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RÉSUMÉ

Notre objectif est de réduire l’espace mémoire nécessaire ainsi que le temps de reconstruction
excessif des méthodes itératives en imagerie à rayons X. En général, les méthodes itératives perme-
ttent d’obtenir une meilleure qualité de reconstruction que celles obtenues par FBP. Cela est dû à
l’utilisation d’un modèle plus précis dans le processus de reconstruction. En effet, le modèle prend
en compte le bruit et peut introduire un certain a priori sur l’image à reconstruire. Le problème
peut alors être résolu par des techniques d’optimisation.

En reconstruction d’images par méthodes itératives, la taille importante de la matrice de pro-
jection joue un rôle prédominant dans la mémoire requise par ce type de méthodes. Le temps de
reconstruction, quant à lui, est rallongé par le grand nombre d’opérations de projection et rétro-
projection. Ces aspects nécessitent une attention particulière lors de reconstructions par approches
itératives.

L’objectif de cette maîtrise a été de s’attaquer à ces deux aspects en développant une technique
efficace de reconstruction d’images médicales. L’hypothèse de rayons X monochromatiques est
utilisée et l’invariance en coordonnées polaires des tomographes commerciaux est considérée. En
effet, l’utilisation de coordonnées polaire pour représenter l’objet permet d’obtenir une certaine
redondance dans les coefficients de la matrice de projection. Celle-ci est parcimonieuse et a une
structure bloc-circulante, ce qui mène à une réduction significative de l’espace mémoire nécessaire
pour la stocker. Mais ce type de représentation entraîne des questions de qualité de reconstruction
ainsi que des questions sur les aspects numériques des méthodes. Ce travail aborde les problèmes
soulevés.

Comme mentionné plus haut, le temps de reconstruction en tomographie rayons X est essen-
tiellement déterminé par le temps de calcul des opérations de projection et rétroprojection qui sont
réalisées à chaque itération. La parallélisation des calculs permet de réduire le temps de recon-
struction de manière significative, ceci est abordé ici. De plus, la conception de préconditionneurs
adaptés à la fonction objectif entraîne une amélioration de la vitesse de convergence des méthodes
itératives.

Ce travail consiste en une étude préliminaire sur les performances de reconstruction d’images
tomographiques en se basant sur une représentation polaire des objets à imager. Les résultats
obtenues dans ce mémoire peuvent être utilisés pour la reconstruction d’images cliniques 3D.

Il est aussi possible d’étendre les algorithmes développés ici à un modèle polychromatique et
aussi de réduire les artefacts métalliques.
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ABSTRACT

We aim at reducing the high memory need and the long reconstruction time of the iterative meth-
ods for reconstructing the X-ray tomography images. In general, iterative methods are capable of
providing a higher quality reconstructed image compared to those obtained through filtered back-
projection. This is because in the iterative methods, a more accurate model is used in the recon-
struction process. The model used in this technique accounts for the noise and can incorporate some
prior knowledge on the image and therefore can provide images with higher quality compared to
those obtained using the filtered backprojection technique. The reconstruction problem can then be
solved using optimization techniques.

In using iterative methods for image reconstruction, the large size of the projection matrix is the
main cause of having high memory need in this method. Moreover, requiring to perform projection
and backprojection operations numerous times is the main reason for the long reconstruction time.
These problems need to be addressed properly for wider adoption of the iterative approaches in
image reconstuction.

The work presented herein aims at addressing these problems by developing an efficient tech-
nique which makes reconstruction of clinical size images possible. This will be done in a simple
framework under the assumption of a monochromatic X-ray source. The objective is fulfilled by
considering the fact that the geometry of commercial tomographs is invariant in polar coordinates.
Using polar coordinates for representing the object, the coefficients of the projection matrix will be
highly redundant. The matrix is also very sparse and has a block-circulant structure. Consequently,
using polar coordinates for representing the object leads to a significant decrease in memory re-
quirement. There are some questions associated with this type of representation which include
numerical efficiency of the reconstruction process using this type of representation and actual qual-
ity of reconstructed image. This work tries to study and address these questions.

As already mentioned, reconstruction time of tomography problems is mainly determined by
the computation time of projection and backprojection operations that need to be performed at
each iteration. The parallel implementation of these operations can reduce the reconstruction time
significantly and is addressed here. Moreover, by designing preconditioners tailored to the structure
of the objective function a sufficient increase in the convergence speed of iterative methods was
achieved.

The current work is a preliminary study on the efficiency of using polar coordinates for repre-
senting the object and reconstructing the tomography images. The results which have been obtained
in this work can now be used for developing the 3D reconstruction of clinical data.

We can also use the developed algorithms in this work to expand the current framework to
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polychromatic model and benefit from the efficiency of this model in reducing the metal artifacts.
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CHAPTER 1

INTRODUCTION

Medical imaging is a technique used to create images of the human body for medical purposes;
they make accurate diagnosis possible. There are many benefits associated with it, e.g., more
evidence-based decision making and better understanding of the effect of treatments on diseases.
X-ray Computed Tomography (CT) is one of the most widely used techniques for reconstructing
medical and industrial images. In this technique, an object is placed between a rotating source
and an array of detectors and its attenuation characteristic is obtained by transmitting a collection
of photons along different angles and measuring the number of unabsorbed photons reaching the
detectors (Fig.(1.1)). The data collected by detectors are called projection data and are used to
reconstruct a (cross) section of the human body.

Figure 1.1 Data Acquisition in computed tomography c©(Goldman, 2007).

In general CT is used for diagnosis purposes. Some well-known examples of wide spread
use of CT are: for detecting tumors and hemorrhage in head, imaging of the coronary arteries in
cardiac CT angiography and, diagnosis of abdominal diseases and cancer, to name a few. Another
recent use of CT is in surgeries which require accurate intra-operative imaging. This is more
evident for surgeries, which require more safety and need to be less invasive. Some examples are
spinal, cardiac, vascular and orthopedic surgeries (Fayyazi et al., 2004). In such surgeries, the
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reconstruction time is of great importance in addition to the quality of reconstructed images.
Consequently, for imaging the vital organs where precise images are required for an accurate

diagnosis, having a precise, noise-free and artifact-free image in a decent amount of time is neces-
sary.

1.1 Image reconstruction in X-ray tomography

In general, the methods which are used for reconstructing the object can be divided into two groups:
analytical and iterative methods. Current CT scanners usually use the analytical methods for recon-
structing the object. This is because this technique is fast and provides images in a short amount
of time. The numerical efficiency of this technique is mainly due to the simplifications which
have been made in the model used for reconstruction. Noise is not modeled in this technique and
therefore for highly noisy measurements or low-dose experiments, the quality of the reconstructed
image may suffer from noise. It has been attempted to reduce the noise level using post-processing
techniques, however, further improvement requires a more complicated model which accounts for
noise, and benefits from estimation techniques.

Another well-known situation where the quality of analytical reconstructions may become un-
satisfactory is in the presence of metal objects. This is because the metal objects behave very
differently from the other soft tissues in human body and they will result in significant reduction
in the number of photons reaching detectors. Consequently, treating them in a same way as soft
tissues will result in having special type of artifacts known as metal artifacts. An example of such
cases is in cardiac imaging where metal stents are placed in the arteries or in orthopedic surgeries
where large metal objects are present (Rao et al., 2003; Santos et al., 2011). A low quality re-
construction may make the diagnosis impossible or less accurate in some cases. To overcome this
problem one needs to use a more accurate model and solve the problem using iterative methods.

Iterative methods, are found efficient in improving the quality of images. These methods, con-
sider the noise model and allow incorporating some prior knowledge on image. Moreover, this
technique has the capability to model the energy-dependency of the beams and the potential to
be used for different scanning geometries. As a result, they have proved to outperform analytical
methods in CT (De Man et al., 2000; Wang et al., 1999).

Another interesting advantage of the iterative methods as opposed to the analytical methods is
the relationship between noise and X-ray dose. For any given quality of measurements, iterative
methods provide a higher quality reconstruction compared to the analytical methods in terms of
trade-off between resolution and noise. This is mainly due to the use of a more accurate model
in this method by considering the noise model explicitly. For many applications, quality of the
analytical reconstruction is satisfactory however, it is becoming more important to have a satisfac-
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tory reconstruction with a lower radiation dose. A lower radiation dose is equivalent to a lower
measurement quality and a lower signal-to-noise ratio for the measurement data. Therefore, using
iterative methods one can obtain same quality of reconstruction as with the analytical method with
higher dose, with a reduced radiation dose.

In this technique, an image is reconstructed by minimizing a cost function, iteratively. Two
operations called projection and backprojection are performed at every iteration, which are the core
of process and account for the main time of reconstruction. These operations will be discussed
in detail in subsequent chapters. The main drawbacks of this technique is known to be its high
memory need and long reconstruction time. This problem is more challenging in X-ray CT imaging
compared to PET and SPECT due to the higher volume of data involved. The problem becomes
even more complicated for 3D reconstruction and consequently, hinder the use of iterative methods
in practice.

1.2 Objectives

The long-term goal of our research group is to develop efficient techniques to reconstruct tomog-
raphy images using iterative methods, and at the same time try to preserve the low memory need
and reconstruction time of analytical methods, as much as possible. Having a more accurate model
when iterative methods are used allows improving the quality of image and decreasing the noise
and the artifacts. These techniques will be developed such that efficient implementation of projec-
tion and backprojection operations will be made possible, leading to reduction of the reconstruction
time. The results will then be applicable to all imaging techniques with similar data acquisition ge-
ometry or similar type of calculations. Considering the fact that projection and backprojection are
the main elements in all imaging techniques, results on efficient implementation of these operations
can be useful for SPECT and PET imaging as well.

As already discussed, the main bottleneck of iterative methods which hinders their use in practi-
cal cases is known to be their long reconstruction time. Different efforts have been made to address
this problem. These efforts essentially lie in three categories: algorithmic improvement, dedicated
hardware and parallel processing.

In this work, I will first attempt to reduce the high memory need of iterative methods by using
a data formation which takes advantage of the maximum symmetry in the system. To do this,
cylindrical coordinates will be used for representing the object. I will then try to develop an efficient
optimization algorithm with adequate computation time and memory requirement, which can be
used to reconstruct images in a decent amount of time.

To summarize, the general objective of this work can be divided into three sub-goals:

1. Derivation of a model consistent with the cylindrical discretization scheme.



4

2. Acceleration of the optimization algorithm used for reconstructing the image.

3. Validation of results by using numerical phantoms.

1.3 Thesis structure

This thesis is is organized as follows:
In Chapter 2, the basic principles of X-ray tomography will be discussed and the linear forward

model which will be used for reconstruction is provided. We will then discuss the reconstruction
problem briefly and will study the types of estimations available and the parameters involved for
solving ill-posed problems. Some generally-used numerical methods for image reconstruction will
then be reviewed and compared. This will be followed by a short review on the effect of condition-
ing1 on speed of convergence and use of preconditioners2. We will finish this chapter by studying
different types of object discretization.

In Chapter 3, the general framework of this dissertation will be provided and using the discus-
sion of Chapter 2, the type data formation for discretizing the object and the numerical method
which will be used for reconstructing the image will be provided. A summary of the objectives
which will be followed in Chapter 4, 5 and 6 will then be given.

In Chapter 4, discretization of the object in cylindrical coordinates will be studied. This in-
cludes choosing the tessellation scheme for discretization of the object and deriving a mathematical
model consistent with this type of representation. We will then derive the algorithm for efficient
implementation of projection and backprojection. The effect of this representation on the conver-
gence of the problem when numerical method are used will then be discussed and the requirement
of designing an appropriate preconditioner will be justified. This will fulfill the first objective of
this work.

In Chapter 5, the structure of normal matrix which has a strong impact on the convergence
speed of the numerical methods for solving the problem, will be studied and possibility of design-
ing different type of preconditioners will be explored. Two approaches will be followed for design-
ing preconditioners: block-diagonal approximation to normal matrix and block-diagonalization of
normal matrix using fast Fourier transform (FFT). For each case, two type of preconditioners will
be developed: diagonal and incomplete Cholesky. The limitation and the anticipated problems for
each approach will be explored. This accomplish the second objective of this work.

In Chapter 6, simulations results are provided. We will first compare the performance of two

1Conditioning of a problem is defined by how different the largest and smallest eigenvalues are, and how wide the
eigenvalues are spread.

2Preconditioners improve the convergence of numerical methods by transforming the problem to one which is
easier to solve (will be discussed in detail in Chapter 5).
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of penalty function1 discussed in Chapter 4 for polar-coordinates. Efficiency of preconditioners
developed in Chapter 5 will then be studied and the quality of reconstructed image using different
penalty function will be evaluated. A conclusion will be made on the effectiveness of each method.
This will fulfill the third objective of this work.

In Chapter 7, we conclude by drawing some conclusions on the present work and some sug-
gestions for the future works.

1In solving ill-posed problems, a penalty function is usually added to incorporate some prior knowledge on problem
and ensures that a unique solution always exists (this will be discussed in detail in Chapter 3)
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CHAPTER 2

STATE OF THE ART

In this work we are interested in the images of CT scanners with the axial model for data acquisition.
These scanners provide a 3D image of a volume of the object. This chapter provides a short study
on the X-ray tomography and the model used in this technique. The available methods used for
image reconstruction in this technique is also provided and the advantages and disadvantages of
each method is discussed.

2.1 X-ray Tomography

In Computed tomography (CT), a large number of X-rays are transmitted through the object (or
human anatomy) for producing the image. The X-rays are produced in a region which is nearly a
point source and then are transmitted through the object. These rays are then either absorbed by
the anatomy to be imaged or are scattered through the object and collected by the detectors. This
process is repeated for all projections angles with source and detectors rotating around the object
to be imaged. The data collected by detectors are called projection data or sinogram. The number
of unabsorbed photons reaching the detectors will then be used to reconstruct the image (Mudry
et al., 2003).

In practice, real medical objects, i.e., patients, are three dimensional. Therefore, a volumetric
representation of the anatomy to be imaged and 3D image reconstruction is of great interest. In
general, data acquisition for 3D CT imaging can be performed by two different types of scanners,
axial and helical (or spiral). In axial scanners, a cone-beam geometry is used and a number of
slices are reconstructed from patients body when he/she is lying on a steady bed. To acquire
more images for volumetric representation of object, this process needs to be repeated with the
bed/patient repositioned. In spiral scanners, the patient is translated continuously through the gantry
at a specific speed and multiple projection datasets are acquired. This makes the data acquisition
time to be reduced. However, the reconstruction of images using this type of data acquisition is
more complicated as one needs to accommodate the spiral path traced by the X-ray source.

2.2 Models for X-ray tomography

In transmission tomography, the goal is to obtain the spatial distribution of the linear attenuation
coefficient of discretized object µ(~x,E ), where~x = (x1,x2,x3) denote the spatial location in 3-space
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and E represents the beam energy. The units of µ are typically inverse centimeters (cm−1).

2.2.1 Transmission measurements

In X-ray CT, projection data is made up of a set of line integrals from different projection angles.
The line integral of each projection angle is the sum of the attenuation coefficient of an absorptive
material which the X-ray beam is traveling through in a straight line.

X-ray sources in CT scanners usually emit photons with a continues energy distribution spec-
trum and are known to be polychromatic. In medical X-ray imaging this energy is typically between
5 and 150 keV, and the energy level is adjusted based on the anatomy of interest and purpose of
imaging (Mudry et al., 2003). Characterizing the spatial location of object in 3-space using X-ray
linear attenuation coefficient µ(x1,x2,x3), the projection measurement of each ray yi (mean number
of photons), recorded by the i-th detector follows the relationship below (Elbakri et Fessler, 2002):

yi =
∫

I0(E )exp{−
∫

Li

µ(x1,x2,x3,E )dl}dE (2.1)

where I is the beam intensity, µ represents the linear attenuation of the object and Li denote the
trajectory of the ray through the object.

In general considering the polychromatic nature of the beam, photons passing through different
materials in the object are absorbed or transferred differently. Photons with lower energy have a
greater chance to be absorbed by the object, compared to those with higher energy level. Con-
sequently, the mean energy of beam increases gradually. This is known as the beam-hardening
phenomenon and not accounting for this phenomenon in the transmission model will generate ar-
tifacts in the reconstructions. These artifacts are especially evident in the presence of the metal
objects in the anatomy to be imaged.

Many researchers neglect the polychromatic nature of the X-ray source and use the monochro-
matic model for simplicity. The reason is that when imaging the human anatomy, the soft tissues
usually behave similarly in different energy levels and so this assumption is valid and does not
introduce large inaccuracy in the model. In using monochromatic model, we make the assumption
that the X-ray attenuation coefficients are independent of the X-ray source energy, and thus, the
"Beer-Lambert law" can be used. The intensity of the ray measured as it leaves the object then
follows: I = I0exp{−µL}, where I0 is the incident beam intensity. Eq.(2.1) will then simplify to
following form:

Ii = I0exp{−
∫

Li

µ(x1,x2,x3,)dl} (2.2)

De Man in (De Man et al., 2001) proposed a method which accounts for the polychromatic
nature of the source and the results was shown to be highly effective in artifact suppression. In
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this work, the energy dependence of the attenuation coefficient is modeled by decomposing it into
photoelectric component and Compton scatter component.

Moreover, the measurements from detectors are treated independently for both components.
Therefore, one can use the same projection operator developed for the monochromatic case for this
model. Consequently, in developing algorithms one can use the monochromatic model to benefit
from the simplicity of this model and the results can then be extended to polychromatic model
using the work of (De Man et al., 2001).

In the next section, the linear forward model of X-ray tomography will be provided.

2.2.2 Linear Forward Model

The goal of tomographic reconstruction is to estimate the linear attenuation coefficients µ(~x) from
a set of realizations ({yi = Yi}NY

i=1, where NY is the product of number of detectors and number of
projection angles) which are obtained through data acquisition process.

It is known that the realizations or the measurement data are discrete, moreover, the recon-
structed image will be represented on a digital display and will have finite number of pixels. Con-
sequently, it is natural to represent µµµ(~x) in a discrete form. The discretized model of eq. (2.2) can
then be written as following:

Ii =
∫

I0(E )exp{−pT
i µµµ(x1,x2,x3,E )dl}dE (2.3)

where pi is a vector and represents the contribution of i-th ray through the pixels which this ray
passes through. Consequently, the projection data measured by detectors can be written as:

I =
∫

I0(E )exp{−Pµµµ(x1,x2,x3,E )dl}dE (2.4)

P is the discrete projection operator and is made of pi vectors. This operator approximates the
integrals over the discrete object and in tomography problems is very large and sparse.

Now assuming that the X-ray attenuation coefficients are independent of the X-ray source en-
ergy, using logarithmic transformation one can compensates for the nonlinearity of Beer’s law and
simplify the problem as following:

y , log
I0

I
= Pµµµ (2.5)

where y represents the sinogram.
Assuming that the noise can be modeled as additive noise in tomography problems, the linear

deterministic imaging model can then be expressed by following Gaussian model:

y = Pµµµ +b (2.6)
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where b→ N(0,ΣΣΣb) represents noise and ΣΣΣb is the variance of noise. The characteristics of ΣΣΣb will
be discussed in section 2.2.2.2 where the noise model is studied.

In order to estimate the linear attenuation coefficients of the object using above relationship,
one needs to first compute the projection matrix P.

2.2.2.1 Projection Matrix Calculation

It should be noted that, in practice detectors which are used in CT imaging are not perfect. By
perfect we mean that they are not infinitely small and therefore the number of rays reaching a
detector is more than one; the infinitesimal line integral in (2.1) and (2.2) is an approximation. To
overcome this problem, one can use multiple rays for modeling the detectors, while calculating the
coefficients of P. The number of rays U , reaching each detector will then be chosen based on the
type of scanner used for data acquisition. The average of U rays will then be used for calculating
each coefficient of projection operator.

Different methods have been introduced for calculating the projection operator coefficients.
This includes: pixel-driven, ray-driven and distance-driven. For detailed explanation on how each
method works and their advantages and disadvantages see Appendix A. Ray-driven is usually pre-
ferred among these methods due to its simplicity and compatibility for hardware implementation.

2.2.2.2 Noise

Although one may be able to detect the high-contrast objects in an image with high noise-level, this
will not be easy for objects with low-contrast.

The most probable source for the noise added to the projection data in CT imaging is the Poisson
noise due to the quantum nature of the X-ray photons (Guan et Gordon, 1996). Poisson noise is
due to the low photon counts in X-ray CT. This means that as photon counts approaches zero, the
noise increases rapidly and as a result the maximum attenuation has a higher effect than the average
attenuation in Poisson noise.

In medical imaging, the dose in radiography is kept as low as possible because of health issues.
This causes the X-ray quantum noise to become more apparent in the sinogram. This is because
the quantum noise is dependent on the average number of X-rays reaching detectors, therefore de-
creasing the dose causes a higher random variation in the number of X-rays reaching detectors and
consequently affects the quality of image. This is known to be a fundamental limit in the radio-
graphy and requires including the appropriate noise model in the reconstruction of image (Mudry
et al., 2003).

By Central Limit Theorem, Poisson distribution of the photon counts can be approximated by
Gaussian distribution for large average photon counts. Use of Gaussian distribution is preferred due
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to the simplicity of the model and allowing quadratic objective function to be easily solved using
linear optimization methods. Therefore additive noise in Gaussian model (2.6) can be modeled as
either Gaussian with independent variance (referred to as Gaussian noise here) or with variance
dependent on the photon counts to account for the Poisson distribution of quantum noise (referred
to as Poisson noise here). Using Gaussian model for noise has a simpler form and variance of noise
can be represented as ΣΣΣb = σI, where σ is the standard deviation of noise. For Poisson noise, one
can use the Gaussian approximation developed in (Sauer et Bouman, 1993) as following:

ΣΣΣb = diag{exp(−y1),exp(−y2), . . . ,exp(−yNY )} (2.7)

ΣΣΣb in the above equation represents the variance of noise in (2.6) and is dependent on the photon
counts (I) which has been used for obtaining the sinogram y in 2.5.

