath, Oeltermann, & Logothetis, 

2006), electro-encephalography (EEG) (Aarabi, Wallois, & Grebe, 2008; Green, Sora, Bialy, 

Ricamato, & Thatcher, 1998; Mormann et al., 2003; C. J. Stam, Jones, Nolte, Breakspear, & 

Scheltens, 2007; Thatcher RW, Krause PJ, & Hrybyk M., 1986) and magnetoencephalography 
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(MEG) (Brookes et al., 2011; L Douw et al., 2013; Linda Douw et al., 2010; Z. Liu, Fukunaga, 

de Zwart, & Duyn, 2010; Pasquale et al., 2010), to indirect measures of neural-related 

fluctuations such as functional magnetic resonance imagining (fMRI) (Beckmann, DeLuca, 

Devlin, & Smith, 2005; B. Biswal et al., 1995; Damoiseaux et al., 2006; De Luca et al., 2006; 

Fox & Raichle, 2007; Greicius et al., 2003) and a variety of optical imaging techniques: near-

infrared spectroscopy (NIRS) (Lu et al., 2010; Mesquita, Franceschini, & Boas, 2010; Sasai, 

Homae, Watanabe, & Taga, 2011; Wolf et al., 2011; H. Zhang et al., 2010), diffuse optical 

tomography (DOT) (S. M. Liao et al., 2012; Niu et al., 2011; Brian R. White et al., 2009; Brian R 

White, Liao, Ferradal, Inder, & Culver, 2012), optical imaging of intrinsic signals (OIS) (Bero et 

al., 2012; Li, Zhou, Luo, & Li, 2012; Brian R White et al., 2011) and photoacoustic tomography 

(PAT) (Xiang et al., 2012). The application of the aforementioned techniques will be described in 

the following sub-section. 

Imaging techniques 

EEG & MEG in humans 

EEG is a technique which uses electrodes to record the spontaneous electrical activity of the brain 

(Gibbs, Gibbs, & Lennox, 1937). Functional connectivity between networks of neurons can be 

inferred from the synchronization of their respective activities (Thatcher RW et al., 1986) and has 

been widely studied with EEG measures in several studies, ranging from Alzheimer’s disease (C. 

J. Stam et al., 2007), to spinal cord injury (Green et al., 1998) to epilepsy (Aarabi et al., 2008; 

Mormann et al., 2003; Ponten, Bartolomei, & Stam, 2007; Schindler, Leung, Elger, & Lehnertz, 

2007; Wendling, Hernandez, Bellanger, Chauvel, & Bartolomei, 2005). Although invasive LFP 

recordings have been used to investigate task-related connectivity in the macaque cortex 

(Bressler et al., 1999; Ding et al., 2000; Shmuel et al., 2006; Stevenson & Körding, 2010),  and 

the rodent brain (Magill et al., 2006), its application to human studies remains limited only to 

conditions where surgery management is needed, e.g. in epilepsy cases (B. J. He, Snyder, 

Zempel, Smyth, & Raichle, 2008; Nir et al., 2008). MEG is a non-invasive technology in which 

the magnetic fields induced by neuronal current flow in the brain are measured above the scalp 

(Cohen, 1972). Functional connectivity explored with MEG has added weight to the neural basis 

of fMRI (Z. Liu et al., 2010); this technique has been applied to the healthy brain (Brookes et al., 
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2011; Pasquale et al., 2010), the epileptic brain (L Douw et al., 2013; Horstmann et al., 2010) and 

schizophrenic disease (Hinkley et al., 2010). 

fMRI in humans 

Several studies have shown that fMRI could use blood as a proxy for measuring the response of 

the neurons to sensory stimulation (Kwong et al., 1992; Ogawa et al., 1992). A similar technique 

using MRI to map the human visual cortex had appeared a few months earlier (Belliveau et al., 

1991), with the inconvenience that a contrast agent had to be injected. fMRI is a safer and more 

comfortable alternative to positron emission tomography (PET), which uses a radioactive 

modified glucose called fluorodeoxyglucose (FDG); it is traced as it flows through the human 

body and its consumption will indicate the particular areas of the brain with a higher metabolism, 

indicating a higher neural activity (Alavi et al., 1986). PET has been widely used in both health 

and disease (K J Friston, Frith, Liddle, & Frackowiak, 1993), despite its poor spatial resolution, 

which is a limitation to human brain imaging (Dharmarajan & Schuster, 2012).  

Functional connectivity was first demonstrated by fMRI detecting low-frequency variations 

(<0.1Hz) in the motor cortex without any external stimuli, i.e. during resting-state (B. Biswal et 

al., 1995). The original validation of Biswal and colleagues was that left and right hemispheric 

regions of the primary motor region are not silent, but show a high correlation between their 

BOLD time-series; the resulting spatial correlations correspond with the brain’s functional 

activation maps as elicited by task-evoked responses. 

Functional communication between separate brain regions plays an important role in complex 

processes; these correlations yield detailed maps of complex neural systems (B. B. Biswal et al., 

2010). The observed RSNs could be consistently identified across subjects and within groups 

(Damoiseaux et al., 2006; De Luca et al., 2006). Therefore, the examination of functional 

connectivity might be of high importance because it could provide insights into the intrinsic brain 

organization and reorganization with cognitive processes, pathology and drug effects (Gusnard, 

Raichle, & Raichle, 2001; Raichle, 2011; Raichle et al., 2001; van den Heuvel & Hulshoff Pol, 

2010). Several interesting studies have sprung up from these observations, assessing possible 

impaired functional connectivity in aging (Damoiseaux et al., 2008; J. Sun, Tong, & Yang, 

2011), dementia (Gili et al., 2011; Greicius, Srivastava, Reiss, & Menon, 2004; Y. He, Chen, 

Gong, & Evans, 2009; Rombouts et al., 2009; Sanz-Arigita et al., 2010), epilepsy (W. Liao et al., 
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2011; C. Luo et al., 2012; Mankinen et al., 2012; Waites et al., 2006; Z. Wang et al., 2011; Z. 

Zhang et al., 2009), cardiovascular disease (Cheng et al., 2012; Y. Sun et al., 2011; van Norden et 

al., 2011), schizophrenia (Lawrie et al., 2002; Y. Liu et al., 2008; Whitfield-Gabrieli et al., 2009) 

and depression (Greicius et al., 2007). 

The discovery of functional connectivity MRI has led to a wide application in neuroimaging 

research (B. B. Biswal et al., 2010; Fox & Raichle, 2007; van den Heuvel & Hulshoff Pol, 2010), 

including insights into infant brain development (Fair et al., 2007, 2008; Fransson et al., 2007), 

the preterm infant (Damaraju et al., 2010; Doria et al., 2010; W.-C. Liu, Flax, Guise, Sukul, & 

Benasich, 2008; Smyser et al., 2010)  and pediatric Tourette syndrome (Church et al., 2009). 

Optical imaging in humans 

Optical imaging has strong clinical potential, because it has the ability to monitor brain function 

in longitudinal, non-invasive way, not unlike fMRI, while providing better temporal resolution 

and sensitivity to two distinct endogenous contrasts HBO2 and HbR. The translation of resting 

state fMRI to optical techniques, such as NIRS has enabled new developmental studies. Yet, its 

application poses significant challenges due to the influence of systemic physiology and 

superficial signals. Spontaneous low frequency fluctuations of brain hemodynamics have been 

investigated by NIRS (Elwell, Springett, Hillman, & Delpy, 1999; Mesquita et al., 2010; Obrig et 

al., 2000). Temporal correlations using NIRS have been found in resting-state adults (Toronov et 

al., 2000; Wolf et al., 2011), in elderly subjects (Schroeter, Schmiedel, & von Cramon, 2004) and 

in sleeping infants (Taga et al., 2000). The aforementioned findings have motivated several 

studies using NIRS that have successfully demonstrated functional connectivity (Lu et al., 2010; 

H. Zhang et al., 2010), outlining frequency-specific characteristics, dependent on the studied 

brain regions (Sasai et al., 2011). While such studies have shown interesting results, they suffer 

from performance limitations, such as low spatial resolution (~3cm, barely sufficient to resolve 

the spatial extent of the BOLD response ~4cm
3
 (Saad, Ropella, DeYoe, & Bandettini, 2003)) that 

may average spatial correlations and the need of a large FOV to cover both correlated and 

uncorrelated regions (Brian Richard White, 2012). These limitations have prompted the use of 

DOT systems with high-density of sources and detectors; this approach has the capability to yield 

three-dimensional reconstructions of hemoglobin maps through the resolution of the inverse 

problem. Resting-state functional connectivity has been since revealed by DOT in both in the 
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adult brain (Niu et al., 2011; Brian R. White et al., 2009) and the neonatal brain (Brian R White 

et al., 2012). 

fMRI in animals 

The application of fMRI in the animal brain has remained scarce, because a high intensity 

magnetic field is required in order to obtain sufficient SNR and spatial resolution for small 

animal imaging (Benveniste & Blackband, 2002; Jonckers et al., 2011); until recent 

demonstrations, functional connectivity-MRI (fcMRI) has been limited to either the rat brain 

(Bifone, Gozzi, & Schwarz, 2010; B. B. Biswal & Kannurpatti, 2009; Hutchison, Mirsattari, 

Jones, Gati, & Leung, 2010; Kalthoff, Seehafer, Po, Wiedermann, & Hoehn, 2011; Kannurpatti, 

Biswal, Kim, & Rosen, 2008; Magnuson, Majeed, & Keilholz, 2010; Pawela et al., 2008, 2009, 

2010; van Meer, van der Marel, Otte, Berkelbach van der Sprenkel, & Dijkhuizen, 2010; F. Zhao, 

Zhao, Zhou, Wu, & Hu, 2008) or the monkey brain (Moeller, Nallasamy, Tsao, & Freiwald, 

2009; Shmuel & Leopold, 2008; Teichert, Grinband, Hirsch, & Ferrera, 2010; Vincent et al., 

2007). Extending these studies to a well-established and widely used species in clinical research, 

such as the mouse, would permit the use of this tool in multiple robust disease models. In this 

context, a recent effort was made to establish a comparison of resting-state functional maps 

between the mouse and the rat (Jonckers et al., 2011).  

Optical imaging in animals 

Despite many advantages offered by the non-invasive nature of fMRI, there has been intense 

debate on the origin of the measured signal, especially because the measured BOLD effect is the 

combination of several metabolic byproducts: HbR concentration, CBF and CBV within a voxel 

on the order of the cubic millimeter and within a temporal resolution (repetition time, TR) around 

2 – 3 seconds, for a typical fMRI acquisition (De Luca et al., 2006). Therefore, independent 

measures of HbR, HbO2, CBV and CBF with high spatial (~50μm) and temporal resolution (~5 

Hz) is a key to better characterize vascular dynamics at the cortex level. 

Optical imaging of intrinsic signals (OIS) is a technique that can be used to compute 

measurements of blood oxygenation, based on the distinct absorption spectra of HbO2 and HbR. 

The setup is relatively simple: light at the appropriate wavelengths is shone upon the exposed 

nervous tissue and images are then captured with a CCD camera. The neuronal activity changes 

the local concentration in HbO2 and HbR. Consequently, the light absorption properties of 
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nervous tissue are modified due to fluctuations in these components, meaning that the amount of 

reflected light will also change. OIS has been applied in neuroscience research (Frostig, Lieke, 

Ts’o, & Grinvald, 1990; Grinvald, Lieke, Frostig, Gilbert, & Wiesel, 1986; Ts’o, Frostig, Lieke, 

& Grinvald, 1990) and has been since a well-established method to image neural activity in the 

exposed cortex of the animal (Cang, Kalatsky, Löwel, & Stryker, 2005; Dunn, Devor, Dale, & 

Boas, 2005; W. Luo, Li, Chen, Zeng, & Luo, 2007). 

Whereas OIS provides measurements of blood oxygenation, it does not explicitly measure blood 

flow. Laser speckle contrast imaging (LSCI) is used to provide relative variations in CBF. LSCI 

uses a similar setup to OIS, but the light is replaced with a diverging laser diode (E. M. C. 

Hillman, 2007). When this coherent light is incident upon a turbid medium, such as biological 

tissue, it scatters producing an interference pattern called speckle (Boas & Dunn, 2010). Speckle 

contrast is quantified from the blurred images at each time point (the ratio of standard deviation 

to mean intensity). If there are moving scatterers in tissue, such as blood cells, each speckle will 

be fluctuating in intensity. These fluctuations cause a blurring of the speckle, leading to a 

reduction in the speckle contrast. Therefore blood flow variations can be  determined from 

speckle contrast variations (Boas & Dunn, 2010; Dunn, Bolay, Moskowitz, & Boas, 2001). 

CMRO2 can be estimated from blood flow and blood volume measurements (Dunn et al., 2005; 

M. Jones, Berwick, Johnston, & Mayhew, 2001; Mayhew et al., 2000). Assuming that changes in 

CBV are proportional to changes in HbT, the Grubb equation can be used to explore the 

relationship between HbT and CBF (Grubb, Raichle, Eichling, & Ter-Pogossian, 1974). The 

simultaneous measurement of multiple hemodynamic parameters has provided a more complete 

picture of the hemodynamic response to functional activation (Dunn et al., 2005). This technique 

has assessed lesions in the spinal cord (Brieu et al., 2010) as well as effects of cerebral ischemia 

on the cerebral cortex (P. B. Jones et al., 2008; Luckl et al., 2010). 

Photoacoustic tomography in animals 

Photoacoustic tomography (PAT) is a non-invasive technique that combines the intrinsic contrast 

capabilities of optical imaging with the  advantage of high spatial resolution of ultrasound (L. V. 

Wang & Hu, 2012). A short laser pulse is absorbed by molecules in living tissue, generating an 

ultrasonic pressure wave, which is detected by an ultrasound transducer to form images (X. Wang 

et al., 2003). Application of PAT imaging to study functional connectivity is uncommon. An 
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application was recently showed (Xiang et al., 2012) where epileptic brain networks were 

analyzed through the Granger causality method (Granger, 1969). 

 

Objectives 

O1: The first aim of this thesis was to develop tools for the analysis of functional connectivity 

using optical imaging. These tools were then validated in an acute murine model of epilepsy. For 

this aim the following hypotheses were tested: 

H1.1: Regional bilateral functional connectivity is disrupted after the injection of a focal 

epileptogenic agent. 

H1.2: Changes in functional connectivity correlate with seizure duration.  

The article related to this objective is: 

Guevara, E., Pouliot, P., Nguyen, D. K., & Lesage, F. (2013). Optical imaging of acute epileptic 

networks in mice. Journal of Biomedical Optics, 18(7), 076021–076021. 

doi:10.1117/1.JBO.18.7.076021. 

O2: The second objective was to use functional connectivity methods to investigate changes in a 

novel carotid stiffness murine model, testing the following hypothesis: 

H2.1: Uncoupling is shown between hemodynamic measures and metabolic activity in 

bilateral functional correlations. 

H2.2: Resting state functional networks derived from hemodynamic signals are disrupted 

following a unilateral carotid artery calcification. 

The paper where this objective is pursued is: 

Guevara, E., Sadekova, N., Girouard, H., & Lesage, F. (2013). Optical imaging of resting-state 

functional connectivity in a novel arterial stiffness model. Submitted to Biomedical Optics 

Express. 

O3: Finally, the third aim was to use photoacoustic tomography (PAT) imaging resting-state to 

assess the impact of an acute inflammatory injury in the neonatal rat brain. The following 

hypothesis was put under test: 
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 H3.1: Local SO2 values are significantly lower in the injured group, as compared to sham 

 controls. 

H3.2: Bilateral functional connectivity decreases significantly in pups with inflammatory 

brain injury. 

The article related to this objective is: 

Guevara, E., Berti, R., Londono, I., Xie, N., Bellec, P., Lesage, F., & Lodygensky, G. A. (2013). 

Imaging of periventricular leukomalacia in the newborn rat brain with photoacoustic tomography. 

Submitted to PLOS ONE. 

 

Other contributions 

Within the work performed for this thesis, preliminary and sometimes complementary results 

were obtained separately; these efforts are described in the following publications: 

 

In the exploration of optical imaging in the spinal cord, I was able to contribute to the following 

articles: 

Ouakli, N., Guevara, E., Dubeau, S., Beaumont, E., & Lesage, F. (2010). Laminar optical 

tomography of the hemodynamic response in the lumbar spinal cord of rats. Optics Express, 

18(10), 10068–10077. doi:10.1364/OE.18.010068 

Beaumont, E., Guevara, E., Dubeau, S., Lesage, F., Nagai, M., & Popovic, M. R. (2013). 

Functional electrical stimulation post spinal cord injury improves locomotion and increases 

afferent input into the central nervous system in rats. Journal of Spinal Cord Medicine. doi: 

http://dx.doi.org/10.1179/2045772313Y.0000000117   

And the following conferences: 

Beaumont, E., Guevara, E., Nagai, M., Lesage, F., & Popovic, M. R. (2010). Optimizing the 

spinal cord neuronal circuitry to restore locomotion after a spinal cord injury by using functional 

electrical stimulation. In Neuroscience 2010 (Vol. 40, p. 259.28). Presented at the Neuroscience 

2010, San Diego, CA, USA: Society for Neuroscience. Retrieved from 

http://books.google.ca/books?id=JF6Q0ajTk44C&pg=PT709&lpg=PT709&dq=%22Optimizing+

http://dx.doi.org/10.1179/2045772313Y.0000000117
http://books.google.ca/books?id=JF6Q0ajTk44C&pg=PT709&lpg=PT709&dq=%22Optimizing+the+spinal+cord+neuronal+circuitry+to+restore+locomotion+after+a+spinal+cord+injury+by+using+functional+electrical+stimulation%22&source=bl&ots=cJYtrgWvV9&sig=GTeDym6DTe0kjjKtiEFAiaw9Y_U&hl=en&sa=X&ei=5r0SUdCeMIT9ygGXvIGADA&ved=0CCwQ6AEwAA
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the+spinal+cord+neuronal+circuitry+to+restore+locomotion+after+a+spinal+cord+injury+by+us

ing+functional+electrical+stimulation%22&source=bl&ots=cJYtrgWvV9&sig=GTeDym6DTe0k

jjKtiEFAiaw9Y_U&hl=en&sa=X&ei=5r0SUdCeMIT9ygGXvIGADA&ved=0CCwQ6AEwAA  

Guevara, E., Abran, M., Belanger, S., Ouakli, N., & Lesage, F. (2010). Comparison of the 

performance of two depth-resolved optical imaging systems: laminar optical tomography and 

spatially modulated imaging. In A. P. Wax & V. Backman (Eds.), Biomedical Applications of 

Light Scattering IV (Vol. 7573, pp. 757317–10). Presented at the Biomedical Applications of 

Light Scattering IV, San Francisco, California, USA: SPIE. doi:10.1117/12.841886 

Guevara, E., Ouakli, N., Dubeau, S., Beaumont, E., & Lesage, F. (2010a). Hemodynamic 

response revealed by laminar optical tomography in rat lumbar cord. In GRSTB 2010 Student 

Poster Day. Presented at the GRSTB 2010 Student Poster Day, University of Montreal. 

Guevara, E., Ouakli, N., Dubeau, S., Beaumont, E., & Lesage, F. (2010b). Réponse 

hémodynamique dans la moelle épinière du rat mesurée à l’aide de la tomographie laminaire 

optique. In 78ième congrès de l’ACFAS. Presented at the 78ième congrès de l’ACFAS, 

Université de Montréal. Retrieved from http://www.acfas.net/programme/c_78_219.html#  

Guevara, E., Beaumont, E., & Lesage, F. (2011). Imaginología óptica en la médula espinal. In 

18
a
.  Semana de La Ciencia y Tecnología. Presented at the 18

a
.  Semana de La Ciencia y 

Tecnología, Universidad Tecnológica de Tula–Tepeji, México. 

 

As part of the applications of optical coherence tomography I collaborated in this article: 

Sadekova, N., Vallerand, D., Guevara, E., Lesage, F., & Girouard, H. (2013). Carotid 

calcification in mice: a new model to study the effects of arterial stiffness on the brain. Journal of 

the American Heart Association, 2(3), e000224. doi:10.1161/JAHA.113.000224 

And the following conferences: 

Guevara, E. (2012a, April 27). Optical Coherence Tomography. Presented at the First Mexican-

Canadian Biomedical Imaging Meeting, Coordinación para la Innovación y la Aplicación de la 

Ciencia y Tecnología de la UASLP. 

http://books.google.ca/books?id=JF6Q0ajTk44C&pg=PT709&lpg=PT709&dq=%22Optimizing+the+spinal+cord+neuronal+circuitry+to+restore+locomotion+after+a+spinal+cord+injury+by+using+functional+electrical+stimulation%22&source=bl&ots=cJYtrgWvV9&sig=GTeDym6DTe0kjjKtiEFAiaw9Y_U&hl=en&sa=X&ei=5r0SUdCeMIT9ygGXvIGADA&ved=0CCwQ6AEwAA
http://books.google.ca/books?id=JF6Q0ajTk44C&pg=PT709&lpg=PT709&dq=%22Optimizing+the+spinal+cord+neuronal+circuitry+to+restore+locomotion+after+a+spinal+cord+injury+by+using+functional+electrical+stimulation%22&source=bl&ots=cJYtrgWvV9&sig=GTeDym6DTe0kjjKtiEFAiaw9Y_U&hl=en&sa=X&ei=5r0SUdCeMIT9ygGXvIGADA&ved=0CCwQ6AEwAA
http://books.google.ca/books?id=JF6Q0ajTk44C&pg=PT709&lpg=PT709&dq=%22Optimizing+the+spinal+cord+neuronal+circuitry+to+restore+locomotion+after+a+spinal+cord+injury+by+using+functional+electrical+stimulation%22&source=bl&ots=cJYtrgWvV9&sig=GTeDym6DTe0kjjKtiEFAiaw9Y_U&hl=en&sa=X&ei=5r0SUdCeMIT9ygGXvIGADA&ved=0CCwQ6AEwAA
http://www.acfas.net/programme/c_78_219.html
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Guevara, E. (2012b, May 16). Tomografía por Coherencia Óptica. Invited conference, Instituto 

Tecnológico Superior de San Luis Potosí. 

Sadekova, N., Vallerand, D., Guevara, E., Lesage, F., & Girouard, H. (2013). La calcification des 

carotides altère l’homéostasie cérébrale chez la souris. In 21e Réunion Scientifique Annuelle. 

Presented at the Congrès de la Société Québécoise d’Hypertension Artérielle, Montreal (Canada). 

Retrieved from http://www.hypertension.qc.ca/gestion/pdf/2013-Sciences-fondamentales.pdf  

 

Finally, the preliminary results contributing to the objective O3 of this thesis were presented in 

the conference: 

Berti, R., Matteau-Pelletier, C., Guevara, E., Londono, I., Lesage, F., & Lodygensky, G. A. 

(2013). Locoregional Cortical Oxygen Saturation and Resting State Assessment by Photoacoustic 

Imaging Following an Inflammatory Injury in the Neonatal Rat Brain. In Pediatric Academic 

Societies Annual Meeting. Presented at the 2013 PAS Annual Meeting, Washington, DC. 

http://www.hypertension.qc.ca/gestion/pdf/2013-Sciences-fondamentales.pdf
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CHAPTER 1 OPTICAL IMAGING OF INTRINSIC SIGNALS 

Optical methods, such as intrinsic and speckle imaging have proved being useful to study neural 

function in the small animal. These optical techniques can distinguish distinct hemoglobin types 

(HbO2 and HbR) and CBF, providing a whole set of hemodynamic parameters to assess neural 

activity. Both these techniques have been successfully applied to imaging neural activity on the 

exposed cortex of the small animal (Dunn et al., 2003, 2005; M. Jones et al., 2001). 

1.1 Optical Intrinsic Signals (OIS) system description 

Optical images based on intrinsic signals (OIS) were acquired with a 12-bit CCD camera (Pantera 

1M60, DS-21-01M60-12E, Teledyne Dalsa, Waterloo, ON) with a pixel size of 12μm and full 

resolution of 1024×1024 pixels. The setup used in this work is depicted in Figure 1-1A: 

 

Figure 1-1: (A) Overview of the intrinsic signal optical imaging system. (B) Sensitivity profile of 

optical imaging of intrinsic signals (λ=625nm). 

A custom-made interface programmed in LabView controls the camera, grabs images and 

physiological signs, while synchronizing acquisition and illumination. A Macro Lens (105mm 

f/2.8max, Sigma Corp., Ronkonkoma, NY) with small focal depth (350 μm) is used. Reflectance 
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images of the brain cortex are recorded with time-multiplexed illumination (525, 590, 625 nm) 

produced by 10W LEDs (LZ4-00MA00, Led Engin, San Diego, CA). Illumination for speckle 

imaging was provided by 90 mW, 785 nm laser diode (L785P090, Thorlabs, Newton, NJ) and 

aperture was adjusted to f/8, so that the pixel size and speckle size are matched (Briers, 2001). 

Aperture adjustment is important to ensure proper sampling of the speckle pattern: the size of a 

single speckle should be equal to the width of the diffraction-limited spot size and is given by 

        ⁄  , where λ is the wavelength and f/# is the f-number of the system (Dunn et al., 2001). 

The four illumination diodes are interleaved, which yields a full-frame rate of 5 Hz for each 

wavelength. A 2×2 binning on camera is performed to allow continuous data streaming to hard 

drive. Illumination is usually adjusted so that no part of the brain is under- or over-saturated by 

any of the wavelengths. The exposure time of the camera is set to 10 ms. The whole optical setup 

is mounted on an optic table with tuned damping (RS 2000, Newport, Irvine, CA) to avoid 

spurious signals from vibrations. 

