
UNIVERSITÉ DE MONTRÉAL

MATHEMATICAL PROGRAMMING OF PEIRCE-SMITH CONVERTING

ALESSANDRO NAVARRA

DÉPARTEMENT DE MATHÉMATIQUES ET DE GÉNIE INDUSTRIEL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

THÈSE PRÉSENTÉE EN VUE DE L’OBTENTION

DU DIPLÔME DE PHILOSOPHIÆ DOCTOR

(GÉNIE INDUSTRIEL)

AOÛT 2013

c© Alessandro Navarra, 2013.

UNIVERSITÉ DE MONTRÉAL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

Cette thèse intitulée :

MATHEMATICAL PROGRAMMING OF PEIRCE-SMITH CONVERTING

présentée par : NAVARRA Alessandro

en vue de l’obtention du diplôme de : Philosophiæ Doctor

a été dûment acceptée par le jury d’examen constitué de :

M. ANJOS Miguel F., Ph.D., président

M. SAVARD Gilles, Ph.D., membre et directeur de recherche

M. AJERSCH Frank, Ph.D., membre et codirecteur

M. STUART Paul, Ph.D., membre

M. MUNZ Richard J., Ph.D., membre

iii

In memory of our lost friend and mentor,

Ralph Harris. . .

iv

ACKNOWLEDGEMENTS

In the spring of 2005, near the end of my undergraduate studies in materials engineering

at McGill University, Professor Ralph Harris and researcher Ka Wing Ng introduced me to

the problem of Peirce-Smith converter scheduling. This topic was prominently featured in

my final undergraduate workterm report, submitted in the summer of 2005.

The following two years were devoted primarily to my Master’s degree in applied math-

ematics at McGill University. Although my Master’s research was not directly related to

Peirce-Smith converting, I was briefly exposed to mathematical programming during the

coursework. Ralph and Wing trusted my intuition that mathematical programming could

be used to optimize converting schedules, and led me to Dr Joël Kapusta (Formerly of Air

Liquide), who also had an interest in Peirce-Smith converting.

At École Polytechnique, I have been privileged by two outstanding (and patient) super-

visors. Firstly, Frank Ajersch had been a longtime associate of Ralph, and a distinguished

expert in Peirce-Smith converting. Frank agreed to have me as a student, and connected

me to my other supervisor, Gilles Savard, an expert in mathematical programming. Ulti-

mately, it was Gilles’ description of the course offerings that convinced me to study in the

Département de mathématiques et de génie industriel. Indeed, it has been an honour to study

under such talented and passionate professors, including Guy Desaulniers, Dominique Orban,

André Langevin, Charles Audet and Louis-Martin Rousseau.

In the spring of 2007, shortly before my doctoral studies, Ralph transferred from McGill

University to the Royal Melbourne Institute of Technology. Even from a distance, Ralph was

expected to have a leading role in my doctoral research. Yet he passed away suddenly on

July 12th, less than two months before the beginning of my doctoral studies.

Following the tragic passing of Ralph, it was unclear if the mathematical programming

of Peirce-Smith converting would still be a viable line of research, especially since Wing had

accepted a position at CANMET and was no longer available. However, Joël and Air Liquide

agreed to support my work, in spite of the dramatic change in personnel.

Having now completed my doctoral studies, my sincere acknowledgement and gratitude

are due to Ralph and Wing who introduced me to Peirce-Smith converting, as well as Joël,

Frank and Gilles who supported me through difficult times. Financial support was provided

by Air Liquide and the Fonds québécois de la recherche sur la nature et les technologies.

v

RÉSUMÉ

Le convertissage par méthode Pierce-Smith (PS) est l’étape clé de la production de cuivre

et du nickel. Cette opération se poursuit par des étapes séquentielles et présentent un cas idéal

pour la programmation mathématique. Ce travail démontre les complexités thermochimiques

et les étapes du convertissage au moyen d’un programme linéaire (PL) en nombres entiers

mixtes. Ceci est la première fois que le convertissage PS est abordé dans un cadre de program-

mation mathématique et représente un avancement majeur de l’application de la recherche

opérationnelle aux étapes de production des fonderies de cuivre et de nickel.

Les résultats démontrent que le cadre mathématique est fonctionnel, et peut être utilisé

quotidiennement pour la gestion optimale des séquences d’opération de l’élaboration de cuivre

et de nickel. Le cadre est flexible quant à la définition des contraintes du système et de la

fonction objective. Cette flexibilité évoque la formulation de divers modes d’opération des

fonderies. Le cadre pourra être exploité en forme de logiciel industriel que les fonderies pour-

raient utiliser pour coordonner la production journalière, et de varier leur mode d’opération

selon les conditions de l’usine et du marché.

Le cadre a été formulé suivant une méthodologie qui est typique de la programmation

mathématique, mais qui n’avait jamais été adaptée au convertissage PS. Premièrement, le

problème se pose en forme générale. En effet, Le problème de convertissage consiste de la

coordination des convertisseurs PS avec d’autres opérations dans la fonderie afin de max-

imiser la production durant une période fixe, tout en respectant les contraintes chimiques,

volumétriques et thermiques. Deuxièmement, les diverses composantes et dimensions du

système sont représentées par des structures algébriques générales; c’est-à-dire, des ensem-

bles, des paramètres et des variables. Troisièmement, ces composantes sont liées de telle

manière à ce que la formulation puisse être supportée par des techniques de résolution.

Les techniques de résolution par la programmation linéaire (PL) en nombres entiers mixtes

sont bien établies. Par contre, il a été nécessaire d’introduire des simplifications pour pou-

voir résoudre le problème des convertissages par l’adoption d’un cadre hypothétique de PL

en nombres entiers mixtes. En considérant la vaste gamme de problèmes qui ont été déjà

abordées dans ce type de cadre, il semblait raisonnable que le convertissage PS nécessiterait

seulement des simplifications mineures.

En fait, le nouveau cadre mathématique exige certaines simplifications. En particulier,

vi

il impose une rigidité artificielle sur deux températures variables : la température nominale

d’effluent gazeux, et la température d’écrémage de la scorie. Ces simplifications peuvent être

considérées mineures, puisqu’il existe des logiciels qui ne traitent même pas ces quantités

comme variables. En outre, il semble maintenant plausible de formuler un cadre non linéaire

qui fournirait un traitement plus robuste et réaliste qui tient compte de ces températures.

Les résultats de cette étude ont un attrait considérable pour les industries de cuivre et de

nickel, puisque l’opération efficace d’une fonderie dépend directement de la coordination quo-

tidienne de la production. Suivant les succès du travail actuel, des efforts superficiels provo-

queront des changements majeurs dans les opérations journalières des fonderies de cuivre et

de nickel.

vii

ABSTRACT

Peirce-Smith (PS) converting is central to the production of copper and nickel, and is a

lucrative, yet previously undeveloped, context for mathematical programming. The thermo-

chemical complexities of PS converting have now been represented within a mixed-integer

linear program (MILP). This is the first time that PS converting has been treated within

a mathematical programming framework, hence a major advancement in the operations re-

search of copper and nickel smelters.

The MILP framework is now functional, and can be used to construct optimal daily

production schedules. The framework offers flexibility in the definition of system constraints

and objective functions. This flexibility can accommodate the formulation of alternative

modes of operation for smelters. The MILP framework can now be marketed as industrial

software, to produce optimal daily schedules, and allow smelters to change their mode of

operation in accordance to plant and market conditions.

The framework has been created using a methodology that is typical of mathematical

programming, but which had never been adapted to Peirce-Smith converting. Firstly, the

problem has been posed in appropriately general terms; indeed, the PS Converter Problem

is to coordinate Peirce-Smith converters with other objects in the smelter, so as to maximize

production within a fixed period of time, while respecting chemical, volumetric and thermal

constraints. Secondly, the various components and dimensions of the system have been rep-

resented using general algebraic structures, such as sets, parameters and variables. Thirdly,

these components have been related to each other in a manner that can be supported by

solution techniques.

The solution techniques for MILP are well established. However, it was initially unclear

what degree of simplification would be required in order to fit the PS Converter Problem

into a hypothetical MILP framework. Given the vast scope of problems that have already

been treated using MILP, it seemed plausible that the PS Converter Problem would require

only minor simplifications.

The new MILP framework has indeed required some simplification. More precisely, the

framework imposes an artificial rigidity on two classes of temperature variables: nominal

offgas temperatures, and skimming temperatures. These simplifications can be considered

minor, since there are existing software tools that do not even treat these quantities as

viii

variables. Moreover, it now seems plausible to extend the current formulation into a nonlinear

framework that would provide a more intensive and realistic treatment of the offgas and

skimming temperatures.

The results of this study have a considerable appeal to the copper and nickel industries,

since the efficient operation of a smelter is directly linked to its scheduling practice. Following

the successes of the current work, superficial efforts will cause major changes in the daily

operations of copper and nickel smelters.

ix

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

RÉSUMÉ . v

ABSTRACT . vii

TABLE OF CONTENTS . ix

LIST OF TABLES . xiii

LIST OF FIGURES . xv

NOMENCLATURE . xviii

LIST OF APPENDICES . xxvi

CHAPTER 1 PEIRCE-SMITH CONVERTING AND EXTRACTIVE METALLURGY 1

1.1 Importance of PS Converting . 1

1.1.1 Global Presence . 1

1.1.2 Interdisciplinary Divide . 1

1.2 Overview of Extractive Metallurgy . 3

1.2.1 Mineral Concentration . 3

1.2.2 Pyrometallurgical and Hydrometallurgical Extraction 4

1.2.3 Hybridization of Pyro- and Hydrometallurgical Extraction 7

1.2.4 Further Divisions within Extractive Metallurgy 8

1.2.5 Extraction of Copper and Nickel . 10

1.3 Overview of PS Converting . 13

1.3.1 PS Converting as a Bessemerization Process 13

1.3.2 Matte Converting Reactions . 16

1.3.3 PS Converting Technology . 19

1.3.4 The PS Converter Problem . 25

x

CHAPTER 2 SEMI-DISCRETE DYNAMICS OF PS SYSTEMS 27

2.1 Gantt Structure . 27

2.1.1 Assignments . 27

2.1.2 Dependencies . 30

2.2 PS Converters as State-Machines . 31

2.2.1 States and Transitions . 31

2.2.2 Converting Actions . 34

CHAPTER 3 CHARACTERIZATION OF CHEMICAL STREAMS IN PS SYSTEMS 38

3.1 Elements, Species and Streams . 38

3.1.1 General Representation of Chemical Converting 38

3.1.2 General Representation of PS Converting 40

3.2 Species-Based Distribution of Mass, Volume and Heat 42

3.2.1 Mass Distribution Within a Process Stream 42

3.2.2 Volume Distribution Within a Process Stream 44

3.2.3 Heat Distribution Within a Process Stream 45

3.2.4 Heat Distribution Across Several Process Streams 49

3.3 Characterization of Feed Streams . 51

3.3.1 Furnace Matte . 51

3.3.2 Fluxes and Secondary Feeds . 53

3.3.3 Blast . 56

3.4 Characterization of Product Streams . 58

3.4.1 Regime-Dependence of Product Species 58

3.4.2 Mass Distribution Across the Product Streams 61

3.5 Flow Mechanisms . 63

3.5.1 Streams, Actions and Flow Mechanisms 63

3.5.2 Modulated Charging and Discharging 66

CHAPTER 4 MILP FORMULATION OF THE PSC PROBLEM 69

4.1 Gantt Structure . 69

4.1.1 Assignments . 69

4.1.2 Dependencies . 71

4.2 PS Converters as State-Machines . 73

4.2.1 States and Transitions . 73

4.2.2 Converting Actions . 79

4.3 Intermediate Computations . 80

4.3.1 Intermediate Variables . 80

xi

4.3.2 Blast Elemental Masses . 83

4.3.3 Product Species Masses . 84

4.3.4 Blast Heat . 86

4.3.5 Offgas Heat . 87

4.3.6 Discharge Heat . 89

4.3.7 Environmental Heat Losses . 92

4.4 Forward State Computation . 93

4.4.1 Retained Feed Masses . 93

4.4.2 Retained Product Species Masses . 94

4.4.3 Retained Heat . 95

4.5 Feasible Converter Transitions . 96

4.5.1 Direct Transition Constraints in General Linear Form 96

4.5.2 Bath Composition Constraints . 98

4.5.3 Volume Constraints . 106

4.5.4 Temperature Constraints . 108

4.5.5 Indirect Transition Constraints in General Linear Form 112

4.6 Global Objectives and Constraints . 113

4.6.1 Optimization of Nongaseous Flows and of Transition Types 113

4.6.2 Limiting of Nongaseous Flows and of Transition Types 114

CHAPTER 5 THE SINGLE-CYCLE PSC PROBLEM AND SAMPLE COMPUTA-

TIONS . 116

5.1 Adaptation of the PS MILP Formulation . 116

5.1.1 Topological and Initial Conditions . 116

5.1.2 Critical Overlap Decomposition . 118

5.1.3 Dominance Condition for the Critical Stage 122

5.1.4 Maximizing the Productivity of a Single Converting Cycle 125

5.2 Software Systems . 129

5.2.1 AMPL and CPLEX . 129

5.2.2 Excel and VBA . 130

5.3 Sample Computations . 133

5.3.1 Sample Computations for a Copper PS Converter 133

5.3.2 Sample Computations for a Nickel-Copper PS Converter 141

CHAPTER 6 EXTENSIONS OF THE PSC MILP FORMULATION 148

6.1 Nonlinearity of the PS Converter Problem 148

6.1.1 Relaxation of the Complete-Discharge Condition 148

xii

6.1.2 Heat Transfer . 150

6.2 PS Operations Research . 159

6.2.1 From Mathematical Programming to Advanced Algorithm Design . . 159

6.2.2 Fomenting Innovation . 161

REFERENCES . 162

APPENDICES . 179

xiii

LIST OF TABLES

TABLE 1.1 Summary of Bessemerization processes 16

TABLE 1.2 Species present in matte, in increasing order of thermodynamic stability 18

TABLE 1.3 SO2 content of offgas streams, calculated as a function of blast en-

richment, assuming oxygen efficiencies from 85 to 95%, and dilution

factors ranging of 2 to 2.5 . 23

TABLE 3.1 Density and temperature response parameters for product species in

Peirce-Smith systems [59, 60] . 46

TABLE 3.2 Description levels for fluxes and secondary feeds 53

TABLE 3.3 Elemental composition of a revert stream k [66] 54

TABLE 3.4 Density and temperature response parameters [59, 60] for j ∈ Ŝk,
where k is a revert stream that was formed by the accumulation of

flue dust, having the elemental composition given in Table 3.3 . . . 55

TABLE 3.5 Stability of regime-dependent species the General Nickel-Copper PSC

Formulation . 59

TABLE 3.6 Stability of regime-dependent species in the Simplified Copper PSC

Formulation . 60

TABLE 3.7 Decomposition of feed and product streams with respect to converting

actions . 63

TABLE 4.1 Classification of the converter variables included in the current MILP

implementation . 82

TABLE 4.2 Default values for mass-fraction bounds 103

TABLE 5.1 User input for sample copper PSC computations (System Parameters) 134

TABLE 5.2 User input for sample copper PSC computations (Converting Cycle) 134

TABLE 5.3 User input for sample copper PSC computations (Feeds) 136

TABLE 5.4 User input for sample copper PSC computations (Temperatures) . . 137

TABLE 5.5 Feed tonnages from copper PSC computations 139

TABLE 5.6 User input for sample nickel-copper PSC computations (System Pa-

rameters) . 143

TABLE 5.7 User input for sample nickel-copper PSC computations (Converting

Cycle) . 143

TABLE 5.8 User input for sample nickel-copper PSC computations (Feeds) . . . 144

TABLE 5.9 User input for sample nickel-copper PSC computations (Temperatures)144

TABLE 5.10 Feed tonnages from nickel-copper PSC computations 147

xiv

TABLE 6.1 Values for rkS and rkO for the different reaction regimes 154

xv

LIST OF FIGURES

FIGURE 1.1 Relationship between mine sites, scrap yards and extractive metal-

lurgical plants . 4

FIGURE 1.2 Stages of pyrometallurgical and hydrometallurgical extraction . . . 5

FIGURE 1.3 Classification of post-mineral extractive metallurgical processes . . 8

FIGURE 1.4 Flow diagram for a conventional copper smelter 11

FIGURE 1.5 Input and output streams of a Bessemerization process 13

FIGURE 1.6 Bath volume during Slag-Blow stage (a) prior to blow, (b) after

blow, (c) after skimming . 17

FIGURE 1.7 Newly commissioned Peirce-Smith converter at the Harjavalta Oy

Smelter [38] . 20

FIGURE 1.8 Interior of a Peirce-Smith converter 20

FIGURE 1.9 Interaction between offgas and external air 22

FIGURE 1.10 Interior of a Hoboken converter (side-view) 24

FIGURE 1.11 Relationship between O2 enrichment and the demand for cold charge 24

FIGURE 1.12 ALSI Technology [7] . 24

FIGURE 1.13 Converter aisle at the Xstrata Nickel Smelter in Sudbury [46] . . . 26

FIGURE 2.1 Gantt chart of a Peirce-Smith converting aisle. The schedule begins

at time tBegin and ends at time tEnd. The discrete events are marked

with short dashes along the time axis. 27

FIGURE 2.2 Depiction of assignment dependency. In this case, the charging of an

empty converter (black) requires the assistance of two cranes (grey). 30

FIGURE 2.3 Venn diagram describing the object classes of a Peirce-Smith system.

The PSC class is a critical state-machine class. 32

FIGURE 2.4 Converter transition diagrams for (a) typical copper PS systems,

and (b) typical nickel PS systems. The transition types are num-

bered (1) InitialCharge, (2) SlagBlow, (3) Skim, (4) Recharge, (5)

CopperBlow, (6) ScrapCharge, and (7) EndCycle. 33

FIGURE 2.5 Converter transition diagrams for (a) Simplified copper PS systems,

and (b) Simplified nickel PS System. The transition types are la-

beled (I) BeginSlagBlowStage, (II) ContinueSlageBlowStage, and

the remainder are numbered as in Figure 2.4. 35

FIGURE 2.6 Generic converter transition . 35

FIGURE 2.7 Converter transitions having one converting action 36

xvi

FIGURE 2.8 Converter transitions having two converting actions 36

FIGURE 3.1 Elemental mass distribution, for the General Nickel-Copper PSC

Formulation . 38

FIGURE 3.2 Level 1 is upgraded to Level 2 using a speciation technique, and

Level 2 is upgraded to Level 3 using the results of Section 3.2 . . . 54

FIGURE 3.3 A stream k, composed of 3 elements Ek = {i, i′, i′′}, is projected into

the convex hull of 4 species . 55

FIGURE 4.1 Schematic representation of a converter transition 79

FIGURE 4.2 Bounds are placed on the overall bath composition and individual

stream composition, placing restrictions prior to charging, following

blowing and following discharging 98

FIGURE 4.3 Volume evolution during converter transition 107

FIGURE 4.4 Temperature evolution during converter transition 108

FIGURE 5.1 EndPreviousCycle and EndCurrentCycle transitions 116

FIGURE 5.2 Converter transition diagrams to adapt (a) typical copper PS sys-

tems, and (b) typical nickel PS System to the SC-PSC formulation.

The transition types are numbered (1) InitialCharge, (2) SlagBlow,

(3) Skim, (4) Recharge, (5) CopperBlow, (6) ScrapCharge, and (7)

EndCycle. 117

FIGURE 5.3 Critical Overlap Decomposition 119

FIGURE 5.4 Offgas treatment capacity limiting production to no more than two

simultaneous blowing actions . 119

FIGURE 5.5 Shortage of ancillary objects at (a) the beginning of cycle and (b)

the end of the cycle . 120

FIGURE 5.6 Optimal production schedules for two-converter systems, having dif-

ferent dCrit to dCycle ratios . 123

FIGURE 5.7 Optimal production schedules for a three-converter system, having

different dCrit to dCycle ratios . 124

FIGURE 5.8 Construction of the productivity ratio objective for the SC-PSC

Problem . 128

FIGURE 5.9 Interaction between Excel and the optimization platform which con-

sists of AMPL and CPLEX . 131

FIGURE 5.10 First page of the user interface for sample copper PSC computations 133

FIGURE 5.11 Objective functions from sample copper PSC computations 138

FIGURE 5.12 Optimal Gantt charts from sample copper PSC computations . . . 139

FIGURE 5.13 Bath volume from sample copper PSC computations 140

xvii

FIGURE 5.14 Bath temperature from sample copper PSC computations 140

FIGURE 5.15 Converter transition diagrams for limited access to the smelting fur-

nace. The transition types are numbered (1) InitialCharge, (2) Slag-

Blow, (3) Skim, (4) Recharge, (5) SlagBlowAndSkimWithoutAny-

MoreFeedMatte, (6) ExtendProductionCycleWithoutAnyMoreFeed-

Matte. 142

FIGURE 5.16 First page of the user interface for sample nickel-copper PSC com-

putations . 142

FIGURE 5.17 Objective functions from sample nickel-copper PSC computations . 146

FIGURE 5.18 Optimal Gantt charts from sample nickel-copper PSC computations 146

FIGURE 5.19 Bath volume from sample nickel-copper PSC computations 147

FIGURE 5.20 Bath temperature from sample nickel-copper PSC computations . 147

FIGURE 6.1 Splitting of a product stream during a discharge 149

FIGURE 6.2 Simplified geometry of a converter that has no mouth 157

FIGURE 6.3 Extraction of Topological Information from a Gantt Chart 160

xviii

NOMENCLATURE

Sets

A Assignments

A◦ Assignments from the previous schedule that are considered in the cur-

rent optimization

Ai Assignments of class i

Aij Assignments of object (i, j)

APSC Assignments (transitions) of the PSC class

C Object classes

Dik Dependency clauses for assignment type k of class i

DPSCk Dependency clauses for transition type k of the PSC class

E Chemical elements

Ek Chemical elements constituting stream k

F Flow mechanisms

FBlast Blast flow mechanisms

FCh Flow mechanisms acting on charge streams

FDCh Flow mechanisms acting on discharge streams

FFeed Flow mechanisms acting on feed strems

Fk Flow mechanisms acting on stream k

FNGBlow Flow mechanisms acting on nongaseous streams that are fed during

blowing actions

FOffgas Offgas flow mechanisms

FProd Flow mechanisms acting on product streams

FM Modulated flow mechanisms

FM
Ch Modulated flow mechanisms acting on charge streams

FM
DCh Modulated flow mechanisms acting on discharge streams

FMSM Modulated and semi-modulated flow mechanisms

FMSM
Ch Modulated and semi-modulated flow mechanisms acting on charge

streams

FMSM
DCh Modulated and semi-modulated flow mechanisms acting on discharge

streams

FSM Semi-modulated flow mechanisms

FSM
Ch Semi-modulated flow mechanisms acting on charge streams

xix

FSM
DCh Semi-modulated flow mechanisms acting on discharge streams

FUM Unmodulated flow mechanisms

FUM
Ch Unmodulated flow mechanisms acting on charge streams

FUM
DCh Unmodulated flow mechanisms acting on discharge streams

LDTrans
PSC Direct transition feasibility clauses implemented in general linear form

LTrans
PSC Transition feasibility clauses implemented in general linear form

R Reaction regimes

Rj Reaction regimes in which species j is stable

S Species

SFeed Species that constitute the feed streams

Sk Species that constitute stream k

SNGProd Species that constitute the nongaseous product streams

SProd Species that constitute the product streams

SRgProd Species that constitute the product streams, and whose stability de-

pends on the reaction regime

Ti Assignment types of class i

TPSC PSC transition types

TPSC,Crit PSC transition types that constitute the critical stage (relevant to the

SC-PSC problem)

TPSC,Empty PSC transition types that cause the object converter to be empty

TPSC,IDCh PSC transition types that include a discharging action, but do not

result in an empty converter

T −
PSCk PSC transition types that may precede a transition of type k

T −PSC,Crit PSC transition types that occur prior to the critical stage (relevant to

the SC-PSC problem)

T +
PSC,Crit PSC transition types that occur after to the critical stage (relevant to

the SC-PSC problem)

Z Streams

ZBlast Blast streams

ZBlow Streams that are red or removed during the blowing action

ZCh Streams that are fed during the charging action

ZDCh Streams that are removed during the discharging action (is identical to

ZProd)

ZFeed Feed streams

ZNG Nongaseous streams

ZNGFeed Nongaseous feed streams

xx

ZNGProd Nongaseous product streams

ZProd Product streams (is identical to ZDCh)

Mappings and Operators

srce(j) Source stream of flow mechanism j

class(l) Class of assignment l

obj(l) Object of assignment l

l− Predecessor of assignment l

l+ Successor of assignment l

Parameters

d Upper bound on the duration of assignments

dkBlow, d
k

Blow Minimum and maximum duration of the blowing action, during a tran-

sition of type k

dkCh, d
k

Ch Minimum and maximum duration of the charging action, during a tran-

sition of type k

dkDCh, d
k

DCh Minimum and maximum duration of the discharging action, during a

transition of type k

dki , d
k

i Minimum and maximum duration of segment i, during a transition of

type k

eO Oxygen efficiency

φkj Volume fraction of gaseous species j in the blast of a transition of type

k

ḣkBlast Rate at which heat is introduced into the bath as part of the blast,

during a the blowing action of a transition of type k

hobj(l), h
obj(l)

Lower and upper bound on the bath heat that is permitted in obj(j)

hPSCj, h
PSCj

Lower and upper bound on the bath heat that is permitted in PSC j

nAsgni Upper bound on the number of assignments that a member of class i

may undertake in the current schedule

nCrit Maximum number of converters that may be simultaneously in the

critical stage (relevant to the SC-PSC problem)

ni Number of members in object class i

ṁk
iBlast Mass rate at which element i is introduced into the bath as part of the

blast, during a the blowing action of a transition of type k

xxi

Mi Atomic mass of element i

Mj Molecular mass of species j

ρj Density of species j

ρNorm
j Density of gaseous species j, as measured under Normal conditions

ρk Density of stream k

t Upper bound on the assignment completion times of the current sched-

ule

tBegin Time at which the current schedule begins

tEnd Time at which the current schedule ends

T Blastk Blast temperature of transition type k

T Blowk, T
Blowk

Minimum and maximum bath temperature that is permissible during

the discharging action of a transition of type k

TDChk Bath temperature at the end of the discharging action of a transition

of type k (relevant when k is an intermediate discharge transition type,

k ∈ TPSC,IDCh)

TDChk, T
DChk

Minimum and maximum bath temperature that is permissible during

the discharging action of a transition of type k

T obj(l), T
obj(l)

Lower and upper bound on the bath temperature that is permitted in

obj(j)

TOffgask Nominal offgas temperature of transition type k

T PSCj, T
PSCj

Lower and upper bound on the bath temperature that is permitted in

PSC j

ujk, ujk Minimum and maximum number of units that can be delivered through

flow mechanism j, during a transition of type k

vjk, vjk Minimum and maximum volume that can be delivered through flow

mechanism j, during a transition of type k

vBlowk,PSCj Maximum bath volume that is permitted in PSC j during the blowing

action of a transition of type k

vChk,PSCj Maximum bath volume that is permitted in PSC j during the charging

action of a transition of type k

vju Volume that is carried by a unit of a modulated flow mechanism j

vju Maximum volume that can be carried by a unit of a semi-modulated

flow mechanism j

v̇Normk
Blast Volumetric blast rate, during the blowing action of a transition of type

k, measured under Normal conditions

vobj(l) Maximum bath volume that is permitted in obj(j)

xxii

vPSCj Maximum bath volume that is permitted in PSC j

wij Weight fraction of element i in species j

wik Weight fraction of element i in stream k

wjk Weight fraction of species j in stream k

wBlastk
Hj Specific heat content of blast species j, as measured at the blast tem-

perature of transition type k

wBlowk
i , wBlowk

i Minimum and maximum weight fraction of element i that is permissible

in the bath of a converter that is completing the blowing action of a

transition of type k

wBlowk
Hj , wBlowk

Hj Minimum and maximum specific heat content of species j that is per-

missible during the blowing action of a transition of type k

wBlowk′

Hk , wBlowk′

Hk Minimum and maximum specific heat content of stream k that is per-

missible during the blowing action of a transition of type k′

wBlowk′

ik , wBlowk′

ik Minimum and maximum weight fraction of element i that is permissible

in stream k of a converter that is completing the blowing action of a

transition of type k′

wBlowk′

jk , wBlowk′

jk Minimum and maximum weight fraction of species j that is permissible

in stream k of a converter that is completing the blowing action of a

transition of type k′

wBlowk′

k , wBlowk′

k Minimum and maximum weight fraction of stream k that is permissible

in the bath of a converter that is completing the blowing action of a

transition of type k′

wDChk
Hj Specific heat content of species j during the discharging action of a

transition of type k (relevant when k is an intermediate discharge tran-

sition type, k ∈ TPSC,IDCh)

wDChk
Hj , wDChk

Hj Minimum and maximum specific heat content of species j that is per-

missible during the discharging action of a transition of type k

wDChk′

Hk , wDChk′

Hk Minimum and maximum specific heat content of stream k that is per-

missible during the discharging action of a transition of type k′

wDChk
i , wDChk

i Minimum and maximum weight fraction of element i that is permissible

in the bath of a converter that is completing the discharging action of

a transition of type k

wDChk′

k , wDChk′

k Minimum and maximum weight fraction of stream k that is permissible

in the bath of a converter that is completing the discharging action of

a transition of type k′

xxiii

w◦ki , w
◦k
i Minimum and maximum weight fraction of element i that is permissible

in the bath of a converter that is to begin a transition of type k

w◦k
′

ik , w
◦k′
ik Minimum and maximum weight fraction of element i that is permissible

in stream k of a converter that is to begin a transition of type k′

w◦k
′

jk , w
◦k′
jk Minimum and maximum weight fraction of species j that is permissible

in stream k of a converter that is to begin a transition of type k′

w◦k
′

k , w◦k
′

k Minimum and maximum weight fraction of stream k that is permissible

in the bath of a converter that is to begin a transition of type k′

wOffgask
Hj Specific heat content of offgas species j, as measured at the nominal

offgas temperature of transition type k

wRef
Hj Specific heat content of species j, as measured at the reference temper-

ature, 298.15 K

wRef
Hk Specific heat content of stream k, as measured at the reference temper-

ature, 298.15 K

Variables

βl
Rgk Regime determinant that is 1 iff the bath of obj(l) is in reaction regime

k at the end of transition l

βlk
Suppl′k′ Assignment support determinant that is 1 iff assignment l is of type k,

and is supported by assignment l′ that is of type k′

βl
Typek Assignment type determinant that is 1 iff assignment l is of type k

dCrit Duration of the critical stage (relevant to the SC-PSC problem)

dCycle Duration of the converting cycle (relevant to the SC-PSC problem)

dl Duration of assignment l

dlBlow Duration of the blowing action of transition l (is equal to dl4)

dlCh Duration of the charging action of transition l (is equal to dl2)

dlDCh Duration of the discharging action of transition l (is equal to dl6)

dli Duration of segment i of transition l

dl◦ Duration of time between the end of transition l− and transition l

hlBlast Heat that is blown into the melt as part of the blast of transition l

hlCh Heat that is introduced into obj(l) as part of the charge streams of

transition l

hlDCh Heat that is removed from obj(l) as part of the discharge streams of

transition l

hlEnvi Heat that is lost from the bath of obj(l) to the environment during

segment i of transition l

xxiv

hlEnv◦ Heat that is lost from the bath of obj(l) to the environment in the time

between the end of transition l− and the beginning of transition l

hlNGBlow Heat that is introduced into obj(l) as part of the nongaseous blow

streams of transition l

hlOffgas Heat that is convected out of obj(l) as part of the offgas stream of

transition l

hlRet Heat that is retained in the bath of obj(l) at the end transition l

ml
iBlast Mass of element i that is blown into the melt as part of the blast of

transition l

ml
iProd Mass of element i within the product streams of transition l

ml
jProd Mass of species j within the product streams of transition l

ml
jRetProd Mass of species j within the retained product streams of obj(l) at the

end of transition l

ml
k Mass of feed stream k that participates in transition l

ml
Retk Mass of feed stream k retained in the bath of obj(l) at the end of

transition l

tl Completion time of assignment l

Typel Assignment type of assignment l

ujl Number of delivery units used during transition l to carry srce(j) via

mechanism j, to or from obj(l)

vjl Volume of srce(j) delivered during transition l via mechanism j, to or

from obj(l)

wBlowl
i Weight fraction of element i in the bath of obj(l) at the end of the

blowing action of transition l

wBlowl
ik Weight fraction of element i in stream k of obj(l) at the end of the

blowing action of transition l

wBlowl
jk Weight fraction of species j in stream k of obj(l) at the end of the

blowing action of transition l

wBlowl
k Weight fraction of stream k in the bath of obj(l) at the end of the

blowing action of transition l

wDChl
i Weight fraction of element i in the bath of obj(l) at the end of the

discharging action of transition l

wDChl
k Weight fraction of stream k in the bath of obj(l) at the end of the

discharging action of transition l

w◦li Weight fraction of element i in the bath of obj(l) at the beginning of

transition l

xxv

w◦lik Weight fraction of element i in stream k of obj(l) at the beginning of

transition l

w◦ljk Weight fraction of species j in stream k of obj(l) at the beginning of

transition l

w◦lk Weight fraction of stream k in the bath of obj(l) at the beginning of

transition l

xxvi

LIST OF APPENDICES

APPENDIX A LITERATURE REVIEW OF PEIRCE-SMITH CONVERTING . . 179

A.1 Origins of PS Converting . 179

A.2 Incremental Improvements in PS Converting 181

A.3 Computational Modeling of PS Converting 184

A.4 Failure to Adapt Conventional Scheduling Algorithms to PS Converting . . 186

A.5 Pyrometallurgical Alternatives to PS Converting 187

APPENDIX B OVERVIEW OF MIXED INTEGER LINEAR PROGRAMMING . 190

B.1 Linear Programming and the Simplex Method 190

B.2 Alternatives to the Simplex Method . 196

B.3 Expansion of a Solved Linear Program . 198

B.4 Incorporation of Integer Variables . 202

B.5 Incorporation of Categorical Variables . 206

B.6 Importance of Linear Fractional Programming 210

APPENDIX C AMPL FILES USED FOR THE SC-PSC PROBLEM 213

C.1 mod File . 213

C.2 Sample dat Files . 233

C.3 run Files . 262

1

CHAPTER 1

PEIRCE-SMITH CONVERTING AND EXTRACTIVE METALLURGY

1.1 Importance of PS Converting

1.1.1 Global Presence

Peirce-Smith (PS) converting is applied in roughly 75% of the world copper production

and 50% of the world nickel production, within 25 countries and 6 continents [1, 2, 3]. For

copper, this amounts to roughly 12.7 million tons per year, at 8 000 USD/ton [4]. For nickel,

this amounts to roughly 1.05 million tons per year, at 17 600 USD/ton [5].

Peirce-Smith converting is formally an operational bottleneck [6]. It is preceded by smelt-

ing furnaces that act as a buffer; the furnaces can normally provide feed exceeding the im-

mediate capacity of the converters. PS converting then sets the tempo for the downstream

operations. Improvements in the PS converting thus translate into overall benefits to the

entire smelter.

PS converting is widely accepted by an industry accustomed to its simplicity [7, 8, 9], and

has not undergone any radical changes since its inception in 1909 (Appendix A.1). Instead, it

has had a series of incremental ancillary equipment and operation strategies (Appendix A.2),

which have been supported through modeling and simulation techniques (Appendix A.3).

There are several technologies competing with the PS converter, such as the Hoboken

siphon converter, and various continuous converting technologies (Appendix A.5). Even if

these alternatives are destined to replace PS converting, it would take decades to phase out

existing PS installations. Incremental improvements of PS will therefore remain lucrative.

Technological stagnation is detrimental in such a competitive environment with the po-

tential for incremental improvement. But this stagnation can be overcome with reliable and

justifiable decision-making. Herein, software tools have become invaluable to investigate the

avenues of process change [10, 11, 12].

1.1.2 Interdisciplinary Divide

In the year 2013, the pyrometallurgical community is not well-versed in mathematical

programming. Likewise, industrial engineers, mathematicians and computer scientists do not

2

have the domain-specific knowledge that would lead them to model Peirce-Smith operations.

Pyrometallurgists are seemingly unaware of the type of problems, and the level of abstrac-

tion, that can be attained through mathematical programming. The conventional attempts

to simulate and optimize Peirce-Smith operations have relied largely on matrix algebra, and

the classical methods of calculus (e.g. Newton’s Method, [13]).

These classical approaches have enhanced the scientific understanding of PS converting,

but they are oblivious to sixty years of technical and computational advances in mathemat-

ical programming. For example, few metallurgists have ever heard of the Simplex Method

(Appendix B.1).

Pyrometallurgists are adept at solving continuous mathematical problems, as they have a

fairly robust background in differential and integral calculus. On the other hand, they have

a limited understanding of discrete mathematical problems, as they are not usually trained

in algorithm design. This gap in education has limited metallurgists with regard to “systems

thinking”, which is now accepted as a major underpinning of process design and operations

management [14].

In very rough terms, calculus is to continuous solutions spaces, what algorithm design

is to discrete solution spaces; the essential link between continuous and discrete problems is

provided by mathematical programming. Thus mathematical programming can build upon

the existing competencies of pyrometallurgists, expanding toward the design of algorithms.

PS converting is a context that blends continuous and discrete mathematics, hence de-

manding the use of mathematical programming. This context is particularly attractive to

nonferrous pyrometallurgists, because of its historical importance, and because of its con-

tinued pervasiveness in industry. The management of PS converting presents a powerful

motivation for the pyrometallurgical community to expand its mathematical abilities beyond

the confines of matrix algebra and calculus.

This document emphasizes a particular kind of mathematical programming: mixed integer

linear programming (MILP), described in Appendix B. Chapters 2-4 adapt the general MILP

paradigm to the context of Peirce-Smith converting. But as demonstrated in Chapter 4, this

adaptation requires some degree of simplification, i.e. linearization. Chapter 5 demonstrates

sample calculations for simplified instances, and illustrates the type of numerical results

that can be provided by the MILP framework. Finally, Chapter 6 describes the inherent

nonlinearity of the PS converting, and discusses future work in algorithm development.

3

The current work has resulted in the first MILP framework to manage PS converting

systems. It offers a degree of abstraction and adaptability that has not been seen by the

extractive metallurgical community at large. This framework is now the backbone of new

methodologies that will improve existing operations, and the design of new plants. By con-

sidering the defining features of Peirce-Smith converting and its broader industrial charac-

teristics, this work will incite new lines of multidisciplinary research in engineering, applied

mathematics and related fields.

1.2 Overview of Extractive Metallurgy

1.2.1 Mineral Concentration

Extractive metallurgy is the set of separation and extraction processes, leading to the

production and refinement of metals. Some of these processes are performed at mine sites,

and are collectively referred to as mineral concentration.

Within a given mine site, these concentration processes are housed in an industrial build-

ing called a concentrator, which produces one or more concentrates. As depicted in Figure

1.1, the concentrates are sent to extractive metallurgical plants, where the metals are chem-

ically extracted.

Some of the extractive metallurgy is performed at the mine sites, within the concentrators,

and some is performed in the extractive metallurgical plant. The division between mineral

concentration and the subsequent extraction varies from metal to metal, and depends on the

nature of the ore that is being mined. Generally, an extractive plant is a logistical hub to a

network of mine sites, but may be integrated with a local mine, and with railroad or port

facilities.

Ores can be either rocky or clay-like. Rocky ores include copper and nickel sulfides, as well

as iron oxides. (Iron sulfides are geologically common, but they are not economically viable

as ore because iron oxides are cheaper to process and are sufficiently abundant). Clay-like

ores include nickel laterites and aluminum lateritic bauxites.

To process rocky ores, concentrators include grinders to break the ore into fine particles

that are amenable to further processing; such concentrators are often called “mills”. To

process clay ores, concentrators include roasting ovens to disassemble hydrate complexes and

to eliminate volatile species. Both types of concentrators apply separation techniques to

divide the valuable minerals from each other, and from the waste gangue.

4

Figure 1.1: Relationship between mine sites, scrap yards and extractive metallurgical plants

Froth floatation is a particular separation technique in which chemically active bubbles

are passed through a slurry, selectively drawing minerals into the skins of the overflowing

bubbles[15]. Froth floatation is especially important for sulfide concentration, including cop-

per and nickel-bearing minerals. Other separation techniques used in mineral concentrators

may be driven by gravity or by magnetic phenomena.

Concentrates are the primary feed for extractive metallurgical plants. But many of these

plants accept recycling scrap as secondary feed. The metal products are consumed within

the manufacturing and construction industries (Figure 1.1). Some of these products are sent

for additional metallurgical treatments, including additional refining and alloying, as well as

deformation, heat and surface treatments. Some of the byproducts of extractive metallurgy

are sent to chemical industries, which may actually include other metallurgical sectors.

1.2.2 Pyrometallurgical and Hydrometallurgical Extraction

There are traditionally two approaches to extract the valuable metals from concentrates.

Firstly, pyrometallurgical extraction is the release of metals via high-temperature reactions

occurring in molten or vaporous process streams. Secondly, hydrometallurgical extraction is

the release of metals via dissolution reactions occurring in aqueous process streams. Figure

1.2 gives an overview of these two traditional approaches.

The feed preparation often includes drying and/or roasting. Concentrates are normally

shipped as wet powder to avoid ignition during transportation. After arrival at the extractive

plant, the concentrates may be heat-dried so as to favour the subsequent reactions. The term

“roasting” is applied when the amount of heat exceeds that of drying, but is insufficient to

cause bulk melting of the concentrate.

5

(a) Pyrometallurgical extraction

(b) Hydrometallurgical extraction

Figure 1.2: Stages of pyrometallurgical and hydrometallurgical extraction

A roasted concentrate is called a calcine. Certain oxidation or reduction reactions may be

performed during roasting. In some pyrometallurgical processes, surface melting is allowed

to occur, causing the concentrate to fuse into larger particles or pellets; such calcines are

often called sinters [15].

A pyrometallurgical extraction plant is commonly referred to as a smelter. These plants

are regarded for their high reaction rates and cost-effectiveness, particularly when dealing

with high-grade concentrates, and consumer scrap. Hydrometallurgical plants generally have

slower reaction rates than smelters but, for the processing of complex and low-grade mineral

concentrates, hydro plants are usually more cost-effective and less polluting [16]. Hydromet-

allurgical plants are also known for the high-purity of their product.

There are two central operations within a smelter: smelting and converting (Figure 1.2a).

Etymologically, “smelting” has the same germanic origins as “melting”[17]. The former has

come to imply the complete melting and partial reaction of metal-bearing solids; occasion-

ally, it can imply the evaporation (fuming) of a metal-bearing solid. Once in a fluid state,

the smelted material is vulnerable to the intense chemical transformations that constitute

converting, and the subsequent reactions that are less intense and which constitute refining.

Within a hydrometallurgical plant, there are three central operations: leaching, converting

6

and metal recovery (Figure 1.2b). These hydrometallurgical processes are often performed at

high pressure. Solid feeds are dissolved in leaching solution (usually acid), and the constituent

elements become mobile ions within a pregnant leaching solution (PLS), i.e. a leaching

solution that is “pregnant” with metal-bearing content. Once the PLS has been separated

from the undissolved solids, it is susceptible to bulk converting reactions. Leaching is indeed

the hydrometallurgical equivalent of smelting.

Bulk reactions are only possible if the reactant species are sufficiently mobile; the species

may be molten/vapourous as in pyrometallurgical converting, or they may be dissolved as in

hydrometallurgical converting. Without sufficient mobility, the rapid reactions are limited

to the surfaces, and the bulk of the feed reacts very slowly if at all. Smelting and leaching

initiate the metal-bearing material for bulk pyrometallurgical and for bulk hydrometallurgical

reactions, respectively.

PS converting is the most common type of converting in copper and nickel smelters

[1, 2, 3]. Its main feed is molten furnace matte. “Furnace” refers to the smelting furnaces

that precede the converters, and “matte” implies a sulfide phase. PS converting is a type

of Bessemerization, which is the forced oxygenation of a molten metal-bearing stream (See

Subsection 1.3.1). Essentially, the furnace matte is “converted” into a dense metal-rich fluid,

a light slag fluid, and a SO2-bearing offgas.

The most common type of hydrometallurgical converting within the copper and nickel

industry is solvent extraction (SX), [18, 19]. Solvent extraction is a process by which the PLS

is mixed with an organic liquid that preferentially absorbs certain ionic species; the organic

solution is not soluble in the leaching solution, and eventually disengages from it, carrying

away the absorbed species. Thus the initial PLS is “converted” into separate aqueous and

organic phases.

SX is the main alternative of PS converting. Although PS converting has pyrometellur-

gical alternatives as well, which are distinguished through their vessel geometries, and their

various mechanisms for receiving feed and discharging products; these topics are discussed

in Subsections 1.3.3 and Appendix A.5.

A final pyrometallurgical conversion gives a molten metal product, which is usually subject

to further refining (Figure 1.2a). The initial refining stages are sometimes applied directly to

the molten metal, which is pyrometallurgical refining. This is often called “fire refining”, par-

ticularly in copper production [15]. Other refining treatments are applied after the metal has

been cast or granulated into solid form; such treatments may be performed in an installation

7

separate from the smelter, i.e. a metal refinery.

The division between pyrometallurgical converting and pyrometallurgical refining is not

always clear. When the feed is highly metallic, either “converting” or “refining” might be

the appropriate term, depending on the context. Loosely speaking, converting reactions are

deemed to be more intense than refining reactions.

A final hydrometallurgical conversion gives a final pregnant solution. Thus, an additional

step is necessary in order to recover the valuable metal(s) from the solution, (Figure 1.2b).

This is sometimes accomplished through the application of an electric current (electrowinning,

EW), or by manipulating the composition, temperature and pressure to reduce the metal

solubilities (precipitation) [16]. The resulting metal is often sufficiently pure not to require

refinement, except in cases where ultra-purity is desired.

The metal recovery stage places a clear division between hydrometallurgical converting

and the subsequent refining (Figure 1.2b). This division is not present in the pyrometallur-

gical approach (Figure 1.2a), hence the vagueness between pyrometallurgical converting and

refining.

Figure 1.2 is a rather crude summary of pyro- and hydro-metallurgical extraction, which

suits the purposes of this document. Actual plant designs feature feedback cycles, scavenging

of waste-streams, etc. and varying degrees of redundancy. A more advanced treatment would

explore these secondary features.

1.2.3 Hybridization of Pyro- and Hydrometallurgical Extraction

Pyro- and/or hydrometallurgical extraction methods are sometimes hybridized. Techni-

cally, these hybrid processes include a partial metallurgical conversion as part of the feed

preparation for a subsequent metallurgical extraction.

One reason for hybridization is to implement the respective advantages of pyro- and

of hydro-metallurgical extraction. Pyrometallurgical smelting and converting may be suc-

ceeded by hydrometallurgical dissolution and electrowinning, thus combining pyro-intensity

and hydro-purity; this is typical of nickel smelters [3, 16]. In other cases, a hydrometallurgical

approach is used to simplify a complex feed prior smelting, e.g. the simplification of bauxite

ores in preparation for aluminum production [20]. As long as there is a smelting operation,

the extractive plant may still be referred to as a smelter.

Another reason for hybridization is to assist in stream division. For example, certain pyro

8

Figure 1.3: Classification of post-mineral extractive metallurgical processes

streams are solidified and granulated in order to apply froth floatation, thus creating several

outgoing streams; to continue the conversion, it is then necessary to reactivate the streams,

either by heating or dissolving. This is done in certain nickel sulfide smelters that produce

copper and cobalt byproducts [3, 16].

In the coming decades, there is likely to be an increasing degree of hybridization within

the metallurgical industry. The simple and high-grade ores are being depleted, and the

traditional approaches are not as successful on the remaining ores [21]. This continues to

motivate new approaches that are optimized for complex and low-grade ores.

1.2.4 Further Divisions within Extractive Metallurgy

Distinctions have been made between mineral concentration, and the subsequent pyromet-

allurgical, hydrometallurgical and hybrid extraction processes. There are further divisions

in extractive metallurgy, namely ferrous vs non-ferrous, and reactive vs non-reactive (Figure

1.3).

Engineering literature and academic curricula treat ferrous metallurgy independently from

the rest of metal production because of the pervasiveness of iron in nature, and the relative

ease with which it can be extracted. Only the densest deposits of iron oxide are worth

exploiting, rendering iron sulfides and other iron compounds undesirable.

Iron is actually the second most common metal in the Earth’s crust, yet it represents 95%

of the world’s metal production tonnage [21], largely because of the form and concentration

9

in which it is found. Aluminum is more common in nature than iron and has a higher

strength-to-weight ratio, but it is far more expensive than iron. Iron has thus evolved to

be the multipurpose metal used throughout construction and manufacturing, whereas the

non-ferrous metals are selected only when their special properties are essential.

In themselves, iron and steel alloys can fill a wide range of manufacturing demands via

the addition and removal of alloying elements, as well as surface and thermal treatments. In

these cases, iron is the main component, and it is often small amounts of non-ferrous metals

that bring forth the special properties of the given alloy. Indeed, much of non-ferrous metal

consumption is in steel alloys; for example, 60% of the global nickel production is intended

for stainless steel and related alloys [22].

Historically, there has been considerable adaptation of concepts and technology from

ferrometallurgical extraction into non-ferrous extraction. The influence has been in both re-

active and non-reactive processing, and especially in the pyrometallurgical branches. Peirce-

Smith converting is one example of non-ferrous technology that evolved from ferrous tech-

nology (See Section 1.3.1).

Figure 1.3 makes a distinction between the extraction of reactive metals and non-reactive

metals, which are each propagated into pyro, hydro and hybrid processes. In this context,

“reactive” specifically implies the tendency to form oxides when smelted or leached in regular

air environments [23]. Metals such as copper, nickel and cobalt may be smelted/leached

without pervasive oxidation, and are hence non-reactive, likewise for gold, silver and other

noble metals. Aluminum, magnesium, zinc, tin and the like require special equipment or

processing to protect them from air environments during smelting/leaching.

The traditional way to extract a reactive metal from a concentrate is to pyrometallurgi-

cally reduce the oxide concentrate or calcine in the presence of carbon (carbothermic reduc-

tion); this is still widely practiced for iron and tin. This is also common for zinc production,

although 80% of primary zinc is now extracted through hydrometallurgical means [24]. In

this context “reduce” implies the introduction or restoration of electrons to the metal atoms

which, in chemistry jargon, is the opposite of “oxidize”.

Incidentally, the treatment of iron oxides employs coke (roasted coal) to carry away the

bonded oxygen. Ferrous extractive metallurgy is therefore a form of reactive pyrometallurgy.

The carbothermic reduction of iron oxides results in a carbon-saturated molten metal, known

as pig iron. The conversion of pig iron into steel is similar to PS converting, as discussed in

Subsection 1.3.1.

10

Some reactive metals are too reactive for carbothermic reduction, meaning that the ionic

bond to oxygen is so stabilizing that uneconomical quantities of heat are needed to process it

in the traditional way. For example, alumina Al2O3 is such a stable oxide, with such a high

melting point (2054◦C), that it is not economical to reduce Al2O3 by carbothermic means,

as in ironmaking (Fe2O3 melts at 1370◦C). Metallurgists have found other ways of managing

and delivering the energy required to release these bonded metals.

Aluminum smelters do not melt alumina in the classical sense. Rather, the alumina is dis-

solved in a bath of molten cryolite Na3AlF6 held at roughly 1000◦C. The dissolved aluminum

ions are reduced into metal as electricity is passed from a consumable graphite (carbon)

anode, through the melt, and into the outer graphite shell that acts as the cathode. This

constitutes the Hall-Heroult process [20], and is a form of carbo-electrothermal reduction.

The liquid aluminum is heavier than the cryolite solution, and is therefore drained from the

bottom of the cell.

Aluminum is the prime example of a reactive metal where the traditional carbo-reduction

is inadequate. It is Nature’s most abundant metal, yet prior to the Hall-Heroux process

(1886), it had been more valuable than gold [25]. There are also other reactive metals, such

as magnesium and titanium, which form sizable portions of the terran crust, yet their cost

precludes them from prominence in manufacturing and construction.

Copper, nickel and other non-reactive metals have a tremendous advantage over reactive

metals. They can be processed as molten matte [15]. Sulfur and iron may be carried away by

blasting an oxidizing stream through the matte, which is the principle behind Peirce-Smith

converting and related technology.

Generally in extractive metallurgy, there is a technological challenge to render the metal

and its bonding elements (sulphur, iron, oxygen, chlorine, etc.) sufficiently mobile to permit

separation [15, 16]. The problem is more complicated for reactive metals, especially when

the bonds are too strong for carbothermal reduction. The rest of this document focuses on

copper and nickel extraction, which are non-reactive metals, and thus do not suffer from

these complications.

1.2.5 Extraction of Copper and Nickel

The world primary copper supply consists almost entirely of sulfide ores, rich in chal-

copyrite CuFeS2. The nickel supply is divided evenly between sulfides rich in pentlandite

(Fe,Ni)9S8, and laterites rich in oxides and silicates [2, 3]. In the coming years it is expected

11

Figure 1.4: Flow diagram for a conventional copper smelter

that the laterite-based nickel production will exceed the sulfide-based nickel production [2].

Within a concentrator, copper and nickel sulfide ores undergo milling and froth floata-

tion. On the other hand, nickel laterites undergo reduction roasting. Various pyro- and

hydrometallurgical extractions are available for each of these ore classes.

Figure 1.4 depicts a typical flow diagram for a conventional copper smelter. Roasting

is not necessary in modern smelters that employ flash smelting [26]; this entails a special

furnace which allows the roasting reactions to occur while the concentrate powder is falling

through the feed chute. Roasting is still performed as feed preparation for electric smelting,

and certain antiquated smelting technologies[15].

Smelting is succeeded by converting (usually Peirce-Smith) which eliminates iron and

sulfur, and gives a crude form of metallic copper, known as “blister copper”, or simply

“blister”[7]. It is roughly 99 wt%Cu with 1 wt%S. Blister copper is not allowed to solidify,

otherwise the residual sulfur is expelled from the cooling metal, resulting in SO2 blisters, hence

the name. To prevent the formation of blisters, the residual sulfur and oxygen is removed in

the fire refining stage which immediately follows the converting. The term “matte” does not

apply to blister copper because it is predominantly metallic, as opposed to sulfide.

Fire refining furnaces are sometimes called anode furnaces, because they produce a copper

that is sufficiently pure to be cast into anodes (roughly 99.5 wt%Cu), that are then subject

to electrorefining. The final cathode is roughly 99.99 wt%Cu [15].

Most copper production occurs through the pyrometallurgical route (Figure 1.4). But

following the 1970’s, a purely hydrometallurgical extraction accounts for roughly 20% of

primary copper production, consisting of leaching-SX-EW [18]. This approach is appropriate

for oxide ores, and low-grade sulfide ores that contain some degree of copper oxide. This

hydro approach consumes considerable amounts of sulfuric acid, which is a byproduct of

12

pyrometallurgical copper production. For this reason, leaching-SX-EW plants are often built

alongside copper smelters.

Nickel sulfide concentrates are often rich in copper and cobalt sulfides, as well as iron

sulfide. As with copper, the conventional extraction techniques begin with smelting and

converting (usually Peirce-Smith), which eliminates the iron sulfide. The conversion of nickel

matte results in a nearly iron-free substance, known as “converter matte” or sometimes as

“Bessemer matte” [3, 15]. In this case, “matte” is fitting because the product is composed

of nickel sulfide, and often a considerable amount copper and cobalt sulfide.

Direct-Outotec-Nickel (DON) technology combines smelting and converting into a single

continuous operation [26], thus the mineral concentrate is converted directly into converter

matte. This process is employed in two installations: Harjavalta Oy (Finland) and Fortaleza

(Brazil). In the Harjavalta Oy plant, DON operates in parallel to a conventional copper

smelting line (Figure 4). The Harjavalta Oy plant has DON for nickel extraction, and Peirce-

Smith Converting for copper extraction.

There is considerable variation in the methods for treating Ni-bearing converter matte.

One approach involves the passing of carbon monoxide through solidified converter matte,

thus carrying away the nickel as a cabonyl vapour [15].

One hybrid approach for nickel extraction is given by smelting-converting-SC-leaching-

SX-EW [9, 16]; “SC” refers to a slow-cooling technique that forms solid granules. When there

is high copper and PGM content, the slow-cooling may be followed by grinding and froth

floatation (FF) in order to isolate the sulfides into separate streams, thus giving smelting-

converting-SC-grinding-FF-leaching-SX-EW [9, 15, 27]. If a sufficiently low iron content

is attained in the converter matte, it is possible to cast a sulfide anode, hence smelting-

converting-casting-EW, or smelting-converting-SC-grinding-FF-casting-EW [9, 15]. Also, the

electrowinning can be substituted by hydrogen reduction, a form of precipitation [19].

A purely hydrometallurgical extraction (leaching-SX-EW) has recently been implemented

to treat nickel sulfides as part of the Voisey’s Bay project [28]. There are in fact three

solvent extraction stages which act in sequence, sending into the organic phase (1) copper,

(2) impurities and (3) cobalt; hence the nickel remains in the final aqueous phase. The three

metal-bearing streams all undergo EW.

Most of the nickel laterites undergo pyrometallurgical processing to produce ferronickel

FeNi, which is used as an alloying agent in stainless steel. However, there are two laterite

13

smelters, Doniambo (New Caledonia) and Sorowako (Indonesia), that employ PS converting

to obtain a nickel-sulfide matte, which is subject to EW for nickel metal recovery [2].

The remaining laterites undergo hydrometallurgical extraction to release metallic nickel;

cobalt is often a major byproduct. Some plants employ high-pressure-acid-leaching followed

by SX-EW, while others use an ammonical leach instead of an acid leach [19].

It should be noted that copper and nickel ores are often rich in silver, gold and platinum

group metals (PGM). These precious metals are usually recovered as byproducts during

metallurgical refining, or posttreatment of electrowinning solution. There are smelters in

South Africa that treat nickel sulfides that are so laden with PGM that the main value is

from latter [3]; the nickel is hence a byproduct of PGM extraction.

Peirce-Smith converting has a central role in copper and nickel extraction from sulfide

ores, administering much of the bulk reactions. Secondly, for the processing of nickel laterite

ores, PS performs a conversion that ultimately leads to nickel metal rather than ferronickel.

Yet there are hydrometallurgical plants, which circumnavigate PS using SX. These are in

addition to the pyrometallurgical alternatives to PS converting (Appendix A.5). For existing

copper and nickel smelters to remain competitive with newer plants, continued improvements

to PS converting will be essential.

1.3 Overview of PS Converting

1.3.1 PS Converting as a Bessemerization Process

In copper PS, the furnace matte is mainly a mixture of copper sulfide and iron sulfide,

which is converted into blister copper. In nickel PS, the furnace matte is generally a mixture of

nickel sulfide, iron sulfide, copper sulfide and cobalt sulfide, which is converted into Bessemer

matte. In both cases, the conversion involves the pneumatically forced oxygenation of the

matte, which eliminates iron and sulfur atoms.

The pneumatic oxygenation is occasionally referred to as Bessemerization (Figure 1.5),

Figure 1.5: Input and output streams of a Bessemerization process

14

alluding to Henry Bessemer, the father of modern steelmaking. In 1856, Bessemer developed

a process which blasts oxygen through carbon-saturated pig iron, resulting in a raw form

of steel; PS converting was patented in 1909 by Peirce and Smith, well after the Bessemer

process [29]. In the early literature, including the original patent [30], PS converting is

described as the Bessemerization of matte. More recent times, the term “converting” is

synonymous to Bessemermizing, at least in the context of iron, copper and nickel extraction.

The modern Bessemerization of iron is performed using a so-called basic oxygen furnace

(BOF). In this context “basic” refers to the alkalinity of the refractory bricks that line the

BOF [31]. (PS converters are also lined with basic refractories, as discussed in Subsection

1.3.3 and Appendices A.1). The Bessemerization of copper and nickel mattes is performed

mainly by PS, although there are a few alternatives (Appendix A.5).

A properly conceived Bessemerization process leads to oxidized byproducts that are fluid

(liquid and gas), hence easily separated from the main product. The liquid byproducts form a

light slag that floats over the main product, and can eventually be skimmed off. The gaseous

byproducts leave the system as offgas. A PS offgas is a mixture of SO2 and nitrogen, while

a BOF offgas is a mixture of CO and CO2.

The composition of the slag is carefully controlled through the addition of flux, i.e. par-

ticulate solid feed, usually with diameters no larger than 5 cm [7, 9]. The composition is

determined in relation to the operating temperature, so that the slag is thermodynamically

prone to capturing target chemical elements, while maintaining sufficiently low density and

viscosity. The low density ensures that the slag floats above the rest of the melt. The low

viscosity ensures that the offgas can bubble through the slag without excessive resistance,

and that the slag can be evenly pored (skimmed) out of the vessel with minimal entrainment

of the main product.

Fluxes generally contain stable oxides, such as SiO2, CaO, Al2O3 and MgO. In copper and

nickel matte conversion, the main fluxing agent is silica SiO2, which contributes to the iron-

silicate slag. Burnt lime (CaO) or dolomite (CaMg(CO3)2) is used in steelmaking because it

draws away phosphorous and other impurities, which would embrittle or otherwise deteriorate

the steel [31].

Bessemerization processes can include secondary feeds that have a character similar to

either the flux, the main feed, or a mixture of the flux and main feed. In Peirce-Smith

converting, the secondary feeds could include copper scrap or recuperated flue dust, for

example. The excess heat of PS converting allows cold secondary feeds to be melted down

15

and blended with the rest of the charge, so that their valuable content can be recovered. This

is discussed further in Subsections 1.3.2 and 1.3.3.

The oxygen-bearing stream of a Bessemerization process is called the blast. Tradition-

ally, the blast consisted of compressed air (21 vol%O2). In modern PS operations, it is

now common to use an oxygen-enriched blast, usually 25-28 vol%O2[1] which increases the

productivity of the blast, and has other benefits that will be discussed in Subsection 1.3.3.

Other processes employ much higher enrichment; for instance, BOF employs a blast that is

commercial grade oxygen, over 99 vol%O2 [31].

PS cannot attain the same blast enrichment as BOF due to a difference in the delivery

mechanism. PS is side-blown through a system of tuyeres that penetrate the refractory lining;

too much oxygen will cause locally intense reactions and rampant abrasion of the lining. In

a BOF, the blast is usually introduced through a single lance that hangs deep into the center

of the furnace, away from the refractory lining. In any case, a higher enrichment is not

necessarily practical in a PS converter, due to the possibility of overheating (See Subsection

1.3.3).

BOF blast rates usually range from 30000 to 60000 Nm3/h [31], and similarly for copper

PS [7]. In nickel PS it can be much lower, usually between 5000 and 25000 Nm3/h depending

on the grade of the matte [3]. (The units Nm3/h are described below). Especially in combined

Ni-PGM production, a low blast rate allows better control of the reactions and a higher

recovery of the precious metals. It should be noted that an increase in O2 enrichment can be

accompanied by a decrease in blast rate, to maintain the same production rate.

By convention, blast rates are measured in “Normal meters cubed per hour” (Nm3/hr), or

sometimes “Normal meters cubed per minute” (Nm3/min). This implies that the blast rates

are tabulated as if they were under Normal Conditions, meaning atmospheric pressure and

a temperature of 0◦C. For instance, 25000 Nm3 of O2 is the mass of oxygen gas that, under

Normal Conditions, occupies a volume of 25000 m3. The adherence to Normal Conditions

provides a means to compare gas flow rates, independent of the compression.

In summary, the molten material is subject to forced oxygenation and the addition of

oxide flux. Table 1.1 compares the three Bessemerization Processes.

16

Table 1.1: Summary of Bessemerization processes

Basic Oxygen Process Cu PS Converting Ni PS Converting
Main Feed pig iron Fe/Cu matte Fe/Ni/Co/Cu matte

Flux burnt lime or dolomite silica (mainly) silica (mainly)
O2 Enrichment > 99% 21-28% 21-28%
Blast (Nm3/hr) 30000 - 60000 30000 - 60000 5000-25000

Main Product steel blister copper Ni/Co/Cu matte
Slag mixed oxide, high in CaO iron-silicate iron-silicate

Offgas CO/CO2 N2/SO2 N2/SO2

1.3.2 Matte Converting Reactions

Copper matte is essentially a mixture of FeS and Cu2S, and undergoes two stages of

converting, firstly the Slag-Blow which eliminates the FeS, and secondly the Copper-Blow

which releases the blister copper. Nickel matte is generally described as FeS, Ni3S2, Cu2S

and CoS. Nickel PS consists of only the Slag-Blow stage, which eliminates the FeS.

The Slag-Blow is described generally by:

[FeS(liq)]Matte + [O2(gas)]Blast + Flux→ [FeOx·Flux(liq/sol)]Slag + [SO2(gas)]Offgas

Thus the Slag-Blow results in a slag stream. For the sake of generality, this expression has

not been stoichiometrically balanced. In the most common case, the flux is composed entirely

of SiO2, and the resulting slag is fayalite Fe2SiO4 with 5 wt% to 15 wt% magnetite Fe3O4.

Accordingly, the Slag-Blow is a combination of two reactions [7, 15]:

2[FeS(liq)]Matte + 2[O2(gas)]Blast + [SiO2(sol)]Flux → [Fe2SiO4(liq)]Slag + 2[SO2(gas)]Offgas

and

3[FeS(liq)]Matte + 5[O2(gas)]Blast → [Fe3O4(sol)]Slag + 3[SO2(gas)]Offgas

Other stable oxides such as CaO, Al2O3 and MgO are often included with the SiO2 to form

an olivine slag instead of the classic fayalite; this type of blending has been observed to

minimize the copper losses in the slag, to decrease the amount of magnetite in the slag, and

to diminish the corrosion of the refractory [32].

Within the ferrous component of the slag, fayalite Fe2SiO4, which is often denoted as

2FeO·SiO2, is preferable to magnetite because it binds one atom of blast oxygen to every iron

atom. Magnetite Fe3O4 represents a less efficient use of the blast, binding 4/3 oxygens for

17

(a) (b) (c)

Figure 1.6: Bath volume during Slag-Blow stage (a) prior to blow, (b) after blow, (c) after
skimming

every iron. Also fayalite is quicker to rise from the matte since it is liquid, whereas magnetite

is solid.

As a Slag-Blow operation is performed within a vessel, there is a danger of overflow, hence

an operational constraint. The matte volume decreases as the FeS is reacted away, but this

is more than offset by the increase in slag volume (Figure 1.6). Indeed, (FeOx·Flux)Slag is less

dense than FeS in terms of mass/volume, but also in terms of (mass of Fe)/volume. Typical

density values for slag and matte are 3.5 T/m3 and 5.5 T/m3, respectively [33]. Eventually

the slag must be skimmed away, to allow more feed and/or more blowing.

There is also a danger of overheating, because the Slag-Blow reactions are exothermic.

To maintain the target operating temperature (1200-1250◦C), the molten matte must be

supplemented with cold charge. This may include recycled material from other parts of the

smelter, or scrap metal, or concentrate [15].

Through the elimination of FeS, the Slag-Blow reaction lowers the iron content of the

matte to roughly 1 wt%; the remaining matte is the so-called Bessemer matte, converter

matte, or “white metal”[15]. For Nickel PS, the Bessemer matte is the main output; the Ni3S2,

CoS and Cu2S are separated and treated in the subsequent processes that were introduced

in Subsection 1.2.5.

In copper PS, the converter matte is most commonly called “white metal”, even though

it is only semi-metallic [15]. This material is composed of Cu2S and is subject to the Copper-

Blow, as described by

[Cu2S(liq)]Matte + [O2(gas)]Blast → 2[Cu(liq)]Blister + [SO2(gas)]Offgas

This results in blister copper, saturated in sulfur. It is sent directly to the fire refining furnace

18

Table 1.2: Species present in matte, in increasing order of thermodynamic stability

FeS Ni3S2 CoS Cu2S
Cu-bearing matte

√
× ×

√

Ni-bearing matte
√ √ √ √

so that the residual sulfur can be removed prior to casting. This reaction does not require

flux, nor does it produce slag.

Blister copper is more dense than white metal, its parent phase. Therefore, it tends to

form at the bottom of the vessel. Secondly, the conversion of white metal (5.2 T/m3) into

blister copper (8.0 T/m3) signifies a net decrease in volume, so there is no danger of overflow

[34]. However, there is a danger of overheating because the reaction is exothermic. So there

is again a need for cold charges. In this case, the only acceptable cold charges are those

which consist of copper, sulfur, oxygen and only trace amounts of other elements. The other

elements are likely to interfere with the release of copper; for instance, any iron-bearing

species would cause the Slag-Blow to resume.

Of all the sulfides under consideration (Table 1.2), Cu2S is the only one that releases

metal under PS temperatures (1200− 1250◦C); the oxygen bonds only to the S in this case,

leaving the Cu to form the blister copper phase [7]. For the non-cuprous sulfides, the oxygen

bonds to both the metal and the sulfur atoms; in the case of FeS, for example, the oxygen

bonds to the Fe as well as the S, which precludes the emergence of a liquid iron product.

Similarly, liquid nickel and cobalt products are also precluded.

It is possible to release liquid nickel and/or cobalt, but this route is not supported by

PS because this demands temperatures above 1455◦C, the melting point of nickel [15]. On

the other hand, liquid iron is not released unless a reductant is introduced. (As discussed in

Subsection 1.2.4, ferrous metallurgy can be regarded as a type of reactive metallurgy).

Overblowing occurs in PS, when the bulk of the valuable metals begin to oxidize and form

slag. Overblowing should not be practiced in the presence of iron-bearing slag because it is

costly to separate the valuable oxides from the undesirable iron oxides [35]. After the iron

has been skimmed away, however, some degree of overblowing is often practiced to assure

complete conversion throughout the final blister copper or the Ni converter matte.

In copper PS, overblowing helps diminish the residual sulfur, which decreases the need for

fire refining [36, 37]; it can also be used to control minor elements such as lead and bismuth

19

[37]. The Overblow reaction for copper PS is

4[Cu(liq)]Blister + [O2(gas)]Blast → 2[Cu2O(sol)]Slag

The resulting copper-oxide slag is then recycled into other parts of the smelter. Thus, there

is an optimal circulating load that is determined on a tactical level.

In nickel PS, overblowing occurs once the Slag-Blow reaction has been completed. The

least stable of the non-ferrous sulfides is Ni3S2, so the Slag-Blow is followed by the Nickel-

Overblow

2[Ni3S2(liq)]Matte + 7[O2(gas)]Blast → 6[NiO(sol)]Slag + 4[SO2(gas)]Offgas

After (nearly) all of the Ni3S2 has been blown out of the matte, the next least stable sulfide

is CoS, so the following reaction is the Cobalt-Overblow

2[CoS(liq)]Matte + 3[O2(gas)]Blast → 2[CoO(sol)]Slag + 2[SO2(gas)]Offgas

After (nearly) all of the CoS has been blown out, the only remaining sulfide is Cu2S, which

is akin to the white metal from copper PS. The blowing of white metal is essentially the

Copper-Blow, discussed earlier.

If appropriate fire refining equipment is available, it is theoretically possible for nickel

smelters to perform a conventional copper extraction, by applying a Copper-Blow followed

by the fire refining. Of course, after the Copper-Blow reaction has reached completion, the

continued blowing is akin to the copper PS Overblow, a.k.a. the Copper-Overblow.

Given the possibility overflowing, overheating and overoxygenation, Peirce-Smith convert-

ing cannot simply be applied haphazardly. The reactions must be timed, and coordinated

with the handling of feed and product streams.

1.3.3 PS Converting Technology

The reactions described in the previous section are housed within rotary furnaces known

as Peirce-Smith converters (PSC), as depicted in Figure 1.7. Each of these vessels is lined

with refractory bricks, that are penetrated by a row of tuyeres for gas injection (Figure 1.8);

this area of the converter is called the tuyere-belt. There is a large mouth at the top of

the cylindrical drum that is held upright during operation, underneath a fume hood. Other

vessels are described in Appendix A.5.

At the beginning of a cycle, the converter is rotated to its forward position, so that it can

20

Figure 1.7: Newly commissioned Peirce-Smith converter at the Harjavalta Oy Smelter [38]

(a) Side-view (b) Cross-section

Figure 1.8: Interior of a Peirce-Smith converter

be filled to roughly half of its volume [7, 9, 15]. The converter is then rotated back to its

upright position, as the tuyeres are activated. The tuyeres are submerged below the surface

of the liquid matte, thus blasting into the matte. Silicious flux is added as needed, combining

with the iron and oxygen to form slag; the flux can be introduced either through flux guns

or from chutes, as described below.

As the cycle progresses, blowing is halted periodically to remove the accumulated slag,

and replace it with fresh feed. The vessel is rotated forward, to pour the slag into a ladle

which is then carried away for further processing. The vessel is then rotated back partially, so

that it may host one or more ladles of furnace matte and/or other feeds. Once the converter is

sufficiently filled, the drum is rotated back into the upright position, and blowing is resumed.

Eventually enough white metal (or converter matte) is accumulated in the vessel, at which

point the last of the slag is carefully skimmed away. For copper PS, this is when the copper

blow is applied. For nickel PS, there may be a special finishing blow, but this depends on the

21

nature of the feed, and the nature of the downstream operations. Afterward, the converter

product is discharged, thus ending the cycle.