2.3 Reconstruction problem

There are some physical problems associated with imaging using CT scanners. One of the main
sources of inaccuracy comes from the fact that the number of photons counted is limited. This
limitation could be due to the source’s strength, motion of the patient during photon transmission,
absorption of some photons during the transmission of X-ray and limited dose of X-ray for avoiding
harm to patient and minimizing the scan duration (Fessler, 2000). Moreover, the projection data is
usually noisy and for a high quality reconstruction one needs to consider the noise in the model.

In this section different approaches which are used in practice for tomography image recon-
struction will be discussed briefly. These methods can be categorized into two groups: analytical
and statistical approaches. Limitations and advantages of each method will be reviewed in follow-
ing subsections.

2.3.1 Analytical approach to reconstruction

The conventional method used in reconstructing the images in X-ray CT is FBP which uses the
Fourier slice theorem for reconstructing the image. This method benefits from the fast calculation
property of the fast Fourier transform (FFT) technique. However, the quality of images obtained us-
ing this technique is unsatisfactory in some practical cases, e.g., noisy data measurements (Elbakri
et Fessler, 2002), low dosage medical imaging (Mc Kinnon et Bates, 1981) and in nondestructive
testing of material with widely varying densities (Sanderson, 1979). This is because of simplifi-
cations made in the model used for reconstruction and not considering the measurement noise in
the model. In this method a filter is applied to the sinogram and the result is then backprojected.
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Assuming the FFBP represent the filter, this can be written as following:

µ̂µµ = PT FFBPy (2.8)

This model can be seen as a simplified version of the linear deterministic model (2.6). As can be
seen in (2.8), this approach does not consider the noise in the model and consequently quality of
reconstructed images is very sensitive to reduction of radiation dose. This method is also known
to be poorly suited to nonstandard imaging geometries, i.e., truncated fan-beam or cone-beam
(Fessler, 2000).

2.3.2 Statistical approach to reconstruction

In tomography problems and specifically medical imaging where low-dosage of X-rays is neces-
sary, noise is of primary concern. Therefore, the image reconstruction problem is usually treated
as a statistical estimation problem. Statistical methods can be used to overcome some of the prob-
lems discussed in Section 2.3.1. This is mainly because in this technique, the model derived in
(2.6) is used and so the noise is considered in the model. This will reduce the noise level in the
reconstructed images significantly. Moreover, this method can improve the image quality by incor-
porating some prior knowledge on images and has the capability to model the energy-dependency
of the beams and the potential to be used for different scanning geometries. As a result, it has
proved to outperform FBP in CT (De Man et al., 2000; Wang et al., 1999) by noise reduction, reso-
lution improvement, and in some cases, artifact suppression. The main drawbacks of these methods
is known to be their long reconstruction time and the high memory need.

In the next section, reformulation of statistical methods in an estimation framework will be
discussed briefly. By choosing this framework properly, one can then obtain a reconstruction algo-
rithm which is more robust to noise and artifacts.

2.3.2.1 Estimation

A statistical problem can be solved using estimation techniques. Sauer and Bouman in (Sauer et
Bouman, 1993) and Fessler in (Fessler, 1994) showed that one can use a quadratic approximation
to the log-likelihood function for transmission and emission tomography problems respectively to
simplify the calculations. The objective function to be minimized, then consists of a weighted
least-square term and corresponds to that of a Maximum likelihood (ML) estimator.

A regularization function can also be used to add prior information on the distribution of the
image (Fessler, 2000). Adding the prior distribution of image to regularize the optimization prob-
lem ensures that a unique solution always exists and the problem can be solved using algorithms
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designed for inverse problems (Tikhonov et Arsenin, 1977). This will also reduce the variances,
which are mainly due to the noise and makes the system robust to small changes and noise.

The objective function with weighted least-square and the regularization function, subject to
non-negativity constraint, will then have following form:

µ̂µµ = argminµµµ Φ(µµµ)
µµµ≥0

, Φ(µµµ) ,
1
2
‖y−Pµµµ‖2

ΣΣΣb
+λR(µµµ) (2.9)

where λ is the scalar, which controls the trade-off between fidelity of solution to measured data
and prior information and is called regularization parameter. R(µµµ) is the regularization function,
the choice of regularization function will be discussed in detail in Section 2.3.2.2.

The noise model is included in the above model with Gaussian distribution and variance ΣΣΣb.
This weighting matrix can be chosen as explained in section 2.2.2.2, to be either constant or depen-
dent on the photon counts.

The above objective function with regularization function lies in the maximum a posteriori

(MAP) estimation from Bayesian family. This method can be seen as a regularized ML with better
performance compared to ML.

2.3.2.2 Regularization Function

It is considered that a desirable attenuation map is one which is a piece-wise smooth function. This
means that an appropriate penalty function R(µ), is the one which discourages images that are
too ’rough’ (Fessler, 2000). Assuming that the object is discretized in Cartesian coordinates, the
simplest penalty function with such properties which penalizes the neighboring pixels and considers
the discrepancies between neighboring pixel values can be shows as below:

R(µµµ) =
1
2

Np

∑
j=1

Np

∑
k=1

ω jkψ(µ j−µk) (2.10)

where ω jk = ωk j. The rationale for this, is to penalize some numerical approximation to the gradient
of µ . Therefore, if one wants to consider the first differences only, ω jk = 1 for four horizontal and
vertical pixels, ω jk = 1/

√
2 for diagonal neighboring pixels, and ω jk = 0 otherwise. ψ is a function

which assigns some cost to neighboring pixels µ j−µk and needs to be symmetric and differentiable.
Most of the regularization functions used in tomographic reconstruction can be represented in

following general form (Fessler, 2000):

R(µµµ) =
1
2

K

∑
k=1

ψk([Dµ]k) (2.11)
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where D is the matrix of penalty and is K×Np and

[Dµ]k =
Np

∑
j=1

dk jµ j (2.12)

Note that equation 2.10 can be seen as a special case of equation 2.11 with K ≈ 2Np.
In general, regularization functions can be categorized into three groups: quadratic-convex,

non-quadratic-convex and non-quadratic-nonconvex. The standard minimization techniques are
guaranteed to convergence to the global solution (minima), if the objective function is both differ-
entiable and convex (or locally convex). Quadratic functions lead to simple calculations, however,
they are not the best option for preserving the sharp edges in neighboring pixels. For this purpose,
non-quadratic function can be used to benefit from their properties.

Different functions have been used in the literature, to name a few: Gaussian Markov (quadratic-
convex), L2-L0 (non-quadratic-nonconvex) and log prior distribution (from Kullback pseudo-
distance)1. They either suffer from not allowing sharp edges or not being globally convergent.

Generalized Gaussian Markov random Field (GGMRF), proposed in (Bouman et Sauer, 1993a),
and L2-L1 are two examples of non-quadratic regularization functions with convex property. These
functions are found efficient in tomographic reconstruction and povide interesting results. However,
using these functions will increase the complexity of the problem to be solved compared to when
quadratic regularization is used.

L2-L1, a variant of the Huber function, consists of a branch of hyperbola and allows quadratic
and linear behavior. It is defined as: ψ(t) =

√
t2 +δ 2−δ , where δ adjusts the transition between

the quadratic and linear behavior of ψ . Among the available functions used for regularization, this
function is found efficient in providing a good trade-off between noise and resolution (Menvielle,
2004),(Gendron et al., 2008), (Hamelin et al., 2008) ,(Hamelin et al., 2010a) with a reasonable
degree of complexity.

2.4 Optimization algorithms

For reconstructing images using statistical methods, neglecting the non-negative constraint, one
needs to find the value of µ̂ for which the gradient of cost function Φ, becomes zero, numerically.
The gradient of objective function is represented as following:

∇Φ(µµµ) =−PT
ΣΣΣ(y−Pµµµ)+λ∇R(µµµ) (2.13)

1This function is non-quadratic and is convex if the composition of logarithmic function and the function of interest
(prior distribution) is convex
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In the above relationship, the multiplication of projection by any vector is called projection (Pµµµ)
and the multiplication of its transpose with any vector is called backprojection operation. These
operations need to be calculated repeatedly when the problem is solved iteratively.

For non-quadratic penalty functions R(µ), it is not possible to obtain an explicit solution to
(2.13). Even, if one uses the quadratic function for the penalty term , the closed-form solution will
have the following form:

µ̂µµ = (PT
ΣΣΣP+λDT D)−1PT

ΣΣΣy (2.14)

and requires calculating the inverse of normal matrix. In tomography problems, considering the
large size of data, this is not possible and so calculating this problem directly is impractical. For
such cases, iterative methods can be used to find the minimizer µ̂ of this objective function, itera-
tively.

Using numerical techniques, an image is reconstructed by minimizing Φ iteratively. The com-
plexity of minimization of the cost function is dependent on several factors. These include: the
data formation and the regularization function used.

Different factors needs to be taken into account when designing/choosing an algorithm. Some
of these which are of special concern in tomography imaging are listed below:

• Non-negativity constraint

• Convergence rate

• Computation time per iteration and the possibility for parallelization

• Memory requirement

In this work, we are interested in minimizing the objective functions Φ(µµµ), which consists of a
penalized least square term and a convex, twice differentiable regularization function R(µµµ).

In the literature, different numerical methods have been suggested and developed for X-ray CT
reconstruction. Efficiency of each method varies depending on the application, required quality,
available memory footprint and acceptable processing time. Below, a brief review of the present
works is given and advantages and disadvantages of each are discussed. Some of these algorithms
are specifically designed for tomography problem by considering the special structure of the objec-
tive function. Performance of these methods are compared with that of general purpose algorithms.

2.4.1 A review on the numerical method used for tomography reconstruction

Different approaches have been followed for minimizing the cost function for emission and trans-
mission tomography. In general, these works can be studied in two different way: one is based on
how they update the pixel values and the other based on the family of iterative methods used. In



15

this work the first approach is used. This is because this approach has been followed by researchers
for developing algorithms compatible with the needs of the tomography problem. In the sequel, the
affiliation of these works with different families of iterative methods will be also discussed.

The numerical methods used for solving tomography problems can be divided into two groups
based on how they update the pixel values: 1) Those which update all pixels simultaneously and,
2) Those which update individual pixels iteratively (Qi et Leahy, 2006).

Gradient-based technique from family of iterative methods, is one of the common techniques
used for image reconstruction which update all pixels simultaneously. Steepest ascent and conju-
gate gradient (CG) (Kaufman, 1987) with linear convergence, are two widely used methods of this
family.

The problem with these methods is that they do not account for non-negative constraints.To
account for non-negativity constraints, coordinate-wise methods have been introduced which up-
date individual pixels sequentially. This method can be used for both quadratic and non-quadratic
cost functions, with more complicated calculations involved for the latter. Comparing coordinate-
wise method with methods which update pixels simultaneously, there are slightly more per iteration
computations involved in this approach. The other disadvantage is that they hinder the possibility of
parallelization. A known example of this group is iterative coordinate descent (ICD) used in (Sauer
et Bouman, 1993) and (Bouman et Sauer, 1996) for transmission tomography and in (Fessler, 1994)
for emission tomography.

Ref. (Sauer et Bouman, 1993) used the ICD method with a quadratic regularization function and
compared its performance with two other methods of gradient ascent (GA) and CG from gradient
based family. It was illustrated that CG overtook ICD for the regularized case in terms of con-
vergence speed. Bouman and Souer then introduced the ICD/Newton-Raphson (Bouman et Sauer,
1996) to increase the convergence speed, however this method was criticized for not guaranteeing
the global convergence.

Fessler et al. (Fessler et al., 1997) tried to solve this problem by introducing grouped-coordinate
method and using function substitution. This method has a faster convergence speed, allows paral-
lelization and also benefits from considering the non-negativity constraint, but is hard to implement.
The same problem was encountered in (Zheng et al., 2000).

Separable paraboloidal surrogates (SPS) was then used in (Erdoǧan et Fessler, 1999a) for min-
imizing the cost function and lead to an increase in the convergence speed by substituting the cost
function by a function easier to minimize. However, the convergence of this algorithm is fast in the
first few iterations and then becomes slow. An attempt to further improve the convergence rate was
then followed by using ordered subsets with SPS family (OS-SPS) (Erdoǧan et Fessler, 1999b).
However, the non convergent property of OS-SPS hinders its use in clinical image reconstruction
where reliable results are required. Some works have been done in this area to make the method
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convergent, i.e., transmission incremental optimization transfer (TRIOT) (Ahn et al., 2006) to name
one. However, this resulted in a reduced speed of convergence compared to OS-SPS. Another prob-
lem with TRIOT is that it requires more memory space and needs to save all previous iteration to
calculate the next iteration.

Performance of the four algorithms of ICD, CG, OS and TRIOT, which were found more ef-
ficient in image reconstruction were compared in (De Man et al., 2005). It was illustrated that
all of the methods gave similar quality images when converged. This is because the increase in
computation time per iteration was compensated by a similar decrease in the number of iterations.

The numerical methods used in above discussed works are all from the gradient-based family.
CG can easily adopt to nonlinear optimization, however, as discussed above, they suffer from low
convergence speed. Moreover, they do not account for non-negativity constraint and require an
additional step to address this problem. This will further decrease their convergence speed. On the
other hand, iterative methods from Quasi-Newton family can be used to address these problems and
obtain a super-linear convergence. L-BFGS-B, an example of Quasi-Newton family (Zhu et al.,
1997) uses an approximation to the Hessian matrix for every iteration instead of calculating the
exact Hessian. It also has the advantage of considering the non-negativity constraint compared to
CG and other gradient-based methods without constraints. This algorithm was used by Hamelin
in (Hamelin et al., 2008) and its efficiency in improving convergence was verified for tomography
reconstruction.

Ref. (Hamelin et al., 2010a) provides a good comparison between four efficient numerical meth-
ods used for tomography reconstruction. This includes two methods from SPS family (OS-SPS and
TRIOT) which are specially developed for CT reconstruction and two general solver (L-BFGS and
IPOPT). L-BFGS-B and IPOPT, from Quasi-Newton family with limited memory and Hessian-free
property, make their use in large clinical problems possible. Comparing the convergence speed of
the four methods, OS-SPS had the highest speed followed by two methods from general solver
family. However, it did not reach the stopping criteria as expected. Simulation and experimental
results in (Hamelin et al., 2010a), proved that for noisy data with high weight of penalty function,
TRIOT gives the fastest result whereas for low noise level in data sets, general solvers work better.

This brings us to conclude that among the methods discussed in this section, the SPS method
from gradient-based family and, the CG and L-BFGS-B from the general purpose algorithms out-
perform the other iterative methods for image reconstruction. The SPS method is efficient when
using the Poisson log-likelihood formulations (naturally used in PET and SPECT) whereas general
purpose algorithms are more general and have a simple structure to be used. Comparing the CG and
the L-BFGS-B, the CG method (the nonlinear version) can be seen as a special case of L-BFGS with
very limited memory (See chapter 6 (Nocedal et Wright, 1999)). Therefore, a better convergence
rate is expected for L-BFGS-B. Moreover, L-BFGS-B has the bound-constraint property which is
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implemented efficiently and using it does not reduce the convergence speed considerably (as op-
pose to other methods with bound constraint). In Appendix B a brief review on implementation of
these methods (gradient based and Quasi-Newton family) and of their properties is provided.

To summarize, for tomography image reconstruction, where the size of data is large and image
needs to be provided in a short period of time, convergence is of great importance and the numerical
algorithm needs to be chosen appropriately. Consequently, the algorithm to be used needs to have
the following properties: allow parallel implementation, provide reliable result to be able to be used
for clinical purposes, and have a moderate storage need. Using the above discussion on the com-
parison of performance of iterative methods used in literature for solving tomography problems,
we can conclude that L-BFGS-B from the quasi-Newton family provides a good trade-off between
the memory need and convergence speed. This method also accounts for the required constraints
and can be used for solving nonlinear optimization problems.

2.4.2 Conditioning and preconditioners

As discussed, in solving tomography problems, given the large size of the estimation problem it
is necessary to use iterative methods. The convergence speed of the iterative methods depends on
two essential factors: condition number and eigenvalue spectrum of the normal matrix (the normal
matrix will be defined later). In this section, these points will be studied.

Generally, in solving optimization problems, numerical methods are used to find the global
minimum of an objective function (Φ). In our problem of interest, with the objective function given
in (2.9), this is done by finding µ̂ for which the gradient ∇Φ(µµµ) represented in (2.13) becomes
zero. If ∇Φ(µµµ) = 0 is linear and has a closed form solution, then the optimization problem can be
represented as a large-scale linear system with n-equations as following:

Ax = b (2.15)

with A being the normal matrix. Iterative methods work by decreasing the residual (rk = Axk−b)
at every iteration by finding a sequence of solutions (xk).

The condition number of a matrix is a measure of how well-conditioned a matrix is, and for a
non-singular matrix A, it is defined as follows (Chen, 2005):

κ(A) = ‖A‖‖A−1‖ (2.16)
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with ‖.‖ being the matrix norm1. For a symmetric, nonsingular matrix, this relationship reduces to:

κ(A) =
| λ |max

| λ |min

where | λ |max and | λ |min correspond to largest and smallest eigenvalue of system matrix re-
spectively, and κ(A) ≥ 1. The condition number is one of the factors which strongly affects the
convergence speed of numerical methods. Ideally, κ is equal to 1 and problem converges in one
iteration only. Another factor which is essential in the speed of convergence for solving a system of
equations using iterative methods, is how wide the eigenvalues are spread. For linear CG method,
it is known that the optimization problem converges in maximum n number of iterations where n

represents the order of system or the number of eignevalues. However, for the problem with clus-
tered eigenvalues the maximum number of iterations is equal to the number of clusters. The same
reasoning can be used for other numerical methods (Nocedal et Wright, 1999). Therefore, we can
conclude that solving a system with widely spread eigenvalues can be much slower than the one
with same condition number but less spread eigenvalues.

Generally, the condition number for tomography problems is far from unity or the eigenvalues
are spread in a wide range, therefore, iterative methods require several iterations to converge and
so the reconstruction time is long for statistical methods. The condition number and the eigen-
value spectrum of a system of equations can be improved by designing efficient preconditioners.
Preconditioning and some practical forms of this technique will be discussed in the next section.

2.4.2.1 General strategy for preconditioning

Consider the linear system defined in (2.15) with A being an invertible square matrix. Given an
invertible matrix ΠΠΠ of same order, the following system of equations gives the same solution as
(2.15):

ΠΠΠ
−1Ax = ΠΠΠ

−1b (2.17)

ΠΠΠ−1 is called the preconditioning matrix and equation (2.17) is known to be a preconditioned
system. Here the preconditioning matrix is multiplied by the system matrix from the left hand side.
Therefore, this preconditioner is called left-preconditioner. In the preconditioned system (2.17),
ΠΠΠ needs to be chosen such that solving system of equations in (2.17) will be easier than that of

1A matrix norm is a vector norm on Rm×n. That is, if ‖A‖ denotes the norm of the matrix A, then (Chen, 2005):

• ‖A‖ ≥ 0 iff A = 0,

• ‖αA‖=| α | ‖A‖ for all α in R and all matrices A in Rm×n,

• ‖A+B‖ ≤ ‖A‖+‖B‖ for all matrices A and B in Rm×n.
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(2.15). An ideal preconditioner is the one which is the exact inverse of system matrix, A in (2.15).
However, calculation of the exact inverse of system matrix usually has the same cost as solving the
problem without preconditioner.

Preconditioners can improve the convergence speed of iterative methods by decreasing the con-
dition number of the problem. The convergence of an iterative method will be very dependent on
the spectral properties of the new matrix ΠΠΠ−1A and with choosing ΠΠΠ appropriately, will be better
than that of A. In practice, we do not calculate the ΠΠΠ−1 and we only need to know the matrix-vector
product. For a preconditioned system of equation, the matrix-vector operation corresponds to:

w = ΠΠΠ
−1Ax ⇐⇒ ΠΠΠw = Ax (2.18)

which ΠΠΠw = c can be easily solved1.
Similarly, ΠΠΠ is a right-preconditioner matrix if (2.15) is solved as following:

AΠΠΠ
−1y = b, x = ΠΠΠ

−1y (2.19)

In (2.19), preconditioner is applied using a change of variable x = ΠΠΠ−1y.
For choosing a preconditioner for a system which will be solved iteratively, one needs to assure

that calculation of this matrix is not expensive and the extra matrix-vector product calculations
required for this technique will not destroy the gain obtained by transforming the problem to a
simpler one. This means that in designing practical preconditioners for solving large size problems,
there are always some approximations involved. Consequently, design of efficient preconditioners
will be a trade-off between the extra calculation per iteration, the memory need and the increase in
the convergence speed.

In general, there are two approaches in devising a preconditioner: one is to find a matrix ΠΠΠ

which approximates the system matrix A, and then solving the problem with the inverse of this
matrix multiplied from left, right or both sides, by (2.15) is easier than the one with A. This is
called the forward type. Examples of this category are diagonal preconditioners which preserve
the elements in diagonal of system matrix and the block-approximations to the normal matrix. The
other approach is to find a matrix ΠΠΠ which approximates the A−1 and multiplying this matrix by
system of equations (2.15), will make solving the problem easier. This is called the inverse type.