1.2 OIS theory 

Brain optical absorption in the visible spectrum originates primarily from the two types of 

hemoglobin: HbO2 and HbR. Knowing their molar extinction coefficients      , their differential 

path length factor D(λ) and assuming a baseline molar concentration   , changes in hemoglobin 

concentration can then be estimated with optical measurements at two different wavelengths, at 

least. Figure 1-2 shows the molar extinction coefficients of both types of hemoglobin as a 

function of wavelength, along with the spectral profile of the LEDs used in the OIS setup. 

The analysis of spectroscopic images was based on previously published work (Dubeau, Ferland, 

Gaudreau, Beaumont, & Lesage, 2011; Dunn et al., 2003). In short reflectance images from each 

LED wavelength were recorded with the CCD camera and interpreted as changes in attenuation 

(optical density)               , where I is the reflected light intensity and I0 the incident light 

intensity. Relative changes in oxy- and deoxyhemoglobin were found using the modified Beer-

Lambert law (Delpy et al., 1988) and a Moore-Penrose pseudoinverse: 

          ∑      

 

          (1.1) 
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D(λ) was taken from (Dunn et al., 2005) and values out of the 560-610 nm range were 

extrapolated from  (Kohl et al., 2000). Total hemoglobin baseline concentration of 100 μM with 

60% oxygen saturation was assumed (Dunn et al., 2005) for the spectroscopic analysis. These 

hemoglobin values were estimated for the whole rat brain in the study by (Mayhew et al., 2000). 

The hemoglobin molar extinction coefficients       (see Figure 1-2) were obtained from (Prahl, 

1999);       describes the probability of photon interaction (absorption or scattering) with the 

medium per unit path-length and per molar concentration (L. V. Wang & Wu, 2007, p. 6). 

Reflectance values were corrected for the spectral response of the CCD camera and convolved 

with the LEDs spectral power distribution (Brieu et al., 2010). 

 

Figure 1-2: Optical absorption of oxy- and deoxy-hemoglobin (HbO2 and HbR) and measured 

spectra of the LEDs (Green, Yellow and Red) used on the OIS imaging system.  

In the computation of hemoglobin concentrations light absorption was assumed to be uniform all 

over the imaged FOV. Since penetration depth in tissue depends on the wavelength, some 
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wavelengths are more sensitive to deeper changes in absorption. This is not taken into account in 

equation (1.1); a Monte Carlo simulation of a sensitivity profile for measurements taken at 

λ=625nm is shown in Figure 1-1B, indicating that OIS is most sensitive up to depths of ~500μm. 

1.3 OIS system characterization 

SNR and resolution were estimated with a negative USAF 1951 microscope target (R3L3S1N, 

Thorlabs, Newton NJ), acquiring images at a single wavelength (λ=525nm) and with the same 

parameters (camera mode, aperture, integration time, binning and gain) as in the animal 

experiments. The metric considered was differential SNR, given by equation(1.2); SNRdiff was 

obtained by taking the difference in intensity values between the target ft and the background fb 

integrated over the area A of the target, and by dividing it by the standard deviation σb of image 

intensity values over the area A of the background (Prince & Links, 2005, p. 89). The computed 

SNRdiff  was approximately equal to 112:1 (41 dB). 

 
        

        

     
 

(1.2) 

Resolution was defined as the full-width at half maximum (FWHM) of the smallest 

distinguishable element, in this case it corresponds to element 3 from group 3 (10.10 lines 

pairs/mm) and the measured FWHM was ~60μm, as shown on Figure 1-3: 

 

Figure 1-3: (A) Full FOV of the resolution target (20×20mm
2
). (B) Zoom on the dotted square in 

A; the vertical dotted line is 2mm long and it is placed over the smallest resolvable features. (C) 

Intensity profile along the dotted line in B. 
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1.4 Laser speckle contrast imaging 

In addition to imaging changes in hemoglobin concentrations, changes in cerebral blood flow 

(CBF) were also computed by LSCI. Speckle originates from the random interference of multiple 

backscattered coherent light. In the presence of moving scatterers the interference field fluctuates, 

creating intensity variations, known as speckle patterns (Boas & Dunn, 2010; Dunn et al., 2001, 

2005). When integrated over the exposure time of the camera, the speckle pattern becomes 

blurred in areas of increased blood flow. Images of blood flow were obtained by measuring the 

spatial contrast of the speckle C, defined as the ratio of the standard deviation to the average 

intensity   〈 〉. The contrast is a function of the CCD camera exposure time T and it is related to 

the correlation time τC of the speckle, which is assumed to be inversely proportional to the speed 

of the scattering particles (Briers & Webster, 1995; Briers, 2001).  

A sliding window of 5×5 pixels was used to compute the speckle contrast images in order to 

balance the tradeoff between adequate estimates of the speckle contrast and spatial resolution. 

Assuming a Lorentzian distribution of the scatterers, speckle contrast was calculated with the 

equation  (1.3), a plot of this equation is presented in Figure 1-4. 

 

  
 

〈 〉
 √(

  

  
) (   

   
  ) 

(1.3) 
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Figure 1-4: Variation of the speckle contrast C with the ratio correlation time to exposure time 

τc/T. 

When the integration time T is much greater than the speckle correlation time τC, we are at the 

asymptotic regime (Duncan & Kirkpatrick, 2008), therefore equation (1.3) can be simplified into 

equation (1.4). Although relative variation of the scatterers velocity       is not directly related 

to CBF, laser speckle imaging underestimates CBF by less than 5% (Luckl et al., 2010), so both 

quantities were assumed to be equal in this work. Relative changes in blood flow were obtained 

via the following formula: 

 
 

   

  
 

  

  
 

    

    
 

(1.4) 

Note the minus sign in equation (1.4) due to the conversion of speckle contrast values to intensity 

autocorrelation decay time, which is inversely proportional to blood flow (Bonner & Nossal, 

1981). 

1.5 Cerebral metabolic rate of oxygen 

Measured changes in CBF, total hemoglobin (HbT) and HbR are combined in a steady state 

mathematical model (1.5) to estimate changes in the cerebral metabolic rate of oxygen 

consumption (CMRO2) (M. Jones et al., 2001; Mayhew et al., 2000): 

 
      

       
 

(  
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(1.5) 

RSNs are identified from data band-pass filtered (0.009-0.08 Hz); these low frequency 

fluctuations are considered to agree with the central hypothesis of the aforementioned model, 

which states its validity in the absence of transients of hemodynamic components. The constants 

γR and  γT are chosen within a physiologically plausible range (0.75–1.25)(M. Jones et al., 2001); 

usually their value is set to 1. 
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1.6 Conclusions 

In this chapter I have shown how OIS and LSCI allow us to obtain HbO2, HbR and CBF images. 

These three hemodynamic measures can then be used in physiological models to characterize the 

hemodynamic response via the relative changes in metabolism. All these measures were used in 

the identification of resting-state networks. 
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CHAPTER 2 LAMINAR OPTICAL TOMOGRAPHY 

Optical imaging of intrinsic signals and laser speckle imaging have been proved to be useful to 

image the neural activity in the cortex (Dunn et al., 2005; M. Jones et al., 2001; W. Luo et al., 

2007), nevertheless their application in the spinal cord is not common (Beaumont et al., 2013; 

Beaumont, Brieu, Dubeau, & Lesage, 2008a, 2008b; Brieu et al., 2010; Brieu, Beaumont, & 

Lesage, 2008; Lesage, Brieu, Dubeau, & Beaumont, 2009; Sasaki et al., 2002; Sasaki, Sato, 

Shinomiya, & Momose-Sato, 2003) because of multiple difficulties including animal preparation, 

minimization of thoracic movements and above all, the deeper localization of the interneurons (1-

1.5 mm in the adult rat) due to white matter surrounding the gray matter. An optical technology 

that can quantify light absorption changes at a deep of 1~2 mm will allow to observe the 

hemodynamic activity of the embedded gray matter, thus providing complementary information 

to the well established techniques. Such technique is described in the present chapter. 

Laminar Optical Tomography (LOT) is a recently developed three-dimensional optical imaging 

technique in turbid media, sensitive to relative changes in light absorption, mainly from the 

chromophores oxy- and deoxy-hemoglobin (E. M. C. Hillman, Boas, Dale, & Dunn, 2004). In 

LOT, light is injected serially into the sample by scanning the surface imaged with a light source 

with two galvanometer mirrors. This technique utilizes different source-detector separations to 

collect light emerging at different distances from the source position. The wider the distance 

between the source position and the detector position, the deeper on average the detected light 

has traveled. This results in a dataset containing rich information about the depth-resolved 

properties of the tissue(E. M. C. Hillman & Burgess, 2008). Figure 2-2 shows the schematic of 

the imaging system developed in the laboratory. 

2.1 LOT theory 

In order to obtain full 3D images from LOT measurements one needs an a priori knowledge of 

light propagation. A model of light propagation in turbid media, such as biological tissue is 

described by the radiative transfer equation (RTE) (Arridge & Hebden, 1997), 

 

 

  

  
   ̂          ̂                ̂    ∫    ̂  ̂   

  

      ̂     ̂         ̂   
(2.1) 
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where the parameters µa and µs are the absorption and scattering coefficients respectively, c is the 

speed of light in the medium, I is the radiance (also called specific intensity) at a position r in a 

direction ŝ. The first term
 

 

  

  
is the change of the radiance within the solid angle element; the term 

ŝ·I(r,t,ŝ) is a loss due to divergence, independently of the optical properties of the diffusing 

medium D; (µa+µs)I(r,t,ŝ) represents the probability of photon extinction, by either absorption or 

scattering; the function f(ŝ,ŝ') represents the probability of light with propagation direction ŝ' 

being scattered into the differential solid angle element d
2
ŝ' around direction ŝ and the right-hand 

side of (2.1) is the contribution from the light source q. Although the formulation of (2.1) ignores 

polarization and considers only elastic collisions, it is sufficient to describe light-tissue 

interaction in the optical imaging modalities described here. Inelastic collisions are neglected 

because they represent only a small fraction (about 1 in 10 million) of the scattered photons (Le, 

Yue, & Cheng, 2010) and the optical imaging techniques used in this work do not have the means 

to discriminate them. 

The system described below utilize a constant-power continuous wave light beam, thus a time-

independent response is measured and the first term of eq. (2.1) becomes zero, yielding the time 

invariant form of the RTE: 

 
 ̂        ̂              ̂    ∫    ̂  ̂  

  

     ̂     ̂        ̂   
(2.2) 

To completely define the problem in a domain D bounded by the surface ∂D, boundary 

conditions are prescribed by: 

      ̂                          ̂   ̂      (2.3) 

With the convention that  ̂    is the outward normal to boundary surface ∂D. Physically, (2.3) 

means that no photons travel in an inward direction at the boundary, except those due to the 

source q. When the source q is a diffuse point source q(r,ŝ)=δ(r-r’)δ(ŝ-ŝ’) subject the boundary 

conditions (2.3) the solution to (2.2) is the Green function G(r,ŝ; r’,ŝ’) so that: 

 
     ̂  ∬      ̂     ̂        ̂     ̂     

   

 
(2.4) 
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In neuronal applications of LOT, the measured local changes in absorption reflect the 

hemodynamic response.  To model those changes, the inhomogeneous absorption coefficient 

µa(r), can be decomposed into a homogenous part µa0 and a spatially varying part δµa(r): 

                  (2.5) 

Substituting (2.5) into (2.2), one arrives at: 

 
 ̂        ̂               ̂    ∫    ̂  ̂  

  

     ̂     ̂        ̂          ̂  
(2.6) 

and according to (2.4) the solution to (2.6) is: 

     ̂  ∬       ̂     ̂        ̂     ̂     

   

 ∬       ̂     ̂               ̂     ̂     

   

 
(2.7) 

where I is expressed as the sum of Ii, the incident radiance, and Is, interpreted as the scattered 

radiance; which may be interpreted as the propagation of a secondary source of the form q(r,ŝ)=-

δµa(r)I(r,ŝ), which is the RTE equivalent of the Huygens’s principle (Kim & Schotland, 2006). 

G0 is the Green function in a spatially homogeneous medium. Substituting q(r,ŝ)=δ(r-r’)δ(ŝ-ŝ’) 

into (2.7) and using the first order Born approximation, I obtain: 

     ̂     ̂         ̂     ̂   ∬       ̂     ̂                      ̂     ̂     

   

 
(2.8) 

Here (r,ŝ) can be denoted as rs, which is the source location at the boundary of the medium; and 

(r’,ŝ’) can be represented by rd, where a detector is located; (r’’,ŝ’’) are replaced by r, by carrying 

out the angular integration over S
2
 in (2.8). Finally, the following equation for every source-

detector pair is obtained: 

 
                    ∫                          

 

 
(2.9) 

Three-dimensional images of the spatially varying absorption coefficient δµa(r) can then be 

reconstructed given measurements of the G(rs,rd) and G0(rs,rd), from the perturbed and 
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unperturbed states, respectively. Calculating G0(rs,r) and G0(r,rd), the Green functions for the 

source and the detector, which are known from the background optical properties and inverting 

the discretized form of (2.9) to find δµa(r) completes the reconstruction procedure. The 

discretized form of the integral equation (2.9) can be expressed as: 

                     (2.10) 

Eq. (2.10) states that a small change in the absorption coefficient Δµa(r) will result in a change in 

the measurement ΔMs,d between source position s and detector position d measured at the surface 

of the sample(E. M. C. Hillman & Burgess, 2008). These changes are related by the spatial 

sensitivity matrix As,d (also known as the weight function or photon measurement density 

function), which is derived from the source detector Green functions. Practical calculations of the 

Green functions derived from the RTE involve modeling individual photon interactions governed 

by local optical properties and this photon migration can be simulated numerically by the Monte 

Carlo method, mainly because analytic Green functions for the RTE are known only for relatively 

simple geometries (Kim & Schotland, 2006). An accurate Monte Carlo model is used to generate 

source-detector Green functions (Boas, Culver, Stott, & Dunn, 2002). The practical 

implementation of (2.10) requires normalizing the measurements by M0, representing the 

unperturbed signal. The right hand side of (2.10) must be similarly divided by I0, representing the 

simulated signal that would be detected from the sample in the absence of an inclusion: 

      

     
 

       

     
       

(2.11) 

Once the propagation model is obtained, image reconstruction is performed by solving the 

equation system, however A, i.e. the sensitivity matrix calculated from As,d, is a nonsquare  matrix 

and cannot be directly inverted. In order to find its Moore-Penrose generalized pseudoinverse A
†
, 

both sides of Eq. (2.2) are multiplied by its conjugate transpose A
H
 to create a square matrix that 

can then be inverted: 

              

                 

         

(2.12) 
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This reconstruction process is ill-posed (Vogel, 2002) in the sense that noise in data ΔM may give 

rise to significant errors in the estimated absorption coefficients µa. Simple regularization 

techniques are used below to deal with ill-posedness. The regularization technique employed was 

based on the truncated singular value decomposition of the sensitivity matrix A, where any 

singular value less than a certain tolerance value is treated as zero. The tolerance limit was set 

empirically to give the maximum contrast. This Moore-Penrose pseudoinverse has a very high 

computational cost, and this regularization technique is feasible for spatially modulated imaging 

(Belanger, Abran, Intes, Casanova, & Lesage, 2010; Guevara, Abran, Belanger, Ouakli, & 

Lesage, 2010). However, LOT generates more measurements for a 3D reconstruction, hence the 

need for another regularization technique less computationally expensive. The inversion method 

described in references (E. M. C. Hillman et al., 2004; E. M. C. Hillman & Burgess, 2008) is then 

used where a Tikhonov regularization was used to find the solution to this underdetermined 

problem: 

                    (2.13) 

where α is the regularization parameter and I is the identity matrix. Finding a suitable 

regularization parameter is a challenge faced by all forms of optical tomography. There exist 

several methods that allow the selection of a regularization parameter α so that the corresponding 

regularized solution Δµa minimizes some measure of the size of the solution error. One of these 

methods is the L-curve method; to implement it, one plots the log of the regularized solution 

against the squared norm of the regularized residual for a range of values of the regularization 

parameter α. This curve is given in Figure 2-1. The criterion for α selection is to pick the 

parameter corresponding to the corner of this curve
 
(Vogel, 2002), which minimizes the error 

norm. All reconstructions were carried out with the same regularization method, i.e. Tikhonov 

regularization. 
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Figure 2-1: L-curve analysis from a LOT reconstruction with SNR=60dB. The parameter that 

minimizes the error corresponds to the point of maximum curvature of this curve. In this case a 

value =5e-4 was chosen. 

2.2 LOT system description 

The experimental setup used in this study has been described in detail in other papers (Burgess, 

Baohong, Radosevich, Bouchard, & Hillman, 2007; E. M. C. Hillman & Burgess, 2008; E. M. C. 

Hillman et al., 2007, 2004; E. M. C. Hillman, Bouchard, Devor, Crespigny, & Boas, 2006; 

Elizabeth M. C. Hillman, 2006; B. Yuan et al., 2009), but the main features of the system are 

briefly mentioned here. The system is illuminated by one laser diode (HL6738, Opnext Inc.), 

which outputs a beam at 35 mW, although it may differ from the effective power used for 

imaging, as it is diminished by the system’s optical components. The laser beam is collimated, 

linearly polarized and then sent into the beamsplitter (50:50, 25.4mm diameter, Y43736 Edmund 

Optics). The beam emerging from the beam splitter is incident into the scanning system. The 

scanning system consists of two scanning mirrors, and the electronics to drive and monitor the 

mirrors. In order to achieve a high frame rate and an adequate number of pixels in the digitized 

images, the scanning device must operate at several kHz. One scanner that meets our 

requirements is a resonant scanner (SC-10 with driver PLD-XYG, Electro-Optical Products 

Corp.) that oscillates sinusoidally at a pre-set resonant frequency of 1.5 kHz. The resulting delay 

varies sinusoidally, thus distorting the image along the rapid axis. A software implementation 

was developed to correct for this nonlinearity. The second scanner controlled by that same driver 

is a galvanometer mirror (6810P, Cambridge Technology, Inc.) operating at 15 Hz to provide a 
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linear frame-scan with an effective frame rate of 7.5 frames/s. The magnitudes of the scanning 

angles of the mirrors can be adjusted through two knobs on the panel of the driver box, adjusting 

in turn the field of view (FOV) of the system. The beam reflects from the galvanometer mirror 

and is focused by a scan lens (fscan=25.4 mm, 25.4mm diameter, LB1761-B, Thorlabs, Newton 

NJ) on an intermediate focal plane. This plane is then imaged directly into the sample by an 

objective lens (fobjective=50mm, 25.4mm diameter, LB1471-B, Thorlabs, Newton NJ). Light re-

emitted from the imaged object passes back up through the objective, through the scan lens and 

onto the scanning system, where it is de-scanned. It passes then into the beam splitter, where it is 

reflected towards the detection plane. This returning light is composed from specularly reflected 

light from the sample and the optical components and from backscattered light from the sample. 

Another polarizer is placed before the fiber array to reduce the effect of specular reflections, 

which retain its original polarization(E. M. C. Hillman et al., 2006). The image is produced by a 

fimaging=100mm focal length lens (LB1676-B, Thorlabs, Newton NJ) whose focal plane is located 

at the scan lens. An 4×8 avalanche photodiode detector (APD) array (S8550, Hamamatsu 

Photonics K.K., Japan) is positioned in this plane, capturing light at different radial positions 

relative to the center of the scanning spot, which is focused on the first element. At the present 

moment only one line of 7 elements is used. The first element which is aligned with the optical 

axis of the system was not employed for acquiring data, because the signal contained some 

specular reflection even though crossed-polarizers were used. The formed images are equivalent 

to tomographic reflectance measurements from 192×80 = 15,360 source positions (over a 

(5.5mm)
2
 FOV) and 192×80×7 = 107,520 detector positions, even though these acquired images 

are later downsampled to a smaller grid to perform 3-D reconstruction. The size of the detecting 

spot adet is determined by the APD detection area and the system magnification m, in our case, 

 
  

        

     
 

     

    
   

(2.14) 

Therefore the detecting spot area adet currently achieved can be calculated as the ratio of the 

effective detection area aeff and the magnification m: 

 
     

    

 
 

       

 
         

(2.15) 
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The scanning spot radius was measured to be approximately equal to 100µm, yielding thus a 

source on the sample with an area of 0.0314 mm
2
. The detectors distances are also determined by 

the ratio of the distance between the APD elements and the magnification m; currently the 

maximum and minimal source-detector distances, rsd_min and rsd_max, are respectively:  

 
        

     

 
         

        
      

 
         

 

(2.16) 

Each APD element is read by an analog input channel in the data acquisition card (16 bit, 8 

channels, 250kS/s per channel, PCI-6143, National Instruments, Austin TX). Data acquisition is 

synchronized with the galvanometers movement with a custom made graphical user interface 

developed in LabView™ (National Instruments, Austin TX). 
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Figure 2-2: (A) Schematic illustration of multi-modal imaging system, showing LOT system 

design and CCD based intrinsic imager. (B) Depiction of the sensitivity matrix for a given 

source-detector pair. (C) Multi-modal imaging system experimental setup. 

2.3 Simulation results 

To validate the LOT image reconstruction process, a simulation framework with identical source-

detector geometry as the experimental system was used. A series of numerical simulations of 

several computer-generated phantoms with different noise levels was performed to find the 

optimal regularization parameter that would yield the most accurate reconstruction (at the 
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expense of image resolution). The simulation background parameters were µa=0.01mm
-1

, 

µs=10mm
-1

 and g=0.9, chosen to mimic cortex gray matter (Bevilacqua et al., 1999). The Monte 

Carlo model was used to simulate light transport in a homogenous volume of 10×10×2.5 mm 

(64×64×16 voxels) with 10
6
 photons propagated within approximately one hour of computation 

time on a Xeon E5440 2.83 GHz dual CPU, with 32 GB of RAM. 

Figure 2-3 A depicts the simulation results for tomographic reconstruction of a simple numerical 

phantom consisting of an absorbing stick of 150μm diameter immersed in a homogenous 

scattering medium; this simple phantom was used to find the line-spread function (LSF) of the 

system. Broadening and degradation of the tomographic reconstruction appears as the signal-to-

noise ratio decreases and the depth of inclusion increases. The full width at half maximum 

(FWHM) is established as one criterion for a conservative estimation of the optical resolution. 

Panel C from Figure 2-3 illustrates the effect of the target depth in the reconstruction; the 

normalized cross-sections of the line object are wider and with lesser amplitude as the target goes 

deeper.   

Another criterion is contrast to noise ratio (CNR), where contrast is defined as peak Δμa of the 

reconstructed volume, while noise is defined as the distribution of voxels <Δμa
2
>

½
 (Culver et al., 

2003). This measure was also considered to evaluate the quality of the reconstructed volume in 

the experimental phase. The effect of noise is more important when the object of interest is not 

deeper than 1 mm. After this depth the reconstructions yielded similar CNR regardless of the 

SNR, demonstrating the adverse effect of depth in the quality of the reconstruction.  Figure 2-3 B 

shows that CNR decreases with depth, while LOT FWHM increases with depth as illustrated in 

Figure 2-3 D. The measured resolution of the system was within the range of 0.5 to 1mm 

depending on the depth of the object of interest. 
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Figure 2-3: Regularized solutions and figures of merit for an absorbing stick at different depths 

and several signal to noise ratios. 

A complex numerical phantom was also simulated in the turbid media at different depths. Figure 

2-4 shows the simulation of a complex phantom located at 1mm depth. To generate realistic 

measures, Monte-Carlo simulations were used and 1 percent noise was added corresponding to 

the level of noise obtained in experiments (SNR=40dB). To avoid inverse-crime issues, the 

sensitivity matrix for the inverse problem was generated with Monte-Carlo simulations at a 

different spatial resolution than that used for the forward problem. A Tikhonov regularization 

scheme was used and the regularization parameter was chosen by using a L-curve technique. 

Results of these simulations are provided in Figure 2-4. 

This simulation framework with identical source-detector geometry as the experimental setup 

allowed us to validate the LOT reconstruction process.  
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Figure 2-4: Representative slices from the volume at 1 mm (A) Numerical complex phantom with 

100% contrast, (B) reconstruction from simulated data. 

2.4 Experimental results 

In this sub-section LOT outcome is presented for the phantom experiments as well as the in vivo 

proof of concept, where the spinal cord was imaged on a wild type rat. 

2.4.1 Phantom imaging 

In order to validate the measurement capabilities of the LOT system it is important to 

characterize the reconstructed images obtained for different target depths. Our target consisted of 

a strong absorbing wire (150 μm in diameter) placed at different depths in an intralipid-india ink 

dilution (µa=0.1mm
-1

, µs=10mm
-1

 at 680nm) whose optical properties resemble those of gray 

matter (Yaroslavsky et al., 2002). The scanned field of view (FOV) was the same size as the 

simulated FOV (5.5×7 mm). Figure 2-5A displays the sensitivity functions for different source-

detector separations in the left most column and the measurements obtained when the absorbing 

wire was at different depths; panel B of the same Figure 2-5 shows a representative slice of the 

tomographic reconstruction at a target depth of 1mm. The absorbing wire appears on the image 

when the source is positioned over it, while the shadows appear when the detector is placed over 

the absorbing wire. The distance between the wire and its shadow indicate the source-detector 

distance. The imaging target was successfully reconstructed up to 1.5mm deep, establishing the 

limit for later in vivo reconstructions. 
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Figure 2-5: (A) LOT measurements from an ink-filled tube immersed in an intralipid-ink dilution 

(µa=0.1mm
-1

, µs=10mm
-1

 at 680nm). Each column of data shows the tube at increasing depths z. 