A typical copper PS cycle can last 6 to 12 hours to convert roughly 200 tonnes of furnace

matte having 60 %Cu grade [7]; the cycle time includes charging, blowing, skimming, dis-

charging and idle time, and is heavily dependant on the nature and quantity of the secondary

feed. There is even more variability within the nickel industry; Kyllo and Richards describe

cycles that last roughly 9 hours [39].

Converter dimensions are such that the length is 2 to 2.5 times the diameter, in such sizes

as 13 feet in diameter by 30 feet long (3.96 × 9.15 m), 12 feet in diameter by 28 feet long

(3.66 × 8.55 m), and 13 feet in diameter by 35 feet long (3.96 × 10.67 m) [15]. In modern

smelters there is a trend toward larger vessels, the largest being roughly 15 feet in diameter

by 44 feet long [40].

In a typical Peirce-Smith converter, the tuyeres are placed at intervals of 15-40 cm [3, 7]

within the tuyere-belt, but they may be omitted from the region surrounding the mouth to

prevent the bath from splashing out. Conventional tuyeres are made of steel, 5 cm in diam-

eter, and operated at 80-120 kPa gauge pressure to deliver between 80 and 1000 Nm3/min

[3, 7]. During conventional operation, the entering blast causes a chill so that a “cold nose”

solidifies at the tuyere tip. This accretion must be dislodged periodically using a punching

machine. However there are now some smelters that can operate at higher pressures (> 250

kPa), which prevent accretion and avoid the need for punching (Appendix A.2).

During the Slag-Blow, powdered flux is introduced through guns and/or a chute [7, 8, 9].

One or more flux guns (a.k.a. “Garr guns”) can be installed at the circular ends of the furnace,

to launch powdered flux through a hole that is placed above the slag surface. Chutes are

placed above the converter, so as to drop the flux through the mouth of the converter and

into the melt. The slag level should remain sufficiently below the flux guns, otherwise the

launch trajectory will be hindered, and the slag will lose its desired uniformity.

Also the tuyeres should remain deep within the matte, so that the blast can properly react

with the melt and ensure a rigorous mixing [9]. This, along with the uniform distribution of

fine flux particles, leads to a high oxygen efficiency; that is the fraction of blast oxygen which

reacts with the melt. A well-operated converter attains values ranging between 90 and 95%

[7], and the rest of the oxygen passes into the offgas.

There are traditionally two features concerning the refractory lining, which distinguished

22

the PSC from its predecessors. Firstly, there is usually a gap between the lining and the

outer steel shell [29]; this accommodates the thermal expansion that occurs during operation.

(Nonetheless, advances in the refractory materials, have made it possible to eliminate the

gap, and thus to minimize the risk of metal leakage [40]).

Secondly, a PS lining is composed of basic refractories [29], i.e. a thermoresistant material

that resists reaction to silicates, hydroxides and other negative ions. Originally the lining

was made entirely of magnesia (MgO), although the thermomechanical properties have been

greatly enhanced by including chromia (C2O3) and alumina (Al2O3). Today, a typical lining

has roughly 60 wt%MgO, 20 wt%C2O3, 8 wt%Al2O3, 7 wt%FeO, and small amounts of

SiO2, CaO and active metals [41]. The predecessors of PS converting often employed an

acid-refractory lining, made of SiO2 that would be rapidly consumed during the Slag-Blow.

The most vulnerable part of the refractory is the tuyere belt, which undergoes tremendous

abrasion and thermal shock. The tuyere-belt can typically withstand 130 cycles before it must

be replaced, versus the rest of the lining which can withstand over twice as many cycles [7].

One of the major shortcomings of Peirce-Smith converters concerns the capture of the

offgas. The offgas leaves through the mouth, usually carrying oxide fumes, traveling up

into a hood and toward the acid plant. Peirce-Smith converters are notorious for releasing

SO2 into the surrounding work area during charging and pouring, whenever the mouth is

not aligned with the hood [9, 42]. Also, the gas pressure can occasionally become too high

during blowing, thus overwhelming the hood (Figure 1.9a).

More typically, the hood is underwhelmed, and surrounding atmosphere is pulled up into

the hood and dilutes the offgas stream (Figure 1.9b). Acid production is only profitable for

(a) Leaking of offgas (b) Infiltration of external air

Figure 1.9: Interaction between offgas and external air

23

Table 1.3: SO2 content of offgas streams, calculated as a function of blast enrichment, as-
suming oxygen efficiencies from 85 to 95%, and dilution factors ranging of 2 to 2.5

Regular air blast (21 vol%O2) Enriched blast (28 vol%O2)
Slag-Blow 4.5− 6.4 vol%SO2 6.2− 8.8 vol%SO2

Copper-Blow 7.0− 9.8 vol%SO2 9.4− 13.1 vol%SO2

offgases that contain over 10 vol% SO2, and the dilution effect makes it difficult for PSC

operators obtain this level. To mitigate the dilution problem, it is now common to use a

water-cooled hood, which allows a tighter fit, and reduces the deliberate infiltration that had

been to prevent overheating of the hood [42].

To address the dilution problem differently, a modified PSC was developed in 1931 in

Hoboken, Belgium [15, 43]. The Hoboken converter draws the offgas through a siphon

(“goose-neck”), as depicted in Figure 1.10. This allows the converter mouth to be sealed

during blowing, hence minimizing the contact between the offgas and the outside air. These

units obtain roughly 12 vol%SO2 in the offgas, which is favorable to acid production [8].

There are currently only a handful of these converters in use [1, 8], possibly because of the

accretions that tend to form in the goose-neck [7].

In conventional PS converters, the dilution effect has been mitigated by enriching the

blast. Table 1.3 compares post-dilution offgas concentrations for a regular air blast and

an oxygen enriched blast, assuming typical dilution factors and oxygen efficiencies. These

results demonstrate that oxygen enrichment favours acid production. However, there are two

limitations: (1) the supply of cold charge, and (2) the integrity of the tuyere-belt.

The first limitation is described in Figure 1.11. A higher blast enrichment corresponds to

a higher proportion of O2, and thus a lower proportion of N2. Even though the nitrogen is

chemically inert, it is still important as a coolant; it enters the vessel at the blast temperature

(≈ 50◦C), and is exhausted at roughly the bath temperature (≈ 1250◦C), hence convecting

away the heat associated with a ≈ 1200◦C differential. Therefore a decrease in nitrogen must

be compensated with an increase in cold charge.

As for the second limitation to oxygen enrichment, the tuyere-belt refractories disintegrate

rapidly when the enrichment is brought beyond 30 vol%O2. Certain smelters have extended

this limit by replacing the traditional tuyeres with Air Liquide Shrouded Injectors (ALSI),

first presented in 1995 [44, 45]. This is a system of two concentric pipes, in which pure

nitrogen is sent through the outer pipe to form a shroud, as enriched oxygen is sent through

24

Figure 1.10: Interior of a Hoboken converter (side-view)

Figure 1.11: Relationship between O2 enrichment and the demand for cold charge

Figure 1.12: ALSI Technology [7]

25

the inner pipe. Thus the cooling effect is concentrated to the outer ring, forming a protective

accretion of solidified porous material (Figure 1.12). This is a more effective distribution of

blast N2 and blast O2 that allows for a net enrichment of 30-60 vol%O2. Furthermore, ALSI

operates at a sufficiently high pressure that it does not require punching. Unfortunately,

ALSI does not perform well below 30 vol%O2, so there must be a sufficient supply of cold

charge. The most notable installation of ALSI is at the Falconbridge Smelter [45, 46], in the

so-called “Slag Make Converter”, which is essentially a large PSC.

Figure 1.11 explains how a lack of appropriate cold charge can limit the O2 enrichment.

This in turn can limit profitable acid production, in spite of the advancements in air-injection

technology. Offgas treatment is further complicated by the fact that PS and Hoboken con-

verting are batch processes, which send uneven loads to the acid plant; this is one of the

motivations for continuous converting, discussed in Appendix A.5.

Regardless of its limitations, PS has remained the workhorse of the copper and nickel

industries for over a century. Since that time, there continue to be incremental improvements

in the technology which are carefully marketed to existing smelters and to the builders of

new smelters. To evaluate the impact of an enhanced PSC, there is a need to simulate its

interaction with other components of the smelter, including the other PS converters.

1.3.4 The PS Converter Problem

Normally there are two to five Peirce-Smith converters operating in parallel within a

copper smelter [7], and three to six within a nickel smelter [3], sharing ancillary objects such

as ladles, cranes and offgas launders. This system is commonly referred to as a converting

aisle, because of how the converters are arranged within a plant, side-by-side (Figure 1.13).

The Peirce-Smith Converter Problem is to coordinate Peirce-Smith (or Hoboken) con-

verters with other objects within the system, so as to maximize a production measure within

a fixed period of time, while respecting chemical, volumetric and thermal constraints.

Suppose a plant manager wishes to upgrade the offgas treatment facility so that they can

run more PS converters simultaneously without violating government-imposed SO2 limits.

After the upgrade, they may find that there is now a shortage of feed ladles, which hinders

the full benefit of the upgrade. It may take an additional $100 000 to buy new ladles and to

install a new crane system, etc. After this additional upgrade, they may find that there is

now a shortage of cold feed, which must now be shared between a larger number of converters.

The general configuration of the converter aisle can vary from smelter to smelter. Also,

26

Figure 1.13: Converter aisle at the Xstrata Nickel Smelter in Sudbury [46]

the number and dimensions of the converters varies. Thus it is important to develop concepts

that are adequately transferable. This level of generality has eluded other researchers in the

metallurgical industry [47], but is attained within this document.

27

CHAPTER 2

SEMI-DISCRETE DYNAMICS OF PS SYSTEMS

2.1 Gantt Structure

2.1.1 Assignments

A Peirce-Smith converting aisle is a semi-discrete dynamical system [48, 49]; it is char-

acterized by a continuous evolution, except at fixed moments in time, when the system

experiences discrete changes. These discrete changes are depicted in a Gantt chart (Figure

2.1) whenever an object begins or completes an assignment within the given schedule.

A converting aisle consists of several object classes, including converters, cranes, ladles,

etc. C is the set of object classes that are included in the mathematical representation.

Throughout this document, the converter class is denoted PSC. If cranes are the only other

objects under consideration, then C = {PSC, Crane}, for instance. Figure 2.1 considers three

object classes, C = {PSC, Crane, OffgasTreatment}.

The objects that must be coordinated in order to minimize delays and additional costs

are said to be critical. If there are critical object classes that have been omitted from C, then

the mathematical representation is inadequate. Generally, the noncritical objects can be

coordinated a posteriori, once a master schedule has been established for the critical objects.

Figure 2.1: Gantt chart of a Peirce-Smith converting aisle. The schedule begins at time tBegin

and ends at time tEnd. The discrete events are marked with short dashes along the time axis.

28

An individual object of some class i ∈ C is represented by an ordered pair (i, j), where j

is a strictly positive integer. For example, (PSC,3) refers to Peirce-Smith Converter 3, and

(Crane,1) refers to Crane 1, etc. Each of these objects is represented by a row in a Gantt

chart (Figure 2.1).

The objects each undergo a sequence of assignments, which correspond to the sequence of

coloured blocks within each Gantt row. An individual assignment is denoted by an ordered

triple (i, j, k), such that (i, j) identifies the object, and k is the sequence number. For example,

(PSC,3,2) refers to the second assignment of Peirce-Smith Converter 3.

The number of objects within class i that are to be included in the optimization is

denoted ni. Figure 2.1 depicts a system in which nPSC = nCranes = 3, and nOffgasTreatment = 1.

Also, through practical considerations, there is always an upper bound nAsgni on the number

of assignments that can be performed by the members of each object class within a given

schedule. For example, if nAsgn,PSC = 50, then any schedule having more than 50 assignments

for a converter is considered too complex to be feasible.

The set of assignments considered in the optimization is given by

A = {(l1, l2, l3)| l1 ∈ C,
l2 ∈ {1, 2, . . . , nl1},
l3 ∈ {0, 1, 2, . . . , nAsgnl1} }

Thus (l1, l2, l3) identifies the l3
th assignment of the l2

th member of class l1.

The value l3 = 0 is used to identify the final assignments of the previous schedule, which

may continue into the current schedule, or may end before the current schedule. The subset

A◦ = {(l1, l2, l3) ∈ A| l3 = 0} is used to define the initial conditions of the current schedule.

The assignments belonging to a given object (i, j) form the subset Aij = {(l1, l2, l3) ∈
A| l1 = i, l2 = j}, which isolates a Gantt row. Similarly, the assignments belonging to an

object class i form the subset Ai = {(l1, l2, l3) ∈ A| l1 = i}, which isolates the group of Gantt

rows belonging to class i.

It is convenient to use a single index l to abbreviate the triple indices, as in l = (l1, l2, l3).

This is complemented by the following two mappings.

class : (l1, l2, l3) 7→ l1

29

is used to identify the object class of an assignment, and

obj : (l1, l2, l3) 7→ (l1, l2)

is used to identify the object of an assignment. Extending the previous notation, Aclass(l) and

Aobj(l) identify all of the assignments that are applied to the same class as l, and to the same

object as l, respectively.

For a given assignment l ∈ A, the immediate predecessor is denoted “l−”. Formally,

if l = (l1, l2, l3), then l− = (l1, l2, l3 − 1). (A similar notation “l+” can be adopted for

the immediate successor, l+ = (l1, l2, l3 + 1), but this is not actually needed in the current

formulation). The object mapping is such that obj(l−) = obj(l), which reasserts that the

assignment sequence is confined to a given object (Gantt row).

In addition to belonging to a given object, each assignment l ∈ A has the following

properties,

• dl is the planned duration of l.

• tl is the planned completion time of l.

• Typel is the planned assignment type of l.

These properties are depicted in Gantt charts, as dl is the horizonal length of the assignment,

and tl can be read directly from the horizontal axis. The Typel variables are used to categorize

the assignment type, and may carry a qualitative description of l; the values of Typel are

often associated to the assignment colours and/or labels in a Gantt chart (Figure 2.1).

The durations dl and the completion times tl are continuous real variables, which are

subject to linear inequalities. For example,

tl − dl ≥ tl− (2.1)

compares the beginning time (tl−dl) of assignment l to the completion time tl− of assignment

l−. Indeed, l can only begin after its predecessor l− has been completed. Such variables and

inequalities are easily implemented using linear programming, the most elementary form of

constrained optimization (Appendix B.1).

On the other hand, the assignment types Typel are categorical variables [49, 50], rather

than numerical variables. Categorical variables can be implemented into linear programs

30

only indirectly [50], through the use of binary variables, as in Chapter 4. The direct imple-

mentation of categorical variables will be discussed briefly in Section 6.1.

For each object class i ∈ C, there is a set of assignment types denoted Ti . For exam-

ple, TCrane = {AssistInitialCharge, AssistRecharge, AssistSkim, AssistFinalDischarge} lists

four types of crane assignments. Type(Crane,j,k) = AssistInitialCharge implies that assign-

ment (Crane,j,k) is to assist the initial charge of a converter; likewise, Type(Crane,j,k) = As-

sistRecharge implies that the assignment is to assist in the recharging of a converter, etc.

The domain of Typel is given by Tclass(l)

⋃
{Undetermined}, for all l ∈ A. The null category

“Undetermined” applies to all classes. Typel = Undetermined implies that l and all of its

successors are to be planned in future schedules, beyond the current schedule.

If dl, tl and Typel are known for all A, then the corresponding Gantt chart can be

constructed automatically. The values of dl and tl provide the outline, while the values of

Typel provide the colouring.

2.1.2 Dependencies

The set A describes the order of the assignments within each individual Gantt row.

However, it does not describe the dependencies of assignments across several Gantt rows.

For example, suppose that an empty converter undergoes an InitialCharge assignment,

which uses two cranes to carry a sequence of ladles to the converter. Thus an InitialCharge

assignment is accompanied by two simultaneous crane assignments that are in support of the

converter (Figure 2.2).

For each object class i ∈ C, and each assignment type k ∈ Ti, there is a set of dependency

Figure 2.2: Depiction of assignment dependency. In this case, the charging of an empty
converter (black) requires the assistance of two cranes (grey).

31

clauses Dik,
Dik ⊆ {(i′, k′, n)| i′ ∈ C,

k′ ∈ Ti′ such that (i′, k′) 6= (i, k),

n ∈ {1, 2, . . . , ni′} }

The set is defined such that (i′, k′, n) ∈ Dik implies that whenever an assignment l ∈ Ai
is of type k ∈ Ti, there must be n assignments in Ai′ of type k′ ∈ Ti′ that are performed

simultaneously to l, in support of l. Two assignments l, l′ ∈ A are simultaneous if dl = dl
′

and tl = tl
′
.

The current formulation does not consider the case where (i′, k′) = (i, k), as the logical

meaning of (i, k, n) ∈ Dik is unclear. One possible interpretation is that the type k ∈ Ti can

only occur as groups of n simultaneous assignments of the same type. An equivalent effect

can be obtained by creating a dummy class i′ ∈ C with an assignment type k′ ∈ Ti′ such

that (i′, k′, 1) ∈ Dik; an additional assignment type k′′ ∈ Ti must also be created such that

(i, k′′, n− 1) ∈ Di′k′ .

Returning to the InitialCharge example, a converter assignment l ∈ APSC of type Ini-

tialCharge ∈ TPSC requires the support of two simultaneous crane assignments of type Ini-

tialCharge ∈ TCrane. It follows that (Crane, InitialCharge, 2)∈ DPSC,InitialCharge.

Ultimately, the simultaneous coordination of objects is the constrained optimization of

dl, tl and Typel for all l ∈ A. The Peirce-Smith Converter Problem is distinguished from a

general coordination problem because of the particularities discussed in Section 1.3, which

require a more detailed treatment of the PSC class.

2.2 PS Converters as State-Machines

2.2.1 States and Transitions

An object may be considered a state-machine [51] if it is described by (1) so-called state

variables that describe the state of the object at different times, and (2) transitions that

mark the machine-like departures from one state to the next.

To embed the structure of a state-machine within the general Gantt structure, transitions

are interpreted as assignments. Thus if i ∈ C is a state-machine class, then Aij is the set of

transitions (assignments) that are applied to the state-machine (i, j). As before, transition l

is categorized by Typel.

Within the Peirce-Smith Converter Problem, the converters are implemented as state-

32

Figure 2.3: Venn diagram describing the object classes of a Peirce-Smith system. The PSC
class is a critical state-machine class.

machines (Figure 2.3). Depending on the context, it may be necessary to implement other

object classes as state-machines, following the example set forth in this document for the

PSC class. This topic will be revisited in Section 6.2.

In the current implementation of the PSC class, the state description has three compo-

nents,

• The mass content of the streams that are retained in the bath of a converter

• The heat content that is retained in the bath of a converter

• The mechanistic aspects of the converter state

Variables describing the retained mass and heat content are developed in the following two

chapters. As an example, ml
FeS,RetProd is the mass of FeS that is retained in the product streams

of obj(l) at time tl. Similarly, hlRet is the relative heat that is retained in the bath of obj(l)

at time tl.

The mechanistic aspects of a converter state are described by the Typel variables. De-

pending on the previous transition type, a converter may or may not be mechanistically

prepared for following transition type. Thus the Typel variables have a double-role, catego-

rizing states as well as transitions.

This notion of mechanistic preparedness is made more precise by imposing a structure on

TPSC. Firstly, the subset TPSC,Empty ⊂ TPSC contains all of the transition types for which the

converter is left empty; an empty converter does not contain a bath, hence cannot retain any

mass or heat. Additionally, for every k ∈ TPSC, there is a set of preceding transition types

T −
PSCk ⊂ TPSC, such that

(Typel = k) implies (Typel− ∈ T −
PSCk)

33

(a) (b)

Figure 2.4: Converter transition diagrams for (a) typical copper PS systems, and (b) typical
nickel PS systems. The transition types are numbered (1) InitialCharge, (2) SlagBlow, (3)
Skim, (4) Recharge, (5) CopperBlow, (6) ScrapCharge, and (7) EndCycle.

Hence a converter is mechanistically prepared for a transition of type k ∈ TPSC if the preceding

transition was of a type k′ ∈ T −
PSCk.

Figure 2.4a describes a typical Peirce-Smith system for copper production, in which

TPSC = {InitialCharge, SlagBlow, Skim,Recharge,CopperBlow, ScrapCharge,EndCycle}

Figure 2.4b represents a typical nickel producing system, which does not include a Copper-

Blow Stage.

In a copper PS system (Figure 2.4a), a converter may be in a state represented by node 3;

this means that the preceding transition was a Skim. According to the diagram, the converter

is therefore mechanistically prepared for a Copper-Blow, since

T −PSC, CopperBlow = {Skim, ScrapCharge}

includes Skim. Thus, if Typel−=Skim, then the converter is mechanistically prepared for

Typel=CopperBlow, but this is not a sufficient condition to allow a Copper-Blow; indeed, if

ml−
FeS,RetProd 6= 0, then there is iron in the system, and the Copper-Blow is not thermodynam-

ically feasible (See Subsection 1.3.2).

In general, a transition of a certain type can be performed only if the state satisfies

mechanistic constraints, as well as heat and mass constraints. These considerations are

formalized within the MILP of Chapter 4.

34

2.2.2 Converting Actions

Converter dynamics can be decomposed into a sequence of transitions, which in turn can

be decomposed into a sequence of actions. Even though the transitions vary in type, they

generally contain a common set of converting actions: charge, blow and discharge.

The set of converting actions is denoted

{Ch,Blow,DCh}

where “Ch” and “DCh” are short for “Charge” and “Discharge”, respectively. In this context,

skimming is considered to be a kind of discharging.

Before running the optimization, there is no direct way of knowing which type of transi-

tions or actions will be performed, and in what sequence. For example, (PSC,2,3) is the third

transition of converter 2; under optimality, this transition might include a blowing action,

or it might not. Every converting action variable must be defined for (PSC,2,3), otherwise

the MILP formulation is not free to evaluate which actions to include or exclude in this

transition, e.g. whether or not (PSC,2,3) should include blowing.

For simplicity, the converter transitions will take the following generic form,

Ch− Blow−DCh

Given that each action is present once, this ordering tends to minimize the number of convert-

ing transitions needed to construct the schedule; it allows charging to be followed by blowing

and/or discharging, or blowing to be followed by discharging, within the same transition.

Not all converting actions are included in all transition types. For example, there may

be some transition types that allow charging and blowing, but do not allow any discharging,

thus giving sequences of the form Ch− Blow. The generic action sequence is still respected,

as long as (1) converting actions are not repeated within the same transition, and (2) the

generic order is respected.

In Figure 2.4, most of the transition types consider a single converting action, which can

be deduced for the type name. It is clear, for example, that InitialCharge consists of the Ch

action, and does not include Blow or DCh. However, the EndCycle could well include an

overblow prior to the final discharge, hence the sequence Blow-DCh, which still agrees with

the generic form.

35

(a) (b)

Figure 2.5: Converter transition diagrams for (a) Simplified copper PS systems, and (b)
Simplified nickel PS System. The transition types are labeled (I) BeginSlagBlowStage, (II)
ContinueSlageBlowStage, and the remainder are numbered as in Figure 2.4.

Figure 2.6: Generic converter transition

Considering that InitialCharge transitions are always followed by SlagBlow and Skim

(Figure 2.4), the InitialCharge type may be replaced with a new type of transition, say

BeginSlagBlowStage, still satisfying the generic form. Similarly the Recharge transition can

be replaced by a new transition type, ContinueSlageBlowStage, consisting of the original

Recharge, followed by SlagBlow and Skim (Figure 2.5). These types of mergers decrease the

size of TPSC, thus simplifying the parametrization, and shortening the computation time.

However, some transition types must not be merged, because it would effect the depen-

dency clauses DPSCk. For example, the dependency (Crane,InitialCharge,2)∈ DPSC,InitialCharge,

discussed in Section 2.1.2, could not be articulated if InitialCharge were merged into Be-

ginSlagBlowStage. In general, it is advisable to merge transitions as much as possible, while

maintaining the relevant dependency clauses.

Figure 2.6 illustrates a transition over the timeline, in accordance with the generic form.

The transition duration dl is decomposed into seven time segments; this includes the three

converting actions, as well as intermittent setup and/or idle times. Thus,

dl =
7∑
i=1

dli (2.2)

The even terms correspond to the converting actions, such that dl2 = dlCh is the charging

36

(a) (b)

(c)

Figure 2.7: Converter transitions having one converting action

(a)

(b)

(c)

Figure 2.8: Converter transitions having two converting actions

37

duration, dl4 = dlBlow is the blowing duration, and dl6 = dlDCh is the discharging duration.

Transitions which do not include charging are constrained such that dlCh = 0; similarly,

dlBlow = 0 when there is no blowing, and dlDCh = 0 when there is no discharging.

Figures 2.7 and 2.8 illustrate transitions having one and two converting actions, respec-

tively. The Ch-DCh form (Figure 2.8c) has been included for completeness, even though it

is not practical; proceeding from a Ch into DCh, without the essential mixing that occurs

during the blowing action [7], would yield heterogeneous product streams. Figures 2.7 and

2.8 illustrate the convention regarding the setup/idle times: to keep the lowest indices possi-

ble, while respecting dl2 = dlCh, d
l
4 = dlBlow, and dl6 = dlDCh. Purely mechanistic transitions are

such that dl = dl1.

The generic form provides a unified framework to construct transition types. Under this

framework, transition types are distinguished through the various process streams that are

involved in the charging/blowing/discharging actions, which is the subject of Chapter 3.

38

CHAPTER 3

CHARACTERIZATION OF CHEMICAL STREAMS IN PS SYSTEMS

3.1 Elements, Species and Streams

3.1.1 General Representation of Chemical Converting

In Peirce-Smith converting, and in many other chemical processes, feed materials are

loaded into the system and are reacted to form certain chemical species; these species are

eventually separated into the product streams (Figure 3.1). Thus the formation of product

species is preliminary to the formation of the product streams.

The set of chemical elements which participate in the process is denoted E . These chemical

elements are organized into species which, in turn, are organized into streams. The set of

chemical species and streams are denoted S and Z, respectively.

To facilitate the discussion of elements, species and streams, a certain convention is used

to index the sets E , S and Z. Elements are indexed using the subscript i, e.g. mi is a mass

quantity of element i ∈ E . Secondly, species are indexed using the subscript j, e.g. mj is a

mass quantity of species j ∈ S. Thirdly, process streams are indexed using the subscript k,

e.g. mk is a mass quantity of stream k ∈ Z. The alphabetical ordering ijk is logical, since

elements are the components of species, which are then the components of process streams.

Figure 3.1: Elemental mass distribution, for the General Nickel-Copper PSC Formulation

39

The set of streams Z includes feeds ZFeed which are introduced into the converters, and

products ZProd which are removed or expelled from the converters. Thus Z = ZFeed

⋃
ZProd,

and ZFeed

⋂
ZProd = ∅.

For every stream k ∈ Z, there is a set of constituent species Sk ⊂ S and a set of constituent

elements Ek ⊂ E . Thus, the sets of feed species and product species are given by

SFeed =
⋃

k∈ZFeed

Sk

SProd =
⋃

k∈ZProd

Sk

Similarly for the feed and product elements,

EFeed =
⋃

k∈ZFeed

Ek

EProd =
⋃

k∈ZProd

Ek

The chemical reactions that occur during the converting process cause a reorganization of

the species, so that SFeed is not generally equal to SProd. In contrast, it can be argued that

EFeed = EProd = E , since every element is introduced as part of the feeds, and reports to a least

one of the products.

Figure 3.1 summarizes the logic by which feeds ZFeed are entered into the system, carrying

elements E that are subsequently organized into product species SProd, from which the product

streams ZProd are drawn. This is the logic by which elemental masses are distributed and

organized within the system, ZFeed → E → SProd → ZProd, which does not rely on SFeed.

Knowledge of the feed species SFeed can be quite limited, particularly for secondary feeds.

Although the balancing of elemental mass is well-posed even without this knowledge, the

fundamental predictions for volume and temperature can suffer. Nonetheless, empirical mea-

surements and plant studies can compensate for this lack of information, as discussed in

Subsection 3.3.2.

The structures represented by E , SFeed, SProd, ZFeed and ZProd are general to any chemical

conversion process, including solvent extraction, steelmaking, etc. The remainder of the

chapter focusses on the particularities of Peirce-Smith converting.

40

3.1.2 General Representation of PS Converting

A general treatment of the Peirce-Smith converting requires an appropriate consideration

of the elements, species and streams that are involved. Thus the General Nickel-Copper

PSC Formulation is presented along side the Simplified Copper PSC Formulation, sharing

the same algebraic structures. The former is intended to represent the conversion of either

nickel-copper matte or of copper matte. The Simplified Copper PSC Formulation is dedicated

to the latter.

PS feeds generally include furnace matte, flux, various types of secondary feeds (reverts,

scraps, etc.) and a blend of blast streams. Thus,

ZFeed = { FMatte, Flux, . . . }
⋃
ZBlast

The prefix “F” in FMatte distinguishes the furnace matte (or feed matte) from CMatte,

which is the Bessemer converter matte that is an element of ZProd.

As discussed in Subsection 1.3.1, the blast streams ZBlast are characterized by particular

parameters including the oxygen enrichment and the blast rate. Usually the blast consists of a

regular air stream, plus a stream that is highly enriched with oxygen [7]; the net enrichment

of the blast is controlled by blending these two streams. Given the particularity of the

blast, a distinction is made between ZBlast and the remaining feeds that are nongaseous.

ZNGFeed = ZFeed \ ZBlast is used to denote the nongaseous feeds.

Depending on the operation, there may be a second stream of furnace matte, denoted

FMatte2 ∈ ZNGFeed; for example, the Chiquicamata Smelter operates a flash furnace in parallel

with a reverberatory furnace [47], and the two furnaces each produce different mattes. There

may also be several additional blends of flux, {Flux2, Flux3, . . . } ⊂ ZNGFeed. Furthermore,

there may be several secondary feeds, e.g. {Scrap, Scrap2, Reverts} ⊂ ZNGFeed. Generally,

ZNGFeed is constructed on a smelter-to-smelter basis.

In the General Nickel-Copper PSC Formulation, the feed streams are presumed to carry

the following elements,

E = { Fe, Ni, Co, Cu, S, Si, Ca, Al, Mg, O, N }

41

which are organized into the following set of product species,

SProd = { FeS(liq), Ni3S2(liq), CoS(liq), Cu2S(liq), Cu(liq), Fe2SiO4(liq), Fe3O4(sol), NiO(sol),

CoO(sol), Cu2O(sol), SiO2(sol), CaO(sol), Al2O3(sol), MgO(sol), O2(gas), N2(gas), SO2(gas) }

The Simplified Copper PSC Formulation disregards the nickel and cobalt, thereby reducing

|E| from 11 to 9, and |SProd| from 17 to 13.

Each species is defined by a stoichiometric expression, e.g. FeS, and a state-of-matter, be

it solid (sol), liquid (liq) or gas. It is usually convenient to drop the state-of-matter, except

for Cu(liq); in this case the subscript distinguishes the liquid metallic species Cu(liq)∈ SProd from

the element Cu ∈ E . In the present context, whenever a species j ∈ SProd is given simply

as a stoichiometric expression, the state-of-matter can be inferred; FeS implies FeS(liq), SiO2

implies SiO2(sol), etc.

As depicted in Figure 3.1, the set of product streams is given by

ZProd = { CMatte, Blister, Slag, Offgas }

Nickel producing systems do not usually extract blister copper from nickel-copper mattes

because this results in massive nickel and cobalt losses to the slag; thus it may seem appro-

priate to omit Blister from ZProd. However, the Blister stream is included for the sake of

generality, describing the spectrum of nickel, nickel-copper and copper systems. After all, it

is theoretically possible for a nickel smelter to produce blister copper (Subsection 1.3.2).

The nongaseous products are given by ZNGProd = ZProd \ {Offgas}. Moreover, ZNG =

ZNGFeed

⋃
ZNGProd is the set of nongaseous streams.

In the General Nickel-Copper PSC Formulation, furnace mattes are represented reason-

ably well with

SFMatte = { FeS, Ni3S2, CoS, Cu2S }

and in the Simplified Copper PSC Formulation with

SFMatte = { FeS, Cu2S }

although there are more complicated formulations that include oxides and other species

[52, 53]. The fluxing species vary from smelter to smelter, but are generally a blend of the

stable oxides,

SFlux ⊆ { SiO2, CaO, Al2O3, MgO }

42

The blast has a two-element (two-species) configuration,

SBlast = { O2, N2 }

where SBlast is equivalent to
⋃
k∈ZBlast

Sk. For the secondary feeds, the contributing species

Sk are often unavailable, as discussed in Subsection 3.3.2.

However, the contributing species Sk are generally available for all of the product streams

k ∈ ZProd. In the General Nickel-Copper PSC Formulation,

SCMatte = { FeS, Ni3S2, CoS, Cu2S }

SBlister = { Cu(liq) }

SSlag = { Fe2SiO4, Fe3O4, NiO, CoO, Cu2O, SiO2, CaO, Al2O3, MgO }

SOffgas = { O2, N2, SO2 }

In the Simplified Copper PSC Formulation, the nickel and cobalt species are removed from

SMatte and SSlag. The blister is regarded as pure copper in spite of the ≈ 1% impurities; these

impurities are more relevant in the refining stages. The gaseous product species all report to

the offgas stream, and the remaining nongaseous species form a set SNGProd = SProd \ SOffgas.

In the remainder of Chapter 3, the General Nickel-Copper PSC Formulation and the

Simplified Copper PSC Formulation are presented in tandem, as the differences are only

superficial. Chapter 4 presents an MILP formulation that makes absolutely no distinction,

which is truly unified approach.

3.2 Species-Based Distribution of Mass, Volume and Heat

3.2.1 Mass Distribution Within a Process Stream

The Peirce-Smith reactions are controlled through the chemical balance of feed and prod-

uct streams. It is therefore important to consider the composition of the various streams

that participate in the process.

The mass mk of a stream k can be decomposed in terms of elemental contributions,

mk =
∑
i∈Ek

mik (3.1)

43

or in terms of species contributions,

mk =
∑
j∈Sk

mjk (3.2)

These two decompositions are related to each other through the element-species mass balance

for stream k,

mik =
∑
j∈Sk

wijmjk (3.3)

for all i ∈ Ek, in which wij is the mass-fraction of element i that is contained in species j.

These mass-fractions wij are universal constants that can be obtained using the stoichiometric

descriptions of the species, as described below. Equation 3.3 describes how element i is

distributed among the species of stream k.

The stoichiometric description of a species is essentially a set of molar proportions. For

instance, the expression FeS implies that there is one mole of Fe and one mole of S, for

every mole of FeS; similarly, Cu2S implies that there are two moles of Cu and one of S for

every mole of Cu2S. These stoichiometric (molar) ratios are fundamental for the description

of chemical reactions, as in Subsection 1.3.2. Feed and product tonnages, however, are based

on mass ratios wij rather than molar ratios.

The molar ratios are hence converted into mass ratios, according to

wij =
nijMi

Mj

(3.4)

where nij is the number of moles of i contained in a mole of j, Mi is the molar weight of

element i and Mj is the molar weight of species j. For an element i, Mi is taken directly

from the periodic table as the standard atomic weight of i. For a compound j, Mj must be

decomposed into the sum of its constituent atomic weights. For example, the mass-fraction

of Cu in Cu2S is given by

wCu,Cu2S =
2MCu

MCu2S

=
2MCu

2MCu +MS

=
2(63.546)

2(63.546) + 32.065
= 0.79853

The factor 2 comes from the fact that there are two moles of Cu within a mole of Cu2S, i.e.

nCu,Cu2S = 2. Liquid copper Cu(liq) is a particular case for which wCu,Cu(liq)
= 1, and wiCu(liq)

= 0

for all i 6= Cu.

44

For a stream k, the elemental composition is given by

wik =
mik

mk

for all i ∈ Ek, and the species composition is given by

wjk =
mjk

mk

for all j ∈ Sk. Substitution into Equation 3.3 gives

wik =
∑
j∈Sk

wijwjk (3.5)

for all i ∈ Ek. Thus the elemental composition {wik| i ∈ Ek} is a weighted mean of the species

composition {wjk| j ∈ Sk}, in which the weights wij are known through Equation 3.4.

Using Equation 3.5, it is trivial to obtain the element composition from the species com-

position. However, the inverse problem of solving for {wjk| j ∈ Sk} given {wik| i ∈ Ek}, is

called the “speciation of k”, and it is not always trivial because the system of equations can

be under-specified. In other words, there may be more candidate species in Sk than there

are elements in Ek.

Speciation is an important step in quantifying the volumetric and thermal contributions

of the various feed streams. A speciation technique is discussed in Subsection 3.3.2, which is

based on the geometrical notion of Convex Projection [54, 55], and is applicable to secondary

feeds. More general techniques rely on thermodynamic and kinetic considerations (see [56]

and [57], for example), and are beyond the current MILP implementation. Some of these

techniques are implemented as software packages, e.g. FactSage c©, ThermoCalc c© and HSC c©.

3.2.2 Volume Distribution Within a Process Stream

Peirce-Smith converters are of a fixed size. Therefore it is important to estimate the

volume of the various streams that enter and exit the process.

The volume vk of stream k includes contributions from the constituent species, giving the

following approximate relationship,

vk =
∑
j∈Sk

mjk

ρj
(3.6)

45

where ρj is the density of species j, for all j ∈ Sk.

The species densities ρj are given in Table 3.1, for all of the members of SProd except for

the gaseous species {O2, N2, SO2}. The densities of these gaseous species are given by

ρj =
MjP

RT
(3.7)

which is based on the Ideal Gas Law [58], in which P is the pressure, T is the temperature,

and R = 8.3145 J/(mol ◦C) is the Ideal Gas Constant. Equation 3.7 assumes that T is

provided in absolute terms, measured in K rather than ◦C.

The density of stream k is given by

ρk =
mk

vk

According to Equation 3.6, ρk can therefore be estimated as

ρk =

(∑
j∈Sk

wjk
ρj

)−1
(3.8)

Thus ρk is taken as the weighted harmonic mean of the constituent densities ρj.

There may be an upper limit vk on the volume of stream k, such that vk ≤ vk. If the

species composition of a stream can be estimated, then Equations 3.6-8 predict whether or

not vk will exceed this limit.

3.2.3 Heat Distribution Within a Process Stream

Heat and temperature control is a persistent concern in pyrometallurgical operations. It is

therefore important in the PSC Problem to estimate the heat content of the various streams.

In turn, the heat content is integrally related to the temperature.

The heat content hk of a stream k can be expressed as

hk(T) =
∑
j∈Sk

[wHj(T)]mjk (3.9)

where wHj is the specific heat content of species j, which is a function of the equilibrium

temperature T , described below. The notation wHj emphasizes a certain analogy to the

elemental mass-fractions wij. In some sense, the enthalpy H can be regarded as if it were an

46

Table 3.1: Density and temperature response parameters for product species in Peirce-Smith
systems [59, 60]

j ρj wRef
Hj Aj Bj Cj Dj

[g/L] [J/g] [J/(g◦C)] [J/(g(◦C)2)] [(J◦C)/g] [J/(g(◦C)3)]
FeS(liq) 5.27 -735.18 0.71153 0 0 0

Ni3S2(liq) 5.17 -0.70833 0.79845 0 0 0
CoS(liq) 5.45 0.32968 0.76925 0 0 0

Cu2S(liq) 5.28 -427.87 0.56336 0 0 0
Cu(liq) 7.92 204.86 0.49403 0 0 0

Fe2SiO4(liq) 2.5 -7155.9 1.1806 0 0 0
Fe3O4(sol) 5.2 -4825.2 0.74430 3.4024·10−4 -17708. 0

NiO(sol) 7.45 -3272.7 0.63325 1.2049·10−4 0 0
CoO(sol) 5.68 -3212.0 0.68500 3.6299·10−5 37127. 5.7852·10−8

Cu2O(sol) 6.0 -1257.9 0.43567 1.6668·10−4 0 0
SiO2(sol) 2.65 -14166. 0.75726 6.0693·10−4 -16803. 0
CaO(sol) 3.32 -11323. 0.74643 3.6127·10−4 -8061.5 0

Al2O3(sol) 3.99 -16384. 0.90645 3.6829·10−4 -21450. 0
MgO(sol) 3.65 -14938. 1.1279 1.2431·10−4 -21674. 0

O2(gas) (Ideal Gas) 0 1.0818 3.3749·10−5 -24553. 0
N2(gas) (Ideal Gas) 0 0.97124 1.4942·10−4 0 0

SO2(gas) (Ideal Gas) -4635.1 0.50310 3.4629·10−4 0 -5.4231·10−8

element, and it is distributed among species in a manner comparable to Equation 3.3.

A complete description of the temperature distribution would require the solution of

partial differential equations over space and time [61]. However, Peirce-Smith converting

has favourable mixing characteristics [7], so that the spacial (geometrical) aspects can be

neglected for the current study. Thus the equilibrium temperature T can be regarded as a

uniform temperature that is held throughout the stream.

A more precise description of T follows: if the stream were to be isolated indefinitely

from other bodies (i.e. if it were kept under adiabatic conditions, [62]), then regardless of the

initial temperature distribution, the heat hk would rearrange itself among the constituent

masses mjk, so that the temperature distribution would tend toward one uniform value, T .

Moreover, this temperature T may result from an equilibrium between several streams that

are in thermal contact, as discussed in Subsection 3.2.4.

The specific heat content wHj is a quantity of heat per unit mass, measured in J/g or

equivalently in MJ/T (i.e. mega-joules per metric tonne). This is not to be confused with

the specific heat capacity cj of species j, which is the partial derivative of wHj with respect

47

to temperature. The specific heat capacity is measured in J/(g·K), in MJ/(T·K), in J/(g·◦C)

or in MJ/(T·◦C), which are all equivalent.

From the Fundamental Theorem of Calculus [63],

wHj(T) = wRef

Hj +

∫ T

TRef

cj(T
′)dT ′

where wRef
Hj is the specific heat of formation of species j at the reference temperature T Ref,

assuming that the pressure is held at a constant reference pressure P Ref. The specific heat

capacity is a continuous function of T , so that wHj(T
Ref) = wRef

Hj . By standard convention,

T Ref is taken as 298.15 K (25.00◦C), P Ref is taken to be atmospheric pressure 101.325 kPa,

and wRef
Hj is taken such that wRef

Hj = 0 if j is the most stable form of some pure element i under

standard conditions [62]; for example, wRef
H,O2

= 0 because O2 gas is the most stable species

of pure oxygen at 25◦C and atmospheric pressure. Table 3.1 includes values of wRef
Hj for all

species in SProd.

Within the table, wRef
H,Cu(liq)

is taken to be the standard heat of fusion of copper [59],

noting that solid copper Cu(sol) satisfies wRef
H,Cu(sol)

= 0, as copper is naturally a solid at room

temperature and atmospheric pressure.

The table also includes coefficients (Aj, Bj, Cj, Dj) which can be used to estimate cj over

a sufficiently wide range of temperature values,

cj(T) = Aj +BjT + CjT
−2 +DjT

2 (3.10)

Collectively, wRef
Hj and (Aj, Bj, Cj, Dj) are the temperature response parameters for species

j, as they describe the temperature response of j to a given amount of heat. Combining

Equation 3.10 and the Fundamental Theorem of Calculus, it follows that

wHj(T) = wRef

Hj +Aj(T − T Ref) +
Bj

2

(
T 2 − (T Ref)2

)
−Cj

(
T−1 − (T Ref)−1

)
+
Dj

3

(
T 3 − (T Ref)3

)
(3.11)

Some caution must be taken when applying Equations 3.10-11. Firstly, these equations

require generally that T and T Ref be entered as absolute temperatures, in K rather than ◦C.

Secondly, the thermal response parameters are often tabulated on a per-mole basis rather

than a per-mass (specific) basis [59, 60].

48

The specific heat content of stream k is given by

wHk(T) =
hk(T)

mk

Denoting wRef
Hk = wHk(T

Ref), it follows from Equation 3.9 that

wRef

Hk =
∑
j∈Sk

wRef

Hj wjk (3.12)

Applying the Fundamental Theorem of Calculus,

wHk(T) = wRef

Hk +

∫ T

TRef

ck(T
′)dT ′

where ck is the specific heat capacity of k, i.e. the partial derivative of wHk with respect to

T .

From Equations 3.9-10, it follows that

ck(T) = Ak +BkT + CkT
−2 +DkT

2 (3.13)

where

Ak =
∑
j∈Sk

Ajwjk (3.14)

Bk =
∑
j∈Sk

Bjwjk (3.15)

Ck =
∑
j∈Sk

Cjwjk (3.16)

Dk =
∑
j∈Sk

Djwjk (3.17)

The integration gives

wHk(T) = wRef

Hk +Ak(T −T Ref) +
Bk

2

(
T 2 − (T Ref)2

)
−Ck

(
T−1 − (T Ref)−1

)
+
Dk

3

(
T 3 − (T Ref)3

)
(3.18)

Collectively, wRef
Hk and (Ak, Bk, Ck, Dk) are the temperature response parameters of stream

k. If the temperature T and the species composition {wjk| j ∈ Sk} are available, then

thermochemical data (e.g. Table 3.1) can be used in conjunction with Equations 3.12 and

3.14-18 to compute the specific heat of stream k.

49

A certain convention is maintained, regarding the specific heat contents. When wHj or

wHk is written without a superscript, it implies a function of the temperature, be it wHj(T) or

wHk(T). Otherwise the superscript describes a particular temperature, as in wRef
Hj = wHj(T

Ref)

or wRef
Hk = wHk(T

Ref), evaluated at the reference temperature T Ref. More generally, wSuperscript

Hj =

wHj(T
Superscript).

A higher temperature corresponds to more heat, so it is intuitive that wHj and wHk should

be strictly increasing functions of temperature. Thus cj and ck are inherently positive. (In

actuality there are some exotic circumstances in which wHj and wHk actually decrease with

temperature [64], but such cases are beyond the scope of pyrometallurgy). The positivity of

cj and ck is especially important to the MILP formulation since it allows temperature bounds

to be implemented indirectly, as heat bounds.

There may be some temperature bounds, T and T , that must be satisfied by stream k such

that T ≤ T ≤ T . These temperature bounds are converted into heat bounds using Equations

3.9 and 3.11. The temperature bounds are satisfied if, and only if, the corresponding heat

bounds are satisfied.

3.2.4 Heat Distribution Across Several Process Streams

The bath of a Peirce-Smith converter can contain several streams that are in thermal

contact with each other. This may include a combination of product streams, and perhaps

some newly added feed streams that have not yet disintegrated. Thermal equilibrium is held

between these streams as they approach a common temperature.

A newly added charge will undoubtedly create a spatial distribution of temperature within

the bath. However, the bath becomes well-mixed as soon as a blowing action begins, except

for the local disturbances surrounding the incoming blast [7], which are neglected in this

study. In any case, these disturbances subside as soon as the blowing action is halted. Thus

it is assumed that during and following any blowing action, there is a uniform temperature

that extends throughout the bath, and that this temperature corresponds to the equilibrium

temperature.

The equilibrium temperature T depends on the amount of heat h which is contained in

the bath,

h =
∑
k∈ZNG

[wHk(T)]mk (3.19)

Again, this temperature is not necessarily uniform throughout the bath, except during and

50

after the blowing actions. The summation in Equation 3.19 considers only the nongaseous

species, since the gaseous species are not retained within the bath.

In practice h can be estimated, and T can then be computed from Equation 3.19 by

applying Newton’s Method [13]. Given T , Equation 3.9 determines how h will be distributed

among the constituent streams at the onset of a blowing action. It can be verified that

h =
∑
k∈ZNG

hk(T)

so that the heat is indeed distributed into ZNG.

To implement Newton’s Method it is convenient to consider a global specific heat content,

wH =
h

m

where m =
∑

k∈ZNG
mk is the total mass of the bath. By substituting Equation 3.18 into

Equation 3.19,

wH = wRef

H +A(T −T Ref)+
B

2

(
T 2 − (T Ref)2

)
−C

(
T−1 − (T Ref)−1

)
+
D

3

(
T 3 − (T Ref)3

)
(3.20)

in which (wRef
H , A,B,C,D) are global temperature response parameters,

wRef

H =

(∑
k∈ZNG

wRef

Hkwk

)
(3.21)

A =

(∑
k∈ZNG

Akwk

)
(3.22)

B =

(∑
k∈ZNG

Bkwk

)
(3.23)

C =

(∑
k∈ZNG

Ckwk

)
(3.24)

D =

(∑
k∈ZNG

Dkwk

)
(3.25)

where wk = mk/m is the mass fraction of stream k in the bath. Given wH and (wRef
H , A,B,C,D),

51

Newton’s Method reduces to a fixed point iteration [65],

T ←
(
T +

wH−wRef
H −A(T−TRef)−B

2 (T 2−(TRef)2)+C(T−1−(TRef)−1)−D
3 (T 3−(TRef)3)

A+BT+CT−2+DT 2

)
(3.26)

A guessed value for T is substituted into the righthand side, in order to compute an improved

guessed value; the improved value is then recycled into the righthand side to give an even

better value, and so on, until two subsequent guesses are sufficiently close (e.g. equal to 8

significant digits).

The denominator in Equation 3.26 is effectively the global specific heat capacity. It is

strictly nonnegative in the temperature range of interest, which follows from the nonnega-

tivity of the constituent specific heat capacities ck. This condition causes Equation 3.26 to

converge to a single value, assuming that that the first guess is sufficiently close to the true

value [13]. T = 1475 K works well as a first guess since it is fairly representative of actual

PS bath temperatures.

Equations 3.20 and 3.26 describe the one-to-one correspondence between wH and T , both

of which are essential measures of heat concentration. The specific heat content wH is the

global ratio of heat per mass. On the other hand, the temperature T controls how much heat

is allocated to each unit mass, depending on the chemical nature of these unit masses.

3.3 Characterization of Feed Streams

3.3.1 Furnace Matte

Mattes are simpler to characterize than the other feeds since they are presumably dom-

inated by sulfides. The valuable metal grades (wNi,FMatte, wCo,FMatte, wCu,FMatte) are usually

known, which is sufficient to complete the missing composition information, and to predict

the volume and temperature response.

Assuming that the furnace matte is composed only of the aforementioned sulfides, it

follows that EFMatte = {Fe, Ni, Co, Cu, S} and SFMatte = {FeS, Ni3S2, CoS, Cu2S}. Therefore,

wFe,FMatte + wNi,FMatte + wCo,FMatte + wCu,FMatte + wS,FMatte = 1

wFeS,FMatte + wNi3S2,FMatte + wCoS,FMatte + wCu2S,FMatte = 1

52

and Equation 3.5 gives

wFe,FMatte = wFe,FeSwFeS,FMatte

wNi,FMatte = wNi,Ni3S2
wNi3S2,FMatte

wCo,FMatte = wCo,CoSwCoS,FMatte

wCu,FMatte = wCu,Cu2SwCu2S,FMatte

wS,FMatte = wS,FeSwFeS,FMatte + wS,Ni3S2
wNi3S2,FMatte + wS,CoSwCoS,FMatte + wS,Cu2SwCu2S,FMatte

This constitutes 7 equations, 6 of which are linearly independent. This is fitting since there

are exactly 6 unknown mass-fractions.

There are two unknown elemental fractions, wFe,FMatte and wS,FMatte, determined by substi-

tution,

wFe,FMatte = wFe,FeS −
(

wFe,FeS

wNi,Ni3S2

)
wNi,FMatte −

(
wFe,FeS

wCo,CoS

)
wCo,FMatte −

(
wFe,FeS

wCu,Cu2S

)
wCu,FMatte

(3.27)

wS,FMatte = 1− wFe,FeS −
(

1 +
wFe,FeS

wNi,Ni3S2

)
wNi,FMatte −

(
1 +

wFe,FeS

wCo,CoS

)
wCo,FMatte

−
(

1 +
wFe,FeS

wCu,Cu2S

)
wCu,FMatte (3.28)

thus completing the species composition {wik| i ∈ EFMatte}. Again by substitution,

wFeS,FMatte = 1− wNi,FMatte

wNi,Ni3S2
− wCo,FMatte

wCo,CoS
− wCu,FMatte

wCu,Cu2S
(3.29)

wNi3S2,FMatte =
wNi,FMatte

wNi,Ni3S2
(3.30)

wCoS,FMatte =
wCo,FMatte

wCo,CoS
(3.31)

wCu2S,FMatte =
wCu,FMatte

wCu,Cu2S
(3.32)

thus completing the species composition {wjk| j ∈ SFMatte}.

Equations 3.27-32 describe furnace matte for the General Nickel-Copper PSC Formula-

tion. For the Simplified Copper PSC Formulation, it suffices to set wNi,FMatte = wCo,FMatte = 0.

Given the species composition, the density can be estimated using Equation 3.8, and the

53

temperature response parameters using Equations 3.12 and 3.14-17.

3.3.2 Fluxes and Secondary Feeds

In Table 3.2, the characterization of fluxes and secondary feeds are considered with three

levels of detail. It is common in industry that the only available composition data for a feed

k is its elemental mass-fractions {wik| i ∈ Ek}; this description falls into Level 1 of Table 3.2,

and is insufficient because there is no general way of anticipating the volume and temperature

response.

For certain feeds, the species composition {wjk| j ∈ Sk} is available. In particular, fluxes

are usually a known blend of the stable oxides. Assuming that the fluxes are fed at ambient

temperature (roughly 30◦C for a smelter), this qualifies as Level 2.

Given the species composition, the results of Subsections 3.2.2 and 3.2.3 are used to

estimate whichever response parameters may be missing in a Level 2 description. Of course,

Equation 3.5 is a straight-forward means of converting {wjk| j ∈ Sk} into {wik| i ∈ Ek}. Thus

Level 2 can be upgraded to Level 3, as depicted in Figure 3.2.

A Level 3 characterization includes all of the necessary data to assess heat and elemental

mass contributions, as well as temperature and volume responses. The species composition

{wjk| j ∈ Sk} is not strictly necessary, as long as the density and all of the temperature

response parameters are otherwise available. In preliminary plant studies, it is unlikely that

Level 3 data is directly available for all of the feeds, especially not for the secondary feeds

[55, 66]. However, more advanced studies can include the appropriate experimental trials

and measurements that lead to Level 3 data.

In preliminary calculations, Level 1 is usually all that is available for secondary feeds.

Table 3.2: Description levels for fluxes and secondary feeds

1) Element-Based Characterization (Insufficient)
Composition: all of {wik| i ∈ Ek}

Volume and Temperature Response: not all of {ρk, wRef
Hk , Ak, Bk, Ck, Dk}

2) Species-Based Characterization (Sufficient)
Composition: all of {wjk| j ∈ Sk}

Volume and Temperature Response: not all of {ρk, wRef
Hk , Ak, Bk, Ck, Dk}

3) Necessary Characterization
Mass Composition: all of {wik| i ∈ Ek}

Volume and Temperature Response: all of {ρk, wRef
Hk , Ak, Bk, Ck, Dk}

54

Figure 3.2: Level 1 is upgraded to Level 2 using a speciation technique, and Level 2 is
upgraded to Level 3 using the results of Section 3.2

Table 3.3: Elemental composition of a revert stream k [66]

i wik
Fe 0.2404
Cu 0.5015

S 0.0618
Si 0.0599
O 0.1365

Figure 3.2 shows the importance of speciation, which allows Level 1 to be upgraded to Level

2, which can in turn be upgraded to Level 3. Speciation procedures usually require so-called

expert knowledge about the origins of the stream and the species which are most likely to be

present. Thus expert knowledge gives an expectation of Sk, which is denoted Ŝk.

For example, k ∈ ZFeed might represent a revert stream from a copper smelter, whose

elemental composition is given in Table 3.3, taken from [66]. Copper reverts are generally a

mixture of flux, slag, matte and/or blister copper, which originate from bath spills, splashes,

the cleaning of equipment, or the accumulation of flue dust. Supposing that this particular

stream were produced through the accumulation of dust, it is likely to be oxidized, so that

Ŝk = {Fe2SiO4(sol), Fe3O4(sol), Cu(sol), Cu2O2(sol)}. (It is reasonable to consider Cu(sol) since

metallic copper is an oxidation product of Cu2S, as per the Copper-Blow). Table 3.4 contains

the density and temperature response parameters for Ŝk.

Given {wik| i ∈ Ek} and Ŝk, the species composition {wjk| j ∈ Sk} is approximated by

the values {ŵjk| j ∈ Ŝk} which minimize the Euclidean distance [67],

D =

√√√√√∑
i∈Ek

wik −∑
j∈Ŝk

wijŵjk

2

while satisfying
∑

j∈Ŝk ŵjk = 1, and ŵjk ≥ 0 for all j ∈ Ŝk. This speciation technique is

known as Convex Projection [54, 55]. Figure 3.3 illustrates the concept of Convex Projection

for |Ek| = 3, although the current MILP implies up to eleven dimensions, |E| = 11.

55

Figure 3.3: A stream k, composed of 3 elements Ek = {i, i′, i′′}, is projected into the convex
hull of 4 species

The minimization of D is equivalent to the minimization of D2, so that {ŵjk| j ∈ Ŝk} is

the result of a quadratic program (QP) [68]. Thus,

∑
i∈Ek

wik −∑
j∈Ŝk

wijŵjk

2

= min
w′jk

(∑
i∈Ek

wik −∑
j∈Ŝk

wijw
′
jk

2)

such that
∑
j∈Ŝk

w′jk = 1,

w′jk ≥ 0 for all j ∈ Ŝk

(3.33)

Indeed, {ŵjk| j ∈ Ŝk} must itself satisfy
∑

j∈Ŝk ŵjk = 1, and ŵjk ≥ 0 for all j ∈ Ŝk.

After applying the Convex Projection in conjunction with a QP solution technique (the

Active Set Method [68], for example), the results of Sections 3.2 are used to compute the

missing volume and temperature response parameters; {ŵjk| j ∈ Ŝk} is used in lieu of

{wjk| j ∈ Sk}, and the projected response parameters are denoted (ρ̂k, ŵ
Ref
Hk , Âk, B̂k, Ĉk, D̂k).

Table 3.4: Density and temperature response parameters [59, 60] for j ∈ Ŝk, where k is
a revert stream that was formed by the accumulation of flue dust, having the elemental
composition given in Table 3.3

j ρj wRef
Hj Aj Bj Cj Dj ŵjk

[g/L] [J/g] [J/(g◦C)] [J/(g(◦C)2)] [(J◦C)/g] [J/(g(◦C)3)]
Cu2S(sol) 5.8 -498.91 0.24669 8.2055·10−4 0 0 0.30682

Cu(sol) 8.92 0 0.35834 9.6303·10−5 0 0 0.25641
Fe2SiO4(sol) 4.392 -7.2540 0.68958 3.9173·10−4 -18070. 0 0.43204

Fe3O3(sol) 5.2 -4825.2 0.74430 3.4024·10−4 -17708. 0 0.00473
Cu2O(sol) 6 -1257.9 0.43567 1.6668·10−4 0 0 0
SiO2(sol) 2.65 -14166. 0.75726 6.0693·10−4 -16803. 0 0

Projection 5.52 -172.76 0.46902 4.4730·10−4 -7890.9 0

56

In Table 3.4, the rightmost column shows the projected speciation data for the flue dust

example, and the bottom line has the corresponding response parameters. These particular

results were obtained using the Microsoft Excel c© Solver [69].

It is preferable to minimize the use of projected data, in favour of actual measured data.

For example, if a reliable measurement of ρk is available, then there is no need to consider ρ̂k.

Also, the mass contribution should be based on the original composition data {wik| i ∈ Ek},
rather than the projected elemental composition {

∑
j∈Ŝk wijŵjk| i ∈ Ek}.

Convex Projection allows the MILP formulation to be applied even in preliminary smelter

studies, since it estimates the response parameters of poorly characterized secondary feeds.

This approach is not usually necessary for fluxes that tend to be characterized using a species-

based composition, nor is it necessary for mattes which are dominated by sulfides.

3.3.3 Blast

The blast is injected into the converter through a set of tuyeres at a rate that is ap-

proximately constant. In industry, the blast rate and blast composition are expressed on a

volumetric basis. These two parameters are used to compute the oxygen mass rate (T/h

of oxygen), hence to estimate the time required to convert a given feed tonnage. A third

industrial parameter is the blast temperature, which affects the heat balance.

The blast rate is denoted v̇Blast, in which the dot implies a derivative with respect to a

duration of time. The volumetric composition is given by {φj| j ∈ SBlast} in which φj is the

volume fraction of species j contained in the blast.

Currently, PS blasts are composed of only two species, namely oxygen gas and nitrogen

gas; thus SBlast = {O2, N2}, and it follows that EBlast = {O, N}. With this simple two-

element configuration, the speciation is trivial; Equation 3.5 gives wO,Blast = wO2,Blast and

wN,Blast = wN2,Blast. Multiplying through by mBlast, it follows that mO,Blast = mO2,Blast and

mN,Blast = mN2,Blast.

A more complicated blast configuration is conceivable. For instance, some researchers

have considered using SO2 to replace some of the nitrogen, hence favouring subsequent acid

production [42]; sulfur would then be an additional blast element. Nonetheless, this section

only considers the two-element configuration, which is currently used in all PS operations

worldwide.

Considering that O2 is the only oxygen bearing species under the two-element model, the

57

oxygen mass-rate is given by

ṁO,Blast = ρO2
v̇BlastφO2

where φO2
is the oxygen enrichment, although it is expressed as a fraction rather than a

percentage.

As discussed in Subsection 1.3.1, the volumetric quantities ρO2
and v̇Blast are stated with

respect to Normal Conditions, meaning atmospheric pressure and a temperature of 0◦C. Thus

the superscript “Norm” is introduced,

ṁO,Blast = ρNorm

O2
v̇Norm

Blast φO2
(3.34)

where ρNorm
O2

and v̇Norm
Blast are respectively the density of oxygen gas and the blast rate, both

measured under Normal Conditions. The density ρNorm
O2

is given by Equation 3.7,

ρNorm

O2
= 0.0014276 (T/Nm3)

To use Equation 3.34, v̇Norm
Blast should be given in Normal units, such as Nm3/h or Nm3/min.

The two-element model assumes that

φO2
+ φN2

= 1

so that the blast volume is entirely composed of oxygen and nitrogen, and N2 is the only

nitrogen bearing species. Thus the nitrogen mass-rate is given by

ṁN,Blast = ρN2
v̇BlastφN2

= ρN2
v̇Blast(1− φO2

)

Measuring under Normal Conditions,

ṁN,Blast = ρNorm

N2
v̇Norm

Blast (1− φO2
) (3.35)

where v̇Norm
Blast should be measured in Normal units. Using Equation 3.7,

ρNorm

N2
= 0.0012498 (T/Nm3)

Under the two-element blast model, Equations 3.34-35 provide the mass-rate at which O and

N are blown into the converter as part of the blast. For all remaining elements, ṁiBlast = 0

when i /∈ {O,N}.

58

The rate at which heat is blown into the system, as part of the blast, is related to the

blast temperature T Blast,

ḣBlast =
∑

j∈SBlast

wBlast

Hj ṁjBlast

where the specific heat contents wBlast
Hj = wHj(T

Blast) are calculated using Equation 3.11 and

Table 3.1. Factoring out v̇Norm
Blast , it follows that

ḣBlast =

(∑
j∈SBlast

wBlast

Hj ρNorm

j φj

)
v̇Norm

Blast

where φj is the volume fraction of species j in the blast. For the two-element model,

ḣBlast =

(
wBlast

H,O2
ρNorm

O2
φO2

+ wBlast

H,N2
ρNorm

N2
[1− φO2

]

)
v̇Norm

Blast (3.36)

using the same densities, ρNorm
O2

and ρNorm
N2

, as for Equations 3.34-35.

Equation 3.34 is essential in controlling the oxygenation of the charge, and Equation 3.36

is essential in controlling the temperature of the charge. These equations make direct use of

three industrial blast parameters, namely the blast rate v̇Norm
Blast , the oxygen enrichment φO2

,

and the blast temperature T Blast.

3.4 Characterization of Product Streams

3.4.1 Regime-Dependence of Product Species

A PS reaction regime is identified by the reaction that occurs under marginal additions

of oxygen. For example, if a small addition of oxygen would contribute to the Slag-Blow

reaction, then the system is in the Slag-Blow regime. Otherwise, if the small addition of

oxygen would contribute to the Cobalt-Overblow, then the system is in the Cobalt-Overblow

regime, etc.

In the General Nickel-Copper PS, the system may pass from the Slag-Blow regime into

the Nickel-Overblow, into the Cobalt-Overblow, into the Copper-Blow and into the Copper-

Overblow regime; the ordering follows from the relative stabilities of the sulfide species FeS,

Ni3S2, CoS and Cu2S, and the stability of Cu(liq) that persists throughout the Copper-Blow

and the Copper-Overblow. The simplified copper PS systems proceed directly from the Slag-

Blow regime into the Copper-Blow, since there are no nickel and cobalt sulfides to participate

in the reactions.

59

Following this discussion, the set of reaction regimes is written,

R = { SlagBlow, NickelOverblow, CobaltOverblow, CopperBlow, CopperOverblow }

for the General Nickel-Copper PSC Formulation. However, the NickelOverblow and Cobal-

tOverblow are omitted from the Simplified Copper PSC Formulation.

The set SNGProd represents all of the species that can report to the nongaseous product

streams. However, the occurrence of certain species depends on the reaction regimes. Tables

3.5 and 3.6 describes the various species as a function of the regime in the General Nickel-

Copper PSC Formulation and in the Simplified Copper PSC Formulation, respectively. Every

species in SNGProd occurs in at least one reaction regime.

The tables are constructed using the following preliminary considerations.

• FeS is not stable in the presence of NiO, CoO, Cu(liq) or Cu2O since sulfur would migrate

away from FeS in favour of more stable sulfides.

• Ni3S2 is not stable in the presence of CoO, Cu(liq) or Cu2O since sulfur would migrate

away from Ni3S2 in favour of more stable sulfides.

• CoS is not stable in the presence of Cu(liq) or Cu2O since sulfur would migrate away

from CoS in favour of Cu2S.

• Cu2S is not stable in the presence of Cu2O since sulfur would migrate away from Cu2S,

as oxygen migrates away from Cu2O, resulting in Cu(liq) and SO2.

Tables 3.5 and 3.6 consider only the regime-dependent product species. It can be verified

that all of the other members of SNGProd can occur under PS conditions, regardless of the

reaction regimes. For example, the ferroslag species, Fe2SiO4 and Fe3O4, are produced during

the Slag-Blow, and are not consumed in any of the other regimes, hence they can occur in

all of the regimes. Similar observations can be made for the stable oxide species.

Table 3.5: Stability of regime-dependent species the General Nickel-Copper PSC Formulation

FeS Ni3S2 CoS Cu2S Cu(liq)NiO CoO Cu2O
Slag-Blow

√ √ √ √
× × × ×

Nickel-Overblow ×
√ √ √

×
√

× ×
Cobalt-Overblow × ×

√ √
×

√ √
×

Copper-Blow × × ×
√ √ √ √

×
Copper-Overblow × × × ×

√ √ √ √

60

Table 3.6: Stability of regime-dependent species in the Simplified Copper PSC Formulation

FeS Cu2S Cu(liq)Cu2O
Slag-Blow

√ √
× ×

Copper-Blow ×
√ √

×
Copper-Overblow × ×

√ √

As discussed in Subsection 1.3.2, the Slag-Blow reaction requires FeS as a feed species;

this precludes the occurrence of NiO, CoO, Cu(liq), and Cu2O, thus giving the first line of

Table 3.5 and of Table 3.6. The Nickel-Overblow reaction requires Ni3S2 and produces NiO,

hence precluding FeS, CoO, Cu(liq), and Cu2O. Similarly, the remaining rows of Tables 3.5

and 3.6 can be generated by considering the feeds and products of each of the reactions.

In every regime of the General Nickel-Copper PSC Formulation, there are four species in

SNGProd that are unstable, as shown in Table 3.5. Similarly, in every regime of the Simplified

Copper PSC Formulation, there are two species in SNGProd that are unstable, as shown in

Table 3.6.

The set of regime-dependent product species is denoted SRgProd ⊂ SNGProd. Thus

SRgProd = { FeS, Ni3S2, CoS, Cu2S, Cu(liq), NiO, CoO, Cu2O }

in the general formulation. Naturally, the nickel and cobalt species are removed from the

Simplified Copper PSC Formulation. For every regime-dependent species j ∈ SRgProd, there

is a strict subset of regimes Rj (R for which this species is stable. Following the results of

Table 3.5 for the General Nickel-Copper PSC Formulation,

RFeS = { SlagBlow }
RNi3S2

= { SlagBlow, NickelOverblow }
RCoS = { SlagBlow, NickelOverblow, CobaltOverblow }
RCu2S = { SlagBlow, NickelOverblow, CobaltOverblow, CopperBlow }
RCu(liq)

= { CopperBlow, CopperOverblow }
RNiO = { NickelOverblow, CobaltOverblow, CopperBlow, CopperOverblow }
RCoO = { CobaltOverblow, CopperBlow, CopperOverblow }
RCu2O = { CopperOverblow }

Similarly Rj can be constructed for simplified formulation, using Table 3.6.

By identifying the reaction regime of a PS system, several species can be eliminated

61

from the element-species mass balances of the product streams (Equation 3.3). This is an

important step toward speciating the product streams, and ultimately determining whether

or not the content of a converter would violate volumetric and thermal constraints.

3.4.2 Mass Distribution Across the Product Streams

The product streams are formed as the constituent species segregate from each other (Fig-

ure 3.1). This species-based segregation controls how the input mass is ultimately distributed

into the product streams.

The product speciation balance is given by

miProd =
∑

j∈SProd

wijmjProd (3.37)

for all i ∈ E , where miProd is the mass of element i that reports to the product streams, and

mjProd is the mass of species j that reports to the product streams. The element masses

miProd are obtained by tallying up the contributions from the reacted feed streams,

miProd =
∑

k∈ZFeed

ξkwikmk (3.38)

for all i ∈ E , where ξk is the portion of stream k that is reacted. In the context of the

PSC Problem, ξk is taken as the weight-fraction of stream k that had been introduced into

a converter prior to its previous blow, and has hence been reacted; this simplification is

supported by the favourable mixing characteristics of PS converting [7].

If the species masses mjProd could somehow be obtained from Equation 3.37, then the

product tonnages and compositions would follow,

mk =
∑
j∈Sk

mjProd (3.39)

for all k ∈ ZProd, and

wjk =
mjProd

mk

(3.40)

for all j ∈ Sk. The species composition given by Equation 3.40 can then be used to estimate

the density and thermal response parameters using the results of Section 3.2, as was done

for the feed streams.

However, Equation 3.37 is underspecified. For the General Nickel-Copper PSC Formula-

62

tion, there are |SProd| = 17 unknown species masses mjProd, and |E| = 11 independent linear

equations, a difference of 6; considering that there are always 4 species that are excluded

from the regime,

17 unknown species

− 11 elemental balances

− 4 species excluded by regime

2 degrees of freedom

thus leaving two degrees of freedom. For the Simplified Copper PSC Formulation, a similar

analysis considers |SProd| = 13, |E| = 9 and the elimination of 2 species in every reaction

regime,

13 unknown species

− 9 elemental balances

− 2 species excluded by regime

2 degrees of freedom

In either case, there are two degrees of freedom.

These two degrees of freedom, left over from Equation 3.37 and the reaction regimes,

allow the consideration of two performance indicators. Firstly, the oxygen efficiency eO is a

common indicator within industry [7, 52, 66],

eO = 1−
(
mO2,Offgas

mO2,Blast

)
It is the proportion of the blast oxygen mO2,Blast that actually reacts with the bath, rather than

exiting the system as unreacted O2 within the offgas. Considering that all of the unreacted

O2 goes into the offgas, and that mO2,Blast = mO,Blast, the equation can be rewritten as

eO = 1−
(
mO2,Prod

mO,Blast

)
(3.41)

which is more directly related to Equations 3.34 and 3.37. The oxygen efficiency is usually

described as a percentage, which theoretically can range from 0% to 100%. In practice, eO

is between 90% and 100%, depending on the blast settings (v̇Norm
Blast and φO2

), and several bath

characteristics such as volume, temperature and viscosity [7]. The oxygen efficiency may also

depend on the reaction regime, as the different reactions consume different proportions of

oxygen.

63

The second performance indicator is the ferroslag ratio rFS, which is the “FeO / Fe3O4”

mass ratio. It quantifies the amount of blast oxygen required to hold iron into the slag. In

the current formulation FeO is regarded as a component of the fayalite 2FeO·SiO2, such that

rFS =
mFeO,Prod

mFe3O4,Prod

can be restated as

rFS =

(
2MFeO

MFe2SiO4

)(
mFe2SiO4,Prod

mFe3O4,Prod

)
(3.42)

As discussed in Subsection 1.3.2, fayalite Fe2SiO4 is preferable to magnetite Fe3O4 because

it is a more efficient distribution of blast oxygen. Also, fayalite floats to the surface faster

than magnetite, since it is a liquid. Theoretically, the ferroslag efficiency can range from 0

to infinity, but typical values range between 1 and 3.5 [7, 52]; the exact value depends on the

amount of stable oxides {CaO, Al2O3, MgO} that accompany the silica flux [32].

The species composition of the product streams can be computed using Equations 3.37-40

if the reaction regime, the oxygen efficiency and the ferroslag ratio are known. The densities

and the thermal parameters can then be obtained by applying the results of Section 3.2.