Therefore, preconditioners can be categorized as below (Chen, 2005):

1. Forward type: ΠΠΠ≈ A

Left ΠΠΠ−1Ax = ΠΠΠ−1b
1Different methods are available for solving a system of equations. This includes LU decomposition, Newton-

Schulz-Hotelling, Gauss-Jordan decomposition and QR decomposition, to name a few (Chen, 2005). In this work
Cholesky decomposition will be used. The justifications for this choice will be provided in the relevant sections.
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Right AΠΠΠ−1y = b, x = ΠΠΠ−1y

Mixed ΠΠΠ
−1
2 AΠΠΠ

−1
1 y = ΠΠΠ

−1
2 b, x = ΠΠΠ

−1
1 y

2. Inverse type: ΠΠΠ≈ A−1

Left ΠΠΠAx = ΠΠΠb

Right AΠΠΠy = b, x = ΠΠΠy

Mixed ΠΠΠ2AΠΠΠ1y = ΠΠΠ2b, x = ΠΠΠ1y

with ΠΠΠ1 and ΠΠΠ2 being right and left preconditioners and ΠΠΠ2ΠΠΠ1 = ΠΠΠ.

Remark 2.4.2.1: Assuming that the regularization function used in (2.9) is quadratic, the pre-
conditioner can be easily applied to many numerical methods using a simple change of variable.
The objective function to be solved with preconditioner (ΠΠΠ) and using µµµ = ΠΠΠu, will then be:

Φ(ΠΠΠu) =
1
2
(y−PΠΠΠu)T (y−PΠΠΠu)+λ (ΠΠΠDu)T (ΠΠΠDu) (2.20)

and its gradient will have following form:

∇Φ(ΠΠΠu) =−ΠΠΠ
T PT (y−PΠΠΠu)+λΠΠΠ

T DT DΠΠΠu (2.21)

The hessian of this function or its normal matrix will then be:

∇
2
Φ(ΠΠΠu) = ΠΠΠ

T PT PΠΠΠ
T +λΠΠΠ

T DT DΠΠΠ

= ΠΠΠ
T{PT P+λDT D}ΠΠΠ

(2.22)

Equation (2.22) suggests that preconditioning by change of variable for any numerical method,
results in a mixed preconditioner, and we need to find a factorization of an approximation to A in
the form ΠΠΠTΠΠΠ.

2.4.2.2 Some practical preconditioners

As discussed in Section 2.4.1, most of the iterative methods used in the literature for image re-
construction are gradient-based techniques. This technique is found efficient and can be used to
solve systems with quadratic or nonquadratic convex cost function. Moreover it benefits from sim-
plicity and possibility for parallel implementation (Fessler et Booth, 1999). However, the main
disadvantage of this method is the low convergence speed.

Different types of preconditioners have been designed and attempted to be used for tomography
problems with performance varying from problem to problem (Fessler et Booth, 1999; Gendron
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et al., 2008). Diagonal preconditioners, are known as the most simple and still efficient one, how-
ever, they are not the best for imaging problems. Moreover, the condition number of tomography
systems with these preconditioners can be far from unity and therefore convergence speed may
remain slow.

Circulant preconditioners, provide a better result for imaging problems however, they require
Hessian matrix to be shift-invariant and block diagonal. This is not always true due to the non-
uniform noise variance of photons and limits the efficiency of this type of preconditioners.

Important general purpose preconditioners are: incomplete Cholesky and banded precondition-
ers (Nocedal et Wright, 1999), to name a few. Incomplete Cholesky decomposition is found very
efficient for preconditioning when the system of equations is large, Hermitian, definite nonnegative
and has a sparse structure. In this method, the same principle as the exact Cholesky is used.

In exact Cholesky, a lower triangular matrix L is found such that it satisfies: A = LLT . The
lower triangular matrix in the exact Cholesky is usually full and therefore is not efficient for pre-
conditioning the large sparse reconstruction problems. In contrast, incomplete Cholesky uses a
sparse triangular matrix L̃ with same sparsity level as A which satisfies A = L̃L̃T . In this technique
any entry in L̃ is set to zero if the corresponding entry in A is zero. This reduces the memory
requirement considerably. The preconditioning matrix will then be: ΠΠΠ = L̃L̃T .

Using sparse approximations for any positive-definite matrix may destroy the positive-definite
property for some thresholds. However, the incomplete Cholesky factorization always exists for
diagonally dominant matrices. Therefore, for such cases one can add a small fraction (α) of di-
agonal values to this matrix to make it diagonally dominant. By doing this we will make another
approximation but this will also increase the stability. The optimal value of α needs to be calculated
experimentally and by try and error.

The sparse triangular structure of incomplete Cholesky technique allows fast calculation of
matrix-vector product required for preconditioning and is desired when used with iterative methods.
This will be discussed in more detail in chapter 5 where appropriate preconditioners are designed.

2.4.2.3 A review on the preconditioning techniques used in CT reconstruction

In general, when the object is represented in the standard Cartesian grid, the projection operator
has a limited degree of symmetry. This limits the redundancy in the normal matrix and makes
designing proper preconditioners hard. Consequently, not many works for attempting to design
preconditioners have been reported in the literature. Below two of the limited works done for using
preconditioner for tomography problems are discussed.

In (Fessler et Booth, 1999), Fessler suggested a new preconditioner which is a combination of
diagonal/circular preconditioners and claimed that the new preconditioner is more efficient in terms
of convergence rate for general shift-variant cases. This claim was proved by applying it to CG and
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comparing the results with those from the ICD method in (Bouman et Sauer, 1993b). The resulting
improvement was obtained at the cost of an increase in the computation time. This preconditioner
was criticized later for its implementation complexity in (Ramani et Fessler, 2011).

Gendron in (Gendron et al., 2008) also tried to find an efficient preconditioner by designing
circulant at zero (CZ) and circulant at the current point (CC) preconditioners. The performance
of these preconditioners was compared with that of (Fessler et Booth, 1999). Simulations showed
that for the high level of noise, although some improvements is achieved in computation time, the
results are not satisfactory at the presence of small metal objects.

From the above discussion, we can see that designing efficient and practically usable precondi-
tioners is not easy. Preconditioners are designed by making a heuristic approximation to the normal
matrix. Consequently, if a data formation can be used for representing the object which result in
having a specially structured normal matrix, a more efficient preconditioner with less approxima-
tion can be designed.

In the next section, different types of object representation used in the literature will be dis-
cussed and the advantages and disadvantages of each method will be underlined.

2.5 Object Representation

In general, the most common form used for discretizing the object to be reconstructed is to use the
regularly spaced Cartesian grid. Using this model, the coefficients of projection operator vary from
one projection angle to another. Even if symmetry properties and rotational invariance are taken
into account, storage of the whole projection operator is still impossible for clinical 3D CT data.
The general solution to this problem is to calculate a significant part of the entries of the projection
matrix on-the-fly. Although, this approach will address the memory limit, it will result in a loss of
computational efficiency as it increases the computation time. Alternative approaches have been
proposed to overcome these difficulties. These approaches will be briefly discussed below and their
efficiency will be underlined.

2.5.1 Targeted CT

In this approach, it is assumed that high quality reconstruction is required only in a small region
of the image. This small region is called region of interest (ROI) and it is attempted to obtain
a high quality reconstruction for this region. To do this object is splitted into two regions: the
high resolution ROI and the coarse background. Both regions are then discretized on Cartesian
grids with different stepsizes(Hamelin et al., 2010b). Although, interesting results are observed
using this approach, its practical use is hindered by the heavy computation time involved and the
difficulty for implementation.
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In (Brankov et al., 2004), another approach is suggested for discretizing the image to obtain a
high quality reconstruction in a small region of the image. In this work, the object is discretized
on an adaptive irregular mesh with a high vertex density in the ROI and low vertex density in the
background. This method is found difficult to implement moreover, there are some questions about
the mesh construction practical computation of the projection operator. The variable pixel sizes
in this type of discretization will also affect the conditioning of the problem and so decrease the
convergence speed.

2.5.2 Rotation-based approaches

The general idea in the rotation-based approaches is to reduce the memory need for storing the
projection matrix by storing a partial projection operator only. The partial projection operator
will correspond to a single or a small number of projection angles and the object will be rotated
appropriately at each projection angle to perform the projection and backprojection operations. It
should be noted that in this approach, the object must be represented on a geometrically fixed grid
while it is being rotated. Using this technique will result in a dramatic reduction in memory need
for storing the projection operator as only a partial part of this matrix needs to be stored. This is
specifically true for X-ray CT where the number of projection angles is large.

One possibility in this approach, is to discretize the object on a regular Cartesian grid (Zeng et
Gullberg, 1992; Zeng et al., 1994). The image volume will then be rotated at each projection angle
so that the front face of the voxelized cube is kept parallel to the detection plane. Rotation of the
object in this method at every projection angle will require interpolation and so introduces some
approximation. Moreover, performing interpolation at every projection angle is time consuming
and having to store the coefficients of rotation matrices will reduce the gain achieved by using this
approach.

The main bottleneck of this approach however is known to be the approximations generated by
rotating the object. These approximations may make the projection and backprojection operators
not exact transpose of each other and consequently affect the convergence. These explain why this
method have not been widely used (Goussard et al., 2013) .

2.5.3 Sector-invariant approaches

Another approach for discetizing the object to be reconstructed is to use the sector-invariant manner.
In this approach natural symmetry of the scanner’s geometry is taken advantage of, by discretizing
image into some sectors each corresponding to a projection angle of the partial projection operator.
Complete projection can then be computed by repeated application of the partial projection operator
to the sector-wise rotation of the object for each angle. Note that sector-wise rotation of the object
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is a simple circular shift of the vector holding the discretized object samples and so rotation can be
performed easily for each projection angle. Using this approach allows pre-calculating and storage
of the projection operator easily.

Different sector tessellation schemes have been proposed and used for image reconstruction
mainly in PET reconstruction (Mora et Rafecas, 2006; Jian et al., 2007; Mora et al., 2008; Rodriguez-
Alvarez et al., 2011). The complexity of the proposed tessellation schemes however make the
computation of the partial projection operator complex and limit the flexibility of this approach.

In (Thibaudeau et al., 2011) a similar strategy is used for 3D X-ray CT and object is discretized
on a regular cylindrical grid with sector angles equal to the consecutive projection angles. This
tessellation scheme has been shown to provide a partial projection operator limited to one projection
angle and so it is found efficient. Moreover the simple tessellation scheme used in this models
makes its implementation easily possible and so practically usable. Despite the advantages of this
type of image representation, there are several questions on the performance of this method. These
include: possibility for parallel implementation of projection and backprojection operator, use of
penalty function in cylindrical coordinate and quality of reconstruction and reliability of it use for
clinical imaging. Moreover, the variable pixel sizes used in this type of discretization affects the
conditioning of problem and the convergence of numerical methods. These questions need to be
studied and answered carefully before polar discretization of the object can be used for practical
cases.

2.6 Conclusion

The reconstruction problem of the X-ray tomography can be represented by a linear deterministic
model with additive noise. There are two approaches for solving this problem: analytical and
statistical. Projection data from tomogrpahy systems are usually noisy. In analytical methods a
simplified model is used for reconstruction and so the noise is not modeled. Consequently, these
methods suffer from presence of noise in reconstructed images.

Statistical methods have shown to outperform analytical methods by providing higher quality
image reconstruction. These methods provide high quality images by incorporating some prior
knowledge on image and accounting for noise model. The objective function can then be repre-
sented as a Gaussian model with a weighted least squared term. This problem is ill-posed and
adding a regularization function will guarantee that a unique solution exists. Different regulariza-
tion functions have been used in the literature among which L2 and L2L1 are most widely used. L2

is of great interest because of its simple structure and L2L1 is used for its efficiency in preserving
sharp edges.

Statistical methods can also be used to account for the polychromatic nature of the beam and
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reduce metal artifacts. Use of these methods is hindered by their long reconstruction time and
memory requirement and require further improvement before they can be used practically. Conse-
quently, analytical methods are still the most widely used techniques in image reconstruction.

Different numerical methods have been introduced and used for tomography reconstruction.
These methods mainly lie in two groups: gradient-based and quasi-Newton family. L-BFGS-B
from the quasi-Newton family has shown interesting performance. This method has a super-linear
convergence rate, a low memory need and can be used for solving non-quadratic optimization
problems. Moreover, it can be easily used with preconditioners to improve the convergence.

The conventional method used for object representation is discretization on a regular Cartesian
grid. In this method projection operator needs to be calculated at every projection angle. Storing
this matrix requires a large amount of memory and is not possible for real size data. Consequently,
the projection operator is usually calculated on-the-fly at every projection angle which makes the
reconstruction time of statistical method long. Moreover, design of preconditioners for this type of
representation is not trivial.

Using sector-invariant method for object representation allows benefiting from maximum sym-
metry in the system. This approach allows pre-calculation and storage of the partial projection
operator with a limited memory requirement. The projection operation can then be performed by
applying the projection operator by a simple circular shift of the object. Considering the limited
size of the partial projection operator and the fact that projection matrix remains the same for all
projections angles, design of preconditioners may be easier in this method. However, there are
several open questions on the performance of this method and needs to be carefully studied. Some
of these questions will be studied and addressed through this work.
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CHAPTER 3

PROBLEM STATEMENT

Recall from chapter 2 that the linear forward model of tomography problems can be represented
as Eq.(2.6). As already discussed, projection measurements in CT are noisy and a high quality
reconstruction requires use of a model which accounts for this parameter. This justifies the use of
statistical methods for image reconstruction; this was discussed in detail in chapter 2. The main
drawback of current statistical methods for tomography reconstruction is their high memory need
and the long reconstruction time.

In statistical method, an image is reconstructed iteratively using estimation algorithms. This is
done by minimizing an objective function. MAP estimation is to be used due to its efficiency for
solving ill-posed problems. The objective function which needs to be solved for this purpose was
defined in (2.9):

µ̂µµ = argminµµµ Φ(µµµ)
µµµ≥0

, Φ(µµµ) ,
1
2
‖y−Pµµµ‖2

ΣΣΣb
+λR(µµµ)

The objective function consists of two terms: a weighted least square term and a regularization
function. The weighted least square term accounts for the noise model and the regularization
function is used to incorporate some prior knowledge on the image. By adjusting the regularization
parameter (λ ) appropriately, one can obtain a good balance between resolution and noise level in
the reconstructed image and control the trade-off between fidelity of solution to measured data and
prior information.

For solving the above estimation problem, a few elements need to be decided on. These points
can be summarized as below:

1. Object representation and system matrix

2. Regularization function

3. Noise model

4. Numerical method

In the subsequent sections these points will be discussed and the choices which will be made
will be justified.
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3.1 Object Representation

In Chapter 2 it was seen that when the object is discretized in Cartesian coordinates, pre-calcultion
and storage of the projection operator becomes impossible for real size clinical data. The alternative
is to calculate the projection operation on-the-fly for each projection angle. This results in long
reconstruction time and loss of computational efficiency.

In contrast, it was seen that discretizing the object in polar coordinates and using the sector-
invariant methods from the rotation-based approaches allow pre-calculation and storage of the par-
tial projection operator. Using this method, reduces the size of projection matrix by as many times
as the number of projection angles which leads to a dramatic reduction in memory need for X-ray
CT imaging. This method is discussed in details in section 2.5.3.

As already discussed, using this type of representation for the object raises several questions.
These points are summarized below:

• Discretizing the object in polar coordinates will result in having pixels with variable sizes.
Therefore this type of representation is expected to affect the condition number of the prob-
lem significantly and reduce the convergence speed of numerical methods.

• It is not clear how the penalty function can be used in this model. This is because using a
similar approach as the standard approach will further affect the condition number1.

• Efficient implementation of the operations which are repeated at every iteration is another
point which needs to be explored.

Once the effect of this type of discretization on the conditioning of problem is studied, the
discussion on preconditioning in chapter 2 can be used in attempting to correct this problem.

Performance of this approach is not fully evaluated for X-ray CT imaging to our knowledge
and is to be studied in this work. As these are difficult questions to be addressed and this is a
preliminary study on the improvement of using polar coordinates for discretizing the object, all the
developments will be done in a 2D framework for the sake of simplicity; extension to 3D will be
possible and is left as future work. The parameters of the objective function will be chosen such
that the objective function reduces to a simple model. This allow to fully explore the problems
associated with this type of discretization.

3.2 Regularization function

In this work, quadratic regularization will be used. This will allow benefiting from the simple struc-
ture of this function and leads to a linear optimization problem to be solved. Using this quadratic

1This point will be discussed in detail in chapter 4
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function, the estimation problem reduces to:

µ̂µµ = argminµµµ

1
2
‖y−Pµµµ‖2

ΣΣΣb
+λ‖Dµµµ‖2

µµµ≥0
(3.1)

The solution to the optimization problem when the regularization function is quadratic has a
closed-form as shown in (2.14) if the non-negative constraint is neglected. In solving this estima-
tion problem iteratively projection and backprojection operations need to be performed repeatedly.
Consequently a considerable amount of reconstruction time corresponds to performing these oper-
ations. Efficient implementation of these operations define the reconstruction time and its usability
for clinical use. Therefore, possibility for parallelization needs to be considered when developing
an algorithm.

The close-form solution of (2.14) can be used when analyzing the performance of the developed
algorithm and comparing the quality of reconstruction using numerical data.

3.3 Noise model

The noise model which will be used in this work is Gaussian with constant variance. This reduces
the complexity of problem and will result in a shift-invariant model for estimation problem. This
property will be used in chapter 5 for designing preconditioners.

3.4 Numerical method

For solving the objective function iteratively, L-BFGS-B from the quasi-Newton family will be
used. As discussed in chapter 2, this method has a super-linear convergence rate, low memory
needs and can be used for solving non-quadratic optimization problems. Moreover, this method
allows bound constraint with a decent convergence speed which is a desired property in image re-
construction. This method can also be used easily with preconditioners to improve the convergence.

3.5 Objectives

To summarize, in this work I will try to explore and answer the following questions on usability of
polar coordinates for discretization of the object:

1. Computational efficiency of projection and backprojection and the possibility to parallelize
both of these operations to reduce the reconstruction time of statistical methods,

2. Effect of variable pixel size on the conditioning of the problem and the speed of convergence,

3. Derivation of the penalty function when the object is discretized on a polar grid and,

4. Actual quality of reconstructed images.
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CHAPTER 4

OBJECT DISCRETIZATION IN POLAR COORDINATES

In Section 2.5, it was seen that representing the object on a polar grid (cylindrical grid for 3D),
allows taking advantage of the maximum symmetries in the system and scanner geometry and
reduces the memory requirement considerably. This is because for this type of object representation
one needs to calculate the partial projection operator for one reference angle and then rotate the
object at every projection angle. Consequently, the number of non-redundant elements which need
to be stored decreases considerably.

In chapter 3, the problems associated with this type of representation were discussed and the
framework which will be used in this work was justified.

I will try to address these problems in this chapter and the next two chapters. This includes
questions about how the penalty function should be used in this type of representation and how the
conditioning of the problem is affected (to be addressed in chapters 4 and 5). Actual quality of
the reconstructed images will be studied experimentally through simulations in chapter 6, where
results are provided.

4.1 Image representation in polar coordinates

As discussed in Section 2.3.2, in image reconstruction using iterative methods, an object is dis-
cretized into some pixels and the attenuation map of the object is calculated using estimation
methods. Standard approaches discretize the object in Cartesian coordinates. In this work, po-
lar coordinates will be used for this purpose. The tessellation scheme which will be used for this
purpose needs to have two properties: first, it needs to preserves the symmetry properties of system,
and second should be easily implementable. The symmetric property of the problem is preserved if
angular samples are equally spaced.Moreover, the selected tesselation scheme should allow precise
representation of the object in order for the method to be useful in a clinical setting. This means
pixellation scheme with holes as in (Mora et al., 2008) with circular pixels, is not suitable.

Here, it is assumed that the object is discretized onto a regular polar grid with the number of
angular samples equal to the number of regularly spaced projections. The algorithm which will be
developed here can be easily extended to cases where the radial samples are not equally spaced or
the angular samples are an integer multiple of the number of projection angles. Fig.4.1 shows the
pixellation scheme used in this work.

The discretized object in this type of discretization can be represented as µµµ(r,θ). After µµµ(r,θ)



30

d d d
x

y

Circular
 sector

X-ray
source

Ө0

D
etectors

Figure 4.1 Discretization of the object in polar coordinates.

has been estimated, the attenuation map can be easily converted to Cartesian coordinates using
following relationship:

µµµ(~x) = Tpcµµµ(r,θ)

Tpc in above relationship denotes a polar-to-Cartesian transformation which is basically an inter-
polation.

4.2 Assumptions and reconstruction framework

The linear forward model derived in (2.6) will be used for a 2D axial CT reconstruction problem
with additive noise modeled as b:

y = Pµµµ +b

where y ∈ RMN , µµµ ∈ RKN and b ∈ RMN respectively denote the sinogram, attenuation map of the
object and the measurement noise. The system matrix is represented by P and has a block-circulant
form (this will be discussed more in Section 4.4.1). Here N represents the number of angular
samples, K is the number of radial samples of the object and M is the number of data samples per
projection angle or the number of detectors at each instance of data acquisition. It is assumed that
the samples in y and µµµ are regularly arranged by increasing angle values.