Sensitivity functions for all source-detector separations rs,d shown on left. All units in mm. (B) 

representative slice of the reconstructed volume, the absorbing wire is placed along x axis at 1 

mm depth. Some heterogeneity is observed near x=0, because the tube is slightly curved at the 

edge of the container. 

2.4.2 In vivo imaging 

In our proof of concept work two animals were used to test LOT imaging in the spinal cord 

(Ouakli, Guevara, Dubeau, Beaumont, & Lesage, 2010). Animals were anesthetized with 
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isoflurane (5%), and body temperature was maintained at 37°C with a feedback controlled 

heating blanket. Both heart rate and expired CO2 level were monitored. In addition to isoflurane 

and before surgery the animals were anesthetized with 50 mg/kg bolus of alpha-chloralose 

(Bonvento et al., 1994). A tracheotomy was performed, and the rats were artificially ventilated 

with ambient air. Their breathing rate was maintained between 60 and 80 cycles/min, with 

approximately 2-ml tidal volume and set to obtain an end tidal expired CO2 concentration of 3%. 

The rats were then positioned on a custom-made stereotaxic apparatus to immobilize the spinal 

cord and minimize movement artifacts due to both respiration and hind paw stimulation. Lumbar 

spinal cord segments from the thoracic (T10) to the sacral (S1) area are exposed by laminectomy 

and covered with mineral oil to prevent drying. Isoflurane administration was stopped after 

surgery and alpha-chloralose was administered at a rate of 40 mg/kg/h. Thirty minutes were 

allowed for animal stabilization. Then the spinal cord was firmly fastened by 2 sets of clamps to 

impede any longitudinal spinal cord movement induced by breathing. The skull was thinned to 

around 100 µm over the somatosensory cortex and blood was removed with a cotton swab 

moistened with saline solution. The skull was also covered with mineral oil before performing 

simultaneous intrinsic imaging. 

The recordings were performed in sessions of 40 minutes. Each stimulation block consisted of 1-

second duration with a randomized inter-stimulus interval of at least 20 seconds. The acquired 

measurements were then block averaged. The stimulus consisted of 3-ms current pulses at a 3 Hz 

repetition rate. Muscular movement threshold determined the three different stimulation 

intensities (0.9×, 1.2× and 1.5×), which were interlaced. Imaging protocol was made up of LOT 

recordings of the exposed spinal cord with simultaneous intrinsic imaging of the brain. 

The source-detectors were lined parallel to the rostrocaudal axis (Figure 2-6B), imaging a FOV of 

2.5×7.5mm of the lumbar area (L3 – L5 segments). Block averaged time course of the ipsilateral 

ROI (Figure 2-6A) revealed higher amplitudes with regard to contralateral ROI (Figure 2-6C); 

stimuli indicated with vertical blue lines. Contralateral activation also showed greater variance, 

displayed as gray shadows around the mean time trace. The amplitude of activation was 

proportional to stimuli intensity in both sides of the spinal cord. The blood is drained through the 

dorsal vein approximately one second after ipsilateral activation peak, as shown in the lower part 

of Figure 2-6B.  
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Figure 2-6: LOT hemodynamic response evoked by left hind paw stimulus intensity at 0.9× , 1.2× 

and 1.5× muscle threshold in normal rat. (A) ROI 1 averaged time traces for all detectors, 

ipsilateral to stimuli. (B) Top: Image of the exposed spinal cord. Bottom: ROI 2 averaged time 

course showing delay with regard to ipsilateral activation. (C) ROI 3 averaged time traces for all 

detectors, contralateral to stimuli. 

The feasibility of concurrent OIS imaging was also investigated. Figure 2-7 depicts simultaneous 

imaging in the cortex and spinal cord. The behavior described previously by the curves in Figure 
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2-6 could be localized spatially. In panel A, an initial slight dip was localized on the dorsal vein 

at ~3.6s, then the activation increased on the left side of the spinal cord at ~7.20s, followed by 

blood drained through the dorsal vein at ~10.8s. In contrast to the spinal cord, where the 

hemodynamic response was ipsilateral to stimuli, the somatosensory cortex response was 

contralateral, as shown on Figure 2-7B, confirming the expectations. Note a blob of what appears 

to be ipsilateral activation on the left side of the cortex; this can be explained by the fact that an 

arbitrary threshold was chosen and no correction for false positives was done in the activation 

maps. 

 

Figure 2-7: (A) Time course of LOT signals evoked by left hind paw stimulation collected at 

detector 1 over 15s at 0.9× muscular threshold. (B) Maximum intrinsic optical signal measured 

simultaneously on the somatosensory cortex. 

The LOT data on each source-detector pair was integrated between 4.5 and 9 s post-stimulation 

(at 0.9× muscular threshold) to generate measurements for the inverse problem at activation peak.  
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Monte Carlo simulations (Boas et al., 2002) were used to model light propagation in the spinal 

cord using atlas-based anatomical information (Figure 2-8 B). A sensitivity matrix was generated 

to relate absorption changes to the measured data by using the first Born approximation (Kim & 

Schotland, 2006). A 3D map of neural activation evoked by hind limb stimulation was recovered 

by solving the inverse problem, with Tikhonov regularization, choosing the optimal 

regularization parameter value, found in the previous liquid phantoms reconstructions. 

The reconstruction results are shown in panels A and C in Figure 2-8. The signal from the dorsal 

half of the spinal cord at z=0.4mm was representative of interneuron activation (Willis & 

Coggeshall, 1991), and in accordance with anatomical expectations for afferents from the sciatic 

nerve. Deeper in the gray matter the signal is more diffuse and contralateral activation is 

observed, that may originate from interneuron connections. 

 

Figure 2-8: (A) 3D map of neural activation in the spinal cord induced by left hind paw 

stimulation at the 0.9× muscle threshold. Ipsilateral activation around z = 0.4 mm is consistent 

with interneuron activation. (B) Histology based segmented model of lumbar spinal cord of the 

rat, used for Monte Carlo simulation of light propagation. Dotted red lines indicate the extent of 
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field of view (C) Reconstruction viewed across the segmented volume along the dotted line in 

(A). 

The proof of concept provided here demonstrates the concurrent use of LOT and OIS to image 

the spinal cord and the cortex respectively. This multimodal setup may pave the way to 

investigate neural plasticity after a spinal cord injury (SCI) and the adaptation of the cortex to this 

reorganization. Nevertheless depth limitations and lack of repeatable results due to poor SNR 

remain an issue. Another shortcoming of LOT is the reconstruction process involving an atlas 

template cord model for light propagation. Although spinal cord dimensions remain very similar 

for a given species at a certain age, the procedure is not optimal for generalized results. The ideal 

forward model would be produced from an anatomical MRI scan of each subject, which is 

expensive or spinal-cord histology along the imaged FOV, which is time-consuming.  

To test the effect of errors in anatomical priors several models were constructed where the gray 

matter was displaced ±20% both horizontally and vertically, as shown on Figure 2-9. L2 metric 

was chosen to quantify errors in the reconstruction. Small errors (±20%) in the anatomical priors 

yield considerable errors in the reconstruction: ~80-100% greater than the reconstruction using 

the anatomically correct model. These results suggest that L-curve tuned Tikhonov regularization 

is highly sensitive to the a priori model for photon propagation and more robust techniques such 

as Bayesian reconstruction (Abdelnour, Genovese, & Huppert, 2010) should be investigated in 

future works. 
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Figure 2-9: (A) Light propagation models with the gray matter positioned in different places. (B) 

L2 reconstruction error resulting from incorrect anatomical priors. 

2.5 Conclusions 

 

In this proof of concept work, LOT has proved to be able to map hemodynamic response in three 

dimensions, proving sensitivity up to 1.5 mm in the rat spinal cord; however the SNR of the 

system did not allow imaging the responses of every specimen in a repeatable fashion. 

I believe this could be alleviated with a redesign of the optical setup, placing a low-magnification 

objective with a higher NA and upgrading the rest of the optics to 2” pieces to gather more 

backscattered photons. Another aspect to improve is the resolution of the inverse problem; more 

robust techniques, such as Bayesian reconstructions could be applied instead of Tikhonov 

regularization, which is very sensitive to errors in the anatomical priors used as the propagation 

medium in the forward model. 

Our initial aim was to observe the depth-resolved hemodynamic response in the spinal cord and 

the brain. Despite achieving a modest success, the technique is ill-posed and less suitable to 

unraveling resting-state networks. Therefore, the efforts of this thesis were channeled to 

alternative techniques, better adapted to the study of resting-state functional connectivity. 
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CHAPTER 3 OPTICAL COHERENCE TOMOGRAPHY 

Optical Coherence Tomography (OCT) was applied to characterize the effects of a novel carotid 

stiffness model (Sadekova, Vallerand, Guevara, Lesage, & Girouard, 2013) in the mouse brain; 

more specifically, OCT was used to measure blood flow pulsatility in arteries pertaining to 

different areas of the mouse brain. The data acquired with OCT was a prelude to our resting state 

study, I thus describe here this imaging technique. This chapter will cover the technical aspects 

pertaining to the optical, mechanical and electronic design of the apparatus. The Figure 3-4 offers 

a schematic representation of the different system components. 

OCT is a novel biomedical imaging technique. It fills the void between confocal microscopy and 

high-resolution ultrasound in terms of resolution and penetration depth (Figure 3-1A). Standard 

clinical ultrasound can image deep structures with limited resolution. Higher frequencies yield 

finer resolution, but ultrasonic attenuation is increased, thus limiting image penetration. The axial 

image resolution in OCT ranges from 1–15 μm and is determined by the properties of the light 

source. The lateral resolution is determined by the objective used to image the sample. In most 

biological tissues, the imaging depth is limited to 2–3mm due to optical scattering. Confocal 

microscopy has better resolution (<1 μm), but the imaging depth is limited to a few hundred 

micrometers in most tissues, because of scattering. 

 

Figure 3-1: (A) OCT resolution compared to other imaging modalities. Reproduced from 

(Drexler & Fujimoto, 2008). (B) Echoes of light. 
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OCT is based on a backscattering technique developed during the 1980’s in the 

telecommunications field, called Optical Frequency Domain Reflectometry (OFDR), which was 

used for the purpose of fault detection in fiber optics (Ghafoori-Shiraz & Okoshi, 1985, 1986). A 

pulse of light was sent into the fiber and if its return were detected, it usually meant that a fault 

was sending a reflection of the light pulse.  

The concept of optical ranging was first applied to biological tissue imaging in 1991 by James 

Fujimoto at the Massachusetts Institute of Technology, performing in vitro imaging of the 

peripapillary area of the human retina and of  the coronary artery (Huang et al., 1991). OCT 

imaging is performed by directing an optical beam at the object to be imaged, and the echo delay 

of backscattered light is measured. In contrast to ultrasound, because the velocity of light is 

extremely high, the echo time delay of reflected light (Figure 3-1B) cannot be measured directly 

and interferometric detection techniques must be used.  

The first use of OCT was ophthalmology and, still is to date, the leading area for clinical 

application of OCT (Fujimoto, Pitris, Boppart, & Brezinski, 2000). In the late nineties OCT was 

adapted to an endoscope, referred as “optical biopsy” and used to visualize tissue in a living 

animal (Tearney et al., 1997). 

In the first years of the new millennium there was a shift in the way OCT was performed, from a 

time-domain (TD-OCT) to a frequency-domain detection (FD-OCT), resulting in the 

improvement of signal-to-noise ratio (SNR) and scanning speed (Leitgeb et al., 2000). The 

earlier-mentioned method was first presented in 1995 by (Fercher, Hitzenberger, Kamp, & El-

Zaiat, 1995) and the first in vivo tomograms were presented in 2002(Wojtkowski, Leitgeb, 

Kowalczyk, Bajraszewski, & Fercher, 2002). 

3.1 OCT theory 

In the OCT basic setup shown in Figure 3-2, the raw output of the detected signal is the 

Fourier transform of the depth reflectance profile. The output of the source is split into a 

reference arm, which shines light on a stationary mirror and a sample arm which illuminate and 

receive the light reflected from within the sample. Reflectance measures of tissue at each depth 

are recorded simultaneously. 
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The light from the sample is interfered with light coming back from the mirror; 

interference can occur only when the optical path lengths of the two arms match to within the 

coherence length of the source. The detector current is defined by (3.1),   
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(3.1) 

 

 

Figure 3-2: Basic configuration of a swept-source OCT. Modified from (Bouma, Tearney, Vakoc, 

& Yun, 2008). 

Where  η is the photodetector sensitivity, q is the elementary charge and hν is the energy 

of a single photon. The first term Pr is the optical power reflected from the reference arm. The 

second term depends on the optical power illuminating the sample Po. Γ(z) is the coherence 

function of the instantaneous laser output and k(t) is the wavenumber, which is linearly swept by 

the laser source. The third term represents the interferometric signal, which is related to the 

sample reflection profile via the Fourier transform relation. In practice, the detected signal is 

digitized and a FFT is performed to obtain an axial scan, called an A-line (Figure 3-3A). Cross-

sectional images are generated by performing a series of axial scans at different transverse 

positions to generate a two-dimensional data set (B-scan), which is displayed as a grey scale or 

false color image (Figure 3-3B). Three-dimensional data sets (3D-OCT) can be generated by 

raster scanning a series of two-dimensional B-scans (Figure 3-3C). 

3.2 OCT system overview 

The OCT setup is based on a Michelson interferometer with additional components that allow for 

raster scanning of the light and data acquisition. The first stage of the design is to choose both the 

electronic and the optical components to create and detect an interference pattern and to raster 
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scan the beam of light over the sample. Choosing the adequate opto-mechanical components 

ensures the stability of the setup and allows a rapid and precise adjustment of the optical parts. 

The OCT system is depicted in Figure 3-4: 

 

 

Figure 3-3: OCT scanning modes. (A) A-line. (B) B-scan. (C) Volumetric OCT. 

The OCT system developed in this thesis uses a swept-source laser (Axsun, 1310 Swept Source 

Engine) which has a central wavelength of λ0=1310nm with a tuning bandwidth Δλ=100nm 

(Figure 3-5A). The average power was measured to be ~18mW at the laser output. Light intensity 

across the bandwidth, distributed in high peak powers at each discrete wavelength allows greater 

sensitivity with little risk of optical damage (B. Liu & Brezinski, 2007), while a 50 kHz sweeping 

rate enables high-speed imaging. The core of the imaging system is a Michelson-type 

interferometer built with two fiber couplers and two circulators. The incoming light from the 

swept-source, passes through a broadband 90/10 fused fiber optic coupler (Thorlabs, FC1310-70-

10-APC). The 90% portion goes into a circulator (Thorlabs, CIR-1310-50-APC) that sends light 

to the sample arm and collects the backscattered light from the sample. The 10% portion is 

passed into another circulator that sends to and collects light from the reference arm. 

Backscattered light from both the sample and reference arms are combined in the 50/50 fused 

fiber optic coupler (Thorlabs,  FC1310-70-50-APC), producing the interference pattern that goes 



44 

to the inputs of the balanced photodetector (Thorlabs, PDB120C). The polarization controller 

(Thorlabs, PLC-900) is used to optimize the contrast of the interference pattern. 

All fibers are single-mode, 125μm cladding, terminated with FC/APC (8° angle physical contact) 

connectors that minimize back-reflections in the OCT system. 

 

Figure 3-4: OCT system setup. ADC: Analog to Digital Conversion, AL: Aiming Laser, BPD: 

Balanced Photodetector, CIR: Circulator, COL: Collimator, DAQ: Data Acquisition board, DCB: 

Dispersion Compensation Block+Prisms, f1 and f2: Unitary relay, FC: Fiber Couplers, FPGA: 

Field-Programmable Gate Array, M: Mirror, NDF: Neutral Density Filter, PC: Polarization 

Controller, SPD: Short-pass dichroic, TCO: Telecentric Objective, X and Y: Galvo mirrors. 

3.2.1 Sample Arm 

The sample arm allows raster scanning of the laser beam along the tissue surface, to obtain cross 

sectional or full three-dimensional images of the sample under examination. Figure 3-5B displays 



45 

the schematic of the sample arm. To propagate the beam from the optical fiber a collimator 

(Thorlabs, F280APC-C) is plugged to the FC/APC connector, providing a collimated beam with 

a ~3.27mm diameter. In order to provide a visual guide of the scanning FOV an aiming laser 

(Thorlabs, LP660-SF40) is incorporated in the sample arm. Collimation of the aiming laser is 

achieved with an uncoated plano-convex lens (Thorlabs, LA1951). A silver-coated mirror 

(Thorlabs,  PF10-03-P01) mounted on a kinematic stage allows precise steering of the aiming 

laser. Both the imaging and the aiming beams are coupled with a shortpass dichroic mirror 

(Thorlabs, DMSP1000, 50% at λ=1000nm) where they are centered and aligned to the optical 

axis. The beams are then redirected to a pair of galvanometer mirrors (Thorlabs, GVSM002/M) 

mounted on a cage (GCM002/M). After the galvanometer mirrors there is a unitary telescope or 

relay consisting of two identical lenses arranged in an afocal (infinite focus) assembly (Thorlabs, 

LA1131-C , f1 = f2 = 50mm, 1050 < λ < 1620 nm). This optical relay is used to image the mirrors 

pivot point at a distance of ~18.9 mm from the telecentric scan lens (Thorlabs, LSM04) mounting 

plate. This lens is advantageous in our application because it allows a flat image plane when the 

laser is scanned across the sample. In addition, the spot size is uniform over the entire FOV, 

keeping the lateral resolution constant. On the return path, the light backscattered by the 

specimen is collected by the Telecentric scan lens, passes through the optical relay, then again 

deflected by the oscillating mirrors and sent to the fiber collimator. All chosen lenses and 

collimators are made from N-BK7 common optical glass and they have a coating deposited on 

both sides that minimizes reflection in the 1050 – 1620 nm range. 
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Figure 3-5: (A) Swept source laser spectrum. Average from three scans grabbed by the 

oscilloscope. (B) Schematic of the sample arm. (C) Schematic of the reference arm. For details 

refer to Figure 3-4 caption. 

3.2.2 Reference arm 

The reference arm (Figure 3-5C) is the optical equivalent of the sample arm: it has the same 

optical path length and the same amount of glass-induced dispersion. Besides, it permits to adjust 

the intensity of the light with an adjustable neutral density filter (Thorlabs, NDC-50C-2M), that 

goes from 0 to 2 OD, i.e. transmission levels from 10
0
 to 10

-2
. Since this filter is reflective one 

has to be careful of reflected light that could go back into the fiber collimator, so the adjustable 

neutral density filter has to be placed slightly off-axis to prevent spurious interference patterns in 

our OCT signal. First, the optical path length must equal that of the sample arm. This distance 

must have a coarse adjustment to obtain an interference pattern, which is done by sliding the 

silver coated mirror (Thorlabs,  PF10-03-P01) on a dovetail rail. Once the coarse adjustment is 
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set, there has to be a fine adjustment to place the sample at the correct depth. This is achieved by 

a micrometric stage where the dovetail rail is mounted. Second, because of the large bandwidth 

of the swept source different wavelengths will travel at different speeds when propagating 

through dispersive media such as the glass in the fiber optics and the lenses. A dispersion 

mismatch between the interferometer arms will affect the axial resolution of the system. 

Therefore, it is necessary to balance dispersion mismatch between the sample and the reference 

arms to achieve the optimal resolution. In the reference arm I place the same amount of glass that 

exists in the sample arm. The telecentric objective glass is easily compensated by a dispersion 

compensation block (Thorlabs, LSM04DC) and the glass of the optical relay is compensated by a 

prism pair (Thorlabs, PS908L-C), which are coupled with refractive index matching oil for BK7 

glass (Cargille, BK-7 Matching Liquid 11510). 

3.3 Acquisition software 

The balanced detector output signal is digitized by the ADC board (Altera, Data Conversion 

HSMC Daughter Board). Briefly, the ADC values are stored on the external memory of the 

Field-Programmable Gate Array (Terasic, DE4 board), then when the memory buffer is full, data 

is sent to the PC via TCP/IP for image reconstruction and saving to disk. Control of the scanning 

galvo mirrors and synchronization signals are handled via another data acquisition board 

(National Instruments, USB-6351). The measured transfer rate was ~110Mbps, which is 

insufficient to provide real time imaging at  the required 878Mbps (~20 Mb per A-line at a rate of 

45Khz). 
 

3.4 System characterization 

In this section a characterization of the aforementioned OCT setup is presented. As this system 

can be used in a variety of applications its full characterization becomes important. Quantitative 

measurements are required to asess the performance of this system. 

3.4.1 Resolution 

Multiple scattering affects OCT images in an adverse fashion. The ratio of multiple scattering 

versus single scattering increases as a function of depth. This increase in multiple scattering 

results in a broadening of the PSF of the system, i.e. a decrease of axial resolution as a function 
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of increasing depth. In OCT axial and lateral resolutions are decoupled. Axial resolution depends 

on the coherence length of the source while lateral resolution is determined by the focusing 

conditions: optics and the lateral scan step size. 

3.4.1.1 Axial resolution 

The axial resolution is determined by the coherence light of the source (Lexer, Hitzenberger, 

Fercher, & Kulhavy, 1997). The coherence length is the spatial width of the field autocorrelation 

produced by the interferometer and it is given by:  

 
   

    

 

  
 

  
 

(3.2) 

Its theoretical value is Δz=7.33µm, however the measured PSF of the system was ~17µm. This 

discrepancy is due mainly to two reasons: first, the use of a Hanning window to compute the FFT 

of a single backscatterer (mirror) widens the FWHM, second and most important, the data was 

acquired at a fixed sampling frequency due to hardware limitations, then interpolated to k space, 

resulting in degraded resolution. This can be alleviated by using the k-clock from the laser source 

as an external sampling clock on a suitable acquisition board. This issue was confirmed by 

measuring the PSF with a 500 MS/s, 12 bit PCI Express Digitizer (ATS9350, Alazar 

Technologies Inc., Canada), capable of external clock sampling; its FWHM was ~13µm. 

3.4.1.2 Dispersion compensation 

In order to achieve optimal resolution it is necessary to carefully match dispersion between the 

two paths of the interferometer, this is partially achieved by the use of glass prisms on the 

reference arm, as described in section 3.2.2. An algorithm of dispersion compensation to the 

second and third order has to be implemented according to the procedure described in 

(Wojtkowski et al., 2004). This compensation is performed in order to minimize imbalance in the 

interferometere arms. The optimization criterion was set to increase image contrast by 

maximizing a metric of image quality, in this case the axial PSF of the system (defined as the 

FWHM of a single backscatterer). PSF at different depths are shown before (Figure 3-6A) and 

after (Figure 3-6B) the implementation of the dispersion compensation algorithm. Notice in 

Figure 3-6C how the algorithm improves the image quality at all depths, although there is a 

degradation of image quality with increased depth. 
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Figure 3-6: Dispersion compensation. (A) Axial PSF measured at different depths before 

dispersion compensation (D.C.). (B) Axial PSF measured at different depths after D.C. (C) 

FWHM as a function of depth. 

3.4.1.3 Lateral resolution 

The depth of focus defines the depth range within which the lateral resolution is approximately 

maintained. There exists a tradeoff between the focal diameter and the focal zone of the sample 

beam, the smaller the beam diameter, the shorter the focal zone. A high NA lens is used only in 

C-scan imaging (en face), however in depth-sensitive applications a large FOV is desired 

(14×14mm); therefore a telecentric lens with feeble NA=0.09 is employed. The theoretical lateral 

resolution (given by (3.3)) is Δr=26.5µm, and the focal zone is Δfr=0.84mm. 
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(3.3) 

3.4.2 Penetration depth, sensitivity and dynamic range 

In swept-source (SS-OCT) the range where an image can be formed is given by the maximum 

path difference ΔZNq, determined by the Nyquist condition (Häusler & Lindner, 1998). The 

penetration depth thus depends on the number of samples taken every laser sweep Ns = 1152. 

Assuming a refraction index n = 1.38 and given the swept-source characteristics: center 

wavelength λ0 = 1310nm and optical bandwidth Δλ = 100nm, there is a maximum path difference 

ΔZNq = 3.58 mm in tissue and ΔZNq = 4.94 mm in the air. 

 
     

    
 

    
 

(3.4) 

However, the penetration on turbid media is smaller. On a scattering phantom with a 

polyethylene tubing (0.28mm inner diameter, 0.61mm outer diameter, BD Intramedic #PE-10-

100) the maximum attainable distance is about 3 mm (Figure 3-7A). The penetration depth in 

vivo is even smaller, 1mm on a human fingertip (Figure 3-7B). Notice the presence of a solid 

horizontal line around ~1mm depth. This artifact is due to the presence of parasitic modulation in 

the source spectrum (Gelikonov, Kasatkina, & Shilyagin, 2010).  
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Figure 3-7: (A) Scattering phantom made of resin with two polyethylene tubes. The maximum 

attainable depth is about 3 mm. (B) Image of a human fingertip, in this case the signal drops at 

depths >1mm. 

The sensitivity is defined as the minimum detectable signal required to produce the same amount 

of output as random fluctuations (Brezinski, 2006). A mirror is placed as the input signal and it is 

aligned in order to get the maximum amount of light back into the optic fiber. This intensity will 

saturate the detector. Then neutral optical density filters are placed on the sample arm in order to 

reduce the beam intensity. With every added filter, the prisms of the dispersion compensation 

block on the reference arm are adjusted to have the same path difference as before. More filters 

are added until the mirror is no longer discernible. The sensitivity of the systems equals twice the 

total attenuation because the beam travels twice the sample arm. A value of ~114 dB was 

measured with this method. 

