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RÉSUMÉ

La gestion des revenues est l’art de développer des modèles mathématiques capables de

déterminer quel produit offrir à quel segment de consommateurs à un moment précis dans le

but de maximiser les profits. La prévision de la demande joue un rôle fondamental dans la

gestion des revenues, car un manque de précision à cet égard engendrer une perte de profits.

Dans cette thèse, nous proposons une étude systématique et approfondie de différentes

méthodes qui sont employées pour prévoir la demande. Tout d’abord, nous présenterons un

nouveau schéma de classification détaillant les caractéristiques de ces différentes méthodes

pour déterminer en quoi elles diffèrent les unes des autres. Dans ce but, nous ferons une ana-

lyse exhaustive de la littérature existant à ce sujet pour être à même de bien catégoriser ces

méthodes dans notre schéma. Par la suite, nous investiguerons à propos des systèmes de ges-

tion des revenue qui utilisent un réseau neuronal artificiel modifié combiné à un historique

des données pour prévoir le nombre de passagers, selon les heures de départ, pour une impor-

tante entreprise européenne de transport ferroviaire. Après, afin de bien cerner les effets de

saisonnalité et modéliser le comportement des consommateurs, nous proposerons un nouveau

modèle non paramétrique.

La source de notre problématique part d’un modèle non-convexe et non linéaire composé

de variables entières. Dans ce modèle, les variables représentent l’utilité de chaque produit

ainsi que la demande potentielle de chaque jour et les variables binaires qui sont utilisées afin

d’assigner chaque jour à chaque groupe des jours selon ses caractéristiques. Nous avons li-

néarisé et rendu convexe ce modèle avec succès en utilisant des techniques de linéarisation.

Puis, nous avons présenté les caractéristiques de la disponibilité pour un temps donné afin

d’extraire les corrélations entre les probabilités générées par ces choix. De plus, nous avons

déterminé pour chaque journée un nombre prédéfini de blocs selon les caractéristiques spéci-

fiques de la demande. Ainsi, nous avons pu déterminer une solution initiale basée sur laquelle

on serre l’amplitude des variables. Ensuite, nous avons représenté un algorithme séparation et

évaluation impliquant des techniques d’optimisation globale pour estimer les utilités et la de-

mande potentielle à chaque jour. Le prétraitement des données a nécessité l’implémentation

de plusieurs nœuds avant effectuer le branchement. Ce processus utilise des solveurs linéaires

et non linéaires. Les résultats sont représentés par données synthétiques et données réelles.

Par ailleurs, ces résultats sont comparés à deux modèles non linéaires d’optimisation glo-

bale bien connus. Le modèle que nous proposons offre une performance nettement supérieure.

Dans la dernière partie de cette dissertation, nous étudierons l’impact de ce modèle de de-

mande sur la performance des revenues générées. Les résultats sont représentés à l’aide des
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données synthétiques générés par une programmation linéaire déterministe basée sur les mo-

dèles de choix discret.

Mots clés : Système de gestion des revenues, Modèle de choix discret, Réseau de neurones

artificiel, Optimisation globale
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ABSTRACT

A revenue management system is defined as the art of developing mathematical models

that are capable of determining which product should be offered to which customer segment

at a given time in order to maximize revenue. Demand forecasting plays a crucial role in rev-

enue management. The lack of precision in demand models results in the loss of revenue. In

this thesis, we provide an in-depth and systematic study of different methods that are applied

to demand forecasting. We first introduce a new classification scheme for them and propose

the characteristics that differentiate the methods from one another. All existing papers are

reviewed and many of them have been categorized based on our classification scheme. After,

we investigated a demand prediction model that uses a modified neural network method and

historical data to forecast the number of passengers at the departure time for a major Euro-

pean railway company. Afterwards, in order to capture seasonal effects and taking customer

behavior into account, we proposed a new, non-parametric mathematical model. The original

problem is a nonconvex nonlinear model with integer variables. The variables in this model

are the product utilities, the daily demand flow and binary assignment variables. We success-

fully linearized and convexified the model by using linearization techniques. Then, we used

the characteristics of product availabilities for a given time to extract logical relations between

choice probabilities. Moreover, we have classified each day to one of the predefined numbers

of clusters based on their related daily demand flow. We represent a branch and bound al-

gorithm, which uses global optimization techniques to find the estimated utilities and daily

potential demand. Several node preprocessing techniques are implemented before branching.

Both linear and nonlinear solvers are used in the branching process. The computational re-

sults are represented by using synthetic data. Also, they are compared to two well-known

nonlinear and global optimizers and our proposed model outperforms both solvers. In the

final part of this dissertation, we investigate the impact of the suggested demand model on

revenue performance. The numerical results are presented using synthetic data produced by

a modified Deterministic Choice-Based Linear Programming approach.

Keywords: Revenue Management, Choice-Based Demand Modeling, Uncensoring Meth-

ods, Neural Networks, Global Optimization Approach
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INTRODUCTION

Revenue Management (RM) is the application of disciplined tactics that predict consu-

mer behavior and optimize product availability and price to maximize revenue (Cross (1997)).

These systems include two main components. The first one is an optimization tool that finds

the best price and allocation scenario and the second is a demand forecasting tool. The de-

mand modeling aspect provides the essential input to the optimization model, which has been

neglected in the literature compared to research that has been done on optimization models.

Traditionally, demand for different products in RM systems is assumed to be independent.

Many methods have been used in order to provide precise demand models. A detailed study

of the application of statistical methods and probabilistic demand models in the airline indus-

try was performed by Lee (1990). Usually, statistical methods are used in capturing seasonal

effects of demand ; however, they often fail to properly respond to sudden changes in the set of

available products at a given time. van Ryzin (2005) has stated that in revenue management

systems, it is beneficial to use customer behavior models instead of product demand models.

Afterwards, more optimization methods have been incorporated with choice probabilities in

order to better monitor customer behavior (see van Ryzin et Vulcano (2008) ; Talluri (2010) ;

Škurla Babić et al. (2011) ; Vulcano et al. (2010) ; Zeni et Lawrance (2004) ; Haensel et Koole

(2010) ; Farias (2007)). This assumption about demand independence is convenient because

it simplifies the computations while using historical data. However, in reality, the demands of

different products are dependent. As soon as one of the products at a given time interval is

no longer available, the data collection system stops gathering information. Therefore, histo-

rical data represents only the registered bookings (censored demand). If the censored data is

ignored in forecasting models, it causes an underestimation of demand, which results in loss of

revenue (Cooper et al. (2006) ; Weatherford et Belobaba (2002)). Hence, there is an essential

need to uncensor demand in order to provide reliable forecasting models in revenue manage-

ment systems. In the literature, there has been some research that has tackled the problem

of censored demand by using different methods. That is, research has found the demand that

one would have observed if unavailable products had still been available (Liu et al. (2002) ;

Haensel et Koole (2010) ; Weatherford et Polt (2002) ; Queenan et al. (2009)).

The content of this dissertation can be categorized in four main parts. In the first part, we

introduce a state-of-art taxonomy on uncensoring methods in demand forecasting in revenue

management. In the second part, we apply a modified statistical method (Artificial Neural

Networks) in order to predict the number of passengers at departure time for a major railway

company. The third part introduces a new algorithm that is able to capture the seasonal ef-
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fects of departure days and estimate the utilities of offered products. The final part tests the

effect of our proposed model on revenue by using synthetic data.

Chapter 1 introduces a complete study of the existing uncensoring methods in demand

forecasting in RM systems. More than two hundred articles in this field were reviewed and

categorized based on our proposed criteria. The existing articles are classified based upon a

tuple notation technique, which is represented in this chapter. Our main contributions are as

follows :

– Representing the main features of demand from both supplier and consumer sides in

Revenue Management Systems (RMS).

– Introducing uncensoring methods applied to revenue management problems from dif-

ferent mathematical aspects.

– Defining a new tuple notation method to classify research in this domain.

Chapter 2 shows a modified artificial neural network that is used in order to predict the

demand of each product for a major railway company. In this research we incorporate statis-

tical techniques (for preprocessing data) and neural networks in transportation demand fo-

recasting. The model used is an improved Multi-Layer Perceptron (MLP) that describes the

relationship between the amount of passengers and factors that affect this quantity based on

historical data. The main contributions can be classified as follows :

– Proposing a tailored neural network to predict number of passengers for a railway com-

pany.

– Introducing a relevant pre-processing approach to make the learning process efficient.

– Testing the generalization ability of the network using real data.

Chapter 3 presents an original model of demand forecasting that uses a least-square me-

thod of optimization to predict the demand of each product at a given time. One of the origi-

nal aspects of the model is that it avoids a parametric representation of the product utilities.

Unlike most of the models in the literature, we consider utilities to be variables of our ma-

thematical formulation. Therefore, utilities are defined based on products, which is the main

difference between our work and classical choice-based models. We briefly present the main

nonconvex nonlinear problem and its variables. We then introduce a new non-parametric algo-

rithm that is able to forecast demand under the change of product availabilities. Afterwards,

we linearize and convexify the original problem and propose a series of properties that en-

able us to increase the quality of our solutions. A branch and bound is introduced to solve

the problem. Both linear and nonlinear solvers are used at the same time in our branch and

bound. This model estimates the expected demand of each product at a given time in addi-

tion to product utilities. Below, the main contributions that shape this chapter’s framework

are summarized :
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– Proposing a new mixed integer nonlinear formulation for modeling demand.

– Capturing customer behavior and demand seasonal effects simultaneously.

– Introducing a global optimization method with a tailored branch and bound strategy to

solve the problem.

Finally, in Chapter 4, we examine the impact of our proposed prediction model on reve-

nue by using a modified CDLP problem and providing a small simulation study. Our main

contributions in this chapter are summarized as follows :

– Finding product utilities using directly historical data.

– Proposing a non-parametric method to obtain a customer preference vector.

– Comparing the impact of parametric and non-parametric method of preference estima-

tion on revenue.

We analyze the outcomes of our research in Chapter 5 and we discuss possible future

works.
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CHAPTER 1

ARTICLE 1 : A TAXONOMY OF DEMAND UNCENSORING METHOD IN

REVENUE MANAGEMENT

Chapter Information : An article based on this chapter is submitted for publication.

Sh. Sharif Azadeh, P. Marcotte, and G. Savard.

In this article, more than two hundred papers were reviewed and categorized based on a

state-of-art classification technique.

Abstract Revenue management systems rely on customer data, and are thus affected by

the absence of registered demand that arises when a product is no longer available. In the

present work, we review the uncensoring (or unconstraining) techniques that have been pro-

posed to deal with this issue, and develop a taxonomy based on their respective features. This

study will be helpful in identifying the relative merits of these techniques, as well as avenues

for future research.

Keywords Revenue management, Demand forecasting, Uncensoring, Statistical methods,

Optimization, Customer choice behaviour.

1.1 Introduction

The purpose of Revenue Management (RM) is to enhance the profitability of a firm through

the optimal management of its inventory. In the service industry (airlines, railways, hotels),

this can be achieved by controlling the availability of products, in order to redirect customers

to “products” with high profit margins. Throughout this process, a trade-off must be stricken

between the sale of low cost products when resources are plentiful, and the protection of high

fare products towards the end of the booking horizon. Any such strategy is highly dependent

on historical demand forecasts, and must cope with the lack of information resulting from

censored demand, i.e., virtual demand for products that have been withdrawn, due to their

“booking limits” being reached. This demand may either be lost (“spill”) or recaptured by a

more expensive (“buy-up”) or cheaper (“buy-down”) available product. In either case, the ob-

served demand does not match the true behaviour of the customers, and may yield unreliable

estimates. According to Weatherford et Belobaba (2002), underestimating demand by 12.5%
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to 25% can result in a loss of revenue from 1% to 3%, which is significant. The main goal of

this paper is to review and propose a taxonomy for the techniques that have been developed

to address the issue of missing data. The remaining of this introductory section, following a

simple illustration of the censored data issue, will put it into the proper context of the RM

literature.

Let us consider a service company that sells a high fare “product” A and a low fare pro-

duct B. An arriving customer may wish to purchase A, B, or renege. As long as both products

are available, i.e., the booking limits have not been reached, sale figures (registered demand)

reflect actual demand. If the booking limit set by the RM policy is reached for product B

first, the upcoming demand for B is either be transferred to A (buy-up) or lost (spill). This

is illustrated in Figure 1.1 for given streams of arrivals. Note that, if streams A and B are

independent, then the native demand for A should not change once B is closed. Even in such

simple case, one realizes the difficulties of retrieving the true demand from incomplete his-

torical data, and of striking the right balance between accuracy and practicality in real-life

instances. This leads to a variety of approaches, which have been investigated from different

viewpoints :

– Wickham (1995) probed statistical forecasting methods for short-term demand in the

airline industry. Time series, linear regression and booking pickup models were conside-

red to estimate demand where some historical data is missing.

– Lee (1990) and McGill et van Ryzin (1999) introduced a variety of statistical methods

to extract demand features using registered booking data.

– Zeni (2001) and Weatherford (2000) investigated statistical unconstraining techniques

at a micro-level. They integrated techniques such as imputations or expectation maxi-

mization (EM) within the framework of exponential smoothing, time series, linear re-

gression, or pickup models.

– In van Ryzin (2005), the focus shifted from traditional product demand models to the

analysis of customer behaviour, based on the theory of discrete choice (random utility).

– For an airline application, Ratliff et al. (2008) integrated product dependencies, and

proposed a hierarchical classification of previous unconstraining models. Three frame-

works were considered : (i) single-class models, where product demand is assumed to

be independent, (ii) multi-class, with up-sell and down-sell among different fare classes,

(iii) Multi-flight methods, which include the most general unconstraining approaches.

All models take into account the interactions between the various fare products.

Although the above mentioned studies cover important subsets of uncensoring methods,

there yet exists a need to structure the field, so that adequate methods be easily matched to

areas of application. Hence our proposal for a flexible and expandable taxonomy that should



6

C
um

ul
at

iv
e

D
em

an
d

Days prior to departure

Region 2: Demand of B is either spilled 
or recaptured by A

Region 1: Both A and B are uncensored

Booking limit of 
product A 
(high fare)

Booking limit of 
product B
(low fare)

Uncensored demand of A 
where A and B are 

independent

Uncensored demand of B

Censored demand of B

Departure day

Buy-up

Uncensored demand of A 
when demand of B is 

recaptured by A (buy-up)

Figure 1.1 Demand censorship

prove useful in future settings.

Our classification makes use of a tuple notation, which allows for a concise review of exis-

ting models, identifying the key elements that distinguish them from one another. In this

framework, a model is represented as a tuple [µ|δ|α], where µ is the set of attributes of the

supplier, δ is the set of demand features, and α identifies uncensoring approaches. Whenever

an element is not considered in a specific model, it does not appear in the tuple.

The remainder of this paper is structured as follows. Section 2 introduces the main ele-

ments of demand models in RM. Section 3 presents uncensoring methods, whose efficiencies

are assessed in Section 4, together with guidelines for use in future applications. Avenues for

further research are outlined in the concluding Section 5.

1.2 Features of demand models in RM systems

In this section, we introduce the features according to which the demand models will be

classified.

1. Supply side

– Customer type (for data gathering)

– Domain of application
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2. Demand

– Dependencies among products

– Diversion (spill or recapture)

– Seasonality

– Segmentation (internal or external)

– Competition

They are detailed, together with their respective domains of application, in the following

subsections.

1.2.1 Supply-side features

Forecasting techniques can address demand either at the macro or micro level. Macro-

level analyses consider total demand, whereas micro-level forecasting is typically conducted

on a booking date and fare-class basis (see Zeni (2001) ; Lee (1990)). In the context of micro-

level forecasting (which is the main focus of this review), supply-side assumptions influence

the choice of uncensoring method to a great extent. We consider the following classification :

1. Customer type (µ1)

– Myopic

– Strategic

2. Domain of application (µ2)

– Airline

– Rental-Retail

– Railway

– Hotel

The parameter µ1 ∈ {myop, strat} refers to inter-temporal substitutions that involve (or

not) delaying one’s purchase (see Shen et Su (2007)). In the standard models, myopic custo-

mers make their final decision at the time of arrival, whereas more recent models allow stra-

tegic customers to reconsider their choice in the future (see Liu et van Ryzin (2008) ; Bansal

(2012) ; Cachon et Swinney (2009) ; Su (2007) ; Yang et al. (2010) ; Levin et al. (2010) ; Cachon

et Swinney (2011) ; Yin et al. (2009) ; Swinney (2011)).

The second attribute µ2 ∈ {air, rent− ret, rail, hotel} refers to application domains. Al-

though the initial research focused on airlines, RM has subsequently made its way into the

realms of rental and retail (Ja et al. (2001) ; Stefanescu et al. (2004) ; Stefanescu (2009) ; Vul-

cano et al. (2010) ; Talluri (2009) ; Ratliff et al. (2008) ; Haensel et Koole (2010) ; Haensel et al.