3.5 Flow Mechanisms

3.5.1 Streams, Actions and Flow Mechanisms

Table 3.7 classifies the feed and product streams with respect to the three converting

actions that were introduced in Subsection 2.2.2, and distinguishes between the gaseous and

nongaseous streams. This same decomposition is also used to characterize the mechanisms

by which these streams are delivered to and from the converters.

Table 3.7: Decomposition of feed and product streams with respect to converting actions

Actions
Charge Blow Discharge Gaseous

Feeds Charge
√

× × ×
Nongaseous Blow Feed ×

√
× ×

Blast ×
√

×
√

Products Offgas ×
√

×
√

Discharge × ×
√

×

Section 3.1 presented a division between feed and product streams, Z = ZFeed

⋃
ZProd.

There is a second decomposition, Z = ZCh

⋃
ZBlow

⋃
ZDCh, in which ZCh, ZBlow and ZDCh are

64

the streams which function during the charge, the blow and the discharge actions, respec-

tively.

The charge streams are nongaseous feeds, ZCh ⊂ ZNGFeed, while the discharge streams are

nongaseous products, ZDCh ⊂ ZNGProd. (For simplicity, gas entrainment into the charge and

discharge streams is ignored). However, the blow streams include nongaseous feeds, as well

as the gaseous Blast and Offgas, so that ZBlow = ZNGBlow

⋃
ZBlast

⋃
{Offgas}, in which ZNGBlow

are the nongaseous streams that function during the blowing action.

The mechanics of Peirce-Smith converting prevents the removal of nongaseous products

during the blow. Nongaseous feeds, however, can be introduced through Garr guns and

chutes [7], hence ZNGBlow ⊂ ZNGFeed, as indicated in Table 3.7. ZNGBlow typically includes flux

and other granulated feeds.

The decomposition of Table 3.7 can be stated algebraically,

Z = ZFeed

⋃
ZProd

ZFeed = ZCh

⋃
ZNGBlow

⋃
ZBlast

ZProd = {Offgas}
⋃
ZDCh

Following the treatment of Section 3.1,

ZNGFeed = ZFeed \ ZBlast = ZCh

⋃
ZNGBlow

ZNGProd = ZProd \ {Offgas} = ZDCh

Thus ZNGProd and ZDCh are identical. Indeed, nongaseous products are removed only during

a discharge action.

Regarding ZNGFeed, it is plausible that there would be overlap between ZCh and ZNGBlow.

For example, Flux ∈ ZCh

⋂
ZNGBlow if the flux may be fed prior to blow, as well as during the

blow. However, ZCh

⋂
ZDCh = ∅ and ZNGBlow

⋂
ZDCh = ∅ which is related to the fact that

ZFeed

⋂
ZProd = ∅.

F is the set of flow mechanisms, and each j ∈ F describes a technique for delivering a

stream to or from a converter. These mechanisms undergo the same decomposition that is

65

depicted in Table 3.7 for streams,

F = FFeed

⋃
FProd

FFeed = FCh

⋃
FNGBlow

⋃
FBlast

FProd = FOffgas

⋃
FDCh

Thus j ∈ FFeed represents a stream flowing into a converter. Similarly, j ∈ FProd is a stream

flowing out of converter.

The flow mechanisms are related to the streams through the source mapping,

srce : F → Z

such that j ∈ F is used to carry srce(j)∈ Z to or from a converter. It follows that

srce : FCh → ZCh

: FNGBlow → ZNGBlow

: FBlast → ZBlast

: FOffgas → {Offgas}

: FDCh → ZDCh

Thus FCh, FNGBlow and FBlast carry the charge streams, nongaseous blow streams and blast

into the converters, respectively. Similarly, FOffgas and FDCh carry the offgas and the discharge

streams away from the converters.

As with streams, the nongaseous flows are treated separately FNG = FNGFeed

⋃
FNGProd, in

which
FNGFeed = FFeed \ FBlast = FCh

⋃
FNGBlow

FNGProd = FProd \ FOffgas = FDCh

Thus FNGProd and FDCh are identical, in the same way that ZNGProd and ZDCh are identical.

Formally, the srce mapping prevents any intersection between FCh and FDCh, or between

FNGBlow and FDCh, since ZCh

⋂
ZDCh=ZNGBlow

⋂
ZDCh = ∅. Additionally, it is assumed that

FCh

⋂
FNGBlow = ∅ without any loss of generality; for j ∈ FCh and j′ ∈ FNGBlow, the mere

fact that j is active during charging, and j′ during blowing, implies mechanistic differences

between j and j′ to the extent that j 6= j′. Thus an intersection between FCh and FNGBlow is

not permitted, even though there may well be an intersection between ZCh and ZNGBlow.

66

For any stream k ∈ Z, there may be several flows Fk = {j ∈ F| srce(j) = k} describing

the modes by which k enters or leaves the converters. For example, there may be two sizes

of feed ladles which both carry the same furnace matte, hence two different flows that draw

on the same source.

The stream masses mk have already been decomposed in terms of elements (Equation 3.1)

and in terms of species (Equation 3.2). There is a now a third decomposition, with respect

to the flow mechanisms,

mk =
∑
j∈Fk

mj (3.43)

where mj is the mass that is delivered by flow j. The flow mechanisms are specified in the

superscript to avoid confusion with the species masses mj.

A similar decomposition can be applied to the stream volume,

vk =
∑
j∈Fk

vj (3.44)

where vj = mj/ρsrce(j) is the volume that is delivered by mechanism j. In the MILP formula-

tion, it is convenient to consider the flow volumes vj instead of the flow masses mj. This is

because ladles and other carrying devices impose volumetric constraints, as described in the

following subsection.

Flow mechanisms are distinguished by which converting action is concurrent to their

delivery, and by which stream they deliver. Additionally, they are distinguished by their

dependence on ancillary objects, and their converter state requirements, which are all con-

sidered in the MILP formulation.

3.5.2 Modulated Charging and Discharging

Flows can be classified as modulated, semi-modulated or unmodulated. This classification

determines how the various flows are implemented in the MILP.

A modulated flow mechanism implies discrete delivery units, such as pre-bundled packages

of scrap, each having a fixed weight. A semi-modulated mechanism uses vessels that have

a finite capacity, but are otherwise fed/drawn in arbitrary quantities; for example, matte is

delivered using a discrete number of ladles, but the ladles may be partially filled, so that

an arbitrary volume of matte can be delivered. Lastly, an unmodulated mechanism can be

delivered in arbitrary quantities, free of the constraints imposed by discrete carrying vessels;

67

for example, the quantity of flux injected from Garr guns can be varied continuously.

The following disjoint decomposition applies for all charging flows,

FCh = FM

Ch

⋃
FSM

Ch

⋃
FUM

Ch

where FM
Ch, FSM

Ch and FUM
Ch represent the modulated, semi-modulated and unmodulated charge

mechanisms. Similarly for discharging,

FDCh = FM

DCh

⋃
FSM

DCh

⋃
FUM

DCh

where FM
DCh, FSM

DCh and FUM
DCh represent the modulated, semi-modulated and unmodulated

discharge mechanisms. The remaining flows, FBlow, are inherently unmodulated.

It is worthwhile to consider the unions of modulated and semi-modulated flow mecha-

nisms,

FM = FM

Ch

⋃
FM

DCh

FSM = FSM

Ch

⋃
FSM

DCh

FMSM

Ch = FM

Ch

⋃
FSM

Ch

FMSM

DCh = FM

DCh

⋃
FSM

DCh

FMSM = FMSM

Ch

⋃
FMSM

DCh

because these are the mechanisms which involve discrete delivery units. For all j ∈ FMSM, uj

is the number of units used to carry srce(j) via mechanism j.

In general, the delivery units place volumetric restrictions on the transport of charge and

discharge streams. For modulated flows, the delivered volume is proportional to the quantity

of delivery units,

vj = vjuu
j (3.45)

where vju is the volume of srce(j) that is carried by a single unit of j, for all j ∈ FM. The

semi-modulated volumes are bounded by the number of delivery units,

vj ≤ vjuu
j (3.46)

where vju is the maximum volume of srce(j) that can be carried by a single unit of j, for all

j ∈ FSM. Equations 3.45-46 are linear, as vju and vju are constant.

68

The previous equations can be rewritten in terms of delivery masses,

mj = mj
uu

j (3.47)

where mj
u = ρsrce(j)v

j
u, for all j ∈ FM, and

mj ≤ mj
uu

j (3.48)

where mj
u = ρsrce(j)v

j
u, for all j ∈ FSM.

Following the treatment of Section 3.3, the charge streams are assumed to have constant

compositions, hence constant densities; in this case, Equations 3.46-47 are somewhat ap-

pealing for an MILP formulation, because they are linear, as mj
u and mj

u are constant. On

the other hand, the discharge streams have a composition which depends on the chemical

balance within the converter, (see Equations 3.37-40); thus Equations 3.47-48 are generally

nonlinear for the discharge streams. The MILP formulation of Chapter 4 uses equations

similar to 3.45-46, rather than 3.47-48, because the former work equally well for the charging

mechanisms as for the discharging mechanisms.

The following MILP combines the dynamical description of Chapter 2 with the stream

characterization of Chapter 3, within an optimization framework. Such a merger has not

been accomplished before.

69

CHAPTER 4

MILP FORMULATION OF THE PSC PROBLEM

4.1 Gantt Structure

4.1.1 Assignments

The PSC Problem is posed as a mixed integer linear program (MILP) within this chapter.

Numerical parameters and variables are defined, and are related to each other through linear

constraints, and one of several objective functions that is to be optimized. The parameters,

variables and constraints are described throughout the chapter, and the objective functions

are described in Section 4.6.

The PSC Problem is to coordinate the various objects of a converting aisle, over a schedule

which begins at time tBegin and ends at time tEnd. There may be some assignments which

begin in the current schedule, and extend into the next schedule. The parameter t denotes

the latest permissible completion time for any assignment planned for the current schedule,

tBegin ≤ tEnd ≤ t. To prevent the current assignments from spreading into the following

schedule, t may be set equal to tEnd.

The implementation of assignments within the schedule is based on the algebraic struc-

tures described in Subsection 2.1.1. The set of assignments that may be planned within the

current schedule is denoted A, with its various subsets denoted A◦, Aij, and Ai. The set of

assignment types Ti categorizes the members of Ai. This set notation is used in conjunction

with the obj and class mappings that were introduced in Subsection 2.2.1.

For every assignment l ∈ A, the planned duration is represented by dl ∈ R+
◦ and the

planned completion time by tl ∈ R, which are both measured in hours. Additionally, the

assignment type determinants,

βlTypek =

{
1 if assignment l is of type k

0 otherwise

are defined for all l ∈ A and all k ∈ Tclass(l). These binary quantities βl
Typek are the assignment

type determinants. They are related to the categorical variables Typel introduced in Chapter

2, such that βl
Typek = 1 if and only if Typel = k. If class(l) = PSC, or another state-machine

70

class, then βl
Typek may be called a transition-type determinant.

The set A◦ contains the final assignments from the previous schedule, which are prede-

termined. Thus for each l ∈ A◦, the quantities dl, tl and βl
Typek are parameters that describe

the initial conditions of the system. It is understood that

tl − dl ≤ tBegin

for all l ∈ A◦, because these assignments began in the previous schedule. Whether or not

they extend into the current schedule depends on whether or not tl ≥ tBegin, but either case

is permitted. Additionally, the members of A◦ have exactly one type,∑
k∈Tclass(l)

βlTypek = 1

for all l ∈ A◦.

For the current assignments A \ A◦, the quantities dl, tl and βl
Typek are variables to be

evaluated as part of the optimization. The current assignments must begin in the current

schedule,

tl − dl ≥ tBegin (4.1)

for all A \ A◦. Assignment l begins after its predecessor has been completed,

tl − dl ≥ tl− (4.2)

for all A\A◦, where l− = (l1, l2, l3− 1) is the predecessor of l = (l1, l2, l3). Assignments may

have at most one type, ∑
k∈Tclass(l)

βlTypek ≤ 1 (4.3)

for all A \ A◦.

An assignment l which is not given any type,
∑

k∈Tclass(l)
βl

Typek = 0, is undetermined.

Using the categorical notation of Chapter 2,
∑

k∈Tclass(l)
βl

Typek = 0 if and only if Typel =

Undetermined. In this case, the duration dl is set to zero, as per

dl ≤ d
∑

k∈Tclass(l)

βlTypek (4.4)

for all A \ A◦, where d is an upper bound on the duration of an assignment. It suffices to

71

take d = t− tBegin, unless lower estimates are available (See Appendix B.5).

An assignment may not be determined in the current schedule unless the predecessor is

determined, ∑
k∈Tclass(l)

βlTypek ≤
∑

k∈Tclass(l)

βl−
Typek (4.5)

for all A \ A◦. Thus,
∑

k∈Tclass(l)
βl−

Typek = 0 implies
∑

k∈Tclass(l)
βl

Typek = 0, so that l remains

undetermined.

An assignment which begins in the current schedule can extend into the next schedule,

but only until time t,

tl− ≤ tEnd + (t− tEnd)

1−
∑

k∈Tclass(l)

βlTypek

 (4.6)

for all A \ A◦. If there is an assignment l− begins in the current schedule, and extends into

the next schedule, then the successor l is undetermined. Thus if tl− ≥ tEnd, then Equation

4.6 can only be satisfied if
∑

k∈Tclass(l)
βl

Typek = 0 so that l is indeed undetermined.

Equation 4.6 implicitly places the upper bound t on tl for all l ∈ A except for when

l = (i, j, nasgni). To fully implement the desired upper bound,

t(i,j,nasgni) ≤ t (4.7)

for all i ∈ C and j ∈ {1, 2, . . . , ni}.

Equations 4.1-7 establish the general logic which enforces the ordering and categorization

of the assignments. Following the treatment of Subsection 2.1.1, the assignment values of dl,

tl and βl
Typek are sufficient to construct a Gantt Chart.

4.1.2 Dependencies

A PS system is composed of various objects that support the converting process. The

interdependency of these objects is described by the sets Dik which were introduced in Sub-

section 2.1.2.

For every class i ∈ C, every assignment type k ∈ Ti, and every dependency clause

72

(i′, k′, n) ∈ Dik, the following binary variables are defined,

βlkSuppl′k′ =

{
1 if assignment l is of type k, and is supported by l′ that is of type k′

0 otherwise

for all l ∈ Ai \ A◦ and all l′ ∈ Ai′ \ A◦. These are the assignment support determinants.

The logic of each dependency clause is implemented through the following equality,∑
l′∈Ai′\A◦

βlkSuppl′k′ = nβlTypek (4.8)

for all i ∈ C, k ∈ Ti, l ∈ Ai \ A◦ and (i′, k′, n) ∈ Dik. Equation 4.8 prevents assignment

l from being of type k, unless there are exactly n objects of class i′ that have supporting

assignments l′ that are of type k′.

To ensure consistency between the support and type determinants,

2βlkSuppl′k′ ≤ βlTypek + βl
′

Typek′ (4.9)

for all i ∈ C, k ∈ Ti, (i′, k′, n) ∈ Dik, l ∈ Ai \A◦ and l′ ∈ Ai′ \A◦. If assignment l′ is of a type

k′ in support of assignment l that is of type k, then βlk
Suppl′k′ = 1, and Equation 4.9 can only

be satisfied if both l and l′ have the corresponding assignment types, βl
Typek = βl

′

Typek′ = 1.

The following equality associates each supporting assignment with exactly one dependent

assignment,

βl
′

Typek′ =
∑

l∈Ai\A◦

βlkSuppl′k′ (4.10)

for all i ∈ C, k ∈ Ti, l ∈ Ai \ A◦, (i′, k′, n) ∈ Dik and l′ ∈ Ai′ \ A◦. If assignment l′ is of a

type k′ which supports type k ∈ Ti, then βl
′

Typek′ = 1 and Equation 4.10 ensures that there is

exactly one assignment l ∈ Ai \ A◦ of type k that is supported by l′; otherwise, if l′ is not

of type k′, then βl
′

Typek′ = 0 and the equation ensures that there are no assignments of type k

that are supported by l′.

For l to be supported by l′, these two assignments must be simultaneous. This implies a

coordination of the durations, dl = dl
′
, and of the completion times tl = tl

′
. Firstly for the

73

durations,

dl ≥ dl
′ − d

(
1− βlkSuppl′k′

)
(4.11)

≤ dl
′
+ d

(
1− βlkSuppl′k′

)
(4.12)

for all i ∈ C, k ∈ Ti, l ∈ Ai \A◦, (i′, k′, n) ∈ Dik and l′ ∈ Ai′ \A◦. If l′ is in support of l then

the terms in the parentheses disappear; Equations 4.11-12 become dl
′ ≤ dl ≤ dl

′
, respectively,

which implies dl = dl
′
, as desired. Otherwise, if l′ does not support l, then Equation 4.11

becomes dl ≥ dl
′ − d which is automatically satisfied because dl ≥ 0 ≥ dl

′ − d, and Equation

4.12 becomes dl ≤ dl
′
+ d which is automatically satisfied because dl ≤ d ≤ dl

′
+ d.

To impose simultaneity for the completion times,

tl ≥ tl
′ − t

(
1− βlkSuppl′k′

)
(4.13)

≤ tl
′
+ t
(
1− βlkSuppl′k′

)
(4.14)

for all i ∈ C, k ∈ Ti, l ∈ Ai \ A◦, (i′, k′, n) ∈ Dik and l′ ∈ Ai′ \ A◦. These two equations

operate similarly to Equations 4.11-12.

Having incorporated the general features of a Gantt chart into the MILP, the remainder

of the chapter focuses on the particularities of Peirce-Smith converters.

4.2 PS Converters as State-Machines

4.2.1 States and Transitions

The state of each Peirce-Smith converter is characterized by its mass and heat content,

as well as the mechanistic aspects, e.g. whether or not a converter is ready to be charged.

Under a state-machine model, the converters evolve throughout the set of transitions APSC.

The state-machine implementation of the PSC class relies on the algebraic structures

described in Chapter 3. This includes the sets of elements E , product species SProd, streams

Z, and flows F , and their various subsets, as well as the srce mapping.

The following state quantities are defined in the MILP for all l ∈ APSC.

• ml
Retk ∈ R+

◦ is the mass of feed stream k retained in the bath of obj(l) at the end of

transition l, for all k ∈ ZNGFeed.

• ml
jRetProd ∈ R+

◦ is the mass of species j within the retained product streams of obj(l) at

74

the end of transition l, for all j ∈ SNGProd.

• hlRet ∈ R is the heat that is retained in the bath of obj(l) at the end transition l.

• βl
Typek ∈ {0,1} is the transition-type determinant described in Subsection 4.1.1, for all

k ∈ TPSC.

For l ∈ APSC

⋂
A◦, these quantities are parameters that describe the initial state of the

system. Otherwise, for l ∈ APSC \ A◦, they are state variables which are determined as part

of the optimization. Throughout the current formulation, masses, such as ml
Retk and ml

jRetProd,

are measured in tonnes. Heats, such as hlRet, are measured in MJ, and with respect to the

standard reference temperature 298.15 K. Incidentally, if obj(l) is empty at time tl, then

ml
Retk = 0 for all k ∈ ZNGFeed, m

l
jRetProd = 0 for all j ∈ SProd, and hlRet = 0.

At time tl, the total mass of the bath in obj(l) can be computed as the sum of nongaseous

feed and product streams,
(∑

k∈ZNGFeed
ml

Retk +
∑

j∈SProd
ml
jRetProd

)
. It is appropriate that the

product streams should be expressed in a speciated form, which allows the composition of

the product streams to be deduced. In contrast, the feed streams are better expressed in the

simpler, unspeciated form. In any case, the speciation data may not even be available for all

of the feed streams, as described in Subsection 3.3.2.

The following transition variables are defined in the MILP for all current converter tran-

sitions l ∈ APSC \ A◦.

• dli ∈ R+
◦ is the duration of segment i of transition l, for all i ∈ {0, 1, 2, . . . , 7}.

• vjl ∈ R+
◦ is the volume of srce(j) delivered during transition l via mechanism j, to or

from obj(l), for all j ∈ FNG.

• ujl ∈ Z+
◦ is the number of delivery units used during transition l to carry srce(j) via

mechanism j, to or from obj(l), for all j ∈ FMSM.

• βl
Typek ∈ {0,1} is the transition-type determinant described in Subsection 4.1.1, for all

k ∈ TPSC.

The transition-type determinants βl
Typek have a double role, characterizing the mechanistic

preparedness, as well as the transitions. They are thus regarded as both state and transition

variables.

Converter transitions are related to the general Gantt structure,

dl =
7∑
i=1

dli (4.15)

75

for all l ∈ APSC \ A◦, which considers segments one through seven. The “zeroth” segment

refers to the idle time which occurs between transitions l− and l, such that

dl◦ = tl − dl − tl− (4.16)

for all l ∈ APSC \ A◦.

To ensure the correct interpretation of TPSC,Empty,

∑
k∈ZNGFeed

ml
Retk

ρk
+

∑
j∈SNGProd

ml
jRetProd

ρj
≤ vobj(l)

1−
∑

k∈TPSC,Empty

βlTypek

 (4.17)

for all l ∈ APSC \A◦, where ρk and ρj are the density of feed stream k, and of product species

j, respectively. Equation 4.17 ensures that no bath is retained when the obj(l) is emptied.

Similarly,

hlRet ≥ hobj(l)

1−
∑

k∈TPSC,Empty

βlTypek

 (4.18)

≤ h
obj(l)

1−
∑

k∈TPSC,Empty

βlTypek

 (4.19)

for all l ∈ APSC \ A◦, so that no heat is retained when obj(l) is empty or is being emptied.

Equations 4.17-19 utilize volume and heat bounds vobj(l), hobj(l) and h
obj(l)

, which are as-

sociate to a converter objects, obj(l) = (PSC,j) for j ∈ {1, 2, . . . , nPSC}. The volume bound

vPSCj is the maximum bath volume that is observed or allowed in converter j, usually given

by the vessel geometry. The heat bounds are given by

hPSCj = min

(
min

k∈ZNGFeed

[wHk(T
PSCj)]ρkv

PSCj, min
j′∈SNGProd

[wHj′(T
PSCj)]ρjv

PSCj, 0

)

h
PSCj

= max

(
max

k∈ZNGFeed

[wHk(T
PSCj

)]ρkv
PSCj, max

j′∈SNGProd

[wHj′(T
PSCj

)]ρjv
PSCj, 0

)

in which T PSCj and T
PSCj

, are the minimum and maximum bath temperatures that can be

observed or allowed in converter j. The specific heats wHk(T
PSCj),wHj′(T

PSCj), wHk(T
PSCj

),

and wHj′(T
PSCj

), are computed as described Subsection 3.2.3.

This formulation considers the theoretical possibility that the nongaseous streams all have

76

positive specific heat contents, so that hPSCj = 0 is obtained when the converter is empty;

this situation does not actually occur in practice, and typical values of hPSCj range between

−108MJ and −106MJ. Similarly, there is the possibility of h
PSCj

= 0, in case the nongaseous

streams all have negative specific heat contents. In practice, h
PSCj

is typically between 106MJ

and 108MJ.

Usually it is sufficient to set T PSCj equal to either the blast temperature, or the ambient

smelter temperature, whichever is lower. On the other hand, T
PSCj

can be set tactically,

depending on the thermochemical behaviour of the converting process, and respecting the

tolerance of the refractory lining. Sections 5.3-4 use T PSCj = 30◦C and T
PSCj

= 1250◦C to

perform sample calculations.

Having already discussed TPSC,Empty, the notion of mechanistic preparedness is completed

by,

βlTypek ≤
∑

k′∈T −PSCk

βl−
Typek′ (4.20)

for all k ∈ TPSC and l ∈ APSC \ A◦, in which T −
PSCk ⊂ TPSC are the transition types that may

immediately precede type k.

The transition variables are bounded according to the transition types. For all l ∈ APSC \
A◦,

dli ≥
∑

k∈TPSC

dki β
l
Typek (4.21)

≤ di −
∑

k∈TPSC

(
di − d

k

i

)
βlTypek (4.22)

≤ di
∑

k∈TPSC

βlTypek (4.23)

for all i ∈ {0,1,. . . ,7}, and

vjl ≥
∑

k∈TPSC

vjkβlTypek (4.24)

≤ vj −
∑

k∈TPSC

(
vj − vjk

)
βlTypek (4.25)

≤ vj
∑

k∈TPSC

βlTypek (4.26)

77

for all j ∈ FNG, and

ujl ≥
∑

k∈TPSC

ujkβlTypek (4.27)

≤ uj −
∑

k∈TPSC

(
uj − ujk

)
βlTypek (4.28)

≤ uj
∑

k∈TPSC

βlTypek (4.29)

for all j ∈ FMSM, in which

di = max
k∈TPSC

d
k

i

vj = max
k∈TPSC

vjk

uj = max
k∈TPSC

ujk

Equations 4.21-22 impose duration limits, e.g. (dk◦, d
k

◦) = (1, 3) implies that a converter

must remain idle between 1 and 3 hours before a transition of type k may begin. Equations

4.24-25 have the same role for the flow volumes, and Equations 4.27-28 for the delivery units.

Equations 4.23, 4.26 and 4.29 ensure that the transition variables are zero when the transition

is undetermined.

Appropriate default values can be obtained for d
k

i by considering general bounds within

the Gantt structure. For instance,

d
k

◦ =

{
tBegin − tEnd if transitions of type k may be preceded by idle time

0 otherwise

would typically determine d
k

◦ when no lower estimates are forthcoming. The remaining seg-

ments i ∈ {1, . . . , 7} can be determined according to

d
k

i =

{
d if segment i is included in transitions of type k

0 otherwise

unless better (lower) estimates can be found.

It is reasonable for the nongaseous flows j ∈ FNG that

vjk ≤ max
j′∈{1,2,nPSC}

vPSCj′

78

where vPSCj′ is once again the maximum bath volume that can be contained in the converter

j′.

The flow volumes and units are related,

vjl = vjuu
jl (4.30)

for the modulated flows j ∈ FM,

vjl ≤ vjuu
jl (4.31)

for the semi-modulated flows j ∈ FSM, for all l ∈ APSC \A◦. As discussed in Subsection 3.5.2,

vju and vju are the volumetric capacities of modulated delivery units, and of semi-modulated

delivery units, respectively. These constants are used to deduce appropriate default values

for ujk, as

ujk =

 b
maxj′∈{1,2,nPSC}

vPSCj′

vju
c if mechanism j functions during transitions of type k

0 otherwise

for j ∈ FM, and

ujk =

 d
maxj′∈{1,2,nPSC}

vPSCj′

vju
e if mechanism j functions during transitions of type k

0 otherwise

As described in Appendix B.5, it is be preferable to use lower values for ujk if such values

could be obtained without deteriorating the discrete feasibility region.

It is common for a semi-modulated flows to have a modulated counterpart. SlagPartialLadle ∈
FSM

DCh may be complemented by SlagFullLadle ∈ FM
DCh, which both involve the same ladles

vSlagFullLadle
u = vSlagPartialLadle

u , and which both function during Skim transitions. All other factors

being equal,

uSlagFullLadle,Skim = d
maxj′∈{1,2,nPSC} v

PSCj′

vSlagFullLadle
u

e − 1

uSlagPartialLadle,Skim = 1

Thus a skimming operation may completely fill several ladles, and only the final ladle would

be partially filled.

The state variables (ml
Retk,m

l
jRet, h

l
Ret, β

l
Typek) and transition variables (dli,v

jl, ujl, βl
Typek)

79

Figure 4.1: Schematic representation of a converter transition

have a general interaction, depicted by Figure 4.1. The variables describing transition l

are used to update the preceding state variables (l−), and thus to obtain the current state

variables (l). This updating process is called the forward state computation, discussed in

Section 4.4.

4.2.2 Converting Actions

Following the treatment of Subsection 2.2.2, the duration segments have the interpretation

that dlCh = dl2, d
l
Blow = dl4, and dlDCh = dl6, referring to the charge, blow, and discharge actions,

respectively.

A transition type k that does not include any charging time is such that dk2 = d
k

2 = 0, as per

Equations 4.21-22. Likewise, dk4 = d
k

4 = 0 implies no blowing time, and dk6 = d
k

6 = 0 implies

no discharging time. The elimination of segments should follow the convention illustrated by

Figures 2.7 and 2.8, to use the lowest indices possible, while respecting dl2 = dlCh, d
l
4 = dlBlow,

and dl6 = dlDCh. This convention is preserved through the following logic,(
d
k

(2i+1) = 0
)

implies
(
d
k

(2i) = dk(2i) = dk(2i+1) = 0
)

for i ∈ {1, 2, 3}. In future discussion, the action labeling is applied to the lower and upper

bounds, so that dkCh = dk2, d
k

Ch = d
k

2, dkBlow = dk4, d
k

Blow = d
k

4, dkDCh = dk6, and d
k

DCh = d
k

6.

The action durations are related to the flow mechanisms and transition type. Firstly, the

charge duration dlCh = dl2 is taken to be a linear combination of the charing volumes and

units, plus a constant term that is associated to the transition type,

dlCh =
∑
j∈FCh

djvv
jl +

∑
j∈FMSM

Ch

djuu
jl +

∑
k∈TPSC

dChkβ
l
Typek (4.32)

for all l ∈ APSC \ A◦. Similarly,

dlDCh =
∑

j∈FDCh

djvv
jl +

∑
j∈FMSM

DCh

djuu
jl +

∑
k∈TPSC

dDChkβ
l
Typek (4.33)

80

for all l ∈ APSC \ A◦. During the blowing action, the nongaseous feed is limited,

dlBlow ≥
∑

j∈FNGBlow

djvv
jl +

∑
k∈TPSC

dBlowkβ
l
Typek (4.34)

for all l ∈ APSC \ A◦. The flow duration constants djv are defined for all nongaseous flows

j ∈ FNG, and dju for all modulated and semi-modulated flows j ∈ FMSM. Additionally, dChk,

dBlowk and dDChk are defined for all k ∈ TPSC.

Equations 4.32-34 ensure consistency among the transition variables, and provide the ap-

propriate interpretation of the transition segments. This interpretation is important when

establishing the transition feasibility conditions, including composition, volumetric and ther-

mal constraints, as described in Section 4.5.

4.3 Intermediate Computations

4.3.1 Intermediate Variables

Subsection 4.2.1 presented MILP variables which uniquely determine converter states

and transitions. The following intermediate variables are used to develop the forward state

computation (Section 4.4) and to test the feasibility of transitions (Section 4.5). These

variables are listed in the order in which they are treated.

• ml
k ∈ R+

◦ is the mass of feed stream k that participates in transition l, for all k ∈ ZNGFeed.

• ml
iProd ∈ R+

◦ is the mass of element i within the product streams of transition l, for all

i ∈ E .

• hlCh ∈ R is the heat that is introduced into obj(l) as part of the charge streams of

transition l.

• hlNGBlow ∈ R is the heat that is introduced into obj(l) as part of the nongaseous blow

streams of transition l.

• ml
iBlast ∈ R+

◦ is the mass of element i that is blown into the melt as part of the blast of

transition l, for all i ∈ E .

• ml
jProd ∈ R+

◦ is the mass of species j within the product streams of transition l, for all

j ∈ SProd.

• hlBlast ∈ R is the heat that is blown into the melt as part of the blast of transition l.

81

• hlOffgas ∈ R is the heat that is convected out of obj(l) as part of the offgas stream of

transition l.

• hlDCh ∈ R is the heat that is removed from obj(l) as part of the discharge streams of

transition l.

• hlEnvi ∈ R+
◦ is the heat that is lost from the bath of obj(l) to the environment during

segment i of transition l, for all i ∈ {0, 1, . . . , 7}.

These quantities are variables within the MILP, for all l ∈ APSC \ A◦.

From the definitions, it follows that

ml
Retk ≤ ml

k

since there cannot be more of stream k retained than there is available, for all k ∈ ZNGFeed.

Similarly,

ml
jRetProd ≤ ml

jProd

These two inequalities are not explicitly included in the MILP, since they are implied by

other constraints, described below.

A distinction is made between essential and nonessential intermediate variables. Essential

intermediate variables are those which cannot be substituted by a linear combination of the

preceding state variables (l−) and current transition variables (l), but are required either for

the forward state computation, or for testing the feasibility of the proposed transition.

The feed masses ml
k are nonessential since they can be computed through

ml
k = ml−

Retk + ρk
∑
j∈Fk

vjl (4.35)

for all k ∈ ZNGFeed and l ∈ APSC \ A◦. Equation 4.35 includes the retained contribution from

the previous transition, plus the newly added contribution from the current transition.

The product elemental masses are also nonessential,

ml
iProd =

∑
j∈SNGProd

wijm
l−
jRetProd

+
∑

k∈ZNGFeed

wik
(
ml
k −ml

Retk

)
+ml

iBlast (4.36)

for all i ∈ E and l ∈ APSC \ A◦, where wij and wik are the weight fractions of i in species j,

and in stream k, respectively. On the righthand side of Equation 4.36, the first summation

82

is the mass of i that is retained in the product streams from the previous transition. This is

followed by contributions from the nongaseous feed, but only the unretained component is

reacted. The final term is the contribution from the blast.

The charge and nongaseous blow heats are computed according to

hlCh =
∑
j∈FCh

wjH,srce(j)ρsrce(j)v
jl (4.37)

and

hlNGBlow =
∑

j∈FNGBlow

wjH,srce(j)ρsrce(j)v
jl (4.38)

respectively, for all l ∈ APSC \ A◦, where wjH,srce(j) = wH,srce(j)(T
j) is the specific heat content

of srce(j) evaluated at delivery temperature T j.

These nonessential intermediate variables are implemented mainly to enhance the read-

ability of Sections 4.4 and 4.5. However, it is possible to eliminate these variables from

the optimization through substitution, and then to compute them a posteriori, after the

optimization is complete.

Table 4.1 classifies all of the variables used by the MILP to describe the evolution of a con-

verter. The remainder of this section describes the computation of the essential intermediate

variables.

Table 4.1: Classification of the converter variables included in the current MILP implemen-
tation

Classification Variables

State Variables ml
Retk, ml

jRetProd, hlRet, βl
Typek

Transition Variables dli, vjl, ujl, βl
Typek

Nonessential Intermediate Variables ml
k, ml

iProd, hlCh, hlNGBlow

Essential Intermediate Variables ml
iBlast, ml

jProd, hlBlast, hlOffgas, hlDCh, hlEnvi

βl
Typek qualify as both state and transition variables

83

4.3.2 Blast Elemental Masses

As described in Subsection 3.3.3, ml
iBlast is proportional to the blowing time dlBlow. However,

the proportionality constant depends on the transition type. There may be different oxygen

enrichment between the Slag-Blow and the Copper-Blow transitions, for example.

The blowing masses can be computed as

ml
iBlast =

{
ṁk
iBlastd

l
Blow if l is of a type k ∈ TPSC

0 otherwise

for all l ∈ APSC \ A◦ and i ∈ E . Subsection 3.3.3 demonstrates how to compute the pro-

portionality constants ṁl
O,Blast and ṁl

N,Blast, from the oxygen enrichment φkO2
and blast rate

v̇Normk
Blast , while ṁl

iBlast = 0 for all i ∈ E \ {O,N}. Nonetheless, ṁk
iBlast can be arbitrarily set to

zero when d
k

Blow = 0, in which transition type k does not allow blowing anyways.

The computation of ml
iBlast is implemented within the MILP using the following inequal-

ities,

ml
iBlast ≥ ṁk

iBlastd
l
Blow −miBlast(1− βlTypek) (4.39)

≤ ṁk
iBlastd

l
Blow +miBlast(1− βlTypek) (4.40)

for all i ∈ E , all k ∈ TPSC, and all l ∈ APSC \ A◦. The upper bound miBlast is taken as

miBlast = max
k∈TPSC

(
ṁk
iBlastd

k

Blow

)
Equations 4.39-40 are slack when βl

Typek = 0, otherwise they force the desired proportionality

ml
iBlast = ṁk

iBlastd
l
Blow.

If transition l is undetermined, then ml
iBlast should be set to zero,

ml
iBlast ≤ miBlast

∑
k∈TPSC

βlTypek (4.41)

for all i ∈ E and l ∈ APSC \A◦. Without Equation 4.41, the computed values of ml
iBlast would

be erroneous for all of the undetermined transitions.

The blast masses ml
iBlast are essential intermediate variables due to the discrete effects

imposed by the transition types. More generally, essential intermediate variables are formed

as a clash between discrete and continuous effects.

84

4.3.3 Product Species Masses

As described in Section 3.4, the product species masses {ml
jProd| j ∈ SProd} depend on the

reaction regime. They also depend on two performance indicators, the oxygen efficiency eO

and the ferroslag ratio rFS.

The reaction regimes are implemented using the following binary variables, defined for all

regimes k ∈ R, and all converter transitions l ∈ APSC \ A◦,

βlRgk =

{
1 if the bath of obj(l) is in regime k at the end of transition l

0 otherwise

These are called regime determinants. They may be regarded as essential intermediate vari-

ables, but perhaps they may be better described as “internal” variables, since their purpose

is internal to the intermediate computations.

As described in Subsection 3.4.1, there is a subset of species SRgProd ⊂ SNGProd, whose

stability depends on the reaction regime. This conditionality is implemented with

ml
jProd ≤ mjProd

∑
k∈Rj

βlRgk (4.42)

where Rj is the set of regimes that support species j, for all j ∈ SRgProd and all l ∈ APSC \A◦.
The upper bound mjProd can be computed for all nongaseous product species j ∈ SNGProd ⊃
SRgProd,

mjProd = ρj max
j′∈{1,...,nPSC}

vPSCj′

According to Equation 4.42, ml
jProd = 0 whenever l finishes in a regime for which j does not

occur.

The product speciation balance is given by∑
j∈SProd

wijm
l
jProd = ml

iProd (4.43)

for all i ∈ E and l ∈ APSC \ A◦. The righthand side of Equation 4.43 corresponds to the

elemental masses given by Equation 4.36. Thus, the elemental masses are distributed into

species masses, although some of the species are eliminated through Equation 4.42.

85

The regime determinants are subject to the following constraint that is explained below,∑
k∈R

βlRgk = |R| − (|R| − 1)
∑

k∈TPSC,Prod

βlTypek (4.44)

for all l ∈ APSC \ A◦, where TPSC,Prod ⊂ TPSC is the set of transition types in which products

streams are present.

The subset TPSC,Prod had not been introduced in Chapter 2, since it is an artifact of the

MILP implementation, rather than an inherent feature of the PSC Problem. Earlier versions

of the MILP did not consider TPSC,Prod, and used the following equality instead of Equation

4.44, ∑
k∈R

βlRgk = 1

so that every converter transition would be assigned one reaction type. This approach was

theoretically sound, except that numerical instabilities occurred when ml
iProd ≈ 0 for all i ∈ E ,

causing a conflict in the mass balance (Equation 4.43). Indeed, the reaction regime is not

well-defined when there are no product streams. To eliminate the instability, Equation 4.44

has been formulated such that Equation 4.42 is slack for all j ∈ SRgProd whenever l is of a

type k 6∈ TPSC,Prod or is undetermined.

The interpretation of TPSC,Prod should be respected, at least to within an acceptable nu-

merical tolerance,

ml
jProd ≤ mjProd − (mjProd − εmProd)

1−
∑

k∈TPSC,Prod

βlTypek

 (4.45)

for all j ∈ SProd and l ∈ APSC \ A◦, where εmProd can be set to 0.0001 tonnes.

Following the discussion of Subsection 3.4.2, the solution of Equations 4.42-44 for the

product species {ml
jProd| j ∈ SProd} depends on two performance parameters. Firstly, the

oxygen enrichment is given by

eO = 1−

(
ml

O2,Prod

ml
O,Blast

)
expressed as a linear constraint,

ml
O2,Prod = (1− eO)ml

O,Blast (4.46)

86

for all l ∈ APSC \ A◦. Secondly, the ferroslag ratio is given by

rFS =

(
2MFeO

MFe2SiO4

)(
ml

Fe2SiO4,Prod

ml
Fe3O4,Prod

)

in which Mj is the molar mass of j, from which it follows that

rFSm
l
Fe3O4,Prod =

(
2MFeO

MFe2SiO4,Prod

)
ml

Fe2SiO4,Prod (4.47)

for all l ∈ APSC \ A◦.

If eO and rFS are specified parameters, then Equations 4.42-47 are a means to solve for

{ml
jProd| j ∈ SProd}, which is theoretically and numerically sound. Moreover, these equations

are equally valid for the General Copper-Nickel PSC Formulation as for the Simplified Copper

PSC Formulation.

4.3.4 Blast Heat

The blast heat hlBlast is closely related to the blast masses, as discussed in Subsection 3.3.3.

Again, this quantity is proportional to the blowing duration dlBlow, with the proportionality

constant being determined by the transition type.

Thus, the blast heat is computed according to

hlBlast =

{
ḣkBlastd

l
Blow if l is of a type k ∈ TPSC

0 otherwise

in which the proportionality constant ḣkBlast is computed as described in Subsection 3.3.3,

using the specific heat of the blast species wBlastk
Hj = wHj(T

Blastk). As before, ḣkBlast can be

arbitrarily set to zero when d
k

Blow = 0.

The blast heat hlBlast is implemented into the MILP in a manner similar to the blowing

masses (Equations 4.39-40). However, the blowing heat is complicated by the fact that it

can be either positive or negative. Using the standard reference temperature, 25◦C, and

the assumption that the blast is a mixture of O2 and N2, h
l
Blast can be positive or negative,

depending on whether or not the blast is hotter or colder than 25◦C. Either case is possible,

depending on the air compression technology which provides the blast.

87

The following inequalities are slightly more complicated than Equations 4.39-40,

hlBlast ≥ ḣkBlastd
l
Blow −

(
hBlast − hBlast

)
(1− βlTypek) (4.48)

≤ ḣkBlastd
l
Blow +

(
hBlast − hBlast

)
(1− βlTypek) (4.49)

for all k ∈ TPSC and all l ∈ APSC \ A◦. The bounds are given by

hBlast = min

(
min
k∈TPSC

ḣkBlastd
k

Blow, 0

)

hBlast = max

(
max
k∈TPSC

ḣkBlastd
k

Blow, 0

)
These bounds are constructed such that Equations 4.48-49 are slack when βl

Typek = 0. Oth-

erwise, when βl
Typek = 1, it follows that hlBlast = ḣkBlastd

l
Blow, as desired.

Undetermined transitions are handled through the following inequalities,

hlBlast ≥ hBlast

∑
k∈TPSC

βlTypek (4.50)

≤ hBlast

∑
k∈TPSC

βlTypek (4.51)

for all l ∈ APSC \A◦. When l is undetermined, Equations 4.50-51 force hlBlast = 0 rather than

allowing erroneous values, and are hence comparable Equation 4.41.

The computation of blast heat is fairly elementary, and is well supported by the treatment

of Section 3.3.3 and the MILP formulation. The remaining heats rely on empirical linear

correlations, which are a slight departure from the fundamental treatment used for the blast

heat.

4.3.5 Offgas Heat

The offgas heat computation is similar to the blast heat computation, employing propor-

tionality constants that depends on the transition type. However, some thought must be

given to the nature of the proportionality constants.

The offgas heat is generally given by

hlOffgas =
∑

j∈SOffgas

[wHj(T
Offgas)]ml

jProd

88

For a linear program, the caveat is that the offgas temperature TOffgas must somehow be

constant, which may not be realistic. The MILP implementation is much better suited than

a continuous linear program, as it permits piecewise linear computation,

hlOffgas =


∑

j∈SOffgas

wOffgask
Hj ml

jProd if l is of a type k ∈ TPSC

0 otherwise

where wOffgask
Hj = wHj(T

Offgask) are computed at nominal offgas temperatures TOffgask which are

associated to the transition type.

In industry, it is common to think of “the” offgas temperature TOffgask, which is typically

1200◦C [66]. In actuality, the offgas temperature varies throughout the blowing action, as

does the bath temperature. Thus TOffgask may be regarded as a kind of empirical average over

time, and similarly for wOffgask
Hj . A more thorough treatment of the offgas heat is presented in

Section 6.1, but it involves nonlinearities that are beyond the scope of the current MILP.

Thus, the current version of the MILP implements the following equations to estimate

hlOffgas,

hlOffgas ≥
∑

j∈SOffgas

wOffgask
Hj ml

jProd −
(
h
l

Offgas − hlOffgas

) (
1− βlTypek

)
(4.52)

≤
∑

j∈SOffgas

wOffgask
Hj ml

jProd +
(
h
l

Offgas − hlOffgas

) (
1− βlTypek

)
(4.53)

for all k ∈ TPSC and l ∈ APSC \ A◦, in which the bounds can be taken as

hOffgas = min

 min
j ∈ SOffgas
k ∈ TPSC

wOffgask
Hj mjProd, 0



hOffgas = max

 max
j ∈ SOffgas
k ∈ TPSC

wOffgask
Hj mjProd, 0


In turn, these upper bounds depend on mass upper bounds mjProd for j ∈ SOffgas, which had

not been considered previously. Firstly, the oxygen upper bound can be taken as

mO2,Prod = (1− eO)mO,Blast

89

which is related to Equation 4.46. The nitrogen upper bound is given by

mN2,Prod = mN,Blast

with the understanding that the incoming nitrogen (blast) is entirely exhausted as outgoing

nitrogen (offgas); there may be other feed streams that contain nitrogen, but this is assumed

to be negligible compared to the blast nitrogen. The upper bound for SO2 is given by

mSO2,Prod =
mO,Blast

wO,SO2

which considers the case where none of the blast oxygen is consumed by a slag phase, as in

the Copper-Blow reaction.

The case where l is undetermined is handled by the following equations,

hlOffgas ≥ hOffgas

∑
k∈TPSC

βlTypek (4.54)

≤ hOffgas

∑
k∈TPSC

βlTypek (4.55)

for all l ∈ APSC \ A◦, so that hlOffgas = 0 whenever l is undetermined.

Equations 4.52-55 are a practical structure, because they depend only on the offgas tem-

perature, which is easily measured. But these equations are an approximation, as discussed

in Section 6.1.

4.3.6 Discharge Heat

An exact treatment of discharge heats hlDCh would be nonlinear, as described in Section 6.1.

Nonetheless, the MILP circumnavigates some of the nonlinear affects of hlDCh, by considering

that hlRet = 0 when obj(l) is emptied (Equations 4.18-19).

The discharge heat is generally given by

hlDCh =
∑

j∈SNGProd

[wHj(T
DCh)]

(
ml
jProd −ml

jRetProd

)
As in the previous subsection, the main complication is the variation of TDCh. The idea of

nominal temperatures TDChk can be adapted from the offgas temperature computation, hence

wDChk
Hj = wHj(T

DChk) would be constants associated with the transition type k.

90

It is undesirable, however, to fix the discharge temperatures TDChk. In a copper convert-

ing aisle, for example, it may be acceptable for the blister copper to be discharged at any

temperature between 1200◦C and 1250◦C, rather than artificially prescribing a fixed value. It

is generally preferable for the MILP to admit bounds TDChk ≤ TDChl ≤ T
DChk

, rather than ar-

tificially fixing TDChl = TDChk. The latter equality is a special case of TDChk ≤ TDChl ≤ T
DChk

,

in which TDChk = T
DChk

= TDChk.

The current MILP formulation avoids the fixing of discharge temperatures as much as

possible, while respecting linearity. The following computation has been successfully imple-

mented,

hlDCh =



∑
j∈SNGProd

wDChk
Hj

(
ml
jProd −ml

jRetProd

)
if l is of a type k ∈ TPSC,IDCh

∑
j∈SNGProd

[
wHj(T

DChl)
] (
ml
jProd −ml

jRetProd

)
if l is of a type k ∈ TPSC \ TPSC,IDCh

0 otherwise

for all l ∈ APSC \ A◦. The formulation fixes discharge temperatures only for the transition

types belonging to the subset TPSC,IDCh ⊂ TPSC, defined by

TPSC,IDCh =
{
k ∈ TPSC \ TPSC,Empty| ∃j ∈ FDCh s.t. vjk > 0

}
This subset contains all transition types that include discharge actions, but which do not

fully empty the converter, i.e. they do not end the converter cycle. These actions are

considered “intermediate discharges” (IDCh), as opposed to the “final discharges” that do

end the converter cycle.

Any final discharge action results in an empty converter so that hlRet = 0, regardless of

what TDChl turns out to be (Equation 4.18-19). This allows the final discharge temperature

for blister copper, or for iron-free nickel matte, to be determined as part of the optimization.

Moreover, TDChl may be subject to lower and upper bounds, as described in Subsection 4.5.4.

Unfortunately, the MILP formulation is unable to provide the same freedom for the

intermediate discharge actions, forcing prescribed temperatures TDChl = TDChk whenever l is

of a type k ∈ TPSC,IDCh. In practice, this means that intermediate skimming temperatures

must be predetermined, instead of resulting from the optimization. This drawback will be

revisited in Section 5.3, and again in Section 6.1. For the skimming of iron-bearing slag,

91

TDChk = 1230◦C is a typical bath temperature [7, 66].

When there is no discharge action, (ml
jProd−ml

jRetProd) = 0 for all j ∈ SNGProd, so that hlDCh

is automatically zero. This assertion extends to undetermined transitions, which forbid any

discharging according to Equation 4.23. In either of these cases, hlDCh = 0.

The discharge heat computation is incorporated into the MILP for intermediate dis-

charges,

hlDCh ≥
∑

j∈SNGProd

wDChk
Hj

(
ml
jProd −ml

jRetProd

)
−
(
h
l

DCh − hlDCh

) (
1− βlTypek

)
(4.56)

≤
∑

j∈SNGProd

wDChk
Hj

(
ml
jProd −ml

jRetProd

)
+
(
h
l

DCh − hlDCh

) (
1− βlTypek

)
(4.57)

for all k ∈ TPSC,IDCh and l ∈ APSC \ A◦, in which the bounds can be taken as

hDCh = min

(
min
k∈TPSC

∑
j∈SNGProd

wDChk
Hj ml

jProd, 0

)

hDCh = max

(
max
k∈TPSC

∑
j∈SNGProd

wDChk
Hj ml

jProd, 0

)

in which ml
jProd is computed as for Equation 4.42. The specific heat bounds are taken as

wDChk
Hj = wHj(T

DChk) and wDChk
Hj = wHj(T

DChk
), where TDChk and T

DChk
are defining parameters

for all k ∈ TPSC. Whenever k ∈ TPSC,IDCh, it is imperative that TDChk = T
DChk

= TDChk, so that

the intermediate discharge temperatures are indeed fixed.

The case that l does not include any discharging, or is undetermined, is handled by the

following equations,

hlDCh ≥ hDCh

∑
k∈TPSC,Empty∪TPSC,IDCh

βlTypek (4.58)

≤ hDCh

∑
k∈TPSC,Empty∪TPSC,IDCh

βlTypek (4.59)

for all l ∈ APSC \ A◦.

Equations 4.56-59 do not impose any restrictions regarding final discharges. However this

case is covered by the Equations 4.18-19, in conjunction with the forward heat computation

(Subsection 4.4.3) and the discharge temperature bounds (Subsection 4.4.5).

92

4.3.7 Environmental Heat Losses

The heat losses to the environment hlEnvi are treated in a similar manner as the blast

heat (Subsection 4.3.3). There is a linear relationship between the heat loss and the segment

duration dli, although the slope and intercept depends on the transition type.

The environmental heat losses hlEnv◦ which occur between transitions l− and l, depend on

the mechanistic state left by l−. Therefore,

hlEnv◦ =

{
hkEnv◦ + ḣkEnv◦d

l
◦ if l− is of a type k ∈ TPSC

0 otherwise

for all l ∈ APSC \ A◦. The other segments depend on the current transition,

hlEnvi =

{
hkEnvi + ḣkEnvid

l
i if l is of a type k ∈ TPSC

0 otherwise

for all i ∈ {1, 2, . . . , 7}, and l ∈ APSC \ A◦. For the moment, hkEnvi and ḣkEnvi can be regarded

as empirically observed parameters, but they will be revisited in Section 6.1. If a transition

type k ∈ TPSC is such that d
k

i = 0, then ḣkEnvi can be arbitrarily set to zero.

The environmental heat losses are taken to be nonnegative, hlEnvi ∈ R+
◦ . It is a rather

modest assumption that heat should flow from the hot converters into the colder environment,

regardless of the value of dli. To be consistent with this assumption, the parameters must be

nonnegative, hkEnvi ≥ 0 and ḣkEnvi ≥ 0. Also, hkEnv7 = ḣkEnv7 = 0 for all k ∈ TPSC,Empty, because no

heat can be drawn from the bath after the converter has already been emptied of its bath.

The inter-transition heat loss is implemented through the following inequalities,

hlEnv◦ ≥ hkEnv◦β
l−
Typek + ḣkEnv◦d

l
◦ − hEnv◦

(
1− βl−

Typek

)
(4.60)

≤ hkEnv◦β
l−
Typek + ḣkEnv◦d

l
◦ + hEnv◦

(
1− βl−

Typek

)
(4.61)

for all k ∈ TPSC and all l ∈ APSC \A◦. Equations 4.60-61 are slack when βl−
Typek = 0, otherwise

they force the desired linear relationship hlEnv◦ = hkEnv◦ + ḣkEnv◦d
l
◦. The environmental losses

that occur during the transitions are implemented through

hlEnvi ≥ hkEnviβ
l
Typek + ḣkEnvid

l
i − hEnvi

(
1− βlTypek

)
(4.62)

≤ hkEnviβ
l
Typek + ḣkEnvid

l
i + hEnvi

(
1− βlTypek

)
(4.63)

93

for i ∈ {1,2,. . . ,7}, k ∈ TPSC and all l ∈ APSC \ A◦. Equations 4.62-63 are slack when

βl
Typek = 0, otherwise they force the desired linear relationship hlEnvi = hkEnvi + ḣkEnvid

l
i. The

upper bounds are given by

hEnvi = max
k∈TPSC

(
hkEnvi + ḣkEnvid

k

i

)
for all i ∈ {0,1,. . . ,7}.

The environmental heat loss should be set to zero for undetermined transitions,

hlEnvi ≤ hEnvi

∑
k∈TPSC

βlTypek (4.64)

for i ∈ {0,1,. . . ,7} and all l ∈ APSC \ A◦.

The development of Section 4.3 is particular to the MILP implementation of the PSC

Problem. In future work, other models can be developed outside of the strict MILP format,

in which part or all of Equations 4.39-64 might be replaced. Meanwhile, the current set

of intermediate computations successfully support the state-machine representation of PS

converting, within an optimization framework.

4.4 Forward State Computation

4.4.1 Retained Feed Masses

The current formulation assumes that the feed streams are either completely reacted, or

completely retained, depending on whether or not a blowing action is performed. Any feed

streams that are present at the onset of a blowing action are immediately mixed into the

product streams, and presumed to be completed reacted.

This complete-reaction condition can be stated as

ml
Retk =

{
0 if transition l is of a type that includes a blow

ml
k otherwise

94

and is implemented through the following inequalities,

ml
Retk ≥ ml

k −mk

∑
k′ ∈ TPSC

d
k′
Blow > 0

βlTypek′ (4.65)

≤ ml
k +mk

∑
k′ ∈ TPSC

d
k′
Blow > 0

βlTypek′ (4.66)

≤ mk

1−
∑

k′ ∈ TPSC

d
k′
Blow > 0

βlTypek′

 (4.67)

for all k ∈ ZNGFeed and l ∈ APSC \ A◦, where the upper bounds are given by

mk = ρk max
j∈{1,...,nPSC}

vPSCj

From the complete-reaction condition, it is apparent that ml
Retk ≤ ml

k.

Molten and granular feeds are rapidly incorporated into the product streams, so that the

complete-reaction condition is especially appropriate for these feeds. On the other hand, a

detailed representation of copper scrap, recycled metal, etc. could involve the rate of reaction

ξ̇k, which is related to the coefficients ξk that had been introduced in Subsection 3.4.2. Such

a formulation could be supported by the MILP structure, if the reaction rates depend only

on the transition types. Nonetheless, the complete-reaction condition poses a simple forward

computation that is adequate for the current formulation.

4.4.2 Retained Product Species Masses

To compute the retained product masses, the current formulation depends on a complete-

discharge condition. Each product stream is are either completely discharged, or completely

retained. This complete-discharge condition is similar to the complete-reaction condition.

The complete-discharge condition can be stated succinctly,

ml
jRetProd =

{
0 if transition l is of a type that includes a discharge of stream k

ml
jProd otherwise

for all k ∈ ZNGProd and j ∈ Sk. It is incorporated into the MILP through the following three

95

inequalities,

ml
jRetProd ≥ ml

jProd −mjProd

∑
k′ ∈ TPSC

∃j′ ∈ Fks.t.vj′k′
> 0

βlTypek′ (4.68)

≤ ml
jProd +mjProd

∑
k′ ∈ TPSC

∃j′ ∈ Fks.t.vj′k′
> 0

βlTypek′ (4.69)

≤ mjProd

1−
∑

k′ ∈ TPSC

∃j′ ∈ Fks.t.vj′k′
> 0

βlTypek′

 (4.70)

for all k ∈ ZNGProd, j ∈ Sk and l ∈ APSC \ A◦, in which mjProd are computed as for Equation

4.42. From the complete-discharge condition, it is apparent that ml
jRetProd ≤ ml

jProd.

The discharged product masses are related to the discharge flows, through the discharge

volume balance, ∑
j∈Sk

ml
jProd −ml

jRetProd

ρj
=
∑
j∈Fk

vjl (4.71)

for all k ∈ ZNGProd and l ∈ APSC \ A◦. In conjunction with Equations 4.30-31, this ensures

that enough carrying devices are provided in case stream k is discharged.

The complete-discharge condition is appropriate for the MILP formulation, since smelters

do not usually plan partial discharges. For instance, a decision to skim the slag implies the

entire removal of all of the slag. Similarly, the final discharge implies the removal of all of the

final product, be it blister copper or converter matte. Nonetheless, the formulation would

provide more realism if the complete-discharge condition could be relaxed, as discussed in

Section 6.1.

4.4.3 Retained Heat

The heat retained within the bath is distributed throughout the retained mass, and is

what determines the bath temperature. The forward heat computation is therefore essential

in establishing the temperature constraints of Subsection 4.5.4.

The retained heat is computed as,

hlRet = hl−Ret + hlCh + hlNGBlow + hlBlast − hlOffgas − hlDCh −
7∑
i=0

hlEnvi (4.72)

96

for all l ∈ APSC \ A◦. This includes the heat retained from the previous transition, plus the

heat introduced by the feed from the current transition (hlCh +hlNGBlow +hlBlast), minus the heat

which is removed as product streams (hlOffgas + hlDCh), and minus the environmental losses.

The discharge heat hlDCh has been deliberately left variable in case the converter is empty

or is being emptied (Equations 4.58-59). When l is of a type belonging to TPSC,Empty, Equations

4.18-19 force hlRet = 0, so that

hlDCh = hl−Ret + hlCh + hlNGBlow + hlBlast − hlOffgas −
6∑
i=0

hlEnvi

As discussed in Subsection 4.3.7, the proper interpretation of TPSC,Empty would require that

hlEnv7 = 0. Thus a final discharge causes hlDCh to take away any heat that had been in the

vessel. (The heat of content of the refractory bricks is negligible compared to the heat content

of the bath).

Equation 4.72 is itself correct, regardless of how the individual terms are computed, and

regardless of whether the complete-reaction condition (Subsection 4.4.1) or the complete-

discharge condition (Subsection 4.4.2) are held. This robustness can be helpful in future

work, in case there are changes in the intermediate computations, or the forward mass com-

putations.

4.5 Feasible Converter Transitions

4.5.1 Direct Transition Constraints in General Linear Form

In order for a transition l to be feasible, the proposed transition variables (l) must be

self-consistent, and must agree with the preceding state (l−). Herein, linear inequalities of

the preceding state variables and the current transition variables can be directly implemented

into the MILP.

For instance, Equation 4.20 considers only the transition-type determinants to verify the

mechanistic preparedness of the converter. Equations 4.21-34 are constraints which do not

consider the preceding state variables, thus focusing on the self-consistency of the current

transition variables.

LDTrans
PSC is the set of transition feasibility clauses that are implemented directly as linear

97

inequalities under the following linear form.∑
k∈ZNGFeed

aimRet-,km
l−
Retk +

∑
j∈SNGProd

aim,jRetProd-m
l−
jRetProd

+ aihRet-
hl−Ret

+
∑

k∈TPSC

aiβ-,kβ
l−
Typek +

7∑
i′=0

aid,i′d
l
i′ +

∑
j∈FNG

aiv,jv
jl

+
∑

j∈FMSM

aiu,ju
jl +

∑
k∈TPSC

aiβ,kβ
l
Typek ≤ bi

(4.73)

for all i ∈ LDTrans
PSC and l ∈ APSC \A◦. Each clause i is characterized by the coefficients, aimRet-,k,

aim,jRetProd-, a
i
hRet-

, aiβ-,k, a
i
d,i′ , a

i
v,j, a

i
u,j, and aiβ,k, and by the righthand constant bi.

Equation 4.20 can be expressed in general form, by setting aiβ,k = 1 for some k ∈ TPSC,

aiβ-,k′ = −1 for all k′ ∈ T −
PSCk, and all remaining parameters equal to zero. The same approach

can be taken for Equations 4.17-19 and 4.21-29, as well as Equations 4.31 and 4.34, always

bringing the variables to the lefthand side of “≤”. As described in Appendix B.1, equalities

are the intersection between two inequalities. For example, Equation 4.30 can be reexpressed

vjl − vjuujl ≤ 0

−vjl + vjuu
jl ≤ 0

Equations 4.32-33 can be treated similarly. Equations 4.17-34 can all be expressed as members

of LDTrans
PSC . They have nonetheless been implemented separately, for instructive purposes.

Blending conditions are a bona fide application of Equation 4.73 that has not yet been

considered. For example, there may be a nongaseous feed mechanism j ∈ FNGFeed that must

always be applied in conjunction with another mechanism j′ ∈ FNGFeed, such that

vjl ≤ (0.25)vj
′l

In this case, the volume delivered by mechanism j cannot exceed 25% of the volume delivered

by mechanism j′. More elaborate blending conditions are possible.

Equation 4.73 is sufficiently general that it can support any linear constraint that re-

lates the preceding converter state (ml−
Retk,m

l−
jRetProd

, hl−Ret, β
l−
Typek) to the current transition

(dli, v
jl, ujl, βl

Typek). Of course, the exact nature of Equation 4.73 depends on the members of

LDTrans
PSC , which ultimately depends on the particular context.

98

However, there are constraints which must be respected by the evolving converter, but

which cannot be formulated directly as linear relationships between the state and transition

variables, and thus do not conform to Equation 4.73. These are indirect transition constraints,

and are described in the remainder of Section 4.5. Such constraints depend on essential

intermediate variables that have been implemented in accordance with Section 4.3.

4.5.2 Bath Composition Constraints

For a converter to undergo a certain transition, the bath must be of an appropriate

composition. For example, a Copper-Blow is not permitted unless all of the iron has been

removed, as discussed in Subsection 1.3.2.

The MILP formulation places upper and lower bounds on the mass-fractions that describe

the overall composition of the bath, and that describe the composition of the individual

product streams. As depicted in Figure 4.2, the compositions are monitored at three different

times within the generic converter transition,

• Prior to charging, which coincides with the beginning of the transition

• Following blowing, which coincides with the end of the bulk chemical reactions

• Following discharging, which coincides with the end of the transition

The formulation does not distinguish between the composition of an individual product

stream before and after discharging, because the streams are presumed to be homogeneous,

due to the favourable mixing characteristics of PS converting [7].

Figure 4.2: Bounds are placed on the overall bath composition and individual stream com-
position, placing restrictions prior to charging, following blowing and following discharging

99

The overall mass-fraction of element i within the bath is denoted w◦li , wBlowl
i or wDChl

i ,

depending on whether the measurement is prior to the charging, following the blowing or

following the discharging of transition l ∈ APSC \ A◦, for all i ∈ E . These are related to the

previously defined masses,

w◦li =

∑
k∈ZNGFeed

wikm
l−
Retk +

∑
j∈SNGProd

wijm
l−
jRetProd∑

k∈ZNGFeed

ml−
Retk +

∑
j∈SNGProd

ml−
jRetProd

wBlowl
i =

∑
k∈ZNGFeed

wikm
l
Retk +

∑
j∈SNGProd

wijm
l
jProd∑

k∈ZNGFeed

ml
Retk +

∑
j∈SNGProd

ml
jProd

wDChl
i =

∑
k∈ZNGFeed

wikm
l
Retk +

∑
j∈SNGProd

wijm
l
jRetProd∑

k∈ZNGFeed

ml
Retk +

∑
j∈SNGProd

ml
jRetProd

The three expressions do not rely on the complete-reaction condition that was described in

Subsection 4.4.1, but they do assume that feed streams are reacted only during the blowing

actions.

The MILP implementation does not make assumptions about the speciation of feed

streams, which may be retained in the bath. Therefore, it is generally not possible to imple-

ment bounds on the species compositions of the bath. However, the overall mass-fraction of

stream k within the bath is denoted wlk◦, w
l
kBlow

or wlkDCh
, adopting the same superscripts as

for the elemental fractions. These stream-based fractions are given by

w◦lk =



ml−
Retk∑

k′∈ZNGFeed

ml−
Retk′ +

∑
j∈SNGProd

ml−
jRetProd

if k ∈ ZNGFeed

∑
j∈Sk

ml−
jRetProd∑

k′∈ZNGFeed

ml−
Retk′ +

∑
j∈SNGProd

ml−
jRetProd

if k ∈ ZNGProd

100

wBlowl
k =



ml
Retk∑

k′∈ZNGFeed

ml
Retk′ +

∑
j∈SNGProd

ml
jProd

if k ∈ ZNGFeed

∑
j∈Sk

ml
jProd∑

k′∈ZNGFeed

ml
Retk′ +

∑
j∈SNGProd

ml
jProd

if k ∈ ZNGProd

wDChl
k =



ml
Retk∑

k′∈ZNGFeed

ml
Retk′ +

∑
j∈SNGProd

ml
jRetProd

if k ∈ ZNGFeed

∑
j∈Sk

ml
jRetProd∑

k′∈ZNGFeed

ml
Retk′ +

∑
j∈SNGProd

ml
jRetProd

if k ∈ ZNGProd

Once again, these expressions assume that the feed streams are reacted only during the

blowing actions.

The elemental composition of individual product streams is developed in a similar way

as for the overall bath,

w◦lik =

∑
j∈Sk

wijm
l−
jRetProd∑

j∈Sk

ml−
jRetProd

wBlowl
ik =

∑
j∈Sk

wijm
l
jProd∑

j∈Sk

ml
jProd

for all i ∈ E , k ∈ ZNGProd, and l ∈ APSC \ A◦.

101

The species mass-fractions of product streams are given by

w◦ljk =
ml−
jRetProd∑

j′∈Sk

ml−
j′RetProd

wBlowl
jk =

ml
jProd∑

j′∈Sk

ml
j′Prod

for all k ∈ ZNGProd, all j ∈ Sk. Naturally, w◦ljk = wBlowl
jk = 0 when j ∈ SProd \ Sk is a species

which does not report to stream k. Due to the homogeneity of product streams, it is not

necessary to consider wDChl
ik and wDChl

jk , because wDChl
ik = wBlowl

ik and wDChl
jk = wBlowl

jk .

In summary there are ten kinds of mass-fractions (w◦li , wBlowl
i , wDChl

i , w◦lk , wBlowl
k , wDChl

k ,

w◦lik, w
Blowl
ik , w◦ljk, w

Blowl
jk) that are subject to lower and upper bounds. For transition l to be of

type k′ ∈ TPSC,

w◦k
′

i ≤ w◦li ≤ w◦k
′

i

wBlowk′

i ≤ wBlowl
i ≤ wBlowk′

i

etc., where the bounds (w◦k
′

i , w◦k
′

i , wBlowk′
i , wBlowk′

i , . . ., w◦k
′

jk , w◦k
′

jk , wBlowk′

jk , wBlowk′

jk) are param-

eters that describe transition type k′.

Incidently, w◦kFe = 0 if k is a Copper-Blow transition type; this forbids the application

of Copper-Blow transitions unless all of the iron has been removed. Depending on how the

other transition types are parametrized, it may worthwhile to eliminate the slag stream as

well, by setting w◦kSlag = 0.

To implement the compositional bounds within the MILP, it is necessary to multiply

through by the denominator. For example, w◦ki ≤ w◦li ≤ w◦ki is expressed in terms of masses,

w◦ki ≤

∑
k∈ZNGFeed

wikm
l−
Retk +

∑
j∈SNGProd

wijm
l−
jRetProd∑

k∈ZNGFeed

ml−
Retk +

∑
j∈SNGProd

ml−
jRetProd

≤ w◦ki

102

Multiplying through by the denominator gives two linear inequalities,

∑
k∈ZNGFeed

wikm
l−
Retk +

∑
j∈SNGProd

wijm
l−
jRetProd

≥ w◦ki

(∑
k∈ZNGFeed

ml−
Retk +

∑
j∈SNGProd

ml−
jRetProd

)

≤ w◦ki

(∑
k∈ZNGFeed

ml−
Retk +

∑
j∈SNGProd

ml−
jRetProd

)

Additional terms must be included, however, to control the slackness of these equations,

∑
k′∈ZNGFeed

wikm
l−
Retk′ +

∑
j∈SNGProd

wijm
l−
jRetProd

≥ w◦ki

(∑
k′∈ZNGFeed

ml−
Retk′ +

∑
j∈SNGProd

ml−
jRetProd

)
−mi

(
1− βlTypek

)
(4.74)

≤ w◦ki

(∑
k′∈ZNGFeed

ml−
Retk′ +

∑
j∈SNGProd

ml−
jRetProd

)
+mi

(
1− βlTypek

)
(4.75)

for all i ∈ E , k ∈ TPSC and l ∈ APSC \ A◦. The factor mi is given by

mi = max

(
max

k∈ZNGFeed

wikmk, max
j∈SNGProd

wijmjProd

)
+miBlast

in which mk, mjProd and miBlast are computed as for Equations 4.65-67, Equation 4.42, and

Equations 4.39-40, respectively. When βl
Typek = 1, Equations 4.74-75 lead to the desired

result that w◦ki ≤ w◦li ≤ w◦ki . Otherwise, mReti is such that Equations 4.74-75 are slack when

βl
Typek = 0.

Equation 4.74 is redundant when w◦ki = 0, because the nonnegativity of the mass vari-

ables already ensures that w◦li ≥ 0. Similarly, Equation 4.75 is redundant for w◦ki ≥
max (maxk′∈SNGFeed

wik′ ,maxj∈SNGProd
wij) is automatically implied by the other constraints.

These limits thus provide appropriate defaults as given in Table 4.2.