For b ; N (0,ΣΣΣ−1
b ) and using MAP estimation for reconstructing the image, the problem to be

solved reduces to (2.9).
Matrix ΣΣΣb is a diagonal matrix and represent the noise variance. Here, the noise is Gaussian

with constant variance, i.e., this matrix is set to identity. λR(µµµ) is the regularization term which
applies a L2 (quadratic) penalty on µµµ itself and on its first differences on first-order neighborhoods.
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4.3 System matrix computation

By using the polar coordinates for representing the object, with the tessellation scheme shown
in Fig.(4.1), the object will be discretized in N equally spaced sectors. Consequently, this rep-
resentation introduces symmetry and results in having a block-circulant projection matrix1. This
introduces redundancy in the projection operator. Storing only the non-redundant elements of this
matrix, reduces the memory requirement by a factor equal to N, compared to the standard Cartesian
grid.

It should be noted that, as discussed in section 2.5.3, using this type of representation requires
no interpolation during the estimation process and so does not suffer from the interpolation errors
which may exist in other rotation-based methods. Moreover, the large number of redundancies in
the projection operator makes pre-calculation of the partial projection operator possible and non-
redundant parameters can easily fit in the random access memory (RAM) of any machine.

Calculation of the coefficients of the projection operator can be done using simple geometrical
equations. Different methods are available for calculating these coefficients, see AppendixA. In
this work, ray-tracing techniques will be used. The effect of ray thickness in practical problems
may also be accounted for by considering several thin rays per detector.

Remark 4.3: The projection operator for 3D image reconstruction can be similarly calculated
using cylindrical coordinates as in (Leroux et al., 2007).

4.4 Projection and backprojection

As already discussed, projection and backprojection are performed at every iteration. A significant
amount of reconstruction time corresponds to these operations and so efficient implementation of
them can reduce the long reconstruction time of statistical methods.

Researchers have attempted to achieve this goal by parallel implementation of these operations.
Although some interesting results have been achieved for the projection operator, parallel imple-
mentation of both projection and backprojection is still known to be challenging, because both row
and column access to P is required.

Parallel implementation of projection and backprojection becomes crucial in 3D image recon-
struction. In this section the possibility of parallel implementation of both projection and backpro-
jection operations with polar grid representation of the object will be discussed.

1This property will be further discussed when deriving the efficient implementation of projection and backprojec-
tion operations in section 4.4
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4.4.1 Projection

Let yn denote the projection measurements for projection angles θn; 0≤ n≤ N−1, and P0 denote
the projection matrix for reference angle θ0. One can pre-compute and store this partial projection
matrix as explained in Section 4.3.

The complete projection is obtained by rotating the object by −θn for each projection angle
and then applying P0 to get yn. Rotation of the object at every projection angle can be performed
by using a K-sample up circular shift operator. Note that these rotations involve no arithmetic
computation and can be performed using index manipulation.

Now, for implementing the projection operator, let us derive the relationship between the partial
projection operator P0 discussed above and the complete projection operator P. If S−1

µ represents
the K-sample circular shift operator, this matrix will be applied to the vector of object µµµ , n times to
obtain the complete projection operator. The complete projection operator can then be expressed
by following relation (Goussard et al., 2013):

P =
[
PT

0 | (P0S−1
µ )T | . . . | (P0S−N+1

µ )T
]T

(4.1)

Now, looking at (4.1) we can see that projection matrix P has a (N,N) block-circulant structure.
The partial projection matrix corresponding to the reference angle can be represented as following:

P0 = [P0,0 | P0,1 | . . . | P0,N−1] (4.2)

where each P0,n; 0≤ n≤N−1 is a (M,K) block. Substituting (4.2) in (4.1), the complete projection
matrix can be represented as following which is equal to (4.1):

P =


P0,0 P0,1 . . . P0,N−1

P0,N−1 P0,0 . . . P0,N−2
... . . .

P0,1 P0,2 . . . P0,0

=


P0

P0S−1
µ

...
P0S−N+1

µ

 (4.3)

This block-circulant property of the projection matrix makes efficient implementation of pro-
jection and backprojection possible. Indeed, looking at the block-row decomposition of projection
operator in 4.3, one can see that the projections (yn) at different angles can be calculated indepen-
dently from one another. This is because having the partial projection matrix, one can apply the
S−1

µ operator to any vector through index manipulations and calculate the corresponding projection.
This operation can be performed in parallel for all projection angles with no arithmetic computation
for rotations. This shows that the special structure of P easily allows parallel implementation of the
projection operation.

Products of the projection operator by the vector of object can be achieved efficiently using
available public libraries. Moreover, the computational structure of this operation makes general
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purpose parallelization libraries such as OpenMP R© easy to be used.

4.4.2 Backprojection

The shift matrix Sµ has an orthogonal property, i.e.: ST
µ = S−1

µ . Therefore, backprojection of the
projection measurements for projection angle θn (yn), onto a vector µµµ(b) can be represented by
following relationship (Goussard et al., 2013):

µµµ
(b) =

N−1

∑
n=0

Sn
µPT

0 yn

Implementation of backprojection using this method is easy but does not allow parallel implemen-
tation. This is where the block-circulant structure of P becomes important. One can address this
problem, by partitioning P in a block-column manner:

P =
[
Q0 | S−1

y Q0 | . . . | S−N+1
y Q0

]
, (4.4)

Where, Q0 =
[
PT

0,0 | PT
0,N−1 | PT

0,N−2 | . . . | PT
0,1
]T (4.5)

Here Sy is the M-sample up circular shift operator. (4.5) can be directly written from the projection
operator structure given in (4.3). PT will then have the following form:

PT =


QT

0

(S−1
y Q0)T

...
(S−N+1

y Q0)T

 (4.6)

using ST = S−1 for orthogonal matrices, we will then have:

PT =


QT

0

QT
0 Sy
...

QT
0 SN−1

y

 (4.7)

We can see in (4.7) that PT has a similar form as P in (4.1). Therefore, PT can be decomposed in a
same manner and efficient implementation of backparojection can be achieved. Similar to parallel
implementation of projection, Sn

y operations here can be applied to projection measurments (yn)
independently to obtain µµµ . This means that the loop over different projection angles for calculating
the product of Sn

yyn with the corresponding part of the PT can be done independently and can be
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parallelized to reduce the reconstruction time.
This discussion shows that using polar-coordinates for discretizing the object leads to efficient

implementation of both projection and backprojection operations in parallel.

4.5 Penalty function in polar coordinates

The necessity of adding a penalty function to objective function was discussed in Chapter 2. As
explained in Section 2.3.2.2, regularization function R(µ) usually applies a penalty on the first
differences of µµµ . This penalty is based on a numerical approximation to the gradient of µ . Ap-
proximation to the gradient is proportional to the distances between neighboring pixels, which in
a Cartesian grid are identical for all pixels. For polar-grid discretization, this is not the case and
distances between neighboring pixels vary significantly along the tangential direction. Therefore,
it is not clear how this penalty term should be applied for this type of representation of the object.

When the object is discretized on a polar grid, it is mathematically rational to penalize the
neighboring pixels based on the inverse of the distance between pixels to be consistent with the
definition of the gradient and the physical meaning of the penalty term. This will be refereed to
as nonuniform weighting in this work. However, the problem with this approach is that weighting
the pixels in this manner gives a very high weight to pixels located in the center of image and
consequently affects the condition number of problem. Therefore, it is not clear how this will
affect the convergence of estimation problem and the quality of the reconstructed images. Another
possibility is to weight the first differences in a uniform manner similar to weightings used when
the object is discretized in cartesian coordinates. This penalty function will treat the pixels equally
independently of their sizes and so does not affect the conditioning of problem.

Here, both of these approaches will be tested to assess both the quality of reconstruction and
the convergence speed.

The conditioning of the problem for both type of regularization will be studied in next Sec-
tion 4.6.

The regularization term λR(µ), can be written as:

λR(µµµ) = λ

M̄

∑
m=1

KN

∑
i=1

ψi([D(m)
µµµ]i) (4.8)

where D, first difference matrix, is KN×KN and ψ is the regularization function and here is chosen
to be L2: ψ(µµµ) =ΩΩΩ

µ2

2 , with ΩΩΩ being the weighting matrix. Index m, corresponds to the neighboring
direction which will be considered and is defined as follows:

• m = 1, radial differences,

• m = 2, tangential differences,
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M̄ is the total number of neighboring direction which will be considered in the penalty term1. This
gives:

λR(µµµ) = λ

M̄

∑
m=1

KN

∑
i=1

ψi([D(m)
µµµ]i) =

λ

2

M̄

∑
m=1

µµµ
T D(m)T

(((Ω(m))2D(m)
µµµ (4.9)

Matrices of differences (D(m)) are sparse and have block-circulant structures for both type of
regularizations discussed below and are presented in Appendix C. This property will be used in
Chapter 5 for designing preconditioners.

4.5.1 Uniform weighting

Assuming that uniform weighting is used for the regularization function, weighting matrices ΩΩΩ(m)

will be equal to identity for m ∈ {1,2}. Here, we are only considering the radial and tangential
neighbors (M̄ = 2) for simplicity and fair comparison with nonuniform weighting which will be
discussed next.

4.5.2 Nonuniform weighting

In this work, the object is discretized such that distances between pixels are identical in the radial
direction.

ΩΩΩ
(1) =

1
d
× I(KN,KN) (4.10)

Here, I is the identity matrix and d is the difference between two consecutive radiuses in polar
coordinates. The distance between pixels varies significantly in the tangential direction. ΩΩΩ(2) will
have the form given in (4.11). Each block of this matrix is applied to one sector of the discretized
object and the coefficients which are applied to each pixel correspond to the inverse of the distance
of this pixel to its neighboring pixel in the tangential direction.

1m = 3 and 4 can be also added to include the diagonal neighboring pixels in south-east and north-east directions
as well. Matrices of differences for these directions are given in Appendix C
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ΩΩΩ
(2) =

N
2πd
×





1
1− 1

2
1

2− 1
2

. . .
1

K− 1
2


K×K

0

. . .

0



1
1− 1

2
1

2− 1
2

. . .
1

K− 1
2


K×K



(4.11)

4.6 Conditioning

Discretizing object in polar coordinates results in having pixels with variable size. This may affect
the condition number of the problem and so make the convergence slower. The definition of the
condition number and its impact on the speed of convergence for iterative methods was discussed
in Section 2.4.2.

To compare how the condition number is affected in polar-discretization, the eigenvalue spec-
trum of the normal matrix when object is discretized in both Cartesian coordinates and polar co-
ordinates is calculated for a typical case. Here the impact of the regularization function is omitted
by using λ I for penalty function. This reduces the normal matrix to PT P + λ I. Fig.(4.2), shows
how the eigenvalues are spread in both cases. One can see in this figure that, in the polar case,
eigenvalues are spread on a wider range compared to the Cartesian case and so more iterations and
consequently longer reconstruction time is expected.

The problem of conditioning becomes more severe when the regularization function with nonuni-
form weighting is used (See Section 4.5). To see the effect of the regularization function, the eigen-
value spectrum of the normal matrix for each type is plotted in Fig.(4.3). The value of λ is chosen
to be high (10) to highlight the effect of nonuniform weighting on conditioning of problem. From
this figure we can see that using nonuniform weighting conditioning is deteriorated more.

The conditioning of the problem needs to be improved for this method to be useful. For this
purpose, one may attempt to use preconditioners such as those discussed in section 2.4.2.

In the next chapter which is specifically devoted to preconditionig we will attempt to design
different types of preconditioners. The performance and efficiency of each preconditioner will then
be explored in Chapter 6.
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Figure 4.2 Eigenvalue spectrum of the normal matrix PT P + λ I in the Cartesian and polar repre-
sentations for λ = 10−3.

Figure 4.3 Eigenvalue spectrum of the normal matrix PT P + λDT D in the Cartesian and polar
representations for λ = 10.
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CHAPTER 5

PRECONDITIONING

In chapter 4 it was seen that using a polar grid for discretizing the object introduces variable pixel
sizes and affects the conditioning of problem and so the convergence of numerical methods. More-
over, in section 4.6 it was seen that this problem becomes more severe when the nonuniform regu-
larization is used for penalty function.

In any case, deterioration of the conditioning caused by polar discretization of the object needs
to be corrected if this method is to be used in clinical scanners. In section 2.4.2, the definition of
the condition number and how it affects the convergence was discussed. Moreover, it was seen that,
using efficient preconditioners conditioning of the problem can be improved and the convergence
speed can be increased.

In this chapter we will first study the normal matrix structure when the polar grid is used for
discretizing the object. We will then explore the different types of preconditioners which can be
designed by taking advantage of this structure. The procedure for designing each preconditioner
as well as its implementation will be provided in subsequent sections and, the approximations
involved in each case will be discussed.

5.1 Normal matrix structure

In section(2.4.2) it was seen that, in solving an optimization problem using estimation techniques,
the convergence speed is dependent on the conditioning of the Hessian of the objective function.
Hessian is referred to as the normal matrix here. For a quadratic objective function as in this work
(3.1), this matrix is independent of the variables at which the optimization problem is to be solved
for, and has the following form:

∇
2
Φ(µµµ) = PT P+λ{D(1)T

(ΩΩΩ(1))2D(1) +D(2)T
(ΩΩΩ(2))2D(2)} (5.1)

and is positive-definite and Hermitian.
The matrices of differences (D(m)) are known to be block-circulant (BC)1 and consequently,

their transpose is also BC. From the properties of BC matrices, multiplication of two BC matri-
ces will be also BC, resulting in D(m)T D(m) being BC. Now, considering the BC structure of the
projection matrix P demonstrated in (4.3), PT P will also have a BC form:

1Refer to section 4.5.
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PT P =


QT

0

QT
0 S1

...
QT

0 SN−1


[
Q0 S−1Q0 . . . S−N+1Q0

]

=


QT

0 Q0 QT
0 S−1Q0 . . . QT

0 S−N+1Q0

QT
0 S1Q0 QT

0 Q0 . . . QT
0 S−N+2Q0

...
... . . . ...

QT
0 SN−1Q0 QT

0 SN−2Q0 . . . QT
0 Q0


(5.2)

Consequently, the normal matrix which has a strong impact on the convergence of the optimiza-
tion algorithm, has a BC form. Note that this property is valid when ΣΣΣ = I. This property will be
used in designing preconditioners in this chapter.

Before starting to design preconditioners and exploring their efficiency, let us have a closer
look at the normal matrix structure. The normal matrix consists of the projection matrix and the
matrices of differences. The matrices of differences are block-diagonal or near block-diagonal with
dominant entries on the main diagonal (Appendix C). For the projection matrix, in (5.2), we can
see that the block-diagonal elements of PT P are identical and are equal to QT

0 Q0. Fig.5.1 shows
the PT P in an image form, for a small size of data. This figure suggests that the dominant values

Figure 5.1 Illustration of PT P in image form, for a small size of image (32×32).

are located on the diagonal of this matrix which consists of these identical blocks (QT
0 Q0). To

further investigate this point, the L2 norm of the N blocks of size K of the partial projection matrix
corresponding to the reference angle is calculated. One can see in Fig.(5.2) that the first block
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which corresponds to QT
0 Q0, has the largest norm.

Figure 5.2 ‖PT P‖ for the reference angle.

In Fig.(5.1) we can also see that the off-diagonal elements of PT P are very close to zero and so
sparse approximation to this matrix does not introduce a large inaccuracy.

To explore the properties of the block QT
0 Q0, this matrix is depicted in Fig.(5.3) for a small size

of the object. One can see that this block has a similar property as PT P: the dominant values are
located on the diagonal and the off-diagonal elements are close to zero. Therefore, we can easily
make a sparse approximation to this block without a large lose of accuracy.

Figure 5.3 Illustration of QT
0 Q0 in image form, for a small size of image (32×32).
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Next section discusses how these properties will be used for designing preconditioners.

5.2 Preconditioner design

In designing preconditioners, we are trying to find a good trade-off between a good approximation
to the inverse of the normal matrix and the memory need. Having a closer approximation will
guarantee the convergence in a smaller number of iterations. The structure of normal matrix was
discussed in the previous section, in this chapter we will try to find an approximation to normal ma-
trix that lends itself to easy factoring and inversion. This matrix can then be used as preconditioner
to improve the convergence.

Considering the special structure of normal matrix and its properties illustrated in the previous
section, one can think of different types of preconditioners. It was seen in Fig.(5.1) that the magni-
tude of the coefficients decreases when moving away from the diagonal with off-diagonal elements
being very close to zero. This suggests that one good approximation to the normal matrix is to use
the diagonal or block-diagonal elements of this matrix for designing the preconditioner.

Another approach for designing the preconditioner is to use the fact that a BC matrix can be
block-diagonalized in a fast way using FFT techniques. However, it should be noted that although
using the block-diagonalized form of the normal matrix decreases the memory need significantly
(K2×N as opposed to K2×N2) this matrix is still large for practical applications. This is be-
cause the blocks are not identical. Therefore, some diagonal or sparse approximation to this block-
diagonalized normal matrix has to be used for designing preconditioners.

Consequently, for either of these approaches, two type of preconditioners can be designed. The
preconditioners will be either diagonal or a sparse block-diagonal matrix. The main advantage of
diagonal preconditioners is their low memory need for storage and the negligible cost for compu-
tations per iteration. However, the improvement of convergence by these type of preconditioners
is usually limited. Non-diagonal preconditioners may provide a better efficiency but at the cost of
more memory need and more computations involved.

When using preconditioners, one main concern is how to invert the preconditioning matrix. For
diagonal preconditioners with non-zero entry on the diagonal this is not an issue, as the inverse of
a diagonal matrix is diagonal with each diagonal element inverted. For non-diagonal precondition-
ers, inversion of the preconditioning matrix may be omitted if the corresponding linear system of
equations can be solved efficiently at each iteration.

Below, the preconditioners which will be explored in this chapter are listed and categorized:

1. Approach 1: Block diagonal approximation to the normal matrix

(a) Diagonal Preconditioners
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• Preconditioning based on pixel size,

• Preconditioning based on the inverse of the diagonal elements of the normal matrix,

• Preconditioning based on the diagonal elements of the inverse of an approximation
to the normal matrix,

(b) Cholesky decomposition

• Complete Cholesky decomposition of an approximation to the normal matrix,

• Incomplete Cholesky decomposition of an approximation to the normal matrix,

2. Approach 2: Block-diagonalization of the normal matrix using FFT

(a) Diagonal preconditioning,

(b) Incomplete Cholesky decomposition pf a sparse approximation to the block-diagonalized
normal matrix.

The reasons for selecting these preconditioners and their respective performance will be dis-
cussed and explored in subsequent sections.

Remark 5.1: Here, in the list of preconditioners which will be designed using first approach,
a diagonal preconditioner based on pixel size is also included. This preconditioner is designed
by making a heuristic approximation to PT P and considering the variable pixel size of object dis-
cretized in polar-coordinates. The efficiency of this preconditioner will be tested experimentally in
the next chapter.

Remark 5.2: As mentioned in chapter 3, the numerical method which will be used for image
reconstruction in chapter 6 is L-BFGS-B. In this numerical method, preconditioner can be applied
using a change of variable. According to Remark 2.4.2.1, preconditioning then requires that the
Hessian be left and right multiplied by two matrices. This point will be considered in designing
preconditioners in this chapter.

5.3 Approach 1: Block diagonal approximation to the normal matrix

According to the above discussion and considering that the dominant blocks of the normal matrix
are located on the main diagonal, one good approach is to make a block diagonal approximation to
normal matrix. This approximation can be performed for the least-squares part and the regulariza-
tion part separately without loss of generality.
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For least squares part, the approximation to (5.2) has the following form:

P̃T P =


ΛΛΛ

ΛΛΛ

. . .

ΛΛΛ


︸ ︷︷ ︸

KN×KN

(5.3)

where ΛΛΛ = QT
0 Q0, and have size K×K.

Similarly, a block-diagonal approximation to the matrices of first differences can be performed.
In section 5.1 it was discussed that these matrices are very close to block-diagonal with dominant
values located on the diagonal. The general structure of these matrices and their multiplication
with their transpose is provided in Appendix C. The block-diagonal approximation to DTΩΩΩTΩΩΩD
matrices will then be:

∼

D(1)T
ΩΩΩ

(1)T
ΩΩΩ

(1)
∼

D(1) =


∆∆∆r

∆∆∆r
. . .. . .. . .

∆∆∆r


︸ ︷︷ ︸

KN×KN

,

∼

D(2)T
ΩΩΩ

(2)T
ΩΩΩ

(2)
∼

D(2) =


∆∆∆t

∆∆∆t
. . .

∆∆∆t


︸ ︷︷ ︸

KN×KN
(5.4)

Matrices ∆∆∆r and ∆∆∆t are K×K and represent the corresponding blocks in DTΩΩΩTΩΩΩD for penalizing
the radial and tangential neighboring pixels, respectively.

Using the block-diagonal approximations made (5.3 and 5.4), the block-diagonal approximation
to the Hessian of objective function Φ(µ) will then have the following form:

∇̃2
µΦ(µµµ) =


ΛΛΛ

ΛΛΛ

. . .

ΛΛΛ

+λ




∆∆∆r

∆∆∆r
. . .

∆∆∆r

+


∆∆∆t

∆∆∆t
. . .

∆∆∆t




(5.5)
Extension of the above results to the case where more neighboring pixels including the neighboring
pixels in diagonal directions are considered in the penalty function is straightforward.