(2011)), and unconstraining methods have been applied to these domains (see also domains

to which unconstraining methods are applied Zhu (2006) ; Conlon et Mortimer (2008) ; Huh
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et al. (2011)). This is also the case of the rail industry, especially in Europe, where compe-

tition with low cost airlines that operate “point-to-point” is fierce (Armstrong et Meissner

(2010) Crevier et al. (2012)). In the hotel industry, Queenan et al. (2009) have assessed un-

constraining techniques using actual data, whereas Haensel et Koole (2010) have done so for

the hotel industry. Other proposals can be found in the recent literature (see Meissner et al.

(2012) ; Ferguson et Queenan (2009) ; Bodea (2008)).

1.2.2 Demand characteristics

The impact of demand representation over the choice of an unconstraining technique is

important. We characterize the demand process through the following five attributes δi :

1. Product dependency (δ1)

– Dependent

– Independent

2. Diversion (δ2)

– Spill

– Recapture

3. Seasonality (δ3)

– Seasonal effects

4. Segmentation (δ4)

– Internal (latent characteristics, such as income)

– External (time dependent arrivals)

5. Competition (δ5)

– Competition

We now discuss the parameters in some detail. First, we note that the independence as-

sumption facilitates the estimation process and makes it possible to address larger problem

instances (Haensel et Koole (2010) ; Zeni (2001) ; Queenan et al. (2009) ; Meissner et Strauss

(2012a) ; Meissner et Strauss (2012b)). However, it is clearly an over-simplification, and recent

studies have explicitly considered correlations, either linear or nonlinear, either inter-temporal

or not (McGill (1995)).

In most situations, customers who are denied their preferred choice have recourses wi-

thin service companies products. If products are nested, i.e., a discontinued low fare cannot

be reactivated further in time, then customers can either purchase at a higher fare (buy-up)

or renege (spill) (Swan (1979) ; Swan (1999)). Some researchers have considered mass ba-

lance equations that link spill and recapture (Andersson (1998) ; Ja et al. (2001) ; Ratliff et al.

(2008)). Vulcano et al. (2010)-(2012) have considered a method for estimating substitute and
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turned away demand for the case of incomplete data. Similar research has been conducted by

Talluri et Van Ryzin (2004) and Haensel et Koole (2010).

In service companies such as rentals, airlines, railways and hotels, reservations are made

days or weeks in advance. These periods of time are divided into booking intervals during

which customers register for a specific day. Reservations usually face a considerable degree

of seasonality, which may be inadequately captured if only a small portion of data is used

to estimate the parameters of the model. In order to capture seasonal effects, the time scope

of the historical data needs to be specified, i.e., one must determine the number of booking

intervals included in the historical data. Too much information makes the forecasting model

inflexible, whereas too little does not allow to capture seasonality in a meaningful fashion. To

address the issue, a time series approach (ARIMA) has been adopted by Lee (1990), Sa (1987)

and Queenan et al. (2009).

Market segmentation can affect both the choice of uncensoring and optimization approaches

in RM systems. Ideally, one would tailor the fare of a product to the willingness-to-pay of each

individual (see Gurbuz et al. (2011) ; Meissner et Strauss (2009) ; Talluri (2010)). In this fra-

mework, internal segmentation refers to customer features (income, purpose, age, etc.), while

external segmentation refers to time-based customer behaviour. For instance, customers who

book late are more likely to be business travellers who opt for high fare products, while wee-

kenders are more likely looking for economy fares.

The last parameter δ5 refers to competition. Surprisingly, this feature of revenue manage-

ment, which actually motivated the very field, has only recently been paid close attention (see

Jiang (2007) ; Jiang et Pang (2011) ; Perakis et Sood (2006) ; Kwon et al. (2009) ; Mart́ınez et

Talluri (2011) ; Gallego et Hu (2008) ; Belobaba (1987)). Including competition within a RM

system can significantly modify the demand model, which could embed competition between

different products of the same company, or competition between companies that offer similar

products. For instance, Netessine et Shumsky (2005) have considered quantity-based games

of booking controls under horizontal and vertical competition, and Liu et Zhang (2011) have

addressed the issue of dynamic pricing competition between two firms offering vertically dif-

ferentiated products to strategic consumers.

The tree-like Figure 1.2 summarizes the elements of demand models and their related com-

ponents.
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Figure 1.2 Elements of Demand Forecasting Revenue Management (DFRM)

1.3 Estimation of unconstrained demand

At the heart of the revenue management is a twofold process that consists in parame-

ter estimation, and optimization. These can be conducted sequentially (estimate then opti-

mize) or in parallel (estimate and optimize). Depending on the strategy adopted, and also on

demand specification, different unconstraining methods can be applied, either parametric or

non-parametric. Note that classical forecasting methods, such as time series and linear regres-

sion, are unable to properly capture customer behaviour and product availability at a given
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time.

Uncensoring methods can be classified into four main categories, each one associated with

a symbol αi : basic methods (α1), statistical methods (α2), choice-based models (α3), and

optimization methods (α4). The first three categories fit the “estimate then optimize” frame-

work, whereas optimization methods are of an “estimate and optimize” nature.

1.3.1 Basic methods

Basic methods are nonparametric and may either (i) limit themselves to observed boo-

king data (ii) ignore censorship altogether (iii) discard censored data (iv) use “imputations”

to make up for missing data. They are now discussed in more detail.

– Direct observation

One of the simplest methods to tackle the problem of censored demand is not to tell customers

that their required product is unavailable. Rejected requests are then appended to registered

bookings, resulting in an unbiased estimation of the true demand. In practice, the existence

of several booking outlets (online or not) makes this “ideal” approach unsuitable, notwiths-

tanding the additional burden of processing this data, and the impediment on the perceived

quality of service. Moreover, this strategy could not cope with dynamic variations of customer

behaviour (Queenan et al. (2009) ; Orkin (1998)).

– Ignoring censorship

Assuming that data is uncensored is tantamount to setting demand estimates to their booking

limits, whenever these are reached, and will obviously lead to underestimation (Cooper et al.

(2006) ; Saleh (1997) ; Little et Rubin (2002)).

– Discarding censored data

This strategy limits the size of the sample and may yield either over or underestimation, de-

pending whether products with low or high demand levels are censored. This method usually

performs adequately when the arrival process is totally random and the number of sell-outs

is small. If these conditions are not fulfilled, a negative bias can occur (Zeni (2001) ; Saleh

(1997)).

– Imputations

The term “imputation” refers to methods that fill in censored demand. A commonly used me-

thod is “mean imputation”, whereby censored data is replaced by the mean of registered boo-

king data, whenever the latter is less than the average (Zeni (2001) ; Little et Rubin (2002) ;

Farias (2007)). In a similar fashion, one obtains an imputation based on the median of the

historical unconstrained demand, in place of its mean.

Each approach is illustrated on an example involving 3 available products whose data is

displayed in Table 1.1. In the first part of the table general information about these products
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are provided. Registered demand for “direct observation” method differs from the other three

basic methods. Hence, we have represented registered and uncensored demand of this method,

separately from “ignoring censorship”, “discarding censorship” and “mean imputation”.

We close this subsection with a list of the acronyms corresponding to each uncensoring

approach.

α1 =


dir.obs Directly Observed booking data

ign.cen Ignore Censorship

dis.cen Discard Censored data

imp Imputations

1.3.2 Statistical methods

In revenue management, statistical methods are broadly expressed in three categories (Wea-

therford et Kimes (2003) and Lee (1990)) : historical, advanced, and combined booking mo-

dels.

– Historical booking models

Historical booking models resort to traditional parametric forecasting such as time series,

exponential smoothing, or linear regression (see Sa (1987) ; Littlewood (2005) ; Pölt (2000) ;

Weatherford (2000) ; Kachitvichyanukul et al. (2012)).

Time series describe the random nature of the data, and are based on final booking num-

bers. Despite their relatively simple mathematical structure, they are rich enough to embody

a wide range of data features. For one, the ARIMA model comprises autoregressive and mo-

ving average components (Box et al. (2011)). It can be mathematically expressed as follows :

Yt = µ+ φ1Yt−1 + φ2Yt−2 + · · ·+ φpYt−p + εt − θ1εt−1 − θ2εt−2 − · · · − θqεt−q (1)

where Yt represents the demand at time t, µ is the mean of a stationary process, θi’s are

coefficients, and εt’s are uncorrelated random terms with zero mean and common variance σ2
ε .

The first terms in the above equation represent the autoregressive component, and the second

set of linear combinations the moving average. Time series explicitly exploit the correlations

between successive data points to improve forecasts.

Based on data observed up to time t − 1, Simple exponential smoothing adjusts the next

value Ŷt through the formula

Ŷt+1 = Ŷt + α(Yt − Ŷt) (2)

where the parameter α lies between zero (no adjustment) and one (“strong”adjustment). This

method, which relies on a weighted average of the most recent observations (Hyndman et al.
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Table 1.1 Uncensoring demand : basic methods

Product A B C D
General information
Availability 1 1 0 1
Booking limit 8 6 0 23
Actual demand 15 0 9 22
Uncensored demand by direct observation
Registered demand (Direct observation) 12 0 0 22
Direct observation 12 0 0 22
Uncensored demand by :
Registered demand (Other three methods) 8 0 0 22
Ignoring censorship 8 0 0 22
Discarding censorship - 0 - 22
Mean imputation 10 0 0 22

(2008)), is not recommended for the analysis of time series characterized by a large number

of null values and a high variability among the non-zero data.

Linear regression assumes a linear trend of registered bookings in successive time periods,

the key issue being to properly select the number and nature of the descriptive variables ente-

ring the model. The parameters of the regression are usually estimated via least squares. For

a case involving two descriptive variables over two successive booking intervals, we have that

Yt = β0 + β1Yt−1 + β2Yt−2 + εt (3)

where Yt is the current booking and Yt−1, Yt−2 represent the total bookings for the two prece-

ding time intervals. The drawback of this regression model is the underlying linearity assump-

tion, which may not always hold.

– Advanced bookings

Advanced booking models (including pickup, advanced pickup, booking profile) are based

on registered bookings over time, and can be of the additive or multiplicative type. Both

types have been considered in the transportation literature (see L’Heureux (1986) ; Skwarek

(1996a) ; Skwarek (1996b) ; Weatherford et Polt (2002) ; Zickus (1998) ; Gorin (2000) ; Mishra

(2003) ; Lee (1990) ; Wickham (1995) ; Zakhary et al. (2008)). Classical or advanced pickups

are additive models that differ in their treatment of historical data (Lee (1990) ; Wickham

(1995)). In classical method, an overall average on the products that are no longer available is

used to show uncensored demand. However, advanced method applies an incremental average

over time, to better depict small changes in demand. In general, they assume no proportio-

nality relationship between current registered bookings (at the time when the product is no
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longer available) and final bookings. Instead, they assume that the absolute growth (pickup)

in bookings between the current time interval and the last interval of other open similar pro-

ducts is a good indicator of the booking history, had the closed products been still open. This

yields

Y i
0 = Y i

t +
1

J
·

J∑
j=1

(Y j
0 − Y

j
t ), (4)

where Y i
0 is an estimate of the final uncensored booking of product i, J represents the number

of remaining booking intervals, and Y i
t is the current booking (at time t) of the closed product.

In this formula, the average term corresponds to the mean number of pickups following the

closure of available products.

L’Heureux (1986) has suggested that the inclusion of data drawn from all reservation in-

tervals (i.e., taking incremental pickups into account) provides valuable information about

demand behavior.

Multiplicative pickup models operate in a similar fashion, but base their forecasts on the

“pickup ratio”, defined as

pick − ratio(t, 0) =
1

J
·

J∑
j=1

(Y j
0−Y

j
t )× 1

Y i
t

(5)

Y i
0 = Y i

t × pick − ratio(t, 0). (6)

It is important to point out that these methods only rely on historical data, and neglect

socioeconomic or behavioural features of the population. They are of course highly dependent

on the quality of the data collection process.

– Combined models

Combined models use regression or weighted average of historical and advanced booking

models to produce forecasts. In order to achieve high accuracy, they may resort to parametric

regression, neural networks, or distribution based demand models. The use of weighted moving

average allows to emphasize the most recent bookings. Given a set of weights summing up to

one, we have

Ŷt+1 = w1Yt + w2Yt−1 + w3Yt−2 + · · ·+ wNYt−N+1 (7)

In this context, Wickham (1995) has implemented both simple and weighted averages and

found that they were outperformed by pickup methods (see Van Ryzin et McGill (2000) ; Liu

(2004) ; Ja et al. (2001)).
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More advanced techniques, such as supervised learning neural networks, are akin to com-

plex nonlinear regressions, and are able to process large and complex data sets. A neural net-

work comprises an input layer, one or several hidden layers, and an output layer. Individual

inputs are processed through the network, and their weighted combination is compared to the

neuron’s threshold value.

In the “training phase” one iteratively adjusts each weight until the difference between

expected bookings and actual data falls below a predefined threshold value. Following this

phase, the network is used to predict future demand from a data set that should not differ

too widely from the training set. Although neural networks have been applied successfully to

transportation demand forecasting (Weatherford et al. (2003a) ; Sharif Azadeh et al. (2012) ;

Dantas et al. (2000)), supervised learning is yet unable to produce accurate forecasts when a

large proportion of historical data is censored.

In Distribution based demand models, it is assumed that the statistical distribution un-

derlying the demand process (usually Normal or Gamma) is known, and that its parameters

(mean, variance, etc.) are estimated based on historical data.

Alongside the Normal or Gamma assumptions, Brummer et al. (1988) has considered log-

normal distributions, while Logistic, Gamma, Weibull, Exponential and Poisson distributions

have been advocated (see Guo (2008) ; ZF Li et Hoon Oum (2000) ; Swan (2002) ; Kaplan et

Meier (1958) ; Huh et al. (2011) ; Popescu et al. (2012) ; Eren et Maglaras (2009)).

In the following, the statistical methods are partitioned according to the parameter α2 :

α2 =



hbm “historical booking models” : time series (tseries),exponen-

tial smoothing (exp.smooth) and linear regression (lin.reg)

abm “advanced booking models” : Additive,

Multiplicative (pickup), and Booking Profile (BP)

cm “combined models” : weighted average (weight.ave),

parametric regression (par.reg), Neural Networks (NN),

and distribution based demand (dist.dem)

1.3.3 Choice-based models

The integration of a discrete choice framework (McFadden (2001)) within RM systems has

provided the flexibility required to take into account strategic customers. In these models,

these make their decision based on the set of available alternatives (Choice sets), under the

following restrictions (Train (2009)) :

– only one choice can be made at any given time period ;

– all available choices are included in the choice set ;

– the number of alternatives is finite.
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In the discrete choice framework, a customer selects the product that maximizes his ex-

pected utility, the latter being expressed as the sum of deterministic and a stochastic terms

that are related to the features of each product. The choice of the random term results in

different models : Probit (normal), Logit (Gumbel), Mixed Logit, etc., and their parameters

are typically estimated via maximum likelihood. In the much touted Multinomial Logit mo-

del, which involves a Gumbel-distributed random term, the probability that a product i with

utility ui be selected is given by the closed form formula

Pi(St) =
exp(ui)∑

j∈St
exp(uj) + 1

, (8)

where St denotes the subset of products available at time t. We will assign the acronym cb

(choice-based) to the parameter α3 when discrete choice models are considered.

The embedding of discrete choice models within an optimization process has been consi-

dered by Talluri et Van Ryzin (2004) ; Vulcano et al. (2010) ; Vulcano et al. (2012) ; Haen-

sel et Koole (2010) ; Haensel et al. (2011) ; Conlon et Mortimer (2008) and Zhang et Cooper

(2005). In particular, Belobaba et Hopperstad (1999) have studied the impact of customer

behavior on traditional RM systems, while Talluri et Van Ryzin (2004) have characterized

optimal control policies in a very general discrete choice setting.

1.3.4 Optimization methods

In recent years, techniques that focus on optimization have been introduced in choice-

based RM. These can be broadly divided into four main categories : Expectation-Maximization

(EM), Projection-Detruncation (PD), Double Exponential Smoothing (DES) and Nonlinear

Programming (NLP). The first three methods are parametric, while nonlinear programming

covers most nonparametric estimation methods.

– Expectation Maximization (EM)

After its introduction to revenue management in the late 1990’s by Salch (1997), the two-

stage EM process has quickly become one of the most popular unconstraining methods. In

the first step, E-step, unobserved demand of an unavailable product is replaced by its average

observed demand, prior to its reaching the capacity. In the subsequent M-step, the parameters

of the demand distribution (mean and variance) are estimated via maximum likelihood. The

first step is then repeated, and the fixed point process is halted when no significant progress

is observed. In this setting, seasonality is usually ignored.
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For a given product 1, let Y1, . . . YN1 , YN1+1, ..., YN1+N2 denote a stream of registered boo-

kings consisting of N2 uncensored and N1 censored realizations, the latter obtained after the

product has reached its booking limit. Following common practice, the index of booking in-

tervals decreases from n (in this case, N1 +N2) to 0, which corresponds to departure time in

transportation RM.