103

Table 4.2: Default values for mass-fraction bounds

Bounds Default Values

(w◦ki , w◦ki) (0 , max(max
k′∈SNGFeed

wik′ , max
j∈SNGProd

wij))

(wBlowk
i , wBlowk

i) (0 , max(max
k′∈SNGFeed

wik′ , max
j∈SNGProd

wij))

(wDChk
i , wDChk

i) (0 , max(max
k′∈SNGFeed

wik′ , max
j∈SNGProd

wij))

(w◦k
′

k , w◦k
′

k) (0 , 1)

(wBlowk′

k , wBlowk′

k) (0 , 1)

(wDChk′

k , wDChk′

k) (0 , 1)

(w◦k
′

ik , w◦k
′

ik) (min
j∈Sk

wij , max
j∈Sk

wij)

(wBlowk′

ik , wBlowk′

ik) (min
j∈Sk

wij , max
j∈Sk

wij)

(w◦k
′

jk , w◦k
′

jk) (0 , 1)

(wBlowk′

jk , wBlowk′

jk) (0 , 1)

The remaining bounds are implemented in a similar manner, again by multiplying through

by the denominator, and by including binary terms to control the slackness. For all l ∈
APSC \ A◦,

∑
k′∈ZNGFeed

wik′m
l
Retk′ +

∑
j∈SNGProd

wijm
l
jProd ≥ wBlowk

i

(∑
k′∈ZNGFeed

ml
Retk′ +

∑
j∈SNGProd

ml
jProd

)
−mi

(
1− βlTypek

)
(4.76)

≤ wBlowk
i

(∑
k′∈ZNGFeed

ml
Retk′ +

∑
j∈SNGProd

ml
jProd

)
+mi

(
1− βlTypek

)
(4.77)

104

for all i ∈ E and k ∈ TPSC,

∑
k′∈ZNGFeed

wik′m
l
Retk′ +

∑
j∈SNGProd

wijm
l
jRetProd ≥ wDChk

i

(∑
k′∈ZNGFeed

ml
Retk′ +

∑
j∈SNGProd

ml
jRetProd

)
−mi

(
1− βlTypek

)
(4.78)

≤ wDChk
i

(∑
k′∈ZNGFeed

ml
Retk′ +

∑
j∈SNGProd

ml
jRetProd

)
+mi

(
1− βlTypek

)
(4.79)

for all i ∈ E and k ∈ TPSC,

ml−
Retk ≥ w◦k

′

k

(∑
k′′∈ZNGFeed

ml−
Retk′′ +

∑
j∈SNGProd

ml−
jRetProd

)
−mk

(
1− βlTypek′

)
(4.80)

≤ w◦k
′

k

(∑
k′′∈ZNGFeed

ml−
Retk′′ +

∑
j∈SNGProd

ml−
jRetProd

)
+mk

(
1− βlTypek′

)
(4.81)

for all k ∈ ZNGFeed and k′ ∈ TPSC,

∑
j∈Sk

ml−
jRetProd

≥ w◦k
′

k

(∑
k′′∈ZNGFeed

ml−
Retk′′ +

∑
j∈SNGProd

ml−
jRetProd

)
−mk

(
1− βlTypek′

)
(4.82)

≤ w◦k
′

k

(∑
k′′∈ZNGFeed

ml−
Retk′′ +

∑
j∈SNGProd

ml−
jRetProd

)
+mk

(
1− βlTypek′

)
(4.83)

for all k ∈ ZNGProd and k′ ∈ TPSC,

ml
Retk ≥ wBlowk′

k

(∑
k′′∈ZNGFeed

ml
Retk′′ +

∑
j∈SNGProd

ml
jProd

)
−mk

(
1− βlTypek′

)
(4.84)

≤ wBlowk′

k

(∑
k′′∈ZNGFeed

ml
Retk′′ +

∑
j∈SNGProd

ml
jProd

)
+mk

(
1− βlTypek′

)
(4.85)

105

for all k ∈ ZNGFeed and k′ ∈ TPSC,

∑
j∈Sk

ml
jProd ≥ wBlowk′

k

(∑
k′′∈ZNGFeed

ml
Retk′′ +

∑
j∈SNGProd

ml
jProd

)
−mk

(
1− βlTypek′

)
(4.86)

≤ wBlowk′

k

(∑
k′′∈ZNGFeed

ml
Retk′′ +

∑
j∈SNGProd

ml
jProd

)
+mk

(
1− βlTypek′

)
(4.87)

for all k ∈ ZNGProd and k′ ∈ TPSC,

ml
Retk ≥ wDChk′

k

(∑
k′′∈ZNGFeed

ml
Retk′′ +

∑
j∈SNGProd

ml
jRetProd

)
−mk

(
1− βlTypek′

)
(4.88)

≤ wDChk′

k

(∑
k′′∈ZNGFeed

ml
Retk′′ +

∑
j∈SNGProd

ml
jRetProd

)
+mk

(
1− βlTypek′

)
(4.89)

for all k ∈ ZNGFeed and k′ ∈ TPSC,

∑
j∈Sk

ml
jRetProd ≥ wDChk′

k

(∑
k′′∈ZNGFeed

ml
Retk′′ +

∑
j∈SNGProd

ml
jRetProd

)
−mk

(
1− βlTypek′

)
(4.90)

≤ wDChk′

k

(∑
k′′∈ZNGFeed

ml
Retk′′ +

∑
j∈SNGProd

ml
jRetProd

)
+mk

(
1− βlTypek′

)
(4.91)

for all k ∈ ZNGProd and k′ ∈ TPSC,∑
j∈Sk

wijm
l−
jRetProd

≥ w◦k
′

ik

∑
j∈Sk

ml−
jRetProd

−mik

(
1− βlTypek′

)
(4.92)

≤ w◦k
′

ik

∑
j∈Sk

ml−
jRetProd

+mik

(
1− βlTypek′

)
(4.93)

for all i ∈ E , k ∈ ZNGProd, and k′ ∈ TPSC,∑
j∈Sk

wijm
l
jProd ≥ wBlowk′

ik

∑
j∈Sk

ml
jProd −mik

(
1− βlTypek′

)
(4.94)

≤ wBlowk′

ik

∑
j∈Sk

ml
jProd +mik

(
1− βlTypek′

)
(4.95)

106

for all i ∈ E , k ∈ ZNGProd, and k′ ∈ TPSC,

ml−
jRetProd

≥ w◦k
′

jk

∑
j′∈Sk

ml−
j′RetProd

−mjProd

(
1− βlTypek′

)
(4.96)

≤ w◦k
′

jk

∑
j′∈Sk

ml−
j′RetProd

+mjProd

(
1− βlTypek′

)
(4.97)

for all k ∈ ZNGProd, j ∈ Sk, and k′ ∈ TPSC,

ml
jProd ≥ wBlowk′

jk

∑
j′∈Sk

ml
j′Prod −mjProd

(
1− βlTypek′

)
(4.98)

≤ wBlowk′

jk

∑
j′∈Sk

ml
j′Prod +mjProd

(
1− βlTypek′

)
(4.99)

for all k ∈ ZNGProd, j ∈ Sk, and k′ ∈ TPSC. Equations 4.80-91 employ upper bounds for stream

masses,

mk =


ρk max

j∈{1,...,nPSC}
vPSCj if k ∈ ZNGFeed

max
j∈Sk

mjProd if k ∈ ZNGProd

in which mjProd is computed as for Equation 4.42. The mass upper bound in of Equations

4.92-95 can be taken as

mik = max
j∈Sk

(wijmjProd)

for all i ∈ E and k ∈ ZNGProd.

Equations 4.74-99 impose upper and lower bounds for the bath composition. More com-

plicated composition constraints may require the direct implementation of mass-fractions,

which falls outside of the MILP framework, as discussed in Section 6.1.

4.5.3 Volume Constraints

To address the possibility of bath overflow, Figure 4.3 identifies two critical times during

the converter transitions. As shown in Figure 4.3a, the maximum volume may be attained

at the end of charging; this is true of transitions that do not include a Slag-Blow, but

may include a Copper-Blow or various forms of overblowing. According to Figure 4.3b, the

maximum volume may also be attained at the end of blowing, particularly in transitions that

include the Slag-Blow reaction, as discussed in Subsection 1.3.2.

107

(a) Critical point at the end of charging

(b) Critical point at the end of blowing

Figure 4.3: Volume evolution during converter transition

To prevent overflows from occurring during charging,

∑
k∈ZNGFeed

ml−
Retk

ρk
+

∑
j∈SNGProd

ml−
jRetProd

ρj
+
∑
j∈FCh

vjl ≤ vobj(l) −
∑

k∈TPSC

(
vobj(l) − vChk,obj(l)

)
βlTypek

(4.100)

and during blowing,

∑
k∈ZNGFeed

ml
Retk

ρk
+

∑
j∈SNGProd

ml
jProd

ρj
≤ vobj(l) −

∑
k∈TPSC

(
vobj(l) − vBlowk,obj(l)

)
βlTypek (4.101)

for all l ∈ APSC \ A◦. The parameters vChk,obj(l) and vBlowk,obj(l) are the maximum allowable

bath volume within a converter obj(l) following charging and following blowing, respectively,

during a transition of type k ∈ TPSC; such parameters are related to the maximum allowable

volume in the converter,

vPSCj ≥ max

(
max
k∈TPSC

vChk,PSCj, max
k∈TPSC

vBlowk,PSCj

)
for j ∈ {1, 2, . . . , nPSC}. Indeed, vPSCj is an appropriate default value for vChk,PSCj and

vBlowk,PSCj.

108

Equations 4.100-101 each include contributions from both the feed and the product

streams on the lefthand side. Additionally, Equation 4.101 includes the newly charged vol-

ume.

Only the essential volumetric constraints have been described. Other examples may

include restrictions relating the volumes of the different product streams (e.g. there should

never be more than twice the volume of slag as matte, etc.), or there may be restrictions on

the solid versus liquid charges. It is a relatively simple matter to incorporate these additional

restrictions into the MILP, if need be.

4.5.4 Temperature Constraints

The Peirce-Smith reactions require that the bath temperature remain within certain limits

that must be respected throughout the blowing actions. There is a danger that too much cold

charge might be added, which overcools the bath and causes kinetic difficulties during the

subsequent blow. Since the reactions are exothermic, there is also a danger of overheating,

especially toward the end of the blow. Thus, critical temperatures are observed at the

beginning and end of the blow (Figure 4.4). Corresponding temperature bounds, T Blowk and

T
Blowk

, are prescribed for every transition type k ∈ TPSC.

Following the treatment of Subsections 4.3.6 and 4.4.3, TDChk and T
DChk

are imposed

the discharge transitions k ∈ TPSC. For any transition type k that includes an intermediate

discharge, the MILP considers only a single, fixed value TDChk; this is to say that TDChk =

T
DChk

= TDChk for all k ∈ TPSC,IDCh. The possibility of variable skimming temperatures is

discussed in Section 6.1.

Bath temperatures cannot be directly incorporated into the MILP as variables, because

they have a nonlinear relationship to the heat and mass variables. Nonetheless, it is possible

to implement upper and lower bounds on temperatures, in an indirect manner, as discussed

Figure 4.4: Temperature evolution during converter transition

109

in Subsections 3.2.3 and 3.2.4. The approach is based on an adaptation of Equation 3.19,

hobj(l)(t) =
∑

k′∈ZNG

[wHk′(T
obj(l)(t), t)]

[
mobj(l)

k′ (t)
]

which expresses the heat content of the bath in obj(l) as a function of time t, in which

mobj(l)

k′ (t) is the mass of k′ in the bath of obj(l).

Converter temperature bounds were introduced in Subsection 4.2.1, such that T obj(l) ≤
T obj(l)(t) ≤ T

obj(l)
, where T obj(l)(t) is the bath temperature in obj(l) at time t. Considering

that the beginning of a blow tl3 corresponds to the coldest blowing time, and that the end of a

blow tl4 corresponds to the hottest blowing time (Figure 4.4), it follows that T obj(l)(tl3) ≥ T obj(l)

and T obj(l)(tl4) ≤ T
obj(l)

. In terms of heat,

h(tl3) ≥
∑

k′∈ZNG

[
wHk′(T

obj(l), tl3)
] [
mobj(l)

k′ (tl3)
]

h(tl4) ≤
∑

k′∈ZNG

[
wHk′(T

obj(l)
, tl4)
] [
mobj(l)

k′ (tl4)
]

The first inequality is satisfied if and only if T obj(l)(tl3) ≥ T obj(l), and the second inequality is

satisfied if and only if T obj(l)(tl4) ≤ T
obj(l)

; this equivalence is related to the positivity of the

specific heat capacity, as discussed in Subsection 3.2.3.

The MILP considers that different blowing transitions may have different bounds. Binary

terms are therefore appended the previous inequalities,

hobj(l)(tl3) ≥
∑

k′∈ZNG

[
wHk′(T

Blowk, tl3)
] [
mobj(l)

k′ (tl3)
]
− (h

obj(l) − hobj(l))
(
1− βlTypek

)

hobj(l)(tl4) ≤
∑

k′∈ZNG

[
wHk′(T

Blowk
, tl4)
] [
mobj(l)

k′ (tl4)
]

+ (h
obj(l) − hobj(l))

(
1− βlTypek

)
for all k in TPSC, and all l ∈ APSC \ A◦. Thus if l is a blowing transition of type k, then the

binary terms disappear and it follows ultimately that T Blowk ≤ T obj(l)(t) ≤ T
Blowk

for all times

t from tl3 to tl4. The difference (h
obj(l) − hobj(l)) ensures that the inequalities are slack if l is

not of type k.

110

The first inequality, T (tl3) ≥ T Blowk, is incorporated into the MILP as

hl−Ret + hlCh −
3∑
i=0

hlEnvi ≥
∑

k′∈ZNGFeed

wBlowk
Hk′ m

l−
Retk′ +

∑
j∈SNGProd

wBlowk
Hj ml−

jRetProd

+
∑
j∈FCh

wBlowk
H,srce(j)ρsrce(j)v

jl − (h
obj(l) − hobj(l))

(
1− βlTypek

)
(4.102)

for all k in TPSC and all l ∈ APSC \ A◦, in which wBlowk
Hj = wHj(T

Blowk) and wBlowk
H,srce(j) =

wH,srce(j)(T
Blowk). On the lefthand side, h(tl3) includes the retained heat from the previous

transition, plus the heat of the newly charged feed, minus the environmental losses. On the

righthand side, the summation
∑

k′∈ZNG
is decomposed into the previously retained feeds and

products, plus the newly charged material.

The second inequality, T (tl4) ≤ T
Blowk

, is implemented as

hl−Ret + hlCh + hlNGBlow + hlBlast − hlOffgas −
4∑
i=0

hlEnvi

≤

∑
k′∈ZNGFeed

wBlowk
Hk′ m

l
Retk′ +

∑
j∈SNGProd

wBlowk
Hj ml

jProd + (h
obj(l) − hobj(l))

(
1− βlTypek

)
(4.103)

for all k in TPSC, and all l ∈ APSC \ A◦, in which wBlowk
Hj = wHj(T

Blowk
) and wBlowk

H,srce(j) =

wH,srce(j)(T
Blowk

). On the lefthand side, h(tl4) includes the terms of h(tl3), as well as the accu-

mulated contribution of the blowing action, hlNGBlow +hlBlast−hlOffgas−hlEnv4 . On the righthand

side, there are again contributions from both the feed and product streams.

The discharge temperature bounds can be stated in terms of temperature TDChk ≤
T obj(l)(tl6) ≤ T

DChk
, for all l ∈ APSC \ A◦. Following the same approach as for Equations

4.102-103,

h(tl6) ≥
∑

k′∈ZNG

[
wHk′(T

DChk, tl6)
] [
mobj(l)

k′ (tl6)
]
− (h

obj(l) − hobj(l))
(
1− βlTypek

)
≤

∑
k′∈ZNG

[
wHk′(T

DChk
, tl6)
] [
mobj(l)

k′ (tl6)
]

+ (h
obj(l) − hobj(l))

(
1− βlTypek

)

111

Equivalently,

hl−Ret + hlCh + hlNGBlow + hlBlast − hlOffgas −
5∑
i=0

hlEnvi

≥

∑
k′∈ZNGFeed

wDChk
Hk′ m

l
Retk +

∑
j∈SNGProd

wDChk
Hj ml

jRetProd − (h
obj(l) − hobj(l))

(
1− βlTypek

)
(4.104)

and

hl−Ret + hlCh + hlNGBlow + hlBlast − hlOffgas −
5∑
i=0

hlEnvi

≤

∑
k′∈ZNGFeed

wDChk
Hk′ m

l
Retk +

∑
j∈SNGProd

wDChk
Hj ml

jRetProd + (h
obj(l) − hobj(l))

(
1− βlTypek

)
(4.105)

for all k in TPSC, and all l ∈ APSC \ A◦. The lefthand side of Equations 4.104-105 includes

an additional environmental heat loss terms, hlEnv5, which had not been present in Equation

4.103.

The implementation of temperature bounds (Equations 4.102-105) relies on the heat

bounds, hPSCj and h
PSCj

that had been introduced in Subsection 4.2.1, and which had been

constructed using converter temperature bounds, T PSCj and T
PSCj

. These temperature bounds

should satisfy

T PSCj ≤ min

(
TOffgas, min

j′∈FFeed

T j
′
, min
k∈TPSC

T Blowk, min
k∈TPSC

TDChk

)

T
PSCj ≥ max

(
TOffgas, max

j′∈FFeed

T j
′
, max
k∈TPSC

T
Blowk

, max
k∈TPSC

T
DChk

)
for j ∈ {1, 2, . . . , nPSC}. Incidentally, minj∈{1,2,...,nPSC} T

PSCj can help provide appropriate

default values for T Blowk and TDChk. Likewise, maxj∈{1,2,...,nPSC} T
PSCj

can help provide default

values for T
Blowk

and T
DChk

.

Equations 4.102-105 impose bounds for the bath temperature. In some situations it may

be necessary to impose temperature bounds that differ from converter to converter, e.g.

112

T Blowk,PSCj ≤ T PSCj ≤ T
Blowk,PSCj

rather than T Blowk ≤ T PSCj ≤ T
Blowk

, which would require

a slight modification of Equations 4.102-105. More complicated thermal constraints may

require the direct implementation of temperature as a function of heat, but this falls outside

of the MILP framework, as discussed in Section 6.1.

4.5.5 Indirect Transition Constraints in General Linear Form

LTrans
PSC is the set of transition feasibility clauses that are implemented in linear form. These

clauses include coefficients comparable to those of Equation 4.73 for the direct transition

constraints, but there are now additional terms that correspond to the essential intermediate

variables for the preceding transition l− and the current transition l.

Considering only the essential intermediate variables described previously,∑
k∈ZNGFeed

aimRet-,km
l−
Retk +

∑
k∈SNGProd

aim,jRetProd-m
l−
jRetProd

+ aihRet-
hl−Ret

+
∑

k∈TPSC

aiβ-,kβ
l−
Typek +

7∑
i′=0

aid,i′d
l
i +

∑
j∈FNG

aiv,jv
jl

+
∑

j∈FMSM

aiu,ju
jl +

∑
k∈TPSC

aiβ,kβ
l
Typek +

∑
i′∈E

aim,i′Blast-m
l−
i′Blast

+
∑

j∈SProd

aimProd-,jm
l−
jProd

+ aihBlast-
hl−Blast + aihOffgas-

hl−Offgas

+ aihDCh-
hl−DCh +

7∑
i′=0

aihEnv-,i′h
l−
Envi′ +

∑
i′∈E

aim,i′Blastm
l
i′Blast

+
∑

j∈SProd

aimProd,jm
l
jProd + aihBlast

hlBlast + aihOffgas
hlOffgas

+ aihDCh
hlDCh +

7∑
i′=0

aihEnv,i′h
l
Envi′ ≤ bi

(4.106)

for all i ∈ LTrans
PSC and all l ∈ APSC\A◦. Depending on the problem at hand, it may be necessary

implement more essential intermediate variables. By comparing Equation 4.106 to 4.73, any

element of LDTrans
PSC can be implemented as an element of LTrans

PSC , but that the converse is not

generally true.

113

The composition, volume and temperature constraints (Equations 4.74-105) fall into the

framework of Equation 4.106. Nonetheless, they have been treated separately for instructive

purposes. As demonstrated in Section 5.3, Equation 4.106 can be also used to implement

overblow conditions.

Equation 4.106 is general, and leaves the possibility of customizing special constraints,

which include any linear combination of intermediate variables, preceding state variables and

current transition variables.

4.6 Global Objectives and Constraints

4.6.1 Optimization of Nongaseous Flows and of Transition Types

Instances of the PSC Problem usually fit one of the following two scenarios [7],

• Maximize production, without over- or under-consuming any of the limited resources

• Maximize or minimize the consumption of a limited resource, without over- or under-

consuming any of the other limited resources, and while exceeding a prescribed level of

production.

Therefore the optimization objective can be the maximization of production, or it can be the

maximization or minimization of the consumption of a certain resource.

There are several ways of measuring the production of a given schedule. The particular

measure depends on the nature of the problem, but is usually expressed as a sum over all of

the converter transitions in the current schedule. For example,

max f =
∑

l∈APSC\A◦

(∑
j∈Fk

vjl

)

can be to maximize the intake of feed matte if k = FMatte. Alternatively, it can be to

maximize the discharging of the main product, be it k = Blister for a copper smelter or k =

CMatte for a nickel-copper smelter. It is also conceivable that the objective would be

min f =
∑

l∈APSC\A◦

(∑
j∈Fk

vjl

)

hence to minimize the consumption or production of a certain stream, e.g. if k is a certain

undesirable type of slag.

114

Under slightly different circumstances, the main objective may be to maximize or mini-

mize the occurrence of certain transition types. For example, the objective may be to mini-

mize the amount of recharging, (while maintaining a prescribed level of production, perhaps).

In this case the objective would be

min f =
∑

l∈APSC\A◦

 ∑
k∈TPSC,Avoid

βlTypek


where TPSC,Avoid ⊂ TPSC is the subset of transition types that is to be avoided.

The following general form has been implemented into the current MILP formulation.

max f =
∑

l∈APSC\A◦

(∑
j∈FNG

χv,jv
jl +

∑
k∈TPSC

χβ,kβ
l
Typek

)
(4.107)

in which the coefficients, χv,j and χβ,k, determine the relative importance of the objective

variables. Traditionally, the letter c is used instead of χ to denote the objective weighting

(Appendix B); in the PSC Problem, however, c is reserved for the specific heat capacity

(Chapter 3). As discussed in Appendix B.1, a minimization can be converted into a maxi-

mization simply by reversing the signs of the coefficients.

Equation 4.107 is representative of industrial objectives [7], considering both the non-

gaseous flows and the transition types. Moreover, this objective can be extended to include

any of the other variables described in Sections 4.2 and 4.3.

4.6.2 Limiting of Nongaseous Flows and of Transition Types

Global constraints are applied over the entire schedule, and possibly into the next sched-

ule, to control production and resource consumption. Thus, there is a certain interplay

between these global constraints and the objective.

Flows are commonly subject to lower and upper bounds. To clear inventory space, it may

be imperative to consume a certain amount of a reverts stream, for example. Alternatively,

there may be only a limited amount of copper scrap available for the current schedule which,

if improperly managed, will lead to overheating during the Copper-Blow stage. There may

be upper or lower limits on the application of certain transition types, due to scarcity of

human resources or technology. For example, it may not be practical to perform more than

three scrap deliveries in the current schedule.

115

The set of linear global constraints is denoted LGlobal
PSC . Through similar considerations as

in the previous subsection, these constraints have been implemented as

∑
l∈APSC\A◦

(∑
j∈FNG

aiv,jv
jl +

∑
k∈TPSC

aiβ,kβ
l
Typek

)
≤ bi (4.108)

for all i ∈ LGlobal
PSC . Each clause i is characterized by the coefficients (aiv,j, a

i
β,k) and the

righthand constant bi. To include “≥” constraints, it is sufficient to reverse the signs of

the parameters, as described in Appendix B.1. Global equalities can be implemented by

combining “≥” and “≤” constraints.

The framework developed in this chapter is rather general and applies to numerous prob-

lems that are encountered in copper and nickel smelters. However, each of these problems

requires some adaptation in specifying the parameters, and possibly the creation of cus-

tomized constraints and variables. This adaptation process is demonstrated in Chapter 5.

116

CHAPTER 5

THE SINGLE-CYCLE PSC PROBLEM AND SAMPLE COMPUTATIONS

5.1 Adaptation of the PS MILP Formulation

5.1.1 Topological and Initial Conditions

In current practice, operational decisions are often made on a cycle-to-cycle basis [47, 66].

As described in Subsection 1.3.3, a PS converting cycle begins by charging an empty converter

with several ladles of matte, and a combination of flux and secondary feed. Following a se-

quence of blowing and recharging, the cycle terminates when the main product is withdrawn,

leaving an empty converter, ready for the next cycle.

The formulation developed in Chapters 2-4 considers the simultaneous operation of several

converters, over several cycles. This general formulation can be parametrized so as to consider

a single cycle. Firstly nPSC is set to 1, thereby focusing on a single converter. Secondly, the

feasible solutions should describe the evolution of the converter as an open path, connecting

the initial empty state to the final empty state (Figure 5.1). This variant of the PSC Problem

is referred to as the Single Cycle Peirce-Smith Converter (SC-PSC) Problem.

In accordance with Figure 5.1, the SC-PSC Problem requires that TPSC,Empty contain a

transition type EndPreviousCycle, such that

T −PSC,EndPreviousCycle = ∅ (5.1)

and a transition type EndCurrentCycle, such that

EndCurrentCycle /∈ T −
PSCk (5.2)

for all k ∈ TPSC.

Figure 5.2 is similar to Figure 2.4, except that the transition type EndCycle has been

Figure 5.1: EndPreviousCycle and EndCurrentCycle transitions

117

(a) (b)

Figure 5.2: Converter transition diagrams to adapt (a) typical copper PS systems, and (b)
typical nickel PS System to the SC-PSC formulation. The transition types are numbered (1)
InitialCharge, (2) SlagBlow, (3) Skim, (4) Recharge, (5) CopperBlow, (6) ScrapCharge, and
(7) EndCycle.

replaced by EndPreviousCycle and EndCurrentCycle, to fulfill the requirements of the SC-

PSC.

In the SC-PSC Problem, it is often convenient to measure time from the beginning of

the current cycle tBegin = 0. Also, the current cycle is distinct from the next cycle, so that

tEnd = t. For a typical application, the SC-PSC may thus be confined to a time interval from

0 to t.

After the previous cycle that has ended at t(PSC,1,0) ≤ tBegin, the converter is left empty.

Therefore the initial conditions for the current cycle are described as,

m
(PSC,1,0)
Retk = 0 (5.3)

for all i ∈ ZNGFeed,

m
(PSC,1,0)
jRetProd

= 0 (5.4)

for all k ∈ SNGProd,

h
(PSC,1,0)
Ret = 0 (5.5)

and

Type(PSC,1,0) = EndPreviousCycle

This last expression is implemented in the MILP using the transition-type determinants,

β
(PSC,1,0)
Typek =

{
1 if k = EndPreviousCycle

0 if k ∈ TPSC \ {EndPreviousCycle}
(5.6)

Equations 5.3-6 impose initial conditions on (PSC, 1, 0) so that the successor (PSC, 1, 1)

118

becomes the first transition of the current cycle. Incidentally, Equation 5.3 also implies that

m
(PSC,1,0)
jRetProd

= 0 for all j ∈ SNGProd.

The following global equality must be appended to the MILP formulation so that feasible

solutions contain exactly one complete converting cycle,

nAsgn,PSC∑
k=1

β
(PSC,1,k)
Type,EndCurrentCycle = 1 (5.7)

According to Equation 5.7, each feasible solution is associated with a number nAsgn,PSC ∈
{1, 2, . . . , nAsgn,PSC}, such that Type(PSC,1,nAsgn,PSC) = EndCurrentCycle. Following the SC-

PSC structure, (PSC, 1, nAsgn,PSC) must be the final transition because EndCurrentCycle does

not lead into any subsequent transition types; nAsgn,PSC is therefore the number of converter

assignments (transitions) within the current cycle.

Early computational efforts for the SC-PSC Problem have been successful, even using a

standard retail computer (Toshiba Qosmio c©, with Intel Core i7 CPU, [70]), with a standard

MILP solver platform (CPLEX, [71, 72]). As demonstrated in Sections 5.3 and 5.4, this has

allowed the verification of the forward state computation as well as the transition feasibility

conditions.

The MILP formulation should also work correctly for general instances of the PSC Prob-

lem, although a more extensive computational approach seems to be required; this may

involve parallel computing [73]. Current research is devoted to specialized algorithms that

take advantage of the particular structure of the PSC Problem, as discussed in Section 6.2.

5.1.2 Critical Overlap Decomposition

The Critical Overlap (CO) decomposition is a means of adapting the SC-PSC Problem

for the management of the converting aisle. This adaptation does not generally guarantee

optimality as would the general MILP formulation. Nonetheless, it uses the innate structure

of the PSC Problem, and is a fair representation of current scheduling practice [47, 75, 76].

The CO decomposition contends that there is no more than one critical stage during

a cycle that suffers from a shortage of ancillary objects (Figure 5.3). There is hence an

abundance of objects to assist the precritical stage, and to assist the postcritical stage.

At any time in the schedule, nCrit denotes the number of converters that are in the critical

stage. The CO formulation asserts that nCrit is subject to an upper bound nCrit, which is

119

Figure 5.3: Critical Overlap Decomposition

Figure 5.4: Offgas treatment capacity limiting production to no more than two simultaneous
blowing actions

presumably less than nPSC. Henceforth, it will be assumed that nCrit ≤ nPSC − 1.

An appropriate upper bound nCrit can be deduced by considering the dependency clauses,

Dik for i ∈ C and k ∈ Ti. Effectively, the CO decomposition replaces the dependency clauses

Dik with a single number nCrit.

Figure 5.4 illustrates how the CO decomposition is used to construct Gantt charts when

there is only one cycle design under consideration. A greedy approach is used to “stuff” as

many cycles as possible within the schedule [74], while respecting the limitation that there

may never be more than nCrit overlapping critical stages.

In the case of Figure 5.4, nCrit = 2 is a limitation imposed by the offgas treatment facilities,

as is often the case [47, 66, 75, 76]. Within each cycle, the critical stage begins with the first

Slag-Blow and extends until the end of the Copper-Blow. Within the first half of the schedule

in Figure 5.4, the end of a critical stage in PSC 2 coincides with the beginning of a critical

stage in PSC 3. Later on, the end of a critical stage in PSC 1 coincides with the beginning of

a critical stage in PSC 2, and the end of a critical stage in PSC 3 coincides with the beginning

of a critical stage in PSC 1.

The converters are programmed in a staggered manner in Figure 5.4, so as to manage

the (abundant) ancillary objects that are associated with pre- and post-critical stages. This

120

staggered greedy approach is most appropriate when the cycles are dominated by the critical

stage, as discussed in Subsection 5.1.3.

The Chuquicamata smelter applies three kinds of converting cycles, and the 24 hour

production schedule is constructed through an exhaustive enumeration of possible schedules

[47]; in this case, there is a relatively small number possibilities since each of the cycles last

roughly 7 hours, and there are at most two simultaneous blowing operations at any given time.

This is quite different from the Altonorte copper smelter [1], in which the feed matte is nearly

white metal, which implies shorter converter cycles (roughly 3.5 hours), and exponentially

more schedules to consider. Nonetheless, both of these smelters share the restriction that

there can be no more than two simultaneous blowing operations, hence nCrit = 2.

Indeed, the three-component CO decomposition (Figure 5.3) is especially descriptive of

converting aisles which are limited by the number of simultaneous blowing operations. This is

often related to environmental legislation, stating that nearly all of the SO2 must be captured

and converted into acid. For the Chuquicamata and Altonorte smelters in Chile, this causes

a restriction of the form nCrit = 2. The restriction is even more severe for the Rönnskär

smelter in Sweden [75, 76], such that nCrit = 1.

Under certain circumstances, it can happen that there is a shortage of ancillary objects

from the very beginning of the cycle, so that the precritical stage is omitted (Figure 5.5a);

such is the case when there is excessive converting capacity in relation to the smelting, or

when there a lack of charging cranes or charging ladles. If the shortage of ancillary objects

extends to the end of cycle, then the postcritical stage is omitted (Figure 5.5b); such is the

case when there is a shortage of downstream capacity (e.g. a lack of fire refining furnaces),

or a lack of discharging cranes or product ladles. The omission of the pre- or the post-critical

stage is nonetheless supported by the general CO decomposition (Figure 5.3).

(a) (b)

Figure 5.5: Shortage of ancillary objects at (a) the beginning of cycle and (b) the end of the
cycle

121

In order to apply the CO decomposition, several adaptations must be made to the MILP

formulation, which are in addition to those described in Subsection 5.1.1. Firstly the set of

converter transition types TPSC should consist of four disjoint subsets,

TPSC = {EndPreviousCycle}
⋃
T −PSC,Crit

⋃
TPSC,Crit

⋃
T +

PSC,Crit (5.8)

The sets T −PSC,Crit, TPSC,Crit and T +
PSC,Crit are the transition types that constitute precritical,

critical and post-critical stages, respectively.

Equation 5.2 causes EndPreviousCycle to precede the other transition types, T −PSC,Crit⋃
TPSC,Crit

⋃
T +

PSC,Crit, which form the current cycle. A similar topological ordering must be

extended throughout the three stages, such that(
TPSC,Crit

⋃
T +

PSC,Crit

)⋂
T −

PSCk = ∅ (5.9)

for all k ∈ T −PSC,Crit, and

T +
PSC,Crit

⋂
T −

PSCk = ∅ (5.10)

for all k ∈ T −PSC,Crit

⋃
TPSC,Crit. Equation 5.9 does not allow the converter to regress into the

precritical stage, once it has passed into critical and postcritical stages. Similarly, Equation

5.10 does not allow the converter to regress into the precritical and critical stages, once it

has passed into the postcritical stage.

If the cycle does not extend into the critical stage, then there is no scarcity of ancillary

objects, and the CO decomposition is meaningless. Thus it can be presumed that

EndCurrentCycle ∈ TPSC,Crit

⋃
T +

PSC,Crit (5.11)

The typical scenario of Chuquicamata, Altonorte, Rönnskär, etc. is described by End-

CurrentCycle ∈ T +
PSC,Crit. However the condition depicted in Figure 5.5b is described by

EndCurrentCycle ∈ TPSC,Crit, for which Equation 5.10 causes T +
PSC,Crit = ∅. Considering the

combination of Equations 5.2 and 5.10-11, it can be reasoned that T +
PSC,C = ∅ if and only if

EndCurrentCycle ∈ TPSC,Crit.

Unlike the full MILP formulation, the CO decomposition does not fully describe the

sharing of ancillary objects within the converting aisle. Every object that is occupied during

part of the critical stage is treated as if it were occupied during all of the critical stage,

neglecting the possibility of early or temporary release of these objects. This restriction

is erroneous, but is acceptable for assigning bulky equipment, such as the offgas handling

122

system, which does not undergo frequent reassignments.

5.1.3 Dominance Condition for the Critical Stage

The Critical Overlap decomposition provides a worthwhile link between local optimality

for a single converting cycle, and global optimality for an entire converting schedule. The

efficient use of ancillary resources can be measured by the production in one cycle, divided

by the duration of the critical stage. This ratio is of particular importance when the critical

stage dominates the cycle.

To quantify this dominance condition, the duration of the critical stage dCrit is compared

to the total duration of the cycle dCycle. Figure 5.6 considers (nPSC, nCrit) = (2, 1); as long as

dCrit ≥ 1
2
dCycle, it is possible to maintain maximum utility, nCrit = nCrit, indefinitely throughout

the schedule. Similarly, Figure 5.7 considers (nPSC, nCrit) = (3, 2), and it is possible to maintain

nCrit = nCrit as long as dCrit ≥ 2
3
dCycle.

More generally, when considering one kind of cycle,

dCrit ≥
(
nCrit

nPSC

)
dCycle (5.12)

is a sufficient condition to ensure that there are feasible schedules that satisfy nCrit = nCrit at

all times, and are hence optimal. This condition is apparent since, in order that nCrit out of

the nPSC converters should always be in the critical stage, the average converter should be in

the critical stage at least (nCrit/nPSC) of the schedule duration.

Cycles which satisfy condition 5.12 are termed critically dominant, meaning that dCrit

dominates dCycle. This is typical of the Rönnskär and Chuquicamata smelters which are

described by Figure 5.6a and Figure 5.7a, respectively. The cycles at the Altonorte smelter

are better described by Figure 5.7c, hence they are not critically dominant; again, this is

related to the high grade of the furnace matte.

To incorporate the critical dominance condition into the MILP, the total cycle duration

dCycle ∈ R+
◦ is computed as

dCycle =
∑

l∈APSC\A◦

dl (5.13)

Any transitions which are undetermined in the current cycle will be such that dl = 0, in

accordance with Equation 4.4.

The critical duration dCrit ∈ R+
◦ is implemented in conjunction with the nonnegative

123

(a) dCrit >
1
2dCycle

(b) dCrit = 1
2dCycle

(c) dCrit <
1
2dCycle

Figure 5.6: Optimal production schedules for two-converter systems, having different dCrit to
dCycle ratios

124

(a) dCrit >
2
3dCycle

(b) dCrit = 2
3dCycle

(c) dCrit <
2
3dCycle

Figure 5.7: Optimal production schedules for a three-converter system, having different dCrit

to dCycle ratios

125

variables dlCrit ∈ R+
◦ , such that

dlCrit =

{
dl Typel ∈ TPSC,Crit

0 otherwise

for all l ∈ APSC \ A◦. Thus dlCrit is the contribution to dCrit which is due to transition l,

dCrit =
∑

l∈APSC\A◦

dlCrit (5.14)

The contributions are determined according to the following inequalities,

dlCrit ≥ dl − d

1−
∑

k∈TPSC,Crit

βlTypek

 (5.15)

≤ d
∑

k∈TPSC,Crit

βlTypek (5.16)

≤ dl (5.17)

for all l ∈ APSC \ A◦. If l is part of the critical stage, then βl
Typek = 1 for some k ∈ TPSC,Crit,

and Equations 5.13 and 5.15 cause dlCrit = dl, while Equation 5.14 is slack; otherwise if l is

not part of the critical stage then Equation 5.14 acts with the nonnegativity condition so

that dlCrit = 0, as Equations 5.13 and 5.15 are slack.

By introducing Equations 5.12-17 into the MILP, the optimization is restricted to criti-

cally dominant cycles. However, a critically dominant cycle may not always be feasible, as

demonstrated in Section 5.4.

5.1.4 Maximizing the Productivity of a Single Converting Cycle

The design of a cycle is based primarily on the maximization of (Production/dCrit) ratios.

These ratios provide a direct link between the optimality of a critically dominant cycle, and

the optimality of the larger schedule. But even for cycles that are not critically dominant,

these ratios are valid heuristics that analyze the utilization of ancillary objects.

Considering the global objective described by Equation 4.98, the relevant local objective

is

max f =

∑
l∈APSC\A◦

(∑
j∈FNG

χv,jv
jl +

∑
k∈TPSC

χβ,kβ
l
Typek

)
dCrit

(5.18)

126

which is fractional, hence not directly supported by the MILP formulation. The Charnes-

Cooper transformation can produce an equivalent objective function that is linear, however

the branching is complicated in a way that is not supported by standard linear programming

solvers (Appendix B.6).

Rather than working directly with the fractional objective (Equation 5.18), a sequence

of iterations i ∈ {1, 2, . . .} can be applied, in which the critical duration is bounded above

by dCrit,i; this upper bound is varied from iteration to iteration, and satisfies 0 < dCrit,i <

(tEnd − tBegin).

Each iteration is composed of two MILP computations. The first is to maximize produc-

tion, hence the objective function,

max f1 =
∑

l∈APSC\A◦

(∑
j∈FNG

χv,jv
jl +

∑
k∈TPSC

χβ,kβ
l
Typek

)
(5.19)

with the additional restriction,

dCrit ≤ dCrit,i (5.20)

The resulting optimal value f ∗1i is then used in the second computation, which is to minimize

the critical duration, while maintaining the optimal production; thus the second objective is

to minimize

min f2 = dCrit (5.21)

given the additional restriction

∑
l∈APSC\A◦

(∑
j∈FNG

χv,jv
jl +

∑
k∈TPSC

χβ,kβ
l
Typek

)
≥ f ∗1i − εf1 (5.22)

where εf1 ≈ 0 is used to promote numerical stability; εf1 = 0.0001f ∗1i has been found to work

well in practice. It is inconsequential whether or not equation 5.20 is included in the second

computation because it is already implied by the construction of Equations 5.21-22. The

resulting optimal value is denoted f ∗2i.

Each iteration generates a candidate for the optimization of optimal value of Equation

5.18, or rather

f ∗ ≈ max
i∈{1,2,...}

(
f ∗1i
f ∗2i

)
(5.23)

A complete sweeping of all possible dCrit,i values will necessarily yield the optimal solution for

127

Equation 5.18, as will be argued below. In practice, it is sufficient to use equi-spaced values

of dCrit,i at quarter hour intervals, i.e. dCrit,i = i
4

for i = 1 to b4(tEnd − tBegin)c. Additional

iterations can then be performed to give a more refined search. With enough iterations,

detailed plots can be obtained for f ∗1i, f
∗
2i and

(
f∗1i
f∗2i

)
, as depicted in Figure 5.8.

Figure 5.8a illustrates that f ∗1i is a nondecreasing function of dCrit,i, as a larger value of

dCrit,i implies a larger feasibility region in the first computation. There may be intervals of

dCrit,i values for which Equation 5.20 is continually active (dCrit = dCrit,i), which correspond to

the strictly increasing segments in Figure 5.8a. These segments are followed by flat regions,

in which Equation 5.20 is dominated by other constraints. Certain of the flat regions can be

followed by discrete jumps; this occurs at dCrit values which allow either a numerical change

in the delivery units uj, or a categorical change in the transition sequence.

As the production f ∗1i increases, the critical duration cannot be shortened, which makes

f ∗2i also a nondecreasing function of dCrit,i (Figure 5.8b). The increasing segments in Figure

5.8b coincide with those of Figure 5.8a, as do the flat regions and the discrete jumps. In

particular, the increasing segments are characterized by f ∗2i = dCrit,i, because this duration is

necessary in order to maintain the production level prescribed by Equation 5.22.

The ratio of the linear segments from Figures 5.8a and 5.8b form the curved segments

in Figure 5.8c, which can be either increasing or decreasing. Furthermore, the maximum of(
f∗1i
f∗2i

)
can always be observed at the one of the endpoints of the curved segments, where the

ratio ceases to increase.

The SC-PSC formulation, together with the notion of critical dominance, presents a

methodology for designing and evaluating converting cycles. The managers of a smelter can

use these concepts to simulate the impact of a proposed upgrade, on a cycle-to-cycle basis,

hence to justify or deny such an upgrade.

128

(a)

(b)

(c)

Figure 5.8: Construction of the productivity ratio objective for the SC-PSC Problem

129

5.2 Software Systems

5.2.1 AMPL and CPLEX

AMPL (“A Mathematical Programming Language”) is a computer programming language

whose syntax is remarkably similar to that of mathematical programming [77]. AMPL is

especially well-suited to implement the constraints defined in Chapter 4, as well as the sets

and parameters defined in Chapters 2 and 3. Once an optimization problem is programmed

into AMPL, the platform can then solve the problem by appealing to a variety of external

solvers; the most well-established MILP solver is CPLEX [71, 72].

AMPL computations rely on three types of source files, identified by the following exten-

sions types:

• mod files declare all of the underlying sets and parameters which form the model. They

also contain the constraints and objective functions that link together the underlying

sets and parameters.

• dat files contain the specifications of the particular instance of the problem, including

the list of members that form each of the underlying sets and the numerical parameter

values.

• run files contain scripted instructions of when to load the data and the models, execute

the solver and organize the results.

Appendix C contains AMPL files that were developed for the current research. The dat files

vary depending on the parameters. However the mod and run files do not.

The SC-PSC formulation alternates between two objectives (Equations 5.19 and 5.21),

which is managed through the run file (Appendix C.3). The run file also activates and

deactivates Equation 5.22, which is relevant under the second objective only.

To optimize the ratio objective (Equation 5.18), the run file calls on the CPLEX solver to

perform a sequence of optimizations, resulting in graphs similar to those of Figure 5.8. First

there is a sweep of dCrit,i values from 0 to 12 hours, using quarter hour intervals. Then there

is a more refined sweep, using 5 minute intervals, exploring the half hour that surrounds the

best result from the first sweep. Considering both sweeps, there is a total of 52 iterations.

The best solution from the 52 iterations is saved into memory.

The dependency constraints (Equations 4.8-4.14) are deactivated throughout the 52 it-

erations. They are reactivated afterward, and CPLEX is then used to construct a feasible

130

schedule for an ancillary object, given the fixed PS schedule that had been saved into mem-

ory. This is not necessarily the most practical way to coordinate the ancillary objects, but

it effectively verifies the formulation of Subsection 4.1.2, which is otherwise irrelevant to the

SC-PSC Problem.

The results are stored in an output text file, including the optimal solution, the ancillary

assignment, the information required to produce the aforementioned graphs (Figure 5.8), and

the computation times. This output file follows the csv (comma-separated-values) format,

which is easily imported into Microsoft Excel c© and other common software packages [78].

CPLEX is only one of the many commercial solvers that is supported by AMPL. An

alternative is the MOSEK solver [79], which supports quadratic constraints, and would hence

allow the direct implementation of concentration and temperature variables (Section 6.1).

The MINLPBB solver [80] works for mixed integer nonlinear programs, and can thus accept a

linear-fractional objective (e.g. Equation 5.18). In addition to CPLEX, MOSEK, MINLPBB,

and the other commercially available solvers, AMPL allows users to incorporate their own

solvers [72].

Future work may include testing and developing solvers to support variants of the Peirce-

Smith Converter Problem which are more demanding than the SC-PSC. Even so, the AMPL

source code will remain largely unchanged, because the platform is designed to accommodate

these various solvers.

5.2.2 Excel and VBA

Using the commonly available Microsoft Excel c©, three macro-enabled workbooks [81]

have been constructed to facilitate the preprocessing of problem data and postprocessing of

computational results for the SC-PSC Problem.

The first two workbooks describe a copper production (Section 5.3), firstly through the

Simplified Copper PS formulation, and secondly through the General Nickel-Copper formu-

lation. The third workbook applies the General Nickel-Copper formulation to describe a case

of nickel-copper converting (Section 5.4). Interestingly, the workbooks all rely on the same

mod file (Appendix C.1) and run file (Appendix C.3), since the underlying mathematical

structures are equally valid for both the general and the simplified formulation.

Each workbook is divided into a sequence of sheets having the following labels,

• Sheet 1: Start

131

Figure 5.9: Interaction between Excel and the optimization platform which consists of AMPL
and CPLEX

• Sheet 2: User Input Data

• Sheet 3: Thermochemical Data

• Sheet 4: dat Mockup

• Sheet 5: csv Mockup

• Sheet 6: Results

Figure 5.9 illustrates the dependencies between these sheets, and their interaction with the

optimization platform.

Sheet 1 is the starting point for the user interface, which was programmed using Excel’s

Visual Basic for Applications (VBA) module [82]. It presents a series of forms so that the

user may enter problem data, which is then stored in Sheet 2.

All of the pre- and post-processing of data is automated within the workbooks. For

instance, the thermal inputs are based on temperature, whereas the thermal constraints

(Subsection 4.5.4) are based on heat; the workbooks automatically convert the user-input

132

temperatures (Sheet 2) into heats, using the thermochemical data (Sheet 3) in conjunction

with the formulas of Chapter 3. The workbooks also include formulas that compute the

various upper and lower bounds presented in Chapter 4. Although it is possible to program

these formulas into AMPL instead of Excel, this approach would be more cryptic, and more

tedious to verify.

Sheet 4 contains all of the text and numbers used to create a dat file. The numerical

values are automatically computed, depending on the content of Sheets 2 and 3. The Ex-

portToDatFile macro has been programmed within the workbook to automatically export

the problem data from Sheet 4 into the dat file; the macro simply copies the content of Sheet

4 into a blank file, line by line, to create the dat file.

The resulting dat file is then read into the AMPL platform, as directed by the run file.

AMPL then calls on the CPLEX solver to perform the sequence of optimizations, and finally

organizes the results into a csv file, as described in Subsection 5.2.1.

The content of the csv file is then copied into Sheet 5. This is performed using the

ImportFromCsvFile macro that has been programmed into the workbook. Subsequently,

Sheet 6 draws upon the content of Sheet 5 to tabulate the results. Sheet 6 also depends on

Sheets 2 and 3 in order to relate the results to the input, and to apply the thermochemical

formulas of Chapter 3.

The intermediate computations (Section 4.3) and forward computations (Section 4.4)

have all been programmed into Excel. Therefore, csv does not include the state and the

intermediate variables; only the transition variables are transmitted. By comparing the Excel

results to the AMPL results, it is verified that the intermediate and forward computations

are properly incorporated into the MILP.

The raw optimization results of Sheet 5 include heat values which are transformed into

temperatures using the specially designed ComputeTemperature function. Following the

approach of Subsection 3.2.4, the function has six arguments (wH, w
Ref
H , A,B,C,D). If the

function fails to locate an appropriate temperature after 50 iterations, then it returns an

error. Otherwise, it returns a temperature value, accurate to eight significant digits.

Excel provides a user-friendly method to prepare the data and tabulate the results of

the SC-PSC Problem. It can eventually be a platform for customized software that will be

marketed to consulting companies and smelters.

133

5.3 Sample Computations

5.3.1 Sample Computations for a Copper PS Converter

The MILP model includes parameters and equations that can accommodate virtually any

Peirce-Smith system. However, a typical user of the system would work with a reduced set

of parameters that are accessible through the user interface (Figure 5.10), and are based on

the particular instance of the problem. The input data described in Tables 5.1-5.4 are based

on the Rönnskär smelter [75, 76], but could easily be adapted to other contexts.

The dynamics are described by Figure 5.2a, and the objective is to maximize the rate

of feed matte conversion, given a restricted access to the offgas handling. In this case, the

critical period begins with the first blowing action, and ends with the final blowing action. In

the first section of Table 5.1, the scheduling horizon is an expression of tEnd; the duration of

the converter cycle may not exceed 12 h. The critical dominance condition (Equation 5.12)

considers the number of converters in operation, nPSC = 2, and the offgas handling capacity,

nCrit = 1.

Figure 5.10: First page of the user interface for sample copper PSC computations

134

Table 5.1: User input for sample copper PSC computations (System Parameters)

Converting Aisle Operations
Scheduling Horizon: 12 h

Number of Converters in Operation: 2
Offgas Treatment Capacity: 1 Converter

Volumes
Volume Carried in Ladle: 10 m3 (maximum)

Bath Volume: 80 m3 (maximum)
Thermochemical Efficiency

Heat Loss During Slag-Blow Stage: 30000 kW
Heat Loss During Copper-Blow Stage: 7500 kW

Oxygen Efficiency: 95 %
Ferroslag Ratio: 2

Table 5.2: User input for sample copper PSC computations (Converting Cycle)

Initial Charge
Initial Charge Duration: 0.5 h

Initial Matte Delivery: 6 Ladles (maximum)
Slag-Blow Stage

Duration of a Single Slag-Blow Action: 0.5 h (minimum)
Excess Silica in Slag: 10 % (maximum)

Skim Duration: 0.125 h
Recharge Duration: 0.125 h

Recharges per Cycle: 2 (maximum)
Matte Delivery per Recharge: 3 Ladles (maximum)

Copper-Blow Stage and Final Discharge
Duration of a Single Copper-Blow Action: 1 h (minimum)

Scrap Charge Duration: 0.125 h
Scrap Charges per Cycle: 2 (maximum)

Copper Oxidation: 5 % of total copper
Final Discharge Duration: 0.5 h

135

The matte may only be fed as full ladles, either during the initial charge, or during

subsequent recharges. The flux and reverts may be fed during the initial charge and the

recharges, and may also be fed during the blowing operation. Lastly, the copper scrap may

only be added during the Copper-Blow stage, when the blowing is paused. The flux, reverts

and scrap are unmodulated, and the feed matte is modulated.

The user interface provides a layer of flexibility regarding the presentation of the param-

eters. For example, the heat loss parameters are entered in terms of kW (Figure 5.10), while

the model functions in MJ/h. The conversion from kW into MJ/h is performed by the Excel

spreadsheet, so that the dat file contains the appropriate numerical value. For instance, an

environmental heat loss of 30000 kW corresponds to 108000 MJ/h (See Appendix C.2, and

Subsection 4.3.7).

In Table 5.2, the Initial Charge Duration is presented as a single parameter that has

been set to 0.5 h. However, the underlying model may accommodate a more complicated

relation (Equation 4.32), which considers to the charging units and volumes. The skimming,

recharging, scrap charge and final discharge durations are also fixed in a similar way.

Also in Table 5.2, the entry “Excess Silica in Slag” describes an upper bound on the per-

centage of unreacted silica SiO2 that may be present in the slag. Without this upper bound,

there would be an excessive (unpractical) use of flux. This condition has been implemented

using Equation 4.97.

Table 5.2 also places an upper limit on the number of ladles which can be delivered

during a recharge transition, implemented using Equation 4.28. This might be related to the

availability of cranes, for example.

Additionally, there is an overblowing condition, stating that 5% of the total copper should

be oxidized. As described in Chapter 1, this ensures a higher degree of sulfur elimination,

and reduces the workload of the fire refining furnaces. This overblow condition has been

implemented in general linear form, using two adaptations of Equation 4.106. Firstly,

(1− x)wCu,Cu2OmCu2Oβ
l
Type,CopperBlow−xml

CuLiq,Prod+(1− x)wCu,Cu2Om
l
Cu2O,Prod ≤ (1− x)wCu,Cu2OmCu2O

in which x = 0.05 is the proportion of copper that is to be oxidized; when transition l is a

CopperBlow, the βlType,CopperBlow term cancels out the righthand side, and prevents more than

5% oxidation. Secondly,

xmCuLiqβ
l
Type,EndCurrentCycle + xml−

CuLiq,RetProd − (1− x)wCu,Cu2Om
l−
Cu2O,RetProd ≤ xmCuLiq

136

Table 5.3: User input for sample copper PSC computations (Feeds)

Matte Cu: 60 wt%
Flux SiO2: 85 wt%

CaO: 5 wt%
Al2O3: 5 wt%
MgO: 5 wt%

Blast
Blast Flowrate in Slag-Blow: 45000 Nm3/h

Enrichment in Slag-Blow: 25 vol%O2
Blast Flowrate in Copper-Blow: 45000 Nm3/h

Enrichment in Copper-Blow: 25 vol%O2
Reverts Fe: 24.04 wt%

Cu: 50.14 wt%
S: 6.18 wt%

Si: 5.99 wt%
Ca: 0 wt%
Al: 0 wt%

Mg: 0 wt%
O: 13.65 wt%

Density: 5.5272 T/m3

Specific Heat of Formation: -172.76 MJ/T
Heat Capacity Coefficient, A: 0.46902 J/(g◦C)
Heat Capacity Coefficient, B: 0.00044730 J/(g(◦C)2)
Heat Capacity Coefficient, C: -7890.9 (J◦C)/g
Heat Capacity Coefficient, D: 0 J/(g(◦C)3)

When l is to end the current cycle, the righthand side is canceled, so that a minimum of 5%

oxidation is required to proceed with the transition. The combined effect of both inequalities

is that there must be exactly 5% oxidation as the Copper-Blow is ending, and that there

cannot be any more than 5% oxidation during the Copper-Blow.

Table 5.3 describes a typical matte grade, and flux composition. The blast rates and

oxygen enrichments are based on the Rönnskär smelter [75]. The reverts data is taken from

Table 3.4, and is admittedly only an estimation. More advanced studies would require an

analysis of industrial reverts, which is likely to differ substantially from smelter to smelter.

137

Table 5.4: User input for sample copper PSC computations (Temperatures)

Feed Temperatures
Matte Feed Temperature: 1200 ◦C

Cold Feed Temperature: 30 ◦C
Blowing Temperatures

Blast Temperature: 50 ◦C
Bath Temperature During Slag Blow: 1050 ◦C (minimum)
Bath Temperature During Slag Blow: 1250 ◦C (maximum)

Bath Temperature During Copper Blow: 1150 ◦C (minimum)
Bath Temperature During Copper Blow: 1250 ◦C (maximum)

Product Temperatures
Slag Temperature: 1230 ◦C

Offgas Temperature During Slag Blow: 1200 ◦C
Offgas Temperature During Copper Blow: 1200 ◦C

Final Discharge Temperature: 1150 ◦C (minimum)
Final Discharge Temperature: 1250 ◦C (maximum)

Table 5.4 demonstrates the shortcomings of the MILP formulation, with regard to tem-

perature data. While it is appropriate for the input temperatures to be fixed (i.e. the feed

and blast temperatures), the remaining temperatures should all be allowed to vary within

ranges in response to operational decisions. The MILP formulation could not support ranges

for the slag, nor for the offgas, as discussed in Subsections 4.5.4 and Section 6.1.

The data of Tables 5.1-4 has been entered into the General Nickel-Copper Formulation,

as well as the Simplified Copper Formulation. Both computations obtain the same objective

value, 8.867 m3 feed matte / critical hour, but with different solutions, as described below.

The general formulation requires 114.5 seconds of computation time, while the simplified

formulation requires 103.5 seconds.

Figure 5.11 depicts the objective functions that were obtained throughout the 52 iter-

ations. As expected, identical objective values are observed for both the General Nickel-

Copper Formulation, and the Simplified Copper Formulation. In both cases, the optimal

ratio objective is first observed at dCrit = 8 h, which is the 32nd iteration.

The two solutions may be compared by examining the resulting Gantt charts (Figure

5.12), and the feed schedule (Table 5.5). Both schedules employ a critical duration of 7.89

h to process 7 ladles of matte. However, the duration of the individual blowing actions are

138

(a)

(b)

(c)

Figure 5.11: Objective functions from sample copper PSC computations

139

(a) General Nickel-Copper Formulation

(b) Simplified Copper Formulation

Figure 5.12: Optimal Gantt charts from sample copper PSC computations

Table 5.5: Feed tonnages from copper PSC computations

General Formulation Simplified Formulation
Transition 1 2 4 5 8 1 2 4 5 8

Start Time (h) 0 0.5 2.96 3.09 7.27 0 0.5 2.26 2.389 6.36
Finish Time (h) 0.5 2.84 3.09 3.97 7.39 0.5 2.14 2.39 3.97 6.49

Charging Feed
Feed Matte 316.7 0 52.8 0 0 316.7 0 52.8 0 0

Flux 16.8 0 0 0 0 0 0 0 0 0
Reverts 0 0 6.4 0 0 0 0 0 0 0

Copper Scrap 0 0 0 0 5.6 0 0 0 0 5.6

Blowing Feed
Flux 0 0 0 6.1 0 0 11.7 0 11.1 0

Reverts 0 28.7 0 15.2 0 0 20.8 0 29.5 0

140

(a) General Nickel-Copper Formulation (b) Simplified Copper Formulation

Figure 5.13: Bath volume from sample copper PSC computations

(a) General Nickel-Copper Formulation (b) Simplified Copper Formulation

Figure 5.14: Bath temperature from sample copper PSC computations

141

different. For instance, the general formulation obtains the maximum volume content of

80 m3 at the end of the first Slag-Blow action (Figure 5.13a), whereas the the simplified

formulation obtains it at the end of the second Slag-Blow action (Figure 5.13b).

In Figure 5.14 it can be observed that the Slag-Blow actions only attain a maximum tem-

perature value of 1230◦C, even though the maximum allowable temperature is 1250◦C. This

is due to the constraint that skimming must occur at 1230◦C, to ensure that the outgoing slag

has this temperature. It would be more realistic if the slag temperature were allowed to vary,

as described in Section 6.1. Nonetheless, Figure 5.14 demonstrates the proper functioning of

the temperature constraints (Subsection 4.5.4), as well as the implementation of Newton’s

Method, as per Equation 3.26.

The computations presented by Tables 5.1-5 and Figures 5.10-14 demonstrate the use of

the MILP model for preliminary copper PSC computations. There are numerous features,

such as variable charge time, idle time, etc. which may be more useful in comprehensive

smelter studies that would provide appropriate data.

5.3.2 Sample Computations for a Nickel-Copper PS Converter

The General Nickel-Copper Formulation is equally applicable to copper converting prob-

lems, as it is to nickel-copper converting problems. The input data is of Tables 5.7-9 is loosely

based on the Falconbridge Slag Make Furnace [46], which is relatively large, and is noted for

its use of ALSI technology [45].

142

Figure 5.15: Converter transition diagrams for limited access to the smelting fur-
nace. The transition types are numbered (1) InitialCharge, (2) SlagBlow, (3) Skim, (4)
Recharge, (5) SlagBlowAndSkimWithoutAnyMoreFeedMatte, (6) ExtendProductionCycle-
WithoutAnyMoreFeedMatte.

Figure 5.16: First page of the user interface for sample nickel-copper PSC computations

In the current example, the objective is to incorporate as much ferronickel as possible into

the cycle, given the limited availability of the smelting furnaces. The ferronickel is regarded

as an unmodulated charging feed, which cannot be introduced during the blowing action.

The system dynamics are described by Figure 5.15, in which the critical duration includes

transitions 1 through 4; when the cycle progresses into transitions 5 or 6, the furnace is free

to begin charging another converter. In Figure 5.16 and Table 5.6, “Number of Simultaneous

143

Table 5.6: User input for sample nickel-copper PSC computations (System Parameters)

Converting Aisle Operations
Scheduling Horizon: 12 h

Number of Converters in Operation: 2
Number of Simultaneous Charges: 1 (maximum)

Volumes
Volume Carried in Ladle: 20 m3 (maximum)

Bath Volume: 160 m3 (maximum)
Thermochemical Efficiency

Heat Loss: 30000 kW
Oxygen Efficiency: 95 %

Ferroslag Ratio: 2

Table 5.7: User input for sample nickel-copper PSC computations (Converting Cycle)

Charge and Recharge
Initial Charge Duration: 0.5 h

Initial Matte Delivery: 4 Ladles (maximum)
Initial Ferronickel Delivery: 40 T (maximum)

Recharge Duration: 0.125 h
Matte Delivery during Recharge: 2 Ladles (maximum)

Total Feed Matte: 6 Ladles (minimum)
Blow and Skim

Duration of a Blow Action: 0.5 h (minimum)
Excess Silica in Slag: 10 % (maximum)

Skim Duration: 0.125 h
Final Discharge

Final Discharge Duration: 0.5 h

Charges” thus describes the number of converters which may be simultaneously in the critical

stage.

As described in Chapter 1, the Doniambo and Sorowako smelters routinely employ PS

converting to convert ferronickel into a nickel-sulfide matte, and ultimately to obtain metallic

nickel [2]. Otherwise, ferronickel is mainly used as an alloying component of stainless steel

[22]. Given the versatility of Peirce-Smith converting, a nickel-copper smelter could conceiv-

ably arbitrate between the price of metallic nickel and that of stainless steel. The sample

computations describe a mode of operation that is appropriate for a case when there is a

high nickel/(stainless steel) price ratio.

144

Table 5.8: User input for sample nickel-copper PSC computations (Feeds)

Matte Ni: 20 wt%
Co: 1 wt%
Cu: 10 wt%

Flux SiO2: 85 wt%
CaO: 5 wt%

Al2O3: 5 wt%
MgO: 5 wt%

Blast Blast flowrate 45000 Nm3/h
Enrichment: 40 vol%O2

Ferronickel Fe: 30 wt%
Ni: 70 wt%
Co: 0 wt%
Cu: 0 wt%

S: 0 wt%
Si: 0 wt%

Ca: 0 wt%
Al: 0 wt%

Mg: 0 wt%
O: 0 wt%

Density: 8.2 T/m3

Specific Heat of Formation: -126.2127 MJ/T
Heat Capacity Coefficient, A: 0.469 J/(g◦C)
Heat Capacity Coefficient, B: 0 J/(g(◦C)2)
Heat Capacity Coefficient, C: 0 (J◦C)/g
Heat Capacity Coefficient, D: 0 J/(g(◦C)3)

Table 5.9: User input for sample nickel-copper PSC computations (Temperatures)

Feed Temperatures
Matte Feed Temperature: 1200 ◦C

Cold Feed Temperature: 30 ◦C
Blowing Temperatures

Blast Temperature: 50 ◦C
Bath Temperature During Blow: 1050 ◦C (minimum)
Bath Temperature During Blow: 1250 ◦C (maximum)

Product Temperatures
Slag Temperature: 1230 ◦C

Offgas Temperature During Slag Blow: 1200 ◦C
Final Discharge Temperature: 1150 ◦C (minimum)
Final Discharge Temperature: 1250 ◦C (maximum)

145

Comparing Table 5.6 to Table 5.1, the nickel-copper computations use larger ladle and

bath volumes. Table 5.7 is comparable to Table 5.2, except that a global constraint has been

implemented, to ensure that at least six ladles of matte are processed.

Table 5.8 describes typical matte and flux compositions for nickel-copper smelters. On

the other hand, the oxygen enrichment is much higher than for typical smelters, and is

characteristic of the ALSI [45]. The ferronickel data was compiled from several sources

[84, 85, 86].

The computation time was found to be an average of 155.6 s. This is notably longer than

the copper computations, but is still within a practical range. However, there were some

numerical instabilities at dCrit = 3.25 h and dCrit = 11.25 h, which correspond to iterations

13 and 49, respectively. These iterations did not yield any solution, and are hence omitted

from Figure 5.17. The optimal ratio objective was found to be 17.643 m3 ferronickel / critical

hour.

The solution is described by Figures 5.18-20 and Table 5.10. The first postcritical charging

(of ferronickel) occurs at 2.63 h and causes a tremendous drop in temperature. This is

followed by a sequence of blowing, charging and skimming, in which the maximum bath

volume (160 m3) is obtained exactly as the skimming temperature is obtained (1230◦C); this

synchronization of volume and temperature is somewhat sophisticated, as it combines MILP

with Newton’s Method (Equation 3.26). The final two skimming actions occur at volumes

lower than 160 m3, but the skimming temperature is still respected.

The MILP formulation has been successfully adapted to optimize single cycles. These

results demonstrate the usefulness of MILP formulation for copper smelters, as well as nickel-

copper smelters. The next step would be to develop industrial software that would schedule

daily operations, using the MILP for the underlying computations.

146

(a)

(b)

(c)

Figure 5.17: Objective functions from sample nickel-copper PSC computations

Figure 5.18: Optimal Gantt charts from sample nickel-copper PSC computations

147

Table 5.10: Feed tonnages from nickel-copper PSC computations

Transition 1 2 4 7 10 11 12 13 14
Start Time (h) 0 0.5 1.13 1.88 2.63 3.95 5.24 6.50 7.54

Finish Time (h) 0.5 1 1.25 2 3.95 5.24 6.50 7.54 8.45

Charging Feed
Feed Matte 419.7 0 104.9 104.9 0 0 0 0 0

Flux 0 0 7.3 7.3 0 0 0 0 0
Ferronickel 40 0 6.6 6.7 86.8 81.5 77.0 49.2 31.9

Blowing Feed
Flux 0 16.6 0 0 30.8 29.2 27.8 19.5 14.4

Figure 5.19: Bath volume from sample nickel-copper PSC computations

Figure 5.20: Bath temperature from sample nickel-copper PSC computations

148

CHAPTER 6

EXTENSIONS OF THE PSC MILP FORMULATION

6.1 Nonlinearity of the PS Converter Problem

6.1.1 Relaxation of the Complete-Discharge Condition

The current MILP formulation attains a high level of abstraction for the optimization of

PS operations. However, there are two main directions for future work. One is to enhance

the realism of the MILP by including nonlinear components, and the other is to generate

customized solution for more rapid and extensive computations.

The MILP has compromised some basic nonlinear features, thus artificially contracting the

solution space of the PSC Problem. From the modeling point-of-view, the main shortcomings

are related to the complete-discharge condition (Subsection 4.4.2). Given that PS converting

is a well-mixed reactor [7], it is reasonable to maintain the assumption of bath homogeneity,

hence the concentration must be preserved even as the bath is being split. Without the

complete-discharge condition, this assertion could not generally be satisfied by the MILP,

due to the nonlinear relationships which will now be explained.

If transition l includes the discharging of a product stream k ∈ ZNGProd, then the total

mass ml
k is split into two substreams, the retained portion ml

Retk and the discharged portion

(ml
k −ml

Retk) > 0, as depicted by Figure 6.1. Otherwise, if l does not include the discharging

of k, then the entire stream is retained ml
k = mRetk.

The homogeneity condition asserts that the same concentration must be held by both the

retained and unretained portions. In terms of species,

wljk =
ml
jProd

ml
k

=
ml
jRetProd

ml
Retk

for all k ∈ ZNGProd, j ∈ Sk and l ∈ APSC \ A◦. Cross-multiplication of the denominators gives

ml
jProdm

l
Retk = ml

jRetProdm
l
k

149

Figure 6.1: Splitting of a product stream during a discharge

In terms of the MILP variables,

ml
jProd

∑
j′∈Sk

ml
j′RetProd = ml

jRetProd

∑
j′∈Sk

ml
j′Prod (6.1)

for all k ∈ ZNGProd, j ∈ Sk and l ∈ APSC \ A◦. In combination with the discharge volume

balance (Equation 4.71), this last constraint would be sufficient to uniquely solve for ml
jRetProd.

However, Equation 6.1 is bilinear, hence not supported by the MILP structure.

The implication of temperature homogeneity is even more complicated, since it would

replace the equations of Subsection 4.3.6 with

hl−Ret + hlCh + hlNGBlow + hlBlast − hlOffgas −
∑6

i=1 h
l
Envi

=

∑
k′∈ZNGFeed

[
wHk′(T

DCh,l)
]
ml

Retk +
∑

j∈ZNGProd

[
wHj(T

DCh,l)
]
ml
jProd

(6.2)

and

hDCh =
∑

j∈SProd

[
wHj(T

DCh,l)
] (
ml
jProd −ml

jRetProd

)
(6.3)

for all l ∈ APSC \ A◦, in which TDCh,l is the bath temperature of obj(l) at time tl6. Equation

6.2 is a nonlinear equation that, in principle, can be solved by Newton’s Method in order to

determine the temperature TDCh,l (See Subsection 3.2.4). Subsequently, Equation 6.3 asserts

that this same temperature is held by the discharged products.

If temperature homogeneity (Equations 6.2-3) could somehow be implemented, then the

150

mathematical program would immediately accept temperature bounds for intermediate dis-

charges. It would no longer be necessary that TDCh,k = T
DCh,k

= TDCh,k for all k ∈ TPSC,IDCh,

hence there would no longer be a formal distinction between intermediate and final discharges.

Skimming temperatures could then vary, rather than artificially holding predetermined val-

ues. Ultimately, this would lead to a more flexible management of cold charges and fluxing

agents, which are used partly for temperature control.

Furthermore, a nonlinear implementation could accommodate the imperfect splitting of

streams. A skimming operation, for instance, is assumed to remove all of the slag, and

only the slag. In practice, there may be some slag that would remain connected to the bath;

conversely, some of the matte would be entrained into the outgoing slag. More effective skim-

ming usually requires more time, or a different set of equipment. Thus, there are important

studies to be made, regarding rough versus delicate skimming.

The imperfect splitting of streams is related to the product flows FProd. New members

could be added into FProd in order to represent the entrained flows. Much like the blend-

ing conditions presented in Subsection 4.5.1 for incoming feeds, there could be entrainment

conditions that would tie a main outgoing flow with entrained secondary flows.

The complete-discharge condition remains an essential part of the formulation because

it avoids the nonlinearity imposed by the homogeneity of concentration and temperature.

However, the relaxation of the complete-discharge condition would offer more realism than

the current MILP formulation. It may be worthwhile to experiment with nonlinear solvers

[80], to analyze the computational impact of Equations 6.1-3.

6.1.2 Heat Transfer

The MILP formulation permits linear equalities of heat and mass, but not of temperature

(Subsection 4.5.4). Thus the fundamentals of heat transfer cannot be directly represented

by MILP formulations, but are represented indirectly, as empirical linear formulations that

must be supported by industrial data. If future formulations were to include nonlinear com-

ponents, then the heat transfer could be represented as a hybrid of empirical and fundamental

considerations.

During a transition l ∈ APSC \ A◦, the heat retained in the bath of obj(l) is given by

hobj(l)(t) = hl−Ret + hobj(l)

Ch (t) + hobj(l)

NGBlow(t) + hobj(l)

Blast (t)− hobj(l)

Offgas(t)− hobj(l)

DCh (t)− hobj(l)

Env (t) (6.4)

for all t ∈ (tl−, tl]. This is a continuous extension of the forward heat computation (Equation

151

4.72), in which

• hobj(l)

Ch (t) is the accumulated heat fed into the bath of obj(l), as part of the charge of

transition l

• hobj(l)

NGBlow(t) is the accumulated heat fed into the bath of obj(l), as part of the nongaseous

blow feed of transition l

• hobj(l)

Blast (t) is the accumulated heat blown into the bath of obj(l), as part of the blast of

transition l

• hobj(l)

Offgas(t) is the accumulated heat leaving the bath of obj(l), as part of the offgas of

transition l

• hobj(l)

DCh (t) is the accumulated heat leaving the bath of obj(l), as part of the discharge of

transition l

• hobj(l)

Env (t) is the accumulated environmental heat loss of obj(l), as part of transition l

These terms all have influence on the bath temperature T obj(l)(t), which is hence an additional

function of time t ∈ (tl−, tl]. In turn, the bath temperature influences the outgoing heats,

hobj(l)

Offgas, h
obj(l)

DCh and hobj(l)

Envi . The outgoing heats and the evolving bath temperature are coupled.

The semi-discrete treatment that was developed in Chapters 2 and 4, is largely satisfactory

for the feed heats, hobj(l)

Ch , hobj(l)

NGBlow and hobj(l)

Blast , considering that these terms only vary during the

corresponding action. For instance, the charging action occurs entirely in the second segment

(tl1, t
l
2], so that

hobj(l)

Ch (t) =



0 if tl− < t ≤ tl1∫ t

tl1

ḣobj(l)

Ch (t′)dt′ if tl1 < t ≤ tl2

hlCh if tl2 < t ≤ tl

(6.5)

in which ḣobj(l)

Ch describes how the charging action is distributed over the duration of segment

2, and the integral can be interpreted in the sense of Lebesgue [87]. This distribution ḣobj(l)

Ch

can be determined by the feed temperatures of the charges, and the rates at which they are

152

fed into the converter. The blow feeds can be treated similarly, such that

hobj(l)

NGBlow(t) =



0 if tl− < t ≤ tl3∫ t

tl3

ḣobj(l)

NGBlow(t′)dt′ if tl3 < t ≤ tl4

hlNGBlow if tl4 < t ≤ tl

(6.6)

hobj(l)

Blast (t) =



0 if tl− < t ≤ tl3∫ t

tl3

ḣobj(l)

Blast (t′)dt′ if tl3 < t ≤ tl4

hlBlast if tl4 < t ≤ tl

(6.7)

such that the variations occur during segment 4. Subsection 4.3.4 considers blast composi-

tions and rates that are prescribed by the transition type, such that

ḣobj(l)

Blast =

{
ḣkBlast if l is of a type k ∈ TPSC

0 otherwise

However ḣobj(l)

Blast (t) could now be allowed to vary during the blowing action t ∈ (tl3, t
l
4].

In itself, the discharge heat is not so different than the feed heats,

hobj(l)

DCh (t) =



0 if tl− < t ≤ tl5∫ t

tl5

ḣobj(l)

DCh (T obj(l)(t′), t′)dt′ if tl5 < t ≤ tl6

hlDCh if tl6 < t ≤ tl

(6.8)

However, the discharge heat rate ḣobj(l)

DCh depends on the mass removal schedule, as well as the

evolving temperature of the bath T obj(l). This variable temperature is dependent on time,

in turn, due to the environmental heat losses hobj(l)

Env , described below. Equations 6.5-7 are

less complicated than Equation 6.8 because feed temperatures are parameters, whereas the

discharge temperatures are variable.