Considering the fact that the diagonal blocks in (5.5) are identical, and taking the first block of
size K×K, we will have:

˜∇2
µΦ1(µµµ) = ΛΛΛ+λ{∆∆∆r +∆∆∆t}

= QT
0 Q0 +λ∆tot∆tot∆tot = ϒϒϒ

(5.6)
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Considering the structure of
∼

∇2Φ1 derived above with blocks ϒϒϒ, here, we are trying to find
a block diagonal preconditioner ΠΠΠ with the same block-diagonal structure as the approximated
Hessian. The blocks of this matrix will be identical, each diagonal block being a full, sparse or
diagonal approximation to ϒϒϒ. In following subsections different preconditioners will be designed
using ϒϒϒ derived in this section.

5.3.1 Diagonal Preconditioners

Diagonal preconditioners are the most simple type of preconditioners which can be used to correct
the conditioning of the problem. These preconditioners are of interest because of their low memory
need and negligible added calculation time per iteration. Applying these preconditioners to the
objective function (2.20)is very economical as the left and right multiplication by a diagonal matrix
is virtually costless. These preconditioners are also known to be easily implementable and so
practically usable. In this section three different diagonal preconditioners are suggested to be tested
for their efficiency.

5.3.1.1 Preconditioning based on pixel size

As discussed in section 2.4.2, discretizing image onto a regular polar grid yields variable pixel
sizes. It is expected that if a diagonal preconditioner which accounts for this different pixel sizes is
used, this deterioration of conditioning can be partly corrected.

This preconditioner will have following form:

ΠΠΠ1 =
(

ΓΓΓ
(1) +λdiag(∆tot∆tot∆tot)

)− 1
2 (5.7a)

where ∆∆∆tot is defined in (5.6), and

ΓΓΓ
(1) =



1
1− 1

2
0 0 . . . 0

0 1
2− 1

2
0 . . . 0

...
0 0 0 . . . 1

M− 1
2

 (5.7b)

Here the diagonal approximation to ϒϒϒ is the inverse of the pixel sizes in one sector. By doing
this, we are reducing the high weight given to the small pixels located close to center of image
in polar-discretization and make the normal matrix more uniform1. Moreover, as explained in
Remark 5.2, the preconditioning matrix will be applied to normal matrix from both left and right
sides, so the the square-root of this matrix needs to be used as preconditioner.

1Note the similarity between ΓΓΓ(1) and the blocks in ΩΩΩ(2)
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5.3.1.2 Inverse of diagonal elements of normal matrix

In section 5.1 it was concluded that the dominant values of the normal matrix are located on the
main diagonal. Therefore, a simple choice for diagonal preconditioning is to make a diagonal
approximation to ϒϒϒ in (5.6).

This diagonal preconditioner will then have the following form:

ΠΠΠ1 =
(

ΓΓΓ
(2) +λdiag(∆∆∆tot)

)− 1
2 (5.8a)

where
ΓΓΓ

(2) = diag(QT
0 Q0) (5.8b)

5.3.1.3 Diagonal elements of the inverse of ϒϒϒ

Another approach for designing diagonal preconditioner is to calculate the exact inverse of ϒϒϒ and
use the diagonal values of this matrix for preconditioning. Fig.(5.4a) and (5.4b) shows ϒϒϒ−1 for
both types of regularization in image form for a typical case. One can see from these figures that
similarly to the previous case, the dominant values are located on the main diagonal.

(a) (b)

Figure 5.4 Illustration of ϒϒϒ−1 in image form, for a small size of image (32×32) for: (a) Uniform
regularization, (b) Nonuniform regularization, λ = 10

The diagonal preconditioner for this approach will have the following form:

ΠΠΠ1 =
(
diag

(
{QT

0 Q0 +λ∆∆∆tot}−1)) 1
2 (5.9)
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5.3.2 Cholesky Decomposition

In designing the preconditioners ΠΠΠ, so far, diagonal preconditioners have been used. These pre-
conditioners are expected to improve the convergence by partly correcting the condition number.
However, it is known that in all of the above preconditioners some approximations are made which
their effect need to be verified and their efficiency need to be studied by numerical simulations and
using real data.

Another alternative for designing ΠΠΠ is to use the exact inverse of the block-diagonal approxi-
mation to normal matrix with identical blocks ϒϒϒ. The approximations involved in this approach is
expected to be less than those made when designing the diagonal preconditioners in section 5.3.1.2
and 5.3.1.3 and therefore, this preconditioner is expected to perform better. However, the more
precision in the approximation to normal matrix is obtained at the cost of requiring more memory
for storing the preconditioning matrix and using a more complicated operation for applying this
preconditioner to normal matrix. It should be noted that, as the blocks in ϒϒϒ are identical, only the
elements of one block need to be stored and used for designing the preconditioner.

To apply this non-diagonal preconditioner to system, instead of calculating the exact inverse
of ϒϒϒ, one can solve a system of equations using direct methods. One of the methods which have
been found efficient in solving systems of linear equations and is widely used for designing pre-
conditioners, is the Cholesky decomposition. This method works by decomposing a Hermitian,
positive-definite matrix, into the product of a lower triangular matrix L and its transpose LT such
that LLT = ϒϒϒ (or equivalently product of a transpose of a upper triangular matrix RT and itself R
to get ϒϒϒ = RT R ). The lower-triangular of Cholesky decomposition L for positive-definite matri-
ces, is unique and for systems with symmetric matrix specifically, this method have been seen to
outperform many other direct methods. Comparing it with other lower triangular-based methods,
Cholesky decomposition have been found more efficient. For instance comparing it with LU-
decomposition, this method when can be used, is almost twice as efficient as LU-decomposition
for solving linear systems. Moreover, it has superior efficiency and numerical stability (Press et al.,
1992). This justifies this choice in this work1.

In tomography problems, as discussed in section 5.1 the normal matrix is positive-definite and
Hermitian. Moreover, it was seen that the dominant values are located on the diagonal blocks
and so block-diagonal approximation to normal matrix, ϒϒϒ, is also positive-definite and Hermitian.
Therefore, one can use Cholesky decomposition to decompose ϒϒϒ to two triangular matrices.

The preconditioning matrix can then be chosen to be: ΠΠΠ1 = L−T , where L is unique for our
problem and is the lower-triangular factor of first K×K block of block-diagonal approximation to
normal matrix (ϒϒϒ). Here, I have used the upper triangular factor of Cholesky decomposition for

1 The procedure for calculating the lower triangular matrix L in Cholesky decomposition is discussed in (Bertsekas,
1999) and provided in Appendix E
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designing preconditioner (R = LT ). The procedure will be similar to lower-triangular case. The
preconditioner will then be ΠΠΠ1 = R−1.

Implementation: For applying this preconditioner to the problem and finding the minimum
of the objective function iteratively, one needs to solve two systems of equations at every itera-
tion. Note that considering the triangular structure of R, these equations can be solved at a low
cost. Comparing the operational cost of this preconditioner with the diagonal preconditioners, here
one needs to solve two system of linear equations with size K×K at every iteration. The extra
computation time per iteration needs to be numerically evaluated and compared.

5.3.2.1 Incomplete Cholesky factorization

Using the exact Cholesky decomposition for ϒϒϒ is possible when we are using the block diagonal
approximation to normal matrix in 2D framework. This is because as discussed in section5.3, the
diagonal blocks of this matrix are identical and one needs to use the elements of only one block for
designing preconditioner. However, for 3D reconstruction, the size of this block will be multiplied
by the number of slices and so storing this size of data may become costly or impossible. One
alternative is to use a sparse approximation of ϒϒϒ for designing preconditioner. In making sparse
approximation to this matrix, we are interested to find a good trade-off between the efficiency of
the preconditioner in terms of improving the convergence and memory need. A preconditioner
designed from a more sparse approximation to normal matrix will require less memory need and
easier system of equations to be solved at every iteration at the cost of slower convergence.

Here, it was seen that the off-diagonal elements of ϒϒϒ are very close to zero. Therefore, it is
expected that we do not lose a large accuracy by making sparse approximation to this block. The
sparsity level which will be used for making sparse approximation is expected to have an inverse
relationship with the time required per iteration. This relation will be explored with three different
sparsity level experimentally in chapter 6.

Once the sparse approximation to normal matrix is obtained we can use incomplete Cholesky
decomposition technique for designing preconditioners. For using incomplete Cholesky, the matrix
which will be decomposed needs to be positive-definite and Hermitian. It is also known that the
incomplete Cholesky decomposition can be found for diagonally dominant matrices. Here, the
dominant elements are located on the diagonal and so there is no algebric problem with using this
technique.

Implementation: The implementation of incomplete Cholesky is very similar to exact Cholesky
but with an additional step: sparse approximation. For making sparse approximation, we will first
preserve the diagonal elements as these are the dominant values. After calculating the maximum
value of these elements, the elements with absolute value higher than a specific fraction of this
value will be kept. The fraction which will be used here defines the sparsity level of preconditioner.



48

5.4 Approach 2: Block diagonalization of normal matrix using FFT

In section 5.1 it was seen that the normal matrix is BC. Moreover, in section 5.2 it was discussed
that using FFT method, one can find the block-diagonalization of a BC matrix. The inverse of
this specially structured matrices can then be calculated in a fast way and so used for designing
preconditioners.

In Appendix D, definition of circulant matrices is given and a detailed review on how the FFT
method can be used to diagonalize the circulant matrices and used as preconditioner is provided.
The same approach can be followed for block-diagonalization of a BC matrix.

Assuming that the BC normal matrix is represented by C = PT P + λDT D, the relationship
between this matrix and it block-diagonalized form bdC can be represented using following expres-
sion:

C = F−1bdCF (5.10)

where F and F−1 represent the Fourier and inverse Fourier transform matrices1 respectively. It
should be noted that according to the Bochner’s theorem, Fourier transform preserves the positive-
definiteness of the problem meaning that Fourier transform of a positive-definite function is positive-
definite. The normal matrix here is Hermitian and positive-definite, so these properties are pre-
served when using FFT for diagonalization.

Once, the normal matrix is block diagonalized using FFT, the resulting matrix (bdC) has N

blocks of size K ×K. To check the properties of this new matrix, the L2 norm of each block
was calculated. Fig.(5.5) shows these norms versus block numbers for a 512× 512 image when
the object is discretized in polar coordinates. We can see from this figure that, unlike what was
observed in the spatial domain, these blocks are not identical and the highest norm corresponds to
the block in the middle θn = N

2 . Consequently, we cannot treat all the blocks in the same manner.
Using (5.10), C−1 can be easily calculated as following and used for designing preconditioner:

C−1 = F−1bdC−1F (5.11)

It should be noted that in using (5.11) for BC matrix C, we benefit from the fact that the inverse
of a block diagonal matrix is also block diagonal, with each block being equal to the inverse of the
corresponding block in the matrix.

The resulting matrix bdC−1 is the exact inverse of the normal matrix and using it as precondi-
tioner, the iterative optimization algorithms converge in one iteration only. However, it should be
noted that having to store the block-diagonal Hessian matrix may be expensive even for 2D recon-

1See chapter 1 of (Chen, 2005) or any other reference for the definition of Fourier transform matrix. Note that
F−1 = 1

N F∗ where N is the size of problem and F∗ represent the conjugate transpose of Fourier matrix.
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Figure 5.5 Norm of blocks of the normal matrix.

struction with realistic data size. Consequently, some approximation to this matrix is required to
make this method practically usable.

In general, when using the BC matrices as preconditioner we are interested in computing the
product of this matrix or of its inverse with a vector quickly. Using FFT, the forward and backward
operations (f = Cg and g = C−1f) can be performed quickly for any vector (f or g). These operations
are used at every iteration when implementing the solver with preconditioner.

To be more precise, for computing the above quantities for BC matrix C, we can use what was
obtained for circulant matrices in (D.11) and (D.12) and perform these operations as follows:

f = Cg = F−1bdCFg = F−1[bdC×Fg] (5.12a)

g = C−1f = F−1bdC−1Ff = F−1[bdC−1× (Ff)] (5.12b)

It should be noted that in the above equations, operations are performed from right to left. The
Fourier transform of vectors f and g can easily be obtained using FFT technique with negligible
computational cost1. For efficient implementation of (5.12b), multiplication of bdC−1 by any vector
needs to be performed in a systematic way to avoid high calculation cost. This will be done by

1Note that using FFT method for calculating the Fourier transform of a vector requires at most O(N log N) opera-
tions as oppose to O(N2) where N represents the size of the vector and O denotes an upper bound. The gain becomes
more evident when N is large. This property is a well-known property of FFT method.
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factorizing bdC to some diagonal or triangular matrices and then solving two systems of equations at
each iteration (solve bdCh = Ff with bdC being diagonal or triangular, instead of h = bdC−1×(Ff)).
In this way, the multiplications can be performed in a fast way with low numerical lost and we do
not need to calculate the bdC−1 explicitly.

As explained in section 5.2, the exact block-diagonal factorization of C can not be used for
preconditioning purposes in practice due to the large size of the real data. Therefore, a diagonal
or sparse approximation to the bdC needs to be computed without having to evaluate the complete
bdC.

In calculating bdC we are using Fourier and inverse Fourier transform as expressed in (5.10).
These operations are applied to the matrix C in a vector-wise manner. This mean that for instance
the first elements of all the diagonal blocks of bdC are calculated by using FFT operation on the first
block-row of C. Therefore using these operations bdC can be computed element-wise or diagonal-
wise.

The possibility of calculating bdC in a diagonal-wise form using FFT method is an essential
property which makes this method practically useable. This is because given the large size of the
real data, making sparse approximation to this matrix is not practical if one needs to compute the
complete block-diagonal normal matrix bdC.

The procedure of computing the FFT-based preconditioners and how they are used with numer-
ical methods is demonstrated as flowchart in Fig.(5.6).

5.4.1 Diagonal Preconditioner

One simple approximation to the block-diagonalized normal matrix bdC, is to consider its diagonal
elements only. The diagonal preconditioning matrix ΠΠΠ will then be the inverse of this matrix,
ΠΠΠ = F−1{diag(bdC)}−1F (note that the inverse of this matrix is simply the inverse of each of its
diagonal elements). As the diagonal enteries of the normal matrix are positive, this assures that the
preconditioning matrix will always be non-singular.

For the implementation aspect, this preconditioner is affordable. This is because only one
needs to store a vector of size KN×1 and the cost associated with applying it in every iteration is
negligible as it consists of a FFT operation, two simple element-by-element vector products and an
inverse FFT per iteration.

It should be emphasized again that by using this approximation in designing preconditioner, we
are eliminating all the elements which are located off-diagonal. This will affect the convergence
and the number of iterations required for reconstruction. The impact of this approximation needs
to be experimentally evaluated.

Implementation: For implementation of diagonal preconditioner using this approach, the main
diagonal of bdC will be calculated as discusses in section 5.4. The inverse of this diagonal matrix
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Figure 5.6 Flowchart for implementation of preconditioner based on FFT method and using it with
iterative method. Note that here bdC represents the block diagonalized normal matrix, diagk(P0)
and diagk(D0) is the k-th diagonals of matrix P0 and D0 with k = 0 referring to main diagonal,
where D0 denote the first K rows of sum of matrices of differences. R is the upper triangular matrix
of Cholesky method, µ is the attenuation map of the reconstructed object and Φ represents the
objective function.

will be used for preconditioning. For applying this matrix to the Hessian of the objective function
and multiplying it with any vector, expressions in (5.12) will be used.
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5.4.2 Cholesky Decomposition

Another approach for designing preconditioners is to use the Cholesky decomposition as explained
in section 5.3.2. This method works by finding an upper-triangular matrix (Ri) for each block of
bdC such that: R∗i Ri =bd Ci, where bdCi denotes the i-th block of bdC, 1 ≤ i ≤ N, and has size
K×K and ∗ shows the conjugate transpose operation. bdC can then be shown as below:

bdC =


bdC1 0

bdC2

. . .

0 bdCN

 (5.13)

It is known that the lower triangular Cholesky matrices are usually full. This is usually the case
even if the matrix which will be decomposed is sparse. Consequently, for preconditioning, this
would require to store N matrices which will result in storing about N×K2/2 elements which can
become impossible for practical cases. Consequently, use of exact Cholesky is avoided in practice.

The solution to this problem, similar to what has been already mentioned in section 5.3.2.1, is
to use the incomplete Cholesky factorization. To do this, we need to make a sparse approximation
to bdC.

By making a sparse approximation to bdC, and denoting it by bd
∼
C, we can use the incomplete

Cholesky method for each block bd
∼
C

i

n, and consequently Ri, the upper triangular matrix, will have

the same sparsity level as the corresponding bd
∼
C

i
. This will reduce the memory required for storing

the Ris. The preconditioning matrix will then be block diagonal as below:

ΠΠΠ =


ΠΠΠ1

ΠΠΠ2
. . .

ΠΠΠN

= F−1


R1

R2
. . .

RN


−1

F (5.14)

Using sparse approximation to bdCi will result in having simpler linear equations to solve using
the direct method at every iteration and therefore, this may decrease the time required per itera-
tion. The reduction in time per iteration may compensate for the approximations made by using
the incomplete Cholesky decomposition as oppose to exact one. This should be experimentally
verified and the effect of these approximations should be studied in terms of total time required for
reconstruction and number of iteration needed for convergence.

To summarize, the sparse approximation is expected to be a trade-off between the memory need
and reconstruction time. This will be further discussed when results are compared in chapter 6.
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Implementation: Using the discussion in section 5.4, a sparse approximation to bdC is first
obtained. This gives a sparse block-diagonal matrix. Then the Cholesky decomposition of this
matrix is calculated and used as preconditioner using (5.14). Similar to diagonal preconditioner
explained in previous section, multiplication of this matrix by any vector is done in Fourier domain
and using equations (5.12).

5.4.2.1 Sparse approximation to bdC

Here, two approaches are followed for making the sparse approximation to the block diagonalized
normal matrix. The first approach is to generate the main diagonal elements of bdC first, and
compute their maximum modulus. A fraction of the maximum moduluses of the diagonal elements
will then be used as threshold and the elements with absolute value higher than this value will be
kept. This fraction will be chosen such that the desired sparsity level is achieved. This approach
will be referred to as “Global sparse approximation”.

The second approach is to make the sparse approximation in a block-wise manner. In this
approach a threshold specific to each block is selected as a constant fraction of the magnitude
of the largest element of each block and the elements of each block are preserved based on the
threshold of the corresponding block. This method is called "Block-wise sparse approximation"
here.

The performance of preconditioners obtained by these two approaches will be compared in
chapter 6 to choose the most efficient one. In making the comparisons, one should make sure
that thresholds are chosen such that both methods provide matrices with the same sparsity levels.
This makes the comparisons fair for drawing a correct conclusion on which method to choose for
making the sparse approximation.

5.5 Conclusion

In this work two approaches are followed for designing preconditioners. The first approach consists
of making a block-diagonal approximation to the normal matrix and then using either diagonal
preconditioners or Cholesky preconditioners. This approach is expected to be highly affected by
approximations and therefore, the efficiency of such preconditioners needs to be studied carefully.

The alternative approach is to make use of the special structure of the normal matrix, i.e., BC,
and find a block diagonalized version of it. We can then use either diagonal preconditioners or
Cholesky methods for improving the convergence. In using this method it should be noted that the
blocks will not be identical unlike the first approach and consequently all the blocks need to be
considered. This means that the memory need for this approach will be N-times higher. Therefore,
for an image with K number of radial samples and N number of angular samples, the number of
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elements which need to be stored and used as preconditioner for each of these approaches follow
the table below:

Table 5.1 Number of nnz elements stored for each preconditioner.

Method used Preconditioner Number of non-zero elements stored

Approach 1
Diagonal K
Cholesky 1/2×K× (K +1)

Approach 2
Diagonal K×N
Cholesky 1/2×K× (K +1)×N

In the Cholesky row in above table, it is assumed that the exact Cholesky decomposition is used.
In practice incomplete Cholesky decompositions are used and by choosing an appropriate sparsity
level. This will reduce these numbers accordingly.

We expect the preconditioners of second approach to perform better as there are less approx-
imations involved for this case. We also expect the Cholesky preconditioner to be more efficient
compared to diagonal preconditioner of same approach. This is due to the lower level of approxi-
mations involved in the former. These points will be experimentally verified in the next chapter.
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CHAPTER 6

RESULTS AND DISCUSSION

The goal of this chapter is to validate the methodology developed in chapters 4 and 5, and the ef-
ficacy of the proposed methods in addressing the problems associated with using a polar grid for
discretization of the object. These problems, which have been summarized in chapter 3, include:
what is the best scheme for discretization of the object in polar coordinates in terms of implemen-
tation, how does polar discretization of the object affects the conditioning of the normal matrix and
so the convergence of the iterative algorithms, and how to express the penalty function in polar
coordinates.

The eigenvalue spectrum of the normal matrix for standard discretization (Cartesian) and the
polar discretization in Fig.(4.2) show that using polar coordinates, the eigenvalue spectrum is dete-
riorated and the eigenvalues are spread over a range significantly wider than that of the Cartesian
representation.

In the last two chapters, we attempted to address some of these problems : A simple tessellation
scheme was introduced in chapter 4 for discretization of the object in polar coordinates and two
approaches for penalization of neighboring pixels were discussed. The eigenvalue spectrum was
seen to be more deteriorated when nonuniform weighitng, which is consistent with the definition of
the gradient, is used as penalty function (Fig.(4.3)). This emphasizes the necessity for developing
a technique which corrects the conditioning for this type of discretization.

For this purpose different types of preconditioners were proposed, in chapter 5. This was done
by taking advantage of the special structure of the normal matrix. The efficiency of these precondi-
tioners will be studied and verified experimentally in this chapter using some realistic assumptions
for the parameters.