Assuming that demand follows a normal distribution with mean µ and variance σ2, when

µ(0) shows an initial value for the expected value, the procedure goes through the following

steps.

Initialization : Estimate µ and σ, based on N2 uncensored observed data :

µ =
1

N2

N1+N2∑
i=N1+1

Yi (9)

σ =

√√√√ 1

N2

N1+N2∑
i=N1+1

(Yi − µ(0))
2

(10)

E-Step : For a given number C or constrained observations, the first and second moments

of the censored data, required to form the log-likelihood function), are estimated according to

the formula : iteratively (assuming that random variable of demand, Y ) to replace the missing

data to form the complete log-likelihood function where C represents registered constrained

observation.

Ŷ
(+)
i = E[Y |Y > C, Y ∼ N(µ, σ)] (11)

(Ŷ 2
i )

+
= E[Y 2|Y > C, Y ∼ N(µ, σ)] (12)

for i = 1, ..., N1, Yi, ..., YN1 and Y 2
1 , ..., Y

2
N1

are replaced by the above values to complete the

data set.

M-Step : Maximize the log-likelihood function with respect to µ and σ to obtain µ+ and

σ+.

Stopping criterion : Repeat steps E and M until the difference between successive iterates

is less than some predetermined threshold value δ.

Several researchers have recognized the EM method as one the most efficient for uncenso-

ring demand in RM (see Talluri et Van Ryzin (2005) ; Guo (2008) ; Pölt (2000) ; Weatherford

(2000) ; Zeni (2001) ; Zeni et Lawrance (2004) ; Chen et Luo. (2005) ; He et Luo (2006) ; Kar-

markar et al. (2010) ; McGill (1995) ; Haensel et Koole (2010) ; Haensel et al. (2011) ; Vulcano

1. Products are assumed to be independent.
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et al. (2012) Little et Rubin (2002) ; Stefanescu et al. (2004) ; Stefanescu (2009) ; Hopperstad

(1996) ; Hopperstad (1997) ; Hopperstad et al. (2007)). The drawback is that, if large and cor-

related data are involved, the maximum likelihood step is difficult to implement (Xu (1997) ;

Naim et Gildea (2012)).

– Projection Detruncation (PD)

This method is similar to the EM method, but uses the median instead of the mean. Also,

a weighting constant may be used to yield aggressive demand estimates. Recently, this me-

thod has been applied to RM systems (see Hopperstad (1995) ; Skwarek (1996a) ; Skwarek

(1996b) ; Weatherford et Ratliff (2010) ; Chen et Luo. (2005) ; Zickus (1998) ; Gorin (2000) ;

Zeni (2001) ; Guo (2008) and Queenan et al. (2009)).

– Double Exponential Smoothing (DES)

In DES, one predicts the total demand that would have been registered in the absence of

booking limits. The first parameter is used for smoothing the base component of the demand

pattern, and the second deals with the trend component (Queenan et al. (2009)). For each

instance of censorship, a nonlinear optimization model estimates the two smoothing parame-

ters while minimizing the forecasting error. This is achieved in the following manner. Let t

be an instant when the booking limit of a given product has not been reached yet, i.e., regis-

tered demand matches observed demand up to t. Based on Queenan et al. (2009), let Yt be

the actual cumulative demand at time t, Bt the smoothed base component, Tt the smoothed

trend component, and FTt the cumulative forecast at time t, taking trend into account. The

forecast for the upcoming time period t+ 1 then satisfies

FTt = Bt + Tt (13)

where

Bt = FTt+1 + δ(Yt+1 − FTt+1) (14)

Tt = Tt+1 + β(Bt − FTt+1) (15)

and the parameters δ and β are optimal solutions of the mathematical program

min
δ,β

∑
t

(Yt − FTt)2. (16)

The procedure is initialized on historical data, and the nonconvex least-square problem

may be solved via metaheuristics such as Tabu Search or Simulated Annealing. This frame-

work has been applied to many demand uncensoring problems, and proved competitive with

EM in most cases (Guo et al. (2008) ; Armstrong (2001)).

– Nonlinear Programming (NLP)
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This class includes non-parametric methods such as Least-Squares, discriminant analysis,

or cluster analysis. In the literature, Besbes et Zeevi (2006) have discussed a non-parametric

algorithm that characterizes the underlying demand behavior. Farias et al. (2013) have consi-

dered non-parametric methods in the context of choice modeling with limited data. Lee et al.

(2005) have used discriminant and cluster analysis to segment the customer population with

respect to its preferences, with an application to the Taiwan Railway Administration.

Our classification of optimization is as follows.

α4 =


EM Expectation-Maximization

PD Projection Detruncation

DES Double Exponential Smoothing

NLP Nonlinear Programming
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Figure 1.3 Methods Applied to Uncensor Demand (MAUD)

1.4 A taxonomy

In this section, the various techniques used in the revenue management literature to deal

with missing data are classified with respect to their robustness, accuracy, applicability, and

capability to deal with issues such as independence, stationarity, or seasonality. Throughout,

each work is made to fit our tuple notation.

Table 1.2 focuses on non-choice based unconstraining methods. These ignore correlations

between products, as well as the impact of availabilities on the demand for competing pro-
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ducts, or competition from other firms. Within this class, EM and PD assume that demand

distributions are known a priori, which is not the case in many practical situations.

Table 1.3 displays models where customers base their purchasing decisions upon product

availabilities (choice set). Apart from a suitable representation of customer behaviour, the

flexibility of these models may improve the accuracy of both the estimation and optimization

processes. In this respect, two key issues that should be better addressed in the future are :

1. inter-product and inter-temporal correlations (δ1 = dep)

2. seasonal factors (δ3 = season)

When firms have the opportunity to set prices dynamically, it is natural to expect price

variations to persist. In this environment, customers may react strategically to price fluctua-

tions, and ignoring such responses may lead to sub-optimal pricing decisions. Note also that

product diversity induces a significant correlation between demands for alternatives within

the choice sets. If follows that the understanding of customer response to market mechanisms

is an issue that should be addressed properly. In the same vein, the analysis of the optimal

purchase timing (inter-temporal substitution) is being monitored more closely in both the

industrial and academical worlds.

Other relevant issues include capacity rationing (creation of“artificial”scarcity to influence

purchase timing), valuation uncertainty, and consumer learning effects. These relate the dy-

namics of consumer demand to the seller’s dynamic pricing strategies, a dependency that is

not captured by conventional models based on exogenous arrival processes.

With respect to seasonality, statistical methods show some promise, under simple assump-

tions. However, the nature of seasonality can be complex, as it may involve dimensions such as

day of week, month of year, holidays, etc. Seasonality could actually be customer-dependent,

and bedding this information within a combined estimation-optimization process is another

challenge yet to be addressed. In this realm, note also that the very definition of reservation

intervals is of importance.

1.5 Conclusion

Currently, demand forecasting may well be the most critical area in revenue management,

and demand unconstraining clearly lies at the heart of the matter. The present paper aims at

shedding some light on the latest developments in this area, through a novel taxonomy, in the

hope of triggering research in this area.
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CHAPTER 2

ARTICLE 2 : RAILWAY DEMAND FORECASTING IN REVENUE

MANAGEMENT USING NEURAL NETWORKS

Chapter Information : An article based on this chapter was published in Internatio-

nal Journal of Revenue Management. Sh. Sharif Azadeh, R. Labib, and G. Savard. Railway

demand forecasting in revenue management using neural networks. Vol 7. No 1, (2013).

This paper investigates a statistical method for demand forecasting in revenue manage-

ment systems.

Abstract This study analyzes the use of neural networks to produce accurate forecasts of

total bookings and cancellations before departure, of a major European rail operator. Effec-

tive forecasting models, can improve revenue performance of transportation companies signi-

ficantly. The prediction model used in this research is an improved Multi-Layer Perceptron

(MLP) describing the relationship between number of passengers and factors affecting this

quantity based on historical data. Relevant pre-processing approaches have been employed to

make learning more efficient. The generalization of the network is tested to evaluate the ac-

curacy prediction of the regression model for future trends of reservations and cancellations

using actual railroad data. The results show that it is a promising approach in railway de-

mand forecasting with a low prediction error.

keyword Demand forecasting, Pre-processing, Neural Network (NN), Revenue Manage-

ment ; Transportation

2.1 Introduction

Revenue management (RM) refers to the collection of strategies and tactics that firms use

to scientifically predict customer behavior and manage demand for their products and ser-

vices Talluri et al. (2008).

In transportation industry, demand forecasting plays a critical role in pricing, overbooking

and inventory control Xiaolong (2007). A poor estimate of demand causes inefficient inventory

controls and sub-optimal revenue performance. Accurate forecasting considerably enhances

the operation of capacity planning and inventory management Kandananond (2012). Based

on demand models, decision makers know how many seats to make available at each of the
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listed fares or how much capacity to make available for each customer segment. Railway com-

panies can set up booking limits for each pair of origins-destinations according to demand

predictions Tsai et al. (2005). A 20 percent increase in demand forecast precision would result

in revenue growth by one percent, which is highly significant in the transportation industry

Talluri et al. (2008).

In the context of demand forecasting in Revenue Management (RM), forecasting methods

could be divided into two main categories, statistical based and mathematical programming

based techniques. Statistical methods of forecasting examine historical data to extract un-

derlying process on which we can predict future trends. The selection of forecasting methods

depends on several factors, such as the forecast format required, the availability of data, the

desired accuracy and the ease of operation. Although these statistical methods are vastly ap-

plied in demand forecasting, they have some drawbacks that motivate us to turn our attention

to Artificial Neural Network (ANN) Devoto et al. (2002) Chung et Lee (2002). For example,

time series models are described as mathematical processes that can be extended into the fu-

ture. Despite the capabilities of this approach in transportation, the models cannot respond

rapidly to sudden changes in bookings and cancellations. Sudden changes in the demand of

each product happen as soon as one product is no longer available as a result of capacity limi-

tations Montgomery et al. (2008). They also permit the forecast to take recent demand over

earlier demand into account. However, the proper selection of past periods to use is a key

decision that can be subjective.

One of the most popular methods, exponential smoothing, has advantages over time se-

ries. This approach requires a smaller amount of stored data and calculations. However, a

major drawback of exponential smoothing is that it is difficult to select an optimum value for

the constant without making restrictive assumptions about demand behavior. This problem

is compounded when the form of the underlying problem changes over time Widiarta et al.

(2007) Snyder et al. (2002). Although the regression method is very popular as a prediction

tool, in the context of railway demand forecasting, the use of regression analysis for a large

dataset with numerous predictors and response variables can be complicated and computa-

tionally time consuming Wei et Hong (2004) Anderson et al. (2006) Varagouli et al. (2005).

There are cases in which the Bayesian method has been applied to predict demand. Even

though this method works accurately to define the parameters of a regression model, there is

still the open problem of determining the distribution of historical bookings and cancellations

data Miltenburg et Pong (2007).

To overcome some of the drawbacks of the mentioned conventional methods, in this study,



26

we focus on the model construction of artificial neural networks. Neural networks denote an

opportunity to solve numerous railway or airline specific problems more accurately Weather-

ford et al. (2003b) Zhang et Qi (2005). The output of traditional models is the linear sum of

the weighted responses, whereas in a neural network, multiple linear combinations are pro-

cessed in parallel ; that is, the activation in each neuron is a separate linear combination. The

major advantage of the neural network approach is that it is flexible enough to model complex

non-linear relationships in an automated fashion Mozolin et al. (2000). Moreover, the most va-

luable property of a multilayer feed-forward neural network is its ability to approximate, as

accurately as desired, a function from training examples. In fact, a three-layer, fully connec-

ted feed-forward neural network with n input nodes, a sufficiently large number of hidden

nodes and one output node, can be trained to approximate any n-1 mapping function Mo-

zolin et al. (2000) Celikoglu et Cigizoglu (2007). Neural networks are powerful tools in cases

in which we need to deal with large scale datasets. Based on the literature, this method out-

performs classical methods, as previously mentioned, in demand forecasting Gutierrez et al.

(2008) Kandananond (2011) Ekonomou (2010).

In this paper, we use artificial neural networks to forecast number of passengers for a ma-

jor European railway company. The problem deals with a huge amount of data with missing

information, for which the results of our model is promising. In addition, in this research,

recommended pre-processing procedures are used, such as using exponential distribution in

data normalization based on the problem characteristics, to help significantly improve per-

formance. Demand flow may differ for each month ; thus, in order to capture the seasonal

effects, the network is trained separately for each month to have more accurate forecasts.

The reminder of this paper is organized as follows. The next section briefly introduces the

problem and its variables more precisely. Section 2.3 describes the pre-processing techniques

implemented on the data. The model, including network architecture, learning algorithm and

improvement techniques, are illustrated in Section 2.4. Computational experiments are repor-

ted in Section 2.5 and the conclusion follows in Section 2.6.

2.2 Problem definition

In this research, we investigate demand forecasting of a major railroad. The aim is to pre-

dict the number of reservations (bookings) and cancellations and, consequently, the number

of passengers (bookings minus cancellations) at the time of departure. For example, in Fi-

gure 3.1, the number of passengers is represented for different departure times and departure
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days in different classes (i.e. business, economy for different types of clients : junior, senior,

or VIP, etc.,). Each case is indicated by an observation on the horizontal axis. The number of

passengers for a sample consisting of 100 observations is illustrated in this figure.
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Figure 2.1 Sample pattern of the number of passengers at departure

The number of observations is equal to the number of passengers for a specific departure

date and for a particular combination of class and product. Different classes are offered by

the transportation company such as economy or business class, for which the prices and capa-

city differ. Moreover, the products are suggested by the company and are assigned to passen-

gers, such as junior, senior, VIP and so on. We will expect our model to accurately estimate

the number of passengers considered as response variables. The model proposed consists of

two parts : a pre-processing phase and a regression phase. According to the transportation

company’s protocol, the reservation process starts 120 days before departure and there are

20 booking interval segments. During these 120 days, passengers register the information for

their itinerary reservations. Some of the reservations may be cancelled throughout this period

of time. There are several factors which affect the number of bookings and cancellations. We

will investigate the impact of seven factors, which will serve as network inputs, on the num-

ber of passengers. This transport organization offers many departures every day at different

hours. Depending on departure date and departure time the demand differs. The list of inputs

and outputs is represented in Table 2.1.

During each week there are a lot of business travelers ; therefore, demand increases. During

weekends there are more noticeable fluctuations in the quantity of passengers. Thus, we prefer

to represent departure date in two codes : code 1 for weekdays and code 2 for weekends. Mo-

reover, according to historical data, demand changes during the day. Therefore, the number

of bookings and cancellations is affected by departure time. We express departure time using
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three codes. Code 1 represents the departures that are scheduled in the morning, code 2 for

the afternoon and code 3 shows departures during the night. In this transportation context,

tickets (i.e. products) are provided in 19 types that indicate the category of each passenger.

Passengers can be students, employees, juniors, or seniors. Moreover, tickets are allocated in

fourteen types of classes (i.e. business or economy). The output variables are reservations and

cancellations. They vary between a minimum of zero passengers to a maximum of 330 passen-

gers.

2.3 Pre-processing

The performance of the Multi-Layer Perceptrons (MLP) is directly influenced by the in-

puts that are fed to the network and the outputs which are used in the learning process. The-

refore, an important part of the method is to deal with the data being used in the training

procedure in which the parameters of the network are being fixed. Some data will have to

be removed, some will be left unchanged and the rest will be transformed. This procedure is

called pre-processing. As will be seen in the results, pre-processing contributes greatly in re-

ducing the network generalization error. Inputs such as departure date, departure time, pro-

ducts and classes are determined by codes. That is, discrete numbers which are assigned to

each category and do not follow a particular distribution. Thus, we may enter these data into

the network without any transformations and they are left unchanged. Moreover, the daily

prices for each class and itinerary differ. They are also used as inputs of the network and

need to be pre-processed. But first, we have to detect the outliers of the outputs. Outliers

impose a significant noise on the average and variance of the entire dataset. They can cause

distortion in normalization and training. To discover them, we have divided the data into four

distinct intervals. The reason is that the capacity of the train is limited ; therefore, the num-

ber of bookings and cancellations in a single request for each itinerary is rarely more than 300

passengers. On the other hand, there are a lot of departures with fewer than 100 passengers

for each available combination of class and product. Thus, for a specific combination of class,

product, and price, the number of reservations and cancellations could be zero, less than 100,

between 100 and 300, or more than 300. Table 2.2 represents the distribution of output data

in these four intervals. The range shows the number of passengers in each departure.

The first column specifies the number of bookings and the second the number of cancella-

tions. The first row shows that for a specific departure date and time, and a particular com-

bination of class and product, in 8907 cases during January of 2005 we had zero reservations.