Even more complicated is the offgas convection hobj(l)

Offgas, as the mass expulsion of the offgas

153

is a passive response to the converting reactions. At the onset of a blowing action, a quasi-

steady state is rapidly obtained, whereby the offgas is expelled as it is being formed. The rate

of offgas exhaust is not steady-state in a strict sense [61], because it is subject to operational

and thermochemical parameters. Firstly, there may be changes in the blast flowrate or oxygen

efficiency. Secondly, there may be changes in the reaction regime.

The reaction regime inside converter j can be represented using binary functions,

βPSCj
Rgk (t) =

{
1 if the bath of converter j is in regime k at time t

0 otherwise

for all j ∈ {1, 2, . . . , nPSC} and k ∈ R. These functions are the regime determinants; they

are a continuous extension of the binary variables presented in Subsection 4.3.3, such that

βobj(l)

Rgk (tl4) = βl
Rgk. These regimes are subject to∑

k∈R

βobj(l)

Rgk (t) = 1 (6.9)

for t ∈ (tl3, t
l
4], which has a similar role as Equation 4.44. As before, the regime determinants

are not well defined when there are no product streams. To develop the hobj(l)

Offgas term, the

current discussion focuses only on blowing transition, i.e. l such that tl4 > tl3, hence some

product streams are presumably present in obj(l).

The regime determinants βobj(l)

Rgk (t) are related to the product masses. For t ∈ (tl3, t
l
4] and

i ∈ E , the amount of i present in the nongaseous streams is denoted mobj(l)

iNGProd
(t). This is like

a continuous extension of ml
iProd (see Equations 4.35-36), except that mobj(l)

iNGProd
focuses only

on the nongaseous products,

mobj(l)

iNGProd
(t) =

∑
k∈ZNGFeed

wikm
l−
Retk +

∑
j∈SNGProd

wijm
l−
jRetProd

+
∑

k∈ZNGFeed

wik

∫ t

tl1

ṁobj(l)

k (t′)dt′

+

∫ t

tl3

[
eOṁ

obj(l)

O,Blast(t
′)
](∑

k∈R

rki
[
βobj(l)

Rgk (t′)
])

dt′

(6.10)

where ṁobj(l)

O,Blast is the mass flowrate of blast oxygen, rki is the change in mobj(l)

iNGProd
per mass of

reacted blast oxygen under regime k, and ṁobj(l)

k is the mass feed distribution of stream k.

It is assumed that all the nongeasous feed streams are rapidly incorporated into the

154

products, so that

lim
t→tl3

mobj(l)

iNGProd
(t) =

∑
k∈ZNGFeed

wikm
l−
Retk +

∑
j∈SNGProd

wijm
l−
jRetProd

+
∑

k∈ZNGFeed

wik

∫ tl2

tl1

ṁobj(l)

k (t′)dt′

which is a continuous extension of the complete-reaction condition presented in Subsection

4.4.1. Prior to blowing, the feed stream changes are due entirely to charging, which is limited

to the interval (tl1, t
l
2].

Sulfur and oxygen are the only bath elements that are exhausted as offgas. (Nitrogen is

not a bath element, as it is not retained). Therefore, rki = 0 for all i ∈ E \ {S,O}, and Table

6.1 contains values only for rkS and rkO. The Slag-Blow is complicated by the simultaneous

formation of fayalite and of magnetite (Subsection 1.3.2); it can be shown that,

rSlagBlow

O =
MFe3O4

rFS + 4MFeO

M3Fe3O4
rFS + 10MFeO

(6.11)

rSlagBlow

S = −
(
MS

MO

)(
MFe3O4

rFS + 3MFeO

M3Fe3O4
rFS + 10MFeO

)
(6.12)

which uses the ferroslag ratio rFS that had been introduced in Subsection 3.4.2 as a constant,

although it is conceivable that rFS would vary over time, given the evolving slag chemistry

[32], etc. The remaining values of Table 6.1 can be determined from the stoichiometries

presented in Subsection 1.3.2; for example, the Nickel-Overblow results 6 moles of NiO for

every 7 moles of reacted blast O2, so that

rNickelOverblow

O =

(
6MNiO

7MO2

)
wO,NiO = 0.42857

Similar calculations can be applied for the rest of Table 6.1.

Equation 6.10 gives the elemental mass composition of the bath at time t ∈ (tl3, t
l
4],

Table 6.1: Values for rkS and rkO for the different reaction regimes

Reaction Regime (k) rkO rkS
SlagBlow (Equation 6.10) (Equation 6.11)

NickelOverblow 0.42857 -0.57261
CobaltOverblow 0.33333 -0.66805

CopperBlow 0 -1.0021
CopperOverblow 1 0

155

which determines the regime. Thus βobj(l)

Rgk (t) must be computed simultaneously to mobj(l)

iNGProd
(t).

Firstly, there are several nongaseous species that are eliminated in a manner similar to

Equation 4.42,

mobj(l)

jProd
(t) ≤ mjProd

∑
k∈Rj

βPSCj
Rgk (t) (6.13)

for all j ∈ SRg and t ∈ (tl3, t
l
4]; for all j ∈ SNGProd ⊃ SRg, m

obj(l)

jProd
(t) is the amount of species j

in obj(l). Subsequently, the nongaseous product speciation balance is given by∑
j∈SNGProd

wijm
obj(l)

jProd
(t) = mobj(l)

iNGProd
(t) (6.14)

for t ∈ (tl3, t
l
4] and i ∈ E . The product speciation balance of Equations 3.37 and 4.43 consid-

ered all of the product species SProd, whereas Equation 6.14 considers only the nongaseous

product species SNGProd. For a continuous treatment, the offgas species are considered sepa-

rately, as described below.

Equations 6.9-14 combine with the first two columns of Table 6.1, and the nonnegativity

of mobj(l)

jProd
, to give appropriate values for βPSCj

Rgk (t). A forward-looking algorithm can be devised

to detect the times when a regime change would occur. The algorithm may find that the

regime would change at some time tRgChange; if tRgChange < tl4 then the change occurs within

the current blowing action, and the algorithm should be applied again to determine if there

would be yet another regime change.

The flow of offgas species is described by

ṁobj(l)

O2,Prod(t) = (1− eO)
[
ṁobj(l)

O,Blast(t)
]

(6.15)

ṁobj(l)

N2,Prod(t) = ṁobj(l)

N,Blast(t) (6.16)

ṁobj(l)

SO2,Prod(t) =

[
eOṁ

obj(l)

O,Blast(t)
]

wS,SO2

∑
k∈R

(
−rkS

) [
βobj(l)

Rgk (t)
]

(6.17)

for t ∈ (tl3, t
l
4], in which ṁobj(l)

O,Blast and ṁobj(l)

N,Blast are both determined from industrial blast param-

eters, considering a two-element blast (Subsection 3.3.3). Thus ṁobj(l)

jProd
is the rate at which

species j is produced in obj(l). In particular, Equation 6.17 depends on the regime deter-

minants βobj(l)

Rgk computed from Equations 6.9-6.14, and the rate of sulfur expulsion rkS that is

available through Equation 6.12 and Table 6.1.

156

Finally, the offgas convection is computed as

hobj(l)

Offgas(t) =



0 if tl− < t ≤ tl3

∑
j∈SOffgas

∫ t

tl3

[wHj(T
obj(l)(t′), t′)]

[
ṁobj(l)

jOffgas
(t)
]
dt′ if tl3 < t ≤ tl4

hlOffgas if tl4 < t ≤ tl

(6.18)

for t ∈ (tl−, tl], in which wHj is computed as described in Subsection 3.2.3. Thus the com-

putation of Equation 6.18 depends on Equations 6.15-17 to compute the offgas flowrates, of

which Equation 6.17 is dependent on Equations 6.9-6.14 to obtain the reaction regimes.

In the treatment of Subsection 4.3.7, the environmental heat losses hobj(l)

Env (t) are represented

as piecewise linear functions, with possible discontinuities that may occur at the beginning

and end of each segment i ∈ {1, 2, . . . , 7}; the discontinuities and slopes were determined by

the transition types.

A more fundamental approach [39, 52] considers thermal conduction through the walls of

the converter, and radiation through the mouth. Following these considerations,

hobj(l)

Env (t) =
∑

k∈TPSC

hkEnv◦β
l−
Typek +

7∑
i=1

(∫ t

tl−
δ(t′ − tli)dt′

)(∑
k∈TPSC

hkEnviβ
l
Typek

)

+ κ1G
obj(l)

∫ t

tl−

(
[T obj(l)(t′)]− [T obj(l),Ext(t′)] +

κ2
2

(
[T obj(l)(t′)]

2 − [T obj(l),Ext(t′)]
2
))

dt′

+ σAMouth [ε(t)]

∫ t

tl−

(
[T obj(l)(t′)]

4 − [T obj(l),Target(t′)]
4
)
dt′

(6.19)

for t ∈ (tl−, tl], in which κ1 and κ2 are the first and second conductivity parameters of the

refractory [52], σ is the Stefan-Boltzman radiation constant [88], ε is the emissivity of the

bath surface, AMouth is the area of the converter mouth, T obj(l),Ext is the temperature of the

exterior walls of obj(l), and T obj(l),Target is temperature of the radiation target, and Gobj(l) is a

geometrical factor that is described below. The δ is the Dirac delta distribution [89], which

is used to incorporate the hkEnvi parameters that had been introduced in Subsection 4.3.7.

The conductivity term includes the factor Gobj(l), which is based on the cylindrical geom-

157

(a) Side-view (b) Cross-section

Figure 6.2: Simplified geometry of a converter that has no mouth

etry on the converter (Figure 6.2). It can be taken as

Gobj(l) = 2

π (Robj(l))
2

xobj(l)

L

+
Lobj(l)

ln

(
1 +

xobj(l)

R

Robj(l)

)
 (6.20)

in which Robj(l), Lobj(l), xobj(l)

R , and xobj(l)

R are the radius, length, radial thickness and endwall

thickness of obj(l), respectively. This expression can be deduced by considering Fourier’s law

in cylindrical coordinates [90]. However, Equation 6.20 considers a simplified geometry in

which the converter mouth is closed off (Figure 6.2). Nonetheless, industrial measurements

have shown that Equation 6.20 is a valid approximation [39], considering that the radiation

term dominates any fictitious mouth conduction.

Equation 6.19 contains three functions of time that can be further developed. Firstly,

the exterior wall temperature T obj(l),Ext may be related to the ambient smelter temperature

via Newton’s Law of Cooling [91], although this would require some knowledge of the heat

transfer coefficients. Secondly, the emissivity ε can be expanded in terms of the product

masses, considering that the bath surface can be inhabited by matte, blister copper, or

various types of slag. Also, T obj(l),Target may be equal to the hood temperature, or the ambient

temperature, depending on whether or not the hood is lowered over the mouth.

All of the terms in the heat balance (Equation 6.4) have been described to some degree.

Following this balance, the heat is distributed into the bath components,

hobj(l)(t) =
∑

k′∈ZNG

[wHk′(T
obj(l)(t), t)]

[
mobj(l)

k′ (t)
]

158

or equivalently,

hobj(l)(t) =
∑

k∈ZNGFeed

[wHk(T
obj(l)(t), t)]

[
mobj(l)

k (t)
]

+
∑

j∈SNGProd

[wHj(T
obj(l)(t), t)]

[
mobj(l)

jProd
(t)
]

(6.21)

for t ∈ (tl−, tl], in which the feed streams masses are generally given by

mobj(l)

k (t) =



ml−
Retk if tl− < t ≤ tl1

ml−
Retk +

∫ t

tl1

ṁobj(l)

k (t′)dt′ if tl1 < t ≤ tl3

0 if tl3 < tl4 and tl3 < t ≤ tl

ml
k if tl3 = tl4 and tl3 < t ≤ tl

(6.22)

for k ∈ ZNGFeed, and the product species masses are given by

mobj(l)

jProd
(t) =



ml−
jRetProd

if tl− < t ≤ tl3

ml−
jRetProd

+

∫ t

tl3

ṁobj(l)

jProd
(t′)dt′ if tl3 < t ≤ tl4

ml
jProd if tl4 < t ≤ tl5

ml
jProd +

∫ t

tl5

ṁobj(l)

jProd
(t′)dt′ if tl5 < t ≤ tl6

ml
jRetProd if tl6 < t ≤ tl

(6.23)

for j ∈ SNGProd. Equations 6.22-23 describe the various segments in which the bath masses

vary, and those in which they do not vary; the latter makes use of the MILP variables. Equa-

tion 6.22 implements the complete-reaction, hence the distinction between blowing transi-

tions (tl3 < tl4) and nonblowing transitions (tl3 = tl4). When l is a blowing transition, mobj(l)

jProd
(t)

should be computed according to Equations 6.9-14 for t ∈ (tl3, t
l
4], which is more precise than

Equation 6.23.

The analysis described by Equations 6.4-23 cannot be directly incorporated into the MILP

because of the nonlinear coupling that temperature has with the heat and mass variables.

159

However, the MILP can serve as a surrogate that would be grafted into an adaptive formula-

tion [92]. Algorithms can be designed, which would execute preliminary MILP computations,

then the nonlinear formulation would guide the alteration of the MILP parameters, followed

by more MILP computations, and so on. Such a computational approach could be of interest

for future work.

6.2 PS Operations Research

6.2.1 From Mathematical Programming to Advanced Algorithm Design

The results of Section 5.3 are a proof-of-concept for the MILP implementation, using

a multipurpose solver (Subsection 5.2.1), based on multipurpose algorithms (Appendix B).

Given this initial success, some effort should be devoted to hybridize these algorithms, hence

to utilize the particular structure of the PSC Problem.

There is an important distinction between mathematical programming and algorithm

design. Mathematical programming applies pre-existing algorithms that were conceived for

abstract algebraic formulations; the current work has relied on the Simplex Method in con-

junction with the Branch-and-Cut Method (Appendix B), as well as Newton’s Method and

the Active Set Method (Chapter 3). Beyond this, there has only been a cursory effort de-

voted to algorithm design; Chapter 5 was but a first attempt at the SC-PSC Problem, albeit

a successful one.

The SC-PSC algorithm can definitely be improved. The first sweep should not perform 48

iterations, nor should the iterations be performed in a predetermined order. A more strategic

sampling might balance early results for the two linear objectives, (Equations 5.19 and 5.21)

hence focusing on the most promising ranges of dCrit.

The SC-PSC Problem was well motivated because the solutions can be incorporated into

more general algorithms for PSC problems, as discussed in Subsections 5.1.2 and 5.1.3. The

single cycles of the SC-PSC Problem can be assembled into a global schedule, using greedy

algorithms [74]. Such a construction will not generally be optimal for the multi-converter

PSC Problem, but it will provide an aggressive lower bound, which would accelerate the

branch-and-cutting of the general PSC Problem.

An advanced algorithm could be based on the Gantt structure that was introduced in Sec-

tion 2.1. Figure 6.3 demonstrates that there are two aspects to the Gantt structure, namely

the geometry that is described by dl and tl, and the topology described by the categorical

Typel variables. In particular, the Typel variables are implemented into the MILP as binary

160

variables βl
Typek. Secondly, the topological dependencies across the different Gantt rows are

described by βlk
Suppl′k′ . Rather than implementing the assignment types and dependencies

as binary variables, they could be part of a filtering mechanism that would reject infeasible

Gantt topologies; the Simplex method would only be performed on the most promising Gantt

topologies. Such an approach would be characteristic of Constraint Programming [93], and

may incorporate SC-PSC computations to direct the branching process.

Mathematical programming can lead to breakthroughs for the optimization of converter

operations. The current MILP formulation is a robust backdrop from which algorithms and

software will be developed, which will form the basis of PS operations research.

Figure 6.3: Extraction of Topological Information from a Gantt Chart

161

6.2.2 Fomenting Innovation

Nonferrous pyrometallurgy is a conservative industry, insomuch as PS converting has

remained largely unchanged for over a hundred years [42]. Although operators and engineers

may recognize opportunities for improvement, innovations come slowly, as it is difficult to

quantify their benefits. Future adaptations of the MILP will help justify changes to smelters,

and mitigate the tendency for technological stagnation.

The current MILP formulation is already being marketed to both the copper and nickel

industries. The project has attracted industrial partners, which are now eager for future

development. They have understood that any advancement to the MILP formulation could

potentially improve the operation of all conventional copper and nickel smelters.

Schedule automation is a most welcome service that is now being offered to copper and

nickel producers, as an adaptation of the MILP formulation. This is establishing partnerships

between academia and industry, and providing valuable insight for customized algorithm

development, as well as realistic plant data.

Smelters are driven to automate production scheduling, as it is intimately linked to costs

and profits. It is not simply a question of the man-hours that have been devoted to traditional

manual approaches. Scheduling algorithms can be extended to become general decision-

making software for smelter operations. It becomes convenient to simulate several different

strategies, and to analyze their impacts on the converting aisle, as well as the related ancillary

equipment, and the entire production chain.

Established smelters are unlikely to accept changes to their daily operations, unless these

changes can be supported by actual operational data. Given the stochastic nature of this

data, a major change may require the simulation of hundreds or thousands of days, hence

to explore the distribution of outcomes. This type of simulation is only practical if the

scheduling algorithms can be automated within the simulation; otherwise, hundreds of man-

hours would be required to compile schedules that would be manually fed into the simulation.

Thus the deterministic MILP formulation should be incorporated into stochastic simulations,

in order to justify alterations of the smelter.

The Peirce-Smith MILP formulation is itself an important innovation for the copper and

nickel industries. Moreover, the formulation will facilitate other innovations, as the MILP

formulation quantifies the potential benefits of these future works.

162

REFERENCES

[1] J. Kapusta,“JOM World Nonferrous Smelter Survey Part I: Copper”, Journal of Met-

als, 56 (7) (2004), 21-27.

[2] A. Warner, C. Diaz, A. Dalvi, P. Mackey and A. Tarasov,“JOM World Nonferrous

Smelter Survey Part III: Nickel Laterite”, Journal of Metals, 58 (4) (2006), 11-20.

[3] A. Warner, C. Diaz, A. Dalvi, P. Mackey, A. Tarasov and R. Jones,“JOM World

Nonferrous Smelter Survey Part VI: Nickel Sulphide”, Journal of Metals, 59 (4) (2007),

58-72.

[4] D. Edelstein, “Copper”, Mineral Commodity Summaries, U.S. Geological Survey

(2013), 48-49.

[5] P. Kuck, “Nickel”, Mineral Commodity Summaries, U.S. Geological Survey (2013),

108-109.

[6] H. Dettmer, “Introduction to the Theory of Constraints”, Chapter 1 of The Logical

Thinking Process: A Systems Approach to Complex Problem Solving, ASQ Quality

Press (2007), 3-30.

[7] W. Davenport, M. King, M. Schlesinger and A. Biswas, “Batch Converting of Copper

Matte”, Chapter 9 of Extractive Metallurgy of Copper, Pergamon (2002), 131-154.

[8] R. Moskalyk and A. Alfantazi, “Review of Copper Pyrometallurgical Practice: Today

and Tomorrow”, Journal of Mineral Engineering, 16 (10) (2003), 898-919.

[9] F. Crundwell, M. Moats, V. Ramachandran, T. Robinson and W. Davenport, “Convert-

ing - Final Oxidation of Iron From Molten Matte”, Chapter 19 of Extractive Metallurgy

of Nickel, Cobalt and Platinum Group Metals, Elsevier (2011), 233-246.

[10] K. Ng, J. Kapusta, R. Harris, A. Wraith and R. Parra,“Modeling Peirce-Smith Con-

verter Operating Costs”, Journal of Metals, 57(7)(2005), 52-57.

[11] N. Tripathi, P. Coursol, D. Tisdale and P. Mackey, “Advanced Metallurgical Modeling

of Ni-Cu Smelting at the Xstrata Nickel’s Sudbury Smelter”, International Peirce-Smith

Converting Centennial (The Minerals, Metals and Materials Society Conference, 2009),

251-261.

[12] P. Coursol and P. Mackey, “Optimization of the Xstrata Copper-Horne Smelter Oper-

ation Using Discrete Event Simulation”, Canadian Institute of Mining, Metallurgy and

Petroleum Bulletin, 102 (1114) (2009), 5-10.

163

[13] J. Stewart, “Newton’s Method”, Section 4.7 of Calculus: Concepts and Contexts, Cen-

gage Learning (2009), 312-315.

[14] P. Armstrong, “The CDIO Syllabus: Learning Outcomes for Engineering Education”,

Chapter 3 of Rethinking Engineering Education, Springer (2007), 45-76.

[15] C. Gill,“Nonreactive Metals Pyrometallurgical Treatments”, Chapter 1 of Nonferrous

Extractive Metallurgy, John Wiley & Sons (1980), 7-140.

[16] C. Gill,“Nonreactive Metals Hydrometallurgical Treatments”, Chapter 2 of Nonferrous

Extractive Metallurgy, John Wiley & Sons (1980), 141-203.

[17] “Smelt”, Online Etymology Dictionary, www.etymonline.com/index.php?term=smelt ,

accessed November 23rd 2011.

[18] G. Kordosky, “Copper Recovery Using Leach/Solvent Extraction/Electrowinning Tech-

nology: Forty Years of Innovation, 2.2 Million Tonnes of Copper Annually”, Journal

of the South African Institute of Mining and Metallurgy, Nov-Dec (2002), 445-450.

[19] F. Crundwell, M. Moats, V. Ramachandran, T. Robinson and W. Davenport, “Hy-

drometallurgical Production of High Purity Nickel and Cobalt”, Chapter 23 of Extrac-

tive Metallurgy of Nickel, Cobalt and Platinum Group Metals, Elsevier (2011), 281-300.

[20] H. Hasan, “How Aluminum Is Produced”, Chapter 5 of Aluminum, Rosen Publishing

(2007), 33-36.

[21] M. Renner, “World Metals Production Surges”, Vital Signs, Worldwatch Institute

(2009), 1-6.

[22] “Nickel”, Chapter 32 of Canadian Minerals Yearbook, National Research Counsil of

Canada (2005), 1-32.

[23] C. Gill, introductory chapter of Nonferrous Extractive Metallurgy, John Wiley & Sons

(1980), 1-5.

[24] X. Xiao, X. Songwen, G. Xueyi, H. Kelong and Y. Ryochi, “LCA Case Study of Zinc

Hydro and Pyro-Metallurgical Process in China”, International Journal of Life Cycle

Assessment, 8 (3) (2003), 151-155.

[25] H. Hasan, “History of Aluminum”, Chapter 1 of Aluminum, Rosen Publishing (2007),

6-9.

164

[26] I. Kojo, M. Lahtinen and E. Miettinen, “Flash Converting - Sustainable Technology

Now and in the Future”, International Peirce-Smith Converting Centennial (The Min-

erals, Metals and Materials Society Conference, 2009), 383-395.

[27] F. Crundwell, M. Moats, V. Ramachandran, T. Robinson and W. Davenport, “Slow

Cooling and Solidification of Converter Matte”, Chapter 21 of Extractive Metallurgy of

Nickel, Cobalt and Platinum Group Metals, Elsevier (2011), 259-268.

[28] J. Shirley, “Hydromet Development and Commercial Nickel Processing Plant Update”,

presentation, (Newfoundland Branch of Canadian Institute of Mining, Metallurgy and

Petroleum, 2006).

[29] L. Southwick, “William Peirce and E. A. Cappelen Smith and their Amazing Copper

Converting Machine”, International Peirce-Smith Converting Centennial (The Miner-

als, Metals and Materials Society Conference, 2009), 3-27.

[30] W. Peirce and E. Smith, “Method of and Converter for Bessemerizing Copper Matte”,

Patent 942342, United States Patent Office (1909).

[31] T. Miller, J. Jimenez, A. Sharan and D. Goldstein, “Oxygen Steelmaking Process”,

Chapter 9 of The Making, Shaping and Treating of Steel, AISE Steel Foundation (1998),

475-524.

[32] C. Ramirez, P. Ruz, G. Riveros, A. Warczok and R. Treimer, “Chrome-Magnesite Re-

fractory Corrosion with Olivine Slag of High Cuprous Oxide Content”, International

Peirce-Smith Converting Centennial (The Minerals, Metals and Materials Society Con-

ference, 2009), 71-80.

[33] W. Davenport, M. King, M. Schlesinger and A. Biswas, “Copper Loss in Slag”, Chapter

11 of Extractive Metallurgy of Copper, Pergamon (2002), 173-185.

[34] A. Sundström, J. Eksteen and G. Georgalli, “A Review of the Physical Properties of

Base Metal Mattes”, Journal of the South African Institute of Mining and Metallurgy,

108 (2008), 431-448.

[35] P. Voigt, B. Hogg and O. Pasca, “Application of Semtech Optical Process Control Sys-

tem at Mount Isa Mines’ Copper Converters”, First Extractive Metallurgy Operators’

Conference (2005), 1-9.

[36] T. Prietl, A. Filzwieser and S. Wallner, “Productivity Increase in a Peirce-Smith Con-

verter Using the COP KIN and OPC System”, Converter and Fire Refining Practices

(The Minerals, Metals and Materials Society Conference, 2005), 177-190.

165

[37] P. Coursol, B. Davis, A. Roy and M. Lebel,“Oxygen Removal from Blister Copper by

Copper Oxide Formation”, Journal of Metals, 57(7)(2005), 64-67.

[38] Photograph of newly installed Peirce-Smith converter at the Harjavalta Smelter, Kopar

Oy, www.kopar.fi/en/products/drums/converter.html, accessed November 23rd 2011.

[39] A. Kyllo, G. Richards and S. Marcuson, “A Mathematical Model of the Nickel Con-

verter: Part 2. Application and Analysis of Converter Operation”, Metallurgical Trans-

actions B, 23 (1992), 574-582.

[40] S. Chen, H. Mansikkaviita, M. Rythonen and I. Kylmäkorpi, “Continuous Improvement

in Peirce-Smith Converter Design - Kumera’s Approach”, International Peirce-Smith

Converting Centennial (The Minerals, Metals and Materials Society Conference, 2009),

361-365.

[41] C. Goñi, M. Barbés, V. Bazán, E. Brandaleze, R. Parra and L. González, “The Mecha-

nism of Thermal Spalling in the Wear of the Peirce-Smith Copper Converter”, Journal

of the Ceramic Society of Japan, 114 (8) (2009), 672-675.

[42] T. Price, C. Harris, S. Hills, W. Boyd and A. Wraith, “Peirce-Smith Converting: An-

other 100 Years?”, International Peirce-Smith Converting Centennial (The Minerals,

Metals and Materials Society Conference, 2009), 181-197.

[43] D. Treilhard, “The Impact of Economic and Metallurgical Change in Copper Smelter

Design”, Western Miner, 45 (1-6) (1972), 34-47.

[44] A. Bustos, M. Cardoen and B. Janssens, “High Oxygen Enrichment at UM-Hoboken

Converters”, Pyrometallurgy of Copper (Copper 95 - Cobre 95 International Confer-

ence, 1995), 255-269.

[45] J. Kapusta, H. Stickling and W. Tai, “High Oxygen Shrouded Injection At Falcon-

bridge: Five Years of Operation”, Converter and Fire Refining Practices (The Minerals,

Metals and Materials Society Conference, 2005), 47-60.

[46] B. Salt and E. Cerilli, “Evolution of the Converter Aisle at Xstrata Nickel’s Sudbury

Smelter”, International Peirce-Smith Converting Centennial (The Minerals, Metals

and Materials Society Conference, 2009), 135-149.

[47] L. Pradenas, J. Zúñiga and V. Parada, “CODELCO Chile Programs its Copper-

Smelting Operations”, Interfaces, 36 (4) (2006), 296-301.

166

[48] L. Mailleret and V. Lemesle, “A note on semi-discrete modeling in the life sciences”,

Royal Society (2009), 1-21.

[49] S. Raczynski, “Semi-discrete events and models in categorical language”, International

Journal of Simulation Modeling, 11 (2) (2012), 89-96.

[50] A. Bryman and D. Cramer, “Constructing Variables”, Chapter 2 of The Handbook of

Data Analysis, SAGE (2009), 17-34.

[51] M. Zhou and K. Venkatesh, “Fundamentals of Petri Nets”, Chapter 4 of Modeling,

Simulation, and Control of Flexible Manufacturing Systems: A Petri Net Approach,

World Scientific (2000), 59-90.

[52] A. Kyllo and G. Richards, “A Mathematical Model of the Nickel Converter: Part I.

Model Development and Verification”, Metallurgical Transactions B, 22 (1991), 153-

161.

[53] A. Navarra and J. Kapusta, “Decision-making Software Development for Incremen-

tal Improvement of Nickel Matte Conversion”, Pyrometallurgy of Nickel and Cobalt,

(Conference of Metallurgists, 2009), 611-619.

[54] K. Davidson, K. Davidson and A. Donsig, “Convexity and Optimization”, Chapter 16

of Real Analysis and Applications: Theory in Practice, Springer (2010), 449-504.

[55] A. Navarra, A. Pubill and J. Kapusta, “Convex Projection to Estimate Heat Content

of Cold Charges in Peirce-Smith Converting”, Computational Thermodynamics and

Kinetics (The Minerals, Metals and Materials Society Conference, 2012), 151-158.

[56] C. Bale, P. Chartrand, S. Degterov, G. Eriksson, K. Hack, R. Mahfoud, J. Melancon, A.

Pelton and S. Peterson, “FactSage Thermochemical Software and Databases”, Calphad,

26 (2) (2002), 189-228.

[57] A. Kyllo and G. Richards, “A Kinetic Model of the Peirce-Smith Converter: Part

I. Model Formulation and Validation”, Metallurgical Transactions B, 29 (1) (1998),

239-249.

[58] J. Moore, C. Stanitski and P. Jurs, “Gas Density and Molar Masses”, Section 10.6 of

Principles of Chemistry: The Molecular Science, Brooks/Cole (2010), 359-360.

[59] P. Liley, G. Thomson, T. Daubert and E. Buck, “Physical and Chemical Data”, Part

2 of Perry’s Chemical Engineers’ Handbook, McGraw-Hill (1997).

167

[60] H. Lee, “Heat of Formation, standard entropies and heat capacities”, Appendix 1 of

Chemical Thermodynamics for Metals and Materials Engineers, Imperical College Press

(1999), 275-281.

[61] R. Bird, W. Stewart and E. Lightfoot, “The Equations of Change for Nonisothermal

Systems”, Chapter 11 of Transport Phenomena, John Wiley and Sons (2002), 333-373.

[62] H. Lee, “Fundamental Principles and Functions”, Chapter 1 of Chemical Thermody-

namics for Metals and Materials Engineers, Imperical College Press (1999), 1-60.

[63] J. Stewart, “The Fundamental Theorem Of Calculus”, Section 5.4 of Calculus: Con-

cepts and Contexts, Cengage Learning (2009), 367-374.

[64] D. Lynden-Bell and R. Lynden-Bell, “On the negative specific heat paradox”, Monthly

Notices of the Royal Astronomical Society, 181 (1977), 405-419.

[65] W. Cheney, “Implicit Function Theorems”, Section 3.4 of Analysis for Applied Mathe-

matics, Springer-Verlag (2001), 312-315.

[66] A. Navarra and J. Kapusta, “Decision-making Software Development for the Incremen-

tal Improvement of Peirce-Smith Converters”, International Peirce-Smith Converting

Centennial (The Minerals, Metals and Materials Society Conference, 2009), 231-250.

[67] J. Dottorro, “Overview”, Chapter 1 Convex Optimization and Euclidean Distance Ge-

ometry, Meboo Publishing (2005), 19-32.

[68] J. Nocedal and S. Wright, “Quadratic Programming”, Chapter 16 of Numerical Opti-

mization, Springer (2006), 449-496.

[69] B. Liengme, “Solver”, Chapter 12 of Guide to Microsoft Excel 2007 for Scientists and

Engineers, Elsevier (2009), 211-229.

[70] “Qosmio c©gaming and creativity unleashed”, Toshiba website,

us.toshiba.com/computers/laptops/qosmio/, accessed November 24th 2012.

[71] D. Gay, IBM ILOG CPLEX Optimization Studio, Getting Started with CPLEX, IBM

white paper, Version 12, Release 4 (2011).

[72] R. Fourer, D. Gay and B. Kernighan, “Interaction with Solvers”, Chapter 14 of AMPL,

A Modeling Language for Mathematical Programming, Thompson Learning (2002), 275-

317.

168

[73] H. Noguchi, J. Tani, Y. Shimai, H. Kawaguchi and M. Yoshimoto, “Parallel-Processing

VLSI Architecture for Mixed Integer Linear Programming”, International Symposium

on Circuits and Systems, (2010), 2362-2365.

[74] T. Cormen, C. Leiserson, R. Rivest and C. Stein, “Greedy Algorithms”, Chapter 16 of

Introduction to Algorithms, McGraw-Hill (2001), 370-404.

[75] M. Ek and P. Olsson, “Recent Developments on the Peirce-Smith Converting Process at

the Rönnskär Smelter”, Converter and Fire Refining Practices, (The Minerals, Metals

and Materials Society Conference, 2005), 19-26.

[76] M. Ek and P. Olsson, “Converting and Casting at Bolidens Rönnskär Smelter 2009

An Update”, International Peirce-Smith Converting Centennial (The Minerals, Metals

and Materials Society Conference, 2009), 127-132.

[77] Search result for “AMPL”, The Free Dictionary by Farlex,

acronyms.thefreedictionary.com/AMPL, accessed November 24th 2012.

[78] Y. Shafranovich, “Common Format and MIME Type for Comma-Separated Values

(CSV) Files”, The Internet Society, RFC 4180 (2005).

[79] MOSEK ApS, “MOSEK and AMPL”, Chapter 5 of The MOSEK Optimization Tools

Manual, Version 6, Release 148 (2012), 21-28.

[80] K. Holmström, A. Göran and M. Edvall, “TOMLAB/MINLP Solver Reference”, Chap-

ter 3 of User’s Guide for TOMLAB/MINLP, TOMLAB Optimization (2007), 6-41.

[81] H. Dixon, “What’s New in Excel 2007?”, Chapter 1 of Excel 2007: Beyond the Manual,

Apress (2007), 1-24

[82] J. Mueller, “VBA Programming in Excel”, Chapter 14 of VBA for Dummies, Wiley

Publishing (2007), 305-327

[83] B. Salt and E. Cerilli, “Evolution of the Converter Aisle at Xstrata Nickel’s Sudbury

Smelter”, International Peirce-Smith Converting Centennial (The Minerals, Metals

and Materials Society Conference, 2009), 135-149.

[84] “Ferronickel Pellet”, Material Safety Data Sheet, Vale-Inco (2010).

[85] W. Gasior, Z. Moser and A Debski, “Heat of formation of FeNi70, FeNi73.5 and FeNi80

ordered alloys from the homogenous region of the FeNi3 phase”, Journal of Alloys and

Compounds, 487 (2009), 132-137.

169

[86] L. Rolla, “The Heat Capacity of Alloys, Amalgams and Intermetallic Compounds”,

International Critical Tables of Numerical Data: Physics, Chemistry and Technology,

5 (1929), 118-122.

[87] W. Cheney, “Measure and Integration”, Chapter 8 of Analysis for Applied Mathematics,

Springer-Verlag (2001), 381-427.

[88] R. Bird, W. Stewart and E. Lightfoot, “Energy Transport by Radiation”, Chapter 16

of Transport Phenomena, John Wiley and Sons (2002), 487-509.

[89] W. Cheney, “Distributions”, Chapter 5 of Analysis for Applied Mathematics, Springer-

Verlag (2001), 246-286.

[90] R. Bird, W. Stewart and E. Lightfoot, “Shell Energy Balances and Temperature Dis-

tributions in Solids and Laminar Flow”, Chapter 10 of Transport Phenomena, John

Wiley and Sons (2002), 290-332.

[91] R. Bird, W. Stewart and E. Lightfoot, “Interphase Transport in Nonisothermal Sys-

tems”, Chapter 14 of Transport Phenomena, John Wiley and Sons (2002), 422-453.

[92] S. Le Digabel, “NOMAD: Nonlinear Optimization with the MADS Algorithm”, ACM

Transactions on Mathematical Software, 37(43) (2011), Article 44.

[93] I. Harjunkoski and I. Grossmann, “Decomposition techniques for multistage scheduling

problems using mixed integer and constraint programming methods”, Computers and

Chemical Engineering, 26 (2002), 1533-1552.

[94] R. Hummel, “The First Materials (Stone Age and Copper-Stone Age)”, Chapter 1 of

The Substance of Civilization, Springer (2004), 3-11.

[95] J. Douglas, “Treatment of Copper Mattes in the Bessemer Converter”, Transactions

of the American Institute of Mining and Metallurgy, 8 (1899), 2-48.

[96] W. Alexander, “A Brief Review of the Development of the Copper, Zinc and Brass

Industries in Great Britain from AD 1500 to 1900”, Murex Review, 1 (15) (1955).

[97] G. Lalev, J. Lim, N. Munirathnam, G. Choi, M Uchikoshi, K. Mimura and M. Isshiki,

“Concentration Behavior of Non-Metallic Impurities in Cu Rods Refined by Argon and

Hydrogen Plasma-Arc Zone Melting”, Materials Transactions, 50 (3) (2009), 618-621.

[98] H. De la Beche, “Mining, Quarrying and Metallurgical Processes and Products, Great

Exhibition”, Lectures on the Results of the Great Exhibition of 1851, 37-73.

170

[99] A. Pelletier, P. Mackey, L. Southwick and A. Wraith, “Before Peirce and Smith - The

Manhes Converter: Its Development and Some Reflections for Today”, International

Peirce-Smith Converting Centennial (The Minerals, Metals and Materials Society Con-

ference, 2009), 29-49.

[100] M. Marinigh, “Technology and Operational Improvements in Tuyère Punching, Silenc-

ing, Pyrometry and Refractory Drilling Equiment”, International Peirce-Smith Con-

verting Centennial (The Minerals, Metals and Materials Society Conference, 2009),

199-215.

[101] C. Ramirez, P. Ruz, G. Riveros, A. Warczok and R. Treimer, “Chrome-Magnesite Re-

fractory Corrosion with Olivine Slag of High Cuprous Oxide Content”, International

Peirce-Smith Converting Centennial (The Minerals, Metals and Materials Society Con-

ference, 2009), 71-80.

[102] G. Oprea, W. Lo, T. Troczynski and J. Rigby, “Corrosion of Refractories in Peirce

Smith Converters”, International Peirce-Smith Converting Centennial (The Minerals,

Metals and Materials Society Conference, 2009), 83-99.

[103] A. Rigby, “Controlling the processing parameters affecting the refractory requirements

for Peirce-Smith converters and anode refining vessels”, Converter and Fire Refining

Practices (The Minerals, Metals and Materials Society Conference, 2005), 213-222.

[104] T. Lehner and C. Samuelsson, “Converting and Refining - Experiences in Ferrous

and Non-Ferrous Metallurgy”, International Peirce-Smith Converting Centennial (The

Minerals, Metals and Materials Society Conference, 2009), 53-69.

[105] R. Van Schalkwyk, J. Eksteen, J. Petersen, E. Thyse and G. Akdogan, “An experi-

mental evaluation of the leaching kinetics of PGM-containing Ni-Cu-Fe-S Peirce Smith

converter matte, under amospheric leach conditions”, Minerals Engineering, 24 (6),

524-534.

[106] E. Thyse, G. Akdogan and J. Eksteen, “The effect of changes in iron-endpoint during

Peirce-Smith converting on PGE-containing nickel converter matte mineralization”,

Minerals Engineering, 24 (7), 688-697.

[107] W. Wendt, M. Alden, B. Bjorkman, T. Lehner and W. Persson, “Controlling copper

conversion via optical spectroscopy”, Journal of Metals, 39 (10) (1987), 14-17.

171

[108] E. Dudgeon, “Measurement of sulphur dioxide content of copper converter gases as aid

to converter control”, Canadian Institute of Mining and Metallurgy - Mineral Society

of Nova Scotia, 69 (1966), 430-437.

[109] L. Larson, “General improvement in converter practice”, Mining Congress Journal, 13

(9) (1927), 727-728.

[110] T. Maruyama, T. Saito and M. Kato, “Improvements of converter’s operation at

Tamano Smelter”, Sulfide Smelting (The Minerals, Metals and Materials Society Con-

ference, 1998), 219-227.

[111] S. Tanaka, M. Hamamoto, M. Hashimoto and S. Udo, “Operation and improvements on

Peirce-Smith converters at the Tamano Smelter”, Converter and Fire Refining Practices

(The Minerals, Metals and Materials Society Conference, 2005), 79-88.

[112] M. Coleman and G. Money, “Increasing Capacity and Productivity in the Metals Mar-

kets through Pneumatic Conveying and Process Injection Technologies”, (The Minerals,

Metals and Materials Society Conference, 2009), 217-230.

[113] O. Rojas and J. Sanhueza, “Hernan Videla Lira copper smelter modernization”, Py-

rometallurgy of Copper (Copper 99 - Cobre 99 International Conference, 1999), 17-27.

[114] O. Pasca, J. Bryant, P. Safe and B. Wiggins, “Peirce-Smith converter hood improve-

ments at BHP copper”, Pyrometallurgy of Copper (Copper 99 - Cobre 99 International

Conference, 1999), 149-159.

[115] P. Safe, J. Deakin and S. Matson, “Effective design of converter hoods”, Sulfide Smelting

(The Minerals, Metals and Materials Society Conference, 2002), 99-110.

[116] G. Achurra, P. Chacana, J. Büchi and F. Condore, “Present and future of caletones”,

Yazawa International Symposium (The Minerals, Metals and Materials Society Con-

ference, 2003), 483-494.

[117] K. Mori, N. Nagai, K. Morita and O. Nakano, “Recent Operation and Improvement at

the Sumitomo Toyo Peirce-Smith Converters”, International Peirce-Smith Converting

Centennial (The Minerals, Metals and Materials Society Conference, 2009), 151-160.

[118] W. Drummond and J. Deakin, “Water-cooled hood system for Peirce-Smith converters

and similar furnace vessels”, Journal of Metals, 51 (5) (1999), 40-41.

[119] I. Bauer and H. Velten, “Reduction of fugitive emissions in the secondary smelter of

Norddeutsche Affinerie AG”, World of Metallurgy - ERZMETALL, 59 (2) (2006), 74-80.

172

[120] L. Contreras, P. Reyes, B. Martinich and R. Bustamante, “Gas and cleaning at the

Potrerillos smelter”, Pyrometallurgy of Copper (Copper 99 - Cobre 99 International

Conference, 1999), 119-132.

[121] W. Davenport, “Copper smelting to the year 2000”, Canadian Institute of Mining,

Metallurgy and Petroleum Bulletin, 73 (813) (1980), 152-158.

[122] P. Chaubal, “Effect of oxygen enrichment on elimination of As, Sb, Bi during con-

verting”, Transactions of the Institute of Mining and Metallurgy, Section C: Mineral

Processing and Extractive Metallurgy, 98 (1989), 83-84.

[123] A. Bustos, J. Kapusta, B. Macnamara and M. Coffin, “High oxygen shrouded injec-

tion at Falconbridge”, Pyrometallurgy of Copper (Copper 99 - Cobre 99 International

Conference, 1999), 93-106.

[124] J. Brimacombe, S. Meredith and R. Lee, “High-Pressure Injection of air into a Peirce-

Smith Copper Converter”, Metallurgical Transctions B, 15 (2) (1984), 243-250.

[125] J. Kapusta, N. Wachgama and R. Pagador, “Implementation of Air Liquide Shrouded

Injector (ALSI) Technology at the Thai Copper Industries Smelter”, Pyrometallurgy of

Copper (Copper 2007 - Cobre 2007 International Conference, 2007), 484-500.

[126] R. Pagador, N. Wachgama, C. Khuankla and J. Kapusta, “Operation of the Air Liquide

Shrouded Injector (ALSI) Technology in a Hoboken Siphon Converter”, International

Peirce-Smith Converting Centennial (The Minerals, Metals and Materials Society Con-

ference, 2009), 367-381.

[127] J. Leroux, B. Langlois, Y. Massé, X. Guo and P. Mackey, “Development of new bath

smelting technology at Mines Gaspé”, Pyrometallurgy of Copper (Copper 99 - Cobre

99 International Conference, 1999), 399-416.

[128] T. Kawai, M. Nishiwaki and S. Hayashi, “Copper concentrate smelting in Peirce-Smith

converters at Onahama Smelter”, Converter and Fire Refining Practices (The Minerals,

Metals and Materials Society Conference, 2005), 119-123.

[129] F. Longworth, “Smelting copper concentrates in a converter”, Mining and Metallurgy,

5 (214) (1924), 485-486.

[130] M. Boisvert, G. Janneteau, J. Landry, C. Levac, D. Perron, F. McGlynn, M. Zamalloa

and F. Porretta, “Design and construction of the Noranda Converter at the Horne

173

Smelter”, Sulfide Smelting (The Minerals, Metals and Materials Society Conference,

1998), 569-583.

[131] C. Caballero, A. Moyano, P. Morales, C. Toro, H. Jara, L. Guzmán and R. Dı́az, “A

Dynamic Simulation for the Validation Tests of the Codelco-Chile Continuous Convert-

ing Process”, International Peirce-Smith Converting Centennial (The Minerals, Metals

and Materials Society Conference, 2009), 263-272.

[132] A. Moyano, C. Caballero, C. Toro, P. Morales and J. Font, “The Validation of the

Codelco-Chile Continuous Converting Process”, International Peirce-Smith Converting

Centennial (The Minerals, Metals and Materials Society Conference, 2009), 349-360.

[133] C. Chen, J. Zhang, M. Bai and S. Wei, “Investigation on the copper content of matte

smelting slag in Peirce-Smith converter”, Journal of University of Science and Tech-

nology Beijing: Mineral Metallurgy Materials (English Edition), 8 (3) (2001), 177-181.

[134] P. Tan and P. Vix, “Modelling of slag blow in copper Peirce-Smith Converters”, First

Extractive Metallurgy Operators’ Conference (2005), 109-115.

[135] P. Tan and P. Vix, “Control of magnetite formation during slag-making in copper P-S

converter”, Converter and Fire Refining Practices (The Minerals, Metals and Materials

Society Conference, 2005), 247-258.

[136] N. Cardona, P. Mackey, P. Coursol, R. Parada and R. Parra, “Optimizing Peirce-Smith

Converters Using Thermodynamic Modeling and Plant Sampling”, Journal of Metals,

64 (5) (2012), 546-550.

[137] N. Amlnlzadeh and S. Mansouri, “Thermo-chemical model of the Pierce-Smith copper

converter”, Journal of Process Mechanical Engineering, 221 (3) (2007), 129-138.

[138] S. Marcuson, S. Ellor and C. Diaz, “Heat and mass balances in copper and nickel

smelting process”, Kellogg International Symposium on Quantitative Description of

Metal Extraction Processes (The Minerals, Metals and Materials Society Conference,

1991), 179-193.

[139] H. Kellogg, “Thermochemistry of Nickel-Matte Converting”, Keynote Address (Con-

ference of Metallurgists, 1986), 95-128.

[140] A. Bustos, S. Ip, G. O’Connell, G. Kaiura and J. Toguri, “Converting Simulation at

Falconbridge Limited”, Extractive Metallurgy of Nickel and Cobalt (The Metallurgical

Society Conference, 1988), 179-193.

174

[141] A. Kyllo and G. Richards, “A Kinetic Model of the Peirce-Smith Converter: Part

II. Model Application and Discussion”, Metallurgical Transactions B, 29 (1) (1998),

251-259.

[142] P. Tan, “Applications of Thermo-Chemical and Thermo-Physical Modeling in the

Copper Converter Industries”, International Peirce-Smith Converting Centennial (The

Minerals, Metals and Materials Society Conference, 2009), 273-295.

[143] A. Alyaser and J. Brimacombe, “Oxidation kinetics of molten copper sulfide” , Metal-

lurgical Transactions B, 26 (1) (1995), 25-40.

[144] F. Carrillo, R. Hernández, J. Martinez and A. Roselló, “Kinetics of the copper blow in

the Peirce-Smith converter”, Información Tecnológica, 15 (5) (2004), 33-36.

[145] A. Cervantes, C. Real, M. Palomar, L. Hoyos, M. Gutierrez and J. Gonzalez, “Minimum

Numerical Model of a Peirce-Smith Converter”, International Peirce-Smith Converting

Centennial (The Minerals, Metals and Materials Society Conference, 2009), 297-309.

[146] D. Chibwe, G. Akdogan, C. Aldrich and P. Taskinen, “Characterisation of phase dis-

tribution in a Peirce-Smith converter using water model experiments and numerical

simulation”, Transactions of the Institutionsof Mining and Metallurgy, 120 (3) (2011),

162-171.

[147] D. Chibwe, G. Akdogan, C. Aldrich and R. Eric, “CFD Modelling of Global Mix-

ing Parameters in a Peirce-Smith Converter with Comparison to Physical Modelling”,

Chemical Product and Process Modeling, 6 (1) (2011), 1-30.

[148] N. Papadokos, “Integrated airline scheduling”, Computers and Operations Research, 36

(2009), 176-195.

[149] M. Pinedo, “Deterministic Models: Preliminaries”, Chapter 2 of Scheduling: Theory,

Algorithms and Systems, Springer (2012), 13-34.

[150] G. Dantzig, “Programming of Interdependent Activities: II Mathematical Model”,

Econometrica, 17 (3) (1949), 200-211.

[151] L. Tang, J. Liu, A. Rong and Z. Yang, “A review of planning and scheduling systems and

methods for integrated steel production”, European Journal of Operational Research,

133 (2001), 1-20.

[152] A. Ghosh and A. Chatterjee, “Overview of Modern Steelmaking”, Chapter 3 of Iron-

making and Steelmaking: Theory and Practice, Phi Learning (2011), 38-89.

175

[153] C. Morris and S. Wallden, “Development of the Kaldo furnace smelting technique and

its application for top blown rotary converter (TBRC) copper smelting and refining”,

Transactions of the Metallurgical Society of the American Institute of Mining, Metal-

lurgical and Petroleum Engineers, (1976), 426-438.

[154] J. Gonzalez, C. Real, M. Palomar, L. Hoyos and M. Gutierrez, “CFD simulation of a

copper converter with bottom air injection”, Extraction and Processing, (The Minerals,

Metals and Materials Society Conference, 2008), 323-333.

[155] J. Gonzalez, C. Real, M. Palomar, L. Hoyos, M. Gutierrez and R. Miranda, “CFD sim-

ulation gas-liquid flow in a copper converter with bottom air injection”, International

Journal of Chemical Reactor Engineering, 6 (1) (2008).

[156] W. Davenport, M. King, M. Schlesinger and A. Biswas, “Mitsubishi Continuous Smelt-

ing/Converting”, Chapter 13 of Extractive Metallurgy of Copper, Pergamon (2002),

199-216.

[157] J. Wood, R. Matusewicz and M. Reuter, “Ausmelt C3 Converting”, International

Peirce-Smith Converting Centennial (The Minerals, Metals and Materials Society Con-

ference, 2009), 397-406.

[158] S. Nikolic, J. Edwards, A. Burrows and G. Alvear, “ISACONVERT - TSL Continuous

Copper Converting Update”, International Peirce-Smith Converting Centennial (The

Minerals, Metals and Materials Society Conference, 2009), 407-414.

[159] I. Kojo, M. Lahtinen and E. Miettinen, “Flash Converting - Sustainable Technology

Now and in the Future”, International Peirce-Smith Converting Centennial (The Min-

erals, Metals and Materials Society Conference, 2009), 383-395.

[160] V. Dale-Jones, “Mining town moves to avoid pollution”, BBC News, Novemeber 4th,

2002.

[161] T. Mäkinen and P. Taskinen, “State of the art in nickel smelting: direct Outokumpu

nickel technology”, Mineral Processing and Extractive Metallurgy , 117 (2) (2008), 86-

94.

[162] R. Fourer, D. Gay and B. Kernighan, “Introduction”, AMPL, A Modeling Language

for Mathematical Programming, Thompson Learning (2002), xv-xxi.

[163] V. Chvátal, “General LP Problems: Solutions by the Simplex Method”, Chapter 8 of

Linear Programming, W. H. Freeman and Company (1983), 118-136.

176

[164] T. Cormen, C. Leiserson, R. Rivest and C. Stein, “Linear Programming”, Chapter 27

of Introduction to Algorithms, McGraw-Hill (2001), 770-821.

[165] G. Schay, “Systems of Linear Equations, Matrices”, Chapter 2 of A Concise Introduc-

tion to Linear Algebra, Springer (2010), 41-98.

[166] G. Dantzig, “Maximization of a linear function of variables subject to linear inequal-

ities”, Chapter 21 of Activity Analysis of Production and Allocation, John Wiley and

Sons (1951), 339-347.

[167] R. Cottle, E. Johnson and R. Wets, “George B. Dantzig, 1914-2005”, Notices of the

American Mathematics Society, 54 (3) (2007), 344-362.

[168] V. Chvátal, “The Revised Simplex Method”, Chapter 7 of Linear Programming, W. H.

Freeman and Company (1983), 97-117.

[169] J. Nocedal and S. Wright, “Linear Programming: The Simplex Method”, Chapter 13

of Numerical Optimization, Springer (2006), 355-391.

[170] F. Hillier and G. Lieberman, “Solving Linear Programming Problems: The Simplex

Method”, Chapter 4 of Introduction to Operations Research, McGraw-Hill (2010), 89-

160.

[171] R. Bronson and G. Naadimuthu, “Linear Programming: The Simplex and the Dual

Simplex Methods”, Chapter 3 of Operations Research, Schaum’s Outline Series,

McGraw-Hill (1997), 32-55.

[172] V. Klee and G. Minty, “How good is the simplex algorithm?”, Inequalities, III (1972),

159-175.

[173] V. Chvátal, “The Ellipsoid Method”, Appendix to Linear Programming, W. H. Freeman

and Company (1983), 443-454.

[174] J. Nocedal and S. Wright, “Linear Programming: Interior-Point Methods”, Chapter 14

of Numerical Optimization, Springer (2006), 392-420.

[175] N. Karmarkar, “A New Polynomial-Time Algorithm For Linear Programming”, Com-

binatorica, 4 (4) (1984), 373-395.

[176] R. Bronson and G. Naadimuthu, “Linear Programming: Extensions”, Chapter 5 of

Operations Research, Schaum’s Outline Series, McGraw-Hill (1997), 87-123.

177

[177] J. Gondzio, “Interior point methods 25 years later”, European Journal of Operational

Research, 218 (2012), 587-601.

[178] P. Gill, W. Murray, M. Saunders and M. Wright, “Sparse Matrix Methods in Opti-

mization”, Journal on Scientific and Statistical Computing, 5 (3) (1984), 562-589.

[179] E. Yildirim and S. Wright, “Warm-Start Strategies in Interior-Point Methods for Linear

Programming”, Journal on Optimization, 12 (3) (1984), 782-810.

[180] V. Chvátal, “The Duality Theorem”, Chapter 5 of Linear Programming, W. H. Freeman

and Company (1983), 54-70.

[181] S. Thornton and J. Marion, “Hamilton’s Principle, Lagrangian and Hamiltonian Dy-

namics”, Chapter 7 of Classical Dynamics, Thomson (2004), 228-286.

[182] V. Chvátal, “Matrix Games”, Chapter 15 of Linear Programming, W. H. Freeman and

Company (1983), 228-239.

[183] J. Nocedal and S. Wright, “Interior-Point Methods for Nonlinear Programming”, Chap-

ter 19 of Numerical Optimization, Springer (2006), 563-597.

[184] F. Hillier and G. Lieberman, “The Dual Simplex Method”, Section 7.1 of Introduction

to Operations Research, McGraw-Hill (2010), 276-280.

[185] F. Hillier and G. Lieberman, “Integer Programming”, Chapter 11 of Introduction to

Operations Research, McGraw-Hill (2010), 464-536.

[186] A. Land and A. Doig, “An Automatic Method of Solving Discrete Programming Prob-

lems”, Econometrica, 28 (3) (1960), 497-520.

[187] T. Achterberg, T. Koch and A. Martin, “Branching rules revisited”, Operations Re-

search Letters, 33 (2005), 42-54.

[188] R. Gomory, “Outline of an algorithm for integer solutions to linear programs”, Bulletin

of the American Mathematical Society, 5 (1958), 275-278.

[189] V. Chvátal, “Edmonds polytopes and a hierarchy of combinatorial problems”, Discrete

Mathematics, 4 (4) (1973), 305-337.

[190] P. Ow and T. Morton, “Filtered beam search in schduling”, International Journal of

Production Research, 26 (1) (1988), 35-62.

178

[191] M. Pinedo, “More Advanced General Purpose Procedures”, Chapter 15 of Scheduling:

Theory, Aplications and Systems, Springer (2012), 399-429.

[192] M. Pinedo, “Mathematical Programming: Formulations and Applications”, Appendix

A of Scheduling: Theory, Aplications and Systems, Springer (2012), 559-571.

[193] G. Owen, “Cutting planes for programs with disjunctive constraints”, Journal of Op-

timization Theory and Applications, 11 (1) (1973), 49-55.

[194] I. Grossmann, “Advances in mathematical programming models for enterprise-wide

optimization”, Computers and Chemical Engineering, 47 (2012), 2-18.

[195] O. Boni, F. Fournier, N. Mashkif, Y. Naveh, A. Sela, U. Shani, Z. Lando and A. Modai,

“Applying Constraint Programming to Incorporate Engineering Methodologies into the

Design Process of Complex Systems”, Innovative Applications of Artificial Intellegence

Conference (2012), 2262-2268.

[196] E. Bajalinov, “Introduction to LFP”, Chapter 3 Linear Fractional Programming: The-

ory, Methods, Applications and Software (2003), 41-74.

[197] F. You, P. Castro and I. Grossmann, “Dinkelbach’s algorithm as an efficient method to

solve a class of MINLP models for large-scale cyclic scheduling problems”, Computers

and Chemical Engineering, 33 (2009), 1879-1889.

[198] C. Wen and H. Wu, “Using the Dinkelbach-type algorithm to solve the continuous-time

linear fractional programming problems”, Journal of Global Optimization, 49 (2011),

237-263.

179

APPENDIX A

LITERATURE REVIEW OF PEIRCE-SMITH CONVERTING

A.1 Origins of PS Converting

Advances in metallurgy are closely related to advances in civilization. Copper toolmaking

marked the end of the Stone Age [94], and the copper-based electrical system is a hallmark

of modern society. Superalloys employ nickel, copper, iron and numerous other metals to

elicit the special properties that are fundamental to modern technology.

Early industrial copper production was centered in the copper smelters of Swansea, Wales

[29]. They employed the so-called Welsh process, which had been guarded by a “ridiculous

secrecy” [29, 95]. Through some efforts, industrial historians were eventually able to collect

documentation and testimony describing this archaic process. According to Alexander [96],

the ore at Swansea was broken up into small lumps, and was hand-sorted by girls; the selected

ore underwent at least seven alternations between roasting and smelting. The reversion from

smelting back to roasting implies a deactivation (re-solidification), which expels impurities

through microstructural segregation, thus a 35% copper ore is converted into a 98% blister

copper; this is comparable to the modern practice of zone-melting, which is used to convert

99.99% copper into 99.9995% copper [97]. Interestingly, the Welsh blister was subject to a fire

refining stage that was quasi-modern, employing greenwood as the reductant hydrocarbon

[15, 96], rather than the modern alternatives: natural gas, butane, diesel, etc.

In 1856, Bessemer’s innovation in steelmaking featured a clear division between smelting

and converting, which had not been present in the secretive Welsh process for coppermaking

[29, 95, 96]. The division was first-of-all conceptual, that (1) roasting, (2) smelting and

(3) converting should be separate, and followed by (4) refining. This conceptual change

may already have been discussed in the Great Exhibition of 1851 [98], which renounced

the secretive Welsh culture, in favour of scientific exchange under intellectual protection.

The scientific openness, and the notion of a “coppermaking community”, continues to be a

valuable support for technological development.

Following the Great Exhibition and Bessemer’s pneumatic steelmaking furnace, there

was a tremendous effort to overtake the Welsh process. In the 1870’s, Hollway published

experimental results for the pneumatic conversion of copper matte, which later contributed

180

to the work of Baggaley, described below. The first successful pneumatic copper converting

process was developed by Manhès [29, 99] in 1878, in vertically orientated furnaces, similar to

that of the Bessemer; this approach used two separate furnaces: one for the Slag-Blow stage,

and another for the Copper-Blow stage. In 1885, Schumacher was the first to combine both

stages within a single vertical furnace, known as the Parrot converter, which slightly predates

the Great Falls converter [29]. In 1890, Stallman developed a trough shaped converter with

a square cross-section [29].

Following his initial successes, Manhès worked with David to create the first horizontal

converter [29, 99], introduced in Leghorn, Italy, in 1891. Shortly after, the Copper Queen

Smelter tested a similar unit. Thus the Manhès-David converter has been referred to as the

Leghorn converter, as well as the Copper Queen converter [29]. This converter had a lower

height than its vertical counterpart, and was thus noted for its ease of manipulation.

The Manhès-David converter has the appearance of a Peirce-Smith converter. However,

all converter linings were being made of acid refractories, i.e. silica [29, 99]. Of course, this

lining was actively melded with the iron that was in the matte, thus forming slag. These acid

linings were consumed extremely quickly, and would barely endure a single day of operation

[29]. Typical smelter operations would have three different states of repair for the converters,

which were evenly split: relining, curing and operational.

Hixon understood that the acid lining was being consumed as if it were a reagent, so

in 1892 he attempted to line a Parrot converter with magnesite instead [29]. This basic

lining endured the chemical attack from the bath, but did not provide sufficient thermal

insulation. Nonetheless, Baggaley revisited the notion of magnesite lining, and implemented

a water-cooling jacket that would cool the steel shell. Baggaley successfully ran a campaign in

horizontal converter, from October 7, 1905 to January 31, 1906, without having to change the

lining, hence validating the water-cooled basic lining. The Baggaley converter is considered

to be the immediate predecessor of the Peirce-Smith converter [29].

Baggaley had been an avid researcher, learning from the successes and failures of Hollway

and Hixon, and adapting them to the Manhès-David geometry [29]. He was able to bring

these ideas to fruition partly because of his close relationship to the Westinghouse interest;

funding was not an issue. However, he retired from his work after his son had tragically died

in a fire on February 12, 1906 [29]. Later in 1906, representatives of the Guggenheim interest

met with Baggaley and offered him a chance to modify their sixteen smelters and refineries,

but Baggaley turned them down. Peirce and Smith were also present at this meeting, and

eventually continued the work of Baggaley [29].

181

Peirce and Smith made four notable changes to Baggaley’s design [29, 30]. Firstly, they

installed thicker refractories in the tuyere belt. Secondly, they installed expansion joints to

allow for the thermal expansion of the lining. Thirdly, they introduced pouring spouts on the

side of the converter. Lastly, they incorporated replaceable tuyeres. The first experimental

unit was installed in 1909, and the first industrial unit was installed in 1910.

Following 1910, the Peirce-Smith converter became pervasive around the world, as the

Welsh had clearly lost their stronghold. Peirce-Smith converters have remained dominant

ever since, with the two enduring qualities of simplicity and adaptability.

A.2 Incremental Improvements in PS Converting

Over the last century, considerable improvements have been made to the original Peirce-

Smith Converter. These vessels continue to be included in new plant designs [40, 42], and

are not likely to be forgotten in the near future.

The list of improvements is extensive [42, 100]: tuyere silencers, tuyere punching, bustle

main, refractory materials, mouth and hood design, electronic controls, etc. Mechanized

tuyere punching has decreased inter-cycle time. Better refractories, bricking practice, and

thermochemical controls have all extended the life of the refractory lining. Use of oxygen

enrichment has assisted in the heat balance, also bringing improved productivity [42].

Even before the usage of basic lining, there was a recognized link between refractory wear

and slag chemistry. This has remained a concern even with modern chrome-magnesite lining

[32, 102]. It is generally desirable to avoid needlessly long exposure to the corrosive copper

oxidic slag [103, 104], yet an underoxidized blister is demanding on the refining furnaces

[104]. Slag chemistry has also been related the recovery of platinum group metals from nickel-

bearing mattes [105, 106]. This supports the implementation of end-point controls, to decide

exactly when to cease the blowing action [35, 36, 107]. Early end-point controls measured

changes in the rate of SO2 production [108], but the more modern Semtech technology uses

the optical detection of lead compounds in the fume dust [107].

There has been an ongoing drive toward longer Peirce-Smith converter that, interestingly,

has been documented since the early usage [109]. Indeed, a larger batch capacity implies a

larger bath volume, but the need for effective air injection has limited the diameter. There-

fore, the increased volume has been manifested mainly as a length increase. Nonetheless,

the converter length has been limited by the conveying systems for flux and secondary feeds.

There have been several documented cases in which productivity increases have resulted from

182

the combined effect of longer converters and enhanced fluxing and secondary feeding systems

[110, 111, 112].

Since the late 1990’s, there have been numerous reports of smelter upgrade projects that

emphasize offgas handing [113, 114, 115, 116, 117], which often coincide with the retirement

of an old-fashioned reverberatory furnace [113, 116]. Water-cooled hoods are able maintain a

tighter closure over the mouth of Peirce-Smith converters, diminishing the fugitive emissions,

while maintaining a favorable gas strength and temperature [118]. It has become common to

encapsulate a water-cooled hood within a secondary hood, to capture any gasses that escape

the first hood [42, 115, 117, 119]. It has also become standard practice to clean the gases

with electrostatic precipitators and/or wet scrubbers [42, 120].

In 1980, Davenport had foreseen the trend toward stricter environmental regulations, and

expected that Hoboken converters would become more dominant [121]; but rather than the

bulky siphon construction of Hoboken, the smelting community has opted for the slightly less

bulky construction secondary hoods [42]. In any case, the environmental regulations have

had a direct impact that has been well received. There is now a friendly rivalry between

smelters, to capture as high a percentage of SO2 as possible, and transform it into acid.

Roughly speaking, a capture of above 95% is considered to be “boast-worthy”.

Oxygen enrichment has been used in copper and nickel production since the 1950’s, but is

normally limited to below 30% [44], to maintain the integrity of the refractory lining. Oxygen

enrichment has had a major impact to control the heat balance of Peirce-Smith converters

[42], and is linked to the management of arsenic, antimony and bismuth [122]. In 1995, Bustos

et al. successfully applied the concept of high-pressure shrouded injection into the non-ferrous

industry [44], which permitted oxygen enrichment up to 60%; this approach had already

been successful for steelmaking. Bustos et al. employed an experimental Hoboken unit on

a complex copper-lead-iron matte. Within a few years, this technology was commercialized

as Air Liquid Shrouded Injection (ALSI), and was installed at the Falconbridge Smelter in

Sudbury, in the so-called Slag Make Converter [44, 45, 46]. The Slag Make Converter is an

enhanced Peirce-Smith converter that removes most of the iron and associated sulfur from a

nickel-bearing matte; the product is then sent to conventional Peirce-Smith converters, which

act as finishing vessels [46].

The Falconbridge Smelter has been a showcase for the application of the ALSI technology

in the nickel industry, which not only allows higher oxygen enrichment, but also avoids the

need for tuyere punching [45]. At pressures above 250 kpa, the bubble-forming regime gives

way to jetting. The jetting regime does not lead to the confining accretions that would

183

require punching. This seems to be an underutilized concept that could be adapted even to

traditional tuyeres [124]; indeed, a higher price for gas compression could be offset by the

price of tuyere and refractory maintenance [66].

In 2006, the Thai Copper Smelter became the first copper smelter to employ the ALSI

technology. This was a new smelter that had undergone a troubled beginning, marred by

the Asian economic crisis of the late 1990’s, and the devaluing of the Thai currency. The

plant had operated for a year in 2004 until there was a catastrophic industrial accident [125].

Finally in 2006, the smelter was reopened, after having installed a number of technological

upgrades; the converter aisle featured Hoboken converters with the ALSI. The Thai smelter

ran successfully for roughly two years [126], and it was hoped that other copper installations

would also employ the ALSI. However, the success of Thai Copper was short-lived, as it

was closed during the economic crash of 2008. At the International Peirce-Smith Converting

Centennial Symposium of 2009, the representatives from Thai Copper had impressive results

to share, but the main author could not be present, as the smelter had already ended its

operations.

An apparent difficulty with the ALSI is the need for cold charges, such as reverts and

scraps. Some have speculated that the excess heat could be balanced by feeding moist

concentrate. This concentrate would therefore bypass the drying/roasting stages, as well as

the smelting stage. The feeding of Peirce-Smith converter with concentrate would not be a

new idea [127, 128]. There are reports of concentrate feeding as early as the 1920’s [129]. The

Noranda Reactor and Teniente Converter are smelting furnaces that borrowed concepts from

Peirce-Smith Converting, including horizontal geometry, basic refractory lining, and tuyere

arrangement [8]. There appear to be only superficial differences between the Noranda Reactor

and the Teniente Converter, with regard to the charging and discharging mechanisms. In

this case, the term “Teniente Converter” is a misnomer since this vessel is more accurately

described as a smelting furnace rather than a converter, as it is fed mainly with concentrate.

The Noranda Reactor is not to be confused with the Noranda Converter [12]. Firstly, the

Noranda Reactor was originally designed to continuously produce blister copper, featuring

three coexisting liquid phases: slag, matte and blister copper. The blister copper could be

continuously drained from the bottom of the melt, as the slag is drained from the top. In

the modern usage of the Noranda Reactor, however, the continuous product is white metal

rather than blister [130]; the original three-phase concept was found to exhibit hazardous

arsenic transport, which caused a poisonous gas release during the electrorefining stage.

Nonetheless, the main concepts of the Noranda Reactor have been incorporated into the

184

Noranda Converter, which continuously converts white metal into blister [12].

The evolution from the Noranda Reactor to the Noranda Converter is being mimicked,

as experiments are being run on the Teniente Converter [131, 132]. Indeed, the so-called

Continuous Codelco Converting (CCC) uses a Teniente Converter, but the feed is a blend

of molten and solidified matte, and the slag has an olivine chemistry (Ca,Fe)SiO4 instead

of fayalite Fe2SiO4. The CCC process builds on some of the positive attributes of Noranda

Reactor/Converter, but has not been implemented on a commercial scale. Other alternatives

to Peirce-Smith Converting are presented in Appendix A.5.

There will undoubtedly be more incremental improvements in Peirce-Smith Converting,

to accommodate future feeds. Given the advances in computational modeling, the acceptance

of these improvements will be supported by simulations.

A.3 Computational Modeling of PS Converting

The pyrometallurgical community has long recognized two main branches of Peirce-Smith

Converting Modeling: chemical thermodynamics and chemical kinetics. In recent years, the

theme of kinetics has been expanded to include mixing and computational fluid mechanics

(CFD).

Thermodynamic modeling has generally increased in complexity more realistic simula-

tions, especially with regards to slag chemistry [133, 134, 135, 136]. However, Alminizadeh

preferred a simplified model in 2007 [137]. This approach lacks realism, particularly in the

representation of magnetite within the slag. While this work is not particularly well suited

for simulation, it seems to be appropriate for optimization; it may be compared to the work

of Navarra et al. [53], which avoids the use of Gibbs free energy surfaces and phase diagrams,

by adapting the Continuous Knapsack Problem. Tripathi et al. employ commercial software

[11], MetSim c© and FactSage c©; this approach is well-suited for simulation, but is not as well

suited for mathematical optimization as the approach of Navarra et al. [53].

A particularly complicated aspect of Peirce-Smith thermochemistry is the representation

of the cold charges. Marcuson et al. used industrial data to estimate the heat content and

sensible heat [138], but did not estimate the thermal response parameters, unlike Navarra et

al. [55]. Considering the importance of cold charging [66], the academic literature seems to

be lacking reliable estimation techniques.

Thermochemical modeling of nickel-copper PSC had been considerably slower than for

185

copper PSC, until the work of Kellogg et al. in 1986 [139], describing the interactions of Ni,

Fe, S, O, SiO2 and CaO, in the formation of matte and slag. This work was soon followed

by the work of Bustos et al. that describes the Falconbridge Smelter [140], and Kyllo et al.

that describes the Copper Cliff Smelter [39, 52]; these works provide a blow-by-blow analysis,

representing changes in bath temperature and composition. The later efforts of Kyllo et al.

combined kinetics and thermodynamic considerations [57, 141], suggesting that productivity

can be enhanced through changes in gas injection practices.

Tan et al. are also noted for their blending of kinetics and thermodynamics [134, 135, 142].

Particular emphasis has been placed on magnetite formation, as well as the bath volume and

temperature. This work benefitted from the application of the Semtech technology, and has

lead to improvements in the Mount Isa operations. The current model is capable of predicting

the slag viscosity and liquidus temperature [142].

Partly as an effort to market the ALSI and other oxygen injection practices, a software

system was developed by Ng et al. [10]. This software computed heat and mass balances, as

well as operation costs, but only for copper PSC systems. A later adaptation by Navarra et

al. provided more flexibility [66], and was eventually generalized for copper-nickel systems

[53]. However, this approach was left wanting, as it did not include a sufficient description

of operational aspects. Nonetheless, the generalization of the underlying model of Navarra

et al. has been mimicked within in the current thesis (See Section 3.4 and Subsection 4.3.3).

Certain researchers have focused on the Copper-Blow [143, 144]. It was observed that

surface tension effects cause the desulfurization to occur in two distinct stages: (1) the melt

is partially desulfurized, as oxygen is dissolved in the matte; (2) after the bath is saturated

with oxygen, SO2 and copper are generated electrochemically [143]. It has also been found

that the desulfurization rate is sensitive to the flow rate, but not so much to the temperature

[144]. The resulting kinetics models compare well to experimental measurements [143, 144].