6.1 Parameters and model used

For consistency and to be able to make fair comparisons, all the experiments performed in this
chapter were conducted on realistic-size simulated data: (512,512) images, 512 equally spaced
detectors, 1024 projections per rotation. The size of the polar grid used for discretization of the
object (µ) is (256,1024) and covers a disk whose diameter is equal to the side-length of the square
Cartesian image. The numbers used here are close to what has been used in real scanners (number
of projections 1160 and number of detectors 672). These numbers are chosen to be powers of 2 to
allow easily expansion to other sizes of data for comparison purposes.
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To avoid an "inverse crime" situation (Mueller et Siltanen, 2012), that may bias the results, the
sinogram was generated using a forward model different from the one used to perform the recon-
structions. This forward model is described in section 2.5.2 and operates on the object discretized
in Cartesian coordinates, which is rotated and interpolated at each projection angle.

Here, it is assumed that the additive noise can be modeled as a Gaussian distribution with
constant variance (ΣΣΣb = I). Except for section 6.2 where the behavior of the objective function for
different SNR levels is studied, in all the experiments of this chapter, Gaussian noise was added to
the sinogram (logarithm of the photon counts) so as to obtain a global 30 dB signal-to-noise ratio.

Sparse projection operators P0 and Q0 were computed and stored using an incremental CRS
scheme (Koster, 2002). Encoding of the sparse matrices and sparse matrix-dense vector products
was done in C++ using Albert-Jan N. Yzelman’s publicly available SparseLibrary 1. Parallelization
was performed in an elementary manner using the OpenMP R© library and the algorithm developed
in section 4.4 (Goussard et al., 2013).

Regularization function R(µ) consists of a L2 penalty applied to all first differences of µ over
first-order neighborhoods, with uniform and non-uniform weighting. Maximization of the resulting
criteria was performed using the L-BFGS algorithm from the quasi-Newton family. The justifica-
tions for these choices are given in chapter 3.

Experiments were performed on an Intel multi-threaded 12-core processor running Linux and
the Shepp-Logan phantom was used as numerical phantom. This is a standard test phantom which
is widely used in the litreature for evaluating the developed algorithms.

The figure of merit which was used in this work for evaluating the performance of the proposed
methods is the normalized distance to the exact solution. As already stated, using a quadratic
regularization function, this problem has a closed-form solution. Using the FFT technique, the
exact solution can be calculated using following expression:

µ̂µµ = F−1{PT
ΣΣΣP+λDT D}Fy (6.1)

where F and F−1 represent Fourier and inverse Fourier transform operations (discussed in sec-
tion 5.4).

Note that, in a 2D framework, computation of the exact solution is possible on current, PC-
type computers. This becomes impossible in 3D reconstruction due to the larger size of data.
Convergence speed is used to assess the behavior of optimization problem in this work. To do this,
the exact solution is used in polar coordinates (µ̂µµ(r,θ)). This is becasue, the value of µµµ in every
iteration is updated in polar coordinates and therefore calculating the normalized distance in same
coordinates avoid introducing interpolation errors in assessing quality of the results.

1Library and documentation available at http://people.cs.kuleuven.be/ albert-jan.yzelman/software.php.
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6.2 Noise level

We first study the behavior of this problem to different SNR levels to see if the pattern remains the
same. If it is the case, then we can fix the noise level and perform all the experiment with same
assumption and expect a similar behavior with different SNRs.

Figure 6.1 Convergence for uniform regularization with two different SNRs.

Fig.(6.1) shows the convergence plots for five different SNR levels (10-30 dB), when uniform
weighting is used for regularization. Looking at this figure we can see that the pattern remains the
same for all SNR values.

A similar behavior is seen in Fig.(6.2) when nonuniform weighting is used for regularization.
These results suggest that we can fix the SNR used for the experiments and expect a similar behav-

Figure 6.2 Convergence for nonuniform regularization with two different SNRs.
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ior. In the rest of this chapter the SNR will be set to 30dB.

6.3 Regularization Function

As discussed in section 4.5, it is not clear how the neighboring pixels need to be penalized when
the object is discretized in polar-coordinates. In this section, this question will be answered exper-
imentally through simulations. We will first study the effect of each type of penalty functions on
convergence and explore the quality of reconstructed images in each case. We will then proceed to
the next section where the performance of different type of preconditioners are studied.

(a)

(b) (c)

Figure 6.3 Regularization function performance: (a) L2 distance to the exact solution, (b) uniform
weighting, (c) nonuniform weighting.

Here, the maximum number of iterations for the L-BFGS algorithm is set to a high value (i.e.,
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1000) to study the convergence behavior of the two regularization functions. All other stopping
criteria which can be used for L-BFGS algorithm to terminate, are chosen such that the termination
is controlled by the maximum number of iterations, only.

Fig.(6.3a) shows the normalized distance to the exact solution when each type of regulariza-
tion functions have been used. The corresponding reconstructed images are presented in Fig.(6.3b)
and Fig.(6.3c). From Fig.(6.3a), one can see that when uniform weighting is used, the algorithm
converges significantly faster than the nonuniform case. The algorithm with nonuniform regular-
ization has not converged after 1000 iterations (Fig.(6.3c)). In using nonuniform weighting, pixels
are weighted by the inverse of their distance to the neighboring pixels and so a high weight is ap-
plied to those which are located closer to the center of image. This makes the convergence slower
for these pixels. This can be seen in (Fig.(6.3c)).

Using this experiment and the eigenvalue spectrum for each type of regularization functions(Fig.4.3)
we can conclude that using nonuniform regularization for polar discretization significantly deteri-
orate the condition number and the algorithm does not converge in absence of preconditioners.
However, this type of regularization is the one which is consistent with the physical meaning of the
penalty term.

Now, to evaluate the performance of the reconstructed image using uniform weighting, the
difference of the reconstructed image using this penalty function and the actual numerical phantom
is plotted in Fig.(6.4). Taking a close look at the center of the difference of the reconstructed

(a) (b)

Figure 6.4 Difference with actual phantom for uniform regularization: (a) complete image, (b)
smaller graphical window.
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image and the actual phantom (Fig6.4a) in Fig.(6.4b) we can see that there are some streak artifacts
present in the reconstructed image. This may be due to the approximations which are made by
using uniform weights. These streaks become more evident when SNR is high. In the other hand,
it was seen that this type of penalty function has a shorter reconstruction time, therefore, one
can try to further decrease the reconstruction time for this penalty term by designing appropriate
preconditioners.

6.4 Preconditioning

In this section performance of the different preconditioners designed in chapter 5 are evaluated. To
do this, we have first assessed the effect of additional approximations which have been made by
using incomplete Cholesky decomposition versus exact Cholesky decomposition in section 6.4.1
for the first approach. We will then discuss the parameters which are involved in designing precon-
ditioner using second approach (block-diaonalization of the normal matrix) in section 6.4.2.

6.4.1 Approach1: Block-diagonal approximation to the normal matrix

In chapter 5, three different preconditioners were designed by making block-diagonal approxima-
tion to the normal matrix. Moreover, it was seen than one can use a non-diagonal preconditioner
using exact or incomplete Cholesky decomposition.

In this section we are interested in comparing exact Cholesky and incomplete Cholesky precon-
ditioners, to study the gain achieved by making the sparse approximation when using incomplete
Cholesky decomposition and the associated reduction in the convergence speed. This study will be
done for the block-diagonal approximation to the normal matrix where exact Cholesky decomposi-
tion is also affordable for 2D problems. We will study the effect of approximations on convergence
when using the incomplete Cholesky decomposition.

As explained in section 5.3.2, the ϒ blocks are almost full. So, if one wants to use incom-
plete Cholesky decomposition, one will first need to make a sparse approximation to these blocks.
Fig.(6.5) shows the relationship between sparsity (density level) and the threshold value used for
keeping the largest elements when nonuniform weighting is used. One can see that for keeping
30% or less elements, the threshold (δ ) needs to be chosen to be in the range 10−7 ≤ δ ≤ 10−5. For
δ > 10−5 sparsity remains the same. This is because as already stated off-diagonal elements of ϒϒϒ

are very close to zero and their magnitude is significantly smaller than that of the diagonal enteries.
Here, the incomplete Cholesky preconditioners with three different sparsity levels equal to 0.3,

0.05 and 0.004 (thresholds are set to be 10−7, 10−6 and 10−5 respectively) have been used. These
values allow to study the effect of sparse approximations for a very loose case (0.3) to a strike case
(0.004). It is expected that number of iterations required for convergence increases with the sparsity
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Figure 6.5 Sparsity versus threshold.

level. The results are presented in Fig.(6.6). Here, the stopping criteria is the maximum number
of iterations which has been chosen to be 100. Moreover, the maximum number of calculations of
objective function and the gradient is set to the same number as the maximum number of iterations.
This allows to compare the efficiency of the preconditioners for same reconstruction time.

(a) (b)

Figure 6.6 Comparison between the performance of preconditioners from exact Cholesky decom-
position on block diagonal approximation to normal matrix and the incomplete Cholesky with 3
different sparsity level. Normalized distance to exact solution :(a) Convergence(iteration number),
(b) Convergence (reconstruction time)

In Fig.(6.6a), the normalized distance to the exact solution is plotted versus iteration numbers
for these preconditioners as well as the no preconditioning case. Both type of preconditioners have
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improved the convergence compared to when no preconditioner have been used. Comparing the
performance of exact Cholesky versus incomplete Cholesky-based preconditioners, one can see
that here exact Cholesky preconditioner and the incomplete Cholesky preconditioner behave very
similarly for sparsity levels of 30% and less. For the lowest density level (0.004), the incomplete
Cholesky preconditioner shows a slower convergence however the difference is not significant.
Another point which needs to be underlined here is that the number of iterations for the optimization
problem to converge is almost the same for all the preconditioners.

Now, to see the effect of sparsity on the reduction of time required per iteration, the normalized
distance to the exact solution for each preconditioner is plotted versus the CPU time in Fig.(6.6b).
One can observe that the reduction of time per iteration in sparse incomplete Cholesky precondi-
tioners is negligible and overall, the time required for the algorithm to stop is almost the same for
all the preconditioners. Moreover, comparing the normalized distance to the exact solution for each
preconditioner when it has been stopped, we can see that the exact Cholesky decomposition has the
smallest distance followed by the least sparse incomplete Cholesky preconditioner.

Consequently, we can conclude that if the sparsity level is chosen wisely, the reduction in the
convergence speed of the incomplete Cholesky preconditioner will be negligible and one can gain
up to 70% in the number of elements needed to be stored. One can then choose the preconditioner
with the smallest memory footprint which perform very similarly both time-wise and distance-wise.

Similar results were observed for uniform weighting regularization.

6.4.2 Approach 2: Block diagonalization of the normal matrix using FFT

In chapter 5, it was seen that considering the special structure of the normal matrix, one can block-
diagonalize this matrix using the FFT method. The inverse of this block-diagonalized matrix can
then be used for preconditioning purposes. The efficiency of the preconditioners designed using
this approach is to be verified experimentally in this section.

As it was discussed, storing the complete block-diagonal normal matrix (bdC) can become non-
affordable for practical cases such as 3D imaging and therefore some approximations to this matrix
are required. In this section, we will first discuss the sparsity level which will be used for designing
preconditioners and the sparse approximation method which perform better. We will then study
the effect of this sparse approximation on the properties of normal matrix. The performance of
preconditioners designed using this approach will then be compared.

6.4.2.1 Sparsity level

The sparsity level is chosen so as to obtain a good trade-off between the memory need for storing
these elements and the reconstruction time. Assume that the density level for the preconditioning
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matrix ΠΠΠ is defined as the ratio of the number of nonzero elements to the maximum number of
nonzero elements in the block diagonal normal matrix (K×K×N). We are interested in comparing
the performance of two preconditioners based on incomplete Cholesky decomposition with density
levels equal to twice and four times of that of the diagonal preconditioner proposed in section 5.4.1.
Choosing these density levels allows comparing the effect of having a more precise preconditioner
where the required memory footprint is still affordable.

For a realistic data size with 512× 512 pixels, a diagonal preconditioner will be 2.09 MB.
Sparse preconditioners with density level equal to twice and four times of that of diagonal will then
require 4.1MB and 8.4MB of memory, respectively. Increasing the number of non-zero elements
in preconditioner will not only increase the memory need, it will also affect the reconstruction time
per iteration and increase the time required for generating the approximated block-diagonal normal
matrix. Therefore, a preconditioner which can provide a good convergence speed with the least
memory footprint is sufficient.

6.4.2.2 Sparse approximation to bdCn: global or block-wise?

In section 5.4, the procedure for calculating the block-diagonalization of normal matrix was ex-
plained and the necessity of making sparse approximation to this matrix was discussed. Two meth-
ods were described in section 5.4.2.1 for making sparse approximation to normal matrix, global
and block-wise.

In this section, the goal is to choose which of these methods is more efficient when used as
preconditioner. This needs to be verified experimentally for making solid conclusion as there are
approximations involved. This experiment was done for both type of regularizations: nonuniform
and uniform weighting. Results will be discussed below.

Note that, according to Remark 5.4.2.1, in the computation of the incomplete Cholesky factors,
the diagonal values of each block may be increased by a factor of α in order to preserve positive-
definiteness. In the following, the value of α is chosen to be the minimum possible value which
makes the matrix of interest positive-definite.

For fair comparison of the performance of global and block-wise methods, thresholds need to
be chosen such that same sparsity level is achieved.

For both regularization function, two sparse preconditioners are used with sparsity level equal
to half and one forth of diagonal preconditioner. This corresponding to one half and one fourth of
diagonal preconditioners are respectively equal to 0.0078 and 0.0156.

Nonuniform weighting
Table(6.1) summarizes the parameters used in this experiment when nonuniform weighting is

used. The performance of these preconditioners is compared in Fig.(6.7). The preconditioner
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with lower sparsity level (higher density) has a better performance. This is because there are less
approximations made in designing the preconditioner at the cost of higher memory need (doubling
the number of stored elements).

Table 6.1 Nonuniform regularization: parameter values.

Method
Global Block-wise

Density=0.0078
δ 4.5×10−6 2×10−2

α 6×10−1 3×10−1

Density=0.0156
δ 1.8×10−6 5×10−4

α 1×10−3 1.2×10−1

One can see from these figures that the block-wise sparse approximation is performing better
than the global method for both sparsity levels. Therefore, we can conclude that preconditioners

Figure 6.7 Nonuniform weighting, comparison of the performance of the global and block-wise
sparse approximations.

with the block-wise sparse approximation are more effective than the global method, when nonuni-
form weighting is used for regularization.

Uniform weighting
In order to check the consistency of the results, the above experiments were repeated in the case

of uniform weighting. Table(6.2) summarizes the parameters used for this experiment.
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Fig.(6.8) illustrates the performance of these preconditioners. For the first sparsity level (density=
0.0078), it is clear that the block-wise method is performing better. However, for the second spar-
sity level, neither approach shows any clear advantage.

Table 6.2 Uniform regularization: parameter values.

Method
Global Block-wise

Density=0.0078
δ 6.5×10−6 1.5×10−1

α 6×10−1 1.5

Density=0.0156
δ 3×10−2 8×10−2

α 0 8×10−1

The reason may be that for global method the sparse matrices are positive-definite and diagonally
dominant, so there is no need to introduce additional approximations by using α , as opposed to the
block-wise case.

Figure 6.8 Uniform weighting, Comparison of the performance of the global and block-wise sparse
approximation as preconditioner.

To summarize, the experiments with both regularization geometry suggests that in most of the
cases, the block-wise approximation performs better and therefore this method will be used for
designing the preconditioners.



66

6.4.2.3 Sparsity versus threshold

In section 6.4.2.2 it was seen that in most of the cases, preconditioning using incomplete Cholesky
performs better when using block-wise method for making sparse approximation to block-diagonalized
normal matrix. Fig.(6.9) shows the relationship between the threshold and the sparsity level for both

(a) (b)

Figure 6.9 Sparsity level for different thresholds: (a) Uniform, and (b) Nonuniform weighting

uniform and nonuniform regularization and for four different image sizes. These charts can be used
to choose the values of δ for the desired sparsity levels.

6.4.2.4 Incomplete Cholesky decomposition and the effect of α

Sparse approximation to the block-diagonalized normal matrix (bdC) can destroy its positive-
definite property for some thresholds. However, to be able to use the incomplete Cholesky for
designing appropriate preconditioner the sparse approximated matrix needs to be positive-definite.
For such cases, using the discussion in section 2.4.2.2, αdiag{diag{bdC̃}} can be added to bdC̃.
This makes the matrix diagonally dominant.

If the approximated normal matrix is close to become nonpositive-definite, although there is
mathematically no problem in calculating the incomplete Cholesky factor, the preconditioner will
not work efficiently and the convergence can become very slow. One example of such cases is
plotted in Fig.(6.10). Here, the regularization type is uniform weighting and the block-wise method
is used for the sparse approximation. The desired density level is 0.0078.

By adding αdiag{diag{bdC̃}}, we make an additional approximation but we improve the con-
vergence considerably. This is verified in Fig.6.11, with using α = 1.5. Comparing Fig.(6.10a)
with Fig.(6.11a), we can see that the circular artifacts are removed and the convergence have been
improved effectively.
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(a) (b)

Figure 6.10 Effect of having preconditioner,ΠΠΠ−1 = bdC̃, with bdC̃ close to becoming nonpositive-
definite: (a) Reconstructed image, (b) Convergence.

(a) (b)

Figure 6.11 Correcting the nonpositive-definite problem using α: (a) Reconstructed image, (b)
Convergence.

Once the minimum value of α has been determined, it is interesting to see if further increasing
the value of α affects the convergence. To do this, the above experiment has been repeated for 5
different values of α . The results are presented in Fig.(6.12). We can see here that increasing α

improves the convergence. However, there is a certain limit for increasing α , and for α greater
than this limit, no more improvement is observed. This can also be seen in Fig.(6.12) for α ≥
9. Consequently, the optimal value of α needs to be found experimentally. It should be noted
that the parameter α is dependent on several factors, which include: the type of regularization,
regularization parameter (λ ), the sparsity level and the image size. Moreove, increasing α has no
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Figure 6.12 Effect of α in performance of preconditioners (incomplete Cholesky decomposition
with block-wise sparse approximation).

cost, so it is rational to find the optimal value for this parameter to get the best possible performance
of each preconditioner at desired sparsity level. We now provide more details about the proper
choice of α for nonuniform and uniform weighting.

Nonuniform weighting
Fig.(6.13) shows the performance of each preconditioner for different values of α by comparing

their normalized distance to the exact solution. The block-wise method has been used for making
a sparse approximation to bdC. We can see that the performance of preconditioners have improved
by increasing the value of α . For the density level of 0.0078, the optimal value for α is 6 as no
more improvement is observed when this parameter is further increased (6.13a). For the density
level=0.0156, Fig.(6.13b) shows the optimal α to be 0.5.

Uniform weighting
Fig.(6.14a) and (6.14b) show the performance of each preconditioner for different values of α

by comparing their normalized distance to the exact solution for density levels 0.0078 and 0.0156,
respectively. Similarly to nonuniform weighting, the block-wise method has been used for making
the sparse approximations.

Here, the optimal value of α for both sparsity levels is found to be 3,
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(a) (b)

Figure 6.13 Nonuniform weighting, Comparison of the performance of preconditioners for different
α using block-wise sparse approximation: (a) density=0.0078 , (b) density=0.0156, i.e., the number
in the parenthesis in legend is α used for each experiment.

(a) (b)

Figure 6.14 Uniform weighting, Comparison of the performance of preconditioners for different α

using block-wise sparse approximation: (a) density= 0.0078, (b) density= 0.0156,i.e., the number
in the parenthesis in legend is α used for each experiment.

6.4.2.5 Performance of preconditioners for approach 2

In this section performance of three preconditioners obtained using block-diagonalization of normal
matrix (bdC) will be compared. This include diagonal preconditioner introduced in section 5.4.1
and the two sparse preconditioners using incomplete Cholesky decomposition discussed in sec-
tion 5.4.2. The number of nonzero elements stored and used for each preconditioner is as follow-
ing:
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• Diagonal Preconditioner: K×N = 262,144 elements, or 2.1 MB

• Sparse approximation, density=0.0078: 2×262,144 elements, 4.2 MB

• Sparse approximation, density=0.0156: 4×262,144 elements, 8.4 MB

The parameters which were used for incomplete Cholesky-based preconditioners were found ex-
perimentally and are listed in Table 6.3 below:

Table 6.3 Parameters for FFT-based preconditioners (Image size: 512× 512, Phantom: Shepp-
Logan, Regularization: L2, Noise model: Gaussian, SNR= 30dB)

Regularization
Uniform weighting Nonuniform weighting

] nonzero elements stored
2×KN

δ 1.5×10−1 2×10−2

α 3 6

4×KN
δ 8×10−2 5×10−4

α 3 0.5

Note again that, based on the results obtained in section 6.4.2.2 block-wise method has been
used for making the sparse approximation to bdC.

To study the effect of additional approximations made by using incomplete Cholesky decom-
position, preconditioner using the exact Cholesky decomposition has also been included in the
experiment for each of the sparse preconditioners. These types will never be used in practical use.
This is because, as already discussed, exact Cholesky decomposition destroys the sparsity of block
(ΠΠΠi) and has the same cost as saving the complete bdC.

Nonuniform weighting
Fig.(6.15) shows the performance of the three preconditioners under investigation and of the

exact Cholesky of the sparse preconditioners. From these plots we can see that preconditioners
obtained using the FFT method are quite efficient and improve the convergence considerably.