For example, there were some cases in which there were no juniors in Business class for a

specific departure date and time. According to the tables, we find that there is significant va-
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riance in both datasets, which causes distortion in the normalization and training process ; it

also creates noise in the performance of the network. To overcome this problem, we remove

the outliers in an empirical way. As shown in the preceding table the majority of data is lo-

cated in the first two intervals, motivating us to calculate the proportion of outliers for both

bookings and cancellations. Table 2.3 represents the proportion of outliers for each set of data

and for each output. These outliers are defined as the proportion of the departures with more

than 100 passengers over the entire quantity of passengers. Although outliers contain a very

small portion of the whole dataset, they still comprise information about demand behavior.

The price we pay for keeping them during training process is greater than the price we pay

for losing some degree in precision which will not affect the stability of the conclusion.

The first result denotes the proportion of outliers for the number of bookings for the Ja-

nuary 2005 training data. In this case, the ratio of outliers is 2%. The second result is the

proportion of outliers for the number of cancellations, which is 0.5%. The numbers are consi-

dered negligible and the outliers can be removed.

Nonlinear behavior is brought into the neural network by activation functions. The most

commonly used activation function in multilayer perceptrons is the sigmoid function. In this

case, outputs are images of this function producing values between 0 and 1. Outputs grea-

ter than 1 need to be transformed in order to have a more accurate mapping ; otherwise, the

activation function will overweigh those features having larger values. It is preferable to fit a

probability function that determines the characteristics of the data, which can also be rever-

sed to calculate the error function. The Gaussian distribution is the most common one, used

in normalization context but it does not have the property of being reversible because it is

not bijective, that is, two different events may have the same probability of occurring. In our

case, the output values are always positive, since the number of bookings minus cancellations

is always positive. In addition, the shape of the data strictly decreases in terms of each inter-

val ; for example, there are many data equal to zero and as the sample approaches 100 (after

eliminating the outliers), the number of bookings and cancellations decrease. This suggests

selecting the exponential distribution to map the output values into the interval [0, 1], which

is also bijective. The general formulation of the exponential distribution for variable x is :

f(x) =
1

λ
e−

x
λ x ≥ 0 (1)

The estimated value for the parameter λ of the exponential distribution is the average of

the data. Hence, for each set of outputs (i.e., bookings and cancellations) we have different

exponential distributions with different parameters. The exponentialized outputs will be ob-

tained via the following equation :
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f(yRealV alue) =
1

λi
e
− yRealV alue

λi = yExponentialized (2)

where yRealV alue is the actual value corresponding to the specific input and yExponentialized is

the output transformed by the exponential distribution that was fed into the network during

the learning process ; moreover, λi defines the parameter for each dataset. The weights are ad-

justed during the training process while the difference between the output of the network and

the exponentialized real values are minimized. Because the learning process tries to approach

the vector of the network outputs and the exponentialized real values as much as it can by

using the least mean square algorithm, we suppose that the output of the network follows the

same distribution as the real values. Once the predicted values have been generated, we re-

verse them in order to calculate the error. The absolute value of the transformed output and

the corresponding error function are given by :

yTransformed = λi log(λiyNetworkOutput) (3)

Error = ~YRealV alue − ~YTransformed (4)

where yNetworkOutput is the prediction generated by the network and yTransformed represents the

transformed predicted value. As before, λi is the parameter of the exponential distribution.

The error function is interpreted as the difference between the vector of observed yRealV alue

and the vector of yTransformed produced by the network. The results will show that using an

exponential distribution has a significant impact on improving the performance and generali-

zation of the network.

2.4 Model

Throughout this section we consider the structure of the multilayer perceptron that will

enable us to forecast the number of passengers. At first, we have to define the architecture

of the network, and then choose an appropriate learning algorithm for training. Refining and

fine-tuning the learning process will make it more efficient. After training, we will validate the

accuracy of the network by the method of cross-validation. The results will be represented in

the following section.

2.4.1 Architecture of the neural network

The typical network consists of an input layer, some hidden layers and an output layer.

A neural network of minimum size is less likely to introduce noise into the training data and
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may result in better generalization. On the other hand, a large number of hidden neurons can

mimic the phenomenon without understanding the underlying process. Therefore, finding a

fairly convenient tradeoff between these two situations is critical. Choosing the number of

hidden layers and hidden neurons is done empirically and there is no specific rule for it. A

practical issue that arises in this context is that of minimizing the size of the network while

maintaining good performance. In this study, we have chosen the network growing method, in

which case we start with two neurons and then add progressively a new neuron or a new layer

of hidden neurons. Preliminary results show that increasing the number of hidden neurons in

the first layer does not reduce the error significantly. Thus, we add another hidden layer. At

last, empirically we stop the growing network process at the point of two hidden layers each

comprising five neurons. The final architecture of the network is illustrated in Figure 2.2.

Input Layer Hidden Layers Output Layer

Figure 2.2 Final structure of the network having two hidden layers with 5 neurons each

2.4.2 Learning algorithm and parameter adjustments

In order to choose a learning algorithm for training and fixing the parameters we have

to fully define the data set that will be fed to the network. In this study, we apply the data

of January 2005 for training. To alleviate the overfitting, we use 80% of the data randomly

to train the network and the remaining 20% to test the fixed parameters. This percentage is

chosen empirically and it is the most common proportion for training and testing values. The

neurons of each layer are connected via some coefficients, called weights, which have to be

fixed during the training process. The most common learning algorithm for multilayer per-

ceptrons, called back propagation, is applied in our case. This is an iterative process which
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will stop as soon as a local minimum is met with respect to a quadratic error function. After

different trials we established 300 epochs to adjust the parameters during the network trai-

ning. The reason is that after 300 iterations the performance of the network mostly remains

constant and we cannot see any significant decrease in the error during the learning process.

The learning process is maintained on an epoch-by-epoch basis until the synaptic weights of

the network stabilize and the average squared error over the entire training set converges to

a minimum target value. We have also chosen batch-mode learning, where weight updating is

presented after entering all the training examples that constitute an epoch. The use of batch-

mode training provides an accurate estimate of the gradient vector where convergence to a

local minimum is thereby guaranteed under simple conditions Haykin (1998). Initial weights

are chosen randomly. Hence, in training process, in order to calibrate the network, we repeat

the learning process several times and use the average weights as initials. The primary focus of

regression methods is to smoothen the predicted output variable, and in neural network, this

task is accomplished with the use of sigmoid functions. The sigmoid function, whose graph is

S-shaped, is by far the most common form of activation function used in the construction of

artificial neural network mainly because it is differentiable. It is defined as a strictly increasing

function that exhibits a graceful balance between linear and nonlinear behavior. The general

format of the sigmoid function is as follows,

ϕ(x) =
1

1 + e−ax
(5)

where a is the slope parameter. When a is small, the network needs more data to be trained

and when it is large, the generalization of the network is not good enough. In our study, after

comparing the error of different trials we established a as being equal to 1.

2.4.3 Model improvements

Since back-propagation learning is basically a hill climbing technique, it runs the risk of

being trapped in a local minimum where every small change in synaptic weights, w, increases

the error function. The weight adjustments are done according to the following equation

w(n+ 1) = w(n) + α[w(n− 1)] + ηδ(n)y(n) (6)

where δ represents the local gradients at each iteration n and y depicts the output of the

corresponding neuron. η is the learning-rate parameter and α shows the momentum constant

which increases the rate of learning yet avoids the danger of instability of training because

the back-propagation algorithm provides an approximation to the trajectory in weight space

computed by the method of steepest descent. Thus, the smaller we make the learning rate
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parameter η, the smaller the changes to the synaptic weights in the network will be from one

iteration to the next and the smoother the trajectory will be in weight space. This impro-

vement, however, is attained at the cost of a slower rate of learning. On the other hand, if

we make η large in order to speed up the rate of learning, the resulting large changes in the

synaptic weights assume such a form that the network may become unstable. Applying the

momentum term helps us to avoid these problems. One technique that is often used to control

the over-fitting phenomenon is that of regularization, which involves adding a penalty term

to the error function in order to discourage the coefficients from reaching large values. The

simplest such penalty term takes the form of a sum of squares of all of the coefficients, leading

to a modified error function, E of the form

E(w) =
1

2

N∑
n=1

{y(xn, w)− tn}2 +
β

2
‖w‖2 (7)

where ‖w‖2 ≡ wTw = w2
0 + w2

1 + ... + w2
M , and ti represents actual data. The coefficient β

governs the relative importance of the regularization term compared with the sum-of-squares

error term. In order to determine the parameter of the learning ratio and modify the training

process, we employ the adaptive learning method. The performance of the steepest descent

algorithm can be improved if we allow the parameter to change during the training process.

An adaptive learning rate will attempt to keep the step size as large as possible while keeping

the training process stable. This parameter is made responsive to the complexity of the local

error surface and it requires some changes in the training procedure. First, the initial network

output and error are evaluated. At each epoch, new weights and biases are calculated using

the current parameter. New outputs and errors are then established. As with momentum, if

the new error exceeds the old error by more than a predefined ratio, the new weights and

biases are discarded and the learning rate is decreased ; otherwise, the new weights are kept.

If the new error is less than the old error, then the parameter is increased. This procedure

increases the learning rate, but only to the extent of learning without large error increments.

Thus, a near optimal value is obtained for the local terrain (Haykin (1998)).

2.4.4 Validation

After training the network and fixing the parameters and also applying the improvement

methods, we want to examine the generalization capability of the network. The motivation

here is to validate the model on a different dataset than the one used for parameter estima-

tion. Generalization is influenced by three factors : (1) the size of the training set and how

representative it is of the environment of interest ; (2) the architecture of the neural network ;

(3) the physical complexity of the problem at hand. To examine the network’s generalizing
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ability we use cross-validation. Cross-validation, sometimes called rotation estimation, is the

statistical practice of partitioning a sample of data into subsets such that the analysis is ini-

tially performed on a single subset, while the other subset(s) is (are) retained for subsequent

use in confirming and validating the initial analysis. There is, however, the possibility that

the model with the best-performing parameter values may end up overfitting the validation

subset. In this study, we use multifold cross-validation by dividing the set into K subsets. The

model is trained on all but one of the subsets and the validation error is measured by testing

it on the remaining one. This procedure is repeated for a total of K trials, each time using

a different subset for validation. The performance of the model is assessed by averaging the

squared error under validation over all of the trials of the experiment. If K gets too small,

the error estimate is pessimistically biased because of the difference in training-set size bet-

ween the full-sample analysis and the cross-validation analysis. In contrast, if K is too large,

it may require an excessive amount of computation since the model has to be trained K times

with 1 ≤ K ≤ N where N is the number of examples. A value of 5 or 10 for K is popular

for estimating the generalization error. The network is tested on an independent dataset that

has not been used for training to give an unbiased estimate of the network performance. We

trained the network on a randomly chosen subset of January 2005 for learning and validated

the network with the data of March 2005.

2.5 Results

Outlier elimination was one of the improvement methods that we have applied in order

to reduce the forecasting error. As mentioned before, the data should be normalized before

entering the network. This process is done according to the data structure. The exponential

distribution is chosen as an appropriate distribution in order to normalize the data before fee-

ding it to the network. In Figure 2.3(a) and 2.3(b) , the normalization process of the training

set for both bookings and cancellations is presented. These figures show the exponential fit

for the data that was used to train the network ; we consider bookings and cancellations in

two separate graphs. The same was done for the other two datasets.

As can be seen, the fitted curve does not cover the whole dataset. This is due to the outlier

elimination procedure, which we have already implemented in the pre-processing step. The-

refore, the fitted distribution does not take the outliers into account. In order to determine

the architecture of the network, we start from a network with one hidden layer in which there

are two hidden neurons ; by increasing the number of hidden nodes, we consider the perfor-

mance error of the network. As shown in Figure 2.4(a) and 2.4(b) , the error is not reduced

significantly when the quantity of neurons increases. The minimum error obtained by using
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(a) Exponential distribution fit for cancel-
lations in January 2005(Train)

Exponential distribution fit for No of bookings in January 2005(Train)
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(b) Exponential distribution fit for boo-
kings in January 2005(Train)

Figure 2.3 Fitting exponential distributions to given dataset

just one hidden layer remains over 15%, which motivates us to add another hidden layer to

see if we can decrease the error empirically. Preliminary results show that two hidden layers

predict better than single hidden layer networks.

Figure 2.5 depicts the training process of the network in an experiment with a specific

predefined performance goal (i.e. the predefined error is 10−4 ). The training process starts

naturally with a large error and, during the adjustment phase, the error decreases gradually.

The training process does not reach the predefined performance error or get stuck in a local

or global minimum after 300 iterations.

In this case, the predicted values are network outputs and the actual values are the num-

bers that were extracted from the transportation network. The preliminary results, without

improvements, are shown in Figure 2.6. The results are clearly unsatisfactory because there

are significant differences between the network outputs and the real values, making it neces-

sary to employ some modification methods to improve the network’s forecasting capability.

As we discussed earlier, some improvement methods were implemented to improve the

results of the network. Before applying these methods, the error was in the 35%-45% interval,

but after using exponential distribution, the results have improved dramatically giving an

error rate lower than 28%. After applying the adaptive learning method to control the learning

rate, the results are more stable and acceptable. However, our target error is about 8%-10%,

and we are still far from this result. We used momentum and regularization to reduce the

error and finally, reach our target by removing outliers. The summary of the error reduction

process is represented in Table 2.4.

Moreover, Figure 2.7 illustrates the improvements, in terms of errors, obtained by these

techniques. As we can see, the residuals have been reduced significantly and the network is

capable of developing almost the same format as the actual values.
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(b) Number of hidden neurons determination in a
two-hidden-layers network

Figure 2.4 Process of determining the number of hidden neurons according to the method of
network growing

Figure 2.8 illustrates the results obtained with the improvements. The figure shows that

the network can reproduce, with accuracy, the actual data.

After developing the multi-layer perceptron and after applying the improvements, we ex-

pect that the network could generalize its ability of forecasting for unseen datasets as well. In

order to validate the network, we performed a series of trial and error tests to determine how

many folds give more appropriate results. To represent this analysis we have examined three

different possibilities with K equal to 7, 3, and 5 folds, respectively.

As can be seen in Table 2.5, developing a 7-fold cross validation obtains an unrealistically

low generalization error, which could cause unstable results when applied to large, new data-

sets. Here, we applied 86% of data to train the network and used the remaining 14% to test

the generalization.

If we apply a completely new large dataset, the result will not remain the same, so we tried

a 3-fold method, which is presented in Table 2.6.



37

0 50 100 150 200 250 30010
−5

10
−4

10
−3

10
−2

10
−1

10
0

300 Epochs
Tr

ai
ni

ng
-U

pp
er

 li
ne

 G
oa

l-L
ow

er
 li

ne
 

Performance is 0.00623053, Goal is 0.0001

Figure 2.5 Network training through iterative process
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Figure 2.6 Prediction accuracy before imposing improvement methods

In 3-fold cross validation, the network could suffer from overfitting (i.e. while training the

network, the error rate is low whereas the generalization error is high) because we use only

66% of the data to train the network. Also, the error is high because of the lack of training.

Finally, we decided to choose a 5-fold method, in which we extract 80% of data randomly to

train the network and use the remaining 20% to test it. We repeated this method five times

and then we calculated the average value of the runs. The results are a good representation

of the generalization error of the network. Table 2.7 shows the results of this experiment. The

generalization error for booking is 9.19% and for cancellation is 8.84%.

As the second method of evaluating the generalization of the network, we used the dataset

of March 2005 that had not been used in the training process. As illustrated in Figure 2.9, for

20 repetitions, the error is always steady in the 6%-12% interval. The fluctuations in the graph

are due to the different subsets of the whole dataset that we have applied randomly. As shown
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Figure 2.7 Improvements impact error reduction
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Figure 2.8 Prediction accuracy after imposing improvement methods

in the graph, the average generalization error is around 8%.

In order to capture the pattern of monthly demand, in addition to January and March of

2005, we have trained and tested the network via a 5-fold cross validation for each month se-

parately (using data from 2007). This way, based on each month’s characteristics, we estimate

different parameters that enable us to predict demand in the future by taking the seasonal ef-

fects into account. Table 2.8 illustrates the corresponding results. The data from each month

has been used individually as inputs of the network. The average prediction errors, which were

obtained from the experiment, are satisfactory and demonstrate the ability of the network to

produce acceptable demand predictions.
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Figure 2.9 Cross validation with March 2005 data

2.6 Conclusion

Reliable passenger forecasting models play a crucial role in the transportation industry.