The successful use of the Peirce-Smith Converter depends on effective mixing [7]. The

study of mixing has benefitted from advances in computational fluid mechanics [145, 146, 147].

These approaches apply the k-ε model, as a two-parameter representation of turbulence. Cer-

vantes et al. presented an especially efficient approach, in which the converter is represented

as a single transversal slice [145]; it is presumed that the equal-spacing of the tuyeres leads

to periodic distribution of the velocity field.

The most advanced CFD models have not yet been integrated with the most advanced

thermodynamics models. Perhaps future work will tap into this unresolved potential.

186

A.4 Failure to Adapt Conventional Scheduling Algorithms to PS Converting

Chemical thermodynamics and chemical kinetics remain are still regarded as the two

main pillars of PSC modeling. The current thesis brings forth a third pillar that is as of yet

under-represented: operational dynamics. This new pillar presents an untapped potential,

especially when comparing current scheduling practices for PSC to those of the transportation

and manufacturing industries [148, 149].

In Peirce-Smith Converting, the thermochemical complexity is germane to process con-

trol [66], and is perhaps the main factor that has obstructed schedule optimization. This is

not to say that transportation and manufacturing are void of thermochemical complexity.

For instance, an airliner considers fuel grades, combustion efficiencies, etc., but these ther-

mochemical aspects can be decoupled from the problem of airline scheduling [148]. Early

models for transportation and manufacturing were rather general, but were realistic enough

to be integrated into industry [150]. Following these general models, more specialized models

could very well include domain-specific elements, including thermochemical considerations.

This path, from general to specialized, has not been replicated in PSC, because even the

most basic descriptions must address some of the thermochemical complexities in order to

have any industrial merit [47, 66].

Thermochemical complexity is not the only factor that has obstructed the development

of algorithms in copper smelting. A comparison can be made to steelmaking, for example,

in which optimal scheduling has been implemented [151]. The BOP and the PSC process

are both batchwise processes that are fed by continuous streams, hence a clash between

batch and continuous dynamics. However, the BOP process is relatively simple to manage,

because the chemical composition of the feeds is essentially constant [152]. In contrast,

PSC is noted for its particular ability to accept a variety of feeds [66], with tremendous

variations in chemical composition. This is a functional strength of PSC, but it precludes

the use of conventional scheduling algorithms. Thus the chemical variation of flow streams

is an important secondary factor that distinguishes copper smelting from other chemical and

materials industries, including steel.

At the current time, copper and nickel smelters commonly apply manual scheduling tech-

niques for their short-term (daily) operations [47]. All of the start and finishing times are

entered into the main computer system, which then transmits the resulting schedule to the

control rooms. There are two main problems with this approach. Firstly, the schedules may

not be optimal with respect to any particular objective. Consequently, there is no rigorous

way of posing and analyzing alternative objectives. Secondly, the scheduling logic is a crit-

187

ical component of process simulation [12], which is used to quantify potential changes to a

smelter. To evaluate an upgrade of the offgas treatment system, for example, it is helpful to

simulate several months of operation, taking daily random variations into account. To avoid

the task of manually scheduling hundreds of simulated days, the scheduling algorithms may

be grafted into the simulations. If the scheduling practices are not automated, then it is

difficult to justify plant upgrades, as it is not practical to simulate alternative plant designs

over large ranges of time.

Nonetheless, very little work has been published regarding the optimal scheduling of

Peirce-Smith operations [47]. This is especially surprising, considering that the profitability

of a smelter is directly affected by its scheduling practice. Furthermore, the implementation

of scheduling algorithms is not capital intensive.

A.5 Pyrometallurgical Alternatives to PS Converting

In addition to the Hoboken Converter (Subsection 1.3.3 and Appendix A.2), and the No-

randa Converter (Appendix A.2), there are several pyrometallurgical alternatives to Peirce-

Smith Converting for the treating copper and nickel-copper mattes.

Some of these alternatives are inspired by the steel industry. For instance, the Copper Cliff

Smelter adapted a Kaldo unit in 1973 [153], which remained in use until 2002 [8]. “Kaldo”

is the common name used in steelmaking, whereas the nonferrous industry uses the more

descriptive terminology Top-Blown Rotary Converter (TBRC). These units have the upright

shape of a ladle, except that the mouth is tapered around where the lance is lowered. They

are used to melt and convert high-grade concentrates and metallic scrap. The TBRC unit is

no longer in use in Copper Cliff, but is present at the Clydach Nickel Refinery [8], as well as

the Stillwater Nickel Smelter [2].

Some researchers have investigated the possibility of a bottom-blown converting vessel,

which would be similar to certain steelmaking vessels, but adapted to the necessities of matte

conversion [154, 155]. Such converters have not yet been employed in the nonferrous sector,

but have been the subject of CFD computations. Gonzalez et al. have employed the k-ε

model to represent turbulence, in conjunction with the Volume-of-Fluid (VOF) formulation

to track the interfaces. Apparently, the mixing characteristics of a bottom-blown matte

converter would be favourable.

The Mitsubishi process was once seen as a major competitor to the Peirce-Smith Con-

verter. In fact, the Mitsubishi process combines roasting, smelting and converting into a

188

single continuous process [8], which employs top-blown submerged oxygen injection. This

integrated approach has a certain aesthetic, as there is no need to transport ladles from an

independent smelting unit. Instead, the Mitsubishi system is composed of three furnaces,

which are connected by a system of launders that are insulated and heated. This type of

matte transportation leads to less fugitive emissions than the classic Peirce-Smith approach.

Experience with the Mitsubishi process has shown that magnetite formation could be bet-

ter managed by including a CaO component in the slag [156]. There are now only three

remaining examples of the Mitsubishi process, following the recent closing of the Kidd Creek

installation [1]. Furthermore, the sale of the Mitsubishi process has been suspended, which

is partly related to the advent of other continuous converting technologies.

The Ausmelt Copper Converting and Isaconvert processes are taking the place of the

Mitsubishi process [157, 158]. Both of these processes evolved from top-blown continuous

smelting processes [8]. Both technologies feature a top-blown lance that is submerged into

the melt, as blister copper is drained from the bottom of the vessel. As with the Mitsubishi

Process, these technologies are noted for their use of CaO flux, and the effective control of

fugitive emissions. Unlike the Mitsubishi Process, these vessels may be run in either a batch

or a continuous more. There appears to be only a superficial difference between the Ausmelt

and Isaconvert technologies, with regard to some aspects of the vessel geometry. However,

the Ausmelt technology is more mature than the Isaconvert; the former has been installed in

at least two commercial installations [157], whereas the Isaconvert is only in the early stages

of commercial validation [158].

The Ausmelt and Isaconvert processes are likely candidates to supplant the Peirce-Smith

Converter in the copper industry. However, the most compelling technology may be the Flash

Converting Furnace (FCF), developed by Kennecott and Outotec. This technology builds

on experience in flash smelting [26], which involves the rapid reaction of falling concentrate

particles as they land into the melt. Flash converting employs the same principle as flash

smelting, as solidified matte particles are dropped into the FCF. Thus the solidified (granu-

lated) matte may be stockpiled as an intermediate product, composed mainly of chalcocite

Cu2S. The flash technology performs much better than Peirce-Smith converting, particularly

in terms of refractory wear. While the kinetics of PSP relies on vigorous mixing in the melt,

the FCF relies on the emersion of the falling particles within the countervailing blast. Due

to the quiescent FCF bath, the refractory lining has a campaign life exceeding five years

[26], which is twenty times longer than the campaign life of PSP [42]. Consequently, the

FCF can operate at much higher oxygen enrichment, which is favourable for acid produc-

tion. The FCF technology has been successfully applied at the Kennecott Copper Smelter

189

since 1995, and the Yanggu Xiangguang Copper Smelting since 2007 [26]. Incidentally, the

Yanggu Xiangguand Copper Smelting is thought to be the most advanced copper smelter in

the world.

Flash converting raises interesting questions for the copper supply chain. Chalcopyrite

concentrate may not be the most viable product from copper sulfide mines. Clearly, the

transportation of chalcopyrite CuFeS2 from the mine to the smelter, is not as favourable as

chalcocite Cu2S transportation. Firstly, the iron component may be better disposed of at

the mine sites, as fayalite and/or olivine can be incorporated into backfill material; current

practices have led to enormous piles of slag outside of copper smelters, to the extent that entire

towns have been buried in slag [160]. Aside from the slag disposal issues, part of the sulfur

component of chalcopyrite may also be better utilized at mine sites, for the local processing of

copper oxides. This aspect may be especially important for future mining operations, which

are likely to have complex deposits, including various mixtures of copper oxides and sulfides.

This would imply a blending of hydrometallurgical operations (for cathode production from

oxides) with flotation and pyrometallurgical operations (for chalcocite and acid production

from sulfides), all at a relatively small scale, and close to the mines.

Flash converting has also been implemented within the nickel industry, in the form of

the Direct-Outotec-Nickel (DON). The DON technology was first installed at the Harjavalta

Oy Smelter in 1995, and then at the Fortaleza Smelter in 1998 [26, 161]. This technology

converts nickel-bearing concentrates directly into Bessemer matte, in a single process step,

thus obviating the need for Peirce-Smith Converting. However, the DON technology does not

replace the downstream operations that would release the valuable materials (See Subsection

1.2.5).

Given the advanced technologies that are being developed, it seems unlikely that the

Peirce-Smith Converter will dominate indefinitely. For historical accounting, it will be inter-

esting to document whether the reign of PSC will be longer than that of the Welsh process.

190

APPENDIX B

OVERVIEW OF MIXED INTEGER LINEAR PROGRAMMING

B.1 Linear Programming and the Simplex Method

Linear programming is an elementary form of constrained optimization. It has wide

application in industrial and academic contexts, and is fundamental to management science.

Linear programming is a subclass of mathematical programming [162]. In this sense,

“programming” is a somewhat antiquated use of the word that predates the advent of com-

puters. This older notion of programming involves the creation of lists, tables, arrays, etc.

to facilitate problem formulation and solution. Thus mathematical programming is the list-

ing of variables, constraints, equations and other mathematical constructs, to which solution

algorithms are applied. This does not necessarily imply the use of a computer, in principle.

Nonetheless, computers have become ubiquitous in mathematical programming.

A linear program can be expressed as

max
xj

f = c◦ +
n∑
j=1

cjxj

such that
n∑
j=1

alt

ijxj ≤ bi for all i ∈ {1, 2, . . . ,mlt}

n∑
j=1

agt

ijxj ≥ bgt

i for all i ∈ {1, 2, . . . ,mgt}

n∑
j=1

aeq

ijxj = beq

i for all i ∈ {1, 2, . . . ,meq}

(6.24)

in which alt
ij, a

gt

ij and aeq

ij are the constraint parameters, blt
i , bgt

i and beq

i are the righthand

parameters, and cj are the objective weighting parameters. Equation B.1 may be called the

general form of a linear problem [163, 164].

Thus the problem is to obtain values for (x1, x2, . . . , xn) ∈ Rn which maximize the linear

objective function f , while satisfying the linear constraints. A solution (x1, x2, . . . , xn) is

said to be feasible if it satisfies the set of constraints. A nonlinear program may have a

nonlinear objective, or nonlinear constraints, hence a generalization of linear programming.

191

Unless otherwise stated, a mathematical program is usually assumed to have only continuous

numerical variables. Appendices B.4-5 consider the possibility of discrete variables.

Equation B.1 poses a maximization that is representative of numerous contexts. The

objective is often to maximize production, or profit, by properly allocating limited resources

or time. Nonetheless, the formulation could be adjusted to represent a minimization problem.

Indeed, the minimization minxj f
′ is generally equivalent to the maximization maxxj(−f ′),

so that f may be taken simply as f = −f ′. For example, the minimization of economic losses

could be interpreted as the maximization of economic profit, given that a loss is effectively a

negative profit.

The constant c◦ can be dropped from the objective, since it does not impact the optimality

of any proposed solutions. This is to say that (x1, x2, . . . , xn) is optimal for (c◦ +
∑n

j=1 cjxj)

if, and only if, it is optimal for
∑n

j=1 cjxj. In the economic context, c◦ may be interpreted as

some profit (or expense) which has already be assured, and need not be reexamined in the

current decision-making process.

Linear programming incorporates the more basic concepts of systems of equations. If

the objective f is constant, and if all of the constraints are equalities, mgt = mlt = 0, then

Equation B.1 reduces to
n∑
j=1

aeq

ijxj = beq

i (6.25)

for all i ∈ {1, 2, . . . ,meq}, which is a system of linear equalities. This is often written in

matrix form,

Ax = b

where A is a matrix containing aeq

ij in the ith row and jth column; x and b are column vectors

containing (x1, x2, . . . , xn) and (beq

1 , b
eq

2 , . . . , b
eq

meq), respectively. Equation B.2 is particularly

relevant to extractive metallurgy because of the applications in mass and heat balancing

(Section 3.2). However, the larger notions of linear program (Equation B.1) are not pervasive

in extractive metallurgy, as it is not usually part of the undergraduate pedagogy.

It is always possible to reexpress the constraints exclusively as “≤” inequalities. Firstly,

the “≥” inequalities can be converted simply by negating the parameters, hence(
n∑
j=1

agt

ijxj ≥ bgt

i

)
⇔

(
n∑
j=1

agt

i′jxj ≤ bgt

i′

)

where alt

i′j = −agt

ij and blt

i′ = −bgt

i . Additionally, each equality can be replaced by two inequal-

192

ities, (
n∑
j=1

aeq

ijxj = beq

i

)
⇔


∑n

j=1 a
eq

ijxj ≤ beq

i

∑n
j=1 a

eq

ijxj ≥ beq

i


Thus an equality is essentially a combination of a “≤” inequality and a ‘≥” inequality, the

latter of which can ultimately be converted into a second “≤” inequality through negation.

This procedure leads to m = (mlt +mgt + 2meq) constraints.

There is a more effective means of handling the equalities. Of the meq equalities in

Equation B.1, a certain quantity of these will be linearly independent [165], mind ≤ meq; thus

mind variables can be eliminated by substitution, reducing the size of the problem. Thus

Equation B.1 is reduced to

max
xj

f =
n∑
j=1

cjxj

such that
n∑
j=1

aijxj ≤ bi for all i ∈ {1, 2, . . . ,m}

(6.26)

in which a maximal number of variables has been eliminated, and m = mlt +mgt. Equation

B.3 can be referred to as “the” reduced form, although there is some ambiguity regarding

which variables are to be eliminated. Nonetheless, the eliminated variables can be computed

a posteriori, after the reduced problem has been solved.

For instance, suppose that a list of variables (x1, x2, x3) is defined as the basis for a

decision-making policy; a researcher may pose the following linear program,

max f = 2x1 + 4x2 − 3x3 + 7

such that x1 − x2 ≤ 3

x1 ≤ 5

x1 + x2 + 2x3 ≤ 6

3x1 − x3 ≥ 7

x2 − x3 = 6

193

The equality gives x3 = x2 − 6, so that a reduced form can be obtained in terms of (x1, x2),

max f = 2x1 + x2

such that x1 − x2 ≤ 3

x1 ≤ 5

x1 + 3x2 ≤ 18

−3x1 + x2 ≤ −1

After the optimal solution (x∗1, x
∗
2) has been determined, the corresponding value for x3 is

computed, x∗3 = x∗2 − 6.

Historically, it was important to categorize the various forms of linear programs, from

which algorithms would be developed. The reduced form (Equation B.3) is insightful, partic-

ularly for two-dimensional problems (Figure B.1). If a 2D linear program possesses optimal

solutions, then at least one of these optimal solutions can be observed at a vertex; this can

be proven formally, using the properties of convex polygons. It is thus sufficient to search

only the feasible vertices.

Figure B.1 demonstrates the iterative procedure by which vertices are searched, always

selecting directions of steepest ascent; the objective function is depicted through the use of

level curves. The feasibility boundary forms rays that connect one vertex to the next, and

optimality is detected at vertices which do not offer any directions of further improvement.

Figure B.1 demonstrates the migration from the initial vertex (-1,-4) to the optimal vertex

(5,13
3

), requiring two iterations. Figure B.2 depicts a case where the objective is unbounded.

This is detected when the direction of steepest ascent proceeds indefinitely along a constraint

line, uninterrupted by any of the other constraints.

In 1947, George Dantzig generalized the procedure of Figures B.1-2 to n variables [166],

which is one of the greatest advancement in 20th applied mathematics [167]. The formal

justification is based on the properties of convex polytopes, which are a generalization of

convex polygons. In two dimensions, each iteration analyzes the intersection of two incident

lines, which form the tip of a triangle (Figure B.3a); in three dimensions, each iteration

analyzes the intersection of three incident planes, which form the tip of a tetrahedron (Figure

B.3b); in n dimensions, each iteration analyzes the intersection of n incident hyperplanes,

which form the tip of simplex (i.e. the n-dimensional extension of triangles and tetrahedra).

Dantzig’s procedure is therefore known as the Simplex Method.

194

(a) Suboptimal (b) Suboptimal (c) Optimal

Figure 6.4: Application of the Simplex Method for two decision variables (x1, x2), leading to
an optimal solution (x∗1, x

∗
2) = (5, 13

3
)

(a) Suboptimal (b) Suboptimal

Figure 6.5: Application of the Simplex Method for two decision variables (x1, x2), leading to
an unbounded objective value

195

(a) 2D (b) 3D

Figure 6.6: Vertices are surrounded by simplex neighbourhoods

The Simplex Method has been revised and refined to minimize the number of arithmetic

operations [168, 169]. Matrix algebra has been adapted to efficiently compute the inter-

sections of lines, planes, hyperplanes, etc., to locate and analyze the vertices. Nonetheless,

there are several introductory texts that show how to solve small linear programs manually,

using of Simplex Tableaus [170, 171]; students can then compare their manual results to the

computed results, before attempting larger problems.

An apparent complication with the Simplex Method is the requirement for an initial

vertex that would allow the first iteration [163, 164, 170, 171]. In some cases, an initial

vertex can be deduced from the particular structure of the problem. Otherwise, an auxiliary

problem can be posed,

max
xj ,αi

f =
n∑
j=1

cjxj −M
m∑
i=1

αi

such that
n∑
j=1

aijxj − αi ≤ bi for all i ∈ {1, 2, . . . ,m}

(6.27)

which is called the Big-M Formulation, in which αi are artificial variables, and M > 0 is the

cost associated to these variables, described below. A vertex is readily available for Equation

B.4, and is given by (x1, x2, . . . , xn) = (0, 0, . . . , 0) and (α1, α2, . . . , αm) = (b1, b2, . . . , bm).

The artificial cost M must be large enough so that the objective function is dominated

by the artificial component M
∑m

i=1 αi. In a sense, it is infinitely costly for a solution to

be infeasible. Thus, the first m Simplex iterations of Equation B.4 should evolve toward

a vertex solution such that (α1, α2, . . . , αm) = (0, 0, . . . , 0), hence eliminating the artificial

variables; the corresponding non-artificial values (x1, x2, . . . , xn) can then serve as an initial

vertex for Equation B.3. If the Simplex iterations fail to eliminate the artificial variables,

then Equation B.3 is infeasible, meaning that the constraints are contradictory. Thus the

artificial formulation (Equation B.4) tests for the feasibility of the original problem (Equation

196

B.3), as well as providing an initial vertex.

The elimination of the artificial variables is frequently referred to as Phase I of the Simplex

Method, and the subsequent solution of Equation B.3 is then Phase II. For Phase I, the

objective of Equation B.4 may be rescaled by dividing through by M ; taking the appropriate

limit M →∞,

max
xj ,αi

fPhaseI = lim
M→∞


n∑
j=1

cjxj −M
m∑
i=1

αi

M


hence removing any doubt that M would be large enough,

max
xj ,αi

fPhaseI = −
m∑
i=1

αi (6.28)

Upon completion of Phase I, the resulting (x1, x2, . . . , xn) solution serves as an initial vertex

for Equation B.3, as before.

In industrial contexts, the Simplex Method is commonly implemented within automated

decision-making software. This has applications in engineering design, systems management,

and operational scheduling.

B.2 Alternatives to the Simplex Method

The Simplex Method is historically the most important procedure for solving linear pro-

grams. However, there are cases where the Simplex Method is known to perform inefficiently.

As part of a worst-case analysis [172], particular problems have been constructed to

demonstrate that the computational costs can grow exponentially as a function of the problem

dimensions (m,n). This prompted the development of the Ellipsoid Method [173], which was

presented in 1979, and is proven to have a polynomial expansion in the worst-case.

In spite of a more favourable worst-case analysis, the Ellipsoid Method did not perform

as well as the Simplex Method in “real-world” problems, hence it was never widely adopted

[174]. On the other hand, it inspired the Projective Method that was presented in 1984, which

has polynomial expansion comparable to the Ellipsoid Method, and performs considerably

better than the Ellipsoid Method [175, 176].

The Projective Method is considered to be the first of a family of algorithms, called the

197

Figure 6.7: Path-Finding Methods approach optimal solutions from the interior of the feasi-
bility region

Interior Point Methods. In general, these methods apply numerical techniques to advance

from the the interior of the feasibility region toward the optimal vertex [174]. This is unlike

the Simplex Method, which is restricted to the outer vertices.

Starting in the 1990’s, the most successful Interior Point Methods have been the Path-

Following Methods [174]. As depicted in Figure B.4, these methods migrate along a path,

which ultimately leads to the optimal vertex. This is usually accomplished using a barrier

function, which penalizes the current solution for its distance to the feasibility boundary;

thus, the interior points are penalized for being too interior. As each iteration progresses, the

barrier function becomes increasingly severe, hence promoting solutions that are increasingly

closer to the boundary. The optimal vertex is eventually identified to within computer

precision.

An appropriate barrier function Bi(x1, x2, . . . , xn) should, to some degree of approxima-

tion, satisfy the following property,

lim
i→∞

Bi(x1, x2, . . . , xn) =


B if (x1, x2, . . . , xn) is on the boundary of the feasibility region

∞ otherwise

(6.29)

where i ∈ {1, 2, . . .} denotes the iteration number, and B is a finite constant. The barrier

function can always be adjusted so that B = 0, but this is not strictly necessary.

Following this construction, the Interior Point Methods solve the following mathematical

198

program at each iteration i′.

max
xj

f =
n∑
j=1

cjxj −Bi′(x1, x2, . . . , xn)

such that
n∑
j=1

aijxj ≤ bi for all i ∈ {1, 2, . . . ,m}

(6.30)

This is a nonlinear program, as the barrier function is generally nonlinear. Path-Finding

Methods are distinguished from each other in the type of barrier function, and the numerical

procedure that is used at each iteration to solve Equation B.7.

The barrier function of Equations B.7 acts as the dual of the artificial cost function

of Equation B.4. More precisely, the barrier function penalizes a solution for being strictly

within the feasibility region, thus approaching the boundary from the interior; conversely, the

artificial costs penalize solutions for their (strict) infeasibility, thus approaching the boundary

from the exterior. This notion of duality is revisited in the following section.

The development and adaptation of Interior Point Methods is an active area of research.

There is now a consensus that modern Path-Following Methods have a similar performance

as the Simplex Method for routine applications, in addition to the favourable worst-case

analysis [177]. For specific problems, however, the Simplex Method may perform better, and

sometimes much better [178].

B.3 Expansion of a Solved Linear Program

The Simplex Method has a historical advantage over Path-Following Methods. In partic-

ular, the Simplex Method is amenable to the inclusion of new linear variables.

To include a new variable xn+1, Equation B.3 is modified only slightly.

max
xj

f =
n∑
j=1

cjxj + cn+1xn+1

such that
n∑
j=1

aijxj + ai,n+1xn+1 ≤ bi for all i ∈ {1, 2, . . . ,m}

xn+1 ≤ xInitial
n+1

(6.31)

The new variable xn+1 should be formulated so that xn+1 = xInitial
n+1 can be treated tentatively as

199

a constant parameter, and the final constraint can be ignored, as it is automatically satisfied.

Moreover, cn+1xn+1 may be temporarily dropped from the objective, and ai,n+1xn+1 can be

temporarily fused into the righthand constants that become effectively bi − ai,n+1xn+1. An

initial optimization will obtain values for (x1, x2, . . . , xn), leaving xn+1 = xInitial
n+1 as a constant.

Subsequently, (x1, x2, . . . , xn, x
Initial
n+1) serves as an initial vertex for Equation B.8, to proceed

directly into Phase II of the Simplex Method.

The approach of Equation B.8 is to perform post-optimization, looking for beneficial

decreases in xn+1. Beneficial increases can be examined if the final inequality of Equation

B.8 is replaced with

− xn+1 ≤ −xInitial

n+1 (6.32)

which still maintains the reduced form (Equation B.3).

Equations B.8-9 allow the ad hoc expansion of a linear program from (m,n) to (m,n+1).

Historically, this has relied on the Simplex Method’s ability to pass seamlessly from the

vertices of a space in Rn, onto the neighbouring vertices of a superspace in Rn+1. Naturally,

the Path-Following Methods have been adapted to provide a similar feature [179].

The inclusion of a new variable is an expansion of the feasibility region into new di-

mensions. This new degree of freedom would tend to improve the objective value. In an

extreme case, the expanded (m,n + 1) problem may be unbounded (infinite production, in-

finite profits, etc.), which may lack some realism, unless additional constraints can also be

added. Following the example of Equations B.8-9, it is beneficial if the solution to the original

(m,n) problem can somehow act as an initial vertex for the expanded (m + 1, n) problem,

hence passing directly into Phase II of the Simplex Method.

The following formulation is related to Equation B.1.

min
yi

g =
mlt+mgt+meq∑

i=1

biyi

such that
mlt∑
i=1

aijyi +
mgt∑
i=1

agt

ijyi +
meq∑
i=1

aeq

ijyi ≤ cj for all j ∈ {1, 2, . . . , n}

yi ≥ 0 for all i ∈ {1, 2, . . . ,mlt}
yi ≤ 0 for all i ∈ {1, 2, . . . ,mgt}

(6.33)

Equation B.1 is the primal formulation, whereas Equation B.10 is the corresponding dual

formulation [180]. It can be verified that the dual of the dual is the primal, although the

200

irrelevant constant term c◦ must be dropped. This procedure can be applied to a system of

equalities (Equation B.2), so that
meq∑
i=1

aeq

ijyi = cj (6.34)

for all j ∈ {1, 2, . . . , n}, or equivalently

ATy = c

in which AT is the transpose of A, y is the vector of dual variables, and c is the objec-

tive weighting vector. The dual is hence a transposition between variables and constraints.

Adding a new primal constraint is equivalent to adding a new dual variable.

The Duality Theorem states that if the primal problem (Equation B.1) has an optimal

solution (x∗1, x
∗
2, . . . , x

∗
n), then the dual problem (Equation B.10) has an optimal solution

(y∗1, y
∗
2, . . . , y

∗
m) such that

n∑
j=1

cjx
∗
j =

m∑
i=1

biy
∗
i (6.35)

Moreover, primal solutions (x1, x2, . . . , xn) are directly associated to dual solutions (y1, y2, . . . , ym),

such that (
n∑
j=1

aijxj < bi

)
⇒ (yi = 0) (6.36)

for all i ∈ {1, 2, . . . ,mlt}, (
n∑
j=1

agt

ijxj > bi

)
⇒ (yi = 0) (6.37)

for all i ∈ {1, 2, . . . ,mgt}. Equations B.13-14 are the Complementary Slackness Conditions

[180].

The dual variables yi are sometimes called Lagrangian multipliers, and they quantify

the “force” that a constraint is exerting against the objective function that is “driving” the

optimization; indeed, duality theory is tied to Lagrangian mechanics [181], in the notion of

generalized forces (e.g. forces, torques, pressures). Equations B.13-14 describe solutions for

which the constraints are slack, hence do not exhibit a counteracting force, yi = 0. Duality

is especially noted in game theory, but has applications in physics, economics, etc., insomuch

as it is an inherent feature of constrained optimization [182]. Duality theory has lead to

major advancements in Interior Point Methods, for both linear and nonlinear programming

[174, 183].

201

There are some implementations of the Simplex Method that can alternate between the

primal and dual formulations. Essentially, a primal Simplex iteration penalizes a feasible

vertex for being suboptimal, whereas a dual Simplex iteration penalizes a vertex for being in-

feasible. Elementary texts in mathematical programming demonstrate how to effectuate dual

Simplex iterations using Simplex Tableaus; primal iterations correspond to row operations,

whereas dual iterations correspond to column operations [171, 184].

In relation to the reduced form (Equation B.3),

max
yi

g = −
n∑
i=1

biyi

such that
m∑
i=1

aijyi ≤ cj for all j ∈ {1, 2, . . . , n}

−
m∑
i=1

aijyi ≤ −cj for all j ∈ {1, 2, . . . , n}

(6.38)

Equation B.13 is the dual of the primal general form (Equation B.3), which itself has been

placed in reduced form. The expansion Equation B.3, from (m,n) to (m + 1, n), coincides

with the introduction of a new dual variable ym+1 in Equation B.13, following the procedure

developed in Equations B.8-9.

A new dual variable ym+1 augments the dual feasibility region, and can lead to an un-

bounded dual objective value. This extreme case coincides to the inclusion of a new constraint

in the primal problem,
∑n

j=1 ai,m+1xj ≤ bm+1, which conflicts with the existing constraints,

rendering the primal problem infeasible. More generally, new constraints tends to diminish

the primal objective, as they enhance the dual objective.

When new variables are included in Equation B.3, a sequence of primal simplex iterations

can be used to reestablish optimality for the newly expanded problem. When constraints are

appended to Equation B.3, dual simplex iterations can be used to reestablish feasibility for

the newly expanded problem. In either case, the procedure drives toward solutions that are

both feasible and optimal for the expanded problem.

The procedures for including new variables and new constraints into Equation B.3 can

be adapted to Equation B.1, considering that Equation B.1 can always be converted into

general form. Commercial platforms automatically execute these types of transformations

[71], so they do not usually pose any practical concern.

202

B.4 Incorporation of Integer Variables

The type of problems that can be treated by linear programming is vastly increased if

discrete variables and constraints are permitted. For example, a smelter design team may

need to decide how many converters to install; they may include 3 or 4, but obviously there

is no option to install 3.86 converters.

Equation B.1 is thus extended,

max
xj

f = c◦ +
n∑
j=1

cjxj

such that
n∑
j=1

alt

ijxj ≤ bi for all i ∈ {1, 2, . . . ,mlt}

n∑
j=1

agt

ijxj ≥ bgt

i for all i ∈ {1, 2, . . . ,mgt}

n∑
j=1

aeq

ijxj = beq

i for all i ∈ {1, 2, . . . ,meq}

xj ∈ Z for all j ∈ {1, 2, . . . , nInt}

(6.39)

where nInt ≤ n is the number of variables that are under integrality constraints. Without loss

of generality, Equation B.16 imposes an ordering on the variables, such that (x1, x2, . . . , xnInt
)

have direct integrality constraints, whereas (x(nInt+1), x(nInt+2), . . . , xn) are not directly placed

under the integrality constraints.

Binary variables are a particular case of integer variables, which only consider two possible

values, zero and one. For example, x1 ∈ {0, 1} can be represented within Equation B.16,

using

x1 ≥ 0

x1 ≤ 1

x1 ∈ Z

Binary variables are sometimes called 0-1 variables [185]. As described in Appendix B.5,

they are particularly useful for incorporating categorical variables.

An integer linear program (ILP) is usually understood to have nInt = n, meaning that

all variables are directly under integrality constraints; to be more explicit, the phrase “pure

203

integer linear program” may be used. In contrast, a mixed integer linear program (MILP) is

such that nInt < n. An MILP is said to include a mixture of integer and continuous variables.

To solve Equation B.16, the first wide-reaching success was due to the Branch-and-Bound

Method [186], proposed in 1960. In this approach, a first approximation (x11, x
1
2, . . . , x

1
n) may

be obtained by simply ignoring the integer requirements, and applying one of the methods

described in Appendices B.1-2; if this solution happens to satisfy the integrality constraints,

then (x∗1, x
∗
2, . . . , x

∗
n) = (x11, x

1
2, . . . , x

1
n) and the algorithm ceases. Otherwise, one of the vio-

lated constraints j1 ∈ {1, 2, . . . , nInt} is selected as a branching node, from which two more

linear programs will be considered. Both of these new linear programs consider the constraints

of the original (parent) linear program. However one of the new programs is extended with

xj1 ≤ bx1j1c

and the other is extended with

xj1 ≥ dx1j1e

This branching process has the effect of shrinking the feasibility region to eliminate the

current nonintegral solution from further consideration in the subsequent branches.

In general, the kth node is evaluated as a if it were a continuous linear program, free of any

integrality constrains, giving an optimal solution (xk1, x
k
2, . . . , x

k
n). If some of the integrality

conditions are not satisfied, then one of the violated constraints jk ∈ {1, 2, . . . , nInt} is selected

as a branching node. One of the subsequent evaluations is extended with

x(jk) ≤ bx
k
(jk)
c (6.40)

and the other is extended with

x(jk) ≥ dx
k
(jk)
e (6.41)

Following the evaluation of a node, it is often unclear whether Equation B.17 should be

explored first, or whether it should be B.18. In either case, these subsequent nodes would

typically lead to more branching before encountering a solution that would satisfy all of the

integrality constraints of Equation B.16.

To select the branching variables, a simple and common heuristic is given,

jk = argmax
j∈{1,2,...,nInt}

(0.5− |xj − bxjc − 0.5|) (6.42)

204

The idea is to select a variable for which it is most unclear whether it should be rounded

up or rounded down. There are better performing branching heuristics than Equation B.19,

both for general and specialized problem structures [187].

Each node represents a continuous approximation of Equation B.16, with an additional set

of constraints that direct the search toward the integer optimum. As discussed in Appendix

B.3, duality theory allows the constraints (Equations B.17-18) to be appended to the parent

problem, without having to reinitiate the Simplex Method. For instance, (x11, x
1
2, . . . , x

1
n) is

used as an initial vertex to obtain the second approximation (x21, x
2
2, . . . , x

2
n).

Figure B.5 illustrates the branching sequence, assuming that Equation B.17 always pre-

cedes Equation B.18. The nodes may be processed using a depth-first search (DFS) or

a breadth-first search (BFS); commercial implementations usually combine these two ap-

proaches. DFS is often employed first, to quickly find and record a feasible solution that

satisfies all of the integrality conditions, although it may not be the optimal solution. As the

algorithm progresses, better feasible solutions are encountered, and are recorded in place of

the incumbent feasible solution.

In the context of a maximization (Equation B.16), the incumbent solution provides a

lower bound on the objective. Thus all of the nodes which offer no hope of surpassing the

incumbent solution are immediately eliminated from future computations. A similar logic

can be established in the context of a minimization, whence the current solution offers an

upper bound.

As the algorithm progresses deeper into the tree, there is an increasing number of con-

straints (Equations B.17-18) which are accumulated. In many cases, the linear program is

(a) Depth-First Search (b) Breadth-First Search

Figure 6.8: Possible branching sequences to solve an MILP

205

found to be infeasible as the new constraint is appended. In such a case, the current node

does not provide an integer solution, nor does it lead to any further branching.

In summary, there are three ways in which a node would be dismissed from further

branching,

• The node produces a solution which happens to satisfy all of the integrality constraints,

hence there is no variable xjk to form the branching. (If the corresponding objective

value is superior than the incumbent objective value, then current solution becomes

the new incumbent solution).

• The current node yields an objective value that is surpassed by the incumbent objective

value, hence offering no hope of improving the current objective value.

• The current node has been fully constrained to the extent that the continuous problem

is infeasible.

Every time that a new constraint is appended, dual simplex iterations are applied to detect

if the new problem is infeasible, otherwise to reestablish the feasibility.

Following the initial development of the Branch-and-Bound Method, several other refine-

ments have been incorporated, leading to the Branch-and-Cut Methods [185]. These methods

apply a more aggressive processing of the nodes, before branching. This involves the inclusion

of additional constraints (cuts) which are computationally beneficial; they are designed to

shrink the feasible domain of the continuous problem of the node, without eliminating any

of the integer feasible solutions of B.16.

For example, the problem may include a linear constraint,

4x1 + 3x2 ≤ 6

and the further restriction that x1, x2 are both binary (Figure B.6). Given that x1 = x2 = 1

would violate the constraint, it follows that no more than one of (x1 = 1) or (x2 = 1) can be

true, hence the following cut can be added

x1 + x2 ≤ 1

Figure B.6 shows that this additional cut eliminates two vertices which do not satisfy the

integrality conditions, (1
2
, 1) and (1, 1

2
). The elimination of these two vertices may reduce the

number of Simplex iterations, hence accelerating the computation. Figure B.6 is an example

of the Gomory-Chvátal cutting procedure [188, 189], which was first presented in 1958.

206

(a) Before cut (b) After cut

Figure 6.9: Application of a cut, as part of the Branch-and-Cut Method

In addition to the Gomory-Chvátal cuts, several other procedures have been established

for automatically generating appropriate cuts, and are applied successively to individual

nodes, prior to proceeding with the branching operation. Once again, dual Simplex iterations

are essential for the execution of these cuts.

A considerable effort has been devoted to developing branching protocols, particularly

for scheduling problems [190, 191]. The Beam Search Methods perform a restricted search

of the Branching-and-Bound tree, in which only the most promising nodes are prioritized.

These promising nodes are explored via typical Branch-and-Cut procedures, and are thus

part of the beam, i.e. they are “illuminated”; the rejected nodes remain unexplored, and

are hence “dark”. The criteria for exploring or rejecting a node may differ from one method

to another. In general, these criteria are more severe than the simple comparison to the

incumbent solution; thus a beam search would reject more nodes than a basic Branch-and-Cut

approach, leaving the theoretical possibility that the resulting schedule would be suboptimal.

In practice, the Beam Search Methods perform well, producing optimal or nearly optimal

solutions, with high computational efficiency.

Branch-and-Cut Methods may differ in the type of cuts, as well as the branching protocols.

These methods are now the dominant technique for solving MILP’s, and continue to be an

active area of research and development [185].

B.5 Incorporation of Categorical Variables

A particularly powerful feature of mixed integer linear programming is its capability

to represent categorical (nonnumerical) variables. This is accomplished through the use of

binary variables.

207

For example, there may be some categorical variable Var which may take certain values

which are nonnumerical, Var ∈ {A, B, C}. Thus Var may be equal to A, B or C, but cannot

be simultaneously equal to more than one of these values. This variable can be included into

an MILP, firstly by defining the following binary variables,

βVar,A =

{
1 if Var = A

0 otherwise

βVar,B =

{
1 if Var = B

0 otherwise

βVar,C =

{
1 if Var = C

0 otherwise

Secondly, these integer variables must be implemented along with the following restriction,

βVar,A + βVar,B + βVar,C = 1

which prevents Var from taking on more than one value.

More generally, an MILP may include a set of categorical variables, Vari for i ∈ {1, 2, . . . , ncvar},
where ncvar is the number of categorical variables. Each of these variables is associated to a

discrete range of values V , which is implemented through the use of binary variables,

βiVark =

{
1 if Vari = k

0 otherwise

for all i ∈ {1, 2, . . . , ncvar} and all k ∈ V , in conjunction with the equality∑
k∈V

βiVark = 1 (6.43)

for all i ∈ {1, 2, . . . , ncvar}.

Certain formulations may consider a special value, Null ∈ V , which allows Equation B.20

to be replaced by ∑
k∈V\{Null}

βiVark ≤ 1 (6.44)

for all i ∈ {1, 2, . . . , ncvar}. This approach makes it unnecessary to implement the binary

variables βiVar,Null. Indeed, Vari = Null if and only if the lefthand side of Equation B.20 is

208

zero.

Categorical variables can be used in combination with numerical variables. In particular,

an MILP can support the following logical constraints,

(
Vari = k

)
⇒
(
xikj ≤ xj ≤ xikj

)
which relates Vari to the numerical variable xj. The lower and upper bounds, xikj and xikj ,

must be respected when Vari = k. These types of relationships are known as disjunctive

bounds, and can be implemented using the following inequalities,

xj ≥
∑
k∈V

xikj β
i
Vark (6.45)

≤
∑
k∈V

xikj β
i
Vark (6.46)

for all i ∈ {1, 2, . . . , ncvar}, j ∈ {1, 2, . . . , n} and k ∈ V .

A slightly more complicated structure is given by

(
Vari = k

)
⇒

aikj +
n∑

j′ = 1

j′ 6= j

aikjj′xj′ ≤ xj ≤ aikj +
n∑

j′ = 1

j′ 6= j

aikjj′xj′


These are disjunctive linear constraints. In particular, if aikj = aikj = aikj and aikjj′ = aikjj′ = aikjj′

for all j′, then the condition reduces to

(
Vari = k

)
⇒

xj = aikj +
n∑

j′ = 1

j′ 6= j

aikjj′xj′


Disjunctive linear constraints are implemented into an MILP through the following inequal-

209

ities,

xj ≥ aikj +
n∑

j′ = 1

j′ 6= j

aikjj′xj′ −
(
xj − xj

) (
1− βiVark

)
(6.47)

≤ aikj +
n∑

j′ = 1

j′ 6= j

aikjj′xj′ +
(
xj − xj

) (
1− βiVark

)
(6.48)

for all i ∈ {1, 2, . . . , ncvar}, j ∈ {1, 2, . . . , n} and k ∈ V . Sometimes k = Null is treated

as a special case. The global bounds, xj and xj, must be set such that xj ≤ xj ≤ xj,

regardless of the value of Vari. It is generally helpful that xj be as large as possible, and

xj be as small as possible, while respecting the condition that xj ≤ xj ≤ xj; much like the

cutting procedures described in Appendix B.4, this tends to diminish the relaxed (continuous)

feasibility region, hence accelerating the computations. When xj is a nonnegative variable,

it is often appropriate to use xj = 0.

If Vari is of a particular disjunctive category k, then βi
Vark = 1, and Equations B.24-25

become

xj ≥ aikj +
n∑

j′ = 1

j′ 6= j

aikjj′xj′

≤ aikj +
n∑

j′ = 1

j′ 6= j

aikjj′xj′

Otherwise, if Vari 6= k, then Equations B.24-25 become

xj ≥ aikj +
n∑

j′ = 1

j′ 6= j

aikjj′xj′ −
(
xj − xj

)

≤ aikj +
n∑

j′ = 1

j′ 6= j

aikjj′xj′ +
(
xj − xj

)

which are automatically satisfied, given that xj ≤ xj ≤ xj. For this second case, when

βi
Vark 6= 1, Equations B.24-25 are said to be slack. This notion of slackness coincides with the

discussion in Appendix B.3, albeit in a semi-discrete context.

210

Equations B.22-25 provide a particular structure which is often observed in scheduling

problems [192], and which is amenable to specialized cutting algorithms that are superim-

posed onto the standard Branch-and-Cut approach [190, 193]. Since the early 2000’s, these

specialized Branch-and-Cut approaches have been hybridized with filtered search techniques,

forming part of the Constraint Programming paradigm [93].

It is an ongoing area of research to develop specialized solution techniques for MILP’s

with categorical variables,. This area is especially lucrative, considering the applications in

industrial scheduling [93, 192], and engineering design [194, 195].

B.6 Importance of Linear Fractional Programming

Linear fractional programming (LFP) is a well-known class of nonlinear mathematical

programming, which is only marginally more complicated than linear programming, unless

integer constraints are imposed [196]. Although LFP is nonlinear, it has a particular impor-

tance to MILP, as it can help manage the branching procedures for structured problems, e.g.

in schedule optimization.

A (continuous) linear fractional program has the general form,

max
xj

f =

c◦ +
n∑
j=1

cjxj

d◦ +
n∑
j=1

djxj

such that
n∑
j=1

alt

ijxj ≤ bi for all i ∈ {1, 2, . . . ,mlt}

n∑
j=1

agt

ijxj ≥ bgt

i for all i ∈ {1, 2, . . . ,mgt}

n∑
j=1

aeq

ijxj = beq

i for all i ∈ {1, 2, . . . ,meq}

(6.49)

Without loss of generality, the objective denominator is presumed to be strictly positive,

d◦+
∑n

j=1 djxj ≥ ε > 0, for all feasible solutions; ε is an appropriately small positive number.

Alternatively, if the denominator is strictly negative, then a the objective can be multiplied by

(−1−1) to transfer the negativity into the numerator. Lastly, if the denominator spans positive

and negative values, then the objective function would be unbounded, tending toward infinity

as the denominator approaches zero from the positive direction; this special case is not of

211

practical interest.

In industrial contexts, a linear program (Equation B.1) may be to optimize production.

The corresponding fractional program (Equation B.26) would be to optimize productivity,

meaning the production per unit consumption of some scarce resource [196]; thus production

is placed in the numerator, and consumption is placed in the denominator. For scheduling

problems, Equation B.26 may be to maximize the rate of production; hence the denominator

would be a duration of time. More generally, Equation B.26 represents the optimization of

some measure of efficiency.

Using the Charnes-Cooper Transformation [196], Equation B.26 is converted into the

following linear program,

max
(r,x̃j)

f = c◦r +
n∑
j=0

cjx̃j

such that
n∑
j=1

alt

ijx̃j ≤ bir for all i ∈ {1, 2, . . . ,mlt}

n∑
j=1

agt

ijx̃j ≥ bgt

i r for all i ∈ {1, 2, . . . ,mgt}

n∑
j=1

aeq

ij x̃j = beq

i r for all i ∈ {1, 2, . . . ,meq}

d◦r +
∑n

j=1 djx̃j = 1

(6.50)

such that

xj = rx̃j (6.51)

for all j ∈ {1, 2, . . . , n}. Thus Equation B.27 can be solved via the techniques presented in

Appendices B.1 and B.2, and the final solution is subsequently obtained from Equation B.28.

Complications arise when integral constraints are introduced into Equation B.26, as the

212

integrality conditions of Equation B.16 are convolved with Equation B.28,

max
(r,x̃j)

f = c◦r +
n∑
j=0

cjx̃j

such that
n∑
j=1

alt

ijx̃j ≤ bir for all i ∈ {1, 2, . . . ,mlt}

n∑
j=1

agt

ijx̃j ≥ bgt

i r for all i ∈ {1, 2, . . . ,mgt}

n∑
j=1

aeq

ij x̃j = beq

i r for all i ∈ {1, 2, . . . ,meq}

d◦r +
∑n

j=1 djx̃j = 1

rx̃j ∈ {rz| z ∈ Z} for all j ∈ {1, 2, . . . , nInt}

(6.52)

Equation B.29 is the application of the Charnes-Cooper Transformation onto the general

form of a mixed integer linear fractional program (MILFP).

In an attempt to adapt the branching procedure of Appendix B.4 to an MILFP, Equations

B.17-18 become bilinear equations,

rx̃(jk) ≤ br
kx̃k(jk)c

and

rx̃(jk) ≥ dr
kx̃k(jk)e

in which (rk, x̃k1, x̃
k
2, . . . , x̃

k
n) is the solution obtained at the kth branching node. These bilinear

equations are not supported by the linear duality structure presented Appendix B.3. Thus,

standard MILP solvers are not directly able to accommodate Equation B.29.

The most popular techniques for solving MILFP are based on Dinkelbach’s algorithm

[196], which reduces an MILFP into a sequence of MILP problems. This approach is especially

noted for its uses in schedule optimization [197, 198]. For instance, it can incorporated into

a Beam Search procedure [191], to identify which nodes are likely to be the most productive.

Hybridization of MILFP and MILP is yet another area of research that relates to schedul-

ing and systems management. The outcomes from these efforts are not well-known outside

of the optimization community, which suggests a tremendous potential.

213

APPENDIX C

AMPL FILES USED FOR THE SC-PSC PROBLEM

C.1 mod File

The SC-PSC Problem has been implemented in AMPL [77]. Thus the following AMPL

code is a transliteration of the MILP model presented in Chapter 4 and Section 5.1. The

order of the sections, subsections and constraints is respected. The sets, parameters and

variables are introduced as necessary.

#==

#==

#==

#============================ SECTION 4.1 : GANTT STRUCTURE =============================

#::::::::::::::::::::::::::: Subsection 4.1.1 : Assignments :::::::::::::::::::::::::::::

#Sets and Related Parameters

#---------------------------

set CLASSES;

param n{CLASSES} >= 0 integer, default 1;

param n_Asgn_max {CLASSES} >= 0 integer;

set ASSIGNMENTS = {l1 in CLASSES, l2 in 1..n[l1], l3 in 0..n_Asgn_max[l1]};

set ASSIGNMENTS_O = {(l1,l2,l3) in ASSIGNMENTS: l3 = 0};

set ASSIGNMENTS_CURRENT = ASSIGNMENTS diff ASSIGNMENTS_O;

set TYPES {CLASSES};

#Check that object classes do not share assignment types

check {i in CLASSES, ip in CLASSES:i <> ip}:

card(TYPES[i] inter TYPES[ip]) = 0;

param PSCSymbol symbolic in CLASSES;

set ASSIGNMENTS_PSC = {(PSCSymbol,l2,l3) in ASSIGNMENTS};

set ASSIGNMENTS_O_PSC = {(PSCSymbol,l2,l3) in ASSIGNMENTS: l3 = 0};

set ASSIGNMENTS_CURRENT_PSC = ASSIGNMENTS_PSC diff ASSIGNMENTS_O_PSC;

set TYPES_PSC = TYPES[PSCSymbol];

set TYPES_PSC_Empty within TYPES_PSC;

set TYPES_PSC_minus {TYPES_PSC} within TYPES_PSC default {};

#Variables and Related Parameters (Including Initial Conditions)

#--------------------------------

param t_Begin default 0;

param t_End >= t_Begin;

param t_max >= t_End, default t_End;

param d_max >=0, <= (t_max - t_Begin), default (t_max - t_Begin);

var d {ASSIGNMENTS_CURRENT} >=0, <= d_max;

var t {(l1,l2,l3) in ASSIGNMENTS} >= t_Begin - (if (l3 = 0) then d_max), <= t_max;

param t_O {(l1,l2,l3) in ASSIGNMENTS_O} default t_Begin;

subject to InitialConditions_t{(l1,l2,l3) in ASSIGNMENTS_O}:

214

t[l1,l2,l3] = t_O[l1,l2,l3];

var B_Type {k in (union {i in CLASSES} TYPES[i]), (l1,l2,l3) in ASSIGNMENTS:

k in TYPES[l1]} binary;

param PreviousTypePSC symbolic in TYPES_PSC;

param B_Type_O {k in (union {i in CLASSES} TYPES[i]),

(l1,l2,l3) in ASSIGNMENTS_O: k in TYPES[l1]}

default if l1 = PSCSymbol then

(if k = PreviousTypePSC then 1 else 0)

else 1;

subject to InitialConditions_B_Type {(l1,l2,l3) in ASSIGNMENTS_O, k in TYPES[l1]}:

B_Type[k,l1,l2,l3] = B_Type_O[k,l1,l2,l3];

#Constraints

#-----------

subject to Chp4_Eq001_CurrentAssignmentsBeginInCurrentSchedule

{(l1,l2,l3) in ASSIGNMENTS_CURRENT}:

t[l1,l2,l3] - d[l1,l2,l3] >= t_Begin;

subject to Chp4_Eq002_AssignmentsBeginAfterPredecessorsEnd

{(l1,l2,l3) in ASSIGNMENTS_CURRENT}:

t[l1,l2,l3] - d[l1,l2,l3] >= t[l1,l2,l3-1];

subject to Chp4_Eq003_AssignmentTypeSelection {(l1,l2,l3) in ASSIGNMENTS_CURRENT}:

sum {k in TYPES[l1]} B_Type[k,l1,l2,l3] <= 1;

subject to Chp4_Eq004_ZeroDurationForUnassigned {(l1,l2,l3) in ASSIGNMENTS_CURRENT}:

d[l1,l2,l3] <= d_max*(sum {k in TYPES[l1]} B_Type[k,l1,l2,l3]);

subject to Chp4_Eq005_DeterminedPredecessor {(l1,l2,l3) in ASSIGNMENTS_CURRENT}:

sum {k in TYPES[l1]} B_Type[k,l1,l2,l3] <=

sum {k in TYPES[l1]} B_Type[k,l1,l2,l3-1];

subject to Chp4_Eq006_CarryIntoNextSchedule {(l1,l2,l3) in ASSIGNMENTS_CURRENT}:

t[l1,l2,l3-1] <=

t_End + (t_max - t_End)*(1 - sum {k in TYPES[l1]} B_Type[k,l1,l2,l3]);

#subject to Chp4_Eq007_TimeBoundForl3: (implemented in the declaration of t)

#:::::::::::::::::::::::::: Subsection 4.1.2 : Dependencies :::::::::::::::::::::::::::::

#Sets

#----

set DEPENDENCIES {i in CLASSES, k in TYPES[i]} within

{ip in CLASSES, kp in TYPES[ip], np in 1..n[ip]:

ip <> i or kp <> k} default {};

#Variables

#---------

var B_Supp {k in (union {l1 in CLASSES} TYPES[l1]), (i,l2,l3) in ASSIGNMENTS_CURRENT,

kp in (union {l1 in CLASSES} TYPES[l1]), (ip,l2p,l3p) in ASSIGNMENTS_CURRENT :

k in TYPES[i] and exists {(ipp,kpp,npp) in DEPENDENCIES[i,k]}

(ipp = ip and kpp = kp)}

binary;

#Constraints

#-----------

subject to Chp4_Eq008_DependencyClause {i in CLASSES, k in TYPES[i],

(i,l2,l3) in ASSIGNMENTS_CURRENT, (ip,kp,np) in DEPENDENCIES[i,k]}:

sum{(ip,l2p,l3p) in ASSIGNMENTS_CURRENT}

B_Supp[k,i,l2,l3,kp,ip,l2p,l3p] = np*B_Type[k,i,l2,l3];

215

subject to Chp4_Eq009_TypeSupportConsistency {i in CLASSES, k in TYPES[i],

(i,l2,l3) in ASSIGNMENTS_CURRENT,

(ip,kp,np) in DEPENDENCIES[i,k], (ip,l2p,l3p) in ASSIGNMENTS_CURRENT}:

2*B_Supp[k,i,l2,l3,kp,ip,l2p,l3p] <=

B_Type[k,i,l2,l3] + B_Type[kp,ip,l2p,l3p];

subject to Chp4_Eq010_SupportNoMoreThanOneAssignment {i in CLASSES, k in TYPES[i],

(ip,kp,np) in DEPENDENCIES[i,k], (ip,l2p,l3p) in ASSIGNMENTS_CURRENT}:

B_Type[kp,ip,l2p,l3p] =

sum{(i,l2,l3) in ASSIGNMENTS_CURRENT} B_Supp[k,i,l2,l3,kp,ip,l2p,l3p];

subject to Chp4_Eq011_SimultaneousDuration {i in CLASSES, k in TYPES[i],

(i,l2,l3) in ASSIGNMENTS_CURRENT, (ip,kp,np) in DEPENDENCIES[i,k],

(ip,l2p,l3p) in ASSIGNMENTS_CURRENT}:

d[i,l2,l3] >= d[ip,l2p,l3p] - d_max*(1 - B_Supp[k,i,l2,l3,kp,ip,l2p,l3p]);

subject to Chp4_Eq012_SimultaneousDuration {i in CLASSES, k in TYPES[i],

(i,l2,l3) in ASSIGNMENTS_CURRENT, (ip,kp,np) in DEPENDENCIES[i,k],

(ip,l2p,l3p) in ASSIGNMENTS_CURRENT}:

d[i,l2,l3] <= d[ip,l2p,l3p] + d_max*(1 - B_Supp[k,i,l2,l3,kp,ip,l2p,l3p]);

subject to Chp4_Eq013_SimultaneousCompletionTime {i in CLASSES, k in TYPES[i],

(i,l2,l3) in ASSIGNMENTS_CURRENT, (ip,kp,np) in DEPENDENCIES[i,k],

(ip,l2p,l3p) in ASSIGNMENTS_CURRENT}:

t[i,l2,l3] >= t[ip,l2p,l3p] - t_max*(1 - B_Supp[k,i,l2,l3,kp,ip,l2p,l3p]);

subject to Chp4_Eq014_SimultaneousCompletionTime {i in CLASSES, k in TYPES[i],

(i,l2,l3) in ASSIGNMENTS_CURRENT, (ip,kp,np) in DEPENDENCIES[i,k],

(ip,l2p,l3p) in ASSIGNMENTS_CURRENT}:

t[i,l2,l3] <= t[ip,l2p,l3p] + t_max*(1 - B_Supp[k,i,l2,l3,kp,ip,l2p,l3p]);

#=============== SECTION 4.2 : PEIRCE-SMITH CONVERTERS AS STATE-MACHINES ================

#::::::::::::::::::::: Subsections 4.2.1 : States and Transitions :::::::::::::::::::::::

#Sets and Related Parameters

#---------------------------

set STREAMS_NGFeed;

set ELEMENTS;

set SPECIES_Prod;

set STREAMS_Prod;

param CMatteSymbol symbolic in STREAMS_Prod;

param BlisterSymbol symbolic in STREAMS_Prod diff {CMatteSymbol};

param SlagSymbol symbolic in STREAMS_Prod diff {CMatteSymbol, BlisterSymbol};

param OffgasSymbol symbolic in STREAMS_Prod diff

{CMatteSymbol, BlisterSymbol, SlagSymbol};

check: #Check that STREAMS_Prod = {CMatte, Blister, Slag, Offgas}

card(STREAMS_Prod) = 4;

set STREAMS_NGProd = STREAMS_Prod diff {OffgasSymbol};

set SPECIES {STREAMS_Prod} within SPECIES_Prod;

#Check that each product species only reports to one product stream

check {k in STREAMS_Prod, kp in STREAMS_Prod: k <> kp}:

card(SPECIES[k] inter SPECIES[kp]) = 0;

#Check that each product species is accounted for in at least one product

check:

card(union {k in STREAMS_Prod} SPECIES[k]) = card(SPECIES_Prod);

set SPECIES_Offgas = SPECIES[OffgasSymbol];

set SPECIES_NGProd = SPECIES_Prod diff SPECIES_Offgas;

set FLOWS_NG;

set FLOWS_Ch within FLOWS_NG;

216

set FLOWS_NGBlow within FLOWS_NG diff FLOWS_Ch;

set FLOWS_NGFeed = FLOWS_Ch union FLOWS_NGBlow;

set FLOWS_DCh = FLOWS_NG diff FLOWS_NGFeed;

set FLOWS {STREAMS_NGFeed union STREAMS_NGProd} within FLOWS_NG default {};

#Check that each nongaseous mechanism draws on only one nongaseous stream

check {k in STREAMS_NGFeed union STREAMS_NGProd,

kp in STREAMS_NGFeed union STREAMS_NGProd: k <> kp}:

card(FLOWS[k] inter FLOWS[kp]) = 0;

#Check that nongaseous feed flows map to nongaseous feed streams

check {k in STREAMS_NGFeed}:

if FLOWS[k] within FLOWS_NGFeed then 1 else 0 = 1;

#Check that nongaseous product flows map to discharge streams

check {k in STREAMS_NGProd}:

if FLOWS[k] within FLOWS_DCh then 1 else 0 = 1;

set FLOWS_M_Ch within FLOWS_Ch;

set FLOWS_SM_Ch within FLOWS_Ch diff FLOWS_M_Ch;

set FLOWS_UM_Ch = FLOWS_M_Ch diff (FLOWS_M_Ch union FLOWS_SM_Ch);

set FLOWS_M_DCh within FLOWS_DCh;

set FLOWS_SM_DCh within FLOWS_DCh diff FLOWS_M_DCh;

set FLOWS_UM_DCh = FLOWS_M_DCh diff (FLOWS_M_DCh union FLOWS_SM_DCh);

set FLOWS_M = FLOWS_M_Ch union FLOWS_M_DCh;

set FLOWS_SM = FLOWS_SM_Ch union FLOWS_SM_DCh;

set FLOWS_MSM_Ch = FLOWS_M_Ch union FLOWS_SM_Ch;

set FLOWS_MSM_DCh = FLOWS_M_DCh union FLOWS_SM_DCh;

set FLOWS_MSM = FLOWS_MSM_Ch union FLOWS_MSM_DCh;

#Variables and Related Parameters (Including Initial Conditions)

#--------------------------------

param v_PSC_max {1..n[PSCSymbol]} >= 0;

param rho{STREAMS_NGFeed union SPECIES_NGProd} > 0;

param m_max {STREAMS_NGFeed union ELEMENTS union SPECIES_Prod union STREAMS_NGProd}

default 0;

var m_Ret {k in STREAMS_NGFeed, ASSIGNMENTS_PSC} >= 0, <= m_max[k];

param m_O_Ret {STREAMS_NGFeed, 1..n[PSCSymbol]} >=0, default 0;

subject to InitialConditions_m_Ret {k in STREAMS_NGFeed,

(l2,l3) in ASSIGNMENTS_O_PSC}:

m_Ret[k,l2,l3] = m_O_Ret[k,l2];

var m_RetProd {j in SPECIES_NGProd, ASSIGNMENTS_PSC} >= 0, <= m_max[j];

param m_O_RetProd {SPECIES_NGProd, 1..n[PSCSymbol]} >=0, default 0;

subject to InitialConditions_m_RetProd {j in SPECIES_NGProd,

(l2,l3) in ASSIGNMENTS_O_PSC}:

m_RetProd[j,l2,l3] = m_O_RetProd[j,l2];

param h_min {1..n[PSCSymbol]};

param h_max {1..n[PSCSymbol]};

var h_Ret {(l2,l3) in ASSIGNMENTS_PSC} >= h_min[l2], <= h_max[l2];

param h_O_Ret {1..n[PSCSymbol]} default 0;

subject to InitialConditions_h_Ret {(l2,l3) in ASSIGNMENTS_O_PSC}:

h_Ret[l2,l3] = h_O_Ret[l2];

param d_Int_min {0..7} default 0;

param d_Int_max {i in 0..7} default if i = 0 then (t_End -t_Begin) else d_max;

var d_Int {i in 0..7, ASSIGNMENTS_CURRENT_PSC} >= d_Int_min[i], <= d_Int_max[i];

param v_min {FLOWS_NG} >= 0, default 0;

param v_max {j in FLOWS_NG} >= v_min[j],

default max{jp in 1..n[PSCSymbol]} v_PSC_max[jp];

217

var v {j in FLOWS_NG, ASSIGNMENTS_CURRENT_PSC} >= v_min[j], <= v_max[j];

param u_min {FLOWS_MSM} >= 0, default 0;

param u_max {j in FLOWS_MSM} >= u_min[j];

var u {j in FLOWS_MSM, ASSIGNMENTS_CURRENT_PSC} integer, >= u_min[j], <= u_max[j];

param d_IntType_min {i in 0..7, TYPES_PSC} >= d_Int_min[i], default d_Int_min[i];

param d_IntType_max {i in 0..7, k in TYPES_PSC} >= d_IntType_min[i,k], <= d_Int_max[i],

default d_IntType_min[i,k];

param v_Type_min {j in FLOWS_NG, TYPES_PSC} >= v_min[j], default v_min[j];

param v_Type_max {j in FLOWS_NG, k in TYPES_PSC} >= v_Type_min[j,k],

<= v_max[j], default v_Type_min[j,k];

param u_Type_min {j in FLOWS_MSM, TYPES_PSC} >= u_min[j], default u_min[j];

param u_Type_max {j in FLOWS_MSM, k in TYPES_PSC} >= u_Type_min[j,k], <= u_max[j],

default u_Type_min[j,k];

param v_u {FLOWS_M} >= 0;

param v_u_max {FLOWS_SM} >= 0;

#Constraints

#-----------

subject to Chp4_Eq015_DecomposePSCTransitionsIntoIntervals

{(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

d[PSCSymbol,l2,l3] = sum {i in 1..7} d_Int[i,l2,l3];

subject to Chp4_Eq016_IntertransitionTime {(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

d_Int[0,l2,l3] = t[PSCSymbol,l2,l3] - d[PSCSymbol,l2,l3] - t[PSCSymbol,l2,l3 - 1];

subject to Chp4_Eq017_EmptyConverter {(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

sum {k in STREAMS_NGFeed} m_Ret[k,l2,l3]/rho[k]

+ sum{j in SPECIES_NGProd} m_RetProd[j,l2,l3]/rho[j] <=

v_PSC_max[l2]*(1 - sum{k in TYPES_PSC_Empty} B_Type[k,PSCSymbol,l2,l3]);

subject to Chp4_Eq018_EmptyConverter {(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

h_Ret[l2,l3] >=

h_min[l2]*(1 - sum{k in TYPES_PSC_Empty} B_Type[k,PSCSymbol,l2,l3]);

subject to Chp4_Eq019_EmptyConverter {(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

h_Ret[l2,l3] <=

h_max[l2]*(1 - sum{k in TYPES_PSC_Empty} B_Type[k,PSCSymbol,l2,l3]);

subject to Chp4_Eq020_MechanisticPreparedness {k in TYPES_PSC,

(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

B_Type[k,PSCSymbol,l2,l3] <=

sum{kp in TYPES_PSC_minus[k]} B_Type[kp,PSCSymbol,l2,l3-1];

subject to Chp4_Eq021_TypeBasedBounds {i in 0..7, (l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

d_Int[i,l2,l3] >= sum{k in TYPES_PSC} d_IntType_min[i,k]*B_Type[k,PSCSymbol,l2,l3];

subject to Chp4_Eq022_TypeBasedBounds {i in 0..7, (l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

d_Int[i,l2,l3] <= d_Int_max[i]

- sum{k in TYPES_PSC}

(d_Int_max[i] - d_IntType_max[i,k])*B_Type[k,PSCSymbol,l2,l3];

subject to Chp4_Eq023_TypeBasedBounds {i in 0..7, (l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

d_Int[i,l2,l3] <= d_Int_max[i]*(sum{k in TYPES_PSC} B_Type[k,PSCSymbol,l2,l3]);

subject to Chp4_Eq024_TypeBasedBounds {j in FLOWS_NG,

(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

v[j,l2,l3] >= sum{k in TYPES_PSC} v_Type_min[j,k]*B_Type[k,PSCSymbol,l2,l3];

subject to Chp4_Eq025_TypeBasedBounds {j in FLOWS_NG,

(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

v[j,l2,l3] <= v_max[j]

- sum{k in TYPES_PSC}

(v_max[j] - v_Type_max[j,k])*B_Type[k,PSCSymbol,l2,l3];

subject to Chp4_Eq026_TypeBasedBounds {j in FLOWS_NG,

218

(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

v[j,l2,l3] <= v_max[j]*(sum{k in TYPES_PSC} B_Type[k,PSCSymbol,l2,l3]);

subject to Chp4_Eq027_TypeBasedBounds {j in FLOWS_MSM,

(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

u[j,l2,l3] >= sum{k in TYPES_PSC} u_Type_min[j,k]*B_Type[k,PSCSymbol,l2,l3];

subject to Chp4_Eq028_TypeBasedBounds {j in FLOWS_MSM,

(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

u[j,l2,l3] <= u_max[j]

- sum{k in TYPES_PSC}

(u_max[j] - u_Type_max[j,k])*B_Type[k,PSCSymbol,l2,l3];

subject to Chp4_Eq029_TypeBasedBounds {j in FLOWS_MSM,

(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

u[j,l2,l3] <= u_max[j]*(sum{k in TYPES_PSC} B_Type[k,PSCSymbol,l2,l3]);

subject to Chp4_Eq030_FlowVolumeModulation {j in FLOWS_M,

(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

v[j,l2,l3] = v_u[j]*u[j,l2,l3];

subject to Chp4_Eq031_FlowVolumeSemiModulation {j in FLOWS_SM,

(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

v[j,l2,l3] <= v_u_max[j]*u[j,l2,l3];

#:::::::::::::::::::::::: Subsection 4.2.2 : Converting Actions :::::::::::::::::::::::::

#Variables and Related Parameters

#--------------------------------

var d_Ch {(l2,l3) in ASSIGNMENTS_CURRENT_PSC};

subject to d2Interpretation {(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

d_Ch[l2,l3] = d_Int[2,l2,l3];

var d_Blow {(l2,l3) in ASSIGNMENTS_CURRENT_PSC};

subject to d4Interpretation {(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

d_Blow[l2,l3] = d_Int[4,l2,l3];

var d_DCh {(l2,l3) in ASSIGNMENTS_CURRENT_PSC};

subject to d6Interpretation {(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

d_DCh[l2,l3] = d_Int[6,l2,l3];

#Check that we use the lowest possible indices,

while respecting (d_Ch,d_Blow,d_DCh) = (d_2,d_4,d_6)

check {i in 1..3, k in TYPES_PSC}:

if (d_IntType_max[2*i+1,k] = 0) then 3 >=

if (d_IntType_max[2*i,k] = 0) then 1 +

if (d_IntType_min[2*i,k] = 0) then 1 +

if (d_IntType_min[2*i+1,k] = 0) then 1;

param d_v {FLOWS_NG} >= 0, default 0;

param d_u {FLOWS_MSM} >= 0, default 0;

param d_Ch_Type {TYPES_PSC} >= 0, default 0;

param d_DCh_Type {TYPES_PSC} >= 0, default 0;

param d_Blow_Type {TYPES_PSC} >= 0, default 0;

#Constraints

#-----------

subject to Chp4_Eq032_ChargingTime {(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

d_Ch[l2,l3] = sum{j in FLOWS_Ch} d_v[j]*v[j,l2,l3]

+ sum{j in FLOWS_MSM_Ch} d_u[j]*u[j,l2,l3]

+ sum{k in TYPES_PSC} d_Ch_Type[k]*B_Type[k,PSCSymbol,l2,l3];

subject to Chp4_Eq033_DischargingTime {(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

d_DCh[l2,l3] = sum{j in FLOWS_DCh} d_v[j]*v[j,l2,l3]

219

+ sum{j in FLOWS_MSM_DCh} d_u[j]*u[j,l2,l3]

+ sum{k in TYPES_PSC} d_DCh_Type[k]*B_Type[k,PSCSymbol,l2,l3];

subject to Chp4_Eq034_BlowingFluxTimeBound {(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

d_Blow[l2,l3] >= sum{j in FLOWS_NGBlow} d_v[j]*v[j,l2,l3]

+ sum{k in TYPES_PSC} d_Blow_Type[k]*B_Type[k,PSCSymbol,l2,l3];

#======================== SECTION 4.3 : INTERMEDIATE COMPUTATIONS =======================

#::::::::::::::::::::: Subsections 4.3.1 : Intermediate Variables :::::::::::::::::::::::

#Variables and Related Parameters (Including Initial Conditions)

#--------------------------------

var m {k in STREAMS_NGFeed, (l2,l3) in ASSIGNMENTS_CURRENT_PSC} >= 0, <= m_max[k];

var m_Prod {i in ELEMENTS union SPECIES_Prod, (l2,l3) in ASSIGNMENTS_PSC} >= 0,

<= (if l3 > 0 then m_max[i] else 0);

var h_Ch {(l2,l3) in ASSIGNMENTS_PSC} >= h_min[l2], <= h_max[l2];

var h_NGBlow {(l2,l3) in ASSIGNMENTS_PSC} >= h_min[l2], <= h_max[l2];

param m_Blast_max {ELEMENTS} >= 0, default 0;

var m_Blast {i in ELEMENTS, (l2,l3) in ASSIGNMENTS_PSC} >= 0,

<= (if l3 > 0 then m_Blast_max[i] else 0);

param h_Blast_min default 0;

param h_Blast_max default 0;

var h_Blast {(l2,l3) in ASSIGNMENTS_PSC} >= (if l3 > 0 then h_Blast_min else 0),

<= (if l3 > 0 then h_Blast_max else 0);

param h_Offgas_min;

param h_Offgas_max;

var h_Offgas {(l2,l3) in ASSIGNMENTS_PSC} >= h_Offgas_min, <= h_Offgas_max;

param h_DCh_min;

param h_DCh_max;

var h_DCh {(l2,l3) in ASSIGNMENTS_PSC} >= h_DCh_min, <= h_DCh_max;

param h_Env_max {0..7} >= 0, default 0;

var h_Env {i in 0..7, (l2,l3) in ASSIGNMENTS_PSC} >= 0,

<= (if l3 > 0 then h_Env_max[i] else 0);

param w {ELEMENTS, STREAMS_NGFeed union SPECIES_Prod} >= 0, default 0;

param w_Feed_H {FLOWS_NGFeed};

#Constraints

#-----------

subject to Chp4_Eq035_FeedMass {k in STREAMS_NGFeed, (l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

m[k,l2,l3] = m_Ret[k,l2,l3-1] + sum {j in FLOWS[k]} rho[k]*v[j,l2,l3];

subject to Chp4_Eq036_ElementalProductMass {i in ELEMENTS,

(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

m_Prod[i,l2,l3] = sum {j in SPECIES_NGProd} w[i,j]*m_RetProd[j,l2,l3-1]

+ sum {k in STREAMS_NGFeed} w[i,k]*(m[k,l2,l3] - m_Ret[k,l2,l3])

+ m_Blast[i,l2,l3];

subject to Chp4_Eq037_ChargeHeat {(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

h_Ch[l2,l3] = sum {k in STREAMS_NGFeed, j in FLOWS[k] diff FLOWS_NGBlow}

w_Feed_H[j]*rho[k]*v[j,l2,l3];

subject to Chp4_Eq038_NongaseousBlowHeat {(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

h_NGBlow[l2,l3] = sum {k in STREAMS_NGFeed, j in FLOWS[k] inter FLOWS_NGBlow}

w_Feed_H[j]*rho[k]*v[j,l2,l3];