The dynamic range is defined as the ratio of the maximum and minimum recordable signals. 

Ideally this is limited by the capacity of the acquisition board with a 14-bit ADC i.e. ~84 dB. The 

same setup aforementioned is employed. The necessary attenuation to have a non-saturated image 

was determined to be 40 dB, which corresponds to a dynamic range of ~74 dB. 

3.5 Doppler OCT 

A key aspect of OCT imaging is the capability to measure the speed of moving particles 

thanks to the Doppler effect. The Doppler effect is the change in frequency of a wave due to 
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relative motion of the source and the receiver; moving particles play the role of the receiver in 

this case. The observed frequency of the light backscattered by the particle will differ from the 

source frequency in a fashion proportional to its velocity. The Doppler frequency    is the 

difference between the observed frequency and the source frequency. Several techniques exist to 

measure the Doppler frequency and this work uses a moving-scatterer-sensitive technique 

adapted from (Ren, Sun, MacDonald, Cobb, & Li, 2006; Srinivasan et al., 2010). Briefly, let the 

complex signal of the Fourier-transformed jth A-line be      , as a function of depth z, then the 

difference between two adjacent A-lines       is computed: 

                      (3.5) 

A region of interest (ROI) is defined as the intersection of N lines and K rows, and the 

signal       is averaged over this ROI: 
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(3.6) 

Then the average local Doppler frequency is computed from      : 
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(3.7) 

Where   is the acquisition period of a single A-line. The advantage of the moving-

scatterer-sensitive method is that allows changing the averaging zone. If the ROI is large, the 

technique is less sensitive to small velocities, but it is also less affected by Doppler noise coming 

from static scatterers.  

3.6 Experimental methods 

Hardening of the arteries has been shown to be a predictor of cognitive decline and dementia 

(Pase, Herbert, Grima, Pipingas, & O’Rourke, 2012), yet there is no specific model of arterial 

stiffness. A novel model of unilateral carotid calcification was recently developed (Sadekova et 

al., 2013), and OCT was used to assess the impact of carotid calcification on the brain, measuring 

blood flow pulsatility over a cardiac cycle. The pulsatility measurements are shown on Figure 



53 

3-8. Since the system described in this chapter was not fully functional at the moment of in vivo 

experiments, another OCT, developed in the laboratory was used instead (Baraghis et al., 2011). 

In our work, a frequency domain Optical Coherence Tomography (FD-OCT) was used to 

perform imaging.  The details of the system are described in (Baraghis et al., 2011). Briefly, the 

system is based on a 870 nm LED (Exalos EXS8710-2411, Langhorne, PA), with 65nm of 

yielding 2.5mW of power on the sample through an infinite corrected 10x objective (Olympus 

UMPLFLN 10XW, Markham, Ontario). The axial and lateral resolution are 5 and 10um 

respectively. The detection is done with a custom made spectrometer using a 2048 pixel line 

camera (Basler Sprint spL2048 -140k, Exton, PA). The A-line rate was limited to 15 kHz due to 

data streaming to the hard drive. The maximum detectable Doppler blood flow speed was 3mm/s 

without phase-unwrapping.  A series of acquisitions were performed on each mouse with 

dimensions of 200-800 um, depending of the size of the observed arteries. Light attenuation 

permitted imaging of vessels as deep as 500 um. Between 4 and 6 distinct arteries were measured 

per animal. 

Images were reconstructed offline using custom software written in Matlab (The MathWorks, 

Natick, MA). Dispersion compensation was implemented according to the procedure described in 

(Wojtkowski et al., 2004). Doppler blood flow was computed using a moving-scatterer-sensitive 

technique adapted from (Ren et al., 2006; Srinivasan et al., 2010). Data was high-pass filtered to 

remove the stationary scattering components from the image. 

In order to obtain the blood speed profile during a cardiac cycle a B-scan (each one consisting of 

840 A-lines) has to be performed several times (400 in these experiments) in the same place. The 

ECG signal is simultaneously acquired during this imaging protocol, allowing reconstructing the 

evolution of the blood speed during a cardiac cycle. The QRS peaks are detected on the ECG 

signal, then the time elapsed from the QRS peak is assigned to every single A-line (cardiac cycle 

time). Typically ~8 images were acquired per cardiac cycle. Each A-line is placed on a 3D matrix 

with respect to position and cardiac cycle time, allowing to obtain the blood speed profile from 

any pixel during the whole cardiac cycle. 
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Figure 3-8: Example of blood flow pulsatility in a single artery of a control mouse: (A) Two 

slices at 90º are measured. The average flow (red-blue) during a cardiac cycle is overlaid onto the 

structural image (grayscale). (B) The average speed is 0.88 mm/s for the X slice (solid black line) 

and 0.80 mm/s for the Y-slice (red dash-dot line) due to different size of the ROIs (yellow lines). 

The speed profile is very similar in both slices confirming that variation is due to heart beat. 

Variation between the maximum and the minimum speed are calculated (dotted lines). Variability 

(solid vertical lines) is defined as the standard deviation divided by the mean. 

3.7 Experimental results 

The impact of the arterial stiffness model on cerebral blood flow pulsatility was asessesed by 

OCT imaging. In the group with CaCl2 treated arteries, blood flow pulsatility increased 

significantly both in medium and large sized (>95µm) arteries, with respect to the control group. 

Furthermore, this increase was significant only on the right side of the cortex, which is unilateral 

to the CaCl2 treated carotid. Regarding specific regions of the brain the pulsatility was 

significantly increased in the middle cerebral artery region, however the somatosensory cortex 

showed no significant differences. These results suggest that carotid-stiffness induced pulsatility 

depends on the localization of arterial segments. 
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3.8 Conclusions 

In this chapter the application of FD-OCT to evaluate cerebral blood flow pulsatility was 

demonstrated. The full implementation of the designed SS-OCT system was not carried out due 

mainly to hardware limitations; however, updating the acquisition board to a high-speed digitizer, 

capable of linear sampling in k domain, would allow real-time imaging. This update would not 

require any major modifications to the existing optics and should not be cumbersome. 
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CHAPTER 4 FUNCTIONAL CONNECTIVITY 

The term functional connectivity (fc) has been defined the as the assessment of temporal 

correlation between spatially remote neurophysiological events (K J Friston et al., 1993). This 

applies both to task-based studies and resting-state paradigms, the work presented here is limited 

to the latter type of studies. 

In this chapter I describe the algorithms used to extract fc information from optical measures. The 

work presented in the articles was done primarily with seed-based fc and graph theoretical 

measures. For OIS and PAT data analysis, we have developed in MATLAB two SPM compatible 

toolboxes with a graphical interface for batch processing, screenshots are presented in the 

ANNEX , and copies of the program are available upon request from Prof. Lesage’s laboratory.  

Some other techniques including singular value decomposition and hierarchical clustering were 

also explored, although not fully implemented for a group-level analysis. Some other methods, 

such as structural equation models (Gonçalves & Hall, 2003), mutual information tools (Salvador 

et al., 2007) or self-organizing maps (Peltier, Polk, & Noll, 2003) are beyond the scope of this 

thesis. 

4.1 Algorithms description 

4.1.1 Seed-based functional connectivity 

The first (B. Biswal et al., 1995) and one of the most widely used techniques to identify spatial 

patterns of coherent brain activity is seed-based analysis. This method entails the extraction of the 

OIS time course from a region of interest, called a seed region, and then compute the temporal 

correlation between this extracted signal and the time course from all the pixels belonging to the 

brain. This analysis can also be limited to seed-to-seed temporal correlation. 

The recording sessions of 15 minutes are carried out in resting-state conditions. Time courses of 

every pixel are temporally band-pass filtered (zero phase-shift fourth-order Butterworth filter) at 

0.009-0.08 Hz, according to previous fc studies (Bero et al., 2012; Brian R White et al., 2011). A 

Butterworth design was chosen because of the flat response in the pass-band; zero-phase filtering 

was achieved by processing the data in both the forward and reverse directions, using MATLAB 
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function filtfilt (Oppenheim, Schafer, & Buck, 1999, pp. 336–337). After temporal 

filtering, each pixel time trace is downsampled from 5 Hz to 1 Hz.  

A global brain signal is created from the average of all the pixels time traces. In order to account 

for coherent variability common to all pixels, this global brain signal is then regressed from each 

pixel time course, using a General Linear Model (GLM) from the package Statistical 

Parametrical Mapping (Karl J. Friston, Ashburner, Kiebel, Nichols, & Penny, 2006)(SPM8, 

www.fil.ion.ucl.ac.uk/spm) running on MATLAB ver. 7.10.0.499 (R2010a) (The MathWorks, 

Natick, MA). This procedure is used in fc-MRI to enhance the quality of the measures, removing 

spontaneous BOLD fluctuations common to all brain voxels (Fox, Zhang, Snyder, & Raichle, 

2009). 

Let the OIS data be represented as the n×m matrix, y, where n is the number of temporal points 

(frames) and m is the number of pixels. The global brain signal g is defined as the mean time 

course of all pixels marked as belonging to the brain cortex. This global brain signal g is an n×1 

column vector. Pixelwise regression of the OIS data y on g yields: 

        (4.1) 

where g
+
 (a 1×n row vector) is the pseudoinverse of g, i.e.    [   ]     and      . Now 

   is a 1×m row vector (image). Removing the global signal from OIS data y generates the new 

image time series: 

          (4.2) 

This residual image time-series    is then used to generate seed-based correlation maps. 

Global brain regression causes the distribution of correlations to be centered around a value of 

zero (uncorrelated), thus forcing the existence of negative correlations (anti-correlations). 

Therefore one must be cautious when interpreting anti-correlations issued from this processing 

step. 

All seeds are manually placed a priori using the coordinates corresponding to left and right 

frontal, cingulate, motor, somatosensory, cingulate and visual cortices (Brian R White et al., 

http://www.fil.ion.ucl.ac.uk/spm
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2011). Seed time-courses are computed as the mean time course of the pixels within a 7 pixel 

radius from the seed locus.  

The principle of seed-based fc is illustrated with an example in Figure 4-1: 

 

Figure 4-1: Principle of seed-based functional connectivity. (A) The ΔCMRO2 time course is 

extracted from a specific region, e.g. the right somatosensory cortex SR. (B) Correlation 

coefficients are computed between SR seed and all other pixels in the brain. The spatial 

distribution shows both correlations (negative values) and anticorrelations (negative values), 

thresholded at an arbitrary value of |r| = 0.35. (C) The time course is shown for the seed region 

(SR red), a seed positively correlated with this seed region in the contralateral somatosensory 
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cortex (SL, orange, r = +0.6160) and a region negatively correlated with the seed region in the 

right visual cortex (VR, blue, r = −0.5570). 

 

When the animal model implies a unilateral modification, we expect to see differences in the 

regions and their contralateral homologues, so the metric used to evaluate fc was a regional 

bilateral functional correlation; defined as the correlation between each seed time-course and its 

contralateral homologue, yielding six values for each mouse. The Pearson’s coefficient r-values 

were converted to Fisher Z measures using      
 

 
  [          ⁄ ] before performing the 

random effect rank sum tests. P values were corrected for multiple comparisons using false 

discovery rate (FDR) adjustment. Adjusted values were considered significant at p<0.05. 

This approach is widely used in functional neuroimaging because of its simplicity, high 

sensitivity and easy interpretation (Cordes et al., 2001; Fox & Raichle, 2007; Greicius et al., 

2003). Nevertheless this technique has some limitations: a map should be generated for each 

selected seed region, and a single or several seed maps cannot give a full view of all interactions 

among ROIs. The information of a seed-based fc map is limited to the functional connections of 

the selected seed region, making it difficult to examine functional connections patterns on a 

whole-brain scale. Also, the results depend on the a priori information of a seed placement (Fox 

& Raichle, 2007).  

4.1.2 Independent component analysis (ICA) 

This approach is probably the second most employed technique for analyzing fc (Fox & Raichle, 

2007). ICA minimizes statistical dependence among its components. Each component is 

associated with a spatial map, some maps reflect neuro-functional systems and some other maps 

reflect noise components. This technique does not require a priori placement of seed regions, 

however it does require the user to manually determine which components are the most important 

and resemble neuro-functional systems and which components reflect noise. It is a promising 

technique because of the data-driven approach and its use is increasing. Nevertheless, there are 

still drawbacks. First, results are highly dependent on the number of components the user asks the 

algorithm to produce. Second, the aforementioned manual separation of noise and physiological 
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maps. Finally, there has been a debate of temporal versus spatial independence (McKeown, 

Hansen, & Sejnowsk, 2003). 

In this work an alternative to ICA was explored: principal component analysis (PCA) and its 

equivalent tool, singular value decomposition (SVD) (Worsley, Chen, Lerch, & Evans, 2005). 

PCA is similar to ICA in terms of results and interpretation, but assumes that the sources of 

resulting features are merely uncorrelated, not statistically independent. The goal of PCA is to 

minimize the retroprojection error from compressed data (Draper, Baek, Bartlett, & Beveridge, 

2003). Let the OIS data be represented by the spatio-temporal matrix     where          , 

being N the number of pixels; and           where T is the number of time points.  The time 

traces in every pixel were correlated against every other pixel to create the auto-correlation  

matrix: 

              (             )           (4.3) 

Storing into memory this auto-correlation matrix, also known as connectivity matrix, can be 

forbidding, since     size is    , hence the need to resort to more sophisticated storage 

methods such as memory-mapping. Furthermore     is can be approximated with: 

 

    ∑    

 

   

        

(4.4) 

Where U and V are orthogonal matrices that are best understood as basis of correlation modes, 

each one representing a spatial connectivity pattern, and   is a diagonal matrix of component 

weights. The singular values indicate the contribution of each particular vector to the total 

variance in the data. Therefore, the first singular vectors represent the most dominant 

connectivity patterns, as shown on Figure 4-2. 
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Figure 4-2: Singular value decomposition of the correlation matrix of CMRO2 estimates is 

shown. The first three singular values validate the seed-based correlation analysis. (A) A very 

strong sensori-motor network (B) Cingulate-Frontal network that anti-correlates with visual 

cortex (C) Retrosplenial-cingulate network (D) The first three orthogonal components visualized 

as red-green-blue (RGB) merged image. All images are overlaid on the anatomical image of the 

cortex acquired at λ=525nm.  
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4.1.3 Hierarchical clustering 

Hierarchical clustering attempts to agglomerate pixels whose behavior over time is similar 

(Cordes, Haughton, Carew, Arfanakis, & Maravilla, 2002). In similar fashion to PCA, an auto-

correlation matrix is constructed from all the pixels time course. A clustering algorithm is then 

applied to cluster together all pixels whose similarity exceeds a certain threshold value. Methods 

differ from one another in how they measure the similarity between clusters; in this example 

shortest-distance method was used. This information allows building a hierarchical tree or 

dendrogram, useful to envisage the relationships among several regions. This technique was no 

further explored in depth due to the limitation imposed by the need of an a priori definition of a 

maximum number of clusters, as there is no single measure of the optimal number of clusters in 

which to partition the data (Margulies et al., 2010). 

 

Figure 4-3: Hierarchical clustering of CMRO2 measures  (Nclusters = 12). (A) Dendogram showing 

clustering of pixels timecourses according to their correlation. (B) We see a clear delineation of 

somatosensory-motor network in orange and a large network encompassing cingulate, 

retrosplenial and visual cortices in yellow. Clusters are overlaid on the anatomical image of the 

cortex acquired at λ=525nm. 

4.1.4 Graph theory 

All kinds of complex system can be represented as a network, a collection of elements linked 

together by connections (Petrella, 2011). Graph theory is a branch of mathematics that deals with 
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the characteristics of the networks; its origin is often attributed to Euler, who in the XVIII 

century, solved the problem of the bridges of Königsberg (Euler, 1741). The problem consisted 

of finding a walk through the city traversing the bridges exactly once and returning to the starting 

point. Euler demonstrated its impossibility by representing the problem as an abstract network: a 

graph (Cornelis J. Stam & Reijneveld, 2007). All kinds of interacting elements ranging from 

social connections, the Internet, power supply grids, public transportation systems, genes, to 

proteins and neurons can be viewed as networks (Bassett & Bullmore, 2006). The seed-driven 

technique previously explained predominantly focuses on mapping the spatial extent of the 

networks, while graph theory, in opposition, provides the complementary methods to characterize 

several properties of brain organization as a network. 

In a graph G, i.e. the mathematical representation of a network,  vertices (nodes N) correspond to 

elements of the system and lines (edges K) connecting each vertex symbolize the interactions 

between them (Latora & Marchiori, 2001). Thus, the brain cortex can be modeled as a graph 

where the nodes are associated with seeds and edges are associated with the amplitude of 

functional connectivity z(r) among these seeds. Following the computation of seed-to-seed 

connectivity matrix, a threshold is generally applied to define the adjacency matrix characterizing 

the graph G. An appropriate cost threshold level is chosen so that the network exhibits small-

world properties, characteristic of brain functional networks (Achard & Bullmore, 2007; Bassett 

& Bullmore, 2006). 

A graph G consisting of a set of nodes (vertices) N and a set of edges (connections) K can be 

characterized by several measures at seed level (Bassett & Bullmore, 2006; Whitfield-Gabrieli & 

Nieto-Castanon, 2012). G can be represented by its adjacency (or connection) matrix, i.e. the 

    matrix whose entry        indicates the presence of an edge connecting node m to node 

n. One of the most elementary measures is the degree, simply defined as the number of edges that 

connect to a certain node n, and it is usually indicated as      . Another important metric of 

each node n is cost      , defined as its proportion of connected neighbors.        represents 

the shortest-path between nodes n and m in graph G, and is defined as the path between them 

with the minimum number of edges. The average path length       is defined as the average 

shortest-path distance from a node n to all other nodes in the graph. Related to the former 

measure is that of global efficiency   
      

   , which is the average inverse shortest-path 
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distance from node n to all other vertices in the graph.   
      

    is sometimes thought as a 

measure of the relative importance of a given node within a graph. A measure of the robustness 

of the graph is the clustering coefficient       , defined as the probability that the neighbors of 

this node are also connected to each other; in other words it equals the number of connections 

between the n node neighbors      , divided by the maximum possible number of connections. 

Proportional to the clustering coefficient is the local efficiency   
        , defined as the average 

global efficiency across all neighbors of node n. Finally, the betweenness centrality        of a 

particular node n is the number of all shortest-paths in a network that pass through this node 

       divided by the total number of shortest paths in the network        (Anthonisse, 1971; 

Freeman, 1977). It is a measure of the node’s importance in the graph. 

The measures that reflect the level of global integration in the network were generated by 

averaging seed-level measures across all nodes of a network (Table 4.1). These summary 

network-level measures were entered in a second-level general linear model to compare fc 

patterns between groups.  

Table 4.1: Definition of graph theoretical measures 
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Local 

efficiency 

Betweenness 

centrality 

Cost 

Average path 

length 

Clustering 

coefficient 

Degree 

Statistical significance is determined by a Student’s unpaired t-test (p<0.05) with false discovery 

rate (FDR) correction (Benjamini & Hochberg, 1995). Briefly, FDR procedure is defined as: 
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(4.5) 

Where      are the ordered p-values,      the null hypothesis corresponding to     , and    is the 

significance level of test. Let k is the largest i for which the inequality (4.5) is met, then we reject 

all              and the FDR is controlled. It provides a less severe control than simple 

Bonferroni’s method, increasing statistical power at the expense of increasing false positive 

errors. 

Graph theory takes advantage of the tools developed on this mathematical field over the years 

and provides the tools to apply the theory to brain imaging, characterizing brain organization as a 

network. An important issue is the seeds placement; since the seeds have to be defined a priori, 

this technique suffers from the same limitations as the seed-based approach outlined earlier. 
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CHAPTER 5 ARTICLE 1: OPTICAL IMAGING OF ACUTE 

EPILEPTIC NETWORKS IN MICE 

Edgar Guevara
1,2

, Philippe Pouliot
1,2

, Dang Khoa Nguyen
3
, Frédéric Lesage

1,2 

5.1 Presentation of the article 

This article (Guevara, Pouliot, Nguyen, & Lesage, 2013) was published in the Journal of 

Biomedical Optics. 

The main purpose of the article was to investigate the potential of OIS as a tool to study resting-

state brain networks during epileptiform activity. The neurotoxin 4-Aminopyridine (4-AP) was 

used in live mice to model epileptiform activity. The identified resting-state networks before and 

after the onset of seizure-like activity showed both increased and decreased homologous 

correlations for different ROIs of the cerebral cortex. These changes were not uniform across the 

different hemodynamic measures (HbO2, HbR, CBF and CMRO2), thus suggesting a potential 

decoupling between blood circulation and metabolism in the resting-state networks. These 

findings support the need to include independent hemodynamic measures in a more extensive 

investigation of epileptic networks. 

5.2 Abstract 

In this paper we investigate the potential of intrinsic optical imaging and resting state analysis 

under anesthetized conditions as a tool to study brain networks associated with epileptic seizures. 

Using an acute model of epileptiform activity, the 4-Aminopyridine  (4-AP) model in live mice, 

we observe changes in resting state networks with the onset of seizure activity and in conditions 

of spiking activity. Resting state networks identified before and after the onset of epileptiform 

activity show both decreased and increased homologous correlations, with a small dependence on 

seizure intensity. The observed changes were not uniform across the different hemodynamic 
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measures, suggesting a potential decoupling between blood flow and metabolism in the low 

frequency networks. This study supports the need for a more extensive investigation of epileptic 

networks including more than one independent hemodynamic measurement. 

5.2.1 Key Words 

Functional connectivity, resting state, biomedical imaging, optical intrinsic signals, laser speckle 

contrast, 4-aminopyridine, animal models of epilepsy. 

5.3 Introduction 

Epilepsy is a group of neurological disorders where the abnormal synchrony of discharge in large 

ensembles of neurons results in an epileptic seizure (ictus), which over time may have serious 

consequences (Kandel, Schwartz, & Jessell, 1991). Epilepsy is one of the most common major 

neurological disorders, affecting 0.4 to 0.8% of the population (World Health Organization, 

2006). The current method to visualize abnormal epileptiform discharges in patients with 

epilepsy is to perform an electroencephalogram (EEG), a technique which uses electrodes to 

record the spontaneous electrical activity of the brain (Gibbs et al., 1937). Epileptiform 

abnormalities are usually divided into a) ‘interictal’ discharges which are brief (milliseconds) 

asymptomatic paroxysmal EEG transients clearly distinguished from background; and b) ‘ictal’ 

discharges which are sudden focal rhythmic activity with characteristic patterns of evolution 

(with respect to amplitude, frequency and spatial distribution) lasting at least several seconds. 

These ictal discharges are generally associated with clinical seizure manifestations. 

Functional imaging based on cerebral perfusion such as combined functional MRI - 

electroencephalography (fMRI-EEG) (Gotman et al., 2005) and functional near-infrared 

spectroscopy (fNIRS –EEG) (Gallagher et al., 2008) have recently been explored for their 

potential at identifying the epileptic focus as well as study the coupling between brain regions 

involved in the epileptic network. While hemodynamic changes triggered by epileptic events 

have potential for localization, neuroimaging observations in patients remain confounded in 

several ways. An overarching reason is that the hemodynamic response is often not restricted to 

the epileptogenic focus but spreads across a distributed network of brain structures, with 

complicated dynamics (Nguyen et al., 2012; M. Zhao et al., 2007). For example, the presence of 

mirror activation (Morrell & deToledo-Morrell, 1999) sometimes makes lateralization difficult. 
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Even when there is a clear localized focus, the temporal aspects between oxyhemoglobin (HbO2), 

deoxyhemoglobin (HbR), cerebral blood flow (CBF), volume, and oxygen metabolism are still 

very intricate. Interictal discharges, and seizures even more so, are large neuronal discharges 

requiring an increased metabolic consumption (Bruehl, Hagemann, & Witte, 1998) and thus 

accompanied by a large increase of perfusion, rendering the interpretation of fMRI and fNIRS 

data difficult, given the complicated relationship between the various quantities of interest. 

The term functional connectivity is applied to a variety of studies that examine coherent inter-

regional correlations of neuronal activity during both cognitive tasks and rest (Fox & Raichle, 

2007). It is a technique sensitive to spatial and temporal synchronicity of fluctuations in neural 

activity (Waites et al., 2006). This technique has been widely used with EEG measures in several 

studies that found changes in synchronicity before and after the seizure(Aarabi et al., 2008; 

Mormann et al., 2003; Ponten et al., 2007; Schindler et al., 2007; Wendling et al., 2005). 

Interictal determination of EEG functional connectivity (fcEEG) has been reported in patients 

with mesial temporal lobe epilepsy (Bettus et al., 2008), as well as in epileptic children (Righi, 

Barcaro, Starita, Karakonstantaki, & Micheloyannis, 2008). Furthermore, fcEEG has been shown 

to be a predictor of epilepsy diagnosis (Linda Douw et al., 2010). The application of functional 

connectivity using hemodynamic measurements to epilepsy is motivated both by observations of 

a distributed network of activations during epileptic events and by recent studies with resting-

state functional magnetic resonance imaging (C. Luo et al., 2012; Mankinen et al., 2012; Waites 

et al., 2006; Z. Wang et al., 2011), that have documented an altered functional connectivity in 

several functional networks in epileptic patients. In the first of these studies, investigations in 

patients with left temporal lobe epilepsy has reported a significant decrease of connectivity in 

language-related areas during resting-state when compared to controls (Waites et al., 2006). 