For example, they help the transport organizations to determine seat availabilities, verify the

quantity of crew members at each itinerary, and plan price settings. In this study, we have

proposed a neural network to be used in transportation demand forecasting. Classical me-

thods of statistics, such as regression or time series, struggle to cope with high dimensional

data sets and sometimes refuse to respond accurately to sudden changes. In our proposed mo-

del we have chosen a Multi-Layer Perceptron (MLP) to circumvent the drawbacks of classical

models. A neural network is more flexible when dealing with sudden changes in the format of

data, missing information, and high dimensional data sets. We have opted to improve a typi-

cal MLP by using our knowledge of the transportation problem. This knowledge has helped us

to accurately eliminate the outliers without losing too much information. Moreover, our un-

derstanding of the transportation problem has motivated us to apply exponential distribution

in the process of data preparation, which reduced the forecasting error significantly. In addi-

tion, we have applied more technical approaches to improve the network performance. The

efficiency of our model has been validated throughout this study. The results have shown a

forecast error of around 8%, which is considered quite acceptable. Moreover, the network has

been trained and tested for each month separately, using dataset from 2007. This will lead to

predict future monthly demand more precisely. As a future work, the outcomes of our model

can be integrated with time series. This new hybrid model is able to better express seasonal

effects.
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Table 2.1 Table of inputs and outputs

Inputs

Name Data
type

Inputs

Departure date Code

{1, 2}
1 : Weekday

2 : Weekend

Departure time Code

{1, 2, 3}
1 : [6 :25 -
11 :55]

2 : [12 :25-
17 :55]

3 : [18 :25-
21 :55]

Product Code 19 types

Class Code 14 types

Class average
price

Real
value

Max=117.5,
Min=24.5

Itinerary ave-
rage price

Real
value

Max=117.5,
Min=70.86

Day average
price

Real
value

Max=93.61,
Min=78.49

Outputs

Reservations Positive
real
value

[0,340]

Cancellations Positive
real
value

[0,340]
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Table 2.2 Table of frequencies of January 2005 for the number of bookings and cancellations

Dataset

Training Testing
Range Booking Cancellation Booking Cancellation

x = 0 8907 10497 1906 2262

0 < x < 100 10502 9211 2248 1955

100 < x < 300 407 117 92 32

x > 300 10 1 3 0

Table 2.3 Proportion of outliers of output variables

January 2005

(training, 80% of data) (testing, 20% of data)

Bookings 2% 2%

Cancellations 0.60% 0.70%

Table 2.4 Error at each step by adding each method for improving the results

Method Average error

Before improvement 40%

Exponential distribution 28%

adaptive learning 18%

momentum, regularization 15%

removing outliers 8%
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Table 2.5 7-Fold cross validation (January 2005)

No. of No. of incorrent Prediction error

folds estimations

Booking Cancellation Booking Cancellation

1 120 143 3.55 4.24

2 132 123 3.89 3.63

3 151 134 4.46 3.96

4 92 170 2.72 5.02

5 180 127 5.32 3.75

6 141 172 4.17 5.08

7 201 172 5.94 5.08

Average 4.29 4.53

Table 2.6 3-Fold cross validation (January 2005)

No. of No. of incorrent Prediction error

folds estimations

Booking Cancellation Booking Cancellation

1 1027 982 13.02 12.45
2 628 826 7.96 10.47
3 923 889 11.7 11.27

Average 10.89 11.39

Table 2.7 5-Fold cross validation (January 2005)

No. of No. of incorrent Prediction error

folds estimations

Booking Cancellation Booking Cancellation

1 364 314 8.76 7.55
2 364 273 8.76 6.57
3 439 695 10.56 16.73
4 367 283 8.83 6.81
5 376 272 9.05 6.54

Average 9.19 8.84
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Table 2.8 5-Fold cross validation (Monthly data of 2007)

Average prediction error (%)

2007 Bookings Cancellations

January 8.98 9.72
February 7.36 8.05

March 7.08 6.81
April 9.38 8.48
May 6.42 6.66
June 7.95 7.32
July 9.04 9.28

August 7.76 7.55
September 9.11 9.08

October 8.70 8.46
November 6.55 6.49
December 7.32 7.30
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CHAPTER 3

ARTICLE 3 : A NON-PARAMETRIC APPROACH TO DEMAND

FORECASTING IN REVENUE MANAGEMENT

Chapter Information : An article based on this chapter is submitted for publication Sh.

Sharif Azadeh, P. Marcotte, and G. Savard.

In this paper, we propose a global optimization technique to estimate demand in revenue

management systems.

Abstract In revenue management, the profitability of the inventory and pricing decisions

rests on the accuracy of demand forecasts. However, whenever a product is no longer avai-

lable, true demand may differ from registered bookings, thus inducing a negative bias in the

estimation figures, as well as an artificial increase in demand for substitute products. In order

to address these issues, we propose a behavioral model that solely rests on daily registered

bookings and product availabilities. Its outputs are the product utilities and daily potential

demands, together with the expected demand of each product in any given time interval.

Keyword Revenue management, Forecasting, Integer programming, Branch-and-bound,

Heuristics.

3.1 Introduction

According to Cross (1997), Revenue Management (RM) is the research area that focuses

on the study of disciplined tactics for making product availability and pricing decisions, with

the aim of maximizing revenue growth. In the service industry, this goal can only be achieved

through accurate demand forecasting, which must take into account the volatility of product

availabilities over the booking horizon. Clearly, registered bookings alone are not sufficient

to depict the true demand. Indeed, as soon as a product reaches its capacity (booking limit),

true demand is constrained (censored) and cannot be observed. Upcoming customers can then

either switch to a higher fare product (buy-up), switch to a lower fare product (buy-down),

or renege (spill). According to Weatherford et Belobaba (2002), ignoring the data censorship

phenomenon can lead to demand underestimation ranging from 12.5% to 25%, and negatively

affect revenue by 1% to 3%, a significant amount for major rail or airline operators.

Although unconstraining techniques may have a big impact on the success of revenue ma-

nagement systems, this topic has not been paid much attention in the literature. Broadly,
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two frameworks have been considered to deal with the issue : statistics and optimization. Sta-

tistical techniques such as time series, exponential smoothing, or linear regression have been

considered. All of these are able to include seasonal effects within their demand forecasts. Zeni

(2001) and Queenan et al. (2009) have provided a comprehensive study of these methods, and

have compared their respective impact on revenue. Their main drawback is that they cannot

respond to sudden changes in customer behavior when a product becomes unavailable (see

Sa (1987) ; Littlewood (2005) ; Pölt (2000) ; Weatherford (2000) ; Lee (1990)). Actually, au-

thors such as van Ryzin (2005) have claimed that revenue management systems should focus

on customer behavior and choice probabilities, rather than blindly estimating demand from

historical booking data.

Choice-based models were introduced by Andersson (1998), and analyzed by Talluri et

Van Ryzin (2004) and Vulcano et al. (2010) within the framework of discrete choice theory.

In the latter two works, the parameters of the model have been estimated by maximum-

likelihood techniques. In another research, Ratliff et al. (2008) have integrated historical de-

mand data within a multi-flight heuristic procedure. Also, Vulcano et al. (2012) have ap-

plied customer choice models to the estimation of product primary demand (first-choice de-

mand). In all the abovementioned optimization models, a parametric method of estimation

(Expectation-Maximization, or EM in short) is used to estimate the parameters of the choice

model, under demand independence assumptions. Although the approaches have been used

for many years with some success, several issues still need to be addressed :

– Demand across fare products is not independent. Dealing with dependency yields a com-

plex parameter estimation process that has been considered and tested by (Stefanescu

(2009)) on small instances.

– As the proportion of censored demand in historical data grows, the accuracy of the

standard estimation methods decreases (see Talluri et Van Ryzin (2004) ; Vulcano et al.

(2012) ; Haensel et Koole (2010)).

– Several statistical methods fail to accurately capture seasonal effects.

– Choice probabilities should enter the optimization process as variables, not as parame-

ters to be estimated. Indeed, these probabilities depend on the set of products available

within each time period.

All these issues have motivated us to develop a non-parametric and distribution-free esti-

mation procedure that, based upon historical bookings, takes explicitly into account the set

of available products. The contribution of this work is twofold. First, we formulate a model

for minimizing the difference between estimated and registered bookings. In order to obtain

a realistic representation of customer behaviour, cross-temporal utilities enter the model as

variables, and seasonal effects are captured by classifying daily demand flows into a predefi-
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ned number of clusters. Next, we formulate the problem as a MINLP (mixed-integer nonlinear

program), for which we develop a semi-global optimization algorithm.

We close this introductory section with an outline of the paper’s structure. Following the

description of the problem, together with its underlying assumptions and mathematical for-

mulation (Section 2), we provide a detailed description of the solution algorithm, including the

node selection strategy and the valid inequalities used for enhancing the branch-and-bound

framework (Section 3). Computational results on synthetic data are analyzed in Section 4,

while the concluding Section 5 opens avenues for future research.

3.2 Problem formulation

To illustrate demand censorship, let us consider the two-product example involving the

data displayed in Table 3.1. As soon as demand for product A exceeds its booking limit 35,

which it does since true demand is equal to 40, the data collection system stops counting

the number of upcoming customers. As a result, the real demand for A is censored and may

exceed 35. In the present case, one A-customer switched to B, while the other 4 reneged.

The main objective of our mathematical model is to minimize the difference between tem-

poral registered bookings and their estimates. Let us introduce its main elements : a product

i corresponds to a fare class offered at a given period 1, and is endowed with a utility ui. The

set of products available at a given period j is the choice set Sj. A cluster c denotes the

set of periods that share common features based on the demand flow, such as weekdays, wee-

kends, holidays, etc. Each daily potential demand dj is associated with a unique cluster.

For given utilities ui and choice sets Sj the choice probability pij of selecting product i

on day j is computed according to the multinomial logit (MNL) formula (Liu et van Ryzin

(2008)) :

pij(Sj, ui) =


exp(ui)/(

∑
k∈Sj

exp(uk) + exp(u0)) if i ∈ Sj

0 otherwise,

(1)

where u0 represents the utility of the no-choice option.

For a given time horizon, d1, d2, . . . , d|J | and a set of products I, we wish to minimize the

discrepancy eij between the expected bookings wij of each available product i at a given day

j and its associated observed registered booking Oij, thus simultaneously capturing seasonal

effects and customer behavior. We will therefore have achieved the three following goals :

– external segmentation (classification of days within clusters) ;

1. Throughout, the terms ‘time period’ and ‘day’ are used interchangeably.
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Table 3.1 Demand censorship

Product A B

Availability status yes yes
Observed demand 35 5
Booking limit 35 6
Real demand 40 4

– estimation of daily potential demand ;

– estimation of product utilities.

A summary of the notation used in the model is displayed in Table 3.2.
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Table 3.2 Summary of notation

sets

Product i ∈ I = {1, . . . , |I|}

Day j ∈ J = {1, . . . , |J |}

Cluster c ∈ C = {1, . . . , |C|}

Choice set Sj, set of products available on day j

parameters

Oij observed bookings for product i ∈ I on day j ∈ J

Aij availability status of product i ∈ I on day j ∈ J

RU
c upper bound on potential demand for cluster c ∈ C

RL
c lower bound on potential demand for cluster c ∈ C

DU
j upper bound on potential demand on day j ∈ J

DL
j lower bound on potential demand on day j ∈ J

PU
ij upper bound on choice probability for product i ∈ I on day j ∈ J

PU
ij lower bound on choice probability of product i ∈ I on day j ∈ J

variables

eij difference between estimated demand wij and observed bookings Oij

wij expected demand for product i ∈ I on day j ∈ J

dj daily potential demand (integer)

dNjc normalized daily potential demand ∈ [0, 1]

pij probability of selecting product i ∈ I on day j ∈ J

zjc cluster membership variable (binary)

rNc normalized potential demand for each cluster ∈ [0, 1]

ui utility of product i

δc potential demand of cluster c

The objective of the model is to minimize the difference between estimated and obser-

ved reservations, through the estimation of potential demand, product utilities, and cluster

membership. This is achieved by solving the following mathematical model :
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MINLP : min
δc,u,z

∑
j∈J

∑
i∈Sj

(pij(Sj, ui)djAij −Oij)
2 (2)

subject to pij(Sj, ui) =
exp(ui)∑

k∈Sj
exp(uk) + exp(u0)

i ∈ Sj (3)

dj =
∑
c

δczjc j ∈ J (4)∑
c∈C

zjc = 1 j ∈ J (5)

zjc ∈ {0, 1} j ∈ J, c ∈ C. (6)

In the objective function of the model, predicted booking for product i is set to the product

of the relevant choice probability, potential demand of day j and products availability status.

3.3 Algorithmic framework

While the mathematical formulation of the problem is concise, its numerical resolution is

challenging, due to both its combinatorial and nonlinear (fractional or multiplicative) nature.

As we will observe later in the paper, it is not amenable to solution by global optimization

software, its continuous relaxation being itself a difficult nonconvex program.

The line of attack that we have pursued is based on an approximate mixed integer linear

reformulation, which was strengthened by valid inequalities. Provided with an appropriate ini-

tial solution, and through the application of efficient branching rules, quasi-optimal solutions

could be obtained from an off-the-shelf MIP software such as CPLEX. Algorithm 1 represents

a summary of the general resolution approach. The key elements of the algorithmic framework

are presented in more details as follows :

3.3.1 Linearization

Let us assume that the potential demand for cluster c lies within predetermined bounds,

i.e. δc ∈ [RL
c , R

U
c ], and let us introduce the normalized variable

rNc = δc/R
U
c ∈ [RL

c /R
U
c , 1]. (7)

Equation (4) then takes the form

dj =
∑
c

(rNc R
U
c )zjc (8)
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Algorithm 1 General Solution Approach

Input : Registered bookings Oij, set of available products, Sj

Output : Daily demand flows dj, cluster memberships zjc, utilities ui

(1) Transformation into a MIP

i : Linearization

ii : Relaxation

ii : Convexification

(2) Preprocessing at root node

iii : Valid inequalities

iv : Initial solution

v : Domain reduction

(3) Branch-and-bound

vi : Branching strategy

vii : Adjustment of bounds at branching nodes

and, upon the change of variable

dNjc = rNc zjc, (9)

one derives the linear equation

dj =
∑
c

dNjcR
U
c . (10)

Using the fact that zjc is binary-valued, Equation (9) can be linearized. Indeed, if zjc = 1,

then dNjc = rNc . Since zjc ≤ 1, we have that

zjc + dNjc ≤ rNc + 1 (11)

and

zjc + rNc ≤ dNjc + 1 (12)

If zjc = 0, then djc = 0, i.e.,

dN
jc
≤ zjc i ∈ I, j ∈ J. (13)

To tighten the feasible domain, the lower bound RL
c on cluster demand dj has been set to

the minimum value of daily cumulative registered reservations.
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3.3.2 Relaxation and convexification

Three sources of nonconvexity occur in the MINLP mathematical model :

– the choice probabilities, pij derived from MNL model involve a fractional term ;

– the estimated demand for a given product on a given day involve the bilinear term

(pijdj) ;

– variables zjc are binary-valued.

To deal with the first source of nonconvexity, we base our relaxation on choice probabilities

pij (versus utilities), we approximate the bilinear terms wij by their convex envelopes, and

resort to classical continuous relaxations for the binary variables zjc.

Note that substituting the independent choice probability variables pij to the utilities ui

in the original problem may induce infeasibilities. To address the issue we check that, for each

product i and day j, the inequality

PL
ij ≤ pij =

exp(ui)∑
k∈Sj

exp(uk) + exp(u0)
≤ PU

ij i ∈ I, j ∈ J (14)

holds in the MINLP model solved by a nonlinear solver.

To deal with the bilinear term wij = pijdj, we contrast the concave and convex envelopes of

these functions against the relaxations introduced by McCormick (1976). Each bilinear term

is relaxed independently. Making use of the bounds

E =
{
wij = pijdj ∈ [PL

ij , P
U
ij ]× [DL

j , D
U
j ]×R

}
, (15)

we locally convexify the bilinear term based on the following inequalities, which are only valid

if product i is available on day j, i.e., Aij = 1 :

wij ≥ DU
j pij + PL

ijdj − PL
ijD

U
j i ∈ I, j ∈ J

wij ≥ DL
j pij + PL

ijdj −DL
ijP

L
ij i ∈ I, j ∈ J

wij ≤ DU
j pij + PL

ijdj − PL
ijD

U
j i ∈ I, j ∈ J

wij ≤ DL
j pij + PU

ij dj − PU
ijD

L
j i ∈ I, j ∈ J.

We then iteratively update, for each subproblem and at each node of the enumeration tree,

the upper and lower bounds of the choice probabilities of available products. This yields the

convex quadratic program
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RELAX : min
p,d,z

∑
i∈I

∑
j∈J

e2ij (16)

wijAij −Oij = eij i ∈ I, j ∈ J

PU
ij dj +DU

j pij − PU
ijD

U
j ≤ wij i ∈ I, j ∈ J

PL
ijdj +DL

j pij − PL
ijD

L
j ≤ wij i ∈ I, j ∈ J

PU
ij dj +DL

j pij − PU
ijD

L
j ≥ wij i ∈ I, j ∈ J

PL
ijdj +DU

j pij − PL
ijD

U
j ≥ wij i ∈ I, j ∈ J

dN
jc
≤ zjc j ∈ J, c ∈ C

zjc + rNc ≤ dNjc + 1 j ∈ J, c ∈ C

zjc + dNjc ≤ rNc + 1 j ∈ J, c ∈ C

dj =
∑
c∈C

dNjcR
U
c j ∈ J

RL
c /R

U
c ≤ rNc c ∈ C∑

c∈C

zjc = 1 j ∈ J

0 ≤ zjc ≤ 1 j ∈ J, c ∈ C

where the second to fifth constraints express the McCormick inequalities of the bilinear terms,

while the next six constraints assign each day to a specific cluster.