#::::::::::::::::::::::: Subsection 4.3.2 : Blast Elemental Masses ::::::::::::::::::::::

#Parameters

220

#----------

param m_Blast_dot {ELEMENTS, TYPES_PSC} >= 0, default 0;

#Constraints

#-----------

subject to Chp4_Eq039_BlastMass {i in ELEMENTS, k in TYPES_PSC,

(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

m_Blast[i,l2,l3] >= m_Blast_dot[i,k]*d_Blow[l2,l3]

- m_Blast_max[i]*(1 - B_Type[k,PSCSymbol,l2,l3]);

subject to Chp4_Eq040_BlastMass {i in ELEMENTS, k in TYPES_PSC,

(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

m_Blast[i,l2,l3] <= m_Blast_dot[i,k]*d_Blow[l2,l3]

+ m_Blast_max[i]*(1 - B_Type[k,PSCSymbol,l2,l3]);

subject to Chp4_Eq041_UndeterminedBlastMass {i in ELEMENTS,

(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

m_Blast[i,l2,l3] <=

m_Blast_max[i]*(sum{k in TYPES_PSC} B_Type[k,PSCSymbol,l2,l3]);

#:::::::::::::::::::::: Subsection 4.3.3 : Product Species Masses :::::::::::::::::::::::

#Sets and Related Parameters

#---------------------------

set REGIMES;

set SPECIES_RgProd within SPECIES_NGProd;

set REGIMES_spec {SPECIES_RgProd} within REGIMES;

set TYPES_PSC_Prod within TYPES_PSC;

param OXYGEN_EFFICIENCY in [0,1];

param FERROSLAG_RATIO >= 0;

param epsilon_mProd default 0.0001;

param OSymbol symbolic in ELEMENTS;

param O2Symbol symbolic in SPECIES_Offgas;

param Fe2SiO4Symbol symbolic in SPECIES[SlagSymbol];

param Fe3O4Symbol symbolic in SPECIES[SlagSymbol];

#Variables

#---------

var B_Rg {REGIMES, ASSIGNMENTS_CURRENT_PSC} binary;

#Constraints

#-----------

subject to Chp4_Eq042_SpeciesRegimeElimination {j in SPECIES_RgProd,

(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

m_Prod[j,l2,l3] <= m_max[j]*(sum {k in REGIMES_spec[j]} B_Rg[k,l2,l3]);

subject to Chp4_Eq043_GlobalElementSpeciesMassBalance {i in ELEMENTS,

(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

sum{j in SPECIES_Prod} w[i,j]*m_Prod[j,l2,l3] = m_Prod[i,l2,l3];

subject to Chp4_Eq044_RegimeSelection {(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

sum {k in REGIMES} B_Rg[k,l2,l3] = card(REGIMES)

- (card(REGIMES)- 1)*(sum {k in TYPES_PSC_Prod} B_Type[k,PSCSymbol,l2,l3]);

subject to Chp4_Eq045_SpeciesRegimeElimination {j in SPECIES_Prod,

(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

m_Prod[j,l2,l3] <= m_max[j] - (m_max[j] - epsilon_mProd)*

(1 - sum {k in TYPES_PSC_Prod} B_Type[k,PSCSymbol,l2,l3]);

subject to Chp4_Eq046_OxygenEfficiency {(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

221

m_Prod[O2Symbol,l2,l3] = (1-OXYGEN_EFFICIENCY)*m_Blast[OSymbol,l2,l3];

subject to Chp4_Eq047_FerroSlagRatio {(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

FERROSLAG_RATIO*m_Prod[Fe3O4Symbol,l2,l3] = 0.70514*m_Prod[Fe2SiO4Symbol,l2,l3];

#::::::::::::::::::::::::::: Subsection 4.3.4 : Blast Heat ::::::::::::::::::::::::::::::

#Parameters

#----------

param h_Blast_dot {TYPES_PSC} default 0;

#Constraints

#-----------

subject to Chp4_Eq048_BlastHeat {k in TYPES_PSC, (l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

h_Blast[l2,l3] >= h_Blast_dot[k]*d_Blow[l2,l3]

- (h_Blast_max - h_Blast_min)*(1 - B_Type[k,PSCSymbol,l2,l3]);

subject to Chp4_Eq049_BlastHeat {k in TYPES_PSC, (l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

h_Blast[l2,l3] <= h_Blast_dot[k]*d_Blow[l2,l3]

+ (h_Blast_max - h_Blast_min)*(1 - B_Type[k,PSCSymbol,l2,l3]);

subject to Chp4_Eq050_UndeterminedBlastHeat {(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

h_Blast[l2,l3] >= h_Blast_min*(sum{k in TYPES_PSC} B_Type[k,PSCSymbol,l2,l3]);

subject to Chp4_Eq051_UndeterminedBlastHeat {(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

h_Blast[l2,l3] <= h_Blast_max*(sum{k in TYPES_PSC} B_Type[k,PSCSymbol,l2,l3]);

#::::::::::::::::::::::::::: Subsection 4.3.5 : Offgas Heat :::::::::::::::::::::::::::::

#Parameters

#----------

param w_Offgas_H {j in SPECIES_Offgas, TYPES_PSC};

#Constraints

#-----------

subject to Chp4_Eq052_OffgasHeat {k in TYPES_PSC, (l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

h_Offgas[l2,l3] >= sum {j in SPECIES_Offgas} w_Offgas_H[j,k]*m_Prod[j,l2,l3]

- (h_Offgas_max - h_Offgas_min)*(1 - B_Type[k,PSCSymbol,l2,l3]);

subject to Chp4_Eq053_OffgasHeat {k in TYPES_PSC, (l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

h_Offgas[l2,l3] <= sum {j in SPECIES_Offgas} w_Offgas_H[j,k]*m_Prod[j,l2,l3]

+ (h_Offgas_max - h_Offgas_min)*(1 - B_Type[k,PSCSymbol,l2,l3]);

subject to Chp4_Eq054_UndeterminedOffgasHeat {(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

h_Offgas[l2,l3] >= h_Offgas_min*(sum{k in TYPES_PSC} B_Type[k,PSCSymbol,l2,l3]);

subject to Chp4_Eq055_UndeterminedOffgasHeat {(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

h_Offgas[l2,l3] <= h_Offgas_max*(sum{k in TYPES_PSC} B_Type[k,PSCSymbol,l2,l3]);

#::::::::::::::::::::::::: Subsection 4.3.6 : Discharge Heat ::::::::::::::::::::::::::::

#Sets and Parameters

#-------------------

set TYPES_PSC_IDCh = {k in TYPES_PSC diff TYPES_PSC_Empty:

exists {j in FLOWS_DCh} v_Type_max[j,k] > 0};

param w_DCh_H {STREAMS_NGFeed union SPECIES_NGProd, TYPES_PSC_IDCh};

#Constraints

#-----------

subject to Chp4_Eq056_DChHeat {k in TYPES_PSC_IDCh, (l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

h_DCh[l2,l3] >= sum {j in SPECIES_NGProd}

222

w_DCh_H[j,k]*(m_Prod[j,l2,l3] - m_RetProd[j,l2,l3])

- (h_DCh_max - h_DCh_min)*(1 - B_Type[k,PSCSymbol,l2,l3]);

subject to Chp4_Eq057_DChHeat {k in TYPES_PSC_IDCh,

(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

h_DCh[l2,l3] <= sum {j in SPECIES_NGProd}

w_DCh_H[j,k]*(m_Prod[j,l2,l3] - m_RetProd[j,l2,l3])

+ (h_DCh_max - h_DCh_min)*(1 - B_Type[k,PSCSymbol,l2,l3]);

subject to Chp4_Eq058_UndeterminedDChHeat {(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

h_DCh[l2,l3] >= h_DCh_min*(sum{k in TYPES_PSC_Empty union TYPES_PSC_IDCh}

B_Type[k,PSCSymbol,l2,l3]);

subject to Chp4_Eq059_UndeterminedDChHeat {(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

h_DCh[l2,l3] <= h_DCh_max*(sum{k in TYPES_PSC_Empty union TYPES_PSC_IDCh}

B_Type[k,PSCSymbol,l2,l3]);

#::::::::::::::::::::: Subsection 4.3.7 : Environmental Heat Losses :::::::::::::::::::::

#Parameters

#----------

param h_EnvType {0..7, TYPES_PSC} >= 0, default 0;

param h_EnvType_dot {0..7, TYPES_PSC} >= 0, default 0;

#Constraints

#-----------

subject to Chp4_Eq060_EnvHeatLoss {k in TYPES_PSC, (l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

h_Env[0,l2,l3] >= h_EnvType[0,k]*B_Type[k,PSCSymbol,l2,l3-1]

+ h_EnvType_dot[0,k]*d_Int[0,l2,l3]

- h_Env_max[0]*(1 - B_Type[k,PSCSymbol,l2,l3-1]);

subject to Chp4_Eq061_EnvHeatLoss {k in TYPES_PSC, (l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

h_Env[0,l2,l3] <= h_EnvType[0,k]*B_Type[k,PSCSymbol,l2,l3-1]

+ h_EnvType_dot[0,k]*d_Int[0,l2,l3]

+ h_Env_max[0]*(1 - B_Type[k,PSCSymbol,l2,l3-1]);

subject to Chp4_Eq062_EnvHeatLoss {i in 1..7,

k in TYPES_PSC, (l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

h_Env[i,l2,l3] >= h_EnvType[i,k]*B_Type[k,PSCSymbol,l2,l3]

+ h_EnvType_dot[i,k]*d_Int[i,l2,l3]

- h_Env_max[i]*(1 - B_Type[k,PSCSymbol,l2,l3]);

subject to Chp4_Eq063_EnvHeatLoss {i in 1..7,

k in TYPES_PSC, (l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

h_Env[i,l2,l3] <= h_EnvType[i,k]*B_Type[k,PSCSymbol,l2,l3]

+ h_EnvType_dot[i,k]*d_Int[i,l2,l3]

+ h_Env_max[i]*(1 - B_Type[k,PSCSymbol,l2,l3]);

subject to Chp4_Eq064_UndeterminedEnvHeatLoss {i in 0..7,

(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

h_Env[i,l2,l3] <=

h_Env_max[i]*(sum{k in TYPES_PSC} B_Type[k,PSCSymbol,l2,l3]);

#========================= SECTION 4.4 : FORWARD COMPUTATIONS ===========================

#:::::::::::::::::::::: Subsection 4.4.1 : Retained Feed Masses :::::::::::::::::::::::::

#Constraints

#-----------

subject to Chp4_Eq065_CompleteReaction {k in STREAMS_NGFeed,

(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

m_Ret[k,l2,l3] >= m[k,l2,l3]

223

- m_max[k]*sum{kp in TYPES_PSC: d_IntType_max[4,kp] > 0}

B_Type[kp,PSCSymbol,l2,l3];

subject to Chp4_Eq066_CompleteReaction {k in STREAMS_NGFeed,

(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

m_Ret[k,l2,l3] <= m[k,l2,l3]

+ m_max[k]*sum{kp in TYPES_PSC: d_IntType_max[4,kp] > 0}

B_Type[kp,PSCSymbol,l2,l3];

subject to Chp4_Eq067_CompleteReaction {k in STREAMS_NGFeed,

(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

m_Ret[k,l2,l3] <= m_max[k]*(1 -

sum{kp in TYPES_PSC: d_IntType_max[4,kp] > 0}

B_Type[kp,PSCSymbol,l2,l3]);

#::::::::::::::::: Subsection 4.4.2 : Retained Product Species Masses :::::::::::::::::::

#Constraints

#-----------

subject to Chp4_Eq068_CompleteDischarge {kp in STREAMS_NGProd, j in SPECIES[kp],

(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

m_RetProd[j,l2,l3] >= m_Prod[j,l2,l3]

- m_max[j]*(sum{k in TYPES_PSC: exists {jp in FLOWS[kp]} v_Type_max[jp,k] > 0}

B_Type[k,PSCSymbol,l2,l3]);

subject to Chp4_Eq069_CompleteDischarge {kp in STREAMS_NGProd, j in SPECIES[kp],

(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

m_RetProd[j,l2,l3] <= m_Prod[j,l2,l3]

+ m_max[j]*(sum{k in TYPES_PSC: exists {jp in FLOWS[kp]} v_Type_max[jp,k] > 0}

B_Type[k,PSCSymbol,l2,l3]);

subject to Chp4_Eq070_CompleteDischarge {kp in STREAMS_NGProd, j in SPECIES[kp],

(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

m_RetProd[j,l2,l3] <= m_max[j]*(1 - sum{k in TYPES_PSC:

exists {jp in FLOWS[kp]} v_Type_max[jp,k] > 0}

B_Type[k,PSCSymbol,l2,l3]);

subject to Chp4_Eq071_DischargeStreamVolume {k in STREAMS_NGProd,

(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

sum{j in SPECIES[k]} (m_Prod[j,l2,l3] - m_RetProd[j,l2,l3])/rho[j] =

sum{j in FLOWS[k]} v[j,l2,l3];

#::::::::::::::::::::::: Subsection 4.4.3 : Forward Heat Computation ::::::::::::::::::::

#Constraints

#-----------

subject to Chp4_Eq072_RetainedHeat {(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

h_Ret[l2,l3] = h_Ret[l2,l3-1] + h_Ch[l2,l3] + h_NGBlow[l2,l3] + h_Blast[l2,l3]

- h_Offgas[l2,l3] - h_DCh[l2,l3] - sum{i in 0..7} h_Env[i,l2,l3];

#==================== SECTION 4.5 : FEASIBLE CONVERTER TRANSITIONS ======================

#::::::: Subsection 4.5.1 : Direct Transition Constraints in General Linear Form ::::::::

#Sets and Related Parameters

#---------------------------

set DIRECT_TRANSITION_CONSTRAINTS_PSC default {};

param a_direct_mRet_ {DIRECT_TRANSITION_CONSTRAINTS_PSC, STREAMS_NGFeed} default 0;

param a_direct_mRetProd_ {DIRECT_TRANSITION_CONSTRAINTS_PSC,

SPECIES_NGProd} default 0;

224

param a_direct_hRet_ {DIRECT_TRANSITION_CONSTRAINTS_PSC} default 0;

param a_direct_BType_ {DIRECT_TRANSITION_CONSTRAINTS_PSC, TYPES_PSC} default 0;

param a_direct_d {DIRECT_TRANSITION_CONSTRAINTS_PSC, 0..7};

param a_direct_v {DIRECT_TRANSITION_CONSTRAINTS_PSC, FLOWS_NG} default 0;

param a_direct_u {DIRECT_TRANSITION_CONSTRAINTS_PSC, FLOWS_MSM} default 0;

param a_direct_BType {DIRECT_TRANSITION_CONSTRAINTS_PSC, TYPES_PSC} default 0;

param b_direct {DIRECT_TRANSITION_CONSTRAINTS_PSC} default 0;

#Constraints

#-----------

subject to Chp4_Eq073_DirectTransition {i in DIRECT_TRANSITION_CONSTRAINTS_PSC,

(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

sum {k in STREAMS_NGFeed} a_direct_mRet_[i,k]*m_Ret[k,l2,l3-1]

+ sum {j in SPECIES_NGProd} a_direct_mRetProd_[i,j]*m_RetProd[j,l2,l3-1]

+ a_direct_hRet_[i]*h_Ret[l2,l3-1]

+ sum {k in TYPES_PSC} a_direct_BType_[i,k]*B_Type[k,PSCSymbol,l2,l3-1]

+ sum {ip in 0..7} a_direct_d[i,ip]*d_Int[ip,l2,l3]

+ sum {j in FLOWS_NG} a_direct_v[i,j]*v[j,l2,l3]

+ sum {j in FLOWS_MSM} a_direct_u[i,j]*u[j,l2,l3]

+ sum {k in TYPES_PSC} a_direct_BType[i,k]*B_Type[k,PSCSymbol,l2,l3]

<= b_direct[i];

#:::::::::::::::::::: Subsection 4.5.2 : Bath Composition Constraints :::::::::::::::::::

#Parameters

#----------

param w_Bath_O_min {i in ELEMENTS union STREAMS_NGFeed union STREAMS_NGProd, TYPES_PSC}

>= 0,

<= if i in ELEMENTS then

max {k in STREAMS_NGFeed union SPECIES_NGProd} w[i,k] else 1,

default 0;

param w_Bath_O_max {i in ELEMENTS union STREAMS_NGFeed union STREAMS_NGProd,

k in TYPES_PSC}

>= w_Bath_O_min[i,k],

<= if i in ELEMENTS then max {kp in STREAMS_NGFeed union SPECIES_NGProd}

w[i,kp] else 1,

default (if i in ELEMENTS then max {kp in STREAMS_NGFeed union SPECIES_NGProd}

w[i,kp] else 1);

param w_Bath_Blow_min {i in ELEMENTS union STREAMS_NGFeed union STREAMS_NGProd,

TYPES_PSC}

>= 0,

<= if i in ELEMENTS then

max {k in STREAMS_NGFeed union SPECIES_NGProd} w[i,k] else 1,

default 0;

param w_Bath_Blow_max {i in ELEMENTS union STREAMS_NGFeed union STREAMS_NGProd,

k in TYPES_PSC}

>= w_Bath_Blow_min[i,k],

<= if i in ELEMENTS then

max {kp in STREAMS_NGFeed union SPECIES_NGProd} w[i,kp] else 1,

default (if i in ELEMENTS then

max {kp in STREAMS_NGFeed union SPECIES_NGProd} w[i,kp] else 1);

param w_Bath_DCh_min {i in ELEMENTS union STREAMS_NGFeed union STREAMS_NGProd,

TYPES_PSC}

>= 0,

225

<= if i in ELEMENTS then max {j in SPECIES_NGProd} w[i,j] else 1,

default 0;

param w_Bath_DCh_max {i in ELEMENTS union STREAMS_NGFeed union STREAMS_NGProd,

k in TYPES_PSC}

>= w_Bath_DCh_min[i,k],

<= if i in ELEMENTS then

max {kp in STREAMS_NGFeed union SPECIES_NGProd} w[i,kp] else 1,

default (if i in ELEMENTS then

max {kp in STREAMS_NGFeed union SPECIES_NGProd} w[i,kp] else 1);

param w_strm_O_min {i in ELEMENTS union SPECIES_NGProd, k in STREAMS_NGProd, TYPES_PSC}

>= if i in ELEMENTS then min {j in SPECIES[k]} w[i,j] else 0,

<= if i in ELEMENTS then max {j in SPECIES[k]} w[i,j] else 1,

default (if i in ELEMENTS then min {j in SPECIES[k]} w[i,j] else 0);

param w_strm_O_max {i in ELEMENTS union SPECIES_NGProd, k in STREAMS_NGProd,

kp in TYPES_PSC}

>= w_strm_O_min[i,k,kp],

<= if i in ELEMENTS then max {j in SPECIES[k]} w[i,j] else 1,

default (if i in ELEMENTS then max {j in SPECIES[k]} w[i,j] else 1);

param w_strm_Blow_min {i in ELEMENTS union SPECIES_NGProd, k in STREAMS_NGProd,

TYPES_PSC}

>= if i in ELEMENTS then min {j in SPECIES[k]} w[i,j] else 0,

<= if i in ELEMENTS then max {j in SPECIES[k]} w[i,j] else 1,

default (if i in ELEMENTS then min {j in SPECIES[k]} w[i,j] else 0);

param w_strm_Blow_max {i in ELEMENTS union SPECIES_NGProd, k in STREAMS_NGProd,

kp in TYPES_PSC}

>= w_strm_Blow_min[i,k,kp],

<= if i in ELEMENTS then max {j in SPECIES[k]} w[i,j] else 1,

default (if i in ELEMENTS then max {j in SPECIES[k]} w[i,j] else 1);

param m_strm_max {i in ELEMENTS, k in STREAMS_NGProd} >= 0,

default max {j in SPECIES[k]} w[i,j]*m_max[j];

#Constraints

#-----------

subject to Chp4_Eq074_BathInitialElementalWeightFraction {i in ELEMENTS, k in TYPES_PSC,

(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

sum{kp in STREAMS_NGFeed} w[i,kp]*m_Ret[kp,l2,l3-1]

+ sum{j in SPECIES_NGProd} w[i,j]*m_RetProd[j,l2,l3-1] >=

w_Bath_O_min[i,k]*(sum{kp in STREAMS_NGFeed} m_Ret[kp,l2,l3-1]

+ sum{j in SPECIES_NGProd} m_RetProd[j,l2,l3-1])

- m_max[i]*(1 - B_Type[k,PSCSymbol,l2,l3]);

subject to Chp4_Eq075_BathInitialElementalWeightFraction {i in ELEMENTS, k in TYPES_PSC,

(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

sum{kp in STREAMS_NGFeed} w[i,kp]*m_Ret[kp,l2,l3-1]

+ sum{j in SPECIES_NGProd} w[i,j]*m_RetProd[j,l2,l3-1] <=

w_Bath_O_max[i,k]*(sum{kp in STREAMS_NGFeed} m_Ret[kp,l2,l3-1]

+ sum{j in SPECIES_NGProd} m_RetProd[j,l2,l3-1])

+ m_max[i]*(1 - B_Type[k,PSCSymbol,l2,l3]);

subject to Chp4_Eq076_BathBlowElementalWeightFraction {i in ELEMENTS, k in TYPES_PSC,

(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

sum {kp in STREAMS_NGFeed} w[i,kp]*m_Ret[kp,l2,l3]

+ sum {j in SPECIES_NGProd} w[i,j]*m_Prod[j,l2,l3] >=

w_Bath_Blow_min[i,k]*(sum {kp in STREAMS_NGFeed} m_Ret[kp,l2,l3]

+ sum {j in SPECIES_NGProd} m_Prod[j,l2,l3])

- m_max[i]*(1 - B_Type[k,PSCSymbol,l2,l3]);

226

subject to Chp4_Eq077_BathBlowElementalWeightFraction {i in ELEMENTS, k in TYPES_PSC,

(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

sum {kp in STREAMS_NGFeed} w[i,kp]*m_Ret[kp,l2,l3]

+ sum {j in SPECIES_NGProd} w[i,j]*m_Prod[j,l2,l3] <=

w_Bath_Blow_max[i,k]*(sum {kp in STREAMS_NGFeed} m_Ret[kp,l2,l3]

+ sum {j in SPECIES_NGProd} m_Prod[j,l2,l3])

+ m_max[i]*(1 - B_Type[k,PSCSymbol,l2,l3]);

subject to Chp4_Eq078_BathDChElementalWeightFraction {i in ELEMENTS, k in TYPES_PSC,

(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

sum {kp in STREAMS_NGFeed} w[i,kp]*m_Ret[kp,l2,l3]

+ sum {j in SPECIES_NGProd} w[i,j]*m_RetProd[j,l2,l3] >=

w_Bath_DCh_min[i,k]*(sum {kp in STREAMS_NGFeed} m_Ret[kp,l2,l3]

+ sum {j in SPECIES_NGProd} m_RetProd[j,l2,l3])

- m_max[i]*(1 - B_Type[k,PSCSymbol,l2,l3]);

subject to Chp4_Eq079_BathDChElementalWeightFraction {i in ELEMENTS, k in TYPES_PSC,

(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

sum {kp in STREAMS_NGFeed} w[i,kp]*m_Ret[kp,l2,l3]

+ sum {j in SPECIES_NGProd} w[i,j]*m_RetProd[j,l2,l3] <=

w_Bath_DCh_max[i,k]*(sum {kp in STREAMS_NGFeed} m_Ret[kp,l2,l3]

+ sum {j in SPECIES_NGProd} m_RetProd[j,l2,l3])

+ m_max[i]*(1 - B_Type[k,PSCSymbol,l2,l3]);

subject to Chp4_Eq080_BathInitialFeedStreamWeightFraction {k in STREAMS_NGFeed,

kp in TYPES_PSC, (l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

m_Ret[k,l2,l3-1] >= w_Bath_O_min[k,kp]*

(sum{kpp in STREAMS_NGFeed} m_Ret[kpp,l2,l3-1]

+ sum{j in SPECIES_NGProd} m_RetProd[j,l2,l3-1])

- m_max[k]*(1 - B_Type[kp,PSCSymbol,l2,l3]);

subject to Chp4_Eq081_BathInitialFeedStreamWeightFraction {k in STREAMS_NGFeed,

kp in TYPES_PSC, (l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

m_Ret[k,l2,l3-1] <= w_Bath_O_max[k,kp]*

(sum{kpp in STREAMS_NGFeed} m_Ret[kpp,l2,l3-1]

+ sum{j in SPECIES_NGProd} m_RetProd[j,l2,l3-1])

+ m_max[k]*(1 - B_Type[kp,PSCSymbol,l2,l3]);

subject to Chp4_Eq082_BathInitialProdStreamWeightFraction {k in STREAMS_NGProd,

kp in TYPES_PSC, (l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

sum{j in SPECIES[k]} m_RetProd[j,l2,l3-1] >=

w_Bath_O_min[k,kp]*(sum{kpp in STREAMS_NGFeed} m_Ret[kpp,l2,l3-1]

+ sum{j in SPECIES_NGProd} m_RetProd[j,l2,l3-1])

- m_max[k]*(1 - B_Type[kp,PSCSymbol,l2,l3]);

subject to Chp4_Eq083_BathInitialProdStreamWeightFraction {k in STREAMS_NGProd,

kp in TYPES_PSC, (l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

sum{j in SPECIES[k]} m_RetProd[j,l2,l3-1] <=

w_Bath_O_max[k,kp]*(sum{kpp in STREAMS_NGFeed} m_Ret[kpp,l2,l3-1]

+ sum{j in SPECIES_NGProd} m_RetProd[j,l2,l3-1])

+ m_max[k]*(1 - B_Type[kp,PSCSymbol,l2,l3]);

subject to Chp4_Eq084_BathBlowFeedStreamWeightFraction {k in STREAMS_NGFeed,

kp in TYPES_PSC, (l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

m_Ret[k,l2,l3] >= w_Bath_Blow_min[k,kp]*

(sum {kpp in STREAMS_NGFeed} m_Ret[kpp,l2,l3]

+ sum {j in SPECIES_NGProd} m_Prod[j,l2,l3])

- m_max[k]*(1 - B_Type[kp,PSCSymbol,l2,l3]);

subject to Chp4_Eq085_BathBlowFeedStreamWeightFraction {k in STREAMS_NGFeed,

kp in TYPES_PSC, (l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

m_Ret[k,l2,l3] <=

227

w_Bath_Blow_max[k,kp]*(sum {kpp in STREAMS_NGFeed} m_Ret[kpp,l2,l3]

+ sum {j in SPECIES_NGProd} m_Prod[j,l2,l3])

+ m_max[k]*(1 - B_Type[kp,PSCSymbol,l2,l3]);

subject to Chp4_Eq086_BathBlowProdStreamWeightFraction {k in STREAMS_NGProd,

kp in TYPES_PSC,(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

sum {j in SPECIES[k]} m_Prod[j,l2,l3] >=

w_Bath_Blow_min[k,kp]*(sum {kpp in STREAMS_NGFeed} m_Ret[kpp,l2,l3]

+ sum {j in SPECIES_NGProd} m_Prod[j,l2,l3])

- m_max[k]*(1 - B_Type[kp,PSCSymbol,l2,l3]);

subject to Chp4_Eq087_BathBlowProdStreamWeightFraction {k in STREAMS_NGProd,

kp in TYPES_PSC,(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

sum {j in SPECIES[k]} m_Prod[j,l2,l3] <=

w_Bath_Blow_max[k,kp]*(sum {kpp in STREAMS_NGFeed} m_Ret[kpp,l2,l3]

+ sum {j in SPECIES_NGProd} m_Prod[j,l2,l3])

+ m_max[k]*(1 - B_Type[kp,PSCSymbol,l2,l3]);

subject to Chp4_Eq088_BathDChFeedStreamWeightFraction {k in STREAMS_NGFeed,

kp in TYPES_PSC, (l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

m_Ret[k,l2,l3] >=

w_Bath_DCh_min[k,kp]*(sum {kpp in STREAMS_NGFeed} m_Ret[kpp,l2,l3]

+ sum {j in SPECIES_NGProd} m_RetProd[j,l2,l3])

- m_max[k]*(1 - B_Type[kp,PSCSymbol,l2,l3]);

subject to Chp4_Eq089_BathDChFeedStreamWeightFraction {k in STREAMS_NGFeed,

kp in TYPES_PSC, (l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

m_Ret[k,l2,l3] <=

w_Bath_DCh_max[k,kp]*(sum {kpp in STREAMS_NGFeed} m_Ret[kpp,l2,l3]

+ sum {j in SPECIES_NGProd} m_RetProd[j,l2,l3])

+ m_max[k]*(1 - B_Type[kp,PSCSymbol,l2,l3]);

subject to Chp4_Eq090_BathDChProdStreamWeightFraction {k in STREAMS_NGProd,

kp in TYPES_PSC, (l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

sum {j in SPECIES[k]} m_RetProd[j,l2,l3] >=

w_Bath_DCh_min[k,kp]*(sum {kpp in STREAMS_NGFeed} m_Ret[kpp,l2,l3]

+ sum {j in SPECIES_NGProd} m_RetProd[j,l2,l3])

- m_max[k]*(1 - B_Type[kp,PSCSymbol,l2,l3]);

subject to Chp4_Eq091_BathDChProdStreamWeightFraction {k in STREAMS_NGProd,

kp in TYPES_PSC, (l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

sum {j in SPECIES[k]} m_RetProd[j,l2,l3] <=

w_Bath_DCh_max[k,kp]*(sum {kpp in STREAMS_NGFeed} m_Ret[kpp,l2,l3]

+ sum {j in SPECIES_NGProd} m_RetProd[j,l2,l3])

+ m_max[k]*(1 - B_Type[kp,PSCSymbol,l2,l3]);

subject to Chp4_Eq092_StreamInitialElementalWeightFraction {i in ELEMENTS,

k in STREAMS_NGProd, kp in TYPES_PSC, (l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

sum {j in SPECIES[k]} w[i,j]*m_RetProd[j,l2,l3-1] >=

w_strm_O_min[i,k,kp]*(sum {j in SPECIES[k]} m_RetProd[j,l2,l3-1])

- m_strm_max[i,k]*(1 - B_Type[kp,PSCSymbol,l2,l3]);

subject to Chp4_Eq093_StreamInitialElementalWeightFraction {i in ELEMENTS,

k in STREAMS_NGProd, kp in TYPES_PSC, (l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

sum {j in SPECIES[k]} w[i,j]*m_RetProd[j,l2,l3-1] <=

w_strm_O_max[i,k,kp]*(sum {j in SPECIES[k]} m_RetProd[j,l2,l3-1])

+ m_strm_max[i,k]*(1 - B_Type[kp,PSCSymbol,l2,l3]);

subject to Chp4_Eq094_StreamBlowElementalWeightFraction {i in ELEMENTS,

k in STREAMS_NGProd, kp in TYPES_PSC, (l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

sum {j in SPECIES[k]} w[i,j]*m_Prod[j,l2,l3] >=

w_strm_Blow_min[i,k,kp]*(sum {j in SPECIES[k]} m_Prod[j,l2,l3])

- m_strm_max[i,k]*(1 - B_Type[kp,PSCSymbol,l2,l3]);

228

subject to Chp4_Eq095_StreamBlowElementalWeightFraction {i in ELEMENTS,

k in STREAMS_NGProd, kp in TYPES_PSC, (l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

sum {j in SPECIES[k]} w[i,j]*m_Prod[j,l2,l3] <=

w_strm_Blow_max[i,k,kp]*(sum {j in SPECIES[k]} m_Prod[j,l2,l3])

+ m_strm_max[i,k]*(1 - B_Type[kp,PSCSymbol,l2,l3]);

subject to Chp4_Eq096_StreamInitialSpeciesWeightFraction {k in STREAMS_NGProd,

j in SPECIES[k], kp in TYPES_PSC, (l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

m_RetProd[j,l2,l3-1] >=

w_strm_O_min[j,k,kp]*(sum {jp in SPECIES[k]} m_RetProd[jp,l2,l3-1])

- m_max[j]*(1 - B_Type[kp,PSCSymbol,l2,l3]);

subject to Chp4_Eq097_StreamInitialSpeciesWeightFraction {k in STREAMS_NGProd,

j in SPECIES[k], kp in TYPES_PSC, (l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

m_RetProd[j,l2,l3-1] <=

w_strm_O_max[j,k,kp]*(sum {jp in SPECIES[k]} m_RetProd[jp,l2,l3-1])

+ m_max[j]*(1 - B_Type[kp,PSCSymbol,l2,l3]);

subject to Chp4_Eq098_StreamBathSpeciesWeightFraction {k in STREAMS_NGProd,

j in SPECIES[k], kp in TYPES_PSC, (l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

m_Prod[j,l2,l3] >=

w_strm_Blow_min[j,k,kp]*(sum {jp in SPECIES[k]} m_Prod[jp,l2,l3])

- m_max[j]*(1 - B_Type[kp,PSCSymbol,l2,l3]);

subject to Chp4_Eq099_StreamBathSpeciesWeightFraction {k in STREAMS_NGProd,

j in SPECIES[k], kp in TYPES_PSC, (l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

m_Prod[j,l2,l3] <=

w_strm_Blow_max[j,k,kp]*(sum {jp in SPECIES[k]} m_Prod[jp,l2,l3])

+ m_max[j]*(1 - B_Type[kp,PSCSymbol,l2,l3]);

#:::::::::::::::::::::::: Subsection 4.5.3 : Volume Constraints :::::::::::::::::::::::::

#Parameters

#----------

param v_PSC_Ch_max {TYPES_PSC, j in 1..n[PSCSymbol]} >= 0, <= v_PSC_max[j],

default v_PSC_max[j];

param v_PSC_Blow_max {TYPES_PSC, j in 1..n[PSCSymbol]} >= 0, <= v_PSC_max[j],

default v_PSC_max[j];

#Constraints

#-----------

subject to Chp4_Eq100_ChargeVolumeBound {(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

sum {k in STREAMS_NGFeed} m_Ret[k,l2,l3-1]/rho[k]

+ sum {j in SPECIES_NGProd} m_RetProd[j,l2,l3-1]/rho[j]

+ sum {j in FLOWS_Ch} v[j,l2,l3]

<= v_PSC_max[l2]

- sum {k in TYPES_PSC}

(v_PSC_max[l2] - v_PSC_Ch_max[k,l2])*B_Type[k, PSCSymbol, l2, l3];

subject to Chp4_Eq101_BlowVolumeBound {(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

sum {k in STREAMS_NGFeed} m_Ret[k,l2,l3]/rho[k]

+ sum {j in SPECIES_NGProd} m_Prod[j,l2,l3]/rho[j]

<= v_PSC_max[l2]

- sum {k in TYPES_PSC}

(v_PSC_max[l2] - v_PSC_Blow_max[k,l2])*B_Type[k, PSCSymbol, l2, l3];

#::::::::::::::::::::: Subsection 4.5.4 : Temperature Constraints :::::::::::::::::::::::

#Parameters

229

#----------

param w_Blow_H_min {STREAMS_NGFeed union SPECIES_NGProd, TYPES_PSC};

param w_Blow_H_max {STREAMS_NGFeed union SPECIES_NGProd, TYPES_PSC};

param w_DCh_H_min {j in STREAMS_NGFeed union SPECIES_NGProd, k in TYPES_PSC} default

if k in TYPES_PSC_IDCh then w_DCh_H[j,k] else w_Blow_H_min[j,k];

param w_DCh_H_max {j in STREAMS_NGFeed union SPECIES_NGProd, k in TYPES_PSC} default

if k in TYPES_PSC_IDCh then w_DCh_H[j,k] else w_Blow_H_max[j,k];

#Check that the intermediate discharge temperatures are fixed

check {j in STREAMS_NGFeed union SPECIES_NGProd, k in TYPES_PSC_IDCh}:

if (w_DCh_H_min[j,k] = w_DCh_H_max[j,k] and w_DCh_H_max[j,k] = w_DCh_H[j,k])

then 1 = 1;

#Constraints

#-----------

subject to Chp4_Eq102_BlowTemperatureBound {k in TYPES_PSC,

(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

h_Ret[l2,l3-1] + h_Ch[l2,l3] - sum{i in 0..3} h_Env[i,l2,l3]

>= sum {kp in STREAMS_NGFeed} w_Blow_H_min[kp,k]*m_Ret[kp,l2,l3-1]

+ sum {j in SPECIES_NGProd} w_Blow_H_min[j,k]*m_RetProd[j,l2,l3-1]

+ sum {kp in STREAMS_NGFeed, j in FLOWS[kp] diff FLOWS_NGBlow}

w_Blow_H_min[kp,k]*rho[kp]*v[j,l2,l3]

- (h_max[l2] - h_min[l2])*(1 - B_Type[k,PSCSymbol,l2,l3]);

subject to Chp4_Eq103_BlowTemperatureBound {k in TYPES_PSC,

(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

h_Ret[l2,l3-1] + h_Ch[l2,l3] + h_NGBlow[l2,l3] + h_Blast[l2,l3]

- h_Offgas[l2,l3] - sum{i in 0..4} h_Env[i,l2,l3]

<= sum {kp in STREAMS_NGFeed} w_Blow_H_max[kp,k]*m_Ret[kp,l2,l3]

+ sum {j in SPECIES_NGProd} w_Blow_H_max[j,k]*m_Prod[j,l2,l3]

+ (h_max[l2] - h_min[l2])*(1 - B_Type[k,PSCSymbol,l2,l3]);

subject to Chp4_Eq104_DChTemperatureBound {k in TYPES_PSC,

(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

h_Ret[l2,l3-1] + h_Ch[l2,l3] + h_NGBlow[l2,l3] + h_Blast[l2,l3]

- h_Offgas[l2,l3] - sum{i in 0..5} h_Env[i,l2,l3]

>= sum {kp in STREAMS_NGFeed} w_DCh_H_min[kp,k]*m_Ret[kp,l2,l3]

+ sum {j in SPECIES_NGProd} w_DCh_H_min[j,k]*m_Prod[j,l2,l3]

- (h_max[l2] - h_min[l2])*(1 - B_Type[k,PSCSymbol,l2,l3]);

subject to Chp4_Eq105_DChTemperatureBound {k in TYPES_PSC,

(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

h_Ret[l2,l3-1] + h_Ch[l2,l3] + h_NGBlow[l2,l3] + h_Blast[l2,l3]

- h_Offgas[l2,l3] - sum{i in 0..5} h_Env[i,l2,l3]

<= sum {kp in STREAMS_NGFeed} w_DCh_H_max[kp,k]*m_Ret[kp,l2,l3]

+ sum {j in SPECIES_NGProd} w_DCh_H_max[j,k]*m_Prod[j,l2,l3]

+ (h_max[l2] - h_min[l2])*(1 - B_Type[k,PSCSymbol,l2,l3]);

#:::::: Subsection 4.5.5 : Indirect Transition Constraints in General Linear Form :::::::

#Sets and Related Parameters

#---------------------------

set INDIRECT_TRANSITION_CONSTRAINTS_PSC default {};

param a_indirect_mRet_ {INDIRECT_TRANSITION_CONSTRAINTS_PSC, STREAMS_NGFeed}

default 0;

param a_indirect_mRetProd_ {INDIRECT_TRANSITION_CONSTRAINTS_PSC, SPECIES_NGProd}

default 0;

param a_indirect_hRet_ {INDIRECT_TRANSITION_CONSTRAINTS_PSC} default 0;

230

param a_indirect_BType_ {INDIRECT_TRANSITION_CONSTRAINTS_PSC, TYPES_PSC} default 0;

param a_indirect_d {INDIRECT_TRANSITION_CONSTRAINTS_PSC, 0..7} default 0;

param a_indirect_v {INDIRECT_TRANSITION_CONSTRAINTS_PSC, FLOWS_NG} default 0;

param a_indirect_u {INDIRECT_TRANSITION_CONSTRAINTS_PSC, FLOWS_MSM} default 0;

param a_indirect_BType {INDIRECT_TRANSITION_CONSTRAINTS_PSC, TYPES_PSC} default 0;

param a_indirect_mBlast_ {INDIRECT_TRANSITION_CONSTRAINTS_PSC, ELEMENTS} default 0;

param a_indirect_mProd_ {INDIRECT_TRANSITION_CONSTRAINTS_PSC, SPECIES_Prod}

default 0;

param a_indirect_hBlast_ {INDIRECT_TRANSITION_CONSTRAINTS_PSC} default 0;

param a_indirect_hOffgas_ {INDIRECT_TRANSITION_CONSTRAINTS_PSC} default 0;

param a_indirect_hDCh_ {INDIRECT_TRANSITION_CONSTRAINTS_PSC} default 0;

param a_indirect_hEnv_ {INDIRECT_TRANSITION_CONSTRAINTS_PSC, 0..7} default 0;

param a_indirect_mBlast {INDIRECT_TRANSITION_CONSTRAINTS_PSC, ELEMENTS} default 0;

param a_indirect_mProd {INDIRECT_TRANSITION_CONSTRAINTS_PSC, SPECIES_Prod}

default 0;

param a_indirect_hBlast {INDIRECT_TRANSITION_CONSTRAINTS_PSC} default 0;

param a_indirect_hOffgas {INDIRECT_TRANSITION_CONSTRAINTS_PSC} default 0;

param a_indirect_hDCh {INDIRECT_TRANSITION_CONSTRAINTS_PSC} default 0;

param a_indirect_hEnv {INDIRECT_TRANSITION_CONSTRAINTS_PSC, 0..7} default 0;

param b_indirect {INDIRECT_TRANSITION_CONSTRAINTS_PSC} default 0;

#Constraints

#-----------

subject to Chp4_Eq106_IndirectTransition {i in INDIRECT_TRANSITION_CONSTRAINTS_PSC,

(l2,l3) in ASSIGNMENTS_CURRENT_PSC}:

sum {k in STREAMS_NGFeed} a_indirect_mRet_[i,k]*m_Ret[k,l2,l3-1]

+ sum {j in SPECIES_NGProd} a_indirect_mRetProd_[i,j]*m_RetProd[j,l2,l3-1]

+ a_indirect_hRet_[i]*h_Ret[l2,l3-1]

+ sum {k in TYPES_PSC} a_indirect_BType_[i,k]*B_Type[k,PSCSymbol,l2,l3-1]

+ sum {ip in 0..7} a_indirect_d[i,ip]*d_Int[ip,l2,l3]

+ sum {j in FLOWS_NG} a_indirect_v[i,j]*v[j,l2,l3]

+ sum {j in FLOWS_MSM} a_indirect_u[i,j]*u[j,l2,l3]

+ sum {k in TYPES_PSC} a_indirect_BType[i,k]*B_Type[k,PSCSymbol,l2,l3]

+ sum {ip in ELEMENTS} a_indirect_mBlast_[i,ip]*m_Blast[ip,l2,l3-1]

+ sum {j in SPECIES_Prod} a_indirect_mProd_[i,j]*m_Prod[j,l2,l3-1]

+ a_indirect_hBlast_[i]*h_Blast[l2,l3-1]

+ a_indirect_hOffgas_[i]*h_Offgas[l2,l3-1]

+ a_indirect_hDCh_[i]*h_DCh[l2,l3-1]

+ sum {ip in 0..7} a_indirect_hEnv_[i,ip]*h_Env[ip,l2,l3-1]

+ sum {ip in ELEMENTS} a_indirect_mBlast[i,ip]*m_Blast[ip,l2,l3]

+ sum {j in SPECIES_Prod} a_indirect_mProd[i,j]*m_Prod[j,l2,l3]

+ a_indirect_hBlast[i]*h_Blast[l2,l3]

+ a_indirect_hOffgas[i]*h_Offgas[l2,l3]

+ a_indirect_hDCh[i]*h_DCh[l2,l3]

+ sum {ip in 0..7} a_indirect_hEnv[i,ip]*h_Env[ip,l2,l3]

<= b_indirect[i];

#============= SECTION 4.6 : OPTIMIZATION OBJECTIVES AND GLOBAL CONSTRAINTS =============

#::::: Subsection 4.6.1 : Optimization of Nongaseous Flows and of Transition Types ::::::

#Parameters

#----------

param c_v {FLOWS_NG} default 0;

param c_BType {TYPES_PSC} default 0;

231

#Objective (see Subsection 5.1.4)

#---------

#maximize f: #Chp4_Eq107_Production

sum{(l2,l3) in ASSIGNMENTS_CURRENT_PSC}(

sum{j in FLOWS_NG} c_v[j]*v[j,l2,l3]

+ sum{k in TYPES_PSC} c_BType[k]*B_Type[k,PSCSymbol,l2,l3]);

#::::::: Subsection 4.6.2 : Limiting of Nongaseous Flows and of Transition Types ::::::::

#Sets and Related Parameters

#---------------------------

set GLOBAL_CONSTRAINTS_PSC default {};

param a_global_v {GLOBAL_CONSTRAINTS_PSC, FLOWS_NG} default 0;

param a_global_BType {GLOBAL_CONSTRAINTS_PSC, TYPES_PSC} default 0;

param b_global {GLOBAL_CONSTRAINTS_PSC} default 0;

#Constraints

#-----------

subject to Chp4_Eq108_GlobalConstraints {i in GLOBAL_CONSTRAINTS_PSC}:

sum{(l2,l3) in ASSIGNMENTS_CURRENT_PSC}(

sum{j in FLOWS_NG} a_global_v[i,j]*v[j,l2,l3]

+ sum{k in TYPES_PSC} a_global_BType[i,k]*B_Type[k,PSCSymbol,l2,l3])

<= b_global[i];

#==================== SECTION 5.1 : THE SINGLE-CYCLE PSC PROBLEM ========================

#::::::::: Subsection 5.1.1 : MILP Formulation of the Single-Cycle PSC Problem ::::::::::

#Parameters

#----------

param EndPreviousCycleSymbol symbolic in TYPES_PSC_Empty;

param EndCurrentCycleSymbol symbolic in TYPES_PSC_Empty diff {EndPreviousCycleSymbol};

#Constraints

#-----------

#check Chp5_Eq01 EndPreviousCycle does not have any predecessors

check: card(TYPES_PSC_minus[EndPreviousCycleSymbol]) = 0;

#check Chp5_Eq02 EndCurrentCycle does not have any successors

check {k in TYPES_PSC}: if (EndCurrentCycleSymbol in TYPES_PSC_minus[k])

then 1 = 0;

subject to Chp5_Eq03_InitialFeedMassCondition {k in STREAMS_NGFeed}:

m_Ret[k,1,0] = 0;

subject to Chp5_Eq04_InitialFeedMassCondition {j in SPECIES_NGProd}:

m_RetProd[j,1,0] = 0;

subject to Chp5_Eq05_InitialHeatCondition:

h_Ret[1,0] = 0;

subject to Chp5_Eq06_MeachnisticInitialCondition {k in TYPES_PSC}:

B_Type[k,PSCSymbol,1,0] = (if k = EndPreviousCycleSymbol then 1 else 0);

subject to Chp5_Eq07_CompleteExactlyOneCycle:

sum {k in 1..n_Asgn_max[PSCSymbol]} B_Type[EndCurrentCycleSymbol,PSCSymbol,1,k] = 1;

#:::::::::::: Subsection 5.1.2 : Critical Overlap Decomposition of a Cycle ::::::::::::::

#Sets and Related Parameters

232

#---------------------------

param n_PSC_system >= 1, integer;

param n_Crit_max >= 1, <= n_PSC_system - 1, integer;

set TYPES_PSC_PreCrit within TYPES_PSC diff {EndPreviousCycleSymbol};

#============================ SECTION 4.1 : GANTT STRUCTURE =============================

set TYPES_PSC_Crit within TYPES_PSC diff

({EndPreviousCycleSymbol} union TYPES_PSC_PreCrit);

set TYPES_PSC_PostCrit = TYPES_PSC diff

({EndPreviousCycleSymbol} union TYPES_PSC_PreCrit union TYPES_PSC_Crit);

#Constraints

#-----------

#check Chp5_Eq08_DisjointDecomposition is satisfied by construction

#check Chp5_Eq09 Topological Ordering

check {k in TYPES_PSC_PreCrit}:

card((TYPES_PSC_Crit union TYPES_PSC_PostCrit) inter TYPES_PSC_minus [k]) = 0;

#check Chp5_Eq10 Topological Ordering

check {k in TYPES_PSC_PreCrit union TYPES_PSC_Crit}:

card(TYPES_PSC_PostCrit inter TYPES_PSC_minus [k]) = 0;

#check Chp5_Eq11 EndCurrentCycle is either critical or postcritical

check : if (EndCurrentCycleSymbol in (TYPES_PSC_Crit union TYPES_PSC_PostCrit))

then 1 = 1;

#::::::::::: Subsection 5.1.3 : Critical Overlap Decomposition of a Cycle :::::::::::::::

#Variables and Related Parameters

#--------------------------------

param d_Crit_max_actual >= 0, <= (t_max - t_Begin), default (t_max - t_Begin);

var d_Crit >=0, <= d_Crit_max_actual;

var d_Cycle >=0, <= t_max - t_Begin;

var d_CritComponent {(1,l3) in ASSIGNMENTS_CURRENT_PSC} >=0, <= d_max;

var d_CycleComponent {(1,l3) in ASSIGNMENTS_CURRENT_PSC} >=0, <= d_max;

#Constraints

#-----------

subject to Chp5_Eq12_CriticalDominance:

d_Crit >= (n_Crit_max/n_PSC_system)*d_Cycle;

subject to Chp5_Eq13_CriticalDominance:

d_Cycle = sum{(1,l3) in ASSIGNMENTS_CURRENT_PSC} d[PSCSymbol,1,l3];

subject to Chp5_Eq14_CriticalComponent:

d_Crit = sum{l3 in 1..n_Asgn_max[PSCSymbol]} d_CritComponent[l3];

subject to Chp5_Eq15_CriticalComponent {(1,l3) in ASSIGNMENTS_CURRENT_PSC}:

d_CritComponent[l3] >= d[PSCSymbol,1,l3]

- d_max*(1 - sum{k in TYPES_PSC_Crit} B_Type[k,PSCSymbol,1,l3]);

subject to Chp5_Eq16_CriticalComponent {(1,l3) in ASSIGNMENTS_CURRENT_PSC}:

d_CritComponent[l3] <= d_max*sum{k in TYPES_PSC_Crit} B_Type[k,PSCSymbol,1,l3];

subject to Chp5_Eq17_CriticalComponent {(1,l3) in ASSIGNMENTS_CURRENT_PSC}:

d_CritComponent[l3] <= d[PSCSymbol,1,l3];

#:::::::::: Subsection 5.1.4 : Maximizing the Productivity of a Single Cycle ::::::::::::

#Sets and Parameters

#-------------------

param f1_star_actual >=0, default 0;

233

param epsilon_f1 default 0.0001*f1_star_actual;

#param d_Crit_max_actual (already implemented in previous subsection)

#Constraints

#-----------

#subject to Chp5_Eq20_dCritBound (Already implemented in previous subsection)

subject to Chp5_Eq22_MaintainProduction :

sum{(l2,l3) in ASSIGNMENTS_CURRENT_PSC}(

sum{j in FLOWS_NG} c_v[j]*v[j,l2,l3]

+ sum{k in TYPES_PSC} c_BType[k]*B_Type[k,PSCSymbol,l2,l3])

>= f1_star_actual - epsilon_f1;

#Objectives

#----------

#maximize f1_divided_by_f2 (Chp5_Eq18_RatioObjective) is not supported by CPLEX.

maximize f1: #Chp5_Eq19_Production

sum{(l2,l3) in ASSIGNMENTS_CURRENT_PSC}(

sum{j in FLOWS_NG} c_v[j]*v[j,l2,l3]

+ sum{k in TYPES_PSC} c_BType[k]*B_Type[k,PSCSymbol,l2,l3]);

minimize f2: #Chp5_Eq21_CriticalDuration

d_Crit;

#==

#==

#==

C.2 Sample dat Files

Section 5.2 describes the spreadsheets that automatically produce the data files that

parameterize the SC-PSC problem. A total of three spreadsheets were produced, each rep-

resenting different sample computations:

• A Copper PSC problem (Subsection 5.3.1), solved under the General Nickel-Copper

Formulation

• A Copper PSC problem (Subsection 5.3.1), solved under the Simplified Copper Formu-

lation

• A Nickel-Copper PSC problem (Subsection 5.3.2), solved under the General Nickel-

Copper Formulation

Sample data has been prepared for each of these cases, and has been used to generate the

results of Section 5.3

The following is sample data for the Copper PSC problem (Subsection 5.3.1), to param-

eterize the General Nickel-Copper Formulation.

234

#==

#==

#==

#============================ SECTION 4.1 : GANTT STRUCTURE =============================

#::::::::::::::::::::::::::: Subsection 4.1.1 : Assignments :::::::::::::::::::::::::::::

set CLASSES := PSC OffgasTreatment;

param n_Asgn_max :=

PSC 24 #apply rule of thumb, n_Asgn_max[PSC] = ceil(2*d_max)

OffgasTreatment 6 ;

set TYPES[PSC] := EndPreviousCycle InitialCharge SlagBlow Skim Recharge CopperBlow

ScrapCharge EndCurrentCycle;

set TYPES[OffgasTreatment] := AssistSlagBlow AssistCopperBlow;

param PSCSymbol := PSC;

set TYPES_PSC_Empty := EndPreviousCycle EndCurrentCycle;

set TYPES_PSC_minus[EndPreviousCycle] := ;

set TYPES_PSC_minus[InitialCharge] := EndPreviousCycle;

set TYPES_PSC_minus[SlagBlow] := InitialCharge Recharge;

set TYPES_PSC_minus[Skim] := SlagBlow;

set TYPES_PSC_minus[Recharge] := Skim;

set TYPES_PSC_minus[CopperBlow] := Skim ScrapCharge;

set TYPES_PSC_minus[ScrapCharge] := Skim CopperBlow;

set TYPES_PSC_minus[EndCurrentCycle] := CopperBlow;

param t_End := 12 ;

param PreviousTypePSC := EndPreviousCycle;

#::::::::::::::::::::::::::: Subsection 4.1.2 : Dependencies ::::::::::::::::::::::::::::

set DEPENDENCIES[PSC,SlagBlow] := (OffgasTreatment, AssistSlagBlow, 1);

set DEPENDENCIES[PSC,CopperBlow] := (OffgasTreatment, AssistCopperBlow, 1);

set DEPENDENCIES[OffgasTreatment,AssistSlagBlow] := (PSC, SlagBlow, 1);

set DEPENDENCIES[OffgasTreatment,AssistCopperBlow] := (PSC, CopperBlow, 1);

#================= SECTION 4.2 : PEIRCE-SMITH CONVERTERS AS STATE-MACHINES ==============

#:::::::::::::::::::::::: Subsections 4.2.1 : States and Transitions ::::::::::::::::::::

set STREAMS_NGFeed := FeedMatte Flux Reverts CopperScrap;

set ELEMENTS := Fe Ni Co Cu S Si Ca Al Mg O N;

set SPECIES_Prod := FeS Ni3S2 CoS Cu2S Cu_Liq Fe2SiO4 Fe3O4 NiO CoO Cu2O SiO2 CaO Al2O3

MgO O2 N2 SO2;

set STREAMS_Prod := ConverterMatte Blister Slag Offgas;

param CMatteSymbol := ConverterMatte;

param BlisterSymbol := Blister;

param SlagSymbol := Slag;

param OffgasSymbol := Offgas;

set SPECIES[ConverterMatte] := FeS Ni3S2 CoS Cu2S;

set SPECIES[Blister] := Cu_Liq;

set SPECIES[Slag] := Fe2SiO4 Fe3O4 NiO CoO Cu2O SiO2 CaO Al2O3 MgO;

set SPECIES[Offgas] := O2 N2 SO2;

235

set FLOWS_NG := FeedMatteFlow FluxCharge RevertsCharge CopperScrapFlow FluxBlow

RevertsBlow BlisterFullLadle FerroslagFullLadle CopperOxidicSlagFullLadle

FerroslagPartialLadle BlisterPartialLadle CopperOxidicSlagPartialLadle;

set FLOWS_Ch := FeedMatteFlow FluxCharge RevertsCharge CopperScrapFlow;

set FLOWS_NGBlow := FluxBlow RevertsBlow;

set FLOWS[FeedMatte] := FeedMatteFlow;

set FLOWS[Flux] := FluxCharge FluxBlow;

set FLOWS[Reverts] := RevertsCharge RevertsBlow;

set FLOWS[CopperScrap] := CopperScrapFlow;

set FLOWS[Blister] := BlisterFullLadle BlisterPartialLadle;

set FLOWS[Slag] := FerroslagFullLadle CopperOxidicSlagFullLadle FerroslagPartialLadle

CopperOxidicSlagPartialLadle;

set FLOWS_M_Ch := FeedMatteFlow;

set FLOWS_SM_Ch := ;

set FLOWS_M_DCh := BlisterFullLadle FerroslagFullLadle CopperOxidicSlagFullLadle;

set FLOWS_SM_DCh := BlisterPartialLadle FerroslagPartialLadle

CopperOxidicSlagPartialLadle;

param v_PSC_max := 1 80 ;

param rho := #in T/m

FeedMatte 5.27751026355182

Flux 2.7620882235714

Reverts 5.52715227313848

CopperScrap 8.92

FeS 5.27

Ni3S2 5.17

CoS 5.45

Cu2S 5.28

Cu_Liq 7.92

Fe2SiO4 2.5

Fe3O4 5.2

NiO 7.45

CoO 5.68

Cu2O 6

SiO2 2.65

CaO 3.32

Al2O3 3.99

MgO 3.65 ;

param m_max :=

FeedMatte 422.200821084146

Flux 220.967057885712

Reverts 442.172181851078

CopperScrap 713.6

Fe 301.01344

Ni 468.3368

Co 357.376512

Cu 713.6

S 153.7786

236

Si 99.09516

Ca 189.821664

Al 168.9366

Mg 176.08768

O 342.992240514743

N 506.174073888917

FeS 421.6

Ni3S2 413.6

CoS 436

Cu2S 422.4

Cu_Liq 633.6

Fe2SiO4 200

Fe3O4 416

NiO 596

CoO 454.4

Cu2O 480

SiO2 212

CaO 265.6

Al2O3 319.2

MgO 292

O2 9.63644202573716

N2 506.174073888917

SO2 366.566025644682

ConverterMatte 436

Blister 633.6

Slag 596 ;

param h_min := 1 -5228457.27106541 ;

param h_max := 1 513242.078443962 ;

param u_max :=

FeedMatteFlow 6

BlisterFullLadle 7

FerroslagFullLadle 7

CopperOxidicSlagFullLadle 7

BlisterPartialLadle 1

FerroslagPartialLadle 1

CopperOxidicSlagPartialLadle 1 ;

param d_IntType_min :=

4 SlagBlow 0.5

4 CopperBlow 1 ;

param d_IntType_max (tr) : 0 1 2 3 4 5 6 7 :=

EndPreviousCycle 0 0 0 0 0 0 0 0

InitialCharge 0 0 12 0 0 0 0 0

SlagBlow 0 0 0 0 12 0 0 0

Skim 0 0 0 0 0 0 12 0

Recharge 0 0 12 0 0 0 0 0

CopperBlow 0 0 0 0 12 0 0 0

ScrapCharge 0 0 12 0 0 0 0 0

EndCurrentCycle 0 0 0 0 0 0 12 0 ;

param v_Type_max (tr): FeedMatteFlow FluxCharge RevertsCharge CopperScrapFlow

237

FluxBlow RevertsBlow BlisterFullLadle FerroslagFullLadle

CopperOxidicSlagFullLadle BlisterPartialLadle FerroslagPartialLadle

CopperOxidicSlagPartialLadle :=

EndPreviousCycle 0 0 0 0 0 0 0 0 0 0 0 0

InitialCharge 80 80 80 0 0 0 0 0 0 0 0 0

SlagBlow 0 0 0 0 80 80 0 0 0 0 0 0

Skim 0 0 0 0 0 0 0 80 0 0 80 0

Recharge 80 80 80 0 0 0 0 0 0 0 0 0

CopperBlow 0 0 0 0 0 0 0 0 0 0 0 0

ScrapCharge 0 0 0 80 0 0 0 0 0 0 0 0

EndCurrentCycle 0 0 0 0 0 0 80 0 80 80 0 80 ;

param u_Type_max (tr): FeedMatteFlow BlisterFullLadle FerroslagFullLadle

CopperOxidicSlagFullLadle BlisterPartialLadle FerroslagPartialLadle

CopperOxidicSlagPartialLadle :=

EndPreviousCycle 0 0 0 0 0 0 0

InitialCharge 6 0 0 0 0 0 0

SlagBlow 0 0 0 0 0 0 0

Skim 0 0 7 0 0 1 0

Recharge 3 0 0 0 0 0 0

CopperBlow 0 0 0 0 0 0 0

ScrapCharge 0 0 0 0 0 0 0

EndCurrentCycle 0 7 0 7 1 0 1 ;

param v_u :=

FeedMatteFlow 10

BlisterFullLadle 10

FerroslagFullLadle 10

CopperOxidicSlagFullLadle 10 ;

param v_u_max :=

BlisterPartialLadle 10

FerroslagPartialLadle 10

CopperOxidicSlagPartialLadle 10 ;

#:::::::::::::::::::::::: Subsection 4.2.2 : Converting Actions :::::::::::::::::::::::::

param d_Ch_Type :=

InitialCharge 0.5

Recharge 0.125

ScrapCharge 0.125 ;

param d_DCh_Type :=

Skim 0.125

EndCurrentCycle 0.5 ;

#======================= SECTION 4.3 : INTERMEDIATE COMPUTATIONS ========================

#::::::::::::::::::::: Subsections 4.3.1 : Intermediate Variables :::::::::::::::::::::::

param m_Blast_max := #in T

O 192.728840514743

N 506.174073888917 ;

param h_Blast_min := 0 ; #in MJ

param h_Blast_max := 16912.618990403 ;

238

param h_Offgas_min := -1371279.42568434 ; #in MJ

param h_Offgas_max := 656355.513247882 ;

param h_DCh_min := -5228457.27106541 ; #in MJ

param h_DCh_max := 513242.078443962 ;

param h_Env_max := #in MJ

1 1296000

2 1296000

3 1296000

4 1296000

5 1296000

6 1296000

7 1296000 ;

#::::::::::::::::::::: Subsections 4.3.1 : Intermediate Variables :::::::::::::::::::::::

param w (tr) : Fe Ni Co Cu S Si Ca Al Mg O N :=

FeedMatte 0.1579 0 0 0.6 0.2421 0 0 0 0 0 0

Flux 0 0 0 0 0 0.3973 0.03573 0.0265 0.03015 0.5103 0

Reverts 0.2404 0 0 0.5014 0.0618 0.0599 0 0 0 0.1365 0

CopperScrap 0 0 0 1 0 0 0 0 0 0 0

FeS 0.6352 0 0 0 0.3648 0 0 0 0 0 0

Ni3S2 0 0.7333 0 0 0.2670 0 0 0 0 0 0

CoS 0 0 0.6476 0 0.3524 0 0 0 0 0 0

Cu2S 0 0 0 0.7985 0.2015 0 0 0 0 0 0

Cu_Liq 0 0 0 1 0 0 0 0 0 0 0

Fe2SiO4 0.5481 0 0 0 0 0.1378 0 0 0 0.3141 0

Fe3O4 0.7236 0 0 0 0 0 0 0 0 0.2764 0

NiO 0 0.7858 0 0 0 0 0 0 0 0.2142 0

CoO 0 0 0.7865 0 0 0 0 0 0 0.2135 0

Cu2O 0 0 0 0.8882 0 0 0 0 0 0.1118 0

SiO2 0 0 0 0 0 0.4674 0 0 0 0.5326 0

CaO 0 0 0 0 0 0 0.7147 0 0 0.2853 0

Al2O3 0 0 0 0 0 0 0 0.5293 0 0.4708 0

MgO 0 0 0 0 0 0 0 0 0.6030 0.3970 0

O2 0 0 0 0 0 0 0 0 0 1 0

N2 0 0 0 0 0 0 0 0 0 0 1

SO2 0 0 0 0 0.5005 0 0 0 0 0.4995 0 ;

param w_Feed_H := #in MJ/T

FeedMatteFlow 200.963875139441 # evaluated at matte feed temperature

FluxCharge -14169.9586946575 # evaluated at cold charge temperature

RevertsCharge -170.182365614197 # evaluated at cold charge temperature

CopperScrapFlow 1.9364414475923 # evaluated at cold charge temperature

FluxBlow -14169.9586946575 # evaluated at cold charge temperature

RevertsBlow -170.182365614197 ; # evaluated at cold charge temperature

#::::::::::::::::::::::: Subsection 4.3.2 : Blast Elemental Masses ::::::::::::::::::::::

param m_Blast_dot := #in T/h

O SlagBlow 16.0605

N SlagBlow 42.18075

O CopperBlow 16.0605

N CopperBlow 42.18075 ;

239

#::::::::::::::::::::::: Subsection 4.3.3 : Product Species Masses ::::::::::::::::::::::

set REGIMES := SlagBlowRegime NickelOverblowRegime CobaltOverblowRegime CopperBlowRegime

CopperOverblowRegime;

set SPECIES_RgProd := FeS Ni3S2 CoS Cu2S Cu_Liq NiO CoO Cu2O;

set REGIMES_spec[FeS] := SlagBlowRegime;

set REGIMES_spec[Ni3S2] := SlagBlowRegime NickelOverblowRegime;

set REGIMES_spec[CoS] := SlagBlowRegime NickelOverblowRegime CobaltOverblowRegime;

set REGIMES_spec[Cu2S] := SlagBlowRegime NickelOverblowRegime CobaltOverblowRegime

CopperBlowRegime;

set REGIMES_spec[Cu_Liq] := CopperBlowRegime CopperOverblowRegime;

set REGIMES_spec[NiO] := NickelOverblowRegime CobaltOverblowRegime CopperBlowRegime

CopperOverblowRegime;

set REGIMES_spec[CoO] := CobaltOverblowRegime CopperBlowRegime CopperOverblowRegime;

set REGIMES_spec[Cu2O] := CopperOverblowRegime;

set TYPES_PSC_Prod := SlagBlow Skim Recharge CopperBlow ScrapCharge EndCurrentCycle;

param OXYGEN_EFFICIENCY := 0.95 ;

param FERROSLAG_RATIO := 2 ;

param OSymbol := O;

param O2Symbol := O2;

param Fe2SiO4Symbol := Fe2SiO4;

param Fe3O4Symbol := Fe3O4;

#:::::::::::::::::::::::::::: Subsection 4.3.4 : Blast Heat :::::::::::::::::::::::::::::

param h_Blast_dot := #in MJ/h

SlagBlow 1409.38491586692

CopperBlow 1409.38491586692 ;

#::::::::::::::::::::::::::: Subsection 4.3.5 : Offgas Heat :::::::::::::::::::::::::::::

param w_Offgas_H (tr) : O2 N2 SO2 :=

EndPreviousCycle 0 0 0

InitialCharge 0 0 0

SlagBlow 1240.56066795853 1296.69919323431 -3740.87975903566

Skim 0 0 0

Recharge 0 0 0

CopperBlow 1240.56066795853 1296.69919323431 -3740.87975903566

ScrapCharge 0 0 0

EndCurrentCycle 0 0 0 ;

#:::::::::::::::::::::::::: Subsection 4.3.6 : Discharge Heat :::::::::::::::::::::::::::

param w_DCh_H : Skim:=

FeedMatte 218.96989095771

Flux -12669.6798817374

Reverts 856.638097710978

CopperScrap 536.309107007785

FeS 122.21539074053

240

Ni3S2 961.419731551783

CoS 927.271139828653

Cu2S 250.984342504571

Cu_Liq 800.160600195134

Fe2SiO4 -5733.28422642635

Fe3O4 -3606.67074176221

NiO -2378.91470463181

CoO -2182.36969709799

Cu2O -551.994700502616

SiO2 -12640.4612884166

CaO -10053.5226944017

Al2O3 -14949.489977358

MgO -13502.7430599066 ;

#:::::::::::::::::::: Subsection 4.3.7 : Environmental Heat Losses ::::::::::::::::::::::

param h_EnvType_dot (tr): #in MJ/h

0 1 2 3 4 5 6 7 :=

EndPreviousCycle 0 0 0 0 0 0 0 0

InitialCharge 0 0 0 0 0 0 0 0

SlagBlow 108000 108000 108000 108000 108000 108000 108000 108000

Skim 108000 108000 108000 108000 108000 108000 108000 108000

Recharge 108000 108000 108000 108000 108000 108000 108000 108000

CopperBlow 27000 27000 27000 27000 27000 27000 27000 27000

ScrapCharge 27000 27000 27000 27000 27000 27000 27000 27000

EndCurrentCycle 0 0 0 0 0 0 0 0 ;

#========================== SECTION 4.4 : FORWARD COMPUTATIONS ==========================

#::::::::::::::::::::: Subsection 4.4.1 : Retained Elemental Masses :::::::::::::::::::::

#:::::::::::::::::::::::: Subsection 4.4.2 : Retained Feed Masses :::::::::::::::::::::::

#:::::::::::::::::::::: Subsection 4.4.3 : Forward Heat Computation :::::::::::::::::::::

#====================== SECTION 4.5 : FEASIBLE CONVERTER TRANSITIONS ====================

#:::::::: Subsection 4.5.1 : Direct Transition Constraints in General Linear Form :::::::

#:::::::::::::::::::: Subsection 4.5.2 : Bath Composition Constraints :::::::::::::::::::

param w_Bath_Blow_max :=

#SlagBlow implies no Blister

Blister SlagBlow 0;

param w_Bath_O_max :=

#CopperBlow implies no initial Fe

Fe CopperBlow 0

#ChargeScrap implies no initial Fe

Fe ScrapCharge 0

#EndCurrentCycle implies no initial S

S EndCurrentCycle 0;

param w_strm_O_max :=

#Restricted use of excess flux

SiO2 Slag Skim 0.1 ;

241

#:::::::::::::::::::::::: Subsection 4.5.3 : Volume Constraints :::::::::::::::::::::::::

#::::::::::::::::::::: Subsection 4.5.4 : Temperature Constraints :::::::::::::::::::::::

param w_Blow_H_min : EndPreviousCycle InitialCharge SlagBlow Skim Recharge CopperBlow

ScrapCharge EndCurrentCycle := #in MJ/T

FeedMatte -501.27 -501.27 110.93 -501.27 -501.27 170.95 -501.27 -501.27

Flux -14170 -14170 -12951 -14170 -14170 -12797 -14170 -14170

Reverts -170.18 -170.18 659.15 -170.18 -170.18 767.05 -170.18 -170.18

CopperScrap 1.9364 1.9364 447.31 1.9364 1.9364 496.37 1.9364 1.9364

FeS -731.63 -731.63 -5.8608 -731.63 -731.63 65.293 -731.63 -731.63

Ni3S2 3.2839 3.2839 817.70 3.2839 3.2839 897.54 3.2839 3.2839

CoS 4.1759 4.1759 788.81 4.1759 4.1759 865.73 4.1759 4.1759

Cu2S -425.05 -425.05 149.58 -425.05 -425.05 205.92 -425.05 -425.05

Cu_Liq 207.33 207.33 711.24 207.33 207.33 760.64 207.33 207.33

Fe2SiO4 -7150.0 -7150.0 -5945.8 -7150.0 -7150.0 -5827.7 -7150.0 -7150.0

Fe3O4 -4821.9 -4821.9 -3825.6 -4821.9 -4821.9 -3705.4 -4821.9 -4821.9

NiO -3269.4 -3269.4 -2523.5 -3269.4 -3269.4 -2443.7 -3269.4 -3269.4

CoO -3206.4 -3206.4 -2339.1 -3206.4 -3206.4 -2252.7 -3206.4 -3206.4

Cu2O -1255.4 -1255.4 -672.81 -1255.4 -1255.4 -606.36 -1255.4 -1255.4

SiO2 -14163 -14163 -12930 -14163 -14163 -12771 -14163 -14163

CaO -11320 -11320 -10279 -11320 -11320 -10155 -11320 -11320

Al2O3 -16380 -16380 -15204 -16380 -16380 -15064 -16380 -16380

MgO -14934 -14934 -13735 -14934 -14934 -13607 -14934 -14934 ;

param w_Blow_H_max : EndPreviousCycle InitialCharge SlagBlow Skim Recharge CopperBlow

ScrapCharge EndCurrentCycle := #in MJ/T

FeedMatte 230.97 230.97 230.97 230.97 230.97 230.97 230.97 230.97

Flux -12637 -12637 -12637 -12637 -12637 -12637 -12637 -12637

Reverts 879.45 879.49 879.49 879.49 879.49 879.49 879.49 879.49

CopperScrap 546.39 546.39 546.39 546.39 546.39 546.39 546.39 546.39

FeS 136.45 136.45 136.45 136.45 136.45 136.45 136.45 136.45

Ni3S2 977.39 977.39 977.39 977.39 977.39 977.39 977.39 977.39

CoS 942.66 942.66 942.66 942.66 942.66 942.66 942.66 942.66

Cu2S 262.25 262.25 262.25 262.25 262.25 262.25 262.25 262.25

Cu_Liq 810.04 810.04 810.04 810.04 810.04 810.04 810.04 810.04

Fe2SiO4 -5709.7 -5709.7 -5709.7 -5709.7 -5709.7 -5709.7 -5709.7 -5709.7

Fe3O4 -3581.6 -3581.6 -3581.6 -3581.6 -3581.6 -3581.6 -3581.6 -3581.6

NiO -2362.6 -2362.6 -2362.6 -2362.6 -2362.6 -2362.6 -2362.6 -2362.6

CoO -2164.6 -2164.6 -2164.6 -2164.6 -2164.6 -2164.6 -2164.6 -2164.6

Cu2O -538.24 -538.24 -538.24 -538.24 -538.24 -538.24 -538.24 -538.24

SiO2 -12607 -12607 -12607 -12607 -12607 -12607 -12607 -12607

CaO -10028 -10028 -10028 -10028 -10028 -10028 -10028 -10028

Al2O3 -14920 -14920 -14920 -14920 -14920 -14920 -14920 -14920

MgO -13477 -13477 -13477 -13477 -13477 -13477 -13477 -13477 ;

param w_DCh_H_min : EndCurrentCycle := #in MJ/T

FeedMatte 170.953848775659

Flux -12797.0498513263

Reverts 767.053917844114

CopperScrap 496.36990997793

FeS 65.2926288249346

Ni3S2 897.544009371792

242

CoS 865.731457640451

Cu2S 205.915385437021

Cu_Liq 760.638364334498

Fe2SiO4 -5827.73437710866

Fe3O4 -3705.37822518764

NiO -2443.67823153721

CoO -2252.71768244752

Cu2O -606.357787312864

SiO2 -12771.4558084642

CaO -10155.2236001187

Al2O3 -15064.3120428775

MgO -13606.7126396395 ;

param w_DCh_H_max : EndCurrentCycle := #in MJ/T

FeedMatte 230.973901503222

Flux -12637.2684712361

Reverts 879.486290568683

CopperScrap 546.390208779963

FeS 136.446081219429

Ni3S2 977.38866209678

CoS 942.656060375703

Cu2S 262.251581771458

Cu_Liq 810.041159160293

Fe2SiO4 -5709.67168875578

Fe3O4 -3581.64276106801

NiO -2362.60333645964

CoO -2164.59758386118

Cu2O -538.237252116479

SiO2 -12607.0954189282

CaO -10027.7312463732

Al2O3 -14920.403009648

MgO -13476.6130469213 ;

#::::::: Subsection 4.5.5 : Indirect Transition Constraints in General Linear Form ::::::

set INDIRECT_TRANSITION_CONSTRAINTS_PSC := CopperBlowMaximumOxidize

EndCurrentCycleMinimumOxidize;

param a_indirect_mRetProd_ :=

#EndCurrentCycleMinimumOxidize

EndCurrentCycleMinimumOxidize Cu_Liq 0.05

EndCurrentCycleMinimumOxidize Cu2O -0.8437805 ;

param a_indirect_BType :=

#CopperBlowMaximumOxidize

CopperBlowMaximumOxidize CopperBlow 405.01464

#EndCurrentCycleMinimumOxidize

EndCurrentCycleMinimumOxidize EndCurrentCycle 31.68 ;

param a_indirect_mProd :=

#CopperBlowMaximumOxidize

CopperBlowMaximumOxidize Cu_Liq -0.05

CopperBlowMaximumOxidize Cu2O 0.8437805 ;

243

param b_indirect :=

CopperBlowMaximumOxidize 405.01464

EndCurrentCycleMinimumOxidize 31.68 ;

#============= SECTION 4.6 : OPTIMIZATION OBJECTIVES AND GLOBAL CONSTRAINTS =============

#:::::: Subsection 4.6.1 : Optimization of Nongaseous Flows and of Transition Types :::::

param c_v := FeedMatteFlow 1;

#:::::::: Subsection 4.6.2 : Limiting of Nongaseous Flows and of Transition Types :::::::

set GLOBAL_CONSTRAINTS_PSC := MaximumRecharges MaximumScrapCharges;

param a_global_BType :=

#Limit the number of recharges

MaximumRecharges Recharge 1

#Limit the number of scrap charges

MaximumScrapCharges ScrapCharge 1;

param b_global :=

#Limit the number of recharges

MaximumRecharges 2

#Limit the number of scrap charges

MaximumScrapCharges 2 ;

#==================== SECTION 5.1 : THE SINGLE-CYCLE PSC PROBLEM ========================

#:::::::: Subsection 5.1.1 : MILP Formulation of the Single-Cycle PSC Problem :::::::::::

param EndPreviousCycleSymbol := EndPreviousCycle;

param EndCurrentCycleSymbol := EndCurrentCycle;

#:::::::::: Subsection 5.1.2 : Critical Overlap Decomposition of a Cycle ::::::::::::::::

param n_PSC_system := 2 ;

param n_Crit_max := 1 ;

set TYPES_PSC_PreCrit := InitialCharge;

set TYPES_PSC_Crit := SlagBlow Skim Recharge CopperBlow ScrapCharge;

#::::::::::::: Subsection 5.1.3 : Critical Overlap Decomposition of a Cycle :::::::::::::

#:::::::::: Subsection 5.1.4 : Maximizing the Productivity of a Single Cycle ::::::::::::

#==

#==

#==

The following is sample data for the Copper PSC problem (Subsection 5.3.1), to param-

eterize the Simplified Copper PSC Formulation.