Moreover, in this figure we can see that just as we expected, the performance of precondition-
ers with exact Cholesky are better than their incomplete Cholesky counterpart. This is reasonable
because we are making some approximation by using the incomplete Cholesky decomposition.
However, one can also observe that using this approximation, the performance is still good. Con-
sidering the gain achieved in terms of memory need, when incomplete Cholesky is used (4.2 and
8.4MB for incomplete Cholesky versus 268MB for exact Cholesky), and the small decrease in
convergence speed, this method will be used practically.
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(a) (b)

Figure 6.15 Nonuniform regularization, FFT-based preconditioners performance: (a) Convergence,
(b) reconstruction time

This figure also shows that the performance of the preconditioners increase as their sparsity
levels decrease. This can also be mathematically justified as the approximations decrease by in-
creasing the density level. Therefore, the sparsity level can be chosen based on the size of problem,
maximum reconstruction time allowed, the available memory and the desired quality of the recon-
struction.

Note that the diagonal preconditioner is showing a good performance considering its low mem-
ory need. It is also showing a better performance than the sparse preconditioner for first few itera-
tion. For some applications (with loose restrictions on reconstruction time), diagonal precondition-
ers can be efficient enough.

Uniform weighting
Similarly to nonuniform regularization, performance of the FFT-based preconditioners are com-

pared when uniform weighting is used for regularization. Fig.(6.16a) shows how the normalized
distance to the exact solution decreases as a function of the number of iterations and as a function
of CPU time for each preconditioner. To study the efficiency of preconditioning for this type of
regularization, one can compare the number of iterations required to decrease the normalized dis-
tance to 0.08 for each experiment as a typical case. For no preconditioning 80 iterations is required
whereas using preconditioner this can reduce to 20 which mean 4-times reduction in time.

It was shown that for uniform weighting the deterioration of the condition number is not as
severe as the nonuniform weighting. Therefore, even without using any preconditioners the prob-
lem will eventually converge if maximum number of iterations is set to a large value. This means
that the benefit of preconditioning for uniform weighting is not as important as with nonuniform
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(a) (b)

Figure 6.16 Uniform regularization, FFT-based preconditioners performance: (a) Convergence, (b)
reconstruction time

weighting.

6.4.3 Global comparison of the preconditioners

In this section performance of different preconditioners designed in this work is compared for each
type of regularization function used. The effect of preconditioning on the improvement of the
eigenvalue spectrum of the normal matrix will then be studied in section 6.4.3.1. The efficiency
of the designed preconditioners will then be validated by using different SNR levels and different
noise model for the measured data in sections 6.4.3.2 and 6.4.3.3, respectively.

Nonuniform weighting
Fig.(6.17a) shows the performance of 7 different preconditioners when nonuniform regulariza-

tion has been used. It can be observed that FFT-based preconditioners are performing considerably
better than the ones obtained by block-diagonal approximation to the normal matrix. Moreover,
we can see that preconditioners of the first approach are not efficient and so the problem does not
converge even with the preconditioners used. This can also be seen by comparing the reconstructed
images in Fig.(6.19). This is because using nonuniform regularization will further deteriorate the
condition number so that a more accurate preconditioner is required to correct the condition number
and improve the convergence.

This problem has been well addressed by using FFT-based preconditioners. This is verified in
Fig.(6.17) and also on the reconstructed images using such type of preconditioners (Fig.(6.19f),
Fig.(6.19g) and Fig.(6.19h). In Fig.(6.17) we can see that using FFT-based preconditioners conver-
gence speed has been improved significantly and the optimization problem converges in about 15
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(a) (b)

Figure 6.17 Nonuniform Regularization: Performance of preconditioners, (a) Convergence, (b)
reconstruction time.

iterations.
To compare the complexity of each method per iteration, the normalized distance to exact solu-

tion is plotted versus CPU time in Fig.(6.17b). Using this figure we can compare the reconstruction
time with each type of preconditioner to make a valid conclusion.

Fig.(6.17b) demonstrates that the additional complexity of the Cholesky preconditioner (for the
first approach) and incomplete Cholesky preconditioner (in the second approach) is negligible and
that the best trade-off is provided by FFT-based preconditioners.

Uniform weighting
The same experiment was repeated using uniform weighing. Fig.(6.18a) compares the conver-

gence when each of the proposed preconditioners is used.
It can be observed that diagonal preconditioning based on inverse of QT

0 Q0 is not useful. The
other preconditioners improve convergence. The improvement is low for preconditioning based
on the diagonal values of QT

0 Q0 and Cholesky decomposition of this block, but the preconditioner
based on pixel size and the FFT-based preconditioners ones are found to be efficient.

Here, it should be noted that Fig.(6.18a) suggests that all the FFT-based preconditioners are be-
having in a very similar manner with the diagonal one being the most efficient. Fig.(6.18b) proves
that considering the reconstruction time, improvement in convergence is larger in the sparse incom-
plete Cholesky preconditioners compared to the diagonal preconditioner with better convergence
for the one with higher density level. Overall, from these figures we can conclude that precondi-
tioning based on pixel size is also efficient when using uniform weighting for regularization. If one
can pay more in terms of memory, further reduction in reconstruction time can be achieved.
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(a) (b)

Figure 6.18 Uniform Regularization: Performance of preconditioners, (a) Convergence, (b) recon-
struction time.

The reconstructed images using each of these preconditioners are shown in Fig.(6.20). One can
see that preconditioning using the diagonal of the inverse of ϒϒϒ is not useful as the reconstruction
problem has not converged.

As it was discussed in chapter 4, using uniform weighting does not deteriorate the condition
number as much as the nonuniform weighting does. Therefore, preconditioning is not as essential
as the nonuniform case. This means that the problem may converge even without having precondi-
tioner however using preconditioners, speed of convergence can be further increased.
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(a) (b)

(c)

(f)

(d)

(g)

(e)

(h)

Figure 6.19 Nonuniform regularization-Reconstructed images with: (a) No preconditioner, Precon-
ditioning based on: (b) Pixel sizes, (c) Diagonal of QT

0 Q0, (d) Diagonal of (QT
0 Q0)−1, (e) Cholesky

decomposition on QT
0 Q0, (f) Diagonal of bdC, (g) Incomplete Cholesky on bdC with density level

0.0078, (h) Incomplete Cholesky on bdC with density level 0.0156.
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(a) (b)

(c)

(f)

(d)

(g)

(e)

(h)

Figure 6.20 Uniform regularization- Reconstructed images with: (a) No preconditioner, Precondi-
tioning based on: (b) Pixel sizes, (c) Diagonal of QT

0 Q0, (d) Diagonal of (QT
0 Q0)−1, (e) Cholesky

decomposition on QT
0 Q0, (f) Diagonal of bdC, (g) Incomplete Cholesky on bdC with density level

0.0078, (h) Incomplete Cholesky on bdC with density level 0.0156.
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6.4.3.1 Preconditioners and their effect on the eigenvalue spectrum

In the previous section, the performance of the preconditioners were studied by plotting the con-
vergence curves versus iteration number and CPU time and it was concluded the the FFT based
preconditioners are efficient in improving the convergence. In this section, the effect of precondi-
tioning and how they affect the eigenvalue spectrum of the normal matrix is studied. To do this
the magnitude of the eigenvalues is plotted for the new normal matrix: ΠΠΠT{PT P+λDT D}ΠΠΠ when
each preconditioner is used.

Fig.(6.21a) shows the eigenvalue spectrum for different preconditioners when uniform weight-
ing is used. The efficiency of the preconditioners can be compared by looking at how they are
spread in each case. For preconditioners designed using the first approach, Cholesky-based pre-
conditioner has the best performance. The efficiency of FFT-based preconditioners is evident in
this figure. This is because as can be seen in Fig.(6.21a) using these preconditioners the range
at the which the magnitude of the eigenvalues are spread has significantly decreased. Similarly to
what has been observed in previous sections, the diagonal preconditioner from the second approach
is performing better than the other preconditioners.

A similar behaviour is seen in Fig.(6.21b) for nonuniform weighting with better performance
for FFT-based preconditioners. For this case looking at the eigenvalue spectrum when no precon-
ditioner has been used, we can see that the eigenvalues are spread on a wider range compared
to the uniform case. Again, Cholesky-based preconditioner has the best performance among the
preconditioners which have been designed using the first approach. This is consistent with the re-
sults obtained in previous sections. FFT-based preconditioners show a significant improvement in

(a) (b)

Figure 6.21 Efficiency of preconditioners for improving the eigenvalue spectrum (a) Uniform reg-
ularization, (b) Nonuniform regularization (SNR=30dB, λ = 2).
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both decreasing the condition number and the range in which the magnitude of the eigenvalues are
spread.

6.4.3.2 Sensitivity to the noise level

To study the performance of these preconditioners for different SNR levels, this experiment was
repeated for SNR of 25 and 35 dB. By doing this we can compare if the same pattern of convergence
is observed and the preconditioners which were concluded to be efficient for SNR= 30dB remain
useful. Making a general conclusion on the obtained results will then be possible. This is done for
completeness of the study on the performance of the designed preconditioners.

The optimal values of parameters δ and α were found experimentally and are summarized in
Table 6.4.

Table 6.4 Parameters for FFT-based preconditioners (image size: 512× 512, phantom: Shepp-
Logan, regularization: L2, noise model: Gaussian, SNR= 25dB and SNR= 35dB)

Noise level PC
Regularization

Uniform weighting Nonuniform weighting

SNR= 25dB
2×KN

δ 0.18 0.008
α 3 6

4×KN
δ 0.07 0.0002
α 2 1

SNR= 35dB
2×KN

δ 0.01 0.04
α 3 6

4×KN
δ 0.006 0.0005
α 2 3

Nonuniform weighting
Fig(6.22) shows the performance of preconditioners with nonuniform regularization and SNR=

25dB. Comparision with Fig.(6.17) shows that the convergence patterns are similar for the two SNR
values.It should be noted here that although the noise level has increased FFT-based precondition-
ers improve convergence significantly, and the number of iterations required to converge remain
comparable to those of the 30dB case. A similar behavior is seen for SNR= 35dB in Fig.(6.23).

Uniform weighting
Fig(6.24) shows the performance of preconditioners when uniform regularization have been

used and SNR= 25dB. The pattern of convergence for preconditioners are similar to those seen
for SNR= 30dB in Fig.(6.18). Again, we can see that the preconditioner based on pixel size from
the first approach has a good performance when uniform regularization have been used. Indeed,
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(a) (b)

Figure 6.22 Nonuniform Regularization, SNR=25dB: Performance of preconditioners, (a) Conver-
gence, (b) reconstruction time.

(a) (b)

Figure 6.23 Nonuniform Regularization, SNR=35dB: Performance of preconditioners, (a) Conver-
gence, (b) reconstruction time.

in Fig.(6.24b), one can see that the performance of this preconditioner is better than that of di-
agonal preconditioning in the Fourier domain and is very similar to that of incomplete Cholesky
decomposition with 2KN nonzero elements. The fastest convergence corresponds to the incomplete
Cholesky decomposition with the largest number of non-zero elements.
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(a) (b)

Figure 6.24 Uniform Regularization, SNR=25dB: Performance of preconditioners, (a) Conver-
gence, (b) reconstruction time.

6.4.3.3 Sensitivity to the noise model

Considering the quantum nature of photons, the noise which is usually added to the sinogram is a
mix of Gaussian and Poisson noise. Here, to study if these preconditioners remain efficient when
the noise added to the sinogram has Gaussian distribution with variance dependent on the photon
counts, the experiment is repeated when this model is used for the additive noise. Note that here, ΣΣΣ,

(a) (b)

Figure 6.25 Nonuniform Regularization, SNR=30dB: Performance of preconditioners, (a) Conver-
gence, (b) reconstruction time.

the matrix which appears in (3.1) was set to identity; this allows using the preconditioners designed
in this work.
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Fig.(6.26) and Fig.(6.25) show the performance of preconditioners when nonuniform and uni-
form regularization is used respectively. From these figures we can see that the convergence pat-
terns are similar to what was observed when the additive noise was Gaussian. This proves that the
designed preconditioners are efficient for both models of noise added to the projection data.

(a) (b)

Figure 6.26 Uniform Regularization, SNR=30dB: Performance of preconditioners, (a) Conver-
gence, (b) reconstruction time.

6.4.4 Image quality: uniform or nonuniform weighting?

In this section, the quality of images reconstructed using either type of penalty function will be
compared. The best preconditioner which was designed and studied in the previous section will be
used for comparing the images (Fig.(6.28)). In both methods, it was seen that FFT-based incomplete
Cholesky decomposition with the highest number of elements overtake the rest in terms of number
of iterations required to get to the same distance to exact solution.

Now, to compare the quality of reconstructed images when each type of regularization functions
is used, we take a closer look at the center of reconstructed images where convergence is the
slowest in polar discretization. Fig.(6.28) shows the difference between the recosntructed images
and the actual phantom. One can see in this figure that for uniform weighting, there are some streak
artifacts in the center. This can be attributed to the approximation to the gradient which has been
made by using uniform weighting. These artifacts are removed when nonuniform weighing has
been used(Fig.(6.28b)).

One quantitative indicator which can be used for comparing the quality of reconstructed images
is the root mean square error (RMSE), which is the quadratic norm of the difference the recon-
structed image and the actual phantom. It can be expressed as follows:
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(a) (b)

Figure 6.27 Reconstructions obtained :(a) uniform weighting, (b) nonuniform weighting
(SNR=30dB).

(a) (b)

Figure 6.28 Comparison of image quality for:(a) uniform weighting, (b) nonuniform weighting
(SNR=30dB).

RMSE =

√√√√ 1
Np

Np

∑
i=1

(µ(i)−µtrue(i))2 (6.2)

where µtrue represents the actual phantom. This is calculated for both uniform and nonuniform
regularization functions. The RMSE is found to be 0.0125 and 0.0144. This shows that the error
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is very similar for both types of weighting with a slight advantage for the uniform case. However
it should be noted that the RMSE does not fully capture the complexity of assessing the quality of
reconstructions. This is evident by looking at the reconstructed images in Fig.(6.28). Therefore,
further study of the performance of this type of discretization and more complete validation of this
technique are required.

6.5 Conclusion

In this chapter it was seen that although using polar grid discretization deteriorates the condition
number of the normal matrix, this problem can be addressed by designing appropriate precondi-
tioners.

Using the uniform weighting in regularization function, the deterioration of the condition num-
ber is not as severe as for nonuniform weighting. However, the use of nonuniform weighting is
consistent with the definition of penalty term and so is a better numerical approximation to the gra-
dient. In this work, the eigenvalue spectrum of the normal matrix for both types of weighting were
improved by designing efficient preconditioners. This resulted in faster convergence of iterative
methods.

In section 6.4.3.2, consistency of results was proved for different SNR levels and section 6.4.3.3
shows that the preconditioners remain efficient when the noise in the projection data has the Poisson
distibution. Therefore it is possible to list the preconditioners based on their performance from the
most efficient to the least.

Using numerical simulations, it was observed that FFT-based preconditioners show a significant
improvement for both type of regularizations compared to those designed in spatial domain. Us-
ing preconditioners from the incomplete Cholesky decomposition in the Fourier domain, a further
improvement can be achieved at the cost of a larger memory footprint.

Quantitative indicators used in section 6.4.4 show that despite having lower distance to the exact
solution for nonuniform case RMSE is slightly smaller for uniform regularization. Performance and
efficiency of this technique needs to be further explored in future works.
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CHAPTER 7

CONCLUSION

7.1 Summary of work

The objective of this work was to develop efficient tools which allow reconstruction of medical
size images in X-ray tomography. These tools were developed in the framework of solving an
optimization problem using iterative methods for reconstructing the object.

To do this, polar coordinates is used for discretizing the object. Using this type of representation
for the object introduces a large redundancy in the coefficients of projection matrix and leads to a
significant reduction in the memory need. However using this type of representation raises several
questions which include: possibility of efficient implementation of projection and backprojection
operations, conditioning of reconstruction problem, derivation of penalty functions consistent with
the polar discretization scheme and actual quality of reconstructions results. These questions were
addressed in this work.

This was done by using a simple 2D framework, a quadratic (L2) penalty term and a Gaussian
noise model with uniform variance (ΣΣΣ = I).

In chapter 4 it was shown that when the object is discretized in polar coordinates, the projection
matrix (P) has a BC structure and can be represented by a partial projection operation limited to
one projection angle. This property yields easy parallel implementation of the projection operation
by using a circular shift on the object and by treating each projection independently. In addition
this property can be further used to obtain a BC structure for the PT which can be exploited for
parallelizing the backprojection operation. Therefore, it was proved that using polar discretization,
the projection and backprojection operations can be implemented efficiently using parallelization
techniques.

Using polar tessellation for discretizing the object introduces size-varying pixels which will
affect the conditioning of the reconstruction problem and decreases the convergence speed of nu-
merical methods. Deterioration of the the condition number of reconstruction problem becomes
more severe when nonuniform weighting is used for the regularization function.

To address the conditioning problem discussed above, several preconditioners were designed
using the BC structure of the normal matrix. These preconditioners were designed using two dif-
ferent approaches, one by making a block-diagonal approximation to the normal matrix and one
by block diagonalizing the normal matrix using FFT techniques. In designing these precondition-
ers, it was seen that there is always a trade-off between the efficiency of preconditioners in terms of



85

increase in the convergence speed and the memory requirement. Diagonal and Cholesky-based pre-
conditioners were designed for each case and their efficiency was tested using several experiments
with realistic data size. Different SNRs and noise models were used for projection data to evalu-
ate the performance of these preconditioners. The results in chapter 6 verified their efficiency and
showed that FFT-based preconditioners perform significantly better in increasing the convergence
speed.

For comparing the quality of reconstruction using uniform and nonuniform weighting, we used
the reconstructed images obtained with the best performing preconditioner designed in this work
and both types of regularization functions. The RMSE of these reconstructed images was then
calculated for each case. Results show that the root mean square in both methods are similar
however visually the one using nonuniform weighting is showing a better quality. A more accurate
indicator which can captures the complexity of assessing the quality of reconstructed image needs
to be found for this type of comparison.

To conclude, it was seen that representing the object in a polar coordinate system for 2D CT
reconstruction presents appealing characteristics: low memory requirements, simple structure, easy
computation of the projection operator, straightforward parallelization of the projection and back-
projection operations. Using appropriate preconditioners the convergence speed of the numerical
methods can be sufficiently increased. Therefore, the polar representation can be viewed as an
interesting alternative to standard Cartesian representations.

7.2 Limitation of the proposed solution

In this work noise was modeled as Gaussian with uniform variance by setting ΣΣΣb = I in the objective
function. The normal matrix has a BC structure for this model of noise. This property has been used
in designing preconditioners. However, according to the work of (Sauer et Bouman, 1993), a better
model for the quantum noise is to use Poisson noise and choose ΣΣΣb as shown in (2.7). Using this
model for ΣΣΣb will destroy the BC property as the noise variance of photons become non-uniform.
To overcome this, one alternative is to use some approximation to ΣΣΣb in (2.7) by averaging. Assume
that ΣΣΣb can be written as a block-diagonal matrix with diagonal blocks equal to ΣΣΣi

b, where 1≤ i≤N

represents the block number, then we can find ΣΣΣx with identical diagnoal blocks as below:

ΣΣΣx =


ΣΣΣa

ΣΣΣa
. . .

ΣΣΣa

 (7.1a)
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and

ΣΣΣa( j, j) =
1
N

N

∑
i=1

ΣΣΣ
i
b( j, j), j = 1,2, . . . ,K (7.1b)

This new ΣΣΣ will preserve the BC property of the normal matrix as all the diagonal blocks are
identical. The efficiency of this algorithm needs to be tested experimentally.

7.3 Proposed future work

The results obtained in this work can be used to develop an algorithm for 3D reconstruction of
tomography images. Cylindrical coordinates can be used for this purpose. The efficiency of the
techniques developed in this work will be more evident when used for 3D reconstruction.

The current work can also be used and expanded to the polychromatic model. It is known that
for either of the models, polychromatic or monochromatic, the key problem which is performing
the projection and backprojection at every iteration, remains the same. Therefore, the algorithm
developed in this work to parallelize these operations efficiently can be taken advantage of and
used with the polychromatic model.

Another issues which remains to be studied as future work is how to adopt this work to non-
quadratic regularization functions. Using L2L1 as an example of this family of regularization, one
can highly benefit from their edge-preserving property.
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APPENDIX A

METHODS FOR CALCULATION OF THE SYSTEM MATRIX

Pixel-driven, ray-driven and distance-driven are three methods used for generating the projection
and backprojection operators. Below a brief explanation on how each method works and its advan-
tages and disadvantages are provided:

Backprojection operator is generated in pixel-driven method by connecting the line integral
from the focal spot of source to detector such that it passes through the center of the pixel of interest.
The pixel value will then be calculated by interpolation and applying some weighting factors. The
limiting factor in this method is that, detectors need to be regularly spaced. Moreover, the high
computation complexity involved in this method, requires special hardware implementation and
consequently in general purpose microprocessors results in poor performance (De Man et Basu,
2004).

In Ray-driven method, projection operation is calculated by connecting a line from source to
center of detector of interest. Image is then reconstructed by finding the contribution of each ray
line with each pixel. This method is easy to be used however, suffers from introducing artifact in
backprojection and having non-sequential memory pattern access (Zeng et Gullberg, 1993; Zhuang
et al., 1994).