3.4 Solution algorithm

The algorithm for globally solving the original problem is a branch-and-bound based on

RELAX, and where branching is performed with respect to the binary variables δc, the integer

variables dj, as well as the continuous variables pij. While a linear solver is put to contribu-

tion for the first two sets of variables, a nonlinear solver is required for computing the choice

probabilities. We now provide a detailed description of the main elements of the algorithm.

3.4.1 Preprocessing

The performance of the enumeration scheme can be greatly enhanced through three proce-

dures : introduction of valid inequalities at the root node, warm-starting the algorithm with
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a feasible solution provided by a heuristic algorithm, and tightening the feasible domain at

each node of the branch-and-bound tree.

Valid inequalities

Based on the set of available products, one can derive logical relations that must be sa-

tisfied by any optimal solution. In general, considering the choice sets of two separate days,

Sj and Sj′ , three cases may happen : (i) the choice probabilities of two products are equal,

pij = pij′ (ii) one of them is less than the other one, pij > pij′ (iii) we cannot establish a

logical relation between two probabilities.

Valid inequality 1. It is a property of the multinomial logit that, if the choice set of day

j is a subset of the choice set of day j′, that is Sj ⊆ Sj′ , then we have

pij =
exp(ui)∑

k∈Sj
exp(uk)akj + exp(u0)

≥ exp(ui)∑
k∈Sj′

exp(uk)akj′ + exp(u0)
= pij′ (17)

Valid inequality 2. In order to discard symmetric and equivalent solutions we order,

without loss of generality, the demands associated with the cluster indices, i.e.,

δ1 < δ2 ≤ . . . ≤ δk ≤ . . . ≤ δ|C|. (18)

Equivalently :

rN1 R
U
1 ≤ rN2 R

U
2 ≤ . . . ≤ rNk R

U
k ≤ . . . ≤ rN|C|R

U
|C|. (19)

Initial solution

At the root node, initially, we find estimated daily potential demand, dj, by solving RE-

LAX problem. Then, an integer initial solution is obtained via a K-nearest neighbor algorithm

to fix class membership variables, zjc.

First, one matches each day to its own cluster. Then, one iteratively merges the two clus-

ters having the closest averages, until the required number of clusters is attained. Since ties are

broken arbitrarily, different choices could yield different partitions of the set of days into clus-

ters. Table 3.3 shows the progression of the algorithm corresponding to the vector of daily po-

tential demands {36, 6, 30, 14, 42}, and a number of final clusters set to two. In this example,

the same solution would have been achieved if 36 and 42 had been merged at the first itera-

tion. Of course, this result does not hold in general, as can be readily verified on the demand

vector {1, 3, 5} with two clusters yielding either the partition {1, 3} {5} or {1} {3, 5}.
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By using fixed zjcs, we again solve the RELAX model to obtain estimated potential de-

mand of each cluster δc. Finally, MINLP model is solved to find initial solution for product

utilities ui.

Domain reduction

Prior to branching, the respective ranges of the variables wij, pij and dj can be tightened.

For example, the sum of registered bookings on a given day dj provides the lower bound

dj ≥ DL
j =

∑
i

Oij j ∈ J. (20)

When F∗ shows the best integer solution, an upper bound DU
j (0) on dj can be set to the

optimum of the convex optimization problem

max
d

dj

subject to
∑
i

∑
j

e2ij ≤ F∗ i ∈ I, j ∈ J

constraints of RELAX.

In a similar fashion, upper bounds PU
ij (0) on the choice probabilities pij are obtained by

solving the convex program

max
p

pij

subject to
∑
i

∑
j

e2ij ≤ F∗ i ∈ I, j ∈ J

constraints of RELAX.

A total of 2|I| + 2|I||J | optimization problems are solved to derive the above upper bounds.

Finally, it follows from the inequality ∑
i∈I

∑
j∈J

e2ij ≤ F∗

that wij can be upper bounded by
√
F∗ +Oij.

3.4.2 Branch-and-bound

The optimum of the relaxed program provides a lower bound on the true optimal value,

while the corresponding solution can be used to construct a feasible solution that yields an
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Table 3.3 Clustering algorithm for determining initial solution

iteration

0 clusters {36} {6} {30} {14} {42}
averages 36 6 30 14 42

1 clusters {36, 30} {6} {14} {42}
averages 33 6 14 42

2 clusters {36, 30, 42} {6} {14}
averages 36 6 14

3 clusters {36, 30, 42} {6, 14}
averages 36 10

upper bound on the optimum. Note that the performance of the partial enumeration process

rests in large part on the quality of the upper bounds on the variables, hence the importance

of tightening these.

At each node of the enumeration tree, we implement a series of range reductions with

respect to daily potential demand, choice probabilities, potential demand of each cluster RL
c <

δc < RU
c , and the bilinear term wij. Several techniques, such as interval arithmetic, have been

implemented. For instance one can fix the value of zjc without branching. Indeed, if for a given

node n, the set [DL
j (n), DU

j (n)] ∩ [RL
c (n), RU

c (n)] is empty, then zjc must be zero.

For node n, the bounds on cluster demand δc can be set to

RL
c (n) = max

{
RL
c (n),min

j
DL
j (n)

}
RU
c (n) = min

{
RU
c (n),max

j
DU
j (n)

}
.

The lower bound can be updated according to the formula

DL
j (n) = max

{
DL
j (n),min

{
wUij(n)

PL
ij (n)

,
wUij(n)

PU
ij (n)

,
wLij(n)

PL
ij (n)

,
wLij(n)

PU
ij (n)

}}
i ∈ I, j ∈ J (21)

The upper bounds DU
j (n) on daily potential demand, as well as the bounds on choice proba-
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bilities are updated in a similar fashion. Next, we adjust the upper and lower bounds of daily

potential demand dj, and potential demand of each cluster δc. Meanwhile, we fix the value of

assignment variables zjc, whenever the ranges of dj and δc intersect.

For a given node, if the range of a variable dj obtained from the relaxation model overlaps

with the ranges of two or more clusters, then its lower bound is updated to

DL
j (n) = max

{
RL
c (n), DL

j (n)
}
. (22)

Similarly, the upper bound is set to

DU
j (n) = min

{
RU
c (n), DU

j (n)
}
. (23)

Finally, feasibility conditions are verified by using (14) and (19). In addition, the solution

of RELAX and MINLP problems are used to prune the partial enumeration tree.

We close this section with a description of the branching strategy. At node n, the binary

variables zjc are relaxed, and dj can therefore ‘partially’ belong to more than one class. Let

d̂j(n) be the estimated potential demand of day j obtained from optimal solution of the RE-

LAX problem. Let

Ic(d̂j(n)) =

 1 if d̂j(n) ∈ [RL
c (n), RU

c (n)] c ∈ C

0 otherwise
(24)

I(n) =
∑
j∈J

Ic(d̂j(n)) c ∈ C. (25)

In the branching scheme, node selection follows these rules :

– Branch on the node from which the relaxed optimum is minimal.

– In case of a tie, branch on the deepest node.

– In case of yet another tie (this rarely occurs in practice), branch on any node having

the maximum number of overlapping intervals with respect to variables dj and δc, i.e.,

[DL
j (n), DU

j (n)] ∩ [RL
c (n), RU

c (n)] 6= ∅.
As far as variable selection is concerned, we prioritize the cluster demand variables δc for

branching, but switch to daily potential demand dj when all clusters are disjoint. A variable

δc is selected if it achieves maximum interval length, ties being broken in favor of clusters

with large I(n)-values in RELAX. The assignment of each day to a single disjunctive cluster

is achieved by branching on dj. To reduce each cluster to a singleton, we branch again on δc.

As mentioned above, we branch on dj to fix zjc, and select variables for which the difference

between lower and upper bounds is the largest.
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Once all days have been assigned to clusters and δc is integer-valued, we solve MINLP to

find product utilities ui. Finally, if the gap between the RELAX and MINLP solutions is larger

than a predefined threshold, we branch on variables pij, with the aim of either fathoming the

current node or obtain a better feasible solution.

3.5 Computational results

The algorithm has been tested on a number of synthetic instances, and its performance

assessed with respect to three criteria :

– Calibration : this criterion is used to verify whether the algorithm is able to recover

exactly the data used to generate the synthetic instances, i.e., achieves a zero objective

for MINLP.

– Classification : this criterion is used to determine the error level achieved by the al-

gorithm on perturbed instances, and also to compare the performance of the algorithm

against two well-known global and nonlinear solvers.

– Generalization : this criterion is used to assess the robustness of the estimation pro-

cess, i.e., verifying how well the parameters calibrated on a set of controlled instances

can generalize to distinct perturbed datasets, thus constituting a reliable tool for deci-

sion making.

3.5.1 Data generation

Each instance is characterized by a triple (C, J, I) where C denotes the number of clusters

(2, 3, or 4), J the number of days (7, 14, 21, or 28) and I the number of products (4, 6, or 8).

Observed bookings (Oij) have been generated according to the formula

Oij = Aijpijdj, (26)

which requires knowledge of the set of available products, as well as the utilities ui from which

the probabilities pij are derived. In this process, the product utilities and the potential de-

mand δc of each cluster are exogenous. The availability parameters Aij associated with pro-

duct i on a given day j are generated according to a Bernoulli random variable. Finally, each

day j has been randomly assigned to one of the clusters.

A first set of 33 unperturbed instances allowed to check whether the algorithm could ac-

tually replicate the original values zjc, dj and ui. Next, a second set of 33 perturbed samples

were created to test the generalization ability of the model. Keeping the other parameters

(choice set, potential cluster demand, class membership, product utilities) fixed, the daily de-

mand was modified according to the formula
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dj = dj(1 + γ(2εj − 1)) j ∈ J, (27)

where the perturbation parameter γ was fixed to 0.1, and εj was uniformly distributed bet-

ween 0 and 1.

The outcomes of our proposed model have been compared with those of two of the most

acknowledged softwares : Knitro 8, a nonlinear solver, and Baron 11.0, a global optimization

solver. Our algorithm has been halted whenever no improvement occurred within 60 minutes

of CPU time. The computational experiments have been carried out on a Quad-core computer

with 2.4 GHz CPU and 8 GB of RAM. The branching algorithm was implemented in C++,

and we resorted to the Quadratic Solver of CPLEX 12.3 (sequential quadratic programming)

and IPOPT 3.11 (interior point method) as nonlinear solvers. The software Baron was acces-

sed through the NEOS server (see IBM (2013), BARON (2013), Ziena (2013), NEOS (2013),

IPOPT (2013)).

3.5.2 Numerical experiments

The non-perturbed instances used for calibration purposes are displayed in Table 3.4. For

all instances, the global optimum with zero value was reached. Moreover, the algorithm was

able to reproduce the exact original product utilities ui and cluster potential demand δc from

which the data was initially generated.

The numerical results corresponding to the 33 perturbed instances are summarized in

Table 3.5. The first three columns describe instances and their characteristics : number of

clusters, number of days and number of products. The four ‘Time’ columns contain execu-

tion time (CPU time in seconds) of different parts of the algorithm : ‘Total’ (some of the next

two columns plus the time spent to implement branching strategy), ‘Relax’ (time spent sol-

ving the RELAX model), ‘NLP’ (time spent solving MINLP using IPOPT), ‘Pre-Proc.’ (time

spent implementing the pre-processing at root node). Cases where the run time is significantly

less than 3 600 seconds attested to the efficiency of the branching strategy.

The next four columns under ‘Node’ provide statistics related to the branch-and-bound

tree. The first column ‘Gen.’ represents the total number of nodes generated during the branch-

and-bound procedure. Although reasonable for small instances, it increases quickly with the

number of products and clusters. Column ‘Br.’ represents the number of branched nodes,

which is significantly lowered by implementing the feasibility conditions and valid inequali-

ties. The caption ‘Dis.’ refers to the number of nodes that have been discarded during the

branching process, through the violation of the feasibility conditions (14) and (19). The hea-

ding ‘Domin.’ refers to the number of nodes dominated by the current best solution. Data in
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these two columns attest to the efficiency of the algorithm, more precisely to the large number

of subtrees that could be pruned.

Column ‘# NLP’ refers to the number of times the algorithm resorted to IPOPT for sol-

ving MINLP, i.e., the number of times the relaxation problem reached an integer feasible so-

lution. Numbers under the heading ‘VI#1’ correspond to the number of valid inequalities

appended to the model, and thus are a measure of the contribution of constraint (17).

The next three columns show the initial solution ‘Ini Sol’ obtained from a variant of K-

nearest neighbor algorithm, the best feasible solution ‘Best’ and the best bound ‘Bound’.

They illustrate the sharp improvement of the initial solution, which admittedly not very good.

The iterative process halts if one of two conditions holds : either the gap between the best so-

lution (MINLP) and the best bound (RELAX) is less than 1%, or the algorithm makes no

improvement for a period of 3 600 seconds. The ‘Gap’, set to the value (Best bound-Best so-

lution)/100, is displayed in the last column.

102 103

102

103

Time

G
ap

MINLP

Relax

Figure 3.1 Algorithm effectiveness in reducing the gap

In Figure 1, for an instance involving three classes, 28 days and four products, we illustrate

the effectiveness of the algorithm by plotting the best bound and the best solution against

CPU time. The Figure is logarithmically scaled for the ease of presentation. The final gap

between MINLP and RELAX models for this example is equal to 0.98%.

In Table 3.6, we contrast the performance of our algorithm against those of Knitro and

Baron, on the 33 perturbed instances of Table 3.5. The first three columns specify the di-

mensions of the instances. The next three under ‘BB Sol’ show the outcomes of our demand

model, initialized with ‘Ini Sol’, the prediction error (objective function) ‘MSE’, and the clas-

sification error ‘Class.%’. The latter indicates whether each day has been properly assigned
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to one of the clusters, based on its demand flow. This information helps us to accurately pre-

dict demand seasonal features. We observe that the algorithm has been successful in correctly

assigning each day to one of the clusters. From a theoretical point of view, small gaps bet-

ween the solutions of MINLP and RELAX, as well as null classification errors, testify to the

effectiveness of the algorithm.

Under the heading ‘Baron’, the next two columns show the prediction (‘MSE’) and clas-

sification (‘Class’) errors associated with the global optimizer Baron. While Baron is efficient

on small instances, it is highly sensitive to the size of the problem. It actually fails to solve

problems involving more than 14 days and four clusters.

Likewise, the two columns under ‘Knitro’ correspond to prediction and classification errors

for that solver. Once again, this solver successfully classifies days into clusters for small ins-

tances, with prediction errors similar to those of Baron and our algorithm. Besides size (based

on the number of clusters, days and products), Knitro is also sensitive to product availabili-

ties. When the number of available products for a given day decreases, the values of MSE and

classification error sharply increase.

The figures in the last column (‘Generalization’) of Table 3.6 illustrate the good perfor-

mance of our algorithm on perturbed data. This stability actually depends on the availability

of the products. In some cases, the error is slightly lower than the calibration error (MSE),

due to the number of available products being small compared to the number used for cali-

brating the model. In all cases, the proposed algorithm outperformed by a large margin both

Knitro and Baron.

3.6 Conclusion

In revenue management, dealing with censored demand is a complex issue, especially when

a large proportion of products are not available to customers, a situation that occurs in prac-

tice. To address this problem, we have proposed a choice-based non-parametric method whose

output is the demand for any given product within any given time period, and proposed for

its solution an efficient algorithm that has been validated on synthetic data. Simultaneously,

we obtained a variety of solutions for class potential demands, product utilities and daily as-

signments, depending on the features of historical data. Through the introduction of exoge-

nous customer segmentation into the mathematical model, or through the implementation of

a revenue maximization model, these sets could be reduced, and a small number of scenarios

retained. In a future work, we intend to investigate situations involving more sophisticated

segmentation models, with the aim of accurately estimating the probabilities of buy-ups or

buy-downs.



62

T
ab

le
3.

5
P

er
tu

rb
ed

in
st

an
ce

s

T
im

e
N

o
d
e

C
la

ss
D

a
y
s

P
ro

d
u
ct

T
ot

al
R

el
ax

N
L

P
P

re
-P

ro
c.

G
en

.
B

r.
D

is
.

D
om

.
#

IP
O

P
T

V
I#

1
In

i
S
ol

.
B

es
t

B
ou

n
d

G
ap

(%
)

4
0.

70
0.

48
0.

00
1.

14
12

5
54

26
24

6
32

15
4.

55
5.

70
5.

68
0.