Separate studies of epileptic networks documented a decrease of functional connectivity in the 

self-referential, somatosensory, visual, and auditory networks (Z. Wang et al., 2011), as well as in 

the default mode network (Frings, Schulze-Bonhage, Spreer, & Wagner, 2009; W. Liao et al., 

2011; C. Luo et al., 2012) and in the dorsal attention network (Z. Zhang et al., 2009). The 

distributed nature of activation during epileptic seizures, the heterogeneity within the patient 

population and non-linear coupling (Pouliot et al., 2012; Voges et al., 2012) between vascular 

components during large neuronal discharges support investigating these phenomena in 

controlled animal models to better characterize network changes with epileptic events. 
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We adapted in this work a recently developed technique that combines functional connectivity 

mapping with optical intrinsic signal imaging (fcOIS) (Bero et al., 2012; Brian R White et al., 

2011). This allowed measuring the magnitude of bilateral functional connectivity after the 

induction of focal seizures in the somatosensory cortex, using a seed region-based cross-

correlation analysis. Since all procedures were carried out under anesthetized condition, the 

resting anesthetized state is simply referred as resting state, for the sake of simplicity and clarity. 

In addition to the oxyhemoglobin contrast previously used in (Bero et al., 2012; Brian R White et 

al., 2011), we examined deoxyhemoglobin and also blood flow measured simultaneously with 

laser speckle imaging to provide an extended set of measures characterizing hemodynamic 

changes during large neuronal discharges. This multimodal approach with optical and electrical 

recordings provides a comprehensive depiction of the resting-state activity, before and after the 

injection of the neurotoxin. Optical imaging based on intrinsic signals (OIS) and laser speckle 

blood flow imaging map hemodynamic variables all over the convexity of the cortex and 

electrophysiology recordings give a precise measurement of local field potential (LFP) in the area 

surrounding the epileptic focus. Injection of the neurotoxin 4-Aminopyridine (4-AP) in the left 

somatosensory cortex was used to produce seizure-like epileptiform discharges (later simply 

referred to as seizures) resulting from neuronal hyperactivity in cortical neurons (Fabene et al., 

2006; M. Zhao et al., 2011; M. Zhao, Ma, Suh, & Schwartz, 2009). This model offers the 

possibility to make a comparison of the healthy cortex and the epileptic cortex on the same 

experimental animal. Motivations for the current study are two-fold: (1) understanding the 

modulation of brain networks at an early stage in ictogenesis is important to gain a better 

understanding of the pathophysiology of the disease (Bettus et al., 2011; C. Luo et al., 2012; 

Mankinen et al., 2012) and may help uncover the mechanisms by which these brain networks are 

altered. (2) A long-term motivation is to evaluate the usefulness of resting state analyses to 

support epileptic focus localization or seizure detection. Our aim in this work was to provide a 

proof-of-principle study using intrinsic optical imaging on acute epileptiform events, with a 

perspective of translating these techniques to a more chronic animal model of epilepsy and in 

conditions where anesthesia is not required. 
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5.4 Methods 

5.4.1 Animal preparation 

All surgical procedures, performed according to the recommendations of the Canadian Council 

on Animal Care, were approved by the Animal Research Ethics Committee of the Montreal Heart 

Institute. Nine male C57BL/6 mice (8.9 ± 0.2 weeks old, 23.3 ± 2.3 g weight, Charles River, 

Wilmington, MA) were anesthetized via intraperitoneal injections of urethane (2mg/g body 

weight) in a 10% (wt/vol) saline solution. Body temperature was maintained at 37°C with a 

feedback controlled heating blanket (MouseSTAT, Kent Scientific, Torrington, CT). 

 A tracheotomy was done in order to avoid respiratory distress (Moldestad, Karlsen, Molden, & 

Storm, 2009). Scalp was carefully removed and a stereotaxically guided burr-hole was made over 

the left somatosensory cortex (coordinates 1 mm lateral to midline, 1mm caudal to bregma Figure 

5-1B) for injection of 4-AP and electrophysiological monitoring, using a #22 gauge needle. 

Mice were placed on a stereotaxic apparatus and subcutaneous electrocardiogram was recorded 

with a single lead ECG amplifier (amp-b01, emka TECHNOLOGIES, Paris).  The amplified 

(1000× gain) and filtered signal (0.2-500 Hz) was sampled at 1 kHz. All vital signals were 

digitized by a data acquisition card (NI-USB 6353, National Instruments, Austin, TX) controlled 

by a custom made graphical user interface developed in LabView (National Instruments), which 

also controlled the image acquisition. To prevent drying of the exposed skull a custom chamber 

made of bone wax was adhered to the skull with ultrasound gel and filled with mineral oil, after 

positioning the microelectrode. 

5.4.2 Epilepsy model and electrophysiology 

Epileptiform activity was achieved according to the procedures described by (M. Zhao et al., 

2011, 2009), briefly described below. Focal seizures were induced by injection of 500nL of the 

K+ channel blocking agent 4-AP (A78403, Sigma-Aldrich, St. Louis, MO) solution at 15mM, 

through a glass micropipette with a micro-syringe pump controller (uMC4, World Precision 

Instruments, Sarasota FL). The volume was injected at a rate of 50nL/min. The borosilicate glass 

pipette (1mm outer diameter, 0.7mm inner diameter, 75mm long, World Precision Instruments, 
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New Haven, CT) was horizontally pulled on a programmable pipette puller (P-2000, Sutter 

Instruments, Novato, CA). 

Following injection, the glass pipette was removed and then a tungsten microelectrode (0.5 to 

2MΩ) was placed at a depth of ~500 μm into the cortex, in order to record extracellular LFP at 

the injection site. The signal was filtered between 10-5000 Hz, amplified 1000 times with a 

microelectrode AC amplifier (model 1800, A-M systems, Sequim, WA), and then digitized at 10 

kHz. LFP data was further filtered between 0.2 and 130 Hz using an order 4 Butterworth digital 

filter in post-processing. An example of typical epileptiform activity is shown in Figure 5-1C. 

5.4.3 Optical recording system 

Optical images based on intrinsic signals (OIS) were acquired with a 12-bit CCD camera (Pantera 

1M60, DS-21-01M60-12E, Teledyne Dalsa, Waterloo, ON) with a physical pixel size on chip of 

12μm and full resolution of 1024×1024 pixels. The setup used in this work is depicted in Figure 

5-1A. 

A custom-made interface controls the camera, records images and vital signs, while 

synchronizing acquisition and illumination. A Macro Lens (105mm f/2.8max, Sigma Corp., 

Ronkonkoma, NY) with small focal depth (350 μm) was used. Reflectance images of the brain 

cortex were recorded with time-multiplexed illumination (525, 590, 625 nm) produced by 10W 

LEDs (LZ4-00MA00, Led Engin, San Diego, CA). Illumination for speckle imaging was 

provided by 90 mW, 785 nm laser diode (L785P090, Thorlabs, Newton, NJ) and aperture was 

adjusted to f/8, so that the pixel size and speckle size were matched. The four temporally 

multiplexed wavelengths led to a full-frame rate of 5 Hz. A 2×2 binning on camera was 

performed to allow continuous data streaming to hard drive. Illumination was further adjusted so 

that no part of the brain was under- or over-saturated by any of the wavelengths. The exposure 

time of the camera was set to 10 msec. The setup was mounted on an optic table with tuned 

damping (RS 2000, Newport, Irvine, CA) to avoid spurious signals from vibrations. 
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Figure 5-1: (A) Overview of the intrinsic signal optical imaging system. LEDs and laser diode are 

time-multiplexed and synchronized to the acquisition system. A tungsten electrode is used to 

record LFP on the left somatosensory cortex. (B) Functional regions on the mouse cortex and 

seed placement and size, manually constructed from the work of (Bero et al., 2012). Dotted circle 
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shows the placement of the LFP electrode. (C) Electrophysiology of 4-AP induced seizure. Top: 

Example showing some ictal discharges after an injection. 4-AP injection was finished at time 0.  

Middle: Zoom on a single ictal discharge. Bottom: Expanded view showing the onset of the 

discharge, the intermediate phase and the offset. (D) Filtered time traces of HbO2 and HbR at the 

epileptic focus (dotted circle in B), during the seizure. 

5.4.4 Optical imaging of intrinsic signals (OIS) 

The analysis of spectroscopic images was based on previously published work (Dubeau et al., 

2011; Dunn et al., 2003). In short, reflectance images from each LED wavelength were recorded 

with the CCD camera and interpreted as changes in attenuation (optical density)          
  

 
 , 

where I is the reflected light intensity and I0 the incident light intensity. Relative changes in HbO2 

and HbR were found using the modified Beer-Lambert law (Delpy et al., 1988) and a Moore-

Penrose pseudoinverse: 

          ∑      

 

          (5.1) 

The differential path length factor, D(λ), was taken from (Dunn et al., 2005) and values out of the 

560-610 nm range were extrapolated from  (Kohl et al., 2000). Total hemoglobin baseline 

concentration of 100 μM with 60% oxygen saturation was assumed (Dunn et al., 2005) for the 

spectroscopic analysis. The hemoglobin extinction coefficients were obtained from (Prahl, 1999) 

and the reflectance values were corrected for the spectral response of the CCD camera and 

convolved with the LEDs spectral power distribution (Brieu et al., 2010). 

Images of each chromophore (HbO2, HbR) were spatially smoothed with a Gaussian kernel of 

11×11 pixels (0.6×0.6mm) with a 5 pixel standard deviation (0.3mm). An anatomical image was 

recorded with illumination at 525 nm, and then the region corresponding to brain was manually 

selected using a closed spline curve to create a brain mask. All further processing was performed 

only on those pixels belonging to the brain mask. 

5.4.5 Speckle contrast imaging 

In addition to imaging changes in hemoglobin concentrations, changes in cerebral blood flow 

(CBF) were also computed by laser speckle contrast imaging. Speckle originates from the 
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random interference of multiple backscattered coherent light. In the presence of moving scatterers 

the interference field fluctuates, creating intensity variations, known as speckle patterns (Boas & 

Dunn, 2010; Dunn et al., 2001, 2005). When integrated over the exposure time of the camera, the 

speckle pattern becomes blurred in areas of increased blood flow. Images of blood flow were 

obtained by measuring the spatial contrast of the speckle C, defined as the ratio of the standard 

deviation to the average intensity   〈 〉. The contrast is a function of the CCD camera exposure 

time T and it is related to the correlation time τC of the speckle, which is assumed to be inversely 

proportional to the speed of the scattering particles (Briers, 2001). A window of 5×5 pixels  

(0.3×0.3mm) was used to compute the speckle contrast images and the relative changes in blood 

flow were obtained with the following formula: 
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(5.2) 

Since       laser speckle imaging underestimates CBF by less than 5% (Luckl et al., 2010), in 

this work both quantities were assumed to be equal. Flow images then underwent the same spatial 

filtering as the hemoglobin images, and images from all three different contrasts were further 

resized to ¼ of the original size due to memory constraints. 

5.4.6 Cerebral metabolic rate of oxygen  

Changes in the cerebral metabolic rate of oxygen consumption (CMRO2) were calculated from 

the images of changes in CBF, total hemoglobin (HbT) and HbR using the steady state 

relationship (M. Jones et al., 2001; Mayhew et al., 2000): 
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(5.3) 

A central hypothesis of this relation is the absence of transients with decoupled hemodynamic 

components. Here, since resting state networks were identified from data filtered between 0.009-

0.08 Hz (see below), we hypothesized that for these networks, the relationship was maintained. 

The constants γR and  γT where both assumed to be 1, which is within a physiologically plausible 

range (0.75–1.25) (M. Jones et al., 2001). 
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5.4.7 Functional connectivity  

In this paper we followed the procedure outlined by (Brian R White et al., 2011)to produce seed-

based correlation maps as a method for studying one aspect of functional connectivity; the steps 

are briefly described below. 

Multimodal recording sessions (optical and electrical) of 15 minutes were carried out in resting-

state conditions: Two sessions were performed before the injection of 4-AP and two more 

consecutive sessions were carried out ~5 minutes after the release of the epileptogenic compound 

in the somatosensory cortex, giving a total of 4 sessions per mouse. Time courses of every pixel 

were temporally band-pass filtered (zero phase-shift fourth-order Butterworth filter) at 0.009-

0.08 Hz, according to previous functional connectivity studies (Bero et al., 2012; Brian R White 

et al., 2011). After temporal filtering, each pixel time trace was downsampled from 5 Hz to 1 Hz.  

A global brain signal was created from the average of all the pixels time traces. In order to 

account for coherent variability common to all pixels, this global brain signal was regressed from 

each pixel time course, using a General Linear Model (GLM) from the package Statistical 

Parametrical Mapping (Karl J. Friston et al., 2006)(SPM8, www.fil.ion.ucl.ac.uk/spm) running 

on a MATLAB (The MathWorks, Natick, MA) platform. 

All seeds were manually placed a priori using the coordinates corresponding to left and right 

frontal, cingulate, motor, somatosensory, cingulate and visual cortices (Brian R White et al., 

2011), as shown on Figure 5-1B. Seed time-courses were computed as the mean time course of 

the pixels within a 3.5 pixel radius (0.2mm) from the seed locus. An example of seed time-trace 

during seizure are illustrated in Figure 5-1D. This seed is placed at the epileptic focus and its 

location is indicated with a dotted circle in Figure 5-1B. An increase in HbO2 and a 

correspondent decrease in HbR is observed at the seizure onset. 

With the unilateral application of 4-AP we expect bilateral differences between brain regions so 

the metric used to evaluate functional connectivity was a regional bilateral functional correlation, 

defined as the correlation between each seed time-course and its contralateral homologue, 

yielding six values for each mouse. The Pearson’s coefficient r-values were converted to Fisher Z 

measures using      
 

 
  [          ⁄ ] before performing the random effect rank sum 

tests. Since the assumptions for normal distributions might not hold in this study, significance 

http://www.fil.ion.ucl.ac.uk/spm
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was determined by the Wilcoxon rank sum test. P values were corrected for multiple comparisons 

using false discovery rate (FDR) adjustment. Adjusted values were considered significant at 

p<0.05. 

5.5 Results 

5.5.1 Identification of functional networks  

Functional networks were identified prior to 4-AP injection and in agreement with previous 

literature (Brian R White et al., 2011) across mice for HbO2 (see  

Figure 5-2 for representative maps of four sample mice) albeit with a stronger lateralization of 

some networks. 

With multispectral acquisition, the same procedure was also performed for HbR and CBF 

estimated from speckle imaging, no significant change in spatial network organization was 

observed (data not shown). In one experiment we performed the network analysis using a higher 

frame rate and compared with a similar analysis performed by dropping camera frames to 

investigate the effect of acquisition frame rate. No significant difference was observed 

confirming that the chosen 5Hz acquisition rate was adequate (data not shown). 
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Figure 5-2: Seed-based HbO2 correlation maps for four mice. One control session and one post-4-

AP injection session are displayed for each mouse. (F: frontal cortex, M:motor cortex, C: 

cingulate cortex, S: somatosensory cortex R: retrosplenial cortex, V: visual cortex; subscripts L 

and R refer to left or right hemisphere, respectively). The scale for all correlation maps is from r 

= -1 to 1. Maps are shown overlaid on the anatomical image of the brain, acquired with green 

light. Seeds placement and sizes are indicated with black circles. 
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5.5.2 Changes in functional connectivity after injection of 4-AP 

Out of 9 mice, 5 showed clear seizure-like activity (see Table 5.1 below) while 4 showed high 

intensity spiking activity. Seizure-like activity was characterized by fast rhythmic spiking activity 

of increasing amplitude and decreasing frequency, evolving into rhythmic spike and slow wave 

activity prior to gradual offset (see an example in Figure 5-1C), while spiking activity presents 

fewer than 10 spikes per burst (data not shown). All mice were combined in the analysis of this 

section. To assess the impact of acute seizures and epileptiform activity on resting state networks, 

resting state sessions acquired following injection of 4-AP were analyzed following the same 

methodology as above.  

Correlations between homologous seeds were investigated and compared before and after 

injection of the neurotoxin. Data extracted from the HbO2 time course showed a significant 

difference in retrosplenial seeds (Figure 5-3A). For HbR contrast there was no significant 

difference in any paired seeds time trace (Figure 5-3B), although a decrease in functional 

connectivity was seen on the somatosensory region, a trend also seen in flow and CMRO2 data. 

Seeds of the cingulate, somatosensory and retrosplenial cortex saw significant changes when 

analyzed with CBF contrast (Figure 5-3C): a decreased bi-lateral functional connectivity was 

observed in the somatosensory seeds while increased connectivity was seen in the cingulate and 

retrosplenial regions. 

To assess whether these hemodynamic changes were associated with metabolic consumption 

patterns, we computed CMRO2 using steady state formulas given the low frequency fluctuations 

frequently documented in functional connectivity studies (B. B. Biswal et al., 2010; B. Biswal et 

al., 1995; Fox & Raichle, 2007; Greicius et al., 2003). Data shows no significant differences 

(Figure 5-3D). However there was a decrease in functional connectivity in the somatosensory and 

retrosplenial cortex, albeit not significant after FDR adjustment. All results were evaluated with a 

Wilcoxon rank sum test. 

Functional networks were derived from low frequency filtered imaging data. We were also 

interested to measure correlation between raw signals, before and after seizures, to observe the 

degree of disruption in the whole signal prior to regression by the common signal (data not 

shown). Data show that all seeds are positively correlated, indicating the presence of a common 

signal to all the pixels time course during epileptic events, hence the need to regress a global 
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brain signal, obtained from the average time trace of all the pixels marked as belonging to the 

brain. 

 

Figure 5-3: Regional bilateral functional correlation before and after the 4-AP injection, analysis 

done for every seed time-trace and its contralateral part. Contrasts shown: (A) HbO2, (B) HbR 

(C) CBF and (D) CMRO2. * p<0.05, FDR corrected. Standard error bars shown (σ/√N), with 

N=9.  

5.5.3 Correlation between seizure duration and functional connectivity 

Restricting the analysis to the mice showing clear seizure activity, we aimed to investigate 

whether seizure duration impacted network changes. To calculate changes of bilateral correlation 

we subtracted the bilateral correlation during control sessions, z0(r), from the bilateral correlation 

during the post 4-AP injection sessions, z4AP(r), and plotted this change versus the average 

seizure duration of the 4-AP sessions, as illustrated on Figure 5-4. Overall correlations between 

seizure duration and changes in bilateral correlations were moderate. For the somatosensory 
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cortex, where the toxin was injected, there was a positive correlation between the duration of the 

seizure and the changes in bilateral correlation. This same positive correlation was observed from 

the data extracted from the frontal cortex seeds. For other cortical regions, i.e. motor, cingulate, 

retrosplenial and visual a reverse effect was observed: the changes were negatively correlated 

with the seizure duration. For CBF contrast the correlation showed to be significant in the 

somatosensory (r
2
=0.52) and retrosplenial (r

2
=0.75) regions. HbR contrast had a significant 

correlation for retrosplenial seeds (r
2
=0.50), while HbO2 displayed a moderate (not significant) 

correlation for the motor seeds (r
2
=0.41). The average length of seizures per subject was 68.7 ± 

51 s. All recording sessions were 863 seconds long. Table 5.1 provides the duration of seizure-

like activity for every recording session, the percentage of the recording session that belongs to 

seizure-like activity and the average duration of seizures per subject. 

Table 5.1: Seizure data 
a
 

Subject 

ID 

Seizure duration (s) Percentage duration in seizure state 

(%) 

Average seizure 

duration (s) 

 Session 1 Session 2 Session 1 Session 2 Both sessions 

1 45, 43, 33, 32 35, 32, 27 5.2, 4.9, 3.8, 3.7 4, 3.7, 3.1 35.3 

3 27, 33, 34 - 2.8, 3.4, 3.5 - 31.3 

4 114 71, 112 13.2 8.2, 12.9 99 

7 38, 30, 30 33, 32 4.4, 3.4, 3.4 3.8, 3.7 32.6 

9 130 161 15 18.6 145.5 
a
 The first column provides the duration (in seconds) of seizure-like activity for every recording 

session, multiple numbers indicate multiple seizures recorded; the second column shows the 

percentage of the recording session that belongs to seizure-like activity; finally the last column 

indicates the average duration of seizures per subject. 
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Figure 5-4: Changes in bilateral functional correlation plotted vs. seizure duration (expressed as a 

percentage of the recording session) for different cortical regions and different contrasts. 

5.6 Discussion 

In this work we investigated regional bilateral functional connectivity using a seed-based 

correlation analysis; functional connectivity was evaluated before and after the injection of 

epileptogenic 4-AP in the somatosensory cortex.  

Using oxyhemoglobin contrast (HbO2), significant differences in functional connectivity were 

found in the retrosplenial cortex. With deoxyhemoglobin (HbR) contrast, no seeds showed a 

statistically significant difference though most correlations decreased. In the case of relative 

blood flow contrast a significant difference was observed in the cingulate, somatosensory and 

retrosplenial regions. The only paired seeds to show a significant decrease of functional 

connectivity were in the somatosensory cortex, while the retrosplenial and cingulate exhibited an 

increase in functional correlation; we hypothesize this increase may be explained by the 

proximity of these last two regions to the superior sagittal sinus, so that their behavior is 

dominated by increased venous drainage at epileptic activity. For the estimated CMRO2, no 

significant changes were found in functional connectivity measures.  

Due to the proximity of cingulate and retrosplenial seeds to the site of 4-AP injection, the 

significant changes in the bilateral functional connectivity of these regions could be attributed to 

the proximity to the injection site, suggesting that the neurotoxin 4-AP might have propagated to 
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these regions. However, at the site of injection, homologous connectivity decreased suggesting a 

decoupling of hemispheric connections linking the somatosensory areas while at the cingulate 

and retrosplenial sites, connectivity increased. An explanation might be a potential compensatory 

role for nearby regions (increasing their connectivity) to compensate for a reduction in the 

somatosensory homologous synchronization. A similar phenomenon was observed in (Brown et 

al., 2009), where following stroke in the sensory cortex in mice, a functional reorganization in 

nearby areas was observed but after much longer periods (8 weeks). Another hypothesis is that 

hemodynamic changes observed here may reflect a local redistribution of blood flow associated 

with the high metabolic activity at the seizure location. 

5.6.1 Acute seizure activity leads to both decrease and increase in functional 

connectivity 

In the case of HbO2 a significant decrease of functional connectivity was observed in 

retrosplenial cortex.; However the difference between control and post-4-AP injection were not 

significant in HbR networks. In blood flow contrast a significant increase of functional 

connectivity was observed in both cingulate and retrosplenial paired seeds, and there was a 

significant decrease for somatosensory cortex.   

Previous literature using fMRI (C. Luo et al., 2012; Mankinen et al., 2012; Waites et al., 2006; Z. 

Wang et al., 2011), mostly documented reduced functional connectivity in several functional 

networks in epileptic patients measured at rest. While a clear distinction is required with current 

experiments which focused on resting state networks during acute epileptiform events, the picture 

emerging from this work indicates a complex interplay between the different components of the 

hemodynamic response leading to both increases and decreases in connectivity in our mouse 

model. While HbR, which closely correlates to BOLD-fMRI, saw a non-significant decrease in 

connectivity in most seeds (4/5), HbO2 and CBF saw their bilateral correlations move in opposite 

directions in seeds closest to the injection site (somatosensory and retrosplenial, for which 

changes were significant). Hemodynamic component dependent correlation changes indicate a 

potential uncoupling of flow and metabolism, even in low frequency networks.  

These observations suggest that using a single modality, e.g. fMRI BOLD, to investigate resting 

state network in epilepsy may remain limited without controlling for flow or oxygenation. 
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Whether the observed changes are due to changes in physiology (however no significant change 

was observed on our ECG), high metabolic demand at the seizure location or neural activity 

remains to be investigated.  Further work with a chronic model investigating networks outside of 

epileptic periods may help reveal more coherent changes across hemodynamic components. 

5.6.2 Correlation between electrophysiological activity and resting state 

correlations 

Since electrophysiology was measured simultaneously, we could investigate the effect of seizure 

duration on pair wise network correlations. Our results showed a dependence of the changes in 

bilateral functional correlations on seizure duration but remained mitigated due the low values of 

r
2
 obtained in this analysis. Whether these changes are also present in sub-acute conditions, 

during simple spiking events, and the cause for network changes observed in patients remain to 

be studied. Our results are further limited by the fact that electrophysiology was measured in the 

somatosensory cortex; it may be that similar activity measured at other seeds may lead to a 

different outcome. Keeping the skull intact apart from the injection site allowed studying an 

almost intact cortex but the absence of multiple LFP recording sites implied that the spatial 

dependence of the LFP response remained a potentially confounding variable that was not 

investigated. 

5.6.3 Metabolic consumption reflect hemodynamic changes 

CMRO2 is potentially the closest marker to neuronal activity. Here we hypothesized that the 

steady-state relation between hemodynamic signals to estimate CMRO2 held for the resting state 

networks due to their low frequency support. Assuming this hypothesis to be valid and 

comparing network correlation changes obtained by CMRO2, our analysis displayed changes that 

followed similar trends as changes in HbR, except for the visual and frontal seeds where small 

differences were observed. This observation may in turn support HbR weighted fMRI-BOLD as a 

proxy for resting state network in epilepsy despite the known physiological confounds and 

hemodynamic network uncoupling displayed here. 
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5.7 Conclusion 

Our original aim was to investigate the potential of OIS to study epileptic networks. Combining 

OIS with laser speckle imaging allows for simultaneous imaging of changes in HbO2, HbR, CBF 

and potentially CMRO2, providing a good set of hemodynamic data for functional connectivity 

studies during acute seizures. In our work, following 4-AP injection in the somatosensory cortex 

of mice, we observed significant changes in networks derived from spatial seeds near the 

injection site. Changes were not uniform across hemodynamic components signaling a complex 

picture with a potential decoupling of flow and metabolism within the low frequency networks. 