#==

244

#==

#==

#============================ SECTION 4.1 : GANTT STRUCTURE =============================

#::::::::::::::::::::::::::: Subsection 4.1.1 : Assignments :::::::::::::::::::::::::::::

set CLASSES := PSC OffgasTreatment;

param n_Asgn_max :=

PSC 24 #apply rule of thumb, n_Asgn_max[PSC] = ceil(2*d_max)

OffgasTreatment 6 ;

set TYPES[PSC] := EndPreviousCycle InitialCharge SlagBlow Skim Recharge CopperBlow

ScrapCharge EndCurrentCycle;

set TYPES[OffgasTreatment] := AssistSlagBlow AssistCopperBlow;

param PSCSymbol := PSC;

set TYPES_PSC_Empty := EndPreviousCycle EndCurrentCycle;

set TYPES_PSC_minus[EndPreviousCycle] := ;

set TYPES_PSC_minus[InitialCharge] := EndPreviousCycle;

set TYPES_PSC_minus[SlagBlow] := InitialCharge Recharge;

set TYPES_PSC_minus[Skim] := SlagBlow;

set TYPES_PSC_minus[Recharge] := Skim;

set TYPES_PSC_minus[CopperBlow] := Skim ScrapCharge;

set TYPES_PSC_minus[ScrapCharge] := Skim CopperBlow;

set TYPES_PSC_minus[EndCurrentCycle] := CopperBlow;

param t_End := 12 ;

param PreviousTypePSC := EndPreviousCycle;

#::::::::::::::::::::::::::: Subsection 4.1.2 : Dependencies ::::::::::::::::::::::::::::

set DEPENDENCIES[PSC,SlagBlow] := (OffgasTreatment, AssistSlagBlow, 1);

set DEPENDENCIES[PSC,CopperBlow] := (OffgasTreatment, AssistCopperBlow, 1);

set DEPENDENCIES[OffgasTreatment,AssistSlagBlow] := (PSC, SlagBlow, 1);

set DEPENDENCIES[OffgasTreatment,AssistCopperBlow] := (PSC, CopperBlow, 1);

#=============== SECTION 4.2 : PEIRCE-SMITH CONVERTERS AS STATE-MACHINES ================

#:::::::::::::::::::::: Subsections 4.2.1 : States and Transitions ::::::::::::::::::::::

set STREAMS_NGFeed := FeedMatte Flux Reverts CopperScrap;

set ELEMENTS := Fe Cu S Si Ca Al Mg O N;

set SPECIES_Prod := FeS Cu2S Cu_Liq Fe2SiO4 Fe3O4 Cu2O SiO2 CaO Al2O3 MgO O2 N2 SO2;

set STREAMS_Prod := ConverterMatte Blister Slag Offgas;

param CMatteSymbol := ConverterMatte;

param BlisterSymbol := Blister;

param SlagSymbol := Slag;

param OffgasSymbol := Offgas;

set SPECIES[ConverterMatte] := FeS Cu2S;

set SPECIES[Blister] := Cu_Liq;

set SPECIES[Slag] := Fe2SiO4 Fe3O4 Cu2O SiO2 CaO Al2O3 MgO;

set SPECIES[Offgas] := O2 N2 SO2;

set FLOWS_NG := FeedMatteFlow FluxCharge RevertsCharge CopperScrapFlow FluxBlow

245

RevertsBlow BlisterFullLadle FerroslagFullLadle CopperOxidicSlagFullLadle

FerroslagPartialLadle BlisterPartialLadle CopperOxidicSlagPartialLadle;

set FLOWS_Ch := FeedMatteFlow FluxCharge RevertsCharge CopperScrapFlow;

set FLOWS_NGBlow := FluxBlow RevertsBlow;

set FLOWS[FeedMatte] := FeedMatteFlow;

set FLOWS[Flux] := FluxCharge FluxBlow;

set FLOWS[Reverts] := RevertsCharge RevertsBlow;

set FLOWS[CopperScrap] := CopperScrapFlow;

set FLOWS[Blister] := BlisterFullLadle BlisterPartialLadle;

set FLOWS[Slag] := FerroslagFullLadle CopperOxidicSlagFullLadle FerroslagPartialLadle

CopperOxidicSlagPartialLadle;

set FLOWS_M_Ch := FeedMatteFlow;

set FLOWS_SM_Ch := ;

set FLOWS_M_DCh := BlisterFullLadle FerroslagFullLadle CopperOxidicSlagFullLadle;

set FLOWS_SM_DCh := BlisterPartialLadle FerroslagPartialLadle

CopperOxidicSlagPartialLadle;

param v_PSC_max := 1 80 ;

param rho := #in T/m

FeedMatte 5.27751026355182

Flux 2.7620882235714

Reverts 5.52715227313848

CopperScrap 8.92

FeS 5.27

Cu2S 5.28

Cu_Liq 7.92

Fe2SiO4 2.5

Fe3O4 5.2

Cu2O 6

SiO2 2.65

CaO 3.32

Al2O3 3.99

MgO 3.65;

param m_max :=

FeedMatte 422.200821084146

Flux 220.967057885712

Reverts 442.172181851078

CopperScrap 713.6

Fe 301.01344

Cu 713.6

S 153.7786

Si 99.09516

Ca 189.821664

Al 168.9366

Mg 176.08768

O 342.992240514743

N 506.174073888917

FeS 421.6

Cu2S 422.4

246

Cu_Liq 633.6

Fe2SiO4 200

Fe3O4 416

Cu2O 480

SiO2 212

CaO 265.6

Al2O3 319.2

MgO 292

O2 9.63644202573716

N2 506.174073888917

SO2 366.566025644682

ConverterMatte 422.4

Blister 633.6

Slag 480 ;

param h_min := 1 -5228457.27106541 ;

param h_max := 1 513242.078443962 ;

param u_max :=

FeedMatteFlow 6

BlisterFullLadle 7

FerroslagFullLadle 7

CopperOxidicSlagFullLadle 7

BlisterPartialLadle 1

FerroslagPartialLadle 1

CopperOxidicSlagPartialLadle 1 ;

param d_IntType_min :=

4 SlagBlow 0.5

4 CopperBlow 1 ;

param d_IntType_max (tr) : 0 1 2 3 4 5 6 7 :=

EndPreviousCycle 0 0 0 0 0 0 0 0

InitialCharge 0 0 12 0 0 0 0 0

SlagBlow 0 0 0 0 12 0 0 0

Skim 0 0 0 0 0 0 12 0

Recharge 0 0 12 0 0 0 0 0

CopperBlow 0 0 0 0 12 0 0 0

ScrapCharge 0 0 12 0 0 0 0 0

EndCurrentCycle 0 0 0 0 0 0 12 0 ;

param v_Type_max (tr): FeedMatteFlow FluxCharge RevertsCharge CopperScrapFlow FluxBlow

RevertsBlow BlisterFullLadle FerroslagFullLadle CopperOxidicSlagFullLadle

BlisterPartialLadle FerroslagPartialLadle CopperOxidicSlagPartialLadle :=

EndPreviousCycle 0 0 0 0 0 0 0 0 0 0 0 0

InitialCharge 80 80 80 0 0 0 0 0 0 0 0 0

SlagBlow 0 0 0 0 80 80 0 0 0 0 0 0

Skim 0 0 0 0 0 0 0 80 0 0 80 0

Recharge 80 80 80 0 0 0 0 0 0 0 0 0

CopperBlow 0 0 0 0 0 0 0 0 0 0 0 0

ScrapCharge 0 0 0 80 0 0 0 0 0 0 0 0

EndCurrentCycle 0 0 0 0 0 0 80 0 80 80 0 80 ;

param u_Type_max (tr): FeedMatteFlow BlisterFullLadle FerroslagFullLadle

247

CopperOxidicSlagFullLadle BlisterPartialLadle FerroslagPartialLadle

CopperOxidicSlagPartialLadle :=

EndPreviousCycle 0 0 0 0 0 0 0

InitialCharge 6 0 0 0 0 0 0

SlagBlow 0 0 0 0 0 0 0

Skim 0 0 7 0 0 1 0

Recharge 3 0 0 0 0 0 0

CopperBlow 0 0 0 0 0 0 0

ScrapCharge 0 0 0 0 0 0 0

EndCurrentCycle 0 7 0 7 1 0 1 ;

param v_u :=

FeedMatteFlow 10

BlisterFullLadle 10

FerroslagFullLadle 10

CopperOxidicSlagFullLadle 10 ;

param v_u_max :=

BlisterPartialLadle 10

FerroslagPartialLadle 10

CopperOxidicSlagPartialLadle 10 ;

#:::::::::::::::::::::::: Subsection 4.2.2 : Converting Actions :::::::::::::::::::::::::

param d_Ch_Type :=

InitialCharge 0.5

Recharge 0.125

ScrapCharge 0.125 ;

param d_DCh_Type :=

Skim 0.125

EndCurrentCycle 0.5 ;

#======================= SECTION 4.3 : INTERMEDIATE COMPUTATIONS ========================

#::::::::::::::::::::: Subsections 4.3.1 : Intermediate Variables :::::::::::::::::::::::

param m_Blast_max := #in T

O 192.728840514743

N 506.174073888917 ;

param h_Blast_min := 0 ; #in MJ

param h_Blast_max := 16912.618990403 ;

param h_Offgas_min := -1371279.42568434 ; #in MJ

param h_Offgas_max := 656355.513247882 ;

param h_DCh_min := -5228457.27106541 ; #in MJ

param h_DCh_max := 513242.078443962 ;

param h_Env_max := #in MJ

1 1296000

2 1296000

3 1296000

4 1296000

248

5 1296000

6 1296000

7 1296000 ;

param w (tr) : Fe Cu S Si Ca Al Mg O N :=

FeedMatte 0.1579 0.6 0.2421 0 0 0 0 0 0

Flux 0 0 0 0.3973 0.03573 0.0265 0.03015 0.5103 0

Reverts 0.2404 0.5014 0.0618 0.0599 0 0 0 0.1365 0

CopperScrap 0 1 0 0 0 0 0 0 0

FeS 0.6352 0 0.3648 0 0 0 0 0 0

Cu2S 0 0.7985 0.2015 0 0 0 0 0 0

Cu_Liq 0 1 0 0 0 0 0 0 0

Fe2SiO4 0.5481 0 0 0.1378 0 0 0 0.3141 0

Fe3O4 0.7236 0 0 0 0 0 0 0.2764 0

Cu2O 0 0.8882 0 0 0 0 0 0.1118 0

SiO2 0 0 0 0.4674 0 0 0 0.5326 0

CaO 0 0 0 0 0.7147 0 0 0.2853 0

Al2O3 0 0 0 0 0 0.5293 0 0.4707 0

MgO 0 0 0 0 0 0 0.6030 0.3970 0

O2 0 0 0 0 0 0 0 1 0

N2 0 0 0 0 0 0 0 0 1

SO2 0 0 0.5005 0 0 0 0 0.4995 0 ;

param w_Feed_H := #in MJ/T

FeedMatteFlow 200.963875139441 # evaluated at matte feed temperature

FluxCharge -14169.9586946575 # evaluated at cold charge temperature

RevertsCharge -170.182365614197 # evaluated at cold charge temperature

CopperScrapFlow 1.9364414475923 # evaluated at cold charge temperature

FluxBlow -14169.9586946575 # evaluated at cold charge temperature

RevertsBlow -170.182365614197 ; # evaluated at cold charge temperature

#::::::::::::::::::::::: Subsection 4.3.2 : Blast Elemental Masses ::::::::::::::::::::::

param m_Blast_dot := #in T/h

O SlagBlow 16.0605

N SlagBlow 42.18075

O CopperBlow 16.0605

N CopperBlow 42.18075 ;

#::::::::::::::::::::::: Subsection 4.3.3 : Product Species Masses ::::::::::::::::::::::

set REGIMES := SlagBlowRegime CopperBlowRegime CopperOverblowRegime;

set SPECIES_RgProd := FeS Cu2S Cu_Liq Cu2O;

set REGIMES_spec[FeS] := SlagBlowRegime;

set REGIMES_spec[Cu2S] := SlagBlowRegime CopperBlowRegime;

set REGIMES_spec[Cu_Liq] := CopperBlowRegime CopperOverblowRegime;

set REGIMES_spec[Cu2O] := CopperOverblowRegime;

set TYPES_PSC_Prod := SlagBlow Skim Recharge CopperBlow ScrapCharge EndCurrentCycle;

param OXYGEN_EFFICIENCY := 0.95 ;

param FERROSLAG_RATIO := 2 ;

249

param OSymbol := O;

param O2Symbol := O2;

param Fe2SiO4Symbol := Fe2SiO4;

param Fe3O4Symbol := Fe3O4;

#:::::::::::::::::::::::::::: Subsection 4.3.4 : Blast Heat :::::::::::::::::::::::::::::

param h_Blast_dot := #in MJ/h

SlagBlow 1409.38491586692

CopperBlow 1409.38491586692 ;

#::::::::::::::::::::::::::: Subsection 4.3.5 : Offgas Heat :::::::::::::::::::::::::::::

param w_Offgas_H (tr) : O2 N2 SO2 :=

EndPreviousCycle 0 0 0

InitialCharge 0 0 0

SlagBlow 1240.56066795853 1296.69919323431 -3740.87975903566

Skim 0 0 0

Recharge 0 0 0

CopperBlow 1240.56066795853 1296.69919323431 -3740.87975903566

ScrapCharge 0 0 0

EndCurrentCycle 0 0 0 ;

#:::::::::::::::::::::::::: Subsection 4.3.6 : Discharge Heat :::::::::::::::::::::::::::

param w_DCh_H : Skim :=

FeedMatte 218.96989095771

Flux -12669.6798817374

Reverts 856.638097710978

CopperScrap 536.309107007785

FeS 122.21539074053

Cu2S 250.984342504571

Cu_Liq 800.160600195134

Fe2SiO4 -5733.28422642635

Fe3O4 -3606.67074176221

Cu2O -551.994700502616

SiO2 -12640.4612884166

CaO -10053.5226944017

Al2O3 -14949.489977358

MgO -13502.7430599066 ;

#::::::::::::::::::::: Subsection 4.3.7 : Environmental Heat Losses :::::::::::::::::::::

param h_EnvType_dot (tr): #in MJ/h

0 1 2 3 4 5 6 7 :=

EndPreviousCycle 0 0 0 0 0 0 0 0

InitialCharge 0 0 0 0 0 0 0 0

SlagBlow 108000 108000 108000 108000 108000 108000 108000 108000

Skim 108000 108000 108000 108000 108000 108000 108000 108000

Recharge 108000 108000 108000 108000 108000 108000 108000 108000

CopperBlow 27000 27000 27000 27000 27000 27000 27000 27000

ScrapCharge 27000 27000 27000 27000 27000 27000 27000 27000

EndCurrentCycle 0 0 0 0 0 0 0 0 ;

250

#========================= SECTION 4.4 : FORWARD COMPUTATIONS ===========================

#:::::::::::::::::::: Subsection 4.4.1 : Retained Elemental Masses ::::::::::::::::::::::

#::::::::::::::::::::::: Subsection 4.4.2 : Retained Feed Masses ::::::::::::::::::::::::

#::::::::::::::::::::: Subsection 4.4.3 : Forward Heat Computation ::::::::::::::::::::::

#==================== SECTION 4.5 : FEASIBLE CONVERTER TRANSITIONS ======================

#:::::::: Subsection 4.5.1 : Direct Transition Constraints in General Linear Form :::::::

#::::::::::::::::::: Subsection 4.5.2 : Bath Composition Constraints ::::::::::::::::::::

param w_Bath_Blow_max :=

#SlagBlow implies no Blister

Blister SlagBlow 0;

param w_Bath_O_max :=

#CopperBlow implies no initial Fe

Fe CopperBlow 0

#ChargeScrap implies no initial Fe

Fe ScrapCharge 0

#EndCurrentCycle implies no initial S

S EndCurrentCycle 0;

param w_strm_O_max :=

#Restricted use of excess flux

SiO2 Slag Skim 0.1 ;

#::::::::::::::::::::::: Subsection 4.5.3 : Volume Constraints ::::::::::::::::::::::::::

#:::::::::::::::::::: Subsection 4.5.4 : Temperature Constraints ::::::::::::::::::::::::

param w_Blow_H_min : EndPreviousCycle InitialCharge SlagBlow Skim Recharge CopperBlow

ScrapCharge EndCurrentCycle := #in MJ/T

FeedMatte -501.27 -501.27 110.93 -501.27 -501.27 170.95 -501.27 -501.27

Flux -14170 -14170 -12951 -14170 -14170 -12797 -14170 -14170

Reverts -170.18 -170.18 659.15 -170.18 -170.18 767.05 -170.18 -170.18

CopperScrap 1.9364 1.9364 447.31 1.9364 1.9364 496.37 1.9364 1.9364

FeS -731.63 -731.63 -5.8608 -731.63 -731.63 65.293 -731.63 -731.63

Cu2S -425.05 -425.05 149.58 -425.05 -425.05 205.92 -425.05 -425.05

Cu_Liq 207.33 207.33 711.24 207.33 207.33 760.64 207.33 207.33

Fe2SiO4 -7150.0 -7150.0 -5945.8 -7150.0 -7150.0 -5827.7 -7150.0 -7150.0

Fe3O4 -4821.9 -4821.9 -3825.6 -4821.9 -4821.9 -3705.4 -4821.9 -4821.9

Cu2O -1255.4 -1255.4 -672.81 -1255.4 -1255.4 -606.36 -1255.4 -1255.4

SiO2 -14163 -14163 -12930 -14163 -14163 -12771 -14163 -14163

CaO -11320 -11320 -10279 -11320 -11320 -10155 -11320 -11320

Al2O3 -16370 -16380 -15204 -16380 -16380 -15064 -16380 -16380

MgO -14934 -14934 -13735 -14934 -14934 -13607 -14934 -14934 ;

param w_Blow_H_max : EndPreviousCycle InitialCharge SlagBlow Skim Recharge CopperBlow

ScrapCharge EndCurrentCycle := #in MJ/T

FeedMatte 230.97 230.97 230.97 230.97 230.97 230.97 230.97 230.97

Flux -12637 -12637 -12637 -12637 -12637 -12637 -12637 -12637

Reverts 879.49 879.49 879.49 879.49 879.49 879.49 879.49 879.49

CopperScrap 546.39 546.39 546.39 546.39 546.39 546.39 546.39 546.39

251

FeS 136.45 136.45 136.45 136.45 136.45 136.45 136.45 136.45

Cu2S 262.25 262.25 262.25 262.25 262.25 262.25 262.25 262.25

Cu_Liq 810.04 810.04 810.04 810.04 810.04 810.04 810.04 810.04

Fe2SiO4 -5709.7 -5709.7 -5709.7 -5709.7 -5709.7 -5709.7 -5709.7 -5709.7

Fe3O4 -3581.6 -3581.6 -3581.6 -3581.6 -3581.6 -3581.6 -3581.6 -3581.6

Cu2O -538.24 -538.24 -538.24 -538.24 -538.24 -538.24 -538.24 -538.24

SiO2 -12607 -12607 -12607 -12607 -12607 -12607 -12607 -12607

CaO -10028 -10028 -10028 -10028 -10028 -10028 -10028 -10028

Al2O3 -14920 -14920 -14920 -14920 -14920 -14920 -14920 -14920

MgO -13477 -13477 -13477 -13477 -13477 -13477 -13477 -13477 ;

param w_DCh_H_min : EndCurrentCycle := #in MJ/T

FeedMatte 170.953848775659

Flux -12797.0498513263

Reverts 767.053917844114

CopperScrap 496.36990997793

FeS 65.2926288249346

Cu2S 205.915385437021

Cu_Liq 760.638364334498

Fe2SiO4 -5827.73437710866

Fe3O4 -3705.37822518764

Cu2O -606.357787312864

SiO2 -12771.4558084642

CaO -10155.2236001187

Al2O3 -15064.3120428775

MgO -13606.7126396395 ;

param w_DCh_H_max : EndCurrentCycle := #in MJ/T

FeedMatte 230.973901503222

Flux -12637.2684712361

Reverts 879.486290568683

CopperScrap 546.390208779963

FeS 136.446081219429

Cu2S 262.251581771458

Cu_Liq 810.041159160293

Fe2SiO4 -5709.67168875578

Fe3O4 -3581.64276106801

Cu2O -538.237252116479

SiO2 -12607.0954189282

CaO -10027.7312463732

Al2O3 -14920.403009648

MgO -13476.6130469213 ;

#::::::: Subsection 4.5.5 : Indirect Transition Constraints in General Linear Form ::::::

set INDIRECT_TRANSITION_CONSTRAINTS_PSC := CopperBlowMaximumOxidize

EndCurrentCycleMinimumOxidize;

param a_indirect_mRetProd_ :=

#EndCurrentCycleMinimumOxidize

EndCurrentCycleMinimumOxidize Cu_Liq 0.05

EndCurrentCycleMinimumOxidize Cu2O -0.8437805 ;

param a_indirect_BType :=

252

#CopperBlowMaximumOxidize

CopperBlowMaximumOxidize CopperBlow 405.01464

#EndCurrentCycleMinimumOxidize

EndCurrentCycleMinimumOxidize EndCurrentCycle 31.68 ;

param a_indirect_mProd :=

#CopperBlowMaximumOxidize

CopperBlowMaximumOxidize Cu_Liq -0.05

CopperBlowMaximumOxidize Cu2O 0.8437805 ;

param b_indirect :=

CopperBlowMaximumOxidize 405.01464

EndCurrentCycleMinimumOxidize 31.68 ;

#=========== SECTION 4.6 : OPTIMIZATION OBJECTIVES AND GLOBAL CONSTRAINTS ===============

#::::: Subsection 4.6.1 : Optimization of Nongaseous Flows and of Transition Types ::::::

param c_v := FeedMatteFlow 1;

#::::::: Subsection 4.6.2 : Limiting of Nongaseous Flows and of Transition Types ::::::::

set GLOBAL_CONSTRAINTS_PSC := MaximumRecharges MaximumScrapCharges;

param a_global_BType :=

#Limit the number of recharges

MaximumRecharges Recharge 1

#Limit the number of scrap charges

MaximumScrapCharges ScrapCharge 1;

param b_global :=

#Limit the number of recharges

MaximumRecharges 2

#Limit the number of scrap charges

MaximumScrapCharges 2 ;

#==================== SECTION 5.1 : THE SINGLE-CYCLE PSC PROBLEM ========================

#::::::::: Subsection 5.1.1 : MILP Formulation of the Single-Cycle PSC Problem ::::::::::

param EndPreviousCycleSymbol := EndPreviousCycle;

param EndCurrentCycleSymbol := EndCurrentCycle;

#:::::::::::: Subsection 5.1.2 : Critical Overlap Decomposition of a Cycle ::::::::::::::

param n_PSC_system := 2 ;

param n_Crit_max := 1 ;

set TYPES_PSC_PreCrit := InitialCharge;

set TYPES_PSC_Crit := SlagBlow Skim Recharge CopperBlow ScrapCharge;

#::::::::::: Subsection 5.1.3 : Critical Overlap Decomposition of a Cycle :::::::::::::::

#:::::::: Subsection 5.1.4 : Maximizing the Productivity of a Single Cycle ::::::::::::::

#==

253

#==

#==

The following is sample data for the Nickel-Copper PSC problem (Subsection 5.3.2), to

parameterize the General Nickel-Copper PSC Formulation.

#==

#==

#==

#============================ SECTION 4.1 : GANTT STRUCTURE =============================

#::::::::::::::::::::::::::: Subsection 4.1.1 : Assignments :::::::::::::::::::::::::::::

set CLASSES := PSC SmeltingFurnace;

param n_Asgn_max :=

PSC 24 #apply rule of thumb, n_Asgn_max[PSC] = ceil(2*d_max)

SmeltingFurnace 3 ;

set TYPES[PSC] := EndPreviousCycle InitialCharge SlagBlow Skim Recharge

SlagBlowAndSkimWithoutAnyMoreFeedMatte ExtendProductionCycleWithoutAnyMoreFeedMatte

EndCurrentCycle;

set TYPES[SmeltingFurnace] := AssistPSCInitialCharge AssistPSCRecharge;

param PSCSymbol := PSC;

set TYPES_PSC_Empty := EndPreviousCycle EndCurrentCycle;

set TYPES_PSC_minus[EndPreviousCycle] := ;

set TYPES_PSC_minus[InitialCharge] := EndPreviousCycle;

set TYPES_PSC_minus[SlagBlow] := InitialCharge, Recharge;

set TYPES_PSC_minus[Skim] := SlagBlow;

set TYPES_PSC_minus[Recharge] := Skim;

set TYPES_PSC_minus[SlagBlowAndSkimWithoutAnyMoreFeedMatte] := InitialCharge;

set TYPES_PSC_minus[ExtendProductionCycleWithoutAnyMoreFeedMatte] := Skim

SlagBlowAndSkimWithoutAnyMoreFeedMatte ExtendProductionCycleWithoutAnyMoreFeedMatte;

set TYPES_PSC_minus[EndCurrentCycle] := Skim SlagBlowAndSkimWithoutAnyMoreFeedMatte

ExtendProductionCycleWithoutAnyMoreFeedMatte;

param t_End := 12 ;

param PreviousTypePSC := EndPreviousCycle;

#::::::::::::::::::::::::::: Subsection 4.1.2 : Dependencies ::::::::::::::::::::::::::::

set DEPENDENCIES[PSC,InitialCharge] := (SmeltingFurnace, AssistPSCInitialCharge, 1);

set DEPENDENCIES[PSC,Recharge] := (SmeltingFurnace, AssistPSCRecharge, 1);

set DEPENDENCIES[SmeltingFurnace,AssistPSCInitialCharge] := (PSC, InitialCharge, 1);

set DEPENDENCIES[SmeltingFurnace,AssistPSCRecharge] := (PSC, Recharge, 1);

#=============== SECTION 4.2 : PEIRCE-SMITH CONVERTERS AS STATE-MACHINES ================

#:::::::::::::::::::::: Subsections 4.2.1 : States and Transitions ::::::::::::::::::::::

set STREAMS_NGFeed := FeedMatte Flux Ferronickel;

set ELEMENTS := Fe Ni Co Cu S Si Ca Al Mg O N;

254

set SPECIES_Prod := FeS Ni3S2 CoS Cu2S Cu_Liq Fe2SiO4 Fe3O4 NiO CoO Cu2O SiO2 CaO Al2O3

MgO O2 N2 SO2;

set STREAMS_Prod := ConverterMatte Blister Slag Offgas;

param CMatteSymbol := ConverterMatte;

param BlisterSymbol := Blister;

param SlagSymbol := Slag;

param OffgasSymbol := Offgas;

set SPECIES[ConverterMatte] := FeS Ni3S2 CoS Cu2S;

set SPECIES[Blister] := Cu_Liq;

set SPECIES[Slag] := Fe2SiO4 Fe3O4 NiO CoO Cu2O SiO2 CaO Al2O3 MgO;

set SPECIES[Offgas] := O2 N2 SO2;

set FLOWS_NG := FeedMatteFlow FluxCharge FerronickelFlow FluxBlow ProductMatteFullLadle

FerroslagFullLadle ProductMattePartialLadle FerroslagPartialLadle;

set FLOWS_Ch := FeedMatteFlow FluxCharge FerronickelFlow;

set FLOWS_NGBlow := FluxBlow;

set FLOWS[FeedMatte] := FeedMatteFlow;

set FLOWS[Flux] := FluxCharge FluxBlow;

set FLOWS[Ferronickel] := FerronickelFlow;

set FLOWS[ConverterMatte] := ProductMatteFullLadle ProductMattePartialLadle;

set FLOWS[Slag] := FerroslagFullLadle FerroslagPartialLadle;

set FLOWS_M_Ch := FeedMatteFlow;

set FLOWS_SM_Ch := ;

set FLOWS_M_DCh := ProductMatteFullLadle FerroslagFullLadle;

set FLOWS_SM_DCh := ProductMattePartialLadle FerroslagPartialLadle;

param v_PSC_max := 1 160 ;

param rho := #in T/m

FeedMatte 5.24623341623938

Flux 2.7620882235714

Ferronickel 8.2

FeS 5.27

Ni3S2 5.17

CoS 5.45

Cu2S 5.28

Cu_Liq 7.92

Fe2SiO4 2.5

Fe3O4 5.2

NiO 7.45

CoO 5.68

Cu2O 6

SiO2 2.65

CaO 3.32

Al2O3 3.99

MgO 3.65 ;

param m_max :=

FeedMatte 843.40003613556

Flux 441.934115771424

255

Ferronickel 1312

Fe 602.02688

Ni 936.6736

Co 714.753024

Cu 1267.2

S 307.5572

Si 198.19032

Ca 379.643328

Al 337.8732

Mg 352.17536

O 608.892944823589

N 404.939259111133

FeS 843.2

Ni3S2 827.2

CoS 872

Cu2S 844.8

Cu_Liq 1267.2

Fe2SiO4 400

Fe3O4 832

NiO 1192

CoO 908.8

Cu2O 960

SiO2 424

CaO 531.2

Al2O3 638.4

MgO 584

O2 15.4183072411795

N2 404.939259111133

SO2 586.505641031492

ConverterMatte 872

Blister 1267.2

Slag 1192 ;

param h_min := 1 -10456914.5421308 ;

param h_max := 1 1026484.15688792 ;

param u_max :=

FeedMatteFlow 4

ProductMatteFullLadle 7

FerroslagFullLadle 7

ProductMattePartialLadle 1

FerroslagPartialLadle 1 ;

param d_IntType_min :=

4 SlagBlow 0.5

4 SlagBlowAndSkimWithoutAnyMoreFeedMatte 0.5

4 ExtendProductionCycleWithoutAnyMoreFeedMatte 0.5;

param d_IntType_max (tr) : 0 1 2 3 4 5 6 7 :=

EndPreviousCycle 0 0 0 0 0 0 0 0

InitialCharge 0 0 12 0 0 0 0 0

SlagBlow 0 0 0 0 12 0 0 0

Skim 0 0 0 0 0 0 12 0

Recharge 0 0 12 0 0 0 0 0

256

SlagBlowAndSkimWithoutAnyMoreFeedMatte 0 0 0 0 12 0 12 0

ExtendProductionCycleWithoutAnyMoreFeedMatte 0 0 12 0 12 0 12 0

EndCurrentCycle 0 0 0 0 0 0 12 0 ;

param v_Type_max (tr): FeedMatteFlow FluxCharge FerronickelFlow FluxBlow

ProductMatteFullLadle FerroslagFullLadle ProductMattePartialLadle

FerroslagPartialLadle :=

EndPreviousCycle 0 0 0 0 0 0 0 0

InitialCharge 160 160 4.878 0 0 0 0 0

SlagBlow 0 0 0 160 0 0 0 0

Skim 0 0 0 0 0 160 0 160

Recharge 160 160 160 0 0 0 0 0

SlagBlowAndSkimWithoutAnyMoreFeedMatte 0 0 0 160 0 160 0 160

ExtendProductionCycleWithoutAnyMoreFeedMatte 0 160 160 160 0 160 0 160

EndCurrentCycle 0 0 0 0 160 0 160 0 ;

param u_Type_max (tr): FeedMatteFlow ProductMatteFullLadle FerroslagFullLadle

ProductMattePartialLadle FerroslagPartialLadle :=

EndPreviousCycle 0 0 0 0 0

InitialCharge 4 0 0 0 0

SlagBlow 0 0 0 0 0

Skim 0 0 7 0 1

Recharge 1 0 0 0 0

SlagBlowAndSkimWithoutAnyMoreFeedMatte 0 0 7 0 1

ExtendProductionCycleWithoutAnyMoreFeedMatte 0 0 7 0 1

EndCurrentCycle 0 7 0 1 0 ;

param v_u :=

FeedMatteFlow 20

ProductMatteFullLadle 20

FerroslagFullLadle 20 ;

param v_u_max :=

ProductMattePartialLadle 20

FerroslagPartialLadle 20 ;

#:::::::::::::::::::::::: Subsection 4.2.2 : Converting Actions :::::::::::::::::::::::::

param d_Ch_Type :=

InitialCharge 0.5

Recharge 0.125

ExtendProductionCycleWithoutAnyMoreFeedMatte 0.125 ;

param d_DCh_Type :=

Skim 0.125

SlagBlowAndSkimWithoutAnyMoreFeedMatte 0.125

ExtendProductionCycleWithoutAnyMoreFeedMatte 0.125

EndCurrentCycle 0.5 ;

#======================= SECTION 4.3 : INTERMEDIATE COMPUTATIONS ========================

#::::::::::::::::::::: Subsections 4.3.1 : Intermediate Variables :::::::::::::::::::::::

param m_Blast_max := #in T

O 308.366144823589

257

N 404.939259111133 ;

param h_Blast_min := 0 ; #in MJ

param h_Blast_max := 16758.0668631928 ;

param h_Offgas_min := -2194047.08109494 ; #in MJ

param h_Offgas_max := 525084.410598306 ;

param h_DCh_min := -10456914.5421308 ; #in MJ

param h_DCh_max := 1026484.15688792 ;

param h_Env_max := #in MJ

1 1296000

2 1296000

3 1296000

4 1296000

5 1296000

6 1296000

7 1296000 ;

param w (tr) : Fe Ni Co Cu S Si Ca Al Mg O N :=

FeedMatte 0.3726 0.2 0.01 0.1 0.3174 0 0 0 0 0 0

Flux 0 0 0 0 0 0.3973 0.03573 0.02646 0.03015 0.5103 0

Ferronickel 0.3 0.7 0 0 0 0 0 0 0 0 0

FeS 0.6352 0 0 0 0.3648 0 0 0 0 0 0

Ni3S2 0 0.7330 0 0 0.2670 0 0 0 0 0 0

CoS 0 0 0.6476 0 0.3524 0 0 0 0 0 0

Cu2S 0 0 0 0.7985 0.2015 0 0 0 0 0 0

Cu_Liq 0 0 0 1 0 0 0 0 0 0 0

Fe2SiO4 0.5481 0 0 0 0 0.1378 0 0 0 0.3141 0

Fe3O4 0.7236 0 0 0 0 0 0 0 0 0.2764 0

NiO 0 0.7858 0 0 0 0 0 0 0 0.2142 0

CoO 0 0 0.7865 0 0 0 0 0 0 0.2135 0

Cu2O 0 0 0 0.8882 0 0 0 0 0 0.1118 0

SiO2 0 0 0 0 0 0.4674 0 0 0 0.5326 0

CaO 0 0 0 0 0 0 0.7147 0 0 0.2853 0

Al2O3 0 0 0 0 0 0 0 0.5292 0 0.4708 0

MgO 0 0 0 0 0 0 0 0 0.6030 0.3970 0

O2 0 0 0 0 0 0 0 0 0 1 0

N2 0 0 0 0 0 0 0 0 0 0 1

SO2 0 0 0 0 0.5005 0 0 0 0 0.4995 0 ;

param w_Feed_H := #in MJ/T

FeedMatteFlow 358.213067563604 # evaluated at matte feed temperature

FluxCharge -14169.9586946575 # evaluated at cold charge temperature

FerronickelFlow -123.8677 # evaluated at cold charge temperature

FluxBlow -14169.9586946575 ; # evaluated at cold charge temperature

#:::::::::::::::::::::: Subsection 4.3.2 : Blast Elemental Masses :::::::::::::::::::::::

param m_Blast_dot := #in T/h

O SlagBlow 25.6968

N SlagBlow 33.7446

O SlagBlowAndSkimWithoutAnyMoreFeedMatte 25.6968

258

N SlagBlowAndSkimWithoutAnyMoreFeedMatte 33.7446

O ExtendProductionCycleWithoutAnyMoreFeedMatte 25.6968

N ExtendProductionCycleWithoutAnyMoreFeedMatte 33.7446 ;

#:::::::::::::::::::::: Subsection 4.3.3 : Product Species Masses :::::::::::::::::::::::

set REGIMES := SlagBlowRegime NickelOverblowRegime CobaltOverblowRegime CopperBlowRegime

CopperOverblowRegime;

set SPECIES_RgProd := FeS Ni3S2 CoS Cu2S Cu_Liq NiO CoO Cu2O;

set REGIMES_spec[FeS] := SlagBlowRegime;

set REGIMES_spec[Ni3S2] := SlagBlowRegime NickelOverblowRegime;

set REGIMES_spec[CoS] := SlagBlowRegime NickelOverblowRegime CobaltOverblowRegime;

set REGIMES_spec[Cu2S] := SlagBlowRegime NickelOverblowRegime CobaltOverblowRegime

CopperBlowRegime;

set REGIMES_spec[Cu_Liq] := CopperBlowRegime CopperOverblowRegime;

set REGIMES_spec[NiO] := NickelOverblowRegime CobaltOverblowRegime CopperBlowRegime

CopperOverblowRegime;

set REGIMES_spec[CoO] := CobaltOverblowRegime CopperBlowRegime CopperOverblowRegime;

set REGIMES_spec[Cu2O] := CopperOverblowRegime;

set TYPES_PSC_Prod := SlagBlow Skim Recharge SlagBlowAndSkimWithoutAnyMoreFeedMatte

ExtendProductionCycleWithoutAnyMoreFeedMatte EndCurrentCycle;

param OXYGEN_EFFICIENCY := 0.95 ;

param FERROSLAG_RATIO := 2 ;

param OSymbol := O;

param O2Symbol := O2;

param Fe2SiO4Symbol := Fe2SiO4;

param Fe3O4Symbol := Fe3O4;

#:::::::::::::::::::::::::::: Subsection 4.3.4 : Blast Heat :::::::::::::::::::::::::::::

param h_Blast_dot := #in MJ/h

SlagBlow 1396.50557193274

SlagBlowAndSkimWithoutAnyMoreFeedMatte 1396.50557193274

ExtendProductionCycleWithoutAnyMoreFeedMatte 1396.50557193274 ;

#::::::::::::::::::::::::::: Subsection 4.3.5 : Offgas Heat :::::::::::::::::::::::::::::

param w_Offgas_H (tr) : O2 N2 SO2 :=

EndPreviousCycle 0 0 0

InitialCharge 0 0 0

SlagBlow 1240.56 1296.70 -3740.88

Skim 0 0 0

Recharge 0 0 0

SlagBlowAndSkimWithoutAnyMoreFeedMatte 1240.56 1296.70 -3740.88

ExtendProductionCycleWithoutAnyMoreFeedMatte 1240.56 1296.70 -3740.88

EndCurrentCycle 0 0 0 ;

#:::::::::::::::::::::::::: Subsection 4.3.6 : Discharge Heat :::::::::::::::::::::::::::

param w_DCh_H : Skim SlagBlowAndSkimWithoutAnyMoreFeedMatte

259

ExtendProductionCycleWithoutAnyMoreFeedMatte :=

FeedMatte 379.740559318401 379.740559318401 379.740559318401

Flux -12669.6798817374 -12669.6798817374 -12669.6798817374

Ferronickel 438.9323 438.9323 438.9323

FeS 122.21539074053 122.21539074053 122.21539074053

Ni3S2 961.419731551783 961.419731551783 961.419731551783

CoS 927.271139828653 927.271139828653 927.271139828653

Cu2S 250.984342504571 250.984342504571 250.984342504571

Cu_Liq 800.160600195134 800.160600195134 800.160600195134

Fe2SiO4 -5733.28422642635 -5733.28422642635 -5733.28422642635

Fe3O4 -3606.67074176221 -3606.67074176221 -3606.67074176221

NiO -2378.91470463181 -2378.91470463181 -2378.91470463181

CoO -2182.36969709799 -2182.36969709799 -2182.36969709799

Cu2O -551.994700502616 -551.994700502616 -551.994700502616

SiO2 -12640.4612884166 -12640.4612884166 -12640.4612884166

CaO -10053.5226944017 -10053.5226944017 -10053.5226944017

Al2O3 -14949.489977358 -14949.489977358 -14949.489977358

MgO -13502.7430599066 -13502.7430599066 -13502.7430599066 ;

#::::::::::::::::::::: Subsection 4.3.7 : Environmental Heat Losses :::::::::::::::::::::

param h_EnvType_dot (tr): 0 1 2 3 4 5 6 7 := #in MJ/h

EndPreviousCycle 0 0 0 0 0 0 0 0

InitialCharge 0 0 0 0 0 0 0 0

SlagBlow 108000 108000 108000 108000 108000 108000 108000 108000

Skim 108000 108000 108000 108000 108000 108000 108000 108000

Recharge 108000 108000 108000 108000 108000 108000 108000 108000

SlagBlowAndSkimWithoutAnyMoreFeedMatte 108000 108000 108000 108000 108000 108000

108000 108000

ExtendProductionCycleWithoutAnyMoreFeedMatte 108000 108000 108000 108000 108000

108000 108000 108000

EndCurrentCycle 0 0 0 0 0 0 0 0 ;

#========================= SECTION 4.4 : FORWARD COMPUTATIONS ===========================

#:::::::::::::::::::::: Subsection 4.4.1 : Retained Feed Masses :::::::::::::::::::::::::

#:::::::::::::::::: Subsection 4.4.2 : Retained Product Species Masses ::::::::::::::::::

#:::::::::::::::::::: Subsection 4.4.3 : Forward Heat Computation :::::::::::::::::::::::

#==================== SECTION 4.5 : FEASIBLE CONVERTER TRANSITIONS ======================

#::::::::: Subsection 4.5.1 : Direct Transition Constraints in General Linear Form ::::::

#::::::::::::::::::::: Subsection 4.5.2 : Bath Composition Constraints ::::::::::::::::::

param w_strm_O_max :=

#Restricted use of excess flux

SiO2 Slag Skim 0.1 ;

param w_strm_Blow_max :=

#Restricted use of excess flux

SiO2 Slag SlagBlowAndSkimWithoutAnyMoreFeedMatte 0.1

SiO2 Slag ExtendProductionCycleWithoutAnyMoreFeedMatte 0.1

#No Overblow

NiO Slag SlagBlow 0

NiO Slag SlagBlowAndSkimWithoutAnyMoreFeedMatte 0

260

NiO Slag ExtendProductionCycleWithoutAnyMoreFeedMatte 0;

#:::::::::::::::::::::::: Subsection 4.5.3 : Volume Constraints :::::::::::::::::::::::::

#::::::::::::::::::::: Subsection 4.5.4 : Temperature Constraints :::::::::::::::::::::::

param w_Blow_H_min : EndPreviousCycle InitialCharge SlagBlow Skim Recharge

SlagBlowAndSkimWithoutAnyMoreFeedMatte

ExtendProductionCycleWithoutAnyMoreFeedMatte EndCurrentCycle :=

FeedMatte 250.58 250.58 250.58 250.58 250.58 250.58 250.58 250.58

Flux -12951 -12951 -12951 -12951 -12951 -12951 -12951 -12951

Ferronickel 354.51 354.51 354.51 354.51 354.51 354.51 354.51 354.51

FeS -5.8608 -5.8608 -5.8608 -5.8608 -5.8608 -5.8608 -5.8608 -5.8608

Ni3S2 817.70 817.70 817.70 817.70 817.70 817.70 817.70 817.70

CoS 788.81 788.81 788.81 788.81 788.81 788.81 788.81 788.81

Cu2S 149.58 149.58 149.58 149.58 149.58 149.58 149.58 149.58

Cu_Liq 711.24 711.24 711.24 711.242 711.24 711.24 711.24 711.24

Fe2SiO4 -5945.8 -5945.8 -5945.8 -5945.8 -5945.8 -5945.8 -5945.8 -5945.8

Fe3O4 -3825.6 -3825.6 -3825.6 -3825.6 -3825.6 -3825.6 -3825.6 -3825.6

NiO -2523.5 -2523.5 -2523.5 -2523.5 -2523.5 -2523.5 -2523.5 -2523.5

CoO -2339.1 -2339.1 -2339.1 -2339.1 -2339.1 -2339.1 -2339.1 -2339.1

Cu2O -672.81 -672.81 -672.81 -672.81 -672.81 -672.81 -672.81 -672.81

SiO2 -12930 -12930 -12930 -12930 -12930 -12930 -12930 -12930

CaO -10279 -10279 -10279 -10279 -10279 -10279 -10279 -10279

Al2O3 -15204 -15204 -15204 -15204 -15204 -15204 -15204 -15204

MgO -13735 -13735 -13735 -13735 -13735 -13735 -13735 -13735 ;

param w_Blow_H_max : EndPreviousCycle InitialCharge SlagBlow Skim Recharge

SlagBlowAndSkimWithoutAnyMoreFeedMatte

ExtendProductionCycleWithoutAnyMoreFeedMatte EndCurrentCycle :=

FeedMatte 394.09 394.09 394.09 394.09 394.09 394.09 394.09 394.09

Flux -12637 -12637 -12637 -12637 -12637 -12637 -12637 -12637

Ferronickel 448.31 448.31 448.31 448.31 448.31 448.31 448.31 448.31

FeS 136.45 136.45 136.45 136.45 136.45 136.45 136.45 136.45

Ni3S2 977.39 977.39 977.39 977.39 977.39 977.39 977.39 977.39

CoS 942.66 942.66 942.66 942.66 942.66 942.66 942.66 942.66

Cu2S 262.25 262.25 262.25 262.25 262.25 262.25 262.25 262.25

Cu_Liq 810.04 810.04 810.04 810.04 810.04 810.04 810.04 810.04

Fe2SiO4 -5709.7 -5709.7 -5709.7 -5709.7 -5709.7 -5709.7 -5709.7 -5709.7

Fe3O4 -3581.6 -3581.6 -3581.6 -3581.6 -3581.6 -3581.6 -3581.6 -3581.6

NiO -2362.6 -2362.6 -2362.6 -2362.6 -2362.6 -2362.6 -2362.6 -2362.6

CoO -2164.6 -2164.6 -2164.6 -2164.6 -2164.6 -2164.6 -2164.6 -2164.6

Cu2O -538.24 -538.24 -538.24 -538.24 -538.24 -538.24 -538.24 -538.24

SiO2 -12607 -12607 -12607 -12607 -12607 -12607 -12607 -12607

CaO -10028 -10028 -10028 -10028 -10028 -10028 -10028 -10028

Al2O3 -14920 -14920 -14920 -14920 -14920 -14920 -14920 -14920

MgO -13477 -13477 -13477 -13477 -13477 -13477 -13477 -13477 ;

param w_DCh_H_min : EndCurrentCycle := #in MJ/T

FeedMatte 322.333914638943

Flux -12797.0498513263

Ferronickel 401.4123

FeS 65.2926288249346

Ni3S2 897.544009371792

261

CoS 865.731457640451

Cu2S 205.915385437021

Cu_Liq 760.638364334498

Fe2SiO4 -5827.73437710866

Fe3O4 -3705.37822518764

NiO -2443.67823153721

CoO -2252.71768244752

Cu2O -606.357787312864

SiO2 -12771.4558084642

CaO -10155.2236001187

Al2O3 -15064.3120428775

MgO -13606.7126396395 ;

param w_DCh_H_max : EndCurrentCycle := #in MJ/T

FeedMatte 394.092220488266

Flux -12637.2684712361

Ferronickel 448.3123

FeS 136.446081219429

Ni3S2 977.38866209678

CoS 942.656060375703

Cu2S 262.251581771458

Cu_Liq 810.041159160293

Fe2SiO4 -5709.67168875578

Fe3O4 -3581.64276106801

NiO -2362.60333645964

CoO -2164.59758386118

Cu2O -538.237252116479

SiO2 -12607.0954189282

CaO -10027.7312463732

Al2O3 -14920.403009648

MgO -13476.6130469213 ;

#:::::: Subsection 4.5.5 : Indirect Transition Constraints in General Linear Form :::::::

#============ SECTION 4.6 : OPTIMIZATION OBJECTIVES AND GLOBAL CONSTRAINTS ==============

#:::::: Subsection 4.6.1 : Optimization of Nongaseous Flows and of Transition Types :::::

param c_v := FerronickelFlow 1;

#:::::::: Subsection 4.6.2 : Limiting of Nongaseous Flows and of Transition Types :::::::

set GLOBAL_CONSTRAINTS_PSC := MinimumFeedMatteFlow MaximumRecharges;

param a_global_v :=

#Place lower limit on feed matte

MinimumFeedMatteFlow FeedMatteFlow -1;

param a_global_BType :=

#Limit the number of recharges

MaximumRecharges Recharge 1;

param b_global :=

#Limit the number of recharges

MinimumFeedMatteFlow -120

262

#Limit the number of recharges

MaximumRecharges 2 ;

#====================== SECTION 5.1 : THE SINGLE-CYCLE PSC PROBLEM ======================

#:::::::::: Subsection 5.1.1 : MILP Formulation of the Single-Cycle PSC Problem :::::::::

param EndPreviousCycleSymbol := EndPreviousCycle;

param EndCurrentCycleSymbol := EndCurrentCycle;

#::::::::::::: Subsection 5.1.2 : Critical Overlap Decomposition of a Cycle :::::::::::::

param n_PSC_system := 2 ;

param n_Crit_max := 1 ;

set TYPES_PSC_PreCrit := ;

set TYPES_PSC_Crit := InitialCharge SlagBlow Skim Recharge;

#:::::::::::: Subsection 5.1.3 : Critical Overlap Decomposition of a Cycle ::::::::::::::

#:::::::::: Subsection 5.1.4 : Maximizing the Productivity of a Single Cycle ::::::::::::

#==

#==

#==

C.3 run Files

The following script corresponds to the run file that was used in all of the computations

presented in Chapter 5. The first section of the script, “User Options”, allows the user to

select the type of computation by making small modifications to the text.

There are three different computation modes. Firstly, the “RatioObjective” mode is to

maximize the ratio objective described by Equation 5.18, by testing 52 different dCrit values.

Secondly, the “TimeTrials” mode repeats the work of the “RatioObjective” mode numerous

times, in order to obtain time data; the number of trials can be set by the user. The third

mode, “Fix dCritMax”, isolates a single value of dCrit, which can be set by the user.

#==

#==

#==

reset;

#-------------------------------------- User Options ------------------------------------

param UserOption_ComputationModeSelect symbolic;

param UserOption_Fix_dCritMax;

param UserOption_NumberOfTimeTrials;

263

#(1) Select computation mode ("RatioObjective", "TimeTrials", or "Fix_dCritMax"):

let UserOption_ComputationModeSelect := "RatioObjective";

#(2) Enter the fixed value of d_Crit_max (relevant for the "Fix_dCritMax" mode only):

let UserOption_Fix_dCritMax := 12;

#(3) Enter the number of time trials (relevant for the "TimeTrials" mode only):

let UserOption_NumberOfTimeTrials := 20;

#------------------------------------- First Printout -----------------------------------

printf "\n***\n";

printf "***\n";

printf "***\n";

printf "*************** Single-Cycle Peirce-Smith Converter Problem *************\n";

printf "***\n";

printf "***\n";

printf "***\n\n";

printf "\n\nInput problem data will be read from PSCP.dat\n";

printf "Output solution data will be written to PSCP.csv\n\n";

if UserOption_ComputationModeSelect = "Fix_dCritMax" then

printf "d_Crit_max has been fixed to %5.2f\n\n", UserOption_Fix_dCritMax;

if UserOption_ComputationModeSelect = "TimeTrials" then

printf "The optimization will be repeated %d times.\n\n",

UserOption_NumberOfTimeTrials;

#-------------------------------------- AMPL Options ------------------------------------

#Suppress exiting due to warnings

option eexit -100;

#Display solver messages and statistics

option solver_msg 1;

option show_stats 1;

#Select CPLEX as the solver

option solver cplex;

#Do not transmit results of one solution to for initial solution of next solution

option send_statuses 0;

#------------------------ Load Model, Load Data and Declare Parameters ------------------

#Load model and data

model PSCP.mod;

data PSCP.dat;

#Declare "parameters" that are used in the time trials and iterations

param ComputationTime {1..2, 1..UserOption_NumberOfTimeTrials} default 0;

#Row 1 is main computation time, Row 2 is ancillary computation time

264

param BestIteration;

param BestRatioObjectiveValue;

param d_Crit_max {i in 1..52} default (i/4);

param NumeratorObjectiveValue {1..52} default 0;

param DenominatorObjectiveValue {1..52} default 0;

param RatioObjectiveValue {1..52} default 0;

#------------------------------- Deactivate Certain Constraints -------------------------

#Deactivate dependency constraints

drop Chp4_Eq008_DependencyClause;

drop Chp4_Eq009_TypeSupportConsistency;

drop Chp4_Eq010_SupportNoMoreThanOneAssignment;

drop Chp4_Eq011_SimultaneousDuration ;

drop Chp4_Eq012_SimultaneousDuration;

drop Chp4_Eq013_SimultaneousCompletionTime;

drop Chp4_Eq014_SimultaneousCompletionTime;

#Deactivate critical dominance condition

drop Chp5_Eq12_CriticalDominance;

#---------------------- Apply Time Trials and Iterations (If Necessary) -----------------

#Adjust the number of time trials to 1 unless in "TimeTrials" mode

if UserOption_ComputationModeSelect <> "TimeTrials" then

let UserOption_NumberOfTimeTrials := 1;

#Apply time trials and iterations, depending on computation mode.

if UserOption_ComputationModeSelect <> "Fix_dCritMax" then{

#Time Trial Loop

for {Trial in 1..UserOption_NumberOfTimeTrials} {

let BestIteration := 1;

let BestRatioObjectiveValue := 0;

let ComputationTime [1,Trial] := time();

#Perform first sweeping (1 to 48), and second sweeping (49 to 52),

for {Iteration in 1..52}{

#Print Trial and Iteration Numbers

printf "\n\n**";

printf "***************\n";

if (UserOption_ComputationModeSelect = "TimeTrials") then

printf "Trial %d, ", Trial;

printf "Iteration %d\n", Iteration;

#Impose upper bound on critical duration (d_Crit)

let d_Crit_max_actual := d_Crit_max[Iteration];

#Maximize production

drop Chp5_Eq22_MaintainProduction;

objective f1;

solve;

if f1.result = "solved" then {

#If production was successfully maximized, then proceed to minimize

265

#critical duration and record values the objective values.

let f1_star_actual := f1.val;

restore Chp5_Eq22_MaintainProduction;

objective f2;

solve;

let NumeratorObjectiveValue[Iteration] := f1.val;

let DenominatorObjectiveValue[Iteration] := f2.val;

} else {

#Otherwise, zeros are recorded.

let NumeratorObjectiveValue[Iteration] := 0;

let DenominatorObjectiveValue[Iteration] := 0;

}

#Record the ratio objective values

if DenominatorObjectiveValue[Iteration] > 0 then

let RatioObjectiveValue[Iteration] :=

NumeratorObjectiveValue[Iteration]/

DenominatorObjectiveValue[Iteration];

else let RatioObjectiveValue[Iteration] := 0;

#Compare current RatioObjectiveValue to BestOjectiveRatioValue

if RatioObjectiveValue[Iteration] > BestRatioObjectiveValue then{

let BestIteration := Iteration;

let BestRatioObjectiveValue := NumeratorObjectiveValue[Iteration]/

DenominatorObjectiveValue[Iteration];

}

if Iteration = 48 then {

#Determine d_Crit_Max values for second sweeping

let d_Crit_max[49] := BestIteration/4 - 1/6;

let d_Crit_max[50] := BestIteration/4 - 1/12;

let d_Crit_max[51] := BestIteration/4 + 1/12;

let d_Crit_max[52] := BestIteration/4 + 1/6;

}

}

let ComputationTime [1,Trial] := time() - ComputationTime [1,Trial];

}

}

#-------------------------------- Determine Optimal Solution ----------------------------

#Print out delineator, except for Fix_dCritMax mode

if UserOption_ComputationModeSelect <> "Fix_dCritMax" then{

printf "\n\n***";

printf "****\n";

printf "Reload Optimal Solution\n";

}

#Load d_Crit_max according to the computation mode

if UserOption_ComputationModeSelect = "Fix_dCritMax" then

let d_Crit_max_actual := UserOption_Fix_dCritMax;

else

let d_Crit_max_actual := d_Crit_max[BestIteration];

266

#Time the computation for "Fix_dCritMax"

#(The other modes will already have computation time data for the main computation)

if UserOption_ComputationModeSelect = "Fix_dCritMax" then

let ComputationTime[1,1] := time();

#Maximize Production

drop Chp5_Eq22_MaintainProduction;

objective f1;

solve;

#Minimize Critical Duration

let f1_star_actual := f1.val;

restore Chp5_Eq22_MaintainProduction;

objective f2;

solve;

#Record main computation time (for "Fix_dCritMax" mode)

if UserOption_ComputationModeSelect = "Fix_dCritMax" then

let ComputationTime[1,1] := time() - ComputationTime[1,1];

#---------------------------- A Posteriori Ancillary Assignment -------------------------

#Fix Gantt variables for PSC, leaving the ancillary classes unfixed

fix {k in TYPES_PSC, (l2,l3) in ASSIGNMENTS_PSC} B_Type[k,PSCSymbol,l2,l3];

fix {(l2,l3) in ASSIGNMENTS_CURRENT_PSC} d[PSCSymbol,l2,l3];

fix {(l2,l3) in ASSIGNMENTS_PSC} t[PSCSymbol,l2,l3];

#Fix all remaining PSC variables

fix m_Ret;

fix h_Ret;

fix d_Int;

fix v;

fix u;

fix m;

fix m_Prod;

fix m_Blast;

fix h_Blast;

fix h_Env;

fix m_RetProd;

fix B_Rg;

#Fix the SCPS related variables

fix d_Crit;

fix d_Cycle;

fix d_CritComponent;

fix d_CycleComponent;

#Restore dependency constraints

restore Chp4_Eq008_DependencyClause;

restore Chp4_Eq009_TypeSupportConsistency;

restore Chp4_Eq010_SupportNoMoreThanOneAssignment;

restore Chp4_Eq011_SimultaneousDuration ;

restore Chp4_Eq012_SimultaneousDuration;

restore Chp4_Eq013_SimultaneousCompletionTime;

267

restore Chp4_Eq014_SimultaneousCompletionTime;

#Loosen presolve infeasibility detection

option presolve_eps 1e-8;

#Set constant objective

maximize constant: 0;

objective constant;

for {Trial in 1..UserOption_NumberOfTimeTrials} {

#Print trial information, if applicable

printf "\n\n***";

printf "****\n";

if (UserOption_ComputationModeSelect = "TimeTrials") then

printf "Trial %d, ", Trial;

printf "A Posteriori Ancillary Assignment\n";

let ComputationTime[2,Trial] := time();

solve;

let ComputationTime[2,Trial] := time() - ComputationTime[2,Trial];

}

#-------------------------- Print Objectives and Computation Times ----------------------

printf "\n\n***";

printf "\n\nf1 = %5.3f \n", f1;

printf "f2 = %5.3f \n", f2;

if f2 <> 0 then

printf "f1/f2 = %5.3f \n\n", f1/f2;

else

printf "f1/f2 = NaN \n\n";

printf "Main Computation Time = %d s\n", ComputationTime[1,1];

printf "Ancillary Computation Time = %d s\n\n\n", ComputationTime[2,1];

#------------------------------------ Create CSV File -----------------------------------

#Print the computation times

printf "Time Trials,\n,Trial," >PSCP.csv;

for {Trial in 1..UserOption_NumberOfTimeTrials}

printf "%d,",Trial >PSCP.csv;

printf "\n,Main Computation Time," >PSCP.csv;

for {Trial in 1..UserOption_NumberOfTimeTrials}

printf "%f,",ComputationTime[1,Trial] >PSCP.csv;

printf "\n,Ancillary Computation Time," >PSCP.csv;

for {Trial in 1..UserOption_NumberOfTimeTrials}

printf "%f,",ComputationTime[2,Trial] >PSCP.csv;

#Print the optimization objectives

printf "\n\n\nOptimization Objectives,\n,Iteration," >PSCP.csv;

for {Iteration in 1..52}

printf "%d,",Iteration >PSCP.csv;

printf "\n,d_Crit_max," >PSCP.csv;

for {Iteration in 1..52}

268

printf "%f,",d_Crit_max[Iteration] >PSCP.csv;

printf "\n,f1*," >PSCP.csv;

for {Iteration in 1..52}

printf "%f,",NumeratorObjectiveValue[Iteration] >PSCP.csv;

printf "\n,f2*," >PSCP.csv;

for {Iteration in 1..52}

printf "%f,",DenominatorObjectiveValue[Iteration] >PSCP.csv;

printf "\n,f1*/f2*," >PSCP.csv;

for {Iteration in 1..52}

printf "%f,",RatioObjectiveValue[Iteration] >PSCP.csv;

#Print the Ancillary Assignment Variables

for {i in CLASSES diff {PSCSymbol}}{

printf "\n\n\n%s Assignments,\n,Assignment Number,",i >PSCP.csv;

for {k in 1..n_Asgn_max[i]}

printf "%d,",k >PSCP.csv;

printf "\n,Duration (hr)," >PSCP.csv;

for {k in 1..n_Asgn_max[i]}

printf "%f,",d[i,1,k] >PSCP.csv;

printf "\n,Finishing Time (hr)," >PSCP.csv;

for {k in 1..n_Asgn_max[i]}

printf "%f,",t[i,1,k] >PSCP.csv;

printf "\n,Assignment Type," >PSCP.csv;

for {kp in 1..n_Asgn_max[i]}

for {k in TYPES[i]}

if B_Type[k,i,1,kp] = 1 then printf "%s,",k >PSCP.csv;

}

#Print the Converter Transition Variables

printf "\n\n\nConverter Transitions,\n,Transition Number," >PSCP.csv;

for {k in 1..n_Asgn_max[PSCSymbol]}

printf "%d,",k >PSCP.csv;

printf "\n\nGantt Structure,\n,Duration (hr)," >PSCP.csv;

for {k in 1..n_Asgn_max[PSCSymbol]}

printf "%f,",d[PSCSymbol,1,k] >PSCP.csv;

printf "\n,Finishing Time (hr)," >PSCP.csv;

for {k in 1..n_Asgn_max[PSCSymbol]}

printf "%f,",t[PSCSymbol,1,k] >PSCP.csv;

printf "\n,Transition Type," >PSCP.csv;

for {kp in 1..n_Asgn_max[PSCSymbol]}

for {k in TYPES_PSC}

if B_Type[k,PSCSymbol,1,kp] = 1 then printf "%s,",k >PSCP.csv;

printf "\n\nSegment Durations (hr)" >PSCP.csv;

for {i in 0..7}{

printf "\n,%d,",i >PSCP.csv;

for {k in 1..n_Asgn_max[PSCSymbol]}

printf "%f,",d_Int[i,1,k] >PSCP.csv;

}

printf "\n\nCharge Delivery Volumes (m)" >PSCP.csv;

for {j in FLOWS_Ch}{

printf "\n,%s,",j >PSCP.csv;

for {k in 1..n_Asgn_max[PSCSymbol]}

printf "%f,",v[j,1,k] >PSCP.csv;

}

printf "\n\nBlow Delivery Volumes (m)" >PSCP.csv;

269

for {j in FLOWS_NGBlow}{

printf "\n,%s,",j >PSCP.csv;

for {k in 1..n_Asgn_max[PSCSymbol]}

printf "%f,",v[j,1,k] >PSCP.csv;

}

printf "\n\nDischarge Delivery Volumes (m)" >PSCP.csv;

for {j in FLOWS_DCh}{

printf "\n,%s,",j >PSCP.csv;

for {k in 1..n_Asgn_max[PSCSymbol]}

printf "%f,",v[j,1,k] >PSCP.csv;

}

printf "\n\nCharge Delivery Units" >PSCP.csv;

for {j in FLOWS_MSM_Ch}{

printf "\n,%s,",j >PSCP.csv;

for {k in 1..n_Asgn_max[PSCSymbol]}

printf "%f,",u[j,1,k] >PSCP.csv;

}

printf "\n\nDischarge Delivery Units" >PSCP.csv;

for {j in FLOWS_MSM_DCh}{

printf "\n,%s,",j >PSCP.csv;

for {k in 1..n_Asgn_max[PSCSymbol]}

printf "%f,",u[j,1,k] >PSCP.csv;

}

printf "\n\nTransition-Type Determinants" >PSCP.csv;

for {k in TYPES_PSC}{

printf "\n,%s,",k >PSCP.csv;

for {kp in 1..n_Asgn_max[PSCSymbol]}

printf "%d,",B_Type[k,PSCSymbol,1,kp] >PSCP.csv;

}

#Close csv file

close PSCP.csv;

#==

#==

#==

	DEDICATION
	ACKNOWLEDGEMENTS
	RÉSUMÉ
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	NOMENCLATURE
	LIST OF APPENDICES
	1 PEIRCE-SMITH CONVERTING AND EXTRACTIVE METALLURGY
	1.1 Importance of PS Converting
	1.1.1 Global Presence
	1.1.2 Interdisciplinary Divide

	1.2 Overview of Extractive Metallurgy
	1.2.1 Mineral Concentration
	1.2.2 Pyrometallurgical and Hydrometallurgical Extraction
	1.2.3 Hybridization of Pyro- and Hydrometallurgical Extraction
	1.2.4 Further Divisions within Extractive Metallurgy
	1.2.5 Extraction of Copper and Nickel

	1.3 Overview of PS Converting
	1.3.1 PS Converting as a Bessemerization Process
	1.3.2 Matte Converting Reactions
	1.3.3 PS Converting Technology
	1.3.4 The PS Converter Problem

	2 SEMI-DISCRETE DYNAMICS OF PS SYSTEMS
	2.1 Gantt Structure
	2.1.1 Assignments
	2.1.2 Dependencies

	2.2 PS Converters as State-Machines
	2.2.1 States and Transitions
	2.2.2 Converting Actions

	3 CHARACTERIZATION OF CHEMICAL STREAMS IN PS SYSTEMS
	3.1 Elements, Species and Streams
	3.1.1 General Representation of Chemical Converting
	3.1.2 General Representation of PS Converting

	3.2 Species-Based Distribution of Mass, Volume and Heat
	3.2.1 Mass Distribution Within a Process Stream
	3.2.2 Volume Distribution Within a Process Stream
	3.2.3 Heat Distribution Within a Process Stream
	3.2.4 Heat Distribution Across Several Process Streams

	3.3 Characterization of Feed Streams
	3.3.1 Furnace Matte
	3.3.2 Fluxes and Secondary Feeds
	3.3.3 Blast

	3.4 Characterization of Product Streams
	3.4.1 Regime-Dependence of Product Species
	3.4.2 Mass Distribution Across the Product Streams

	3.5 Flow Mechanisms
	3.5.1 Streams, Actions and Flow Mechanisms
	3.5.2 Modulated Charging and Discharging

	4 MILP FORMULATION OF THE PSC PROBLEM
	4.1 Gantt Structure
	4.1.1 Assignments
	4.1.2 Dependencies

	4.2 PS Converters as State-Machines
	4.2.1 States and Transitions
	4.2.2 Converting Actions

	4.3 Intermediate Computations
	4.3.1 Intermediate Variables
	4.3.2 Blast Elemental Masses
	4.3.3 Product Species Masses
	4.3.4 Blast Heat
	4.3.5 Offgas Heat
	4.3.6 Discharge Heat
	4.3.7 Environmental Heat Losses

	4.4 Forward State Computation
	4.4.1 Retained Feed Masses
	4.4.2 Retained Product Species Masses
	4.4.3 Retained Heat

	4.5 Feasible Converter Transitions
	4.5.1 Direct Transition Constraints in General Linear Form
	4.5.2 Bath Composition Constraints
	4.5.3 Volume Constraints
	4.5.4 Temperature Constraints
	4.5.5 Indirect Transition Constraints in General Linear Form

	4.6 Global Objectives and Constraints
	4.6.1 Optimization of Nongaseous Flows and of Transition Types
	4.6.2 Limiting of Nongaseous Flows and of Transition Types

	5 THE SINGLE-CYCLE PSC PROBLEM AND SAMPLE COMPUTATIONS
	5.1 Adaptation of the PS MILP Formulation
	5.1.1 Topological and Initial Conditions
	5.1.2 Critical Overlap Decomposition
	5.1.3 Dominance Condition for the Critical Stage
	5.1.4 Maximizing the Productivity of a Single Converting Cycle

	5.2 Software Systems
	5.2.1 AMPL and CPLEX
	5.2.2 Excel and VBA

	5.3 Sample Computations
	5.3.1 Sample Computations for a Copper PS Converter
	5.3.2 Sample Computations for a Nickel-Copper PS Converter

	6 EXTENSIONS OF THE PSC MILP FORMULATION
	6.1 Nonlinearity of the PS Converter Problem
	6.1.1 Relaxation of the Complete-Discharge Condition
	6.1.2 Heat Transfer

	6.2 PS Operations Research
	6.2.1 From Mathematical Programming to Advanced Algorithm Design
	6.2.2 Fomenting Innovation

	REFERENCES
	APPENDICES