02

7
6

4.
06

2.
31

0.
11

2.
64

53
9

43
8

30
34

22
8

38
76

1.
24

7.
53

6.
96

0.
57

8
4.

23
2.

59
0.

17
4.

19
46

8
36

2
36

51
17

3
44

56
1.

02
6.

66
6.

30
0.

36

4
4.

33
2.

30
0.

13
4.

59
43

6
33

9
40

55
16

8
94

53
6.

44
30

.7
5

30
.0

1
0.

74

14
6

15
.6

9
7.

53
0.

36
8.

77
10

89
90

2
40

13
7

46
7

11
5

15
89

.7
6

28
.7

0
27

.9
0

0.
80

2
8

9.
89

4.
80

0.
14

70
.5

9
59

0
47

6
61

46
23

4
10

9
12

12
.6

2
16

.5
6

15
.7

2
0.

84

4
19

.0
2

9.
05

0.
36

8.
41

11
62

90
4

47
11

6
42

6
19

0
20

95
.2

2
38

.8
0

38
.2

0
0.

60

21
6

10
7.

64
51

.4
4

1.
17

14
.7

2
46

87
40

19
13

5
51

8
20

52
13

6
28

53
.3

9
32

.4
6

31
.8

0
0.

66

8
13

3.
75

55
.9

8
1.

50
65

.6
3

44
92

39
88

13
3

31
3

21
56

18
1

30
46

.9
6

48
.8

3
47

.9
4

0.
89

4
13

.6
3

6.
22

0.
11

15
.3

1
55

7
37

6
14

48
14

4
32

0
25

21
.2

8
48

.6
9

48
.4

6
0.

23

28
6

55
.9

5
24

.5
6

0.
17

33
.9

7
15

93
11

42
54

37
8

44
6

32
6

47
6.

92
47

.0
2

46
.6

0
0.

42

8
12

4.
27

62
.3

1
0.

38
17

9.
95

21
77

15
99

61
41

3
63

1
41

3
29

41
.3

6
27

.3
0

26
.3

1
0.

99

4
5.

16
3.

23
0.

08
0.

89
72

8
35

9
83

54
83

16
36

3.
41

11
.2

7
10

.2
8

0.
99

7
6

37
0.

47
17

4.
22

9.
06

2.
23

36
30

9
29

54
5

46
9

15
30

13
91

4
35

75
6.

64
4.

98
3.

99
0.

99

8
31

.3
9

16
.6

3
0.

92
4.

59
30

45
24

46
18

8
12

9
11

50
50

95
9.

91
4.

06
3.

24
0.

83

4
12

7.
33

62
.5

2
2.

03
4.

59
10

96
5

80
29

28
2

16
34

34
85

91
18

90
.6

4
17

.3
1

16
.5

0
0.

81

14
6

36
19

.8
4

90
3.

67
28

.5
6

7.
69

12
80

32
11

23
42

41
18

17
11

45
03

0
81

21
6.

42
15

.0
7

10
.8

9
4.

18

8
37

09
.9

1
10

98
.1

7
31

.6
6

13
.3

4
11

73
60

10
24

22
29

20
22

62
44

93
6

87
15

66
.2

1
20

.4
6

15
.9

4
4.

52

3
4

23
62

.3
5

96
2.

11
4.

19
20

.8
1

48
93

1
27

56
1

14
93

19
65

3
63

49
29

3
17

68
.8

8
71

.7
8

70
.9

9
0.

79

21
6

31
19

.1
7

10
26

.0
5

15
.9

2
22

.2
8

95
00

0
66

61
8

33
66

17
58

3
24

11
3

25
2

10
3.

92
25

.1
0

24
.3

7
0.

72

8
39

54
.8

3
11

44
.7

5
14

.6
4

28
.2

3
84

11
4

64
58

8
40

43
28

85
20

75
4

13
7

12
14

.4
7

28
.5

1
23

.6
9

4.
82

4
14

73
.6

4
60

1.
23

3.
41

19
.5

0
45

65
0

24
64

3
13

61
18

77
5

51
51

30
0

29
74

.4
6

75
.6

3
74

.7
0

0.
93

28
6

36
91

.5
8

12
25

.9
4

13
.9

7
40

.3
3

70
19

5
53

17
1

35
01

50
69

18
08

8
35

1
18

37
.0

6
36

.7
6

32
.7

3
4.

03

8
36

70
.4

1
15

15
.9

2
3.

00
25

0.
94

51
92

8
34

23
7

18
22

51
14

42
10

26
0

24
30

.0
5

29
.8

9
25

.5
9

4.
30

4
42

38
.6

1
12

43
.4

7
0.

55
3.

94
12

13
36

71
76

4
51

78
40

38
7

91
6

90
13

61
.4

5
11

.8
7

11
.0

3
0.

84

14
6

42
47

.7
0

15
00

.8
9

0.
84

7.
80

11
05

04
62

96
8

35
82

31
32

9
11

04
78

16
88

.3
6

12
.6

0
9.

43
3.

17

8
73

02
.5

3
18

64
.1

1
11

.1
1

12
.4

1
15

58
60

93
12

6
41

53
41

14
9

13
74

9
50

85
9.

01
12

.1
3

7.
45

4.
68

4
80

83
.5

8
23

06
.4

1
11

.5
0

11
.5

2
18

07
64

10
24

70
54

70
60

38
6

15
24

6
16

9
24

8.
52

39
.6

3
37

.2
3

2.
40

4
21

6
61

89
.2

2
17

74
.7

2
9.

89
17

.5
2

11
82

53
72

65
0

42
20

23
51

8
13

04
6

16
5

13
28

.4
8

34
.2

3
29

.7
2

4.
51

8
56

45
.5

6
22

45
.2

0
10

.1
3

29
.9

2
14

01
78

94
59

4
45

52
27

34
5

14
17

7
10

2
16

96
.7

9
38

.4
7

33
.8

5
4.

62

4
40

64
.6

4
11

12
.5

9
15

.4
8

23
.0

0
94

90
1

60
89

0
22

88
13

88
6

19
50

3
38

6
41

6.
61

53
.6

8
49

.6
4

4.
04

28
6

92
52

.7
3

32
92

.1
9

7.
67

43
.2

3
13

20
19

87
37

5
58

32
29

55
7

13
07

7
34

3
95

3.
01

56
.9

5
52

.1
0

4.
85

8
11

68
9.

00
37

46
.0

0
9.

83
29

6.
54

14
76

64
90

42
8

63
73

32
34

6
15

74
6

36
8

12
34

.0
2

45
.6

3
40

.9
3

4.
70



63

Table 3.6 Comparison Framework

BB Sol Baron Knitro Generalization

Class Days Product Ini Sol MSE Class.(%) MSE Class.(%) MSE Class.(%) MSE

2 7 4 154.55 5.70 0.00 5.70 0.00 5.63 0.00 32.95

6 761.24 7.53 0.00 7.53 0.00 7.53 0.00 22.17

8 561.02 6.66 0.00 8.08 14.29 8.12 14.29 14.01

14 4 536.44 30.75 0.00 3682.29 28.57 157.58 21.43 54.58

6 1589.76 28.70 0.00 3441.98 50.00 147.56 42.86 37.94

8 1212.62 16.56 0.00 456.94 14.29 232.32 21.43 53.14

21 4 1768.88 71.78 0.00 17983.55 76.19 239.75 38.10 66.28

6 2853.39 32.46 0.00 880.03 23.81 165.07 38.10 40.39

8 3046.96 48.83 0.00 5830.66 66.67 180.49 47.62 83.47

28 4 2521.28 48.69 0.00 499.01 14.29 548.69 25.00 43.28

6 476.92 47.02 0.00 463.12 21.43 347.69 14.29 38.84

8 2941.36 27.30 0.00 827.22 17.86 247.26 46.43 36.51

3 7 4 363.41 11.27 0.00 161.32 57.14 132.84 28.57 23.33

6 756.64 4.98 0.00 149.63 42.86 171.26 42.86 11.72

8 959.91 4.06 0.00 18.64 14.29 19.15 28.57 17.32

14 4 1890.64 17.31 0.00 604.04 14.29 207.60 42.86 49.09

6 216.42 15.07 0.00 1954.43 28.57 135.67 28.57 34.02

8 1566.20 20.46 0.00 117.07 42.86 157.09 28.57 18.25

21 4 2095.22 38.80 0.00 2314.24 28.57 91.38 14.29 36.77

6 103.92 25.10 0.00 9283.33 71.43 124.95 52.38 33.79

8 1214.47 28.51 0.00 9308.44 76.19 279.36 47.62 41.72

28 4 2974.46 75.63 0.00 21006.68 67.86 198.67 32.14 93.28

6 1837.06 36.76 0.00 15188.60 67.86 856.47 57.14 63.89

8 2430.05 29.89 0.00 2054.74 25.00 1146.00 32.14 45.76

4 14 4 1361.45 11.87 0.00 796.87 64.29 456.36 42.86 23.67

6 1688.36 12.60 0.00 5620.43 57.14 2345.00 57.14 69.58

8 859.01 12.13 0.00 4235.06 71.43 4235.06 57.14 14.44

21 4 248.52 39.63 0.00 n\a n\a n\a n\a 41.12

6 1328.48 34.23 0.00 n\a n\a n\a n\a 44.48

8 1696.79 38.47 0.00 n\a n\a n\a n\a 33.67

28 4 416.60 53.68 0.00 n\a n\a n\a n\a 58.51

6 953.01 56.95 0.00 n\a n\a n\a n\a 69.58

8 1234.02 45.63 0.00 n\a n\a n\a n\a 58.63
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CHAPTER 4

ARTICLE 4 : THE IMPACT OF CUSTOMER BEHAVIOR MODELS ON

REVENUE MANAGEMENT SYSTEMS

Chapter Information : The article based on this chapter is submitted for publication.

Sh. Sharif Azadeh, M. Hosseinalifam, and G. Savard.

In this chapter, we present a comparative study which compares the impact of parametric

and non-parametric demand models on revenue.

Abstract Revenue Management (RM) can be considered as an application of operation

research in the transportation industry. For these service companies, it is a difficult task to ad-

just supply and demand. In order to maximize revenue, RM systems display demand behavior

by using historical data. Usually, parametric methods are applied to estimate the probability

of choosing a product at a given time. However, parameter estimation becomes challenging

when we have a large dataset with a great proportion of unavailable products. In this research,

we compare the impact of choosing a non-parametric method for probability estimation on re-

venue. The outcomes of this method have been compared to the total expected revenue using

synthetic data.

Keyword Revenue management, Parametric and non-parametric demand models, Cus-

tomer choice behaviour.

4.1 Introduction

Revenue management systems rely on the expected demand of each fare class. Therefore,

the accuracy of demand models can affect revenue significantly. Most research in the literature

has focused on the optimization methods based on which booking limits and fare products are

determined. In 2005, van Ryzin shifted the focus from traditional product demand models to

the analysis of customer behaviour in revenue management systems, based on the theory of

discrete choice models (random utility) van Ryzin (2005). This change of paradigm has made

it possible to blend the concept of revenue maximization with customer behavior analysis in

recent research. Cooper has shown that ignoring customer behavior in RM systems results in

loss of revenue Cooper et al. (2006).

An RM system has to decide whether to accept or reject a request from an arriving cus-

tomer for a given product. Usually, products that are purchased in advance belong to the
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price-sensitive customer segments. However, the higher fare products are more likely to be

bought right before departure. Therefore, product availabilities at a given time before depar-

ture have a direct impact on customer behavior. It is assumed that an arriving customer from

each segment has a consideration set (a set of products among which the customer selects his

choice) and he is willing to purchase the most attractive product based on a preference vector

Liu et van Ryzin (2008). This vector is expressed in terms of product-based utilities according

to which the probability of choosing a product by an arriving customer is determined.

In revenue maximization literature, the demand of a given product is often assumed to

be independent from the others. That is, every client chooses a product independently from

other ones (Talluri et Van Ryzin (2004), Weatherford (2000), Cooper et al. (2006)). One of

these revenue maximization techniques is Deterministic Linear Programming, DLP, that was

first introduced by Simpson et al. Simpson (1989). In their research, the expected demand

has been determined by using the mean forecasted value. Afterwards, a linear program was

suggested to define the optimal demand based on the capacity constraints for a given time

period.

A more advanced model was proposed by Gallego and Liu et al (Gallego et al. (2004),

Liu et van Ryzin (2008)). They have suggested a Choice-based Deterministic Linear Program

(CDLP) to maximize revenue by defining at a given time, which product should be offered to

the arriving customers from different segments to maximize revenue. However, in reality, the

demand has a stochastic nature and the only information available in transportation compa-

nies is the registered booking of products during different time periods. Therefore, we need to

extract customer behavior based on historical registered data.

The major contribution of this paper is to study a network revenue management problem

with discrete customer choice behavior via a non-parametric algorithm that helps us to esti-

mate customer preferences by directly using historical data. The revenue impact of this model

has been compared to an upper bound resulting from a modified CDLP model and the out-

come of the expected revenue of a simulation model. Our numerical experiments show that

the proposed method of preference vector approximation performs as well as a parametric

method with less computational cost.

The remainder of the paper is organized as follows. The main problem and the concept

of customer preferences are described in Section 2. In Section 3, a modified CDLP problem

is reviewed, which is used to generate synthetic data and an upper bound to the revenue in

the comparison scheme. In Section 4, a non-parametric mathematical model is represented

. In Section 5, numerical results are presented that suggest the non-parametric method of

preference vector approximation can produce results close to those obtained with the original

model. Avenues for further research are outlined in the concluding Section 6.
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4.2 Problem description

In revenue management systems, customer behavior is expressed by their choices. In this

research, each choice is made based on three basic rules : 1) each customer can choose only

one of the available products, 2) the selected product has the maximum utility (or maximum

weight) compared to the other available alternatives, and 3) only myopic customers are consi-

dered (customers who make their final decision at the time of arrival).

An arriving customer has a personal preference when purchasing a product. A subset of

available offered products, considered by the client, is called a consideration set. Each custo-

mer selects an available alternative from his consideration set based on his preferences. Prefe-

rence vector illustrates the vector of weights of all available products. As soon as one of these

products is no longer available the probability of choosing a substitute changes, that suggests

a conditional probability for choosing another product.

From a theorical point of view, the number of possible scenarios for preference orders are

numerous for arriving customers from different segments. This makes the problem of revenue

maximization computationally difficult to be solved. On the other hand, the only available

information about choices made by clients is the historical data (registered bookings). In this

research, we aim to use the information that historical data provides us in order to estimate

choice probabilities. Figure 4.1 shows the registered booking of a given product for different

departure days.
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Figure 4.1 Registered bookings of a given product for successive departure days

In discrete choice models framework, the probability of choosing a given product by an

arriving customer from a given segment is calculated by using product utilities. These utilities

are defined as the sum of deterministic and stochastic terms that are related to the features

of each product (McFadden (2001), Train (2009)). The choice of the random term results in

different models. The one that is frequentlty used in RM systems is the Multi-Nomial Logit

(MNL) model. The parameters of this model are typically estimated via maximum likelihood.

The abovementioned preference vector in our model are also calculated by MNL.
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Parameter estimation becomes more challenging when we have to deal with large volume

of registered bookings with censored data which is a result of the unavailability of some pro-

ducts at different time intervals. In this research, we tackle this problem via a non-parametric

method of estimation. The probability of choosing a product at a given time by an arriving

customer is expressed as a variable of the mathematical model. We represent this model in

Section 4. Then, we propose a learning process that helps us to estimate choice probabilities

and consequently customer preferences in a more realistic way.

4.3 Modified CDLP model

In this section, we present a modified version of a choice-based linear program introdu-

ced by Liu and van Ryzin (Bront et al. (2009),Liu et van Ryzin (2008)). Consider a net-

work with m resources (legs) providing n products. The set of products is expressed by N =

{1, 2, .., n} and vector r = (r1, r2, ..., rn) denotes associated revenue to the products. Vector

c = (c1, c2, ..., cm) shows the initial capacities of resources. More than one resource unit can

be used by a given product. The usage of each unit of capacity related to each product is

described with an incidence matrix A = [aij] ∈ Bm×n. The matrix entries are defined by :

aij =

 1, if resource i is used by product j

0, otherwise

Time is expressed in discrete periods. The total number of periods is defined by τ , t =

1, 2, ..., τ . A customer arrival rate, λ, is considered for a given time interval. We suppose that

at most one customer arrives during each period of time and he can buy only a single product

or decide not to purchase at all.

Customers are divided into l = {1, ..., L} different segments with corresponding conside-

ration set cl. If we have one arrival, pl represents the probability that an arriving customer

belongs to segment l with
∑L

l=1 pl = 1. We consider a Poisson process of arriving streams of

customers from segment l with rate λl = λpl and total arriving rate of λ =
∑L

l=1 λl.