This study thus supports the need for a more extensive investigation and characterization of 

epileptic networks encompassing more than one hemodynamic measurement. 

There are several limitations to be mentioned; first and foremost our results were obtained during 

acute epileptiform events in a relatively small sample size. They cannot therefore be directly 

compared with connectivity studies in humans typically obtained during rest periods devoid of 

acute epileptic events. Thus care must be taken when interpreting the current results since several 

physiological factors may be confounding the observed neuronal activity. Further work will aim 

to investigate larger populations of chronic animal models of epilepsy in conditions that are 

closer to ongoing human resting state studies. 
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CHAPTER 6 ARTICLE 2: OPTICAL IMAGING OF RESTING-STATE 

FUNCTIONAL CONNECTIVITY IN A NOVEL ARTERIAL STIFFNESS 

MODEL 
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6.1 Presentation of the article 

This article (Guevara, Sadekova, Girouard, & Lesage, 2013) was published in Biomedical Optics 

Express. In this work we assessed the impact of unilateral carotid stiffness in the resting-state 

networks. A decreasing trend of bilateral correlation strength was found in CMRO2 measures, the 

trend was more evident in the motor and cingulate areas of the cortex. Graph theory results 

suggest a loss of connectivity of the overall functional networks. 

6.2 Abstract 

This study aims to assess the impact of unilateral increases in carotid stiffness on cortical 

functional connectivity measures in the resting state. Using a novel animal model of induced 

arterial stiffness combined with optical intrinsic signals and laser speckle imaging, resting state 

functional networks derived from hemodynamic signals are investigated for their modulation by 

isolated changes in stiffness of the right common carotid artery. By means of seed-based analysis, 

results showed a decreasing trend of homologous correlation in the motor and cingulate cortices. 

Furthermore, a graph analysis indicated a randomization of the cortex functional networks, 

suggesting a loss of connectivity, more specifically in the motor cortex lateral to the treated 

carotid, which however did not translate in differentiated metabolic activity. 
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6.3 Introduction 

Arterial hypertension is a non-communicable disease with a prevalence between 25% and 30% of 

the world adult population (World Health Organization, 2012) and is a risk factor in early brain 

aging, the development of cognitive dysfunctions and dementias. Cognitive deficits, including 

non-amnesic mild cognitive impairment (Roberts et al., 2010), have also been associated with 

coronary heart diseases (CHD) (Aronson et al., 1990; Breteler, Claus, Grobbee, & Hofman, 1994; 

Singh-Manoux, Britton, & Marmot, 2003). Hardening of the arteries has been identified as a risk 

factor in the development of cardiovascular disease (CVD) and may play a role in the 

development of such deficits. Arterial stiffness has been shown to be a predictor of cognitive 

decline and dementia (Pase et al., 2012). Basic cognitive functions such as attention and memory 

are also adversely affected by aging (Glisky, 2007), a process accelerated by risk factors for 

CVD. 

Anatomic and functional brain imaging are actively used to investigate such changes to brain 

function. Imaging correlates of aging and age-induced cognitive deficits include a decrease in 

connectivity and efficiency of functional brain networks (J. Sun et al., 2011), smaller brain 

volume and weight (Anderton, 2002; Iadecola, 2010) and a reduction in cerebral blood flow 

(CBF) (R S Marshall et al., 2001; Randolph S Marshall & Lazar, 2011) related to endothelial 

dysfunction (Bolduc et al., 2012; Faraci, 2011). While the above investigations suggest a 

potential for functional brain imaging techniques in the clinical setting, they remain hampered by 

interpretation difficulties. A key step forward is to understand the impact of systemic physiology 

and vascular hardening and/or stenosis on functional imaging brain signals derived from 

hemodynamics. 

While functional MRI (fMRI) studies used in basic research to explore brain organization have 

focused on the brain’s response to a task; the complexities of task design, the duration of multiple 

trials, interpretation and statistical analysis have limited their use in extensive clinical studies. 

Resting-state networks (RSN) with fMRI eases the participation of the patient, and reduce the 

number of behavioral variables implicit in task-based paradigms, yielding a set of basic networks 

that can be reliably imaged in human subjects (Fox & Raichle, 2007; Greicius et al., 2003; 

Gusnard et al., 2001; van den Heuvel & Hulshoff Pol, 2010). The application of RSN mapping 

with fMRI to diverse neuroscience research areas has revealed new insights in the organization of 
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both healthy (Buckner, Andrews-Hanna, & Schacter, 2008; Cole, Smith, & Beckmann, 2010)  

and diseased brain, such as Alzheimer’s (Gili et al., 2011; Greicius et al., 2004; Y. He et al., 

2009; van den Heuvel & Hulshoff Pol, 2010). RSNs have unraveled potential mechanisms of the 

brain in several areas, but the concrete meaning of the underlying processes and their 

interpretation remain to be resolved. Characterizing RSNs in the presence of vascular disease is a 

first step to establish RSN techniques in this context and may explain the scarcity of RSN studies 

in vascular pathology. Both increases and decreases in functional connectivity in vascular 

cognitive impairment were found by Sun et al. (Y. Sun et al., 2011). Resting-state connectivity 

has been included in the RUN DMC study of cerebral small vessel disease (van Norden et al., 

2011), a project recently begun. Recently, distinct patterns of RSN disruptions correlated with 

diminished cognitive performance in patients with carotid stenosis (Cheng et al., 2012).  

The current work exploits the recent development of a controlled murine arterial stiffness model 

induced unilaterally by the application of calcium chloride (CaCl2).  In previous work (Sadekova 

et al., 2013), this model was shown to induce neuronal degeneration in the hippocampus. To 

further reveal the impact of carotid artery calcification and increased stiffness on the brain, blood 

flow pulsatility in small arteries was quantified in both hemispheres. Statistically significant 

changes in pulsatility were observed on the CaCl2 group, suggesting that carotid stiffness has an 

impact on blood delivery but none were observed on baseline flow. This model, whereby one can 

study the isolated effect of unilateral carotid calcification on the brain, provides a unique 

opportunity to investigate the specific impact arterial hardening on resting state networks. 

The current study aims to assess resting-state connectivity in this unilateral carotid stiffness 

murine model using multi-spectral intrinsic optical imaging. Using multiple illumination 

wavelengths, relative changes in HbO2 and HbR can be estimated, while speckle imaging 

provides access to relative CBF. This then enables estimations of CMRO2. Hence, due to access 

to distinct hemodynamic components, functional connectivity based on optical imaging of 

intrinsic signals (fcOIS) may provide additional information that complements resting-state 

studies with fMRI in the context of vascular disease. 
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6.4 Materials and methods 

6.4.1 Animal model 

A total of N=23 Male C57BL/6 mice (8 ± 0.2 weeks old, 23.6 ± 1.4 g weight, Charles River, 

Wilmington, MA), divided in two groups were used in this study. Animal carotids were exposed 

and submitted to a sham procedure (Group 1, N=11), where a sterile NaCl 0.9% solution was 

applied to the carotid or the calcification procedure (Group 2, N=12) with a 0.3M CaCl2 solution 

applied. The Animal Research Ethics Committee of the Montreal Heart Institute approved all 

surgical procedures, which were performed according to the recommendations of the Canadian 

Council on Animal Care. 

6.4.2 Application of calcium chloride 

Applying calcium chloride periarterially developed carotid stiffness in vivo. Male C57BL/6 mice 

(8 ± 0.2 weeks old, 23.7 ± 1.6 g weight) were anaesthetized with isoflurane (5% for induction, 

2% for maintenance) in oxygen (2 L/min for induction, 1.5 L/min for maintenance). The 

procedure required 45 minutes of anesthesia per animal and body temperature was controlled 

between 36 and 37 °C using a heating blanket (MouseSTAT, Kent Scientific, Torrington, CT). A 

midline incision was performed in the neck and the right common carotid artery (RCCA) was 

isolated, then a sterile cotton gaze soaked in either sterile NaCl 0.9% solution for the control 

group (N=11) or with a 0.3M CaCl2 solution for the treated group (N=12) was applied to the 

carotid artery for twenty minutes. Afterwards the skin incision was closed with sutures and sealed 

with tissue adhesive (Vetbond, 3M, St. Paul, MN). Bupivacaine (Marcaine) (4mg/kg) and 

Carprofen (5 mg/kg) were administered subcutaneously (SC) to provide post-surgical local 

anesthesia. Furthermore, Carprofen (5 mg/kg SC) was injected every 24 hours for 48 hours and 

on the third day if deemed necessary. Infections were effectively prevented with the 

administration of trimethoprim-sulfamethoxazole (Tribrissen, 30 mg/kg SC) post-operatory and 

every 24 hours for 3 to 5 days. Animals were monitored twice a day during the first postoperative 

week and assessed for body weight, symptoms of local infection, discomfort or pain, behavior, 

and water and food consumption. Following this recovery period, mice were monitored daily. 

Optical imaging of intrinsic signals (OIS) was performed two weeks after the surgical procedure. 
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6.4.3 OIS Imaging 

6.4.3.1 Animal preparation 

Mice were anesthetized via intraperitoneal injections of urethane (2mg/g body weight) in a 10% 

(wt/vol) saline solution. Body temperature was maintained at 36.6±1.2°C with a feedback 

controlled heating blanket.  A tracheotomy was done in order to avoid respiratory distress   

(Moldestad et al., 2009). Scalp was carefully removed prior to imaging. 

Mice were placed on a stereotaxic apparatus and a subcutaneous electrocardiogram was recorded 

with a single lead ECG amplifier (amp-b01, emka TECHNOLOGIES, Paris).  The amplified 

(1000× gain) and filtered signal (0.2-500 Hz) was sampled at 1 kHz. All vital signals were 

digitized by a data acquisition card (NI-USB 6353, National Instruments, Austin, TX) controlled 

by a custom made graphical user interface developed in LabView (National Instruments), which 

also controlled the image acquisition. To prevent drying of the exposed skull a custom chamber 

made of bone wax was adhered to the skull with ultrasound gel and filled with mineral oil. 

6.4.3.2 Optical recording setup 

OIS images were acquired with a 12-bit CCD camera (Pantera 1M60, DS-21-01M60-12E, 

Teledyne Dalsa, Waterloo, ON) with a pixel size on chip of 12μm and full resolution of 

1024×1024 pixels. The setup used in this work is depicted in Figure 6-1a. 

A custom-made interface controls the camera, records images and vital signs, while 

synchronizing acquisition and illumination. A Macro Lens (105mm f/2.8max, Sigma Corp., 

Ronkonkoma, NY) with small focal depth (350 μm) was used. Reflectance images of the brain 

were recorded with time-multiplexed illumination (525, 590, 625 nm) produced by 10W LEDs 

(LZ4-00MA00, Led Engin, San Diego, CA). Illumination for speckle imaging was provided by a 

90 mW, 785 nm laser diode (L785P090, Thorlabs, Newton, NJ) and the camera aperture was 

adjusted to f/8, so that the pixel size and speckle size were matched. The four temporally 

multiplexed wavelengths led to a full-frame rate of 5 Hz. A 2×2 binning on camera was 

performed to allow continuous data streaming to the hard drive. The camera field of view (FOV) 

was set to ~10.1×10.7 mm in order to cover most of the convexity of the cortex; the image pixel 

size for the chosen FOV was approximately 33μm. Illumination was further adjusted so that no 

part of the brain was under- or over-saturated by any of the wavelengths. The exposure time of 
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the camera was set to 10 msec. The setup was mounted on an optic table with tuned damping (RS 

2000, Newport, Irvine, CA) to avoid spurious signals from vibrations. 

 

Figure 6-1: (a) Overview of the intrinsic signal optical imaging system. LEDs and laser diode are 

time-multiplexed and synchronized to the acquisition system so that each recorded image 

corresponds to either a single LED wavelength (525, 590, 625 nm) or to the laser illumination 

(785 nm). (b) Functional regions on the mouse cortex and seed placement and size, manually 

constructed from the work of Bero et al. (Bero et al., 2012). Abbreviations: F, frontal; M, motor; 

C, cingulate; S, somatosensory; R, retrosplenial; V, visual. 

6.4.3.3 OIS processing 

The analysis of spectroscopic images was based on previously published work (Dubeau et al., 

2011; Dunn et al., 2003). In short reflectance images from each LED wavelength were recorded 

with the CCD camera and interpreted as changes in attenuation (optical density)     

       ⁄  , where I is the reflected light intensity and I0 the incident light intensity. Relative 

changes in oxy- and deoxyhemoglobin were found using the modified Beer-Lambert law (Delpy 

et al., 1988) and a Moore-Penrose pseudoinverse: 

          ∑      

 

          
(6.1) 

 

The differential path length factor, D(λ), was taken from (Dunn et al., 2005) and values out of the 

560-610 nm range were extrapolated from  (Kohl et al., 2000). Total hemoglobin baseline 
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concentration of 100 μM with 60% oxygen saturation was assumed (Dunn et al., 2005) for the 

spectroscopic analysis. The hemoglobin extinction coefficients were obtained from (Prahl, 1999) 

and the reflectance values were corrected for the spectral response of the CCD camera and 

convolved with the LEDs spectral power distribution (Brieu et al., 2010). 

Images of each chromophore (HbO2, HbR) were spatially smoothed with a Gaussian kernel of 

11×11 pixels (~0.3×0.3mm) with a 5 pixel standard deviation (~0.15mm). An anatomical image 

was recorded with illumination at 525 nm to emphasize vasculature, and then the region 

corresponding to the brain was manually selected using a closed spline curve to create a brain 

mask. All further processing was performed only on those pixels belonging to the brain mask. 

6.4.3.4 Speckle contrast imaging 

In addition to imaging changes in hemoglobin concentrations, changes in cerebral blood flow 

(CBF) were also computed by laser speckle contrast imaging (Boas & Dunn, 2010; Dunn et al., 

2001, 2005). Images of blood flow were obtained by measuring the spatial contrast of the speckle 

C, defined as the ratio of the standard deviation to the average intensity   〈 〉 (Briers, 2001). A 

window of 5×5 pixels (0.15×0.15mm) was used to compute the speckle contrast images and the 

relative changes in blood flow were obtained with the following formula: 

 
  

 

〈 〉
  

   

  
 

  

  
 

    

    
 

(6.2) 

 

The quantity       is not directly related to CBF, however laser speckle imaging underestimates 

CBF by less than 5% (Luckl et al., 2010), so both quantities were assumed to be equal in this 

work. Flow images then underwent the same spatial filtering as the hemoglobin images, and 

images from all three different contrasts were further resized to ½ of the original size due to 

memory constraints. 

6.4.3.5 Cerebral metabolic rate of oxygen  

Changes in the cerebral metabolic rate of oxygen consumption (CMRO2) were calculated from 

the images of changes in CBF, total hemoglobin (HbT) and HbR using the steady state 

relationship (M. Jones et al., 2001; Mayhew et al., 2000): 



97 

 
      

       
 

(  
    
    

) (    
    
    

)

(    
    
    

)
   

(6.3) 

 

A central hypothesis of this relation is the absence of transients with decoupled hemodynamic 

components. Here, since resting state networks were identified from data filtered between 0.009-

0.08 Hz, we hypothesized that for these networks, the relationship was maintained. The constants 

γR and  γT where both assumed to be 1, which is within a physiologically plausible range (0.75–

1.25)(M. Jones et al., 2001). 

6.4.4 Resting state network analysis 

6.4.4.1 Seed based functional connectivity 

Optical recording sessions of 15 minutes were carried out in resting-state conditions for the fcOIS 

analysis. Time courses of every pixel were temporally band-pass filtered (zero phase-shift fourth-

order Butterworth IIR filter) at 0.009-0.08 Hz, according to previous functional connectivity 

studies in mice (Bero et al., 2012; Brian R White et al., 2011). After temporal filtering, each pixel 

time trace was downsampled from 5 Hz to 1 Hz.  

A global brain signal was created from the average of all the pixels time traces. In order to 

account for coherent variability common to all pixels, this global brain signal was regressed from 

every pixel’s time course, using a General Linear Model (GLM) from the package Statistical 

Parametrical Mapping (Karl J. Friston et al., 2006)(SPM8, www.fil.ion.ucl.ac.uk/spm) running 

on MATLAB (The MathWorks, Natick, MA). 

All seeds were manually placed a priori using the coordinates corresponding to left and right 

frontal, cingulate, motor, somatosensory, cingulate and visual cortices, as shown on Figure 6-1b. 

Manual positioning of the seeds was done in order to avoid contributions from large vessels. Seed 

time-courses were computed as the mean time course of the pixels within a 7 pixel (~0.23mm) 

radius from the seed locus.  

With the unilateral application of CaCl2 we expect differences between bilateral brain regions so 

the metric used to evaluate functional connectivity was a regional bilateral functional correlation, 

http://www.fil.ion.ucl.ac.uk/spm
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defined as the correlation between each seed time course and its contralateral homologue, 

yielding six values for each mouse. The Pearson’s coefficient r values were converted to Fisher Z 

measures using      
 

 
  [          ⁄ ] before performing the random effect t-tests. 

Statistical significance was evaluated using the Student’s unpaired t-test. Values were considered 

significant at p<0.05, adjusted for false discovery rate (FDR). 

6.4.4.2 Graph theoretical measures 

Several graph theoretical measures were computed in addition to assess the potential impact of 

the carotid calcification on the topological properties of the brain networks. While these measures 

do not provide clear informative information about function, they yield indicators of network 

changes that may occur with arterial stiffness. The brain was modeled as a graph where the nodes 

(N) were associated with seeds and edges (K) were associated with the amplitude of functional 

connectivity z(r) among these seeds (Latora & Marchiori, 2001). Following the computation of 

seed-to-seed connectivity matrix, a threshold was applied to define the adjacency matrix 

characterizing the graph G. A cost threshold level of 0.3 was chosen at which the network 

exhibited small-world properties, characteristic of brain functional networks (Achard & 

Bullmore, 2007; Bassett & Bullmore, 2006). 

Several properties of brain organization were investigated through the proxy of graph measures at 

seed level (Bassett & Bullmore, 2006; Whitfield-Gabrieli & Nieto-Castanon, 2012): 1) the 

degree,      , defined as the number of edges that connect to a certain node n. 2) the cost      , 

defined as the proportion of connected neighbors to a given seed. 3) The average path length 

      is defined as the average shortest-path distance from a node n to all other nodes in the 

graph, 4) the global efficiency   
      

   , which is the average inverse shortest-path distance 

from node n to all other vertices in the graph. 5) the clustering coefficient        , defined as the 

probability that the neighbors of this node are also connected to each other. 6) the local efficiency 

  
        , defined as the average global efficiency across all neighbors of node n. Finally, 7) the 

betweenness centrality        of a particular node n is the proportion of all shortest-paths in a 

network that pass through this node. 

Averaging seed-level measures across all nodes within the network generated measures reflecting 

the global integration in the network. These summary network-level measures were entered in a 
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second-level general linear model to compare functional connectivity patterns between the 

control (NaCl) and the CaCl2 groups. Statistical significance was determined by a Student’s 

unpaired t-test (p<0.05) with false discovery rate (FDR) correction. All the graph theoretical 

measures were performed with the CONN functional connectivity toolbox (Whitfield-Gabrieli & 

Nieto-Castanon, 2012). 

6.5 Results 

No signs of infection at the incision site, weight loss, or discomfort were observed during daily 

inspections throughout the post-operatory period. Two animals of the CaCl2 group deceased prior 

to the imaging session, possibly due to incorrect positioning of the tracheotomy tube, which 

hampered normal breathing. One more animal of the same group was not included in the analysis 

due to poor quality data caused by unwanted saturation outside the region of interest, which in 

turn saturated a whole line of the CCD camera. The final sample size used for all analyses was 

N=9 for CaCl2 group and N=11 for NaCl (control) group. 

6.5.1 Seed-based functional connectivity 

Average seed-based correlation maps across animals for HbO2 are depicted in Figure 6-2. The 

first two columns belong to the control (NaCl) group, while the last two columns are from the 

CaCl2 group.  Every row contains maps generated from a seed located in a different cortical 

region, first using the seed located in the left hemisphere and then its contralateral homologue. 

The CaCl2 group showed a greater spatial extent of high positively correlated pixels, when 

compared to the NaCl group (CaCl2 = 7.6% ± 3.6% vs. NaCl = 5.14% ± 1.63%, p=0.0278) with 

the spatial extent defined as the percentage of pixels showing a correlation coefficient greater 

than 0.5. Representative fc maps of other contrasts are shown in Figure 6-5. 



100 

 

Figure 6-2: Average seed-based correlation maps. Images were manually aligned through an 

affine registration using ImageJ`s plugin TurboReg (Thevenaz, Ruttimann, & Unser, 1998). 

HbO2 contrast is shown. The scale for all correlation maps is -1≤r≤1. Maps are shown overlaid on 

the anatomical image of one of the mice for reference (λ=525 nm). White circles denote seed 

position and size. Abbreviations: F: frontal cortex, M: motor cortex, C: cingulate cortex, S: 

somatosensory cortex R: retrosplenial cortex, V: visual cortex, (L) left seed, (R) right seed. 
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HbO2 contrast Figure 6-3a data displayed mostly non-significant changes of bilateral functional 

correlation z(r) in CaCl2 mice when compared to controls. A decrease was seen in the seeds of 

the frontal, motor and retrosplenial cortex, while an increase was noted in the cingulate, 

somatosensory and visual regions. HbR (Figure 6-3b) data showed diminished z(r) in all regions 

except in the visual cortex where it increased, albeit not significantly. CBF (Figure 6-3c) data 

showed overall a smaller z(r) values in all cortical regions. This might be explained by a greater 

variance in CBF seeds time traces associated with a noisier recording of the speckle signal. With 

this contrast the seeds that showed a smaller z(r) in the CaCl2 mice were located in the motor, 

cingulate and somatosensory regions of the cortex. Frontal, retrosplenial and visual cortex seeds 

showed a slightly larger z(r) in the CaCl2 group, when compared to NaCl mice. CMRO2 (Figure 

6-3d) data showed a general trend of decreased functional connectivity z(r) in the mice that 

underwent CaCl2 procedure, except in frontal cortex seeds. Decreased connectivity showed a 

trend in the motor (p=0.1241) and cingulate (p=0.1241) regions. 
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Figure 6-3: Regional bilateral functional correlation, comparison performed between control 

NaCl and treatment group CaCl2; analysis done for every seed time-trace and its contralateral 

part. Contrasts shown: (a) HbO2, (b) HbR (c) CBF and (d) CMRO2. Standard error bars shown 

(F: frontal cortex, M: motor cortex, C: cingulate cortex, S: somatosensory cortex R: retrosplenial 

cortex, V: visual cortex). 

 

To further explore the robustness of observed bilateral functional connectivity, a second analysis 

was performed, where data points that were more than 3 standard deviations away from the mean 

were considered outliers and excluded (Pukelsheim, 1994). Results obtained after outlier removal 

are shown in Figure 6-6, results remain very similar to the full data set, with HbO2 data for visual 

cortex and CMRO2 data in motor and cingulate regions showing the same trends.  

6.5.2 Graph Theoretical measures 

In HbO2 measures, we found significant differences in the global network measures in the 

betweenness centrality and average path length, which were both higher for the NaCl group. 

When looking at the topological properties of each seed we found differences (although not 

significant when FDR corrected) in global, local efficiency, betweenness centrality, average path 

length and clustering coefficient. 

Table 6.1: Summary of significant results from second-level analysis using graph theoretical 

measures
 a
. 

 ROI level  Network level 

HbO2 HbR CBF CMRO2 HbO2 HbR CBF CMRO2 

  
      

    MR  ML,FL,MR               *  

  
         FR  MR, RL, VR              *  

       ML  MR
*        *  *  

       ML  CL          

      
SR,SL,FR,

FL,CL 
SL FR,VR       *  *  

       FR  MR
*,RL,VR          *  

       ML  CL          
a
Subscripts indicate hemisphere (Left/Right). Increase in the CaCl2 group with respect to NaCl 

group is shown in red font, while decrease is shown in cursive blue font. Bold font and * indicate 

FDR-corrected p values at a 0.05 significance level. Measurements abbreviations: global 
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efficiency   
      

   , local efficiency   
        , betweenness centrality      , cost      

, average path length      , clustering coefficient        and degree      . 

Regions abbreviations: F: frontal cortex, M: motor cortex, C: cingulate cortex, S: somatosensory 

cortex R: retrosplenial cortex, V: visual cortex  

At the network-level there were no significant differences in HbR measures, but at ROI level the 

left motor seed showed significant (not FDR-corrected) differences in cost and degree. Also the 

left somatosensory seed showed increased average pathlength. 

Graph analysis based on CBF data showed significant increase in the global efficiency, 

betweenness centrality and average pathlength; significant decreases were found in local 

efficiency and clustering coefficients. At seed level there was a significant increased betweenness 

centrality and clustering coefficient for the right motor seed. Some differences were also found at 

seed level, although not significant when FDR corrected in global and local efficiency, average 

path length and clustering coefficient. 

Using CMRO2 estimates increased clustering and degree were found to be significant (not FDR-

corrected) in the left cingulate seed; although no significant differences were found with CMRO2 

measures at network level.  