The artifacts induced by both methods is due to the numerical operations and approximations
involved in implementing the forward and back projections and is more crucial in iterative methods
as it involves repetition of these operations in every iteration. The accuracy of these methods can
be improved by choosing a good interpolation technique or by increasing the number of ray-paths
traced per projection beam, dividing each pixel to a number of smaller sub-pixel and then projecting
each sub-pixel, and by using circular projections instead of square based projection pixels (Zhuang
et al., 1994).

(De Man et Basu, 2002) introduced distance-driven method for 2D image reconstruction. This
method works by mapping the detector array and the image row/column onto each other along the
directions of a common line and then performs a kernel operation over all boundaries. Here the
main loop is over the common line of interception rather than the image pixels or detector cells,
which makes the calculations fast. (De Man et Basu, 2002) also showed that this method reconcile
the advantages of the two common methods, sequential memory access of pixel-driven and low
arithmetic cost of ray-driven which makes it suitable for hardware implementation, and avoids the
artifacts-inducing approximation made by them however, it is more complex. This is because, in
this method the exact length of overlap is used instead of regular interpolation kernel used in the
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other two methods.
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APPENDIX B

SOME NUMERICAL METHODS FOR IMAGE RECONSTRUCTION

B.1 Gradient-based Methods

Gradient-based methods are of interest for solving large problems because of their linear conver-
gence property and being able to be adapted to nonlinear optimization problems. In this methods,
Given a starting point x0 ∈ Rn, each iteration follows the relationship below:

xk+1 = xk +αkDk∇ f (xk) (B.1)

Here, Dk is a symmetric positive-definite matrix and α , a positive scalar, is called the step length.
Defining the vector of direction to be pk = Dk∇ f (xk), a decent direction is the one which satisfies
∇ f (xk)T pk < 0.

B.1.1 Steepest descent

The most obvious choice for search direction is to choose the pk =−∇ f (xk). This simply means:

Dk = I, k = 0,1, . . . ,

where I is the n×n identity matrix. Equation(B.1) will then reduce to:

xk+1 = xk +αk∇ f (xk) (B.2)

The advantage of this method is that it only needs to calculate the gradient ∇ f (xk) and not the
second derivatives.

The main disadvantage of steepest descent method is that it can be extremely slow in solving
hard problems. Fig(B.1) is taken from the Chapter 3 of (Nocedal et Wright, 1999). One can see
from this figure that using this method, problem iterates toward solution in a zigzag format.

This is because according to Theorem 3.3 of (Nocedal et Wright, 1999), as the condition num-
ber (the ratio of the largest eigenvalue to the smallest eigenvalue) increases, the contours of the
cost function becomes "elongated". Knowing that the gradient direction is almost orthogonal to
direction that leads to the minimum, this will cause the zigzag behavior of iterations to be more
evident and consequently decreases the convergence.
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Figure B.1 Steepest descent steps, c©(Nocedal et Wright, 1999)

B.1.2 Linear Conjugate Gradient

This method is used for solving problems with positive-definite coefficients. It is known to be
an alternative to Gaussian elimination for large size problems and performs faster than the steep-
est descent method. The main advantage of this method is that no matrix storage is involved in
performing iterations.

The name comes from the fact that a set of conjugate vectors are used as direction of descent,
for obtaining the solution. The special property of this method is that one only needs the previous
vector pk−1 to compute a new vector pk and each vector will be automatically conjugate to all pre-
vious vectors. The algorithm for computing the solution using this method is given below (Nocedal
et Wright, 1999):

Algorithm B.1.2
For a linear system of equations Ax = b
Choose an initial value x0,
Calculate the residual: r0 = Ax0−b, p0 =−r0, k = 0;
while rk 6= 0

αk = rT
k rk

pT
k Apk

xk+1 = xk +αkpk
rk+1 = rk +αkApk

βk+1 = rT
k+1rk+1

rT
k rk

pk+1 =−rk+1 +βk+1pk
k = k +1

end(while)

One should note that for large size problems calculating the exact minimum is sometimes im-
practical and some stopping tolerance will be chosen for the algorithm to terminate. The general



96

idea of CG has been discussed here, one can refer to pg. 169, Chapter 7 of (Nocedal et Wright,
1999) for the extension of this algorithm for large size problems.

B.1.3 Preconditioned Conjugate Gradient

Performance of linear CG method is highly dependent on the conditioning of the problem. As a
result in practice, this method is usually used with an appropriate preconditioner which corrects the
conditioning of the problem and improves the convergence significantly. Preconditioner may be
applied to CG method, according to Algorithm B.1.3, (Nocedal et Wright, 1999):

Algorithm B.1.3
For a linear system of equations Ax = b
Choose an initial value x0, and a preconditioner M
Calculate the residual: r0 = Ax0−b
Solve My0 = r0 for y0, Set p0 =−y0, k = 0;
while rk 6= 0

αk = rT
k yk

pT
k Apk

xk+1 = xk +αkpk
rk+1 = rk +αkApk

Solve Myk+1 = rk+1

βk+1 = rT
k+1yk+1

rT
k yk

pk+1 =−yk+1 +βk+1pk
k = k +1

end(while)

B.1.4 Nonlinear Conjugate Gradient

For problems with non-quadratic objective function, one can not use the linear conjugate gradient
method. In such cases, Nonlinear Conjugate Gradient (NL-CG) can be used. There are different
types of NL-CG introduced in the literature which their difference is basically in how they choose
βk for obtaining the new conjugate vector which specifies the direction of descent. The three best
known methods for choosing β are:

• Fletcher-Reeves (FR)

• Polak-Ribière (PR)

• Hestenes-Stiefel (HS)

This method is very similar to the linear version except for changes in calculation of the step
length α , and residual which is the gradient of nonlinear function in this case. Following Algorithm



97

shows how this method works for nonlinear optimization when Fletcher-Reeves (FR) method have
been used (Nocedal et Wright, 1999):

Algorithm B.1.4
Choose an initial value x0
Evaluate f0 = f (x0),∇ f0 = ∇ f (x0)
Set p0 =−∇ f0, k = 0;
while ∇ fk 6= 0

Compute αk and set xk+1 = xk +αkpk

Evaluate ∇ fk+1;

β FR
k+1 = ∇ f T

k+1∇ fk+1

∇ f T
k ∇ fk

pk+1 =−∇ fk+1 +β FR
k+1pk

k = k +1
end(while)

This algorithm is identical to that of linear conjugate gradient B.1.2, if f is chosen to be
quadratic and αk is the exact minimizer(∇ f T

k pk−1 = 0). If the line search which will be used to
calculate the αk satisfies the strong Wolf conditions (Nocedal et Wright, 1999), it is guaranteed that
the all directions pk are descent directions and minimize f .

Below, formulas for calculating βk+1 in PR and HS are given. As explained for FR, these are
all identical to their linear counterpart if above conditions are met.

β
PR
k+1 =

∇ f T
k+1(∇ fk+1−∇ fk)
‖∇ fk‖2 , β

HS
k+1 =

∇ f T
k+1(∇ fk+1−∇ fk)

(∇ fk+1−∇ fk)T pk
(B.3)

Comparing these methods, PR and HS have been seen to perform similar, both theoretically and
practically, however PR outperforms FR. This is because in PR, a restart is performed if a bad
direction is detected. This is not the case for FR and if the initial value is not chosen properly,
this method can perform poorly. PR+ is an extension of PR to guarantees the descent direction.
One can refer to Chapter 5 of (Nocedal et Wright, 1999) for more discussion on different formulas
proposed for calculating βk+1.

B.2 Quasi-Newton Method

As discussed in 2.4.1, beside all the advantages of conjugate gradient method, this method does not
guarantee the non-negativity-constraint required for medical images. Moreover, the convergence
of this method is linear and for hard problems where the condition number is usually large, an
appropriate preconditioner is required to preserve the convergence property of this method. One
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alternative, is to use L-BFGS-B from Quasi-Newton family to benefit from their super-linear con-
vergence. Similar to Steepest descent method, here only the gradient of the objective function needs
to be calculated at every iteration. The version with bound-constraint can also be used to address
the non-negativity issue. The minimizer or direction for this family of optimization is:

pk =−B−1
k ∇ fk

where Bk is used in place of true Hessian and is a symmetric positive definite matrix. One can also
use the inverse of this approximation to the true Hessian (Hk , Bk

−1) for calculations.

B.2.1 BFGS Method

In this method instead of calculating the exact hessian as in Newton’s method, an approximate
hessian is calculated and updated at each iteration using a low-rank formula. This method also
have an effective self-correcting property and will correct the direction if the convergence becomes
slow. Below is the algorithm for this method. One simple choice for Inverse Hessian approximation
H0 is to use the identity matrix. Having a positive-definite Hk will guarantee that Hk+1 will also
be positive-definite, so choosing the initial value properly this condition will hold (for proof please
see pg 141,(Nocedal et Wright, 1999)).

Algorithm B.2.1
Choose an initial value x0
Choose the convergence tolerance ε > 0

Inverse Hessian approximation H0
k = 0;
while ‖∇ fk‖> ε

Compute search direction
pk =−Hk∇ fk;

Set xk+1 = xk +αkpk where αk is computed from a line search
procedure to satisfy the Wolf condition (Nocedal et Wright, 1999)
Define sk = xk+1−xk and yk = ∇ fk+1−∇ fk
Set ρk = 1

yT
k sk

Compute Hk+1 = (I−ρkskyT
k )Hk(I−ρkyksT

k )+ρksksT
k

k = k +1
end(while)

B.2.2 L-BFGS Method

For large-size problems where calculation of Hessian matrix in a reasonable cost is not possible or
the Hessian is not sparse, the limited memory BFGS can be used. In this method one does not need
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to store the whole Hessian matrix but a few vectors that represent the approximation implicitly will
be enough. This is expected to reduce the convergence rate of BFGS but linear convergence have
been observed for large-size problems. Below the algorithm for using this method is provided (No-
cedal et Wright, 1999).

Algorithm B.2.2
Choose an initial value x0, integer m > 0
k = 0;
repeat

Define sk = xk+1−xk and yk = ∇ fk+1−∇ fk

ρ = sT
k−1yk−1

yT
k−1yk−1

H0 = ρI
Compute pk =−Hk∇ fk;
Compute xk+1 = xk +αkpk where αk is chosen to
satisfy the Wolf condition (Nocedal et Wright, 1999)
if k > m
Discard th vector pair {sk−m,yk−m} from storage
Compute and save sk = xk+1−xk and yk = ∇ fk+1−∇ fk
k = k +1

until convergence

Here m defines the number of most recent correction pairs {si,yi} which will be used for Hes-
sian approximation at every iteration. It is recommended to choose this number between 3-20.
This method have also seen to outperform the Hessian-free Newton methods and as a result is a
good choice for large sparse problems. For m = 1, this algorithm is equivalent to HS-Nonlinear
conjugate gradient method.
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APPENDIX C

PENALIZATION OF NEIGHBORING PIXELS

Assuming that image is discretized in following form:

Image =


x1 xK+1 . . . x KN

2 +1 . . . xK(N−1)+1

x2 xK+2 . . .
...

...
...

xK . . . xKN


︸ ︷︷ ︸

K×N

(C.1)

Matrices of the first differences, have the following forms::

D(1) =




1 −1

1 −1
. . .

. . . 1 −1


︸ ︷︷ ︸

K−1×K

0

. . .

0


1 −1 . . .

1 −1 . . .
. . .

. . . 1 −1


︸ ︷︷ ︸

K−1×K


︸ ︷︷ ︸

(K−1)N×KN
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D(1)T
D(1) =





1 −1
−1 2 −1

−1 2 −1
. . . . . . . . .

−1 2 −1
−1 1


︸ ︷︷ ︸

K×K

0

. . .

0



1 −1
−1 2 −1

−1 2 −1
. . . . . . . . .

−1 2 −1
−1 1


︸ ︷︷ ︸

K×K


︸ ︷︷ ︸

KN×KN

D(2) =




1

1
. . .

1


︸ ︷︷ ︸

K×K


−1

−1
. . .

−1


︸ ︷︷ ︸

K×K

0

. . . . . .
−1

−1
. . .

−1


︸ ︷︷ ︸

K×K

0


1

1
. . .

1


︸ ︷︷ ︸

K×K


︸ ︷︷ ︸

KN×KN
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D(2)T
D(2) =


2

2
. . .

2


︸ ︷︷ ︸

K×K


−1

−1
. . .

−1


︸ ︷︷ ︸

K×K

0


−1

−1
. . .

−1


︸ ︷︷ ︸

K×K

. . . . . .


−1

−1
. . .

−1


︸ ︷︷ ︸

K×K

0


−1

−1
. . .

−1


︸ ︷︷ ︸

K×K


2

2
. . .

2


︸ ︷︷ ︸

K×K


︸ ︷︷ ︸

KN×KN
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D(3) =




1 0

1 0
. . . . . .

1 0


︸ ︷︷ ︸

K−1×K


0 −1

0 −1
. . . . . .

0 −1


︸ ︷︷ ︸

K−1×K

0

. . . . . .
0 −1

0 −1
. . . . . .

0 −1


︸ ︷︷ ︸

K−1×K

0


1 0

1 0
. . . . . .

1 0


︸ ︷︷ ︸

K−1×K


︸ ︷︷ ︸

KN×KN

D(4) =




0 −1

0 −1
. . . . . .

0 −1


︸ ︷︷ ︸

K−1×K


1 0

1 0
. . . . . .

1 0


︸ ︷︷ ︸

K−1×K

0

. . . . . .
1 0

1 0
. . . . . .

1 0


︸ ︷︷ ︸

K−1×K

0


0 −1

0 −1
. . . . . .

0 −1


︸ ︷︷ ︸

K−1×K


︸ ︷︷ ︸

KN×KN
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D(3)T
D(3) =



1
2

2
. . .

2
1


︸ ︷︷ ︸

K×K



0 −1
0 −1

0 −1
. . . . . .

−1
0


︸ ︷︷ ︸

K×K

0



0
−1 0

−1 0
. . . . . .

−1 0


︸ ︷︷ ︸

K×K

. . .



0 −1
0 −1

0 −1
. . . . . .

−1
0


︸ ︷︷ ︸

K×K

0



0
−1 0

−1 0
. . . . . .

−1 0


︸ ︷︷ ︸

K×K



1
2

2
. . .

2
1


︸ ︷︷ ︸

K×K


︸ ︷︷ ︸

KN×KN
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D(4)T
D(4) =



1
2

2
. . .

2
1


︸ ︷︷ ︸

K×K



0
−1 0

−1 0
. . . . . .

−1 0


︸ ︷︷ ︸

K×K

0



0 −1
0 −1

0 −1
. . . . . .

−1
0


︸ ︷︷ ︸

K×K

. . .



0
−1 0

−1 0
. . . . . .

−1 0


︸ ︷︷ ︸

K×K

0



0 −1
0 −1

0 −1
. . . . . .

−1
0


︸ ︷︷ ︸

K×K



1
2

2
. . .

2
1


︸ ︷︷ ︸

K×K


︸ ︷︷ ︸

KN×KN
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APPENDIX D

DIAGONALIZATION OF CIRCULANT MATRICES

A circulant matrix is a special kind of Toeplitz matrix and has the following form (Chen, 2005):

Cn =



c0 cn−1 cn−2 . . . c1

c1 c0 cn−1 . . . c2

c2 c1 c0 . . . c3
...

...
... . . . ...

cn−1 cn−2 cn−3 . . . c0


(D.1)

Matrices of this type can be represented by first row/column and the rest of rows/columns are
obtained by circ-shifting the first one. The root vector which can represent the whole matrix will
then be:

c = [c0,c1, . . . ,cn−2,cn−1]T (D.2)

For using the circulant matrices as preconditioner, we are interested to compute f = Cng and
g = C−1

n f quickly so that these operations can be used when implementing the solver with precon-
ditioner.

Now, to show how these computations can be done quickly using FFT methods, lets define a
permutation matrix Rn with following structure:

Rn =



0 1 . . . 0 1
1 0 . . . 0 0
0 1 . . . 0 0
...

... . . . 0 0
0 0 . . . 1 0


=



0 1 . . . 0 1
1 0 . . . 0 0
0 1 . . . 0 0
...

... . . . 0 0
0 0 . . . 1 0


(D.3)

and let,
c =

[
c0 c1 c2 . . . cn−1

]T

Then it is easy to see that Rn = (e2,e3, . . . ,en,e1) is a simple permutation matrix and if multiplied
by any matrix from right, it can permute the first column to last column. This means that if Rk

n =
IRn . . .Rn and Rk

n is defined as following:
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Rk
n =



n−k︷ ︸︸ ︷
0 . . . 0
... . . . ...
0 . . . 0
1 . . . 0
... . . . ...
0 0 1

k︷ ︸︸ ︷
1 . . . 0
... . . . ...
0 0 1
0 0 0
... . . . ...
0 . . . 0


(D.4)

then Cn can be represented as:

Cn =
[
c Rnc R2

nc . . . Rn−1
n c

]
(D.5)

Using Rk
n, we can then separate the full contribution of ck to Cn to following matrices:

Cn =



c0

c0

c0
. . .

c0


+



c1

c1

c1
. . .

c1


+



c2

c2

c2

c2
. . .

c2



+



c3

c3

c3

c3

c3
. . .

c3


+ . . .+



cn−1

cn−1
. . .

cn−1

cn−1


= c0I+ c1Rn + c2R2

n + . . .+ cn−1Rn−1
n

=
n−1

∑
j=0

c jRn−1
n

(D.6)

Equation(D.6) shows the relationship between Cn and Rn. We can also show that there is a
simple relationship between Rn and the discrete Fourier Transform matrix (DFT), Fn. Let denote
the vector I = e = (1,1,1, . . . ,1,1)T and Dn = diag(dn) with dn being the second column of matrix
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Fn, i.e., dn = (1,ωn,ω
2
n , . . . ,ωn−1

n )T , where ωn = exp{−2πi/n}. Then we have:

Fn =
[
I dn Dndn D2

ndn . . . Dn−3
n dn Dn−2

n dn

]
=
[
D0

nI D1
nI D2

nI D3
nI . . . Dn−2

n I Dn−1
n I

] (D.7)

By Noting that Dn
n = D0

n = diag(I), i.e., ωn
n = 1, we get the following relationship for Dn and

Rn:

DnFn = Dn

[
D0

nI D1
nI D2

nI D3
nI . . . Dn−2

n I Dn−1
n I

]
=
[
D1

nI D2
nI D3

nI D4
nI . . . Dn−1

n I Dn
nI
]

=
[
D1

nI D2
nI D3

nI D4
nI . . . Dn−1

n I D0
nI
]

= FnRn

(D.8)

which implies:
FnRnF−1

n = Dn (D.9)

This means that using the DFT matrix Fn one can diagonalize the permutation matrix Rn and
so obtain the eigenvalues and eigenvectors of Rn easily. Note that for eigenvalues λ (R j

n) = λ (Rn) j

(this results can be obtained using similar way of proving the Cayley-Hamilton theorem in linear
algebra), so having the eigenvalues of Rn we can obtain that of R j

n.
Now, using the result obtained in (D.9) and the relationship (D.6), one can get (Theorem 2.5.9

of (Chen, 2005)):

FnCnF−1
n = Fn

n−1

∑
j=0

c jR j
nF−1

n

=
n−1

∑
j=0

c j(FnR j
nF−1

n ) j = diag(Fnc)
(D.10)

In the above equation the facts that Fnc = ∑
n−1
j=0 c jD

j
nI and D j

n represents the diagonal of diagonal
matrix D j

n have been used.
To summarize, the above expressions show that eigenvalues and eigenvectors of a circulant

matrix can be obtained in a fast way using DFT method. This allows fast multiplication of a
circulant matrix with a vector possible:

f = Cng = F−1
n diag(Fnc)Fng = F−1

n [(Fnc).∗ (Fng)] (D.11)

Multiplication of the inverse of this circulant matrix by any vector, can then be performed as
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following:
g = C−1

n f = F−1
n diag(1./(Fnc))Fnf = F−1

n [Fnf./Fnc] (D.12)

Here Cn should be non-singular to avoid singularity problem.
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APPENDIX E

CHOLESKY DECOMPOSITION

The lower triangular matrix L in Cholesky decomposition is calculated as following (Bertsekas,
1999): Assume that ai j represent the elements of system matrix A, and Ai be the i-th leading
principle submatix of A as below:

Ai =


a11 a12 . . . a1i

a21 a22 . . . a2i
...

... . . . ...
ai1 ai2 . . . aii


The system matrix A is successively factorized to A1,A2, . . . and matrix of lower-triangular

Li is calculated for each Ai, i.e., L1 =
[√

a11
]

and A1 = L1LT
1 . Then representing the Cholesky

factorization of Ai−1 by:
Ai−1 = Li−1LT

i−1 (E.1)

Ai can be written as:

Ai =

[
Ai−1 βββ i

βββ T
i aii

]
, βββ i =


a1i
...

ai−1,i

 (E.2)

From Eq.(E.1) and (E.2) we can then write:

Ai = LiLT
i (E.3)

where,

Li =

[
Li−1 0
lT
i λii

]
(E.4)

and,
li = L−1

i−1βii, λii =
√

aii− lT
i li

λii is well defined as aii− lT
i li is always positive (for proof please see (Bertsekas, 1999), Appendix

D). Note that for lower-triangular matrices, their inverse can be analytically found, so L−1
i−1 is easily

invertible.
Remark 5.3.2: Note that for positive-definite A, the submatrix Ay is also positive-definite as
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for any y ∈ Ri and y 6= 0 we have:

yT Ayy =
[
yT 0
]

A

[
y
0

]
> 0

This shows that calculation of lower-triangular in this method is unique among all its similar
counterparts and it is numerically efficient.
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