In each period of time t, the firm should decide about the offer set (i.e. a subset of pro-

ducts, S ⊆ N , that the firm makes available to arriving customers). If set S is offered, the de-

terministic quantity Pj(S) indicates the probability of choosing product j ∈ S and Pj(S) = 0

if j /∈ S. We have
∑

j∈S Pj(S)+P0(S) = 1, where P0(S) indicates the no-purchase probability.

Customers’ choice probabilities are derived from a Multi-Nomial Logit (MNL) model which

is one of the most commonly used models to study how customers make their choices. In the
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MNL choice model, vl ≥ 0 represents a customer’s preference vector for available products in

consideration set Cl and vl0 represents the no-purchase preference. We let Plj(S) denote the

probability of selling product j ∈ Cl
⋂
S to a customer from segment l when set S is offered.

According to the MNL choice model, this choice probability can be expressed as follows :

Plj(S) =
vlj∑

h∈Cl
⋂
S vlh + vl0

. (1)

It can be obtained from formulation (1) that Plj(S) = 0 if vlj = 0 which can be a result of

j /∈ Cl or j /∈ Cl
⋂
S. We assume that vl0 > 0 for all segment l = 1, 2, ..., L.

In the more general case, as a firm cannot recognize the corresponding segment of an ar-

rival in advance, the probability that the firm sells product j to an arriving customer is des-

cribed as follows,

Pj(S) =
L∑
l=1

plPlj(S). (2)

Therefore, if a set S is offered the corresponding expected revenue is given by :

R(S) =
∑
j∈S

rjPj(S). (3)

Given P (S) = (P1(S), ..., Pn(S))> be the vector of purchase probabilities, the vector of

capacity consumption probabilities Q(S) is denoted by :

Q(S) = AP (S), (4)

where Q(S) = (Q1(S), ..., Qm(S))> and Qi(S) indicates the probability of using a unit of

capacity on leg i, for i = 1, 2, ...,m.

Let binary variable Xt(S) indicate whether set S at time t is offered. After obtaining the

values of R(S) and Qi(S), we can embed these functions in the following mathematical pro-

gramming model to obtain the optimal resource allocation by taking into account the time

and capacity constraints while maximizing revenue.
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CDLP ′ = max
X

τ∑
t=1

∑
S

λR(S)Xt(S) (5)

subject to ∑
t

∑
S

λQi(S)Xt(S) ≤ ci ∀i∑
S

Xt(S) = 1 ∀t

Xt(S) ∈ {0, 1} ∀t, S

Model (5) is a modified formulation of the customer choice-based deterministic linear pro-

gramming model (CDLP′) where in (5) the decision variable Xt(S) indicates offering set S

at booking period t instead of the total time periods during which S is offered (Bront et al.

(2009) ,Kunnumkal et Topaloglu (2008)).

4.4 Non-parametric approach

Using the notation defined in the preceding section, we now exhibit the optimization mo-

del presented in this paper. The goal is to determine choice probabilities by using historical

data. The objective function is to minimize the prediction error (the difference between esti-

mated demand of each product at a given time and the related registered booking).

R = min
p

∑
j∈J

∑
t∈T

e2jt (6)

Pjt(S)BjtD −Ojt = ejt ∀j, t

where Pjt(S) is the model variable that gives the probability of choosing product j at time t,

Bjt depicts parameters to show availability status of this product, Ojt represents the observed

booking for product j at time t, D is the total demand and finally, ejt presents the difference

between estimated demand and the registered booking.

During the customer decision making process, whenever a product is not available at a

time interval, its demand can be either transferred to the other available products offered by

the company (recapture) or it can be lost (spill). This changes the choice probabilities. We

extract relations between these probabilities based on daily choice sets (the set of available

products for each day).

Proposition. For a given customer segment, l ∈ L, if the choice set of time interval t is
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a subset of time period t′, that is St ⊆ St′ , then we have Pjt(S) ≥ Pjt′(S).

Input : Choice sets and registered bookings

Output : Valid inequalities

1 : For all time periods (t ∈ T )

2 : For all days (t′ ∈ T )

Comapare the choice sets

3 : If St ⊂ St′ then

4 : If St = St′ then

5 : For all products (j ∈ St, j ∈ St′)
6 : Write Pjt(S) = Pjt′(S)

7 : Else

8 : For all products (j ∈ St, j ∈ S ′t)
9 : Write Pjt(S) > Pjt′(S)

Algorithm 2 Valid inequalities on choice probabilities

We add the proposed set of valid inequalities to (6) in order to estimate the choice pro-

babilities. By solving this model, we obtain upper and lower bounds to Pjt(S). However, to

provide a customer preference vector, we need to estimate product utilities, uj. Thus, we solve

the following system of inqualities based on the MNL model to obtain product utilities.

PL
jt(S) ≤ exp(uj)∑

k∈Ct
exp(uk) + exp(u0)

≤ PU
jt (S) ∀j ∈ J (7)

After estimating the utility of each product, we obtain the preference vectors based on a

multi-nomial logit model. In the next section, we present the computational results in order

to compare the outcome of our proposed preference estimation method on revenue with the

revenue obtained from the CDLP′ model.

4.5 Computational results

4.5.1 Data instances

In this research, synthetic data is used to show the impact of our proposed demand model

on revenue performance. Twenty-four generated instances are distinguishable based on three

main elements : number of products, J (6,8), number of booking intervals, T (7,14,21,28), and

the number of customer segments, L (3,4).
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For a given number of products, number of segments and number of booking intervals,

3 different random instances have been produced. In order to generate registered historical

data, Oij, we use CDLP′ via the model presented in (5) to first derive the optimal offer sets,

Xt(S), which provide us the choice sets of each time interval, Sj, in the R model .

In the CDLP′ model, utilities and preference vectors are given. They are usually obtai-

ned by implementing an offline study of customer characterictics using parametric methods.

Afterwards, for randomly arriving customers from different segments, we generate historical

data.

4.5.2 Numerical results

The computational results have been carried out on a computer with 2.4 GHz CPU and

8 GB of RAM and 4 cores. We have used the Quadratic Solver of CPLEX 12.3 (sequential

quadratic programming) to solve problem R. To solve problem CDLP′ (column generation

approach), we have utilized FICO Xpress-Mosel 7.2.

CDLP´

Preference 
vector

Product utilities

Historical data

Simulation

Offer sets ‐
Revenue

Figure 4.2 Non parametric method of preference estimation and its impact on revenue

Figure 4.2 presents our comparison scheme. Solving CDLP′ results in finding an upper

bound to the revenue. We perturb the preference vector of each customer segment (by adding

a Gumbel distributed error term to the utility function), then, we find the expected revenue

of the simulated model. In this method, utilities and preferences are known.

Now, by directly using generated synthetic data, we estimate product utilities with our

proposed nonparametric method. According to these estimated values, we can reproduce pre-

ference vector of arriving customers. The revenue resulting from both methods are compared.

Table 4.1 presents the comparative study on 24 instances. These examples are generated

based on random customer arrival rates from different segments.
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Table 4.1 Revenue Comparison

Product Segment Book.Int Instance # UB ER(CDLP′) ER(R) Gap(%)

1 1 3954 3439 3417 0.64%

2 7 2 3954 3439 3431 0.23%

3 3 3954 3439 3448 -0.26%

4 1 7500 6581 6472 1.66%

5 14 2 7500 6581 6743 -2.46%

6 6 3 3 7500 6581 6503 1.19%

7 1 12080 10570 10305 2.51%

8 21 2 12080 10570 10619 -0.46%

9 3 12080 10570 10437 1.26%

10 1 17371 15822 15062 4.80%

11 28 2 17371 15822 15801 0.13%

12 3 17371 15822 15796 0.16%

13 1 4817 4389 4310 1.80%

14 7 2 4817 4389 4347 0.96%

15 3 4817 4389 4371 0.41%

16 1 9634 9234 9246 -0.13%

17 14 2 9634 9234 9194 0.43%

18 8 4 3 9634 9234 9282 -0.52%

19 1 14064 13262 13264 -0.02%

20 21 2 14064 13262 13238 0.18%

21 3 14064 13262 13125 1.03%

22 1 16681 15783 15597 1.18%

23 28 2 16681 15783 15742 0.26%

24 3 16681 15783 15663 0.76%
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Column “Book.Int” shows the number of booking periods. “UB” represents the revenue

resulting from CDLP′ that provides us an upper bound on the expected revenue. Columns

“ER(CDLP′)” and “ER(R)” respectively show the expected revenue resulting from simulation

(with perturbed preference vector) and our non-parametric demand model represented in the

R model.

The gap, “Gap(%)”, between “ER(CDLP′)” and “ER(R)” is small. Even though there are

cases where R has slightly outperformed the simulated model, this is not surprising. The rea-

son for this is that while using a non-parametric method, the degree of freedom of the mo-

del increases which can result in slight outperformance. The numerical results suggest that

the non-parametric method of preference vector approximation can produce revenues close to

those obtained with the original CDLP′.

4.5.3 Discussion

From a practical point of view, this method can be helpful to revenue management systems

in transportation companies. By directly using historical data, we can take product availabi-

lities into account, which brings more dynamism to the decision making process in order to

find the optimal product offer sets.

Moreover, by using this method, we avoid using other offline studies to capture customer

behavior. For example, to find preference vectors, we usually need to gather information about

customers’ characteristics, such as, income, purpose of travel and comfort preferences, which

can be time consuming and costly.

4.6 Conclusion

In this research, we have introduced a non-parametric method to capture customer beha-

vior in revenue management systems. We have used historical data in order to extract logical

relations between choice probabilities and solve an optimization problem in order to estimate

these probabilities along with product utilities, which results in finding customer preferences.

A modified choice-based deterministic linear programming model has been chosen to ge-

nerate synthetic data. We have obtained the expected revenue associated with two methods

of utility estimation : 1) simulated CDLP′ model (with perturbed preference vector) and 2)

approximated preference vector based on estimated product utilities by R model. The results

testify to remarkable revenue performance. The gap between these two methods is slight, mo-

reover, there are cases where our model outperforms the simulated revenue of CDLP′.
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CHAPTER 5

GENERAL DISCUSSION

In this thesis, we have studied demand forecasting in revenue management systems in

transportation. First, in Chapter 2, we have introduced new characteristics. We can classify

and categorize the existing literature on the subject of demand uncensoring based on these

characteristics. We have considered both supplier and demand factors. Supplier specifications

comprise the customer type (myopic and strategic) and the domain of application that in-

cludes airline, railway, rental and hotel industries. On the other hand, demand characteristics

are defined based on several factors : product dependency, diversion, seasonality and compe-

tition. Afterwards, we have introduced four main categories for the methods used in order to

uncensor demand in RM systems : basic methods, statistical methods, choice based models

and optimization tools. In Chapter 3, we have used a modified neural network in order to

predict the number of passengers at departure time. The historical data we have applied in

order to train the network belonged to a major European railway company. This method can

be expressed according to our proposed classification scheme as follows : [µ1 = myop, µ2 =

rail|δ1 = ind|α2 = cm(NN)]. The results are promising, suggesting a low error of prediction.

However, this proposed model can be used for datasets that do not have a high proportion

of missing data. In addition, it does not take customer behavior into account. These short-

comings have motivated us to introduce a non parametric choice-based optimization model,

which is able to take both customer behavior and seasonal effects into consideration. In Chap-

ter 4 and 5, we have proposed an optimization tool that has minimized the differences between

the registered bookings and the estimated demand of each product at a given time. The ori-

ginal problem suggests a nonconvex nonlinear model with integer and binary variables. This

model included two main phases : Estimation and Clustering. The estimation part predicted

the daily demand flow based on its related choice set and it has estimated product utilities. Af-

terwards, the clustering part has extracted the seasonal effect of each interval of time (in this

case departure days) into one of the predefined number of clusters (external segmentation).

Based on our proposed classification scheme in Chapter 2, this method can be expressed as

follows : [µ1 = myop, µ2 = rail|δ1 = dep, δ2 = spill, , δ3 = season, , δ4 = ex|α4 = NLP (LS)].

First, we linearize and convexify the problem by using modified McCormick inequalities.

Afterwards, we implemented a series of preprocessings by setting a set of variable inequalities

according to the characteristics of the choice sets and logical relations between choice proba-
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bilities. Moreover, by using a suggested mathematical model, we have reduced the range of

variables before branching. Then, we proposed a branch and bound algorithm that used both

linear (CPLEX) and nonlinear (IPOPT) solvers to find estimations and to classify departure

days into one of the clusters. The computational results have been provided by applying syn-

thetic data. The results have been compared to two nonlinear (KNITRO) and global (BA-

RON) optimizers.

In Chapter 6, we examined the effect of our proposed model on revenue. We generated

synthetic data based on a modified CDLP model. Then, we used our prediction model in

order to estimate the product utilities. Subsequently, we reproduced the vector of customer

preferences by calculating choice probabilities. The upper bound has been set by the original

CDLP′ problem. Afterwards, we perturbed the original preference vectors by using a Gumbel

distributed error term. The outcomes of our model have been compared to both the upper

bound and perturbed model. The gap between these two methods testifies to the efficiency of

our demand model and represents its positive impact on maximizing revenue.
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CONCLUSION AND RECOMMENDATION

In this dissertation, we have analyzed the problem of demand unconstraining and forecas-

ting in revenue management systems. In this chapter, we summarize our main findings and

we point out future research directions.

In Chapter 2, we have proposed a state of art review framework on demand modeling in

revenue management. We have analyzed the problem of censored demand in this field. Two

hundred papers were reviewed and classified based on our proposed tuple notation technique.

We have classified existing uncensoring methods based on the key elements introduced. Fi-

nally, we have suggested new directions in this domain of research in order to tackle the com-

mon problems that often occur while using each type of these methods.

In Chapter 3, we have applied a statistical method - more specifically, a modified neural

network - which is used in order to predict the number of passengers at the departure time.

The prediction model used in this research is an improved Multi-Layer Perceptron (MLP)

describing the relationship between the amount of passengers and factors affecting this quan-

tity based on historical data. The results show this approach is promising in railway demand

forecasting.

In Chapter 4, an optimization model is shown to estimate the predicted demand of each

product at a given time by minimizing the difference between estimated values of demand and

registered bookings. Our variables have included the utilities of all products, daily potential

demand and the binary values that assign each day to one of the predefined number of clus-

ters. For a given booking interval and a given origin destination, we have classified departure

days into one of the clusters based on its daily demand flow. The presented mathematical mo-

del has suggested a nonconvex nonlinear program with integer variables. Several definitions

and propositions have been presented based on which, in Chapter 5, we have introduced a

new algorithm to model customer behavior and demand.

In Chapter 5, we introduce a new algorithm that is capable of solving the problem of de-

mand forecasting by using historical data in order to calibrate the model. We have linearized

and convexified the original problem in two parts : estimation and classification. In the first

part, we have defined a modified version of Mccormick inequalities, which linearizes the bi-

linear term of estimated demand. In the second part, we have reformulated the problem in

order to avoid using the big M.

We have implemented a preprocessing approach before starting to branch on variables.

Then, a series of valid inequalities were introduced to tighten the feasible region. A mathe-

matical model has been represented, based on which we have reduced the range of variables.
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By using a specific node and variable selection approach, we have used branch and bound.

In the process, each node has been prepared before selecting the next node in the sense that

by using interval arithmetic, we have readjusted the range of choice probabilities and daily

potential demand. As soon as the relaxation problem found a binary solution for assignment

variables on CPLEX, we implemented a nonlinear problem on IPOPT in order to estimate

the product utilities. The iterative process stopped whenever the gap between the relaxation

and nonlinear problem was less than 1% or there had been no improvement in the solution for

more than 60 minutes.

Computational results were satisfactory for different batches of data of different sizes. The

sizes of these datasets are determined based on the predefined number of clusters, number of

days and number of products. The results have been compared to both nonlinear (KNITRO)

and global (BARON) optimizers.

In Chapter 6, we have decided to examine the impact of our proposed demand model on

revenue. We used a modified Choice-based Deterministic Linear Programming (CDLP) to find

an upper bound to the revenue. Then, we produced the synthetic data based on this model for

different sizes (based on the number of products, booking intervals and customer segments).

Customers have arrived randomly from different segments with predefined arrival rates that

follow the poisson process. Synthetic data was based on and produced from the choice mo-

del, a multinomial logit. Then, we applied our proposed prediction model and extracted the

utilities related to each product offered. Based on these utilities, we have calculated the pre-

ference vector according to which arriving customers have made their decisions. Moreover, in

order to compare the results, we have perturbed the preference vector of customers by using a

Gumbel distributed error. The revenue of this model has been compared to the upper bound

and perturbed model. The results testify to the efficiency of the proposed model on revenue.

An interesting future research direction concerning the demand uncensoring algorithms

is to add an index for utilities in order to take customer segmentations as well as clustering

departure days into account. This helps us accurately calculate the spilled and recaptured

demand for unavailable products. In addition, we will be able to obtain an estimation for the

probability of substitutions. This is essential for revenue management systems to consider the

buy ups whenever one of the products is no longer available for a given interval of time.
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