The results above were based on binarized networks. Extending these results, Figure 6-4 reports 

results for weighted networks, displaying the average strength of connections for both groups, 

with node sizes proportional to their betweenness centrality       , a measure of the relative 

importance of a seed in the network. Few evident changes in the overall connectivity can be 

inferred from visual inspection of hemoglobin and CBF networks alone. However, the 

connectivity changes in CMRO2 are more evident: a large number of nodes are anticorrelated in 

the CaCl2 group and also a larger number of edges survived the applied threshold. CMRO2 data 

also displays more anticorrelated nodes in the CaCl2 group when compared to the control group. 
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Figure 6-4: Functional connectivity diagrams for NaCl (top row) and CaCl2 (bottom row) 

subjects. Edge thicknesses depend on the seed-to-seed average correlation coefficients, only 

edges with |r|>0.3 are shown. Node sizes are proportional to betweenness centrality CBn(G) of 

each seed. Positive correlations are depicted in warm colors. Negative correlations are depicted in 

cool colors. 

6.6 Discussion 

The goal of this work was to investigate the impact of a controlled unilateral carotid stiffness on 

resting state networks in anesthetized mice. While an increasing number of studies suggest that 

arterial stiffness is a risk factor predictive of ensuing cognitive dysfunction with age, its role in 

modulating functional hemodynamic imaging remain difficult to assess, mainly due to a lack of 

animal model in the past to isolate its effect. Blood flow coming from the carotids feeds the circle 

of Willis and typically represents 70% of the total cerebral perfusion. Amongst regions selected 

for our analysis, we expect that the occipital cortex (visual) as well as part of the temporal and 

parietal cortices to receive diminished output from the affected carotid when compared to others. 

6.6.1 Hemodynamic changes 

The observed changes of correlation maps spatial extent reflect a spatial reorganization of the 

hemodynamic-derived functional connectivity within the cortex. For individual seeds, significant 

larger spatial areas of contra-lateral coherent hemodynamic fluctuations were observed in the 

CaCl2 group. We can speculate that this mechanism originates in the physiological response to 
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the modified pulse wave from the rigidified carotid to the circle of Willis, potentially inducing a 

global response from resistance arteries. In a separate study (in-progress) we observed changes in 

flow mediated dilation and myogenic tone in pressurized isolated arteries subject to different 

levels of pulsatility, supporting this mechanism as a vascular modulator of connectivity changes 

independent of metabolism.  

Focusing on the seed location and correlation amplitude rather than the correlation extent, results 

from HbO2, HbR and CBF measures show that compared to the NaCl group, the CaCl2 group had 

decreased bilateral correlation values within the motor cortex but increased bilateral correlations 

within the visual cortex. In other seeds, depending on the hemodynamic component and spatial 

location, changes in bilateral correlations going in both directions (increase and decrease) suggest 

interplay between systemic hemodynamic changes when blood supply is unilaterally manipulated 

and loss of neuronal synchrony from neural degeneration in the hippocampus previously 

observed in this model.  Overall results from evaluations of the bilateral synchrony underline the 

importance of careful interpretation when using a single hemodynamic signal as a proxy for 

neural changes is situations where blood supply is compromised. 

6.6.2 CMRO2 

Amongst important findings, CMRO2 functional connectivity changes did not always correspond 

to changes observed in the other contrasts. In fact, when looking at homologous correlations, 

CMRO2 results were different in 50% of the analyzed seeds, with respect to CBF, HbO2 and HbR 

changes. CMRO2 indicated a decreasing trend of functional connectivity in the CaCl2 group that 

was more evident in the motor and cingulate regions. Since CMRO2 potentially displays 

increased independence to vascular changes and provides a metabolic measure expected to 

closely match neural activity, observed changes may better reflect hippocampal 

neurodegeneration observed previously in this model. Using fcOIS based on hemoglobin 

absorption only we would not be able to discern the vascular response from the underlying 

metabolic activity, hence the need for a more complete set of hemodynamic parameters. These 

results further support that care must be taken when interpreting functional connectivity studies 

with techniques that solely rely on hemodynamics.  
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6.6.3 Graph theoretical measures 

When looking at seed level, RCCA stiffness proved to have the most impact on network 

measures in the right frontal cortex, in both HbO2 and CBF measures. Local efficiency and 

clustering coefficient, both measures of network robustness were significantly higher in the NaCl 

group, potentially indicating loss of network efficiency due to the application of CaCl2. The 

decrease in whole cortex average clustering coefficient can be interpreted as a reflection of the 

randomization of the functional networks with arterial stiffness; this randomization is particularly 

remarkable in the right motor cortex. Betweenness centrality was higher in the CaCl2 group 

suggesting a more central hub role of the motor right regions in the general network structure. 

The non-significant differences in cost and degree in left motor seed (HbR) suggest that this node 

became more disconnected from the global network, with fewer neighbors in the CaCl2 group. 

Cost and degree were also reduced in left cingulate seed in CMRO2 measures, but these changes 

were not reflected at a global level. 

Visual inspection of the weighted functional networks (Figure 6-4) indicate a reorganization of 

the CMRO2 networks, but due to the lack of a single formulation for weighted network 

measurements (Saramäki, Kivelä, Onnela, Kaski, & Kertész, 2007) their full characterization 

remains complex. 

6.6.4 Impact for BOLD-fMRI 

Mapping resting-state networks provides an approach to assess brain function in populations 

where task-based fMRI scanning is challenging. The BOLD-fMRI signal arises from the 

magnetic properties of HbR, is dependent on local blood volume, flow and deoxygenation and is 

weighted towards venous vasculature. Our results show that investigating network connectivity 

solely based on HbR signals indeed showed decreased connectivity between homologous regions 

but these changes were not significant, weaker and only partially coherent with observations 

using CMRO2. Globally, at the network level, HbR signals displayed small changes where 

compared to flow and CMRO2. Overall, these results suggest that BOLD-fMRI signals may 

potentially be modulated by the rigidification of arterial vasculature and benefit from combined 

flow and calibration measures in studies investigating resting state networks in populations 

affected by arterial stiffness. 



107 

6.7 Conclusion 

Using a new carotid calcification murine model, we were able for the first time to investigate the 

isolated effect of unilateral carotid stiffness on resting state networks.  It is difficult to make a 

direct comparison of our results to disease in humans and even other animal models, since our 

novel model is specific to study the role of carotid stiffness, independently of confounding 

variables, such as systemic changes in blood pressure, high levels of circulating lipids present in 

other models; or other factors leading to arterial stiffness in humans such as aging or 

atherosclerosis. Using multispectral fcOIS, our results show network modifications associated 

with the procedure and a potential uncoupling between hemodynamic measures (HbO2, HbR and 

CBF) and metabolism (CMRO2). While confounds remain due to the fact that the procedure leads 

to both neural degeneration in the hippocampus and lateral vascular alterations due to carotid 

rigidification, both of which will affect resting state networks, they underline the importance of 

calibration of brain images in the presence of arterial remodeling. 
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Figure 6-5: Representative fc maps for all contrasts for a given seed (ML) (a)HbO2 (b)HbR (c) 

CBF (d) CMRO2. 
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Figure 6-6: Regional bilateral functional connectivity, comparison performed between control 

NaCl and treatment group CaCl2; analysis done for every seed time-trace and its contralateral 

part. Data points that were more than 3 standard deviations away from the mean were considered 

outliers and consequently removed. Contrasts shown: (a) HbO2, (b) HbR (c) CBF and (d) 

CMRO2. Standard error bars shown (σ/√N), with N=19. (F: frontal cortex, M: motor cortex, C: 

cingulate cortex, S: somatosensory cortex R: retrosplenial cortex, V: visual cortex). 
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7.1 Presentation of the article 

In this work (Guevara, Berti, et al., 2013) we applied PAT to assess SO2 and connectivity 

changes in the newborn rat brain, in a model of white matter injury. The reduced SO2 measured 

in vivo was partly explained by histological evaluation of microvasculature. Homologous 

functional connectivity was not differentiated in the injured group, as compared to shams, this 

result may be explained by the short time between the injury and the imaging session. The article 

was recently accepted for publication in the PLOS ONE journal. 

7.2 Abstract 

Background: The precise assessment of cerebral saturation changes during an inflammatory 

injury in the developing brain, such as seen in periventricular leukomalacia, is not well defined. 

This study investigated the impact of inflammation on locoregional cerebral oxygen saturation in 

a newborn rodent model using photoacoustic imaging. Methods: 1 mg/kg of lipopolysaccharide 

(LPS) diluted in saline or saline alone was injected under ultrasound guidance directly in the 

corpus callosum of P3 rat pups. Coronal photoacoustic images were carried out 24h after LPS 

exposure. Locoregional oxygen saturation (SO2) and resting state connectivity were assessed in 

the cortex and the corpus callosum. Microvasculature was then evaluated on cryosection slices by 
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lectin histochemistry. Results: Significant reduction of SO2 was found in the corpus callosum and 

in the cortex ipsilateral to the injection site. Seed-based functional connectivity analysis showed 

that bilateral connectivity was not affected by LPS exposure. Changes in locoregional oxygen 

saturation were accompanied by a significant reduction in the average length of microvessels in 

the left cortex but no differences were observed in the corpus callosum. Conclusion: 

Inflammation in the developing brain induces marked reduction of locoregional oxygen 

saturation, predominantly in the white matter not explained by microvascular degeneration. The 

ability to examine regional saturation offers a new way to monitor injury and understand 

physiological disturbance non-invasively.    

7.3 Introduction 

Periventricular leukomalacia (PVL) stands as a predominant cause of cerebral palsy and 

significant neurodevelopmental impairment in premature infants (Blumenthal, 2004). The 

primary physiopathological mechanism was thought to be secondary to hemodynamic instability 

in a pressure passive immature cerebral circulation weakening the watershed areas of the white 

matter composed of pre-oligodendrocytes highly vulnerable to free radicals (Blumenthal, 2004). 

Only recent epidemiological studies have shown an association between inflammation and white 

matter injury (Dammann, Kuban, & Leviton, 2002; Dammann & Leviton, 2004; Hagberg, 

Mallard, & Jacobsson, 2005). Yet it is not clear if inflammation induces hemodynamic changes 

in the developing white matter. An intravenous dose of LPS sufficient to cause hypotension also 

affected O2 delivery to white matter (Dalitz, Harding, Rees, & Cock, 2003).  Yet an experiment 

conducted in fetal sheep showed that small intravenous doses of LPS not sufficient to produce 

hypoxemia and systemic hypotension still triggered significant white matter injury (Duncan et al., 

2006). To date, little is known regarding local changes in oxygen delivery with LPS induced 

inflammation. In rodents, one of the most robust and reproducible post-natal models consists in 

an injection of LPS into the corpus callosum. It replicates every aspect of periventricular 

leukomalacia including astrogliosis, microglial reaction, pre-oligodendrocyte cell loss, necrosis, 

apoptosis, hypomyelination (Cai, Pang, Lin, & Rhodes, 2003; Pang, Cai, & Rhodes, 2003), 

hippocampal atrophy (K.-C. Wang et al., 2013) and behavioral hallmarks of PVL (Choi et al., 

2011). Recent characterization of the model by magnetic resonance imaging (MRI) has shown 

striking similarities with what is seen in preterm infants with ongoing injury such as a reduction 
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of the apparent diffusion coefficient in the white matter, increased T2 relaxation time constant, 

measurable ventricular dilation and increased radial diffusivity (Lodygensky et al., 2010). 

The regional changes seen in white matter injury of the preterm infants have been described using 

near-infrared spectroscopy (NIRS). This well-established bedside technique is limited by the 

absence of depth resolved information where for instance the presence of sub-dural hematoma or 

scalp edema seen in newborns might lead to inaccurate results. Moreover the technique cannot 

differentiate the cortex from the white matter or saturation extracted from the venous circulation. 

Although partial depth information can be obtained by using tomographic reconstruction methods 

(Boas et al., 2001; O’Leary, Boas, Chance, & Yodh, 1995), they remain limited. Photoacoustic 

imaging is a depth-sensitive, non-invasive technique that combines the intrinsic contrast 

capabilities of optical imaging with the advantage of high spatial resolution of ultrasound (L. V. 

Wang & Hu, 2012),(Xiang et al., 2012). By illuminating tissue using a short laser pulse, a 

transient thermoelastic expansion occurs, generating an ultrasonic pressure wave detected by an 

ultrasound transducer (X. Wang et al., 2003). Using more than one wavelength and spectroscopic 

information on hemoglobin, it has the potential to determine the locoregional oxygen saturation. 

In mouse pups, recent data shows that just 24 hours of hypoxic ischemic injury was sufficient to 

induce a 40% reduction of cerebrovascular density (Honoré et al., 2013). In this study, we sought 

to evaluate changes in locoregional oxygen saturation 24h after LPS exposure, at the peak of the 

inflammatory injury, and determine if any changes detected in vivo would correlate with 

modification of the microvascular skeleton of the cortex and the white matter.  

Several functional imaging studies in the developing brain have been successful in identifying a 

physiological response to external tasks (A. P. Born et al., 2000; P. Born et al., 1998; Seghier, 

Lazeyras, & Huppi, 2006). Despite the success of this approach requiring a complex setup, 

attention has shifted to brain mapping in resting conditions (Smyser, Snyder, & Neil, 2011), an 

approach more suitable in neonates, where task-based functional magnetic resonance imaging 

(fMRI) scanning is challenging. Resting-state functional imaging (rsMRI) simplifies the 

experimental design, making longitudinal studies feasible in infants (Doria et al., 2010; Smyser et 

al., 2010, 2011).  

Since the discovery of spatially remote areas connected by spontaneous low frequency in the 

temporal domain with coherent fluctuations in the BOLD signal (<0.1 Hz) (Biswal, Yetkin, 
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Haughton, & Hyde, 1995), a number of resting-state functional connectivity studies have been 

performed in infants (Church et al., 2009; Damaraju et al., 2010; Doria et al., 2010; Fransson et 

al., 2007; Liu, Flax, Guise, Sukul, & Benasich, 2008; Smyser et al., 2010); although infants 

presenting PVL were excluded from those studies (Damaraju et al., 2010; Fransson et al., 2007). 

Recently, Smyser et al. have specifically characterized the dramatic effect of white matter injury 

in the preterm infant on resting state activity at term equivalent (Smyser et al., 2013). Thus, early 

detection of the functional connectivity changes induced by PVL could reveal itself as a non-

invasive tool to monitor newborns at risk and eventually identify the ones requiring 

neuroprotective therapy. Still performing routine MRI in unstable extreme preterm infants is 

challenging. Having depth sensitive data on resting state connectivity using a non-invasive 

technique that could be performed at bedside would be immensely useful, which is why we 

explored the potential of photoacoustic imaging to detect functional connectivity. 

The objective of this study was to determine the impact of inflammation on the corpus callosum 

and the cortex both known to be affected by inflammation. Moreover the possibility of assessing 

resting-state functional connectivity using PAT imaging in immature rat pups was examined.   

7.4 Materials and Methods 

7.4.1 Ethics statement 

All surgical procedures performed according to the recommendations of the Canadian Council on 

Animal Care, were approved by the Animal Research Ethics Committee of the Montreal Heart 

Institute and by the Institutional Committee for Animal Care in Research of the CHU Sainte-

Justine Research Center. All the procedures were performed under isoflurane anesthesia, and all 

efforts were made to minimize suffering. 

7.4.2 Neonatal inflammatory injury 

Nineteen postnatal day 3 (P3) Sprague-Dawley rat pups from four litters were used in this study 

(9.8 ± 0.3 g weight, Charles River, Wilmington, MA); the rat pups were given ad libitum access 

to food and water. P3 rat pups are equivalent to very premature human infants between 24 and 28 

weeks gestation (Sizonenko et al., 2003). In this work, we followed the same animal procedure as 
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in previous studies (Lodygensky et al., 2010) which was outlined by the group of Cai (Cai, Pang, 

Lin, & Rhodes, 2003; Pang, Cai, & Rhodes, 2003) and briefly described below.  

P3 rat pups (n=19) were randomized to two experimental groups: LPS (n=11; nmale=6, nfemale=5) 

and NaCl (sham n=8; nmale =7, nfemale =1). Pups were injected under ultrasound guidance using 

the Vevo LAZR micro-ultrasound system (FUJIFILM VisualSonics Inc., Toronto, ON, 

Canada) with LPS (1 mg/kg) suspension (E. Coli, serotype 055:B5, Sigma St Louis, MO) in 0.5 

µL of sterile saline or with the same volume of sterile saline alone for the sham group. The 

injection was placed in the corpus callosum at the level equivalent to P-7, c9 (Ramachandra & 

Subramanian, 2011), depicted in Figure 1-1A. Injections were made with a micropipette mounted 

on a microprocessor-controlled injector (Micro4 from World Precision Instruments) at a rate of 

100nL/min. All the injections were performed under isoflurane anesthesia, and all efforts were 

made to minimize suffering. All animals survived the injection. 24 hours later animals were 

imaged as described in the following sub-section.  

7.4.3 PAT imaging 

The rat pups were secured in a custom-designed stereotaxic neonatal frame and placed on an 

imaging station; monitoring of the respiration and body temperature were done using the 1025L 

monitoring system (SA Instruments Inc., Stony Brook, NY). The Vevo LAZR photoacoustic 

imaging system was used to acquire all images with the LZ250 ultrasound probe at a central 

frequency of 21 MHz. The chosen coronal B-scan was located at the injection site. The 

acquisition time was 1.4 s per B-scan, with a field of view (FOV) of 13 mm width × 18 mm depth 

(512 A-lines, 416 samples) using a 256-element array transducer that provides 75μm axial 

resolution. A time-series of B-scans were acquired in resting-state conditions for a 5-minute 

period. Functional photoacoustic imaging was performed at two wavelengths (λ1=750 nm and 

λ2=850 nm) with pulse energy output of approximately 18 mJ/cm
2
. Total hemoglobin (HbT) and 

oxygen saturation (SO2) weighted images were internally computed from the raw data according 

to the procedure described in detail in refs. (Ephrat et al., 2012; X. Wang, Xie, Ku, Wang, & 

Stoica, 2006): 
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where μa was the estimated effective absorption coefficient (cm
-1

);      
 and      are the known 

molar extinction coefficients (cm
-1

M
-1

) of oxy- and deoxygenated hemoglobin respectively; and 

                . Once the effective absorption coefficients were estimated, HbT and SO2 

could be calculated. Values of oxy- and deoxygenated hemoglobin (HbO2 and HbR respectively) 

were computed using the following equations: 
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One session of five minutes was recorded for every animal. The same recording session was used 

to assess both locoregional cortical saturation and functional connectivity. Locoregional cortical 

saturation was computed as the mean SO2 values during resting-state after removing frames 

contaminated with excessive motion (See Scrubbing technique below). Average locoregional 

saturation values in corpus callosum were computed over a 1×0.5mm
2
 rectangle; locoregional 

SO2 in the cortex was calculated over a closed spline that encircled the region of interest, either 

the left or right cortex, as shown on Figure 7-1B. 

7.4.4 Seed-based functional connectivity analysis 

First, all functional images (PAT) within each scan were realigned to the first image to reduce the 

impact of motion artifacts. Images of each contrast were spatially smoothed with a Gaussian 

kernel of FWHM=0.2 mm. Imaging of the anatomy was performed by an ultrasonic B-scan 

simultaneously recorded, from which the region corresponding to brain was manually selected 

using a closed spline curve to create a brain mask. All further processing was performed only on 

those pixels belonging to the brain mask. The image time series were temporally band-pass 

filtered (zero phase-shift fourth-order Butterworth filter) at 0.009-0.08 Hz, according to previous 

functional connectivity studies (Guevara, Pouliot, et al., 2013; Jonckers et al., 2011; Brian R 

White et al., 2011; F. Zhao et al., 2008). In order to account for spurious variability, several 
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nuisance variables were regressed from each pixel time course including (a) The signal averaged 

over the lateral ventricles (LV), (b) the signal averaged over a region in the deep white matter and 

(c) three parameters obtained by rigid body motion correction (translation along X and Y axes 

and rotation around those same axes).  Regression of the aforementioned parameters was 

performed simultaneously using a General Linear Model (GLM) from the package Statistical 

Parametrical Mapping (Karl J. Friston et al., 2006) (SPM8, www.fil.ion.ucl.ac.uk/spm) running 

on a MATLAB (The MathWorks, Natick, MA) platform. In previous studies, the global brain 

signal, created from the average of all the pixels time traces, was found to introduce artificial 

anticorrelations (Murphy, Birn, Handwerker, Jones, & Bandettini, 2009), even though a neural 

basis for such anticorrelations is probable (Fox et al., 2009), it was not included as a regressor in 

this study. 

All seeds were placed a priori on the rat brain using anatomical definitions from the 

Ramachandra atlas with complementary information from the Paxinos atlas (Paxinos & Watson, 

2007; Ramachandra & Subramanian, 2011), as shown on Figure 7-1B. Seed time-courses were 

computed as the mean time course of the pixels within a 0.5 mm radius from the seed locus. 

Several seed radii were explored (from 0.1 to 0.5 mm), only limited by anatomical specificity; the 

largest radius was chosen because of stronger values in bilateral correlations.  

 

Figure 7-1: (A) Arrow marks injection site. (B) Seeds placement, overlaid a coronal B-scan, 

averaged over 11 individual B-scans. Abbreviations: M, motor cortex; S1, primary 

somatosensory cortex; S1BF, barrel field primary somatosensory cortex; LV, Lateral ventricle; 

CPu, Caudate putamen. Black dotted line indicates Left Cortex ROI used for locoregional SO2 

measurement. White dotted rectangle indicates ROI used for local SO2 measurement in corpus 

callosum. Scale bar: 1mm. 

http://www.fil.ion.ucl.ac.uk/spm
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7.4.5 Scrubbing 

Movement during scanning influences the quality of PAT data. Head motion causes spurious 

changes in photoacoustic signal intensity. After frame realignment and motion parameters 

regression, a technique called “scrubbing” was applied to remove measures distorted by 

unwanted movement (Power, Barnes, Snyder, Schlaggar, & Petersen, 2012).  Scrubbing relies on 

two measures to flag frames contaminated by excessive motion: framewise displacement (FD) 

and DVARS (D stands for temporal derivative and VARS standing for RMS variance over 

pixels) (Smyser et al., 2010). 

FD represents instantaneous head motion and is an empirical measurement computed from the 

motion parameters; in equation (7.4)                  represents the derivative of translation 

along x and the same for the other rigid-motion parameter; the rotational displacement       was 

converted from radians to mm by calculating arc length on a circle of radius 4.05 mm, which was 

approximately the mean distance from the cortex to the center of the head in P4 rats. 

            |    |        (7.4) 

DVARS was computed as the RMS of the derivative of the global brain signal; this measure 

represents how much the intensity of a brain image changed in comparison to the previous frame. 

            √〈[     ⃑ ] 〉  √〈[    ⃑        ⃑ ] 〉 (7.5) 

In equation (7.5)       represents the image intensity at pixel x on frame i. A threshold is applied 

on FD and DVARS measures, and those frames over the threshold were flagged. After carefully 

reviewing the plots of the whole population, values of FD>0.001mm and DVARS>3000 were 

chosen to represent levels above the norm in unmoving pups. A minimum of 80% of each session 

(~4 minutes) of utilizable PAT data was further required for inclusion in the results below. Non-

flagged frames were then concatenated to perform bilateral correlation analysis. No harmful 

effects have previously been found with the use of discontinuous functional data in previous 

seed-based resting-state studies (Power et al., 2012; Van Dijk, Sabuncu, & Buckner, 2012). 

Figure 7-6 shows an example of flagging the frames of suspect quality.  
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With the unilateral LPS injection we investigated bilateral differences between brain regions so 

the metric used to evaluate functional connectivity was a regional bilateral functional correlation, 

defined as the correlation between each seed time-course and its contralateral homologue, 

yielding six values for each rat pup. The Pearson’s coefficient r-values were converted to Fisher 

Z measures using      
 

 
  [          ⁄ ] before performing the population-level 

inferences.  

7.4.6 Histology 

LPS and  NaCl-injected brains were fixed after PAT imaging by transcardiac saline perfusion 

followed by 4% paraformaldehyde. The whole brains were kept at in paraformaldehyde 4°C and 

transferred to 30% sucrose after twenty-four hours. Cryosections (50μm) were obtained and kept 

in cryoprotectant solution at -20°C. 

7.4.7 Lectin Staining and Vessel Counting 

Four consecutive brain slices were chosen from each brain, spanning the injection site for 

staining and analysis with tetramethylrhodamine isothiocyanate (TRITC)-conjugated lectin to 

characterise microvasculature (Sirinyan et al., 2006; Zhu et al., 2005). The sections were pre-

incubated at room temperature in 1% Triton X-100/PBS for 30 minutes, followed a 2-hour 

incubation in the same solution with TRITC–conjugated lectin from Griffonia simplicifolia 

(1:100; Sigma-Aldrich). Brain sections were subsequently subjected to three 10-minute washes 

with PBS and mounted on microscope slides. Sections were assessed using fluorescent 

microscopy (20x, Leica DMR with Retiga 1300 Qimaging Camera), and the microvascular 

skeleton was analyzed by AngioTool (Zudaire, Gambardella, Kurcz, & Vermeren, 2011). This 

approach was employed rather than a standard quantification of vessel surface. Indeed vessel 

thickness appearance was modified by the presence of macrophages also stained by lectin in the 

brains exposed to LPS. Twenty-eight images were taken for each brain covering three regions of 

interest (left cortex, right cortex and corpus callosum). Each image was then individually 

processed and analyzed using AngioTool to calculate the total and average skeleton lengths of 

microvessels in the regions of interests. 
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7.4.8 Statistical analysis 

Statistical significance in imaging and in microvasculature morphometry measures was evaluated 

using Wilcoxon-Mann-Whitney test. Since histology and locoregional SO2 measures were 

performed over only a few a priori planned regions, correcting for multiple comparisons was not 

done, according to recommendations from the literature (Rothman, 1990; Saville, 1990). For seed 

based connectivity, a false discovery rate (FDR) multiple comparisons test was applied 

(Benjamini & Hochberg, 1995). FDR-adjusted p-values were then considered significant at 

p<0.05. In order to find out if gender was a confounding factor, a Fisher’s exact mid-P method 

was used (Thorvaldsen, Flå, & Willassen, 2010). All data are presented as mean ± standard error 

of the mean (SEM). 

7.5 Results 

7.5.1 Locoregional cortical saturation 

After removal of four animals due to excessive motion (these animals were not included in the 

population description above) average SO2 was measured both on the left cortex (unilateral to 

LPS injection), the corpus callosum (cc) and on the right cortex. An example of SO2 weighted 

image is depicted in Figure 7-2A. Average SO2 values measured on the left cortex and the corpus 

callosum significantly decreased in LPS, when compared to sham controls, as shown on Figure 

7-2B; more specifically, mean SO2 in the left cortex changed from 53.3% in the NaCl group to 

49.4% in the LPS group (p=0.0203). In the corpus callosum, mean SO2decreased from 50.1% in 

the NaCl group to 40.4% in the LPS group (p=0.0002). Figure 7-2B also shows no significant 

SO2 differences (p=0.2060) on the right cortex (contralateral to the injection site). The 

association between gender and locoregional SO2 values was not statistically significant 

(p=0.1089). 
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Figure 7-2: Locoregional cortical saturation (SO2%) (A) Average SO2 weighted PAT image, 

scale bar: 1mm (B)SO2 Comparison performed between LPS group (N=11), and NaCl (sham) 

group (N=8).  SO2 showed significant decrease in the LPS group compared to NaCl group in left 

cortex (L) and corpus callosum (cc). The hemisphere contralateral (R) to injection showed no 

difference.  *P<0.05, ***P<0.001. 

7.5.2 Microvascular quantification 

We analyzed changes in vessel lengths in rat pup brains post LPS injection using lectin 

fluorescent staining due to its sensitivity in detecting microvessels (Zhu et al., 2005). We found 

that the average length of microvessels in the left cortex of the LPS injected brains were greatly 

reduced compared with the saline injected brains (p=0.0093 ; Figure 7-3). We found no statistical 

difference in microvessel length in the right cortex and in the corpus callosum. Moreover, the 

average microvessels length in the left cortex was positively correlated with locoregional SO2 

values measured with PAT imaging, as shown in Figure 7-4. 
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Figure 7-3:  TRITC-conjugated lectin staining of brain sections 24h after LPS or saline injection 

with the associated microvascular skeleton extracted with Angio Tool. A= left cortex; sham, 

B=left cortex; LPS, C= right cortex; sham, D = right cortex; LPS, E = corpus callosum; sham, F 

= corpus callosum; LPS. The average microvessel length in the left cortex of brains injected with 

LPS (B) is greatly reduced compared to brains injected with saline (A). Bar graphs of total 

microvessel length (G) and average microvessel length (H) in rat brain sections over the cortex 

and corpus callosum using the skeleton technique with AngioTool. Note the significant decrease 

in average microvessel length on the left cortex in brains injected with LPS (* p = 0.0093). Scale 

bar =100 μm. 
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Figure 7-4: In the cortex ipsilateral to the LPS injection locoregional SO2 measures are positively 

correlated with average vessel length. 

7.5.3 Seed-based functional connectivity 

After scrubbing, a total of four scans were removed from the study due to excessive motion; (the 

same animals removed for computing locoregional SO2). The results displayed in Figure 7-5 

show bilateral fc values getting smaller in seed pairs located farther from the top of the head. 

There was no statistical difference between both groups in all contrasts (SO2, HbT, HbO2 and 

HbR) though some displayed a consistent trend towards increased connectivity in the LPS group 

(HbT). 
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Figure 7-5:  Regional bilateral functional correlation, comparison performed between LPS group 

(N=11), and NaCl (sham) group (N=8); analysis done for every seed time-trace and its 

contralateral part. Contrasts shown: (A) SO2, (B) HbT (C) HbO2 and (D) HbR. Abbreviations: 

(M, motor cortex; S1, primary somatosensory cortex; S1BF, barrel field primary somatosensory 

cortex). 
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7.6 Discussion 

7.6.1 Locoregional cortical saturation 

Locoregional SO2 in both corpus callosum and on the cortex ipsilateral to the injection site were 

lower in the injured group, as compared to the sham group. This result coincides with lower 

regional cerebral tissue oxygen saturation found in preterm infants with transient PVL (Verhagen, 

Keating, ter Horst, Martijn, & Bos, 2009). To understand if there was any anatomic substrate for 

these findings we studied the impact of LPS on microvasculature and found that only the left 

cortical average microvascular length at the site of injection was reduced. This reduction in 

average length can be explained by the fragmentation of the microvasculature, as a possible result 

of the endotoxin ability to damage vascular endothelium (Clawson, Hartmann, & Vernier, 1966; 

Young, Yagel, & Towfighi, 1983). When assessing the impact of inflammation on the cortex we 

found a significant correlation between non-invasive PAT measures and histological assessments 

that explained 30% of the changes between cerebral microvascularisation rarefaction and 

reduction of saturation. This suggests that meso-scale measures of SO2, are only partly explained 

by visible microscopic changes. This reduction in regional saturation especially in the corpus 

callosum potentially contributes to the white matter injury seen in this model with, apoptosis, 

necrosis hypomyelination and white matter loss (Cai et al., 2003). The corpus callosum, which 

had the most significant reduction in saturation, had no measurable change in microvascular 

content. This might be a reflection of upstream effect of LPS on vascular resistance not evaluated 

by lectin staining.  This underlines the importance of including measures in vivo of actual 

physiological changes not always identified by histology.  

Furthermore, these findings support the use of PAT as a non-invasive tool to study PVL animal 

models; due to its non-invasive and contrast agent-free nature, PAT could be applied to 

longitudinal studies.  

7.6.2 Seed-based functional connectivity 

When measuring bi-lateral seed connectivity, there was a strong correlation between the motor 

ROIs and less so in the S1 and S1BF ROIs and measured correlation values were similar that 

published in previous studies (Kannurpatti et al., 2008; F. Zhao et al., 2008). Comparing groups, 

we observed no significant difference on resting state activity following LPS exposure. This 
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might be explained by the young age of animals and the short interval between LPS exposure and 

PAT imaging. Previous studies have shown the presence of resting-state networks in preterm 

infants (from 29 weeks of gestation) (Doria et al., 2010), however the bilateral correlation values 

in motor and somatosensory cortices were weaker and more variable in the earlier weeks. The 

marked reduction of resting state activity in preterm infants white matter injury was described at 

term equivalent (Smyser et al., 2013). Little is known of acute modifications with injury in these 

infants. Our results thus show that while oxygen saturation is modified with injury between 

hemispheres, investigating the synchronicity of temporal fluctuations yielded no observable 

changes. One hypothesis is that the reduction of resting state activity in this population might 

lead to a large variability of measures across the population. A second hypothesis, which may 

combine with the first, is that the SNR of PAT imaging was not high enough to measure these 

small fluctuations homogenously in the brain. Indeed we found a reduction in bilateral 

correlations in the seeds located farther from the top of the skull attributed to lower SNR values 

in regions located further from the probe. We believe that resting state evaluation might be 

limited in these regions due to technical reasons. In future work, we will confirm these findings 

with rsMRI or invasive optical imaging based on intrinsic signals and laser speckle contrast 

imaging.  

7.7 Conclusions 

The results of this exploratory work reveal lower locoregional SO2 values in LPS group, showing 

decreased values in the corpus callosum and in the left cortex, ipsilateral to the injection site. Our 

findings support the use of PAT as a completely non-invasive tool to assess average oxygenation 

values in vivo in the newborn brain. 
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7.11 Supplemental figures 

 

Figure 7-6: Framewise indices of data quality, the dotted line in insets A and B represents the 

threshold to signal suspect frames: (A) Framewise displacement (FD) of head position and (B) 

DVARS measure. All frames surpassing the threshold in FD and DVARS time courses are 

flagged, generating a temporal mask: (C)Frames flagged as having a FD>0.001mm and 

(D)Frames flagged as having a DVARS>3000. These temporal masks are augmented by also 

marking 1 frame back and 2 frames forward to accommodate temporal smoothing of PAT data: 

(E)Augmented FD mask and (F) Augmented DVARS mask. (G) Temporal mask comprised of 

the intersection of E and F.  
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CHAPTER 8 GENERAL DISCUSSION 

Functional connectivity in resting state has been used as an investigative diagnostic tool for over 

a decade; it has been carried out with a variety of techniques either for direct or indirect 

assessment of neural activity. The numerous theoretical and empirical advantages of this 

modality make it a strong candidate as a diagnostic tool. Hence our motivation to explore 

functional connectivity in a more controlled environment, such as rodent models of neurological 

and cardiovascular conditions. Nevertheless, functional connectivity has not reached its maturity 

level to be applied in clinical studies, due to a number of reasons. 

In this work, correlated fluctuations of hemodynamic signals between brain regions have been 

interpreted as a marker of functional connectivity. The presented results suggest that the resting-

state patterns have spatial characteristics that qualitatively resemble activation patterns and 

functional zones delineated in the literature (Fonoff et al., 2009; Watson, Paxinos, & Puelles, 

2011).  Although direct recordings of neural activity suggest that these oscillations arise from 

underlying spontaneous neural activity, we have to keep in mind several confounding factors, 

from instrument noise to motion and physiological fluctuations. These results do not imply that 

the resting-state spatial patterns are of neuronal origin, they may be related to local changes in 

physiology, such as the vasculature. Further studies are required to characterize the influence of 

physiological processes to the functional connectivity findings. 

8.1 Article 1 

In the study presented in CHAPTER 5 an animal model of epilepsy was used to investigate if 

induced seizure activity alters regional resting-state connectivity. Epileptic seizures were induced 

by the unilateral injection of 4-AP on the somatosensory cortex. A combination of optical 

intrinsic signal imaging and laser speckle imaging was used to monitor cerebral oxygenation and 

blood flow. These measures were also combined to investigate changes in cerebral metabolism. 

Overall the methodology aims to be an integral approach, as the combination of the two optical 

techniques provides a more complete picture of the hemodynamic and metabolic responses to 

epilepsy than could be achieved with fMRI, which is most sensitive to changes in HbR.  

The results indicate that the changes in HbO2, HbR and CBF connectivity are quite different, 

suggesting a decoupling of metabolism and hemodynamics. This finding appeals to be of interest 
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to the neuroimaging community considering the growing interest in using resting-state fMRI in 

epilepsy research. 

8.1.1 Regional bilateral functional connectivity is disrupted after the injection 

of a focal epileptogenic agent. 

Bilateral functional connectivity was diminished in some contrasts and augmented in others, also 

depending on the observed region. This lack of consistency can be explained in part by several 

confounding factors that cannot be left out of the analysis. First, the variability in the injection of 

4-AP: although the injection site was carefully chosen, there is inherent variability in the exact 

position and depth due to the manual positioning. Furthermore, diffusion of the injected volume 

will vary due to tortuosity of the brain tissue in each mouse (Nicholson, 1985). These limitations 

may explain the fact that only five out of nine mice presented seizure-like activity. 

A second drawback was the heterogeneity of the correlation maps, due mostly to the position of 

the tungsten electrode after the injection. Nevertheless, this extraneous object provides precious 

information about the underlying neural activity, allowing us to confirm the type of epileptiform 

activity. 

8.1.2 Changes in functional connectivity correlate with seizure duration.  

Our hypothesis stated that the longer the seizure duration the more disrupted connectivity. Strong 

correlations were not found in all regions or in all contrasts because of large variability between 

the animals, and the relatively few mice who presented clear seizure-like activity (five out of 

nine). However two of the six explored cortical zones did show a significant correlation in 

agreement with our hypothesis: 1) The somatosensory cortex, where connectivity decrease 

correlated with seizure duration, in the case of CBF contrast and 2) the retrosplenial region, 

where the connectivity decrease was also correlated with seizure duration, in both HbR and CBF 

contrasts. The results in somatosensory cortex are mainly explained by the unilateral injection of  

the neurotoxin precisely on the left cortex. However the interpretation of the results in the 

retrosplenial region remains difficult, due to the close proximity of the sagittal sinus to the seeds, 

there is a large contribution from vascular components to the measurements.  
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8.2 Article 2 

This article is included in CHAPTER 6, the objective of this work was to use functional 

connectivity methods to investigate connectivity changes induced by a novel carotid stiffness 

murine model. 

8.2.1 Uncoupling is shown between hemodynamic measures and metabolic 

activity in bilateral functional correlations. 

The lack of consistency in the results suggested an uncoupling between HbO2, HbR, CBF and 

CMRO2 bilateral correlations. In a previous work (Sadekova et al., 2013) we found that the side 

of the brain corresponding to the calcified carotid artery showed a significant increase in flow 

pulsatility after the application of CaCl2. There was also evidence of neural degeneration in the 

hippocampus. Therefore, a vascular component independent of metabolism and localized neural 

degeneration potentially affecting connectivity may explain why different contrasts go in 

different directions. 

8.2.2 Resting state functional networks derived from hemodynamic signals 

are disrupted following a unilateral carotid artery calcification. 

The motor zone ipsilateral to the calcified carotid was the most affected. In this particular node, a 

measure of influence, betweenness centrality coefficient        was increased in the CaCl2 

group, while a measure of segregation clustering coefficient        was decreased. The 

increased relative importance of this node may be explained by the increased pulsatility in the 

middle cerebral artery of the same hemisphere. The most evident change was present in the 

measures derived from CMRO2, where negative edges were found in the CaCl2 group, unlike the 

positive connections in the control group. Whether this disruption has a neural origin (neural 

degeneration in the hippocampus) or a vascular origin (increased ipsilateral pulsatility) remains 

an open question. 

8.3 Article 3 

The last work, presented in CHAPTER 7 aimed to use resting-state photoacoustic tomography 

(PAT) imaging to assess the impact of an acute inflammatory injury in the neonatal rat brain. 
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8.3.1 Local SO2 values are significantly lower in the injured group, as 

compared to sham controls. 

The regional cerebral tissue SO2 significantly decreased in the corpus callosum (LPS injection 

site) and in the left cortex (ipsilateral to the injection locus), however this reduction was no fully 

explained by histological evidence. Lectin immunochemistry showed fragmented vessels only on 

the left cortex but not on the corpus callosum. This finding may support the need of PAT imaging 

as complementary information to histological analyses; however there are some factors that 

might explain the lack of consistency. First, the spatial differences between the analyzed ROIs in 

vivo and the portion of tissue examined ex vivo; even with anatomical markers (such as the 

position of the lateral ventricles) the extent of tissue slices may not be an exact correspondence to 

the chosen ROIs, explaining thus the mismatch. Second, the poor vascularization of the corpus 

callosum may hamper the technique to quantify microvasculature. Finally, since not all brains 

were processed for histology, the smaller size of the sample for lectin analysis is another clear 

limitation. 

8.3.2 Bilateral functional connectivity decreases significantly in pups with 

inflammatory brain injury. 

No differences were found in the injured group as compared to shams. This may be explained by 

the absence of resting-state networks in very premature pups or the presence of intact RSNs even 

in the absence of corpus callosum. However, instrument noise is clearly one of the limitations of 

the technique. Even after the removal of several confounding factors no differences were found in 

connectivity between groups. The large amount of within-group variability did not allow the 

extraction of meaningful results. The use of PAT as a noninvasive, depth-sensitive technology is 

better suited to extract information averaged over large voxel regions with multiple measures, in 

order to minimize the effect of noise. 
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CONCLUSION AND RECOMMENDATIONS 

In this thesis a variety of functional connectivity techniques with optical imaging has been 

applied to study the effects of diseases in the rodent brain. The results suggest that there is a 

reorganization of the resting-state networks in murine models of epilepsy and arterial stiffness; 

furthermore, the changes are not consistent across all contrasts, suggesting a potential uncoupling 

of the hemodynamic parameters and metabolic activity. Finally, functional connectivity using 

photoacoustics was not affected by the presence of a white matter injury in the newborn brain. 

Limitations of the proposed works 

Imaging sampling frequency 

Removal of physiological confounds is only possible with short enough sampling period (Cordes 

et al., 2001). In the adult mouse, respiratory frequency-related components (~2Hz under urethane 

anesthesia) will not artificially appear because of our sufficient sampling rate (fs/2 = 2.5 Hz). 

However cardiac frequencies (8.3 – 10Hz) will be aliased into the lower frequency range 

(Suckow, Danneman, & Brayton, 2001). 

In the newborn rat, cardiac rate varies between 4 – 6 Hz (Smotherman, Robinson, Ronca, Alberts, 

& Hepper, 1991) and respiratory frequency is around 2.5 – 2.8 Hz (Kroon et al., 2011; 

Pendlebury et al., 2008); due to the low sampling rate (fs/2 = 0.45 Hz) of the PAT system we 

expect these signals to be heavily aliased into the lower frequencies. 

Even with adequate sampling rate, there are low-frequency physiological variations that cannot 

be removed by frequency filtering; such is the case of arterial CO2 concentration and blood 

pressure variations which are in the same frequency range as the resting-state fluctuations.  

Temporal filtering 

The choice of cut-off frequencies of the band-pass filter (0.009 – 0.08 Hz) may not be optimal for 

the animal models, even though they were chosen from the existing literature in rodent models 

(Bero et al., 2012; Guilfoyle et al., 2013; Jonckers et al., 2011; Li et al., 2012; Brian R White et 

al., 2011). However the higher frequencies cannot always be considered to contain only noise; 

recent studies have shown that useful resting-state neural information is present at 0.2 or even 0.5 

Hz (Feinberg et al., 2010; Smith et al., 2013). 
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Time scale 

The optical techniques were used to image the co-variation of hemodynamic activity in distant 

regions, focused on the slow fluctuations between 12.5 and 111 seconds. Conversely, it is 

commonly accepted that electrophysiological oscillations can be distinguished within five time-

scales, ranging from milliseconds to around one second (Ganzetti & Mantini, 2013). Although 

power of gamma frequency has been shown to correlate with hemodynamic signal, while 

remaining spatially coherent (B. J. He et al., 2008). An important step towards a better 

understanding of functional imaging RSNs should involve evidence from electrophysiological 

and hemodynamic studies. Multimodal imaging has been used to investigate correlates between 

neuronal and hemodynamic signals in the brain (B. J. He et al., 2008; Nir et al., 2008; Shmuel et 

al., 2006). 

Head motion 

Although movement of the adult mouse is perfectly restrained by the use of a stereotactic frame 

and urethane anesthesia, this not the case of the newborn rat. Light isoflurane anesthesia together 

with an imperfect fixation frame allows motion artifacts. It is important to note that the absence 

of teeth and incomplete ossification of the skull in newborn rats represent a challenge to motion-

restriction apparatus. 

Removing physiological confounds: When are nuisance regressors one too many?  

In this work we have chosen to regress one or more signals, either the average signal from all 

brain pixels, the deeper white matter, the lateral ventricles or three rigid-body motion parameters. 

There remains the question if some signal of interest has been removed. This is not the case for 

white matter, lateral ventricle or motion parameters, since they are not expected to contain any 

variance of interest. Nevertheless, the case of the global brain signal is different. It has been 

shown that global signal regression introduces artificial anti-correlation where there was none 

(Murphy et al., 2009; Weissenbacher et al., 2009), but some studies show that a neural basis for 

these anticorrelations is probable (Chai, Castañón, Ongür, & Whitfield-Gabrieli, 2012; Fox et al., 

2009). The use of global signal regression is still open to debate and depends on further 

investigations (Smith et al., 2013), however it is not recommended by some recent studies 

(Murphy, Birn, & Bandettini, 2013). 

Noisy measurements 
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The main proof of resting-state networks unraveled by seed-based fc analyses is the similarity of 

correlation maps to specific functional areas delineated in the cortex. When looking at HbO2 and 

HbR data this similarity is very evident, but it is not the case for all the contrasts. Fc maps 

obtained from CBF measures do not show a striking resemblance to definite functional areas, in 

fact due to spatio-temporal noise only the pixels around the seed are strongly correlated; this 

issue makes CBF maps of sub-optimal quality and therefore the derived CMRO2 data. In the 

opinion of the author this drawback may limit the use of LSCI as a tool for functional 

connectivity studies. 

Effects of anesthesia in resting-state networks 

Resting-state networks in the rodent have been unraveled under different anesthetic agents, 

suggesting that coherent spontaneous fluctuations in the brain transcend the state of 

consciousness. Medetomidine hydrochloride has been shown to give consistent results in 

functional connectivity studies in rodents (Pawela et al., 2008; F. Zhao et al., 2008), as well as 

Ketamine/Xylazine (Bero et al., 2012; Brian R White et al., 2011), chloral hydrate/urethane (Li et 

al., 2012) and isoflurane (Guilfoyle et al., 2013). A recent study showed a significant decrease in 

connectivity strength in the anesthetized rat brain (Liang, King, & Zhang, 2012), although the 

topological features on the whole-brain were well maintained. Nevertheless, all anesthetics alter 

cerebral blood flow and metabolism and their impact in functional connectivity is not yet fully 

understood. 

Future improvements 

 Increase imaging sampling rate 

In order to mitigate or even suppress aliasing of respiratory and cardiac frequencies, 

improvements on the OIS/LSCI setup could be made; since frame rate was mainly limited by the 

speed of data streaming to disk the most straightforward improvement would be switching to a 

computer with faster bus frequency and saving data to a solid-state disk. In theory, the maximal 

frame rate of the system could be achieved (fs/2 = 10Hz), thus suppressing aliasing. 

Optimizing CBF measures 

Accurate estimation of speckle contrast depends on a variety of parameters, speckle size, window 

size, integration time and camera noise. In this work, the effect of window size on the speckle 
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images was tested for different window sizes, from 5 to 11 pixels, in close agreement with the 

optimal size (7×7 pixels) found in the literature (Boas & Dunn, 2010). The actual size of the 

window had a negligible effect in the final correlation maps. The camera aperture was chosen to 

match the speckle size with pixel size, but a test could be made to empirically choose the best 

aperture. In a particular experimental setup the speckle contrast is measured as a function of the 

camera aperture, then the optimal aperture is chosen where the speckle contrast is maximum. The 

integration time was also chosen to be close to the decorrelation time in rodents (S. Yuan, Devor, 

Boas, & Dunn, 2005), but a test to determine of the optimal integration time yielding the highest 

speckle contrast should be performed. A similar test can be run to find the optimal camera gain. 

Limiting newborn head motion 

Given the light condition of anesthesia in newborn rats, involuntary head motion remains an 

issue; a redesigned frame that would effectively impede motion while being harmless to the pup 

would be an important improvement on the experimental conditions. 

Additional cleanup techniques 

The removal of physiological confounds can be possible by their simultaneous recording 

and by following standard regression techniques. Currently the OIS/LSCI system allows 

recording several variables (ECG, temperature, blood pressure), which could be eventually 

included as nuisance regressors, a method akin to those used in fMRI (Birn, Diamond, Smith, & 

Bandettini, 2006). The addition of a synchronized physiological monitoring device to the PAT 

system would also enable the inclusion of this cleanup technique. 

Reduce spatial variability in seeds placement 

Although manual placement of the seeds for each subject has advantages, e.g. to avoid large 

vessels it can be cumbersome and introduce variability to our studies. The addition of a pre-

processing stage where all the images would be aligned to an atlas would simplify the individual 

placement of the seeds, and eliminate the variability due to placement differences in the seeds. 

Another option would be to acquire an activation dataset along with the resting-state data. Then, 

place the seeds at the coordinates of the highest activated pixels cluster. This latter option would 

make a less arbitrary choice for seeds positioning. 

Exploring different functional connectivity techniques 
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Seed-based functional connectivity, despite its relative ease of implementation and interpretation, 

also possesses several drawbacks, such as the dependence on the a priori definitions of seeds. 

Although the widely applied ICA technique shows similar results to seed-based functional 

connectivity (Van Dijk et al., 2010), it has some advantages and is worth of exploration. Data-

driven techniques such as ICA may be less affected by the physiological confounds, even when 

these physiological frequencies become aliased into the low-frequency range of the resting state 

fluctuations (Beckmann et al., 2005). 
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ANNEX 1 –MATLAB TOOLBOXES 

 

Figure A-1: Screenshots of an example of fcOIS toolbox running under SPM8. Configuration 

options for each individual module are shown on the right window. Module names are displayed 

on the left window: (A) Pre-processing stage (B) Analysis at subjects level (C) Analysis at group 

level. fcOIS toolbox is specifically conceived for batch processing of data. Its modules are 

executed automatically, one after another, with little user supervision. The processing pipeline is 

saved to a file, ensuring the reproducibility of the data analysis; this toolbox therefore allows 

users to concentrate on assessing the results. 
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Figure A-2: Screenshots of an example of fcPAT toolbox running under SPM8. Configuration 

options for each individual module are shown on the right window. Module names are displayed 

on the left window: (A) Pre-processing stage (B) Analysis at subjects level (C) Analysis at group 

level (D) Miscellaneous options. For details refer to Figure A-1. 
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